gas/
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
... / ...
CommitLineData
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 Contributed by Mark Kettenis.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23#include "defs.h"
24#include "dwarf2expr.h"
25#include "dwarf2.h"
26#include "frame.h"
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
31#include "symtab.h"
32#include "objfiles.h"
33#include "regcache.h"
34#include "value.h"
35
36#include "gdb_assert.h"
37#include "gdb_string.h"
38
39#include "complaints.h"
40#include "dwarf2-frame.h"
41
42struct comp_unit;
43
44/* Call Frame Information (CFI). */
45
46/* Common Information Entry (CIE). */
47
48struct dwarf2_cie
49{
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
68 gdb_byte *initial_instructions;
69 gdb_byte *end;
70
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
74 /* Encoding of addresses. */
75 gdb_byte encoding;
76
77 /* Target address size in bytes. */
78 int addr_size;
79
80 /* True if a 'z' augmentation existed. */
81 unsigned char saw_z_augmentation;
82
83 /* True if an 'S' augmentation existed. */
84 unsigned char signal_frame;
85
86 /* The version recorded in the CIE. */
87 unsigned char version;
88};
89
90struct dwarf2_cie_table
91{
92 int num_entries;
93 struct dwarf2_cie **entries;
94};
95
96/* Frame Description Entry (FDE). */
97
98struct dwarf2_fde
99{
100 /* CIE for this FDE. */
101 struct dwarf2_cie *cie;
102
103 /* First location associated with this FDE. */
104 CORE_ADDR initial_location;
105
106 /* Number of bytes of program instructions described by this FDE. */
107 CORE_ADDR address_range;
108
109 /* Instruction sequence. */
110 gdb_byte *instructions;
111 gdb_byte *end;
112
113 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
114 section. */
115 unsigned char eh_frame_p;
116};
117
118struct dwarf2_fde_table
119{
120 int num_entries;
121 struct dwarf2_fde **entries;
122};
123
124/* A minimal decoding of DWARF2 compilation units. We only decode
125 what's needed to get to the call frame information. */
126
127struct comp_unit
128{
129 /* Keep the bfd convenient. */
130 bfd *abfd;
131
132 struct objfile *objfile;
133
134 /* Pointer to the .debug_frame section loaded into memory. */
135 gdb_byte *dwarf_frame_buffer;
136
137 /* Length of the loaded .debug_frame section. */
138 bfd_size_type dwarf_frame_size;
139
140 /* Pointer to the .debug_frame section. */
141 asection *dwarf_frame_section;
142
143 /* Base for DW_EH_PE_datarel encodings. */
144 bfd_vma dbase;
145
146 /* Base for DW_EH_PE_textrel encodings. */
147 bfd_vma tbase;
148};
149
150static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
151
152static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
153 int eh_frame_p);
154
155static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
156 int ptr_len, gdb_byte *buf,
157 unsigned int *bytes_read_ptr,
158 CORE_ADDR func_base);
159\f
160
161/* Structure describing a frame state. */
162
163struct dwarf2_frame_state
164{
165 /* Each register save state can be described in terms of a CFA slot,
166 another register, or a location expression. */
167 struct dwarf2_frame_state_reg_info
168 {
169 struct dwarf2_frame_state_reg *reg;
170 int num_regs;
171
172 LONGEST cfa_offset;
173 ULONGEST cfa_reg;
174 enum {
175 CFA_UNSET,
176 CFA_REG_OFFSET,
177 CFA_EXP
178 } cfa_how;
179 gdb_byte *cfa_exp;
180
181 /* Used to implement DW_CFA_remember_state. */
182 struct dwarf2_frame_state_reg_info *prev;
183 } regs;
184
185 /* The PC described by the current frame state. */
186 CORE_ADDR pc;
187
188 /* Initial register set from the CIE.
189 Used to implement DW_CFA_restore. */
190 struct dwarf2_frame_state_reg_info initial;
191
192 /* The information we care about from the CIE. */
193 LONGEST data_align;
194 ULONGEST code_align;
195 ULONGEST retaddr_column;
196
197 /* Flags for known producer quirks. */
198
199 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
200 and DW_CFA_def_cfa_offset takes a factored offset. */
201 int armcc_cfa_offsets_sf;
202
203 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
204 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
205 int armcc_cfa_offsets_reversed;
206};
207
208/* Store the length the expression for the CFA in the `cfa_reg' field,
209 which is unused in that case. */
210#define cfa_exp_len cfa_reg
211
212/* Assert that the register set RS is large enough to store gdbarch_num_regs
213 columns. If necessary, enlarge the register set. */
214
215static void
216dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
217 int num_regs)
218{
219 size_t size = sizeof (struct dwarf2_frame_state_reg);
220
221 if (num_regs <= rs->num_regs)
222 return;
223
224 rs->reg = (struct dwarf2_frame_state_reg *)
225 xrealloc (rs->reg, num_regs * size);
226
227 /* Initialize newly allocated registers. */
228 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
229 rs->num_regs = num_regs;
230}
231
232/* Copy the register columns in register set RS into newly allocated
233 memory and return a pointer to this newly created copy. */
234
235static struct dwarf2_frame_state_reg *
236dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
237{
238 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
239 struct dwarf2_frame_state_reg *reg;
240
241 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
242 memcpy (reg, rs->reg, size);
243
244 return reg;
245}
246
247/* Release the memory allocated to register set RS. */
248
249static void
250dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
251{
252 if (rs)
253 {
254 dwarf2_frame_state_free_regs (rs->prev);
255
256 xfree (rs->reg);
257 xfree (rs);
258 }
259}
260
261/* Release the memory allocated to the frame state FS. */
262
263static void
264dwarf2_frame_state_free (void *p)
265{
266 struct dwarf2_frame_state *fs = p;
267
268 dwarf2_frame_state_free_regs (fs->initial.prev);
269 dwarf2_frame_state_free_regs (fs->regs.prev);
270 xfree (fs->initial.reg);
271 xfree (fs->regs.reg);
272 xfree (fs);
273}
274\f
275
276/* Helper functions for execute_stack_op. */
277
278static CORE_ADDR
279read_reg (void *baton, int reg)
280{
281 struct frame_info *this_frame = (struct frame_info *) baton;
282 struct gdbarch *gdbarch = get_frame_arch (this_frame);
283 int regnum;
284 gdb_byte *buf;
285
286 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
287
288 buf = alloca (register_size (gdbarch, regnum));
289 get_frame_register (this_frame, regnum, buf);
290
291 /* Convert the register to an integer. This returns a LONGEST
292 rather than a CORE_ADDR, but unpack_pointer does the same thing
293 under the covers, and this makes more sense for non-pointer
294 registers. Maybe read_reg and the associated interfaces should
295 deal with "struct value" instead of CORE_ADDR. */
296 return unpack_long (register_type (gdbarch, regnum), buf);
297}
298
299static void
300read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
301{
302 read_memory (addr, buf, len);
303}
304
305static void
306no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
307{
308 internal_error (__FILE__, __LINE__,
309 _("Support for DW_OP_fbreg is unimplemented"));
310}
311
312/* Helper function for execute_stack_op. */
313
314static CORE_ADDR
315no_get_frame_cfa (void *baton)
316{
317 internal_error (__FILE__, __LINE__,
318 _("Support for DW_OP_call_frame_cfa is unimplemented"));
319}
320
321static CORE_ADDR
322no_get_tls_address (void *baton, CORE_ADDR offset)
323{
324 internal_error (__FILE__, __LINE__,
325 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
326}
327
328/* Execute the required actions for both the DW_CFA_restore and
329DW_CFA_restore_extended instructions. */
330static void
331dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
332 struct dwarf2_frame_state *fs, int eh_frame_p)
333{
334 ULONGEST reg;
335
336 gdb_assert (fs->initial.reg);
337 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
338 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
339
340 /* Check if this register was explicitly initialized in the
341 CIE initial instructions. If not, default the rule to
342 UNSPECIFIED. */
343 if (reg < fs->initial.num_regs)
344 fs->regs.reg[reg] = fs->initial.reg[reg];
345 else
346 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
347
348 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
349 complaint (&symfile_complaints, _("\
350incomplete CFI data; DW_CFA_restore unspecified\n\
351register %s (#%d) at %s"),
352 gdbarch_register_name
353 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
354 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
355 paddress (gdbarch, fs->pc));
356}
357
358static CORE_ADDR
359execute_stack_op (gdb_byte *exp, ULONGEST len, int addr_size,
360 struct frame_info *this_frame, CORE_ADDR initial)
361{
362 struct dwarf_expr_context *ctx;
363 CORE_ADDR result;
364 struct cleanup *old_chain;
365
366 ctx = new_dwarf_expr_context ();
367 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
368
369 ctx->gdbarch = get_frame_arch (this_frame);
370 ctx->addr_size = addr_size;
371 ctx->baton = this_frame;
372 ctx->read_reg = read_reg;
373 ctx->read_mem = read_mem;
374 ctx->get_frame_base = no_get_frame_base;
375 ctx->get_frame_cfa = no_get_frame_cfa;
376 ctx->get_tls_address = no_get_tls_address;
377
378 dwarf_expr_push (ctx, initial);
379 dwarf_expr_eval (ctx, exp, len);
380 result = dwarf_expr_fetch (ctx, 0);
381
382 if (ctx->in_reg)
383 result = read_reg (this_frame, result);
384
385 do_cleanups (old_chain);
386
387 return result;
388}
389\f
390
391static void
392execute_cfa_program (struct dwarf2_fde *fde, gdb_byte *insn_ptr,
393 gdb_byte *insn_end, struct frame_info *this_frame,
394 struct dwarf2_frame_state *fs)
395{
396 int eh_frame_p = fde->eh_frame_p;
397 CORE_ADDR pc = get_frame_pc (this_frame);
398 int bytes_read;
399 struct gdbarch *gdbarch = get_frame_arch (this_frame);
400 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
401
402 while (insn_ptr < insn_end && fs->pc <= pc)
403 {
404 gdb_byte insn = *insn_ptr++;
405 ULONGEST utmp, reg;
406 LONGEST offset;
407
408 if ((insn & 0xc0) == DW_CFA_advance_loc)
409 fs->pc += (insn & 0x3f) * fs->code_align;
410 else if ((insn & 0xc0) == DW_CFA_offset)
411 {
412 reg = insn & 0x3f;
413 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
414 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
415 offset = utmp * fs->data_align;
416 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
417 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
418 fs->regs.reg[reg].loc.offset = offset;
419 }
420 else if ((insn & 0xc0) == DW_CFA_restore)
421 {
422 reg = insn & 0x3f;
423 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
424 }
425 else
426 {
427 switch (insn)
428 {
429 case DW_CFA_set_loc:
430 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
431 fde->cie->addr_size, insn_ptr,
432 &bytes_read, fde->initial_location);
433 /* Apply the objfile offset for relocatable objects. */
434 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
435 SECT_OFF_TEXT (fde->cie->unit->objfile));
436 insn_ptr += bytes_read;
437 break;
438
439 case DW_CFA_advance_loc1:
440 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
441 fs->pc += utmp * fs->code_align;
442 insn_ptr++;
443 break;
444 case DW_CFA_advance_loc2:
445 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
446 fs->pc += utmp * fs->code_align;
447 insn_ptr += 2;
448 break;
449 case DW_CFA_advance_loc4:
450 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
451 fs->pc += utmp * fs->code_align;
452 insn_ptr += 4;
453 break;
454
455 case DW_CFA_offset_extended:
456 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
457 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
458 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
459 offset = utmp * fs->data_align;
460 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
461 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
462 fs->regs.reg[reg].loc.offset = offset;
463 break;
464
465 case DW_CFA_restore_extended:
466 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
467 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
468 break;
469
470 case DW_CFA_undefined:
471 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
472 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
473 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
474 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
475 break;
476
477 case DW_CFA_same_value:
478 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
479 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
480 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
481 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
482 break;
483
484 case DW_CFA_register:
485 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
487 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
488 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
489 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
490 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
491 fs->regs.reg[reg].loc.reg = utmp;
492 break;
493
494 case DW_CFA_remember_state:
495 {
496 struct dwarf2_frame_state_reg_info *new_rs;
497
498 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
499 *new_rs = fs->regs;
500 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
501 fs->regs.prev = new_rs;
502 }
503 break;
504
505 case DW_CFA_restore_state:
506 {
507 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
508
509 if (old_rs == NULL)
510 {
511 complaint (&symfile_complaints, _("\
512bad CFI data; mismatched DW_CFA_restore_state at %s"),
513 paddress (gdbarch, fs->pc));
514 }
515 else
516 {
517 xfree (fs->regs.reg);
518 fs->regs = *old_rs;
519 xfree (old_rs);
520 }
521 }
522 break;
523
524 case DW_CFA_def_cfa:
525 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
526 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
527
528 if (fs->armcc_cfa_offsets_sf)
529 utmp *= fs->data_align;
530
531 fs->regs.cfa_offset = utmp;
532 fs->regs.cfa_how = CFA_REG_OFFSET;
533 break;
534
535 case DW_CFA_def_cfa_register:
536 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
537 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
538 fs->regs.cfa_reg,
539 eh_frame_p);
540 fs->regs.cfa_how = CFA_REG_OFFSET;
541 break;
542
543 case DW_CFA_def_cfa_offset:
544 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
545
546 if (fs->armcc_cfa_offsets_sf)
547 utmp *= fs->data_align;
548
549 fs->regs.cfa_offset = utmp;
550 /* cfa_how deliberately not set. */
551 break;
552
553 case DW_CFA_nop:
554 break;
555
556 case DW_CFA_def_cfa_expression:
557 insn_ptr = read_uleb128 (insn_ptr, insn_end,
558 &fs->regs.cfa_exp_len);
559 fs->regs.cfa_exp = insn_ptr;
560 fs->regs.cfa_how = CFA_EXP;
561 insn_ptr += fs->regs.cfa_exp_len;
562 break;
563
564 case DW_CFA_expression:
565 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
566 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
567 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
568 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
569 fs->regs.reg[reg].loc.exp = insn_ptr;
570 fs->regs.reg[reg].exp_len = utmp;
571 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
572 insn_ptr += utmp;
573 break;
574
575 case DW_CFA_offset_extended_sf:
576 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
577 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
578 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
579 offset *= fs->data_align;
580 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
581 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
582 fs->regs.reg[reg].loc.offset = offset;
583 break;
584
585 case DW_CFA_val_offset:
586 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
587 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
588 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
589 offset = utmp * fs->data_align;
590 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
591 fs->regs.reg[reg].loc.offset = offset;
592 break;
593
594 case DW_CFA_val_offset_sf:
595 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
596 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
597 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
598 offset *= fs->data_align;
599 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
600 fs->regs.reg[reg].loc.offset = offset;
601 break;
602
603 case DW_CFA_val_expression:
604 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
605 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
606 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
607 fs->regs.reg[reg].loc.exp = insn_ptr;
608 fs->regs.reg[reg].exp_len = utmp;
609 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
610 insn_ptr += utmp;
611 break;
612
613 case DW_CFA_def_cfa_sf:
614 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
615 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
616 fs->regs.cfa_reg,
617 eh_frame_p);
618 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
619 fs->regs.cfa_offset = offset * fs->data_align;
620 fs->regs.cfa_how = CFA_REG_OFFSET;
621 break;
622
623 case DW_CFA_def_cfa_offset_sf:
624 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
625 fs->regs.cfa_offset = offset * fs->data_align;
626 /* cfa_how deliberately not set. */
627 break;
628
629 case DW_CFA_GNU_window_save:
630 /* This is SPARC-specific code, and contains hard-coded
631 constants for the register numbering scheme used by
632 GCC. Rather than having a architecture-specific
633 operation that's only ever used by a single
634 architecture, we provide the implementation here.
635 Incidentally that's what GCC does too in its
636 unwinder. */
637 {
638 int size = register_size (gdbarch, 0);
639 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
640 for (reg = 8; reg < 16; reg++)
641 {
642 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
643 fs->regs.reg[reg].loc.reg = reg + 16;
644 }
645 for (reg = 16; reg < 32; reg++)
646 {
647 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
648 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
649 }
650 }
651 break;
652
653 case DW_CFA_GNU_args_size:
654 /* Ignored. */
655 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
656 break;
657
658 case DW_CFA_GNU_negative_offset_extended:
659 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
660 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
661 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
662 offset *= fs->data_align;
663 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
664 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
665 fs->regs.reg[reg].loc.offset = -offset;
666 break;
667
668 default:
669 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
670 }
671 }
672 }
673
674 /* Don't allow remember/restore between CIE and FDE programs. */
675 dwarf2_frame_state_free_regs (fs->regs.prev);
676 fs->regs.prev = NULL;
677}
678\f
679
680/* Architecture-specific operations. */
681
682/* Per-architecture data key. */
683static struct gdbarch_data *dwarf2_frame_data;
684
685struct dwarf2_frame_ops
686{
687 /* Pre-initialize the register state REG for register REGNUM. */
688 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
689 struct frame_info *);
690
691 /* Check whether the THIS_FRAME is a signal trampoline. */
692 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
693
694 /* Convert .eh_frame register number to DWARF register number, or
695 adjust .debug_frame register number. */
696 int (*adjust_regnum) (struct gdbarch *, int, int);
697};
698
699/* Default architecture-specific register state initialization
700 function. */
701
702static void
703dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
704 struct dwarf2_frame_state_reg *reg,
705 struct frame_info *this_frame)
706{
707 /* If we have a register that acts as a program counter, mark it as
708 a destination for the return address. If we have a register that
709 serves as the stack pointer, arrange for it to be filled with the
710 call frame address (CFA). The other registers are marked as
711 unspecified.
712
713 We copy the return address to the program counter, since many
714 parts in GDB assume that it is possible to get the return address
715 by unwinding the program counter register. However, on ISA's
716 with a dedicated return address register, the CFI usually only
717 contains information to unwind that return address register.
718
719 The reason we're treating the stack pointer special here is
720 because in many cases GCC doesn't emit CFI for the stack pointer
721 and implicitly assumes that it is equal to the CFA. This makes
722 some sense since the DWARF specification (version 3, draft 8,
723 p. 102) says that:
724
725 "Typically, the CFA is defined to be the value of the stack
726 pointer at the call site in the previous frame (which may be
727 different from its value on entry to the current frame)."
728
729 However, this isn't true for all platforms supported by GCC
730 (e.g. IBM S/390 and zSeries). Those architectures should provide
731 their own architecture-specific initialization function. */
732
733 if (regnum == gdbarch_pc_regnum (gdbarch))
734 reg->how = DWARF2_FRAME_REG_RA;
735 else if (regnum == gdbarch_sp_regnum (gdbarch))
736 reg->how = DWARF2_FRAME_REG_CFA;
737}
738
739/* Return a default for the architecture-specific operations. */
740
741static void *
742dwarf2_frame_init (struct obstack *obstack)
743{
744 struct dwarf2_frame_ops *ops;
745
746 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
747 ops->init_reg = dwarf2_frame_default_init_reg;
748 return ops;
749}
750
751/* Set the architecture-specific register state initialization
752 function for GDBARCH to INIT_REG. */
753
754void
755dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
756 void (*init_reg) (struct gdbarch *, int,
757 struct dwarf2_frame_state_reg *,
758 struct frame_info *))
759{
760 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
761
762 ops->init_reg = init_reg;
763}
764
765/* Pre-initialize the register state REG for register REGNUM. */
766
767static void
768dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
769 struct dwarf2_frame_state_reg *reg,
770 struct frame_info *this_frame)
771{
772 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
773
774 ops->init_reg (gdbarch, regnum, reg, this_frame);
775}
776
777/* Set the architecture-specific signal trampoline recognition
778 function for GDBARCH to SIGNAL_FRAME_P. */
779
780void
781dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
782 int (*signal_frame_p) (struct gdbarch *,
783 struct frame_info *))
784{
785 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
786
787 ops->signal_frame_p = signal_frame_p;
788}
789
790/* Query the architecture-specific signal frame recognizer for
791 THIS_FRAME. */
792
793static int
794dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
795 struct frame_info *this_frame)
796{
797 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
798
799 if (ops->signal_frame_p == NULL)
800 return 0;
801 return ops->signal_frame_p (gdbarch, this_frame);
802}
803
804/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
805 register numbers. */
806
807void
808dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
809 int (*adjust_regnum) (struct gdbarch *,
810 int, int))
811{
812 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
813
814 ops->adjust_regnum = adjust_regnum;
815}
816
817/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
818 register. */
819
820static int
821dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
822{
823 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
824
825 if (ops->adjust_regnum == NULL)
826 return regnum;
827 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
828}
829
830static void
831dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
832 struct dwarf2_fde *fde)
833{
834 static const char *arm_idents[] = {
835 "ARM C Compiler, ADS",
836 "Thumb C Compiler, ADS",
837 "ARM C++ Compiler, ADS",
838 "Thumb C++ Compiler, ADS",
839 "ARM/Thumb C/C++ Compiler, RVCT"
840 };
841 int i;
842
843 struct symtab *s;
844
845 s = find_pc_symtab (fs->pc);
846 if (s == NULL || s->producer == NULL)
847 return;
848
849 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
850 if (strncmp (s->producer, arm_idents[i], strlen (arm_idents[i])) == 0)
851 {
852 if (fde->cie->version == 1)
853 fs->armcc_cfa_offsets_sf = 1;
854
855 if (fde->cie->version == 1)
856 fs->armcc_cfa_offsets_reversed = 1;
857
858 /* The reversed offset problem is present in some compilers
859 using DWARF3, but it was eventually fixed. Check the ARM
860 defined augmentations, which are in the format "armcc" followed
861 by a list of one-character options. The "+" option means
862 this problem is fixed (no quirk needed). If the armcc
863 augmentation is missing, the quirk is needed. */
864 if (fde->cie->version == 3
865 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
866 || strchr (fde->cie->augmentation + 5, '+') == NULL))
867 fs->armcc_cfa_offsets_reversed = 1;
868
869 return;
870 }
871}
872\f
873
874struct dwarf2_frame_cache
875{
876 /* DWARF Call Frame Address. */
877 CORE_ADDR cfa;
878
879 /* Set if the return address column was marked as undefined. */
880 int undefined_retaddr;
881
882 /* Saved registers, indexed by GDB register number, not by DWARF
883 register number. */
884 struct dwarf2_frame_state_reg *reg;
885
886 /* Return address register. */
887 struct dwarf2_frame_state_reg retaddr_reg;
888
889 /* Target address size in bytes. */
890 int addr_size;
891};
892
893static struct dwarf2_frame_cache *
894dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
895{
896 struct cleanup *old_chain;
897 struct gdbarch *gdbarch = get_frame_arch (this_frame);
898 const int num_regs = gdbarch_num_regs (gdbarch)
899 + gdbarch_num_pseudo_regs (gdbarch);
900 struct dwarf2_frame_cache *cache;
901 struct dwarf2_frame_state *fs;
902 struct dwarf2_fde *fde;
903
904 if (*this_cache)
905 return *this_cache;
906
907 /* Allocate a new cache. */
908 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
909 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
910
911 /* Allocate and initialize the frame state. */
912 fs = XMALLOC (struct dwarf2_frame_state);
913 memset (fs, 0, sizeof (struct dwarf2_frame_state));
914 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
915
916 /* Unwind the PC.
917
918 Note that if the next frame is never supposed to return (i.e. a call
919 to abort), the compiler might optimize away the instruction at
920 its return address. As a result the return address will
921 point at some random instruction, and the CFI for that
922 instruction is probably worthless to us. GCC's unwinder solves
923 this problem by substracting 1 from the return address to get an
924 address in the middle of a presumed call instruction (or the
925 instruction in the associated delay slot). This should only be
926 done for "normal" frames and not for resume-type frames (signal
927 handlers, sentinel frames, dummy frames). The function
928 get_frame_address_in_block does just this. It's not clear how
929 reliable the method is though; there is the potential for the
930 register state pre-call being different to that on return. */
931 fs->pc = get_frame_address_in_block (this_frame);
932
933 /* Find the correct FDE. */
934 fde = dwarf2_frame_find_fde (&fs->pc);
935 gdb_assert (fde != NULL);
936
937 /* Extract any interesting information from the CIE. */
938 fs->data_align = fde->cie->data_alignment_factor;
939 fs->code_align = fde->cie->code_alignment_factor;
940 fs->retaddr_column = fde->cie->return_address_register;
941 cache->addr_size = fde->cie->addr_size;
942
943 /* Check for "quirks" - known bugs in producers. */
944 dwarf2_frame_find_quirks (fs, fde);
945
946 /* First decode all the insns in the CIE. */
947 execute_cfa_program (fde, fde->cie->initial_instructions,
948 fde->cie->end, this_frame, fs);
949
950 /* Save the initialized register set. */
951 fs->initial = fs->regs;
952 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
953
954 /* Then decode the insns in the FDE up to our target PC. */
955 execute_cfa_program (fde, fde->instructions, fde->end, this_frame, fs);
956
957 /* Calculate the CFA. */
958 switch (fs->regs.cfa_how)
959 {
960 case CFA_REG_OFFSET:
961 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
962 if (fs->armcc_cfa_offsets_reversed)
963 cache->cfa -= fs->regs.cfa_offset;
964 else
965 cache->cfa += fs->regs.cfa_offset;
966 break;
967
968 case CFA_EXP:
969 cache->cfa =
970 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
971 cache->addr_size, this_frame, 0);
972 break;
973
974 default:
975 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
976 }
977
978 /* Initialize the register state. */
979 {
980 int regnum;
981
982 for (regnum = 0; regnum < num_regs; regnum++)
983 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
984 }
985
986 /* Go through the DWARF2 CFI generated table and save its register
987 location information in the cache. Note that we don't skip the
988 return address column; it's perfectly all right for it to
989 correspond to a real register. If it doesn't correspond to a
990 real register, or if we shouldn't treat it as such,
991 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
992 the range [0, gdbarch_num_regs). */
993 {
994 int column; /* CFI speak for "register number". */
995
996 for (column = 0; column < fs->regs.num_regs; column++)
997 {
998 /* Use the GDB register number as the destination index. */
999 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1000
1001 /* If there's no corresponding GDB register, ignore it. */
1002 if (regnum < 0 || regnum >= num_regs)
1003 continue;
1004
1005 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1006 of all debug info registers. If it doesn't, complain (but
1007 not too loudly). It turns out that GCC assumes that an
1008 unspecified register implies "same value" when CFI (draft
1009 7) specifies nothing at all. Such a register could equally
1010 be interpreted as "undefined". Also note that this check
1011 isn't sufficient; it only checks that all registers in the
1012 range [0 .. max column] are specified, and won't detect
1013 problems when a debug info register falls outside of the
1014 table. We need a way of iterating through all the valid
1015 DWARF2 register numbers. */
1016 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1017 {
1018 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1019 complaint (&symfile_complaints, _("\
1020incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1021 gdbarch_register_name (gdbarch, regnum),
1022 paddress (gdbarch, fs->pc));
1023 }
1024 else
1025 cache->reg[regnum] = fs->regs.reg[column];
1026 }
1027 }
1028
1029 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1030 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1031 {
1032 int regnum;
1033
1034 for (regnum = 0; regnum < num_regs; regnum++)
1035 {
1036 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1037 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1038 {
1039 struct dwarf2_frame_state_reg *retaddr_reg =
1040 &fs->regs.reg[fs->retaddr_column];
1041
1042 /* It seems rather bizarre to specify an "empty" column as
1043 the return adress column. However, this is exactly
1044 what GCC does on some targets. It turns out that GCC
1045 assumes that the return address can be found in the
1046 register corresponding to the return address column.
1047 Incidentally, that's how we should treat a return
1048 address column specifying "same value" too. */
1049 if (fs->retaddr_column < fs->regs.num_regs
1050 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1051 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1052 {
1053 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1054 cache->reg[regnum] = *retaddr_reg;
1055 else
1056 cache->retaddr_reg = *retaddr_reg;
1057 }
1058 else
1059 {
1060 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1061 {
1062 cache->reg[regnum].loc.reg = fs->retaddr_column;
1063 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1064 }
1065 else
1066 {
1067 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1068 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1069 }
1070 }
1071 }
1072 }
1073 }
1074
1075 if (fs->retaddr_column < fs->regs.num_regs
1076 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1077 cache->undefined_retaddr = 1;
1078
1079 do_cleanups (old_chain);
1080
1081 *this_cache = cache;
1082 return cache;
1083}
1084
1085static void
1086dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1087 struct frame_id *this_id)
1088{
1089 struct dwarf2_frame_cache *cache =
1090 dwarf2_frame_cache (this_frame, this_cache);
1091
1092 if (cache->undefined_retaddr)
1093 return;
1094
1095 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1096}
1097
1098static struct value *
1099dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1100 int regnum)
1101{
1102 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1103 struct dwarf2_frame_cache *cache =
1104 dwarf2_frame_cache (this_frame, this_cache);
1105 CORE_ADDR addr;
1106 int realnum;
1107
1108 switch (cache->reg[regnum].how)
1109 {
1110 case DWARF2_FRAME_REG_UNDEFINED:
1111 /* If CFI explicitly specified that the value isn't defined,
1112 mark it as optimized away; the value isn't available. */
1113 return frame_unwind_got_optimized (this_frame, regnum);
1114
1115 case DWARF2_FRAME_REG_SAVED_OFFSET:
1116 addr = cache->cfa + cache->reg[regnum].loc.offset;
1117 return frame_unwind_got_memory (this_frame, regnum, addr);
1118
1119 case DWARF2_FRAME_REG_SAVED_REG:
1120 realnum
1121 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1122 return frame_unwind_got_register (this_frame, regnum, realnum);
1123
1124 case DWARF2_FRAME_REG_SAVED_EXP:
1125 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1126 cache->reg[regnum].exp_len,
1127 cache->addr_size, this_frame, cache->cfa);
1128 return frame_unwind_got_memory (this_frame, regnum, addr);
1129
1130 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1131 addr = cache->cfa + cache->reg[regnum].loc.offset;
1132 return frame_unwind_got_constant (this_frame, regnum, addr);
1133
1134 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1135 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1136 cache->reg[regnum].exp_len,
1137 cache->addr_size, this_frame, cache->cfa);
1138 return frame_unwind_got_constant (this_frame, regnum, addr);
1139
1140 case DWARF2_FRAME_REG_UNSPECIFIED:
1141 /* GCC, in its infinite wisdom decided to not provide unwind
1142 information for registers that are "same value". Since
1143 DWARF2 (3 draft 7) doesn't define such behavior, said
1144 registers are actually undefined (which is different to CFI
1145 "undefined"). Code above issues a complaint about this.
1146 Here just fudge the books, assume GCC, and that the value is
1147 more inner on the stack. */
1148 return frame_unwind_got_register (this_frame, regnum, regnum);
1149
1150 case DWARF2_FRAME_REG_SAME_VALUE:
1151 return frame_unwind_got_register (this_frame, regnum, regnum);
1152
1153 case DWARF2_FRAME_REG_CFA:
1154 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1155
1156 case DWARF2_FRAME_REG_CFA_OFFSET:
1157 addr = cache->cfa + cache->reg[regnum].loc.offset;
1158 return frame_unwind_got_address (this_frame, regnum, addr);
1159
1160 case DWARF2_FRAME_REG_RA_OFFSET:
1161 addr = cache->reg[regnum].loc.offset;
1162 regnum = gdbarch_dwarf2_reg_to_regnum
1163 (gdbarch, cache->retaddr_reg.loc.reg);
1164 addr += get_frame_register_unsigned (this_frame, regnum);
1165 return frame_unwind_got_address (this_frame, regnum, addr);
1166
1167 case DWARF2_FRAME_REG_FN:
1168 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1169
1170 default:
1171 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1172 }
1173}
1174
1175static int
1176dwarf2_frame_sniffer (const struct frame_unwind *self,
1177 struct frame_info *this_frame, void **this_cache)
1178{
1179 /* Grab an address that is guarenteed to reside somewhere within the
1180 function. get_frame_pc(), with a no-return next function, can
1181 end up returning something past the end of this function's body.
1182 If the frame we're sniffing for is a signal frame whose start
1183 address is placed on the stack by the OS, its FDE must
1184 extend one byte before its start address or we could potentially
1185 select the FDE of the previous function. */
1186 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1187 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1188 if (!fde)
1189 return 0;
1190
1191 /* On some targets, signal trampolines may have unwind information.
1192 We need to recognize them so that we set the frame type
1193 correctly. */
1194
1195 if (fde->cie->signal_frame
1196 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1197 this_frame))
1198 return self->type == SIGTRAMP_FRAME;
1199
1200 return self->type != SIGTRAMP_FRAME;
1201}
1202
1203static const struct frame_unwind dwarf2_frame_unwind =
1204{
1205 NORMAL_FRAME,
1206 dwarf2_frame_this_id,
1207 dwarf2_frame_prev_register,
1208 NULL,
1209 dwarf2_frame_sniffer
1210};
1211
1212static const struct frame_unwind dwarf2_signal_frame_unwind =
1213{
1214 SIGTRAMP_FRAME,
1215 dwarf2_frame_this_id,
1216 dwarf2_frame_prev_register,
1217 NULL,
1218 dwarf2_frame_sniffer
1219};
1220
1221/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1222
1223void
1224dwarf2_append_unwinders (struct gdbarch *gdbarch)
1225{
1226 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1227 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1228}
1229\f
1230
1231/* There is no explicitly defined relationship between the CFA and the
1232 location of frame's local variables and arguments/parameters.
1233 Therefore, frame base methods on this page should probably only be
1234 used as a last resort, just to avoid printing total garbage as a
1235 response to the "info frame" command. */
1236
1237static CORE_ADDR
1238dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1239{
1240 struct dwarf2_frame_cache *cache =
1241 dwarf2_frame_cache (this_frame, this_cache);
1242
1243 return cache->cfa;
1244}
1245
1246static const struct frame_base dwarf2_frame_base =
1247{
1248 &dwarf2_frame_unwind,
1249 dwarf2_frame_base_address,
1250 dwarf2_frame_base_address,
1251 dwarf2_frame_base_address
1252};
1253
1254const struct frame_base *
1255dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1256{
1257 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1258 if (dwarf2_frame_find_fde (&block_addr))
1259 return &dwarf2_frame_base;
1260
1261 return NULL;
1262}
1263
1264/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1265 the DWARF unwinder. This is used to implement
1266 DW_OP_call_frame_cfa. */
1267
1268CORE_ADDR
1269dwarf2_frame_cfa (struct frame_info *this_frame)
1270{
1271 while (get_frame_type (this_frame) == INLINE_FRAME)
1272 this_frame = get_prev_frame (this_frame);
1273 /* This restriction could be lifted if other unwinders are known to
1274 compute the frame base in a way compatible with the DWARF
1275 unwinder. */
1276 if (! frame_unwinder_is (this_frame, &dwarf2_frame_unwind))
1277 error (_("can't compute CFA for this frame"));
1278 return get_frame_base (this_frame);
1279}
1280\f
1281const struct objfile_data *dwarf2_frame_objfile_data;
1282
1283static unsigned int
1284read_1_byte (bfd *abfd, gdb_byte *buf)
1285{
1286 return bfd_get_8 (abfd, buf);
1287}
1288
1289static unsigned int
1290read_4_bytes (bfd *abfd, gdb_byte *buf)
1291{
1292 return bfd_get_32 (abfd, buf);
1293}
1294
1295static ULONGEST
1296read_8_bytes (bfd *abfd, gdb_byte *buf)
1297{
1298 return bfd_get_64 (abfd, buf);
1299}
1300
1301static ULONGEST
1302read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1303{
1304 ULONGEST result;
1305 unsigned int num_read;
1306 int shift;
1307 gdb_byte byte;
1308
1309 result = 0;
1310 shift = 0;
1311 num_read = 0;
1312
1313 do
1314 {
1315 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1316 buf++;
1317 num_read++;
1318 result |= ((byte & 0x7f) << shift);
1319 shift += 7;
1320 }
1321 while (byte & 0x80);
1322
1323 *bytes_read_ptr = num_read;
1324
1325 return result;
1326}
1327
1328static LONGEST
1329read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1330{
1331 LONGEST result;
1332 int shift;
1333 unsigned int num_read;
1334 gdb_byte byte;
1335
1336 result = 0;
1337 shift = 0;
1338 num_read = 0;
1339
1340 do
1341 {
1342 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1343 buf++;
1344 num_read++;
1345 result |= ((byte & 0x7f) << shift);
1346 shift += 7;
1347 }
1348 while (byte & 0x80);
1349
1350 if (shift < 8 * sizeof (result) && (byte & 0x40))
1351 result |= -(((LONGEST)1) << shift);
1352
1353 *bytes_read_ptr = num_read;
1354
1355 return result;
1356}
1357
1358static ULONGEST
1359read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1360{
1361 LONGEST result;
1362
1363 result = bfd_get_32 (abfd, buf);
1364 if (result == 0xffffffff)
1365 {
1366 result = bfd_get_64 (abfd, buf + 4);
1367 *bytes_read_ptr = 12;
1368 }
1369 else
1370 *bytes_read_ptr = 4;
1371
1372 return result;
1373}
1374\f
1375
1376/* Pointer encoding helper functions. */
1377
1378/* GCC supports exception handling based on DWARF2 CFI. However, for
1379 technical reasons, it encodes addresses in its FDE's in a different
1380 way. Several "pointer encodings" are supported. The encoding
1381 that's used for a particular FDE is determined by the 'R'
1382 augmentation in the associated CIE. The argument of this
1383 augmentation is a single byte.
1384
1385 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1386 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1387 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1388 address should be interpreted (absolute, relative to the current
1389 position in the FDE, ...). Bit 7, indicates that the address
1390 should be dereferenced. */
1391
1392static gdb_byte
1393encoding_for_size (unsigned int size)
1394{
1395 switch (size)
1396 {
1397 case 2:
1398 return DW_EH_PE_udata2;
1399 case 4:
1400 return DW_EH_PE_udata4;
1401 case 8:
1402 return DW_EH_PE_udata8;
1403 default:
1404 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1405 }
1406}
1407
1408static CORE_ADDR
1409read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1410 int ptr_len, gdb_byte *buf, unsigned int *bytes_read_ptr,
1411 CORE_ADDR func_base)
1412{
1413 ptrdiff_t offset;
1414 CORE_ADDR base;
1415
1416 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1417 FDE's. */
1418 if (encoding & DW_EH_PE_indirect)
1419 internal_error (__FILE__, __LINE__,
1420 _("Unsupported encoding: DW_EH_PE_indirect"));
1421
1422 *bytes_read_ptr = 0;
1423
1424 switch (encoding & 0x70)
1425 {
1426 case DW_EH_PE_absptr:
1427 base = 0;
1428 break;
1429 case DW_EH_PE_pcrel:
1430 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1431 base += (buf - unit->dwarf_frame_buffer);
1432 break;
1433 case DW_EH_PE_datarel:
1434 base = unit->dbase;
1435 break;
1436 case DW_EH_PE_textrel:
1437 base = unit->tbase;
1438 break;
1439 case DW_EH_PE_funcrel:
1440 base = func_base;
1441 break;
1442 case DW_EH_PE_aligned:
1443 base = 0;
1444 offset = buf - unit->dwarf_frame_buffer;
1445 if ((offset % ptr_len) != 0)
1446 {
1447 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1448 buf += *bytes_read_ptr;
1449 }
1450 break;
1451 default:
1452 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1453 }
1454
1455 if ((encoding & 0x07) == 0x00)
1456 {
1457 encoding |= encoding_for_size (ptr_len);
1458 if (bfd_get_sign_extend_vma (unit->abfd))
1459 encoding |= DW_EH_PE_signed;
1460 }
1461
1462 switch (encoding & 0x0f)
1463 {
1464 case DW_EH_PE_uleb128:
1465 {
1466 ULONGEST value;
1467 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1468 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1469 return base + value;
1470 }
1471 case DW_EH_PE_udata2:
1472 *bytes_read_ptr += 2;
1473 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1474 case DW_EH_PE_udata4:
1475 *bytes_read_ptr += 4;
1476 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1477 case DW_EH_PE_udata8:
1478 *bytes_read_ptr += 8;
1479 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1480 case DW_EH_PE_sleb128:
1481 {
1482 LONGEST value;
1483 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1484 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1485 return base + value;
1486 }
1487 case DW_EH_PE_sdata2:
1488 *bytes_read_ptr += 2;
1489 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1490 case DW_EH_PE_sdata4:
1491 *bytes_read_ptr += 4;
1492 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1493 case DW_EH_PE_sdata8:
1494 *bytes_read_ptr += 8;
1495 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1496 default:
1497 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1498 }
1499}
1500\f
1501
1502static int
1503bsearch_cie_cmp (const void *key, const void *element)
1504{
1505 ULONGEST cie_pointer = *(ULONGEST *) key;
1506 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1507
1508 if (cie_pointer == cie->cie_pointer)
1509 return 0;
1510
1511 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1512}
1513
1514/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1515static struct dwarf2_cie *
1516find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1517{
1518 struct dwarf2_cie **p_cie;
1519
1520 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1521 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1522 if (p_cie != NULL)
1523 return *p_cie;
1524 return NULL;
1525}
1526
1527/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1528static void
1529add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1530{
1531 const int n = cie_table->num_entries;
1532
1533 gdb_assert (n < 1
1534 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1535
1536 cie_table->entries =
1537 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1538 cie_table->entries[n] = cie;
1539 cie_table->num_entries = n + 1;
1540}
1541
1542static int
1543bsearch_fde_cmp (const void *key, const void *element)
1544{
1545 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1546 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1547 if (seek_pc < fde->initial_location)
1548 return -1;
1549 if (seek_pc < fde->initial_location + fde->address_range)
1550 return 0;
1551 return 1;
1552}
1553
1554/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1555 inital location associated with it into *PC. */
1556
1557static struct dwarf2_fde *
1558dwarf2_frame_find_fde (CORE_ADDR *pc)
1559{
1560 struct objfile *objfile;
1561
1562 ALL_OBJFILES (objfile)
1563 {
1564 struct dwarf2_fde_table *fde_table;
1565 struct dwarf2_fde **p_fde;
1566 CORE_ADDR offset;
1567 CORE_ADDR seek_pc;
1568
1569 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1570 if (fde_table == NULL)
1571 continue;
1572
1573 gdb_assert (objfile->section_offsets);
1574 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1575
1576 gdb_assert (fde_table->num_entries > 0);
1577 if (*pc < offset + fde_table->entries[0]->initial_location)
1578 continue;
1579
1580 seek_pc = *pc - offset;
1581 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1582 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1583 if (p_fde != NULL)
1584 {
1585 *pc = (*p_fde)->initial_location + offset;
1586 return *p_fde;
1587 }
1588 }
1589 return NULL;
1590}
1591
1592/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1593static void
1594add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1595{
1596 if (fde->address_range == 0)
1597 /* Discard useless FDEs. */
1598 return;
1599
1600 fde_table->num_entries += 1;
1601 fde_table->entries =
1602 xrealloc (fde_table->entries,
1603 fde_table->num_entries * sizeof (fde_table->entries[0]));
1604 fde_table->entries[fde_table->num_entries - 1] = fde;
1605}
1606
1607#ifdef CC_HAS_LONG_LONG
1608#define DW64_CIE_ID 0xffffffffffffffffULL
1609#else
1610#define DW64_CIE_ID ~0
1611#endif
1612
1613static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1614 int eh_frame_p,
1615 struct dwarf2_cie_table *cie_table,
1616 struct dwarf2_fde_table *fde_table);
1617
1618/* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1619 the next byte to be processed. */
1620static gdb_byte *
1621decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1622 struct dwarf2_cie_table *cie_table,
1623 struct dwarf2_fde_table *fde_table)
1624{
1625 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1626 gdb_byte *buf, *end;
1627 LONGEST length;
1628 unsigned int bytes_read;
1629 int dwarf64_p;
1630 ULONGEST cie_id;
1631 ULONGEST cie_pointer;
1632
1633 buf = start;
1634 length = read_initial_length (unit->abfd, buf, &bytes_read);
1635 buf += bytes_read;
1636 end = buf + length;
1637
1638 /* Are we still within the section? */
1639 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1640 return NULL;
1641
1642 if (length == 0)
1643 return end;
1644
1645 /* Distinguish between 32 and 64-bit encoded frame info. */
1646 dwarf64_p = (bytes_read == 12);
1647
1648 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1649 if (eh_frame_p)
1650 cie_id = 0;
1651 else if (dwarf64_p)
1652 cie_id = DW64_CIE_ID;
1653 else
1654 cie_id = DW_CIE_ID;
1655
1656 if (dwarf64_p)
1657 {
1658 cie_pointer = read_8_bytes (unit->abfd, buf);
1659 buf += 8;
1660 }
1661 else
1662 {
1663 cie_pointer = read_4_bytes (unit->abfd, buf);
1664 buf += 4;
1665 }
1666
1667 if (cie_pointer == cie_id)
1668 {
1669 /* This is a CIE. */
1670 struct dwarf2_cie *cie;
1671 char *augmentation;
1672 unsigned int cie_version;
1673
1674 /* Record the offset into the .debug_frame section of this CIE. */
1675 cie_pointer = start - unit->dwarf_frame_buffer;
1676
1677 /* Check whether we've already read it. */
1678 if (find_cie (cie_table, cie_pointer))
1679 return end;
1680
1681 cie = (struct dwarf2_cie *)
1682 obstack_alloc (&unit->objfile->objfile_obstack,
1683 sizeof (struct dwarf2_cie));
1684 cie->initial_instructions = NULL;
1685 cie->cie_pointer = cie_pointer;
1686
1687 /* The encoding for FDE's in a normal .debug_frame section
1688 depends on the target address size. */
1689 cie->encoding = DW_EH_PE_absptr;
1690
1691 /* The target address size. For .eh_frame FDEs this is considered
1692 equal to the size of a target pointer. For .dwarf_frame FDEs,
1693 this is supposed to be the target address size from the associated
1694 CU header. FIXME: We do not have a good way to determine the
1695 latter. Always use the target pointer size for now. */
1696 cie->addr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1697
1698 /* We'll determine the final value later, but we need to
1699 initialize it conservatively. */
1700 cie->signal_frame = 0;
1701
1702 /* Check version number. */
1703 cie_version = read_1_byte (unit->abfd, buf);
1704 if (cie_version != 1 && cie_version != 3)
1705 return NULL;
1706 cie->version = cie_version;
1707 buf += 1;
1708
1709 /* Interpret the interesting bits of the augmentation. */
1710 cie->augmentation = augmentation = (char *) buf;
1711 buf += (strlen (augmentation) + 1);
1712
1713 /* Ignore armcc augmentations. We only use them for quirks,
1714 and that doesn't happen until later. */
1715 if (strncmp (augmentation, "armcc", 5) == 0)
1716 augmentation += strlen (augmentation);
1717
1718 /* The GCC 2.x "eh" augmentation has a pointer immediately
1719 following the augmentation string, so it must be handled
1720 first. */
1721 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1722 {
1723 /* Skip. */
1724 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1725 augmentation += 2;
1726 }
1727
1728 cie->code_alignment_factor =
1729 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1730 buf += bytes_read;
1731
1732 cie->data_alignment_factor =
1733 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1734 buf += bytes_read;
1735
1736 if (cie_version == 1)
1737 {
1738 cie->return_address_register = read_1_byte (unit->abfd, buf);
1739 bytes_read = 1;
1740 }
1741 else
1742 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1743 &bytes_read);
1744 cie->return_address_register
1745 = dwarf2_frame_adjust_regnum (gdbarch,
1746 cie->return_address_register,
1747 eh_frame_p);
1748
1749 buf += bytes_read;
1750
1751 cie->saw_z_augmentation = (*augmentation == 'z');
1752 if (cie->saw_z_augmentation)
1753 {
1754 ULONGEST length;
1755
1756 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1757 buf += bytes_read;
1758 if (buf > end)
1759 return NULL;
1760 cie->initial_instructions = buf + length;
1761 augmentation++;
1762 }
1763
1764 while (*augmentation)
1765 {
1766 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1767 if (*augmentation == 'L')
1768 {
1769 /* Skip. */
1770 buf++;
1771 augmentation++;
1772 }
1773
1774 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1775 else if (*augmentation == 'R')
1776 {
1777 cie->encoding = *buf++;
1778 augmentation++;
1779 }
1780
1781 /* "P" indicates a personality routine in the CIE augmentation. */
1782 else if (*augmentation == 'P')
1783 {
1784 /* Skip. Avoid indirection since we throw away the result. */
1785 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1786 read_encoded_value (unit, encoding, cie->addr_size,
1787 buf, &bytes_read, 0);
1788 buf += bytes_read;
1789 augmentation++;
1790 }
1791
1792 /* "S" indicates a signal frame, such that the return
1793 address must not be decremented to locate the call frame
1794 info for the previous frame; it might even be the first
1795 instruction of a function, so decrementing it would take
1796 us to a different function. */
1797 else if (*augmentation == 'S')
1798 {
1799 cie->signal_frame = 1;
1800 augmentation++;
1801 }
1802
1803 /* Otherwise we have an unknown augmentation. Assume that either
1804 there is no augmentation data, or we saw a 'z' prefix. */
1805 else
1806 {
1807 if (cie->initial_instructions)
1808 buf = cie->initial_instructions;
1809 break;
1810 }
1811 }
1812
1813 cie->initial_instructions = buf;
1814 cie->end = end;
1815 cie->unit = unit;
1816
1817 add_cie (cie_table, cie);
1818 }
1819 else
1820 {
1821 /* This is a FDE. */
1822 struct dwarf2_fde *fde;
1823
1824 /* In an .eh_frame section, the CIE pointer is the delta between the
1825 address within the FDE where the CIE pointer is stored and the
1826 address of the CIE. Convert it to an offset into the .eh_frame
1827 section. */
1828 if (eh_frame_p)
1829 {
1830 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1831 cie_pointer -= (dwarf64_p ? 8 : 4);
1832 }
1833
1834 /* In either case, validate the result is still within the section. */
1835 if (cie_pointer >= unit->dwarf_frame_size)
1836 return NULL;
1837
1838 fde = (struct dwarf2_fde *)
1839 obstack_alloc (&unit->objfile->objfile_obstack,
1840 sizeof (struct dwarf2_fde));
1841 fde->cie = find_cie (cie_table, cie_pointer);
1842 if (fde->cie == NULL)
1843 {
1844 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1845 eh_frame_p, cie_table, fde_table);
1846 fde->cie = find_cie (cie_table, cie_pointer);
1847 }
1848
1849 gdb_assert (fde->cie != NULL);
1850
1851 fde->initial_location =
1852 read_encoded_value (unit, fde->cie->encoding, fde->cie->addr_size,
1853 buf, &bytes_read, 0);
1854 buf += bytes_read;
1855
1856 fde->address_range =
1857 read_encoded_value (unit, fde->cie->encoding & 0x0f,
1858 fde->cie->addr_size, buf, &bytes_read, 0);
1859 buf += bytes_read;
1860
1861 /* A 'z' augmentation in the CIE implies the presence of an
1862 augmentation field in the FDE as well. The only thing known
1863 to be in here at present is the LSDA entry for EH. So we
1864 can skip the whole thing. */
1865 if (fde->cie->saw_z_augmentation)
1866 {
1867 ULONGEST length;
1868
1869 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1870 buf += bytes_read + length;
1871 if (buf > end)
1872 return NULL;
1873 }
1874
1875 fde->instructions = buf;
1876 fde->end = end;
1877
1878 fde->eh_frame_p = eh_frame_p;
1879
1880 add_fde (fde_table, fde);
1881 }
1882
1883 return end;
1884}
1885
1886/* Read a CIE or FDE in BUF and decode it. */
1887static gdb_byte *
1888decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1889 struct dwarf2_cie_table *cie_table,
1890 struct dwarf2_fde_table *fde_table)
1891{
1892 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1893 gdb_byte *ret;
1894 const char *msg;
1895 ptrdiff_t start_offset;
1896
1897 while (1)
1898 {
1899 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
1900 cie_table, fde_table);
1901 if (ret != NULL)
1902 break;
1903
1904 /* We have corrupt input data of some form. */
1905
1906 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1907 and mismatches wrt padding and alignment of debug sections. */
1908 /* Note that there is no requirement in the standard for any
1909 alignment at all in the frame unwind sections. Testing for
1910 alignment before trying to interpret data would be incorrect.
1911
1912 However, GCC traditionally arranged for frame sections to be
1913 sized such that the FDE length and CIE fields happen to be
1914 aligned (in theory, for performance). This, unfortunately,
1915 was done with .align directives, which had the side effect of
1916 forcing the section to be aligned by the linker.
1917
1918 This becomes a problem when you have some other producer that
1919 creates frame sections that are not as strictly aligned. That
1920 produces a hole in the frame info that gets filled by the
1921 linker with zeros.
1922
1923 The GCC behaviour is arguably a bug, but it's effectively now
1924 part of the ABI, so we're now stuck with it, at least at the
1925 object file level. A smart linker may decide, in the process
1926 of compressing duplicate CIE information, that it can rewrite
1927 the entire output section without this extra padding. */
1928
1929 start_offset = start - unit->dwarf_frame_buffer;
1930 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1931 {
1932 start += 4 - (start_offset & 3);
1933 workaround = ALIGN4;
1934 continue;
1935 }
1936 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1937 {
1938 start += 8 - (start_offset & 7);
1939 workaround = ALIGN8;
1940 continue;
1941 }
1942
1943 /* Nothing left to try. Arrange to return as if we've consumed
1944 the entire input section. Hopefully we'll get valid info from
1945 the other of .debug_frame/.eh_frame. */
1946 workaround = FAIL;
1947 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1948 break;
1949 }
1950
1951 switch (workaround)
1952 {
1953 case NONE:
1954 break;
1955
1956 case ALIGN4:
1957 complaint (&symfile_complaints,
1958 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
1959 unit->dwarf_frame_section->owner->filename,
1960 unit->dwarf_frame_section->name);
1961 break;
1962
1963 case ALIGN8:
1964 complaint (&symfile_complaints,
1965 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
1966 unit->dwarf_frame_section->owner->filename,
1967 unit->dwarf_frame_section->name);
1968 break;
1969
1970 default:
1971 complaint (&symfile_complaints,
1972 _("Corrupt data in %s:%s"),
1973 unit->dwarf_frame_section->owner->filename,
1974 unit->dwarf_frame_section->name);
1975 break;
1976 }
1977
1978 return ret;
1979}
1980\f
1981
1982/* Imported from dwarf2read.c. */
1983extern void dwarf2_get_section_info (struct objfile *, const char *, asection **,
1984 gdb_byte **, bfd_size_type *);
1985
1986static int
1987qsort_fde_cmp (const void *a, const void *b)
1988{
1989 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
1990 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
1991
1992 if (aa->initial_location == bb->initial_location)
1993 {
1994 if (aa->address_range != bb->address_range
1995 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
1996 /* Linker bug, e.g. gold/10400.
1997 Work around it by keeping stable sort order. */
1998 return (a < b) ? -1 : 1;
1999 else
2000 /* Put eh_frame entries after debug_frame ones. */
2001 return aa->eh_frame_p - bb->eh_frame_p;
2002 }
2003
2004 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2005}
2006
2007void
2008dwarf2_build_frame_info (struct objfile *objfile)
2009{
2010 struct comp_unit *unit;
2011 gdb_byte *frame_ptr;
2012 struct dwarf2_cie_table cie_table;
2013 struct dwarf2_fde_table fde_table;
2014
2015 cie_table.num_entries = 0;
2016 cie_table.entries = NULL;
2017
2018 fde_table.num_entries = 0;
2019 fde_table.entries = NULL;
2020
2021 /* Build a minimal decoding of the DWARF2 compilation unit. */
2022 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2023 sizeof (struct comp_unit));
2024 unit->abfd = objfile->obfd;
2025 unit->objfile = objfile;
2026 unit->dbase = 0;
2027 unit->tbase = 0;
2028
2029 dwarf2_get_section_info (objfile, ".eh_frame",
2030 &unit->dwarf_frame_section,
2031 &unit->dwarf_frame_buffer,
2032 &unit->dwarf_frame_size);
2033 if (unit->dwarf_frame_size)
2034 {
2035 asection *got, *txt;
2036
2037 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2038 that is used for the i386/amd64 target, which currently is
2039 the only target in GCC that supports/uses the
2040 DW_EH_PE_datarel encoding. */
2041 got = bfd_get_section_by_name (unit->abfd, ".got");
2042 if (got)
2043 unit->dbase = got->vma;
2044
2045 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2046 so far. */
2047 txt = bfd_get_section_by_name (unit->abfd, ".text");
2048 if (txt)
2049 unit->tbase = txt->vma;
2050
2051 frame_ptr = unit->dwarf_frame_buffer;
2052 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2053 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2054 &cie_table, &fde_table);
2055
2056 if (cie_table.num_entries != 0)
2057 {
2058 /* Reinit cie_table: debug_frame has different CIEs. */
2059 xfree (cie_table.entries);
2060 cie_table.num_entries = 0;
2061 cie_table.entries = NULL;
2062 }
2063 }
2064
2065 dwarf2_get_section_info (objfile, ".debug_frame",
2066 &unit->dwarf_frame_section,
2067 &unit->dwarf_frame_buffer,
2068 &unit->dwarf_frame_size);
2069 if (unit->dwarf_frame_size)
2070 {
2071 frame_ptr = unit->dwarf_frame_buffer;
2072 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2073 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2074 &cie_table, &fde_table);
2075 }
2076
2077 /* Discard the cie_table, it is no longer needed. */
2078 if (cie_table.num_entries != 0)
2079 {
2080 xfree (cie_table.entries);
2081 cie_table.entries = NULL; /* Paranoia. */
2082 cie_table.num_entries = 0; /* Paranoia. */
2083 }
2084
2085 if (fde_table.num_entries != 0)
2086 {
2087 struct dwarf2_fde_table *fde_table2;
2088 int i, j;
2089
2090 /* Prepare FDE table for lookups. */
2091 qsort (fde_table.entries, fde_table.num_entries,
2092 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2093
2094 /* Copy fde_table to obstack: it is needed at runtime. */
2095 fde_table2 = (struct dwarf2_fde_table *)
2096 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2097
2098 /* Since we'll be doing bsearch, squeeze out identical (except for
2099 eh_frame_p) fde entries so bsearch result is predictable. */
2100 for (i = 0, j = 0; j < fde_table.num_entries; ++i)
2101 {
2102 const int k = j;
2103
2104 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[j],
2105 sizeof (fde_table.entries[0]));
2106 while (++j < fde_table.num_entries
2107 && (fde_table.entries[k]->initial_location ==
2108 fde_table.entries[j]->initial_location))
2109 /* Skip. */;
2110 }
2111 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2112 fde_table2->num_entries = i;
2113 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2114
2115 /* Discard the original fde_table. */
2116 xfree (fde_table.entries);
2117 }
2118}
2119
2120/* Provide a prototype to silence -Wmissing-prototypes. */
2121void _initialize_dwarf2_frame (void);
2122
2123void
2124_initialize_dwarf2_frame (void)
2125{
2126 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2127 dwarf2_frame_objfile_data = register_objfile_data ();
2128}
This page took 0.029311 seconds and 4 git commands to generate.