Specialize partial_symtab for DWARF include files
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
... / ...
CommitLineData
1/* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31#include "defs.h"
32#include "dwarf2/read.h"
33#include "dwarf2/abbrev.h"
34#include "dwarf2/attribute.h"
35#include "dwarf2/comp-unit.h"
36#include "dwarf2/index-cache.h"
37#include "dwarf2/index-common.h"
38#include "dwarf2/leb.h"
39#include "dwarf2/line-header.h"
40#include "bfd.h"
41#include "elf-bfd.h"
42#include "symtab.h"
43#include "gdbtypes.h"
44#include "objfiles.h"
45#include "dwarf2.h"
46#include "buildsym.h"
47#include "demangle.h"
48#include "gdb-demangle.h"
49#include "filenames.h" /* for DOSish file names */
50#include "macrotab.h"
51#include "language.h"
52#include "complaints.h"
53#include "dwarf2/expr.h"
54#include "dwarf2/loc.h"
55#include "cp-support.h"
56#include "hashtab.h"
57#include "command.h"
58#include "gdbcmd.h"
59#include "block.h"
60#include "addrmap.h"
61#include "typeprint.h"
62#include "psympriv.h"
63#include "c-lang.h"
64#include "go-lang.h"
65#include "valprint.h"
66#include "gdbcore.h" /* for gnutarget */
67#include "gdb/gdb-index.h"
68#include "gdb_bfd.h"
69#include "f-lang.h"
70#include "source.h"
71#include "build-id.h"
72#include "namespace.h"
73#include "gdbsupport/function-view.h"
74#include "gdbsupport/gdb_optional.h"
75#include "gdbsupport/underlying.h"
76#include "gdbsupport/hash_enum.h"
77#include "filename-seen-cache.h"
78#include "producer.h"
79#include <fcntl.h>
80#include <algorithm>
81#include <unordered_map>
82#include "gdbsupport/selftest.h"
83#include "rust-lang.h"
84#include "gdbsupport/pathstuff.h"
85#include "count-one-bits.h"
86#include "debuginfod-support.h"
87
88/* When == 1, print basic high level tracing messages.
89 When > 1, be more verbose.
90 This is in contrast to the low level DIE reading of dwarf_die_debug. */
91static unsigned int dwarf_read_debug = 0;
92
93/* When non-zero, dump DIEs after they are read in. */
94static unsigned int dwarf_die_debug = 0;
95
96/* When non-zero, dump line number entries as they are read in. */
97unsigned int dwarf_line_debug = 0;
98
99/* When true, cross-check physname against demangler. */
100static bool check_physname = false;
101
102/* When true, do not reject deprecated .gdb_index sections. */
103static bool use_deprecated_index_sections = false;
104
105static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
106
107/* The "aclass" indices for various kinds of computed DWARF symbols. */
108
109static int dwarf2_locexpr_index;
110static int dwarf2_loclist_index;
111static int dwarf2_locexpr_block_index;
112static int dwarf2_loclist_block_index;
113
114/* An index into a (C++) symbol name component in a symbol name as
115 recorded in the mapped_index's symbol table. For each C++ symbol
116 in the symbol table, we record one entry for the start of each
117 component in the symbol in a table of name components, and then
118 sort the table, in order to be able to binary search symbol names,
119 ignoring leading namespaces, both completion and regular look up.
120 For example, for symbol "A::B::C", we'll have an entry that points
121 to "A::B::C", another that points to "B::C", and another for "C".
122 Note that function symbols in GDB index have no parameter
123 information, just the function/method names. You can convert a
124 name_component to a "const char *" using the
125 'mapped_index::symbol_name_at(offset_type)' method. */
126
127struct name_component
128{
129 /* Offset in the symbol name where the component starts. Stored as
130 a (32-bit) offset instead of a pointer to save memory and improve
131 locality on 64-bit architectures. */
132 offset_type name_offset;
133
134 /* The symbol's index in the symbol and constant pool tables of a
135 mapped_index. */
136 offset_type idx;
137};
138
139/* Base class containing bits shared by both .gdb_index and
140 .debug_name indexes. */
141
142struct mapped_index_base
143{
144 mapped_index_base () = default;
145 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
146
147 /* The name_component table (a sorted vector). See name_component's
148 description above. */
149 std::vector<name_component> name_components;
150
151 /* How NAME_COMPONENTS is sorted. */
152 enum case_sensitivity name_components_casing;
153
154 /* Return the number of names in the symbol table. */
155 virtual size_t symbol_name_count () const = 0;
156
157 /* Get the name of the symbol at IDX in the symbol table. */
158 virtual const char *symbol_name_at (offset_type idx) const = 0;
159
160 /* Return whether the name at IDX in the symbol table should be
161 ignored. */
162 virtual bool symbol_name_slot_invalid (offset_type idx) const
163 {
164 return false;
165 }
166
167 /* Build the symbol name component sorted vector, if we haven't
168 yet. */
169 void build_name_components ();
170
171 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
172 possible matches for LN_NO_PARAMS in the name component
173 vector. */
174 std::pair<std::vector<name_component>::const_iterator,
175 std::vector<name_component>::const_iterator>
176 find_name_components_bounds (const lookup_name_info &ln_no_params,
177 enum language lang) const;
178
179 /* Prevent deleting/destroying via a base class pointer. */
180protected:
181 ~mapped_index_base() = default;
182};
183
184/* A description of the mapped index. The file format is described in
185 a comment by the code that writes the index. */
186struct mapped_index final : public mapped_index_base
187{
188 /* A slot/bucket in the symbol table hash. */
189 struct symbol_table_slot
190 {
191 const offset_type name;
192 const offset_type vec;
193 };
194
195 /* Index data format version. */
196 int version = 0;
197
198 /* The address table data. */
199 gdb::array_view<const gdb_byte> address_table;
200
201 /* The symbol table, implemented as a hash table. */
202 gdb::array_view<symbol_table_slot> symbol_table;
203
204 /* A pointer to the constant pool. */
205 const char *constant_pool = nullptr;
206
207 bool symbol_name_slot_invalid (offset_type idx) const override
208 {
209 const auto &bucket = this->symbol_table[idx];
210 return bucket.name == 0 && bucket.vec == 0;
211 }
212
213 /* Convenience method to get at the name of the symbol at IDX in the
214 symbol table. */
215 const char *symbol_name_at (offset_type idx) const override
216 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
217
218 size_t symbol_name_count () const override
219 { return this->symbol_table.size (); }
220};
221
222/* A description of the mapped .debug_names.
223 Uninitialized map has CU_COUNT 0. */
224struct mapped_debug_names final : public mapped_index_base
225{
226 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
227 : dwarf2_per_objfile (dwarf2_per_objfile_)
228 {}
229
230 struct dwarf2_per_objfile *dwarf2_per_objfile;
231 bfd_endian dwarf5_byte_order;
232 bool dwarf5_is_dwarf64;
233 bool augmentation_is_gdb;
234 uint8_t offset_size;
235 uint32_t cu_count = 0;
236 uint32_t tu_count, bucket_count, name_count;
237 const gdb_byte *cu_table_reordered, *tu_table_reordered;
238 const uint32_t *bucket_table_reordered, *hash_table_reordered;
239 const gdb_byte *name_table_string_offs_reordered;
240 const gdb_byte *name_table_entry_offs_reordered;
241 const gdb_byte *entry_pool;
242
243 struct index_val
244 {
245 ULONGEST dwarf_tag;
246 struct attr
247 {
248 /* Attribute name DW_IDX_*. */
249 ULONGEST dw_idx;
250
251 /* Attribute form DW_FORM_*. */
252 ULONGEST form;
253
254 /* Value if FORM is DW_FORM_implicit_const. */
255 LONGEST implicit_const;
256 };
257 std::vector<attr> attr_vec;
258 };
259
260 std::unordered_map<ULONGEST, index_val> abbrev_map;
261
262 const char *namei_to_name (uint32_t namei) const;
263
264 /* Implementation of the mapped_index_base virtual interface, for
265 the name_components cache. */
266
267 const char *symbol_name_at (offset_type idx) const override
268 { return namei_to_name (idx); }
269
270 size_t symbol_name_count () const override
271 { return this->name_count; }
272};
273
274/* See dwarf2read.h. */
275
276dwarf2_per_objfile *
277get_dwarf2_per_objfile (struct objfile *objfile)
278{
279 return dwarf2_objfile_data_key.get (objfile);
280}
281
282/* Default names of the debugging sections. */
283
284/* Note that if the debugging section has been compressed, it might
285 have a name like .zdebug_info. */
286
287static const struct dwarf2_debug_sections dwarf2_elf_names =
288{
289 { ".debug_info", ".zdebug_info" },
290 { ".debug_abbrev", ".zdebug_abbrev" },
291 { ".debug_line", ".zdebug_line" },
292 { ".debug_loc", ".zdebug_loc" },
293 { ".debug_loclists", ".zdebug_loclists" },
294 { ".debug_macinfo", ".zdebug_macinfo" },
295 { ".debug_macro", ".zdebug_macro" },
296 { ".debug_str", ".zdebug_str" },
297 { ".debug_str_offsets", ".zdebug_str_offsets" },
298 { ".debug_line_str", ".zdebug_line_str" },
299 { ".debug_ranges", ".zdebug_ranges" },
300 { ".debug_rnglists", ".zdebug_rnglists" },
301 { ".debug_types", ".zdebug_types" },
302 { ".debug_addr", ".zdebug_addr" },
303 { ".debug_frame", ".zdebug_frame" },
304 { ".eh_frame", NULL },
305 { ".gdb_index", ".zgdb_index" },
306 { ".debug_names", ".zdebug_names" },
307 { ".debug_aranges", ".zdebug_aranges" },
308 23
309};
310
311/* List of DWO/DWP sections. */
312
313static const struct dwop_section_names
314{
315 struct dwarf2_section_names abbrev_dwo;
316 struct dwarf2_section_names info_dwo;
317 struct dwarf2_section_names line_dwo;
318 struct dwarf2_section_names loc_dwo;
319 struct dwarf2_section_names loclists_dwo;
320 struct dwarf2_section_names macinfo_dwo;
321 struct dwarf2_section_names macro_dwo;
322 struct dwarf2_section_names str_dwo;
323 struct dwarf2_section_names str_offsets_dwo;
324 struct dwarf2_section_names types_dwo;
325 struct dwarf2_section_names cu_index;
326 struct dwarf2_section_names tu_index;
327}
328dwop_section_names =
329{
330 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
331 { ".debug_info.dwo", ".zdebug_info.dwo" },
332 { ".debug_line.dwo", ".zdebug_line.dwo" },
333 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
334 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
335 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
336 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
337 { ".debug_str.dwo", ".zdebug_str.dwo" },
338 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
339 { ".debug_types.dwo", ".zdebug_types.dwo" },
340 { ".debug_cu_index", ".zdebug_cu_index" },
341 { ".debug_tu_index", ".zdebug_tu_index" },
342};
343
344/* local data types */
345
346/* Type used for delaying computation of method physnames.
347 See comments for compute_delayed_physnames. */
348struct delayed_method_info
349{
350 /* The type to which the method is attached, i.e., its parent class. */
351 struct type *type;
352
353 /* The index of the method in the type's function fieldlists. */
354 int fnfield_index;
355
356 /* The index of the method in the fieldlist. */
357 int index;
358
359 /* The name of the DIE. */
360 const char *name;
361
362 /* The DIE associated with this method. */
363 struct die_info *die;
364};
365
366/* Internal state when decoding a particular compilation unit. */
367struct dwarf2_cu
368{
369 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
370 ~dwarf2_cu ();
371
372 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
373
374 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
375 Create the set of symtabs used by this TU, or if this TU is sharing
376 symtabs with another TU and the symtabs have already been created
377 then restore those symtabs in the line header.
378 We don't need the pc/line-number mapping for type units. */
379 void setup_type_unit_groups (struct die_info *die);
380
381 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
382 buildsym_compunit constructor. */
383 struct compunit_symtab *start_symtab (const char *name,
384 const char *comp_dir,
385 CORE_ADDR low_pc);
386
387 /* Reset the builder. */
388 void reset_builder () { m_builder.reset (); }
389
390 /* The header of the compilation unit. */
391 struct comp_unit_head header {};
392
393 /* Base address of this compilation unit. */
394 CORE_ADDR base_address = 0;
395
396 /* Non-zero if base_address has been set. */
397 int base_known = 0;
398
399 /* The language we are debugging. */
400 enum language language = language_unknown;
401 const struct language_defn *language_defn = nullptr;
402
403 const char *producer = nullptr;
404
405private:
406 /* The symtab builder for this CU. This is only non-NULL when full
407 symbols are being read. */
408 std::unique_ptr<buildsym_compunit> m_builder;
409
410public:
411 /* The generic symbol table building routines have separate lists for
412 file scope symbols and all all other scopes (local scopes). So
413 we need to select the right one to pass to add_symbol_to_list().
414 We do it by keeping a pointer to the correct list in list_in_scope.
415
416 FIXME: The original dwarf code just treated the file scope as the
417 first local scope, and all other local scopes as nested local
418 scopes, and worked fine. Check to see if we really need to
419 distinguish these in buildsym.c. */
420 struct pending **list_in_scope = nullptr;
421
422 /* Hash table holding all the loaded partial DIEs
423 with partial_die->offset.SECT_OFF as hash. */
424 htab_t partial_dies = nullptr;
425
426 /* Storage for things with the same lifetime as this read-in compilation
427 unit, including partial DIEs. */
428 auto_obstack comp_unit_obstack;
429
430 /* When multiple dwarf2_cu structures are living in memory, this field
431 chains them all together, so that they can be released efficiently.
432 We will probably also want a generation counter so that most-recently-used
433 compilation units are cached... */
434 struct dwarf2_per_cu_data *read_in_chain = nullptr;
435
436 /* Backlink to our per_cu entry. */
437 struct dwarf2_per_cu_data *per_cu;
438
439 /* How many compilation units ago was this CU last referenced? */
440 int last_used = 0;
441
442 /* A hash table of DIE cu_offset for following references with
443 die_info->offset.sect_off as hash. */
444 htab_t die_hash = nullptr;
445
446 /* Full DIEs if read in. */
447 struct die_info *dies = nullptr;
448
449 /* A set of pointers to dwarf2_per_cu_data objects for compilation
450 units referenced by this one. Only set during full symbol processing;
451 partial symbol tables do not have dependencies. */
452 htab_t dependencies = nullptr;
453
454 /* Header data from the line table, during full symbol processing. */
455 struct line_header *line_header = nullptr;
456 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
457 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
458 this is the DW_TAG_compile_unit die for this CU. We'll hold on
459 to the line header as long as this DIE is being processed. See
460 process_die_scope. */
461 die_info *line_header_die_owner = nullptr;
462
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 std::vector<delayed_method_info> method_list;
466
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab = nullptr;
469
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
479 struct dwo_unit *dwo_unit = nullptr;
480
481 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
482 Note this value comes from the Fission stub CU/TU's DIE. */
483 gdb::optional<ULONGEST> addr_base;
484
485 /* The DW_AT_rnglists_base attribute if present.
486 Note this value comes from the Fission stub CU/TU's DIE.
487 Also note that the value is zero in the non-DWO case so this value can
488 be used without needing to know whether DWO files are in use or not.
489 N.B. This does not apply to DW_AT_ranges appearing in
490 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
491 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
492 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
493 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
494 ULONGEST ranges_base = 0;
495
496 /* When reading debug info generated by older versions of rustc, we
497 have to rewrite some union types to be struct types with a
498 variant part. This rewriting must be done after the CU is fully
499 read in, because otherwise at the point of rewriting some struct
500 type might not have been fully processed. So, we keep a list of
501 all such types here and process them after expansion. */
502 std::vector<struct type *> rust_unions;
503
504 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
505 files, the value is implicitly zero. For DWARF 5 version DWO files, the
506 value is often implicit and is the size of the header of
507 .debug_str_offsets section (8 or 4, depending on the address size). */
508 gdb::optional<ULONGEST> str_offsets_base;
509
510 /* Mark used when releasing cached dies. */
511 bool mark : 1;
512
513 /* This CU references .debug_loc. See the symtab->locations_valid field.
514 This test is imperfect as there may exist optimized debug code not using
515 any location list and still facing inlining issues if handled as
516 unoptimized code. For a future better test see GCC PR other/32998. */
517 bool has_loclist : 1;
518
519 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
520 if all the producer_is_* fields are valid. This information is cached
521 because profiling CU expansion showed excessive time spent in
522 producer_is_gxx_lt_4_6. */
523 bool checked_producer : 1;
524 bool producer_is_gxx_lt_4_6 : 1;
525 bool producer_is_gcc_lt_4_3 : 1;
526 bool producer_is_icc : 1;
527 bool producer_is_icc_lt_14 : 1;
528 bool producer_is_codewarrior : 1;
529
530 /* When true, the file that we're processing is known to have
531 debugging info for C++ namespaces. GCC 3.3.x did not produce
532 this information, but later versions do. */
533
534 bool processing_has_namespace_info : 1;
535
536 struct partial_die_info *find_partial_die (sect_offset sect_off);
537
538 /* If this CU was inherited by another CU (via specification,
539 abstract_origin, etc), this is the ancestor CU. */
540 dwarf2_cu *ancestor;
541
542 /* Get the buildsym_compunit for this CU. */
543 buildsym_compunit *get_builder ()
544 {
545 /* If this CU has a builder associated with it, use that. */
546 if (m_builder != nullptr)
547 return m_builder.get ();
548
549 /* Otherwise, search ancestors for a valid builder. */
550 if (ancestor != nullptr)
551 return ancestor->get_builder ();
552
553 return nullptr;
554 }
555};
556
557/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
558 This includes type_unit_group and quick_file_names. */
559
560struct stmt_list_hash
561{
562 /* The DWO unit this table is from or NULL if there is none. */
563 struct dwo_unit *dwo_unit;
564
565 /* Offset in .debug_line or .debug_line.dwo. */
566 sect_offset line_sect_off;
567};
568
569/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
570 an object of this type. */
571
572struct type_unit_group
573{
574 /* dwarf2read.c's main "handle" on a TU symtab.
575 To simplify things we create an artificial CU that "includes" all the
576 type units using this stmt_list so that the rest of the code still has
577 a "per_cu" handle on the symtab. */
578 struct dwarf2_per_cu_data per_cu;
579
580 /* The TUs that share this DW_AT_stmt_list entry.
581 This is added to while parsing type units to build partial symtabs,
582 and is deleted afterwards and not used again. */
583 std::vector<signatured_type *> *tus;
584
585 /* The compunit symtab.
586 Type units in a group needn't all be defined in the same source file,
587 so we create an essentially anonymous symtab as the compunit symtab. */
588 struct compunit_symtab *compunit_symtab;
589
590 /* The data used to construct the hash key. */
591 struct stmt_list_hash hash;
592
593 /* The symbol tables for this TU (obtained from the files listed in
594 DW_AT_stmt_list).
595 WARNING: The order of entries here must match the order of entries
596 in the line header. After the first TU using this type_unit_group, the
597 line header for the subsequent TUs is recreated from this. This is done
598 because we need to use the same symtabs for each TU using the same
599 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
600 there's no guarantee the line header doesn't have duplicate entries. */
601 struct symtab **symtabs;
602};
603
604/* These sections are what may appear in a (real or virtual) DWO file. */
605
606struct dwo_sections
607{
608 struct dwarf2_section_info abbrev;
609 struct dwarf2_section_info line;
610 struct dwarf2_section_info loc;
611 struct dwarf2_section_info loclists;
612 struct dwarf2_section_info macinfo;
613 struct dwarf2_section_info macro;
614 struct dwarf2_section_info str;
615 struct dwarf2_section_info str_offsets;
616 /* In the case of a virtual DWO file, these two are unused. */
617 struct dwarf2_section_info info;
618 std::vector<dwarf2_section_info> types;
619};
620
621/* CUs/TUs in DWP/DWO files. */
622
623struct dwo_unit
624{
625 /* Backlink to the containing struct dwo_file. */
626 struct dwo_file *dwo_file;
627
628 /* The "id" that distinguishes this CU/TU.
629 .debug_info calls this "dwo_id", .debug_types calls this "signature".
630 Since signatures came first, we stick with it for consistency. */
631 ULONGEST signature;
632
633 /* The section this CU/TU lives in, in the DWO file. */
634 struct dwarf2_section_info *section;
635
636 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
637 sect_offset sect_off;
638 unsigned int length;
639
640 /* For types, offset in the type's DIE of the type defined by this TU. */
641 cu_offset type_offset_in_tu;
642};
643
644/* include/dwarf2.h defines the DWP section codes.
645 It defines a max value but it doesn't define a min value, which we
646 use for error checking, so provide one. */
647
648enum dwp_v2_section_ids
649{
650 DW_SECT_MIN = 1
651};
652
653/* Data for one DWO file.
654
655 This includes virtual DWO files (a virtual DWO file is a DWO file as it
656 appears in a DWP file). DWP files don't really have DWO files per se -
657 comdat folding of types "loses" the DWO file they came from, and from
658 a high level view DWP files appear to contain a mass of random types.
659 However, to maintain consistency with the non-DWP case we pretend DWP
660 files contain virtual DWO files, and we assign each TU with one virtual
661 DWO file (generally based on the line and abbrev section offsets -
662 a heuristic that seems to work in practice). */
663
664struct dwo_file
665{
666 dwo_file () = default;
667 DISABLE_COPY_AND_ASSIGN (dwo_file);
668
669 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
670 For virtual DWO files the name is constructed from the section offsets
671 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
672 from related CU+TUs. */
673 const char *dwo_name = nullptr;
674
675 /* The DW_AT_comp_dir attribute. */
676 const char *comp_dir = nullptr;
677
678 /* The bfd, when the file is open. Otherwise this is NULL.
679 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
680 gdb_bfd_ref_ptr dbfd;
681
682 /* The sections that make up this DWO file.
683 Remember that for virtual DWO files in DWP V2, these are virtual
684 sections (for lack of a better name). */
685 struct dwo_sections sections {};
686
687 /* The CUs in the file.
688 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
689 an extension to handle LLVM's Link Time Optimization output (where
690 multiple source files may be compiled into a single object/dwo pair). */
691 htab_up cus;
692
693 /* Table of TUs in the file.
694 Each element is a struct dwo_unit. */
695 htab_up tus;
696};
697
698/* These sections are what may appear in a DWP file. */
699
700struct dwp_sections
701{
702 /* These are used by both DWP version 1 and 2. */
703 struct dwarf2_section_info str;
704 struct dwarf2_section_info cu_index;
705 struct dwarf2_section_info tu_index;
706
707 /* These are only used by DWP version 2 files.
708 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
709 sections are referenced by section number, and are not recorded here.
710 In DWP version 2 there is at most one copy of all these sections, each
711 section being (effectively) comprised of the concatenation of all of the
712 individual sections that exist in the version 1 format.
713 To keep the code simple we treat each of these concatenated pieces as a
714 section itself (a virtual section?). */
715 struct dwarf2_section_info abbrev;
716 struct dwarf2_section_info info;
717 struct dwarf2_section_info line;
718 struct dwarf2_section_info loc;
719 struct dwarf2_section_info macinfo;
720 struct dwarf2_section_info macro;
721 struct dwarf2_section_info str_offsets;
722 struct dwarf2_section_info types;
723};
724
725/* These sections are what may appear in a virtual DWO file in DWP version 1.
726 A virtual DWO file is a DWO file as it appears in a DWP file. */
727
728struct virtual_v1_dwo_sections
729{
730 struct dwarf2_section_info abbrev;
731 struct dwarf2_section_info line;
732 struct dwarf2_section_info loc;
733 struct dwarf2_section_info macinfo;
734 struct dwarf2_section_info macro;
735 struct dwarf2_section_info str_offsets;
736 /* Each DWP hash table entry records one CU or one TU.
737 That is recorded here, and copied to dwo_unit.section. */
738 struct dwarf2_section_info info_or_types;
739};
740
741/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
742 In version 2, the sections of the DWO files are concatenated together
743 and stored in one section of that name. Thus each ELF section contains
744 several "virtual" sections. */
745
746struct virtual_v2_dwo_sections
747{
748 bfd_size_type abbrev_offset;
749 bfd_size_type abbrev_size;
750
751 bfd_size_type line_offset;
752 bfd_size_type line_size;
753
754 bfd_size_type loc_offset;
755 bfd_size_type loc_size;
756
757 bfd_size_type macinfo_offset;
758 bfd_size_type macinfo_size;
759
760 bfd_size_type macro_offset;
761 bfd_size_type macro_size;
762
763 bfd_size_type str_offsets_offset;
764 bfd_size_type str_offsets_size;
765
766 /* Each DWP hash table entry records one CU or one TU.
767 That is recorded here, and copied to dwo_unit.section. */
768 bfd_size_type info_or_types_offset;
769 bfd_size_type info_or_types_size;
770};
771
772/* Contents of DWP hash tables. */
773
774struct dwp_hash_table
775{
776 uint32_t version, nr_columns;
777 uint32_t nr_units, nr_slots;
778 const gdb_byte *hash_table, *unit_table;
779 union
780 {
781 struct
782 {
783 const gdb_byte *indices;
784 } v1;
785 struct
786 {
787 /* This is indexed by column number and gives the id of the section
788 in that column. */
789#define MAX_NR_V2_DWO_SECTIONS \
790 (1 /* .debug_info or .debug_types */ \
791 + 1 /* .debug_abbrev */ \
792 + 1 /* .debug_line */ \
793 + 1 /* .debug_loc */ \
794 + 1 /* .debug_str_offsets */ \
795 + 1 /* .debug_macro or .debug_macinfo */)
796 int section_ids[MAX_NR_V2_DWO_SECTIONS];
797 const gdb_byte *offsets;
798 const gdb_byte *sizes;
799 } v2;
800 } section_pool;
801};
802
803/* Data for one DWP file. */
804
805struct dwp_file
806{
807 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
808 : name (name_),
809 dbfd (std::move (abfd))
810 {
811 }
812
813 /* Name of the file. */
814 const char *name;
815
816 /* File format version. */
817 int version = 0;
818
819 /* The bfd. */
820 gdb_bfd_ref_ptr dbfd;
821
822 /* Section info for this file. */
823 struct dwp_sections sections {};
824
825 /* Table of CUs in the file. */
826 const struct dwp_hash_table *cus = nullptr;
827
828 /* Table of TUs in the file. */
829 const struct dwp_hash_table *tus = nullptr;
830
831 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
832 htab_up loaded_cus;
833 htab_up loaded_tus;
834
835 /* Table to map ELF section numbers to their sections.
836 This is only needed for the DWP V1 file format. */
837 unsigned int num_sections = 0;
838 asection **elf_sections = nullptr;
839};
840
841/* Struct used to pass misc. parameters to read_die_and_children, et
842 al. which are used for both .debug_info and .debug_types dies.
843 All parameters here are unchanging for the life of the call. This
844 struct exists to abstract away the constant parameters of die reading. */
845
846struct die_reader_specs
847{
848 /* The bfd of die_section. */
849 bfd* abfd;
850
851 /* The CU of the DIE we are parsing. */
852 struct dwarf2_cu *cu;
853
854 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
855 struct dwo_file *dwo_file;
856
857 /* The section the die comes from.
858 This is either .debug_info or .debug_types, or the .dwo variants. */
859 struct dwarf2_section_info *die_section;
860
861 /* die_section->buffer. */
862 const gdb_byte *buffer;
863
864 /* The end of the buffer. */
865 const gdb_byte *buffer_end;
866
867 /* The abbreviation table to use when reading the DIEs. */
868 struct abbrev_table *abbrev_table;
869};
870
871/* A subclass of die_reader_specs that holds storage and has complex
872 constructor and destructor behavior. */
873
874class cutu_reader : public die_reader_specs
875{
876public:
877
878 cutu_reader (struct dwarf2_per_cu_data *this_cu,
879 struct abbrev_table *abbrev_table,
880 int use_existing_cu,
881 bool skip_partial);
882
883 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
884 struct dwarf2_cu *parent_cu = nullptr,
885 struct dwo_file *dwo_file = nullptr);
886
887 DISABLE_COPY_AND_ASSIGN (cutu_reader);
888
889 const gdb_byte *info_ptr = nullptr;
890 struct die_info *comp_unit_die = nullptr;
891 bool dummy_p = false;
892
893 /* Release the new CU, putting it on the chain. This cannot be done
894 for dummy CUs. */
895 void keep ();
896
897private:
898 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
899 int use_existing_cu);
900
901 struct dwarf2_per_cu_data *m_this_cu;
902 std::unique_ptr<dwarf2_cu> m_new_cu;
903
904 /* The ordinary abbreviation table. */
905 abbrev_table_up m_abbrev_table_holder;
906
907 /* The DWO abbreviation table. */
908 abbrev_table_up m_dwo_abbrev_table;
909};
910
911/* When we construct a partial symbol table entry we only
912 need this much information. */
913struct partial_die_info : public allocate_on_obstack
914 {
915 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
916
917 /* Disable assign but still keep copy ctor, which is needed
918 load_partial_dies. */
919 partial_die_info& operator=(const partial_die_info& rhs) = delete;
920
921 /* Adjust the partial die before generating a symbol for it. This
922 function may set the is_external flag or change the DIE's
923 name. */
924 void fixup (struct dwarf2_cu *cu);
925
926 /* Read a minimal amount of information into the minimal die
927 structure. */
928 const gdb_byte *read (const struct die_reader_specs *reader,
929 const struct abbrev_info &abbrev,
930 const gdb_byte *info_ptr);
931
932 /* Offset of this DIE. */
933 const sect_offset sect_off;
934
935 /* DWARF-2 tag for this DIE. */
936 const ENUM_BITFIELD(dwarf_tag) tag : 16;
937
938 /* Assorted flags describing the data found in this DIE. */
939 const unsigned int has_children : 1;
940
941 unsigned int is_external : 1;
942 unsigned int is_declaration : 1;
943 unsigned int has_type : 1;
944 unsigned int has_specification : 1;
945 unsigned int has_pc_info : 1;
946 unsigned int may_be_inlined : 1;
947
948 /* This DIE has been marked DW_AT_main_subprogram. */
949 unsigned int main_subprogram : 1;
950
951 /* Flag set if the SCOPE field of this structure has been
952 computed. */
953 unsigned int scope_set : 1;
954
955 /* Flag set if the DIE has a byte_size attribute. */
956 unsigned int has_byte_size : 1;
957
958 /* Flag set if the DIE has a DW_AT_const_value attribute. */
959 unsigned int has_const_value : 1;
960
961 /* Flag set if any of the DIE's children are template arguments. */
962 unsigned int has_template_arguments : 1;
963
964 /* Flag set if fixup has been called on this die. */
965 unsigned int fixup_called : 1;
966
967 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
968 unsigned int is_dwz : 1;
969
970 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
971 unsigned int spec_is_dwz : 1;
972
973 /* The name of this DIE. Normally the value of DW_AT_name, but
974 sometimes a default name for unnamed DIEs. */
975 const char *name = nullptr;
976
977 /* The linkage name, if present. */
978 const char *linkage_name = nullptr;
979
980 /* The scope to prepend to our children. This is generally
981 allocated on the comp_unit_obstack, so will disappear
982 when this compilation unit leaves the cache. */
983 const char *scope = nullptr;
984
985 /* Some data associated with the partial DIE. The tag determines
986 which field is live. */
987 union
988 {
989 /* The location description associated with this DIE, if any. */
990 struct dwarf_block *locdesc;
991 /* The offset of an import, for DW_TAG_imported_unit. */
992 sect_offset sect_off;
993 } d {};
994
995 /* If HAS_PC_INFO, the PC range associated with this DIE. */
996 CORE_ADDR lowpc = 0;
997 CORE_ADDR highpc = 0;
998
999 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1000 DW_AT_sibling, if any. */
1001 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1002 could return DW_AT_sibling values to its caller load_partial_dies. */
1003 const gdb_byte *sibling = nullptr;
1004
1005 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1006 DW_AT_specification (or DW_AT_abstract_origin or
1007 DW_AT_extension). */
1008 sect_offset spec_offset {};
1009
1010 /* Pointers to this DIE's parent, first child, and next sibling,
1011 if any. */
1012 struct partial_die_info *die_parent = nullptr;
1013 struct partial_die_info *die_child = nullptr;
1014 struct partial_die_info *die_sibling = nullptr;
1015
1016 friend struct partial_die_info *
1017 dwarf2_cu::find_partial_die (sect_offset sect_off);
1018
1019 private:
1020 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1021 partial_die_info (sect_offset sect_off)
1022 : partial_die_info (sect_off, DW_TAG_padding, 0)
1023 {
1024 }
1025
1026 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1027 int has_children_)
1028 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1029 {
1030 is_external = 0;
1031 is_declaration = 0;
1032 has_type = 0;
1033 has_specification = 0;
1034 has_pc_info = 0;
1035 may_be_inlined = 0;
1036 main_subprogram = 0;
1037 scope_set = 0;
1038 has_byte_size = 0;
1039 has_const_value = 0;
1040 has_template_arguments = 0;
1041 fixup_called = 0;
1042 is_dwz = 0;
1043 spec_is_dwz = 0;
1044 }
1045 };
1046
1047/* This data structure holds a complete die structure. */
1048struct die_info
1049 {
1050 /* DWARF-2 tag for this DIE. */
1051 ENUM_BITFIELD(dwarf_tag) tag : 16;
1052
1053 /* Number of attributes */
1054 unsigned char num_attrs;
1055
1056 /* True if we're presently building the full type name for the
1057 type derived from this DIE. */
1058 unsigned char building_fullname : 1;
1059
1060 /* True if this die is in process. PR 16581. */
1061 unsigned char in_process : 1;
1062
1063 /* True if this DIE has children. */
1064 unsigned char has_children : 1;
1065
1066 /* Abbrev number */
1067 unsigned int abbrev;
1068
1069 /* Offset in .debug_info or .debug_types section. */
1070 sect_offset sect_off;
1071
1072 /* The dies in a compilation unit form an n-ary tree. PARENT
1073 points to this die's parent; CHILD points to the first child of
1074 this node; and all the children of a given node are chained
1075 together via their SIBLING fields. */
1076 struct die_info *child; /* Its first child, if any. */
1077 struct die_info *sibling; /* Its next sibling, if any. */
1078 struct die_info *parent; /* Its parent, if any. */
1079
1080 /* An array of attributes, with NUM_ATTRS elements. There may be
1081 zero, but it's not common and zero-sized arrays are not
1082 sufficiently portable C. */
1083 struct attribute attrs[1];
1084 };
1085
1086/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1087 but this would require a corresponding change in unpack_field_as_long
1088 and friends. */
1089static int bits_per_byte = 8;
1090
1091/* When reading a variant or variant part, we track a bit more
1092 information about the field, and store it in an object of this
1093 type. */
1094
1095struct variant_field
1096{
1097 /* If we see a DW_TAG_variant, then this will be the discriminant
1098 value. */
1099 ULONGEST discriminant_value;
1100 /* If we see a DW_TAG_variant, then this will be set if this is the
1101 default branch. */
1102 bool default_branch;
1103 /* While reading a DW_TAG_variant_part, this will be set if this
1104 field is the discriminant. */
1105 bool is_discriminant;
1106};
1107
1108struct nextfield
1109{
1110 int accessibility = 0;
1111 int virtuality = 0;
1112 /* Extra information to describe a variant or variant part. */
1113 struct variant_field variant {};
1114 struct field field {};
1115};
1116
1117struct fnfieldlist
1118{
1119 const char *name = nullptr;
1120 std::vector<struct fn_field> fnfields;
1121};
1122
1123/* The routines that read and process dies for a C struct or C++ class
1124 pass lists of data member fields and lists of member function fields
1125 in an instance of a field_info structure, as defined below. */
1126struct field_info
1127 {
1128 /* List of data member and baseclasses fields. */
1129 std::vector<struct nextfield> fields;
1130 std::vector<struct nextfield> baseclasses;
1131
1132 /* Number of fields (including baseclasses). */
1133 int nfields = 0;
1134
1135 /* Set if the accessibility of one of the fields is not public. */
1136 int non_public_fields = 0;
1137
1138 /* Member function fieldlist array, contains name of possibly overloaded
1139 member function, number of overloaded member functions and a pointer
1140 to the head of the member function field chain. */
1141 std::vector<struct fnfieldlist> fnfieldlists;
1142
1143 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1144 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1145 std::vector<struct decl_field> typedef_field_list;
1146
1147 /* Nested types defined by this class and the number of elements in this
1148 list. */
1149 std::vector<struct decl_field> nested_types_list;
1150 };
1151
1152/* Loaded secondary compilation units are kept in memory until they
1153 have not been referenced for the processing of this many
1154 compilation units. Set this to zero to disable caching. Cache
1155 sizes of up to at least twenty will improve startup time for
1156 typical inter-CU-reference binaries, at an obvious memory cost. */
1157static int dwarf_max_cache_age = 5;
1158static void
1159show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1160 struct cmd_list_element *c, const char *value)
1161{
1162 fprintf_filtered (file, _("The upper bound on the age of cached "
1163 "DWARF compilation units is %s.\n"),
1164 value);
1165}
1166\f
1167/* local function prototypes */
1168
1169static void dwarf2_find_base_address (struct die_info *die,
1170 struct dwarf2_cu *cu);
1171
1172static dwarf2_psymtab *create_partial_symtab
1173 (struct dwarf2_per_cu_data *per_cu, const char *name);
1174
1175static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1176 const gdb_byte *info_ptr,
1177 struct die_info *type_unit_die);
1178
1179static void dwarf2_build_psymtabs_hard
1180 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1181
1182static void scan_partial_symbols (struct partial_die_info *,
1183 CORE_ADDR *, CORE_ADDR *,
1184 int, struct dwarf2_cu *);
1185
1186static void add_partial_symbol (struct partial_die_info *,
1187 struct dwarf2_cu *);
1188
1189static void add_partial_namespace (struct partial_die_info *pdi,
1190 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1191 int set_addrmap, struct dwarf2_cu *cu);
1192
1193static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1194 CORE_ADDR *highpc, int set_addrmap,
1195 struct dwarf2_cu *cu);
1196
1197static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1198 struct dwarf2_cu *cu);
1199
1200static void add_partial_subprogram (struct partial_die_info *pdi,
1201 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1202 int need_pc, struct dwarf2_cu *cu);
1203
1204static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1205
1206static struct partial_die_info *load_partial_dies
1207 (const struct die_reader_specs *, const gdb_byte *, int);
1208
1209/* A pair of partial_die_info and compilation unit. */
1210struct cu_partial_die_info
1211{
1212 /* The compilation unit of the partial_die_info. */
1213 struct dwarf2_cu *cu;
1214 /* A partial_die_info. */
1215 struct partial_die_info *pdi;
1216
1217 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1218 : cu (cu),
1219 pdi (pdi)
1220 { /* Nothing. */ }
1221
1222private:
1223 cu_partial_die_info () = delete;
1224};
1225
1226static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1227 struct dwarf2_cu *);
1228
1229static const gdb_byte *read_attribute (const struct die_reader_specs *,
1230 struct attribute *, struct attr_abbrev *,
1231 const gdb_byte *, bool *need_reprocess);
1232
1233static void read_attribute_reprocess (const struct die_reader_specs *reader,
1234 struct attribute *attr);
1235
1236static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1237
1238static LONGEST read_checked_initial_length_and_offset
1239 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1240 unsigned int *, unsigned int *);
1241
1242static sect_offset read_abbrev_offset
1243 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1244 struct dwarf2_section_info *, sect_offset);
1245
1246static const char *read_indirect_string
1247 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1248 const struct comp_unit_head *, unsigned int *);
1249
1250static const char *read_indirect_line_string
1251 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1252 const struct comp_unit_head *, unsigned int *);
1253
1254static const char *read_indirect_string_at_offset
1255 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1256 LONGEST str_offset);
1257
1258static const char *read_indirect_string_from_dwz
1259 (struct objfile *objfile, struct dwz_file *, LONGEST);
1260
1261static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1262 const gdb_byte *,
1263 unsigned int *);
1264
1265static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1266 ULONGEST str_index);
1267
1268static const char *read_stub_str_index (struct dwarf2_cu *cu,
1269 ULONGEST str_index);
1270
1271static void set_cu_language (unsigned int, struct dwarf2_cu *);
1272
1273static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1274 struct dwarf2_cu *);
1275
1276static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1277 unsigned int);
1278
1279static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1280 struct dwarf2_cu *cu);
1281
1282static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1283
1284static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1285 struct dwarf2_cu *cu);
1286
1287static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1288
1289static struct die_info *die_specification (struct die_info *die,
1290 struct dwarf2_cu **);
1291
1292static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1293 struct dwarf2_cu *cu);
1294
1295static void dwarf_decode_lines (struct line_header *, const char *,
1296 struct dwarf2_cu *, dwarf2_psymtab *,
1297 CORE_ADDR, int decode_mapping);
1298
1299static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1300 const char *);
1301
1302static struct symbol *new_symbol (struct die_info *, struct type *,
1303 struct dwarf2_cu *, struct symbol * = NULL);
1304
1305static void dwarf2_const_value (const struct attribute *, struct symbol *,
1306 struct dwarf2_cu *);
1307
1308static void dwarf2_const_value_attr (const struct attribute *attr,
1309 struct type *type,
1310 const char *name,
1311 struct obstack *obstack,
1312 struct dwarf2_cu *cu, LONGEST *value,
1313 const gdb_byte **bytes,
1314 struct dwarf2_locexpr_baton **baton);
1315
1316static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1317
1318static int need_gnat_info (struct dwarf2_cu *);
1319
1320static struct type *die_descriptive_type (struct die_info *,
1321 struct dwarf2_cu *);
1322
1323static void set_descriptive_type (struct type *, struct die_info *,
1324 struct dwarf2_cu *);
1325
1326static struct type *die_containing_type (struct die_info *,
1327 struct dwarf2_cu *);
1328
1329static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1330 struct dwarf2_cu *);
1331
1332static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1333
1334static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1335
1336static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1337
1338static char *typename_concat (struct obstack *obs, const char *prefix,
1339 const char *suffix, int physname,
1340 struct dwarf2_cu *cu);
1341
1342static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1343
1344static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1345
1346static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1347
1348static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1349
1350static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1351
1352static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1353
1354static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1355 struct dwarf2_cu *, dwarf2_psymtab *);
1356
1357/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1358 values. Keep the items ordered with increasing constraints compliance. */
1359enum pc_bounds_kind
1360{
1361 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1362 PC_BOUNDS_NOT_PRESENT,
1363
1364 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1365 were present but they do not form a valid range of PC addresses. */
1366 PC_BOUNDS_INVALID,
1367
1368 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1369 PC_BOUNDS_RANGES,
1370
1371 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1372 PC_BOUNDS_HIGH_LOW,
1373};
1374
1375static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1376 CORE_ADDR *, CORE_ADDR *,
1377 struct dwarf2_cu *,
1378 dwarf2_psymtab *);
1379
1380static void get_scope_pc_bounds (struct die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
1382 struct dwarf2_cu *);
1383
1384static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1385 CORE_ADDR, struct dwarf2_cu *);
1386
1387static void dwarf2_add_field (struct field_info *, struct die_info *,
1388 struct dwarf2_cu *);
1389
1390static void dwarf2_attach_fields_to_type (struct field_info *,
1391 struct type *, struct dwarf2_cu *);
1392
1393static void dwarf2_add_member_fn (struct field_info *,
1394 struct die_info *, struct type *,
1395 struct dwarf2_cu *);
1396
1397static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1398 struct type *,
1399 struct dwarf2_cu *);
1400
1401static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1402
1403static void read_common_block (struct die_info *, struct dwarf2_cu *);
1404
1405static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1406
1407static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1408
1409static struct using_direct **using_directives (struct dwarf2_cu *cu);
1410
1411static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1412
1413static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1414
1415static struct type *read_module_type (struct die_info *die,
1416 struct dwarf2_cu *cu);
1417
1418static const char *namespace_name (struct die_info *die,
1419 int *is_anonymous, struct dwarf2_cu *);
1420
1421static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1422
1423static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1424
1425static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1426 struct dwarf2_cu *);
1427
1428static struct die_info *read_die_and_siblings_1
1429 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1430 struct die_info *);
1431
1432static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1433 const gdb_byte *info_ptr,
1434 const gdb_byte **new_info_ptr,
1435 struct die_info *parent);
1436
1437static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1438 struct die_info **, const gdb_byte *,
1439 int);
1440
1441static const gdb_byte *read_full_die (const struct die_reader_specs *,
1442 struct die_info **, const gdb_byte *);
1443
1444static void process_die (struct die_info *, struct dwarf2_cu *);
1445
1446static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1447 struct obstack *);
1448
1449static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1450
1451static const char *dwarf2_full_name (const char *name,
1452 struct die_info *die,
1453 struct dwarf2_cu *cu);
1454
1455static const char *dwarf2_physname (const char *name, struct die_info *die,
1456 struct dwarf2_cu *cu);
1457
1458static struct die_info *dwarf2_extension (struct die_info *die,
1459 struct dwarf2_cu **);
1460
1461static const char *dwarf_tag_name (unsigned int);
1462
1463static const char *dwarf_attr_name (unsigned int);
1464
1465static const char *dwarf_form_name (unsigned int);
1466
1467static const char *dwarf_bool_name (unsigned int);
1468
1469static const char *dwarf_type_encoding_name (unsigned int);
1470
1471static struct die_info *sibling_die (struct die_info *);
1472
1473static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1474
1475static void dump_die_for_error (struct die_info *);
1476
1477static void dump_die_1 (struct ui_file *, int level, int max_level,
1478 struct die_info *);
1479
1480/*static*/ void dump_die (struct die_info *, int max_level);
1481
1482static void store_in_ref_table (struct die_info *,
1483 struct dwarf2_cu *);
1484
1485static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1486
1487static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1488
1489static struct die_info *follow_die_ref_or_sig (struct die_info *,
1490 const struct attribute *,
1491 struct dwarf2_cu **);
1492
1493static struct die_info *follow_die_ref (struct die_info *,
1494 const struct attribute *,
1495 struct dwarf2_cu **);
1496
1497static struct die_info *follow_die_sig (struct die_info *,
1498 const struct attribute *,
1499 struct dwarf2_cu **);
1500
1501static struct type *get_signatured_type (struct die_info *, ULONGEST,
1502 struct dwarf2_cu *);
1503
1504static struct type *get_DW_AT_signature_type (struct die_info *,
1505 const struct attribute *,
1506 struct dwarf2_cu *);
1507
1508static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1509
1510static void read_signatured_type (struct signatured_type *);
1511
1512static int attr_to_dynamic_prop (const struct attribute *attr,
1513 struct die_info *die, struct dwarf2_cu *cu,
1514 struct dynamic_prop *prop, struct type *type);
1515
1516/* memory allocation interface */
1517
1518static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1519
1520static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1521
1522static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1523
1524static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1525 struct dwarf2_loclist_baton *baton,
1526 const struct attribute *attr);
1527
1528static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1529 struct symbol *sym,
1530 struct dwarf2_cu *cu,
1531 int is_block);
1532
1533static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1534 const gdb_byte *info_ptr,
1535 struct abbrev_info *abbrev);
1536
1537static hashval_t partial_die_hash (const void *item);
1538
1539static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1540
1541static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1542 (sect_offset sect_off, unsigned int offset_in_dwz,
1543 struct dwarf2_per_objfile *dwarf2_per_objfile);
1544
1545static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1546 struct die_info *comp_unit_die,
1547 enum language pretend_language);
1548
1549static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1550
1551static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1552
1553static struct type *set_die_type (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1557
1558static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1559
1560static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1561 enum language);
1562
1563static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1564 enum language);
1565
1566static void process_full_type_unit (struct dwarf2_per_cu_data *,
1567 enum language);
1568
1569static void dwarf2_add_dependence (struct dwarf2_cu *,
1570 struct dwarf2_per_cu_data *);
1571
1572static void dwarf2_mark (struct dwarf2_cu *);
1573
1574static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1575
1576static struct type *get_die_type_at_offset (sect_offset,
1577 struct dwarf2_per_cu_data *);
1578
1579static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1580
1581static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1582 enum language pretend_language);
1583
1584static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1585
1586/* Class, the destructor of which frees all allocated queue entries. This
1587 will only have work to do if an error was thrown while processing the
1588 dwarf. If no error was thrown then the queue entries should have all
1589 been processed, and freed, as we went along. */
1590
1591class dwarf2_queue_guard
1592{
1593public:
1594 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1595 : m_per_objfile (per_objfile)
1596 {
1597 }
1598
1599 /* Free any entries remaining on the queue. There should only be
1600 entries left if we hit an error while processing the dwarf. */
1601 ~dwarf2_queue_guard ()
1602 {
1603 /* Ensure that no memory is allocated by the queue. */
1604 std::queue<dwarf2_queue_item> empty;
1605 std::swap (m_per_objfile->queue, empty);
1606 }
1607
1608 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1609
1610private:
1611 dwarf2_per_objfile *m_per_objfile;
1612};
1613
1614dwarf2_queue_item::~dwarf2_queue_item ()
1615{
1616 /* Anything still marked queued is likely to be in an
1617 inconsistent state, so discard it. */
1618 if (per_cu->queued)
1619 {
1620 if (per_cu->cu != NULL)
1621 free_one_cached_comp_unit (per_cu);
1622 per_cu->queued = 0;
1623 }
1624}
1625
1626/* The return type of find_file_and_directory. Note, the enclosed
1627 string pointers are only valid while this object is valid. */
1628
1629struct file_and_directory
1630{
1631 /* The filename. This is never NULL. */
1632 const char *name;
1633
1634 /* The compilation directory. NULL if not known. If we needed to
1635 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1636 points directly to the DW_AT_comp_dir string attribute owned by
1637 the obstack that owns the DIE. */
1638 const char *comp_dir;
1639
1640 /* If we needed to build a new string for comp_dir, this is what
1641 owns the storage. */
1642 std::string comp_dir_storage;
1643};
1644
1645static file_and_directory find_file_and_directory (struct die_info *die,
1646 struct dwarf2_cu *cu);
1647
1648static htab_up allocate_signatured_type_table ();
1649
1650static htab_up allocate_dwo_unit_table ();
1651
1652static struct dwo_unit *lookup_dwo_unit_in_dwp
1653 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1654 struct dwp_file *dwp_file, const char *comp_dir,
1655 ULONGEST signature, int is_debug_types);
1656
1657static struct dwp_file *get_dwp_file
1658 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1659
1660static struct dwo_unit *lookup_dwo_comp_unit
1661 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1662
1663static struct dwo_unit *lookup_dwo_type_unit
1664 (struct signatured_type *, const char *, const char *);
1665
1666static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1667
1668/* A unique pointer to a dwo_file. */
1669
1670typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1671
1672static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1673
1674static void check_producer (struct dwarf2_cu *cu);
1675
1676static void free_line_header_voidp (void *arg);
1677\f
1678/* Various complaints about symbol reading that don't abort the process. */
1679
1680static void
1681dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1682{
1683 complaint (_("statement list doesn't fit in .debug_line section"));
1684}
1685
1686static void
1687dwarf2_debug_line_missing_file_complaint (void)
1688{
1689 complaint (_(".debug_line section has line data without a file"));
1690}
1691
1692static void
1693dwarf2_debug_line_missing_end_sequence_complaint (void)
1694{
1695 complaint (_(".debug_line section has line "
1696 "program sequence without an end"));
1697}
1698
1699static void
1700dwarf2_complex_location_expr_complaint (void)
1701{
1702 complaint (_("location expression too complex"));
1703}
1704
1705static void
1706dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1707 int arg3)
1708{
1709 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1710 arg1, arg2, arg3);
1711}
1712
1713static void
1714dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1715{
1716 complaint (_("debug info runs off end of %s section"
1717 " [in module %s]"),
1718 section->get_name (),
1719 section->get_file_name ());
1720}
1721
1722static void
1723dwarf2_macro_malformed_definition_complaint (const char *arg1)
1724{
1725 complaint (_("macro debug info contains a "
1726 "malformed macro definition:\n`%s'"),
1727 arg1);
1728}
1729
1730static void
1731dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1732{
1733 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1734 arg1, arg2);
1735}
1736
1737/* Hash function for line_header_hash. */
1738
1739static hashval_t
1740line_header_hash (const struct line_header *ofs)
1741{
1742 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1743}
1744
1745/* Hash function for htab_create_alloc_ex for line_header_hash. */
1746
1747static hashval_t
1748line_header_hash_voidp (const void *item)
1749{
1750 const struct line_header *ofs = (const struct line_header *) item;
1751
1752 return line_header_hash (ofs);
1753}
1754
1755/* Equality function for line_header_hash. */
1756
1757static int
1758line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1759{
1760 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1761 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1762
1763 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1764 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1765}
1766
1767\f
1768
1769/* See declaration. */
1770
1771dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1772 const dwarf2_debug_sections *names,
1773 bool can_copy_)
1774 : objfile (objfile_),
1775 can_copy (can_copy_)
1776{
1777 if (names == NULL)
1778 names = &dwarf2_elf_names;
1779
1780 bfd *obfd = objfile->obfd;
1781
1782 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1783 locate_sections (obfd, sec, *names);
1784}
1785
1786dwarf2_per_objfile::~dwarf2_per_objfile ()
1787{
1788 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
1789 free_cached_comp_units ();
1790
1791 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1792 per_cu->imported_symtabs_free ();
1793
1794 for (signatured_type *sig_type : all_type_units)
1795 sig_type->per_cu.imported_symtabs_free ();
1796
1797 /* Everything else should be on the objfile obstack. */
1798}
1799
1800/* See declaration. */
1801
1802void
1803dwarf2_per_objfile::free_cached_comp_units ()
1804{
1805 dwarf2_per_cu_data *per_cu = read_in_chain;
1806 dwarf2_per_cu_data **last_chain = &read_in_chain;
1807 while (per_cu != NULL)
1808 {
1809 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
1810
1811 delete per_cu->cu;
1812 *last_chain = next_cu;
1813 per_cu = next_cu;
1814 }
1815}
1816
1817/* A helper class that calls free_cached_comp_units on
1818 destruction. */
1819
1820class free_cached_comp_units
1821{
1822public:
1823
1824 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1825 : m_per_objfile (per_objfile)
1826 {
1827 }
1828
1829 ~free_cached_comp_units ()
1830 {
1831 m_per_objfile->free_cached_comp_units ();
1832 }
1833
1834 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1835
1836private:
1837
1838 dwarf2_per_objfile *m_per_objfile;
1839};
1840
1841/* Try to locate the sections we need for DWARF 2 debugging
1842 information and return true if we have enough to do something.
1843 NAMES points to the dwarf2 section names, or is NULL if the standard
1844 ELF names are used. CAN_COPY is true for formats where symbol
1845 interposition is possible and so symbol values must follow copy
1846 relocation rules. */
1847
1848int
1849dwarf2_has_info (struct objfile *objfile,
1850 const struct dwarf2_debug_sections *names,
1851 bool can_copy)
1852{
1853 if (objfile->flags & OBJF_READNEVER)
1854 return 0;
1855
1856 struct dwarf2_per_objfile *dwarf2_per_objfile
1857 = get_dwarf2_per_objfile (objfile);
1858
1859 if (dwarf2_per_objfile == NULL)
1860 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
1861 names,
1862 can_copy);
1863
1864 return (!dwarf2_per_objfile->info.is_virtual
1865 && dwarf2_per_objfile->info.s.section != NULL
1866 && !dwarf2_per_objfile->abbrev.is_virtual
1867 && dwarf2_per_objfile->abbrev.s.section != NULL);
1868}
1869
1870/* When loading sections, we look either for uncompressed section or for
1871 compressed section names. */
1872
1873static int
1874section_is_p (const char *section_name,
1875 const struct dwarf2_section_names *names)
1876{
1877 if (names->normal != NULL
1878 && strcmp (section_name, names->normal) == 0)
1879 return 1;
1880 if (names->compressed != NULL
1881 && strcmp (section_name, names->compressed) == 0)
1882 return 1;
1883 return 0;
1884}
1885
1886/* See declaration. */
1887
1888void
1889dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
1890 const dwarf2_debug_sections &names)
1891{
1892 flagword aflag = bfd_section_flags (sectp);
1893
1894 if ((aflag & SEC_HAS_CONTENTS) == 0)
1895 {
1896 }
1897 else if (elf_section_data (sectp)->this_hdr.sh_size
1898 > bfd_get_file_size (abfd))
1899 {
1900 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1901 warning (_("Discarding section %s which has a section size (%s"
1902 ") larger than the file size [in module %s]"),
1903 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1904 bfd_get_filename (abfd));
1905 }
1906 else if (section_is_p (sectp->name, &names.info))
1907 {
1908 this->info.s.section = sectp;
1909 this->info.size = bfd_section_size (sectp);
1910 }
1911 else if (section_is_p (sectp->name, &names.abbrev))
1912 {
1913 this->abbrev.s.section = sectp;
1914 this->abbrev.size = bfd_section_size (sectp);
1915 }
1916 else if (section_is_p (sectp->name, &names.line))
1917 {
1918 this->line.s.section = sectp;
1919 this->line.size = bfd_section_size (sectp);
1920 }
1921 else if (section_is_p (sectp->name, &names.loc))
1922 {
1923 this->loc.s.section = sectp;
1924 this->loc.size = bfd_section_size (sectp);
1925 }
1926 else if (section_is_p (sectp->name, &names.loclists))
1927 {
1928 this->loclists.s.section = sectp;
1929 this->loclists.size = bfd_section_size (sectp);
1930 }
1931 else if (section_is_p (sectp->name, &names.macinfo))
1932 {
1933 this->macinfo.s.section = sectp;
1934 this->macinfo.size = bfd_section_size (sectp);
1935 }
1936 else if (section_is_p (sectp->name, &names.macro))
1937 {
1938 this->macro.s.section = sectp;
1939 this->macro.size = bfd_section_size (sectp);
1940 }
1941 else if (section_is_p (sectp->name, &names.str))
1942 {
1943 this->str.s.section = sectp;
1944 this->str.size = bfd_section_size (sectp);
1945 }
1946 else if (section_is_p (sectp->name, &names.str_offsets))
1947 {
1948 this->str_offsets.s.section = sectp;
1949 this->str_offsets.size = bfd_section_size (sectp);
1950 }
1951 else if (section_is_p (sectp->name, &names.line_str))
1952 {
1953 this->line_str.s.section = sectp;
1954 this->line_str.size = bfd_section_size (sectp);
1955 }
1956 else if (section_is_p (sectp->name, &names.addr))
1957 {
1958 this->addr.s.section = sectp;
1959 this->addr.size = bfd_section_size (sectp);
1960 }
1961 else if (section_is_p (sectp->name, &names.frame))
1962 {
1963 this->frame.s.section = sectp;
1964 this->frame.size = bfd_section_size (sectp);
1965 }
1966 else if (section_is_p (sectp->name, &names.eh_frame))
1967 {
1968 this->eh_frame.s.section = sectp;
1969 this->eh_frame.size = bfd_section_size (sectp);
1970 }
1971 else if (section_is_p (sectp->name, &names.ranges))
1972 {
1973 this->ranges.s.section = sectp;
1974 this->ranges.size = bfd_section_size (sectp);
1975 }
1976 else if (section_is_p (sectp->name, &names.rnglists))
1977 {
1978 this->rnglists.s.section = sectp;
1979 this->rnglists.size = bfd_section_size (sectp);
1980 }
1981 else if (section_is_p (sectp->name, &names.types))
1982 {
1983 struct dwarf2_section_info type_section;
1984
1985 memset (&type_section, 0, sizeof (type_section));
1986 type_section.s.section = sectp;
1987 type_section.size = bfd_section_size (sectp);
1988
1989 this->types.push_back (type_section);
1990 }
1991 else if (section_is_p (sectp->name, &names.gdb_index))
1992 {
1993 this->gdb_index.s.section = sectp;
1994 this->gdb_index.size = bfd_section_size (sectp);
1995 }
1996 else if (section_is_p (sectp->name, &names.debug_names))
1997 {
1998 this->debug_names.s.section = sectp;
1999 this->debug_names.size = bfd_section_size (sectp);
2000 }
2001 else if (section_is_p (sectp->name, &names.debug_aranges))
2002 {
2003 this->debug_aranges.s.section = sectp;
2004 this->debug_aranges.size = bfd_section_size (sectp);
2005 }
2006
2007 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2008 && bfd_section_vma (sectp) == 0)
2009 this->has_section_at_zero = true;
2010}
2011
2012/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2013 SECTION_NAME. */
2014
2015void
2016dwarf2_get_section_info (struct objfile *objfile,
2017 enum dwarf2_section_enum sect,
2018 asection **sectp, const gdb_byte **bufp,
2019 bfd_size_type *sizep)
2020{
2021 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2022 struct dwarf2_section_info *info;
2023
2024 /* We may see an objfile without any DWARF, in which case we just
2025 return nothing. */
2026 if (data == NULL)
2027 {
2028 *sectp = NULL;
2029 *bufp = NULL;
2030 *sizep = 0;
2031 return;
2032 }
2033 switch (sect)
2034 {
2035 case DWARF2_DEBUG_FRAME:
2036 info = &data->frame;
2037 break;
2038 case DWARF2_EH_FRAME:
2039 info = &data->eh_frame;
2040 break;
2041 default:
2042 gdb_assert_not_reached ("unexpected section");
2043 }
2044
2045 info->read (objfile);
2046
2047 *sectp = info->get_bfd_section ();
2048 *bufp = info->buffer;
2049 *sizep = info->size;
2050}
2051
2052/* A helper function to find the sections for a .dwz file. */
2053
2054static void
2055locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2056{
2057 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2058
2059 /* Note that we only support the standard ELF names, because .dwz
2060 is ELF-only (at the time of writing). */
2061 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2062 {
2063 dwz_file->abbrev.s.section = sectp;
2064 dwz_file->abbrev.size = bfd_section_size (sectp);
2065 }
2066 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2067 {
2068 dwz_file->info.s.section = sectp;
2069 dwz_file->info.size = bfd_section_size (sectp);
2070 }
2071 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2072 {
2073 dwz_file->str.s.section = sectp;
2074 dwz_file->str.size = bfd_section_size (sectp);
2075 }
2076 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2077 {
2078 dwz_file->line.s.section = sectp;
2079 dwz_file->line.size = bfd_section_size (sectp);
2080 }
2081 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2082 {
2083 dwz_file->macro.s.section = sectp;
2084 dwz_file->macro.size = bfd_section_size (sectp);
2085 }
2086 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2087 {
2088 dwz_file->gdb_index.s.section = sectp;
2089 dwz_file->gdb_index.size = bfd_section_size (sectp);
2090 }
2091 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2092 {
2093 dwz_file->debug_names.s.section = sectp;
2094 dwz_file->debug_names.size = bfd_section_size (sectp);
2095 }
2096}
2097
2098/* See dwarf2read.h. */
2099
2100struct dwz_file *
2101dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2102{
2103 const char *filename;
2104 bfd_size_type buildid_len_arg;
2105 size_t buildid_len;
2106 bfd_byte *buildid;
2107
2108 if (dwarf2_per_objfile->dwz_file != NULL)
2109 return dwarf2_per_objfile->dwz_file.get ();
2110
2111 bfd_set_error (bfd_error_no_error);
2112 gdb::unique_xmalloc_ptr<char> data
2113 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2114 &buildid_len_arg, &buildid));
2115 if (data == NULL)
2116 {
2117 if (bfd_get_error () == bfd_error_no_error)
2118 return NULL;
2119 error (_("could not read '.gnu_debugaltlink' section: %s"),
2120 bfd_errmsg (bfd_get_error ()));
2121 }
2122
2123 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2124
2125 buildid_len = (size_t) buildid_len_arg;
2126
2127 filename = data.get ();
2128
2129 std::string abs_storage;
2130 if (!IS_ABSOLUTE_PATH (filename))
2131 {
2132 gdb::unique_xmalloc_ptr<char> abs
2133 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2134
2135 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2136 filename = abs_storage.c_str ();
2137 }
2138
2139 /* First try the file name given in the section. If that doesn't
2140 work, try to use the build-id instead. */
2141 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2142 if (dwz_bfd != NULL)
2143 {
2144 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2145 dwz_bfd.reset (nullptr);
2146 }
2147
2148 if (dwz_bfd == NULL)
2149 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2150
2151 if (dwz_bfd == nullptr)
2152 {
2153 gdb::unique_xmalloc_ptr<char> alt_filename;
2154 const char *origname = dwarf2_per_objfile->objfile->original_name;
2155
2156 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2157 buildid_len,
2158 origname,
2159 &alt_filename));
2160
2161 if (fd.get () >= 0)
2162 {
2163 /* File successfully retrieved from server. */
2164 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget, -1);
2165
2166 if (dwz_bfd == nullptr)
2167 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2168 alt_filename.get ());
2169 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2170 dwz_bfd.reset (nullptr);
2171 }
2172 }
2173
2174 if (dwz_bfd == NULL)
2175 error (_("could not find '.gnu_debugaltlink' file for %s"),
2176 objfile_name (dwarf2_per_objfile->objfile));
2177
2178 std::unique_ptr<struct dwz_file> result
2179 (new struct dwz_file (std::move (dwz_bfd)));
2180
2181 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2182 result.get ());
2183
2184 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2185 result->dwz_bfd.get ());
2186 dwarf2_per_objfile->dwz_file = std::move (result);
2187 return dwarf2_per_objfile->dwz_file.get ();
2188}
2189\f
2190/* DWARF quick_symbols_functions support. */
2191
2192/* TUs can share .debug_line entries, and there can be a lot more TUs than
2193 unique line tables, so we maintain a separate table of all .debug_line
2194 derived entries to support the sharing.
2195 All the quick functions need is the list of file names. We discard the
2196 line_header when we're done and don't need to record it here. */
2197struct quick_file_names
2198{
2199 /* The data used to construct the hash key. */
2200 struct stmt_list_hash hash;
2201
2202 /* The number of entries in file_names, real_names. */
2203 unsigned int num_file_names;
2204
2205 /* The file names from the line table, after being run through
2206 file_full_name. */
2207 const char **file_names;
2208
2209 /* The file names from the line table after being run through
2210 gdb_realpath. These are computed lazily. */
2211 const char **real_names;
2212};
2213
2214/* When using the index (and thus not using psymtabs), each CU has an
2215 object of this type. This is used to hold information needed by
2216 the various "quick" methods. */
2217struct dwarf2_per_cu_quick_data
2218{
2219 /* The file table. This can be NULL if there was no file table
2220 or it's currently not read in.
2221 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2222 struct quick_file_names *file_names;
2223
2224 /* The corresponding symbol table. This is NULL if symbols for this
2225 CU have not yet been read. */
2226 struct compunit_symtab *compunit_symtab;
2227
2228 /* A temporary mark bit used when iterating over all CUs in
2229 expand_symtabs_matching. */
2230 unsigned int mark : 1;
2231
2232 /* True if we've tried to read the file table and found there isn't one.
2233 There will be no point in trying to read it again next time. */
2234 unsigned int no_file_data : 1;
2235};
2236
2237/* Utility hash function for a stmt_list_hash. */
2238
2239static hashval_t
2240hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2241{
2242 hashval_t v = 0;
2243
2244 if (stmt_list_hash->dwo_unit != NULL)
2245 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2246 v += to_underlying (stmt_list_hash->line_sect_off);
2247 return v;
2248}
2249
2250/* Utility equality function for a stmt_list_hash. */
2251
2252static int
2253eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2254 const struct stmt_list_hash *rhs)
2255{
2256 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2257 return 0;
2258 if (lhs->dwo_unit != NULL
2259 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2260 return 0;
2261
2262 return lhs->line_sect_off == rhs->line_sect_off;
2263}
2264
2265/* Hash function for a quick_file_names. */
2266
2267static hashval_t
2268hash_file_name_entry (const void *e)
2269{
2270 const struct quick_file_names *file_data
2271 = (const struct quick_file_names *) e;
2272
2273 return hash_stmt_list_entry (&file_data->hash);
2274}
2275
2276/* Equality function for a quick_file_names. */
2277
2278static int
2279eq_file_name_entry (const void *a, const void *b)
2280{
2281 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2282 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2283
2284 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2285}
2286
2287/* Delete function for a quick_file_names. */
2288
2289static void
2290delete_file_name_entry (void *e)
2291{
2292 struct quick_file_names *file_data = (struct quick_file_names *) e;
2293 int i;
2294
2295 for (i = 0; i < file_data->num_file_names; ++i)
2296 {
2297 xfree ((void*) file_data->file_names[i]);
2298 if (file_data->real_names)
2299 xfree ((void*) file_data->real_names[i]);
2300 }
2301
2302 /* The space for the struct itself lives on objfile_obstack,
2303 so we don't free it here. */
2304}
2305
2306/* Create a quick_file_names hash table. */
2307
2308static htab_up
2309create_quick_file_names_table (unsigned int nr_initial_entries)
2310{
2311 return htab_up (htab_create_alloc (nr_initial_entries,
2312 hash_file_name_entry, eq_file_name_entry,
2313 delete_file_name_entry, xcalloc, xfree));
2314}
2315
2316/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2317 have to be created afterwards. You should call age_cached_comp_units after
2318 processing PER_CU->CU. dw2_setup must have been already called. */
2319
2320static void
2321load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2322{
2323 if (per_cu->is_debug_types)
2324 load_full_type_unit (per_cu);
2325 else
2326 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2327
2328 if (per_cu->cu == NULL)
2329 return; /* Dummy CU. */
2330
2331 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2332}
2333
2334/* Read in the symbols for PER_CU. */
2335
2336static void
2337dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2338{
2339 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2340
2341 /* Skip type_unit_groups, reading the type units they contain
2342 is handled elsewhere. */
2343 if (per_cu->type_unit_group_p ())
2344 return;
2345
2346 /* The destructor of dwarf2_queue_guard frees any entries left on
2347 the queue. After this point we're guaranteed to leave this function
2348 with the dwarf queue empty. */
2349 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2350
2351 if (dwarf2_per_objfile->using_index
2352 ? per_cu->v.quick->compunit_symtab == NULL
2353 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2354 {
2355 queue_comp_unit (per_cu, language_minimal);
2356 load_cu (per_cu, skip_partial);
2357
2358 /* If we just loaded a CU from a DWO, and we're working with an index
2359 that may badly handle TUs, load all the TUs in that DWO as well.
2360 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2361 if (!per_cu->is_debug_types
2362 && per_cu->cu != NULL
2363 && per_cu->cu->dwo_unit != NULL
2364 && dwarf2_per_objfile->index_table != NULL
2365 && dwarf2_per_objfile->index_table->version <= 7
2366 /* DWP files aren't supported yet. */
2367 && get_dwp_file (dwarf2_per_objfile) == NULL)
2368 queue_and_load_all_dwo_tus (per_cu);
2369 }
2370
2371 process_queue (dwarf2_per_objfile);
2372
2373 /* Age the cache, releasing compilation units that have not
2374 been used recently. */
2375 age_cached_comp_units (dwarf2_per_objfile);
2376}
2377
2378/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2379 the objfile from which this CU came. Returns the resulting symbol
2380 table. */
2381
2382static struct compunit_symtab *
2383dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2384{
2385 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2386
2387 gdb_assert (dwarf2_per_objfile->using_index);
2388 if (!per_cu->v.quick->compunit_symtab)
2389 {
2390 free_cached_comp_units freer (dwarf2_per_objfile);
2391 scoped_restore decrementer = increment_reading_symtab ();
2392 dw2_do_instantiate_symtab (per_cu, skip_partial);
2393 process_cu_includes (dwarf2_per_objfile);
2394 }
2395
2396 return per_cu->v.quick->compunit_symtab;
2397}
2398
2399/* See declaration. */
2400
2401dwarf2_per_cu_data *
2402dwarf2_per_objfile::get_cutu (int index)
2403{
2404 if (index >= this->all_comp_units.size ())
2405 {
2406 index -= this->all_comp_units.size ();
2407 gdb_assert (index < this->all_type_units.size ());
2408 return &this->all_type_units[index]->per_cu;
2409 }
2410
2411 return this->all_comp_units[index];
2412}
2413
2414/* See declaration. */
2415
2416dwarf2_per_cu_data *
2417dwarf2_per_objfile::get_cu (int index)
2418{
2419 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2420
2421 return this->all_comp_units[index];
2422}
2423
2424/* See declaration. */
2425
2426signatured_type *
2427dwarf2_per_objfile::get_tu (int index)
2428{
2429 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2430
2431 return this->all_type_units[index];
2432}
2433
2434/* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2435 objfile_obstack, and constructed with the specified field
2436 values. */
2437
2438static dwarf2_per_cu_data *
2439create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2440 struct dwarf2_section_info *section,
2441 int is_dwz,
2442 sect_offset sect_off, ULONGEST length)
2443{
2444 struct objfile *objfile = dwarf2_per_objfile->objfile;
2445 dwarf2_per_cu_data *the_cu
2446 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2447 struct dwarf2_per_cu_data);
2448 the_cu->sect_off = sect_off;
2449 the_cu->length = length;
2450 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2451 the_cu->section = section;
2452 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2453 struct dwarf2_per_cu_quick_data);
2454 the_cu->is_dwz = is_dwz;
2455 return the_cu;
2456}
2457
2458/* A helper for create_cus_from_index that handles a given list of
2459 CUs. */
2460
2461static void
2462create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2463 const gdb_byte *cu_list, offset_type n_elements,
2464 struct dwarf2_section_info *section,
2465 int is_dwz)
2466{
2467 for (offset_type i = 0; i < n_elements; i += 2)
2468 {
2469 gdb_static_assert (sizeof (ULONGEST) >= 8);
2470
2471 sect_offset sect_off
2472 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2473 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2474 cu_list += 2 * 8;
2475
2476 dwarf2_per_cu_data *per_cu
2477 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2478 sect_off, length);
2479 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2480 }
2481}
2482
2483/* Read the CU list from the mapped index, and use it to create all
2484 the CU objects for this objfile. */
2485
2486static void
2487create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2488 const gdb_byte *cu_list, offset_type cu_list_elements,
2489 const gdb_byte *dwz_list, offset_type dwz_elements)
2490{
2491 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2492 dwarf2_per_objfile->all_comp_units.reserve
2493 ((cu_list_elements + dwz_elements) / 2);
2494
2495 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2496 &dwarf2_per_objfile->info, 0);
2497
2498 if (dwz_elements == 0)
2499 return;
2500
2501 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2502 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2503 &dwz->info, 1);
2504}
2505
2506/* Create the signatured type hash table from the index. */
2507
2508static void
2509create_signatured_type_table_from_index
2510 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2511 struct dwarf2_section_info *section,
2512 const gdb_byte *bytes,
2513 offset_type elements)
2514{
2515 struct objfile *objfile = dwarf2_per_objfile->objfile;
2516
2517 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2518 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2519
2520 htab_up sig_types_hash = allocate_signatured_type_table ();
2521
2522 for (offset_type i = 0; i < elements; i += 3)
2523 {
2524 struct signatured_type *sig_type;
2525 ULONGEST signature;
2526 void **slot;
2527 cu_offset type_offset_in_tu;
2528
2529 gdb_static_assert (sizeof (ULONGEST) >= 8);
2530 sect_offset sect_off
2531 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2532 type_offset_in_tu
2533 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2534 BFD_ENDIAN_LITTLE);
2535 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2536 bytes += 3 * 8;
2537
2538 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2539 struct signatured_type);
2540 sig_type->signature = signature;
2541 sig_type->type_offset_in_tu = type_offset_in_tu;
2542 sig_type->per_cu.is_debug_types = 1;
2543 sig_type->per_cu.section = section;
2544 sig_type->per_cu.sect_off = sect_off;
2545 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2546 sig_type->per_cu.v.quick
2547 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2548 struct dwarf2_per_cu_quick_data);
2549
2550 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2551 *slot = sig_type;
2552
2553 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2554 }
2555
2556 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2557}
2558
2559/* Create the signatured type hash table from .debug_names. */
2560
2561static void
2562create_signatured_type_table_from_debug_names
2563 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2564 const mapped_debug_names &map,
2565 struct dwarf2_section_info *section,
2566 struct dwarf2_section_info *abbrev_section)
2567{
2568 struct objfile *objfile = dwarf2_per_objfile->objfile;
2569
2570 section->read (objfile);
2571 abbrev_section->read (objfile);
2572
2573 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2574 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2575
2576 htab_up sig_types_hash = allocate_signatured_type_table ();
2577
2578 for (uint32_t i = 0; i < map.tu_count; ++i)
2579 {
2580 struct signatured_type *sig_type;
2581 void **slot;
2582
2583 sect_offset sect_off
2584 = (sect_offset) (extract_unsigned_integer
2585 (map.tu_table_reordered + i * map.offset_size,
2586 map.offset_size,
2587 map.dwarf5_byte_order));
2588
2589 comp_unit_head cu_header;
2590 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2591 abbrev_section,
2592 section->buffer + to_underlying (sect_off),
2593 rcuh_kind::TYPE);
2594
2595 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2596 struct signatured_type);
2597 sig_type->signature = cu_header.signature;
2598 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2599 sig_type->per_cu.is_debug_types = 1;
2600 sig_type->per_cu.section = section;
2601 sig_type->per_cu.sect_off = sect_off;
2602 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2603 sig_type->per_cu.v.quick
2604 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2605 struct dwarf2_per_cu_quick_data);
2606
2607 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2608 *slot = sig_type;
2609
2610 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2611 }
2612
2613 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2614}
2615
2616/* Read the address map data from the mapped index, and use it to
2617 populate the objfile's psymtabs_addrmap. */
2618
2619static void
2620create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2621 struct mapped_index *index)
2622{
2623 struct objfile *objfile = dwarf2_per_objfile->objfile;
2624 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2625 const gdb_byte *iter, *end;
2626 struct addrmap *mutable_map;
2627 CORE_ADDR baseaddr;
2628
2629 auto_obstack temp_obstack;
2630
2631 mutable_map = addrmap_create_mutable (&temp_obstack);
2632
2633 iter = index->address_table.data ();
2634 end = iter + index->address_table.size ();
2635
2636 baseaddr = objfile->text_section_offset ();
2637
2638 while (iter < end)
2639 {
2640 ULONGEST hi, lo, cu_index;
2641 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2642 iter += 8;
2643 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2644 iter += 8;
2645 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2646 iter += 4;
2647
2648 if (lo > hi)
2649 {
2650 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2651 hex_string (lo), hex_string (hi));
2652 continue;
2653 }
2654
2655 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2656 {
2657 complaint (_(".gdb_index address table has invalid CU number %u"),
2658 (unsigned) cu_index);
2659 continue;
2660 }
2661
2662 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2663 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2664 addrmap_set_empty (mutable_map, lo, hi - 1,
2665 dwarf2_per_objfile->get_cu (cu_index));
2666 }
2667
2668 objfile->partial_symtabs->psymtabs_addrmap
2669 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2670}
2671
2672/* Read the address map data from DWARF-5 .debug_aranges, and use it to
2673 populate the objfile's psymtabs_addrmap. */
2674
2675static void
2676create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2677 struct dwarf2_section_info *section)
2678{
2679 struct objfile *objfile = dwarf2_per_objfile->objfile;
2680 bfd *abfd = objfile->obfd;
2681 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2682 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2683
2684 auto_obstack temp_obstack;
2685 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2686
2687 std::unordered_map<sect_offset,
2688 dwarf2_per_cu_data *,
2689 gdb::hash_enum<sect_offset>>
2690 debug_info_offset_to_per_cu;
2691 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2692 {
2693 const auto insertpair
2694 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2695 if (!insertpair.second)
2696 {
2697 warning (_("Section .debug_aranges in %s has duplicate "
2698 "debug_info_offset %s, ignoring .debug_aranges."),
2699 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2700 return;
2701 }
2702 }
2703
2704 section->read (objfile);
2705
2706 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2707
2708 const gdb_byte *addr = section->buffer;
2709
2710 while (addr < section->buffer + section->size)
2711 {
2712 const gdb_byte *const entry_addr = addr;
2713 unsigned int bytes_read;
2714
2715 const LONGEST entry_length = read_initial_length (abfd, addr,
2716 &bytes_read);
2717 addr += bytes_read;
2718
2719 const gdb_byte *const entry_end = addr + entry_length;
2720 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2721 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2722 if (addr + entry_length > section->buffer + section->size)
2723 {
2724 warning (_("Section .debug_aranges in %s entry at offset %s "
2725 "length %s exceeds section length %s, "
2726 "ignoring .debug_aranges."),
2727 objfile_name (objfile),
2728 plongest (entry_addr - section->buffer),
2729 plongest (bytes_read + entry_length),
2730 pulongest (section->size));
2731 return;
2732 }
2733
2734 /* The version number. */
2735 const uint16_t version = read_2_bytes (abfd, addr);
2736 addr += 2;
2737 if (version != 2)
2738 {
2739 warning (_("Section .debug_aranges in %s entry at offset %s "
2740 "has unsupported version %d, ignoring .debug_aranges."),
2741 objfile_name (objfile),
2742 plongest (entry_addr - section->buffer), version);
2743 return;
2744 }
2745
2746 const uint64_t debug_info_offset
2747 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2748 addr += offset_size;
2749 const auto per_cu_it
2750 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2751 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2752 {
2753 warning (_("Section .debug_aranges in %s entry at offset %s "
2754 "debug_info_offset %s does not exists, "
2755 "ignoring .debug_aranges."),
2756 objfile_name (objfile),
2757 plongest (entry_addr - section->buffer),
2758 pulongest (debug_info_offset));
2759 return;
2760 }
2761 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2762
2763 const uint8_t address_size = *addr++;
2764 if (address_size < 1 || address_size > 8)
2765 {
2766 warning (_("Section .debug_aranges in %s entry at offset %s "
2767 "address_size %u is invalid, ignoring .debug_aranges."),
2768 objfile_name (objfile),
2769 plongest (entry_addr - section->buffer), address_size);
2770 return;
2771 }
2772
2773 const uint8_t segment_selector_size = *addr++;
2774 if (segment_selector_size != 0)
2775 {
2776 warning (_("Section .debug_aranges in %s entry at offset %s "
2777 "segment_selector_size %u is not supported, "
2778 "ignoring .debug_aranges."),
2779 objfile_name (objfile),
2780 plongest (entry_addr - section->buffer),
2781 segment_selector_size);
2782 return;
2783 }
2784
2785 /* Must pad to an alignment boundary that is twice the address
2786 size. It is undocumented by the DWARF standard but GCC does
2787 use it. */
2788 for (size_t padding = ((-(addr - section->buffer))
2789 & (2 * address_size - 1));
2790 padding > 0; padding--)
2791 if (*addr++ != 0)
2792 {
2793 warning (_("Section .debug_aranges in %s entry at offset %s "
2794 "padding is not zero, ignoring .debug_aranges."),
2795 objfile_name (objfile),
2796 plongest (entry_addr - section->buffer));
2797 return;
2798 }
2799
2800 for (;;)
2801 {
2802 if (addr + 2 * address_size > entry_end)
2803 {
2804 warning (_("Section .debug_aranges in %s entry at offset %s "
2805 "address list is not properly terminated, "
2806 "ignoring .debug_aranges."),
2807 objfile_name (objfile),
2808 plongest (entry_addr - section->buffer));
2809 return;
2810 }
2811 ULONGEST start = extract_unsigned_integer (addr, address_size,
2812 dwarf5_byte_order);
2813 addr += address_size;
2814 ULONGEST length = extract_unsigned_integer (addr, address_size,
2815 dwarf5_byte_order);
2816 addr += address_size;
2817 if (start == 0 && length == 0)
2818 break;
2819 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
2820 {
2821 /* Symbol was eliminated due to a COMDAT group. */
2822 continue;
2823 }
2824 ULONGEST end = start + length;
2825 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2826 - baseaddr);
2827 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2828 - baseaddr);
2829 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2830 }
2831 }
2832
2833 objfile->partial_symtabs->psymtabs_addrmap
2834 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2835}
2836
2837/* Find a slot in the mapped index INDEX for the object named NAME.
2838 If NAME is found, set *VEC_OUT to point to the CU vector in the
2839 constant pool and return true. If NAME cannot be found, return
2840 false. */
2841
2842static bool
2843find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2844 offset_type **vec_out)
2845{
2846 offset_type hash;
2847 offset_type slot, step;
2848 int (*cmp) (const char *, const char *);
2849
2850 gdb::unique_xmalloc_ptr<char> without_params;
2851 if (current_language->la_language == language_cplus
2852 || current_language->la_language == language_fortran
2853 || current_language->la_language == language_d)
2854 {
2855 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2856 not contain any. */
2857
2858 if (strchr (name, '(') != NULL)
2859 {
2860 without_params = cp_remove_params (name);
2861
2862 if (without_params != NULL)
2863 name = without_params.get ();
2864 }
2865 }
2866
2867 /* Index version 4 did not support case insensitive searches. But the
2868 indices for case insensitive languages are built in lowercase, therefore
2869 simulate our NAME being searched is also lowercased. */
2870 hash = mapped_index_string_hash ((index->version == 4
2871 && case_sensitivity == case_sensitive_off
2872 ? 5 : index->version),
2873 name);
2874
2875 slot = hash & (index->symbol_table.size () - 1);
2876 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2877 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2878
2879 for (;;)
2880 {
2881 const char *str;
2882
2883 const auto &bucket = index->symbol_table[slot];
2884 if (bucket.name == 0 && bucket.vec == 0)
2885 return false;
2886
2887 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2888 if (!cmp (name, str))
2889 {
2890 *vec_out = (offset_type *) (index->constant_pool
2891 + MAYBE_SWAP (bucket.vec));
2892 return true;
2893 }
2894
2895 slot = (slot + step) & (index->symbol_table.size () - 1);
2896 }
2897}
2898
2899/* A helper function that reads the .gdb_index from BUFFER and fills
2900 in MAP. FILENAME is the name of the file containing the data;
2901 it is used for error reporting. DEPRECATED_OK is true if it is
2902 ok to use deprecated sections.
2903
2904 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2905 out parameters that are filled in with information about the CU and
2906 TU lists in the section.
2907
2908 Returns true if all went well, false otherwise. */
2909
2910static bool
2911read_gdb_index_from_buffer (struct objfile *objfile,
2912 const char *filename,
2913 bool deprecated_ok,
2914 gdb::array_view<const gdb_byte> buffer,
2915 struct mapped_index *map,
2916 const gdb_byte **cu_list,
2917 offset_type *cu_list_elements,
2918 const gdb_byte **types_list,
2919 offset_type *types_list_elements)
2920{
2921 const gdb_byte *addr = &buffer[0];
2922
2923 /* Version check. */
2924 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2925 /* Versions earlier than 3 emitted every copy of a psymbol. This
2926 causes the index to behave very poorly for certain requests. Version 3
2927 contained incomplete addrmap. So, it seems better to just ignore such
2928 indices. */
2929 if (version < 4)
2930 {
2931 static int warning_printed = 0;
2932 if (!warning_printed)
2933 {
2934 warning (_("Skipping obsolete .gdb_index section in %s."),
2935 filename);
2936 warning_printed = 1;
2937 }
2938 return 0;
2939 }
2940 /* Index version 4 uses a different hash function than index version
2941 5 and later.
2942
2943 Versions earlier than 6 did not emit psymbols for inlined
2944 functions. Using these files will cause GDB not to be able to
2945 set breakpoints on inlined functions by name, so we ignore these
2946 indices unless the user has done
2947 "set use-deprecated-index-sections on". */
2948 if (version < 6 && !deprecated_ok)
2949 {
2950 static int warning_printed = 0;
2951 if (!warning_printed)
2952 {
2953 warning (_("\
2954Skipping deprecated .gdb_index section in %s.\n\
2955Do \"set use-deprecated-index-sections on\" before the file is read\n\
2956to use the section anyway."),
2957 filename);
2958 warning_printed = 1;
2959 }
2960 return 0;
2961 }
2962 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2963 of the TU (for symbols coming from TUs),
2964 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2965 Plus gold-generated indices can have duplicate entries for global symbols,
2966 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2967 These are just performance bugs, and we can't distinguish gdb-generated
2968 indices from gold-generated ones, so issue no warning here. */
2969
2970 /* Indexes with higher version than the one supported by GDB may be no
2971 longer backward compatible. */
2972 if (version > 8)
2973 return 0;
2974
2975 map->version = version;
2976
2977 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
2978
2979 int i = 0;
2980 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2981 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2982 / 8);
2983 ++i;
2984
2985 *types_list = addr + MAYBE_SWAP (metadata[i]);
2986 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2987 - MAYBE_SWAP (metadata[i]))
2988 / 8);
2989 ++i;
2990
2991 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
2992 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2993 map->address_table
2994 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2995 ++i;
2996
2997 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
2998 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2999 map->symbol_table
3000 = gdb::array_view<mapped_index::symbol_table_slot>
3001 ((mapped_index::symbol_table_slot *) symbol_table,
3002 (mapped_index::symbol_table_slot *) symbol_table_end);
3003
3004 ++i;
3005 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3006
3007 return 1;
3008}
3009
3010/* Callback types for dwarf2_read_gdb_index. */
3011
3012typedef gdb::function_view
3013 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3014 get_gdb_index_contents_ftype;
3015typedef gdb::function_view
3016 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3017 get_gdb_index_contents_dwz_ftype;
3018
3019/* Read .gdb_index. If everything went ok, initialize the "quick"
3020 elements of all the CUs and return 1. Otherwise, return 0. */
3021
3022static int
3023dwarf2_read_gdb_index
3024 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3025 get_gdb_index_contents_ftype get_gdb_index_contents,
3026 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3027{
3028 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3029 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3030 struct dwz_file *dwz;
3031 struct objfile *objfile = dwarf2_per_objfile->objfile;
3032
3033 gdb::array_view<const gdb_byte> main_index_contents
3034 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3035
3036 if (main_index_contents.empty ())
3037 return 0;
3038
3039 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3040 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3041 use_deprecated_index_sections,
3042 main_index_contents, map.get (), &cu_list,
3043 &cu_list_elements, &types_list,
3044 &types_list_elements))
3045 return 0;
3046
3047 /* Don't use the index if it's empty. */
3048 if (map->symbol_table.empty ())
3049 return 0;
3050
3051 /* If there is a .dwz file, read it so we can get its CU list as
3052 well. */
3053 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3054 if (dwz != NULL)
3055 {
3056 struct mapped_index dwz_map;
3057 const gdb_byte *dwz_types_ignore;
3058 offset_type dwz_types_elements_ignore;
3059
3060 gdb::array_view<const gdb_byte> dwz_index_content
3061 = get_gdb_index_contents_dwz (objfile, dwz);
3062
3063 if (dwz_index_content.empty ())
3064 return 0;
3065
3066 if (!read_gdb_index_from_buffer (objfile,
3067 bfd_get_filename (dwz->dwz_bfd.get ()),
3068 1, dwz_index_content, &dwz_map,
3069 &dwz_list, &dwz_list_elements,
3070 &dwz_types_ignore,
3071 &dwz_types_elements_ignore))
3072 {
3073 warning (_("could not read '.gdb_index' section from %s; skipping"),
3074 bfd_get_filename (dwz->dwz_bfd.get ()));
3075 return 0;
3076 }
3077 }
3078
3079 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3080 dwz_list, dwz_list_elements);
3081
3082 if (types_list_elements)
3083 {
3084 /* We can only handle a single .debug_types when we have an
3085 index. */
3086 if (dwarf2_per_objfile->types.size () != 1)
3087 return 0;
3088
3089 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3090
3091 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3092 types_list, types_list_elements);
3093 }
3094
3095 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3096
3097 dwarf2_per_objfile->index_table = std::move (map);
3098 dwarf2_per_objfile->using_index = 1;
3099 dwarf2_per_objfile->quick_file_names_table =
3100 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3101
3102 return 1;
3103}
3104
3105/* die_reader_func for dw2_get_file_names. */
3106
3107static void
3108dw2_get_file_names_reader (const struct die_reader_specs *reader,
3109 const gdb_byte *info_ptr,
3110 struct die_info *comp_unit_die)
3111{
3112 struct dwarf2_cu *cu = reader->cu;
3113 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3114 struct dwarf2_per_objfile *dwarf2_per_objfile
3115 = cu->per_cu->dwarf2_per_objfile;
3116 struct objfile *objfile = dwarf2_per_objfile->objfile;
3117 struct dwarf2_per_cu_data *lh_cu;
3118 struct attribute *attr;
3119 void **slot;
3120 struct quick_file_names *qfn;
3121
3122 gdb_assert (! this_cu->is_debug_types);
3123
3124 /* Our callers never want to match partial units -- instead they
3125 will match the enclosing full CU. */
3126 if (comp_unit_die->tag == DW_TAG_partial_unit)
3127 {
3128 this_cu->v.quick->no_file_data = 1;
3129 return;
3130 }
3131
3132 lh_cu = this_cu;
3133 slot = NULL;
3134
3135 line_header_up lh;
3136 sect_offset line_offset {};
3137
3138 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3139 if (attr != nullptr)
3140 {
3141 struct quick_file_names find_entry;
3142
3143 line_offset = (sect_offset) DW_UNSND (attr);
3144
3145 /* We may have already read in this line header (TU line header sharing).
3146 If we have we're done. */
3147 find_entry.hash.dwo_unit = cu->dwo_unit;
3148 find_entry.hash.line_sect_off = line_offset;
3149 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3150 &find_entry, INSERT);
3151 if (*slot != NULL)
3152 {
3153 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3154 return;
3155 }
3156
3157 lh = dwarf_decode_line_header (line_offset, cu);
3158 }
3159 if (lh == NULL)
3160 {
3161 lh_cu->v.quick->no_file_data = 1;
3162 return;
3163 }
3164
3165 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3166 qfn->hash.dwo_unit = cu->dwo_unit;
3167 qfn->hash.line_sect_off = line_offset;
3168 gdb_assert (slot != NULL);
3169 *slot = qfn;
3170
3171 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3172
3173 int offset = 0;
3174 if (strcmp (fnd.name, "<unknown>") != 0)
3175 ++offset;
3176
3177 qfn->num_file_names = offset + lh->file_names_size ();
3178 qfn->file_names =
3179 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3180 if (offset != 0)
3181 qfn->file_names[0] = xstrdup (fnd.name);
3182 for (int i = 0; i < lh->file_names_size (); ++i)
3183 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3184 fnd.comp_dir).release ();
3185 qfn->real_names = NULL;
3186
3187 lh_cu->v.quick->file_names = qfn;
3188}
3189
3190/* A helper for the "quick" functions which attempts to read the line
3191 table for THIS_CU. */
3192
3193static struct quick_file_names *
3194dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3195{
3196 /* This should never be called for TUs. */
3197 gdb_assert (! this_cu->is_debug_types);
3198 /* Nor type unit groups. */
3199 gdb_assert (! this_cu->type_unit_group_p ());
3200
3201 if (this_cu->v.quick->file_names != NULL)
3202 return this_cu->v.quick->file_names;
3203 /* If we know there is no line data, no point in looking again. */
3204 if (this_cu->v.quick->no_file_data)
3205 return NULL;
3206
3207 cutu_reader reader (this_cu);
3208 if (!reader.dummy_p)
3209 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3210
3211 if (this_cu->v.quick->no_file_data)
3212 return NULL;
3213 return this_cu->v.quick->file_names;
3214}
3215
3216/* A helper for the "quick" functions which computes and caches the
3217 real path for a given file name from the line table. */
3218
3219static const char *
3220dw2_get_real_path (struct objfile *objfile,
3221 struct quick_file_names *qfn, int index)
3222{
3223 if (qfn->real_names == NULL)
3224 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3225 qfn->num_file_names, const char *);
3226
3227 if (qfn->real_names[index] == NULL)
3228 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3229
3230 return qfn->real_names[index];
3231}
3232
3233static struct symtab *
3234dw2_find_last_source_symtab (struct objfile *objfile)
3235{
3236 struct dwarf2_per_objfile *dwarf2_per_objfile
3237 = get_dwarf2_per_objfile (objfile);
3238 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3239 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3240
3241 if (cust == NULL)
3242 return NULL;
3243
3244 return compunit_primary_filetab (cust);
3245}
3246
3247/* Traversal function for dw2_forget_cached_source_info. */
3248
3249static int
3250dw2_free_cached_file_names (void **slot, void *info)
3251{
3252 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3253
3254 if (file_data->real_names)
3255 {
3256 int i;
3257
3258 for (i = 0; i < file_data->num_file_names; ++i)
3259 {
3260 xfree ((void*) file_data->real_names[i]);
3261 file_data->real_names[i] = NULL;
3262 }
3263 }
3264
3265 return 1;
3266}
3267
3268static void
3269dw2_forget_cached_source_info (struct objfile *objfile)
3270{
3271 struct dwarf2_per_objfile *dwarf2_per_objfile
3272 = get_dwarf2_per_objfile (objfile);
3273
3274 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3275 dw2_free_cached_file_names, NULL);
3276}
3277
3278/* Helper function for dw2_map_symtabs_matching_filename that expands
3279 the symtabs and calls the iterator. */
3280
3281static int
3282dw2_map_expand_apply (struct objfile *objfile,
3283 struct dwarf2_per_cu_data *per_cu,
3284 const char *name, const char *real_path,
3285 gdb::function_view<bool (symtab *)> callback)
3286{
3287 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3288
3289 /* Don't visit already-expanded CUs. */
3290 if (per_cu->v.quick->compunit_symtab)
3291 return 0;
3292
3293 /* This may expand more than one symtab, and we want to iterate over
3294 all of them. */
3295 dw2_instantiate_symtab (per_cu, false);
3296
3297 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3298 last_made, callback);
3299}
3300
3301/* Implementation of the map_symtabs_matching_filename method. */
3302
3303static bool
3304dw2_map_symtabs_matching_filename
3305 (struct objfile *objfile, const char *name, const char *real_path,
3306 gdb::function_view<bool (symtab *)> callback)
3307{
3308 const char *name_basename = lbasename (name);
3309 struct dwarf2_per_objfile *dwarf2_per_objfile
3310 = get_dwarf2_per_objfile (objfile);
3311
3312 /* The rule is CUs specify all the files, including those used by
3313 any TU, so there's no need to scan TUs here. */
3314
3315 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3316 {
3317 /* We only need to look at symtabs not already expanded. */
3318 if (per_cu->v.quick->compunit_symtab)
3319 continue;
3320
3321 quick_file_names *file_data = dw2_get_file_names (per_cu);
3322 if (file_data == NULL)
3323 continue;
3324
3325 for (int j = 0; j < file_data->num_file_names; ++j)
3326 {
3327 const char *this_name = file_data->file_names[j];
3328 const char *this_real_name;
3329
3330 if (compare_filenames_for_search (this_name, name))
3331 {
3332 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3333 callback))
3334 return true;
3335 continue;
3336 }
3337
3338 /* Before we invoke realpath, which can get expensive when many
3339 files are involved, do a quick comparison of the basenames. */
3340 if (! basenames_may_differ
3341 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3342 continue;
3343
3344 this_real_name = dw2_get_real_path (objfile, file_data, j);
3345 if (compare_filenames_for_search (this_real_name, name))
3346 {
3347 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3348 callback))
3349 return true;
3350 continue;
3351 }
3352
3353 if (real_path != NULL)
3354 {
3355 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3356 gdb_assert (IS_ABSOLUTE_PATH (name));
3357 if (this_real_name != NULL
3358 && FILENAME_CMP (real_path, this_real_name) == 0)
3359 {
3360 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3361 callback))
3362 return true;
3363 continue;
3364 }
3365 }
3366 }
3367 }
3368
3369 return false;
3370}
3371
3372/* Struct used to manage iterating over all CUs looking for a symbol. */
3373
3374struct dw2_symtab_iterator
3375{
3376 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3377 struct dwarf2_per_objfile *dwarf2_per_objfile;
3378 /* If set, only look for symbols that match that block. Valid values are
3379 GLOBAL_BLOCK and STATIC_BLOCK. */
3380 gdb::optional<block_enum> block_index;
3381 /* The kind of symbol we're looking for. */
3382 domain_enum domain;
3383 /* The list of CUs from the index entry of the symbol,
3384 or NULL if not found. */
3385 offset_type *vec;
3386 /* The next element in VEC to look at. */
3387 int next;
3388 /* The number of elements in VEC, or zero if there is no match. */
3389 int length;
3390 /* Have we seen a global version of the symbol?
3391 If so we can ignore all further global instances.
3392 This is to work around gold/15646, inefficient gold-generated
3393 indices. */
3394 int global_seen;
3395};
3396
3397/* Initialize the index symtab iterator ITER. */
3398
3399static void
3400dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3401 struct dwarf2_per_objfile *dwarf2_per_objfile,
3402 gdb::optional<block_enum> block_index,
3403 domain_enum domain,
3404 const char *name)
3405{
3406 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3407 iter->block_index = block_index;
3408 iter->domain = domain;
3409 iter->next = 0;
3410 iter->global_seen = 0;
3411
3412 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3413
3414 /* index is NULL if OBJF_READNOW. */
3415 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3416 iter->length = MAYBE_SWAP (*iter->vec);
3417 else
3418 {
3419 iter->vec = NULL;
3420 iter->length = 0;
3421 }
3422}
3423
3424/* Return the next matching CU or NULL if there are no more. */
3425
3426static struct dwarf2_per_cu_data *
3427dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3428{
3429 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3430
3431 for ( ; iter->next < iter->length; ++iter->next)
3432 {
3433 offset_type cu_index_and_attrs =
3434 MAYBE_SWAP (iter->vec[iter->next + 1]);
3435 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3436 gdb_index_symbol_kind symbol_kind =
3437 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3438 /* Only check the symbol attributes if they're present.
3439 Indices prior to version 7 don't record them,
3440 and indices >= 7 may elide them for certain symbols
3441 (gold does this). */
3442 int attrs_valid =
3443 (dwarf2_per_objfile->index_table->version >= 7
3444 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3445
3446 /* Don't crash on bad data. */
3447 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3448 + dwarf2_per_objfile->all_type_units.size ()))
3449 {
3450 complaint (_(".gdb_index entry has bad CU index"
3451 " [in module %s]"),
3452 objfile_name (dwarf2_per_objfile->objfile));
3453 continue;
3454 }
3455
3456 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3457
3458 /* Skip if already read in. */
3459 if (per_cu->v.quick->compunit_symtab)
3460 continue;
3461
3462 /* Check static vs global. */
3463 if (attrs_valid)
3464 {
3465 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3466
3467 if (iter->block_index.has_value ())
3468 {
3469 bool want_static = *iter->block_index == STATIC_BLOCK;
3470
3471 if (is_static != want_static)
3472 continue;
3473 }
3474
3475 /* Work around gold/15646. */
3476 if (!is_static && iter->global_seen)
3477 continue;
3478 if (!is_static)
3479 iter->global_seen = 1;
3480 }
3481
3482 /* Only check the symbol's kind if it has one. */
3483 if (attrs_valid)
3484 {
3485 switch (iter->domain)
3486 {
3487 case VAR_DOMAIN:
3488 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3489 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3490 /* Some types are also in VAR_DOMAIN. */
3491 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3492 continue;
3493 break;
3494 case STRUCT_DOMAIN:
3495 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3496 continue;
3497 break;
3498 case LABEL_DOMAIN:
3499 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3500 continue;
3501 break;
3502 case MODULE_DOMAIN:
3503 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3504 continue;
3505 break;
3506 default:
3507 break;
3508 }
3509 }
3510
3511 ++iter->next;
3512 return per_cu;
3513 }
3514
3515 return NULL;
3516}
3517
3518static struct compunit_symtab *
3519dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3520 const char *name, domain_enum domain)
3521{
3522 struct compunit_symtab *stab_best = NULL;
3523 struct dwarf2_per_objfile *dwarf2_per_objfile
3524 = get_dwarf2_per_objfile (objfile);
3525
3526 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3527
3528 struct dw2_symtab_iterator iter;
3529 struct dwarf2_per_cu_data *per_cu;
3530
3531 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3532
3533 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3534 {
3535 struct symbol *sym, *with_opaque = NULL;
3536 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3537 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3538 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3539
3540 sym = block_find_symbol (block, name, domain,
3541 block_find_non_opaque_type_preferred,
3542 &with_opaque);
3543
3544 /* Some caution must be observed with overloaded functions
3545 and methods, since the index will not contain any overload
3546 information (but NAME might contain it). */
3547
3548 if (sym != NULL
3549 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3550 return stab;
3551 if (with_opaque != NULL
3552 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3553 stab_best = stab;
3554
3555 /* Keep looking through other CUs. */
3556 }
3557
3558 return stab_best;
3559}
3560
3561static void
3562dw2_print_stats (struct objfile *objfile)
3563{
3564 struct dwarf2_per_objfile *dwarf2_per_objfile
3565 = get_dwarf2_per_objfile (objfile);
3566 int total = (dwarf2_per_objfile->all_comp_units.size ()
3567 + dwarf2_per_objfile->all_type_units.size ());
3568 int count = 0;
3569
3570 for (int i = 0; i < total; ++i)
3571 {
3572 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3573
3574 if (!per_cu->v.quick->compunit_symtab)
3575 ++count;
3576 }
3577 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3578 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3579}
3580
3581/* This dumps minimal information about the index.
3582 It is called via "mt print objfiles".
3583 One use is to verify .gdb_index has been loaded by the
3584 gdb.dwarf2/gdb-index.exp testcase. */
3585
3586static void
3587dw2_dump (struct objfile *objfile)
3588{
3589 struct dwarf2_per_objfile *dwarf2_per_objfile
3590 = get_dwarf2_per_objfile (objfile);
3591
3592 gdb_assert (dwarf2_per_objfile->using_index);
3593 printf_filtered (".gdb_index:");
3594 if (dwarf2_per_objfile->index_table != NULL)
3595 {
3596 printf_filtered (" version %d\n",
3597 dwarf2_per_objfile->index_table->version);
3598 }
3599 else
3600 printf_filtered (" faked for \"readnow\"\n");
3601 printf_filtered ("\n");
3602}
3603
3604static void
3605dw2_expand_symtabs_for_function (struct objfile *objfile,
3606 const char *func_name)
3607{
3608 struct dwarf2_per_objfile *dwarf2_per_objfile
3609 = get_dwarf2_per_objfile (objfile);
3610
3611 struct dw2_symtab_iterator iter;
3612 struct dwarf2_per_cu_data *per_cu;
3613
3614 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3615
3616 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3617 dw2_instantiate_symtab (per_cu, false);
3618
3619}
3620
3621static void
3622dw2_expand_all_symtabs (struct objfile *objfile)
3623{
3624 struct dwarf2_per_objfile *dwarf2_per_objfile
3625 = get_dwarf2_per_objfile (objfile);
3626 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3627 + dwarf2_per_objfile->all_type_units.size ());
3628
3629 for (int i = 0; i < total_units; ++i)
3630 {
3631 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3632
3633 /* We don't want to directly expand a partial CU, because if we
3634 read it with the wrong language, then assertion failures can
3635 be triggered later on. See PR symtab/23010. So, tell
3636 dw2_instantiate_symtab to skip partial CUs -- any important
3637 partial CU will be read via DW_TAG_imported_unit anyway. */
3638 dw2_instantiate_symtab (per_cu, true);
3639 }
3640}
3641
3642static void
3643dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3644 const char *fullname)
3645{
3646 struct dwarf2_per_objfile *dwarf2_per_objfile
3647 = get_dwarf2_per_objfile (objfile);
3648
3649 /* We don't need to consider type units here.
3650 This is only called for examining code, e.g. expand_line_sal.
3651 There can be an order of magnitude (or more) more type units
3652 than comp units, and we avoid them if we can. */
3653
3654 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3655 {
3656 /* We only need to look at symtabs not already expanded. */
3657 if (per_cu->v.quick->compunit_symtab)
3658 continue;
3659
3660 quick_file_names *file_data = dw2_get_file_names (per_cu);
3661 if (file_data == NULL)
3662 continue;
3663
3664 for (int j = 0; j < file_data->num_file_names; ++j)
3665 {
3666 const char *this_fullname = file_data->file_names[j];
3667
3668 if (filename_cmp (this_fullname, fullname) == 0)
3669 {
3670 dw2_instantiate_symtab (per_cu, false);
3671 break;
3672 }
3673 }
3674 }
3675}
3676
3677static void
3678dw2_map_matching_symbols
3679 (struct objfile *objfile,
3680 const lookup_name_info &name, domain_enum domain,
3681 int global,
3682 gdb::function_view<symbol_found_callback_ftype> callback,
3683 symbol_compare_ftype *ordered_compare)
3684{
3685 /* Currently unimplemented; used for Ada. The function can be called if the
3686 current language is Ada for a non-Ada objfile using GNU index. As Ada
3687 does not look for non-Ada symbols this function should just return. */
3688}
3689
3690/* Starting from a search name, return the string that finds the upper
3691 bound of all strings that start with SEARCH_NAME in a sorted name
3692 list. Returns the empty string to indicate that the upper bound is
3693 the end of the list. */
3694
3695static std::string
3696make_sort_after_prefix_name (const char *search_name)
3697{
3698 /* When looking to complete "func", we find the upper bound of all
3699 symbols that start with "func" by looking for where we'd insert
3700 the closest string that would follow "func" in lexicographical
3701 order. Usually, that's "func"-with-last-character-incremented,
3702 i.e. "fund". Mind non-ASCII characters, though. Usually those
3703 will be UTF-8 multi-byte sequences, but we can't be certain.
3704 Especially mind the 0xff character, which is a valid character in
3705 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3706 rule out compilers allowing it in identifiers. Note that
3707 conveniently, strcmp/strcasecmp are specified to compare
3708 characters interpreted as unsigned char. So what we do is treat
3709 the whole string as a base 256 number composed of a sequence of
3710 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3711 to 0, and carries 1 to the following more-significant position.
3712 If the very first character in SEARCH_NAME ends up incremented
3713 and carries/overflows, then the upper bound is the end of the
3714 list. The string after the empty string is also the empty
3715 string.
3716
3717 Some examples of this operation:
3718
3719 SEARCH_NAME => "+1" RESULT
3720
3721 "abc" => "abd"
3722 "ab\xff" => "ac"
3723 "\xff" "a" "\xff" => "\xff" "b"
3724 "\xff" => ""
3725 "\xff\xff" => ""
3726 "" => ""
3727
3728 Then, with these symbols for example:
3729
3730 func
3731 func1
3732 fund
3733
3734 completing "func" looks for symbols between "func" and
3735 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3736 which finds "func" and "func1", but not "fund".
3737
3738 And with:
3739
3740 funcÿ (Latin1 'ÿ' [0xff])
3741 funcÿ1
3742 fund
3743
3744 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3745 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3746
3747 And with:
3748
3749 ÿÿ (Latin1 'ÿ' [0xff])
3750 ÿÿ1
3751
3752 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3753 the end of the list.
3754 */
3755 std::string after = search_name;
3756 while (!after.empty () && (unsigned char) after.back () == 0xff)
3757 after.pop_back ();
3758 if (!after.empty ())
3759 after.back () = (unsigned char) after.back () + 1;
3760 return after;
3761}
3762
3763/* See declaration. */
3764
3765std::pair<std::vector<name_component>::const_iterator,
3766 std::vector<name_component>::const_iterator>
3767mapped_index_base::find_name_components_bounds
3768 (const lookup_name_info &lookup_name_without_params, language lang) const
3769{
3770 auto *name_cmp
3771 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3772
3773 const char *lang_name
3774 = lookup_name_without_params.language_lookup_name (lang).c_str ();
3775
3776 /* Comparison function object for lower_bound that matches against a
3777 given symbol name. */
3778 auto lookup_compare_lower = [&] (const name_component &elem,
3779 const char *name)
3780 {
3781 const char *elem_qualified = this->symbol_name_at (elem.idx);
3782 const char *elem_name = elem_qualified + elem.name_offset;
3783 return name_cmp (elem_name, name) < 0;
3784 };
3785
3786 /* Comparison function object for upper_bound that matches against a
3787 given symbol name. */
3788 auto lookup_compare_upper = [&] (const char *name,
3789 const name_component &elem)
3790 {
3791 const char *elem_qualified = this->symbol_name_at (elem.idx);
3792 const char *elem_name = elem_qualified + elem.name_offset;
3793 return name_cmp (name, elem_name) < 0;
3794 };
3795
3796 auto begin = this->name_components.begin ();
3797 auto end = this->name_components.end ();
3798
3799 /* Find the lower bound. */
3800 auto lower = [&] ()
3801 {
3802 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3803 return begin;
3804 else
3805 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3806 } ();
3807
3808 /* Find the upper bound. */
3809 auto upper = [&] ()
3810 {
3811 if (lookup_name_without_params.completion_mode ())
3812 {
3813 /* In completion mode, we want UPPER to point past all
3814 symbols names that have the same prefix. I.e., with
3815 these symbols, and completing "func":
3816
3817 function << lower bound
3818 function1
3819 other_function << upper bound
3820
3821 We find the upper bound by looking for the insertion
3822 point of "func"-with-last-character-incremented,
3823 i.e. "fund". */
3824 std::string after = make_sort_after_prefix_name (lang_name);
3825 if (after.empty ())
3826 return end;
3827 return std::lower_bound (lower, end, after.c_str (),
3828 lookup_compare_lower);
3829 }
3830 else
3831 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3832 } ();
3833
3834 return {lower, upper};
3835}
3836
3837/* See declaration. */
3838
3839void
3840mapped_index_base::build_name_components ()
3841{
3842 if (!this->name_components.empty ())
3843 return;
3844
3845 this->name_components_casing = case_sensitivity;
3846 auto *name_cmp
3847 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3848
3849 /* The code below only knows how to break apart components of C++
3850 symbol names (and other languages that use '::' as
3851 namespace/module separator) and Ada symbol names. */
3852 auto count = this->symbol_name_count ();
3853 for (offset_type idx = 0; idx < count; idx++)
3854 {
3855 if (this->symbol_name_slot_invalid (idx))
3856 continue;
3857
3858 const char *name = this->symbol_name_at (idx);
3859
3860 /* Add each name component to the name component table. */
3861 unsigned int previous_len = 0;
3862
3863 if (strstr (name, "::") != nullptr)
3864 {
3865 for (unsigned int current_len = cp_find_first_component (name);
3866 name[current_len] != '\0';
3867 current_len += cp_find_first_component (name + current_len))
3868 {
3869 gdb_assert (name[current_len] == ':');
3870 this->name_components.push_back ({previous_len, idx});
3871 /* Skip the '::'. */
3872 current_len += 2;
3873 previous_len = current_len;
3874 }
3875 }
3876 else
3877 {
3878 /* Handle the Ada encoded (aka mangled) form here. */
3879 for (const char *iter = strstr (name, "__");
3880 iter != nullptr;
3881 iter = strstr (iter, "__"))
3882 {
3883 this->name_components.push_back ({previous_len, idx});
3884 iter += 2;
3885 previous_len = iter - name;
3886 }
3887 }
3888
3889 this->name_components.push_back ({previous_len, idx});
3890 }
3891
3892 /* Sort name_components elements by name. */
3893 auto name_comp_compare = [&] (const name_component &left,
3894 const name_component &right)
3895 {
3896 const char *left_qualified = this->symbol_name_at (left.idx);
3897 const char *right_qualified = this->symbol_name_at (right.idx);
3898
3899 const char *left_name = left_qualified + left.name_offset;
3900 const char *right_name = right_qualified + right.name_offset;
3901
3902 return name_cmp (left_name, right_name) < 0;
3903 };
3904
3905 std::sort (this->name_components.begin (),
3906 this->name_components.end (),
3907 name_comp_compare);
3908}
3909
3910/* Helper for dw2_expand_symtabs_matching that works with a
3911 mapped_index_base instead of the containing objfile. This is split
3912 to a separate function in order to be able to unit test the
3913 name_components matching using a mock mapped_index_base. For each
3914 symbol name that matches, calls MATCH_CALLBACK, passing it the
3915 symbol's index in the mapped_index_base symbol table. */
3916
3917static void
3918dw2_expand_symtabs_matching_symbol
3919 (mapped_index_base &index,
3920 const lookup_name_info &lookup_name_in,
3921 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3922 enum search_domain kind,
3923 gdb::function_view<bool (offset_type)> match_callback)
3924{
3925 lookup_name_info lookup_name_without_params
3926 = lookup_name_in.make_ignore_params ();
3927
3928 /* Build the symbol name component sorted vector, if we haven't
3929 yet. */
3930 index.build_name_components ();
3931
3932 /* The same symbol may appear more than once in the range though.
3933 E.g., if we're looking for symbols that complete "w", and we have
3934 a symbol named "w1::w2", we'll find the two name components for
3935 that same symbol in the range. To be sure we only call the
3936 callback once per symbol, we first collect the symbol name
3937 indexes that matched in a temporary vector and ignore
3938 duplicates. */
3939 std::vector<offset_type> matches;
3940
3941 struct name_and_matcher
3942 {
3943 symbol_name_matcher_ftype *matcher;
3944 const std::string &name;
3945
3946 bool operator== (const name_and_matcher &other) const
3947 {
3948 return matcher == other.matcher && name == other.name;
3949 }
3950 };
3951
3952 /* A vector holding all the different symbol name matchers, for all
3953 languages. */
3954 std::vector<name_and_matcher> matchers;
3955
3956 for (int i = 0; i < nr_languages; i++)
3957 {
3958 enum language lang_e = (enum language) i;
3959
3960 const language_defn *lang = language_def (lang_e);
3961 symbol_name_matcher_ftype *name_matcher
3962 = get_symbol_name_matcher (lang, lookup_name_without_params);
3963
3964 name_and_matcher key {
3965 name_matcher,
3966 lookup_name_without_params.language_lookup_name (lang_e)
3967 };
3968
3969 /* Don't insert the same comparison routine more than once.
3970 Note that we do this linear walk. This is not a problem in
3971 practice because the number of supported languages is
3972 low. */
3973 if (std::find (matchers.begin (), matchers.end (), key)
3974 != matchers.end ())
3975 continue;
3976 matchers.push_back (std::move (key));
3977
3978 auto bounds
3979 = index.find_name_components_bounds (lookup_name_without_params,
3980 lang_e);
3981
3982 /* Now for each symbol name in range, check to see if we have a name
3983 match, and if so, call the MATCH_CALLBACK callback. */
3984
3985 for (; bounds.first != bounds.second; ++bounds.first)
3986 {
3987 const char *qualified = index.symbol_name_at (bounds.first->idx);
3988
3989 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3990 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3991 continue;
3992
3993 matches.push_back (bounds.first->idx);
3994 }
3995 }
3996
3997 std::sort (matches.begin (), matches.end ());
3998
3999 /* Finally call the callback, once per match. */
4000 ULONGEST prev = -1;
4001 for (offset_type idx : matches)
4002 {
4003 if (prev != idx)
4004 {
4005 if (!match_callback (idx))
4006 break;
4007 prev = idx;
4008 }
4009 }
4010
4011 /* Above we use a type wider than idx's for 'prev', since 0 and
4012 (offset_type)-1 are both possible values. */
4013 static_assert (sizeof (prev) > sizeof (offset_type), "");
4014}
4015
4016#if GDB_SELF_TEST
4017
4018namespace selftests { namespace dw2_expand_symtabs_matching {
4019
4020/* A mock .gdb_index/.debug_names-like name index table, enough to
4021 exercise dw2_expand_symtabs_matching_symbol, which works with the
4022 mapped_index_base interface. Builds an index from the symbol list
4023 passed as parameter to the constructor. */
4024class mock_mapped_index : public mapped_index_base
4025{
4026public:
4027 mock_mapped_index (gdb::array_view<const char *> symbols)
4028 : m_symbol_table (symbols)
4029 {}
4030
4031 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4032
4033 /* Return the number of names in the symbol table. */
4034 size_t symbol_name_count () const override
4035 {
4036 return m_symbol_table.size ();
4037 }
4038
4039 /* Get the name of the symbol at IDX in the symbol table. */
4040 const char *symbol_name_at (offset_type idx) const override
4041 {
4042 return m_symbol_table[idx];
4043 }
4044
4045private:
4046 gdb::array_view<const char *> m_symbol_table;
4047};
4048
4049/* Convenience function that converts a NULL pointer to a "<null>"
4050 string, to pass to print routines. */
4051
4052static const char *
4053string_or_null (const char *str)
4054{
4055 return str != NULL ? str : "<null>";
4056}
4057
4058/* Check if a lookup_name_info built from
4059 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4060 index. EXPECTED_LIST is the list of expected matches, in expected
4061 matching order. If no match expected, then an empty list is
4062 specified. Returns true on success. On failure prints a warning
4063 indicating the file:line that failed, and returns false. */
4064
4065static bool
4066check_match (const char *file, int line,
4067 mock_mapped_index &mock_index,
4068 const char *name, symbol_name_match_type match_type,
4069 bool completion_mode,
4070 std::initializer_list<const char *> expected_list)
4071{
4072 lookup_name_info lookup_name (name, match_type, completion_mode);
4073
4074 bool matched = true;
4075
4076 auto mismatch = [&] (const char *expected_str,
4077 const char *got)
4078 {
4079 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4080 "expected=\"%s\", got=\"%s\"\n"),
4081 file, line,
4082 (match_type == symbol_name_match_type::FULL
4083 ? "FULL" : "WILD"),
4084 name, string_or_null (expected_str), string_or_null (got));
4085 matched = false;
4086 };
4087
4088 auto expected_it = expected_list.begin ();
4089 auto expected_end = expected_list.end ();
4090
4091 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4092 NULL, ALL_DOMAIN,
4093 [&] (offset_type idx)
4094 {
4095 const char *matched_name = mock_index.symbol_name_at (idx);
4096 const char *expected_str
4097 = expected_it == expected_end ? NULL : *expected_it++;
4098
4099 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4100 mismatch (expected_str, matched_name);
4101 return true;
4102 });
4103
4104 const char *expected_str
4105 = expected_it == expected_end ? NULL : *expected_it++;
4106 if (expected_str != NULL)
4107 mismatch (expected_str, NULL);
4108
4109 return matched;
4110}
4111
4112/* The symbols added to the mock mapped_index for testing (in
4113 canonical form). */
4114static const char *test_symbols[] = {
4115 "function",
4116 "std::bar",
4117 "std::zfunction",
4118 "std::zfunction2",
4119 "w1::w2",
4120 "ns::foo<char*>",
4121 "ns::foo<int>",
4122 "ns::foo<long>",
4123 "ns2::tmpl<int>::foo2",
4124 "(anonymous namespace)::A::B::C",
4125
4126 /* These are used to check that the increment-last-char in the
4127 matching algorithm for completion doesn't match "t1_fund" when
4128 completing "t1_func". */
4129 "t1_func",
4130 "t1_func1",
4131 "t1_fund",
4132 "t1_fund1",
4133
4134 /* A UTF-8 name with multi-byte sequences to make sure that
4135 cp-name-parser understands this as a single identifier ("função"
4136 is "function" in PT). */
4137 u8"u8função",
4138
4139 /* \377 (0xff) is Latin1 'ÿ'. */
4140 "yfunc\377",
4141
4142 /* \377 (0xff) is Latin1 'ÿ'. */
4143 "\377",
4144 "\377\377123",
4145
4146 /* A name with all sorts of complications. Starts with "z" to make
4147 it easier for the completion tests below. */
4148#define Z_SYM_NAME \
4149 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4150 "::tuple<(anonymous namespace)::ui*, " \
4151 "std::default_delete<(anonymous namespace)::ui>, void>"
4152
4153 Z_SYM_NAME
4154};
4155
4156/* Returns true if the mapped_index_base::find_name_component_bounds
4157 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4158 in completion mode. */
4159
4160static bool
4161check_find_bounds_finds (mapped_index_base &index,
4162 const char *search_name,
4163 gdb::array_view<const char *> expected_syms)
4164{
4165 lookup_name_info lookup_name (search_name,
4166 symbol_name_match_type::FULL, true);
4167
4168 auto bounds = index.find_name_components_bounds (lookup_name,
4169 language_cplus);
4170
4171 size_t distance = std::distance (bounds.first, bounds.second);
4172 if (distance != expected_syms.size ())
4173 return false;
4174
4175 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4176 {
4177 auto nc_elem = bounds.first + exp_elem;
4178 const char *qualified = index.symbol_name_at (nc_elem->idx);
4179 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4180 return false;
4181 }
4182
4183 return true;
4184}
4185
4186/* Test the lower-level mapped_index::find_name_component_bounds
4187 method. */
4188
4189static void
4190test_mapped_index_find_name_component_bounds ()
4191{
4192 mock_mapped_index mock_index (test_symbols);
4193
4194 mock_index.build_name_components ();
4195
4196 /* Test the lower-level mapped_index::find_name_component_bounds
4197 method in completion mode. */
4198 {
4199 static const char *expected_syms[] = {
4200 "t1_func",
4201 "t1_func1",
4202 };
4203
4204 SELF_CHECK (check_find_bounds_finds (mock_index,
4205 "t1_func", expected_syms));
4206 }
4207
4208 /* Check that the increment-last-char in the name matching algorithm
4209 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4210 {
4211 static const char *expected_syms1[] = {
4212 "\377",
4213 "\377\377123",
4214 };
4215 SELF_CHECK (check_find_bounds_finds (mock_index,
4216 "\377", expected_syms1));
4217
4218 static const char *expected_syms2[] = {
4219 "\377\377123",
4220 };
4221 SELF_CHECK (check_find_bounds_finds (mock_index,
4222 "\377\377", expected_syms2));
4223 }
4224}
4225
4226/* Test dw2_expand_symtabs_matching_symbol. */
4227
4228static void
4229test_dw2_expand_symtabs_matching_symbol ()
4230{
4231 mock_mapped_index mock_index (test_symbols);
4232
4233 /* We let all tests run until the end even if some fails, for debug
4234 convenience. */
4235 bool any_mismatch = false;
4236
4237 /* Create the expected symbols list (an initializer_list). Needed
4238 because lists have commas, and we need to pass them to CHECK,
4239 which is a macro. */
4240#define EXPECT(...) { __VA_ARGS__ }
4241
4242 /* Wrapper for check_match that passes down the current
4243 __FILE__/__LINE__. */
4244#define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4245 any_mismatch |= !check_match (__FILE__, __LINE__, \
4246 mock_index, \
4247 NAME, MATCH_TYPE, COMPLETION_MODE, \
4248 EXPECTED_LIST)
4249
4250 /* Identity checks. */
4251 for (const char *sym : test_symbols)
4252 {
4253 /* Should be able to match all existing symbols. */
4254 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4255 EXPECT (sym));
4256
4257 /* Should be able to match all existing symbols with
4258 parameters. */
4259 std::string with_params = std::string (sym) + "(int)";
4260 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4261 EXPECT (sym));
4262
4263 /* Should be able to match all existing symbols with
4264 parameters and qualifiers. */
4265 with_params = std::string (sym) + " ( int ) const";
4266 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4267 EXPECT (sym));
4268
4269 /* This should really find sym, but cp-name-parser.y doesn't
4270 know about lvalue/rvalue qualifiers yet. */
4271 with_params = std::string (sym) + " ( int ) &&";
4272 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4273 {});
4274 }
4275
4276 /* Check that the name matching algorithm for completion doesn't get
4277 confused with Latin1 'ÿ' / 0xff. */
4278 {
4279 static const char str[] = "\377";
4280 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4281 EXPECT ("\377", "\377\377123"));
4282 }
4283
4284 /* Check that the increment-last-char in the matching algorithm for
4285 completion doesn't match "t1_fund" when completing "t1_func". */
4286 {
4287 static const char str[] = "t1_func";
4288 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4289 EXPECT ("t1_func", "t1_func1"));
4290 }
4291
4292 /* Check that completion mode works at each prefix of the expected
4293 symbol name. */
4294 {
4295 static const char str[] = "function(int)";
4296 size_t len = strlen (str);
4297 std::string lookup;
4298
4299 for (size_t i = 1; i < len; i++)
4300 {
4301 lookup.assign (str, i);
4302 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4303 EXPECT ("function"));
4304 }
4305 }
4306
4307 /* While "w" is a prefix of both components, the match function
4308 should still only be called once. */
4309 {
4310 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4311 EXPECT ("w1::w2"));
4312 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4313 EXPECT ("w1::w2"));
4314 }
4315
4316 /* Same, with a "complicated" symbol. */
4317 {
4318 static const char str[] = Z_SYM_NAME;
4319 size_t len = strlen (str);
4320 std::string lookup;
4321
4322 for (size_t i = 1; i < len; i++)
4323 {
4324 lookup.assign (str, i);
4325 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4326 EXPECT (Z_SYM_NAME));
4327 }
4328 }
4329
4330 /* In FULL mode, an incomplete symbol doesn't match. */
4331 {
4332 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4333 {});
4334 }
4335
4336 /* A complete symbol with parameters matches any overload, since the
4337 index has no overload info. */
4338 {
4339 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4340 EXPECT ("std::zfunction", "std::zfunction2"));
4341 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4342 EXPECT ("std::zfunction", "std::zfunction2"));
4343 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4344 EXPECT ("std::zfunction", "std::zfunction2"));
4345 }
4346
4347 /* Check that whitespace is ignored appropriately. A symbol with a
4348 template argument list. */
4349 {
4350 static const char expected[] = "ns::foo<int>";
4351 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4352 EXPECT (expected));
4353 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4354 EXPECT (expected));
4355 }
4356
4357 /* Check that whitespace is ignored appropriately. A symbol with a
4358 template argument list that includes a pointer. */
4359 {
4360 static const char expected[] = "ns::foo<char*>";
4361 /* Try both completion and non-completion modes. */
4362 static const bool completion_mode[2] = {false, true};
4363 for (size_t i = 0; i < 2; i++)
4364 {
4365 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4366 completion_mode[i], EXPECT (expected));
4367 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4368 completion_mode[i], EXPECT (expected));
4369
4370 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4371 completion_mode[i], EXPECT (expected));
4372 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4373 completion_mode[i], EXPECT (expected));
4374 }
4375 }
4376
4377 {
4378 /* Check method qualifiers are ignored. */
4379 static const char expected[] = "ns::foo<char*>";
4380 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4381 symbol_name_match_type::FULL, true, EXPECT (expected));
4382 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4383 symbol_name_match_type::FULL, true, EXPECT (expected));
4384 CHECK_MATCH ("foo < char * > ( int ) const",
4385 symbol_name_match_type::WILD, true, EXPECT (expected));
4386 CHECK_MATCH ("foo < char * > ( int ) &&",
4387 symbol_name_match_type::WILD, true, EXPECT (expected));
4388 }
4389
4390 /* Test lookup names that don't match anything. */
4391 {
4392 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4393 {});
4394
4395 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4396 {});
4397 }
4398
4399 /* Some wild matching tests, exercising "(anonymous namespace)",
4400 which should not be confused with a parameter list. */
4401 {
4402 static const char *syms[] = {
4403 "A::B::C",
4404 "B::C",
4405 "C",
4406 "A :: B :: C ( int )",
4407 "B :: C ( int )",
4408 "C ( int )",
4409 };
4410
4411 for (const char *s : syms)
4412 {
4413 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4414 EXPECT ("(anonymous namespace)::A::B::C"));
4415 }
4416 }
4417
4418 {
4419 static const char expected[] = "ns2::tmpl<int>::foo2";
4420 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4421 EXPECT (expected));
4422 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4423 EXPECT (expected));
4424 }
4425
4426 SELF_CHECK (!any_mismatch);
4427
4428#undef EXPECT
4429#undef CHECK_MATCH
4430}
4431
4432static void
4433run_test ()
4434{
4435 test_mapped_index_find_name_component_bounds ();
4436 test_dw2_expand_symtabs_matching_symbol ();
4437}
4438
4439}} // namespace selftests::dw2_expand_symtabs_matching
4440
4441#endif /* GDB_SELF_TEST */
4442
4443/* If FILE_MATCHER is NULL or if PER_CU has
4444 dwarf2_per_cu_quick_data::MARK set (see
4445 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4446 EXPANSION_NOTIFY on it. */
4447
4448static void
4449dw2_expand_symtabs_matching_one
4450 (struct dwarf2_per_cu_data *per_cu,
4451 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4452 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4453{
4454 if (file_matcher == NULL || per_cu->v.quick->mark)
4455 {
4456 bool symtab_was_null
4457 = (per_cu->v.quick->compunit_symtab == NULL);
4458
4459 dw2_instantiate_symtab (per_cu, false);
4460
4461 if (expansion_notify != NULL
4462 && symtab_was_null
4463 && per_cu->v.quick->compunit_symtab != NULL)
4464 expansion_notify (per_cu->v.quick->compunit_symtab);
4465 }
4466}
4467
4468/* Helper for dw2_expand_matching symtabs. Called on each symbol
4469 matched, to expand corresponding CUs that were marked. IDX is the
4470 index of the symbol name that matched. */
4471
4472static void
4473dw2_expand_marked_cus
4474 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4475 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4476 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4477 search_domain kind)
4478{
4479 offset_type *vec, vec_len, vec_idx;
4480 bool global_seen = false;
4481 mapped_index &index = *dwarf2_per_objfile->index_table;
4482
4483 vec = (offset_type *) (index.constant_pool
4484 + MAYBE_SWAP (index.symbol_table[idx].vec));
4485 vec_len = MAYBE_SWAP (vec[0]);
4486 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4487 {
4488 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4489 /* This value is only valid for index versions >= 7. */
4490 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4491 gdb_index_symbol_kind symbol_kind =
4492 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4493 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4494 /* Only check the symbol attributes if they're present.
4495 Indices prior to version 7 don't record them,
4496 and indices >= 7 may elide them for certain symbols
4497 (gold does this). */
4498 int attrs_valid =
4499 (index.version >= 7
4500 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4501
4502 /* Work around gold/15646. */
4503 if (attrs_valid)
4504 {
4505 if (!is_static && global_seen)
4506 continue;
4507 if (!is_static)
4508 global_seen = true;
4509 }
4510
4511 /* Only check the symbol's kind if it has one. */
4512 if (attrs_valid)
4513 {
4514 switch (kind)
4515 {
4516 case VARIABLES_DOMAIN:
4517 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4518 continue;
4519 break;
4520 case FUNCTIONS_DOMAIN:
4521 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4522 continue;
4523 break;
4524 case TYPES_DOMAIN:
4525 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4526 continue;
4527 break;
4528 case MODULES_DOMAIN:
4529 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4530 continue;
4531 break;
4532 default:
4533 break;
4534 }
4535 }
4536
4537 /* Don't crash on bad data. */
4538 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4539 + dwarf2_per_objfile->all_type_units.size ()))
4540 {
4541 complaint (_(".gdb_index entry has bad CU index"
4542 " [in module %s]"),
4543 objfile_name (dwarf2_per_objfile->objfile));
4544 continue;
4545 }
4546
4547 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4548 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4549 expansion_notify);
4550 }
4551}
4552
4553/* If FILE_MATCHER is non-NULL, set all the
4554 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4555 that match FILE_MATCHER. */
4556
4557static void
4558dw_expand_symtabs_matching_file_matcher
4559 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4560 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4561{
4562 if (file_matcher == NULL)
4563 return;
4564
4565 objfile *const objfile = dwarf2_per_objfile->objfile;
4566
4567 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4568 htab_eq_pointer,
4569 NULL, xcalloc, xfree));
4570 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4571 htab_eq_pointer,
4572 NULL, xcalloc, xfree));
4573
4574 /* The rule is CUs specify all the files, including those used by
4575 any TU, so there's no need to scan TUs here. */
4576
4577 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4578 {
4579 QUIT;
4580
4581 per_cu->v.quick->mark = 0;
4582
4583 /* We only need to look at symtabs not already expanded. */
4584 if (per_cu->v.quick->compunit_symtab)
4585 continue;
4586
4587 quick_file_names *file_data = dw2_get_file_names (per_cu);
4588 if (file_data == NULL)
4589 continue;
4590
4591 if (htab_find (visited_not_found.get (), file_data) != NULL)
4592 continue;
4593 else if (htab_find (visited_found.get (), file_data) != NULL)
4594 {
4595 per_cu->v.quick->mark = 1;
4596 continue;
4597 }
4598
4599 for (int j = 0; j < file_data->num_file_names; ++j)
4600 {
4601 const char *this_real_name;
4602
4603 if (file_matcher (file_data->file_names[j], false))
4604 {
4605 per_cu->v.quick->mark = 1;
4606 break;
4607 }
4608
4609 /* Before we invoke realpath, which can get expensive when many
4610 files are involved, do a quick comparison of the basenames. */
4611 if (!basenames_may_differ
4612 && !file_matcher (lbasename (file_data->file_names[j]),
4613 true))
4614 continue;
4615
4616 this_real_name = dw2_get_real_path (objfile, file_data, j);
4617 if (file_matcher (this_real_name, false))
4618 {
4619 per_cu->v.quick->mark = 1;
4620 break;
4621 }
4622 }
4623
4624 void **slot = htab_find_slot (per_cu->v.quick->mark
4625 ? visited_found.get ()
4626 : visited_not_found.get (),
4627 file_data, INSERT);
4628 *slot = file_data;
4629 }
4630}
4631
4632static void
4633dw2_expand_symtabs_matching
4634 (struct objfile *objfile,
4635 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4636 const lookup_name_info &lookup_name,
4637 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4638 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4639 enum search_domain kind)
4640{
4641 struct dwarf2_per_objfile *dwarf2_per_objfile
4642 = get_dwarf2_per_objfile (objfile);
4643
4644 /* index_table is NULL if OBJF_READNOW. */
4645 if (!dwarf2_per_objfile->index_table)
4646 return;
4647
4648 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4649
4650 mapped_index &index = *dwarf2_per_objfile->index_table;
4651
4652 dw2_expand_symtabs_matching_symbol (index, lookup_name,
4653 symbol_matcher,
4654 kind, [&] (offset_type idx)
4655 {
4656 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4657 expansion_notify, kind);
4658 return true;
4659 });
4660}
4661
4662/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4663 symtab. */
4664
4665static struct compunit_symtab *
4666recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4667 CORE_ADDR pc)
4668{
4669 int i;
4670
4671 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4672 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4673 return cust;
4674
4675 if (cust->includes == NULL)
4676 return NULL;
4677
4678 for (i = 0; cust->includes[i]; ++i)
4679 {
4680 struct compunit_symtab *s = cust->includes[i];
4681
4682 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4683 if (s != NULL)
4684 return s;
4685 }
4686
4687 return NULL;
4688}
4689
4690static struct compunit_symtab *
4691dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4692 struct bound_minimal_symbol msymbol,
4693 CORE_ADDR pc,
4694 struct obj_section *section,
4695 int warn_if_readin)
4696{
4697 struct dwarf2_per_cu_data *data;
4698 struct compunit_symtab *result;
4699
4700 if (!objfile->partial_symtabs->psymtabs_addrmap)
4701 return NULL;
4702
4703 CORE_ADDR baseaddr = objfile->text_section_offset ();
4704 data = (struct dwarf2_per_cu_data *) addrmap_find
4705 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4706 if (!data)
4707 return NULL;
4708
4709 if (warn_if_readin && data->v.quick->compunit_symtab)
4710 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4711 paddress (get_objfile_arch (objfile), pc));
4712
4713 result
4714 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4715 false),
4716 pc);
4717 gdb_assert (result != NULL);
4718 return result;
4719}
4720
4721static void
4722dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4723 void *data, int need_fullname)
4724{
4725 struct dwarf2_per_objfile *dwarf2_per_objfile
4726 = get_dwarf2_per_objfile (objfile);
4727
4728 if (!dwarf2_per_objfile->filenames_cache)
4729 {
4730 dwarf2_per_objfile->filenames_cache.emplace ();
4731
4732 htab_up visited (htab_create_alloc (10,
4733 htab_hash_pointer, htab_eq_pointer,
4734 NULL, xcalloc, xfree));
4735
4736 /* The rule is CUs specify all the files, including those used
4737 by any TU, so there's no need to scan TUs here. We can
4738 ignore file names coming from already-expanded CUs. */
4739
4740 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4741 {
4742 if (per_cu->v.quick->compunit_symtab)
4743 {
4744 void **slot = htab_find_slot (visited.get (),
4745 per_cu->v.quick->file_names,
4746 INSERT);
4747
4748 *slot = per_cu->v.quick->file_names;
4749 }
4750 }
4751
4752 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4753 {
4754 /* We only need to look at symtabs not already expanded. */
4755 if (per_cu->v.quick->compunit_symtab)
4756 continue;
4757
4758 quick_file_names *file_data = dw2_get_file_names (per_cu);
4759 if (file_data == NULL)
4760 continue;
4761
4762 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4763 if (*slot)
4764 {
4765 /* Already visited. */
4766 continue;
4767 }
4768 *slot = file_data;
4769
4770 for (int j = 0; j < file_data->num_file_names; ++j)
4771 {
4772 const char *filename = file_data->file_names[j];
4773 dwarf2_per_objfile->filenames_cache->seen (filename);
4774 }
4775 }
4776 }
4777
4778 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4779 {
4780 gdb::unique_xmalloc_ptr<char> this_real_name;
4781
4782 if (need_fullname)
4783 this_real_name = gdb_realpath (filename);
4784 (*fun) (filename, this_real_name.get (), data);
4785 });
4786}
4787
4788static int
4789dw2_has_symbols (struct objfile *objfile)
4790{
4791 return 1;
4792}
4793
4794const struct quick_symbol_functions dwarf2_gdb_index_functions =
4795{
4796 dw2_has_symbols,
4797 dw2_find_last_source_symtab,
4798 dw2_forget_cached_source_info,
4799 dw2_map_symtabs_matching_filename,
4800 dw2_lookup_symbol,
4801 dw2_print_stats,
4802 dw2_dump,
4803 dw2_expand_symtabs_for_function,
4804 dw2_expand_all_symtabs,
4805 dw2_expand_symtabs_with_fullname,
4806 dw2_map_matching_symbols,
4807 dw2_expand_symtabs_matching,
4808 dw2_find_pc_sect_compunit_symtab,
4809 NULL,
4810 dw2_map_symbol_filenames
4811};
4812
4813/* DWARF-5 debug_names reader. */
4814
4815/* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4816static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4817
4818/* A helper function that reads the .debug_names section in SECTION
4819 and fills in MAP. FILENAME is the name of the file containing the
4820 section; it is used for error reporting.
4821
4822 Returns true if all went well, false otherwise. */
4823
4824static bool
4825read_debug_names_from_section (struct objfile *objfile,
4826 const char *filename,
4827 struct dwarf2_section_info *section,
4828 mapped_debug_names &map)
4829{
4830 if (section->empty ())
4831 return false;
4832
4833 /* Older elfutils strip versions could keep the section in the main
4834 executable while splitting it for the separate debug info file. */
4835 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4836 return false;
4837
4838 section->read (objfile);
4839
4840 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
4841
4842 const gdb_byte *addr = section->buffer;
4843
4844 bfd *const abfd = section->get_bfd_owner ();
4845
4846 unsigned int bytes_read;
4847 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4848 addr += bytes_read;
4849
4850 map.dwarf5_is_dwarf64 = bytes_read != 4;
4851 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4852 if (bytes_read + length != section->size)
4853 {
4854 /* There may be multiple per-CU indices. */
4855 warning (_("Section .debug_names in %s length %s does not match "
4856 "section length %s, ignoring .debug_names."),
4857 filename, plongest (bytes_read + length),
4858 pulongest (section->size));
4859 return false;
4860 }
4861
4862 /* The version number. */
4863 uint16_t version = read_2_bytes (abfd, addr);
4864 addr += 2;
4865 if (version != 5)
4866 {
4867 warning (_("Section .debug_names in %s has unsupported version %d, "
4868 "ignoring .debug_names."),
4869 filename, version);
4870 return false;
4871 }
4872
4873 /* Padding. */
4874 uint16_t padding = read_2_bytes (abfd, addr);
4875 addr += 2;
4876 if (padding != 0)
4877 {
4878 warning (_("Section .debug_names in %s has unsupported padding %d, "
4879 "ignoring .debug_names."),
4880 filename, padding);
4881 return false;
4882 }
4883
4884 /* comp_unit_count - The number of CUs in the CU list. */
4885 map.cu_count = read_4_bytes (abfd, addr);
4886 addr += 4;
4887
4888 /* local_type_unit_count - The number of TUs in the local TU
4889 list. */
4890 map.tu_count = read_4_bytes (abfd, addr);
4891 addr += 4;
4892
4893 /* foreign_type_unit_count - The number of TUs in the foreign TU
4894 list. */
4895 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4896 addr += 4;
4897 if (foreign_tu_count != 0)
4898 {
4899 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4900 "ignoring .debug_names."),
4901 filename, static_cast<unsigned long> (foreign_tu_count));
4902 return false;
4903 }
4904
4905 /* bucket_count - The number of hash buckets in the hash lookup
4906 table. */
4907 map.bucket_count = read_4_bytes (abfd, addr);
4908 addr += 4;
4909
4910 /* name_count - The number of unique names in the index. */
4911 map.name_count = read_4_bytes (abfd, addr);
4912 addr += 4;
4913
4914 /* abbrev_table_size - The size in bytes of the abbreviations
4915 table. */
4916 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4917 addr += 4;
4918
4919 /* augmentation_string_size - The size in bytes of the augmentation
4920 string. This value is rounded up to a multiple of 4. */
4921 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4922 addr += 4;
4923 map.augmentation_is_gdb = ((augmentation_string_size
4924 == sizeof (dwarf5_augmentation))
4925 && memcmp (addr, dwarf5_augmentation,
4926 sizeof (dwarf5_augmentation)) == 0);
4927 augmentation_string_size += (-augmentation_string_size) & 3;
4928 addr += augmentation_string_size;
4929
4930 /* List of CUs */
4931 map.cu_table_reordered = addr;
4932 addr += map.cu_count * map.offset_size;
4933
4934 /* List of Local TUs */
4935 map.tu_table_reordered = addr;
4936 addr += map.tu_count * map.offset_size;
4937
4938 /* Hash Lookup Table */
4939 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4940 addr += map.bucket_count * 4;
4941 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4942 addr += map.name_count * 4;
4943
4944 /* Name Table */
4945 map.name_table_string_offs_reordered = addr;
4946 addr += map.name_count * map.offset_size;
4947 map.name_table_entry_offs_reordered = addr;
4948 addr += map.name_count * map.offset_size;
4949
4950 const gdb_byte *abbrev_table_start = addr;
4951 for (;;)
4952 {
4953 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4954 addr += bytes_read;
4955 if (index_num == 0)
4956 break;
4957
4958 const auto insertpair
4959 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4960 if (!insertpair.second)
4961 {
4962 warning (_("Section .debug_names in %s has duplicate index %s, "
4963 "ignoring .debug_names."),
4964 filename, pulongest (index_num));
4965 return false;
4966 }
4967 mapped_debug_names::index_val &indexval = insertpair.first->second;
4968 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4969 addr += bytes_read;
4970
4971 for (;;)
4972 {
4973 mapped_debug_names::index_val::attr attr;
4974 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4975 addr += bytes_read;
4976 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4977 addr += bytes_read;
4978 if (attr.form == DW_FORM_implicit_const)
4979 {
4980 attr.implicit_const = read_signed_leb128 (abfd, addr,
4981 &bytes_read);
4982 addr += bytes_read;
4983 }
4984 if (attr.dw_idx == 0 && attr.form == 0)
4985 break;
4986 indexval.attr_vec.push_back (std::move (attr));
4987 }
4988 }
4989 if (addr != abbrev_table_start + abbrev_table_size)
4990 {
4991 warning (_("Section .debug_names in %s has abbreviation_table "
4992 "of size %s vs. written as %u, ignoring .debug_names."),
4993 filename, plongest (addr - abbrev_table_start),
4994 abbrev_table_size);
4995 return false;
4996 }
4997 map.entry_pool = addr;
4998
4999 return true;
5000}
5001
5002/* A helper for create_cus_from_debug_names that handles the MAP's CU
5003 list. */
5004
5005static void
5006create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5007 const mapped_debug_names &map,
5008 dwarf2_section_info &section,
5009 bool is_dwz)
5010{
5011 sect_offset sect_off_prev;
5012 for (uint32_t i = 0; i <= map.cu_count; ++i)
5013 {
5014 sect_offset sect_off_next;
5015 if (i < map.cu_count)
5016 {
5017 sect_off_next
5018 = (sect_offset) (extract_unsigned_integer
5019 (map.cu_table_reordered + i * map.offset_size,
5020 map.offset_size,
5021 map.dwarf5_byte_order));
5022 }
5023 else
5024 sect_off_next = (sect_offset) section.size;
5025 if (i >= 1)
5026 {
5027 const ULONGEST length = sect_off_next - sect_off_prev;
5028 dwarf2_per_cu_data *per_cu
5029 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5030 sect_off_prev, length);
5031 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5032 }
5033 sect_off_prev = sect_off_next;
5034 }
5035}
5036
5037/* Read the CU list from the mapped index, and use it to create all
5038 the CU objects for this dwarf2_per_objfile. */
5039
5040static void
5041create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5042 const mapped_debug_names &map,
5043 const mapped_debug_names &dwz_map)
5044{
5045 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5046 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5047
5048 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5049 dwarf2_per_objfile->info,
5050 false /* is_dwz */);
5051
5052 if (dwz_map.cu_count == 0)
5053 return;
5054
5055 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5056 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5057 true /* is_dwz */);
5058}
5059
5060/* Read .debug_names. If everything went ok, initialize the "quick"
5061 elements of all the CUs and return true. Otherwise, return false. */
5062
5063static bool
5064dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5065{
5066 std::unique_ptr<mapped_debug_names> map
5067 (new mapped_debug_names (dwarf2_per_objfile));
5068 mapped_debug_names dwz_map (dwarf2_per_objfile);
5069 struct objfile *objfile = dwarf2_per_objfile->objfile;
5070
5071 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5072 &dwarf2_per_objfile->debug_names,
5073 *map))
5074 return false;
5075
5076 /* Don't use the index if it's empty. */
5077 if (map->name_count == 0)
5078 return false;
5079
5080 /* If there is a .dwz file, read it so we can get its CU list as
5081 well. */
5082 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5083 if (dwz != NULL)
5084 {
5085 if (!read_debug_names_from_section (objfile,
5086 bfd_get_filename (dwz->dwz_bfd.get ()),
5087 &dwz->debug_names, dwz_map))
5088 {
5089 warning (_("could not read '.debug_names' section from %s; skipping"),
5090 bfd_get_filename (dwz->dwz_bfd.get ()));
5091 return false;
5092 }
5093 }
5094
5095 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5096
5097 if (map->tu_count != 0)
5098 {
5099 /* We can only handle a single .debug_types when we have an
5100 index. */
5101 if (dwarf2_per_objfile->types.size () != 1)
5102 return false;
5103
5104 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5105
5106 create_signatured_type_table_from_debug_names
5107 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5108 }
5109
5110 create_addrmap_from_aranges (dwarf2_per_objfile,
5111 &dwarf2_per_objfile->debug_aranges);
5112
5113 dwarf2_per_objfile->debug_names_table = std::move (map);
5114 dwarf2_per_objfile->using_index = 1;
5115 dwarf2_per_objfile->quick_file_names_table =
5116 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5117
5118 return true;
5119}
5120
5121/* Type used to manage iterating over all CUs looking for a symbol for
5122 .debug_names. */
5123
5124class dw2_debug_names_iterator
5125{
5126public:
5127 dw2_debug_names_iterator (const mapped_debug_names &map,
5128 gdb::optional<block_enum> block_index,
5129 domain_enum domain,
5130 const char *name)
5131 : m_map (map), m_block_index (block_index), m_domain (domain),
5132 m_addr (find_vec_in_debug_names (map, name))
5133 {}
5134
5135 dw2_debug_names_iterator (const mapped_debug_names &map,
5136 search_domain search, uint32_t namei)
5137 : m_map (map),
5138 m_search (search),
5139 m_addr (find_vec_in_debug_names (map, namei))
5140 {}
5141
5142 dw2_debug_names_iterator (const mapped_debug_names &map,
5143 block_enum block_index, domain_enum domain,
5144 uint32_t namei)
5145 : m_map (map), m_block_index (block_index), m_domain (domain),
5146 m_addr (find_vec_in_debug_names (map, namei))
5147 {}
5148
5149 /* Return the next matching CU or NULL if there are no more. */
5150 dwarf2_per_cu_data *next ();
5151
5152private:
5153 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5154 const char *name);
5155 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5156 uint32_t namei);
5157
5158 /* The internalized form of .debug_names. */
5159 const mapped_debug_names &m_map;
5160
5161 /* If set, only look for symbols that match that block. Valid values are
5162 GLOBAL_BLOCK and STATIC_BLOCK. */
5163 const gdb::optional<block_enum> m_block_index;
5164
5165 /* The kind of symbol we're looking for. */
5166 const domain_enum m_domain = UNDEF_DOMAIN;
5167 const search_domain m_search = ALL_DOMAIN;
5168
5169 /* The list of CUs from the index entry of the symbol, or NULL if
5170 not found. */
5171 const gdb_byte *m_addr;
5172};
5173
5174const char *
5175mapped_debug_names::namei_to_name (uint32_t namei) const
5176{
5177 const ULONGEST namei_string_offs
5178 = extract_unsigned_integer ((name_table_string_offs_reordered
5179 + namei * offset_size),
5180 offset_size,
5181 dwarf5_byte_order);
5182 return read_indirect_string_at_offset
5183 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5184}
5185
5186/* Find a slot in .debug_names for the object named NAME. If NAME is
5187 found, return pointer to its pool data. If NAME cannot be found,
5188 return NULL. */
5189
5190const gdb_byte *
5191dw2_debug_names_iterator::find_vec_in_debug_names
5192 (const mapped_debug_names &map, const char *name)
5193{
5194 int (*cmp) (const char *, const char *);
5195
5196 gdb::unique_xmalloc_ptr<char> without_params;
5197 if (current_language->la_language == language_cplus
5198 || current_language->la_language == language_fortran
5199 || current_language->la_language == language_d)
5200 {
5201 /* NAME is already canonical. Drop any qualifiers as
5202 .debug_names does not contain any. */
5203
5204 if (strchr (name, '(') != NULL)
5205 {
5206 without_params = cp_remove_params (name);
5207 if (without_params != NULL)
5208 name = without_params.get ();
5209 }
5210 }
5211
5212 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5213
5214 const uint32_t full_hash = dwarf5_djb_hash (name);
5215 uint32_t namei
5216 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5217 (map.bucket_table_reordered
5218 + (full_hash % map.bucket_count)), 4,
5219 map.dwarf5_byte_order);
5220 if (namei == 0)
5221 return NULL;
5222 --namei;
5223 if (namei >= map.name_count)
5224 {
5225 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5226 "[in module %s]"),
5227 namei, map.name_count,
5228 objfile_name (map.dwarf2_per_objfile->objfile));
5229 return NULL;
5230 }
5231
5232 for (;;)
5233 {
5234 const uint32_t namei_full_hash
5235 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5236 (map.hash_table_reordered + namei), 4,
5237 map.dwarf5_byte_order);
5238 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5239 return NULL;
5240
5241 if (full_hash == namei_full_hash)
5242 {
5243 const char *const namei_string = map.namei_to_name (namei);
5244
5245#if 0 /* An expensive sanity check. */
5246 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5247 {
5248 complaint (_("Wrong .debug_names hash for string at index %u "
5249 "[in module %s]"),
5250 namei, objfile_name (dwarf2_per_objfile->objfile));
5251 return NULL;
5252 }
5253#endif
5254
5255 if (cmp (namei_string, name) == 0)
5256 {
5257 const ULONGEST namei_entry_offs
5258 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5259 + namei * map.offset_size),
5260 map.offset_size, map.dwarf5_byte_order);
5261 return map.entry_pool + namei_entry_offs;
5262 }
5263 }
5264
5265 ++namei;
5266 if (namei >= map.name_count)
5267 return NULL;
5268 }
5269}
5270
5271const gdb_byte *
5272dw2_debug_names_iterator::find_vec_in_debug_names
5273 (const mapped_debug_names &map, uint32_t namei)
5274{
5275 if (namei >= map.name_count)
5276 {
5277 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5278 "[in module %s]"),
5279 namei, map.name_count,
5280 objfile_name (map.dwarf2_per_objfile->objfile));
5281 return NULL;
5282 }
5283
5284 const ULONGEST namei_entry_offs
5285 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5286 + namei * map.offset_size),
5287 map.offset_size, map.dwarf5_byte_order);
5288 return map.entry_pool + namei_entry_offs;
5289}
5290
5291/* See dw2_debug_names_iterator. */
5292
5293dwarf2_per_cu_data *
5294dw2_debug_names_iterator::next ()
5295{
5296 if (m_addr == NULL)
5297 return NULL;
5298
5299 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5300 struct objfile *objfile = dwarf2_per_objfile->objfile;
5301 bfd *const abfd = objfile->obfd;
5302
5303 again:
5304
5305 unsigned int bytes_read;
5306 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5307 m_addr += bytes_read;
5308 if (abbrev == 0)
5309 return NULL;
5310
5311 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5312 if (indexval_it == m_map.abbrev_map.cend ())
5313 {
5314 complaint (_("Wrong .debug_names undefined abbrev code %s "
5315 "[in module %s]"),
5316 pulongest (abbrev), objfile_name (objfile));
5317 return NULL;
5318 }
5319 const mapped_debug_names::index_val &indexval = indexval_it->second;
5320 enum class symbol_linkage {
5321 unknown,
5322 static_,
5323 extern_,
5324 } symbol_linkage_ = symbol_linkage::unknown;
5325 dwarf2_per_cu_data *per_cu = NULL;
5326 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5327 {
5328 ULONGEST ull;
5329 switch (attr.form)
5330 {
5331 case DW_FORM_implicit_const:
5332 ull = attr.implicit_const;
5333 break;
5334 case DW_FORM_flag_present:
5335 ull = 1;
5336 break;
5337 case DW_FORM_udata:
5338 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5339 m_addr += bytes_read;
5340 break;
5341 default:
5342 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5343 dwarf_form_name (attr.form),
5344 objfile_name (objfile));
5345 return NULL;
5346 }
5347 switch (attr.dw_idx)
5348 {
5349 case DW_IDX_compile_unit:
5350 /* Don't crash on bad data. */
5351 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5352 {
5353 complaint (_(".debug_names entry has bad CU index %s"
5354 " [in module %s]"),
5355 pulongest (ull),
5356 objfile_name (dwarf2_per_objfile->objfile));
5357 continue;
5358 }
5359 per_cu = dwarf2_per_objfile->get_cutu (ull);
5360 break;
5361 case DW_IDX_type_unit:
5362 /* Don't crash on bad data. */
5363 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5364 {
5365 complaint (_(".debug_names entry has bad TU index %s"
5366 " [in module %s]"),
5367 pulongest (ull),
5368 objfile_name (dwarf2_per_objfile->objfile));
5369 continue;
5370 }
5371 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5372 break;
5373 case DW_IDX_GNU_internal:
5374 if (!m_map.augmentation_is_gdb)
5375 break;
5376 symbol_linkage_ = symbol_linkage::static_;
5377 break;
5378 case DW_IDX_GNU_external:
5379 if (!m_map.augmentation_is_gdb)
5380 break;
5381 symbol_linkage_ = symbol_linkage::extern_;
5382 break;
5383 }
5384 }
5385
5386 /* Skip if already read in. */
5387 if (per_cu->v.quick->compunit_symtab)
5388 goto again;
5389
5390 /* Check static vs global. */
5391 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5392 {
5393 const bool want_static = *m_block_index == STATIC_BLOCK;
5394 const bool symbol_is_static =
5395 symbol_linkage_ == symbol_linkage::static_;
5396 if (want_static != symbol_is_static)
5397 goto again;
5398 }
5399
5400 /* Match dw2_symtab_iter_next, symbol_kind
5401 and debug_names::psymbol_tag. */
5402 switch (m_domain)
5403 {
5404 case VAR_DOMAIN:
5405 switch (indexval.dwarf_tag)
5406 {
5407 case DW_TAG_variable:
5408 case DW_TAG_subprogram:
5409 /* Some types are also in VAR_DOMAIN. */
5410 case DW_TAG_typedef:
5411 case DW_TAG_structure_type:
5412 break;
5413 default:
5414 goto again;
5415 }
5416 break;
5417 case STRUCT_DOMAIN:
5418 switch (indexval.dwarf_tag)
5419 {
5420 case DW_TAG_typedef:
5421 case DW_TAG_structure_type:
5422 break;
5423 default:
5424 goto again;
5425 }
5426 break;
5427 case LABEL_DOMAIN:
5428 switch (indexval.dwarf_tag)
5429 {
5430 case 0:
5431 case DW_TAG_variable:
5432 break;
5433 default:
5434 goto again;
5435 }
5436 break;
5437 case MODULE_DOMAIN:
5438 switch (indexval.dwarf_tag)
5439 {
5440 case DW_TAG_module:
5441 break;
5442 default:
5443 goto again;
5444 }
5445 break;
5446 default:
5447 break;
5448 }
5449
5450 /* Match dw2_expand_symtabs_matching, symbol_kind and
5451 debug_names::psymbol_tag. */
5452 switch (m_search)
5453 {
5454 case VARIABLES_DOMAIN:
5455 switch (indexval.dwarf_tag)
5456 {
5457 case DW_TAG_variable:
5458 break;
5459 default:
5460 goto again;
5461 }
5462 break;
5463 case FUNCTIONS_DOMAIN:
5464 switch (indexval.dwarf_tag)
5465 {
5466 case DW_TAG_subprogram:
5467 break;
5468 default:
5469 goto again;
5470 }
5471 break;
5472 case TYPES_DOMAIN:
5473 switch (indexval.dwarf_tag)
5474 {
5475 case DW_TAG_typedef:
5476 case DW_TAG_structure_type:
5477 break;
5478 default:
5479 goto again;
5480 }
5481 break;
5482 case MODULES_DOMAIN:
5483 switch (indexval.dwarf_tag)
5484 {
5485 case DW_TAG_module:
5486 break;
5487 default:
5488 goto again;
5489 }
5490 default:
5491 break;
5492 }
5493
5494 return per_cu;
5495}
5496
5497static struct compunit_symtab *
5498dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5499 const char *name, domain_enum domain)
5500{
5501 struct dwarf2_per_objfile *dwarf2_per_objfile
5502 = get_dwarf2_per_objfile (objfile);
5503
5504 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5505 if (!mapp)
5506 {
5507 /* index is NULL if OBJF_READNOW. */
5508 return NULL;
5509 }
5510 const auto &map = *mapp;
5511
5512 dw2_debug_names_iterator iter (map, block_index, domain, name);
5513
5514 struct compunit_symtab *stab_best = NULL;
5515 struct dwarf2_per_cu_data *per_cu;
5516 while ((per_cu = iter.next ()) != NULL)
5517 {
5518 struct symbol *sym, *with_opaque = NULL;
5519 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5520 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5521 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5522
5523 sym = block_find_symbol (block, name, domain,
5524 block_find_non_opaque_type_preferred,
5525 &with_opaque);
5526
5527 /* Some caution must be observed with overloaded functions and
5528 methods, since the index will not contain any overload
5529 information (but NAME might contain it). */
5530
5531 if (sym != NULL
5532 && strcmp_iw (sym->search_name (), name) == 0)
5533 return stab;
5534 if (with_opaque != NULL
5535 && strcmp_iw (with_opaque->search_name (), name) == 0)
5536 stab_best = stab;
5537
5538 /* Keep looking through other CUs. */
5539 }
5540
5541 return stab_best;
5542}
5543
5544/* This dumps minimal information about .debug_names. It is called
5545 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5546 uses this to verify that .debug_names has been loaded. */
5547
5548static void
5549dw2_debug_names_dump (struct objfile *objfile)
5550{
5551 struct dwarf2_per_objfile *dwarf2_per_objfile
5552 = get_dwarf2_per_objfile (objfile);
5553
5554 gdb_assert (dwarf2_per_objfile->using_index);
5555 printf_filtered (".debug_names:");
5556 if (dwarf2_per_objfile->debug_names_table)
5557 printf_filtered (" exists\n");
5558 else
5559 printf_filtered (" faked for \"readnow\"\n");
5560 printf_filtered ("\n");
5561}
5562
5563static void
5564dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5565 const char *func_name)
5566{
5567 struct dwarf2_per_objfile *dwarf2_per_objfile
5568 = get_dwarf2_per_objfile (objfile);
5569
5570 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5571 if (dwarf2_per_objfile->debug_names_table)
5572 {
5573 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5574
5575 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5576
5577 struct dwarf2_per_cu_data *per_cu;
5578 while ((per_cu = iter.next ()) != NULL)
5579 dw2_instantiate_symtab (per_cu, false);
5580 }
5581}
5582
5583static void
5584dw2_debug_names_map_matching_symbols
5585 (struct objfile *objfile,
5586 const lookup_name_info &name, domain_enum domain,
5587 int global,
5588 gdb::function_view<symbol_found_callback_ftype> callback,
5589 symbol_compare_ftype *ordered_compare)
5590{
5591 struct dwarf2_per_objfile *dwarf2_per_objfile
5592 = get_dwarf2_per_objfile (objfile);
5593
5594 /* debug_names_table is NULL if OBJF_READNOW. */
5595 if (!dwarf2_per_objfile->debug_names_table)
5596 return;
5597
5598 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5599 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5600
5601 const char *match_name = name.ada ().lookup_name ().c_str ();
5602 auto matcher = [&] (const char *symname)
5603 {
5604 if (ordered_compare == nullptr)
5605 return true;
5606 return ordered_compare (symname, match_name) == 0;
5607 };
5608
5609 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5610 [&] (offset_type namei)
5611 {
5612 /* The name was matched, now expand corresponding CUs that were
5613 marked. */
5614 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5615
5616 struct dwarf2_per_cu_data *per_cu;
5617 while ((per_cu = iter.next ()) != NULL)
5618 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5619 return true;
5620 });
5621
5622 /* It's a shame we couldn't do this inside the
5623 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5624 that have already been expanded. Instead, this loop matches what
5625 the psymtab code does. */
5626 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5627 {
5628 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5629 if (cust != nullptr)
5630 {
5631 const struct block *block
5632 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5633 if (!iterate_over_symbols_terminated (block, name,
5634 domain, callback))
5635 break;
5636 }
5637 }
5638}
5639
5640static void
5641dw2_debug_names_expand_symtabs_matching
5642 (struct objfile *objfile,
5643 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5644 const lookup_name_info &lookup_name,
5645 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5646 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5647 enum search_domain kind)
5648{
5649 struct dwarf2_per_objfile *dwarf2_per_objfile
5650 = get_dwarf2_per_objfile (objfile);
5651
5652 /* debug_names_table is NULL if OBJF_READNOW. */
5653 if (!dwarf2_per_objfile->debug_names_table)
5654 return;
5655
5656 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5657
5658 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5659
5660 dw2_expand_symtabs_matching_symbol (map, lookup_name,
5661 symbol_matcher,
5662 kind, [&] (offset_type namei)
5663 {
5664 /* The name was matched, now expand corresponding CUs that were
5665 marked. */
5666 dw2_debug_names_iterator iter (map, kind, namei);
5667
5668 struct dwarf2_per_cu_data *per_cu;
5669 while ((per_cu = iter.next ()) != NULL)
5670 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5671 expansion_notify);
5672 return true;
5673 });
5674}
5675
5676const struct quick_symbol_functions dwarf2_debug_names_functions =
5677{
5678 dw2_has_symbols,
5679 dw2_find_last_source_symtab,
5680 dw2_forget_cached_source_info,
5681 dw2_map_symtabs_matching_filename,
5682 dw2_debug_names_lookup_symbol,
5683 dw2_print_stats,
5684 dw2_debug_names_dump,
5685 dw2_debug_names_expand_symtabs_for_function,
5686 dw2_expand_all_symtabs,
5687 dw2_expand_symtabs_with_fullname,
5688 dw2_debug_names_map_matching_symbols,
5689 dw2_debug_names_expand_symtabs_matching,
5690 dw2_find_pc_sect_compunit_symtab,
5691 NULL,
5692 dw2_map_symbol_filenames
5693};
5694
5695/* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5696 to either a dwarf2_per_objfile or dwz_file object. */
5697
5698template <typename T>
5699static gdb::array_view<const gdb_byte>
5700get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5701{
5702 dwarf2_section_info *section = &section_owner->gdb_index;
5703
5704 if (section->empty ())
5705 return {};
5706
5707 /* Older elfutils strip versions could keep the section in the main
5708 executable while splitting it for the separate debug info file. */
5709 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5710 return {};
5711
5712 section->read (obj);
5713
5714 /* dwarf2_section_info::size is a bfd_size_type, while
5715 gdb::array_view works with size_t. On 32-bit hosts, with
5716 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5717 is 32-bit. So we need an explicit narrowing conversion here.
5718 This is fine, because it's impossible to allocate or mmap an
5719 array/buffer larger than what size_t can represent. */
5720 return gdb::make_array_view (section->buffer, section->size);
5721}
5722
5723/* Lookup the index cache for the contents of the index associated to
5724 DWARF2_OBJ. */
5725
5726static gdb::array_view<const gdb_byte>
5727get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5728{
5729 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5730 if (build_id == nullptr)
5731 return {};
5732
5733 return global_index_cache.lookup_gdb_index (build_id,
5734 &dwarf2_obj->index_cache_res);
5735}
5736
5737/* Same as the above, but for DWZ. */
5738
5739static gdb::array_view<const gdb_byte>
5740get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5741{
5742 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5743 if (build_id == nullptr)
5744 return {};
5745
5746 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5747}
5748
5749/* See symfile.h. */
5750
5751bool
5752dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5753{
5754 struct dwarf2_per_objfile *dwarf2_per_objfile
5755 = get_dwarf2_per_objfile (objfile);
5756
5757 /* If we're about to read full symbols, don't bother with the
5758 indices. In this case we also don't care if some other debug
5759 format is making psymtabs, because they are all about to be
5760 expanded anyway. */
5761 if ((objfile->flags & OBJF_READNOW))
5762 {
5763 dwarf2_per_objfile->using_index = 1;
5764 create_all_comp_units (dwarf2_per_objfile);
5765 create_all_type_units (dwarf2_per_objfile);
5766 dwarf2_per_objfile->quick_file_names_table
5767 = create_quick_file_names_table
5768 (dwarf2_per_objfile->all_comp_units.size ());
5769
5770 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5771 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5772 {
5773 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5774
5775 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5776 struct dwarf2_per_cu_quick_data);
5777 }
5778
5779 /* Return 1 so that gdb sees the "quick" functions. However,
5780 these functions will be no-ops because we will have expanded
5781 all symtabs. */
5782 *index_kind = dw_index_kind::GDB_INDEX;
5783 return true;
5784 }
5785
5786 if (dwarf2_read_debug_names (dwarf2_per_objfile))
5787 {
5788 *index_kind = dw_index_kind::DEBUG_NAMES;
5789 return true;
5790 }
5791
5792 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5793 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
5794 get_gdb_index_contents_from_section<dwz_file>))
5795 {
5796 *index_kind = dw_index_kind::GDB_INDEX;
5797 return true;
5798 }
5799
5800 /* ... otherwise, try to find the index in the index cache. */
5801 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5802 get_gdb_index_contents_from_cache,
5803 get_gdb_index_contents_from_cache_dwz))
5804 {
5805 global_index_cache.hit ();
5806 *index_kind = dw_index_kind::GDB_INDEX;
5807 return true;
5808 }
5809
5810 global_index_cache.miss ();
5811 return false;
5812}
5813
5814\f
5815
5816/* Build a partial symbol table. */
5817
5818void
5819dwarf2_build_psymtabs (struct objfile *objfile)
5820{
5821 struct dwarf2_per_objfile *dwarf2_per_objfile
5822 = get_dwarf2_per_objfile (objfile);
5823
5824 init_psymbol_list (objfile, 1024);
5825
5826 try
5827 {
5828 /* This isn't really ideal: all the data we allocate on the
5829 objfile's obstack is still uselessly kept around. However,
5830 freeing it seems unsafe. */
5831 psymtab_discarder psymtabs (objfile);
5832 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
5833 psymtabs.keep ();
5834
5835 /* (maybe) store an index in the cache. */
5836 global_index_cache.store (dwarf2_per_objfile);
5837 }
5838 catch (const gdb_exception_error &except)
5839 {
5840 exception_print (gdb_stderr, except);
5841 }
5842}
5843
5844/* Find the base address of the compilation unit for range lists and
5845 location lists. It will normally be specified by DW_AT_low_pc.
5846 In DWARF-3 draft 4, the base address could be overridden by
5847 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5848 compilation units with discontinuous ranges. */
5849
5850static void
5851dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5852{
5853 struct attribute *attr;
5854
5855 cu->base_known = 0;
5856 cu->base_address = 0;
5857
5858 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5859 if (attr != nullptr)
5860 {
5861 cu->base_address = attr->value_as_address ();
5862 cu->base_known = 1;
5863 }
5864 else
5865 {
5866 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5867 if (attr != nullptr)
5868 {
5869 cu->base_address = attr->value_as_address ();
5870 cu->base_known = 1;
5871 }
5872 }
5873}
5874
5875/* Helper function that returns the proper abbrev section for
5876 THIS_CU. */
5877
5878static struct dwarf2_section_info *
5879get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5880{
5881 struct dwarf2_section_info *abbrev;
5882 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
5883
5884 if (this_cu->is_dwz)
5885 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
5886 else
5887 abbrev = &dwarf2_per_objfile->abbrev;
5888
5889 return abbrev;
5890}
5891
5892/* Fetch the abbreviation table offset from a comp or type unit header. */
5893
5894static sect_offset
5895read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
5896 struct dwarf2_section_info *section,
5897 sect_offset sect_off)
5898{
5899 bfd *abfd = section->get_bfd_owner ();
5900 const gdb_byte *info_ptr;
5901 unsigned int initial_length_size, offset_size;
5902 uint16_t version;
5903
5904 section->read (dwarf2_per_objfile->objfile);
5905 info_ptr = section->buffer + to_underlying (sect_off);
5906 read_initial_length (abfd, info_ptr, &initial_length_size);
5907 offset_size = initial_length_size == 4 ? 4 : 8;
5908 info_ptr += initial_length_size;
5909
5910 version = read_2_bytes (abfd, info_ptr);
5911 info_ptr += 2;
5912 if (version >= 5)
5913 {
5914 /* Skip unit type and address size. */
5915 info_ptr += 2;
5916 }
5917
5918 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5919}
5920
5921/* A partial symtab that is used only for include files. */
5922struct dwarf2_include_psymtab : public partial_symtab
5923{
5924 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
5925 : partial_symtab (filename, objfile)
5926 {
5927 }
5928
5929 void read_symtab (struct objfile *objfile) override
5930 {
5931 expand_psymtab (objfile);
5932 }
5933
5934 void expand_psymtab (struct objfile *objfile) override
5935 {
5936 if (m_readin)
5937 return;
5938 /* It's an include file, no symbols to read for it.
5939 Everything is in the parent symtab. */
5940 read_dependencies (objfile);
5941 m_readin = true;
5942 }
5943
5944 bool readin_p () const override
5945 {
5946 return m_readin;
5947 }
5948
5949 struct compunit_symtab *get_compunit_symtab () const override
5950 {
5951 return nullptr;
5952 }
5953
5954private:
5955
5956 bool m_readin = false;
5957};
5958
5959/* Allocate a new partial symtab for file named NAME and mark this new
5960 partial symtab as being an include of PST. */
5961
5962static void
5963dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
5964 struct objfile *objfile)
5965{
5966 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
5967
5968 if (!IS_ABSOLUTE_PATH (subpst->filename))
5969 {
5970 /* It shares objfile->objfile_obstack. */
5971 subpst->dirname = pst->dirname;
5972 }
5973
5974 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
5975 subpst->dependencies[0] = pst;
5976 subpst->number_of_dependencies = 1;
5977}
5978
5979/* Read the Line Number Program data and extract the list of files
5980 included by the source file represented by PST. Build an include
5981 partial symtab for each of these included files. */
5982
5983static void
5984dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5985 struct die_info *die,
5986 dwarf2_psymtab *pst)
5987{
5988 line_header_up lh;
5989 struct attribute *attr;
5990
5991 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5992 if (attr != nullptr)
5993 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
5994 if (lh == NULL)
5995 return; /* No linetable, so no includes. */
5996
5997 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
5998 that we pass in the raw text_low here; that is ok because we're
5999 only decoding the line table to make include partial symtabs, and
6000 so the addresses aren't really used. */
6001 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6002 pst->raw_text_low (), 1);
6003}
6004
6005static hashval_t
6006hash_signatured_type (const void *item)
6007{
6008 const struct signatured_type *sig_type
6009 = (const struct signatured_type *) item;
6010
6011 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6012 return sig_type->signature;
6013}
6014
6015static int
6016eq_signatured_type (const void *item_lhs, const void *item_rhs)
6017{
6018 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6019 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6020
6021 return lhs->signature == rhs->signature;
6022}
6023
6024/* Allocate a hash table for signatured types. */
6025
6026static htab_up
6027allocate_signatured_type_table ()
6028{
6029 return htab_up (htab_create_alloc (41,
6030 hash_signatured_type,
6031 eq_signatured_type,
6032 NULL, xcalloc, xfree));
6033}
6034
6035/* A helper function to add a signatured type CU to a table. */
6036
6037static int
6038add_signatured_type_cu_to_table (void **slot, void *datum)
6039{
6040 struct signatured_type *sigt = (struct signatured_type *) *slot;
6041 std::vector<signatured_type *> *all_type_units
6042 = (std::vector<signatured_type *> *) datum;
6043
6044 all_type_units->push_back (sigt);
6045
6046 return 1;
6047}
6048
6049/* A helper for create_debug_types_hash_table. Read types from SECTION
6050 and fill them into TYPES_HTAB. It will process only type units,
6051 therefore DW_UT_type. */
6052
6053static void
6054create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6055 struct dwo_file *dwo_file,
6056 dwarf2_section_info *section, htab_up &types_htab,
6057 rcuh_kind section_kind)
6058{
6059 struct objfile *objfile = dwarf2_per_objfile->objfile;
6060 struct dwarf2_section_info *abbrev_section;
6061 bfd *abfd;
6062 const gdb_byte *info_ptr, *end_ptr;
6063
6064 abbrev_section = (dwo_file != NULL
6065 ? &dwo_file->sections.abbrev
6066 : &dwarf2_per_objfile->abbrev);
6067
6068 if (dwarf_read_debug)
6069 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6070 section->get_name (),
6071 abbrev_section->get_file_name ());
6072
6073 section->read (objfile);
6074 info_ptr = section->buffer;
6075
6076 if (info_ptr == NULL)
6077 return;
6078
6079 /* We can't set abfd until now because the section may be empty or
6080 not present, in which case the bfd is unknown. */
6081 abfd = section->get_bfd_owner ();
6082
6083 /* We don't use cutu_reader here because we don't need to read
6084 any dies: the signature is in the header. */
6085
6086 end_ptr = info_ptr + section->size;
6087 while (info_ptr < end_ptr)
6088 {
6089 struct signatured_type *sig_type;
6090 struct dwo_unit *dwo_tu;
6091 void **slot;
6092 const gdb_byte *ptr = info_ptr;
6093 struct comp_unit_head header;
6094 unsigned int length;
6095
6096 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6097
6098 /* Initialize it due to a false compiler warning. */
6099 header.signature = -1;
6100 header.type_cu_offset_in_tu = (cu_offset) -1;
6101
6102 /* We need to read the type's signature in order to build the hash
6103 table, but we don't need anything else just yet. */
6104
6105 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6106 abbrev_section, ptr, section_kind);
6107
6108 length = header.get_length ();
6109
6110 /* Skip dummy type units. */
6111 if (ptr >= info_ptr + length
6112 || peek_abbrev_code (abfd, ptr) == 0
6113 || header.unit_type != DW_UT_type)
6114 {
6115 info_ptr += length;
6116 continue;
6117 }
6118
6119 if (types_htab == NULL)
6120 {
6121 if (dwo_file)
6122 types_htab = allocate_dwo_unit_table ();
6123 else
6124 types_htab = allocate_signatured_type_table ();
6125 }
6126
6127 if (dwo_file)
6128 {
6129 sig_type = NULL;
6130 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6131 struct dwo_unit);
6132 dwo_tu->dwo_file = dwo_file;
6133 dwo_tu->signature = header.signature;
6134 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6135 dwo_tu->section = section;
6136 dwo_tu->sect_off = sect_off;
6137 dwo_tu->length = length;
6138 }
6139 else
6140 {
6141 /* N.B.: type_offset is not usable if this type uses a DWO file.
6142 The real type_offset is in the DWO file. */
6143 dwo_tu = NULL;
6144 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6145 struct signatured_type);
6146 sig_type->signature = header.signature;
6147 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6148 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6149 sig_type->per_cu.is_debug_types = 1;
6150 sig_type->per_cu.section = section;
6151 sig_type->per_cu.sect_off = sect_off;
6152 sig_type->per_cu.length = length;
6153 }
6154
6155 slot = htab_find_slot (types_htab.get (),
6156 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6157 INSERT);
6158 gdb_assert (slot != NULL);
6159 if (*slot != NULL)
6160 {
6161 sect_offset dup_sect_off;
6162
6163 if (dwo_file)
6164 {
6165 const struct dwo_unit *dup_tu
6166 = (const struct dwo_unit *) *slot;
6167
6168 dup_sect_off = dup_tu->sect_off;
6169 }
6170 else
6171 {
6172 const struct signatured_type *dup_tu
6173 = (const struct signatured_type *) *slot;
6174
6175 dup_sect_off = dup_tu->per_cu.sect_off;
6176 }
6177
6178 complaint (_("debug type entry at offset %s is duplicate to"
6179 " the entry at offset %s, signature %s"),
6180 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6181 hex_string (header.signature));
6182 }
6183 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6184
6185 if (dwarf_read_debug > 1)
6186 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6187 sect_offset_str (sect_off),
6188 hex_string (header.signature));
6189
6190 info_ptr += length;
6191 }
6192}
6193
6194/* Create the hash table of all entries in the .debug_types
6195 (or .debug_types.dwo) section(s).
6196 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6197 otherwise it is NULL.
6198
6199 The result is a pointer to the hash table or NULL if there are no types.
6200
6201 Note: This function processes DWO files only, not DWP files. */
6202
6203static void
6204create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6205 struct dwo_file *dwo_file,
6206 gdb::array_view<dwarf2_section_info> type_sections,
6207 htab_up &types_htab)
6208{
6209 for (dwarf2_section_info &section : type_sections)
6210 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6211 types_htab, rcuh_kind::TYPE);
6212}
6213
6214/* Create the hash table of all entries in the .debug_types section,
6215 and initialize all_type_units.
6216 The result is zero if there is an error (e.g. missing .debug_types section),
6217 otherwise non-zero. */
6218
6219static int
6220create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6221{
6222 htab_up types_htab;
6223
6224 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6225 &dwarf2_per_objfile->info, types_htab,
6226 rcuh_kind::COMPILE);
6227 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6228 dwarf2_per_objfile->types, types_htab);
6229 if (types_htab == NULL)
6230 {
6231 dwarf2_per_objfile->signatured_types = NULL;
6232 return 0;
6233 }
6234
6235 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6236
6237 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6238 dwarf2_per_objfile->all_type_units.reserve
6239 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6240
6241 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6242 add_signatured_type_cu_to_table,
6243 &dwarf2_per_objfile->all_type_units);
6244
6245 return 1;
6246}
6247
6248/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6249 If SLOT is non-NULL, it is the entry to use in the hash table.
6250 Otherwise we find one. */
6251
6252static struct signatured_type *
6253add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6254 void **slot)
6255{
6256 struct objfile *objfile = dwarf2_per_objfile->objfile;
6257
6258 if (dwarf2_per_objfile->all_type_units.size ()
6259 == dwarf2_per_objfile->all_type_units.capacity ())
6260 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6261
6262 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6263 struct signatured_type);
6264
6265 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6266 sig_type->signature = sig;
6267 sig_type->per_cu.is_debug_types = 1;
6268 if (dwarf2_per_objfile->using_index)
6269 {
6270 sig_type->per_cu.v.quick =
6271 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6272 struct dwarf2_per_cu_quick_data);
6273 }
6274
6275 if (slot == NULL)
6276 {
6277 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6278 sig_type, INSERT);
6279 }
6280 gdb_assert (*slot == NULL);
6281 *slot = sig_type;
6282 /* The rest of sig_type must be filled in by the caller. */
6283 return sig_type;
6284}
6285
6286/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6287 Fill in SIG_ENTRY with DWO_ENTRY. */
6288
6289static void
6290fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6291 struct signatured_type *sig_entry,
6292 struct dwo_unit *dwo_entry)
6293{
6294 /* Make sure we're not clobbering something we don't expect to. */
6295 gdb_assert (! sig_entry->per_cu.queued);
6296 gdb_assert (sig_entry->per_cu.cu == NULL);
6297 if (dwarf2_per_objfile->using_index)
6298 {
6299 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6300 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6301 }
6302 else
6303 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6304 gdb_assert (sig_entry->signature == dwo_entry->signature);
6305 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6306 gdb_assert (sig_entry->type_unit_group == NULL);
6307 gdb_assert (sig_entry->dwo_unit == NULL);
6308
6309 sig_entry->per_cu.section = dwo_entry->section;
6310 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6311 sig_entry->per_cu.length = dwo_entry->length;
6312 sig_entry->per_cu.reading_dwo_directly = 1;
6313 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6314 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6315 sig_entry->dwo_unit = dwo_entry;
6316}
6317
6318/* Subroutine of lookup_signatured_type.
6319 If we haven't read the TU yet, create the signatured_type data structure
6320 for a TU to be read in directly from a DWO file, bypassing the stub.
6321 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6322 using .gdb_index, then when reading a CU we want to stay in the DWO file
6323 containing that CU. Otherwise we could end up reading several other DWO
6324 files (due to comdat folding) to process the transitive closure of all the
6325 mentioned TUs, and that can be slow. The current DWO file will have every
6326 type signature that it needs.
6327 We only do this for .gdb_index because in the psymtab case we already have
6328 to read all the DWOs to build the type unit groups. */
6329
6330static struct signatured_type *
6331lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6332{
6333 struct dwarf2_per_objfile *dwarf2_per_objfile
6334 = cu->per_cu->dwarf2_per_objfile;
6335 struct dwo_file *dwo_file;
6336 struct dwo_unit find_dwo_entry, *dwo_entry;
6337 struct signatured_type find_sig_entry, *sig_entry;
6338 void **slot;
6339
6340 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6341
6342 /* If TU skeletons have been removed then we may not have read in any
6343 TUs yet. */
6344 if (dwarf2_per_objfile->signatured_types == NULL)
6345 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6346
6347 /* We only ever need to read in one copy of a signatured type.
6348 Use the global signatured_types array to do our own comdat-folding
6349 of types. If this is the first time we're reading this TU, and
6350 the TU has an entry in .gdb_index, replace the recorded data from
6351 .gdb_index with this TU. */
6352
6353 find_sig_entry.signature = sig;
6354 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6355 &find_sig_entry, INSERT);
6356 sig_entry = (struct signatured_type *) *slot;
6357
6358 /* We can get here with the TU already read, *or* in the process of being
6359 read. Don't reassign the global entry to point to this DWO if that's
6360 the case. Also note that if the TU is already being read, it may not
6361 have come from a DWO, the program may be a mix of Fission-compiled
6362 code and non-Fission-compiled code. */
6363
6364 /* Have we already tried to read this TU?
6365 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6366 needn't exist in the global table yet). */
6367 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6368 return sig_entry;
6369
6370 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6371 dwo_unit of the TU itself. */
6372 dwo_file = cu->dwo_unit->dwo_file;
6373
6374 /* Ok, this is the first time we're reading this TU. */
6375 if (dwo_file->tus == NULL)
6376 return NULL;
6377 find_dwo_entry.signature = sig;
6378 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6379 &find_dwo_entry);
6380 if (dwo_entry == NULL)
6381 return NULL;
6382
6383 /* If the global table doesn't have an entry for this TU, add one. */
6384 if (sig_entry == NULL)
6385 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6386
6387 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6388 sig_entry->per_cu.tu_read = 1;
6389 return sig_entry;
6390}
6391
6392/* Subroutine of lookup_signatured_type.
6393 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6394 then try the DWP file. If the TU stub (skeleton) has been removed then
6395 it won't be in .gdb_index. */
6396
6397static struct signatured_type *
6398lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6399{
6400 struct dwarf2_per_objfile *dwarf2_per_objfile
6401 = cu->per_cu->dwarf2_per_objfile;
6402 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6403 struct dwo_unit *dwo_entry;
6404 struct signatured_type find_sig_entry, *sig_entry;
6405 void **slot;
6406
6407 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6408 gdb_assert (dwp_file != NULL);
6409
6410 /* If TU skeletons have been removed then we may not have read in any
6411 TUs yet. */
6412 if (dwarf2_per_objfile->signatured_types == NULL)
6413 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6414
6415 find_sig_entry.signature = sig;
6416 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6417 &find_sig_entry, INSERT);
6418 sig_entry = (struct signatured_type *) *slot;
6419
6420 /* Have we already tried to read this TU?
6421 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6422 needn't exist in the global table yet). */
6423 if (sig_entry != NULL)
6424 return sig_entry;
6425
6426 if (dwp_file->tus == NULL)
6427 return NULL;
6428 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6429 sig, 1 /* is_debug_types */);
6430 if (dwo_entry == NULL)
6431 return NULL;
6432
6433 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6434 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6435
6436 return sig_entry;
6437}
6438
6439/* Lookup a signature based type for DW_FORM_ref_sig8.
6440 Returns NULL if signature SIG is not present in the table.
6441 It is up to the caller to complain about this. */
6442
6443static struct signatured_type *
6444lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6445{
6446 struct dwarf2_per_objfile *dwarf2_per_objfile
6447 = cu->per_cu->dwarf2_per_objfile;
6448
6449 if (cu->dwo_unit
6450 && dwarf2_per_objfile->using_index)
6451 {
6452 /* We're in a DWO/DWP file, and we're using .gdb_index.
6453 These cases require special processing. */
6454 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6455 return lookup_dwo_signatured_type (cu, sig);
6456 else
6457 return lookup_dwp_signatured_type (cu, sig);
6458 }
6459 else
6460 {
6461 struct signatured_type find_entry, *entry;
6462
6463 if (dwarf2_per_objfile->signatured_types == NULL)
6464 return NULL;
6465 find_entry.signature = sig;
6466 entry = ((struct signatured_type *)
6467 htab_find (dwarf2_per_objfile->signatured_types.get (),
6468 &find_entry));
6469 return entry;
6470 }
6471}
6472
6473/* Return the address base of the compile unit, which, if exists, is stored
6474 either at the attribute DW_AT_GNU_addr_base, or DW_AT_addr_base. */
6475static gdb::optional<ULONGEST>
6476lookup_addr_base (struct die_info *comp_unit_die)
6477{
6478 struct attribute *attr;
6479 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_addr_base);
6480 if (attr == nullptr)
6481 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_addr_base);
6482 if (attr == nullptr)
6483 return gdb::optional<ULONGEST> ();
6484 return DW_UNSND (attr);
6485}
6486
6487/* Return range lists base of the compile unit, which, if exists, is stored
6488 either at the attribute DW_AT_rnglists_base or DW_AT_GNU_ranges_base. */
6489static ULONGEST
6490lookup_ranges_base (struct die_info *comp_unit_die)
6491{
6492 struct attribute *attr;
6493 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_rnglists_base);
6494 if (attr == nullptr)
6495 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_ranges_base);
6496 if (attr == nullptr)
6497 return 0;
6498 return DW_UNSND (attr);
6499}
6500
6501/* Low level DIE reading support. */
6502
6503/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6504
6505static void
6506init_cu_die_reader (struct die_reader_specs *reader,
6507 struct dwarf2_cu *cu,
6508 struct dwarf2_section_info *section,
6509 struct dwo_file *dwo_file,
6510 struct abbrev_table *abbrev_table)
6511{
6512 gdb_assert (section->readin && section->buffer != NULL);
6513 reader->abfd = section->get_bfd_owner ();
6514 reader->cu = cu;
6515 reader->dwo_file = dwo_file;
6516 reader->die_section = section;
6517 reader->buffer = section->buffer;
6518 reader->buffer_end = section->buffer + section->size;
6519 reader->abbrev_table = abbrev_table;
6520}
6521
6522/* Subroutine of cutu_reader to simplify it.
6523 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6524 There's just a lot of work to do, and cutu_reader is big enough
6525 already.
6526
6527 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6528 from it to the DIE in the DWO. If NULL we are skipping the stub.
6529 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6530 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6531 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6532 STUB_COMP_DIR may be non-NULL.
6533 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6534 are filled in with the info of the DIE from the DWO file.
6535 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6536 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6537 kept around for at least as long as *RESULT_READER.
6538
6539 The result is non-zero if a valid (non-dummy) DIE was found. */
6540
6541static int
6542read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6543 struct dwo_unit *dwo_unit,
6544 struct die_info *stub_comp_unit_die,
6545 const char *stub_comp_dir,
6546 struct die_reader_specs *result_reader,
6547 const gdb_byte **result_info_ptr,
6548 struct die_info **result_comp_unit_die,
6549 abbrev_table_up *result_dwo_abbrev_table)
6550{
6551 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6552 struct objfile *objfile = dwarf2_per_objfile->objfile;
6553 struct dwarf2_cu *cu = this_cu->cu;
6554 bfd *abfd;
6555 const gdb_byte *begin_info_ptr, *info_ptr;
6556 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6557 int i,num_extra_attrs;
6558 struct dwarf2_section_info *dwo_abbrev_section;
6559 struct die_info *comp_unit_die;
6560
6561 /* At most one of these may be provided. */
6562 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6563
6564 /* These attributes aren't processed until later:
6565 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6566 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6567 referenced later. However, these attributes are found in the stub
6568 which we won't have later. In order to not impose this complication
6569 on the rest of the code, we read them here and copy them to the
6570 DWO CU/TU die. */
6571
6572 stmt_list = NULL;
6573 low_pc = NULL;
6574 high_pc = NULL;
6575 ranges = NULL;
6576 comp_dir = NULL;
6577
6578 if (stub_comp_unit_die != NULL)
6579 {
6580 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6581 DWO file. */
6582 if (! this_cu->is_debug_types)
6583 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6584 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6585 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6586 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6587 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6588
6589 cu->addr_base = lookup_addr_base (stub_comp_unit_die);
6590
6591 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6592 here (if needed). We need the value before we can process
6593 DW_AT_ranges. */
6594 cu->ranges_base = lookup_ranges_base (stub_comp_unit_die);
6595 }
6596 else if (stub_comp_dir != NULL)
6597 {
6598 /* Reconstruct the comp_dir attribute to simplify the code below. */
6599 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6600 comp_dir->name = DW_AT_comp_dir;
6601 comp_dir->form = DW_FORM_string;
6602 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6603 DW_STRING (comp_dir) = stub_comp_dir;
6604 }
6605
6606 /* Set up for reading the DWO CU/TU. */
6607 cu->dwo_unit = dwo_unit;
6608 dwarf2_section_info *section = dwo_unit->section;
6609 section->read (objfile);
6610 abfd = section->get_bfd_owner ();
6611 begin_info_ptr = info_ptr = (section->buffer
6612 + to_underlying (dwo_unit->sect_off));
6613 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6614
6615 if (this_cu->is_debug_types)
6616 {
6617 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6618
6619 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6620 &cu->header, section,
6621 dwo_abbrev_section,
6622 info_ptr, rcuh_kind::TYPE);
6623 /* This is not an assert because it can be caused by bad debug info. */
6624 if (sig_type->signature != cu->header.signature)
6625 {
6626 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6627 " TU at offset %s [in module %s]"),
6628 hex_string (sig_type->signature),
6629 hex_string (cu->header.signature),
6630 sect_offset_str (dwo_unit->sect_off),
6631 bfd_get_filename (abfd));
6632 }
6633 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6634 /* For DWOs coming from DWP files, we don't know the CU length
6635 nor the type's offset in the TU until now. */
6636 dwo_unit->length = cu->header.get_length ();
6637 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6638
6639 /* Establish the type offset that can be used to lookup the type.
6640 For DWO files, we don't know it until now. */
6641 sig_type->type_offset_in_section
6642 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6643 }
6644 else
6645 {
6646 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6647 &cu->header, section,
6648 dwo_abbrev_section,
6649 info_ptr, rcuh_kind::COMPILE);
6650 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6651 /* For DWOs coming from DWP files, we don't know the CU length
6652 until now. */
6653 dwo_unit->length = cu->header.get_length ();
6654 }
6655
6656 *result_dwo_abbrev_table
6657 = abbrev_table::read (objfile, dwo_abbrev_section,
6658 cu->header.abbrev_sect_off);
6659 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6660 result_dwo_abbrev_table->get ());
6661
6662 /* Read in the die, but leave space to copy over the attributes
6663 from the stub. This has the benefit of simplifying the rest of
6664 the code - all the work to maintain the illusion of a single
6665 DW_TAG_{compile,type}_unit DIE is done here. */
6666 num_extra_attrs = ((stmt_list != NULL)
6667 + (low_pc != NULL)
6668 + (high_pc != NULL)
6669 + (ranges != NULL)
6670 + (comp_dir != NULL));
6671 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6672 num_extra_attrs);
6673
6674 /* Copy over the attributes from the stub to the DIE we just read in. */
6675 comp_unit_die = *result_comp_unit_die;
6676 i = comp_unit_die->num_attrs;
6677 if (stmt_list != NULL)
6678 comp_unit_die->attrs[i++] = *stmt_list;
6679 if (low_pc != NULL)
6680 comp_unit_die->attrs[i++] = *low_pc;
6681 if (high_pc != NULL)
6682 comp_unit_die->attrs[i++] = *high_pc;
6683 if (ranges != NULL)
6684 comp_unit_die->attrs[i++] = *ranges;
6685 if (comp_dir != NULL)
6686 comp_unit_die->attrs[i++] = *comp_dir;
6687 comp_unit_die->num_attrs += num_extra_attrs;
6688
6689 if (dwarf_die_debug)
6690 {
6691 fprintf_unfiltered (gdb_stdlog,
6692 "Read die from %s@0x%x of %s:\n",
6693 section->get_name (),
6694 (unsigned) (begin_info_ptr - section->buffer),
6695 bfd_get_filename (abfd));
6696 dump_die (comp_unit_die, dwarf_die_debug);
6697 }
6698
6699 /* Skip dummy compilation units. */
6700 if (info_ptr >= begin_info_ptr + dwo_unit->length
6701 || peek_abbrev_code (abfd, info_ptr) == 0)
6702 return 0;
6703
6704 *result_info_ptr = info_ptr;
6705 return 1;
6706}
6707
6708/* Return the signature of the compile unit, if found. In DWARF 4 and before,
6709 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6710 signature is part of the header. */
6711static gdb::optional<ULONGEST>
6712lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6713{
6714 if (cu->header.version >= 5)
6715 return cu->header.signature;
6716 struct attribute *attr;
6717 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6718 if (attr == nullptr)
6719 return gdb::optional<ULONGEST> ();
6720 return DW_UNSND (attr);
6721}
6722
6723/* Subroutine of cutu_reader to simplify it.
6724 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6725 Returns NULL if the specified DWO unit cannot be found. */
6726
6727static struct dwo_unit *
6728lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6729 struct die_info *comp_unit_die,
6730 const char *dwo_name)
6731{
6732 struct dwarf2_cu *cu = this_cu->cu;
6733 struct dwo_unit *dwo_unit;
6734 const char *comp_dir;
6735
6736 gdb_assert (cu != NULL);
6737
6738 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6739 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6740 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6741
6742 if (this_cu->is_debug_types)
6743 {
6744 struct signatured_type *sig_type;
6745
6746 /* Since this_cu is the first member of struct signatured_type,
6747 we can go from a pointer to one to a pointer to the other. */
6748 sig_type = (struct signatured_type *) this_cu;
6749 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6750 }
6751 else
6752 {
6753 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6754 if (!signature.has_value ())
6755 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6756 " [in module %s]"),
6757 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
6758 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6759 *signature);
6760 }
6761
6762 return dwo_unit;
6763}
6764
6765/* Subroutine of cutu_reader to simplify it.
6766 See it for a description of the parameters.
6767 Read a TU directly from a DWO file, bypassing the stub. */
6768
6769void
6770cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6771 int use_existing_cu)
6772{
6773 struct signatured_type *sig_type;
6774 struct die_reader_specs reader;
6775
6776 /* Verify we can do the following downcast, and that we have the
6777 data we need. */
6778 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6779 sig_type = (struct signatured_type *) this_cu;
6780 gdb_assert (sig_type->dwo_unit != NULL);
6781
6782 if (use_existing_cu && this_cu->cu != NULL)
6783 {
6784 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6785 /* There's no need to do the rereading_dwo_cu handling that
6786 cutu_reader does since we don't read the stub. */
6787 }
6788 else
6789 {
6790 /* If !use_existing_cu, this_cu->cu must be NULL. */
6791 gdb_assert (this_cu->cu == NULL);
6792 m_new_cu.reset (new dwarf2_cu (this_cu));
6793 }
6794
6795 /* A future optimization, if needed, would be to use an existing
6796 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6797 could share abbrev tables. */
6798
6799 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6800 NULL /* stub_comp_unit_die */,
6801 sig_type->dwo_unit->dwo_file->comp_dir,
6802 &reader, &info_ptr,
6803 &comp_unit_die,
6804 &m_dwo_abbrev_table) == 0)
6805 {
6806 /* Dummy die. */
6807 dummy_p = true;
6808 }
6809}
6810
6811/* Initialize a CU (or TU) and read its DIEs.
6812 If the CU defers to a DWO file, read the DWO file as well.
6813
6814 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6815 Otherwise the table specified in the comp unit header is read in and used.
6816 This is an optimization for when we already have the abbrev table.
6817
6818 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6819 Otherwise, a new CU is allocated with xmalloc. */
6820
6821cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
6822 struct abbrev_table *abbrev_table,
6823 int use_existing_cu,
6824 bool skip_partial)
6825 : die_reader_specs {},
6826 m_this_cu (this_cu)
6827{
6828 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6829 struct objfile *objfile = dwarf2_per_objfile->objfile;
6830 struct dwarf2_section_info *section = this_cu->section;
6831 bfd *abfd = section->get_bfd_owner ();
6832 struct dwarf2_cu *cu;
6833 const gdb_byte *begin_info_ptr;
6834 struct signatured_type *sig_type = NULL;
6835 struct dwarf2_section_info *abbrev_section;
6836 /* Non-zero if CU currently points to a DWO file and we need to
6837 reread it. When this happens we need to reread the skeleton die
6838 before we can reread the DWO file (this only applies to CUs, not TUs). */
6839 int rereading_dwo_cu = 0;
6840
6841 if (dwarf_die_debug)
6842 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6843 this_cu->is_debug_types ? "type" : "comp",
6844 sect_offset_str (this_cu->sect_off));
6845
6846 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6847 file (instead of going through the stub), short-circuit all of this. */
6848 if (this_cu->reading_dwo_directly)
6849 {
6850 /* Narrow down the scope of possibilities to have to understand. */
6851 gdb_assert (this_cu->is_debug_types);
6852 gdb_assert (abbrev_table == NULL);
6853 init_tu_and_read_dwo_dies (this_cu, use_existing_cu);
6854 return;
6855 }
6856
6857 /* This is cheap if the section is already read in. */
6858 section->read (objfile);
6859
6860 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6861
6862 abbrev_section = get_abbrev_section_for_cu (this_cu);
6863
6864 if (use_existing_cu && this_cu->cu != NULL)
6865 {
6866 cu = this_cu->cu;
6867 /* If this CU is from a DWO file we need to start over, we need to
6868 refetch the attributes from the skeleton CU.
6869 This could be optimized by retrieving those attributes from when we
6870 were here the first time: the previous comp_unit_die was stored in
6871 comp_unit_obstack. But there's no data yet that we need this
6872 optimization. */
6873 if (cu->dwo_unit != NULL)
6874 rereading_dwo_cu = 1;
6875 }
6876 else
6877 {
6878 /* If !use_existing_cu, this_cu->cu must be NULL. */
6879 gdb_assert (this_cu->cu == NULL);
6880 m_new_cu.reset (new dwarf2_cu (this_cu));
6881 cu = m_new_cu.get ();
6882 }
6883
6884 /* Get the header. */
6885 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6886 {
6887 /* We already have the header, there's no need to read it in again. */
6888 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6889 }
6890 else
6891 {
6892 if (this_cu->is_debug_types)
6893 {
6894 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6895 &cu->header, section,
6896 abbrev_section, info_ptr,
6897 rcuh_kind::TYPE);
6898
6899 /* Since per_cu is the first member of struct signatured_type,
6900 we can go from a pointer to one to a pointer to the other. */
6901 sig_type = (struct signatured_type *) this_cu;
6902 gdb_assert (sig_type->signature == cu->header.signature);
6903 gdb_assert (sig_type->type_offset_in_tu
6904 == cu->header.type_cu_offset_in_tu);
6905 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6906
6907 /* LENGTH has not been set yet for type units if we're
6908 using .gdb_index. */
6909 this_cu->length = cu->header.get_length ();
6910
6911 /* Establish the type offset that can be used to lookup the type. */
6912 sig_type->type_offset_in_section =
6913 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6914
6915 this_cu->dwarf_version = cu->header.version;
6916 }
6917 else
6918 {
6919 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6920 &cu->header, section,
6921 abbrev_section,
6922 info_ptr,
6923 rcuh_kind::COMPILE);
6924
6925 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6926 gdb_assert (this_cu->length == cu->header.get_length ());
6927 this_cu->dwarf_version = cu->header.version;
6928 }
6929 }
6930
6931 /* Skip dummy compilation units. */
6932 if (info_ptr >= begin_info_ptr + this_cu->length
6933 || peek_abbrev_code (abfd, info_ptr) == 0)
6934 {
6935 dummy_p = true;
6936 return;
6937 }
6938
6939 /* If we don't have them yet, read the abbrevs for this compilation unit.
6940 And if we need to read them now, make sure they're freed when we're
6941 done. */
6942 if (abbrev_table != NULL)
6943 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6944 else
6945 {
6946 m_abbrev_table_holder
6947 = abbrev_table::read (objfile, abbrev_section,
6948 cu->header.abbrev_sect_off);
6949 abbrev_table = m_abbrev_table_holder.get ();
6950 }
6951
6952 /* Read the top level CU/TU die. */
6953 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
6954 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6955
6956 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
6957 {
6958 dummy_p = true;
6959 return;
6960 }
6961
6962 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6963 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
6964 table from the DWO file and pass the ownership over to us. It will be
6965 referenced from READER, so we must make sure to free it after we're done
6966 with READER.
6967
6968 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6969 DWO CU, that this test will fail (the attribute will not be present). */
6970 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6971 if (dwo_name != nullptr)
6972 {
6973 struct dwo_unit *dwo_unit;
6974 struct die_info *dwo_comp_unit_die;
6975
6976 if (comp_unit_die->has_children)
6977 {
6978 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
6979 " has children (offset %s) [in module %s]"),
6980 sect_offset_str (this_cu->sect_off),
6981 bfd_get_filename (abfd));
6982 }
6983 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
6984 if (dwo_unit != NULL)
6985 {
6986 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6987 comp_unit_die, NULL,
6988 this, &info_ptr,
6989 &dwo_comp_unit_die,
6990 &m_dwo_abbrev_table) == 0)
6991 {
6992 /* Dummy die. */
6993 dummy_p = true;
6994 return;
6995 }
6996 comp_unit_die = dwo_comp_unit_die;
6997 }
6998 else
6999 {
7000 /* Yikes, we couldn't find the rest of the DIE, we only have
7001 the stub. A complaint has already been logged. There's
7002 not much more we can do except pass on the stub DIE to
7003 die_reader_func. We don't want to throw an error on bad
7004 debug info. */
7005 }
7006 }
7007}
7008
7009void
7010cutu_reader::keep ()
7011{
7012 /* Done, clean up. */
7013 gdb_assert (!dummy_p);
7014 if (m_new_cu != NULL)
7015 {
7016 struct dwarf2_per_objfile *dwarf2_per_objfile
7017 = m_this_cu->dwarf2_per_objfile;
7018 /* Link this CU into read_in_chain. */
7019 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7020 dwarf2_per_objfile->read_in_chain = m_this_cu;
7021 /* The chain owns it now. */
7022 m_new_cu.release ();
7023 }
7024}
7025
7026/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7027 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7028 assumed to have already done the lookup to find the DWO file).
7029
7030 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7031 THIS_CU->is_debug_types, but nothing else.
7032
7033 We fill in THIS_CU->length.
7034
7035 THIS_CU->cu is always freed when done.
7036 This is done in order to not leave THIS_CU->cu in a state where we have
7037 to care whether it refers to the "main" CU or the DWO CU.
7038
7039 When parent_cu is passed, it is used to provide a default value for
7040 str_offsets_base and addr_base from the parent. */
7041
7042cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7043 struct dwarf2_cu *parent_cu,
7044 struct dwo_file *dwo_file)
7045 : die_reader_specs {},
7046 m_this_cu (this_cu)
7047{
7048 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7049 struct objfile *objfile = dwarf2_per_objfile->objfile;
7050 struct dwarf2_section_info *section = this_cu->section;
7051 bfd *abfd = section->get_bfd_owner ();
7052 struct dwarf2_section_info *abbrev_section;
7053 const gdb_byte *begin_info_ptr, *info_ptr;
7054
7055 if (dwarf_die_debug)
7056 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7057 this_cu->is_debug_types ? "type" : "comp",
7058 sect_offset_str (this_cu->sect_off));
7059
7060 gdb_assert (this_cu->cu == NULL);
7061
7062 abbrev_section = (dwo_file != NULL
7063 ? &dwo_file->sections.abbrev
7064 : get_abbrev_section_for_cu (this_cu));
7065
7066 /* This is cheap if the section is already read in. */
7067 section->read (objfile);
7068
7069 m_new_cu.reset (new dwarf2_cu (this_cu));
7070
7071 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7072 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7073 &m_new_cu->header, section,
7074 abbrev_section, info_ptr,
7075 (this_cu->is_debug_types
7076 ? rcuh_kind::TYPE
7077 : rcuh_kind::COMPILE));
7078
7079 if (parent_cu != nullptr)
7080 {
7081 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7082 m_new_cu->addr_base = parent_cu->addr_base;
7083 }
7084 this_cu->length = m_new_cu->header.get_length ();
7085
7086 /* Skip dummy compilation units. */
7087 if (info_ptr >= begin_info_ptr + this_cu->length
7088 || peek_abbrev_code (abfd, info_ptr) == 0)
7089 {
7090 dummy_p = true;
7091 return;
7092 }
7093
7094 m_abbrev_table_holder
7095 = abbrev_table::read (objfile, abbrev_section,
7096 m_new_cu->header.abbrev_sect_off);
7097
7098 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7099 m_abbrev_table_holder.get ());
7100 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7101}
7102
7103\f
7104/* Type Unit Groups.
7105
7106 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7107 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7108 so that all types coming from the same compilation (.o file) are grouped
7109 together. A future step could be to put the types in the same symtab as
7110 the CU the types ultimately came from. */
7111
7112static hashval_t
7113hash_type_unit_group (const void *item)
7114{
7115 const struct type_unit_group *tu_group
7116 = (const struct type_unit_group *) item;
7117
7118 return hash_stmt_list_entry (&tu_group->hash);
7119}
7120
7121static int
7122eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7123{
7124 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7125 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7126
7127 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7128}
7129
7130/* Allocate a hash table for type unit groups. */
7131
7132static htab_up
7133allocate_type_unit_groups_table ()
7134{
7135 return htab_up (htab_create_alloc (3,
7136 hash_type_unit_group,
7137 eq_type_unit_group,
7138 NULL, xcalloc, xfree));
7139}
7140
7141/* Type units that don't have DW_AT_stmt_list are grouped into their own
7142 partial symtabs. We combine several TUs per psymtab to not let the size
7143 of any one psymtab grow too big. */
7144#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7145#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7146
7147/* Helper routine for get_type_unit_group.
7148 Create the type_unit_group object used to hold one or more TUs. */
7149
7150static struct type_unit_group *
7151create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7152{
7153 struct dwarf2_per_objfile *dwarf2_per_objfile
7154 = cu->per_cu->dwarf2_per_objfile;
7155 struct objfile *objfile = dwarf2_per_objfile->objfile;
7156 struct dwarf2_per_cu_data *per_cu;
7157 struct type_unit_group *tu_group;
7158
7159 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7160 struct type_unit_group);
7161 per_cu = &tu_group->per_cu;
7162 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7163
7164 if (dwarf2_per_objfile->using_index)
7165 {
7166 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7167 struct dwarf2_per_cu_quick_data);
7168 }
7169 else
7170 {
7171 unsigned int line_offset = to_underlying (line_offset_struct);
7172 dwarf2_psymtab *pst;
7173 std::string name;
7174
7175 /* Give the symtab a useful name for debug purposes. */
7176 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7177 name = string_printf ("<type_units_%d>",
7178 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7179 else
7180 name = string_printf ("<type_units_at_0x%x>", line_offset);
7181
7182 pst = create_partial_symtab (per_cu, name.c_str ());
7183 pst->anonymous = true;
7184 }
7185
7186 tu_group->hash.dwo_unit = cu->dwo_unit;
7187 tu_group->hash.line_sect_off = line_offset_struct;
7188
7189 return tu_group;
7190}
7191
7192/* Look up the type_unit_group for type unit CU, and create it if necessary.
7193 STMT_LIST is a DW_AT_stmt_list attribute. */
7194
7195static struct type_unit_group *
7196get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7197{
7198 struct dwarf2_per_objfile *dwarf2_per_objfile
7199 = cu->per_cu->dwarf2_per_objfile;
7200 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7201 struct type_unit_group *tu_group;
7202 void **slot;
7203 unsigned int line_offset;
7204 struct type_unit_group type_unit_group_for_lookup;
7205
7206 if (dwarf2_per_objfile->type_unit_groups == NULL)
7207 dwarf2_per_objfile->type_unit_groups = allocate_type_unit_groups_table ();
7208
7209 /* Do we need to create a new group, or can we use an existing one? */
7210
7211 if (stmt_list)
7212 {
7213 line_offset = DW_UNSND (stmt_list);
7214 ++tu_stats->nr_symtab_sharers;
7215 }
7216 else
7217 {
7218 /* Ugh, no stmt_list. Rare, but we have to handle it.
7219 We can do various things here like create one group per TU or
7220 spread them over multiple groups to split up the expansion work.
7221 To avoid worst case scenarios (too many groups or too large groups)
7222 we, umm, group them in bunches. */
7223 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7224 | (tu_stats->nr_stmt_less_type_units
7225 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7226 ++tu_stats->nr_stmt_less_type_units;
7227 }
7228
7229 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7230 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7231 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7232 &type_unit_group_for_lookup, INSERT);
7233 if (*slot != NULL)
7234 {
7235 tu_group = (struct type_unit_group *) *slot;
7236 gdb_assert (tu_group != NULL);
7237 }
7238 else
7239 {
7240 sect_offset line_offset_struct = (sect_offset) line_offset;
7241 tu_group = create_type_unit_group (cu, line_offset_struct);
7242 *slot = tu_group;
7243 ++tu_stats->nr_symtabs;
7244 }
7245
7246 return tu_group;
7247}
7248\f
7249/* Partial symbol tables. */
7250
7251/* Create a psymtab named NAME and assign it to PER_CU.
7252
7253 The caller must fill in the following details:
7254 dirname, textlow, texthigh. */
7255
7256static dwarf2_psymtab *
7257create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7258{
7259 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7260 dwarf2_psymtab *pst;
7261
7262 pst = new dwarf2_psymtab (name, objfile, 0);
7263
7264 pst->psymtabs_addrmap_supported = true;
7265
7266 /* This is the glue that links PST into GDB's symbol API. */
7267 pst->per_cu_data = per_cu;
7268 per_cu->v.psymtab = pst;
7269
7270 return pst;
7271}
7272
7273/* DIE reader function for process_psymtab_comp_unit. */
7274
7275static void
7276process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7277 const gdb_byte *info_ptr,
7278 struct die_info *comp_unit_die,
7279 enum language pretend_language)
7280{
7281 struct dwarf2_cu *cu = reader->cu;
7282 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7283 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7284 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7285 CORE_ADDR baseaddr;
7286 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7287 dwarf2_psymtab *pst;
7288 enum pc_bounds_kind cu_bounds_kind;
7289 const char *filename;
7290
7291 gdb_assert (! per_cu->is_debug_types);
7292
7293 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7294
7295 /* Allocate a new partial symbol table structure. */
7296 gdb::unique_xmalloc_ptr<char> debug_filename;
7297 static const char artificial[] = "<artificial>";
7298 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7299 if (filename == NULL)
7300 filename = "";
7301 else if (strcmp (filename, artificial) == 0)
7302 {
7303 debug_filename.reset (concat (artificial, "@",
7304 sect_offset_str (per_cu->sect_off),
7305 (char *) NULL));
7306 filename = debug_filename.get ();
7307 }
7308
7309 pst = create_partial_symtab (per_cu, filename);
7310
7311 /* This must be done before calling dwarf2_build_include_psymtabs. */
7312 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7313
7314 baseaddr = objfile->text_section_offset ();
7315
7316 dwarf2_find_base_address (comp_unit_die, cu);
7317
7318 /* Possibly set the default values of LOWPC and HIGHPC from
7319 `DW_AT_ranges'. */
7320 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7321 &best_highpc, cu, pst);
7322 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7323 {
7324 CORE_ADDR low
7325 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7326 - baseaddr);
7327 CORE_ADDR high
7328 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7329 - baseaddr - 1);
7330 /* Store the contiguous range if it is not empty; it can be
7331 empty for CUs with no code. */
7332 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7333 low, high, pst);
7334 }
7335
7336 /* Check if comp unit has_children.
7337 If so, read the rest of the partial symbols from this comp unit.
7338 If not, there's no more debug_info for this comp unit. */
7339 if (comp_unit_die->has_children)
7340 {
7341 struct partial_die_info *first_die;
7342 CORE_ADDR lowpc, highpc;
7343
7344 lowpc = ((CORE_ADDR) -1);
7345 highpc = ((CORE_ADDR) 0);
7346
7347 first_die = load_partial_dies (reader, info_ptr, 1);
7348
7349 scan_partial_symbols (first_die, &lowpc, &highpc,
7350 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7351
7352 /* If we didn't find a lowpc, set it to highpc to avoid
7353 complaints from `maint check'. */
7354 if (lowpc == ((CORE_ADDR) -1))
7355 lowpc = highpc;
7356
7357 /* If the compilation unit didn't have an explicit address range,
7358 then use the information extracted from its child dies. */
7359 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7360 {
7361 best_lowpc = lowpc;
7362 best_highpc = highpc;
7363 }
7364 }
7365 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7366 best_lowpc + baseaddr)
7367 - baseaddr);
7368 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7369 best_highpc + baseaddr)
7370 - baseaddr);
7371
7372 end_psymtab_common (objfile, pst);
7373
7374 if (!cu->per_cu->imported_symtabs_empty ())
7375 {
7376 int i;
7377 int len = cu->per_cu->imported_symtabs_size ();
7378
7379 /* Fill in 'dependencies' here; we fill in 'users' in a
7380 post-pass. */
7381 pst->number_of_dependencies = len;
7382 pst->dependencies
7383 = objfile->partial_symtabs->allocate_dependencies (len);
7384 for (i = 0; i < len; ++i)
7385 {
7386 pst->dependencies[i]
7387 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7388 }
7389
7390 cu->per_cu->imported_symtabs_free ();
7391 }
7392
7393 /* Get the list of files included in the current compilation unit,
7394 and build a psymtab for each of them. */
7395 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7396
7397 if (dwarf_read_debug)
7398 fprintf_unfiltered (gdb_stdlog,
7399 "Psymtab for %s unit @%s: %s - %s"
7400 ", %d global, %d static syms\n",
7401 per_cu->is_debug_types ? "type" : "comp",
7402 sect_offset_str (per_cu->sect_off),
7403 paddress (gdbarch, pst->text_low (objfile)),
7404 paddress (gdbarch, pst->text_high (objfile)),
7405 pst->n_global_syms, pst->n_static_syms);
7406}
7407
7408/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7409 Process compilation unit THIS_CU for a psymtab. */
7410
7411static void
7412process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7413 bool want_partial_unit,
7414 enum language pretend_language)
7415{
7416 /* If this compilation unit was already read in, free the
7417 cached copy in order to read it in again. This is
7418 necessary because we skipped some symbols when we first
7419 read in the compilation unit (see load_partial_dies).
7420 This problem could be avoided, but the benefit is unclear. */
7421 if (this_cu->cu != NULL)
7422 free_one_cached_comp_unit (this_cu);
7423
7424 cutu_reader reader (this_cu, NULL, 0, false);
7425
7426 if (reader.dummy_p)
7427 {
7428 /* Nothing. */
7429 }
7430 else if (this_cu->is_debug_types)
7431 build_type_psymtabs_reader (&reader, reader.info_ptr,
7432 reader.comp_unit_die);
7433 else if (want_partial_unit
7434 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7435 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7436 reader.comp_unit_die,
7437 pretend_language);
7438
7439 /* Age out any secondary CUs. */
7440 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7441}
7442
7443/* Reader function for build_type_psymtabs. */
7444
7445static void
7446build_type_psymtabs_reader (const struct die_reader_specs *reader,
7447 const gdb_byte *info_ptr,
7448 struct die_info *type_unit_die)
7449{
7450 struct dwarf2_per_objfile *dwarf2_per_objfile
7451 = reader->cu->per_cu->dwarf2_per_objfile;
7452 struct objfile *objfile = dwarf2_per_objfile->objfile;
7453 struct dwarf2_cu *cu = reader->cu;
7454 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7455 struct signatured_type *sig_type;
7456 struct type_unit_group *tu_group;
7457 struct attribute *attr;
7458 struct partial_die_info *first_die;
7459 CORE_ADDR lowpc, highpc;
7460 dwarf2_psymtab *pst;
7461
7462 gdb_assert (per_cu->is_debug_types);
7463 sig_type = (struct signatured_type *) per_cu;
7464
7465 if (! type_unit_die->has_children)
7466 return;
7467
7468 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
7469 tu_group = get_type_unit_group (cu, attr);
7470
7471 if (tu_group->tus == nullptr)
7472 tu_group->tus = new std::vector<signatured_type *>;
7473 tu_group->tus->push_back (sig_type);
7474
7475 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7476 pst = create_partial_symtab (per_cu, "");
7477 pst->anonymous = true;
7478
7479 first_die = load_partial_dies (reader, info_ptr, 1);
7480
7481 lowpc = (CORE_ADDR) -1;
7482 highpc = (CORE_ADDR) 0;
7483 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7484
7485 end_psymtab_common (objfile, pst);
7486}
7487
7488/* Struct used to sort TUs by their abbreviation table offset. */
7489
7490struct tu_abbrev_offset
7491{
7492 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7493 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7494 {}
7495
7496 signatured_type *sig_type;
7497 sect_offset abbrev_offset;
7498};
7499
7500/* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7501
7502static bool
7503sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7504 const struct tu_abbrev_offset &b)
7505{
7506 return a.abbrev_offset < b.abbrev_offset;
7507}
7508
7509/* Efficiently read all the type units.
7510 This does the bulk of the work for build_type_psymtabs.
7511
7512 The efficiency is because we sort TUs by the abbrev table they use and
7513 only read each abbrev table once. In one program there are 200K TUs
7514 sharing 8K abbrev tables.
7515
7516 The main purpose of this function is to support building the
7517 dwarf2_per_objfile->type_unit_groups table.
7518 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7519 can collapse the search space by grouping them by stmt_list.
7520 The savings can be significant, in the same program from above the 200K TUs
7521 share 8K stmt_list tables.
7522
7523 FUNC is expected to call get_type_unit_group, which will create the
7524 struct type_unit_group if necessary and add it to
7525 dwarf2_per_objfile->type_unit_groups. */
7526
7527static void
7528build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7529{
7530 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7531 abbrev_table_up abbrev_table;
7532 sect_offset abbrev_offset;
7533
7534 /* It's up to the caller to not call us multiple times. */
7535 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7536
7537 if (dwarf2_per_objfile->all_type_units.empty ())
7538 return;
7539
7540 /* TUs typically share abbrev tables, and there can be way more TUs than
7541 abbrev tables. Sort by abbrev table to reduce the number of times we
7542 read each abbrev table in.
7543 Alternatives are to punt or to maintain a cache of abbrev tables.
7544 This is simpler and efficient enough for now.
7545
7546 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7547 symtab to use). Typically TUs with the same abbrev offset have the same
7548 stmt_list value too so in practice this should work well.
7549
7550 The basic algorithm here is:
7551
7552 sort TUs by abbrev table
7553 for each TU with same abbrev table:
7554 read abbrev table if first user
7555 read TU top level DIE
7556 [IWBN if DWO skeletons had DW_AT_stmt_list]
7557 call FUNC */
7558
7559 if (dwarf_read_debug)
7560 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7561
7562 /* Sort in a separate table to maintain the order of all_type_units
7563 for .gdb_index: TU indices directly index all_type_units. */
7564 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7565 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7566
7567 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7568 sorted_by_abbrev.emplace_back
7569 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7570 sig_type->per_cu.section,
7571 sig_type->per_cu.sect_off));
7572
7573 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7574 sort_tu_by_abbrev_offset);
7575
7576 abbrev_offset = (sect_offset) ~(unsigned) 0;
7577
7578 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7579 {
7580 /* Switch to the next abbrev table if necessary. */
7581 if (abbrev_table == NULL
7582 || tu.abbrev_offset != abbrev_offset)
7583 {
7584 abbrev_offset = tu.abbrev_offset;
7585 abbrev_table =
7586 abbrev_table::read (dwarf2_per_objfile->objfile,
7587 &dwarf2_per_objfile->abbrev,
7588 abbrev_offset);
7589 ++tu_stats->nr_uniq_abbrev_tables;
7590 }
7591
7592 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7593 0, false);
7594 if (!reader.dummy_p)
7595 build_type_psymtabs_reader (&reader, reader.info_ptr,
7596 reader.comp_unit_die);
7597 }
7598}
7599
7600/* Print collected type unit statistics. */
7601
7602static void
7603print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7604{
7605 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7606
7607 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7608 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7609 dwarf2_per_objfile->all_type_units.size ());
7610 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7611 tu_stats->nr_uniq_abbrev_tables);
7612 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7613 tu_stats->nr_symtabs);
7614 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7615 tu_stats->nr_symtab_sharers);
7616 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7617 tu_stats->nr_stmt_less_type_units);
7618 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7619 tu_stats->nr_all_type_units_reallocs);
7620}
7621
7622/* Traversal function for build_type_psymtabs. */
7623
7624static int
7625build_type_psymtab_dependencies (void **slot, void *info)
7626{
7627 struct dwarf2_per_objfile *dwarf2_per_objfile
7628 = (struct dwarf2_per_objfile *) info;
7629 struct objfile *objfile = dwarf2_per_objfile->objfile;
7630 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7631 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7632 dwarf2_psymtab *pst = per_cu->v.psymtab;
7633 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7634 int i;
7635
7636 gdb_assert (len > 0);
7637 gdb_assert (per_cu->type_unit_group_p ());
7638
7639 pst->number_of_dependencies = len;
7640 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7641 for (i = 0; i < len; ++i)
7642 {
7643 struct signatured_type *iter = tu_group->tus->at (i);
7644 gdb_assert (iter->per_cu.is_debug_types);
7645 pst->dependencies[i] = iter->per_cu.v.psymtab;
7646 iter->type_unit_group = tu_group;
7647 }
7648
7649 delete tu_group->tus;
7650 tu_group->tus = nullptr;
7651
7652 return 1;
7653}
7654
7655/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7656 Build partial symbol tables for the .debug_types comp-units. */
7657
7658static void
7659build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
7660{
7661 if (! create_all_type_units (dwarf2_per_objfile))
7662 return;
7663
7664 build_type_psymtabs_1 (dwarf2_per_objfile);
7665}
7666
7667/* Traversal function for process_skeletonless_type_unit.
7668 Read a TU in a DWO file and build partial symbols for it. */
7669
7670static int
7671process_skeletonless_type_unit (void **slot, void *info)
7672{
7673 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7674 struct dwarf2_per_objfile *dwarf2_per_objfile
7675 = (struct dwarf2_per_objfile *) info;
7676 struct signatured_type find_entry, *entry;
7677
7678 /* If this TU doesn't exist in the global table, add it and read it in. */
7679
7680 if (dwarf2_per_objfile->signatured_types == NULL)
7681 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
7682
7683 find_entry.signature = dwo_unit->signature;
7684 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
7685 &find_entry, INSERT);
7686 /* If we've already seen this type there's nothing to do. What's happening
7687 is we're doing our own version of comdat-folding here. */
7688 if (*slot != NULL)
7689 return 1;
7690
7691 /* This does the job that create_all_type_units would have done for
7692 this TU. */
7693 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
7694 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
7695 *slot = entry;
7696
7697 /* This does the job that build_type_psymtabs_1 would have done. */
7698 cutu_reader reader (&entry->per_cu, NULL, 0, false);
7699 if (!reader.dummy_p)
7700 build_type_psymtabs_reader (&reader, reader.info_ptr,
7701 reader.comp_unit_die);
7702
7703 return 1;
7704}
7705
7706/* Traversal function for process_skeletonless_type_units. */
7707
7708static int
7709process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7710{
7711 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7712
7713 if (dwo_file->tus != NULL)
7714 htab_traverse_noresize (dwo_file->tus.get (),
7715 process_skeletonless_type_unit, info);
7716
7717 return 1;
7718}
7719
7720/* Scan all TUs of DWO files, verifying we've processed them.
7721 This is needed in case a TU was emitted without its skeleton.
7722 Note: This can't be done until we know what all the DWO files are. */
7723
7724static void
7725process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7726{
7727 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7728 if (get_dwp_file (dwarf2_per_objfile) == NULL
7729 && dwarf2_per_objfile->dwo_files != NULL)
7730 {
7731 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
7732 process_dwo_file_for_skeletonless_type_units,
7733 dwarf2_per_objfile);
7734 }
7735}
7736
7737/* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7738
7739static void
7740set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
7741{
7742 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7743 {
7744 dwarf2_psymtab *pst = per_cu->v.psymtab;
7745
7746 if (pst == NULL)
7747 continue;
7748
7749 for (int j = 0; j < pst->number_of_dependencies; ++j)
7750 {
7751 /* Set the 'user' field only if it is not already set. */
7752 if (pst->dependencies[j]->user == NULL)
7753 pst->dependencies[j]->user = pst;
7754 }
7755 }
7756}
7757
7758/* Build the partial symbol table by doing a quick pass through the
7759 .debug_info and .debug_abbrev sections. */
7760
7761static void
7762dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
7763{
7764 struct objfile *objfile = dwarf2_per_objfile->objfile;
7765
7766 if (dwarf_read_debug)
7767 {
7768 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7769 objfile_name (objfile));
7770 }
7771
7772 scoped_restore restore_reading_psyms
7773 = make_scoped_restore (&dwarf2_per_objfile->reading_partial_symbols,
7774 true);
7775
7776 dwarf2_per_objfile->info.read (objfile);
7777
7778 /* Any cached compilation units will be linked by the per-objfile
7779 read_in_chain. Make sure to free them when we're done. */
7780 free_cached_comp_units freer (dwarf2_per_objfile);
7781
7782 build_type_psymtabs (dwarf2_per_objfile);
7783
7784 create_all_comp_units (dwarf2_per_objfile);
7785
7786 /* Create a temporary address map on a temporary obstack. We later
7787 copy this to the final obstack. */
7788 auto_obstack temp_obstack;
7789
7790 scoped_restore save_psymtabs_addrmap
7791 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7792 addrmap_create_mutable (&temp_obstack));
7793
7794 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7795 process_psymtab_comp_unit (per_cu, false, language_minimal);
7796
7797 /* This has to wait until we read the CUs, we need the list of DWOs. */
7798 process_skeletonless_type_units (dwarf2_per_objfile);
7799
7800 /* Now that all TUs have been processed we can fill in the dependencies. */
7801 if (dwarf2_per_objfile->type_unit_groups != NULL)
7802 {
7803 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
7804 build_type_psymtab_dependencies, dwarf2_per_objfile);
7805 }
7806
7807 if (dwarf_read_debug)
7808 print_tu_stats (dwarf2_per_objfile);
7809
7810 set_partial_user (dwarf2_per_objfile);
7811
7812 objfile->partial_symtabs->psymtabs_addrmap
7813 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
7814 objfile->partial_symtabs->obstack ());
7815 /* At this point we want to keep the address map. */
7816 save_psymtabs_addrmap.release ();
7817
7818 if (dwarf_read_debug)
7819 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7820 objfile_name (objfile));
7821}
7822
7823/* Load the partial DIEs for a secondary CU into memory.
7824 This is also used when rereading a primary CU with load_all_dies. */
7825
7826static void
7827load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7828{
7829 cutu_reader reader (this_cu, NULL, 1, false);
7830
7831 if (!reader.dummy_p)
7832 {
7833 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7834 language_minimal);
7835
7836 /* Check if comp unit has_children.
7837 If so, read the rest of the partial symbols from this comp unit.
7838 If not, there's no more debug_info for this comp unit. */
7839 if (reader.comp_unit_die->has_children)
7840 load_partial_dies (&reader, reader.info_ptr, 0);
7841
7842 reader.keep ();
7843 }
7844}
7845
7846static void
7847read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
7848 struct dwarf2_section_info *section,
7849 struct dwarf2_section_info *abbrev_section,
7850 unsigned int is_dwz)
7851{
7852 const gdb_byte *info_ptr;
7853 struct objfile *objfile = dwarf2_per_objfile->objfile;
7854
7855 if (dwarf_read_debug)
7856 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7857 section->get_name (),
7858 section->get_file_name ());
7859
7860 section->read (objfile);
7861
7862 info_ptr = section->buffer;
7863
7864 while (info_ptr < section->buffer + section->size)
7865 {
7866 struct dwarf2_per_cu_data *this_cu;
7867
7868 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7869
7870 comp_unit_head cu_header;
7871 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
7872 abbrev_section, info_ptr,
7873 rcuh_kind::COMPILE);
7874
7875 /* Save the compilation unit for later lookup. */
7876 if (cu_header.unit_type != DW_UT_type)
7877 {
7878 this_cu = XOBNEW (&objfile->objfile_obstack,
7879 struct dwarf2_per_cu_data);
7880 memset (this_cu, 0, sizeof (*this_cu));
7881 }
7882 else
7883 {
7884 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7885 struct signatured_type);
7886 memset (sig_type, 0, sizeof (*sig_type));
7887 sig_type->signature = cu_header.signature;
7888 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7889 this_cu = &sig_type->per_cu;
7890 }
7891 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7892 this_cu->sect_off = sect_off;
7893 this_cu->length = cu_header.length + cu_header.initial_length_size;
7894 this_cu->is_dwz = is_dwz;
7895 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7896 this_cu->section = section;
7897
7898 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
7899
7900 info_ptr = info_ptr + this_cu->length;
7901 }
7902}
7903
7904/* Create a list of all compilation units in OBJFILE.
7905 This is only done for -readnow and building partial symtabs. */
7906
7907static void
7908create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7909{
7910 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
7911 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
7912 &dwarf2_per_objfile->abbrev, 0);
7913
7914 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
7915 if (dwz != NULL)
7916 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
7917 1);
7918}
7919
7920/* Process all loaded DIEs for compilation unit CU, starting at
7921 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7922 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7923 DW_AT_ranges). See the comments of add_partial_subprogram on how
7924 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7925
7926static void
7927scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7928 CORE_ADDR *highpc, int set_addrmap,
7929 struct dwarf2_cu *cu)
7930{
7931 struct partial_die_info *pdi;
7932
7933 /* Now, march along the PDI's, descending into ones which have
7934 interesting children but skipping the children of the other ones,
7935 until we reach the end of the compilation unit. */
7936
7937 pdi = first_die;
7938
7939 while (pdi != NULL)
7940 {
7941 pdi->fixup (cu);
7942
7943 /* Anonymous namespaces or modules have no name but have interesting
7944 children, so we need to look at them. Ditto for anonymous
7945 enums. */
7946
7947 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7948 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7949 || pdi->tag == DW_TAG_imported_unit
7950 || pdi->tag == DW_TAG_inlined_subroutine)
7951 {
7952 switch (pdi->tag)
7953 {
7954 case DW_TAG_subprogram:
7955 case DW_TAG_inlined_subroutine:
7956 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7957 break;
7958 case DW_TAG_constant:
7959 case DW_TAG_variable:
7960 case DW_TAG_typedef:
7961 case DW_TAG_union_type:
7962 if (!pdi->is_declaration)
7963 {
7964 add_partial_symbol (pdi, cu);
7965 }
7966 break;
7967 case DW_TAG_class_type:
7968 case DW_TAG_interface_type:
7969 case DW_TAG_structure_type:
7970 if (!pdi->is_declaration)
7971 {
7972 add_partial_symbol (pdi, cu);
7973 }
7974 if ((cu->language == language_rust
7975 || cu->language == language_cplus) && pdi->has_children)
7976 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7977 set_addrmap, cu);
7978 break;
7979 case DW_TAG_enumeration_type:
7980 if (!pdi->is_declaration)
7981 add_partial_enumeration (pdi, cu);
7982 break;
7983 case DW_TAG_base_type:
7984 case DW_TAG_subrange_type:
7985 /* File scope base type definitions are added to the partial
7986 symbol table. */
7987 add_partial_symbol (pdi, cu);
7988 break;
7989 case DW_TAG_namespace:
7990 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7991 break;
7992 case DW_TAG_module:
7993 if (!pdi->is_declaration)
7994 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7995 break;
7996 case DW_TAG_imported_unit:
7997 {
7998 struct dwarf2_per_cu_data *per_cu;
7999
8000 /* For now we don't handle imported units in type units. */
8001 if (cu->per_cu->is_debug_types)
8002 {
8003 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8004 " supported in type units [in module %s]"),
8005 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8006 }
8007
8008 per_cu = dwarf2_find_containing_comp_unit
8009 (pdi->d.sect_off, pdi->is_dwz,
8010 cu->per_cu->dwarf2_per_objfile);
8011
8012 /* Go read the partial unit, if needed. */
8013 if (per_cu->v.psymtab == NULL)
8014 process_psymtab_comp_unit (per_cu, true, cu->language);
8015
8016 cu->per_cu->imported_symtabs_push (per_cu);
8017 }
8018 break;
8019 case DW_TAG_imported_declaration:
8020 add_partial_symbol (pdi, cu);
8021 break;
8022 default:
8023 break;
8024 }
8025 }
8026
8027 /* If the die has a sibling, skip to the sibling. */
8028
8029 pdi = pdi->die_sibling;
8030 }
8031}
8032
8033/* Functions used to compute the fully scoped name of a partial DIE.
8034
8035 Normally, this is simple. For C++, the parent DIE's fully scoped
8036 name is concatenated with "::" and the partial DIE's name.
8037 Enumerators are an exception; they use the scope of their parent
8038 enumeration type, i.e. the name of the enumeration type is not
8039 prepended to the enumerator.
8040
8041 There are two complexities. One is DW_AT_specification; in this
8042 case "parent" means the parent of the target of the specification,
8043 instead of the direct parent of the DIE. The other is compilers
8044 which do not emit DW_TAG_namespace; in this case we try to guess
8045 the fully qualified name of structure types from their members'
8046 linkage names. This must be done using the DIE's children rather
8047 than the children of any DW_AT_specification target. We only need
8048 to do this for structures at the top level, i.e. if the target of
8049 any DW_AT_specification (if any; otherwise the DIE itself) does not
8050 have a parent. */
8051
8052/* Compute the scope prefix associated with PDI's parent, in
8053 compilation unit CU. The result will be allocated on CU's
8054 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8055 field. NULL is returned if no prefix is necessary. */
8056static const char *
8057partial_die_parent_scope (struct partial_die_info *pdi,
8058 struct dwarf2_cu *cu)
8059{
8060 const char *grandparent_scope;
8061 struct partial_die_info *parent, *real_pdi;
8062
8063 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8064 then this means the parent of the specification DIE. */
8065
8066 real_pdi = pdi;
8067 while (real_pdi->has_specification)
8068 {
8069 auto res = find_partial_die (real_pdi->spec_offset,
8070 real_pdi->spec_is_dwz, cu);
8071 real_pdi = res.pdi;
8072 cu = res.cu;
8073 }
8074
8075 parent = real_pdi->die_parent;
8076 if (parent == NULL)
8077 return NULL;
8078
8079 if (parent->scope_set)
8080 return parent->scope;
8081
8082 parent->fixup (cu);
8083
8084 grandparent_scope = partial_die_parent_scope (parent, cu);
8085
8086 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8087 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8088 Work around this problem here. */
8089 if (cu->language == language_cplus
8090 && parent->tag == DW_TAG_namespace
8091 && strcmp (parent->name, "::") == 0
8092 && grandparent_scope == NULL)
8093 {
8094 parent->scope = NULL;
8095 parent->scope_set = 1;
8096 return NULL;
8097 }
8098
8099 /* Nested subroutines in Fortran get a prefix. */
8100 if (pdi->tag == DW_TAG_enumerator)
8101 /* Enumerators should not get the name of the enumeration as a prefix. */
8102 parent->scope = grandparent_scope;
8103 else if (parent->tag == DW_TAG_namespace
8104 || parent->tag == DW_TAG_module
8105 || parent->tag == DW_TAG_structure_type
8106 || parent->tag == DW_TAG_class_type
8107 || parent->tag == DW_TAG_interface_type
8108 || parent->tag == DW_TAG_union_type
8109 || parent->tag == DW_TAG_enumeration_type
8110 || (cu->language == language_fortran
8111 && parent->tag == DW_TAG_subprogram
8112 && pdi->tag == DW_TAG_subprogram))
8113 {
8114 if (grandparent_scope == NULL)
8115 parent->scope = parent->name;
8116 else
8117 parent->scope = typename_concat (&cu->comp_unit_obstack,
8118 grandparent_scope,
8119 parent->name, 0, cu);
8120 }
8121 else
8122 {
8123 /* FIXME drow/2004-04-01: What should we be doing with
8124 function-local names? For partial symbols, we should probably be
8125 ignoring them. */
8126 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8127 dwarf_tag_name (parent->tag),
8128 sect_offset_str (pdi->sect_off));
8129 parent->scope = grandparent_scope;
8130 }
8131
8132 parent->scope_set = 1;
8133 return parent->scope;
8134}
8135
8136/* Return the fully scoped name associated with PDI, from compilation unit
8137 CU. The result will be allocated with malloc. */
8138
8139static gdb::unique_xmalloc_ptr<char>
8140partial_die_full_name (struct partial_die_info *pdi,
8141 struct dwarf2_cu *cu)
8142{
8143 const char *parent_scope;
8144
8145 /* If this is a template instantiation, we can not work out the
8146 template arguments from partial DIEs. So, unfortunately, we have
8147 to go through the full DIEs. At least any work we do building
8148 types here will be reused if full symbols are loaded later. */
8149 if (pdi->has_template_arguments)
8150 {
8151 pdi->fixup (cu);
8152
8153 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8154 {
8155 struct die_info *die;
8156 struct attribute attr;
8157 struct dwarf2_cu *ref_cu = cu;
8158
8159 /* DW_FORM_ref_addr is using section offset. */
8160 attr.name = (enum dwarf_attribute) 0;
8161 attr.form = DW_FORM_ref_addr;
8162 attr.u.unsnd = to_underlying (pdi->sect_off);
8163 die = follow_die_ref (NULL, &attr, &ref_cu);
8164
8165 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8166 }
8167 }
8168
8169 parent_scope = partial_die_parent_scope (pdi, cu);
8170 if (parent_scope == NULL)
8171 return NULL;
8172 else
8173 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8174 pdi->name, 0, cu));
8175}
8176
8177static void
8178add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8179{
8180 struct dwarf2_per_objfile *dwarf2_per_objfile
8181 = cu->per_cu->dwarf2_per_objfile;
8182 struct objfile *objfile = dwarf2_per_objfile->objfile;
8183 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8184 CORE_ADDR addr = 0;
8185 const char *actual_name = NULL;
8186 CORE_ADDR baseaddr;
8187
8188 baseaddr = objfile->text_section_offset ();
8189
8190 gdb::unique_xmalloc_ptr<char> built_actual_name
8191 = partial_die_full_name (pdi, cu);
8192 if (built_actual_name != NULL)
8193 actual_name = built_actual_name.get ();
8194
8195 if (actual_name == NULL)
8196 actual_name = pdi->name;
8197
8198 switch (pdi->tag)
8199 {
8200 case DW_TAG_inlined_subroutine:
8201 case DW_TAG_subprogram:
8202 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8203 - baseaddr);
8204 if (pdi->is_external
8205 || cu->language == language_ada
8206 || (cu->language == language_fortran
8207 && pdi->die_parent != NULL
8208 && pdi->die_parent->tag == DW_TAG_subprogram))
8209 {
8210 /* Normally, only "external" DIEs are part of the global scope.
8211 But in Ada and Fortran, we want to be able to access nested
8212 procedures globally. So all Ada and Fortran subprograms are
8213 stored in the global scope. */
8214 add_psymbol_to_list (actual_name,
8215 built_actual_name != NULL,
8216 VAR_DOMAIN, LOC_BLOCK,
8217 SECT_OFF_TEXT (objfile),
8218 psymbol_placement::GLOBAL,
8219 addr,
8220 cu->language, objfile);
8221 }
8222 else
8223 {
8224 add_psymbol_to_list (actual_name,
8225 built_actual_name != NULL,
8226 VAR_DOMAIN, LOC_BLOCK,
8227 SECT_OFF_TEXT (objfile),
8228 psymbol_placement::STATIC,
8229 addr, cu->language, objfile);
8230 }
8231
8232 if (pdi->main_subprogram && actual_name != NULL)
8233 set_objfile_main_name (objfile, actual_name, cu->language);
8234 break;
8235 case DW_TAG_constant:
8236 add_psymbol_to_list (actual_name,
8237 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8238 -1, (pdi->is_external
8239 ? psymbol_placement::GLOBAL
8240 : psymbol_placement::STATIC),
8241 0, cu->language, objfile);
8242 break;
8243 case DW_TAG_variable:
8244 if (pdi->d.locdesc)
8245 addr = decode_locdesc (pdi->d.locdesc, cu);
8246
8247 if (pdi->d.locdesc
8248 && addr == 0
8249 && !dwarf2_per_objfile->has_section_at_zero)
8250 {
8251 /* A global or static variable may also have been stripped
8252 out by the linker if unused, in which case its address
8253 will be nullified; do not add such variables into partial
8254 symbol table then. */
8255 }
8256 else if (pdi->is_external)
8257 {
8258 /* Global Variable.
8259 Don't enter into the minimal symbol tables as there is
8260 a minimal symbol table entry from the ELF symbols already.
8261 Enter into partial symbol table if it has a location
8262 descriptor or a type.
8263 If the location descriptor is missing, new_symbol will create
8264 a LOC_UNRESOLVED symbol, the address of the variable will then
8265 be determined from the minimal symbol table whenever the variable
8266 is referenced.
8267 The address for the partial symbol table entry is not
8268 used by GDB, but it comes in handy for debugging partial symbol
8269 table building. */
8270
8271 if (pdi->d.locdesc || pdi->has_type)
8272 add_psymbol_to_list (actual_name,
8273 built_actual_name != NULL,
8274 VAR_DOMAIN, LOC_STATIC,
8275 SECT_OFF_TEXT (objfile),
8276 psymbol_placement::GLOBAL,
8277 addr, cu->language, objfile);
8278 }
8279 else
8280 {
8281 int has_loc = pdi->d.locdesc != NULL;
8282
8283 /* Static Variable. Skip symbols whose value we cannot know (those
8284 without location descriptors or constant values). */
8285 if (!has_loc && !pdi->has_const_value)
8286 return;
8287
8288 add_psymbol_to_list (actual_name,
8289 built_actual_name != NULL,
8290 VAR_DOMAIN, LOC_STATIC,
8291 SECT_OFF_TEXT (objfile),
8292 psymbol_placement::STATIC,
8293 has_loc ? addr : 0,
8294 cu->language, objfile);
8295 }
8296 break;
8297 case DW_TAG_typedef:
8298 case DW_TAG_base_type:
8299 case DW_TAG_subrange_type:
8300 add_psymbol_to_list (actual_name,
8301 built_actual_name != NULL,
8302 VAR_DOMAIN, LOC_TYPEDEF, -1,
8303 psymbol_placement::STATIC,
8304 0, cu->language, objfile);
8305 break;
8306 case DW_TAG_imported_declaration:
8307 case DW_TAG_namespace:
8308 add_psymbol_to_list (actual_name,
8309 built_actual_name != NULL,
8310 VAR_DOMAIN, LOC_TYPEDEF, -1,
8311 psymbol_placement::GLOBAL,
8312 0, cu->language, objfile);
8313 break;
8314 case DW_TAG_module:
8315 /* With Fortran 77 there might be a "BLOCK DATA" module
8316 available without any name. If so, we skip the module as it
8317 doesn't bring any value. */
8318 if (actual_name != nullptr)
8319 add_psymbol_to_list (actual_name,
8320 built_actual_name != NULL,
8321 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8322 psymbol_placement::GLOBAL,
8323 0, cu->language, objfile);
8324 break;
8325 case DW_TAG_class_type:
8326 case DW_TAG_interface_type:
8327 case DW_TAG_structure_type:
8328 case DW_TAG_union_type:
8329 case DW_TAG_enumeration_type:
8330 /* Skip external references. The DWARF standard says in the section
8331 about "Structure, Union, and Class Type Entries": "An incomplete
8332 structure, union or class type is represented by a structure,
8333 union or class entry that does not have a byte size attribute
8334 and that has a DW_AT_declaration attribute." */
8335 if (!pdi->has_byte_size && pdi->is_declaration)
8336 return;
8337
8338 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8339 static vs. global. */
8340 add_psymbol_to_list (actual_name,
8341 built_actual_name != NULL,
8342 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8343 cu->language == language_cplus
8344 ? psymbol_placement::GLOBAL
8345 : psymbol_placement::STATIC,
8346 0, cu->language, objfile);
8347
8348 break;
8349 case DW_TAG_enumerator:
8350 add_psymbol_to_list (actual_name,
8351 built_actual_name != NULL,
8352 VAR_DOMAIN, LOC_CONST, -1,
8353 cu->language == language_cplus
8354 ? psymbol_placement::GLOBAL
8355 : psymbol_placement::STATIC,
8356 0, cu->language, objfile);
8357 break;
8358 default:
8359 break;
8360 }
8361}
8362
8363/* Read a partial die corresponding to a namespace; also, add a symbol
8364 corresponding to that namespace to the symbol table. NAMESPACE is
8365 the name of the enclosing namespace. */
8366
8367static void
8368add_partial_namespace (struct partial_die_info *pdi,
8369 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8370 int set_addrmap, struct dwarf2_cu *cu)
8371{
8372 /* Add a symbol for the namespace. */
8373
8374 add_partial_symbol (pdi, cu);
8375
8376 /* Now scan partial symbols in that namespace. */
8377
8378 if (pdi->has_children)
8379 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8380}
8381
8382/* Read a partial die corresponding to a Fortran module. */
8383
8384static void
8385add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8386 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8387{
8388 /* Add a symbol for the namespace. */
8389
8390 add_partial_symbol (pdi, cu);
8391
8392 /* Now scan partial symbols in that module. */
8393
8394 if (pdi->has_children)
8395 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8396}
8397
8398/* Read a partial die corresponding to a subprogram or an inlined
8399 subprogram and create a partial symbol for that subprogram.
8400 When the CU language allows it, this routine also defines a partial
8401 symbol for each nested subprogram that this subprogram contains.
8402 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8403 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8404
8405 PDI may also be a lexical block, in which case we simply search
8406 recursively for subprograms defined inside that lexical block.
8407 Again, this is only performed when the CU language allows this
8408 type of definitions. */
8409
8410static void
8411add_partial_subprogram (struct partial_die_info *pdi,
8412 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8413 int set_addrmap, struct dwarf2_cu *cu)
8414{
8415 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8416 {
8417 if (pdi->has_pc_info)
8418 {
8419 if (pdi->lowpc < *lowpc)
8420 *lowpc = pdi->lowpc;
8421 if (pdi->highpc > *highpc)
8422 *highpc = pdi->highpc;
8423 if (set_addrmap)
8424 {
8425 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8426 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8427 CORE_ADDR baseaddr;
8428 CORE_ADDR this_highpc;
8429 CORE_ADDR this_lowpc;
8430
8431 baseaddr = objfile->text_section_offset ();
8432 this_lowpc
8433 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8434 pdi->lowpc + baseaddr)
8435 - baseaddr);
8436 this_highpc
8437 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8438 pdi->highpc + baseaddr)
8439 - baseaddr);
8440 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8441 this_lowpc, this_highpc - 1,
8442 cu->per_cu->v.psymtab);
8443 }
8444 }
8445
8446 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8447 {
8448 if (!pdi->is_declaration)
8449 /* Ignore subprogram DIEs that do not have a name, they are
8450 illegal. Do not emit a complaint at this point, we will
8451 do so when we convert this psymtab into a symtab. */
8452 if (pdi->name)
8453 add_partial_symbol (pdi, cu);
8454 }
8455 }
8456
8457 if (! pdi->has_children)
8458 return;
8459
8460 if (cu->language == language_ada || cu->language == language_fortran)
8461 {
8462 pdi = pdi->die_child;
8463 while (pdi != NULL)
8464 {
8465 pdi->fixup (cu);
8466 if (pdi->tag == DW_TAG_subprogram
8467 || pdi->tag == DW_TAG_inlined_subroutine
8468 || pdi->tag == DW_TAG_lexical_block)
8469 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8470 pdi = pdi->die_sibling;
8471 }
8472 }
8473}
8474
8475/* Read a partial die corresponding to an enumeration type. */
8476
8477static void
8478add_partial_enumeration (struct partial_die_info *enum_pdi,
8479 struct dwarf2_cu *cu)
8480{
8481 struct partial_die_info *pdi;
8482
8483 if (enum_pdi->name != NULL)
8484 add_partial_symbol (enum_pdi, cu);
8485
8486 pdi = enum_pdi->die_child;
8487 while (pdi)
8488 {
8489 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8490 complaint (_("malformed enumerator DIE ignored"));
8491 else
8492 add_partial_symbol (pdi, cu);
8493 pdi = pdi->die_sibling;
8494 }
8495}
8496
8497/* Return the initial uleb128 in the die at INFO_PTR. */
8498
8499static unsigned int
8500peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8501{
8502 unsigned int bytes_read;
8503
8504 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8505}
8506
8507/* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8508 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8509
8510 Return the corresponding abbrev, or NULL if the number is zero (indicating
8511 an empty DIE). In either case *BYTES_READ will be set to the length of
8512 the initial number. */
8513
8514static struct abbrev_info *
8515peek_die_abbrev (const die_reader_specs &reader,
8516 const gdb_byte *info_ptr, unsigned int *bytes_read)
8517{
8518 dwarf2_cu *cu = reader.cu;
8519 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8520 unsigned int abbrev_number
8521 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8522
8523 if (abbrev_number == 0)
8524 return NULL;
8525
8526 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8527 if (!abbrev)
8528 {
8529 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8530 " at offset %s [in module %s]"),
8531 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8532 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8533 }
8534
8535 return abbrev;
8536}
8537
8538/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8539 Returns a pointer to the end of a series of DIEs, terminated by an empty
8540 DIE. Any children of the skipped DIEs will also be skipped. */
8541
8542static const gdb_byte *
8543skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8544{
8545 while (1)
8546 {
8547 unsigned int bytes_read;
8548 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8549
8550 if (abbrev == NULL)
8551 return info_ptr + bytes_read;
8552 else
8553 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8554 }
8555}
8556
8557/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8558 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8559 abbrev corresponding to that skipped uleb128 should be passed in
8560 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8561 children. */
8562
8563static const gdb_byte *
8564skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8565 struct abbrev_info *abbrev)
8566{
8567 unsigned int bytes_read;
8568 struct attribute attr;
8569 bfd *abfd = reader->abfd;
8570 struct dwarf2_cu *cu = reader->cu;
8571 const gdb_byte *buffer = reader->buffer;
8572 const gdb_byte *buffer_end = reader->buffer_end;
8573 unsigned int form, i;
8574
8575 for (i = 0; i < abbrev->num_attrs; i++)
8576 {
8577 /* The only abbrev we care about is DW_AT_sibling. */
8578 if (abbrev->attrs[i].name == DW_AT_sibling)
8579 {
8580 bool ignored;
8581 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8582 &ignored);
8583 if (attr.form == DW_FORM_ref_addr)
8584 complaint (_("ignoring absolute DW_AT_sibling"));
8585 else
8586 {
8587 sect_offset off = dwarf2_get_ref_die_offset (&attr);
8588 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8589
8590 if (sibling_ptr < info_ptr)
8591 complaint (_("DW_AT_sibling points backwards"));
8592 else if (sibling_ptr > reader->buffer_end)
8593 dwarf2_section_buffer_overflow_complaint (reader->die_section);
8594 else
8595 return sibling_ptr;
8596 }
8597 }
8598
8599 /* If it isn't DW_AT_sibling, skip this attribute. */
8600 form = abbrev->attrs[i].form;
8601 skip_attribute:
8602 switch (form)
8603 {
8604 case DW_FORM_ref_addr:
8605 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8606 and later it is offset sized. */
8607 if (cu->header.version == 2)
8608 info_ptr += cu->header.addr_size;
8609 else
8610 info_ptr += cu->header.offset_size;
8611 break;
8612 case DW_FORM_GNU_ref_alt:
8613 info_ptr += cu->header.offset_size;
8614 break;
8615 case DW_FORM_addr:
8616 info_ptr += cu->header.addr_size;
8617 break;
8618 case DW_FORM_data1:
8619 case DW_FORM_ref1:
8620 case DW_FORM_flag:
8621 case DW_FORM_strx1:
8622 info_ptr += 1;
8623 break;
8624 case DW_FORM_flag_present:
8625 case DW_FORM_implicit_const:
8626 break;
8627 case DW_FORM_data2:
8628 case DW_FORM_ref2:
8629 case DW_FORM_strx2:
8630 info_ptr += 2;
8631 break;
8632 case DW_FORM_strx3:
8633 info_ptr += 3;
8634 break;
8635 case DW_FORM_data4:
8636 case DW_FORM_ref4:
8637 case DW_FORM_strx4:
8638 info_ptr += 4;
8639 break;
8640 case DW_FORM_data8:
8641 case DW_FORM_ref8:
8642 case DW_FORM_ref_sig8:
8643 info_ptr += 8;
8644 break;
8645 case DW_FORM_data16:
8646 info_ptr += 16;
8647 break;
8648 case DW_FORM_string:
8649 read_direct_string (abfd, info_ptr, &bytes_read);
8650 info_ptr += bytes_read;
8651 break;
8652 case DW_FORM_sec_offset:
8653 case DW_FORM_strp:
8654 case DW_FORM_GNU_strp_alt:
8655 info_ptr += cu->header.offset_size;
8656 break;
8657 case DW_FORM_exprloc:
8658 case DW_FORM_block:
8659 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8660 info_ptr += bytes_read;
8661 break;
8662 case DW_FORM_block1:
8663 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8664 break;
8665 case DW_FORM_block2:
8666 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8667 break;
8668 case DW_FORM_block4:
8669 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8670 break;
8671 case DW_FORM_addrx:
8672 case DW_FORM_strx:
8673 case DW_FORM_sdata:
8674 case DW_FORM_udata:
8675 case DW_FORM_ref_udata:
8676 case DW_FORM_GNU_addr_index:
8677 case DW_FORM_GNU_str_index:
8678 case DW_FORM_rnglistx:
8679 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8680 break;
8681 case DW_FORM_indirect:
8682 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8683 info_ptr += bytes_read;
8684 /* We need to continue parsing from here, so just go back to
8685 the top. */
8686 goto skip_attribute;
8687
8688 default:
8689 error (_("Dwarf Error: Cannot handle %s "
8690 "in DWARF reader [in module %s]"),
8691 dwarf_form_name (form),
8692 bfd_get_filename (abfd));
8693 }
8694 }
8695
8696 if (abbrev->has_children)
8697 return skip_children (reader, info_ptr);
8698 else
8699 return info_ptr;
8700}
8701
8702/* Locate ORIG_PDI's sibling.
8703 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8704
8705static const gdb_byte *
8706locate_pdi_sibling (const struct die_reader_specs *reader,
8707 struct partial_die_info *orig_pdi,
8708 const gdb_byte *info_ptr)
8709{
8710 /* Do we know the sibling already? */
8711
8712 if (orig_pdi->sibling)
8713 return orig_pdi->sibling;
8714
8715 /* Are there any children to deal with? */
8716
8717 if (!orig_pdi->has_children)
8718 return info_ptr;
8719
8720 /* Skip the children the long way. */
8721
8722 return skip_children (reader, info_ptr);
8723}
8724
8725/* Expand this partial symbol table into a full symbol table. SELF is
8726 not NULL. */
8727
8728void
8729dwarf2_psymtab::read_symtab (struct objfile *objfile)
8730{
8731 struct dwarf2_per_objfile *dwarf2_per_objfile
8732 = get_dwarf2_per_objfile (objfile);
8733
8734 gdb_assert (!readin);
8735 /* If this psymtab is constructed from a debug-only objfile, the
8736 has_section_at_zero flag will not necessarily be correct. We
8737 can get the correct value for this flag by looking at the data
8738 associated with the (presumably stripped) associated objfile. */
8739 if (objfile->separate_debug_objfile_backlink)
8740 {
8741 struct dwarf2_per_objfile *dpo_backlink
8742 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8743
8744 dwarf2_per_objfile->has_section_at_zero
8745 = dpo_backlink->has_section_at_zero;
8746 }
8747
8748 expand_psymtab (objfile);
8749
8750 process_cu_includes (dwarf2_per_objfile);
8751}
8752\f
8753/* Reading in full CUs. */
8754
8755/* Add PER_CU to the queue. */
8756
8757static void
8758queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8759 enum language pretend_language)
8760{
8761 per_cu->queued = 1;
8762 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
8763}
8764
8765/* If PER_CU is not yet queued, add it to the queue.
8766 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8767 dependency.
8768 The result is non-zero if PER_CU was queued, otherwise the result is zero
8769 meaning either PER_CU is already queued or it is already loaded.
8770
8771 N.B. There is an invariant here that if a CU is queued then it is loaded.
8772 The caller is required to load PER_CU if we return non-zero. */
8773
8774static int
8775maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8776 struct dwarf2_per_cu_data *per_cu,
8777 enum language pretend_language)
8778{
8779 /* We may arrive here during partial symbol reading, if we need full
8780 DIEs to process an unusual case (e.g. template arguments). Do
8781 not queue PER_CU, just tell our caller to load its DIEs. */
8782 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
8783 {
8784 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8785 return 1;
8786 return 0;
8787 }
8788
8789 /* Mark the dependence relation so that we don't flush PER_CU
8790 too early. */
8791 if (dependent_cu != NULL)
8792 dwarf2_add_dependence (dependent_cu, per_cu);
8793
8794 /* If it's already on the queue, we have nothing to do. */
8795 if (per_cu->queued)
8796 return 0;
8797
8798 /* If the compilation unit is already loaded, just mark it as
8799 used. */
8800 if (per_cu->cu != NULL)
8801 {
8802 per_cu->cu->last_used = 0;
8803 return 0;
8804 }
8805
8806 /* Add it to the queue. */
8807 queue_comp_unit (per_cu, pretend_language);
8808
8809 return 1;
8810}
8811
8812/* Process the queue. */
8813
8814static void
8815process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
8816{
8817 if (dwarf_read_debug)
8818 {
8819 fprintf_unfiltered (gdb_stdlog,
8820 "Expanding one or more symtabs of objfile %s ...\n",
8821 objfile_name (dwarf2_per_objfile->objfile));
8822 }
8823
8824 /* The queue starts out with one item, but following a DIE reference
8825 may load a new CU, adding it to the end of the queue. */
8826 while (!dwarf2_per_objfile->queue.empty ())
8827 {
8828 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
8829
8830 if ((dwarf2_per_objfile->using_index
8831 ? !item.per_cu->v.quick->compunit_symtab
8832 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
8833 /* Skip dummy CUs. */
8834 && item.per_cu->cu != NULL)
8835 {
8836 struct dwarf2_per_cu_data *per_cu = item.per_cu;
8837 unsigned int debug_print_threshold;
8838 char buf[100];
8839
8840 if (per_cu->is_debug_types)
8841 {
8842 struct signatured_type *sig_type =
8843 (struct signatured_type *) per_cu;
8844
8845 sprintf (buf, "TU %s at offset %s",
8846 hex_string (sig_type->signature),
8847 sect_offset_str (per_cu->sect_off));
8848 /* There can be 100s of TUs.
8849 Only print them in verbose mode. */
8850 debug_print_threshold = 2;
8851 }
8852 else
8853 {
8854 sprintf (buf, "CU at offset %s",
8855 sect_offset_str (per_cu->sect_off));
8856 debug_print_threshold = 1;
8857 }
8858
8859 if (dwarf_read_debug >= debug_print_threshold)
8860 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8861
8862 if (per_cu->is_debug_types)
8863 process_full_type_unit (per_cu, item.pretend_language);
8864 else
8865 process_full_comp_unit (per_cu, item.pretend_language);
8866
8867 if (dwarf_read_debug >= debug_print_threshold)
8868 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8869 }
8870
8871 item.per_cu->queued = 0;
8872 dwarf2_per_objfile->queue.pop ();
8873 }
8874
8875 if (dwarf_read_debug)
8876 {
8877 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8878 objfile_name (dwarf2_per_objfile->objfile));
8879 }
8880}
8881
8882/* Read in full symbols for PST, and anything it depends on. */
8883
8884void
8885dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8886{
8887 if (readin)
8888 return;
8889
8890 read_dependencies (objfile);
8891
8892 dw2_do_instantiate_symtab (per_cu_data, false);
8893 gdb_assert (get_compunit_symtab () != nullptr);
8894}
8895
8896/* Trivial hash function for die_info: the hash value of a DIE
8897 is its offset in .debug_info for this objfile. */
8898
8899static hashval_t
8900die_hash (const void *item)
8901{
8902 const struct die_info *die = (const struct die_info *) item;
8903
8904 return to_underlying (die->sect_off);
8905}
8906
8907/* Trivial comparison function for die_info structures: two DIEs
8908 are equal if they have the same offset. */
8909
8910static int
8911die_eq (const void *item_lhs, const void *item_rhs)
8912{
8913 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8914 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8915
8916 return die_lhs->sect_off == die_rhs->sect_off;
8917}
8918
8919/* Load the DIEs associated with PER_CU into memory. */
8920
8921static void
8922load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8923 bool skip_partial,
8924 enum language pretend_language)
8925{
8926 gdb_assert (! this_cu->is_debug_types);
8927
8928 cutu_reader reader (this_cu, NULL, 1, skip_partial);
8929 if (reader.dummy_p)
8930 return;
8931
8932 struct dwarf2_cu *cu = reader.cu;
8933 const gdb_byte *info_ptr = reader.info_ptr;
8934
8935 gdb_assert (cu->die_hash == NULL);
8936 cu->die_hash =
8937 htab_create_alloc_ex (cu->header.length / 12,
8938 die_hash,
8939 die_eq,
8940 NULL,
8941 &cu->comp_unit_obstack,
8942 hashtab_obstack_allocate,
8943 dummy_obstack_deallocate);
8944
8945 if (reader.comp_unit_die->has_children)
8946 reader.comp_unit_die->child
8947 = read_die_and_siblings (&reader, reader.info_ptr,
8948 &info_ptr, reader.comp_unit_die);
8949 cu->dies = reader.comp_unit_die;
8950 /* comp_unit_die is not stored in die_hash, no need. */
8951
8952 /* We try not to read any attributes in this function, because not
8953 all CUs needed for references have been loaded yet, and symbol
8954 table processing isn't initialized. But we have to set the CU language,
8955 or we won't be able to build types correctly.
8956 Similarly, if we do not read the producer, we can not apply
8957 producer-specific interpretation. */
8958 prepare_one_comp_unit (cu, cu->dies, pretend_language);
8959
8960 reader.keep ();
8961}
8962
8963/* Add a DIE to the delayed physname list. */
8964
8965static void
8966add_to_method_list (struct type *type, int fnfield_index, int index,
8967 const char *name, struct die_info *die,
8968 struct dwarf2_cu *cu)
8969{
8970 struct delayed_method_info mi;
8971 mi.type = type;
8972 mi.fnfield_index = fnfield_index;
8973 mi.index = index;
8974 mi.name = name;
8975 mi.die = die;
8976 cu->method_list.push_back (mi);
8977}
8978
8979/* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8980 "const" / "volatile". If so, decrements LEN by the length of the
8981 modifier and return true. Otherwise return false. */
8982
8983template<size_t N>
8984static bool
8985check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8986{
8987 size_t mod_len = sizeof (mod) - 1;
8988 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8989 {
8990 len -= mod_len;
8991 return true;
8992 }
8993 return false;
8994}
8995
8996/* Compute the physnames of any methods on the CU's method list.
8997
8998 The computation of method physnames is delayed in order to avoid the
8999 (bad) condition that one of the method's formal parameters is of an as yet
9000 incomplete type. */
9001
9002static void
9003compute_delayed_physnames (struct dwarf2_cu *cu)
9004{
9005 /* Only C++ delays computing physnames. */
9006 if (cu->method_list.empty ())
9007 return;
9008 gdb_assert (cu->language == language_cplus);
9009
9010 for (const delayed_method_info &mi : cu->method_list)
9011 {
9012 const char *physname;
9013 struct fn_fieldlist *fn_flp
9014 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9015 physname = dwarf2_physname (mi.name, mi.die, cu);
9016 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9017 = physname ? physname : "";
9018
9019 /* Since there's no tag to indicate whether a method is a
9020 const/volatile overload, extract that information out of the
9021 demangled name. */
9022 if (physname != NULL)
9023 {
9024 size_t len = strlen (physname);
9025
9026 while (1)
9027 {
9028 if (physname[len] == ')') /* shortcut */
9029 break;
9030 else if (check_modifier (physname, len, " const"))
9031 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9032 else if (check_modifier (physname, len, " volatile"))
9033 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9034 else
9035 break;
9036 }
9037 }
9038 }
9039
9040 /* The list is no longer needed. */
9041 cu->method_list.clear ();
9042}
9043
9044/* Go objects should be embedded in a DW_TAG_module DIE,
9045 and it's not clear if/how imported objects will appear.
9046 To keep Go support simple until that's worked out,
9047 go back through what we've read and create something usable.
9048 We could do this while processing each DIE, and feels kinda cleaner,
9049 but that way is more invasive.
9050 This is to, for example, allow the user to type "p var" or "b main"
9051 without having to specify the package name, and allow lookups
9052 of module.object to work in contexts that use the expression
9053 parser. */
9054
9055static void
9056fixup_go_packaging (struct dwarf2_cu *cu)
9057{
9058 gdb::unique_xmalloc_ptr<char> package_name;
9059 struct pending *list;
9060 int i;
9061
9062 for (list = *cu->get_builder ()->get_global_symbols ();
9063 list != NULL;
9064 list = list->next)
9065 {
9066 for (i = 0; i < list->nsyms; ++i)
9067 {
9068 struct symbol *sym = list->symbol[i];
9069
9070 if (sym->language () == language_go
9071 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9072 {
9073 gdb::unique_xmalloc_ptr<char> this_package_name
9074 (go_symbol_package_name (sym));
9075
9076 if (this_package_name == NULL)
9077 continue;
9078 if (package_name == NULL)
9079 package_name = std::move (this_package_name);
9080 else
9081 {
9082 struct objfile *objfile
9083 = cu->per_cu->dwarf2_per_objfile->objfile;
9084 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9085 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9086 (symbol_symtab (sym) != NULL
9087 ? symtab_to_filename_for_display
9088 (symbol_symtab (sym))
9089 : objfile_name (objfile)),
9090 this_package_name.get (), package_name.get ());
9091 }
9092 }
9093 }
9094 }
9095
9096 if (package_name != NULL)
9097 {
9098 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9099 const char *saved_package_name
9100 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name.get ());
9101 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9102 saved_package_name);
9103 struct symbol *sym;
9104
9105 sym = allocate_symbol (objfile);
9106 sym->set_language (language_go, &objfile->objfile_obstack);
9107 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9108 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9109 e.g., "main" finds the "main" module and not C's main(). */
9110 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9111 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9112 SYMBOL_TYPE (sym) = type;
9113
9114 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9115 }
9116}
9117
9118/* Allocate a fully-qualified name consisting of the two parts on the
9119 obstack. */
9120
9121static const char *
9122rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9123{
9124 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9125}
9126
9127/* A helper that allocates a struct discriminant_info to attach to a
9128 union type. */
9129
9130static struct discriminant_info *
9131alloc_discriminant_info (struct type *type, int discriminant_index,
9132 int default_index)
9133{
9134 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9135 gdb_assert (discriminant_index == -1
9136 || (discriminant_index >= 0
9137 && discriminant_index < TYPE_NFIELDS (type)));
9138 gdb_assert (default_index == -1
9139 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9140
9141 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9142
9143 struct discriminant_info *disc
9144 = ((struct discriminant_info *)
9145 TYPE_ZALLOC (type,
9146 offsetof (struct discriminant_info, discriminants)
9147 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9148 disc->default_index = default_index;
9149 disc->discriminant_index = discriminant_index;
9150
9151 struct dynamic_prop prop;
9152 prop.kind = PROP_UNDEFINED;
9153 prop.data.baton = disc;
9154
9155 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9156
9157 return disc;
9158}
9159
9160/* Some versions of rustc emitted enums in an unusual way.
9161
9162 Ordinary enums were emitted as unions. The first element of each
9163 structure in the union was named "RUST$ENUM$DISR". This element
9164 held the discriminant.
9165
9166 These versions of Rust also implemented the "non-zero"
9167 optimization. When the enum had two values, and one is empty and
9168 the other holds a pointer that cannot be zero, the pointer is used
9169 as the discriminant, with a zero value meaning the empty variant.
9170 Here, the union's first member is of the form
9171 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9172 where the fieldnos are the indices of the fields that should be
9173 traversed in order to find the field (which may be several fields deep)
9174 and the variantname is the name of the variant of the case when the
9175 field is zero.
9176
9177 This function recognizes whether TYPE is of one of these forms,
9178 and, if so, smashes it to be a variant type. */
9179
9180static void
9181quirk_rust_enum (struct type *type, struct objfile *objfile)
9182{
9183 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9184
9185 /* We don't need to deal with empty enums. */
9186 if (TYPE_NFIELDS (type) == 0)
9187 return;
9188
9189#define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9190 if (TYPE_NFIELDS (type) == 1
9191 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9192 {
9193 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9194
9195 /* Decode the field name to find the offset of the
9196 discriminant. */
9197 ULONGEST bit_offset = 0;
9198 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9199 while (name[0] >= '0' && name[0] <= '9')
9200 {
9201 char *tail;
9202 unsigned long index = strtoul (name, &tail, 10);
9203 name = tail;
9204 if (*name != '$'
9205 || index >= TYPE_NFIELDS (field_type)
9206 || (TYPE_FIELD_LOC_KIND (field_type, index)
9207 != FIELD_LOC_KIND_BITPOS))
9208 {
9209 complaint (_("Could not parse Rust enum encoding string \"%s\""
9210 "[in module %s]"),
9211 TYPE_FIELD_NAME (type, 0),
9212 objfile_name (objfile));
9213 return;
9214 }
9215 ++name;
9216
9217 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9218 field_type = TYPE_FIELD_TYPE (field_type, index);
9219 }
9220
9221 /* Make a union to hold the variants. */
9222 struct type *union_type = alloc_type (objfile);
9223 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9224 TYPE_NFIELDS (union_type) = 3;
9225 TYPE_FIELDS (union_type)
9226 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9227 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9228 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9229
9230 /* Put the discriminant must at index 0. */
9231 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9232 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9233 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9234 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9235
9236 /* The order of fields doesn't really matter, so put the real
9237 field at index 1 and the data-less field at index 2. */
9238 struct discriminant_info *disc
9239 = alloc_discriminant_info (union_type, 0, 1);
9240 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9241 TYPE_FIELD_NAME (union_type, 1)
9242 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9243 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9244 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9245 TYPE_FIELD_NAME (union_type, 1));
9246
9247 const char *dataless_name
9248 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9249 name);
9250 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9251 dataless_name);
9252 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9253 /* NAME points into the original discriminant name, which
9254 already has the correct lifetime. */
9255 TYPE_FIELD_NAME (union_type, 2) = name;
9256 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9257 disc->discriminants[2] = 0;
9258
9259 /* Smash this type to be a structure type. We have to do this
9260 because the type has already been recorded. */
9261 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9262 TYPE_NFIELDS (type) = 1;
9263 TYPE_FIELDS (type)
9264 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9265
9266 /* Install the variant part. */
9267 TYPE_FIELD_TYPE (type, 0) = union_type;
9268 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9269 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9270 }
9271 /* A union with a single anonymous field is probably an old-style
9272 univariant enum. */
9273 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9274 {
9275 /* Smash this type to be a structure type. We have to do this
9276 because the type has already been recorded. */
9277 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9278
9279 /* Make a union to hold the variants. */
9280 struct type *union_type = alloc_type (objfile);
9281 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9282 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9283 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9284 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9285 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9286
9287 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9288 const char *variant_name
9289 = rust_last_path_segment (TYPE_NAME (field_type));
9290 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9291 TYPE_NAME (field_type)
9292 = rust_fully_qualify (&objfile->objfile_obstack,
9293 TYPE_NAME (type), variant_name);
9294
9295 /* Install the union in the outer struct type. */
9296 TYPE_NFIELDS (type) = 1;
9297 TYPE_FIELDS (type)
9298 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9299 TYPE_FIELD_TYPE (type, 0) = union_type;
9300 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9301 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9302
9303 alloc_discriminant_info (union_type, -1, 0);
9304 }
9305 else
9306 {
9307 struct type *disr_type = nullptr;
9308 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9309 {
9310 disr_type = TYPE_FIELD_TYPE (type, i);
9311
9312 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9313 {
9314 /* All fields of a true enum will be structs. */
9315 return;
9316 }
9317 else if (TYPE_NFIELDS (disr_type) == 0)
9318 {
9319 /* Could be data-less variant, so keep going. */
9320 disr_type = nullptr;
9321 }
9322 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9323 "RUST$ENUM$DISR") != 0)
9324 {
9325 /* Not a Rust enum. */
9326 return;
9327 }
9328 else
9329 {
9330 /* Found one. */
9331 break;
9332 }
9333 }
9334
9335 /* If we got here without a discriminant, then it's probably
9336 just a union. */
9337 if (disr_type == nullptr)
9338 return;
9339
9340 /* Smash this type to be a structure type. We have to do this
9341 because the type has already been recorded. */
9342 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9343
9344 /* Make a union to hold the variants. */
9345 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9346 struct type *union_type = alloc_type (objfile);
9347 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9348 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
9349 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9350 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9351 TYPE_FIELDS (union_type)
9352 = (struct field *) TYPE_ZALLOC (union_type,
9353 (TYPE_NFIELDS (union_type)
9354 * sizeof (struct field)));
9355
9356 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
9357 TYPE_NFIELDS (type) * sizeof (struct field));
9358
9359 /* Install the discriminant at index 0 in the union. */
9360 TYPE_FIELD (union_type, 0) = *disr_field;
9361 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9362 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9363
9364 /* Install the union in the outer struct type. */
9365 TYPE_FIELD_TYPE (type, 0) = union_type;
9366 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9367 TYPE_NFIELDS (type) = 1;
9368
9369 /* Set the size and offset of the union type. */
9370 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9371
9372 /* We need a way to find the correct discriminant given a
9373 variant name. For convenience we build a map here. */
9374 struct type *enum_type = FIELD_TYPE (*disr_field);
9375 std::unordered_map<std::string, ULONGEST> discriminant_map;
9376 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9377 {
9378 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9379 {
9380 const char *name
9381 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9382 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9383 }
9384 }
9385
9386 int n_fields = TYPE_NFIELDS (union_type);
9387 struct discriminant_info *disc
9388 = alloc_discriminant_info (union_type, 0, -1);
9389 /* Skip the discriminant here. */
9390 for (int i = 1; i < n_fields; ++i)
9391 {
9392 /* Find the final word in the name of this variant's type.
9393 That name can be used to look up the correct
9394 discriminant. */
9395 const char *variant_name
9396 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
9397 i)));
9398
9399 auto iter = discriminant_map.find (variant_name);
9400 if (iter != discriminant_map.end ())
9401 disc->discriminants[i] = iter->second;
9402
9403 /* Remove the discriminant field, if it exists. */
9404 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
9405 if (TYPE_NFIELDS (sub_type) > 0)
9406 {
9407 --TYPE_NFIELDS (sub_type);
9408 ++TYPE_FIELDS (sub_type);
9409 }
9410 TYPE_FIELD_NAME (union_type, i) = variant_name;
9411 TYPE_NAME (sub_type)
9412 = rust_fully_qualify (&objfile->objfile_obstack,
9413 TYPE_NAME (type), variant_name);
9414 }
9415 }
9416}
9417
9418/* Rewrite some Rust unions to be structures with variants parts. */
9419
9420static void
9421rust_union_quirks (struct dwarf2_cu *cu)
9422{
9423 gdb_assert (cu->language == language_rust);
9424 for (type *type_ : cu->rust_unions)
9425 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9426 /* We don't need this any more. */
9427 cu->rust_unions.clear ();
9428}
9429
9430/* Return the symtab for PER_CU. This works properly regardless of
9431 whether we're using the index or psymtabs. */
9432
9433static struct compunit_symtab *
9434get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9435{
9436 return (per_cu->dwarf2_per_objfile->using_index
9437 ? per_cu->v.quick->compunit_symtab
9438 : per_cu->v.psymtab->compunit_symtab);
9439}
9440
9441/* A helper function for computing the list of all symbol tables
9442 included by PER_CU. */
9443
9444static void
9445recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9446 htab_t all_children, htab_t all_type_symtabs,
9447 struct dwarf2_per_cu_data *per_cu,
9448 struct compunit_symtab *immediate_parent)
9449{
9450 void **slot;
9451 struct compunit_symtab *cust;
9452
9453 slot = htab_find_slot (all_children, per_cu, INSERT);
9454 if (*slot != NULL)
9455 {
9456 /* This inclusion and its children have been processed. */
9457 return;
9458 }
9459
9460 *slot = per_cu;
9461 /* Only add a CU if it has a symbol table. */
9462 cust = get_compunit_symtab (per_cu);
9463 if (cust != NULL)
9464 {
9465 /* If this is a type unit only add its symbol table if we haven't
9466 seen it yet (type unit per_cu's can share symtabs). */
9467 if (per_cu->is_debug_types)
9468 {
9469 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9470 if (*slot == NULL)
9471 {
9472 *slot = cust;
9473 result->push_back (cust);
9474 if (cust->user == NULL)
9475 cust->user = immediate_parent;
9476 }
9477 }
9478 else
9479 {
9480 result->push_back (cust);
9481 if (cust->user == NULL)
9482 cust->user = immediate_parent;
9483 }
9484 }
9485
9486 if (!per_cu->imported_symtabs_empty ())
9487 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9488 {
9489 recursively_compute_inclusions (result, all_children,
9490 all_type_symtabs, ptr, cust);
9491 }
9492}
9493
9494/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9495 PER_CU. */
9496
9497static void
9498compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9499{
9500 gdb_assert (! per_cu->is_debug_types);
9501
9502 if (!per_cu->imported_symtabs_empty ())
9503 {
9504 int len;
9505 std::vector<compunit_symtab *> result_symtabs;
9506 htab_t all_children, all_type_symtabs;
9507 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9508
9509 /* If we don't have a symtab, we can just skip this case. */
9510 if (cust == NULL)
9511 return;
9512
9513 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9514 NULL, xcalloc, xfree);
9515 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9516 NULL, xcalloc, xfree);
9517
9518 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9519 {
9520 recursively_compute_inclusions (&result_symtabs, all_children,
9521 all_type_symtabs, ptr, cust);
9522 }
9523
9524 /* Now we have a transitive closure of all the included symtabs. */
9525 len = result_symtabs.size ();
9526 cust->includes
9527 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9528 struct compunit_symtab *, len + 1);
9529 memcpy (cust->includes, result_symtabs.data (),
9530 len * sizeof (compunit_symtab *));
9531 cust->includes[len] = NULL;
9532
9533 htab_delete (all_children);
9534 htab_delete (all_type_symtabs);
9535 }
9536}
9537
9538/* Compute the 'includes' field for the symtabs of all the CUs we just
9539 read. */
9540
9541static void
9542process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9543{
9544 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9545 {
9546 if (! iter->is_debug_types)
9547 compute_compunit_symtab_includes (iter);
9548 }
9549
9550 dwarf2_per_objfile->just_read_cus.clear ();
9551}
9552
9553/* Generate full symbol information for PER_CU, whose DIEs have
9554 already been loaded into memory. */
9555
9556static void
9557process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9558 enum language pretend_language)
9559{
9560 struct dwarf2_cu *cu = per_cu->cu;
9561 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9562 struct objfile *objfile = dwarf2_per_objfile->objfile;
9563 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9564 CORE_ADDR lowpc, highpc;
9565 struct compunit_symtab *cust;
9566 CORE_ADDR baseaddr;
9567 struct block *static_block;
9568 CORE_ADDR addr;
9569
9570 baseaddr = objfile->text_section_offset ();
9571
9572 /* Clear the list here in case something was left over. */
9573 cu->method_list.clear ();
9574
9575 cu->language = pretend_language;
9576 cu->language_defn = language_def (cu->language);
9577
9578 /* Do line number decoding in read_file_scope () */
9579 process_die (cu->dies, cu);
9580
9581 /* For now fudge the Go package. */
9582 if (cu->language == language_go)
9583 fixup_go_packaging (cu);
9584
9585 /* Now that we have processed all the DIEs in the CU, all the types
9586 should be complete, and it should now be safe to compute all of the
9587 physnames. */
9588 compute_delayed_physnames (cu);
9589
9590 if (cu->language == language_rust)
9591 rust_union_quirks (cu);
9592
9593 /* Some compilers don't define a DW_AT_high_pc attribute for the
9594 compilation unit. If the DW_AT_high_pc is missing, synthesize
9595 it, by scanning the DIE's below the compilation unit. */
9596 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9597
9598 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9599 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9600
9601 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9602 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9603 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9604 addrmap to help ensure it has an accurate map of pc values belonging to
9605 this comp unit. */
9606 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9607
9608 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9609 SECT_OFF_TEXT (objfile),
9610 0);
9611
9612 if (cust != NULL)
9613 {
9614 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9615
9616 /* Set symtab language to language from DW_AT_language. If the
9617 compilation is from a C file generated by language preprocessors, do
9618 not set the language if it was already deduced by start_subfile. */
9619 if (!(cu->language == language_c
9620 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9621 COMPUNIT_FILETABS (cust)->language = cu->language;
9622
9623 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9624 produce DW_AT_location with location lists but it can be possibly
9625 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9626 there were bugs in prologue debug info, fixed later in GCC-4.5
9627 by "unwind info for epilogues" patch (which is not directly related).
9628
9629 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9630 needed, it would be wrong due to missing DW_AT_producer there.
9631
9632 Still one can confuse GDB by using non-standard GCC compilation
9633 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9634 */
9635 if (cu->has_loclist && gcc_4_minor >= 5)
9636 cust->locations_valid = 1;
9637
9638 if (gcc_4_minor >= 5)
9639 cust->epilogue_unwind_valid = 1;
9640
9641 cust->call_site_htab = cu->call_site_htab;
9642 }
9643
9644 if (dwarf2_per_objfile->using_index)
9645 per_cu->v.quick->compunit_symtab = cust;
9646 else
9647 {
9648 dwarf2_psymtab *pst = per_cu->v.psymtab;
9649 pst->compunit_symtab = cust;
9650 pst->readin = true;
9651 }
9652
9653 /* Push it for inclusion processing later. */
9654 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
9655
9656 /* Not needed any more. */
9657 cu->reset_builder ();
9658}
9659
9660/* Generate full symbol information for type unit PER_CU, whose DIEs have
9661 already been loaded into memory. */
9662
9663static void
9664process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9665 enum language pretend_language)
9666{
9667 struct dwarf2_cu *cu = per_cu->cu;
9668 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9669 struct objfile *objfile = dwarf2_per_objfile->objfile;
9670 struct compunit_symtab *cust;
9671 struct signatured_type *sig_type;
9672
9673 gdb_assert (per_cu->is_debug_types);
9674 sig_type = (struct signatured_type *) per_cu;
9675
9676 /* Clear the list here in case something was left over. */
9677 cu->method_list.clear ();
9678
9679 cu->language = pretend_language;
9680 cu->language_defn = language_def (cu->language);
9681
9682 /* The symbol tables are set up in read_type_unit_scope. */
9683 process_die (cu->dies, cu);
9684
9685 /* For now fudge the Go package. */
9686 if (cu->language == language_go)
9687 fixup_go_packaging (cu);
9688
9689 /* Now that we have processed all the DIEs in the CU, all the types
9690 should be complete, and it should now be safe to compute all of the
9691 physnames. */
9692 compute_delayed_physnames (cu);
9693
9694 if (cu->language == language_rust)
9695 rust_union_quirks (cu);
9696
9697 /* TUs share symbol tables.
9698 If this is the first TU to use this symtab, complete the construction
9699 of it with end_expandable_symtab. Otherwise, complete the addition of
9700 this TU's symbols to the existing symtab. */
9701 if (sig_type->type_unit_group->compunit_symtab == NULL)
9702 {
9703 buildsym_compunit *builder = cu->get_builder ();
9704 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9705 sig_type->type_unit_group->compunit_symtab = cust;
9706
9707 if (cust != NULL)
9708 {
9709 /* Set symtab language to language from DW_AT_language. If the
9710 compilation is from a C file generated by language preprocessors,
9711 do not set the language if it was already deduced by
9712 start_subfile. */
9713 if (!(cu->language == language_c
9714 && COMPUNIT_FILETABS (cust)->language != language_c))
9715 COMPUNIT_FILETABS (cust)->language = cu->language;
9716 }
9717 }
9718 else
9719 {
9720 cu->get_builder ()->augment_type_symtab ();
9721 cust = sig_type->type_unit_group->compunit_symtab;
9722 }
9723
9724 if (dwarf2_per_objfile->using_index)
9725 per_cu->v.quick->compunit_symtab = cust;
9726 else
9727 {
9728 dwarf2_psymtab *pst = per_cu->v.psymtab;
9729 pst->compunit_symtab = cust;
9730 pst->readin = true;
9731 }
9732
9733 /* Not needed any more. */
9734 cu->reset_builder ();
9735}
9736
9737/* Process an imported unit DIE. */
9738
9739static void
9740process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9741{
9742 struct attribute *attr;
9743
9744 /* For now we don't handle imported units in type units. */
9745 if (cu->per_cu->is_debug_types)
9746 {
9747 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9748 " supported in type units [in module %s]"),
9749 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9750 }
9751
9752 attr = dwarf2_attr (die, DW_AT_import, cu);
9753 if (attr != NULL)
9754 {
9755 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9756 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9757 dwarf2_per_cu_data *per_cu
9758 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
9759 cu->per_cu->dwarf2_per_objfile);
9760
9761 /* If necessary, add it to the queue and load its DIEs. */
9762 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9763 load_full_comp_unit (per_cu, false, cu->language);
9764
9765 cu->per_cu->imported_symtabs_push (per_cu);
9766 }
9767}
9768
9769/* RAII object that represents a process_die scope: i.e.,
9770 starts/finishes processing a DIE. */
9771class process_die_scope
9772{
9773public:
9774 process_die_scope (die_info *die, dwarf2_cu *cu)
9775 : m_die (die), m_cu (cu)
9776 {
9777 /* We should only be processing DIEs not already in process. */
9778 gdb_assert (!m_die->in_process);
9779 m_die->in_process = true;
9780 }
9781
9782 ~process_die_scope ()
9783 {
9784 m_die->in_process = false;
9785
9786 /* If we're done processing the DIE for the CU that owns the line
9787 header, we don't need the line header anymore. */
9788 if (m_cu->line_header_die_owner == m_die)
9789 {
9790 delete m_cu->line_header;
9791 m_cu->line_header = NULL;
9792 m_cu->line_header_die_owner = NULL;
9793 }
9794 }
9795
9796private:
9797 die_info *m_die;
9798 dwarf2_cu *m_cu;
9799};
9800
9801/* Process a die and its children. */
9802
9803static void
9804process_die (struct die_info *die, struct dwarf2_cu *cu)
9805{
9806 process_die_scope scope (die, cu);
9807
9808 switch (die->tag)
9809 {
9810 case DW_TAG_padding:
9811 break;
9812 case DW_TAG_compile_unit:
9813 case DW_TAG_partial_unit:
9814 read_file_scope (die, cu);
9815 break;
9816 case DW_TAG_type_unit:
9817 read_type_unit_scope (die, cu);
9818 break;
9819 case DW_TAG_subprogram:
9820 /* Nested subprograms in Fortran get a prefix. */
9821 if (cu->language == language_fortran
9822 && die->parent != NULL
9823 && die->parent->tag == DW_TAG_subprogram)
9824 cu->processing_has_namespace_info = true;
9825 /* Fall through. */
9826 case DW_TAG_inlined_subroutine:
9827 read_func_scope (die, cu);
9828 break;
9829 case DW_TAG_lexical_block:
9830 case DW_TAG_try_block:
9831 case DW_TAG_catch_block:
9832 read_lexical_block_scope (die, cu);
9833 break;
9834 case DW_TAG_call_site:
9835 case DW_TAG_GNU_call_site:
9836 read_call_site_scope (die, cu);
9837 break;
9838 case DW_TAG_class_type:
9839 case DW_TAG_interface_type:
9840 case DW_TAG_structure_type:
9841 case DW_TAG_union_type:
9842 process_structure_scope (die, cu);
9843 break;
9844 case DW_TAG_enumeration_type:
9845 process_enumeration_scope (die, cu);
9846 break;
9847
9848 /* These dies have a type, but processing them does not create
9849 a symbol or recurse to process the children. Therefore we can
9850 read them on-demand through read_type_die. */
9851 case DW_TAG_subroutine_type:
9852 case DW_TAG_set_type:
9853 case DW_TAG_array_type:
9854 case DW_TAG_pointer_type:
9855 case DW_TAG_ptr_to_member_type:
9856 case DW_TAG_reference_type:
9857 case DW_TAG_rvalue_reference_type:
9858 case DW_TAG_string_type:
9859 break;
9860
9861 case DW_TAG_base_type:
9862 case DW_TAG_subrange_type:
9863 case DW_TAG_typedef:
9864 /* Add a typedef symbol for the type definition, if it has a
9865 DW_AT_name. */
9866 new_symbol (die, read_type_die (die, cu), cu);
9867 break;
9868 case DW_TAG_common_block:
9869 read_common_block (die, cu);
9870 break;
9871 case DW_TAG_common_inclusion:
9872 break;
9873 case DW_TAG_namespace:
9874 cu->processing_has_namespace_info = true;
9875 read_namespace (die, cu);
9876 break;
9877 case DW_TAG_module:
9878 cu->processing_has_namespace_info = true;
9879 read_module (die, cu);
9880 break;
9881 case DW_TAG_imported_declaration:
9882 cu->processing_has_namespace_info = true;
9883 if (read_namespace_alias (die, cu))
9884 break;
9885 /* The declaration is not a global namespace alias. */
9886 /* Fall through. */
9887 case DW_TAG_imported_module:
9888 cu->processing_has_namespace_info = true;
9889 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9890 || cu->language != language_fortran))
9891 complaint (_("Tag '%s' has unexpected children"),
9892 dwarf_tag_name (die->tag));
9893 read_import_statement (die, cu);
9894 break;
9895
9896 case DW_TAG_imported_unit:
9897 process_imported_unit_die (die, cu);
9898 break;
9899
9900 case DW_TAG_variable:
9901 read_variable (die, cu);
9902 break;
9903
9904 default:
9905 new_symbol (die, NULL, cu);
9906 break;
9907 }
9908}
9909\f
9910/* DWARF name computation. */
9911
9912/* A helper function for dwarf2_compute_name which determines whether DIE
9913 needs to have the name of the scope prepended to the name listed in the
9914 die. */
9915
9916static int
9917die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9918{
9919 struct attribute *attr;
9920
9921 switch (die->tag)
9922 {
9923 case DW_TAG_namespace:
9924 case DW_TAG_typedef:
9925 case DW_TAG_class_type:
9926 case DW_TAG_interface_type:
9927 case DW_TAG_structure_type:
9928 case DW_TAG_union_type:
9929 case DW_TAG_enumeration_type:
9930 case DW_TAG_enumerator:
9931 case DW_TAG_subprogram:
9932 case DW_TAG_inlined_subroutine:
9933 case DW_TAG_member:
9934 case DW_TAG_imported_declaration:
9935 return 1;
9936
9937 case DW_TAG_variable:
9938 case DW_TAG_constant:
9939 /* We only need to prefix "globally" visible variables. These include
9940 any variable marked with DW_AT_external or any variable that
9941 lives in a namespace. [Variables in anonymous namespaces
9942 require prefixing, but they are not DW_AT_external.] */
9943
9944 if (dwarf2_attr (die, DW_AT_specification, cu))
9945 {
9946 struct dwarf2_cu *spec_cu = cu;
9947
9948 return die_needs_namespace (die_specification (die, &spec_cu),
9949 spec_cu);
9950 }
9951
9952 attr = dwarf2_attr (die, DW_AT_external, cu);
9953 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9954 && die->parent->tag != DW_TAG_module)
9955 return 0;
9956 /* A variable in a lexical block of some kind does not need a
9957 namespace, even though in C++ such variables may be external
9958 and have a mangled name. */
9959 if (die->parent->tag == DW_TAG_lexical_block
9960 || die->parent->tag == DW_TAG_try_block
9961 || die->parent->tag == DW_TAG_catch_block
9962 || die->parent->tag == DW_TAG_subprogram)
9963 return 0;
9964 return 1;
9965
9966 default:
9967 return 0;
9968 }
9969}
9970
9971/* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9972 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9973 defined for the given DIE. */
9974
9975static struct attribute *
9976dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9977{
9978 struct attribute *attr;
9979
9980 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9981 if (attr == NULL)
9982 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9983
9984 return attr;
9985}
9986
9987/* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9988 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9989 defined for the given DIE. */
9990
9991static const char *
9992dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9993{
9994 const char *linkage_name;
9995
9996 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
9997 if (linkage_name == NULL)
9998 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
9999
10000 return linkage_name;
10001}
10002
10003/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10004 compute the physname for the object, which include a method's:
10005 - formal parameters (C++),
10006 - receiver type (Go),
10007
10008 The term "physname" is a bit confusing.
10009 For C++, for example, it is the demangled name.
10010 For Go, for example, it's the mangled name.
10011
10012 For Ada, return the DIE's linkage name rather than the fully qualified
10013 name. PHYSNAME is ignored..
10014
10015 The result is allocated on the objfile_obstack and canonicalized. */
10016
10017static const char *
10018dwarf2_compute_name (const char *name,
10019 struct die_info *die, struct dwarf2_cu *cu,
10020 int physname)
10021{
10022 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10023
10024 if (name == NULL)
10025 name = dwarf2_name (die, cu);
10026
10027 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10028 but otherwise compute it by typename_concat inside GDB.
10029 FIXME: Actually this is not really true, or at least not always true.
10030 It's all very confusing. compute_and_set_names doesn't try to demangle
10031 Fortran names because there is no mangling standard. So new_symbol
10032 will set the demangled name to the result of dwarf2_full_name, and it is
10033 the demangled name that GDB uses if it exists. */
10034 if (cu->language == language_ada
10035 || (cu->language == language_fortran && physname))
10036 {
10037 /* For Ada unit, we prefer the linkage name over the name, as
10038 the former contains the exported name, which the user expects
10039 to be able to reference. Ideally, we want the user to be able
10040 to reference this entity using either natural or linkage name,
10041 but we haven't started looking at this enhancement yet. */
10042 const char *linkage_name = dw2_linkage_name (die, cu);
10043
10044 if (linkage_name != NULL)
10045 return linkage_name;
10046 }
10047
10048 /* These are the only languages we know how to qualify names in. */
10049 if (name != NULL
10050 && (cu->language == language_cplus
10051 || cu->language == language_fortran || cu->language == language_d
10052 || cu->language == language_rust))
10053 {
10054 if (die_needs_namespace (die, cu))
10055 {
10056 const char *prefix;
10057 const char *canonical_name = NULL;
10058
10059 string_file buf;
10060
10061 prefix = determine_prefix (die, cu);
10062 if (*prefix != '\0')
10063 {
10064 gdb::unique_xmalloc_ptr<char> prefixed_name
10065 (typename_concat (NULL, prefix, name, physname, cu));
10066
10067 buf.puts (prefixed_name.get ());
10068 }
10069 else
10070 buf.puts (name);
10071
10072 /* Template parameters may be specified in the DIE's DW_AT_name, or
10073 as children with DW_TAG_template_type_param or
10074 DW_TAG_value_type_param. If the latter, add them to the name
10075 here. If the name already has template parameters, then
10076 skip this step; some versions of GCC emit both, and
10077 it is more efficient to use the pre-computed name.
10078
10079 Something to keep in mind about this process: it is very
10080 unlikely, or in some cases downright impossible, to produce
10081 something that will match the mangled name of a function.
10082 If the definition of the function has the same debug info,
10083 we should be able to match up with it anyway. But fallbacks
10084 using the minimal symbol, for instance to find a method
10085 implemented in a stripped copy of libstdc++, will not work.
10086 If we do not have debug info for the definition, we will have to
10087 match them up some other way.
10088
10089 When we do name matching there is a related problem with function
10090 templates; two instantiated function templates are allowed to
10091 differ only by their return types, which we do not add here. */
10092
10093 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10094 {
10095 struct attribute *attr;
10096 struct die_info *child;
10097 int first = 1;
10098
10099 die->building_fullname = 1;
10100
10101 for (child = die->child; child != NULL; child = child->sibling)
10102 {
10103 struct type *type;
10104 LONGEST value;
10105 const gdb_byte *bytes;
10106 struct dwarf2_locexpr_baton *baton;
10107 struct value *v;
10108
10109 if (child->tag != DW_TAG_template_type_param
10110 && child->tag != DW_TAG_template_value_param)
10111 continue;
10112
10113 if (first)
10114 {
10115 buf.puts ("<");
10116 first = 0;
10117 }
10118 else
10119 buf.puts (", ");
10120
10121 attr = dwarf2_attr (child, DW_AT_type, cu);
10122 if (attr == NULL)
10123 {
10124 complaint (_("template parameter missing DW_AT_type"));
10125 buf.puts ("UNKNOWN_TYPE");
10126 continue;
10127 }
10128 type = die_type (child, cu);
10129
10130 if (child->tag == DW_TAG_template_type_param)
10131 {
10132 c_print_type (type, "", &buf, -1, 0, cu->language,
10133 &type_print_raw_options);
10134 continue;
10135 }
10136
10137 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10138 if (attr == NULL)
10139 {
10140 complaint (_("template parameter missing "
10141 "DW_AT_const_value"));
10142 buf.puts ("UNKNOWN_VALUE");
10143 continue;
10144 }
10145
10146 dwarf2_const_value_attr (attr, type, name,
10147 &cu->comp_unit_obstack, cu,
10148 &value, &bytes, &baton);
10149
10150 if (TYPE_NOSIGN (type))
10151 /* GDB prints characters as NUMBER 'CHAR'. If that's
10152 changed, this can use value_print instead. */
10153 c_printchar (value, type, &buf);
10154 else
10155 {
10156 struct value_print_options opts;
10157
10158 if (baton != NULL)
10159 v = dwarf2_evaluate_loc_desc (type, NULL,
10160 baton->data,
10161 baton->size,
10162 baton->per_cu);
10163 else if (bytes != NULL)
10164 {
10165 v = allocate_value (type);
10166 memcpy (value_contents_writeable (v), bytes,
10167 TYPE_LENGTH (type));
10168 }
10169 else
10170 v = value_from_longest (type, value);
10171
10172 /* Specify decimal so that we do not depend on
10173 the radix. */
10174 get_formatted_print_options (&opts, 'd');
10175 opts.raw = 1;
10176 value_print (v, &buf, &opts);
10177 release_value (v);
10178 }
10179 }
10180
10181 die->building_fullname = 0;
10182
10183 if (!first)
10184 {
10185 /* Close the argument list, with a space if necessary
10186 (nested templates). */
10187 if (!buf.empty () && buf.string ().back () == '>')
10188 buf.puts (" >");
10189 else
10190 buf.puts (">");
10191 }
10192 }
10193
10194 /* For C++ methods, append formal parameter type
10195 information, if PHYSNAME. */
10196
10197 if (physname && die->tag == DW_TAG_subprogram
10198 && cu->language == language_cplus)
10199 {
10200 struct type *type = read_type_die (die, cu);
10201
10202 c_type_print_args (type, &buf, 1, cu->language,
10203 &type_print_raw_options);
10204
10205 if (cu->language == language_cplus)
10206 {
10207 /* Assume that an artificial first parameter is
10208 "this", but do not crash if it is not. RealView
10209 marks unnamed (and thus unused) parameters as
10210 artificial; there is no way to differentiate
10211 the two cases. */
10212 if (TYPE_NFIELDS (type) > 0
10213 && TYPE_FIELD_ARTIFICIAL (type, 0)
10214 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10215 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10216 0))))
10217 buf.puts (" const");
10218 }
10219 }
10220
10221 const std::string &intermediate_name = buf.string ();
10222
10223 if (cu->language == language_cplus)
10224 canonical_name
10225 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10226 &objfile->per_bfd->storage_obstack);
10227
10228 /* If we only computed INTERMEDIATE_NAME, or if
10229 INTERMEDIATE_NAME is already canonical, then we need to
10230 copy it to the appropriate obstack. */
10231 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10232 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
10233 intermediate_name);
10234 else
10235 name = canonical_name;
10236 }
10237 }
10238
10239 return name;
10240}
10241
10242/* Return the fully qualified name of DIE, based on its DW_AT_name.
10243 If scope qualifiers are appropriate they will be added. The result
10244 will be allocated on the storage_obstack, or NULL if the DIE does
10245 not have a name. NAME may either be from a previous call to
10246 dwarf2_name or NULL.
10247
10248 The output string will be canonicalized (if C++). */
10249
10250static const char *
10251dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10252{
10253 return dwarf2_compute_name (name, die, cu, 0);
10254}
10255
10256/* Construct a physname for the given DIE in CU. NAME may either be
10257 from a previous call to dwarf2_name or NULL. The result will be
10258 allocated on the objfile_objstack or NULL if the DIE does not have a
10259 name.
10260
10261 The output string will be canonicalized (if C++). */
10262
10263static const char *
10264dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10265{
10266 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10267 const char *retval, *mangled = NULL, *canon = NULL;
10268 int need_copy = 1;
10269
10270 /* In this case dwarf2_compute_name is just a shortcut not building anything
10271 on its own. */
10272 if (!die_needs_namespace (die, cu))
10273 return dwarf2_compute_name (name, die, cu, 1);
10274
10275 mangled = dw2_linkage_name (die, cu);
10276
10277 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10278 See https://github.com/rust-lang/rust/issues/32925. */
10279 if (cu->language == language_rust && mangled != NULL
10280 && strchr (mangled, '{') != NULL)
10281 mangled = NULL;
10282
10283 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10284 has computed. */
10285 gdb::unique_xmalloc_ptr<char> demangled;
10286 if (mangled != NULL)
10287 {
10288
10289 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10290 {
10291 /* Do nothing (do not demangle the symbol name). */
10292 }
10293 else if (cu->language == language_go)
10294 {
10295 /* This is a lie, but we already lie to the caller new_symbol.
10296 new_symbol assumes we return the mangled name.
10297 This just undoes that lie until things are cleaned up. */
10298 }
10299 else
10300 {
10301 /* Use DMGL_RET_DROP for C++ template functions to suppress
10302 their return type. It is easier for GDB users to search
10303 for such functions as `name(params)' than `long name(params)'.
10304 In such case the minimal symbol names do not match the full
10305 symbol names but for template functions there is never a need
10306 to look up their definition from their declaration so
10307 the only disadvantage remains the minimal symbol variant
10308 `long name(params)' does not have the proper inferior type. */
10309 demangled.reset (gdb_demangle (mangled,
10310 (DMGL_PARAMS | DMGL_ANSI
10311 | DMGL_RET_DROP)));
10312 }
10313 if (demangled)
10314 canon = demangled.get ();
10315 else
10316 {
10317 canon = mangled;
10318 need_copy = 0;
10319 }
10320 }
10321
10322 if (canon == NULL || check_physname)
10323 {
10324 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10325
10326 if (canon != NULL && strcmp (physname, canon) != 0)
10327 {
10328 /* It may not mean a bug in GDB. The compiler could also
10329 compute DW_AT_linkage_name incorrectly. But in such case
10330 GDB would need to be bug-to-bug compatible. */
10331
10332 complaint (_("Computed physname <%s> does not match demangled <%s> "
10333 "(from linkage <%s>) - DIE at %s [in module %s]"),
10334 physname, canon, mangled, sect_offset_str (die->sect_off),
10335 objfile_name (objfile));
10336
10337 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10338 is available here - over computed PHYSNAME. It is safer
10339 against both buggy GDB and buggy compilers. */
10340
10341 retval = canon;
10342 }
10343 else
10344 {
10345 retval = physname;
10346 need_copy = 0;
10347 }
10348 }
10349 else
10350 retval = canon;
10351
10352 if (need_copy)
10353 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
10354
10355 return retval;
10356}
10357
10358/* Inspect DIE in CU for a namespace alias. If one exists, record
10359 a new symbol for it.
10360
10361 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10362
10363static int
10364read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10365{
10366 struct attribute *attr;
10367
10368 /* If the die does not have a name, this is not a namespace
10369 alias. */
10370 attr = dwarf2_attr (die, DW_AT_name, cu);
10371 if (attr != NULL)
10372 {
10373 int num;
10374 struct die_info *d = die;
10375 struct dwarf2_cu *imported_cu = cu;
10376
10377 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10378 keep inspecting DIEs until we hit the underlying import. */
10379#define MAX_NESTED_IMPORTED_DECLARATIONS 100
10380 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10381 {
10382 attr = dwarf2_attr (d, DW_AT_import, cu);
10383 if (attr == NULL)
10384 break;
10385
10386 d = follow_die_ref (d, attr, &imported_cu);
10387 if (d->tag != DW_TAG_imported_declaration)
10388 break;
10389 }
10390
10391 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10392 {
10393 complaint (_("DIE at %s has too many recursively imported "
10394 "declarations"), sect_offset_str (d->sect_off));
10395 return 0;
10396 }
10397
10398 if (attr != NULL)
10399 {
10400 struct type *type;
10401 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10402
10403 type = get_die_type_at_offset (sect_off, cu->per_cu);
10404 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10405 {
10406 /* This declaration is a global namespace alias. Add
10407 a symbol for it whose type is the aliased namespace. */
10408 new_symbol (die, type, cu);
10409 return 1;
10410 }
10411 }
10412 }
10413
10414 return 0;
10415}
10416
10417/* Return the using directives repository (global or local?) to use in the
10418 current context for CU.
10419
10420 For Ada, imported declarations can materialize renamings, which *may* be
10421 global. However it is impossible (for now?) in DWARF to distinguish
10422 "external" imported declarations and "static" ones. As all imported
10423 declarations seem to be static in all other languages, make them all CU-wide
10424 global only in Ada. */
10425
10426static struct using_direct **
10427using_directives (struct dwarf2_cu *cu)
10428{
10429 if (cu->language == language_ada
10430 && cu->get_builder ()->outermost_context_p ())
10431 return cu->get_builder ()->get_global_using_directives ();
10432 else
10433 return cu->get_builder ()->get_local_using_directives ();
10434}
10435
10436/* Read the import statement specified by the given die and record it. */
10437
10438static void
10439read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10440{
10441 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10442 struct attribute *import_attr;
10443 struct die_info *imported_die, *child_die;
10444 struct dwarf2_cu *imported_cu;
10445 const char *imported_name;
10446 const char *imported_name_prefix;
10447 const char *canonical_name;
10448 const char *import_alias;
10449 const char *imported_declaration = NULL;
10450 const char *import_prefix;
10451 std::vector<const char *> excludes;
10452
10453 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10454 if (import_attr == NULL)
10455 {
10456 complaint (_("Tag '%s' has no DW_AT_import"),
10457 dwarf_tag_name (die->tag));
10458 return;
10459 }
10460
10461 imported_cu = cu;
10462 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10463 imported_name = dwarf2_name (imported_die, imported_cu);
10464 if (imported_name == NULL)
10465 {
10466 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10467
10468 The import in the following code:
10469 namespace A
10470 {
10471 typedef int B;
10472 }
10473
10474 int main ()
10475 {
10476 using A::B;
10477 B b;
10478 return b;
10479 }
10480
10481 ...
10482 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10483 <52> DW_AT_decl_file : 1
10484 <53> DW_AT_decl_line : 6
10485 <54> DW_AT_import : <0x75>
10486 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10487 <59> DW_AT_name : B
10488 <5b> DW_AT_decl_file : 1
10489 <5c> DW_AT_decl_line : 2
10490 <5d> DW_AT_type : <0x6e>
10491 ...
10492 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10493 <76> DW_AT_byte_size : 4
10494 <77> DW_AT_encoding : 5 (signed)
10495
10496 imports the wrong die ( 0x75 instead of 0x58 ).
10497 This case will be ignored until the gcc bug is fixed. */
10498 return;
10499 }
10500
10501 /* Figure out the local name after import. */
10502 import_alias = dwarf2_name (die, cu);
10503
10504 /* Figure out where the statement is being imported to. */
10505 import_prefix = determine_prefix (die, cu);
10506
10507 /* Figure out what the scope of the imported die is and prepend it
10508 to the name of the imported die. */
10509 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10510
10511 if (imported_die->tag != DW_TAG_namespace
10512 && imported_die->tag != DW_TAG_module)
10513 {
10514 imported_declaration = imported_name;
10515 canonical_name = imported_name_prefix;
10516 }
10517 else if (strlen (imported_name_prefix) > 0)
10518 canonical_name = obconcat (&objfile->objfile_obstack,
10519 imported_name_prefix,
10520 (cu->language == language_d ? "." : "::"),
10521 imported_name, (char *) NULL);
10522 else
10523 canonical_name = imported_name;
10524
10525 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10526 for (child_die = die->child; child_die && child_die->tag;
10527 child_die = sibling_die (child_die))
10528 {
10529 /* DWARF-4: A Fortran use statement with a “rename list” may be
10530 represented by an imported module entry with an import attribute
10531 referring to the module and owned entries corresponding to those
10532 entities that are renamed as part of being imported. */
10533
10534 if (child_die->tag != DW_TAG_imported_declaration)
10535 {
10536 complaint (_("child DW_TAG_imported_declaration expected "
10537 "- DIE at %s [in module %s]"),
10538 sect_offset_str (child_die->sect_off),
10539 objfile_name (objfile));
10540 continue;
10541 }
10542
10543 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10544 if (import_attr == NULL)
10545 {
10546 complaint (_("Tag '%s' has no DW_AT_import"),
10547 dwarf_tag_name (child_die->tag));
10548 continue;
10549 }
10550
10551 imported_cu = cu;
10552 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10553 &imported_cu);
10554 imported_name = dwarf2_name (imported_die, imported_cu);
10555 if (imported_name == NULL)
10556 {
10557 complaint (_("child DW_TAG_imported_declaration has unknown "
10558 "imported name - DIE at %s [in module %s]"),
10559 sect_offset_str (child_die->sect_off),
10560 objfile_name (objfile));
10561 continue;
10562 }
10563
10564 excludes.push_back (imported_name);
10565
10566 process_die (child_die, cu);
10567 }
10568
10569 add_using_directive (using_directives (cu),
10570 import_prefix,
10571 canonical_name,
10572 import_alias,
10573 imported_declaration,
10574 excludes,
10575 0,
10576 &objfile->objfile_obstack);
10577}
10578
10579/* ICC<14 does not output the required DW_AT_declaration on incomplete
10580 types, but gives them a size of zero. Starting with version 14,
10581 ICC is compatible with GCC. */
10582
10583static bool
10584producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10585{
10586 if (!cu->checked_producer)
10587 check_producer (cu);
10588
10589 return cu->producer_is_icc_lt_14;
10590}
10591
10592/* ICC generates a DW_AT_type for C void functions. This was observed on
10593 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10594 which says that void functions should not have a DW_AT_type. */
10595
10596static bool
10597producer_is_icc (struct dwarf2_cu *cu)
10598{
10599 if (!cu->checked_producer)
10600 check_producer (cu);
10601
10602 return cu->producer_is_icc;
10603}
10604
10605/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10606 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10607 this, it was first present in GCC release 4.3.0. */
10608
10609static bool
10610producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10611{
10612 if (!cu->checked_producer)
10613 check_producer (cu);
10614
10615 return cu->producer_is_gcc_lt_4_3;
10616}
10617
10618static file_and_directory
10619find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10620{
10621 file_and_directory res;
10622
10623 /* Find the filename. Do not use dwarf2_name here, since the filename
10624 is not a source language identifier. */
10625 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10626 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10627
10628 if (res.comp_dir == NULL
10629 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10630 && IS_ABSOLUTE_PATH (res.name))
10631 {
10632 res.comp_dir_storage = ldirname (res.name);
10633 if (!res.comp_dir_storage.empty ())
10634 res.comp_dir = res.comp_dir_storage.c_str ();
10635 }
10636 if (res.comp_dir != NULL)
10637 {
10638 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10639 directory, get rid of it. */
10640 const char *cp = strchr (res.comp_dir, ':');
10641
10642 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10643 res.comp_dir = cp + 1;
10644 }
10645
10646 if (res.name == NULL)
10647 res.name = "<unknown>";
10648
10649 return res;
10650}
10651
10652/* Handle DW_AT_stmt_list for a compilation unit.
10653 DIE is the DW_TAG_compile_unit die for CU.
10654 COMP_DIR is the compilation directory. LOWPC is passed to
10655 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10656
10657static void
10658handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10659 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10660{
10661 struct dwarf2_per_objfile *dwarf2_per_objfile
10662 = cu->per_cu->dwarf2_per_objfile;
10663 struct attribute *attr;
10664 struct line_header line_header_local;
10665 hashval_t line_header_local_hash;
10666 void **slot;
10667 int decode_mapping;
10668
10669 gdb_assert (! cu->per_cu->is_debug_types);
10670
10671 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10672 if (attr == NULL)
10673 return;
10674
10675 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10676
10677 /* The line header hash table is only created if needed (it exists to
10678 prevent redundant reading of the line table for partial_units).
10679 If we're given a partial_unit, we'll need it. If we're given a
10680 compile_unit, then use the line header hash table if it's already
10681 created, but don't create one just yet. */
10682
10683 if (dwarf2_per_objfile->line_header_hash == NULL
10684 && die->tag == DW_TAG_partial_unit)
10685 {
10686 dwarf2_per_objfile->line_header_hash
10687 .reset (htab_create_alloc (127, line_header_hash_voidp,
10688 line_header_eq_voidp,
10689 free_line_header_voidp,
10690 xcalloc, xfree));
10691 }
10692
10693 line_header_local.sect_off = line_offset;
10694 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10695 line_header_local_hash = line_header_hash (&line_header_local);
10696 if (dwarf2_per_objfile->line_header_hash != NULL)
10697 {
10698 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10699 &line_header_local,
10700 line_header_local_hash, NO_INSERT);
10701
10702 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10703 is not present in *SLOT (since if there is something in *SLOT then
10704 it will be for a partial_unit). */
10705 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10706 {
10707 gdb_assert (*slot != NULL);
10708 cu->line_header = (struct line_header *) *slot;
10709 return;
10710 }
10711 }
10712
10713 /* dwarf_decode_line_header does not yet provide sufficient information.
10714 We always have to call also dwarf_decode_lines for it. */
10715 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10716 if (lh == NULL)
10717 return;
10718
10719 cu->line_header = lh.release ();
10720 cu->line_header_die_owner = die;
10721
10722 if (dwarf2_per_objfile->line_header_hash == NULL)
10723 slot = NULL;
10724 else
10725 {
10726 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10727 &line_header_local,
10728 line_header_local_hash, INSERT);
10729 gdb_assert (slot != NULL);
10730 }
10731 if (slot != NULL && *slot == NULL)
10732 {
10733 /* This newly decoded line number information unit will be owned
10734 by line_header_hash hash table. */
10735 *slot = cu->line_header;
10736 cu->line_header_die_owner = NULL;
10737 }
10738 else
10739 {
10740 /* We cannot free any current entry in (*slot) as that struct line_header
10741 may be already used by multiple CUs. Create only temporary decoded
10742 line_header for this CU - it may happen at most once for each line
10743 number information unit. And if we're not using line_header_hash
10744 then this is what we want as well. */
10745 gdb_assert (die->tag != DW_TAG_partial_unit);
10746 }
10747 decode_mapping = (die->tag != DW_TAG_partial_unit);
10748 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10749 decode_mapping);
10750
10751}
10752
10753/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10754
10755static void
10756read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10757{
10758 struct dwarf2_per_objfile *dwarf2_per_objfile
10759 = cu->per_cu->dwarf2_per_objfile;
10760 struct objfile *objfile = dwarf2_per_objfile->objfile;
10761 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10762 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10763 CORE_ADDR highpc = ((CORE_ADDR) 0);
10764 struct attribute *attr;
10765 struct die_info *child_die;
10766 CORE_ADDR baseaddr;
10767
10768 prepare_one_comp_unit (cu, die, cu->language);
10769 baseaddr = objfile->text_section_offset ();
10770
10771 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10772
10773 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10774 from finish_block. */
10775 if (lowpc == ((CORE_ADDR) -1))
10776 lowpc = highpc;
10777 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10778
10779 file_and_directory fnd = find_file_and_directory (die, cu);
10780
10781 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10782 standardised yet. As a workaround for the language detection we fall
10783 back to the DW_AT_producer string. */
10784 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10785 cu->language = language_opencl;
10786
10787 /* Similar hack for Go. */
10788 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10789 set_cu_language (DW_LANG_Go, cu);
10790
10791 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10792
10793 /* Decode line number information if present. We do this before
10794 processing child DIEs, so that the line header table is available
10795 for DW_AT_decl_file. */
10796 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10797
10798 /* Process all dies in compilation unit. */
10799 if (die->child != NULL)
10800 {
10801 child_die = die->child;
10802 while (child_die && child_die->tag)
10803 {
10804 process_die (child_die, cu);
10805 child_die = sibling_die (child_die);
10806 }
10807 }
10808
10809 /* Decode macro information, if present. Dwarf 2 macro information
10810 refers to information in the line number info statement program
10811 header, so we can only read it if we've read the header
10812 successfully. */
10813 attr = dwarf2_attr (die, DW_AT_macros, cu);
10814 if (attr == NULL)
10815 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10816 if (attr && cu->line_header)
10817 {
10818 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10819 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10820
10821 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10822 }
10823 else
10824 {
10825 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10826 if (attr && cu->line_header)
10827 {
10828 unsigned int macro_offset = DW_UNSND (attr);
10829
10830 dwarf_decode_macros (cu, macro_offset, 0);
10831 }
10832 }
10833}
10834
10835void
10836dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10837{
10838 struct type_unit_group *tu_group;
10839 int first_time;
10840 struct attribute *attr;
10841 unsigned int i;
10842 struct signatured_type *sig_type;
10843
10844 gdb_assert (per_cu->is_debug_types);
10845 sig_type = (struct signatured_type *) per_cu;
10846
10847 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10848
10849 /* If we're using .gdb_index (includes -readnow) then
10850 per_cu->type_unit_group may not have been set up yet. */
10851 if (sig_type->type_unit_group == NULL)
10852 sig_type->type_unit_group = get_type_unit_group (this, attr);
10853 tu_group = sig_type->type_unit_group;
10854
10855 /* If we've already processed this stmt_list there's no real need to
10856 do it again, we could fake it and just recreate the part we need
10857 (file name,index -> symtab mapping). If data shows this optimization
10858 is useful we can do it then. */
10859 first_time = tu_group->compunit_symtab == NULL;
10860
10861 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10862 debug info. */
10863 line_header_up lh;
10864 if (attr != NULL)
10865 {
10866 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10867 lh = dwarf_decode_line_header (line_offset, this);
10868 }
10869 if (lh == NULL)
10870 {
10871 if (first_time)
10872 start_symtab ("", NULL, 0);
10873 else
10874 {
10875 gdb_assert (tu_group->symtabs == NULL);
10876 gdb_assert (m_builder == nullptr);
10877 struct compunit_symtab *cust = tu_group->compunit_symtab;
10878 m_builder.reset (new struct buildsym_compunit
10879 (COMPUNIT_OBJFILE (cust), "",
10880 COMPUNIT_DIRNAME (cust),
10881 compunit_language (cust),
10882 0, cust));
10883 }
10884 return;
10885 }
10886
10887 line_header = lh.release ();
10888 line_header_die_owner = die;
10889
10890 if (first_time)
10891 {
10892 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10893
10894 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10895 still initializing it, and our caller (a few levels up)
10896 process_full_type_unit still needs to know if this is the first
10897 time. */
10898
10899 tu_group->symtabs
10900 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
10901 struct symtab *, line_header->file_names_size ());
10902
10903 auto &file_names = line_header->file_names ();
10904 for (i = 0; i < file_names.size (); ++i)
10905 {
10906 file_entry &fe = file_names[i];
10907 dwarf2_start_subfile (this, fe.name,
10908 fe.include_dir (line_header));
10909 buildsym_compunit *b = get_builder ();
10910 if (b->get_current_subfile ()->symtab == NULL)
10911 {
10912 /* NOTE: start_subfile will recognize when it's been
10913 passed a file it has already seen. So we can't
10914 assume there's a simple mapping from
10915 cu->line_header->file_names to subfiles, plus
10916 cu->line_header->file_names may contain dups. */
10917 b->get_current_subfile ()->symtab
10918 = allocate_symtab (cust, b->get_current_subfile ()->name);
10919 }
10920
10921 fe.symtab = b->get_current_subfile ()->symtab;
10922 tu_group->symtabs[i] = fe.symtab;
10923 }
10924 }
10925 else
10926 {
10927 gdb_assert (m_builder == nullptr);
10928 struct compunit_symtab *cust = tu_group->compunit_symtab;
10929 m_builder.reset (new struct buildsym_compunit
10930 (COMPUNIT_OBJFILE (cust), "",
10931 COMPUNIT_DIRNAME (cust),
10932 compunit_language (cust),
10933 0, cust));
10934
10935 auto &file_names = line_header->file_names ();
10936 for (i = 0; i < file_names.size (); ++i)
10937 {
10938 file_entry &fe = file_names[i];
10939 fe.symtab = tu_group->symtabs[i];
10940 }
10941 }
10942
10943 /* The main symtab is allocated last. Type units don't have DW_AT_name
10944 so they don't have a "real" (so to speak) symtab anyway.
10945 There is later code that will assign the main symtab to all symbols
10946 that don't have one. We need to handle the case of a symbol with a
10947 missing symtab (DW_AT_decl_file) anyway. */
10948}
10949
10950/* Process DW_TAG_type_unit.
10951 For TUs we want to skip the first top level sibling if it's not the
10952 actual type being defined by this TU. In this case the first top
10953 level sibling is there to provide context only. */
10954
10955static void
10956read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10957{
10958 struct die_info *child_die;
10959
10960 prepare_one_comp_unit (cu, die, language_minimal);
10961
10962 /* Initialize (or reinitialize) the machinery for building symtabs.
10963 We do this before processing child DIEs, so that the line header table
10964 is available for DW_AT_decl_file. */
10965 cu->setup_type_unit_groups (die);
10966
10967 if (die->child != NULL)
10968 {
10969 child_die = die->child;
10970 while (child_die && child_die->tag)
10971 {
10972 process_die (child_die, cu);
10973 child_die = sibling_die (child_die);
10974 }
10975 }
10976}
10977\f
10978/* DWO/DWP files.
10979
10980 http://gcc.gnu.org/wiki/DebugFission
10981 http://gcc.gnu.org/wiki/DebugFissionDWP
10982
10983 To simplify handling of both DWO files ("object" files with the DWARF info)
10984 and DWP files (a file with the DWOs packaged up into one file), we treat
10985 DWP files as having a collection of virtual DWO files. */
10986
10987static hashval_t
10988hash_dwo_file (const void *item)
10989{
10990 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10991 hashval_t hash;
10992
10993 hash = htab_hash_string (dwo_file->dwo_name);
10994 if (dwo_file->comp_dir != NULL)
10995 hash += htab_hash_string (dwo_file->comp_dir);
10996 return hash;
10997}
10998
10999static int
11000eq_dwo_file (const void *item_lhs, const void *item_rhs)
11001{
11002 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11003 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11004
11005 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11006 return 0;
11007 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11008 return lhs->comp_dir == rhs->comp_dir;
11009 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11010}
11011
11012/* Allocate a hash table for DWO files. */
11013
11014static htab_up
11015allocate_dwo_file_hash_table ()
11016{
11017 auto delete_dwo_file = [] (void *item)
11018 {
11019 struct dwo_file *dwo_file = (struct dwo_file *) item;
11020
11021 delete dwo_file;
11022 };
11023
11024 return htab_up (htab_create_alloc (41,
11025 hash_dwo_file,
11026 eq_dwo_file,
11027 delete_dwo_file,
11028 xcalloc, xfree));
11029}
11030
11031/* Lookup DWO file DWO_NAME. */
11032
11033static void **
11034lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11035 const char *dwo_name,
11036 const char *comp_dir)
11037{
11038 struct dwo_file find_entry;
11039 void **slot;
11040
11041 if (dwarf2_per_objfile->dwo_files == NULL)
11042 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
11043
11044 find_entry.dwo_name = dwo_name;
11045 find_entry.comp_dir = comp_dir;
11046 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11047 INSERT);
11048
11049 return slot;
11050}
11051
11052static hashval_t
11053hash_dwo_unit (const void *item)
11054{
11055 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11056
11057 /* This drops the top 32 bits of the id, but is ok for a hash. */
11058 return dwo_unit->signature;
11059}
11060
11061static int
11062eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11063{
11064 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11065 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11066
11067 /* The signature is assumed to be unique within the DWO file.
11068 So while object file CU dwo_id's always have the value zero,
11069 that's OK, assuming each object file DWO file has only one CU,
11070 and that's the rule for now. */
11071 return lhs->signature == rhs->signature;
11072}
11073
11074/* Allocate a hash table for DWO CUs,TUs.
11075 There is one of these tables for each of CUs,TUs for each DWO file. */
11076
11077static htab_up
11078allocate_dwo_unit_table ()
11079{
11080 /* Start out with a pretty small number.
11081 Generally DWO files contain only one CU and maybe some TUs. */
11082 return htab_up (htab_create_alloc (3,
11083 hash_dwo_unit,
11084 eq_dwo_unit,
11085 NULL, xcalloc, xfree));
11086}
11087
11088/* die_reader_func for create_dwo_cu. */
11089
11090static void
11091create_dwo_cu_reader (const struct die_reader_specs *reader,
11092 const gdb_byte *info_ptr,
11093 struct die_info *comp_unit_die,
11094 struct dwo_file *dwo_file,
11095 struct dwo_unit *dwo_unit)
11096{
11097 struct dwarf2_cu *cu = reader->cu;
11098 sect_offset sect_off = cu->per_cu->sect_off;
11099 struct dwarf2_section_info *section = cu->per_cu->section;
11100
11101 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11102 if (!signature.has_value ())
11103 {
11104 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11105 " its dwo_id [in module %s]"),
11106 sect_offset_str (sect_off), dwo_file->dwo_name);
11107 return;
11108 }
11109
11110 dwo_unit->dwo_file = dwo_file;
11111 dwo_unit->signature = *signature;
11112 dwo_unit->section = section;
11113 dwo_unit->sect_off = sect_off;
11114 dwo_unit->length = cu->per_cu->length;
11115
11116 if (dwarf_read_debug)
11117 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11118 sect_offset_str (sect_off),
11119 hex_string (dwo_unit->signature));
11120}
11121
11122/* Create the dwo_units for the CUs in a DWO_FILE.
11123 Note: This function processes DWO files only, not DWP files. */
11124
11125static void
11126create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11127 dwarf2_cu *cu, struct dwo_file &dwo_file,
11128 dwarf2_section_info &section, htab_up &cus_htab)
11129{
11130 struct objfile *objfile = dwarf2_per_objfile->objfile;
11131 const gdb_byte *info_ptr, *end_ptr;
11132
11133 section.read (objfile);
11134 info_ptr = section.buffer;
11135
11136 if (info_ptr == NULL)
11137 return;
11138
11139 if (dwarf_read_debug)
11140 {
11141 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11142 section.get_name (),
11143 section.get_file_name ());
11144 }
11145
11146 end_ptr = info_ptr + section.size;
11147 while (info_ptr < end_ptr)
11148 {
11149 struct dwarf2_per_cu_data per_cu;
11150 struct dwo_unit read_unit {};
11151 struct dwo_unit *dwo_unit;
11152 void **slot;
11153 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11154
11155 memset (&per_cu, 0, sizeof (per_cu));
11156 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11157 per_cu.is_debug_types = 0;
11158 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11159 per_cu.section = &section;
11160
11161 cutu_reader reader (&per_cu, cu, &dwo_file);
11162 if (!reader.dummy_p)
11163 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11164 &dwo_file, &read_unit);
11165 info_ptr += per_cu.length;
11166
11167 // If the unit could not be parsed, skip it.
11168 if (read_unit.dwo_file == NULL)
11169 continue;
11170
11171 if (cus_htab == NULL)
11172 cus_htab = allocate_dwo_unit_table ();
11173
11174 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11175 *dwo_unit = read_unit;
11176 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11177 gdb_assert (slot != NULL);
11178 if (*slot != NULL)
11179 {
11180 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11181 sect_offset dup_sect_off = dup_cu->sect_off;
11182
11183 complaint (_("debug cu entry at offset %s is duplicate to"
11184 " the entry at offset %s, signature %s"),
11185 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11186 hex_string (dwo_unit->signature));
11187 }
11188 *slot = (void *)dwo_unit;
11189 }
11190}
11191
11192/* DWP file .debug_{cu,tu}_index section format:
11193 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11194
11195 DWP Version 1:
11196
11197 Both index sections have the same format, and serve to map a 64-bit
11198 signature to a set of section numbers. Each section begins with a header,
11199 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11200 indexes, and a pool of 32-bit section numbers. The index sections will be
11201 aligned at 8-byte boundaries in the file.
11202
11203 The index section header consists of:
11204
11205 V, 32 bit version number
11206 -, 32 bits unused
11207 N, 32 bit number of compilation units or type units in the index
11208 M, 32 bit number of slots in the hash table
11209
11210 Numbers are recorded using the byte order of the application binary.
11211
11212 The hash table begins at offset 16 in the section, and consists of an array
11213 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11214 order of the application binary). Unused slots in the hash table are 0.
11215 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11216
11217 The parallel table begins immediately after the hash table
11218 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11219 array of 32-bit indexes (using the byte order of the application binary),
11220 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11221 table contains a 32-bit index into the pool of section numbers. For unused
11222 hash table slots, the corresponding entry in the parallel table will be 0.
11223
11224 The pool of section numbers begins immediately following the hash table
11225 (at offset 16 + 12 * M from the beginning of the section). The pool of
11226 section numbers consists of an array of 32-bit words (using the byte order
11227 of the application binary). Each item in the array is indexed starting
11228 from 0. The hash table entry provides the index of the first section
11229 number in the set. Additional section numbers in the set follow, and the
11230 set is terminated by a 0 entry (section number 0 is not used in ELF).
11231
11232 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11233 section must be the first entry in the set, and the .debug_abbrev.dwo must
11234 be the second entry. Other members of the set may follow in any order.
11235
11236 ---
11237
11238 DWP Version 2:
11239
11240 DWP Version 2 combines all the .debug_info, etc. sections into one,
11241 and the entries in the index tables are now offsets into these sections.
11242 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11243 section.
11244
11245 Index Section Contents:
11246 Header
11247 Hash Table of Signatures dwp_hash_table.hash_table
11248 Parallel Table of Indices dwp_hash_table.unit_table
11249 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11250 Table of Section Sizes dwp_hash_table.v2.sizes
11251
11252 The index section header consists of:
11253
11254 V, 32 bit version number
11255 L, 32 bit number of columns in the table of section offsets
11256 N, 32 bit number of compilation units or type units in the index
11257 M, 32 bit number of slots in the hash table
11258
11259 Numbers are recorded using the byte order of the application binary.
11260
11261 The hash table has the same format as version 1.
11262 The parallel table of indices has the same format as version 1,
11263 except that the entries are origin-1 indices into the table of sections
11264 offsets and the table of section sizes.
11265
11266 The table of offsets begins immediately following the parallel table
11267 (at offset 16 + 12 * M from the beginning of the section). The table is
11268 a two-dimensional array of 32-bit words (using the byte order of the
11269 application binary), with L columns and N+1 rows, in row-major order.
11270 Each row in the array is indexed starting from 0. The first row provides
11271 a key to the remaining rows: each column in this row provides an identifier
11272 for a debug section, and the offsets in the same column of subsequent rows
11273 refer to that section. The section identifiers are:
11274
11275 DW_SECT_INFO 1 .debug_info.dwo
11276 DW_SECT_TYPES 2 .debug_types.dwo
11277 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11278 DW_SECT_LINE 4 .debug_line.dwo
11279 DW_SECT_LOC 5 .debug_loc.dwo
11280 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11281 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11282 DW_SECT_MACRO 8 .debug_macro.dwo
11283
11284 The offsets provided by the CU and TU index sections are the base offsets
11285 for the contributions made by each CU or TU to the corresponding section
11286 in the package file. Each CU and TU header contains an abbrev_offset
11287 field, used to find the abbreviations table for that CU or TU within the
11288 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11289 be interpreted as relative to the base offset given in the index section.
11290 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11291 should be interpreted as relative to the base offset for .debug_line.dwo,
11292 and offsets into other debug sections obtained from DWARF attributes should
11293 also be interpreted as relative to the corresponding base offset.
11294
11295 The table of sizes begins immediately following the table of offsets.
11296 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11297 with L columns and N rows, in row-major order. Each row in the array is
11298 indexed starting from 1 (row 0 is shared by the two tables).
11299
11300 ---
11301
11302 Hash table lookup is handled the same in version 1 and 2:
11303
11304 We assume that N and M will not exceed 2^32 - 1.
11305 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11306
11307 Given a 64-bit compilation unit signature or a type signature S, an entry
11308 in the hash table is located as follows:
11309
11310 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11311 the low-order k bits all set to 1.
11312
11313 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11314
11315 3) If the hash table entry at index H matches the signature, use that
11316 entry. If the hash table entry at index H is unused (all zeroes),
11317 terminate the search: the signature is not present in the table.
11318
11319 4) Let H = (H + H') modulo M. Repeat at Step 3.
11320
11321 Because M > N and H' and M are relatively prime, the search is guaranteed
11322 to stop at an unused slot or find the match. */
11323
11324/* Create a hash table to map DWO IDs to their CU/TU entry in
11325 .debug_{info,types}.dwo in DWP_FILE.
11326 Returns NULL if there isn't one.
11327 Note: This function processes DWP files only, not DWO files. */
11328
11329static struct dwp_hash_table *
11330create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11331 struct dwp_file *dwp_file, int is_debug_types)
11332{
11333 struct objfile *objfile = dwarf2_per_objfile->objfile;
11334 bfd *dbfd = dwp_file->dbfd.get ();
11335 const gdb_byte *index_ptr, *index_end;
11336 struct dwarf2_section_info *index;
11337 uint32_t version, nr_columns, nr_units, nr_slots;
11338 struct dwp_hash_table *htab;
11339
11340 if (is_debug_types)
11341 index = &dwp_file->sections.tu_index;
11342 else
11343 index = &dwp_file->sections.cu_index;
11344
11345 if (index->empty ())
11346 return NULL;
11347 index->read (objfile);
11348
11349 index_ptr = index->buffer;
11350 index_end = index_ptr + index->size;
11351
11352 version = read_4_bytes (dbfd, index_ptr);
11353 index_ptr += 4;
11354 if (version == 2)
11355 nr_columns = read_4_bytes (dbfd, index_ptr);
11356 else
11357 nr_columns = 0;
11358 index_ptr += 4;
11359 nr_units = read_4_bytes (dbfd, index_ptr);
11360 index_ptr += 4;
11361 nr_slots = read_4_bytes (dbfd, index_ptr);
11362 index_ptr += 4;
11363
11364 if (version != 1 && version != 2)
11365 {
11366 error (_("Dwarf Error: unsupported DWP file version (%s)"
11367 " [in module %s]"),
11368 pulongest (version), dwp_file->name);
11369 }
11370 if (nr_slots != (nr_slots & -nr_slots))
11371 {
11372 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11373 " is not power of 2 [in module %s]"),
11374 pulongest (nr_slots), dwp_file->name);
11375 }
11376
11377 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11378 htab->version = version;
11379 htab->nr_columns = nr_columns;
11380 htab->nr_units = nr_units;
11381 htab->nr_slots = nr_slots;
11382 htab->hash_table = index_ptr;
11383 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11384
11385 /* Exit early if the table is empty. */
11386 if (nr_slots == 0 || nr_units == 0
11387 || (version == 2 && nr_columns == 0))
11388 {
11389 /* All must be zero. */
11390 if (nr_slots != 0 || nr_units != 0
11391 || (version == 2 && nr_columns != 0))
11392 {
11393 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11394 " all zero [in modules %s]"),
11395 dwp_file->name);
11396 }
11397 return htab;
11398 }
11399
11400 if (version == 1)
11401 {
11402 htab->section_pool.v1.indices =
11403 htab->unit_table + sizeof (uint32_t) * nr_slots;
11404 /* It's harder to decide whether the section is too small in v1.
11405 V1 is deprecated anyway so we punt. */
11406 }
11407 else
11408 {
11409 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11410 int *ids = htab->section_pool.v2.section_ids;
11411 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11412 /* Reverse map for error checking. */
11413 int ids_seen[DW_SECT_MAX + 1];
11414 int i;
11415
11416 if (nr_columns < 2)
11417 {
11418 error (_("Dwarf Error: bad DWP hash table, too few columns"
11419 " in section table [in module %s]"),
11420 dwp_file->name);
11421 }
11422 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11423 {
11424 error (_("Dwarf Error: bad DWP hash table, too many columns"
11425 " in section table [in module %s]"),
11426 dwp_file->name);
11427 }
11428 memset (ids, 255, sizeof_ids);
11429 memset (ids_seen, 255, sizeof (ids_seen));
11430 for (i = 0; i < nr_columns; ++i)
11431 {
11432 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11433
11434 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11435 {
11436 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11437 " in section table [in module %s]"),
11438 id, dwp_file->name);
11439 }
11440 if (ids_seen[id] != -1)
11441 {
11442 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11443 " id %d in section table [in module %s]"),
11444 id, dwp_file->name);
11445 }
11446 ids_seen[id] = i;
11447 ids[i] = id;
11448 }
11449 /* Must have exactly one info or types section. */
11450 if (((ids_seen[DW_SECT_INFO] != -1)
11451 + (ids_seen[DW_SECT_TYPES] != -1))
11452 != 1)
11453 {
11454 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11455 " DWO info/types section [in module %s]"),
11456 dwp_file->name);
11457 }
11458 /* Must have an abbrev section. */
11459 if (ids_seen[DW_SECT_ABBREV] == -1)
11460 {
11461 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11462 " section [in module %s]"),
11463 dwp_file->name);
11464 }
11465 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11466 htab->section_pool.v2.sizes =
11467 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11468 * nr_units * nr_columns);
11469 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11470 * nr_units * nr_columns))
11471 > index_end)
11472 {
11473 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11474 " [in module %s]"),
11475 dwp_file->name);
11476 }
11477 }
11478
11479 return htab;
11480}
11481
11482/* Update SECTIONS with the data from SECTP.
11483
11484 This function is like the other "locate" section routines that are
11485 passed to bfd_map_over_sections, but in this context the sections to
11486 read comes from the DWP V1 hash table, not the full ELF section table.
11487
11488 The result is non-zero for success, or zero if an error was found. */
11489
11490static int
11491locate_v1_virtual_dwo_sections (asection *sectp,
11492 struct virtual_v1_dwo_sections *sections)
11493{
11494 const struct dwop_section_names *names = &dwop_section_names;
11495
11496 if (section_is_p (sectp->name, &names->abbrev_dwo))
11497 {
11498 /* There can be only one. */
11499 if (sections->abbrev.s.section != NULL)
11500 return 0;
11501 sections->abbrev.s.section = sectp;
11502 sections->abbrev.size = bfd_section_size (sectp);
11503 }
11504 else if (section_is_p (sectp->name, &names->info_dwo)
11505 || section_is_p (sectp->name, &names->types_dwo))
11506 {
11507 /* There can be only one. */
11508 if (sections->info_or_types.s.section != NULL)
11509 return 0;
11510 sections->info_or_types.s.section = sectp;
11511 sections->info_or_types.size = bfd_section_size (sectp);
11512 }
11513 else if (section_is_p (sectp->name, &names->line_dwo))
11514 {
11515 /* There can be only one. */
11516 if (sections->line.s.section != NULL)
11517 return 0;
11518 sections->line.s.section = sectp;
11519 sections->line.size = bfd_section_size (sectp);
11520 }
11521 else if (section_is_p (sectp->name, &names->loc_dwo))
11522 {
11523 /* There can be only one. */
11524 if (sections->loc.s.section != NULL)
11525 return 0;
11526 sections->loc.s.section = sectp;
11527 sections->loc.size = bfd_section_size (sectp);
11528 }
11529 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11530 {
11531 /* There can be only one. */
11532 if (sections->macinfo.s.section != NULL)
11533 return 0;
11534 sections->macinfo.s.section = sectp;
11535 sections->macinfo.size = bfd_section_size (sectp);
11536 }
11537 else if (section_is_p (sectp->name, &names->macro_dwo))
11538 {
11539 /* There can be only one. */
11540 if (sections->macro.s.section != NULL)
11541 return 0;
11542 sections->macro.s.section = sectp;
11543 sections->macro.size = bfd_section_size (sectp);
11544 }
11545 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11546 {
11547 /* There can be only one. */
11548 if (sections->str_offsets.s.section != NULL)
11549 return 0;
11550 sections->str_offsets.s.section = sectp;
11551 sections->str_offsets.size = bfd_section_size (sectp);
11552 }
11553 else
11554 {
11555 /* No other kind of section is valid. */
11556 return 0;
11557 }
11558
11559 return 1;
11560}
11561
11562/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11563 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11564 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11565 This is for DWP version 1 files. */
11566
11567static struct dwo_unit *
11568create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11569 struct dwp_file *dwp_file,
11570 uint32_t unit_index,
11571 const char *comp_dir,
11572 ULONGEST signature, int is_debug_types)
11573{
11574 struct objfile *objfile = dwarf2_per_objfile->objfile;
11575 const struct dwp_hash_table *dwp_htab =
11576 is_debug_types ? dwp_file->tus : dwp_file->cus;
11577 bfd *dbfd = dwp_file->dbfd.get ();
11578 const char *kind = is_debug_types ? "TU" : "CU";
11579 struct dwo_file *dwo_file;
11580 struct dwo_unit *dwo_unit;
11581 struct virtual_v1_dwo_sections sections;
11582 void **dwo_file_slot;
11583 int i;
11584
11585 gdb_assert (dwp_file->version == 1);
11586
11587 if (dwarf_read_debug)
11588 {
11589 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11590 kind,
11591 pulongest (unit_index), hex_string (signature),
11592 dwp_file->name);
11593 }
11594
11595 /* Fetch the sections of this DWO unit.
11596 Put a limit on the number of sections we look for so that bad data
11597 doesn't cause us to loop forever. */
11598
11599#define MAX_NR_V1_DWO_SECTIONS \
11600 (1 /* .debug_info or .debug_types */ \
11601 + 1 /* .debug_abbrev */ \
11602 + 1 /* .debug_line */ \
11603 + 1 /* .debug_loc */ \
11604 + 1 /* .debug_str_offsets */ \
11605 + 1 /* .debug_macro or .debug_macinfo */ \
11606 + 1 /* trailing zero */)
11607
11608 memset (&sections, 0, sizeof (sections));
11609
11610 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11611 {
11612 asection *sectp;
11613 uint32_t section_nr =
11614 read_4_bytes (dbfd,
11615 dwp_htab->section_pool.v1.indices
11616 + (unit_index + i) * sizeof (uint32_t));
11617
11618 if (section_nr == 0)
11619 break;
11620 if (section_nr >= dwp_file->num_sections)
11621 {
11622 error (_("Dwarf Error: bad DWP hash table, section number too large"
11623 " [in module %s]"),
11624 dwp_file->name);
11625 }
11626
11627 sectp = dwp_file->elf_sections[section_nr];
11628 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11629 {
11630 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11631 " [in module %s]"),
11632 dwp_file->name);
11633 }
11634 }
11635
11636 if (i < 2
11637 || sections.info_or_types.empty ()
11638 || sections.abbrev.empty ())
11639 {
11640 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11641 " [in module %s]"),
11642 dwp_file->name);
11643 }
11644 if (i == MAX_NR_V1_DWO_SECTIONS)
11645 {
11646 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11647 " [in module %s]"),
11648 dwp_file->name);
11649 }
11650
11651 /* It's easier for the rest of the code if we fake a struct dwo_file and
11652 have dwo_unit "live" in that. At least for now.
11653
11654 The DWP file can be made up of a random collection of CUs and TUs.
11655 However, for each CU + set of TUs that came from the same original DWO
11656 file, we can combine them back into a virtual DWO file to save space
11657 (fewer struct dwo_file objects to allocate). Remember that for really
11658 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11659
11660 std::string virtual_dwo_name =
11661 string_printf ("virtual-dwo/%d-%d-%d-%d",
11662 sections.abbrev.get_id (),
11663 sections.line.get_id (),
11664 sections.loc.get_id (),
11665 sections.str_offsets.get_id ());
11666 /* Can we use an existing virtual DWO file? */
11667 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11668 virtual_dwo_name.c_str (),
11669 comp_dir);
11670 /* Create one if necessary. */
11671 if (*dwo_file_slot == NULL)
11672 {
11673 if (dwarf_read_debug)
11674 {
11675 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11676 virtual_dwo_name.c_str ());
11677 }
11678 dwo_file = new struct dwo_file;
11679 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
11680 virtual_dwo_name);
11681 dwo_file->comp_dir = comp_dir;
11682 dwo_file->sections.abbrev = sections.abbrev;
11683 dwo_file->sections.line = sections.line;
11684 dwo_file->sections.loc = sections.loc;
11685 dwo_file->sections.macinfo = sections.macinfo;
11686 dwo_file->sections.macro = sections.macro;
11687 dwo_file->sections.str_offsets = sections.str_offsets;
11688 /* The "str" section is global to the entire DWP file. */
11689 dwo_file->sections.str = dwp_file->sections.str;
11690 /* The info or types section is assigned below to dwo_unit,
11691 there's no need to record it in dwo_file.
11692 Also, we can't simply record type sections in dwo_file because
11693 we record a pointer into the vector in dwo_unit. As we collect more
11694 types we'll grow the vector and eventually have to reallocate space
11695 for it, invalidating all copies of pointers into the previous
11696 contents. */
11697 *dwo_file_slot = dwo_file;
11698 }
11699 else
11700 {
11701 if (dwarf_read_debug)
11702 {
11703 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11704 virtual_dwo_name.c_str ());
11705 }
11706 dwo_file = (struct dwo_file *) *dwo_file_slot;
11707 }
11708
11709 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11710 dwo_unit->dwo_file = dwo_file;
11711 dwo_unit->signature = signature;
11712 dwo_unit->section =
11713 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11714 *dwo_unit->section = sections.info_or_types;
11715 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11716
11717 return dwo_unit;
11718}
11719
11720/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11721 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11722 piece within that section used by a TU/CU, return a virtual section
11723 of just that piece. */
11724
11725static struct dwarf2_section_info
11726create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
11727 struct dwarf2_section_info *section,
11728 bfd_size_type offset, bfd_size_type size)
11729{
11730 struct dwarf2_section_info result;
11731 asection *sectp;
11732
11733 gdb_assert (section != NULL);
11734 gdb_assert (!section->is_virtual);
11735
11736 memset (&result, 0, sizeof (result));
11737 result.s.containing_section = section;
11738 result.is_virtual = true;
11739
11740 if (size == 0)
11741 return result;
11742
11743 sectp = section->get_bfd_section ();
11744
11745 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11746 bounds of the real section. This is a pretty-rare event, so just
11747 flag an error (easier) instead of a warning and trying to cope. */
11748 if (sectp == NULL
11749 || offset + size > bfd_section_size (sectp))
11750 {
11751 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11752 " in section %s [in module %s]"),
11753 sectp ? bfd_section_name (sectp) : "<unknown>",
11754 objfile_name (dwarf2_per_objfile->objfile));
11755 }
11756
11757 result.virtual_offset = offset;
11758 result.size = size;
11759 return result;
11760}
11761
11762/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11763 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11764 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11765 This is for DWP version 2 files. */
11766
11767static struct dwo_unit *
11768create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11769 struct dwp_file *dwp_file,
11770 uint32_t unit_index,
11771 const char *comp_dir,
11772 ULONGEST signature, int is_debug_types)
11773{
11774 struct objfile *objfile = dwarf2_per_objfile->objfile;
11775 const struct dwp_hash_table *dwp_htab =
11776 is_debug_types ? dwp_file->tus : dwp_file->cus;
11777 bfd *dbfd = dwp_file->dbfd.get ();
11778 const char *kind = is_debug_types ? "TU" : "CU";
11779 struct dwo_file *dwo_file;
11780 struct dwo_unit *dwo_unit;
11781 struct virtual_v2_dwo_sections sections;
11782 void **dwo_file_slot;
11783 int i;
11784
11785 gdb_assert (dwp_file->version == 2);
11786
11787 if (dwarf_read_debug)
11788 {
11789 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11790 kind,
11791 pulongest (unit_index), hex_string (signature),
11792 dwp_file->name);
11793 }
11794
11795 /* Fetch the section offsets of this DWO unit. */
11796
11797 memset (&sections, 0, sizeof (sections));
11798
11799 for (i = 0; i < dwp_htab->nr_columns; ++i)
11800 {
11801 uint32_t offset = read_4_bytes (dbfd,
11802 dwp_htab->section_pool.v2.offsets
11803 + (((unit_index - 1) * dwp_htab->nr_columns
11804 + i)
11805 * sizeof (uint32_t)));
11806 uint32_t size = read_4_bytes (dbfd,
11807 dwp_htab->section_pool.v2.sizes
11808 + (((unit_index - 1) * dwp_htab->nr_columns
11809 + i)
11810 * sizeof (uint32_t)));
11811
11812 switch (dwp_htab->section_pool.v2.section_ids[i])
11813 {
11814 case DW_SECT_INFO:
11815 case DW_SECT_TYPES:
11816 sections.info_or_types_offset = offset;
11817 sections.info_or_types_size = size;
11818 break;
11819 case DW_SECT_ABBREV:
11820 sections.abbrev_offset = offset;
11821 sections.abbrev_size = size;
11822 break;
11823 case DW_SECT_LINE:
11824 sections.line_offset = offset;
11825 sections.line_size = size;
11826 break;
11827 case DW_SECT_LOC:
11828 sections.loc_offset = offset;
11829 sections.loc_size = size;
11830 break;
11831 case DW_SECT_STR_OFFSETS:
11832 sections.str_offsets_offset = offset;
11833 sections.str_offsets_size = size;
11834 break;
11835 case DW_SECT_MACINFO:
11836 sections.macinfo_offset = offset;
11837 sections.macinfo_size = size;
11838 break;
11839 case DW_SECT_MACRO:
11840 sections.macro_offset = offset;
11841 sections.macro_size = size;
11842 break;
11843 }
11844 }
11845
11846 /* It's easier for the rest of the code if we fake a struct dwo_file and
11847 have dwo_unit "live" in that. At least for now.
11848
11849 The DWP file can be made up of a random collection of CUs and TUs.
11850 However, for each CU + set of TUs that came from the same original DWO
11851 file, we can combine them back into a virtual DWO file to save space
11852 (fewer struct dwo_file objects to allocate). Remember that for really
11853 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11854
11855 std::string virtual_dwo_name =
11856 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11857 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11858 (long) (sections.line_size ? sections.line_offset : 0),
11859 (long) (sections.loc_size ? sections.loc_offset : 0),
11860 (long) (sections.str_offsets_size
11861 ? sections.str_offsets_offset : 0));
11862 /* Can we use an existing virtual DWO file? */
11863 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11864 virtual_dwo_name.c_str (),
11865 comp_dir);
11866 /* Create one if necessary. */
11867 if (*dwo_file_slot == NULL)
11868 {
11869 if (dwarf_read_debug)
11870 {
11871 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11872 virtual_dwo_name.c_str ());
11873 }
11874 dwo_file = new struct dwo_file;
11875 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
11876 virtual_dwo_name);
11877 dwo_file->comp_dir = comp_dir;
11878 dwo_file->sections.abbrev =
11879 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
11880 sections.abbrev_offset, sections.abbrev_size);
11881 dwo_file->sections.line =
11882 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
11883 sections.line_offset, sections.line_size);
11884 dwo_file->sections.loc =
11885 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
11886 sections.loc_offset, sections.loc_size);
11887 dwo_file->sections.macinfo =
11888 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
11889 sections.macinfo_offset, sections.macinfo_size);
11890 dwo_file->sections.macro =
11891 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
11892 sections.macro_offset, sections.macro_size);
11893 dwo_file->sections.str_offsets =
11894 create_dwp_v2_section (dwarf2_per_objfile,
11895 &dwp_file->sections.str_offsets,
11896 sections.str_offsets_offset,
11897 sections.str_offsets_size);
11898 /* The "str" section is global to the entire DWP file. */
11899 dwo_file->sections.str = dwp_file->sections.str;
11900 /* The info or types section is assigned below to dwo_unit,
11901 there's no need to record it in dwo_file.
11902 Also, we can't simply record type sections in dwo_file because
11903 we record a pointer into the vector in dwo_unit. As we collect more
11904 types we'll grow the vector and eventually have to reallocate space
11905 for it, invalidating all copies of pointers into the previous
11906 contents. */
11907 *dwo_file_slot = dwo_file;
11908 }
11909 else
11910 {
11911 if (dwarf_read_debug)
11912 {
11913 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11914 virtual_dwo_name.c_str ());
11915 }
11916 dwo_file = (struct dwo_file *) *dwo_file_slot;
11917 }
11918
11919 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11920 dwo_unit->dwo_file = dwo_file;
11921 dwo_unit->signature = signature;
11922 dwo_unit->section =
11923 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11924 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
11925 is_debug_types
11926 ? &dwp_file->sections.types
11927 : &dwp_file->sections.info,
11928 sections.info_or_types_offset,
11929 sections.info_or_types_size);
11930 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11931
11932 return dwo_unit;
11933}
11934
11935/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11936 Returns NULL if the signature isn't found. */
11937
11938static struct dwo_unit *
11939lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
11940 struct dwp_file *dwp_file, const char *comp_dir,
11941 ULONGEST signature, int is_debug_types)
11942{
11943 const struct dwp_hash_table *dwp_htab =
11944 is_debug_types ? dwp_file->tus : dwp_file->cus;
11945 bfd *dbfd = dwp_file->dbfd.get ();
11946 uint32_t mask = dwp_htab->nr_slots - 1;
11947 uint32_t hash = signature & mask;
11948 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11949 unsigned int i;
11950 void **slot;
11951 struct dwo_unit find_dwo_cu;
11952
11953 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11954 find_dwo_cu.signature = signature;
11955 slot = htab_find_slot (is_debug_types
11956 ? dwp_file->loaded_tus.get ()
11957 : dwp_file->loaded_cus.get (),
11958 &find_dwo_cu, INSERT);
11959
11960 if (*slot != NULL)
11961 return (struct dwo_unit *) *slot;
11962
11963 /* Use a for loop so that we don't loop forever on bad debug info. */
11964 for (i = 0; i < dwp_htab->nr_slots; ++i)
11965 {
11966 ULONGEST signature_in_table;
11967
11968 signature_in_table =
11969 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
11970 if (signature_in_table == signature)
11971 {
11972 uint32_t unit_index =
11973 read_4_bytes (dbfd,
11974 dwp_htab->unit_table + hash * sizeof (uint32_t));
11975
11976 if (dwp_file->version == 1)
11977 {
11978 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
11979 dwp_file, unit_index,
11980 comp_dir, signature,
11981 is_debug_types);
11982 }
11983 else
11984 {
11985 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
11986 dwp_file, unit_index,
11987 comp_dir, signature,
11988 is_debug_types);
11989 }
11990 return (struct dwo_unit *) *slot;
11991 }
11992 if (signature_in_table == 0)
11993 return NULL;
11994 hash = (hash + hash2) & mask;
11995 }
11996
11997 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
11998 " [in module %s]"),
11999 dwp_file->name);
12000}
12001
12002/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12003 Open the file specified by FILE_NAME and hand it off to BFD for
12004 preliminary analysis. Return a newly initialized bfd *, which
12005 includes a canonicalized copy of FILE_NAME.
12006 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12007 SEARCH_CWD is true if the current directory is to be searched.
12008 It will be searched before debug-file-directory.
12009 If successful, the file is added to the bfd include table of the
12010 objfile's bfd (see gdb_bfd_record_inclusion).
12011 If unable to find/open the file, return NULL.
12012 NOTE: This function is derived from symfile_bfd_open. */
12013
12014static gdb_bfd_ref_ptr
12015try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12016 const char *file_name, int is_dwp, int search_cwd)
12017{
12018 int desc;
12019 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12020 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12021 to debug_file_directory. */
12022 const char *search_path;
12023 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12024
12025 gdb::unique_xmalloc_ptr<char> search_path_holder;
12026 if (search_cwd)
12027 {
12028 if (*debug_file_directory != '\0')
12029 {
12030 search_path_holder.reset (concat (".", dirname_separator_string,
12031 debug_file_directory,
12032 (char *) NULL));
12033 search_path = search_path_holder.get ();
12034 }
12035 else
12036 search_path = ".";
12037 }
12038 else
12039 search_path = debug_file_directory;
12040
12041 openp_flags flags = OPF_RETURN_REALPATH;
12042 if (is_dwp)
12043 flags |= OPF_SEARCH_IN_PATH;
12044
12045 gdb::unique_xmalloc_ptr<char> absolute_name;
12046 desc = openp (search_path, flags, file_name,
12047 O_RDONLY | O_BINARY, &absolute_name);
12048 if (desc < 0)
12049 return NULL;
12050
12051 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12052 gnutarget, desc));
12053 if (sym_bfd == NULL)
12054 return NULL;
12055 bfd_set_cacheable (sym_bfd.get (), 1);
12056
12057 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12058 return NULL;
12059
12060 /* Success. Record the bfd as having been included by the objfile's bfd.
12061 This is important because things like demangled_names_hash lives in the
12062 objfile's per_bfd space and may have references to things like symbol
12063 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12064 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12065
12066 return sym_bfd;
12067}
12068
12069/* Try to open DWO file FILE_NAME.
12070 COMP_DIR is the DW_AT_comp_dir attribute.
12071 The result is the bfd handle of the file.
12072 If there is a problem finding or opening the file, return NULL.
12073 Upon success, the canonicalized path of the file is stored in the bfd,
12074 same as symfile_bfd_open. */
12075
12076static gdb_bfd_ref_ptr
12077open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12078 const char *file_name, const char *comp_dir)
12079{
12080 if (IS_ABSOLUTE_PATH (file_name))
12081 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12082 0 /*is_dwp*/, 0 /*search_cwd*/);
12083
12084 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12085
12086 if (comp_dir != NULL)
12087 {
12088 gdb::unique_xmalloc_ptr<char> path_to_try
12089 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12090
12091 /* NOTE: If comp_dir is a relative path, this will also try the
12092 search path, which seems useful. */
12093 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12094 path_to_try.get (),
12095 0 /*is_dwp*/,
12096 1 /*search_cwd*/));
12097 if (abfd != NULL)
12098 return abfd;
12099 }
12100
12101 /* That didn't work, try debug-file-directory, which, despite its name,
12102 is a list of paths. */
12103
12104 if (*debug_file_directory == '\0')
12105 return NULL;
12106
12107 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12108 0 /*is_dwp*/, 1 /*search_cwd*/);
12109}
12110
12111/* This function is mapped across the sections and remembers the offset and
12112 size of each of the DWO debugging sections we are interested in. */
12113
12114static void
12115dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12116{
12117 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12118 const struct dwop_section_names *names = &dwop_section_names;
12119
12120 if (section_is_p (sectp->name, &names->abbrev_dwo))
12121 {
12122 dwo_sections->abbrev.s.section = sectp;
12123 dwo_sections->abbrev.size = bfd_section_size (sectp);
12124 }
12125 else if (section_is_p (sectp->name, &names->info_dwo))
12126 {
12127 dwo_sections->info.s.section = sectp;
12128 dwo_sections->info.size = bfd_section_size (sectp);
12129 }
12130 else if (section_is_p (sectp->name, &names->line_dwo))
12131 {
12132 dwo_sections->line.s.section = sectp;
12133 dwo_sections->line.size = bfd_section_size (sectp);
12134 }
12135 else if (section_is_p (sectp->name, &names->loc_dwo))
12136 {
12137 dwo_sections->loc.s.section = sectp;
12138 dwo_sections->loc.size = bfd_section_size (sectp);
12139 }
12140 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12141 {
12142 dwo_sections->macinfo.s.section = sectp;
12143 dwo_sections->macinfo.size = bfd_section_size (sectp);
12144 }
12145 else if (section_is_p (sectp->name, &names->macro_dwo))
12146 {
12147 dwo_sections->macro.s.section = sectp;
12148 dwo_sections->macro.size = bfd_section_size (sectp);
12149 }
12150 else if (section_is_p (sectp->name, &names->str_dwo))
12151 {
12152 dwo_sections->str.s.section = sectp;
12153 dwo_sections->str.size = bfd_section_size (sectp);
12154 }
12155 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12156 {
12157 dwo_sections->str_offsets.s.section = sectp;
12158 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12159 }
12160 else if (section_is_p (sectp->name, &names->types_dwo))
12161 {
12162 struct dwarf2_section_info type_section;
12163
12164 memset (&type_section, 0, sizeof (type_section));
12165 type_section.s.section = sectp;
12166 type_section.size = bfd_section_size (sectp);
12167 dwo_sections->types.push_back (type_section);
12168 }
12169}
12170
12171/* Initialize the use of the DWO file specified by DWO_NAME and referenced
12172 by PER_CU. This is for the non-DWP case.
12173 The result is NULL if DWO_NAME can't be found. */
12174
12175static struct dwo_file *
12176open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12177 const char *dwo_name, const char *comp_dir)
12178{
12179 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12180
12181 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12182 if (dbfd == NULL)
12183 {
12184 if (dwarf_read_debug)
12185 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12186 return NULL;
12187 }
12188
12189 dwo_file_up dwo_file (new struct dwo_file);
12190 dwo_file->dwo_name = dwo_name;
12191 dwo_file->comp_dir = comp_dir;
12192 dwo_file->dbfd = std::move (dbfd);
12193
12194 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12195 &dwo_file->sections);
12196
12197 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12198 dwo_file->sections.info, dwo_file->cus);
12199
12200 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12201 dwo_file->sections.types, dwo_file->tus);
12202
12203 if (dwarf_read_debug)
12204 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12205
12206 return dwo_file.release ();
12207}
12208
12209/* This function is mapped across the sections and remembers the offset and
12210 size of each of the DWP debugging sections common to version 1 and 2 that
12211 we are interested in. */
12212
12213static void
12214dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12215 void *dwp_file_ptr)
12216{
12217 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12218 const struct dwop_section_names *names = &dwop_section_names;
12219 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12220
12221 /* Record the ELF section number for later lookup: this is what the
12222 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12223 gdb_assert (elf_section_nr < dwp_file->num_sections);
12224 dwp_file->elf_sections[elf_section_nr] = sectp;
12225
12226 /* Look for specific sections that we need. */
12227 if (section_is_p (sectp->name, &names->str_dwo))
12228 {
12229 dwp_file->sections.str.s.section = sectp;
12230 dwp_file->sections.str.size = bfd_section_size (sectp);
12231 }
12232 else if (section_is_p (sectp->name, &names->cu_index))
12233 {
12234 dwp_file->sections.cu_index.s.section = sectp;
12235 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12236 }
12237 else if (section_is_p (sectp->name, &names->tu_index))
12238 {
12239 dwp_file->sections.tu_index.s.section = sectp;
12240 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12241 }
12242}
12243
12244/* This function is mapped across the sections and remembers the offset and
12245 size of each of the DWP version 2 debugging sections that we are interested
12246 in. This is split into a separate function because we don't know if we
12247 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12248
12249static void
12250dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12251{
12252 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12253 const struct dwop_section_names *names = &dwop_section_names;
12254 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12255
12256 /* Record the ELF section number for later lookup: this is what the
12257 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12258 gdb_assert (elf_section_nr < dwp_file->num_sections);
12259 dwp_file->elf_sections[elf_section_nr] = sectp;
12260
12261 /* Look for specific sections that we need. */
12262 if (section_is_p (sectp->name, &names->abbrev_dwo))
12263 {
12264 dwp_file->sections.abbrev.s.section = sectp;
12265 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12266 }
12267 else if (section_is_p (sectp->name, &names->info_dwo))
12268 {
12269 dwp_file->sections.info.s.section = sectp;
12270 dwp_file->sections.info.size = bfd_section_size (sectp);
12271 }
12272 else if (section_is_p (sectp->name, &names->line_dwo))
12273 {
12274 dwp_file->sections.line.s.section = sectp;
12275 dwp_file->sections.line.size = bfd_section_size (sectp);
12276 }
12277 else if (section_is_p (sectp->name, &names->loc_dwo))
12278 {
12279 dwp_file->sections.loc.s.section = sectp;
12280 dwp_file->sections.loc.size = bfd_section_size (sectp);
12281 }
12282 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12283 {
12284 dwp_file->sections.macinfo.s.section = sectp;
12285 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12286 }
12287 else if (section_is_p (sectp->name, &names->macro_dwo))
12288 {
12289 dwp_file->sections.macro.s.section = sectp;
12290 dwp_file->sections.macro.size = bfd_section_size (sectp);
12291 }
12292 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12293 {
12294 dwp_file->sections.str_offsets.s.section = sectp;
12295 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12296 }
12297 else if (section_is_p (sectp->name, &names->types_dwo))
12298 {
12299 dwp_file->sections.types.s.section = sectp;
12300 dwp_file->sections.types.size = bfd_section_size (sectp);
12301 }
12302}
12303
12304/* Hash function for dwp_file loaded CUs/TUs. */
12305
12306static hashval_t
12307hash_dwp_loaded_cutus (const void *item)
12308{
12309 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12310
12311 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12312 return dwo_unit->signature;
12313}
12314
12315/* Equality function for dwp_file loaded CUs/TUs. */
12316
12317static int
12318eq_dwp_loaded_cutus (const void *a, const void *b)
12319{
12320 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12321 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12322
12323 return dua->signature == dub->signature;
12324}
12325
12326/* Allocate a hash table for dwp_file loaded CUs/TUs. */
12327
12328static htab_up
12329allocate_dwp_loaded_cutus_table ()
12330{
12331 return htab_up (htab_create_alloc (3,
12332 hash_dwp_loaded_cutus,
12333 eq_dwp_loaded_cutus,
12334 NULL, xcalloc, xfree));
12335}
12336
12337/* Try to open DWP file FILE_NAME.
12338 The result is the bfd handle of the file.
12339 If there is a problem finding or opening the file, return NULL.
12340 Upon success, the canonicalized path of the file is stored in the bfd,
12341 same as symfile_bfd_open. */
12342
12343static gdb_bfd_ref_ptr
12344open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12345 const char *file_name)
12346{
12347 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12348 1 /*is_dwp*/,
12349 1 /*search_cwd*/));
12350 if (abfd != NULL)
12351 return abfd;
12352
12353 /* Work around upstream bug 15652.
12354 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12355 [Whether that's a "bug" is debatable, but it is getting in our way.]
12356 We have no real idea where the dwp file is, because gdb's realpath-ing
12357 of the executable's path may have discarded the needed info.
12358 [IWBN if the dwp file name was recorded in the executable, akin to
12359 .gnu_debuglink, but that doesn't exist yet.]
12360 Strip the directory from FILE_NAME and search again. */
12361 if (*debug_file_directory != '\0')
12362 {
12363 /* Don't implicitly search the current directory here.
12364 If the user wants to search "." to handle this case,
12365 it must be added to debug-file-directory. */
12366 return try_open_dwop_file (dwarf2_per_objfile,
12367 lbasename (file_name), 1 /*is_dwp*/,
12368 0 /*search_cwd*/);
12369 }
12370
12371 return NULL;
12372}
12373
12374/* Initialize the use of the DWP file for the current objfile.
12375 By convention the name of the DWP file is ${objfile}.dwp.
12376 The result is NULL if it can't be found. */
12377
12378static std::unique_ptr<struct dwp_file>
12379open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12380{
12381 struct objfile *objfile = dwarf2_per_objfile->objfile;
12382
12383 /* Try to find first .dwp for the binary file before any symbolic links
12384 resolving. */
12385
12386 /* If the objfile is a debug file, find the name of the real binary
12387 file and get the name of dwp file from there. */
12388 std::string dwp_name;
12389 if (objfile->separate_debug_objfile_backlink != NULL)
12390 {
12391 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12392 const char *backlink_basename = lbasename (backlink->original_name);
12393
12394 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12395 }
12396 else
12397 dwp_name = objfile->original_name;
12398
12399 dwp_name += ".dwp";
12400
12401 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12402 if (dbfd == NULL
12403 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12404 {
12405 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12406 dwp_name = objfile_name (objfile);
12407 dwp_name += ".dwp";
12408 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12409 }
12410
12411 if (dbfd == NULL)
12412 {
12413 if (dwarf_read_debug)
12414 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12415 return std::unique_ptr<dwp_file> ();
12416 }
12417
12418 const char *name = bfd_get_filename (dbfd.get ());
12419 std::unique_ptr<struct dwp_file> dwp_file
12420 (new struct dwp_file (name, std::move (dbfd)));
12421
12422 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12423 dwp_file->elf_sections =
12424 OBSTACK_CALLOC (&objfile->objfile_obstack,
12425 dwp_file->num_sections, asection *);
12426
12427 bfd_map_over_sections (dwp_file->dbfd.get (),
12428 dwarf2_locate_common_dwp_sections,
12429 dwp_file.get ());
12430
12431 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12432 0);
12433
12434 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12435 1);
12436
12437 /* The DWP file version is stored in the hash table. Oh well. */
12438 if (dwp_file->cus && dwp_file->tus
12439 && dwp_file->cus->version != dwp_file->tus->version)
12440 {
12441 /* Technically speaking, we should try to limp along, but this is
12442 pretty bizarre. We use pulongest here because that's the established
12443 portability solution (e.g, we cannot use %u for uint32_t). */
12444 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12445 " TU version %s [in DWP file %s]"),
12446 pulongest (dwp_file->cus->version),
12447 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12448 }
12449
12450 if (dwp_file->cus)
12451 dwp_file->version = dwp_file->cus->version;
12452 else if (dwp_file->tus)
12453 dwp_file->version = dwp_file->tus->version;
12454 else
12455 dwp_file->version = 2;
12456
12457 if (dwp_file->version == 2)
12458 bfd_map_over_sections (dwp_file->dbfd.get (),
12459 dwarf2_locate_v2_dwp_sections,
12460 dwp_file.get ());
12461
12462 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12463 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12464
12465 if (dwarf_read_debug)
12466 {
12467 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12468 fprintf_unfiltered (gdb_stdlog,
12469 " %s CUs, %s TUs\n",
12470 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12471 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12472 }
12473
12474 return dwp_file;
12475}
12476
12477/* Wrapper around open_and_init_dwp_file, only open it once. */
12478
12479static struct dwp_file *
12480get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12481{
12482 if (! dwarf2_per_objfile->dwp_checked)
12483 {
12484 dwarf2_per_objfile->dwp_file
12485 = open_and_init_dwp_file (dwarf2_per_objfile);
12486 dwarf2_per_objfile->dwp_checked = 1;
12487 }
12488 return dwarf2_per_objfile->dwp_file.get ();
12489}
12490
12491/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12492 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12493 or in the DWP file for the objfile, referenced by THIS_UNIT.
12494 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12495 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12496
12497 This is called, for example, when wanting to read a variable with a
12498 complex location. Therefore we don't want to do file i/o for every call.
12499 Therefore we don't want to look for a DWO file on every call.
12500 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12501 then we check if we've already seen DWO_NAME, and only THEN do we check
12502 for a DWO file.
12503
12504 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12505 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12506
12507static struct dwo_unit *
12508lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12509 const char *dwo_name, const char *comp_dir,
12510 ULONGEST signature, int is_debug_types)
12511{
12512 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12513 struct objfile *objfile = dwarf2_per_objfile->objfile;
12514 const char *kind = is_debug_types ? "TU" : "CU";
12515 void **dwo_file_slot;
12516 struct dwo_file *dwo_file;
12517 struct dwp_file *dwp_file;
12518
12519 /* First see if there's a DWP file.
12520 If we have a DWP file but didn't find the DWO inside it, don't
12521 look for the original DWO file. It makes gdb behave differently
12522 depending on whether one is debugging in the build tree. */
12523
12524 dwp_file = get_dwp_file (dwarf2_per_objfile);
12525 if (dwp_file != NULL)
12526 {
12527 const struct dwp_hash_table *dwp_htab =
12528 is_debug_types ? dwp_file->tus : dwp_file->cus;
12529
12530 if (dwp_htab != NULL)
12531 {
12532 struct dwo_unit *dwo_cutu =
12533 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12534 signature, is_debug_types);
12535
12536 if (dwo_cutu != NULL)
12537 {
12538 if (dwarf_read_debug)
12539 {
12540 fprintf_unfiltered (gdb_stdlog,
12541 "Virtual DWO %s %s found: @%s\n",
12542 kind, hex_string (signature),
12543 host_address_to_string (dwo_cutu));
12544 }
12545 return dwo_cutu;
12546 }
12547 }
12548 }
12549 else
12550 {
12551 /* No DWP file, look for the DWO file. */
12552
12553 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12554 dwo_name, comp_dir);
12555 if (*dwo_file_slot == NULL)
12556 {
12557 /* Read in the file and build a table of the CUs/TUs it contains. */
12558 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12559 }
12560 /* NOTE: This will be NULL if unable to open the file. */
12561 dwo_file = (struct dwo_file *) *dwo_file_slot;
12562
12563 if (dwo_file != NULL)
12564 {
12565 struct dwo_unit *dwo_cutu = NULL;
12566
12567 if (is_debug_types && dwo_file->tus)
12568 {
12569 struct dwo_unit find_dwo_cutu;
12570
12571 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12572 find_dwo_cutu.signature = signature;
12573 dwo_cutu
12574 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12575 &find_dwo_cutu);
12576 }
12577 else if (!is_debug_types && dwo_file->cus)
12578 {
12579 struct dwo_unit find_dwo_cutu;
12580
12581 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12582 find_dwo_cutu.signature = signature;
12583 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12584 &find_dwo_cutu);
12585 }
12586
12587 if (dwo_cutu != NULL)
12588 {
12589 if (dwarf_read_debug)
12590 {
12591 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12592 kind, dwo_name, hex_string (signature),
12593 host_address_to_string (dwo_cutu));
12594 }
12595 return dwo_cutu;
12596 }
12597 }
12598 }
12599
12600 /* We didn't find it. This could mean a dwo_id mismatch, or
12601 someone deleted the DWO/DWP file, or the search path isn't set up
12602 correctly to find the file. */
12603
12604 if (dwarf_read_debug)
12605 {
12606 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12607 kind, dwo_name, hex_string (signature));
12608 }
12609
12610 /* This is a warning and not a complaint because it can be caused by
12611 pilot error (e.g., user accidentally deleting the DWO). */
12612 {
12613 /* Print the name of the DWP file if we looked there, helps the user
12614 better diagnose the problem. */
12615 std::string dwp_text;
12616
12617 if (dwp_file != NULL)
12618 dwp_text = string_printf (" [in DWP file %s]",
12619 lbasename (dwp_file->name));
12620
12621 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12622 " [in module %s]"),
12623 kind, dwo_name, hex_string (signature),
12624 dwp_text.c_str (),
12625 this_unit->is_debug_types ? "TU" : "CU",
12626 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
12627 }
12628 return NULL;
12629}
12630
12631/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12632 See lookup_dwo_cutu_unit for details. */
12633
12634static struct dwo_unit *
12635lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12636 const char *dwo_name, const char *comp_dir,
12637 ULONGEST signature)
12638{
12639 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12640}
12641
12642/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12643 See lookup_dwo_cutu_unit for details. */
12644
12645static struct dwo_unit *
12646lookup_dwo_type_unit (struct signatured_type *this_tu,
12647 const char *dwo_name, const char *comp_dir)
12648{
12649 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12650}
12651
12652/* Traversal function for queue_and_load_all_dwo_tus. */
12653
12654static int
12655queue_and_load_dwo_tu (void **slot, void *info)
12656{
12657 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12658 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12659 ULONGEST signature = dwo_unit->signature;
12660 struct signatured_type *sig_type =
12661 lookup_dwo_signatured_type (per_cu->cu, signature);
12662
12663 if (sig_type != NULL)
12664 {
12665 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12666
12667 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12668 a real dependency of PER_CU on SIG_TYPE. That is detected later
12669 while processing PER_CU. */
12670 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12671 load_full_type_unit (sig_cu);
12672 per_cu->imported_symtabs_push (sig_cu);
12673 }
12674
12675 return 1;
12676}
12677
12678/* Queue all TUs contained in the DWO of PER_CU to be read in.
12679 The DWO may have the only definition of the type, though it may not be
12680 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12681 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12682
12683static void
12684queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12685{
12686 struct dwo_unit *dwo_unit;
12687 struct dwo_file *dwo_file;
12688
12689 gdb_assert (!per_cu->is_debug_types);
12690 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
12691 gdb_assert (per_cu->cu != NULL);
12692
12693 dwo_unit = per_cu->cu->dwo_unit;
12694 gdb_assert (dwo_unit != NULL);
12695
12696 dwo_file = dwo_unit->dwo_file;
12697 if (dwo_file->tus != NULL)
12698 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
12699 per_cu);
12700}
12701
12702/* Read in various DIEs. */
12703
12704/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12705 Inherit only the children of the DW_AT_abstract_origin DIE not being
12706 already referenced by DW_AT_abstract_origin from the children of the
12707 current DIE. */
12708
12709static void
12710inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12711{
12712 struct die_info *child_die;
12713 sect_offset *offsetp;
12714 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12715 struct die_info *origin_die;
12716 /* Iterator of the ORIGIN_DIE children. */
12717 struct die_info *origin_child_die;
12718 struct attribute *attr;
12719 struct dwarf2_cu *origin_cu;
12720 struct pending **origin_previous_list_in_scope;
12721
12722 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12723 if (!attr)
12724 return;
12725
12726 /* Note that following die references may follow to a die in a
12727 different cu. */
12728
12729 origin_cu = cu;
12730 origin_die = follow_die_ref (die, attr, &origin_cu);
12731
12732 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12733 symbols in. */
12734 origin_previous_list_in_scope = origin_cu->list_in_scope;
12735 origin_cu->list_in_scope = cu->list_in_scope;
12736
12737 if (die->tag != origin_die->tag
12738 && !(die->tag == DW_TAG_inlined_subroutine
12739 && origin_die->tag == DW_TAG_subprogram))
12740 complaint (_("DIE %s and its abstract origin %s have different tags"),
12741 sect_offset_str (die->sect_off),
12742 sect_offset_str (origin_die->sect_off));
12743
12744 std::vector<sect_offset> offsets;
12745
12746 for (child_die = die->child;
12747 child_die && child_die->tag;
12748 child_die = sibling_die (child_die))
12749 {
12750 struct die_info *child_origin_die;
12751 struct dwarf2_cu *child_origin_cu;
12752
12753 /* We are trying to process concrete instance entries:
12754 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12755 it's not relevant to our analysis here. i.e. detecting DIEs that are
12756 present in the abstract instance but not referenced in the concrete
12757 one. */
12758 if (child_die->tag == DW_TAG_call_site
12759 || child_die->tag == DW_TAG_GNU_call_site)
12760 continue;
12761
12762 /* For each CHILD_DIE, find the corresponding child of
12763 ORIGIN_DIE. If there is more than one layer of
12764 DW_AT_abstract_origin, follow them all; there shouldn't be,
12765 but GCC versions at least through 4.4 generate this (GCC PR
12766 40573). */
12767 child_origin_die = child_die;
12768 child_origin_cu = cu;
12769 while (1)
12770 {
12771 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12772 child_origin_cu);
12773 if (attr == NULL)
12774 break;
12775 child_origin_die = follow_die_ref (child_origin_die, attr,
12776 &child_origin_cu);
12777 }
12778
12779 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12780 counterpart may exist. */
12781 if (child_origin_die != child_die)
12782 {
12783 if (child_die->tag != child_origin_die->tag
12784 && !(child_die->tag == DW_TAG_inlined_subroutine
12785 && child_origin_die->tag == DW_TAG_subprogram))
12786 complaint (_("Child DIE %s and its abstract origin %s have "
12787 "different tags"),
12788 sect_offset_str (child_die->sect_off),
12789 sect_offset_str (child_origin_die->sect_off));
12790 if (child_origin_die->parent != origin_die)
12791 complaint (_("Child DIE %s and its abstract origin %s have "
12792 "different parents"),
12793 sect_offset_str (child_die->sect_off),
12794 sect_offset_str (child_origin_die->sect_off));
12795 else
12796 offsets.push_back (child_origin_die->sect_off);
12797 }
12798 }
12799 std::sort (offsets.begin (), offsets.end ());
12800 sect_offset *offsets_end = offsets.data () + offsets.size ();
12801 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12802 if (offsetp[-1] == *offsetp)
12803 complaint (_("Multiple children of DIE %s refer "
12804 "to DIE %s as their abstract origin"),
12805 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12806
12807 offsetp = offsets.data ();
12808 origin_child_die = origin_die->child;
12809 while (origin_child_die && origin_child_die->tag)
12810 {
12811 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12812 while (offsetp < offsets_end
12813 && *offsetp < origin_child_die->sect_off)
12814 offsetp++;
12815 if (offsetp >= offsets_end
12816 || *offsetp > origin_child_die->sect_off)
12817 {
12818 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12819 Check whether we're already processing ORIGIN_CHILD_DIE.
12820 This can happen with mutually referenced abstract_origins.
12821 PR 16581. */
12822 if (!origin_child_die->in_process)
12823 process_die (origin_child_die, origin_cu);
12824 }
12825 origin_child_die = sibling_die (origin_child_die);
12826 }
12827 origin_cu->list_in_scope = origin_previous_list_in_scope;
12828
12829 if (cu != origin_cu)
12830 compute_delayed_physnames (origin_cu);
12831}
12832
12833static void
12834read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12835{
12836 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12837 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12838 struct context_stack *newobj;
12839 CORE_ADDR lowpc;
12840 CORE_ADDR highpc;
12841 struct die_info *child_die;
12842 struct attribute *attr, *call_line, *call_file;
12843 const char *name;
12844 CORE_ADDR baseaddr;
12845 struct block *block;
12846 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12847 std::vector<struct symbol *> template_args;
12848 struct template_symbol *templ_func = NULL;
12849
12850 if (inlined_func)
12851 {
12852 /* If we do not have call site information, we can't show the
12853 caller of this inlined function. That's too confusing, so
12854 only use the scope for local variables. */
12855 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12856 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12857 if (call_line == NULL || call_file == NULL)
12858 {
12859 read_lexical_block_scope (die, cu);
12860 return;
12861 }
12862 }
12863
12864 baseaddr = objfile->text_section_offset ();
12865
12866 name = dwarf2_name (die, cu);
12867
12868 /* Ignore functions with missing or empty names. These are actually
12869 illegal according to the DWARF standard. */
12870 if (name == NULL)
12871 {
12872 complaint (_("missing name for subprogram DIE at %s"),
12873 sect_offset_str (die->sect_off));
12874 return;
12875 }
12876
12877 /* Ignore functions with missing or invalid low and high pc attributes. */
12878 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12879 <= PC_BOUNDS_INVALID)
12880 {
12881 attr = dwarf2_attr (die, DW_AT_external, cu);
12882 if (!attr || !DW_UNSND (attr))
12883 complaint (_("cannot get low and high bounds "
12884 "for subprogram DIE at %s"),
12885 sect_offset_str (die->sect_off));
12886 return;
12887 }
12888
12889 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12890 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12891
12892 /* If we have any template arguments, then we must allocate a
12893 different sort of symbol. */
12894 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
12895 {
12896 if (child_die->tag == DW_TAG_template_type_param
12897 || child_die->tag == DW_TAG_template_value_param)
12898 {
12899 templ_func = allocate_template_symbol (objfile);
12900 templ_func->subclass = SYMBOL_TEMPLATE;
12901 break;
12902 }
12903 }
12904
12905 newobj = cu->get_builder ()->push_context (0, lowpc);
12906 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
12907 (struct symbol *) templ_func);
12908
12909 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
12910 set_objfile_main_name (objfile, newobj->name->linkage_name (),
12911 cu->language);
12912
12913 /* If there is a location expression for DW_AT_frame_base, record
12914 it. */
12915 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12916 if (attr != nullptr)
12917 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12918
12919 /* If there is a location for the static link, record it. */
12920 newobj->static_link = NULL;
12921 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12922 if (attr != nullptr)
12923 {
12924 newobj->static_link
12925 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12926 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
12927 cu->per_cu->addr_type ());
12928 }
12929
12930 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
12931
12932 if (die->child != NULL)
12933 {
12934 child_die = die->child;
12935 while (child_die && child_die->tag)
12936 {
12937 if (child_die->tag == DW_TAG_template_type_param
12938 || child_die->tag == DW_TAG_template_value_param)
12939 {
12940 struct symbol *arg = new_symbol (child_die, NULL, cu);
12941
12942 if (arg != NULL)
12943 template_args.push_back (arg);
12944 }
12945 else
12946 process_die (child_die, cu);
12947 child_die = sibling_die (child_die);
12948 }
12949 }
12950
12951 inherit_abstract_dies (die, cu);
12952
12953 /* If we have a DW_AT_specification, we might need to import using
12954 directives from the context of the specification DIE. See the
12955 comment in determine_prefix. */
12956 if (cu->language == language_cplus
12957 && dwarf2_attr (die, DW_AT_specification, cu))
12958 {
12959 struct dwarf2_cu *spec_cu = cu;
12960 struct die_info *spec_die = die_specification (die, &spec_cu);
12961
12962 while (spec_die)
12963 {
12964 child_die = spec_die->child;
12965 while (child_die && child_die->tag)
12966 {
12967 if (child_die->tag == DW_TAG_imported_module)
12968 process_die (child_die, spec_cu);
12969 child_die = sibling_die (child_die);
12970 }
12971
12972 /* In some cases, GCC generates specification DIEs that
12973 themselves contain DW_AT_specification attributes. */
12974 spec_die = die_specification (spec_die, &spec_cu);
12975 }
12976 }
12977
12978 struct context_stack cstk = cu->get_builder ()->pop_context ();
12979 /* Make a block for the local symbols within. */
12980 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
12981 cstk.static_link, lowpc, highpc);
12982
12983 /* For C++, set the block's scope. */
12984 if ((cu->language == language_cplus
12985 || cu->language == language_fortran
12986 || cu->language == language_d
12987 || cu->language == language_rust)
12988 && cu->processing_has_namespace_info)
12989 block_set_scope (block, determine_prefix (die, cu),
12990 &objfile->objfile_obstack);
12991
12992 /* If we have address ranges, record them. */
12993 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12994
12995 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
12996
12997 /* Attach template arguments to function. */
12998 if (!template_args.empty ())
12999 {
13000 gdb_assert (templ_func != NULL);
13001
13002 templ_func->n_template_arguments = template_args.size ();
13003 templ_func->template_arguments
13004 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13005 templ_func->n_template_arguments);
13006 memcpy (templ_func->template_arguments,
13007 template_args.data (),
13008 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13009
13010 /* Make sure that the symtab is set on the new symbols. Even
13011 though they don't appear in this symtab directly, other parts
13012 of gdb assume that symbols do, and this is reasonably
13013 true. */
13014 for (symbol *sym : template_args)
13015 symbol_set_symtab (sym, symbol_symtab (templ_func));
13016 }
13017
13018 /* In C++, we can have functions nested inside functions (e.g., when
13019 a function declares a class that has methods). This means that
13020 when we finish processing a function scope, we may need to go
13021 back to building a containing block's symbol lists. */
13022 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13023 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13024
13025 /* If we've finished processing a top-level function, subsequent
13026 symbols go in the file symbol list. */
13027 if (cu->get_builder ()->outermost_context_p ())
13028 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13029}
13030
13031/* Process all the DIES contained within a lexical block scope. Start
13032 a new scope, process the dies, and then close the scope. */
13033
13034static void
13035read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13036{
13037 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13038 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13039 CORE_ADDR lowpc, highpc;
13040 struct die_info *child_die;
13041 CORE_ADDR baseaddr;
13042
13043 baseaddr = objfile->text_section_offset ();
13044
13045 /* Ignore blocks with missing or invalid low and high pc attributes. */
13046 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13047 as multiple lexical blocks? Handling children in a sane way would
13048 be nasty. Might be easier to properly extend generic blocks to
13049 describe ranges. */
13050 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13051 {
13052 case PC_BOUNDS_NOT_PRESENT:
13053 /* DW_TAG_lexical_block has no attributes, process its children as if
13054 there was no wrapping by that DW_TAG_lexical_block.
13055 GCC does no longer produces such DWARF since GCC r224161. */
13056 for (child_die = die->child;
13057 child_die != NULL && child_die->tag;
13058 child_die = sibling_die (child_die))
13059 process_die (child_die, cu);
13060 return;
13061 case PC_BOUNDS_INVALID:
13062 return;
13063 }
13064 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13065 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13066
13067 cu->get_builder ()->push_context (0, lowpc);
13068 if (die->child != NULL)
13069 {
13070 child_die = die->child;
13071 while (child_die && child_die->tag)
13072 {
13073 process_die (child_die, cu);
13074 child_die = sibling_die (child_die);
13075 }
13076 }
13077 inherit_abstract_dies (die, cu);
13078 struct context_stack cstk = cu->get_builder ()->pop_context ();
13079
13080 if (*cu->get_builder ()->get_local_symbols () != NULL
13081 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13082 {
13083 struct block *block
13084 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13085 cstk.start_addr, highpc);
13086
13087 /* Note that recording ranges after traversing children, as we
13088 do here, means that recording a parent's ranges entails
13089 walking across all its children's ranges as they appear in
13090 the address map, which is quadratic behavior.
13091
13092 It would be nicer to record the parent's ranges before
13093 traversing its children, simply overriding whatever you find
13094 there. But since we don't even decide whether to create a
13095 block until after we've traversed its children, that's hard
13096 to do. */
13097 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13098 }
13099 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13100 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13101}
13102
13103/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13104
13105static void
13106read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13107{
13108 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13109 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13110 CORE_ADDR pc, baseaddr;
13111 struct attribute *attr;
13112 struct call_site *call_site, call_site_local;
13113 void **slot;
13114 int nparams;
13115 struct die_info *child_die;
13116
13117 baseaddr = objfile->text_section_offset ();
13118
13119 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13120 if (attr == NULL)
13121 {
13122 /* This was a pre-DWARF-5 GNU extension alias
13123 for DW_AT_call_return_pc. */
13124 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13125 }
13126 if (!attr)
13127 {
13128 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13129 "DIE %s [in module %s]"),
13130 sect_offset_str (die->sect_off), objfile_name (objfile));
13131 return;
13132 }
13133 pc = attr->value_as_address () + baseaddr;
13134 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13135
13136 if (cu->call_site_htab == NULL)
13137 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13138 NULL, &objfile->objfile_obstack,
13139 hashtab_obstack_allocate, NULL);
13140 call_site_local.pc = pc;
13141 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13142 if (*slot != NULL)
13143 {
13144 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13145 "DIE %s [in module %s]"),
13146 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13147 objfile_name (objfile));
13148 return;
13149 }
13150
13151 /* Count parameters at the caller. */
13152
13153 nparams = 0;
13154 for (child_die = die->child; child_die && child_die->tag;
13155 child_die = sibling_die (child_die))
13156 {
13157 if (child_die->tag != DW_TAG_call_site_parameter
13158 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13159 {
13160 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13161 "DW_TAG_call_site child DIE %s [in module %s]"),
13162 child_die->tag, sect_offset_str (child_die->sect_off),
13163 objfile_name (objfile));
13164 continue;
13165 }
13166
13167 nparams++;
13168 }
13169
13170 call_site
13171 = ((struct call_site *)
13172 obstack_alloc (&objfile->objfile_obstack,
13173 sizeof (*call_site)
13174 + (sizeof (*call_site->parameter) * (nparams - 1))));
13175 *slot = call_site;
13176 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13177 call_site->pc = pc;
13178
13179 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13180 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13181 {
13182 struct die_info *func_die;
13183
13184 /* Skip also over DW_TAG_inlined_subroutine. */
13185 for (func_die = die->parent;
13186 func_die && func_die->tag != DW_TAG_subprogram
13187 && func_die->tag != DW_TAG_subroutine_type;
13188 func_die = func_die->parent);
13189
13190 /* DW_AT_call_all_calls is a superset
13191 of DW_AT_call_all_tail_calls. */
13192 if (func_die
13193 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13194 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13195 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13196 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13197 {
13198 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13199 not complete. But keep CALL_SITE for look ups via call_site_htab,
13200 both the initial caller containing the real return address PC and
13201 the final callee containing the current PC of a chain of tail
13202 calls do not need to have the tail call list complete. But any
13203 function candidate for a virtual tail call frame searched via
13204 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13205 determined unambiguously. */
13206 }
13207 else
13208 {
13209 struct type *func_type = NULL;
13210
13211 if (func_die)
13212 func_type = get_die_type (func_die, cu);
13213 if (func_type != NULL)
13214 {
13215 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13216
13217 /* Enlist this call site to the function. */
13218 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13219 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13220 }
13221 else
13222 complaint (_("Cannot find function owning DW_TAG_call_site "
13223 "DIE %s [in module %s]"),
13224 sect_offset_str (die->sect_off), objfile_name (objfile));
13225 }
13226 }
13227
13228 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13229 if (attr == NULL)
13230 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13231 if (attr == NULL)
13232 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13233 if (attr == NULL)
13234 {
13235 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13236 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13237 }
13238 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13239 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13240 /* Keep NULL DWARF_BLOCK. */;
13241 else if (attr->form_is_block ())
13242 {
13243 struct dwarf2_locexpr_baton *dlbaton;
13244
13245 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13246 dlbaton->data = DW_BLOCK (attr)->data;
13247 dlbaton->size = DW_BLOCK (attr)->size;
13248 dlbaton->per_cu = cu->per_cu;
13249
13250 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13251 }
13252 else if (attr->form_is_ref ())
13253 {
13254 struct dwarf2_cu *target_cu = cu;
13255 struct die_info *target_die;
13256
13257 target_die = follow_die_ref (die, attr, &target_cu);
13258 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13259 if (die_is_declaration (target_die, target_cu))
13260 {
13261 const char *target_physname;
13262
13263 /* Prefer the mangled name; otherwise compute the demangled one. */
13264 target_physname = dw2_linkage_name (target_die, target_cu);
13265 if (target_physname == NULL)
13266 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13267 if (target_physname == NULL)
13268 complaint (_("DW_AT_call_target target DIE has invalid "
13269 "physname, for referencing DIE %s [in module %s]"),
13270 sect_offset_str (die->sect_off), objfile_name (objfile));
13271 else
13272 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13273 }
13274 else
13275 {
13276 CORE_ADDR lowpc;
13277
13278 /* DW_AT_entry_pc should be preferred. */
13279 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13280 <= PC_BOUNDS_INVALID)
13281 complaint (_("DW_AT_call_target target DIE has invalid "
13282 "low pc, for referencing DIE %s [in module %s]"),
13283 sect_offset_str (die->sect_off), objfile_name (objfile));
13284 else
13285 {
13286 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13287 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13288 }
13289 }
13290 }
13291 else
13292 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13293 "block nor reference, for DIE %s [in module %s]"),
13294 sect_offset_str (die->sect_off), objfile_name (objfile));
13295
13296 call_site->per_cu = cu->per_cu;
13297
13298 for (child_die = die->child;
13299 child_die && child_die->tag;
13300 child_die = sibling_die (child_die))
13301 {
13302 struct call_site_parameter *parameter;
13303 struct attribute *loc, *origin;
13304
13305 if (child_die->tag != DW_TAG_call_site_parameter
13306 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13307 {
13308 /* Already printed the complaint above. */
13309 continue;
13310 }
13311
13312 gdb_assert (call_site->parameter_count < nparams);
13313 parameter = &call_site->parameter[call_site->parameter_count];
13314
13315 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13316 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13317 register is contained in DW_AT_call_value. */
13318
13319 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13320 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13321 if (origin == NULL)
13322 {
13323 /* This was a pre-DWARF-5 GNU extension alias
13324 for DW_AT_call_parameter. */
13325 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13326 }
13327 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13328 {
13329 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13330
13331 sect_offset sect_off
13332 = (sect_offset) dwarf2_get_ref_die_offset (origin);
13333 if (!cu->header.offset_in_cu_p (sect_off))
13334 {
13335 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13336 binding can be done only inside one CU. Such referenced DIE
13337 therefore cannot be even moved to DW_TAG_partial_unit. */
13338 complaint (_("DW_AT_call_parameter offset is not in CU for "
13339 "DW_TAG_call_site child DIE %s [in module %s]"),
13340 sect_offset_str (child_die->sect_off),
13341 objfile_name (objfile));
13342 continue;
13343 }
13344 parameter->u.param_cu_off
13345 = (cu_offset) (sect_off - cu->header.sect_off);
13346 }
13347 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13348 {
13349 complaint (_("No DW_FORM_block* DW_AT_location for "
13350 "DW_TAG_call_site child DIE %s [in module %s]"),
13351 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13352 continue;
13353 }
13354 else
13355 {
13356 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13357 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13358 if (parameter->u.dwarf_reg != -1)
13359 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13360 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13361 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13362 &parameter->u.fb_offset))
13363 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13364 else
13365 {
13366 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13367 "for DW_FORM_block* DW_AT_location is supported for "
13368 "DW_TAG_call_site child DIE %s "
13369 "[in module %s]"),
13370 sect_offset_str (child_die->sect_off),
13371 objfile_name (objfile));
13372 continue;
13373 }
13374 }
13375
13376 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13377 if (attr == NULL)
13378 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13379 if (attr == NULL || !attr->form_is_block ())
13380 {
13381 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13382 "DW_TAG_call_site child DIE %s [in module %s]"),
13383 sect_offset_str (child_die->sect_off),
13384 objfile_name (objfile));
13385 continue;
13386 }
13387 parameter->value = DW_BLOCK (attr)->data;
13388 parameter->value_size = DW_BLOCK (attr)->size;
13389
13390 /* Parameters are not pre-cleared by memset above. */
13391 parameter->data_value = NULL;
13392 parameter->data_value_size = 0;
13393 call_site->parameter_count++;
13394
13395 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13396 if (attr == NULL)
13397 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13398 if (attr != nullptr)
13399 {
13400 if (!attr->form_is_block ())
13401 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13402 "DW_TAG_call_site child DIE %s [in module %s]"),
13403 sect_offset_str (child_die->sect_off),
13404 objfile_name (objfile));
13405 else
13406 {
13407 parameter->data_value = DW_BLOCK (attr)->data;
13408 parameter->data_value_size = DW_BLOCK (attr)->size;
13409 }
13410 }
13411 }
13412}
13413
13414/* Helper function for read_variable. If DIE represents a virtual
13415 table, then return the type of the concrete object that is
13416 associated with the virtual table. Otherwise, return NULL. */
13417
13418static struct type *
13419rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13420{
13421 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13422 if (attr == NULL)
13423 return NULL;
13424
13425 /* Find the type DIE. */
13426 struct die_info *type_die = NULL;
13427 struct dwarf2_cu *type_cu = cu;
13428
13429 if (attr->form_is_ref ())
13430 type_die = follow_die_ref (die, attr, &type_cu);
13431 if (type_die == NULL)
13432 return NULL;
13433
13434 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13435 return NULL;
13436 return die_containing_type (type_die, type_cu);
13437}
13438
13439/* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13440
13441static void
13442read_variable (struct die_info *die, struct dwarf2_cu *cu)
13443{
13444 struct rust_vtable_symbol *storage = NULL;
13445
13446 if (cu->language == language_rust)
13447 {
13448 struct type *containing_type = rust_containing_type (die, cu);
13449
13450 if (containing_type != NULL)
13451 {
13452 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13453
13454 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13455 initialize_objfile_symbol (storage);
13456 storage->concrete_type = containing_type;
13457 storage->subclass = SYMBOL_RUST_VTABLE;
13458 }
13459 }
13460
13461 struct symbol *res = new_symbol (die, NULL, cu, storage);
13462 struct attribute *abstract_origin
13463 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13464 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13465 if (res == NULL && loc && abstract_origin)
13466 {
13467 /* We have a variable without a name, but with a location and an abstract
13468 origin. This may be a concrete instance of an abstract variable
13469 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13470 later. */
13471 struct dwarf2_cu *origin_cu = cu;
13472 struct die_info *origin_die
13473 = follow_die_ref (die, abstract_origin, &origin_cu);
13474 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13475 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13476 }
13477}
13478
13479/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13480 reading .debug_rnglists.
13481 Callback's type should be:
13482 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13483 Return true if the attributes are present and valid, otherwise,
13484 return false. */
13485
13486template <typename Callback>
13487static bool
13488dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13489 Callback &&callback)
13490{
13491 struct dwarf2_per_objfile *dwarf2_per_objfile
13492 = cu->per_cu->dwarf2_per_objfile;
13493 struct objfile *objfile = dwarf2_per_objfile->objfile;
13494 bfd *obfd = objfile->obfd;
13495 /* Base address selection entry. */
13496 CORE_ADDR base;
13497 int found_base;
13498 const gdb_byte *buffer;
13499 CORE_ADDR baseaddr;
13500 bool overflow = false;
13501
13502 found_base = cu->base_known;
13503 base = cu->base_address;
13504
13505 dwarf2_per_objfile->rnglists.read (objfile);
13506 if (offset >= dwarf2_per_objfile->rnglists.size)
13507 {
13508 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13509 offset);
13510 return false;
13511 }
13512 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13513
13514 baseaddr = objfile->text_section_offset ();
13515
13516 while (1)
13517 {
13518 /* Initialize it due to a false compiler warning. */
13519 CORE_ADDR range_beginning = 0, range_end = 0;
13520 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13521 + dwarf2_per_objfile->rnglists.size);
13522 unsigned int bytes_read;
13523
13524 if (buffer == buf_end)
13525 {
13526 overflow = true;
13527 break;
13528 }
13529 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13530 switch (rlet)
13531 {
13532 case DW_RLE_end_of_list:
13533 break;
13534 case DW_RLE_base_address:
13535 if (buffer + cu->header.addr_size > buf_end)
13536 {
13537 overflow = true;
13538 break;
13539 }
13540 base = cu->header.read_address (obfd, buffer, &bytes_read);
13541 found_base = 1;
13542 buffer += bytes_read;
13543 break;
13544 case DW_RLE_start_length:
13545 if (buffer + cu->header.addr_size > buf_end)
13546 {
13547 overflow = true;
13548 break;
13549 }
13550 range_beginning = cu->header.read_address (obfd, buffer,
13551 &bytes_read);
13552 buffer += bytes_read;
13553 range_end = (range_beginning
13554 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13555 buffer += bytes_read;
13556 if (buffer > buf_end)
13557 {
13558 overflow = true;
13559 break;
13560 }
13561 break;
13562 case DW_RLE_offset_pair:
13563 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13564 buffer += bytes_read;
13565 if (buffer > buf_end)
13566 {
13567 overflow = true;
13568 break;
13569 }
13570 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13571 buffer += bytes_read;
13572 if (buffer > buf_end)
13573 {
13574 overflow = true;
13575 break;
13576 }
13577 break;
13578 case DW_RLE_start_end:
13579 if (buffer + 2 * cu->header.addr_size > buf_end)
13580 {
13581 overflow = true;
13582 break;
13583 }
13584 range_beginning = cu->header.read_address (obfd, buffer,
13585 &bytes_read);
13586 buffer += bytes_read;
13587 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13588 buffer += bytes_read;
13589 break;
13590 default:
13591 complaint (_("Invalid .debug_rnglists data (no base address)"));
13592 return false;
13593 }
13594 if (rlet == DW_RLE_end_of_list || overflow)
13595 break;
13596 if (rlet == DW_RLE_base_address)
13597 continue;
13598
13599 if (!found_base)
13600 {
13601 /* We have no valid base address for the ranges
13602 data. */
13603 complaint (_("Invalid .debug_rnglists data (no base address)"));
13604 return false;
13605 }
13606
13607 if (range_beginning > range_end)
13608 {
13609 /* Inverted range entries are invalid. */
13610 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13611 return false;
13612 }
13613
13614 /* Empty range entries have no effect. */
13615 if (range_beginning == range_end)
13616 continue;
13617
13618 range_beginning += base;
13619 range_end += base;
13620
13621 /* A not-uncommon case of bad debug info.
13622 Don't pollute the addrmap with bad data. */
13623 if (range_beginning + baseaddr == 0
13624 && !dwarf2_per_objfile->has_section_at_zero)
13625 {
13626 complaint (_(".debug_rnglists entry has start address of zero"
13627 " [in module %s]"), objfile_name (objfile));
13628 continue;
13629 }
13630
13631 callback (range_beginning, range_end);
13632 }
13633
13634 if (overflow)
13635 {
13636 complaint (_("Offset %d is not terminated "
13637 "for DW_AT_ranges attribute"),
13638 offset);
13639 return false;
13640 }
13641
13642 return true;
13643}
13644
13645/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13646 Callback's type should be:
13647 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13648 Return 1 if the attributes are present and valid, otherwise, return 0. */
13649
13650template <typename Callback>
13651static int
13652dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13653 Callback &&callback)
13654{
13655 struct dwarf2_per_objfile *dwarf2_per_objfile
13656 = cu->per_cu->dwarf2_per_objfile;
13657 struct objfile *objfile = dwarf2_per_objfile->objfile;
13658 struct comp_unit_head *cu_header = &cu->header;
13659 bfd *obfd = objfile->obfd;
13660 unsigned int addr_size = cu_header->addr_size;
13661 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13662 /* Base address selection entry. */
13663 CORE_ADDR base;
13664 int found_base;
13665 unsigned int dummy;
13666 const gdb_byte *buffer;
13667 CORE_ADDR baseaddr;
13668
13669 if (cu_header->version >= 5)
13670 return dwarf2_rnglists_process (offset, cu, callback);
13671
13672 found_base = cu->base_known;
13673 base = cu->base_address;
13674
13675 dwarf2_per_objfile->ranges.read (objfile);
13676 if (offset >= dwarf2_per_objfile->ranges.size)
13677 {
13678 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13679 offset);
13680 return 0;
13681 }
13682 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13683
13684 baseaddr = objfile->text_section_offset ();
13685
13686 while (1)
13687 {
13688 CORE_ADDR range_beginning, range_end;
13689
13690 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13691 buffer += addr_size;
13692 range_end = cu->header.read_address (obfd, buffer, &dummy);
13693 buffer += addr_size;
13694 offset += 2 * addr_size;
13695
13696 /* An end of list marker is a pair of zero addresses. */
13697 if (range_beginning == 0 && range_end == 0)
13698 /* Found the end of list entry. */
13699 break;
13700
13701 /* Each base address selection entry is a pair of 2 values.
13702 The first is the largest possible address, the second is
13703 the base address. Check for a base address here. */
13704 if ((range_beginning & mask) == mask)
13705 {
13706 /* If we found the largest possible address, then we already
13707 have the base address in range_end. */
13708 base = range_end;
13709 found_base = 1;
13710 continue;
13711 }
13712
13713 if (!found_base)
13714 {
13715 /* We have no valid base address for the ranges
13716 data. */
13717 complaint (_("Invalid .debug_ranges data (no base address)"));
13718 return 0;
13719 }
13720
13721 if (range_beginning > range_end)
13722 {
13723 /* Inverted range entries are invalid. */
13724 complaint (_("Invalid .debug_ranges data (inverted range)"));
13725 return 0;
13726 }
13727
13728 /* Empty range entries have no effect. */
13729 if (range_beginning == range_end)
13730 continue;
13731
13732 range_beginning += base;
13733 range_end += base;
13734
13735 /* A not-uncommon case of bad debug info.
13736 Don't pollute the addrmap with bad data. */
13737 if (range_beginning + baseaddr == 0
13738 && !dwarf2_per_objfile->has_section_at_zero)
13739 {
13740 complaint (_(".debug_ranges entry has start address of zero"
13741 " [in module %s]"), objfile_name (objfile));
13742 continue;
13743 }
13744
13745 callback (range_beginning, range_end);
13746 }
13747
13748 return 1;
13749}
13750
13751/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13752 Return 1 if the attributes are present and valid, otherwise, return 0.
13753 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13754
13755static int
13756dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13757 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13758 dwarf2_psymtab *ranges_pst)
13759{
13760 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13761 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13762 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13763 int low_set = 0;
13764 CORE_ADDR low = 0;
13765 CORE_ADDR high = 0;
13766 int retval;
13767
13768 retval = dwarf2_ranges_process (offset, cu,
13769 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13770 {
13771 if (ranges_pst != NULL)
13772 {
13773 CORE_ADDR lowpc;
13774 CORE_ADDR highpc;
13775
13776 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13777 range_beginning + baseaddr)
13778 - baseaddr);
13779 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13780 range_end + baseaddr)
13781 - baseaddr);
13782 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
13783 lowpc, highpc - 1, ranges_pst);
13784 }
13785
13786 /* FIXME: This is recording everything as a low-high
13787 segment of consecutive addresses. We should have a
13788 data structure for discontiguous block ranges
13789 instead. */
13790 if (! low_set)
13791 {
13792 low = range_beginning;
13793 high = range_end;
13794 low_set = 1;
13795 }
13796 else
13797 {
13798 if (range_beginning < low)
13799 low = range_beginning;
13800 if (range_end > high)
13801 high = range_end;
13802 }
13803 });
13804 if (!retval)
13805 return 0;
13806
13807 if (! low_set)
13808 /* If the first entry is an end-of-list marker, the range
13809 describes an empty scope, i.e. no instructions. */
13810 return 0;
13811
13812 if (low_return)
13813 *low_return = low;
13814 if (high_return)
13815 *high_return = high;
13816 return 1;
13817}
13818
13819/* Get low and high pc attributes from a die. See enum pc_bounds_kind
13820 definition for the return value. *LOWPC and *HIGHPC are set iff
13821 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13822
13823static enum pc_bounds_kind
13824dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13825 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13826 dwarf2_psymtab *pst)
13827{
13828 struct dwarf2_per_objfile *dwarf2_per_objfile
13829 = cu->per_cu->dwarf2_per_objfile;
13830 struct attribute *attr;
13831 struct attribute *attr_high;
13832 CORE_ADDR low = 0;
13833 CORE_ADDR high = 0;
13834 enum pc_bounds_kind ret;
13835
13836 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13837 if (attr_high)
13838 {
13839 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13840 if (attr != nullptr)
13841 {
13842 low = attr->value_as_address ();
13843 high = attr_high->value_as_address ();
13844 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13845 high += low;
13846 }
13847 else
13848 /* Found high w/o low attribute. */
13849 return PC_BOUNDS_INVALID;
13850
13851 /* Found consecutive range of addresses. */
13852 ret = PC_BOUNDS_HIGH_LOW;
13853 }
13854 else
13855 {
13856 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13857 if (attr != NULL)
13858 {
13859 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
13860 We take advantage of the fact that DW_AT_ranges does not appear
13861 in DW_TAG_compile_unit of DWO files. */
13862 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13863 unsigned int ranges_offset = (DW_UNSND (attr)
13864 + (need_ranges_base
13865 ? cu->ranges_base
13866 : 0));
13867
13868 /* Value of the DW_AT_ranges attribute is the offset in the
13869 .debug_ranges section. */
13870 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13871 return PC_BOUNDS_INVALID;
13872 /* Found discontinuous range of addresses. */
13873 ret = PC_BOUNDS_RANGES;
13874 }
13875 else
13876 return PC_BOUNDS_NOT_PRESENT;
13877 }
13878
13879 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
13880 if (high <= low)
13881 return PC_BOUNDS_INVALID;
13882
13883 /* When using the GNU linker, .gnu.linkonce. sections are used to
13884 eliminate duplicate copies of functions and vtables and such.
13885 The linker will arbitrarily choose one and discard the others.
13886 The AT_*_pc values for such functions refer to local labels in
13887 these sections. If the section from that file was discarded, the
13888 labels are not in the output, so the relocs get a value of 0.
13889 If this is a discarded function, mark the pc bounds as invalid,
13890 so that GDB will ignore it. */
13891 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13892 return PC_BOUNDS_INVALID;
13893
13894 *lowpc = low;
13895 if (highpc)
13896 *highpc = high;
13897 return ret;
13898}
13899
13900/* Assuming that DIE represents a subprogram DIE or a lexical block, get
13901 its low and high PC addresses. Do nothing if these addresses could not
13902 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13903 and HIGHPC to the high address if greater than HIGHPC. */
13904
13905static void
13906dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13907 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13908 struct dwarf2_cu *cu)
13909{
13910 CORE_ADDR low, high;
13911 struct die_info *child = die->child;
13912
13913 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13914 {
13915 *lowpc = std::min (*lowpc, low);
13916 *highpc = std::max (*highpc, high);
13917 }
13918
13919 /* If the language does not allow nested subprograms (either inside
13920 subprograms or lexical blocks), we're done. */
13921 if (cu->language != language_ada)
13922 return;
13923
13924 /* Check all the children of the given DIE. If it contains nested
13925 subprograms, then check their pc bounds. Likewise, we need to
13926 check lexical blocks as well, as they may also contain subprogram
13927 definitions. */
13928 while (child && child->tag)
13929 {
13930 if (child->tag == DW_TAG_subprogram
13931 || child->tag == DW_TAG_lexical_block)
13932 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13933 child = sibling_die (child);
13934 }
13935}
13936
13937/* Get the low and high pc's represented by the scope DIE, and store
13938 them in *LOWPC and *HIGHPC. If the correct values can't be
13939 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13940
13941static void
13942get_scope_pc_bounds (struct die_info *die,
13943 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13944 struct dwarf2_cu *cu)
13945{
13946 CORE_ADDR best_low = (CORE_ADDR) -1;
13947 CORE_ADDR best_high = (CORE_ADDR) 0;
13948 CORE_ADDR current_low, current_high;
13949
13950 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
13951 >= PC_BOUNDS_RANGES)
13952 {
13953 best_low = current_low;
13954 best_high = current_high;
13955 }
13956 else
13957 {
13958 struct die_info *child = die->child;
13959
13960 while (child && child->tag)
13961 {
13962 switch (child->tag) {
13963 case DW_TAG_subprogram:
13964 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
13965 break;
13966 case DW_TAG_namespace:
13967 case DW_TAG_module:
13968 /* FIXME: carlton/2004-01-16: Should we do this for
13969 DW_TAG_class_type/DW_TAG_structure_type, too? I think
13970 that current GCC's always emit the DIEs corresponding
13971 to definitions of methods of classes as children of a
13972 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
13973 the DIEs giving the declarations, which could be
13974 anywhere). But I don't see any reason why the
13975 standards says that they have to be there. */
13976 get_scope_pc_bounds (child, &current_low, &current_high, cu);
13977
13978 if (current_low != ((CORE_ADDR) -1))
13979 {
13980 best_low = std::min (best_low, current_low);
13981 best_high = std::max (best_high, current_high);
13982 }
13983 break;
13984 default:
13985 /* Ignore. */
13986 break;
13987 }
13988
13989 child = sibling_die (child);
13990 }
13991 }
13992
13993 *lowpc = best_low;
13994 *highpc = best_high;
13995}
13996
13997/* Record the address ranges for BLOCK, offset by BASEADDR, as given
13998 in DIE. */
13999
14000static void
14001dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14002 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14003{
14004 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14005 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14006 struct attribute *attr;
14007 struct attribute *attr_high;
14008
14009 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14010 if (attr_high)
14011 {
14012 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14013 if (attr != nullptr)
14014 {
14015 CORE_ADDR low = attr->value_as_address ();
14016 CORE_ADDR high = attr_high->value_as_address ();
14017
14018 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14019 high += low;
14020
14021 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14022 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14023 cu->get_builder ()->record_block_range (block, low, high - 1);
14024 }
14025 }
14026
14027 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14028 if (attr != nullptr)
14029 {
14030 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14031 We take advantage of the fact that DW_AT_ranges does not appear
14032 in DW_TAG_compile_unit of DWO files. */
14033 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14034
14035 /* The value of the DW_AT_ranges attribute is the offset of the
14036 address range list in the .debug_ranges section. */
14037 unsigned long offset = (DW_UNSND (attr)
14038 + (need_ranges_base ? cu->ranges_base : 0));
14039
14040 std::vector<blockrange> blockvec;
14041 dwarf2_ranges_process (offset, cu,
14042 [&] (CORE_ADDR start, CORE_ADDR end)
14043 {
14044 start += baseaddr;
14045 end += baseaddr;
14046 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14047 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14048 cu->get_builder ()->record_block_range (block, start, end - 1);
14049 blockvec.emplace_back (start, end);
14050 });
14051
14052 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14053 }
14054}
14055
14056/* Check whether the producer field indicates either of GCC < 4.6, or the
14057 Intel C/C++ compiler, and cache the result in CU. */
14058
14059static void
14060check_producer (struct dwarf2_cu *cu)
14061{
14062 int major, minor;
14063
14064 if (cu->producer == NULL)
14065 {
14066 /* For unknown compilers expect their behavior is DWARF version
14067 compliant.
14068
14069 GCC started to support .debug_types sections by -gdwarf-4 since
14070 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14071 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14072 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14073 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14074 }
14075 else if (producer_is_gcc (cu->producer, &major, &minor))
14076 {
14077 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14078 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14079 }
14080 else if (producer_is_icc (cu->producer, &major, &minor))
14081 {
14082 cu->producer_is_icc = true;
14083 cu->producer_is_icc_lt_14 = major < 14;
14084 }
14085 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14086 cu->producer_is_codewarrior = true;
14087 else
14088 {
14089 /* For other non-GCC compilers, expect their behavior is DWARF version
14090 compliant. */
14091 }
14092
14093 cu->checked_producer = true;
14094}
14095
14096/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14097 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14098 during 4.6.0 experimental. */
14099
14100static bool
14101producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14102{
14103 if (!cu->checked_producer)
14104 check_producer (cu);
14105
14106 return cu->producer_is_gxx_lt_4_6;
14107}
14108
14109
14110/* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14111 with incorrect is_stmt attributes. */
14112
14113static bool
14114producer_is_codewarrior (struct dwarf2_cu *cu)
14115{
14116 if (!cu->checked_producer)
14117 check_producer (cu);
14118
14119 return cu->producer_is_codewarrior;
14120}
14121
14122/* Return the default accessibility type if it is not overridden by
14123 DW_AT_accessibility. */
14124
14125static enum dwarf_access_attribute
14126dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14127{
14128 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14129 {
14130 /* The default DWARF 2 accessibility for members is public, the default
14131 accessibility for inheritance is private. */
14132
14133 if (die->tag != DW_TAG_inheritance)
14134 return DW_ACCESS_public;
14135 else
14136 return DW_ACCESS_private;
14137 }
14138 else
14139 {
14140 /* DWARF 3+ defines the default accessibility a different way. The same
14141 rules apply now for DW_TAG_inheritance as for the members and it only
14142 depends on the container kind. */
14143
14144 if (die->parent->tag == DW_TAG_class_type)
14145 return DW_ACCESS_private;
14146 else
14147 return DW_ACCESS_public;
14148 }
14149}
14150
14151/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14152 offset. If the attribute was not found return 0, otherwise return
14153 1. If it was found but could not properly be handled, set *OFFSET
14154 to 0. */
14155
14156static int
14157handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14158 LONGEST *offset)
14159{
14160 struct attribute *attr;
14161
14162 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14163 if (attr != NULL)
14164 {
14165 *offset = 0;
14166
14167 /* Note that we do not check for a section offset first here.
14168 This is because DW_AT_data_member_location is new in DWARF 4,
14169 so if we see it, we can assume that a constant form is really
14170 a constant and not a section offset. */
14171 if (attr->form_is_constant ())
14172 *offset = dwarf2_get_attr_constant_value (attr, 0);
14173 else if (attr->form_is_section_offset ())
14174 dwarf2_complex_location_expr_complaint ();
14175 else if (attr->form_is_block ())
14176 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14177 else
14178 dwarf2_complex_location_expr_complaint ();
14179
14180 return 1;
14181 }
14182
14183 return 0;
14184}
14185
14186/* Add an aggregate field to the field list. */
14187
14188static void
14189dwarf2_add_field (struct field_info *fip, struct die_info *die,
14190 struct dwarf2_cu *cu)
14191{
14192 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14194 struct nextfield *new_field;
14195 struct attribute *attr;
14196 struct field *fp;
14197 const char *fieldname = "";
14198
14199 if (die->tag == DW_TAG_inheritance)
14200 {
14201 fip->baseclasses.emplace_back ();
14202 new_field = &fip->baseclasses.back ();
14203 }
14204 else
14205 {
14206 fip->fields.emplace_back ();
14207 new_field = &fip->fields.back ();
14208 }
14209
14210 fip->nfields++;
14211
14212 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14213 if (attr != nullptr)
14214 new_field->accessibility = DW_UNSND (attr);
14215 else
14216 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14217 if (new_field->accessibility != DW_ACCESS_public)
14218 fip->non_public_fields = 1;
14219
14220 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14221 if (attr != nullptr)
14222 new_field->virtuality = DW_UNSND (attr);
14223 else
14224 new_field->virtuality = DW_VIRTUALITY_none;
14225
14226 fp = &new_field->field;
14227
14228 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14229 {
14230 LONGEST offset;
14231
14232 /* Data member other than a C++ static data member. */
14233
14234 /* Get type of field. */
14235 fp->type = die_type (die, cu);
14236
14237 SET_FIELD_BITPOS (*fp, 0);
14238
14239 /* Get bit size of field (zero if none). */
14240 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14241 if (attr != nullptr)
14242 {
14243 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14244 }
14245 else
14246 {
14247 FIELD_BITSIZE (*fp) = 0;
14248 }
14249
14250 /* Get bit offset of field. */
14251 if (handle_data_member_location (die, cu, &offset))
14252 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14253 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14254 if (attr != nullptr)
14255 {
14256 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14257 {
14258 /* For big endian bits, the DW_AT_bit_offset gives the
14259 additional bit offset from the MSB of the containing
14260 anonymous object to the MSB of the field. We don't
14261 have to do anything special since we don't need to
14262 know the size of the anonymous object. */
14263 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14264 }
14265 else
14266 {
14267 /* For little endian bits, compute the bit offset to the
14268 MSB of the anonymous object, subtract off the number of
14269 bits from the MSB of the field to the MSB of the
14270 object, and then subtract off the number of bits of
14271 the field itself. The result is the bit offset of
14272 the LSB of the field. */
14273 int anonymous_size;
14274 int bit_offset = DW_UNSND (attr);
14275
14276 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14277 if (attr != nullptr)
14278 {
14279 /* The size of the anonymous object containing
14280 the bit field is explicit, so use the
14281 indicated size (in bytes). */
14282 anonymous_size = DW_UNSND (attr);
14283 }
14284 else
14285 {
14286 /* The size of the anonymous object containing
14287 the bit field must be inferred from the type
14288 attribute of the data member containing the
14289 bit field. */
14290 anonymous_size = TYPE_LENGTH (fp->type);
14291 }
14292 SET_FIELD_BITPOS (*fp,
14293 (FIELD_BITPOS (*fp)
14294 + anonymous_size * bits_per_byte
14295 - bit_offset - FIELD_BITSIZE (*fp)));
14296 }
14297 }
14298 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14299 if (attr != NULL)
14300 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14301 + dwarf2_get_attr_constant_value (attr, 0)));
14302
14303 /* Get name of field. */
14304 fieldname = dwarf2_name (die, cu);
14305 if (fieldname == NULL)
14306 fieldname = "";
14307
14308 /* The name is already allocated along with this objfile, so we don't
14309 need to duplicate it for the type. */
14310 fp->name = fieldname;
14311
14312 /* Change accessibility for artificial fields (e.g. virtual table
14313 pointer or virtual base class pointer) to private. */
14314 if (dwarf2_attr (die, DW_AT_artificial, cu))
14315 {
14316 FIELD_ARTIFICIAL (*fp) = 1;
14317 new_field->accessibility = DW_ACCESS_private;
14318 fip->non_public_fields = 1;
14319 }
14320 }
14321 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14322 {
14323 /* C++ static member. */
14324
14325 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14326 is a declaration, but all versions of G++ as of this writing
14327 (so through at least 3.2.1) incorrectly generate
14328 DW_TAG_variable tags. */
14329
14330 const char *physname;
14331
14332 /* Get name of field. */
14333 fieldname = dwarf2_name (die, cu);
14334 if (fieldname == NULL)
14335 return;
14336
14337 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14338 if (attr
14339 /* Only create a symbol if this is an external value.
14340 new_symbol checks this and puts the value in the global symbol
14341 table, which we want. If it is not external, new_symbol
14342 will try to put the value in cu->list_in_scope which is wrong. */
14343 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14344 {
14345 /* A static const member, not much different than an enum as far as
14346 we're concerned, except that we can support more types. */
14347 new_symbol (die, NULL, cu);
14348 }
14349
14350 /* Get physical name. */
14351 physname = dwarf2_physname (fieldname, die, cu);
14352
14353 /* The name is already allocated along with this objfile, so we don't
14354 need to duplicate it for the type. */
14355 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14356 FIELD_TYPE (*fp) = die_type (die, cu);
14357 FIELD_NAME (*fp) = fieldname;
14358 }
14359 else if (die->tag == DW_TAG_inheritance)
14360 {
14361 LONGEST offset;
14362
14363 /* C++ base class field. */
14364 if (handle_data_member_location (die, cu, &offset))
14365 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14366 FIELD_BITSIZE (*fp) = 0;
14367 FIELD_TYPE (*fp) = die_type (die, cu);
14368 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14369 }
14370 else if (die->tag == DW_TAG_variant_part)
14371 {
14372 /* process_structure_scope will treat this DIE as a union. */
14373 process_structure_scope (die, cu);
14374
14375 /* The variant part is relative to the start of the enclosing
14376 structure. */
14377 SET_FIELD_BITPOS (*fp, 0);
14378 fp->type = get_die_type (die, cu);
14379 fp->artificial = 1;
14380 fp->name = "<<variant>>";
14381
14382 /* Normally a DW_TAG_variant_part won't have a size, but our
14383 representation requires one, so set it to the maximum of the
14384 child sizes, being sure to account for the offset at which
14385 each child is seen. */
14386 if (TYPE_LENGTH (fp->type) == 0)
14387 {
14388 unsigned max = 0;
14389 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
14390 {
14391 unsigned len = ((TYPE_FIELD_BITPOS (fp->type, i) + 7) / 8
14392 + TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)));
14393 if (len > max)
14394 max = len;
14395 }
14396 TYPE_LENGTH (fp->type) = max;
14397 }
14398 }
14399 else
14400 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14401}
14402
14403/* Can the type given by DIE define another type? */
14404
14405static bool
14406type_can_define_types (const struct die_info *die)
14407{
14408 switch (die->tag)
14409 {
14410 case DW_TAG_typedef:
14411 case DW_TAG_class_type:
14412 case DW_TAG_structure_type:
14413 case DW_TAG_union_type:
14414 case DW_TAG_enumeration_type:
14415 return true;
14416
14417 default:
14418 return false;
14419 }
14420}
14421
14422/* Add a type definition defined in the scope of the FIP's class. */
14423
14424static void
14425dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14426 struct dwarf2_cu *cu)
14427{
14428 struct decl_field fp;
14429 memset (&fp, 0, sizeof (fp));
14430
14431 gdb_assert (type_can_define_types (die));
14432
14433 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14434 fp.name = dwarf2_name (die, cu);
14435 fp.type = read_type_die (die, cu);
14436
14437 /* Save accessibility. */
14438 enum dwarf_access_attribute accessibility;
14439 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14440 if (attr != NULL)
14441 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14442 else
14443 accessibility = dwarf2_default_access_attribute (die, cu);
14444 switch (accessibility)
14445 {
14446 case DW_ACCESS_public:
14447 /* The assumed value if neither private nor protected. */
14448 break;
14449 case DW_ACCESS_private:
14450 fp.is_private = 1;
14451 break;
14452 case DW_ACCESS_protected:
14453 fp.is_protected = 1;
14454 break;
14455 default:
14456 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14457 }
14458
14459 if (die->tag == DW_TAG_typedef)
14460 fip->typedef_field_list.push_back (fp);
14461 else
14462 fip->nested_types_list.push_back (fp);
14463}
14464
14465/* Create the vector of fields, and attach it to the type. */
14466
14467static void
14468dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14469 struct dwarf2_cu *cu)
14470{
14471 int nfields = fip->nfields;
14472
14473 /* Record the field count, allocate space for the array of fields,
14474 and create blank accessibility bitfields if necessary. */
14475 TYPE_NFIELDS (type) = nfields;
14476 TYPE_FIELDS (type) = (struct field *)
14477 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14478
14479 if (fip->non_public_fields && cu->language != language_ada)
14480 {
14481 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14482
14483 TYPE_FIELD_PRIVATE_BITS (type) =
14484 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14485 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14486
14487 TYPE_FIELD_PROTECTED_BITS (type) =
14488 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14489 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14490
14491 TYPE_FIELD_IGNORE_BITS (type) =
14492 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14493 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14494 }
14495
14496 /* If the type has baseclasses, allocate and clear a bit vector for
14497 TYPE_FIELD_VIRTUAL_BITS. */
14498 if (!fip->baseclasses.empty () && cu->language != language_ada)
14499 {
14500 int num_bytes = B_BYTES (fip->baseclasses.size ());
14501 unsigned char *pointer;
14502
14503 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14504 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14505 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14506 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14507 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14508 }
14509
14510 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
14511 {
14512 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
14513
14514 for (int index = 0; index < nfields; ++index)
14515 {
14516 struct nextfield &field = fip->fields[index];
14517
14518 if (field.variant.is_discriminant)
14519 di->discriminant_index = index;
14520 else if (field.variant.default_branch)
14521 di->default_index = index;
14522 else
14523 di->discriminants[index] = field.variant.discriminant_value;
14524 }
14525 }
14526
14527 /* Copy the saved-up fields into the field vector. */
14528 for (int i = 0; i < nfields; ++i)
14529 {
14530 struct nextfield &field
14531 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14532 : fip->fields[i - fip->baseclasses.size ()]);
14533
14534 TYPE_FIELD (type, i) = field.field;
14535 switch (field.accessibility)
14536 {
14537 case DW_ACCESS_private:
14538 if (cu->language != language_ada)
14539 SET_TYPE_FIELD_PRIVATE (type, i);
14540 break;
14541
14542 case DW_ACCESS_protected:
14543 if (cu->language != language_ada)
14544 SET_TYPE_FIELD_PROTECTED (type, i);
14545 break;
14546
14547 case DW_ACCESS_public:
14548 break;
14549
14550 default:
14551 /* Unknown accessibility. Complain and treat it as public. */
14552 {
14553 complaint (_("unsupported accessibility %d"),
14554 field.accessibility);
14555 }
14556 break;
14557 }
14558 if (i < fip->baseclasses.size ())
14559 {
14560 switch (field.virtuality)
14561 {
14562 case DW_VIRTUALITY_virtual:
14563 case DW_VIRTUALITY_pure_virtual:
14564 if (cu->language == language_ada)
14565 error (_("unexpected virtuality in component of Ada type"));
14566 SET_TYPE_FIELD_VIRTUAL (type, i);
14567 break;
14568 }
14569 }
14570 }
14571}
14572
14573/* Return true if this member function is a constructor, false
14574 otherwise. */
14575
14576static int
14577dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14578{
14579 const char *fieldname;
14580 const char *type_name;
14581 int len;
14582
14583 if (die->parent == NULL)
14584 return 0;
14585
14586 if (die->parent->tag != DW_TAG_structure_type
14587 && die->parent->tag != DW_TAG_union_type
14588 && die->parent->tag != DW_TAG_class_type)
14589 return 0;
14590
14591 fieldname = dwarf2_name (die, cu);
14592 type_name = dwarf2_name (die->parent, cu);
14593 if (fieldname == NULL || type_name == NULL)
14594 return 0;
14595
14596 len = strlen (fieldname);
14597 return (strncmp (fieldname, type_name, len) == 0
14598 && (type_name[len] == '\0' || type_name[len] == '<'));
14599}
14600
14601/* Check if the given VALUE is a recognized enum
14602 dwarf_defaulted_attribute constant according to DWARF5 spec,
14603 Table 7.24. */
14604
14605static bool
14606is_valid_DW_AT_defaulted (ULONGEST value)
14607{
14608 switch (value)
14609 {
14610 case DW_DEFAULTED_no:
14611 case DW_DEFAULTED_in_class:
14612 case DW_DEFAULTED_out_of_class:
14613 return true;
14614 }
14615
14616 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
14617 return false;
14618}
14619
14620/* Add a member function to the proper fieldlist. */
14621
14622static void
14623dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14624 struct type *type, struct dwarf2_cu *cu)
14625{
14626 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14627 struct attribute *attr;
14628 int i;
14629 struct fnfieldlist *flp = nullptr;
14630 struct fn_field *fnp;
14631 const char *fieldname;
14632 struct type *this_type;
14633 enum dwarf_access_attribute accessibility;
14634
14635 if (cu->language == language_ada)
14636 error (_("unexpected member function in Ada type"));
14637
14638 /* Get name of member function. */
14639 fieldname = dwarf2_name (die, cu);
14640 if (fieldname == NULL)
14641 return;
14642
14643 /* Look up member function name in fieldlist. */
14644 for (i = 0; i < fip->fnfieldlists.size (); i++)
14645 {
14646 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14647 {
14648 flp = &fip->fnfieldlists[i];
14649 break;
14650 }
14651 }
14652
14653 /* Create a new fnfieldlist if necessary. */
14654 if (flp == nullptr)
14655 {
14656 fip->fnfieldlists.emplace_back ();
14657 flp = &fip->fnfieldlists.back ();
14658 flp->name = fieldname;
14659 i = fip->fnfieldlists.size () - 1;
14660 }
14661
14662 /* Create a new member function field and add it to the vector of
14663 fnfieldlists. */
14664 flp->fnfields.emplace_back ();
14665 fnp = &flp->fnfields.back ();
14666
14667 /* Delay processing of the physname until later. */
14668 if (cu->language == language_cplus)
14669 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
14670 die, cu);
14671 else
14672 {
14673 const char *physname = dwarf2_physname (fieldname, die, cu);
14674 fnp->physname = physname ? physname : "";
14675 }
14676
14677 fnp->type = alloc_type (objfile);
14678 this_type = read_type_die (die, cu);
14679 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
14680 {
14681 int nparams = TYPE_NFIELDS (this_type);
14682
14683 /* TYPE is the domain of this method, and THIS_TYPE is the type
14684 of the method itself (TYPE_CODE_METHOD). */
14685 smash_to_method_type (fnp->type, type,
14686 TYPE_TARGET_TYPE (this_type),
14687 TYPE_FIELDS (this_type),
14688 TYPE_NFIELDS (this_type),
14689 TYPE_VARARGS (this_type));
14690
14691 /* Handle static member functions.
14692 Dwarf2 has no clean way to discern C++ static and non-static
14693 member functions. G++ helps GDB by marking the first
14694 parameter for non-static member functions (which is the this
14695 pointer) as artificial. We obtain this information from
14696 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14697 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14698 fnp->voffset = VOFFSET_STATIC;
14699 }
14700 else
14701 complaint (_("member function type missing for '%s'"),
14702 dwarf2_full_name (fieldname, die, cu));
14703
14704 /* Get fcontext from DW_AT_containing_type if present. */
14705 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14706 fnp->fcontext = die_containing_type (die, cu);
14707
14708 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14709 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14710
14711 /* Get accessibility. */
14712 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14713 if (attr != nullptr)
14714 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14715 else
14716 accessibility = dwarf2_default_access_attribute (die, cu);
14717 switch (accessibility)
14718 {
14719 case DW_ACCESS_private:
14720 fnp->is_private = 1;
14721 break;
14722 case DW_ACCESS_protected:
14723 fnp->is_protected = 1;
14724 break;
14725 }
14726
14727 /* Check for artificial methods. */
14728 attr = dwarf2_attr (die, DW_AT_artificial, cu);
14729 if (attr && DW_UNSND (attr) != 0)
14730 fnp->is_artificial = 1;
14731
14732 /* Check for defaulted methods. */
14733 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
14734 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
14735 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
14736
14737 /* Check for deleted methods. */
14738 attr = dwarf2_attr (die, DW_AT_deleted, cu);
14739 if (attr != nullptr && DW_UNSND (attr) != 0)
14740 fnp->is_deleted = 1;
14741
14742 fnp->is_constructor = dwarf2_is_constructor (die, cu);
14743
14744 /* Get index in virtual function table if it is a virtual member
14745 function. For older versions of GCC, this is an offset in the
14746 appropriate virtual table, as specified by DW_AT_containing_type.
14747 For everyone else, it is an expression to be evaluated relative
14748 to the object address. */
14749
14750 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14751 if (attr != nullptr)
14752 {
14753 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
14754 {
14755 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14756 {
14757 /* Old-style GCC. */
14758 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
14759 }
14760 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
14761 || (DW_BLOCK (attr)->size > 1
14762 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
14763 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
14764 {
14765 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
14766 if ((fnp->voffset % cu->header.addr_size) != 0)
14767 dwarf2_complex_location_expr_complaint ();
14768 else
14769 fnp->voffset /= cu->header.addr_size;
14770 fnp->voffset += 2;
14771 }
14772 else
14773 dwarf2_complex_location_expr_complaint ();
14774
14775 if (!fnp->fcontext)
14776 {
14777 /* If there is no `this' field and no DW_AT_containing_type,
14778 we cannot actually find a base class context for the
14779 vtable! */
14780 if (TYPE_NFIELDS (this_type) == 0
14781 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
14782 {
14783 complaint (_("cannot determine context for virtual member "
14784 "function \"%s\" (offset %s)"),
14785 fieldname, sect_offset_str (die->sect_off));
14786 }
14787 else
14788 {
14789 fnp->fcontext
14790 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
14791 }
14792 }
14793 }
14794 else if (attr->form_is_section_offset ())
14795 {
14796 dwarf2_complex_location_expr_complaint ();
14797 }
14798 else
14799 {
14800 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
14801 fieldname);
14802 }
14803 }
14804 else
14805 {
14806 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14807 if (attr && DW_UNSND (attr))
14808 {
14809 /* GCC does this, as of 2008-08-25; PR debug/37237. */
14810 complaint (_("Member function \"%s\" (offset %s) is virtual "
14811 "but the vtable offset is not specified"),
14812 fieldname, sect_offset_str (die->sect_off));
14813 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14814 TYPE_CPLUS_DYNAMIC (type) = 1;
14815 }
14816 }
14817}
14818
14819/* Create the vector of member function fields, and attach it to the type. */
14820
14821static void
14822dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
14823 struct dwarf2_cu *cu)
14824{
14825 if (cu->language == language_ada)
14826 error (_("unexpected member functions in Ada type"));
14827
14828 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14829 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
14830 TYPE_ALLOC (type,
14831 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
14832
14833 for (int i = 0; i < fip->fnfieldlists.size (); i++)
14834 {
14835 struct fnfieldlist &nf = fip->fnfieldlists[i];
14836 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
14837
14838 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
14839 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
14840 fn_flp->fn_fields = (struct fn_field *)
14841 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
14842
14843 for (int k = 0; k < nf.fnfields.size (); ++k)
14844 fn_flp->fn_fields[k] = nf.fnfields[k];
14845 }
14846
14847 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
14848}
14849
14850/* Returns non-zero if NAME is the name of a vtable member in CU's
14851 language, zero otherwise. */
14852static int
14853is_vtable_name (const char *name, struct dwarf2_cu *cu)
14854{
14855 static const char vptr[] = "_vptr";
14856
14857 /* Look for the C++ form of the vtable. */
14858 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
14859 return 1;
14860
14861 return 0;
14862}
14863
14864/* GCC outputs unnamed structures that are really pointers to member
14865 functions, with the ABI-specified layout. If TYPE describes
14866 such a structure, smash it into a member function type.
14867
14868 GCC shouldn't do this; it should just output pointer to member DIEs.
14869 This is GCC PR debug/28767. */
14870
14871static void
14872quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
14873{
14874 struct type *pfn_type, *self_type, *new_type;
14875
14876 /* Check for a structure with no name and two children. */
14877 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
14878 return;
14879
14880 /* Check for __pfn and __delta members. */
14881 if (TYPE_FIELD_NAME (type, 0) == NULL
14882 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
14883 || TYPE_FIELD_NAME (type, 1) == NULL
14884 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
14885 return;
14886
14887 /* Find the type of the method. */
14888 pfn_type = TYPE_FIELD_TYPE (type, 0);
14889 if (pfn_type == NULL
14890 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
14891 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
14892 return;
14893
14894 /* Look for the "this" argument. */
14895 pfn_type = TYPE_TARGET_TYPE (pfn_type);
14896 if (TYPE_NFIELDS (pfn_type) == 0
14897 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
14898 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
14899 return;
14900
14901 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
14902 new_type = alloc_type (objfile);
14903 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
14904 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
14905 TYPE_VARARGS (pfn_type));
14906 smash_to_methodptr_type (type, new_type);
14907}
14908
14909/* If the DIE has a DW_AT_alignment attribute, return its value, doing
14910 appropriate error checking and issuing complaints if there is a
14911 problem. */
14912
14913static ULONGEST
14914get_alignment (struct dwarf2_cu *cu, struct die_info *die)
14915{
14916 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
14917
14918 if (attr == nullptr)
14919 return 0;
14920
14921 if (!attr->form_is_constant ())
14922 {
14923 complaint (_("DW_AT_alignment must have constant form"
14924 " - DIE at %s [in module %s]"),
14925 sect_offset_str (die->sect_off),
14926 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14927 return 0;
14928 }
14929
14930 ULONGEST align;
14931 if (attr->form == DW_FORM_sdata)
14932 {
14933 LONGEST val = DW_SND (attr);
14934 if (val < 0)
14935 {
14936 complaint (_("DW_AT_alignment value must not be negative"
14937 " - DIE at %s [in module %s]"),
14938 sect_offset_str (die->sect_off),
14939 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14940 return 0;
14941 }
14942 align = val;
14943 }
14944 else
14945 align = DW_UNSND (attr);
14946
14947 if (align == 0)
14948 {
14949 complaint (_("DW_AT_alignment value must not be zero"
14950 " - DIE at %s [in module %s]"),
14951 sect_offset_str (die->sect_off),
14952 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14953 return 0;
14954 }
14955 if ((align & (align - 1)) != 0)
14956 {
14957 complaint (_("DW_AT_alignment value must be a power of 2"
14958 " - DIE at %s [in module %s]"),
14959 sect_offset_str (die->sect_off),
14960 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14961 return 0;
14962 }
14963
14964 return align;
14965}
14966
14967/* If the DIE has a DW_AT_alignment attribute, use its value to set
14968 the alignment for TYPE. */
14969
14970static void
14971maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
14972 struct type *type)
14973{
14974 if (!set_type_align (type, get_alignment (cu, die)))
14975 complaint (_("DW_AT_alignment value too large"
14976 " - DIE at %s [in module %s]"),
14977 sect_offset_str (die->sect_off),
14978 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14979}
14980
14981/* Check if the given VALUE is a valid enum dwarf_calling_convention
14982 constant for a type, according to DWARF5 spec, Table 5.5. */
14983
14984static bool
14985is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
14986{
14987 switch (value)
14988 {
14989 case DW_CC_normal:
14990 case DW_CC_pass_by_reference:
14991 case DW_CC_pass_by_value:
14992 return true;
14993
14994 default:
14995 complaint (_("unrecognized DW_AT_calling_convention value "
14996 "(%s) for a type"), pulongest (value));
14997 return false;
14998 }
14999}
15000
15001/* Check if the given VALUE is a valid enum dwarf_calling_convention
15002 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15003 also according to GNU-specific values (see include/dwarf2.h). */
15004
15005static bool
15006is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15007{
15008 switch (value)
15009 {
15010 case DW_CC_normal:
15011 case DW_CC_program:
15012 case DW_CC_nocall:
15013 return true;
15014
15015 case DW_CC_GNU_renesas_sh:
15016 case DW_CC_GNU_borland_fastcall_i386:
15017 case DW_CC_GDB_IBM_OpenCL:
15018 return true;
15019
15020 default:
15021 complaint (_("unrecognized DW_AT_calling_convention value "
15022 "(%s) for a subroutine"), pulongest (value));
15023 return false;
15024 }
15025}
15026
15027/* Called when we find the DIE that starts a structure or union scope
15028 (definition) to create a type for the structure or union. Fill in
15029 the type's name and general properties; the members will not be
15030 processed until process_structure_scope. A symbol table entry for
15031 the type will also not be done until process_structure_scope (assuming
15032 the type has a name).
15033
15034 NOTE: we need to call these functions regardless of whether or not the
15035 DIE has a DW_AT_name attribute, since it might be an anonymous
15036 structure or union. This gets the type entered into our set of
15037 user defined types. */
15038
15039static struct type *
15040read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15041{
15042 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15043 struct type *type;
15044 struct attribute *attr;
15045 const char *name;
15046
15047 /* If the definition of this type lives in .debug_types, read that type.
15048 Don't follow DW_AT_specification though, that will take us back up
15049 the chain and we want to go down. */
15050 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15051 if (attr != nullptr)
15052 {
15053 type = get_DW_AT_signature_type (die, attr, cu);
15054
15055 /* The type's CU may not be the same as CU.
15056 Ensure TYPE is recorded with CU in die_type_hash. */
15057 return set_die_type (die, type, cu);
15058 }
15059
15060 type = alloc_type (objfile);
15061 INIT_CPLUS_SPECIFIC (type);
15062
15063 name = dwarf2_name (die, cu);
15064 if (name != NULL)
15065 {
15066 if (cu->language == language_cplus
15067 || cu->language == language_d
15068 || cu->language == language_rust)
15069 {
15070 const char *full_name = dwarf2_full_name (name, die, cu);
15071
15072 /* dwarf2_full_name might have already finished building the DIE's
15073 type. If so, there is no need to continue. */
15074 if (get_die_type (die, cu) != NULL)
15075 return get_die_type (die, cu);
15076
15077 TYPE_NAME (type) = full_name;
15078 }
15079 else
15080 {
15081 /* The name is already allocated along with this objfile, so
15082 we don't need to duplicate it for the type. */
15083 TYPE_NAME (type) = name;
15084 }
15085 }
15086
15087 if (die->tag == DW_TAG_structure_type)
15088 {
15089 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15090 }
15091 else if (die->tag == DW_TAG_union_type)
15092 {
15093 TYPE_CODE (type) = TYPE_CODE_UNION;
15094 }
15095 else if (die->tag == DW_TAG_variant_part)
15096 {
15097 TYPE_CODE (type) = TYPE_CODE_UNION;
15098 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15099 }
15100 else
15101 {
15102 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15103 }
15104
15105 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15106 TYPE_DECLARED_CLASS (type) = 1;
15107
15108 /* Store the calling convention in the type if it's available in
15109 the die. Otherwise the calling convention remains set to
15110 the default value DW_CC_normal. */
15111 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15112 if (attr != nullptr
15113 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15114 {
15115 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15116 TYPE_CPLUS_CALLING_CONVENTION (type)
15117 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15118 }
15119
15120 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15121 if (attr != nullptr)
15122 {
15123 if (attr->form_is_constant ())
15124 TYPE_LENGTH (type) = DW_UNSND (attr);
15125 else
15126 {
15127 /* For the moment, dynamic type sizes are not supported
15128 by GDB's struct type. The actual size is determined
15129 on-demand when resolving the type of a given object,
15130 so set the type's length to zero for now. Otherwise,
15131 we record an expression as the length, and that expression
15132 could lead to a very large value, which could eventually
15133 lead to us trying to allocate that much memory when creating
15134 a value of that type. */
15135 TYPE_LENGTH (type) = 0;
15136 }
15137 }
15138 else
15139 {
15140 TYPE_LENGTH (type) = 0;
15141 }
15142
15143 maybe_set_alignment (cu, die, type);
15144
15145 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15146 {
15147 /* ICC<14 does not output the required DW_AT_declaration on
15148 incomplete types, but gives them a size of zero. */
15149 TYPE_STUB (type) = 1;
15150 }
15151 else
15152 TYPE_STUB_SUPPORTED (type) = 1;
15153
15154 if (die_is_declaration (die, cu))
15155 TYPE_STUB (type) = 1;
15156 else if (attr == NULL && die->child == NULL
15157 && producer_is_realview (cu->producer))
15158 /* RealView does not output the required DW_AT_declaration
15159 on incomplete types. */
15160 TYPE_STUB (type) = 1;
15161
15162 /* We need to add the type field to the die immediately so we don't
15163 infinitely recurse when dealing with pointers to the structure
15164 type within the structure itself. */
15165 set_die_type (die, type, cu);
15166
15167 /* set_die_type should be already done. */
15168 set_descriptive_type (type, die, cu);
15169
15170 return type;
15171}
15172
15173/* A helper for process_structure_scope that handles a single member
15174 DIE. */
15175
15176static void
15177handle_struct_member_die (struct die_info *child_die, struct type *type,
15178 struct field_info *fi,
15179 std::vector<struct symbol *> *template_args,
15180 struct dwarf2_cu *cu)
15181{
15182 if (child_die->tag == DW_TAG_member
15183 || child_die->tag == DW_TAG_variable
15184 || child_die->tag == DW_TAG_variant_part)
15185 {
15186 /* NOTE: carlton/2002-11-05: A C++ static data member
15187 should be a DW_TAG_member that is a declaration, but
15188 all versions of G++ as of this writing (so through at
15189 least 3.2.1) incorrectly generate DW_TAG_variable
15190 tags for them instead. */
15191 dwarf2_add_field (fi, child_die, cu);
15192 }
15193 else if (child_die->tag == DW_TAG_subprogram)
15194 {
15195 /* Rust doesn't have member functions in the C++ sense.
15196 However, it does emit ordinary functions as children
15197 of a struct DIE. */
15198 if (cu->language == language_rust)
15199 read_func_scope (child_die, cu);
15200 else
15201 {
15202 /* C++ member function. */
15203 dwarf2_add_member_fn (fi, child_die, type, cu);
15204 }
15205 }
15206 else if (child_die->tag == DW_TAG_inheritance)
15207 {
15208 /* C++ base class field. */
15209 dwarf2_add_field (fi, child_die, cu);
15210 }
15211 else if (type_can_define_types (child_die))
15212 dwarf2_add_type_defn (fi, child_die, cu);
15213 else if (child_die->tag == DW_TAG_template_type_param
15214 || child_die->tag == DW_TAG_template_value_param)
15215 {
15216 struct symbol *arg = new_symbol (child_die, NULL, cu);
15217
15218 if (arg != NULL)
15219 template_args->push_back (arg);
15220 }
15221 else if (child_die->tag == DW_TAG_variant)
15222 {
15223 /* In a variant we want to get the discriminant and also add a
15224 field for our sole member child. */
15225 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15226
15227 for (die_info *variant_child = child_die->child;
15228 variant_child != NULL;
15229 variant_child = sibling_die (variant_child))
15230 {
15231 if (variant_child->tag == DW_TAG_member)
15232 {
15233 handle_struct_member_die (variant_child, type, fi,
15234 template_args, cu);
15235 /* Only handle the one. */
15236 break;
15237 }
15238 }
15239
15240 /* We don't handle this but we might as well report it if we see
15241 it. */
15242 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15243 complaint (_("DW_AT_discr_list is not supported yet"
15244 " - DIE at %s [in module %s]"),
15245 sect_offset_str (child_die->sect_off),
15246 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15247
15248 /* The first field was just added, so we can stash the
15249 discriminant there. */
15250 gdb_assert (!fi->fields.empty ());
15251 if (discr == NULL)
15252 fi->fields.back ().variant.default_branch = true;
15253 else
15254 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15255 }
15256}
15257
15258/* Finish creating a structure or union type, including filling in
15259 its members and creating a symbol for it. */
15260
15261static void
15262process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15263{
15264 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15265 struct die_info *child_die;
15266 struct type *type;
15267
15268 type = get_die_type (die, cu);
15269 if (type == NULL)
15270 type = read_structure_type (die, cu);
15271
15272 /* When reading a DW_TAG_variant_part, we need to notice when we
15273 read the discriminant member, so we can record it later in the
15274 discriminant_info. */
15275 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15276 sect_offset discr_offset {};
15277 bool has_template_parameters = false;
15278
15279 if (is_variant_part)
15280 {
15281 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15282 if (discr == NULL)
15283 {
15284 /* Maybe it's a univariant form, an extension we support.
15285 In this case arrange not to check the offset. */
15286 is_variant_part = false;
15287 }
15288 else if (discr->form_is_ref ())
15289 {
15290 struct dwarf2_cu *target_cu = cu;
15291 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15292
15293 discr_offset = target_die->sect_off;
15294 }
15295 else
15296 {
15297 complaint (_("DW_AT_discr does not have DIE reference form"
15298 " - DIE at %s [in module %s]"),
15299 sect_offset_str (die->sect_off),
15300 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15301 is_variant_part = false;
15302 }
15303 }
15304
15305 if (die->child != NULL && ! die_is_declaration (die, cu))
15306 {
15307 struct field_info fi;
15308 std::vector<struct symbol *> template_args;
15309
15310 child_die = die->child;
15311
15312 while (child_die && child_die->tag)
15313 {
15314 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15315
15316 if (is_variant_part && discr_offset == child_die->sect_off)
15317 fi.fields.back ().variant.is_discriminant = true;
15318
15319 child_die = sibling_die (child_die);
15320 }
15321
15322 /* Attach template arguments to type. */
15323 if (!template_args.empty ())
15324 {
15325 has_template_parameters = true;
15326 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15327 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15328 TYPE_TEMPLATE_ARGUMENTS (type)
15329 = XOBNEWVEC (&objfile->objfile_obstack,
15330 struct symbol *,
15331 TYPE_N_TEMPLATE_ARGUMENTS (type));
15332 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15333 template_args.data (),
15334 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15335 * sizeof (struct symbol *)));
15336 }
15337
15338 /* Attach fields and member functions to the type. */
15339 if (fi.nfields)
15340 dwarf2_attach_fields_to_type (&fi, type, cu);
15341 if (!fi.fnfieldlists.empty ())
15342 {
15343 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15344
15345 /* Get the type which refers to the base class (possibly this
15346 class itself) which contains the vtable pointer for the current
15347 class from the DW_AT_containing_type attribute. This use of
15348 DW_AT_containing_type is a GNU extension. */
15349
15350 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15351 {
15352 struct type *t = die_containing_type (die, cu);
15353
15354 set_type_vptr_basetype (type, t);
15355 if (type == t)
15356 {
15357 int i;
15358
15359 /* Our own class provides vtbl ptr. */
15360 for (i = TYPE_NFIELDS (t) - 1;
15361 i >= TYPE_N_BASECLASSES (t);
15362 --i)
15363 {
15364 const char *fieldname = TYPE_FIELD_NAME (t, i);
15365
15366 if (is_vtable_name (fieldname, cu))
15367 {
15368 set_type_vptr_fieldno (type, i);
15369 break;
15370 }
15371 }
15372
15373 /* Complain if virtual function table field not found. */
15374 if (i < TYPE_N_BASECLASSES (t))
15375 complaint (_("virtual function table pointer "
15376 "not found when defining class '%s'"),
15377 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15378 }
15379 else
15380 {
15381 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15382 }
15383 }
15384 else if (cu->producer
15385 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15386 {
15387 /* The IBM XLC compiler does not provide direct indication
15388 of the containing type, but the vtable pointer is
15389 always named __vfp. */
15390
15391 int i;
15392
15393 for (i = TYPE_NFIELDS (type) - 1;
15394 i >= TYPE_N_BASECLASSES (type);
15395 --i)
15396 {
15397 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15398 {
15399 set_type_vptr_fieldno (type, i);
15400 set_type_vptr_basetype (type, type);
15401 break;
15402 }
15403 }
15404 }
15405 }
15406
15407 /* Copy fi.typedef_field_list linked list elements content into the
15408 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15409 if (!fi.typedef_field_list.empty ())
15410 {
15411 int count = fi.typedef_field_list.size ();
15412
15413 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15414 TYPE_TYPEDEF_FIELD_ARRAY (type)
15415 = ((struct decl_field *)
15416 TYPE_ALLOC (type,
15417 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15418 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15419
15420 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15421 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15422 }
15423
15424 /* Copy fi.nested_types_list linked list elements content into the
15425 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15426 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15427 {
15428 int count = fi.nested_types_list.size ();
15429
15430 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15431 TYPE_NESTED_TYPES_ARRAY (type)
15432 = ((struct decl_field *)
15433 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15434 TYPE_NESTED_TYPES_COUNT (type) = count;
15435
15436 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15437 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15438 }
15439 }
15440
15441 quirk_gcc_member_function_pointer (type, objfile);
15442 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15443 cu->rust_unions.push_back (type);
15444
15445 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15446 snapshots) has been known to create a die giving a declaration
15447 for a class that has, as a child, a die giving a definition for a
15448 nested class. So we have to process our children even if the
15449 current die is a declaration. Normally, of course, a declaration
15450 won't have any children at all. */
15451
15452 child_die = die->child;
15453
15454 while (child_die != NULL && child_die->tag)
15455 {
15456 if (child_die->tag == DW_TAG_member
15457 || child_die->tag == DW_TAG_variable
15458 || child_die->tag == DW_TAG_inheritance
15459 || child_die->tag == DW_TAG_template_value_param
15460 || child_die->tag == DW_TAG_template_type_param)
15461 {
15462 /* Do nothing. */
15463 }
15464 else
15465 process_die (child_die, cu);
15466
15467 child_die = sibling_die (child_die);
15468 }
15469
15470 /* Do not consider external references. According to the DWARF standard,
15471 these DIEs are identified by the fact that they have no byte_size
15472 attribute, and a declaration attribute. */
15473 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15474 || !die_is_declaration (die, cu))
15475 {
15476 struct symbol *sym = new_symbol (die, type, cu);
15477
15478 if (has_template_parameters)
15479 {
15480 struct symtab *symtab;
15481 if (sym != nullptr)
15482 symtab = symbol_symtab (sym);
15483 else if (cu->line_header != nullptr)
15484 {
15485 /* Any related symtab will do. */
15486 symtab
15487 = cu->line_header->file_names ()[0].symtab;
15488 }
15489 else
15490 {
15491 symtab = nullptr;
15492 complaint (_("could not find suitable "
15493 "symtab for template parameter"
15494 " - DIE at %s [in module %s]"),
15495 sect_offset_str (die->sect_off),
15496 objfile_name (objfile));
15497 }
15498
15499 if (symtab != nullptr)
15500 {
15501 /* Make sure that the symtab is set on the new symbols.
15502 Even though they don't appear in this symtab directly,
15503 other parts of gdb assume that symbols do, and this is
15504 reasonably true. */
15505 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15506 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15507 }
15508 }
15509 }
15510}
15511
15512/* Assuming DIE is an enumeration type, and TYPE is its associated type,
15513 update TYPE using some information only available in DIE's children. */
15514
15515static void
15516update_enumeration_type_from_children (struct die_info *die,
15517 struct type *type,
15518 struct dwarf2_cu *cu)
15519{
15520 struct die_info *child_die;
15521 int unsigned_enum = 1;
15522 int flag_enum = 1;
15523
15524 auto_obstack obstack;
15525
15526 for (child_die = die->child;
15527 child_die != NULL && child_die->tag;
15528 child_die = sibling_die (child_die))
15529 {
15530 struct attribute *attr;
15531 LONGEST value;
15532 const gdb_byte *bytes;
15533 struct dwarf2_locexpr_baton *baton;
15534 const char *name;
15535
15536 if (child_die->tag != DW_TAG_enumerator)
15537 continue;
15538
15539 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15540 if (attr == NULL)
15541 continue;
15542
15543 name = dwarf2_name (child_die, cu);
15544 if (name == NULL)
15545 name = "<anonymous enumerator>";
15546
15547 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15548 &value, &bytes, &baton);
15549 if (value < 0)
15550 {
15551 unsigned_enum = 0;
15552 flag_enum = 0;
15553 }
15554 else
15555 {
15556 if (count_one_bits_ll (value) >= 2)
15557 flag_enum = 0;
15558 }
15559
15560 /* If we already know that the enum type is neither unsigned, nor
15561 a flag type, no need to look at the rest of the enumerates. */
15562 if (!unsigned_enum && !flag_enum)
15563 break;
15564 }
15565
15566 if (unsigned_enum)
15567 TYPE_UNSIGNED (type) = 1;
15568 if (flag_enum)
15569 TYPE_FLAG_ENUM (type) = 1;
15570}
15571
15572/* Given a DW_AT_enumeration_type die, set its type. We do not
15573 complete the type's fields yet, or create any symbols. */
15574
15575static struct type *
15576read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15577{
15578 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15579 struct type *type;
15580 struct attribute *attr;
15581 const char *name;
15582
15583 /* If the definition of this type lives in .debug_types, read that type.
15584 Don't follow DW_AT_specification though, that will take us back up
15585 the chain and we want to go down. */
15586 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15587 if (attr != nullptr)
15588 {
15589 type = get_DW_AT_signature_type (die, attr, cu);
15590
15591 /* The type's CU may not be the same as CU.
15592 Ensure TYPE is recorded with CU in die_type_hash. */
15593 return set_die_type (die, type, cu);
15594 }
15595
15596 type = alloc_type (objfile);
15597
15598 TYPE_CODE (type) = TYPE_CODE_ENUM;
15599 name = dwarf2_full_name (NULL, die, cu);
15600 if (name != NULL)
15601 TYPE_NAME (type) = name;
15602
15603 attr = dwarf2_attr (die, DW_AT_type, cu);
15604 if (attr != NULL)
15605 {
15606 struct type *underlying_type = die_type (die, cu);
15607
15608 TYPE_TARGET_TYPE (type) = underlying_type;
15609 }
15610
15611 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15612 if (attr != nullptr)
15613 {
15614 TYPE_LENGTH (type) = DW_UNSND (attr);
15615 }
15616 else
15617 {
15618 TYPE_LENGTH (type) = 0;
15619 }
15620
15621 maybe_set_alignment (cu, die, type);
15622
15623 /* The enumeration DIE can be incomplete. In Ada, any type can be
15624 declared as private in the package spec, and then defined only
15625 inside the package body. Such types are known as Taft Amendment
15626 Types. When another package uses such a type, an incomplete DIE
15627 may be generated by the compiler. */
15628 if (die_is_declaration (die, cu))
15629 TYPE_STUB (type) = 1;
15630
15631 /* Finish the creation of this type by using the enum's children.
15632 We must call this even when the underlying type has been provided
15633 so that we can determine if we're looking at a "flag" enum. */
15634 update_enumeration_type_from_children (die, type, cu);
15635
15636 /* If this type has an underlying type that is not a stub, then we
15637 may use its attributes. We always use the "unsigned" attribute
15638 in this situation, because ordinarily we guess whether the type
15639 is unsigned -- but the guess can be wrong and the underlying type
15640 can tell us the reality. However, we defer to a local size
15641 attribute if one exists, because this lets the compiler override
15642 the underlying type if needed. */
15643 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
15644 {
15645 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
15646 if (TYPE_LENGTH (type) == 0)
15647 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
15648 if (TYPE_RAW_ALIGN (type) == 0
15649 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
15650 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
15651 }
15652
15653 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
15654
15655 return set_die_type (die, type, cu);
15656}
15657
15658/* Given a pointer to a die which begins an enumeration, process all
15659 the dies that define the members of the enumeration, and create the
15660 symbol for the enumeration type.
15661
15662 NOTE: We reverse the order of the element list. */
15663
15664static void
15665process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
15666{
15667 struct type *this_type;
15668
15669 this_type = get_die_type (die, cu);
15670 if (this_type == NULL)
15671 this_type = read_enumeration_type (die, cu);
15672
15673 if (die->child != NULL)
15674 {
15675 struct die_info *child_die;
15676 struct symbol *sym;
15677 std::vector<struct field> fields;
15678 const char *name;
15679
15680 child_die = die->child;
15681 while (child_die && child_die->tag)
15682 {
15683 if (child_die->tag != DW_TAG_enumerator)
15684 {
15685 process_die (child_die, cu);
15686 }
15687 else
15688 {
15689 name = dwarf2_name (child_die, cu);
15690 if (name)
15691 {
15692 sym = new_symbol (child_die, this_type, cu);
15693
15694 fields.emplace_back ();
15695 struct field &field = fields.back ();
15696
15697 FIELD_NAME (field) = sym->linkage_name ();
15698 FIELD_TYPE (field) = NULL;
15699 SET_FIELD_ENUMVAL (field, SYMBOL_VALUE (sym));
15700 FIELD_BITSIZE (field) = 0;
15701 }
15702 }
15703
15704 child_die = sibling_die (child_die);
15705 }
15706
15707 if (!fields.empty ())
15708 {
15709 TYPE_NFIELDS (this_type) = fields.size ();
15710 TYPE_FIELDS (this_type) = (struct field *)
15711 TYPE_ALLOC (this_type, sizeof (struct field) * fields.size ());
15712 memcpy (TYPE_FIELDS (this_type), fields.data (),
15713 sizeof (struct field) * fields.size ());
15714 }
15715 }
15716
15717 /* If we are reading an enum from a .debug_types unit, and the enum
15718 is a declaration, and the enum is not the signatured type in the
15719 unit, then we do not want to add a symbol for it. Adding a
15720 symbol would in some cases obscure the true definition of the
15721 enum, giving users an incomplete type when the definition is
15722 actually available. Note that we do not want to do this for all
15723 enums which are just declarations, because C++0x allows forward
15724 enum declarations. */
15725 if (cu->per_cu->is_debug_types
15726 && die_is_declaration (die, cu))
15727 {
15728 struct signatured_type *sig_type;
15729
15730 sig_type = (struct signatured_type *) cu->per_cu;
15731 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
15732 if (sig_type->type_offset_in_section != die->sect_off)
15733 return;
15734 }
15735
15736 new_symbol (die, this_type, cu);
15737}
15738
15739/* Extract all information from a DW_TAG_array_type DIE and put it in
15740 the DIE's type field. For now, this only handles one dimensional
15741 arrays. */
15742
15743static struct type *
15744read_array_type (struct die_info *die, struct dwarf2_cu *cu)
15745{
15746 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15747 struct die_info *child_die;
15748 struct type *type;
15749 struct type *element_type, *range_type, *index_type;
15750 struct attribute *attr;
15751 const char *name;
15752 struct dynamic_prop *byte_stride_prop = NULL;
15753 unsigned int bit_stride = 0;
15754
15755 element_type = die_type (die, cu);
15756
15757 /* The die_type call above may have already set the type for this DIE. */
15758 type = get_die_type (die, cu);
15759 if (type)
15760 return type;
15761
15762 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
15763 if (attr != NULL)
15764 {
15765 int stride_ok;
15766 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
15767
15768 byte_stride_prop
15769 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
15770 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
15771 prop_type);
15772 if (!stride_ok)
15773 {
15774 complaint (_("unable to read array DW_AT_byte_stride "
15775 " - DIE at %s [in module %s]"),
15776 sect_offset_str (die->sect_off),
15777 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15778 /* Ignore this attribute. We will likely not be able to print
15779 arrays of this type correctly, but there is little we can do
15780 to help if we cannot read the attribute's value. */
15781 byte_stride_prop = NULL;
15782 }
15783 }
15784
15785 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
15786 if (attr != NULL)
15787 bit_stride = DW_UNSND (attr);
15788
15789 /* Irix 6.2 native cc creates array types without children for
15790 arrays with unspecified length. */
15791 if (die->child == NULL)
15792 {
15793 index_type = objfile_type (objfile)->builtin_int;
15794 range_type = create_static_range_type (NULL, index_type, 0, -1);
15795 type = create_array_type_with_stride (NULL, element_type, range_type,
15796 byte_stride_prop, bit_stride);
15797 return set_die_type (die, type, cu);
15798 }
15799
15800 std::vector<struct type *> range_types;
15801 child_die = die->child;
15802 while (child_die && child_die->tag)
15803 {
15804 if (child_die->tag == DW_TAG_subrange_type)
15805 {
15806 struct type *child_type = read_type_die (child_die, cu);
15807
15808 if (child_type != NULL)
15809 {
15810 /* The range type was succesfully read. Save it for the
15811 array type creation. */
15812 range_types.push_back (child_type);
15813 }
15814 }
15815 child_die = sibling_die (child_die);
15816 }
15817
15818 /* Dwarf2 dimensions are output from left to right, create the
15819 necessary array types in backwards order. */
15820
15821 type = element_type;
15822
15823 if (read_array_order (die, cu) == DW_ORD_col_major)
15824 {
15825 int i = 0;
15826
15827 while (i < range_types.size ())
15828 type = create_array_type_with_stride (NULL, type, range_types[i++],
15829 byte_stride_prop, bit_stride);
15830 }
15831 else
15832 {
15833 size_t ndim = range_types.size ();
15834 while (ndim-- > 0)
15835 type = create_array_type_with_stride (NULL, type, range_types[ndim],
15836 byte_stride_prop, bit_stride);
15837 }
15838
15839 /* Understand Dwarf2 support for vector types (like they occur on
15840 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
15841 array type. This is not part of the Dwarf2/3 standard yet, but a
15842 custom vendor extension. The main difference between a regular
15843 array and the vector variant is that vectors are passed by value
15844 to functions. */
15845 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
15846 if (attr != nullptr)
15847 make_vector_type (type);
15848
15849 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
15850 implementation may choose to implement triple vectors using this
15851 attribute. */
15852 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15853 if (attr != nullptr)
15854 {
15855 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
15856 TYPE_LENGTH (type) = DW_UNSND (attr);
15857 else
15858 complaint (_("DW_AT_byte_size for array type smaller "
15859 "than the total size of elements"));
15860 }
15861
15862 name = dwarf2_name (die, cu);
15863 if (name)
15864 TYPE_NAME (type) = name;
15865
15866 maybe_set_alignment (cu, die, type);
15867
15868 /* Install the type in the die. */
15869 set_die_type (die, type, cu);
15870
15871 /* set_die_type should be already done. */
15872 set_descriptive_type (type, die, cu);
15873
15874 return type;
15875}
15876
15877static enum dwarf_array_dim_ordering
15878read_array_order (struct die_info *die, struct dwarf2_cu *cu)
15879{
15880 struct attribute *attr;
15881
15882 attr = dwarf2_attr (die, DW_AT_ordering, cu);
15883
15884 if (attr != nullptr)
15885 return (enum dwarf_array_dim_ordering) DW_SND (attr);
15886
15887 /* GNU F77 is a special case, as at 08/2004 array type info is the
15888 opposite order to the dwarf2 specification, but data is still
15889 laid out as per normal fortran.
15890
15891 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
15892 version checking. */
15893
15894 if (cu->language == language_fortran
15895 && cu->producer && strstr (cu->producer, "GNU F77"))
15896 {
15897 return DW_ORD_row_major;
15898 }
15899
15900 switch (cu->language_defn->la_array_ordering)
15901 {
15902 case array_column_major:
15903 return DW_ORD_col_major;
15904 case array_row_major:
15905 default:
15906 return DW_ORD_row_major;
15907 };
15908}
15909
15910/* Extract all information from a DW_TAG_set_type DIE and put it in
15911 the DIE's type field. */
15912
15913static struct type *
15914read_set_type (struct die_info *die, struct dwarf2_cu *cu)
15915{
15916 struct type *domain_type, *set_type;
15917 struct attribute *attr;
15918
15919 domain_type = die_type (die, cu);
15920
15921 /* The die_type call above may have already set the type for this DIE. */
15922 set_type = get_die_type (die, cu);
15923 if (set_type)
15924 return set_type;
15925
15926 set_type = create_set_type (NULL, domain_type);
15927
15928 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15929 if (attr != nullptr)
15930 TYPE_LENGTH (set_type) = DW_UNSND (attr);
15931
15932 maybe_set_alignment (cu, die, set_type);
15933
15934 return set_die_type (die, set_type, cu);
15935}
15936
15937/* A helper for read_common_block that creates a locexpr baton.
15938 SYM is the symbol which we are marking as computed.
15939 COMMON_DIE is the DIE for the common block.
15940 COMMON_LOC is the location expression attribute for the common
15941 block itself.
15942 MEMBER_LOC is the location expression attribute for the particular
15943 member of the common block that we are processing.
15944 CU is the CU from which the above come. */
15945
15946static void
15947mark_common_block_symbol_computed (struct symbol *sym,
15948 struct die_info *common_die,
15949 struct attribute *common_loc,
15950 struct attribute *member_loc,
15951 struct dwarf2_cu *cu)
15952{
15953 struct dwarf2_per_objfile *dwarf2_per_objfile
15954 = cu->per_cu->dwarf2_per_objfile;
15955 struct objfile *objfile = dwarf2_per_objfile->objfile;
15956 struct dwarf2_locexpr_baton *baton;
15957 gdb_byte *ptr;
15958 unsigned int cu_off;
15959 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
15960 LONGEST offset = 0;
15961
15962 gdb_assert (common_loc && member_loc);
15963 gdb_assert (common_loc->form_is_block ());
15964 gdb_assert (member_loc->form_is_block ()
15965 || member_loc->form_is_constant ());
15966
15967 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
15968 baton->per_cu = cu->per_cu;
15969 gdb_assert (baton->per_cu);
15970
15971 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
15972
15973 if (member_loc->form_is_constant ())
15974 {
15975 offset = dwarf2_get_attr_constant_value (member_loc, 0);
15976 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
15977 }
15978 else
15979 baton->size += DW_BLOCK (member_loc)->size;
15980
15981 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
15982 baton->data = ptr;
15983
15984 *ptr++ = DW_OP_call4;
15985 cu_off = common_die->sect_off - cu->per_cu->sect_off;
15986 store_unsigned_integer (ptr, 4, byte_order, cu_off);
15987 ptr += 4;
15988
15989 if (member_loc->form_is_constant ())
15990 {
15991 *ptr++ = DW_OP_addr;
15992 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
15993 ptr += cu->header.addr_size;
15994 }
15995 else
15996 {
15997 /* We have to copy the data here, because DW_OP_call4 will only
15998 use a DW_AT_location attribute. */
15999 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16000 ptr += DW_BLOCK (member_loc)->size;
16001 }
16002
16003 *ptr++ = DW_OP_plus;
16004 gdb_assert (ptr - baton->data == baton->size);
16005
16006 SYMBOL_LOCATION_BATON (sym) = baton;
16007 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16008}
16009
16010/* Create appropriate locally-scoped variables for all the
16011 DW_TAG_common_block entries. Also create a struct common_block
16012 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16013 is used to separate the common blocks name namespace from regular
16014 variable names. */
16015
16016static void
16017read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16018{
16019 struct attribute *attr;
16020
16021 attr = dwarf2_attr (die, DW_AT_location, cu);
16022 if (attr != nullptr)
16023 {
16024 /* Support the .debug_loc offsets. */
16025 if (attr->form_is_block ())
16026 {
16027 /* Ok. */
16028 }
16029 else if (attr->form_is_section_offset ())
16030 {
16031 dwarf2_complex_location_expr_complaint ();
16032 attr = NULL;
16033 }
16034 else
16035 {
16036 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16037 "common block member");
16038 attr = NULL;
16039 }
16040 }
16041
16042 if (die->child != NULL)
16043 {
16044 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16045 struct die_info *child_die;
16046 size_t n_entries = 0, size;
16047 struct common_block *common_block;
16048 struct symbol *sym;
16049
16050 for (child_die = die->child;
16051 child_die && child_die->tag;
16052 child_die = sibling_die (child_die))
16053 ++n_entries;
16054
16055 size = (sizeof (struct common_block)
16056 + (n_entries - 1) * sizeof (struct symbol *));
16057 common_block
16058 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16059 size);
16060 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16061 common_block->n_entries = 0;
16062
16063 for (child_die = die->child;
16064 child_die && child_die->tag;
16065 child_die = sibling_die (child_die))
16066 {
16067 /* Create the symbol in the DW_TAG_common_block block in the current
16068 symbol scope. */
16069 sym = new_symbol (child_die, NULL, cu);
16070 if (sym != NULL)
16071 {
16072 struct attribute *member_loc;
16073
16074 common_block->contents[common_block->n_entries++] = sym;
16075
16076 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16077 cu);
16078 if (member_loc)
16079 {
16080 /* GDB has handled this for a long time, but it is
16081 not specified by DWARF. It seems to have been
16082 emitted by gfortran at least as recently as:
16083 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16084 complaint (_("Variable in common block has "
16085 "DW_AT_data_member_location "
16086 "- DIE at %s [in module %s]"),
16087 sect_offset_str (child_die->sect_off),
16088 objfile_name (objfile));
16089
16090 if (member_loc->form_is_section_offset ())
16091 dwarf2_complex_location_expr_complaint ();
16092 else if (member_loc->form_is_constant ()
16093 || member_loc->form_is_block ())
16094 {
16095 if (attr != nullptr)
16096 mark_common_block_symbol_computed (sym, die, attr,
16097 member_loc, cu);
16098 }
16099 else
16100 dwarf2_complex_location_expr_complaint ();
16101 }
16102 }
16103 }
16104
16105 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16106 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16107 }
16108}
16109
16110/* Create a type for a C++ namespace. */
16111
16112static struct type *
16113read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16114{
16115 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16116 const char *previous_prefix, *name;
16117 int is_anonymous;
16118 struct type *type;
16119
16120 /* For extensions, reuse the type of the original namespace. */
16121 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16122 {
16123 struct die_info *ext_die;
16124 struct dwarf2_cu *ext_cu = cu;
16125
16126 ext_die = dwarf2_extension (die, &ext_cu);
16127 type = read_type_die (ext_die, ext_cu);
16128
16129 /* EXT_CU may not be the same as CU.
16130 Ensure TYPE is recorded with CU in die_type_hash. */
16131 return set_die_type (die, type, cu);
16132 }
16133
16134 name = namespace_name (die, &is_anonymous, cu);
16135
16136 /* Now build the name of the current namespace. */
16137
16138 previous_prefix = determine_prefix (die, cu);
16139 if (previous_prefix[0] != '\0')
16140 name = typename_concat (&objfile->objfile_obstack,
16141 previous_prefix, name, 0, cu);
16142
16143 /* Create the type. */
16144 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16145
16146 return set_die_type (die, type, cu);
16147}
16148
16149/* Read a namespace scope. */
16150
16151static void
16152read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16153{
16154 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16155 int is_anonymous;
16156
16157 /* Add a symbol associated to this if we haven't seen the namespace
16158 before. Also, add a using directive if it's an anonymous
16159 namespace. */
16160
16161 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16162 {
16163 struct type *type;
16164
16165 type = read_type_die (die, cu);
16166 new_symbol (die, type, cu);
16167
16168 namespace_name (die, &is_anonymous, cu);
16169 if (is_anonymous)
16170 {
16171 const char *previous_prefix = determine_prefix (die, cu);
16172
16173 std::vector<const char *> excludes;
16174 add_using_directive (using_directives (cu),
16175 previous_prefix, TYPE_NAME (type), NULL,
16176 NULL, excludes, 0, &objfile->objfile_obstack);
16177 }
16178 }
16179
16180 if (die->child != NULL)
16181 {
16182 struct die_info *child_die = die->child;
16183
16184 while (child_die && child_die->tag)
16185 {
16186 process_die (child_die, cu);
16187 child_die = sibling_die (child_die);
16188 }
16189 }
16190}
16191
16192/* Read a Fortran module as type. This DIE can be only a declaration used for
16193 imported module. Still we need that type as local Fortran "use ... only"
16194 declaration imports depend on the created type in determine_prefix. */
16195
16196static struct type *
16197read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16198{
16199 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16200 const char *module_name;
16201 struct type *type;
16202
16203 module_name = dwarf2_name (die, cu);
16204 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16205
16206 return set_die_type (die, type, cu);
16207}
16208
16209/* Read a Fortran module. */
16210
16211static void
16212read_module (struct die_info *die, struct dwarf2_cu *cu)
16213{
16214 struct die_info *child_die = die->child;
16215 struct type *type;
16216
16217 type = read_type_die (die, cu);
16218 new_symbol (die, type, cu);
16219
16220 while (child_die && child_die->tag)
16221 {
16222 process_die (child_die, cu);
16223 child_die = sibling_die (child_die);
16224 }
16225}
16226
16227/* Return the name of the namespace represented by DIE. Set
16228 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16229 namespace. */
16230
16231static const char *
16232namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16233{
16234 struct die_info *current_die;
16235 const char *name = NULL;
16236
16237 /* Loop through the extensions until we find a name. */
16238
16239 for (current_die = die;
16240 current_die != NULL;
16241 current_die = dwarf2_extension (die, &cu))
16242 {
16243 /* We don't use dwarf2_name here so that we can detect the absence
16244 of a name -> anonymous namespace. */
16245 name = dwarf2_string_attr (die, DW_AT_name, cu);
16246
16247 if (name != NULL)
16248 break;
16249 }
16250
16251 /* Is it an anonymous namespace? */
16252
16253 *is_anonymous = (name == NULL);
16254 if (*is_anonymous)
16255 name = CP_ANONYMOUS_NAMESPACE_STR;
16256
16257 return name;
16258}
16259
16260/* Extract all information from a DW_TAG_pointer_type DIE and add to
16261 the user defined type vector. */
16262
16263static struct type *
16264read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16265{
16266 struct gdbarch *gdbarch
16267 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16268 struct comp_unit_head *cu_header = &cu->header;
16269 struct type *type;
16270 struct attribute *attr_byte_size;
16271 struct attribute *attr_address_class;
16272 int byte_size, addr_class;
16273 struct type *target_type;
16274
16275 target_type = die_type (die, cu);
16276
16277 /* The die_type call above may have already set the type for this DIE. */
16278 type = get_die_type (die, cu);
16279 if (type)
16280 return type;
16281
16282 type = lookup_pointer_type (target_type);
16283
16284 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16285 if (attr_byte_size)
16286 byte_size = DW_UNSND (attr_byte_size);
16287 else
16288 byte_size = cu_header->addr_size;
16289
16290 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16291 if (attr_address_class)
16292 addr_class = DW_UNSND (attr_address_class);
16293 else
16294 addr_class = DW_ADDR_none;
16295
16296 ULONGEST alignment = get_alignment (cu, die);
16297
16298 /* If the pointer size, alignment, or address class is different
16299 than the default, create a type variant marked as such and set
16300 the length accordingly. */
16301 if (TYPE_LENGTH (type) != byte_size
16302 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16303 && alignment != TYPE_RAW_ALIGN (type))
16304 || addr_class != DW_ADDR_none)
16305 {
16306 if (gdbarch_address_class_type_flags_p (gdbarch))
16307 {
16308 int type_flags;
16309
16310 type_flags = gdbarch_address_class_type_flags
16311 (gdbarch, byte_size, addr_class);
16312 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16313 == 0);
16314 type = make_type_with_address_space (type, type_flags);
16315 }
16316 else if (TYPE_LENGTH (type) != byte_size)
16317 {
16318 complaint (_("invalid pointer size %d"), byte_size);
16319 }
16320 else if (TYPE_RAW_ALIGN (type) != alignment)
16321 {
16322 complaint (_("Invalid DW_AT_alignment"
16323 " - DIE at %s [in module %s]"),
16324 sect_offset_str (die->sect_off),
16325 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16326 }
16327 else
16328 {
16329 /* Should we also complain about unhandled address classes? */
16330 }
16331 }
16332
16333 TYPE_LENGTH (type) = byte_size;
16334 set_type_align (type, alignment);
16335 return set_die_type (die, type, cu);
16336}
16337
16338/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16339 the user defined type vector. */
16340
16341static struct type *
16342read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16343{
16344 struct type *type;
16345 struct type *to_type;
16346 struct type *domain;
16347
16348 to_type = die_type (die, cu);
16349 domain = die_containing_type (die, cu);
16350
16351 /* The calls above may have already set the type for this DIE. */
16352 type = get_die_type (die, cu);
16353 if (type)
16354 return type;
16355
16356 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16357 type = lookup_methodptr_type (to_type);
16358 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16359 {
16360 struct type *new_type
16361 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16362
16363 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16364 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16365 TYPE_VARARGS (to_type));
16366 type = lookup_methodptr_type (new_type);
16367 }
16368 else
16369 type = lookup_memberptr_type (to_type, domain);
16370
16371 return set_die_type (die, type, cu);
16372}
16373
16374/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16375 the user defined type vector. */
16376
16377static struct type *
16378read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16379 enum type_code refcode)
16380{
16381 struct comp_unit_head *cu_header = &cu->header;
16382 struct type *type, *target_type;
16383 struct attribute *attr;
16384
16385 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16386
16387 target_type = die_type (die, cu);
16388
16389 /* The die_type call above may have already set the type for this DIE. */
16390 type = get_die_type (die, cu);
16391 if (type)
16392 return type;
16393
16394 type = lookup_reference_type (target_type, refcode);
16395 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16396 if (attr != nullptr)
16397 {
16398 TYPE_LENGTH (type) = DW_UNSND (attr);
16399 }
16400 else
16401 {
16402 TYPE_LENGTH (type) = cu_header->addr_size;
16403 }
16404 maybe_set_alignment (cu, die, type);
16405 return set_die_type (die, type, cu);
16406}
16407
16408/* Add the given cv-qualifiers to the element type of the array. GCC
16409 outputs DWARF type qualifiers that apply to an array, not the
16410 element type. But GDB relies on the array element type to carry
16411 the cv-qualifiers. This mimics section 6.7.3 of the C99
16412 specification. */
16413
16414static struct type *
16415add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16416 struct type *base_type, int cnst, int voltl)
16417{
16418 struct type *el_type, *inner_array;
16419
16420 base_type = copy_type (base_type);
16421 inner_array = base_type;
16422
16423 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16424 {
16425 TYPE_TARGET_TYPE (inner_array) =
16426 copy_type (TYPE_TARGET_TYPE (inner_array));
16427 inner_array = TYPE_TARGET_TYPE (inner_array);
16428 }
16429
16430 el_type = TYPE_TARGET_TYPE (inner_array);
16431 cnst |= TYPE_CONST (el_type);
16432 voltl |= TYPE_VOLATILE (el_type);
16433 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16434
16435 return set_die_type (die, base_type, cu);
16436}
16437
16438static struct type *
16439read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16440{
16441 struct type *base_type, *cv_type;
16442
16443 base_type = die_type (die, cu);
16444
16445 /* The die_type call above may have already set the type for this DIE. */
16446 cv_type = get_die_type (die, cu);
16447 if (cv_type)
16448 return cv_type;
16449
16450 /* In case the const qualifier is applied to an array type, the element type
16451 is so qualified, not the array type (section 6.7.3 of C99). */
16452 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16453 return add_array_cv_type (die, cu, base_type, 1, 0);
16454
16455 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16456 return set_die_type (die, cv_type, cu);
16457}
16458
16459static struct type *
16460read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16461{
16462 struct type *base_type, *cv_type;
16463
16464 base_type = die_type (die, cu);
16465
16466 /* The die_type call above may have already set the type for this DIE. */
16467 cv_type = get_die_type (die, cu);
16468 if (cv_type)
16469 return cv_type;
16470
16471 /* In case the volatile qualifier is applied to an array type, the
16472 element type is so qualified, not the array type (section 6.7.3
16473 of C99). */
16474 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16475 return add_array_cv_type (die, cu, base_type, 0, 1);
16476
16477 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16478 return set_die_type (die, cv_type, cu);
16479}
16480
16481/* Handle DW_TAG_restrict_type. */
16482
16483static struct type *
16484read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16485{
16486 struct type *base_type, *cv_type;
16487
16488 base_type = die_type (die, cu);
16489
16490 /* The die_type call above may have already set the type for this DIE. */
16491 cv_type = get_die_type (die, cu);
16492 if (cv_type)
16493 return cv_type;
16494
16495 cv_type = make_restrict_type (base_type);
16496 return set_die_type (die, cv_type, cu);
16497}
16498
16499/* Handle DW_TAG_atomic_type. */
16500
16501static struct type *
16502read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16503{
16504 struct type *base_type, *cv_type;
16505
16506 base_type = die_type (die, cu);
16507
16508 /* The die_type call above may have already set the type for this DIE. */
16509 cv_type = get_die_type (die, cu);
16510 if (cv_type)
16511 return cv_type;
16512
16513 cv_type = make_atomic_type (base_type);
16514 return set_die_type (die, cv_type, cu);
16515}
16516
16517/* Extract all information from a DW_TAG_string_type DIE and add to
16518 the user defined type vector. It isn't really a user defined type,
16519 but it behaves like one, with other DIE's using an AT_user_def_type
16520 attribute to reference it. */
16521
16522static struct type *
16523read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16524{
16525 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16526 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16527 struct type *type, *range_type, *index_type, *char_type;
16528 struct attribute *attr;
16529 struct dynamic_prop prop;
16530 bool length_is_constant = true;
16531 LONGEST length;
16532
16533 /* There are a couple of places where bit sizes might be made use of
16534 when parsing a DW_TAG_string_type, however, no producer that we know
16535 of make use of these. Handling bit sizes that are a multiple of the
16536 byte size is easy enough, but what about other bit sizes? Lets deal
16537 with that problem when we have to. Warn about these attributes being
16538 unsupported, then parse the type and ignore them like we always
16539 have. */
16540 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16541 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16542 {
16543 static bool warning_printed = false;
16544 if (!warning_printed)
16545 {
16546 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16547 "currently supported on DW_TAG_string_type."));
16548 warning_printed = true;
16549 }
16550 }
16551
16552 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16553 if (attr != nullptr && !attr->form_is_constant ())
16554 {
16555 /* The string length describes the location at which the length of
16556 the string can be found. The size of the length field can be
16557 specified with one of the attributes below. */
16558 struct type *prop_type;
16559 struct attribute *len
16560 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16561 if (len == nullptr)
16562 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16563 if (len != nullptr && len->form_is_constant ())
16564 {
16565 /* Pass 0 as the default as we know this attribute is constant
16566 and the default value will not be returned. */
16567 LONGEST sz = dwarf2_get_attr_constant_value (len, 0);
16568 prop_type = cu->per_cu->int_type (sz, true);
16569 }
16570 else
16571 {
16572 /* If the size is not specified then we assume it is the size of
16573 an address on this target. */
16574 prop_type = cu->per_cu->addr_sized_int_type (true);
16575 }
16576
16577 /* Convert the attribute into a dynamic property. */
16578 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16579 length = 1;
16580 else
16581 length_is_constant = false;
16582 }
16583 else if (attr != nullptr)
16584 {
16585 /* This DW_AT_string_length just contains the length with no
16586 indirection. There's no need to create a dynamic property in this
16587 case. Pass 0 for the default value as we know it will not be
16588 returned in this case. */
16589 length = dwarf2_get_attr_constant_value (attr, 0);
16590 }
16591 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16592 {
16593 /* We don't currently support non-constant byte sizes for strings. */
16594 length = dwarf2_get_attr_constant_value (attr, 1);
16595 }
16596 else
16597 {
16598 /* Use 1 as a fallback length if we have nothing else. */
16599 length = 1;
16600 }
16601
16602 index_type = objfile_type (objfile)->builtin_int;
16603 if (length_is_constant)
16604 range_type = create_static_range_type (NULL, index_type, 1, length);
16605 else
16606 {
16607 struct dynamic_prop low_bound;
16608
16609 low_bound.kind = PROP_CONST;
16610 low_bound.data.const_val = 1;
16611 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
16612 }
16613 char_type = language_string_char_type (cu->language_defn, gdbarch);
16614 type = create_string_type (NULL, char_type, range_type);
16615
16616 return set_die_type (die, type, cu);
16617}
16618
16619/* Assuming that DIE corresponds to a function, returns nonzero
16620 if the function is prototyped. */
16621
16622static int
16623prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
16624{
16625 struct attribute *attr;
16626
16627 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
16628 if (attr && (DW_UNSND (attr) != 0))
16629 return 1;
16630
16631 /* The DWARF standard implies that the DW_AT_prototyped attribute
16632 is only meaningful for C, but the concept also extends to other
16633 languages that allow unprototyped functions (Eg: Objective C).
16634 For all other languages, assume that functions are always
16635 prototyped. */
16636 if (cu->language != language_c
16637 && cu->language != language_objc
16638 && cu->language != language_opencl)
16639 return 1;
16640
16641 /* RealView does not emit DW_AT_prototyped. We can not distinguish
16642 prototyped and unprototyped functions; default to prototyped,
16643 since that is more common in modern code (and RealView warns
16644 about unprototyped functions). */
16645 if (producer_is_realview (cu->producer))
16646 return 1;
16647
16648 return 0;
16649}
16650
16651/* Handle DIES due to C code like:
16652
16653 struct foo
16654 {
16655 int (*funcp)(int a, long l);
16656 int b;
16657 };
16658
16659 ('funcp' generates a DW_TAG_subroutine_type DIE). */
16660
16661static struct type *
16662read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
16663{
16664 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16665 struct type *type; /* Type that this function returns. */
16666 struct type *ftype; /* Function that returns above type. */
16667 struct attribute *attr;
16668
16669 type = die_type (die, cu);
16670
16671 /* The die_type call above may have already set the type for this DIE. */
16672 ftype = get_die_type (die, cu);
16673 if (ftype)
16674 return ftype;
16675
16676 ftype = lookup_function_type (type);
16677
16678 if (prototyped_function_p (die, cu))
16679 TYPE_PROTOTYPED (ftype) = 1;
16680
16681 /* Store the calling convention in the type if it's available in
16682 the subroutine die. Otherwise set the calling convention to
16683 the default value DW_CC_normal. */
16684 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
16685 if (attr != nullptr
16686 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
16687 TYPE_CALLING_CONVENTION (ftype)
16688 = (enum dwarf_calling_convention) (DW_UNSND (attr));
16689 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
16690 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
16691 else
16692 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
16693
16694 /* Record whether the function returns normally to its caller or not
16695 if the DWARF producer set that information. */
16696 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
16697 if (attr && (DW_UNSND (attr) != 0))
16698 TYPE_NO_RETURN (ftype) = 1;
16699
16700 /* We need to add the subroutine type to the die immediately so
16701 we don't infinitely recurse when dealing with parameters
16702 declared as the same subroutine type. */
16703 set_die_type (die, ftype, cu);
16704
16705 if (die->child != NULL)
16706 {
16707 struct type *void_type = objfile_type (objfile)->builtin_void;
16708 struct die_info *child_die;
16709 int nparams, iparams;
16710
16711 /* Count the number of parameters.
16712 FIXME: GDB currently ignores vararg functions, but knows about
16713 vararg member functions. */
16714 nparams = 0;
16715 child_die = die->child;
16716 while (child_die && child_die->tag)
16717 {
16718 if (child_die->tag == DW_TAG_formal_parameter)
16719 nparams++;
16720 else if (child_die->tag == DW_TAG_unspecified_parameters)
16721 TYPE_VARARGS (ftype) = 1;
16722 child_die = sibling_die (child_die);
16723 }
16724
16725 /* Allocate storage for parameters and fill them in. */
16726 TYPE_NFIELDS (ftype) = nparams;
16727 TYPE_FIELDS (ftype) = (struct field *)
16728 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
16729
16730 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
16731 even if we error out during the parameters reading below. */
16732 for (iparams = 0; iparams < nparams; iparams++)
16733 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
16734
16735 iparams = 0;
16736 child_die = die->child;
16737 while (child_die && child_die->tag)
16738 {
16739 if (child_die->tag == DW_TAG_formal_parameter)
16740 {
16741 struct type *arg_type;
16742
16743 /* DWARF version 2 has no clean way to discern C++
16744 static and non-static member functions. G++ helps
16745 GDB by marking the first parameter for non-static
16746 member functions (which is the this pointer) as
16747 artificial. We pass this information to
16748 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
16749
16750 DWARF version 3 added DW_AT_object_pointer, which GCC
16751 4.5 does not yet generate. */
16752 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
16753 if (attr != nullptr)
16754 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
16755 else
16756 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
16757 arg_type = die_type (child_die, cu);
16758
16759 /* RealView does not mark THIS as const, which the testsuite
16760 expects. GCC marks THIS as const in method definitions,
16761 but not in the class specifications (GCC PR 43053). */
16762 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
16763 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
16764 {
16765 int is_this = 0;
16766 struct dwarf2_cu *arg_cu = cu;
16767 const char *name = dwarf2_name (child_die, cu);
16768
16769 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
16770 if (attr != nullptr)
16771 {
16772 /* If the compiler emits this, use it. */
16773 if (follow_die_ref (die, attr, &arg_cu) == child_die)
16774 is_this = 1;
16775 }
16776 else if (name && strcmp (name, "this") == 0)
16777 /* Function definitions will have the argument names. */
16778 is_this = 1;
16779 else if (name == NULL && iparams == 0)
16780 /* Declarations may not have the names, so like
16781 elsewhere in GDB, assume an artificial first
16782 argument is "this". */
16783 is_this = 1;
16784
16785 if (is_this)
16786 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
16787 arg_type, 0);
16788 }
16789
16790 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
16791 iparams++;
16792 }
16793 child_die = sibling_die (child_die);
16794 }
16795 }
16796
16797 return ftype;
16798}
16799
16800static struct type *
16801read_typedef (struct die_info *die, struct dwarf2_cu *cu)
16802{
16803 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16804 const char *name = NULL;
16805 struct type *this_type, *target_type;
16806
16807 name = dwarf2_full_name (NULL, die, cu);
16808 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
16809 TYPE_TARGET_STUB (this_type) = 1;
16810 set_die_type (die, this_type, cu);
16811 target_type = die_type (die, cu);
16812 if (target_type != this_type)
16813 TYPE_TARGET_TYPE (this_type) = target_type;
16814 else
16815 {
16816 /* Self-referential typedefs are, it seems, not allowed by the DWARF
16817 spec and cause infinite loops in GDB. */
16818 complaint (_("Self-referential DW_TAG_typedef "
16819 "- DIE at %s [in module %s]"),
16820 sect_offset_str (die->sect_off), objfile_name (objfile));
16821 TYPE_TARGET_TYPE (this_type) = NULL;
16822 }
16823 return this_type;
16824}
16825
16826/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
16827 (which may be different from NAME) to the architecture back-end to allow
16828 it to guess the correct format if necessary. */
16829
16830static struct type *
16831dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
16832 const char *name_hint, enum bfd_endian byte_order)
16833{
16834 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16835 const struct floatformat **format;
16836 struct type *type;
16837
16838 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
16839 if (format)
16840 type = init_float_type (objfile, bits, name, format, byte_order);
16841 else
16842 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
16843
16844 return type;
16845}
16846
16847/* Allocate an integer type of size BITS and name NAME. */
16848
16849static struct type *
16850dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
16851 int bits, int unsigned_p, const char *name)
16852{
16853 struct type *type;
16854
16855 /* Versions of Intel's C Compiler generate an integer type called "void"
16856 instead of using DW_TAG_unspecified_type. This has been seen on
16857 at least versions 14, 17, and 18. */
16858 if (bits == 0 && producer_is_icc (cu) && name != nullptr
16859 && strcmp (name, "void") == 0)
16860 type = objfile_type (objfile)->builtin_void;
16861 else
16862 type = init_integer_type (objfile, bits, unsigned_p, name);
16863
16864 return type;
16865}
16866
16867/* Initialise and return a floating point type of size BITS suitable for
16868 use as a component of a complex number. The NAME_HINT is passed through
16869 when initialising the floating point type and is the name of the complex
16870 type.
16871
16872 As DWARF doesn't currently provide an explicit name for the components
16873 of a complex number, but it can be helpful to have these components
16874 named, we try to select a suitable name based on the size of the
16875 component. */
16876static struct type *
16877dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
16878 struct objfile *objfile,
16879 int bits, const char *name_hint,
16880 enum bfd_endian byte_order)
16881{
16882 gdbarch *gdbarch = get_objfile_arch (objfile);
16883 struct type *tt = nullptr;
16884
16885 /* Try to find a suitable floating point builtin type of size BITS.
16886 We're going to use the name of this type as the name for the complex
16887 target type that we are about to create. */
16888 switch (cu->language)
16889 {
16890 case language_fortran:
16891 switch (bits)
16892 {
16893 case 32:
16894 tt = builtin_f_type (gdbarch)->builtin_real;
16895 break;
16896 case 64:
16897 tt = builtin_f_type (gdbarch)->builtin_real_s8;
16898 break;
16899 case 96: /* The x86-32 ABI specifies 96-bit long double. */
16900 case 128:
16901 tt = builtin_f_type (gdbarch)->builtin_real_s16;
16902 break;
16903 }
16904 break;
16905 default:
16906 switch (bits)
16907 {
16908 case 32:
16909 tt = builtin_type (gdbarch)->builtin_float;
16910 break;
16911 case 64:
16912 tt = builtin_type (gdbarch)->builtin_double;
16913 break;
16914 case 96: /* The x86-32 ABI specifies 96-bit long double. */
16915 case 128:
16916 tt = builtin_type (gdbarch)->builtin_long_double;
16917 break;
16918 }
16919 break;
16920 }
16921
16922 /* If the type we found doesn't match the size we were looking for, then
16923 pretend we didn't find a type at all, the complex target type we
16924 create will then be nameless. */
16925 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
16926 tt = nullptr;
16927
16928 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
16929 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
16930}
16931
16932/* Find a representation of a given base type and install
16933 it in the TYPE field of the die. */
16934
16935static struct type *
16936read_base_type (struct die_info *die, struct dwarf2_cu *cu)
16937{
16938 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16939 struct type *type;
16940 struct attribute *attr;
16941 int encoding = 0, bits = 0;
16942 const char *name;
16943 gdbarch *arch;
16944
16945 attr = dwarf2_attr (die, DW_AT_encoding, cu);
16946 if (attr != nullptr)
16947 encoding = DW_UNSND (attr);
16948 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16949 if (attr != nullptr)
16950 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
16951 name = dwarf2_name (die, cu);
16952 if (!name)
16953 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
16954
16955 arch = get_objfile_arch (objfile);
16956 enum bfd_endian byte_order = gdbarch_byte_order (arch);
16957
16958 attr = dwarf2_attr (die, DW_AT_endianity, cu);
16959 if (attr)
16960 {
16961 int endianity = DW_UNSND (attr);
16962
16963 switch (endianity)
16964 {
16965 case DW_END_big:
16966 byte_order = BFD_ENDIAN_BIG;
16967 break;
16968 case DW_END_little:
16969 byte_order = BFD_ENDIAN_LITTLE;
16970 break;
16971 default:
16972 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
16973 break;
16974 }
16975 }
16976
16977 switch (encoding)
16978 {
16979 case DW_ATE_address:
16980 /* Turn DW_ATE_address into a void * pointer. */
16981 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
16982 type = init_pointer_type (objfile, bits, name, type);
16983 break;
16984 case DW_ATE_boolean:
16985 type = init_boolean_type (objfile, bits, 1, name);
16986 break;
16987 case DW_ATE_complex_float:
16988 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
16989 byte_order);
16990 type = init_complex_type (objfile, name, type);
16991 break;
16992 case DW_ATE_decimal_float:
16993 type = init_decfloat_type (objfile, bits, name);
16994 break;
16995 case DW_ATE_float:
16996 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
16997 break;
16998 case DW_ATE_signed:
16999 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17000 break;
17001 case DW_ATE_unsigned:
17002 if (cu->language == language_fortran
17003 && name
17004 && startswith (name, "character("))
17005 type = init_character_type (objfile, bits, 1, name);
17006 else
17007 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17008 break;
17009 case DW_ATE_signed_char:
17010 if (cu->language == language_ada || cu->language == language_m2
17011 || cu->language == language_pascal
17012 || cu->language == language_fortran)
17013 type = init_character_type (objfile, bits, 0, name);
17014 else
17015 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17016 break;
17017 case DW_ATE_unsigned_char:
17018 if (cu->language == language_ada || cu->language == language_m2
17019 || cu->language == language_pascal
17020 || cu->language == language_fortran
17021 || cu->language == language_rust)
17022 type = init_character_type (objfile, bits, 1, name);
17023 else
17024 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17025 break;
17026 case DW_ATE_UTF:
17027 {
17028 if (bits == 16)
17029 type = builtin_type (arch)->builtin_char16;
17030 else if (bits == 32)
17031 type = builtin_type (arch)->builtin_char32;
17032 else
17033 {
17034 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17035 bits);
17036 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17037 }
17038 return set_die_type (die, type, cu);
17039 }
17040 break;
17041
17042 default:
17043 complaint (_("unsupported DW_AT_encoding: '%s'"),
17044 dwarf_type_encoding_name (encoding));
17045 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17046 break;
17047 }
17048
17049 if (name && strcmp (name, "char") == 0)
17050 TYPE_NOSIGN (type) = 1;
17051
17052 maybe_set_alignment (cu, die, type);
17053
17054 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17055
17056 return set_die_type (die, type, cu);
17057}
17058
17059/* Parse dwarf attribute if it's a block, reference or constant and put the
17060 resulting value of the attribute into struct bound_prop.
17061 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17062
17063static int
17064attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17065 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17066 struct type *default_type)
17067{
17068 struct dwarf2_property_baton *baton;
17069 struct obstack *obstack
17070 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17071
17072 gdb_assert (default_type != NULL);
17073
17074 if (attr == NULL || prop == NULL)
17075 return 0;
17076
17077 if (attr->form_is_block ())
17078 {
17079 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17080 baton->property_type = default_type;
17081 baton->locexpr.per_cu = cu->per_cu;
17082 baton->locexpr.size = DW_BLOCK (attr)->size;
17083 baton->locexpr.data = DW_BLOCK (attr)->data;
17084 switch (attr->name)
17085 {
17086 case DW_AT_string_length:
17087 baton->locexpr.is_reference = true;
17088 break;
17089 default:
17090 baton->locexpr.is_reference = false;
17091 break;
17092 }
17093 prop->data.baton = baton;
17094 prop->kind = PROP_LOCEXPR;
17095 gdb_assert (prop->data.baton != NULL);
17096 }
17097 else if (attr->form_is_ref ())
17098 {
17099 struct dwarf2_cu *target_cu = cu;
17100 struct die_info *target_die;
17101 struct attribute *target_attr;
17102
17103 target_die = follow_die_ref (die, attr, &target_cu);
17104 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17105 if (target_attr == NULL)
17106 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17107 target_cu);
17108 if (target_attr == NULL)
17109 return 0;
17110
17111 switch (target_attr->name)
17112 {
17113 case DW_AT_location:
17114 if (target_attr->form_is_section_offset ())
17115 {
17116 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17117 baton->property_type = die_type (target_die, target_cu);
17118 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17119 prop->data.baton = baton;
17120 prop->kind = PROP_LOCLIST;
17121 gdb_assert (prop->data.baton != NULL);
17122 }
17123 else if (target_attr->form_is_block ())
17124 {
17125 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17126 baton->property_type = die_type (target_die, target_cu);
17127 baton->locexpr.per_cu = cu->per_cu;
17128 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17129 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17130 baton->locexpr.is_reference = true;
17131 prop->data.baton = baton;
17132 prop->kind = PROP_LOCEXPR;
17133 gdb_assert (prop->data.baton != NULL);
17134 }
17135 else
17136 {
17137 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17138 "dynamic property");
17139 return 0;
17140 }
17141 break;
17142 case DW_AT_data_member_location:
17143 {
17144 LONGEST offset;
17145
17146 if (!handle_data_member_location (target_die, target_cu,
17147 &offset))
17148 return 0;
17149
17150 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17151 baton->property_type = read_type_die (target_die->parent,
17152 target_cu);
17153 baton->offset_info.offset = offset;
17154 baton->offset_info.type = die_type (target_die, target_cu);
17155 prop->data.baton = baton;
17156 prop->kind = PROP_ADDR_OFFSET;
17157 break;
17158 }
17159 }
17160 }
17161 else if (attr->form_is_constant ())
17162 {
17163 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17164 prop->kind = PROP_CONST;
17165 }
17166 else
17167 {
17168 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17169 dwarf2_name (die, cu));
17170 return 0;
17171 }
17172
17173 return 1;
17174}
17175
17176/* See read.h. */
17177
17178struct type *
17179dwarf2_per_cu_data::int_type (int size_in_bytes, bool unsigned_p) const
17180{
17181 struct objfile *objfile = dwarf2_per_objfile->objfile;
17182 struct type *int_type;
17183
17184 /* Helper macro to examine the various builtin types. */
17185#define TRY_TYPE(F) \
17186 int_type = (unsigned_p \
17187 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17188 : objfile_type (objfile)->builtin_ ## F); \
17189 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17190 return int_type
17191
17192 TRY_TYPE (char);
17193 TRY_TYPE (short);
17194 TRY_TYPE (int);
17195 TRY_TYPE (long);
17196 TRY_TYPE (long_long);
17197
17198#undef TRY_TYPE
17199
17200 gdb_assert_not_reached ("unable to find suitable integer type");
17201}
17202
17203/* See read.h. */
17204
17205struct type *
17206dwarf2_per_cu_data::addr_sized_int_type (bool unsigned_p) const
17207{
17208 int addr_size = this->addr_size ();
17209 return int_type (addr_size, unsigned_p);
17210}
17211
17212/* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17213 present (which is valid) then compute the default type based on the
17214 compilation units address size. */
17215
17216static struct type *
17217read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17218{
17219 struct type *index_type = die_type (die, cu);
17220
17221 /* Dwarf-2 specifications explicitly allows to create subrange types
17222 without specifying a base type.
17223 In that case, the base type must be set to the type of
17224 the lower bound, upper bound or count, in that order, if any of these
17225 three attributes references an object that has a type.
17226 If no base type is found, the Dwarf-2 specifications say that
17227 a signed integer type of size equal to the size of an address should
17228 be used.
17229 For the following C code: `extern char gdb_int [];'
17230 GCC produces an empty range DIE.
17231 FIXME: muller/2010-05-28: Possible references to object for low bound,
17232 high bound or count are not yet handled by this code. */
17233 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17234 index_type = cu->per_cu->addr_sized_int_type (false);
17235
17236 return index_type;
17237}
17238
17239/* Read the given DW_AT_subrange DIE. */
17240
17241static struct type *
17242read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17243{
17244 struct type *base_type, *orig_base_type;
17245 struct type *range_type;
17246 struct attribute *attr;
17247 struct dynamic_prop low, high;
17248 int low_default_is_valid;
17249 int high_bound_is_count = 0;
17250 const char *name;
17251 ULONGEST negative_mask;
17252
17253 orig_base_type = read_subrange_index_type (die, cu);
17254
17255 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17256 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17257 creating the range type, but we use the result of check_typedef
17258 when examining properties of the type. */
17259 base_type = check_typedef (orig_base_type);
17260
17261 /* The die_type call above may have already set the type for this DIE. */
17262 range_type = get_die_type (die, cu);
17263 if (range_type)
17264 return range_type;
17265
17266 low.kind = PROP_CONST;
17267 high.kind = PROP_CONST;
17268 high.data.const_val = 0;
17269
17270 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17271 omitting DW_AT_lower_bound. */
17272 switch (cu->language)
17273 {
17274 case language_c:
17275 case language_cplus:
17276 low.data.const_val = 0;
17277 low_default_is_valid = 1;
17278 break;
17279 case language_fortran:
17280 low.data.const_val = 1;
17281 low_default_is_valid = 1;
17282 break;
17283 case language_d:
17284 case language_objc:
17285 case language_rust:
17286 low.data.const_val = 0;
17287 low_default_is_valid = (cu->header.version >= 4);
17288 break;
17289 case language_ada:
17290 case language_m2:
17291 case language_pascal:
17292 low.data.const_val = 1;
17293 low_default_is_valid = (cu->header.version >= 4);
17294 break;
17295 default:
17296 low.data.const_val = 0;
17297 low_default_is_valid = 0;
17298 break;
17299 }
17300
17301 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17302 if (attr != nullptr)
17303 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17304 else if (!low_default_is_valid)
17305 complaint (_("Missing DW_AT_lower_bound "
17306 "- DIE at %s [in module %s]"),
17307 sect_offset_str (die->sect_off),
17308 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17309
17310 struct attribute *attr_ub, *attr_count;
17311 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17312 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17313 {
17314 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17315 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17316 {
17317 /* If bounds are constant do the final calculation here. */
17318 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17319 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17320 else
17321 high_bound_is_count = 1;
17322 }
17323 else
17324 {
17325 if (attr_ub != NULL)
17326 complaint (_("Unresolved DW_AT_upper_bound "
17327 "- DIE at %s [in module %s]"),
17328 sect_offset_str (die->sect_off),
17329 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17330 if (attr_count != NULL)
17331 complaint (_("Unresolved DW_AT_count "
17332 "- DIE at %s [in module %s]"),
17333 sect_offset_str (die->sect_off),
17334 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17335 }
17336 }
17337
17338 LONGEST bias = 0;
17339 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17340 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17341 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
17342
17343 /* Normally, the DWARF producers are expected to use a signed
17344 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17345 But this is unfortunately not always the case, as witnessed
17346 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17347 is used instead. To work around that ambiguity, we treat
17348 the bounds as signed, and thus sign-extend their values, when
17349 the base type is signed. */
17350 negative_mask =
17351 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17352 if (low.kind == PROP_CONST
17353 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17354 low.data.const_val |= negative_mask;
17355 if (high.kind == PROP_CONST
17356 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17357 high.data.const_val |= negative_mask;
17358
17359 /* Check for bit and byte strides. */
17360 struct dynamic_prop byte_stride_prop;
17361 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17362 if (attr_byte_stride != nullptr)
17363 {
17364 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17365 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17366 prop_type);
17367 }
17368
17369 struct dynamic_prop bit_stride_prop;
17370 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17371 if (attr_bit_stride != nullptr)
17372 {
17373 /* It only makes sense to have either a bit or byte stride. */
17374 if (attr_byte_stride != nullptr)
17375 {
17376 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17377 "- DIE at %s [in module %s]"),
17378 sect_offset_str (die->sect_off),
17379 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17380 attr_bit_stride = nullptr;
17381 }
17382 else
17383 {
17384 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17385 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17386 prop_type);
17387 }
17388 }
17389
17390 if (attr_byte_stride != nullptr
17391 || attr_bit_stride != nullptr)
17392 {
17393 bool byte_stride_p = (attr_byte_stride != nullptr);
17394 struct dynamic_prop *stride
17395 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17396
17397 range_type
17398 = create_range_type_with_stride (NULL, orig_base_type, &low,
17399 &high, bias, stride, byte_stride_p);
17400 }
17401 else
17402 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17403
17404 if (high_bound_is_count)
17405 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17406
17407 /* Ada expects an empty array on no boundary attributes. */
17408 if (attr == NULL && cu->language != language_ada)
17409 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17410
17411 name = dwarf2_name (die, cu);
17412 if (name)
17413 TYPE_NAME (range_type) = name;
17414
17415 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17416 if (attr != nullptr)
17417 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17418
17419 maybe_set_alignment (cu, die, range_type);
17420
17421 set_die_type (die, range_type, cu);
17422
17423 /* set_die_type should be already done. */
17424 set_descriptive_type (range_type, die, cu);
17425
17426 return range_type;
17427}
17428
17429static struct type *
17430read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17431{
17432 struct type *type;
17433
17434 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17435 NULL);
17436 TYPE_NAME (type) = dwarf2_name (die, cu);
17437
17438 /* In Ada, an unspecified type is typically used when the description
17439 of the type is deferred to a different unit. When encountering
17440 such a type, we treat it as a stub, and try to resolve it later on,
17441 when needed. */
17442 if (cu->language == language_ada)
17443 TYPE_STUB (type) = 1;
17444
17445 return set_die_type (die, type, cu);
17446}
17447
17448/* Read a single die and all its descendents. Set the die's sibling
17449 field to NULL; set other fields in the die correctly, and set all
17450 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17451 location of the info_ptr after reading all of those dies. PARENT
17452 is the parent of the die in question. */
17453
17454static struct die_info *
17455read_die_and_children (const struct die_reader_specs *reader,
17456 const gdb_byte *info_ptr,
17457 const gdb_byte **new_info_ptr,
17458 struct die_info *parent)
17459{
17460 struct die_info *die;
17461 const gdb_byte *cur_ptr;
17462
17463 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17464 if (die == NULL)
17465 {
17466 *new_info_ptr = cur_ptr;
17467 return NULL;
17468 }
17469 store_in_ref_table (die, reader->cu);
17470
17471 if (die->has_children)
17472 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17473 else
17474 {
17475 die->child = NULL;
17476 *new_info_ptr = cur_ptr;
17477 }
17478
17479 die->sibling = NULL;
17480 die->parent = parent;
17481 return die;
17482}
17483
17484/* Read a die, all of its descendents, and all of its siblings; set
17485 all of the fields of all of the dies correctly. Arguments are as
17486 in read_die_and_children. */
17487
17488static struct die_info *
17489read_die_and_siblings_1 (const struct die_reader_specs *reader,
17490 const gdb_byte *info_ptr,
17491 const gdb_byte **new_info_ptr,
17492 struct die_info *parent)
17493{
17494 struct die_info *first_die, *last_sibling;
17495 const gdb_byte *cur_ptr;
17496
17497 cur_ptr = info_ptr;
17498 first_die = last_sibling = NULL;
17499
17500 while (1)
17501 {
17502 struct die_info *die
17503 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17504
17505 if (die == NULL)
17506 {
17507 *new_info_ptr = cur_ptr;
17508 return first_die;
17509 }
17510
17511 if (!first_die)
17512 first_die = die;
17513 else
17514 last_sibling->sibling = die;
17515
17516 last_sibling = die;
17517 }
17518}
17519
17520/* Read a die, all of its descendents, and all of its siblings; set
17521 all of the fields of all of the dies correctly. Arguments are as
17522 in read_die_and_children.
17523 This the main entry point for reading a DIE and all its children. */
17524
17525static struct die_info *
17526read_die_and_siblings (const struct die_reader_specs *reader,
17527 const gdb_byte *info_ptr,
17528 const gdb_byte **new_info_ptr,
17529 struct die_info *parent)
17530{
17531 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17532 new_info_ptr, parent);
17533
17534 if (dwarf_die_debug)
17535 {
17536 fprintf_unfiltered (gdb_stdlog,
17537 "Read die from %s@0x%x of %s:\n",
17538 reader->die_section->get_name (),
17539 (unsigned) (info_ptr - reader->die_section->buffer),
17540 bfd_get_filename (reader->abfd));
17541 dump_die (die, dwarf_die_debug);
17542 }
17543
17544 return die;
17545}
17546
17547/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17548 attributes.
17549 The caller is responsible for filling in the extra attributes
17550 and updating (*DIEP)->num_attrs.
17551 Set DIEP to point to a newly allocated die with its information,
17552 except for its child, sibling, and parent fields. */
17553
17554static const gdb_byte *
17555read_full_die_1 (const struct die_reader_specs *reader,
17556 struct die_info **diep, const gdb_byte *info_ptr,
17557 int num_extra_attrs)
17558{
17559 unsigned int abbrev_number, bytes_read, i;
17560 struct abbrev_info *abbrev;
17561 struct die_info *die;
17562 struct dwarf2_cu *cu = reader->cu;
17563 bfd *abfd = reader->abfd;
17564
17565 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17566 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17567 info_ptr += bytes_read;
17568 if (!abbrev_number)
17569 {
17570 *diep = NULL;
17571 return info_ptr;
17572 }
17573
17574 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17575 if (!abbrev)
17576 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17577 abbrev_number,
17578 bfd_get_filename (abfd));
17579
17580 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17581 die->sect_off = sect_off;
17582 die->tag = abbrev->tag;
17583 die->abbrev = abbrev_number;
17584 die->has_children = abbrev->has_children;
17585
17586 /* Make the result usable.
17587 The caller needs to update num_attrs after adding the extra
17588 attributes. */
17589 die->num_attrs = abbrev->num_attrs;
17590
17591 std::vector<int> indexes_that_need_reprocess;
17592 for (i = 0; i < abbrev->num_attrs; ++i)
17593 {
17594 bool need_reprocess;
17595 info_ptr =
17596 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17597 info_ptr, &need_reprocess);
17598 if (need_reprocess)
17599 indexes_that_need_reprocess.push_back (i);
17600 }
17601
17602 struct attribute *attr = dwarf2_attr_no_follow (die, DW_AT_str_offsets_base);
17603 if (attr != nullptr)
17604 cu->str_offsets_base = DW_UNSND (attr);
17605
17606 auto maybe_addr_base = lookup_addr_base(die);
17607 if (maybe_addr_base.has_value ())
17608 cu->addr_base = *maybe_addr_base;
17609 for (int index : indexes_that_need_reprocess)
17610 read_attribute_reprocess (reader, &die->attrs[index]);
17611 *diep = die;
17612 return info_ptr;
17613}
17614
17615/* Read a die and all its attributes.
17616 Set DIEP to point to a newly allocated die with its information,
17617 except for its child, sibling, and parent fields. */
17618
17619static const gdb_byte *
17620read_full_die (const struct die_reader_specs *reader,
17621 struct die_info **diep, const gdb_byte *info_ptr)
17622{
17623 const gdb_byte *result;
17624
17625 result = read_full_die_1 (reader, diep, info_ptr, 0);
17626
17627 if (dwarf_die_debug)
17628 {
17629 fprintf_unfiltered (gdb_stdlog,
17630 "Read die from %s@0x%x of %s:\n",
17631 reader->die_section->get_name (),
17632 (unsigned) (info_ptr - reader->die_section->buffer),
17633 bfd_get_filename (reader->abfd));
17634 dump_die (*diep, dwarf_die_debug);
17635 }
17636
17637 return result;
17638}
17639\f
17640
17641/* Returns nonzero if TAG represents a type that we might generate a partial
17642 symbol for. */
17643
17644static int
17645is_type_tag_for_partial (int tag)
17646{
17647 switch (tag)
17648 {
17649#if 0
17650 /* Some types that would be reasonable to generate partial symbols for,
17651 that we don't at present. */
17652 case DW_TAG_array_type:
17653 case DW_TAG_file_type:
17654 case DW_TAG_ptr_to_member_type:
17655 case DW_TAG_set_type:
17656 case DW_TAG_string_type:
17657 case DW_TAG_subroutine_type:
17658#endif
17659 case DW_TAG_base_type:
17660 case DW_TAG_class_type:
17661 case DW_TAG_interface_type:
17662 case DW_TAG_enumeration_type:
17663 case DW_TAG_structure_type:
17664 case DW_TAG_subrange_type:
17665 case DW_TAG_typedef:
17666 case DW_TAG_union_type:
17667 return 1;
17668 default:
17669 return 0;
17670 }
17671}
17672
17673/* Load all DIEs that are interesting for partial symbols into memory. */
17674
17675static struct partial_die_info *
17676load_partial_dies (const struct die_reader_specs *reader,
17677 const gdb_byte *info_ptr, int building_psymtab)
17678{
17679 struct dwarf2_cu *cu = reader->cu;
17680 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17681 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
17682 unsigned int bytes_read;
17683 unsigned int load_all = 0;
17684 int nesting_level = 1;
17685
17686 parent_die = NULL;
17687 last_die = NULL;
17688
17689 gdb_assert (cu->per_cu != NULL);
17690 if (cu->per_cu->load_all_dies)
17691 load_all = 1;
17692
17693 cu->partial_dies
17694 = htab_create_alloc_ex (cu->header.length / 12,
17695 partial_die_hash,
17696 partial_die_eq,
17697 NULL,
17698 &cu->comp_unit_obstack,
17699 hashtab_obstack_allocate,
17700 dummy_obstack_deallocate);
17701
17702 while (1)
17703 {
17704 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
17705
17706 /* A NULL abbrev means the end of a series of children. */
17707 if (abbrev == NULL)
17708 {
17709 if (--nesting_level == 0)
17710 return first_die;
17711
17712 info_ptr += bytes_read;
17713 last_die = parent_die;
17714 parent_die = parent_die->die_parent;
17715 continue;
17716 }
17717
17718 /* Check for template arguments. We never save these; if
17719 they're seen, we just mark the parent, and go on our way. */
17720 if (parent_die != NULL
17721 && cu->language == language_cplus
17722 && (abbrev->tag == DW_TAG_template_type_param
17723 || abbrev->tag == DW_TAG_template_value_param))
17724 {
17725 parent_die->has_template_arguments = 1;
17726
17727 if (!load_all)
17728 {
17729 /* We don't need a partial DIE for the template argument. */
17730 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17731 continue;
17732 }
17733 }
17734
17735 /* We only recurse into c++ subprograms looking for template arguments.
17736 Skip their other children. */
17737 if (!load_all
17738 && cu->language == language_cplus
17739 && parent_die != NULL
17740 && parent_die->tag == DW_TAG_subprogram)
17741 {
17742 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17743 continue;
17744 }
17745
17746 /* Check whether this DIE is interesting enough to save. Normally
17747 we would not be interested in members here, but there may be
17748 later variables referencing them via DW_AT_specification (for
17749 static members). */
17750 if (!load_all
17751 && !is_type_tag_for_partial (abbrev->tag)
17752 && abbrev->tag != DW_TAG_constant
17753 && abbrev->tag != DW_TAG_enumerator
17754 && abbrev->tag != DW_TAG_subprogram
17755 && abbrev->tag != DW_TAG_inlined_subroutine
17756 && abbrev->tag != DW_TAG_lexical_block
17757 && abbrev->tag != DW_TAG_variable
17758 && abbrev->tag != DW_TAG_namespace
17759 && abbrev->tag != DW_TAG_module
17760 && abbrev->tag != DW_TAG_member
17761 && abbrev->tag != DW_TAG_imported_unit
17762 && abbrev->tag != DW_TAG_imported_declaration)
17763 {
17764 /* Otherwise we skip to the next sibling, if any. */
17765 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17766 continue;
17767 }
17768
17769 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
17770 abbrev);
17771
17772 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
17773
17774 /* This two-pass algorithm for processing partial symbols has a
17775 high cost in cache pressure. Thus, handle some simple cases
17776 here which cover the majority of C partial symbols. DIEs
17777 which neither have specification tags in them, nor could have
17778 specification tags elsewhere pointing at them, can simply be
17779 processed and discarded.
17780
17781 This segment is also optional; scan_partial_symbols and
17782 add_partial_symbol will handle these DIEs if we chain
17783 them in normally. When compilers which do not emit large
17784 quantities of duplicate debug information are more common,
17785 this code can probably be removed. */
17786
17787 /* Any complete simple types at the top level (pretty much all
17788 of them, for a language without namespaces), can be processed
17789 directly. */
17790 if (parent_die == NULL
17791 && pdi.has_specification == 0
17792 && pdi.is_declaration == 0
17793 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
17794 || pdi.tag == DW_TAG_base_type
17795 || pdi.tag == DW_TAG_subrange_type))
17796 {
17797 if (building_psymtab && pdi.name != NULL)
17798 add_psymbol_to_list (pdi.name, false,
17799 VAR_DOMAIN, LOC_TYPEDEF, -1,
17800 psymbol_placement::STATIC,
17801 0, cu->language, objfile);
17802 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
17803 continue;
17804 }
17805
17806 /* The exception for DW_TAG_typedef with has_children above is
17807 a workaround of GCC PR debug/47510. In the case of this complaint
17808 type_name_or_error will error on such types later.
17809
17810 GDB skipped children of DW_TAG_typedef by the shortcut above and then
17811 it could not find the child DIEs referenced later, this is checked
17812 above. In correct DWARF DW_TAG_typedef should have no children. */
17813
17814 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
17815 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
17816 "- DIE at %s [in module %s]"),
17817 sect_offset_str (pdi.sect_off), objfile_name (objfile));
17818
17819 /* If we're at the second level, and we're an enumerator, and
17820 our parent has no specification (meaning possibly lives in a
17821 namespace elsewhere), then we can add the partial symbol now
17822 instead of queueing it. */
17823 if (pdi.tag == DW_TAG_enumerator
17824 && parent_die != NULL
17825 && parent_die->die_parent == NULL
17826 && parent_die->tag == DW_TAG_enumeration_type
17827 && parent_die->has_specification == 0)
17828 {
17829 if (pdi.name == NULL)
17830 complaint (_("malformed enumerator DIE ignored"));
17831 else if (building_psymtab)
17832 add_psymbol_to_list (pdi.name, false,
17833 VAR_DOMAIN, LOC_CONST, -1,
17834 cu->language == language_cplus
17835 ? psymbol_placement::GLOBAL
17836 : psymbol_placement::STATIC,
17837 0, cu->language, objfile);
17838
17839 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
17840 continue;
17841 }
17842
17843 struct partial_die_info *part_die
17844 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
17845
17846 /* We'll save this DIE so link it in. */
17847 part_die->die_parent = parent_die;
17848 part_die->die_sibling = NULL;
17849 part_die->die_child = NULL;
17850
17851 if (last_die && last_die == parent_die)
17852 last_die->die_child = part_die;
17853 else if (last_die)
17854 last_die->die_sibling = part_die;
17855
17856 last_die = part_die;
17857
17858 if (first_die == NULL)
17859 first_die = part_die;
17860
17861 /* Maybe add the DIE to the hash table. Not all DIEs that we
17862 find interesting need to be in the hash table, because we
17863 also have the parent/sibling/child chains; only those that we
17864 might refer to by offset later during partial symbol reading.
17865
17866 For now this means things that might have be the target of a
17867 DW_AT_specification, DW_AT_abstract_origin, or
17868 DW_AT_extension. DW_AT_extension will refer only to
17869 namespaces; DW_AT_abstract_origin refers to functions (and
17870 many things under the function DIE, but we do not recurse
17871 into function DIEs during partial symbol reading) and
17872 possibly variables as well; DW_AT_specification refers to
17873 declarations. Declarations ought to have the DW_AT_declaration
17874 flag. It happens that GCC forgets to put it in sometimes, but
17875 only for functions, not for types.
17876
17877 Adding more things than necessary to the hash table is harmless
17878 except for the performance cost. Adding too few will result in
17879 wasted time in find_partial_die, when we reread the compilation
17880 unit with load_all_dies set. */
17881
17882 if (load_all
17883 || abbrev->tag == DW_TAG_constant
17884 || abbrev->tag == DW_TAG_subprogram
17885 || abbrev->tag == DW_TAG_variable
17886 || abbrev->tag == DW_TAG_namespace
17887 || part_die->is_declaration)
17888 {
17889 void **slot;
17890
17891 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
17892 to_underlying (part_die->sect_off),
17893 INSERT);
17894 *slot = part_die;
17895 }
17896
17897 /* For some DIEs we want to follow their children (if any). For C
17898 we have no reason to follow the children of structures; for other
17899 languages we have to, so that we can get at method physnames
17900 to infer fully qualified class names, for DW_AT_specification,
17901 and for C++ template arguments. For C++, we also look one level
17902 inside functions to find template arguments (if the name of the
17903 function does not already contain the template arguments).
17904
17905 For Ada and Fortran, we need to scan the children of subprograms
17906 and lexical blocks as well because these languages allow the
17907 definition of nested entities that could be interesting for the
17908 debugger, such as nested subprograms for instance. */
17909 if (last_die->has_children
17910 && (load_all
17911 || last_die->tag == DW_TAG_namespace
17912 || last_die->tag == DW_TAG_module
17913 || last_die->tag == DW_TAG_enumeration_type
17914 || (cu->language == language_cplus
17915 && last_die->tag == DW_TAG_subprogram
17916 && (last_die->name == NULL
17917 || strchr (last_die->name, '<') == NULL))
17918 || (cu->language != language_c
17919 && (last_die->tag == DW_TAG_class_type
17920 || last_die->tag == DW_TAG_interface_type
17921 || last_die->tag == DW_TAG_structure_type
17922 || last_die->tag == DW_TAG_union_type))
17923 || ((cu->language == language_ada
17924 || cu->language == language_fortran)
17925 && (last_die->tag == DW_TAG_subprogram
17926 || last_die->tag == DW_TAG_lexical_block))))
17927 {
17928 nesting_level++;
17929 parent_die = last_die;
17930 continue;
17931 }
17932
17933 /* Otherwise we skip to the next sibling, if any. */
17934 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
17935
17936 /* Back to the top, do it again. */
17937 }
17938}
17939
17940partial_die_info::partial_die_info (sect_offset sect_off_,
17941 struct abbrev_info *abbrev)
17942 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
17943{
17944}
17945
17946/* Read a minimal amount of information into the minimal die structure.
17947 INFO_PTR should point just after the initial uleb128 of a DIE. */
17948
17949const gdb_byte *
17950partial_die_info::read (const struct die_reader_specs *reader,
17951 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
17952{
17953 struct dwarf2_cu *cu = reader->cu;
17954 struct dwarf2_per_objfile *dwarf2_per_objfile
17955 = cu->per_cu->dwarf2_per_objfile;
17956 unsigned int i;
17957 int has_low_pc_attr = 0;
17958 int has_high_pc_attr = 0;
17959 int high_pc_relative = 0;
17960
17961 std::vector<struct attribute> attr_vec (abbrev.num_attrs);
17962 for (i = 0; i < abbrev.num_attrs; ++i)
17963 {
17964 bool need_reprocess;
17965 info_ptr = read_attribute (reader, &attr_vec[i], &abbrev.attrs[i],
17966 info_ptr, &need_reprocess);
17967 /* String and address offsets that need to do the reprocessing have
17968 already been read at this point, so there is no need to wait until
17969 the loop terminates to do the reprocessing. */
17970 if (need_reprocess)
17971 read_attribute_reprocess (reader, &attr_vec[i]);
17972 attribute &attr = attr_vec[i];
17973 /* Store the data if it is of an attribute we want to keep in a
17974 partial symbol table. */
17975 switch (attr.name)
17976 {
17977 case DW_AT_name:
17978 switch (tag)
17979 {
17980 case DW_TAG_compile_unit:
17981 case DW_TAG_partial_unit:
17982 case DW_TAG_type_unit:
17983 /* Compilation units have a DW_AT_name that is a filename, not
17984 a source language identifier. */
17985 case DW_TAG_enumeration_type:
17986 case DW_TAG_enumerator:
17987 /* These tags always have simple identifiers already; no need
17988 to canonicalize them. */
17989 name = DW_STRING (&attr);
17990 break;
17991 default:
17992 {
17993 struct objfile *objfile = dwarf2_per_objfile->objfile;
17994
17995 name
17996 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
17997 &objfile->per_bfd->storage_obstack);
17998 }
17999 break;
18000 }
18001 break;
18002 case DW_AT_linkage_name:
18003 case DW_AT_MIPS_linkage_name:
18004 /* Note that both forms of linkage name might appear. We
18005 assume they will be the same, and we only store the last
18006 one we see. */
18007 linkage_name = DW_STRING (&attr);
18008 break;
18009 case DW_AT_low_pc:
18010 has_low_pc_attr = 1;
18011 lowpc = attr.value_as_address ();
18012 break;
18013 case DW_AT_high_pc:
18014 has_high_pc_attr = 1;
18015 highpc = attr.value_as_address ();
18016 if (cu->header.version >= 4 && attr.form_is_constant ())
18017 high_pc_relative = 1;
18018 break;
18019 case DW_AT_location:
18020 /* Support the .debug_loc offsets. */
18021 if (attr.form_is_block ())
18022 {
18023 d.locdesc = DW_BLOCK (&attr);
18024 }
18025 else if (attr.form_is_section_offset ())
18026 {
18027 dwarf2_complex_location_expr_complaint ();
18028 }
18029 else
18030 {
18031 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18032 "partial symbol information");
18033 }
18034 break;
18035 case DW_AT_external:
18036 is_external = DW_UNSND (&attr);
18037 break;
18038 case DW_AT_declaration:
18039 is_declaration = DW_UNSND (&attr);
18040 break;
18041 case DW_AT_type:
18042 has_type = 1;
18043 break;
18044 case DW_AT_abstract_origin:
18045 case DW_AT_specification:
18046 case DW_AT_extension:
18047 has_specification = 1;
18048 spec_offset = dwarf2_get_ref_die_offset (&attr);
18049 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18050 || cu->per_cu->is_dwz);
18051 break;
18052 case DW_AT_sibling:
18053 /* Ignore absolute siblings, they might point outside of
18054 the current compile unit. */
18055 if (attr.form == DW_FORM_ref_addr)
18056 complaint (_("ignoring absolute DW_AT_sibling"));
18057 else
18058 {
18059 const gdb_byte *buffer = reader->buffer;
18060 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18061 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18062
18063 if (sibling_ptr < info_ptr)
18064 complaint (_("DW_AT_sibling points backwards"));
18065 else if (sibling_ptr > reader->buffer_end)
18066 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18067 else
18068 sibling = sibling_ptr;
18069 }
18070 break;
18071 case DW_AT_byte_size:
18072 has_byte_size = 1;
18073 break;
18074 case DW_AT_const_value:
18075 has_const_value = 1;
18076 break;
18077 case DW_AT_calling_convention:
18078 /* DWARF doesn't provide a way to identify a program's source-level
18079 entry point. DW_AT_calling_convention attributes are only meant
18080 to describe functions' calling conventions.
18081
18082 However, because it's a necessary piece of information in
18083 Fortran, and before DWARF 4 DW_CC_program was the only
18084 piece of debugging information whose definition refers to
18085 a 'main program' at all, several compilers marked Fortran
18086 main programs with DW_CC_program --- even when those
18087 functions use the standard calling conventions.
18088
18089 Although DWARF now specifies a way to provide this
18090 information, we support this practice for backward
18091 compatibility. */
18092 if (DW_UNSND (&attr) == DW_CC_program
18093 && cu->language == language_fortran)
18094 main_subprogram = 1;
18095 break;
18096 case DW_AT_inline:
18097 if (DW_UNSND (&attr) == DW_INL_inlined
18098 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18099 may_be_inlined = 1;
18100 break;
18101
18102 case DW_AT_import:
18103 if (tag == DW_TAG_imported_unit)
18104 {
18105 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18106 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18107 || cu->per_cu->is_dwz);
18108 }
18109 break;
18110
18111 case DW_AT_main_subprogram:
18112 main_subprogram = DW_UNSND (&attr);
18113 break;
18114
18115 case DW_AT_ranges:
18116 {
18117 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18118 but that requires a full DIE, so instead we just
18119 reimplement it. */
18120 int need_ranges_base = tag != DW_TAG_compile_unit;
18121 unsigned int ranges_offset = (DW_UNSND (&attr)
18122 + (need_ranges_base
18123 ? cu->ranges_base
18124 : 0));
18125
18126 /* Value of the DW_AT_ranges attribute is the offset in the
18127 .debug_ranges section. */
18128 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18129 nullptr))
18130 has_pc_info = 1;
18131 }
18132 break;
18133
18134 default:
18135 break;
18136 }
18137 }
18138
18139 /* For Ada, if both the name and the linkage name appear, we prefer
18140 the latter. This lets "catch exception" work better, regardless
18141 of the order in which the name and linkage name were emitted.
18142 Really, though, this is just a workaround for the fact that gdb
18143 doesn't store both the name and the linkage name. */
18144 if (cu->language == language_ada && linkage_name != nullptr)
18145 name = linkage_name;
18146
18147 if (high_pc_relative)
18148 highpc += lowpc;
18149
18150 if (has_low_pc_attr && has_high_pc_attr)
18151 {
18152 /* When using the GNU linker, .gnu.linkonce. sections are used to
18153 eliminate duplicate copies of functions and vtables and such.
18154 The linker will arbitrarily choose one and discard the others.
18155 The AT_*_pc values for such functions refer to local labels in
18156 these sections. If the section from that file was discarded, the
18157 labels are not in the output, so the relocs get a value of 0.
18158 If this is a discarded function, mark the pc bounds as invalid,
18159 so that GDB will ignore it. */
18160 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18161 {
18162 struct objfile *objfile = dwarf2_per_objfile->objfile;
18163 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18164
18165 complaint (_("DW_AT_low_pc %s is zero "
18166 "for DIE at %s [in module %s]"),
18167 paddress (gdbarch, lowpc),
18168 sect_offset_str (sect_off),
18169 objfile_name (objfile));
18170 }
18171 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18172 else if (lowpc >= highpc)
18173 {
18174 struct objfile *objfile = dwarf2_per_objfile->objfile;
18175 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18176
18177 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18178 "for DIE at %s [in module %s]"),
18179 paddress (gdbarch, lowpc),
18180 paddress (gdbarch, highpc),
18181 sect_offset_str (sect_off),
18182 objfile_name (objfile));
18183 }
18184 else
18185 has_pc_info = 1;
18186 }
18187
18188 return info_ptr;
18189}
18190
18191/* Find a cached partial DIE at OFFSET in CU. */
18192
18193struct partial_die_info *
18194dwarf2_cu::find_partial_die (sect_offset sect_off)
18195{
18196 struct partial_die_info *lookup_die = NULL;
18197 struct partial_die_info part_die (sect_off);
18198
18199 lookup_die = ((struct partial_die_info *)
18200 htab_find_with_hash (partial_dies, &part_die,
18201 to_underlying (sect_off)));
18202
18203 return lookup_die;
18204}
18205
18206/* Find a partial DIE at OFFSET, which may or may not be in CU,
18207 except in the case of .debug_types DIEs which do not reference
18208 outside their CU (they do however referencing other types via
18209 DW_FORM_ref_sig8). */
18210
18211static const struct cu_partial_die_info
18212find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18213{
18214 struct dwarf2_per_objfile *dwarf2_per_objfile
18215 = cu->per_cu->dwarf2_per_objfile;
18216 struct objfile *objfile = dwarf2_per_objfile->objfile;
18217 struct dwarf2_per_cu_data *per_cu = NULL;
18218 struct partial_die_info *pd = NULL;
18219
18220 if (offset_in_dwz == cu->per_cu->is_dwz
18221 && cu->header.offset_in_cu_p (sect_off))
18222 {
18223 pd = cu->find_partial_die (sect_off);
18224 if (pd != NULL)
18225 return { cu, pd };
18226 /* We missed recording what we needed.
18227 Load all dies and try again. */
18228 per_cu = cu->per_cu;
18229 }
18230 else
18231 {
18232 /* TUs don't reference other CUs/TUs (except via type signatures). */
18233 if (cu->per_cu->is_debug_types)
18234 {
18235 error (_("Dwarf Error: Type Unit at offset %s contains"
18236 " external reference to offset %s [in module %s].\n"),
18237 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18238 bfd_get_filename (objfile->obfd));
18239 }
18240 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18241 dwarf2_per_objfile);
18242
18243 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18244 load_partial_comp_unit (per_cu);
18245
18246 per_cu->cu->last_used = 0;
18247 pd = per_cu->cu->find_partial_die (sect_off);
18248 }
18249
18250 /* If we didn't find it, and not all dies have been loaded,
18251 load them all and try again. */
18252
18253 if (pd == NULL && per_cu->load_all_dies == 0)
18254 {
18255 per_cu->load_all_dies = 1;
18256
18257 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18258 THIS_CU->cu may already be in use. So we can't just free it and
18259 replace its DIEs with the ones we read in. Instead, we leave those
18260 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18261 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18262 set. */
18263 load_partial_comp_unit (per_cu);
18264
18265 pd = per_cu->cu->find_partial_die (sect_off);
18266 }
18267
18268 if (pd == NULL)
18269 internal_error (__FILE__, __LINE__,
18270 _("could not find partial DIE %s "
18271 "in cache [from module %s]\n"),
18272 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18273 return { per_cu->cu, pd };
18274}
18275
18276/* See if we can figure out if the class lives in a namespace. We do
18277 this by looking for a member function; its demangled name will
18278 contain namespace info, if there is any. */
18279
18280static void
18281guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18282 struct dwarf2_cu *cu)
18283{
18284 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18285 what template types look like, because the demangler
18286 frequently doesn't give the same name as the debug info. We
18287 could fix this by only using the demangled name to get the
18288 prefix (but see comment in read_structure_type). */
18289
18290 struct partial_die_info *real_pdi;
18291 struct partial_die_info *child_pdi;
18292
18293 /* If this DIE (this DIE's specification, if any) has a parent, then
18294 we should not do this. We'll prepend the parent's fully qualified
18295 name when we create the partial symbol. */
18296
18297 real_pdi = struct_pdi;
18298 while (real_pdi->has_specification)
18299 {
18300 auto res = find_partial_die (real_pdi->spec_offset,
18301 real_pdi->spec_is_dwz, cu);
18302 real_pdi = res.pdi;
18303 cu = res.cu;
18304 }
18305
18306 if (real_pdi->die_parent != NULL)
18307 return;
18308
18309 for (child_pdi = struct_pdi->die_child;
18310 child_pdi != NULL;
18311 child_pdi = child_pdi->die_sibling)
18312 {
18313 if (child_pdi->tag == DW_TAG_subprogram
18314 && child_pdi->linkage_name != NULL)
18315 {
18316 gdb::unique_xmalloc_ptr<char> actual_class_name
18317 (language_class_name_from_physname (cu->language_defn,
18318 child_pdi->linkage_name));
18319 if (actual_class_name != NULL)
18320 {
18321 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18322 struct_pdi->name
18323 = obstack_strdup (&objfile->per_bfd->storage_obstack,
18324 actual_class_name.get ());
18325 }
18326 break;
18327 }
18328 }
18329}
18330
18331void
18332partial_die_info::fixup (struct dwarf2_cu *cu)
18333{
18334 /* Once we've fixed up a die, there's no point in doing so again.
18335 This also avoids a memory leak if we were to call
18336 guess_partial_die_structure_name multiple times. */
18337 if (fixup_called)
18338 return;
18339
18340 /* If we found a reference attribute and the DIE has no name, try
18341 to find a name in the referred to DIE. */
18342
18343 if (name == NULL && has_specification)
18344 {
18345 struct partial_die_info *spec_die;
18346
18347 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18348 spec_die = res.pdi;
18349 cu = res.cu;
18350
18351 spec_die->fixup (cu);
18352
18353 if (spec_die->name)
18354 {
18355 name = spec_die->name;
18356
18357 /* Copy DW_AT_external attribute if it is set. */
18358 if (spec_die->is_external)
18359 is_external = spec_die->is_external;
18360 }
18361 }
18362
18363 /* Set default names for some unnamed DIEs. */
18364
18365 if (name == NULL && tag == DW_TAG_namespace)
18366 name = CP_ANONYMOUS_NAMESPACE_STR;
18367
18368 /* If there is no parent die to provide a namespace, and there are
18369 children, see if we can determine the namespace from their linkage
18370 name. */
18371 if (cu->language == language_cplus
18372 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18373 && die_parent == NULL
18374 && has_children
18375 && (tag == DW_TAG_class_type
18376 || tag == DW_TAG_structure_type
18377 || tag == DW_TAG_union_type))
18378 guess_partial_die_structure_name (this, cu);
18379
18380 /* GCC might emit a nameless struct or union that has a linkage
18381 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18382 if (name == NULL
18383 && (tag == DW_TAG_class_type
18384 || tag == DW_TAG_interface_type
18385 || tag == DW_TAG_structure_type
18386 || tag == DW_TAG_union_type)
18387 && linkage_name != NULL)
18388 {
18389 gdb::unique_xmalloc_ptr<char> demangled
18390 (gdb_demangle (linkage_name, DMGL_TYPES));
18391 if (demangled != nullptr)
18392 {
18393 const char *base;
18394
18395 /* Strip any leading namespaces/classes, keep only the base name.
18396 DW_AT_name for named DIEs does not contain the prefixes. */
18397 base = strrchr (demangled.get (), ':');
18398 if (base && base > demangled.get () && base[-1] == ':')
18399 base++;
18400 else
18401 base = demangled.get ();
18402
18403 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18404 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
18405 }
18406 }
18407
18408 fixup_called = 1;
18409}
18410
18411/* Process the attributes that had to be skipped in the first round. These
18412 attributes are the ones that need str_offsets_base or addr_base attributes.
18413 They could not have been processed in the first round, because at the time
18414 the values of str_offsets_base or addr_base may not have been known. */
18415void read_attribute_reprocess (const struct die_reader_specs *reader,
18416 struct attribute *attr)
18417{
18418 struct dwarf2_cu *cu = reader->cu;
18419 switch (attr->form)
18420 {
18421 case DW_FORM_addrx:
18422 case DW_FORM_GNU_addr_index:
18423 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18424 break;
18425 case DW_FORM_strx:
18426 case DW_FORM_strx1:
18427 case DW_FORM_strx2:
18428 case DW_FORM_strx3:
18429 case DW_FORM_strx4:
18430 case DW_FORM_GNU_str_index:
18431 {
18432 unsigned int str_index = DW_UNSND (attr);
18433 if (reader->dwo_file != NULL)
18434 {
18435 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18436 DW_STRING_IS_CANONICAL (attr) = 0;
18437 }
18438 else
18439 {
18440 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18441 DW_STRING_IS_CANONICAL (attr) = 0;
18442 }
18443 break;
18444 }
18445 default:
18446 gdb_assert_not_reached (_("Unexpected DWARF form."));
18447 }
18448}
18449
18450/* Read an attribute value described by an attribute form. */
18451
18452static const gdb_byte *
18453read_attribute_value (const struct die_reader_specs *reader,
18454 struct attribute *attr, unsigned form,
18455 LONGEST implicit_const, const gdb_byte *info_ptr,
18456 bool *need_reprocess)
18457{
18458 struct dwarf2_cu *cu = reader->cu;
18459 struct dwarf2_per_objfile *dwarf2_per_objfile
18460 = cu->per_cu->dwarf2_per_objfile;
18461 struct objfile *objfile = dwarf2_per_objfile->objfile;
18462 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18463 bfd *abfd = reader->abfd;
18464 struct comp_unit_head *cu_header = &cu->header;
18465 unsigned int bytes_read;
18466 struct dwarf_block *blk;
18467 *need_reprocess = false;
18468
18469 attr->form = (enum dwarf_form) form;
18470 switch (form)
18471 {
18472 case DW_FORM_ref_addr:
18473 if (cu->header.version == 2)
18474 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
18475 &bytes_read);
18476 else
18477 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
18478 &bytes_read);
18479 info_ptr += bytes_read;
18480 break;
18481 case DW_FORM_GNU_ref_alt:
18482 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18483 info_ptr += bytes_read;
18484 break;
18485 case DW_FORM_addr:
18486 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
18487 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18488 info_ptr += bytes_read;
18489 break;
18490 case DW_FORM_block2:
18491 blk = dwarf_alloc_block (cu);
18492 blk->size = read_2_bytes (abfd, info_ptr);
18493 info_ptr += 2;
18494 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18495 info_ptr += blk->size;
18496 DW_BLOCK (attr) = blk;
18497 break;
18498 case DW_FORM_block4:
18499 blk = dwarf_alloc_block (cu);
18500 blk->size = read_4_bytes (abfd, info_ptr);
18501 info_ptr += 4;
18502 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18503 info_ptr += blk->size;
18504 DW_BLOCK (attr) = blk;
18505 break;
18506 case DW_FORM_data2:
18507 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18508 info_ptr += 2;
18509 break;
18510 case DW_FORM_data4:
18511 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18512 info_ptr += 4;
18513 break;
18514 case DW_FORM_data8:
18515 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18516 info_ptr += 8;
18517 break;
18518 case DW_FORM_data16:
18519 blk = dwarf_alloc_block (cu);
18520 blk->size = 16;
18521 blk->data = read_n_bytes (abfd, info_ptr, 16);
18522 info_ptr += 16;
18523 DW_BLOCK (attr) = blk;
18524 break;
18525 case DW_FORM_sec_offset:
18526 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18527 info_ptr += bytes_read;
18528 break;
18529 case DW_FORM_string:
18530 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18531 DW_STRING_IS_CANONICAL (attr) = 0;
18532 info_ptr += bytes_read;
18533 break;
18534 case DW_FORM_strp:
18535 if (!cu->per_cu->is_dwz)
18536 {
18537 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18538 abfd, info_ptr, cu_header,
18539 &bytes_read);
18540 DW_STRING_IS_CANONICAL (attr) = 0;
18541 info_ptr += bytes_read;
18542 break;
18543 }
18544 /* FALLTHROUGH */
18545 case DW_FORM_line_strp:
18546 if (!cu->per_cu->is_dwz)
18547 {
18548 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18549 abfd, info_ptr,
18550 cu_header, &bytes_read);
18551 DW_STRING_IS_CANONICAL (attr) = 0;
18552 info_ptr += bytes_read;
18553 break;
18554 }
18555 /* FALLTHROUGH */
18556 case DW_FORM_GNU_strp_alt:
18557 {
18558 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18559 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
18560 &bytes_read);
18561
18562 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18563 dwz, str_offset);
18564 DW_STRING_IS_CANONICAL (attr) = 0;
18565 info_ptr += bytes_read;
18566 }
18567 break;
18568 case DW_FORM_exprloc:
18569 case DW_FORM_block:
18570 blk = dwarf_alloc_block (cu);
18571 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18572 info_ptr += bytes_read;
18573 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18574 info_ptr += blk->size;
18575 DW_BLOCK (attr) = blk;
18576 break;
18577 case DW_FORM_block1:
18578 blk = dwarf_alloc_block (cu);
18579 blk->size = read_1_byte (abfd, info_ptr);
18580 info_ptr += 1;
18581 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18582 info_ptr += blk->size;
18583 DW_BLOCK (attr) = blk;
18584 break;
18585 case DW_FORM_data1:
18586 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18587 info_ptr += 1;
18588 break;
18589 case DW_FORM_flag:
18590 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18591 info_ptr += 1;
18592 break;
18593 case DW_FORM_flag_present:
18594 DW_UNSND (attr) = 1;
18595 break;
18596 case DW_FORM_sdata:
18597 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18598 info_ptr += bytes_read;
18599 break;
18600 case DW_FORM_udata:
18601 case DW_FORM_rnglistx:
18602 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18603 info_ptr += bytes_read;
18604 break;
18605 case DW_FORM_ref1:
18606 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18607 + read_1_byte (abfd, info_ptr));
18608 info_ptr += 1;
18609 break;
18610 case DW_FORM_ref2:
18611 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18612 + read_2_bytes (abfd, info_ptr));
18613 info_ptr += 2;
18614 break;
18615 case DW_FORM_ref4:
18616 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18617 + read_4_bytes (abfd, info_ptr));
18618 info_ptr += 4;
18619 break;
18620 case DW_FORM_ref8:
18621 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18622 + read_8_bytes (abfd, info_ptr));
18623 info_ptr += 8;
18624 break;
18625 case DW_FORM_ref_sig8:
18626 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18627 info_ptr += 8;
18628 break;
18629 case DW_FORM_ref_udata:
18630 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18631 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18632 info_ptr += bytes_read;
18633 break;
18634 case DW_FORM_indirect:
18635 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18636 info_ptr += bytes_read;
18637 if (form == DW_FORM_implicit_const)
18638 {
18639 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18640 info_ptr += bytes_read;
18641 }
18642 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18643 info_ptr, need_reprocess);
18644 break;
18645 case DW_FORM_implicit_const:
18646 DW_SND (attr) = implicit_const;
18647 break;
18648 case DW_FORM_addrx:
18649 case DW_FORM_GNU_addr_index:
18650 *need_reprocess = true;
18651 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18652 info_ptr += bytes_read;
18653 break;
18654 case DW_FORM_strx:
18655 case DW_FORM_strx1:
18656 case DW_FORM_strx2:
18657 case DW_FORM_strx3:
18658 case DW_FORM_strx4:
18659 case DW_FORM_GNU_str_index:
18660 {
18661 ULONGEST str_index;
18662 if (form == DW_FORM_strx1)
18663 {
18664 str_index = read_1_byte (abfd, info_ptr);
18665 info_ptr += 1;
18666 }
18667 else if (form == DW_FORM_strx2)
18668 {
18669 str_index = read_2_bytes (abfd, info_ptr);
18670 info_ptr += 2;
18671 }
18672 else if (form == DW_FORM_strx3)
18673 {
18674 str_index = read_3_bytes (abfd, info_ptr);
18675 info_ptr += 3;
18676 }
18677 else if (form == DW_FORM_strx4)
18678 {
18679 str_index = read_4_bytes (abfd, info_ptr);
18680 info_ptr += 4;
18681 }
18682 else
18683 {
18684 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18685 info_ptr += bytes_read;
18686 }
18687 *need_reprocess = true;
18688 DW_UNSND (attr) = str_index;
18689 }
18690 break;
18691 default:
18692 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
18693 dwarf_form_name (form),
18694 bfd_get_filename (abfd));
18695 }
18696
18697 /* Super hack. */
18698 if (cu->per_cu->is_dwz && attr->form_is_ref ())
18699 attr->form = DW_FORM_GNU_ref_alt;
18700
18701 /* We have seen instances where the compiler tried to emit a byte
18702 size attribute of -1 which ended up being encoded as an unsigned
18703 0xffffffff. Although 0xffffffff is technically a valid size value,
18704 an object of this size seems pretty unlikely so we can relatively
18705 safely treat these cases as if the size attribute was invalid and
18706 treat them as zero by default. */
18707 if (attr->name == DW_AT_byte_size
18708 && form == DW_FORM_data4
18709 && DW_UNSND (attr) >= 0xffffffff)
18710 {
18711 complaint
18712 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
18713 hex_string (DW_UNSND (attr)));
18714 DW_UNSND (attr) = 0;
18715 }
18716
18717 return info_ptr;
18718}
18719
18720/* Read an attribute described by an abbreviated attribute. */
18721
18722static const gdb_byte *
18723read_attribute (const struct die_reader_specs *reader,
18724 struct attribute *attr, struct attr_abbrev *abbrev,
18725 const gdb_byte *info_ptr, bool *need_reprocess)
18726{
18727 attr->name = abbrev->name;
18728 return read_attribute_value (reader, attr, abbrev->form,
18729 abbrev->implicit_const, info_ptr,
18730 need_reprocess);
18731}
18732
18733/* Cover function for read_initial_length.
18734 Returns the length of the object at BUF, and stores the size of the
18735 initial length in *BYTES_READ and stores the size that offsets will be in
18736 *OFFSET_SIZE.
18737 If the initial length size is not equivalent to that specified in
18738 CU_HEADER then issue a complaint.
18739 This is useful when reading non-comp-unit headers. */
18740
18741static LONGEST
18742read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
18743 const struct comp_unit_head *cu_header,
18744 unsigned int *bytes_read,
18745 unsigned int *offset_size)
18746{
18747 LONGEST length = read_initial_length (abfd, buf, bytes_read);
18748
18749 gdb_assert (cu_header->initial_length_size == 4
18750 || cu_header->initial_length_size == 8
18751 || cu_header->initial_length_size == 12);
18752
18753 if (cu_header->initial_length_size != *bytes_read)
18754 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
18755
18756 *offset_size = (*bytes_read == 4) ? 4 : 8;
18757 return length;
18758}
18759
18760/* Return pointer to string at section SECT offset STR_OFFSET with error
18761 reporting strings FORM_NAME and SECT_NAME. */
18762
18763static const char *
18764read_indirect_string_at_offset_from (struct objfile *objfile,
18765 bfd *abfd, LONGEST str_offset,
18766 struct dwarf2_section_info *sect,
18767 const char *form_name,
18768 const char *sect_name)
18769{
18770 sect->read (objfile);
18771 if (sect->buffer == NULL)
18772 error (_("%s used without %s section [in module %s]"),
18773 form_name, sect_name, bfd_get_filename (abfd));
18774 if (str_offset >= sect->size)
18775 error (_("%s pointing outside of %s section [in module %s]"),
18776 form_name, sect_name, bfd_get_filename (abfd));
18777 gdb_assert (HOST_CHAR_BIT == 8);
18778 if (sect->buffer[str_offset] == '\0')
18779 return NULL;
18780 return (const char *) (sect->buffer + str_offset);
18781}
18782
18783/* Return pointer to string at .debug_str offset STR_OFFSET. */
18784
18785static const char *
18786read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
18787 bfd *abfd, LONGEST str_offset)
18788{
18789 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
18790 abfd, str_offset,
18791 &dwarf2_per_objfile->str,
18792 "DW_FORM_strp", ".debug_str");
18793}
18794
18795/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
18796
18797static const char *
18798read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
18799 bfd *abfd, LONGEST str_offset)
18800{
18801 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
18802 abfd, str_offset,
18803 &dwarf2_per_objfile->line_str,
18804 "DW_FORM_line_strp",
18805 ".debug_line_str");
18806}
18807
18808/* Read a string at offset STR_OFFSET in the .debug_str section from
18809 the .dwz file DWZ. Throw an error if the offset is too large. If
18810 the string consists of a single NUL byte, return NULL; otherwise
18811 return a pointer to the string. */
18812
18813static const char *
18814read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
18815 LONGEST str_offset)
18816{
18817 dwz->str.read (objfile);
18818
18819 if (dwz->str.buffer == NULL)
18820 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
18821 "section [in module %s]"),
18822 bfd_get_filename (dwz->dwz_bfd.get ()));
18823 if (str_offset >= dwz->str.size)
18824 error (_("DW_FORM_GNU_strp_alt pointing outside of "
18825 ".debug_str section [in module %s]"),
18826 bfd_get_filename (dwz->dwz_bfd.get ()));
18827 gdb_assert (HOST_CHAR_BIT == 8);
18828 if (dwz->str.buffer[str_offset] == '\0')
18829 return NULL;
18830 return (const char *) (dwz->str.buffer + str_offset);
18831}
18832
18833/* Return pointer to string at .debug_str offset as read from BUF.
18834 BUF is assumed to be in a compilation unit described by CU_HEADER.
18835 Return *BYTES_READ_PTR count of bytes read from BUF. */
18836
18837static const char *
18838read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
18839 const gdb_byte *buf,
18840 const struct comp_unit_head *cu_header,
18841 unsigned int *bytes_read_ptr)
18842{
18843 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
18844
18845 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
18846}
18847
18848/* Return pointer to string at .debug_line_str offset as read from BUF.
18849 BUF is assumed to be in a compilation unit described by CU_HEADER.
18850 Return *BYTES_READ_PTR count of bytes read from BUF. */
18851
18852static const char *
18853read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
18854 bfd *abfd, const gdb_byte *buf,
18855 const struct comp_unit_head *cu_header,
18856 unsigned int *bytes_read_ptr)
18857{
18858 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
18859
18860 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
18861 str_offset);
18862}
18863
18864/* Given index ADDR_INDEX in .debug_addr, fetch the value.
18865 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
18866 ADDR_SIZE is the size of addresses from the CU header. */
18867
18868static CORE_ADDR
18869read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
18870 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
18871 int addr_size)
18872{
18873 struct objfile *objfile = dwarf2_per_objfile->objfile;
18874 bfd *abfd = objfile->obfd;
18875 const gdb_byte *info_ptr;
18876 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
18877
18878 dwarf2_per_objfile->addr.read (objfile);
18879 if (dwarf2_per_objfile->addr.buffer == NULL)
18880 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
18881 objfile_name (objfile));
18882 if (addr_base_or_zero + addr_index * addr_size
18883 >= dwarf2_per_objfile->addr.size)
18884 error (_("DW_FORM_addr_index pointing outside of "
18885 ".debug_addr section [in module %s]"),
18886 objfile_name (objfile));
18887 info_ptr = (dwarf2_per_objfile->addr.buffer
18888 + addr_base_or_zero + addr_index * addr_size);
18889 if (addr_size == 4)
18890 return bfd_get_32 (abfd, info_ptr);
18891 else
18892 return bfd_get_64 (abfd, info_ptr);
18893}
18894
18895/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
18896
18897static CORE_ADDR
18898read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
18899{
18900 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
18901 cu->addr_base, cu->header.addr_size);
18902}
18903
18904/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
18905
18906static CORE_ADDR
18907read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
18908 unsigned int *bytes_read)
18909{
18910 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
18911 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
18912
18913 return read_addr_index (cu, addr_index);
18914}
18915
18916/* See read.h. */
18917
18918CORE_ADDR
18919dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu, unsigned int addr_index)
18920{
18921 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
18922 struct dwarf2_cu *cu = per_cu->cu;
18923 gdb::optional<ULONGEST> addr_base;
18924 int addr_size;
18925
18926 /* We need addr_base and addr_size.
18927 If we don't have PER_CU->cu, we have to get it.
18928 Nasty, but the alternative is storing the needed info in PER_CU,
18929 which at this point doesn't seem justified: it's not clear how frequently
18930 it would get used and it would increase the size of every PER_CU.
18931 Entry points like dwarf2_per_cu_addr_size do a similar thing
18932 so we're not in uncharted territory here.
18933 Alas we need to be a bit more complicated as addr_base is contained
18934 in the DIE.
18935
18936 We don't need to read the entire CU(/TU).
18937 We just need the header and top level die.
18938
18939 IWBN to use the aging mechanism to let us lazily later discard the CU.
18940 For now we skip this optimization. */
18941
18942 if (cu != NULL)
18943 {
18944 addr_base = cu->addr_base;
18945 addr_size = cu->header.addr_size;
18946 }
18947 else
18948 {
18949 cutu_reader reader (per_cu, NULL, 0, false);
18950 addr_base = reader.cu->addr_base;
18951 addr_size = reader.cu->header.addr_size;
18952 }
18953
18954 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
18955 addr_size);
18956}
18957
18958/* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
18959 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
18960 DWO file. */
18961
18962static const char *
18963read_str_index (struct dwarf2_cu *cu,
18964 struct dwarf2_section_info *str_section,
18965 struct dwarf2_section_info *str_offsets_section,
18966 ULONGEST str_offsets_base, ULONGEST str_index)
18967{
18968 struct dwarf2_per_objfile *dwarf2_per_objfile
18969 = cu->per_cu->dwarf2_per_objfile;
18970 struct objfile *objfile = dwarf2_per_objfile->objfile;
18971 const char *objf_name = objfile_name (objfile);
18972 bfd *abfd = objfile->obfd;
18973 const gdb_byte *info_ptr;
18974 ULONGEST str_offset;
18975 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
18976
18977 str_section->read (objfile);
18978 str_offsets_section->read (objfile);
18979 if (str_section->buffer == NULL)
18980 error (_("%s used without %s section"
18981 " in CU at offset %s [in module %s]"),
18982 form_name, str_section->get_name (),
18983 sect_offset_str (cu->header.sect_off), objf_name);
18984 if (str_offsets_section->buffer == NULL)
18985 error (_("%s used without %s section"
18986 " in CU at offset %s [in module %s]"),
18987 form_name, str_section->get_name (),
18988 sect_offset_str (cu->header.sect_off), objf_name);
18989 info_ptr = (str_offsets_section->buffer
18990 + str_offsets_base
18991 + str_index * cu->header.offset_size);
18992 if (cu->header.offset_size == 4)
18993 str_offset = bfd_get_32 (abfd, info_ptr);
18994 else
18995 str_offset = bfd_get_64 (abfd, info_ptr);
18996 if (str_offset >= str_section->size)
18997 error (_("Offset from %s pointing outside of"
18998 " .debug_str.dwo section in CU at offset %s [in module %s]"),
18999 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19000 return (const char *) (str_section->buffer + str_offset);
19001}
19002
19003/* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19004
19005static const char *
19006read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19007{
19008 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19009 ? reader->cu->header.addr_size : 0;
19010 return read_str_index (reader->cu,
19011 &reader->dwo_file->sections.str,
19012 &reader->dwo_file->sections.str_offsets,
19013 str_offsets_base, str_index);
19014}
19015
19016/* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19017
19018static const char *
19019read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19020{
19021 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19022 const char *objf_name = objfile_name (objfile);
19023 static const char form_name[] = "DW_FORM_GNU_str_index";
19024 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19025
19026 if (!cu->str_offsets_base.has_value ())
19027 error (_("%s used in Fission stub without %s"
19028 " in CU at offset 0x%lx [in module %s]"),
19029 form_name, str_offsets_attr_name,
19030 (long) cu->header.offset_size, objf_name);
19031
19032 return read_str_index (cu,
19033 &cu->per_cu->dwarf2_per_objfile->str,
19034 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19035 *cu->str_offsets_base, str_index);
19036}
19037
19038/* Return the length of an LEB128 number in BUF. */
19039
19040static int
19041leb128_size (const gdb_byte *buf)
19042{
19043 const gdb_byte *begin = buf;
19044 gdb_byte byte;
19045
19046 while (1)
19047 {
19048 byte = *buf++;
19049 if ((byte & 128) == 0)
19050 return buf - begin;
19051 }
19052}
19053
19054static void
19055set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19056{
19057 switch (lang)
19058 {
19059 case DW_LANG_C89:
19060 case DW_LANG_C99:
19061 case DW_LANG_C11:
19062 case DW_LANG_C:
19063 case DW_LANG_UPC:
19064 cu->language = language_c;
19065 break;
19066 case DW_LANG_Java:
19067 case DW_LANG_C_plus_plus:
19068 case DW_LANG_C_plus_plus_11:
19069 case DW_LANG_C_plus_plus_14:
19070 cu->language = language_cplus;
19071 break;
19072 case DW_LANG_D:
19073 cu->language = language_d;
19074 break;
19075 case DW_LANG_Fortran77:
19076 case DW_LANG_Fortran90:
19077 case DW_LANG_Fortran95:
19078 case DW_LANG_Fortran03:
19079 case DW_LANG_Fortran08:
19080 cu->language = language_fortran;
19081 break;
19082 case DW_LANG_Go:
19083 cu->language = language_go;
19084 break;
19085 case DW_LANG_Mips_Assembler:
19086 cu->language = language_asm;
19087 break;
19088 case DW_LANG_Ada83:
19089 case DW_LANG_Ada95:
19090 cu->language = language_ada;
19091 break;
19092 case DW_LANG_Modula2:
19093 cu->language = language_m2;
19094 break;
19095 case DW_LANG_Pascal83:
19096 cu->language = language_pascal;
19097 break;
19098 case DW_LANG_ObjC:
19099 cu->language = language_objc;
19100 break;
19101 case DW_LANG_Rust:
19102 case DW_LANG_Rust_old:
19103 cu->language = language_rust;
19104 break;
19105 case DW_LANG_Cobol74:
19106 case DW_LANG_Cobol85:
19107 default:
19108 cu->language = language_minimal;
19109 break;
19110 }
19111 cu->language_defn = language_def (cu->language);
19112}
19113
19114/* Return the named attribute or NULL if not there. */
19115
19116static struct attribute *
19117dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19118{
19119 for (;;)
19120 {
19121 unsigned int i;
19122 struct attribute *spec = NULL;
19123
19124 for (i = 0; i < die->num_attrs; ++i)
19125 {
19126 if (die->attrs[i].name == name)
19127 return &die->attrs[i];
19128 if (die->attrs[i].name == DW_AT_specification
19129 || die->attrs[i].name == DW_AT_abstract_origin)
19130 spec = &die->attrs[i];
19131 }
19132
19133 if (!spec)
19134 break;
19135
19136 die = follow_die_ref (die, spec, &cu);
19137 }
19138
19139 return NULL;
19140}
19141
19142/* Return the named attribute or NULL if not there,
19143 but do not follow DW_AT_specification, etc.
19144 This is for use in contexts where we're reading .debug_types dies.
19145 Following DW_AT_specification, DW_AT_abstract_origin will take us
19146 back up the chain, and we want to go down. */
19147
19148static struct attribute *
19149dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19150{
19151 unsigned int i;
19152
19153 for (i = 0; i < die->num_attrs; ++i)
19154 if (die->attrs[i].name == name)
19155 return &die->attrs[i];
19156
19157 return NULL;
19158}
19159
19160/* Return the string associated with a string-typed attribute, or NULL if it
19161 is either not found or is of an incorrect type. */
19162
19163static const char *
19164dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19165{
19166 struct attribute *attr;
19167 const char *str = NULL;
19168
19169 attr = dwarf2_attr (die, name, cu);
19170
19171 if (attr != NULL)
19172 {
19173 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19174 || attr->form == DW_FORM_string
19175 || attr->form == DW_FORM_strx
19176 || attr->form == DW_FORM_strx1
19177 || attr->form == DW_FORM_strx2
19178 || attr->form == DW_FORM_strx3
19179 || attr->form == DW_FORM_strx4
19180 || attr->form == DW_FORM_GNU_str_index
19181 || attr->form == DW_FORM_GNU_strp_alt)
19182 str = DW_STRING (attr);
19183 else
19184 complaint (_("string type expected for attribute %s for "
19185 "DIE at %s in module %s"),
19186 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19187 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19188 }
19189
19190 return str;
19191}
19192
19193/* Return the dwo name or NULL if not present. If present, it is in either
19194 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19195static const char *
19196dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19197{
19198 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19199 if (dwo_name == nullptr)
19200 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19201 return dwo_name;
19202}
19203
19204/* Return non-zero iff the attribute NAME is defined for the given DIE,
19205 and holds a non-zero value. This function should only be used for
19206 DW_FORM_flag or DW_FORM_flag_present attributes. */
19207
19208static int
19209dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19210{
19211 struct attribute *attr = dwarf2_attr (die, name, cu);
19212
19213 return (attr && DW_UNSND (attr));
19214}
19215
19216static int
19217die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19218{
19219 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19220 which value is non-zero. However, we have to be careful with
19221 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19222 (via dwarf2_flag_true_p) follows this attribute. So we may
19223 end up accidently finding a declaration attribute that belongs
19224 to a different DIE referenced by the specification attribute,
19225 even though the given DIE does not have a declaration attribute. */
19226 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19227 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19228}
19229
19230/* Return the die giving the specification for DIE, if there is
19231 one. *SPEC_CU is the CU containing DIE on input, and the CU
19232 containing the return value on output. If there is no
19233 specification, but there is an abstract origin, that is
19234 returned. */
19235
19236static struct die_info *
19237die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19238{
19239 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19240 *spec_cu);
19241
19242 if (spec_attr == NULL)
19243 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19244
19245 if (spec_attr == NULL)
19246 return NULL;
19247 else
19248 return follow_die_ref (die, spec_attr, spec_cu);
19249}
19250
19251/* Stub for free_line_header to match void * callback types. */
19252
19253static void
19254free_line_header_voidp (void *arg)
19255{
19256 struct line_header *lh = (struct line_header *) arg;
19257
19258 delete lh;
19259}
19260
19261/* A convenience function to find the proper .debug_line section for a CU. */
19262
19263static struct dwarf2_section_info *
19264get_debug_line_section (struct dwarf2_cu *cu)
19265{
19266 struct dwarf2_section_info *section;
19267 struct dwarf2_per_objfile *dwarf2_per_objfile
19268 = cu->per_cu->dwarf2_per_objfile;
19269
19270 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19271 DWO file. */
19272 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19273 section = &cu->dwo_unit->dwo_file->sections.line;
19274 else if (cu->per_cu->is_dwz)
19275 {
19276 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19277
19278 section = &dwz->line;
19279 }
19280 else
19281 section = &dwarf2_per_objfile->line;
19282
19283 return section;
19284}
19285
19286/* Read directory or file name entry format, starting with byte of
19287 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19288 entries count and the entries themselves in the described entry
19289 format. */
19290
19291static void
19292read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19293 bfd *abfd, const gdb_byte **bufp,
19294 struct line_header *lh,
19295 const struct comp_unit_head *cu_header,
19296 void (*callback) (struct line_header *lh,
19297 const char *name,
19298 dir_index d_index,
19299 unsigned int mod_time,
19300 unsigned int length))
19301{
19302 gdb_byte format_count, formati;
19303 ULONGEST data_count, datai;
19304 const gdb_byte *buf = *bufp;
19305 const gdb_byte *format_header_data;
19306 unsigned int bytes_read;
19307
19308 format_count = read_1_byte (abfd, buf);
19309 buf += 1;
19310 format_header_data = buf;
19311 for (formati = 0; formati < format_count; formati++)
19312 {
19313 read_unsigned_leb128 (abfd, buf, &bytes_read);
19314 buf += bytes_read;
19315 read_unsigned_leb128 (abfd, buf, &bytes_read);
19316 buf += bytes_read;
19317 }
19318
19319 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19320 buf += bytes_read;
19321 for (datai = 0; datai < data_count; datai++)
19322 {
19323 const gdb_byte *format = format_header_data;
19324 struct file_entry fe;
19325
19326 for (formati = 0; formati < format_count; formati++)
19327 {
19328 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19329 format += bytes_read;
19330
19331 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19332 format += bytes_read;
19333
19334 gdb::optional<const char *> string;
19335 gdb::optional<unsigned int> uint;
19336
19337 switch (form)
19338 {
19339 case DW_FORM_string:
19340 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19341 buf += bytes_read;
19342 break;
19343
19344 case DW_FORM_line_strp:
19345 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19346 abfd, buf,
19347 cu_header,
19348 &bytes_read));
19349 buf += bytes_read;
19350 break;
19351
19352 case DW_FORM_data1:
19353 uint.emplace (read_1_byte (abfd, buf));
19354 buf += 1;
19355 break;
19356
19357 case DW_FORM_data2:
19358 uint.emplace (read_2_bytes (abfd, buf));
19359 buf += 2;
19360 break;
19361
19362 case DW_FORM_data4:
19363 uint.emplace (read_4_bytes (abfd, buf));
19364 buf += 4;
19365 break;
19366
19367 case DW_FORM_data8:
19368 uint.emplace (read_8_bytes (abfd, buf));
19369 buf += 8;
19370 break;
19371
19372 case DW_FORM_data16:
19373 /* This is used for MD5, but file_entry does not record MD5s. */
19374 buf += 16;
19375 break;
19376
19377 case DW_FORM_udata:
19378 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19379 buf += bytes_read;
19380 break;
19381
19382 case DW_FORM_block:
19383 /* It is valid only for DW_LNCT_timestamp which is ignored by
19384 current GDB. */
19385 break;
19386 }
19387
19388 switch (content_type)
19389 {
19390 case DW_LNCT_path:
19391 if (string.has_value ())
19392 fe.name = *string;
19393 break;
19394 case DW_LNCT_directory_index:
19395 if (uint.has_value ())
19396 fe.d_index = (dir_index) *uint;
19397 break;
19398 case DW_LNCT_timestamp:
19399 if (uint.has_value ())
19400 fe.mod_time = *uint;
19401 break;
19402 case DW_LNCT_size:
19403 if (uint.has_value ())
19404 fe.length = *uint;
19405 break;
19406 case DW_LNCT_MD5:
19407 break;
19408 default:
19409 complaint (_("Unknown format content type %s"),
19410 pulongest (content_type));
19411 }
19412 }
19413
19414 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
19415 }
19416
19417 *bufp = buf;
19418}
19419
19420/* Read the statement program header starting at OFFSET in
19421 .debug_line, or .debug_line.dwo. Return a pointer
19422 to a struct line_header, allocated using xmalloc.
19423 Returns NULL if there is a problem reading the header, e.g., if it
19424 has a version we don't understand.
19425
19426 NOTE: the strings in the include directory and file name tables of
19427 the returned object point into the dwarf line section buffer,
19428 and must not be freed. */
19429
19430static line_header_up
19431dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19432{
19433 const gdb_byte *line_ptr;
19434 unsigned int bytes_read, offset_size;
19435 int i;
19436 const char *cur_dir, *cur_file;
19437 struct dwarf2_section_info *section;
19438 bfd *abfd;
19439 struct dwarf2_per_objfile *dwarf2_per_objfile
19440 = cu->per_cu->dwarf2_per_objfile;
19441
19442 section = get_debug_line_section (cu);
19443 section->read (dwarf2_per_objfile->objfile);
19444 if (section->buffer == NULL)
19445 {
19446 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19447 complaint (_("missing .debug_line.dwo section"));
19448 else
19449 complaint (_("missing .debug_line section"));
19450 return 0;
19451 }
19452
19453 /* We can't do this until we know the section is non-empty.
19454 Only then do we know we have such a section. */
19455 abfd = section->get_bfd_owner ();
19456
19457 /* Make sure that at least there's room for the total_length field.
19458 That could be 12 bytes long, but we're just going to fudge that. */
19459 if (to_underlying (sect_off) + 4 >= section->size)
19460 {
19461 dwarf2_statement_list_fits_in_line_number_section_complaint ();
19462 return 0;
19463 }
19464
19465 line_header_up lh (new line_header ());
19466
19467 lh->sect_off = sect_off;
19468 lh->offset_in_dwz = cu->per_cu->is_dwz;
19469
19470 line_ptr = section->buffer + to_underlying (sect_off);
19471
19472 /* Read in the header. */
19473 lh->total_length =
19474 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
19475 &bytes_read, &offset_size);
19476 line_ptr += bytes_read;
19477
19478 const gdb_byte *start_here = line_ptr;
19479
19480 if (line_ptr + lh->total_length > (section->buffer + section->size))
19481 {
19482 dwarf2_statement_list_fits_in_line_number_section_complaint ();
19483 return 0;
19484 }
19485 lh->statement_program_end = start_here + lh->total_length;
19486 lh->version = read_2_bytes (abfd, line_ptr);
19487 line_ptr += 2;
19488 if (lh->version > 5)
19489 {
19490 /* This is a version we don't understand. The format could have
19491 changed in ways we don't handle properly so just punt. */
19492 complaint (_("unsupported version in .debug_line section"));
19493 return NULL;
19494 }
19495 if (lh->version >= 5)
19496 {
19497 gdb_byte segment_selector_size;
19498
19499 /* Skip address size. */
19500 read_1_byte (abfd, line_ptr);
19501 line_ptr += 1;
19502
19503 segment_selector_size = read_1_byte (abfd, line_ptr);
19504 line_ptr += 1;
19505 if (segment_selector_size != 0)
19506 {
19507 complaint (_("unsupported segment selector size %u "
19508 "in .debug_line section"),
19509 segment_selector_size);
19510 return NULL;
19511 }
19512 }
19513 lh->header_length = read_offset (abfd, line_ptr, offset_size);
19514 line_ptr += offset_size;
19515 lh->statement_program_start = line_ptr + lh->header_length;
19516 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
19517 line_ptr += 1;
19518 if (lh->version >= 4)
19519 {
19520 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
19521 line_ptr += 1;
19522 }
19523 else
19524 lh->maximum_ops_per_instruction = 1;
19525
19526 if (lh->maximum_ops_per_instruction == 0)
19527 {
19528 lh->maximum_ops_per_instruction = 1;
19529 complaint (_("invalid maximum_ops_per_instruction "
19530 "in `.debug_line' section"));
19531 }
19532
19533 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
19534 line_ptr += 1;
19535 lh->line_base = read_1_signed_byte (abfd, line_ptr);
19536 line_ptr += 1;
19537 lh->line_range = read_1_byte (abfd, line_ptr);
19538 line_ptr += 1;
19539 lh->opcode_base = read_1_byte (abfd, line_ptr);
19540 line_ptr += 1;
19541 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
19542
19543 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
19544 for (i = 1; i < lh->opcode_base; ++i)
19545 {
19546 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
19547 line_ptr += 1;
19548 }
19549
19550 if (lh->version >= 5)
19551 {
19552 /* Read directory table. */
19553 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
19554 &cu->header,
19555 [] (struct line_header *header, const char *name,
19556 dir_index d_index, unsigned int mod_time,
19557 unsigned int length)
19558 {
19559 header->add_include_dir (name);
19560 });
19561
19562 /* Read file name table. */
19563 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
19564 &cu->header,
19565 [] (struct line_header *header, const char *name,
19566 dir_index d_index, unsigned int mod_time,
19567 unsigned int length)
19568 {
19569 header->add_file_name (name, d_index, mod_time, length);
19570 });
19571 }
19572 else
19573 {
19574 /* Read directory table. */
19575 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
19576 {
19577 line_ptr += bytes_read;
19578 lh->add_include_dir (cur_dir);
19579 }
19580 line_ptr += bytes_read;
19581
19582 /* Read file name table. */
19583 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
19584 {
19585 unsigned int mod_time, length;
19586 dir_index d_index;
19587
19588 line_ptr += bytes_read;
19589 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19590 line_ptr += bytes_read;
19591 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19592 line_ptr += bytes_read;
19593 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19594 line_ptr += bytes_read;
19595
19596 lh->add_file_name (cur_file, d_index, mod_time, length);
19597 }
19598 line_ptr += bytes_read;
19599 }
19600
19601 if (line_ptr > (section->buffer + section->size))
19602 complaint (_("line number info header doesn't "
19603 "fit in `.debug_line' section"));
19604
19605 return lh;
19606}
19607
19608/* Subroutine of dwarf_decode_lines to simplify it.
19609 Return the file name of the psymtab for the given file_entry.
19610 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19611 If space for the result is malloc'd, *NAME_HOLDER will be set.
19612 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19613
19614static const char *
19615psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19616 const dwarf2_psymtab *pst,
19617 const char *comp_dir,
19618 gdb::unique_xmalloc_ptr<char> *name_holder)
19619{
19620 const char *include_name = fe.name;
19621 const char *include_name_to_compare = include_name;
19622 const char *pst_filename;
19623 int file_is_pst;
19624
19625 const char *dir_name = fe.include_dir (lh);
19626
19627 gdb::unique_xmalloc_ptr<char> hold_compare;
19628 if (!IS_ABSOLUTE_PATH (include_name)
19629 && (dir_name != NULL || comp_dir != NULL))
19630 {
19631 /* Avoid creating a duplicate psymtab for PST.
19632 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19633 Before we do the comparison, however, we need to account
19634 for DIR_NAME and COMP_DIR.
19635 First prepend dir_name (if non-NULL). If we still don't
19636 have an absolute path prepend comp_dir (if non-NULL).
19637 However, the directory we record in the include-file's
19638 psymtab does not contain COMP_DIR (to match the
19639 corresponding symtab(s)).
19640
19641 Example:
19642
19643 bash$ cd /tmp
19644 bash$ gcc -g ./hello.c
19645 include_name = "hello.c"
19646 dir_name = "."
19647 DW_AT_comp_dir = comp_dir = "/tmp"
19648 DW_AT_name = "./hello.c"
19649
19650 */
19651
19652 if (dir_name != NULL)
19653 {
19654 name_holder->reset (concat (dir_name, SLASH_STRING,
19655 include_name, (char *) NULL));
19656 include_name = name_holder->get ();
19657 include_name_to_compare = include_name;
19658 }
19659 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19660 {
19661 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19662 include_name, (char *) NULL));
19663 include_name_to_compare = hold_compare.get ();
19664 }
19665 }
19666
19667 pst_filename = pst->filename;
19668 gdb::unique_xmalloc_ptr<char> copied_name;
19669 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19670 {
19671 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19672 pst_filename, (char *) NULL));
19673 pst_filename = copied_name.get ();
19674 }
19675
19676 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19677
19678 if (file_is_pst)
19679 return NULL;
19680 return include_name;
19681}
19682
19683/* State machine to track the state of the line number program. */
19684
19685class lnp_state_machine
19686{
19687public:
19688 /* Initialize a machine state for the start of a line number
19689 program. */
19690 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19691 bool record_lines_p);
19692
19693 file_entry *current_file ()
19694 {
19695 /* lh->file_names is 0-based, but the file name numbers in the
19696 statement program are 1-based. */
19697 return m_line_header->file_name_at (m_file);
19698 }
19699
19700 /* Record the line in the state machine. END_SEQUENCE is true if
19701 we're processing the end of a sequence. */
19702 void record_line (bool end_sequence);
19703
19704 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19705 nop-out rest of the lines in this sequence. */
19706 void check_line_address (struct dwarf2_cu *cu,
19707 const gdb_byte *line_ptr,
19708 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19709
19710 void handle_set_discriminator (unsigned int discriminator)
19711 {
19712 m_discriminator = discriminator;
19713 m_line_has_non_zero_discriminator |= discriminator != 0;
19714 }
19715
19716 /* Handle DW_LNE_set_address. */
19717 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19718 {
19719 m_op_index = 0;
19720 address += baseaddr;
19721 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19722 }
19723
19724 /* Handle DW_LNS_advance_pc. */
19725 void handle_advance_pc (CORE_ADDR adjust);
19726
19727 /* Handle a special opcode. */
19728 void handle_special_opcode (unsigned char op_code);
19729
19730 /* Handle DW_LNS_advance_line. */
19731 void handle_advance_line (int line_delta)
19732 {
19733 advance_line (line_delta);
19734 }
19735
19736 /* Handle DW_LNS_set_file. */
19737 void handle_set_file (file_name_index file);
19738
19739 /* Handle DW_LNS_negate_stmt. */
19740 void handle_negate_stmt ()
19741 {
19742 m_is_stmt = !m_is_stmt;
19743 }
19744
19745 /* Handle DW_LNS_const_add_pc. */
19746 void handle_const_add_pc ();
19747
19748 /* Handle DW_LNS_fixed_advance_pc. */
19749 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19750 {
19751 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19752 m_op_index = 0;
19753 }
19754
19755 /* Handle DW_LNS_copy. */
19756 void handle_copy ()
19757 {
19758 record_line (false);
19759 m_discriminator = 0;
19760 }
19761
19762 /* Handle DW_LNE_end_sequence. */
19763 void handle_end_sequence ()
19764 {
19765 m_currently_recording_lines = true;
19766 }
19767
19768private:
19769 /* Advance the line by LINE_DELTA. */
19770 void advance_line (int line_delta)
19771 {
19772 m_line += line_delta;
19773
19774 if (line_delta != 0)
19775 m_line_has_non_zero_discriminator = m_discriminator != 0;
19776 }
19777
19778 struct dwarf2_cu *m_cu;
19779
19780 gdbarch *m_gdbarch;
19781
19782 /* True if we're recording lines.
19783 Otherwise we're building partial symtabs and are just interested in
19784 finding include files mentioned by the line number program. */
19785 bool m_record_lines_p;
19786
19787 /* The line number header. */
19788 line_header *m_line_header;
19789
19790 /* These are part of the standard DWARF line number state machine,
19791 and initialized according to the DWARF spec. */
19792
19793 unsigned char m_op_index = 0;
19794 /* The line table index of the current file. */
19795 file_name_index m_file = 1;
19796 unsigned int m_line = 1;
19797
19798 /* These are initialized in the constructor. */
19799
19800 CORE_ADDR m_address;
19801 bool m_is_stmt;
19802 unsigned int m_discriminator;
19803
19804 /* Additional bits of state we need to track. */
19805
19806 /* The last file that we called dwarf2_start_subfile for.
19807 This is only used for TLLs. */
19808 unsigned int m_last_file = 0;
19809 /* The last file a line number was recorded for. */
19810 struct subfile *m_last_subfile = NULL;
19811
19812 /* When true, record the lines we decode. */
19813 bool m_currently_recording_lines = false;
19814
19815 /* The last line number that was recorded, used to coalesce
19816 consecutive entries for the same line. This can happen, for
19817 example, when discriminators are present. PR 17276. */
19818 unsigned int m_last_line = 0;
19819 bool m_line_has_non_zero_discriminator = false;
19820};
19821
19822void
19823lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19824{
19825 CORE_ADDR addr_adj = (((m_op_index + adjust)
19826 / m_line_header->maximum_ops_per_instruction)
19827 * m_line_header->minimum_instruction_length);
19828 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19829 m_op_index = ((m_op_index + adjust)
19830 % m_line_header->maximum_ops_per_instruction);
19831}
19832
19833void
19834lnp_state_machine::handle_special_opcode (unsigned char op_code)
19835{
19836 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19837 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
19838 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
19839 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
19840 / m_line_header->maximum_ops_per_instruction)
19841 * m_line_header->minimum_instruction_length);
19842 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19843 m_op_index = ((m_op_index + adj_opcode_d)
19844 % m_line_header->maximum_ops_per_instruction);
19845
19846 int line_delta = m_line_header->line_base + adj_opcode_r;
19847 advance_line (line_delta);
19848 record_line (false);
19849 m_discriminator = 0;
19850}
19851
19852void
19853lnp_state_machine::handle_set_file (file_name_index file)
19854{
19855 m_file = file;
19856
19857 const file_entry *fe = current_file ();
19858 if (fe == NULL)
19859 dwarf2_debug_line_missing_file_complaint ();
19860 else if (m_record_lines_p)
19861 {
19862 const char *dir = fe->include_dir (m_line_header);
19863
19864 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19865 m_line_has_non_zero_discriminator = m_discriminator != 0;
19866 dwarf2_start_subfile (m_cu, fe->name, dir);
19867 }
19868}
19869
19870void
19871lnp_state_machine::handle_const_add_pc ()
19872{
19873 CORE_ADDR adjust
19874 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19875
19876 CORE_ADDR addr_adj
19877 = (((m_op_index + adjust)
19878 / m_line_header->maximum_ops_per_instruction)
19879 * m_line_header->minimum_instruction_length);
19880
19881 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19882 m_op_index = ((m_op_index + adjust)
19883 % m_line_header->maximum_ops_per_instruction);
19884}
19885
19886/* Return non-zero if we should add LINE to the line number table.
19887 LINE is the line to add, LAST_LINE is the last line that was added,
19888 LAST_SUBFILE is the subfile for LAST_LINE.
19889 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19890 had a non-zero discriminator.
19891
19892 We have to be careful in the presence of discriminators.
19893 E.g., for this line:
19894
19895 for (i = 0; i < 100000; i++);
19896
19897 clang can emit four line number entries for that one line,
19898 each with a different discriminator.
19899 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19900
19901 However, we want gdb to coalesce all four entries into one.
19902 Otherwise the user could stepi into the middle of the line and
19903 gdb would get confused about whether the pc really was in the
19904 middle of the line.
19905
19906 Things are further complicated by the fact that two consecutive
19907 line number entries for the same line is a heuristic used by gcc
19908 to denote the end of the prologue. So we can't just discard duplicate
19909 entries, we have to be selective about it. The heuristic we use is
19910 that we only collapse consecutive entries for the same line if at least
19911 one of those entries has a non-zero discriminator. PR 17276.
19912
19913 Note: Addresses in the line number state machine can never go backwards
19914 within one sequence, thus this coalescing is ok. */
19915
19916static int
19917dwarf_record_line_p (struct dwarf2_cu *cu,
19918 unsigned int line, unsigned int last_line,
19919 int line_has_non_zero_discriminator,
19920 struct subfile *last_subfile)
19921{
19922 if (cu->get_builder ()->get_current_subfile () != last_subfile)
19923 return 1;
19924 if (line != last_line)
19925 return 1;
19926 /* Same line for the same file that we've seen already.
19927 As a last check, for pr 17276, only record the line if the line
19928 has never had a non-zero discriminator. */
19929 if (!line_has_non_zero_discriminator)
19930 return 1;
19931 return 0;
19932}
19933
19934/* Use the CU's builder to record line number LINE beginning at
19935 address ADDRESS in the line table of subfile SUBFILE. */
19936
19937static void
19938dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19939 unsigned int line, CORE_ADDR address,
19940 struct dwarf2_cu *cu)
19941{
19942 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19943
19944 if (dwarf_line_debug)
19945 {
19946 fprintf_unfiltered (gdb_stdlog,
19947 "Recording line %u, file %s, address %s\n",
19948 line, lbasename (subfile->name),
19949 paddress (gdbarch, address));
19950 }
19951
19952 if (cu != nullptr)
19953 cu->get_builder ()->record_line (subfile, line, addr);
19954}
19955
19956/* Subroutine of dwarf_decode_lines_1 to simplify it.
19957 Mark the end of a set of line number records.
19958 The arguments are the same as for dwarf_record_line_1.
19959 If SUBFILE is NULL the request is ignored. */
19960
19961static void
19962dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19963 CORE_ADDR address, struct dwarf2_cu *cu)
19964{
19965 if (subfile == NULL)
19966 return;
19967
19968 if (dwarf_line_debug)
19969 {
19970 fprintf_unfiltered (gdb_stdlog,
19971 "Finishing current line, file %s, address %s\n",
19972 lbasename (subfile->name),
19973 paddress (gdbarch, address));
19974 }
19975
19976 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
19977}
19978
19979void
19980lnp_state_machine::record_line (bool end_sequence)
19981{
19982 if (dwarf_line_debug)
19983 {
19984 fprintf_unfiltered (gdb_stdlog,
19985 "Processing actual line %u: file %u,"
19986 " address %s, is_stmt %u, discrim %u%s\n",
19987 m_line, m_file,
19988 paddress (m_gdbarch, m_address),
19989 m_is_stmt, m_discriminator,
19990 (end_sequence ? "\t(end sequence)" : ""));
19991 }
19992
19993 file_entry *fe = current_file ();
19994
19995 if (fe == NULL)
19996 dwarf2_debug_line_missing_file_complaint ();
19997 /* For now we ignore lines not starting on an instruction boundary.
19998 But not when processing end_sequence for compatibility with the
19999 previous version of the code. */
20000 else if (m_op_index == 0 || end_sequence)
20001 {
20002 fe->included_p = 1;
20003 if (m_record_lines_p
20004 && (producer_is_codewarrior (m_cu) || m_is_stmt || end_sequence))
20005 {
20006 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20007 || end_sequence)
20008 {
20009 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20010 m_currently_recording_lines ? m_cu : nullptr);
20011 }
20012
20013 if (!end_sequence)
20014 {
20015 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20016 m_line_has_non_zero_discriminator,
20017 m_last_subfile))
20018 {
20019 buildsym_compunit *builder = m_cu->get_builder ();
20020 dwarf_record_line_1 (m_gdbarch,
20021 builder->get_current_subfile (),
20022 m_line, m_address,
20023 m_currently_recording_lines ? m_cu : nullptr);
20024 }
20025 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20026 m_last_line = m_line;
20027 }
20028 }
20029 }
20030}
20031
20032lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20033 line_header *lh, bool record_lines_p)
20034{
20035 m_cu = cu;
20036 m_gdbarch = arch;
20037 m_record_lines_p = record_lines_p;
20038 m_line_header = lh;
20039
20040 m_currently_recording_lines = true;
20041
20042 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20043 was a line entry for it so that the backend has a chance to adjust it
20044 and also record it in case it needs it. This is currently used by MIPS
20045 code, cf. `mips_adjust_dwarf2_line'. */
20046 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20047 m_is_stmt = lh->default_is_stmt;
20048 m_discriminator = 0;
20049}
20050
20051void
20052lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20053 const gdb_byte *line_ptr,
20054 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20055{
20056 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20057 the pc range of the CU. However, we restrict the test to only ADDRESS
20058 values of zero to preserve GDB's previous behaviour which is to handle
20059 the specific case of a function being GC'd by the linker. */
20060
20061 if (address == 0 && address < unrelocated_lowpc)
20062 {
20063 /* This line table is for a function which has been
20064 GCd by the linker. Ignore it. PR gdb/12528 */
20065
20066 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20067 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20068
20069 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20070 line_offset, objfile_name (objfile));
20071 m_currently_recording_lines = false;
20072 /* Note: m_currently_recording_lines is left as false until we see
20073 DW_LNE_end_sequence. */
20074 }
20075}
20076
20077/* Subroutine of dwarf_decode_lines to simplify it.
20078 Process the line number information in LH.
20079 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20080 program in order to set included_p for every referenced header. */
20081
20082static void
20083dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20084 const int decode_for_pst_p, CORE_ADDR lowpc)
20085{
20086 const gdb_byte *line_ptr, *extended_end;
20087 const gdb_byte *line_end;
20088 unsigned int bytes_read, extended_len;
20089 unsigned char op_code, extended_op;
20090 CORE_ADDR baseaddr;
20091 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20092 bfd *abfd = objfile->obfd;
20093 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20094 /* True if we're recording line info (as opposed to building partial
20095 symtabs and just interested in finding include files mentioned by
20096 the line number program). */
20097 bool record_lines_p = !decode_for_pst_p;
20098
20099 baseaddr = objfile->text_section_offset ();
20100
20101 line_ptr = lh->statement_program_start;
20102 line_end = lh->statement_program_end;
20103
20104 /* Read the statement sequences until there's nothing left. */
20105 while (line_ptr < line_end)
20106 {
20107 /* The DWARF line number program state machine. Reset the state
20108 machine at the start of each sequence. */
20109 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20110 bool end_sequence = false;
20111
20112 if (record_lines_p)
20113 {
20114 /* Start a subfile for the current file of the state
20115 machine. */
20116 const file_entry *fe = state_machine.current_file ();
20117
20118 if (fe != NULL)
20119 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20120 }
20121
20122 /* Decode the table. */
20123 while (line_ptr < line_end && !end_sequence)
20124 {
20125 op_code = read_1_byte (abfd, line_ptr);
20126 line_ptr += 1;
20127
20128 if (op_code >= lh->opcode_base)
20129 {
20130 /* Special opcode. */
20131 state_machine.handle_special_opcode (op_code);
20132 }
20133 else switch (op_code)
20134 {
20135 case DW_LNS_extended_op:
20136 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20137 &bytes_read);
20138 line_ptr += bytes_read;
20139 extended_end = line_ptr + extended_len;
20140 extended_op = read_1_byte (abfd, line_ptr);
20141 line_ptr += 1;
20142 switch (extended_op)
20143 {
20144 case DW_LNE_end_sequence:
20145 state_machine.handle_end_sequence ();
20146 end_sequence = true;
20147 break;
20148 case DW_LNE_set_address:
20149 {
20150 CORE_ADDR address
20151 = cu->header.read_address (abfd, line_ptr, &bytes_read);
20152 line_ptr += bytes_read;
20153
20154 state_machine.check_line_address (cu, line_ptr,
20155 lowpc - baseaddr, address);
20156 state_machine.handle_set_address (baseaddr, address);
20157 }
20158 break;
20159 case DW_LNE_define_file:
20160 {
20161 const char *cur_file;
20162 unsigned int mod_time, length;
20163 dir_index dindex;
20164
20165 cur_file = read_direct_string (abfd, line_ptr,
20166 &bytes_read);
20167 line_ptr += bytes_read;
20168 dindex = (dir_index)
20169 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20170 line_ptr += bytes_read;
20171 mod_time =
20172 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20173 line_ptr += bytes_read;
20174 length =
20175 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20176 line_ptr += bytes_read;
20177 lh->add_file_name (cur_file, dindex, mod_time, length);
20178 }
20179 break;
20180 case DW_LNE_set_discriminator:
20181 {
20182 /* The discriminator is not interesting to the
20183 debugger; just ignore it. We still need to
20184 check its value though:
20185 if there are consecutive entries for the same
20186 (non-prologue) line we want to coalesce them.
20187 PR 17276. */
20188 unsigned int discr
20189 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20190 line_ptr += bytes_read;
20191
20192 state_machine.handle_set_discriminator (discr);
20193 }
20194 break;
20195 default:
20196 complaint (_("mangled .debug_line section"));
20197 return;
20198 }
20199 /* Make sure that we parsed the extended op correctly. If e.g.
20200 we expected a different address size than the producer used,
20201 we may have read the wrong number of bytes. */
20202 if (line_ptr != extended_end)
20203 {
20204 complaint (_("mangled .debug_line section"));
20205 return;
20206 }
20207 break;
20208 case DW_LNS_copy:
20209 state_machine.handle_copy ();
20210 break;
20211 case DW_LNS_advance_pc:
20212 {
20213 CORE_ADDR adjust
20214 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20215 line_ptr += bytes_read;
20216
20217 state_machine.handle_advance_pc (adjust);
20218 }
20219 break;
20220 case DW_LNS_advance_line:
20221 {
20222 int line_delta
20223 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20224 line_ptr += bytes_read;
20225
20226 state_machine.handle_advance_line (line_delta);
20227 }
20228 break;
20229 case DW_LNS_set_file:
20230 {
20231 file_name_index file
20232 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20233 &bytes_read);
20234 line_ptr += bytes_read;
20235
20236 state_machine.handle_set_file (file);
20237 }
20238 break;
20239 case DW_LNS_set_column:
20240 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20241 line_ptr += bytes_read;
20242 break;
20243 case DW_LNS_negate_stmt:
20244 state_machine.handle_negate_stmt ();
20245 break;
20246 case DW_LNS_set_basic_block:
20247 break;
20248 /* Add to the address register of the state machine the
20249 address increment value corresponding to special opcode
20250 255. I.e., this value is scaled by the minimum
20251 instruction length since special opcode 255 would have
20252 scaled the increment. */
20253 case DW_LNS_const_add_pc:
20254 state_machine.handle_const_add_pc ();
20255 break;
20256 case DW_LNS_fixed_advance_pc:
20257 {
20258 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20259 line_ptr += 2;
20260
20261 state_machine.handle_fixed_advance_pc (addr_adj);
20262 }
20263 break;
20264 default:
20265 {
20266 /* Unknown standard opcode, ignore it. */
20267 int i;
20268
20269 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20270 {
20271 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20272 line_ptr += bytes_read;
20273 }
20274 }
20275 }
20276 }
20277
20278 if (!end_sequence)
20279 dwarf2_debug_line_missing_end_sequence_complaint ();
20280
20281 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20282 in which case we still finish recording the last line). */
20283 state_machine.record_line (true);
20284 }
20285}
20286
20287/* Decode the Line Number Program (LNP) for the given line_header
20288 structure and CU. The actual information extracted and the type
20289 of structures created from the LNP depends on the value of PST.
20290
20291 1. If PST is NULL, then this procedure uses the data from the program
20292 to create all necessary symbol tables, and their linetables.
20293
20294 2. If PST is not NULL, this procedure reads the program to determine
20295 the list of files included by the unit represented by PST, and
20296 builds all the associated partial symbol tables.
20297
20298 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20299 It is used for relative paths in the line table.
20300 NOTE: When processing partial symtabs (pst != NULL),
20301 comp_dir == pst->dirname.
20302
20303 NOTE: It is important that psymtabs have the same file name (via strcmp)
20304 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20305 symtab we don't use it in the name of the psymtabs we create.
20306 E.g. expand_line_sal requires this when finding psymtabs to expand.
20307 A good testcase for this is mb-inline.exp.
20308
20309 LOWPC is the lowest address in CU (or 0 if not known).
20310
20311 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20312 for its PC<->lines mapping information. Otherwise only the filename
20313 table is read in. */
20314
20315static void
20316dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20317 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20318 CORE_ADDR lowpc, int decode_mapping)
20319{
20320 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20321 const int decode_for_pst_p = (pst != NULL);
20322
20323 if (decode_mapping)
20324 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20325
20326 if (decode_for_pst_p)
20327 {
20328 /* Now that we're done scanning the Line Header Program, we can
20329 create the psymtab of each included file. */
20330 for (auto &file_entry : lh->file_names ())
20331 if (file_entry.included_p == 1)
20332 {
20333 gdb::unique_xmalloc_ptr<char> name_holder;
20334 const char *include_name =
20335 psymtab_include_file_name (lh, file_entry, pst,
20336 comp_dir, &name_holder);
20337 if (include_name != NULL)
20338 dwarf2_create_include_psymtab (include_name, pst, objfile);
20339 }
20340 }
20341 else
20342 {
20343 /* Make sure a symtab is created for every file, even files
20344 which contain only variables (i.e. no code with associated
20345 line numbers). */
20346 buildsym_compunit *builder = cu->get_builder ();
20347 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20348
20349 for (auto &fe : lh->file_names ())
20350 {
20351 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20352 if (builder->get_current_subfile ()->symtab == NULL)
20353 {
20354 builder->get_current_subfile ()->symtab
20355 = allocate_symtab (cust,
20356 builder->get_current_subfile ()->name);
20357 }
20358 fe.symtab = builder->get_current_subfile ()->symtab;
20359 }
20360 }
20361}
20362
20363/* Start a subfile for DWARF. FILENAME is the name of the file and
20364 DIRNAME the name of the source directory which contains FILENAME
20365 or NULL if not known.
20366 This routine tries to keep line numbers from identical absolute and
20367 relative file names in a common subfile.
20368
20369 Using the `list' example from the GDB testsuite, which resides in
20370 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20371 of /srcdir/list0.c yields the following debugging information for list0.c:
20372
20373 DW_AT_name: /srcdir/list0.c
20374 DW_AT_comp_dir: /compdir
20375 files.files[0].name: list0.h
20376 files.files[0].dir: /srcdir
20377 files.files[1].name: list0.c
20378 files.files[1].dir: /srcdir
20379
20380 The line number information for list0.c has to end up in a single
20381 subfile, so that `break /srcdir/list0.c:1' works as expected.
20382 start_subfile will ensure that this happens provided that we pass the
20383 concatenation of files.files[1].dir and files.files[1].name as the
20384 subfile's name. */
20385
20386static void
20387dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20388 const char *dirname)
20389{
20390 gdb::unique_xmalloc_ptr<char> copy;
20391
20392 /* In order not to lose the line information directory,
20393 we concatenate it to the filename when it makes sense.
20394 Note that the Dwarf3 standard says (speaking of filenames in line
20395 information): ``The directory index is ignored for file names
20396 that represent full path names''. Thus ignoring dirname in the
20397 `else' branch below isn't an issue. */
20398
20399 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20400 {
20401 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20402 filename = copy.get ();
20403 }
20404
20405 cu->get_builder ()->start_subfile (filename);
20406}
20407
20408/* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20409 buildsym_compunit constructor. */
20410
20411struct compunit_symtab *
20412dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20413 CORE_ADDR low_pc)
20414{
20415 gdb_assert (m_builder == nullptr);
20416
20417 m_builder.reset (new struct buildsym_compunit
20418 (per_cu->dwarf2_per_objfile->objfile,
20419 name, comp_dir, language, low_pc));
20420
20421 list_in_scope = get_builder ()->get_file_symbols ();
20422
20423 get_builder ()->record_debugformat ("DWARF 2");
20424 get_builder ()->record_producer (producer);
20425
20426 processing_has_namespace_info = false;
20427
20428 return get_builder ()->get_compunit_symtab ();
20429}
20430
20431static void
20432var_decode_location (struct attribute *attr, struct symbol *sym,
20433 struct dwarf2_cu *cu)
20434{
20435 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20436 struct comp_unit_head *cu_header = &cu->header;
20437
20438 /* NOTE drow/2003-01-30: There used to be a comment and some special
20439 code here to turn a symbol with DW_AT_external and a
20440 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20441 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20442 with some versions of binutils) where shared libraries could have
20443 relocations against symbols in their debug information - the
20444 minimal symbol would have the right address, but the debug info
20445 would not. It's no longer necessary, because we will explicitly
20446 apply relocations when we read in the debug information now. */
20447
20448 /* A DW_AT_location attribute with no contents indicates that a
20449 variable has been optimized away. */
20450 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20451 {
20452 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20453 return;
20454 }
20455
20456 /* Handle one degenerate form of location expression specially, to
20457 preserve GDB's previous behavior when section offsets are
20458 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20459 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20460
20461 if (attr->form_is_block ()
20462 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20463 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20464 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20465 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20466 && (DW_BLOCK (attr)->size
20467 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20468 {
20469 unsigned int dummy;
20470
20471 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20472 SET_SYMBOL_VALUE_ADDRESS
20473 (sym, cu->header.read_address (objfile->obfd,
20474 DW_BLOCK (attr)->data + 1,
20475 &dummy));
20476 else
20477 SET_SYMBOL_VALUE_ADDRESS
20478 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20479 &dummy));
20480 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20481 fixup_symbol_section (sym, objfile);
20482 SET_SYMBOL_VALUE_ADDRESS
20483 (sym,
20484 SYMBOL_VALUE_ADDRESS (sym)
20485 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20486 return;
20487 }
20488
20489 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20490 expression evaluator, and use LOC_COMPUTED only when necessary
20491 (i.e. when the value of a register or memory location is
20492 referenced, or a thread-local block, etc.). Then again, it might
20493 not be worthwhile. I'm assuming that it isn't unless performance
20494 or memory numbers show me otherwise. */
20495
20496 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20497
20498 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20499 cu->has_loclist = true;
20500}
20501
20502/* Given a pointer to a DWARF information entry, figure out if we need
20503 to make a symbol table entry for it, and if so, create a new entry
20504 and return a pointer to it.
20505 If TYPE is NULL, determine symbol type from the die, otherwise
20506 used the passed type.
20507 If SPACE is not NULL, use it to hold the new symbol. If it is
20508 NULL, allocate a new symbol on the objfile's obstack. */
20509
20510static struct symbol *
20511new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20512 struct symbol *space)
20513{
20514 struct dwarf2_per_objfile *dwarf2_per_objfile
20515 = cu->per_cu->dwarf2_per_objfile;
20516 struct objfile *objfile = dwarf2_per_objfile->objfile;
20517 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20518 struct symbol *sym = NULL;
20519 const char *name;
20520 struct attribute *attr = NULL;
20521 struct attribute *attr2 = NULL;
20522 CORE_ADDR baseaddr;
20523 struct pending **list_to_add = NULL;
20524
20525 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20526
20527 baseaddr = objfile->text_section_offset ();
20528
20529 name = dwarf2_name (die, cu);
20530 if (name)
20531 {
20532 const char *linkagename;
20533 int suppress_add = 0;
20534
20535 if (space)
20536 sym = space;
20537 else
20538 sym = allocate_symbol (objfile);
20539 OBJSTAT (objfile, n_syms++);
20540
20541 /* Cache this symbol's name and the name's demangled form (if any). */
20542 sym->set_language (cu->language, &objfile->objfile_obstack);
20543 linkagename = dwarf2_physname (name, die, cu);
20544 sym->compute_and_set_names (linkagename, false, objfile->per_bfd);
20545
20546 /* Fortran does not have mangling standard and the mangling does differ
20547 between gfortran, iFort etc. */
20548 if (cu->language == language_fortran
20549 && symbol_get_demangled_name (sym) == NULL)
20550 symbol_set_demangled_name (sym,
20551 dwarf2_full_name (name, die, cu),
20552 NULL);
20553
20554 /* Default assumptions.
20555 Use the passed type or decode it from the die. */
20556 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20557 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20558 if (type != NULL)
20559 SYMBOL_TYPE (sym) = type;
20560 else
20561 SYMBOL_TYPE (sym) = die_type (die, cu);
20562 attr = dwarf2_attr (die,
20563 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20564 cu);
20565 if (attr != nullptr)
20566 {
20567 SYMBOL_LINE (sym) = DW_UNSND (attr);
20568 }
20569
20570 attr = dwarf2_attr (die,
20571 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20572 cu);
20573 if (attr != nullptr)
20574 {
20575 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20576 struct file_entry *fe;
20577
20578 if (cu->line_header != NULL)
20579 fe = cu->line_header->file_name_at (file_index);
20580 else
20581 fe = NULL;
20582
20583 if (fe == NULL)
20584 complaint (_("file index out of range"));
20585 else
20586 symbol_set_symtab (sym, fe->symtab);
20587 }
20588
20589 switch (die->tag)
20590 {
20591 case DW_TAG_label:
20592 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20593 if (attr != nullptr)
20594 {
20595 CORE_ADDR addr;
20596
20597 addr = attr->value_as_address ();
20598 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20599 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20600 }
20601 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20602 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20603 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20604 add_symbol_to_list (sym, cu->list_in_scope);
20605 break;
20606 case DW_TAG_subprogram:
20607 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20608 finish_block. */
20609 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20610 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20611 if ((attr2 && (DW_UNSND (attr2) != 0))
20612 || cu->language == language_ada
20613 || cu->language == language_fortran)
20614 {
20615 /* Subprograms marked external are stored as a global symbol.
20616 Ada and Fortran subprograms, whether marked external or
20617 not, are always stored as a global symbol, because we want
20618 to be able to access them globally. For instance, we want
20619 to be able to break on a nested subprogram without having
20620 to specify the context. */
20621 list_to_add = cu->get_builder ()->get_global_symbols ();
20622 }
20623 else
20624 {
20625 list_to_add = cu->list_in_scope;
20626 }
20627 break;
20628 case DW_TAG_inlined_subroutine:
20629 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20630 finish_block. */
20631 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20632 SYMBOL_INLINED (sym) = 1;
20633 list_to_add = cu->list_in_scope;
20634 break;
20635 case DW_TAG_template_value_param:
20636 suppress_add = 1;
20637 /* Fall through. */
20638 case DW_TAG_constant:
20639 case DW_TAG_variable:
20640 case DW_TAG_member:
20641 /* Compilation with minimal debug info may result in
20642 variables with missing type entries. Change the
20643 misleading `void' type to something sensible. */
20644 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
20645 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20646
20647 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20648 /* In the case of DW_TAG_member, we should only be called for
20649 static const members. */
20650 if (die->tag == DW_TAG_member)
20651 {
20652 /* dwarf2_add_field uses die_is_declaration,
20653 so we do the same. */
20654 gdb_assert (die_is_declaration (die, cu));
20655 gdb_assert (attr);
20656 }
20657 if (attr != nullptr)
20658 {
20659 dwarf2_const_value (attr, sym, cu);
20660 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20661 if (!suppress_add)
20662 {
20663 if (attr2 && (DW_UNSND (attr2) != 0))
20664 list_to_add = cu->get_builder ()->get_global_symbols ();
20665 else
20666 list_to_add = cu->list_in_scope;
20667 }
20668 break;
20669 }
20670 attr = dwarf2_attr (die, DW_AT_location, cu);
20671 if (attr != nullptr)
20672 {
20673 var_decode_location (attr, sym, cu);
20674 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20675
20676 /* Fortran explicitly imports any global symbols to the local
20677 scope by DW_TAG_common_block. */
20678 if (cu->language == language_fortran && die->parent
20679 && die->parent->tag == DW_TAG_common_block)
20680 attr2 = NULL;
20681
20682 if (SYMBOL_CLASS (sym) == LOC_STATIC
20683 && SYMBOL_VALUE_ADDRESS (sym) == 0
20684 && !dwarf2_per_objfile->has_section_at_zero)
20685 {
20686 /* When a static variable is eliminated by the linker,
20687 the corresponding debug information is not stripped
20688 out, but the variable address is set to null;
20689 do not add such variables into symbol table. */
20690 }
20691 else if (attr2 && (DW_UNSND (attr2) != 0))
20692 {
20693 if (SYMBOL_CLASS (sym) == LOC_STATIC
20694 && (objfile->flags & OBJF_MAINLINE) == 0
20695 && dwarf2_per_objfile->can_copy)
20696 {
20697 /* A global static variable might be subject to
20698 copy relocation. We first check for a local
20699 minsym, though, because maybe the symbol was
20700 marked hidden, in which case this would not
20701 apply. */
20702 bound_minimal_symbol found
20703 = (lookup_minimal_symbol_linkage
20704 (sym->linkage_name (), objfile));
20705 if (found.minsym != nullptr)
20706 sym->maybe_copied = 1;
20707 }
20708
20709 /* A variable with DW_AT_external is never static,
20710 but it may be block-scoped. */
20711 list_to_add
20712 = ((cu->list_in_scope
20713 == cu->get_builder ()->get_file_symbols ())
20714 ? cu->get_builder ()->get_global_symbols ()
20715 : cu->list_in_scope);
20716 }
20717 else
20718 list_to_add = cu->list_in_scope;
20719 }
20720 else
20721 {
20722 /* We do not know the address of this symbol.
20723 If it is an external symbol and we have type information
20724 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20725 The address of the variable will then be determined from
20726 the minimal symbol table whenever the variable is
20727 referenced. */
20728 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20729
20730 /* Fortran explicitly imports any global symbols to the local
20731 scope by DW_TAG_common_block. */
20732 if (cu->language == language_fortran && die->parent
20733 && die->parent->tag == DW_TAG_common_block)
20734 {
20735 /* SYMBOL_CLASS doesn't matter here because
20736 read_common_block is going to reset it. */
20737 if (!suppress_add)
20738 list_to_add = cu->list_in_scope;
20739 }
20740 else if (attr2 && (DW_UNSND (attr2) != 0)
20741 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20742 {
20743 /* A variable with DW_AT_external is never static, but it
20744 may be block-scoped. */
20745 list_to_add
20746 = ((cu->list_in_scope
20747 == cu->get_builder ()->get_file_symbols ())
20748 ? cu->get_builder ()->get_global_symbols ()
20749 : cu->list_in_scope);
20750
20751 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20752 }
20753 else if (!die_is_declaration (die, cu))
20754 {
20755 /* Use the default LOC_OPTIMIZED_OUT class. */
20756 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20757 if (!suppress_add)
20758 list_to_add = cu->list_in_scope;
20759 }
20760 }
20761 break;
20762 case DW_TAG_formal_parameter:
20763 {
20764 /* If we are inside a function, mark this as an argument. If
20765 not, we might be looking at an argument to an inlined function
20766 when we do not have enough information to show inlined frames;
20767 pretend it's a local variable in that case so that the user can
20768 still see it. */
20769 struct context_stack *curr
20770 = cu->get_builder ()->get_current_context_stack ();
20771 if (curr != nullptr && curr->name != nullptr)
20772 SYMBOL_IS_ARGUMENT (sym) = 1;
20773 attr = dwarf2_attr (die, DW_AT_location, cu);
20774 if (attr != nullptr)
20775 {
20776 var_decode_location (attr, sym, cu);
20777 }
20778 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20779 if (attr != nullptr)
20780 {
20781 dwarf2_const_value (attr, sym, cu);
20782 }
20783
20784 list_to_add = cu->list_in_scope;
20785 }
20786 break;
20787 case DW_TAG_unspecified_parameters:
20788 /* From varargs functions; gdb doesn't seem to have any
20789 interest in this information, so just ignore it for now.
20790 (FIXME?) */
20791 break;
20792 case DW_TAG_template_type_param:
20793 suppress_add = 1;
20794 /* Fall through. */
20795 case DW_TAG_class_type:
20796 case DW_TAG_interface_type:
20797 case DW_TAG_structure_type:
20798 case DW_TAG_union_type:
20799 case DW_TAG_set_type:
20800 case DW_TAG_enumeration_type:
20801 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20802 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20803
20804 {
20805 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20806 really ever be static objects: otherwise, if you try
20807 to, say, break of a class's method and you're in a file
20808 which doesn't mention that class, it won't work unless
20809 the check for all static symbols in lookup_symbol_aux
20810 saves you. See the OtherFileClass tests in
20811 gdb.c++/namespace.exp. */
20812
20813 if (!suppress_add)
20814 {
20815 buildsym_compunit *builder = cu->get_builder ();
20816 list_to_add
20817 = (cu->list_in_scope == builder->get_file_symbols ()
20818 && cu->language == language_cplus
20819 ? builder->get_global_symbols ()
20820 : cu->list_in_scope);
20821
20822 /* The semantics of C++ state that "struct foo {
20823 ... }" also defines a typedef for "foo". */
20824 if (cu->language == language_cplus
20825 || cu->language == language_ada
20826 || cu->language == language_d
20827 || cu->language == language_rust)
20828 {
20829 /* The symbol's name is already allocated along
20830 with this objfile, so we don't need to
20831 duplicate it for the type. */
20832 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
20833 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
20834 }
20835 }
20836 }
20837 break;
20838 case DW_TAG_typedef:
20839 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20840 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20841 list_to_add = cu->list_in_scope;
20842 break;
20843 case DW_TAG_base_type:
20844 case DW_TAG_subrange_type:
20845 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20846 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20847 list_to_add = cu->list_in_scope;
20848 break;
20849 case DW_TAG_enumerator:
20850 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20851 if (attr != nullptr)
20852 {
20853 dwarf2_const_value (attr, sym, cu);
20854 }
20855 {
20856 /* NOTE: carlton/2003-11-10: See comment above in the
20857 DW_TAG_class_type, etc. block. */
20858
20859 list_to_add
20860 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
20861 && cu->language == language_cplus
20862 ? cu->get_builder ()->get_global_symbols ()
20863 : cu->list_in_scope);
20864 }
20865 break;
20866 case DW_TAG_imported_declaration:
20867 case DW_TAG_namespace:
20868 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20869 list_to_add = cu->get_builder ()->get_global_symbols ();
20870 break;
20871 case DW_TAG_module:
20872 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20873 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20874 list_to_add = cu->get_builder ()->get_global_symbols ();
20875 break;
20876 case DW_TAG_common_block:
20877 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20878 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20879 add_symbol_to_list (sym, cu->list_in_scope);
20880 break;
20881 default:
20882 /* Not a tag we recognize. Hopefully we aren't processing
20883 trash data, but since we must specifically ignore things
20884 we don't recognize, there is nothing else we should do at
20885 this point. */
20886 complaint (_("unsupported tag: '%s'"),
20887 dwarf_tag_name (die->tag));
20888 break;
20889 }
20890
20891 if (suppress_add)
20892 {
20893 sym->hash_next = objfile->template_symbols;
20894 objfile->template_symbols = sym;
20895 list_to_add = NULL;
20896 }
20897
20898 if (list_to_add != NULL)
20899 add_symbol_to_list (sym, list_to_add);
20900
20901 /* For the benefit of old versions of GCC, check for anonymous
20902 namespaces based on the demangled name. */
20903 if (!cu->processing_has_namespace_info
20904 && cu->language == language_cplus)
20905 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
20906 }
20907 return (sym);
20908}
20909
20910/* Given an attr with a DW_FORM_dataN value in host byte order,
20911 zero-extend it as appropriate for the symbol's type. The DWARF
20912 standard (v4) is not entirely clear about the meaning of using
20913 DW_FORM_dataN for a constant with a signed type, where the type is
20914 wider than the data. The conclusion of a discussion on the DWARF
20915 list was that this is unspecified. We choose to always zero-extend
20916 because that is the interpretation long in use by GCC. */
20917
20918static gdb_byte *
20919dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20920 struct dwarf2_cu *cu, LONGEST *value, int bits)
20921{
20922 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20923 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20924 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20925 LONGEST l = DW_UNSND (attr);
20926
20927 if (bits < sizeof (*value) * 8)
20928 {
20929 l &= ((LONGEST) 1 << bits) - 1;
20930 *value = l;
20931 }
20932 else if (bits == sizeof (*value) * 8)
20933 *value = l;
20934 else
20935 {
20936 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20937 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20938 return bytes;
20939 }
20940
20941 return NULL;
20942}
20943
20944/* Read a constant value from an attribute. Either set *VALUE, or if
20945 the value does not fit in *VALUE, set *BYTES - either already
20946 allocated on the objfile obstack, or newly allocated on OBSTACK,
20947 or, set *BATON, if we translated the constant to a location
20948 expression. */
20949
20950static void
20951dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20952 const char *name, struct obstack *obstack,
20953 struct dwarf2_cu *cu,
20954 LONGEST *value, const gdb_byte **bytes,
20955 struct dwarf2_locexpr_baton **baton)
20956{
20957 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20958 struct comp_unit_head *cu_header = &cu->header;
20959 struct dwarf_block *blk;
20960 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20961 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20962
20963 *value = 0;
20964 *bytes = NULL;
20965 *baton = NULL;
20966
20967 switch (attr->form)
20968 {
20969 case DW_FORM_addr:
20970 case DW_FORM_addrx:
20971 case DW_FORM_GNU_addr_index:
20972 {
20973 gdb_byte *data;
20974
20975 if (TYPE_LENGTH (type) != cu_header->addr_size)
20976 dwarf2_const_value_length_mismatch_complaint (name,
20977 cu_header->addr_size,
20978 TYPE_LENGTH (type));
20979 /* Symbols of this form are reasonably rare, so we just
20980 piggyback on the existing location code rather than writing
20981 a new implementation of symbol_computed_ops. */
20982 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
20983 (*baton)->per_cu = cu->per_cu;
20984 gdb_assert ((*baton)->per_cu);
20985
20986 (*baton)->size = 2 + cu_header->addr_size;
20987 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
20988 (*baton)->data = data;
20989
20990 data[0] = DW_OP_addr;
20991 store_unsigned_integer (&data[1], cu_header->addr_size,
20992 byte_order, DW_ADDR (attr));
20993 data[cu_header->addr_size + 1] = DW_OP_stack_value;
20994 }
20995 break;
20996 case DW_FORM_string:
20997 case DW_FORM_strp:
20998 case DW_FORM_strx:
20999 case DW_FORM_GNU_str_index:
21000 case DW_FORM_GNU_strp_alt:
21001 /* DW_STRING is already allocated on the objfile obstack, point
21002 directly to it. */
21003 *bytes = (const gdb_byte *) DW_STRING (attr);
21004 break;
21005 case DW_FORM_block1:
21006 case DW_FORM_block2:
21007 case DW_FORM_block4:
21008 case DW_FORM_block:
21009 case DW_FORM_exprloc:
21010 case DW_FORM_data16:
21011 blk = DW_BLOCK (attr);
21012 if (TYPE_LENGTH (type) != blk->size)
21013 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21014 TYPE_LENGTH (type));
21015 *bytes = blk->data;
21016 break;
21017
21018 /* The DW_AT_const_value attributes are supposed to carry the
21019 symbol's value "represented as it would be on the target
21020 architecture." By the time we get here, it's already been
21021 converted to host endianness, so we just need to sign- or
21022 zero-extend it as appropriate. */
21023 case DW_FORM_data1:
21024 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21025 break;
21026 case DW_FORM_data2:
21027 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21028 break;
21029 case DW_FORM_data4:
21030 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21031 break;
21032 case DW_FORM_data8:
21033 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21034 break;
21035
21036 case DW_FORM_sdata:
21037 case DW_FORM_implicit_const:
21038 *value = DW_SND (attr);
21039 break;
21040
21041 case DW_FORM_udata:
21042 *value = DW_UNSND (attr);
21043 break;
21044
21045 default:
21046 complaint (_("unsupported const value attribute form: '%s'"),
21047 dwarf_form_name (attr->form));
21048 *value = 0;
21049 break;
21050 }
21051}
21052
21053
21054/* Copy constant value from an attribute to a symbol. */
21055
21056static void
21057dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21058 struct dwarf2_cu *cu)
21059{
21060 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21061 LONGEST value;
21062 const gdb_byte *bytes;
21063 struct dwarf2_locexpr_baton *baton;
21064
21065 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21066 sym->print_name (),
21067 &objfile->objfile_obstack, cu,
21068 &value, &bytes, &baton);
21069
21070 if (baton != NULL)
21071 {
21072 SYMBOL_LOCATION_BATON (sym) = baton;
21073 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21074 }
21075 else if (bytes != NULL)
21076 {
21077 SYMBOL_VALUE_BYTES (sym) = bytes;
21078 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21079 }
21080 else
21081 {
21082 SYMBOL_VALUE (sym) = value;
21083 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21084 }
21085}
21086
21087/* Return the type of the die in question using its DW_AT_type attribute. */
21088
21089static struct type *
21090die_type (struct die_info *die, struct dwarf2_cu *cu)
21091{
21092 struct attribute *type_attr;
21093
21094 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21095 if (!type_attr)
21096 {
21097 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21098 /* A missing DW_AT_type represents a void type. */
21099 return objfile_type (objfile)->builtin_void;
21100 }
21101
21102 return lookup_die_type (die, type_attr, cu);
21103}
21104
21105/* True iff CU's producer generates GNAT Ada auxiliary information
21106 that allows to find parallel types through that information instead
21107 of having to do expensive parallel lookups by type name. */
21108
21109static int
21110need_gnat_info (struct dwarf2_cu *cu)
21111{
21112 /* Assume that the Ada compiler was GNAT, which always produces
21113 the auxiliary information. */
21114 return (cu->language == language_ada);
21115}
21116
21117/* Return the auxiliary type of the die in question using its
21118 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21119 attribute is not present. */
21120
21121static struct type *
21122die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21123{
21124 struct attribute *type_attr;
21125
21126 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21127 if (!type_attr)
21128 return NULL;
21129
21130 return lookup_die_type (die, type_attr, cu);
21131}
21132
21133/* If DIE has a descriptive_type attribute, then set the TYPE's
21134 descriptive type accordingly. */
21135
21136static void
21137set_descriptive_type (struct type *type, struct die_info *die,
21138 struct dwarf2_cu *cu)
21139{
21140 struct type *descriptive_type = die_descriptive_type (die, cu);
21141
21142 if (descriptive_type)
21143 {
21144 ALLOCATE_GNAT_AUX_TYPE (type);
21145 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21146 }
21147}
21148
21149/* Return the containing type of the die in question using its
21150 DW_AT_containing_type attribute. */
21151
21152static struct type *
21153die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21154{
21155 struct attribute *type_attr;
21156 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21157
21158 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21159 if (!type_attr)
21160 error (_("Dwarf Error: Problem turning containing type into gdb type "
21161 "[in module %s]"), objfile_name (objfile));
21162
21163 return lookup_die_type (die, type_attr, cu);
21164}
21165
21166/* Return an error marker type to use for the ill formed type in DIE/CU. */
21167
21168static struct type *
21169build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21170{
21171 struct dwarf2_per_objfile *dwarf2_per_objfile
21172 = cu->per_cu->dwarf2_per_objfile;
21173 struct objfile *objfile = dwarf2_per_objfile->objfile;
21174 char *saved;
21175
21176 std::string message
21177 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21178 objfile_name (objfile),
21179 sect_offset_str (cu->header.sect_off),
21180 sect_offset_str (die->sect_off));
21181 saved = obstack_strdup (&objfile->objfile_obstack, message);
21182
21183 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21184}
21185
21186/* Look up the type of DIE in CU using its type attribute ATTR.
21187 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21188 DW_AT_containing_type.
21189 If there is no type substitute an error marker. */
21190
21191static struct type *
21192lookup_die_type (struct die_info *die, const struct attribute *attr,
21193 struct dwarf2_cu *cu)
21194{
21195 struct dwarf2_per_objfile *dwarf2_per_objfile
21196 = cu->per_cu->dwarf2_per_objfile;
21197 struct objfile *objfile = dwarf2_per_objfile->objfile;
21198 struct type *this_type;
21199
21200 gdb_assert (attr->name == DW_AT_type
21201 || attr->name == DW_AT_GNAT_descriptive_type
21202 || attr->name == DW_AT_containing_type);
21203
21204 /* First see if we have it cached. */
21205
21206 if (attr->form == DW_FORM_GNU_ref_alt)
21207 {
21208 struct dwarf2_per_cu_data *per_cu;
21209 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21210
21211 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21212 dwarf2_per_objfile);
21213 this_type = get_die_type_at_offset (sect_off, per_cu);
21214 }
21215 else if (attr->form_is_ref ())
21216 {
21217 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21218
21219 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21220 }
21221 else if (attr->form == DW_FORM_ref_sig8)
21222 {
21223 ULONGEST signature = DW_SIGNATURE (attr);
21224
21225 return get_signatured_type (die, signature, cu);
21226 }
21227 else
21228 {
21229 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21230 " at %s [in module %s]"),
21231 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21232 objfile_name (objfile));
21233 return build_error_marker_type (cu, die);
21234 }
21235
21236 /* If not cached we need to read it in. */
21237
21238 if (this_type == NULL)
21239 {
21240 struct die_info *type_die = NULL;
21241 struct dwarf2_cu *type_cu = cu;
21242
21243 if (attr->form_is_ref ())
21244 type_die = follow_die_ref (die, attr, &type_cu);
21245 if (type_die == NULL)
21246 return build_error_marker_type (cu, die);
21247 /* If we find the type now, it's probably because the type came
21248 from an inter-CU reference and the type's CU got expanded before
21249 ours. */
21250 this_type = read_type_die (type_die, type_cu);
21251 }
21252
21253 /* If we still don't have a type use an error marker. */
21254
21255 if (this_type == NULL)
21256 return build_error_marker_type (cu, die);
21257
21258 return this_type;
21259}
21260
21261/* Return the type in DIE, CU.
21262 Returns NULL for invalid types.
21263
21264 This first does a lookup in die_type_hash,
21265 and only reads the die in if necessary.
21266
21267 NOTE: This can be called when reading in partial or full symbols. */
21268
21269static struct type *
21270read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21271{
21272 struct type *this_type;
21273
21274 this_type = get_die_type (die, cu);
21275 if (this_type)
21276 return this_type;
21277
21278 return read_type_die_1 (die, cu);
21279}
21280
21281/* Read the type in DIE, CU.
21282 Returns NULL for invalid types. */
21283
21284static struct type *
21285read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21286{
21287 struct type *this_type = NULL;
21288
21289 switch (die->tag)
21290 {
21291 case DW_TAG_class_type:
21292 case DW_TAG_interface_type:
21293 case DW_TAG_structure_type:
21294 case DW_TAG_union_type:
21295 this_type = read_structure_type (die, cu);
21296 break;
21297 case DW_TAG_enumeration_type:
21298 this_type = read_enumeration_type (die, cu);
21299 break;
21300 case DW_TAG_subprogram:
21301 case DW_TAG_subroutine_type:
21302 case DW_TAG_inlined_subroutine:
21303 this_type = read_subroutine_type (die, cu);
21304 break;
21305 case DW_TAG_array_type:
21306 this_type = read_array_type (die, cu);
21307 break;
21308 case DW_TAG_set_type:
21309 this_type = read_set_type (die, cu);
21310 break;
21311 case DW_TAG_pointer_type:
21312 this_type = read_tag_pointer_type (die, cu);
21313 break;
21314 case DW_TAG_ptr_to_member_type:
21315 this_type = read_tag_ptr_to_member_type (die, cu);
21316 break;
21317 case DW_TAG_reference_type:
21318 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21319 break;
21320 case DW_TAG_rvalue_reference_type:
21321 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21322 break;
21323 case DW_TAG_const_type:
21324 this_type = read_tag_const_type (die, cu);
21325 break;
21326 case DW_TAG_volatile_type:
21327 this_type = read_tag_volatile_type (die, cu);
21328 break;
21329 case DW_TAG_restrict_type:
21330 this_type = read_tag_restrict_type (die, cu);
21331 break;
21332 case DW_TAG_string_type:
21333 this_type = read_tag_string_type (die, cu);
21334 break;
21335 case DW_TAG_typedef:
21336 this_type = read_typedef (die, cu);
21337 break;
21338 case DW_TAG_subrange_type:
21339 this_type = read_subrange_type (die, cu);
21340 break;
21341 case DW_TAG_base_type:
21342 this_type = read_base_type (die, cu);
21343 break;
21344 case DW_TAG_unspecified_type:
21345 this_type = read_unspecified_type (die, cu);
21346 break;
21347 case DW_TAG_namespace:
21348 this_type = read_namespace_type (die, cu);
21349 break;
21350 case DW_TAG_module:
21351 this_type = read_module_type (die, cu);
21352 break;
21353 case DW_TAG_atomic_type:
21354 this_type = read_tag_atomic_type (die, cu);
21355 break;
21356 default:
21357 complaint (_("unexpected tag in read_type_die: '%s'"),
21358 dwarf_tag_name (die->tag));
21359 break;
21360 }
21361
21362 return this_type;
21363}
21364
21365/* See if we can figure out if the class lives in a namespace. We do
21366 this by looking for a member function; its demangled name will
21367 contain namespace info, if there is any.
21368 Return the computed name or NULL.
21369 Space for the result is allocated on the objfile's obstack.
21370 This is the full-die version of guess_partial_die_structure_name.
21371 In this case we know DIE has no useful parent. */
21372
21373static const char *
21374guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21375{
21376 struct die_info *spec_die;
21377 struct dwarf2_cu *spec_cu;
21378 struct die_info *child;
21379 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21380
21381 spec_cu = cu;
21382 spec_die = die_specification (die, &spec_cu);
21383 if (spec_die != NULL)
21384 {
21385 die = spec_die;
21386 cu = spec_cu;
21387 }
21388
21389 for (child = die->child;
21390 child != NULL;
21391 child = child->sibling)
21392 {
21393 if (child->tag == DW_TAG_subprogram)
21394 {
21395 const char *linkage_name = dw2_linkage_name (child, cu);
21396
21397 if (linkage_name != NULL)
21398 {
21399 gdb::unique_xmalloc_ptr<char> actual_name
21400 (language_class_name_from_physname (cu->language_defn,
21401 linkage_name));
21402 const char *name = NULL;
21403
21404 if (actual_name != NULL)
21405 {
21406 const char *die_name = dwarf2_name (die, cu);
21407
21408 if (die_name != NULL
21409 && strcmp (die_name, actual_name.get ()) != 0)
21410 {
21411 /* Strip off the class name from the full name.
21412 We want the prefix. */
21413 int die_name_len = strlen (die_name);
21414 int actual_name_len = strlen (actual_name.get ());
21415 const char *ptr = actual_name.get ();
21416
21417 /* Test for '::' as a sanity check. */
21418 if (actual_name_len > die_name_len + 2
21419 && ptr[actual_name_len - die_name_len - 1] == ':')
21420 name = obstack_strndup (
21421 &objfile->per_bfd->storage_obstack,
21422 ptr, actual_name_len - die_name_len - 2);
21423 }
21424 }
21425 return name;
21426 }
21427 }
21428 }
21429
21430 return NULL;
21431}
21432
21433/* GCC might emit a nameless typedef that has a linkage name. Determine the
21434 prefix part in such case. See
21435 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21436
21437static const char *
21438anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21439{
21440 struct attribute *attr;
21441 const char *base;
21442
21443 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21444 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21445 return NULL;
21446
21447 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21448 return NULL;
21449
21450 attr = dw2_linkage_name_attr (die, cu);
21451 if (attr == NULL || DW_STRING (attr) == NULL)
21452 return NULL;
21453
21454 /* dwarf2_name had to be already called. */
21455 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21456
21457 /* Strip the base name, keep any leading namespaces/classes. */
21458 base = strrchr (DW_STRING (attr), ':');
21459 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21460 return "";
21461
21462 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21463 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21464 DW_STRING (attr),
21465 &base[-1] - DW_STRING (attr));
21466}
21467
21468/* Return the name of the namespace/class that DIE is defined within,
21469 or "" if we can't tell. The caller should not xfree the result.
21470
21471 For example, if we're within the method foo() in the following
21472 code:
21473
21474 namespace N {
21475 class C {
21476 void foo () {
21477 }
21478 };
21479 }
21480
21481 then determine_prefix on foo's die will return "N::C". */
21482
21483static const char *
21484determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21485{
21486 struct dwarf2_per_objfile *dwarf2_per_objfile
21487 = cu->per_cu->dwarf2_per_objfile;
21488 struct die_info *parent, *spec_die;
21489 struct dwarf2_cu *spec_cu;
21490 struct type *parent_type;
21491 const char *retval;
21492
21493 if (cu->language != language_cplus
21494 && cu->language != language_fortran && cu->language != language_d
21495 && cu->language != language_rust)
21496 return "";
21497
21498 retval = anonymous_struct_prefix (die, cu);
21499 if (retval)
21500 return retval;
21501
21502 /* We have to be careful in the presence of DW_AT_specification.
21503 For example, with GCC 3.4, given the code
21504
21505 namespace N {
21506 void foo() {
21507 // Definition of N::foo.
21508 }
21509 }
21510
21511 then we'll have a tree of DIEs like this:
21512
21513 1: DW_TAG_compile_unit
21514 2: DW_TAG_namespace // N
21515 3: DW_TAG_subprogram // declaration of N::foo
21516 4: DW_TAG_subprogram // definition of N::foo
21517 DW_AT_specification // refers to die #3
21518
21519 Thus, when processing die #4, we have to pretend that we're in
21520 the context of its DW_AT_specification, namely the contex of die
21521 #3. */
21522 spec_cu = cu;
21523 spec_die = die_specification (die, &spec_cu);
21524 if (spec_die == NULL)
21525 parent = die->parent;
21526 else
21527 {
21528 parent = spec_die->parent;
21529 cu = spec_cu;
21530 }
21531
21532 if (parent == NULL)
21533 return "";
21534 else if (parent->building_fullname)
21535 {
21536 const char *name;
21537 const char *parent_name;
21538
21539 /* It has been seen on RealView 2.2 built binaries,
21540 DW_TAG_template_type_param types actually _defined_ as
21541 children of the parent class:
21542
21543 enum E {};
21544 template class <class Enum> Class{};
21545 Class<enum E> class_e;
21546
21547 1: DW_TAG_class_type (Class)
21548 2: DW_TAG_enumeration_type (E)
21549 3: DW_TAG_enumerator (enum1:0)
21550 3: DW_TAG_enumerator (enum2:1)
21551 ...
21552 2: DW_TAG_template_type_param
21553 DW_AT_type DW_FORM_ref_udata (E)
21554
21555 Besides being broken debug info, it can put GDB into an
21556 infinite loop. Consider:
21557
21558 When we're building the full name for Class<E>, we'll start
21559 at Class, and go look over its template type parameters,
21560 finding E. We'll then try to build the full name of E, and
21561 reach here. We're now trying to build the full name of E,
21562 and look over the parent DIE for containing scope. In the
21563 broken case, if we followed the parent DIE of E, we'd again
21564 find Class, and once again go look at its template type
21565 arguments, etc., etc. Simply don't consider such parent die
21566 as source-level parent of this die (it can't be, the language
21567 doesn't allow it), and break the loop here. */
21568 name = dwarf2_name (die, cu);
21569 parent_name = dwarf2_name (parent, cu);
21570 complaint (_("template param type '%s' defined within parent '%s'"),
21571 name ? name : "<unknown>",
21572 parent_name ? parent_name : "<unknown>");
21573 return "";
21574 }
21575 else
21576 switch (parent->tag)
21577 {
21578 case DW_TAG_namespace:
21579 parent_type = read_type_die (parent, cu);
21580 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21581 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21582 Work around this problem here. */
21583 if (cu->language == language_cplus
21584 && strcmp (TYPE_NAME (parent_type), "::") == 0)
21585 return "";
21586 /* We give a name to even anonymous namespaces. */
21587 return TYPE_NAME (parent_type);
21588 case DW_TAG_class_type:
21589 case DW_TAG_interface_type:
21590 case DW_TAG_structure_type:
21591 case DW_TAG_union_type:
21592 case DW_TAG_module:
21593 parent_type = read_type_die (parent, cu);
21594 if (TYPE_NAME (parent_type) != NULL)
21595 return TYPE_NAME (parent_type);
21596 else
21597 /* An anonymous structure is only allowed non-static data
21598 members; no typedefs, no member functions, et cetera.
21599 So it does not need a prefix. */
21600 return "";
21601 case DW_TAG_compile_unit:
21602 case DW_TAG_partial_unit:
21603 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21604 if (cu->language == language_cplus
21605 && !dwarf2_per_objfile->types.empty ()
21606 && die->child != NULL
21607 && (die->tag == DW_TAG_class_type
21608 || die->tag == DW_TAG_structure_type
21609 || die->tag == DW_TAG_union_type))
21610 {
21611 const char *name = guess_full_die_structure_name (die, cu);
21612 if (name != NULL)
21613 return name;
21614 }
21615 return "";
21616 case DW_TAG_subprogram:
21617 /* Nested subroutines in Fortran get a prefix with the name
21618 of the parent's subroutine. */
21619 if (cu->language == language_fortran)
21620 {
21621 if ((die->tag == DW_TAG_subprogram)
21622 && (dwarf2_name (parent, cu) != NULL))
21623 return dwarf2_name (parent, cu);
21624 }
21625 return determine_prefix (parent, cu);
21626 case DW_TAG_enumeration_type:
21627 parent_type = read_type_die (parent, cu);
21628 if (TYPE_DECLARED_CLASS (parent_type))
21629 {
21630 if (TYPE_NAME (parent_type) != NULL)
21631 return TYPE_NAME (parent_type);
21632 return "";
21633 }
21634 /* Fall through. */
21635 default:
21636 return determine_prefix (parent, cu);
21637 }
21638}
21639
21640/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21641 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21642 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21643 an obconcat, otherwise allocate storage for the result. The CU argument is
21644 used to determine the language and hence, the appropriate separator. */
21645
21646#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21647
21648static char *
21649typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21650 int physname, struct dwarf2_cu *cu)
21651{
21652 const char *lead = "";
21653 const char *sep;
21654
21655 if (suffix == NULL || suffix[0] == '\0'
21656 || prefix == NULL || prefix[0] == '\0')
21657 sep = "";
21658 else if (cu->language == language_d)
21659 {
21660 /* For D, the 'main' function could be defined in any module, but it
21661 should never be prefixed. */
21662 if (strcmp (suffix, "D main") == 0)
21663 {
21664 prefix = "";
21665 sep = "";
21666 }
21667 else
21668 sep = ".";
21669 }
21670 else if (cu->language == language_fortran && physname)
21671 {
21672 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21673 DW_AT_MIPS_linkage_name is preferred and used instead. */
21674
21675 lead = "__";
21676 sep = "_MOD_";
21677 }
21678 else
21679 sep = "::";
21680
21681 if (prefix == NULL)
21682 prefix = "";
21683 if (suffix == NULL)
21684 suffix = "";
21685
21686 if (obs == NULL)
21687 {
21688 char *retval
21689 = ((char *)
21690 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21691
21692 strcpy (retval, lead);
21693 strcat (retval, prefix);
21694 strcat (retval, sep);
21695 strcat (retval, suffix);
21696 return retval;
21697 }
21698 else
21699 {
21700 /* We have an obstack. */
21701 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21702 }
21703}
21704
21705/* Return sibling of die, NULL if no sibling. */
21706
21707static struct die_info *
21708sibling_die (struct die_info *die)
21709{
21710 return die->sibling;
21711}
21712
21713/* Get name of a die, return NULL if not found. */
21714
21715static const char *
21716dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21717 struct obstack *obstack)
21718{
21719 if (name && cu->language == language_cplus)
21720 {
21721 std::string canon_name = cp_canonicalize_string (name);
21722
21723 if (!canon_name.empty ())
21724 {
21725 if (canon_name != name)
21726 name = obstack_strdup (obstack, canon_name);
21727 }
21728 }
21729
21730 return name;
21731}
21732
21733/* Get name of a die, return NULL if not found.
21734 Anonymous namespaces are converted to their magic string. */
21735
21736static const char *
21737dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21738{
21739 struct attribute *attr;
21740 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21741
21742 attr = dwarf2_attr (die, DW_AT_name, cu);
21743 if ((!attr || !DW_STRING (attr))
21744 && die->tag != DW_TAG_namespace
21745 && die->tag != DW_TAG_class_type
21746 && die->tag != DW_TAG_interface_type
21747 && die->tag != DW_TAG_structure_type
21748 && die->tag != DW_TAG_union_type)
21749 return NULL;
21750
21751 switch (die->tag)
21752 {
21753 case DW_TAG_compile_unit:
21754 case DW_TAG_partial_unit:
21755 /* Compilation units have a DW_AT_name that is a filename, not
21756 a source language identifier. */
21757 case DW_TAG_enumeration_type:
21758 case DW_TAG_enumerator:
21759 /* These tags always have simple identifiers already; no need
21760 to canonicalize them. */
21761 return DW_STRING (attr);
21762
21763 case DW_TAG_namespace:
21764 if (attr != NULL && DW_STRING (attr) != NULL)
21765 return DW_STRING (attr);
21766 return CP_ANONYMOUS_NAMESPACE_STR;
21767
21768 case DW_TAG_class_type:
21769 case DW_TAG_interface_type:
21770 case DW_TAG_structure_type:
21771 case DW_TAG_union_type:
21772 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21773 structures or unions. These were of the form "._%d" in GCC 4.1,
21774 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21775 and GCC 4.4. We work around this problem by ignoring these. */
21776 if (attr && DW_STRING (attr)
21777 && (startswith (DW_STRING (attr), "._")
21778 || startswith (DW_STRING (attr), "<anonymous")))
21779 return NULL;
21780
21781 /* GCC might emit a nameless typedef that has a linkage name. See
21782 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21783 if (!attr || DW_STRING (attr) == NULL)
21784 {
21785 attr = dw2_linkage_name_attr (die, cu);
21786 if (attr == NULL || DW_STRING (attr) == NULL)
21787 return NULL;
21788
21789 /* Avoid demangling DW_STRING (attr) the second time on a second
21790 call for the same DIE. */
21791 if (!DW_STRING_IS_CANONICAL (attr))
21792 {
21793 gdb::unique_xmalloc_ptr<char> demangled
21794 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
21795 if (demangled == nullptr)
21796 return nullptr;
21797
21798 const char *base;
21799
21800 /* FIXME: we already did this for the partial symbol... */
21801 DW_STRING (attr)
21802 = obstack_strdup (&objfile->per_bfd->storage_obstack,
21803 demangled.get ());
21804 DW_STRING_IS_CANONICAL (attr) = 1;
21805
21806 /* Strip any leading namespaces/classes, keep only the base name.
21807 DW_AT_name for named DIEs does not contain the prefixes. */
21808 base = strrchr (DW_STRING (attr), ':');
21809 if (base && base > DW_STRING (attr) && base[-1] == ':')
21810 return &base[1];
21811 else
21812 return DW_STRING (attr);
21813 }
21814 }
21815 break;
21816
21817 default:
21818 break;
21819 }
21820
21821 if (!DW_STRING_IS_CANONICAL (attr))
21822 {
21823 DW_STRING (attr)
21824 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21825 &objfile->per_bfd->storage_obstack);
21826 DW_STRING_IS_CANONICAL (attr) = 1;
21827 }
21828 return DW_STRING (attr);
21829}
21830
21831/* Return the die that this die in an extension of, or NULL if there
21832 is none. *EXT_CU is the CU containing DIE on input, and the CU
21833 containing the return value on output. */
21834
21835static struct die_info *
21836dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21837{
21838 struct attribute *attr;
21839
21840 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21841 if (attr == NULL)
21842 return NULL;
21843
21844 return follow_die_ref (die, attr, ext_cu);
21845}
21846
21847/* A convenience function that returns an "unknown" DWARF name,
21848 including the value of V. STR is the name of the entity being
21849 printed, e.g., "TAG". */
21850
21851static const char *
21852dwarf_unknown (const char *str, unsigned v)
21853{
21854 char *cell = get_print_cell ();
21855 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
21856 return cell;
21857}
21858
21859/* Convert a DIE tag into its string name. */
21860
21861static const char *
21862dwarf_tag_name (unsigned tag)
21863{
21864 const char *name = get_DW_TAG_name (tag);
21865
21866 if (name == NULL)
21867 return dwarf_unknown ("TAG", tag);
21868
21869 return name;
21870}
21871
21872/* Convert a DWARF attribute code into its string name. */
21873
21874static const char *
21875dwarf_attr_name (unsigned attr)
21876{
21877 const char *name;
21878
21879#ifdef MIPS /* collides with DW_AT_HP_block_index */
21880 if (attr == DW_AT_MIPS_fde)
21881 return "DW_AT_MIPS_fde";
21882#else
21883 if (attr == DW_AT_HP_block_index)
21884 return "DW_AT_HP_block_index";
21885#endif
21886
21887 name = get_DW_AT_name (attr);
21888
21889 if (name == NULL)
21890 return dwarf_unknown ("AT", attr);
21891
21892 return name;
21893}
21894
21895/* Convert a DWARF value form code into its string name. */
21896
21897static const char *
21898dwarf_form_name (unsigned form)
21899{
21900 const char *name = get_DW_FORM_name (form);
21901
21902 if (name == NULL)
21903 return dwarf_unknown ("FORM", form);
21904
21905 return name;
21906}
21907
21908static const char *
21909dwarf_bool_name (unsigned mybool)
21910{
21911 if (mybool)
21912 return "TRUE";
21913 else
21914 return "FALSE";
21915}
21916
21917/* Convert a DWARF type code into its string name. */
21918
21919static const char *
21920dwarf_type_encoding_name (unsigned enc)
21921{
21922 const char *name = get_DW_ATE_name (enc);
21923
21924 if (name == NULL)
21925 return dwarf_unknown ("ATE", enc);
21926
21927 return name;
21928}
21929
21930static void
21931dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21932{
21933 unsigned int i;
21934
21935 print_spaces (indent, f);
21936 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
21937 dwarf_tag_name (die->tag), die->abbrev,
21938 sect_offset_str (die->sect_off));
21939
21940 if (die->parent != NULL)
21941 {
21942 print_spaces (indent, f);
21943 fprintf_unfiltered (f, " parent at offset: %s\n",
21944 sect_offset_str (die->parent->sect_off));
21945 }
21946
21947 print_spaces (indent, f);
21948 fprintf_unfiltered (f, " has children: %s\n",
21949 dwarf_bool_name (die->child != NULL));
21950
21951 print_spaces (indent, f);
21952 fprintf_unfiltered (f, " attributes:\n");
21953
21954 for (i = 0; i < die->num_attrs; ++i)
21955 {
21956 print_spaces (indent, f);
21957 fprintf_unfiltered (f, " %s (%s) ",
21958 dwarf_attr_name (die->attrs[i].name),
21959 dwarf_form_name (die->attrs[i].form));
21960
21961 switch (die->attrs[i].form)
21962 {
21963 case DW_FORM_addr:
21964 case DW_FORM_addrx:
21965 case DW_FORM_GNU_addr_index:
21966 fprintf_unfiltered (f, "address: ");
21967 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21968 break;
21969 case DW_FORM_block2:
21970 case DW_FORM_block4:
21971 case DW_FORM_block:
21972 case DW_FORM_block1:
21973 fprintf_unfiltered (f, "block: size %s",
21974 pulongest (DW_BLOCK (&die->attrs[i])->size));
21975 break;
21976 case DW_FORM_exprloc:
21977 fprintf_unfiltered (f, "expression: size %s",
21978 pulongest (DW_BLOCK (&die->attrs[i])->size));
21979 break;
21980 case DW_FORM_data16:
21981 fprintf_unfiltered (f, "constant of 16 bytes");
21982 break;
21983 case DW_FORM_ref_addr:
21984 fprintf_unfiltered (f, "ref address: ");
21985 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21986 break;
21987 case DW_FORM_GNU_ref_alt:
21988 fprintf_unfiltered (f, "alt ref address: ");
21989 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21990 break;
21991 case DW_FORM_ref1:
21992 case DW_FORM_ref2:
21993 case DW_FORM_ref4:
21994 case DW_FORM_ref8:
21995 case DW_FORM_ref_udata:
21996 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21997 (long) (DW_UNSND (&die->attrs[i])));
21998 break;
21999 case DW_FORM_data1:
22000 case DW_FORM_data2:
22001 case DW_FORM_data4:
22002 case DW_FORM_data8:
22003 case DW_FORM_udata:
22004 case DW_FORM_sdata:
22005 fprintf_unfiltered (f, "constant: %s",
22006 pulongest (DW_UNSND (&die->attrs[i])));
22007 break;
22008 case DW_FORM_sec_offset:
22009 fprintf_unfiltered (f, "section offset: %s",
22010 pulongest (DW_UNSND (&die->attrs[i])));
22011 break;
22012 case DW_FORM_ref_sig8:
22013 fprintf_unfiltered (f, "signature: %s",
22014 hex_string (DW_SIGNATURE (&die->attrs[i])));
22015 break;
22016 case DW_FORM_string:
22017 case DW_FORM_strp:
22018 case DW_FORM_line_strp:
22019 case DW_FORM_strx:
22020 case DW_FORM_GNU_str_index:
22021 case DW_FORM_GNU_strp_alt:
22022 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22023 DW_STRING (&die->attrs[i])
22024 ? DW_STRING (&die->attrs[i]) : "",
22025 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22026 break;
22027 case DW_FORM_flag:
22028 if (DW_UNSND (&die->attrs[i]))
22029 fprintf_unfiltered (f, "flag: TRUE");
22030 else
22031 fprintf_unfiltered (f, "flag: FALSE");
22032 break;
22033 case DW_FORM_flag_present:
22034 fprintf_unfiltered (f, "flag: TRUE");
22035 break;
22036 case DW_FORM_indirect:
22037 /* The reader will have reduced the indirect form to
22038 the "base form" so this form should not occur. */
22039 fprintf_unfiltered (f,
22040 "unexpected attribute form: DW_FORM_indirect");
22041 break;
22042 case DW_FORM_implicit_const:
22043 fprintf_unfiltered (f, "constant: %s",
22044 plongest (DW_SND (&die->attrs[i])));
22045 break;
22046 default:
22047 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22048 die->attrs[i].form);
22049 break;
22050 }
22051 fprintf_unfiltered (f, "\n");
22052 }
22053}
22054
22055static void
22056dump_die_for_error (struct die_info *die)
22057{
22058 dump_die_shallow (gdb_stderr, 0, die);
22059}
22060
22061static void
22062dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22063{
22064 int indent = level * 4;
22065
22066 gdb_assert (die != NULL);
22067
22068 if (level >= max_level)
22069 return;
22070
22071 dump_die_shallow (f, indent, die);
22072
22073 if (die->child != NULL)
22074 {
22075 print_spaces (indent, f);
22076 fprintf_unfiltered (f, " Children:");
22077 if (level + 1 < max_level)
22078 {
22079 fprintf_unfiltered (f, "\n");
22080 dump_die_1 (f, level + 1, max_level, die->child);
22081 }
22082 else
22083 {
22084 fprintf_unfiltered (f,
22085 " [not printed, max nesting level reached]\n");
22086 }
22087 }
22088
22089 if (die->sibling != NULL && level > 0)
22090 {
22091 dump_die_1 (f, level, max_level, die->sibling);
22092 }
22093}
22094
22095/* This is called from the pdie macro in gdbinit.in.
22096 It's not static so gcc will keep a copy callable from gdb. */
22097
22098void
22099dump_die (struct die_info *die, int max_level)
22100{
22101 dump_die_1 (gdb_stdlog, 0, max_level, die);
22102}
22103
22104static void
22105store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22106{
22107 void **slot;
22108
22109 slot = htab_find_slot_with_hash (cu->die_hash, die,
22110 to_underlying (die->sect_off),
22111 INSERT);
22112
22113 *slot = die;
22114}
22115
22116/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22117 required kind. */
22118
22119static sect_offset
22120dwarf2_get_ref_die_offset (const struct attribute *attr)
22121{
22122 if (attr->form_is_ref ())
22123 return (sect_offset) DW_UNSND (attr);
22124
22125 complaint (_("unsupported die ref attribute form: '%s'"),
22126 dwarf_form_name (attr->form));
22127 return {};
22128}
22129
22130/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22131 * the value held by the attribute is not constant. */
22132
22133static LONGEST
22134dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22135{
22136 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22137 return DW_SND (attr);
22138 else if (attr->form == DW_FORM_udata
22139 || attr->form == DW_FORM_data1
22140 || attr->form == DW_FORM_data2
22141 || attr->form == DW_FORM_data4
22142 || attr->form == DW_FORM_data8)
22143 return DW_UNSND (attr);
22144 else
22145 {
22146 /* For DW_FORM_data16 see attribute::form_is_constant. */
22147 complaint (_("Attribute value is not a constant (%s)"),
22148 dwarf_form_name (attr->form));
22149 return default_value;
22150 }
22151}
22152
22153/* Follow reference or signature attribute ATTR of SRC_DIE.
22154 On entry *REF_CU is the CU of SRC_DIE.
22155 On exit *REF_CU is the CU of the result. */
22156
22157static struct die_info *
22158follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22159 struct dwarf2_cu **ref_cu)
22160{
22161 struct die_info *die;
22162
22163 if (attr->form_is_ref ())
22164 die = follow_die_ref (src_die, attr, ref_cu);
22165 else if (attr->form == DW_FORM_ref_sig8)
22166 die = follow_die_sig (src_die, attr, ref_cu);
22167 else
22168 {
22169 dump_die_for_error (src_die);
22170 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22171 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22172 }
22173
22174 return die;
22175}
22176
22177/* Follow reference OFFSET.
22178 On entry *REF_CU is the CU of the source die referencing OFFSET.
22179 On exit *REF_CU is the CU of the result.
22180 Returns NULL if OFFSET is invalid. */
22181
22182static struct die_info *
22183follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22184 struct dwarf2_cu **ref_cu)
22185{
22186 struct die_info temp_die;
22187 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22188 struct dwarf2_per_objfile *dwarf2_per_objfile
22189 = cu->per_cu->dwarf2_per_objfile;
22190
22191 gdb_assert (cu->per_cu != NULL);
22192
22193 target_cu = cu;
22194
22195 if (cu->per_cu->is_debug_types)
22196 {
22197 /* .debug_types CUs cannot reference anything outside their CU.
22198 If they need to, they have to reference a signatured type via
22199 DW_FORM_ref_sig8. */
22200 if (!cu->header.offset_in_cu_p (sect_off))
22201 return NULL;
22202 }
22203 else if (offset_in_dwz != cu->per_cu->is_dwz
22204 || !cu->header.offset_in_cu_p (sect_off))
22205 {
22206 struct dwarf2_per_cu_data *per_cu;
22207
22208 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22209 dwarf2_per_objfile);
22210
22211 /* If necessary, add it to the queue and load its DIEs. */
22212 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22213 load_full_comp_unit (per_cu, false, cu->language);
22214
22215 target_cu = per_cu->cu;
22216 }
22217 else if (cu->dies == NULL)
22218 {
22219 /* We're loading full DIEs during partial symbol reading. */
22220 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22221 load_full_comp_unit (cu->per_cu, false, language_minimal);
22222 }
22223
22224 *ref_cu = target_cu;
22225 temp_die.sect_off = sect_off;
22226
22227 if (target_cu != cu)
22228 target_cu->ancestor = cu;
22229
22230 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22231 &temp_die,
22232 to_underlying (sect_off));
22233}
22234
22235/* Follow reference attribute ATTR of SRC_DIE.
22236 On entry *REF_CU is the CU of SRC_DIE.
22237 On exit *REF_CU is the CU of the result. */
22238
22239static struct die_info *
22240follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22241 struct dwarf2_cu **ref_cu)
22242{
22243 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22244 struct dwarf2_cu *cu = *ref_cu;
22245 struct die_info *die;
22246
22247 die = follow_die_offset (sect_off,
22248 (attr->form == DW_FORM_GNU_ref_alt
22249 || cu->per_cu->is_dwz),
22250 ref_cu);
22251 if (!die)
22252 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22253 "at %s [in module %s]"),
22254 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22255 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22256
22257 return die;
22258}
22259
22260/* See read.h. */
22261
22262struct dwarf2_locexpr_baton
22263dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22264 dwarf2_per_cu_data *per_cu,
22265 CORE_ADDR (*get_frame_pc) (void *baton),
22266 void *baton, bool resolve_abstract_p)
22267{
22268 struct dwarf2_cu *cu;
22269 struct die_info *die;
22270 struct attribute *attr;
22271 struct dwarf2_locexpr_baton retval;
22272 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22273 struct objfile *objfile = dwarf2_per_objfile->objfile;
22274
22275 if (per_cu->cu == NULL)
22276 load_cu (per_cu, false);
22277 cu = per_cu->cu;
22278 if (cu == NULL)
22279 {
22280 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22281 Instead just throw an error, not much else we can do. */
22282 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22283 sect_offset_str (sect_off), objfile_name (objfile));
22284 }
22285
22286 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22287 if (!die)
22288 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22289 sect_offset_str (sect_off), objfile_name (objfile));
22290
22291 attr = dwarf2_attr (die, DW_AT_location, cu);
22292 if (!attr && resolve_abstract_p
22293 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22294 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22295 {
22296 CORE_ADDR pc = (*get_frame_pc) (baton);
22297 CORE_ADDR baseaddr = objfile->text_section_offset ();
22298 struct gdbarch *gdbarch = get_objfile_arch (objfile);
22299
22300 for (const auto &cand_off
22301 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22302 {
22303 struct dwarf2_cu *cand_cu = cu;
22304 struct die_info *cand
22305 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22306 if (!cand
22307 || !cand->parent
22308 || cand->parent->tag != DW_TAG_subprogram)
22309 continue;
22310
22311 CORE_ADDR pc_low, pc_high;
22312 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22313 if (pc_low == ((CORE_ADDR) -1))
22314 continue;
22315 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22316 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22317 if (!(pc_low <= pc && pc < pc_high))
22318 continue;
22319
22320 die = cand;
22321 attr = dwarf2_attr (die, DW_AT_location, cu);
22322 break;
22323 }
22324 }
22325
22326 if (!attr)
22327 {
22328 /* DWARF: "If there is no such attribute, then there is no effect.".
22329 DATA is ignored if SIZE is 0. */
22330
22331 retval.data = NULL;
22332 retval.size = 0;
22333 }
22334 else if (attr->form_is_section_offset ())
22335 {
22336 struct dwarf2_loclist_baton loclist_baton;
22337 CORE_ADDR pc = (*get_frame_pc) (baton);
22338 size_t size;
22339
22340 fill_in_loclist_baton (cu, &loclist_baton, attr);
22341
22342 retval.data = dwarf2_find_location_expression (&loclist_baton,
22343 &size, pc);
22344 retval.size = size;
22345 }
22346 else
22347 {
22348 if (!attr->form_is_block ())
22349 error (_("Dwarf Error: DIE at %s referenced in module %s "
22350 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22351 sect_offset_str (sect_off), objfile_name (objfile));
22352
22353 retval.data = DW_BLOCK (attr)->data;
22354 retval.size = DW_BLOCK (attr)->size;
22355 }
22356 retval.per_cu = cu->per_cu;
22357
22358 age_cached_comp_units (dwarf2_per_objfile);
22359
22360 return retval;
22361}
22362
22363/* See read.h. */
22364
22365struct dwarf2_locexpr_baton
22366dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22367 dwarf2_per_cu_data *per_cu,
22368 CORE_ADDR (*get_frame_pc) (void *baton),
22369 void *baton)
22370{
22371 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22372
22373 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22374}
22375
22376/* Write a constant of a given type as target-ordered bytes into
22377 OBSTACK. */
22378
22379static const gdb_byte *
22380write_constant_as_bytes (struct obstack *obstack,
22381 enum bfd_endian byte_order,
22382 struct type *type,
22383 ULONGEST value,
22384 LONGEST *len)
22385{
22386 gdb_byte *result;
22387
22388 *len = TYPE_LENGTH (type);
22389 result = (gdb_byte *) obstack_alloc (obstack, *len);
22390 store_unsigned_integer (result, *len, byte_order, value);
22391
22392 return result;
22393}
22394
22395/* See read.h. */
22396
22397const gdb_byte *
22398dwarf2_fetch_constant_bytes (sect_offset sect_off,
22399 dwarf2_per_cu_data *per_cu,
22400 obstack *obstack,
22401 LONGEST *len)
22402{
22403 struct dwarf2_cu *cu;
22404 struct die_info *die;
22405 struct attribute *attr;
22406 const gdb_byte *result = NULL;
22407 struct type *type;
22408 LONGEST value;
22409 enum bfd_endian byte_order;
22410 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22411
22412 if (per_cu->cu == NULL)
22413 load_cu (per_cu, false);
22414 cu = per_cu->cu;
22415 if (cu == NULL)
22416 {
22417 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22418 Instead just throw an error, not much else we can do. */
22419 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22420 sect_offset_str (sect_off), objfile_name (objfile));
22421 }
22422
22423 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22424 if (!die)
22425 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22426 sect_offset_str (sect_off), objfile_name (objfile));
22427
22428 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22429 if (attr == NULL)
22430 return NULL;
22431
22432 byte_order = (bfd_big_endian (objfile->obfd)
22433 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22434
22435 switch (attr->form)
22436 {
22437 case DW_FORM_addr:
22438 case DW_FORM_addrx:
22439 case DW_FORM_GNU_addr_index:
22440 {
22441 gdb_byte *tem;
22442
22443 *len = cu->header.addr_size;
22444 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22445 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22446 result = tem;
22447 }
22448 break;
22449 case DW_FORM_string:
22450 case DW_FORM_strp:
22451 case DW_FORM_strx:
22452 case DW_FORM_GNU_str_index:
22453 case DW_FORM_GNU_strp_alt:
22454 /* DW_STRING is already allocated on the objfile obstack, point
22455 directly to it. */
22456 result = (const gdb_byte *) DW_STRING (attr);
22457 *len = strlen (DW_STRING (attr));
22458 break;
22459 case DW_FORM_block1:
22460 case DW_FORM_block2:
22461 case DW_FORM_block4:
22462 case DW_FORM_block:
22463 case DW_FORM_exprloc:
22464 case DW_FORM_data16:
22465 result = DW_BLOCK (attr)->data;
22466 *len = DW_BLOCK (attr)->size;
22467 break;
22468
22469 /* The DW_AT_const_value attributes are supposed to carry the
22470 symbol's value "represented as it would be on the target
22471 architecture." By the time we get here, it's already been
22472 converted to host endianness, so we just need to sign- or
22473 zero-extend it as appropriate. */
22474 case DW_FORM_data1:
22475 type = die_type (die, cu);
22476 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22477 if (result == NULL)
22478 result = write_constant_as_bytes (obstack, byte_order,
22479 type, value, len);
22480 break;
22481 case DW_FORM_data2:
22482 type = die_type (die, cu);
22483 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22484 if (result == NULL)
22485 result = write_constant_as_bytes (obstack, byte_order,
22486 type, value, len);
22487 break;
22488 case DW_FORM_data4:
22489 type = die_type (die, cu);
22490 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22491 if (result == NULL)
22492 result = write_constant_as_bytes (obstack, byte_order,
22493 type, value, len);
22494 break;
22495 case DW_FORM_data8:
22496 type = die_type (die, cu);
22497 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22498 if (result == NULL)
22499 result = write_constant_as_bytes (obstack, byte_order,
22500 type, value, len);
22501 break;
22502
22503 case DW_FORM_sdata:
22504 case DW_FORM_implicit_const:
22505 type = die_type (die, cu);
22506 result = write_constant_as_bytes (obstack, byte_order,
22507 type, DW_SND (attr), len);
22508 break;
22509
22510 case DW_FORM_udata:
22511 type = die_type (die, cu);
22512 result = write_constant_as_bytes (obstack, byte_order,
22513 type, DW_UNSND (attr), len);
22514 break;
22515
22516 default:
22517 complaint (_("unsupported const value attribute form: '%s'"),
22518 dwarf_form_name (attr->form));
22519 break;
22520 }
22521
22522 return result;
22523}
22524
22525/* See read.h. */
22526
22527struct type *
22528dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22529 dwarf2_per_cu_data *per_cu)
22530{
22531 struct dwarf2_cu *cu;
22532 struct die_info *die;
22533
22534 if (per_cu->cu == NULL)
22535 load_cu (per_cu, false);
22536 cu = per_cu->cu;
22537 if (!cu)
22538 return NULL;
22539
22540 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22541 if (!die)
22542 return NULL;
22543
22544 return die_type (die, cu);
22545}
22546
22547/* See read.h. */
22548
22549struct type *
22550dwarf2_get_die_type (cu_offset die_offset,
22551 struct dwarf2_per_cu_data *per_cu)
22552{
22553 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22554 return get_die_type_at_offset (die_offset_sect, per_cu);
22555}
22556
22557/* Follow type unit SIG_TYPE referenced by SRC_DIE.
22558 On entry *REF_CU is the CU of SRC_DIE.
22559 On exit *REF_CU is the CU of the result.
22560 Returns NULL if the referenced DIE isn't found. */
22561
22562static struct die_info *
22563follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22564 struct dwarf2_cu **ref_cu)
22565{
22566 struct die_info temp_die;
22567 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22568 struct die_info *die;
22569
22570 /* While it might be nice to assert sig_type->type == NULL here,
22571 we can get here for DW_AT_imported_declaration where we need
22572 the DIE not the type. */
22573
22574 /* If necessary, add it to the queue and load its DIEs. */
22575
22576 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
22577 read_signatured_type (sig_type);
22578
22579 sig_cu = sig_type->per_cu.cu;
22580 gdb_assert (sig_cu != NULL);
22581 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22582 temp_die.sect_off = sig_type->type_offset_in_section;
22583 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22584 to_underlying (temp_die.sect_off));
22585 if (die)
22586 {
22587 struct dwarf2_per_objfile *dwarf2_per_objfile
22588 = (*ref_cu)->per_cu->dwarf2_per_objfile;
22589
22590 /* For .gdb_index version 7 keep track of included TUs.
22591 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22592 if (dwarf2_per_objfile->index_table != NULL
22593 && dwarf2_per_objfile->index_table->version <= 7)
22594 {
22595 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22596 }
22597
22598 *ref_cu = sig_cu;
22599 if (sig_cu != cu)
22600 sig_cu->ancestor = cu;
22601
22602 return die;
22603 }
22604
22605 return NULL;
22606}
22607
22608/* Follow signatured type referenced by ATTR in SRC_DIE.
22609 On entry *REF_CU is the CU of SRC_DIE.
22610 On exit *REF_CU is the CU of the result.
22611 The result is the DIE of the type.
22612 If the referenced type cannot be found an error is thrown. */
22613
22614static struct die_info *
22615follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22616 struct dwarf2_cu **ref_cu)
22617{
22618 ULONGEST signature = DW_SIGNATURE (attr);
22619 struct signatured_type *sig_type;
22620 struct die_info *die;
22621
22622 gdb_assert (attr->form == DW_FORM_ref_sig8);
22623
22624 sig_type = lookup_signatured_type (*ref_cu, signature);
22625 /* sig_type will be NULL if the signatured type is missing from
22626 the debug info. */
22627 if (sig_type == NULL)
22628 {
22629 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22630 " from DIE at %s [in module %s]"),
22631 hex_string (signature), sect_offset_str (src_die->sect_off),
22632 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22633 }
22634
22635 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22636 if (die == NULL)
22637 {
22638 dump_die_for_error (src_die);
22639 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22640 " from DIE at %s [in module %s]"),
22641 hex_string (signature), sect_offset_str (src_die->sect_off),
22642 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22643 }
22644
22645 return die;
22646}
22647
22648/* Get the type specified by SIGNATURE referenced in DIE/CU,
22649 reading in and processing the type unit if necessary. */
22650
22651static struct type *
22652get_signatured_type (struct die_info *die, ULONGEST signature,
22653 struct dwarf2_cu *cu)
22654{
22655 struct dwarf2_per_objfile *dwarf2_per_objfile
22656 = cu->per_cu->dwarf2_per_objfile;
22657 struct signatured_type *sig_type;
22658 struct dwarf2_cu *type_cu;
22659 struct die_info *type_die;
22660 struct type *type;
22661
22662 sig_type = lookup_signatured_type (cu, signature);
22663 /* sig_type will be NULL if the signatured type is missing from
22664 the debug info. */
22665 if (sig_type == NULL)
22666 {
22667 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22668 " from DIE at %s [in module %s]"),
22669 hex_string (signature), sect_offset_str (die->sect_off),
22670 objfile_name (dwarf2_per_objfile->objfile));
22671 return build_error_marker_type (cu, die);
22672 }
22673
22674 /* If we already know the type we're done. */
22675 if (sig_type->type != NULL)
22676 return sig_type->type;
22677
22678 type_cu = cu;
22679 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22680 if (type_die != NULL)
22681 {
22682 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22683 is created. This is important, for example, because for c++ classes
22684 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22685 type = read_type_die (type_die, type_cu);
22686 if (type == NULL)
22687 {
22688 complaint (_("Dwarf Error: Cannot build signatured type %s"
22689 " referenced from DIE at %s [in module %s]"),
22690 hex_string (signature), sect_offset_str (die->sect_off),
22691 objfile_name (dwarf2_per_objfile->objfile));
22692 type = build_error_marker_type (cu, die);
22693 }
22694 }
22695 else
22696 {
22697 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22698 " from DIE at %s [in module %s]"),
22699 hex_string (signature), sect_offset_str (die->sect_off),
22700 objfile_name (dwarf2_per_objfile->objfile));
22701 type = build_error_marker_type (cu, die);
22702 }
22703 sig_type->type = type;
22704
22705 return type;
22706}
22707
22708/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22709 reading in and processing the type unit if necessary. */
22710
22711static struct type *
22712get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22713 struct dwarf2_cu *cu) /* ARI: editCase function */
22714{
22715 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22716 if (attr->form_is_ref ())
22717 {
22718 struct dwarf2_cu *type_cu = cu;
22719 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22720
22721 return read_type_die (type_die, type_cu);
22722 }
22723 else if (attr->form == DW_FORM_ref_sig8)
22724 {
22725 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22726 }
22727 else
22728 {
22729 struct dwarf2_per_objfile *dwarf2_per_objfile
22730 = cu->per_cu->dwarf2_per_objfile;
22731
22732 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22733 " at %s [in module %s]"),
22734 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22735 objfile_name (dwarf2_per_objfile->objfile));
22736 return build_error_marker_type (cu, die);
22737 }
22738}
22739
22740/* Load the DIEs associated with type unit PER_CU into memory. */
22741
22742static void
22743load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22744{
22745 struct signatured_type *sig_type;
22746
22747 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22748 gdb_assert (! per_cu->type_unit_group_p ());
22749
22750 /* We have the per_cu, but we need the signatured_type.
22751 Fortunately this is an easy translation. */
22752 gdb_assert (per_cu->is_debug_types);
22753 sig_type = (struct signatured_type *) per_cu;
22754
22755 gdb_assert (per_cu->cu == NULL);
22756
22757 read_signatured_type (sig_type);
22758
22759 gdb_assert (per_cu->cu != NULL);
22760}
22761
22762/* Read in a signatured type and build its CU and DIEs.
22763 If the type is a stub for the real type in a DWO file,
22764 read in the real type from the DWO file as well. */
22765
22766static void
22767read_signatured_type (struct signatured_type *sig_type)
22768{
22769 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22770
22771 gdb_assert (per_cu->is_debug_types);
22772 gdb_assert (per_cu->cu == NULL);
22773
22774 cutu_reader reader (per_cu, NULL, 0, false);
22775
22776 if (!reader.dummy_p)
22777 {
22778 struct dwarf2_cu *cu = reader.cu;
22779 const gdb_byte *info_ptr = reader.info_ptr;
22780
22781 gdb_assert (cu->die_hash == NULL);
22782 cu->die_hash =
22783 htab_create_alloc_ex (cu->header.length / 12,
22784 die_hash,
22785 die_eq,
22786 NULL,
22787 &cu->comp_unit_obstack,
22788 hashtab_obstack_allocate,
22789 dummy_obstack_deallocate);
22790
22791 if (reader.comp_unit_die->has_children)
22792 reader.comp_unit_die->child
22793 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22794 reader.comp_unit_die);
22795 cu->dies = reader.comp_unit_die;
22796 /* comp_unit_die is not stored in die_hash, no need. */
22797
22798 /* We try not to read any attributes in this function, because
22799 not all CUs needed for references have been loaded yet, and
22800 symbol table processing isn't initialized. But we have to
22801 set the CU language, or we won't be able to build types
22802 correctly. Similarly, if we do not read the producer, we can
22803 not apply producer-specific interpretation. */
22804 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22805
22806 reader.keep ();
22807 }
22808
22809 sig_type->per_cu.tu_read = 1;
22810}
22811
22812/* Decode simple location descriptions.
22813 Given a pointer to a dwarf block that defines a location, compute
22814 the location and return the value.
22815
22816 NOTE drow/2003-11-18: This function is called in two situations
22817 now: for the address of static or global variables (partial symbols
22818 only) and for offsets into structures which are expected to be
22819 (more or less) constant. The partial symbol case should go away,
22820 and only the constant case should remain. That will let this
22821 function complain more accurately. A few special modes are allowed
22822 without complaint for global variables (for instance, global
22823 register values and thread-local values).
22824
22825 A location description containing no operations indicates that the
22826 object is optimized out. The return value is 0 for that case.
22827 FIXME drow/2003-11-16: No callers check for this case any more; soon all
22828 callers will only want a very basic result and this can become a
22829 complaint.
22830
22831 Note that stack[0] is unused except as a default error return. */
22832
22833static CORE_ADDR
22834decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
22835{
22836 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22837 size_t i;
22838 size_t size = blk->size;
22839 const gdb_byte *data = blk->data;
22840 CORE_ADDR stack[64];
22841 int stacki;
22842 unsigned int bytes_read, unsnd;
22843 gdb_byte op;
22844
22845 i = 0;
22846 stacki = 0;
22847 stack[stacki] = 0;
22848 stack[++stacki] = 0;
22849
22850 while (i < size)
22851 {
22852 op = data[i++];
22853 switch (op)
22854 {
22855 case DW_OP_lit0:
22856 case DW_OP_lit1:
22857 case DW_OP_lit2:
22858 case DW_OP_lit3:
22859 case DW_OP_lit4:
22860 case DW_OP_lit5:
22861 case DW_OP_lit6:
22862 case DW_OP_lit7:
22863 case DW_OP_lit8:
22864 case DW_OP_lit9:
22865 case DW_OP_lit10:
22866 case DW_OP_lit11:
22867 case DW_OP_lit12:
22868 case DW_OP_lit13:
22869 case DW_OP_lit14:
22870 case DW_OP_lit15:
22871 case DW_OP_lit16:
22872 case DW_OP_lit17:
22873 case DW_OP_lit18:
22874 case DW_OP_lit19:
22875 case DW_OP_lit20:
22876 case DW_OP_lit21:
22877 case DW_OP_lit22:
22878 case DW_OP_lit23:
22879 case DW_OP_lit24:
22880 case DW_OP_lit25:
22881 case DW_OP_lit26:
22882 case DW_OP_lit27:
22883 case DW_OP_lit28:
22884 case DW_OP_lit29:
22885 case DW_OP_lit30:
22886 case DW_OP_lit31:
22887 stack[++stacki] = op - DW_OP_lit0;
22888 break;
22889
22890 case DW_OP_reg0:
22891 case DW_OP_reg1:
22892 case DW_OP_reg2:
22893 case DW_OP_reg3:
22894 case DW_OP_reg4:
22895 case DW_OP_reg5:
22896 case DW_OP_reg6:
22897 case DW_OP_reg7:
22898 case DW_OP_reg8:
22899 case DW_OP_reg9:
22900 case DW_OP_reg10:
22901 case DW_OP_reg11:
22902 case DW_OP_reg12:
22903 case DW_OP_reg13:
22904 case DW_OP_reg14:
22905 case DW_OP_reg15:
22906 case DW_OP_reg16:
22907 case DW_OP_reg17:
22908 case DW_OP_reg18:
22909 case DW_OP_reg19:
22910 case DW_OP_reg20:
22911 case DW_OP_reg21:
22912 case DW_OP_reg22:
22913 case DW_OP_reg23:
22914 case DW_OP_reg24:
22915 case DW_OP_reg25:
22916 case DW_OP_reg26:
22917 case DW_OP_reg27:
22918 case DW_OP_reg28:
22919 case DW_OP_reg29:
22920 case DW_OP_reg30:
22921 case DW_OP_reg31:
22922 stack[++stacki] = op - DW_OP_reg0;
22923 if (i < size)
22924 dwarf2_complex_location_expr_complaint ();
22925 break;
22926
22927 case DW_OP_regx:
22928 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22929 i += bytes_read;
22930 stack[++stacki] = unsnd;
22931 if (i < size)
22932 dwarf2_complex_location_expr_complaint ();
22933 break;
22934
22935 case DW_OP_addr:
22936 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
22937 &bytes_read);
22938 i += bytes_read;
22939 break;
22940
22941 case DW_OP_const1u:
22942 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22943 i += 1;
22944 break;
22945
22946 case DW_OP_const1s:
22947 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22948 i += 1;
22949 break;
22950
22951 case DW_OP_const2u:
22952 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22953 i += 2;
22954 break;
22955
22956 case DW_OP_const2s:
22957 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22958 i += 2;
22959 break;
22960
22961 case DW_OP_const4u:
22962 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22963 i += 4;
22964 break;
22965
22966 case DW_OP_const4s:
22967 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22968 i += 4;
22969 break;
22970
22971 case DW_OP_const8u:
22972 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22973 i += 8;
22974 break;
22975
22976 case DW_OP_constu:
22977 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22978 &bytes_read);
22979 i += bytes_read;
22980 break;
22981
22982 case DW_OP_consts:
22983 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22984 i += bytes_read;
22985 break;
22986
22987 case DW_OP_dup:
22988 stack[stacki + 1] = stack[stacki];
22989 stacki++;
22990 break;
22991
22992 case DW_OP_plus:
22993 stack[stacki - 1] += stack[stacki];
22994 stacki--;
22995 break;
22996
22997 case DW_OP_plus_uconst:
22998 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22999 &bytes_read);
23000 i += bytes_read;
23001 break;
23002
23003 case DW_OP_minus:
23004 stack[stacki - 1] -= stack[stacki];
23005 stacki--;
23006 break;
23007
23008 case DW_OP_deref:
23009 /* If we're not the last op, then we definitely can't encode
23010 this using GDB's address_class enum. This is valid for partial
23011 global symbols, although the variable's address will be bogus
23012 in the psymtab. */
23013 if (i < size)
23014 dwarf2_complex_location_expr_complaint ();
23015 break;
23016
23017 case DW_OP_GNU_push_tls_address:
23018 case DW_OP_form_tls_address:
23019 /* The top of the stack has the offset from the beginning
23020 of the thread control block at which the variable is located. */
23021 /* Nothing should follow this operator, so the top of stack would
23022 be returned. */
23023 /* This is valid for partial global symbols, but the variable's
23024 address will be bogus in the psymtab. Make it always at least
23025 non-zero to not look as a variable garbage collected by linker
23026 which have DW_OP_addr 0. */
23027 if (i < size)
23028 dwarf2_complex_location_expr_complaint ();
23029 stack[stacki]++;
23030 break;
23031
23032 case DW_OP_GNU_uninit:
23033 break;
23034
23035 case DW_OP_addrx:
23036 case DW_OP_GNU_addr_index:
23037 case DW_OP_GNU_const_index:
23038 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23039 &bytes_read);
23040 i += bytes_read;
23041 break;
23042
23043 default:
23044 {
23045 const char *name = get_DW_OP_name (op);
23046
23047 if (name)
23048 complaint (_("unsupported stack op: '%s'"),
23049 name);
23050 else
23051 complaint (_("unsupported stack op: '%02x'"),
23052 op);
23053 }
23054
23055 return (stack[stacki]);
23056 }
23057
23058 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23059 outside of the allocated space. Also enforce minimum>0. */
23060 if (stacki >= ARRAY_SIZE (stack) - 1)
23061 {
23062 complaint (_("location description stack overflow"));
23063 return 0;
23064 }
23065
23066 if (stacki <= 0)
23067 {
23068 complaint (_("location description stack underflow"));
23069 return 0;
23070 }
23071 }
23072 return (stack[stacki]);
23073}
23074
23075/* memory allocation interface */
23076
23077static struct dwarf_block *
23078dwarf_alloc_block (struct dwarf2_cu *cu)
23079{
23080 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23081}
23082
23083static struct die_info *
23084dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23085{
23086 struct die_info *die;
23087 size_t size = sizeof (struct die_info);
23088
23089 if (num_attrs > 1)
23090 size += (num_attrs - 1) * sizeof (struct attribute);
23091
23092 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23093 memset (die, 0, sizeof (struct die_info));
23094 return (die);
23095}
23096
23097\f
23098/* Macro support. */
23099
23100static struct macro_source_file *
23101macro_start_file (struct dwarf2_cu *cu,
23102 int file, int line,
23103 struct macro_source_file *current_file,
23104 struct line_header *lh)
23105{
23106 /* File name relative to the compilation directory of this source file. */
23107 gdb::unique_xmalloc_ptr<char> file_name = lh->file_file_name (file);
23108
23109 if (! current_file)
23110 {
23111 /* Note: We don't create a macro table for this compilation unit
23112 at all until we actually get a filename. */
23113 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
23114
23115 /* If we have no current file, then this must be the start_file
23116 directive for the compilation unit's main source file. */
23117 current_file = macro_set_main (macro_table, file_name.get ());
23118 macro_define_special (macro_table);
23119 }
23120 else
23121 current_file = macro_include (current_file, line, file_name.get ());
23122
23123 return current_file;
23124}
23125
23126static const char *
23127consume_improper_spaces (const char *p, const char *body)
23128{
23129 if (*p == ' ')
23130 {
23131 complaint (_("macro definition contains spaces "
23132 "in formal argument list:\n`%s'"),
23133 body);
23134
23135 while (*p == ' ')
23136 p++;
23137 }
23138
23139 return p;
23140}
23141
23142
23143static void
23144parse_macro_definition (struct macro_source_file *file, int line,
23145 const char *body)
23146{
23147 const char *p;
23148
23149 /* The body string takes one of two forms. For object-like macro
23150 definitions, it should be:
23151
23152 <macro name> " " <definition>
23153
23154 For function-like macro definitions, it should be:
23155
23156 <macro name> "() " <definition>
23157 or
23158 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23159
23160 Spaces may appear only where explicitly indicated, and in the
23161 <definition>.
23162
23163 The Dwarf 2 spec says that an object-like macro's name is always
23164 followed by a space, but versions of GCC around March 2002 omit
23165 the space when the macro's definition is the empty string.
23166
23167 The Dwarf 2 spec says that there should be no spaces between the
23168 formal arguments in a function-like macro's formal argument list,
23169 but versions of GCC around March 2002 include spaces after the
23170 commas. */
23171
23172
23173 /* Find the extent of the macro name. The macro name is terminated
23174 by either a space or null character (for an object-like macro) or
23175 an opening paren (for a function-like macro). */
23176 for (p = body; *p; p++)
23177 if (*p == ' ' || *p == '(')
23178 break;
23179
23180 if (*p == ' ' || *p == '\0')
23181 {
23182 /* It's an object-like macro. */
23183 int name_len = p - body;
23184 std::string name (body, name_len);
23185 const char *replacement;
23186
23187 if (*p == ' ')
23188 replacement = body + name_len + 1;
23189 else
23190 {
23191 dwarf2_macro_malformed_definition_complaint (body);
23192 replacement = body + name_len;
23193 }
23194
23195 macro_define_object (file, line, name.c_str (), replacement);
23196 }
23197 else if (*p == '(')
23198 {
23199 /* It's a function-like macro. */
23200 std::string name (body, p - body);
23201 int argc = 0;
23202 int argv_size = 1;
23203 char **argv = XNEWVEC (char *, argv_size);
23204
23205 p++;
23206
23207 p = consume_improper_spaces (p, body);
23208
23209 /* Parse the formal argument list. */
23210 while (*p && *p != ')')
23211 {
23212 /* Find the extent of the current argument name. */
23213 const char *arg_start = p;
23214
23215 while (*p && *p != ',' && *p != ')' && *p != ' ')
23216 p++;
23217
23218 if (! *p || p == arg_start)
23219 dwarf2_macro_malformed_definition_complaint (body);
23220 else
23221 {
23222 /* Make sure argv has room for the new argument. */
23223 if (argc >= argv_size)
23224 {
23225 argv_size *= 2;
23226 argv = XRESIZEVEC (char *, argv, argv_size);
23227 }
23228
23229 argv[argc++] = savestring (arg_start, p - arg_start);
23230 }
23231
23232 p = consume_improper_spaces (p, body);
23233
23234 /* Consume the comma, if present. */
23235 if (*p == ',')
23236 {
23237 p++;
23238
23239 p = consume_improper_spaces (p, body);
23240 }
23241 }
23242
23243 if (*p == ')')
23244 {
23245 p++;
23246
23247 if (*p == ' ')
23248 /* Perfectly formed definition, no complaints. */
23249 macro_define_function (file, line, name.c_str (),
23250 argc, (const char **) argv,
23251 p + 1);
23252 else if (*p == '\0')
23253 {
23254 /* Complain, but do define it. */
23255 dwarf2_macro_malformed_definition_complaint (body);
23256 macro_define_function (file, line, name.c_str (),
23257 argc, (const char **) argv,
23258 p);
23259 }
23260 else
23261 /* Just complain. */
23262 dwarf2_macro_malformed_definition_complaint (body);
23263 }
23264 else
23265 /* Just complain. */
23266 dwarf2_macro_malformed_definition_complaint (body);
23267
23268 {
23269 int i;
23270
23271 for (i = 0; i < argc; i++)
23272 xfree (argv[i]);
23273 }
23274 xfree (argv);
23275 }
23276 else
23277 dwarf2_macro_malformed_definition_complaint (body);
23278}
23279
23280/* Skip some bytes from BYTES according to the form given in FORM.
23281 Returns the new pointer. */
23282
23283static const gdb_byte *
23284skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23285 enum dwarf_form form,
23286 unsigned int offset_size,
23287 struct dwarf2_section_info *section)
23288{
23289 unsigned int bytes_read;
23290
23291 switch (form)
23292 {
23293 case DW_FORM_data1:
23294 case DW_FORM_flag:
23295 ++bytes;
23296 break;
23297
23298 case DW_FORM_data2:
23299 bytes += 2;
23300 break;
23301
23302 case DW_FORM_data4:
23303 bytes += 4;
23304 break;
23305
23306 case DW_FORM_data8:
23307 bytes += 8;
23308 break;
23309
23310 case DW_FORM_data16:
23311 bytes += 16;
23312 break;
23313
23314 case DW_FORM_string:
23315 read_direct_string (abfd, bytes, &bytes_read);
23316 bytes += bytes_read;
23317 break;
23318
23319 case DW_FORM_sec_offset:
23320 case DW_FORM_strp:
23321 case DW_FORM_GNU_strp_alt:
23322 bytes += offset_size;
23323 break;
23324
23325 case DW_FORM_block:
23326 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23327 bytes += bytes_read;
23328 break;
23329
23330 case DW_FORM_block1:
23331 bytes += 1 + read_1_byte (abfd, bytes);
23332 break;
23333 case DW_FORM_block2:
23334 bytes += 2 + read_2_bytes (abfd, bytes);
23335 break;
23336 case DW_FORM_block4:
23337 bytes += 4 + read_4_bytes (abfd, bytes);
23338 break;
23339
23340 case DW_FORM_addrx:
23341 case DW_FORM_sdata:
23342 case DW_FORM_strx:
23343 case DW_FORM_udata:
23344 case DW_FORM_GNU_addr_index:
23345 case DW_FORM_GNU_str_index:
23346 bytes = gdb_skip_leb128 (bytes, buffer_end);
23347 if (bytes == NULL)
23348 {
23349 dwarf2_section_buffer_overflow_complaint (section);
23350 return NULL;
23351 }
23352 break;
23353
23354 case DW_FORM_implicit_const:
23355 break;
23356
23357 default:
23358 {
23359 complaint (_("invalid form 0x%x in `%s'"),
23360 form, section->get_name ());
23361 return NULL;
23362 }
23363 }
23364
23365 return bytes;
23366}
23367
23368/* A helper for dwarf_decode_macros that handles skipping an unknown
23369 opcode. Returns an updated pointer to the macro data buffer; or,
23370 on error, issues a complaint and returns NULL. */
23371
23372static const gdb_byte *
23373skip_unknown_opcode (unsigned int opcode,
23374 const gdb_byte **opcode_definitions,
23375 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23376 bfd *abfd,
23377 unsigned int offset_size,
23378 struct dwarf2_section_info *section)
23379{
23380 unsigned int bytes_read, i;
23381 unsigned long arg;
23382 const gdb_byte *defn;
23383
23384 if (opcode_definitions[opcode] == NULL)
23385 {
23386 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
23387 opcode);
23388 return NULL;
23389 }
23390
23391 defn = opcode_definitions[opcode];
23392 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
23393 defn += bytes_read;
23394
23395 for (i = 0; i < arg; ++i)
23396 {
23397 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
23398 (enum dwarf_form) defn[i], offset_size,
23399 section);
23400 if (mac_ptr == NULL)
23401 {
23402 /* skip_form_bytes already issued the complaint. */
23403 return NULL;
23404 }
23405 }
23406
23407 return mac_ptr;
23408}
23409
23410/* A helper function which parses the header of a macro section.
23411 If the macro section is the extended (for now called "GNU") type,
23412 then this updates *OFFSET_SIZE. Returns a pointer to just after
23413 the header, or issues a complaint and returns NULL on error. */
23414
23415static const gdb_byte *
23416dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
23417 bfd *abfd,
23418 const gdb_byte *mac_ptr,
23419 unsigned int *offset_size,
23420 int section_is_gnu)
23421{
23422 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
23423
23424 if (section_is_gnu)
23425 {
23426 unsigned int version, flags;
23427
23428 version = read_2_bytes (abfd, mac_ptr);
23429 if (version != 4 && version != 5)
23430 {
23431 complaint (_("unrecognized version `%d' in .debug_macro section"),
23432 version);
23433 return NULL;
23434 }
23435 mac_ptr += 2;
23436
23437 flags = read_1_byte (abfd, mac_ptr);
23438 ++mac_ptr;
23439 *offset_size = (flags & 1) ? 8 : 4;
23440
23441 if ((flags & 2) != 0)
23442 /* We don't need the line table offset. */
23443 mac_ptr += *offset_size;
23444
23445 /* Vendor opcode descriptions. */
23446 if ((flags & 4) != 0)
23447 {
23448 unsigned int i, count;
23449
23450 count = read_1_byte (abfd, mac_ptr);
23451 ++mac_ptr;
23452 for (i = 0; i < count; ++i)
23453 {
23454 unsigned int opcode, bytes_read;
23455 unsigned long arg;
23456
23457 opcode = read_1_byte (abfd, mac_ptr);
23458 ++mac_ptr;
23459 opcode_definitions[opcode] = mac_ptr;
23460 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23461 mac_ptr += bytes_read;
23462 mac_ptr += arg;
23463 }
23464 }
23465 }
23466
23467 return mac_ptr;
23468}
23469
23470/* A helper for dwarf_decode_macros that handles the GNU extensions,
23471 including DW_MACRO_import. */
23472
23473static void
23474dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
23475 bfd *abfd,
23476 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23477 struct macro_source_file *current_file,
23478 struct line_header *lh,
23479 struct dwarf2_section_info *section,
23480 int section_is_gnu, int section_is_dwz,
23481 unsigned int offset_size,
23482 htab_t include_hash)
23483{
23484 struct dwarf2_per_objfile *dwarf2_per_objfile
23485 = cu->per_cu->dwarf2_per_objfile;
23486 struct objfile *objfile = dwarf2_per_objfile->objfile;
23487 enum dwarf_macro_record_type macinfo_type;
23488 int at_commandline;
23489 const gdb_byte *opcode_definitions[256];
23490
23491 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
23492 &offset_size, section_is_gnu);
23493 if (mac_ptr == NULL)
23494 {
23495 /* We already issued a complaint. */
23496 return;
23497 }
23498
23499 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
23500 GDB is still reading the definitions from command line. First
23501 DW_MACINFO_start_file will need to be ignored as it was already executed
23502 to create CURRENT_FILE for the main source holding also the command line
23503 definitions. On first met DW_MACINFO_start_file this flag is reset to
23504 normally execute all the remaining DW_MACINFO_start_file macinfos. */
23505
23506 at_commandline = 1;
23507
23508 do
23509 {
23510 /* Do we at least have room for a macinfo type byte? */
23511 if (mac_ptr >= mac_end)
23512 {
23513 dwarf2_section_buffer_overflow_complaint (section);
23514 break;
23515 }
23516
23517 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
23518 mac_ptr++;
23519
23520 /* Note that we rely on the fact that the corresponding GNU and
23521 DWARF constants are the same. */
23522 DIAGNOSTIC_PUSH
23523 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
23524 switch (macinfo_type)
23525 {
23526 /* A zero macinfo type indicates the end of the macro
23527 information. */
23528 case 0:
23529 break;
23530
23531 case DW_MACRO_define:
23532 case DW_MACRO_undef:
23533 case DW_MACRO_define_strp:
23534 case DW_MACRO_undef_strp:
23535 case DW_MACRO_define_sup:
23536 case DW_MACRO_undef_sup:
23537 {
23538 unsigned int bytes_read;
23539 int line;
23540 const char *body;
23541 int is_define;
23542
23543 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23544 mac_ptr += bytes_read;
23545
23546 if (macinfo_type == DW_MACRO_define
23547 || macinfo_type == DW_MACRO_undef)
23548 {
23549 body = read_direct_string (abfd, mac_ptr, &bytes_read);
23550 mac_ptr += bytes_read;
23551 }
23552 else
23553 {
23554 LONGEST str_offset;
23555
23556 str_offset = read_offset (abfd, mac_ptr, offset_size);
23557 mac_ptr += offset_size;
23558
23559 if (macinfo_type == DW_MACRO_define_sup
23560 || macinfo_type == DW_MACRO_undef_sup
23561 || section_is_dwz)
23562 {
23563 struct dwz_file *dwz
23564 = dwarf2_get_dwz_file (dwarf2_per_objfile);
23565
23566 body = read_indirect_string_from_dwz (objfile,
23567 dwz, str_offset);
23568 }
23569 else
23570 body = read_indirect_string_at_offset (dwarf2_per_objfile,
23571 abfd, str_offset);
23572 }
23573
23574 is_define = (macinfo_type == DW_MACRO_define
23575 || macinfo_type == DW_MACRO_define_strp
23576 || macinfo_type == DW_MACRO_define_sup);
23577 if (! current_file)
23578 {
23579 /* DWARF violation as no main source is present. */
23580 complaint (_("debug info with no main source gives macro %s "
23581 "on line %d: %s"),
23582 is_define ? _("definition") : _("undefinition"),
23583 line, body);
23584 break;
23585 }
23586 if ((line == 0 && !at_commandline)
23587 || (line != 0 && at_commandline))
23588 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
23589 at_commandline ? _("command-line") : _("in-file"),
23590 is_define ? _("definition") : _("undefinition"),
23591 line == 0 ? _("zero") : _("non-zero"), line, body);
23592
23593 if (body == NULL)
23594 {
23595 /* Fedora's rpm-build's "debugedit" binary
23596 corrupted .debug_macro sections.
23597
23598 For more info, see
23599 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
23600 complaint (_("debug info gives %s invalid macro %s "
23601 "without body (corrupted?) at line %d "
23602 "on file %s"),
23603 at_commandline ? _("command-line") : _("in-file"),
23604 is_define ? _("definition") : _("undefinition"),
23605 line, current_file->filename);
23606 }
23607 else if (is_define)
23608 parse_macro_definition (current_file, line, body);
23609 else
23610 {
23611 gdb_assert (macinfo_type == DW_MACRO_undef
23612 || macinfo_type == DW_MACRO_undef_strp
23613 || macinfo_type == DW_MACRO_undef_sup);
23614 macro_undef (current_file, line, body);
23615 }
23616 }
23617 break;
23618
23619 case DW_MACRO_start_file:
23620 {
23621 unsigned int bytes_read;
23622 int line, file;
23623
23624 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23625 mac_ptr += bytes_read;
23626 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23627 mac_ptr += bytes_read;
23628
23629 if ((line == 0 && !at_commandline)
23630 || (line != 0 && at_commandline))
23631 complaint (_("debug info gives source %d included "
23632 "from %s at %s line %d"),
23633 file, at_commandline ? _("command-line") : _("file"),
23634 line == 0 ? _("zero") : _("non-zero"), line);
23635
23636 if (at_commandline)
23637 {
23638 /* This DW_MACRO_start_file was executed in the
23639 pass one. */
23640 at_commandline = 0;
23641 }
23642 else
23643 current_file = macro_start_file (cu, file, line, current_file,
23644 lh);
23645 }
23646 break;
23647
23648 case DW_MACRO_end_file:
23649 if (! current_file)
23650 complaint (_("macro debug info has an unmatched "
23651 "`close_file' directive"));
23652 else
23653 {
23654 current_file = current_file->included_by;
23655 if (! current_file)
23656 {
23657 enum dwarf_macro_record_type next_type;
23658
23659 /* GCC circa March 2002 doesn't produce the zero
23660 type byte marking the end of the compilation
23661 unit. Complain if it's not there, but exit no
23662 matter what. */
23663
23664 /* Do we at least have room for a macinfo type byte? */
23665 if (mac_ptr >= mac_end)
23666 {
23667 dwarf2_section_buffer_overflow_complaint (section);
23668 return;
23669 }
23670
23671 /* We don't increment mac_ptr here, so this is just
23672 a look-ahead. */
23673 next_type
23674 = (enum dwarf_macro_record_type) read_1_byte (abfd,
23675 mac_ptr);
23676 if (next_type != 0)
23677 complaint (_("no terminating 0-type entry for "
23678 "macros in `.debug_macinfo' section"));
23679
23680 return;
23681 }
23682 }
23683 break;
23684
23685 case DW_MACRO_import:
23686 case DW_MACRO_import_sup:
23687 {
23688 LONGEST offset;
23689 void **slot;
23690 bfd *include_bfd = abfd;
23691 struct dwarf2_section_info *include_section = section;
23692 const gdb_byte *include_mac_end = mac_end;
23693 int is_dwz = section_is_dwz;
23694 const gdb_byte *new_mac_ptr;
23695
23696 offset = read_offset (abfd, mac_ptr, offset_size);
23697 mac_ptr += offset_size;
23698
23699 if (macinfo_type == DW_MACRO_import_sup)
23700 {
23701 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
23702
23703 dwz->macro.read (objfile);
23704
23705 include_section = &dwz->macro;
23706 include_bfd = include_section->get_bfd_owner ();
23707 include_mac_end = dwz->macro.buffer + dwz->macro.size;
23708 is_dwz = 1;
23709 }
23710
23711 new_mac_ptr = include_section->buffer + offset;
23712 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
23713
23714 if (*slot != NULL)
23715 {
23716 /* This has actually happened; see
23717 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
23718 complaint (_("recursive DW_MACRO_import in "
23719 ".debug_macro section"));
23720 }
23721 else
23722 {
23723 *slot = (void *) new_mac_ptr;
23724
23725 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
23726 include_mac_end, current_file, lh,
23727 section, section_is_gnu, is_dwz,
23728 offset_size, include_hash);
23729
23730 htab_remove_elt (include_hash, (void *) new_mac_ptr);
23731 }
23732 }
23733 break;
23734
23735 case DW_MACINFO_vendor_ext:
23736 if (!section_is_gnu)
23737 {
23738 unsigned int bytes_read;
23739
23740 /* This reads the constant, but since we don't recognize
23741 any vendor extensions, we ignore it. */
23742 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23743 mac_ptr += bytes_read;
23744 read_direct_string (abfd, mac_ptr, &bytes_read);
23745 mac_ptr += bytes_read;
23746
23747 /* We don't recognize any vendor extensions. */
23748 break;
23749 }
23750 /* FALLTHROUGH */
23751
23752 default:
23753 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23754 mac_ptr, mac_end, abfd, offset_size,
23755 section);
23756 if (mac_ptr == NULL)
23757 return;
23758 break;
23759 }
23760 DIAGNOSTIC_POP
23761 } while (macinfo_type != 0);
23762}
23763
23764static void
23765dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23766 int section_is_gnu)
23767{
23768 struct dwarf2_per_objfile *dwarf2_per_objfile
23769 = cu->per_cu->dwarf2_per_objfile;
23770 struct objfile *objfile = dwarf2_per_objfile->objfile;
23771 struct line_header *lh = cu->line_header;
23772 bfd *abfd;
23773 const gdb_byte *mac_ptr, *mac_end;
23774 struct macro_source_file *current_file = 0;
23775 enum dwarf_macro_record_type macinfo_type;
23776 unsigned int offset_size = cu->header.offset_size;
23777 const gdb_byte *opcode_definitions[256];
23778 void **slot;
23779 struct dwarf2_section_info *section;
23780 const char *section_name;
23781
23782 if (cu->dwo_unit != NULL)
23783 {
23784 if (section_is_gnu)
23785 {
23786 section = &cu->dwo_unit->dwo_file->sections.macro;
23787 section_name = ".debug_macro.dwo";
23788 }
23789 else
23790 {
23791 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23792 section_name = ".debug_macinfo.dwo";
23793 }
23794 }
23795 else
23796 {
23797 if (section_is_gnu)
23798 {
23799 section = &dwarf2_per_objfile->macro;
23800 section_name = ".debug_macro";
23801 }
23802 else
23803 {
23804 section = &dwarf2_per_objfile->macinfo;
23805 section_name = ".debug_macinfo";
23806 }
23807 }
23808
23809 section->read (objfile);
23810 if (section->buffer == NULL)
23811 {
23812 complaint (_("missing %s section"), section_name);
23813 return;
23814 }
23815 abfd = section->get_bfd_owner ();
23816
23817 /* First pass: Find the name of the base filename.
23818 This filename is needed in order to process all macros whose definition
23819 (or undefinition) comes from the command line. These macros are defined
23820 before the first DW_MACINFO_start_file entry, and yet still need to be
23821 associated to the base file.
23822
23823 To determine the base file name, we scan the macro definitions until we
23824 reach the first DW_MACINFO_start_file entry. We then initialize
23825 CURRENT_FILE accordingly so that any macro definition found before the
23826 first DW_MACINFO_start_file can still be associated to the base file. */
23827
23828 mac_ptr = section->buffer + offset;
23829 mac_end = section->buffer + section->size;
23830
23831 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
23832 &offset_size, section_is_gnu);
23833 if (mac_ptr == NULL)
23834 {
23835 /* We already issued a complaint. */
23836 return;
23837 }
23838
23839 do
23840 {
23841 /* Do we at least have room for a macinfo type byte? */
23842 if (mac_ptr >= mac_end)
23843 {
23844 /* Complaint is printed during the second pass as GDB will probably
23845 stop the first pass earlier upon finding
23846 DW_MACINFO_start_file. */
23847 break;
23848 }
23849
23850 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
23851 mac_ptr++;
23852
23853 /* Note that we rely on the fact that the corresponding GNU and
23854 DWARF constants are the same. */
23855 DIAGNOSTIC_PUSH
23856 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
23857 switch (macinfo_type)
23858 {
23859 /* A zero macinfo type indicates the end of the macro
23860 information. */
23861 case 0:
23862 break;
23863
23864 case DW_MACRO_define:
23865 case DW_MACRO_undef:
23866 /* Only skip the data by MAC_PTR. */
23867 {
23868 unsigned int bytes_read;
23869
23870 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23871 mac_ptr += bytes_read;
23872 read_direct_string (abfd, mac_ptr, &bytes_read);
23873 mac_ptr += bytes_read;
23874 }
23875 break;
23876
23877 case DW_MACRO_start_file:
23878 {
23879 unsigned int bytes_read;
23880 int line, file;
23881
23882 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23883 mac_ptr += bytes_read;
23884 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23885 mac_ptr += bytes_read;
23886
23887 current_file = macro_start_file (cu, file, line, current_file, lh);
23888 }
23889 break;
23890
23891 case DW_MACRO_end_file:
23892 /* No data to skip by MAC_PTR. */
23893 break;
23894
23895 case DW_MACRO_define_strp:
23896 case DW_MACRO_undef_strp:
23897 case DW_MACRO_define_sup:
23898 case DW_MACRO_undef_sup:
23899 {
23900 unsigned int bytes_read;
23901
23902 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23903 mac_ptr += bytes_read;
23904 mac_ptr += offset_size;
23905 }
23906 break;
23907
23908 case DW_MACRO_import:
23909 case DW_MACRO_import_sup:
23910 /* Note that, according to the spec, a transparent include
23911 chain cannot call DW_MACRO_start_file. So, we can just
23912 skip this opcode. */
23913 mac_ptr += offset_size;
23914 break;
23915
23916 case DW_MACINFO_vendor_ext:
23917 /* Only skip the data by MAC_PTR. */
23918 if (!section_is_gnu)
23919 {
23920 unsigned int bytes_read;
23921
23922 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23923 mac_ptr += bytes_read;
23924 read_direct_string (abfd, mac_ptr, &bytes_read);
23925 mac_ptr += bytes_read;
23926 }
23927 /* FALLTHROUGH */
23928
23929 default:
23930 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23931 mac_ptr, mac_end, abfd, offset_size,
23932 section);
23933 if (mac_ptr == NULL)
23934 return;
23935 break;
23936 }
23937 DIAGNOSTIC_POP
23938 } while (macinfo_type != 0 && current_file == NULL);
23939
23940 /* Second pass: Process all entries.
23941
23942 Use the AT_COMMAND_LINE flag to determine whether we are still processing
23943 command-line macro definitions/undefinitions. This flag is unset when we
23944 reach the first DW_MACINFO_start_file entry. */
23945
23946 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
23947 htab_eq_pointer,
23948 NULL, xcalloc, xfree));
23949 mac_ptr = section->buffer + offset;
23950 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
23951 *slot = (void *) mac_ptr;
23952 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
23953 current_file, lh, section,
23954 section_is_gnu, 0, offset_size,
23955 include_hash.get ());
23956}
23957
23958/* Return the .debug_loc section to use for CU.
23959 For DWO files use .debug_loc.dwo. */
23960
23961static struct dwarf2_section_info *
23962cu_debug_loc_section (struct dwarf2_cu *cu)
23963{
23964 struct dwarf2_per_objfile *dwarf2_per_objfile
23965 = cu->per_cu->dwarf2_per_objfile;
23966
23967 if (cu->dwo_unit)
23968 {
23969 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23970
23971 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23972 }
23973 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23974 : &dwarf2_per_objfile->loc);
23975}
23976
23977/* A helper function that fills in a dwarf2_loclist_baton. */
23978
23979static void
23980fill_in_loclist_baton (struct dwarf2_cu *cu,
23981 struct dwarf2_loclist_baton *baton,
23982 const struct attribute *attr)
23983{
23984 struct dwarf2_per_objfile *dwarf2_per_objfile
23985 = cu->per_cu->dwarf2_per_objfile;
23986 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23987
23988 section->read (dwarf2_per_objfile->objfile);
23989
23990 baton->per_cu = cu->per_cu;
23991 gdb_assert (baton->per_cu);
23992 /* We don't know how long the location list is, but make sure we
23993 don't run off the edge of the section. */
23994 baton->size = section->size - DW_UNSND (attr);
23995 baton->data = section->buffer + DW_UNSND (attr);
23996 baton->base_address = cu->base_address;
23997 baton->from_dwo = cu->dwo_unit != NULL;
23998}
23999
24000static void
24001dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24002 struct dwarf2_cu *cu, int is_block)
24003{
24004 struct dwarf2_per_objfile *dwarf2_per_objfile
24005 = cu->per_cu->dwarf2_per_objfile;
24006 struct objfile *objfile = dwarf2_per_objfile->objfile;
24007 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24008
24009 if (attr->form_is_section_offset ()
24010 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24011 the section. If so, fall through to the complaint in the
24012 other branch. */
24013 && DW_UNSND (attr) < section->get_size (objfile))
24014 {
24015 struct dwarf2_loclist_baton *baton;
24016
24017 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24018
24019 fill_in_loclist_baton (cu, baton, attr);
24020
24021 if (cu->base_known == 0)
24022 complaint (_("Location list used without "
24023 "specifying the CU base address."));
24024
24025 SYMBOL_ACLASS_INDEX (sym) = (is_block
24026 ? dwarf2_loclist_block_index
24027 : dwarf2_loclist_index);
24028 SYMBOL_LOCATION_BATON (sym) = baton;
24029 }
24030 else
24031 {
24032 struct dwarf2_locexpr_baton *baton;
24033
24034 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24035 baton->per_cu = cu->per_cu;
24036 gdb_assert (baton->per_cu);
24037
24038 if (attr->form_is_block ())
24039 {
24040 /* Note that we're just copying the block's data pointer
24041 here, not the actual data. We're still pointing into the
24042 info_buffer for SYM's objfile; right now we never release
24043 that buffer, but when we do clean up properly this may
24044 need to change. */
24045 baton->size = DW_BLOCK (attr)->size;
24046 baton->data = DW_BLOCK (attr)->data;
24047 }
24048 else
24049 {
24050 dwarf2_invalid_attrib_class_complaint ("location description",
24051 sym->natural_name ());
24052 baton->size = 0;
24053 }
24054
24055 SYMBOL_ACLASS_INDEX (sym) = (is_block
24056 ? dwarf2_locexpr_block_index
24057 : dwarf2_locexpr_index);
24058 SYMBOL_LOCATION_BATON (sym) = baton;
24059 }
24060}
24061
24062/* See read.h. */
24063
24064struct objfile *
24065dwarf2_per_cu_data::objfile () const
24066{
24067 struct objfile *objfile = dwarf2_per_objfile->objfile;
24068
24069 /* Return the master objfile, so that we can report and look up the
24070 correct file containing this variable. */
24071 if (objfile->separate_debug_objfile_backlink)
24072 objfile = objfile->separate_debug_objfile_backlink;
24073
24074 return objfile;
24075}
24076
24077/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24078 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24079 CU_HEADERP first. */
24080
24081static const struct comp_unit_head *
24082per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24083 const struct dwarf2_per_cu_data *per_cu)
24084{
24085 const gdb_byte *info_ptr;
24086
24087 if (per_cu->cu)
24088 return &per_cu->cu->header;
24089
24090 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24091
24092 memset (cu_headerp, 0, sizeof (*cu_headerp));
24093 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24094 rcuh_kind::COMPILE);
24095
24096 return cu_headerp;
24097}
24098
24099/* See read.h. */
24100
24101int
24102dwarf2_per_cu_data::addr_size () const
24103{
24104 struct comp_unit_head cu_header_local;
24105 const struct comp_unit_head *cu_headerp;
24106
24107 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24108
24109 return cu_headerp->addr_size;
24110}
24111
24112/* See read.h. */
24113
24114int
24115dwarf2_per_cu_data::offset_size () const
24116{
24117 struct comp_unit_head cu_header_local;
24118 const struct comp_unit_head *cu_headerp;
24119
24120 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24121
24122 return cu_headerp->offset_size;
24123}
24124
24125/* See read.h. */
24126
24127int
24128dwarf2_per_cu_data::ref_addr_size () const
24129{
24130 struct comp_unit_head cu_header_local;
24131 const struct comp_unit_head *cu_headerp;
24132
24133 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24134
24135 if (cu_headerp->version == 2)
24136 return cu_headerp->addr_size;
24137 else
24138 return cu_headerp->offset_size;
24139}
24140
24141/* See read.h. */
24142
24143CORE_ADDR
24144dwarf2_per_cu_data::text_offset () const
24145{
24146 struct objfile *objfile = dwarf2_per_objfile->objfile;
24147
24148 return objfile->text_section_offset ();
24149}
24150
24151/* See read.h. */
24152
24153struct type *
24154dwarf2_per_cu_data::addr_type () const
24155{
24156 struct objfile *objfile = dwarf2_per_objfile->objfile;
24157 struct type *void_type = objfile_type (objfile)->builtin_void;
24158 struct type *addr_type = lookup_pointer_type (void_type);
24159 int addr_size = this->addr_size ();
24160
24161 if (TYPE_LENGTH (addr_type) == addr_size)
24162 return addr_type;
24163
24164 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
24165 return addr_type;
24166}
24167
24168/* A helper function for dwarf2_find_containing_comp_unit that returns
24169 the index of the result, and that searches a vector. It will
24170 return a result even if the offset in question does not actually
24171 occur in any CU. This is separate so that it can be unit
24172 tested. */
24173
24174static int
24175dwarf2_find_containing_comp_unit
24176 (sect_offset sect_off,
24177 unsigned int offset_in_dwz,
24178 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
24179{
24180 int low, high;
24181
24182 low = 0;
24183 high = all_comp_units.size () - 1;
24184 while (high > low)
24185 {
24186 struct dwarf2_per_cu_data *mid_cu;
24187 int mid = low + (high - low) / 2;
24188
24189 mid_cu = all_comp_units[mid];
24190 if (mid_cu->is_dwz > offset_in_dwz
24191 || (mid_cu->is_dwz == offset_in_dwz
24192 && mid_cu->sect_off + mid_cu->length > sect_off))
24193 high = mid;
24194 else
24195 low = mid + 1;
24196 }
24197 gdb_assert (low == high);
24198 return low;
24199}
24200
24201/* Locate the .debug_info compilation unit from CU's objfile which contains
24202 the DIE at OFFSET. Raises an error on failure. */
24203
24204static struct dwarf2_per_cu_data *
24205dwarf2_find_containing_comp_unit (sect_offset sect_off,
24206 unsigned int offset_in_dwz,
24207 struct dwarf2_per_objfile *dwarf2_per_objfile)
24208{
24209 int low
24210 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
24211 dwarf2_per_objfile->all_comp_units);
24212 struct dwarf2_per_cu_data *this_cu
24213 = dwarf2_per_objfile->all_comp_units[low];
24214
24215 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
24216 {
24217 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24218 error (_("Dwarf Error: could not find partial DIE containing "
24219 "offset %s [in module %s]"),
24220 sect_offset_str (sect_off),
24221 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24222
24223 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24224 <= sect_off);
24225 return dwarf2_per_objfile->all_comp_units[low-1];
24226 }
24227 else
24228 {
24229 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24230 && sect_off >= this_cu->sect_off + this_cu->length)
24231 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24232 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24233 return this_cu;
24234 }
24235}
24236
24237#if GDB_SELF_TEST
24238
24239namespace selftests {
24240namespace find_containing_comp_unit {
24241
24242static void
24243run_test ()
24244{
24245 struct dwarf2_per_cu_data one {};
24246 struct dwarf2_per_cu_data two {};
24247 struct dwarf2_per_cu_data three {};
24248 struct dwarf2_per_cu_data four {};
24249
24250 one.length = 5;
24251 two.sect_off = sect_offset (one.length);
24252 two.length = 7;
24253
24254 three.length = 5;
24255 three.is_dwz = 1;
24256 four.sect_off = sect_offset (three.length);
24257 four.length = 7;
24258 four.is_dwz = 1;
24259
24260 std::vector<dwarf2_per_cu_data *> units;
24261 units.push_back (&one);
24262 units.push_back (&two);
24263 units.push_back (&three);
24264 units.push_back (&four);
24265
24266 int result;
24267
24268 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
24269 SELF_CHECK (units[result] == &one);
24270 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
24271 SELF_CHECK (units[result] == &one);
24272 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
24273 SELF_CHECK (units[result] == &two);
24274
24275 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
24276 SELF_CHECK (units[result] == &three);
24277 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
24278 SELF_CHECK (units[result] == &three);
24279 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
24280 SELF_CHECK (units[result] == &four);
24281}
24282
24283}
24284}
24285
24286#endif /* GDB_SELF_TEST */
24287
24288/* Initialize dwarf2_cu CU, owned by PER_CU. */
24289
24290dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24291 : per_cu (per_cu_),
24292 mark (false),
24293 has_loclist (false),
24294 checked_producer (false),
24295 producer_is_gxx_lt_4_6 (false),
24296 producer_is_gcc_lt_4_3 (false),
24297 producer_is_icc (false),
24298 producer_is_icc_lt_14 (false),
24299 producer_is_codewarrior (false),
24300 processing_has_namespace_info (false)
24301{
24302 per_cu->cu = this;
24303}
24304
24305/* Destroy a dwarf2_cu. */
24306
24307dwarf2_cu::~dwarf2_cu ()
24308{
24309 per_cu->cu = NULL;
24310}
24311
24312/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24313
24314static void
24315prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24316 enum language pretend_language)
24317{
24318 struct attribute *attr;
24319
24320 /* Set the language we're debugging. */
24321 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24322 if (attr != nullptr)
24323 set_cu_language (DW_UNSND (attr), cu);
24324 else
24325 {
24326 cu->language = pretend_language;
24327 cu->language_defn = language_def (cu->language);
24328 }
24329
24330 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24331}
24332
24333/* Increase the age counter on each cached compilation unit, and free
24334 any that are too old. */
24335
24336static void
24337age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24338{
24339 struct dwarf2_per_cu_data *per_cu, **last_chain;
24340
24341 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24342 per_cu = dwarf2_per_objfile->read_in_chain;
24343 while (per_cu != NULL)
24344 {
24345 per_cu->cu->last_used ++;
24346 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24347 dwarf2_mark (per_cu->cu);
24348 per_cu = per_cu->cu->read_in_chain;
24349 }
24350
24351 per_cu = dwarf2_per_objfile->read_in_chain;
24352 last_chain = &dwarf2_per_objfile->read_in_chain;
24353 while (per_cu != NULL)
24354 {
24355 struct dwarf2_per_cu_data *next_cu;
24356
24357 next_cu = per_cu->cu->read_in_chain;
24358
24359 if (!per_cu->cu->mark)
24360 {
24361 delete per_cu->cu;
24362 *last_chain = next_cu;
24363 }
24364 else
24365 last_chain = &per_cu->cu->read_in_chain;
24366
24367 per_cu = next_cu;
24368 }
24369}
24370
24371/* Remove a single compilation unit from the cache. */
24372
24373static void
24374free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24375{
24376 struct dwarf2_per_cu_data *per_cu, **last_chain;
24377 struct dwarf2_per_objfile *dwarf2_per_objfile
24378 = target_per_cu->dwarf2_per_objfile;
24379
24380 per_cu = dwarf2_per_objfile->read_in_chain;
24381 last_chain = &dwarf2_per_objfile->read_in_chain;
24382 while (per_cu != NULL)
24383 {
24384 struct dwarf2_per_cu_data *next_cu;
24385
24386 next_cu = per_cu->cu->read_in_chain;
24387
24388 if (per_cu == target_per_cu)
24389 {
24390 delete per_cu->cu;
24391 per_cu->cu = NULL;
24392 *last_chain = next_cu;
24393 break;
24394 }
24395 else
24396 last_chain = &per_cu->cu->read_in_chain;
24397
24398 per_cu = next_cu;
24399 }
24400}
24401
24402/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
24403 We store these in a hash table separate from the DIEs, and preserve them
24404 when the DIEs are flushed out of cache.
24405
24406 The CU "per_cu" pointer is needed because offset alone is not enough to
24407 uniquely identify the type. A file may have multiple .debug_types sections,
24408 or the type may come from a DWO file. Furthermore, while it's more logical
24409 to use per_cu->section+offset, with Fission the section with the data is in
24410 the DWO file but we don't know that section at the point we need it.
24411 We have to use something in dwarf2_per_cu_data (or the pointer to it)
24412 because we can enter the lookup routine, get_die_type_at_offset, from
24413 outside this file, and thus won't necessarily have PER_CU->cu.
24414 Fortunately, PER_CU is stable for the life of the objfile. */
24415
24416struct dwarf2_per_cu_offset_and_type
24417{
24418 const struct dwarf2_per_cu_data *per_cu;
24419 sect_offset sect_off;
24420 struct type *type;
24421};
24422
24423/* Hash function for a dwarf2_per_cu_offset_and_type. */
24424
24425static hashval_t
24426per_cu_offset_and_type_hash (const void *item)
24427{
24428 const struct dwarf2_per_cu_offset_and_type *ofs
24429 = (const struct dwarf2_per_cu_offset_and_type *) item;
24430
24431 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
24432}
24433
24434/* Equality function for a dwarf2_per_cu_offset_and_type. */
24435
24436static int
24437per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
24438{
24439 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
24440 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
24441 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
24442 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
24443
24444 return (ofs_lhs->per_cu == ofs_rhs->per_cu
24445 && ofs_lhs->sect_off == ofs_rhs->sect_off);
24446}
24447
24448/* Set the type associated with DIE to TYPE. Save it in CU's hash
24449 table if necessary. For convenience, return TYPE.
24450
24451 The DIEs reading must have careful ordering to:
24452 * Not cause infinite loops trying to read in DIEs as a prerequisite for
24453 reading current DIE.
24454 * Not trying to dereference contents of still incompletely read in types
24455 while reading in other DIEs.
24456 * Enable referencing still incompletely read in types just by a pointer to
24457 the type without accessing its fields.
24458
24459 Therefore caller should follow these rules:
24460 * Try to fetch any prerequisite types we may need to build this DIE type
24461 before building the type and calling set_die_type.
24462 * After building type call set_die_type for current DIE as soon as
24463 possible before fetching more types to complete the current type.
24464 * Make the type as complete as possible before fetching more types. */
24465
24466static struct type *
24467set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
24468{
24469 struct dwarf2_per_objfile *dwarf2_per_objfile
24470 = cu->per_cu->dwarf2_per_objfile;
24471 struct dwarf2_per_cu_offset_and_type **slot, ofs;
24472 struct objfile *objfile = dwarf2_per_objfile->objfile;
24473 struct attribute *attr;
24474 struct dynamic_prop prop;
24475
24476 /* For Ada types, make sure that the gnat-specific data is always
24477 initialized (if not already set). There are a few types where
24478 we should not be doing so, because the type-specific area is
24479 already used to hold some other piece of info (eg: TYPE_CODE_FLT
24480 where the type-specific area is used to store the floatformat).
24481 But this is not a problem, because the gnat-specific information
24482 is actually not needed for these types. */
24483 if (need_gnat_info (cu)
24484 && TYPE_CODE (type) != TYPE_CODE_FUNC
24485 && TYPE_CODE (type) != TYPE_CODE_FLT
24486 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
24487 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
24488 && TYPE_CODE (type) != TYPE_CODE_METHOD
24489 && !HAVE_GNAT_AUX_INFO (type))
24490 INIT_GNAT_SPECIFIC (type);
24491
24492 /* Read DW_AT_allocated and set in type. */
24493 attr = dwarf2_attr (die, DW_AT_allocated, cu);
24494 if (attr != NULL && attr->form_is_block ())
24495 {
24496 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
24497 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24498 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
24499 }
24500 else if (attr != NULL)
24501 {
24502 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
24503 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
24504 sect_offset_str (die->sect_off));
24505 }
24506
24507 /* Read DW_AT_associated and set in type. */
24508 attr = dwarf2_attr (die, DW_AT_associated, cu);
24509 if (attr != NULL && attr->form_is_block ())
24510 {
24511 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
24512 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24513 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
24514 }
24515 else if (attr != NULL)
24516 {
24517 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
24518 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
24519 sect_offset_str (die->sect_off));
24520 }
24521
24522 /* Read DW_AT_data_location and set in type. */
24523 attr = dwarf2_attr (die, DW_AT_data_location, cu);
24524 if (attr_to_dynamic_prop (attr, die, cu, &prop,
24525 cu->per_cu->addr_type ()))
24526 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
24527
24528 if (dwarf2_per_objfile->die_type_hash == NULL)
24529 dwarf2_per_objfile->die_type_hash
24530 = htab_up (htab_create_alloc (127,
24531 per_cu_offset_and_type_hash,
24532 per_cu_offset_and_type_eq,
24533 NULL, xcalloc, xfree));
24534
24535 ofs.per_cu = cu->per_cu;
24536 ofs.sect_off = die->sect_off;
24537 ofs.type = type;
24538 slot = (struct dwarf2_per_cu_offset_and_type **)
24539 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
24540 if (*slot)
24541 complaint (_("A problem internal to GDB: DIE %s has type already set"),
24542 sect_offset_str (die->sect_off));
24543 *slot = XOBNEW (&objfile->objfile_obstack,
24544 struct dwarf2_per_cu_offset_and_type);
24545 **slot = ofs;
24546 return type;
24547}
24548
24549/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
24550 or return NULL if the die does not have a saved type. */
24551
24552static struct type *
24553get_die_type_at_offset (sect_offset sect_off,
24554 struct dwarf2_per_cu_data *per_cu)
24555{
24556 struct dwarf2_per_cu_offset_and_type *slot, ofs;
24557 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
24558
24559 if (dwarf2_per_objfile->die_type_hash == NULL)
24560 return NULL;
24561
24562 ofs.per_cu = per_cu;
24563 ofs.sect_off = sect_off;
24564 slot = ((struct dwarf2_per_cu_offset_and_type *)
24565 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
24566 if (slot)
24567 return slot->type;
24568 else
24569 return NULL;
24570}
24571
24572/* Look up the type for DIE in CU in die_type_hash,
24573 or return NULL if DIE does not have a saved type. */
24574
24575static struct type *
24576get_die_type (struct die_info *die, struct dwarf2_cu *cu)
24577{
24578 return get_die_type_at_offset (die->sect_off, cu->per_cu);
24579}
24580
24581/* Add a dependence relationship from CU to REF_PER_CU. */
24582
24583static void
24584dwarf2_add_dependence (struct dwarf2_cu *cu,
24585 struct dwarf2_per_cu_data *ref_per_cu)
24586{
24587 void **slot;
24588
24589 if (cu->dependencies == NULL)
24590 cu->dependencies
24591 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
24592 NULL, &cu->comp_unit_obstack,
24593 hashtab_obstack_allocate,
24594 dummy_obstack_deallocate);
24595
24596 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
24597 if (*slot == NULL)
24598 *slot = ref_per_cu;
24599}
24600
24601/* Subroutine of dwarf2_mark to pass to htab_traverse.
24602 Set the mark field in every compilation unit in the
24603 cache that we must keep because we are keeping CU. */
24604
24605static int
24606dwarf2_mark_helper (void **slot, void *data)
24607{
24608 struct dwarf2_per_cu_data *per_cu;
24609
24610 per_cu = (struct dwarf2_per_cu_data *) *slot;
24611
24612 /* cu->dependencies references may not yet have been ever read if QUIT aborts
24613 reading of the chain. As such dependencies remain valid it is not much
24614 useful to track and undo them during QUIT cleanups. */
24615 if (per_cu->cu == NULL)
24616 return 1;
24617
24618 if (per_cu->cu->mark)
24619 return 1;
24620 per_cu->cu->mark = true;
24621
24622 if (per_cu->cu->dependencies != NULL)
24623 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
24624
24625 return 1;
24626}
24627
24628/* Set the mark field in CU and in every other compilation unit in the
24629 cache that we must keep because we are keeping CU. */
24630
24631static void
24632dwarf2_mark (struct dwarf2_cu *cu)
24633{
24634 if (cu->mark)
24635 return;
24636 cu->mark = true;
24637 if (cu->dependencies != NULL)
24638 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
24639}
24640
24641static void
24642dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
24643{
24644 while (per_cu)
24645 {
24646 per_cu->cu->mark = false;
24647 per_cu = per_cu->cu->read_in_chain;
24648 }
24649}
24650
24651/* Trivial hash function for partial_die_info: the hash value of a DIE
24652 is its offset in .debug_info for this objfile. */
24653
24654static hashval_t
24655partial_die_hash (const void *item)
24656{
24657 const struct partial_die_info *part_die
24658 = (const struct partial_die_info *) item;
24659
24660 return to_underlying (part_die->sect_off);
24661}
24662
24663/* Trivial comparison function for partial_die_info structures: two DIEs
24664 are equal if they have the same offset. */
24665
24666static int
24667partial_die_eq (const void *item_lhs, const void *item_rhs)
24668{
24669 const struct partial_die_info *part_die_lhs
24670 = (const struct partial_die_info *) item_lhs;
24671 const struct partial_die_info *part_die_rhs
24672 = (const struct partial_die_info *) item_rhs;
24673
24674 return part_die_lhs->sect_off == part_die_rhs->sect_off;
24675}
24676
24677struct cmd_list_element *set_dwarf_cmdlist;
24678struct cmd_list_element *show_dwarf_cmdlist;
24679
24680static void
24681set_dwarf_cmd (const char *args, int from_tty)
24682{
24683 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
24684 gdb_stdout);
24685}
24686
24687static void
24688show_dwarf_cmd (const char *args, int from_tty)
24689{
24690 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
24691}
24692
24693static void
24694show_check_physname (struct ui_file *file, int from_tty,
24695 struct cmd_list_element *c, const char *value)
24696{
24697 fprintf_filtered (file,
24698 _("Whether to check \"physname\" is %s.\n"),
24699 value);
24700}
24701
24702void _initialize_dwarf2_read ();
24703void
24704_initialize_dwarf2_read ()
24705{
24706 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24707Set DWARF specific variables.\n\
24708Configure DWARF variables such as the cache size."),
24709 &set_dwarf_cmdlist, "maintenance set dwarf ",
24710 0/*allow-unknown*/, &maintenance_set_cmdlist);
24711
24712 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24713Show DWARF specific variables.\n\
24714Show DWARF variables such as the cache size."),
24715 &show_dwarf_cmdlist, "maintenance show dwarf ",
24716 0/*allow-unknown*/, &maintenance_show_cmdlist);
24717
24718 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24719 &dwarf_max_cache_age, _("\
24720Set the upper bound on the age of cached DWARF compilation units."), _("\
24721Show the upper bound on the age of cached DWARF compilation units."), _("\
24722A higher limit means that cached compilation units will be stored\n\
24723in memory longer, and more total memory will be used. Zero disables\n\
24724caching, which can slow down startup."),
24725 NULL,
24726 show_dwarf_max_cache_age,
24727 &set_dwarf_cmdlist,
24728 &show_dwarf_cmdlist);
24729
24730 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24731Set debugging of the DWARF reader."), _("\
24732Show debugging of the DWARF reader."), _("\
24733When enabled (non-zero), debugging messages are printed during DWARF\n\
24734reading and symtab expansion. A value of 1 (one) provides basic\n\
24735information. A value greater than 1 provides more verbose information."),
24736 NULL,
24737 NULL,
24738 &setdebuglist, &showdebuglist);
24739
24740 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24741Set debugging of the DWARF DIE reader."), _("\
24742Show debugging of the DWARF DIE reader."), _("\
24743When enabled (non-zero), DIEs are dumped after they are read in.\n\
24744The value is the maximum depth to print."),
24745 NULL,
24746 NULL,
24747 &setdebuglist, &showdebuglist);
24748
24749 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24750Set debugging of the dwarf line reader."), _("\
24751Show debugging of the dwarf line reader."), _("\
24752When enabled (non-zero), line number entries are dumped as they are read in.\n\
24753A value of 1 (one) provides basic information.\n\
24754A value greater than 1 provides more verbose information."),
24755 NULL,
24756 NULL,
24757 &setdebuglist, &showdebuglist);
24758
24759 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24760Set cross-checking of \"physname\" code against demangler."), _("\
24761Show cross-checking of \"physname\" code against demangler."), _("\
24762When enabled, GDB's internal \"physname\" code is checked against\n\
24763the demangler."),
24764 NULL, show_check_physname,
24765 &setdebuglist, &showdebuglist);
24766
24767 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24768 no_class, &use_deprecated_index_sections, _("\
24769Set whether to use deprecated gdb_index sections."), _("\
24770Show whether to use deprecated gdb_index sections."), _("\
24771When enabled, deprecated .gdb_index sections are used anyway.\n\
24772Normally they are ignored either because of a missing feature or\n\
24773performance issue.\n\
24774Warning: This option must be enabled before gdb reads the file."),
24775 NULL,
24776 NULL,
24777 &setlist, &showlist);
24778
24779 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24780 &dwarf2_locexpr_funcs);
24781 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24782 &dwarf2_loclist_funcs);
24783
24784 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24785 &dwarf2_block_frame_base_locexpr_funcs);
24786 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24787 &dwarf2_block_frame_base_loclist_funcs);
24788
24789#if GDB_SELF_TEST
24790 selftests::register_test ("dw2_expand_symtabs_matching",
24791 selftests::dw2_expand_symtabs_matching::run_test);
24792 selftests::register_test ("dwarf2_find_containing_comp_unit",
24793 selftests::find_containing_comp_unit::run_test);
24794#endif
24795}
This page took 0.135675 seconds and 4 git commands to generate.