Various spelling fixes.
[deliverable/binutils-gdb.git] / gdb / dwarf2expr.c
... / ...
CommitLineData
1/* DWARF 2 Expression Evaluator.
2
3 Copyright (C) 2001, 2002, 2003, 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Contributed by Daniel Berlin (dan@dberlin.org)
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23#include "defs.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "dwarf2.h"
29#include "dwarf2expr.h"
30#include "gdb_assert.h"
31
32/* Local prototypes. */
33
34static void execute_stack_op (struct dwarf_expr_context *,
35 const gdb_byte *, const gdb_byte *);
36
37/* Cookie for gdbarch data. */
38
39static struct gdbarch_data *dwarf_arch_cookie;
40
41/* This holds gdbarch-specific types used by the DWARF expression
42 evaluator. See comments in execute_stack_op. */
43
44struct dwarf_gdbarch_types
45{
46 struct type *dw_types[3];
47};
48
49/* Allocate and fill in dwarf_gdbarch_types for an arch. */
50
51static void *
52dwarf_gdbarch_types_init (struct gdbarch *gdbarch)
53{
54 struct dwarf_gdbarch_types *types
55 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct dwarf_gdbarch_types);
56
57 /* The types themselves are lazily initialized. */
58
59 return types;
60}
61
62/* Return the type used for DWARF operations where the type is
63 unspecified in the DWARF spec. Only certain sizes are
64 supported. */
65
66static struct type *
67dwarf_expr_address_type (struct dwarf_expr_context *ctx)
68{
69 struct dwarf_gdbarch_types *types = gdbarch_data (ctx->gdbarch,
70 dwarf_arch_cookie);
71 int ndx;
72
73 if (ctx->addr_size == 2)
74 ndx = 0;
75 else if (ctx->addr_size == 4)
76 ndx = 1;
77 else if (ctx->addr_size == 8)
78 ndx = 2;
79 else
80 error (_("Unsupported address size in DWARF expressions: %d bits"),
81 8 * ctx->addr_size);
82
83 if (types->dw_types[ndx] == NULL)
84 types->dw_types[ndx]
85 = arch_integer_type (ctx->gdbarch,
86 8 * ctx->addr_size,
87 0, "<signed DWARF address type>");
88
89 return types->dw_types[ndx];
90}
91
92/* Create a new context for the expression evaluator. */
93
94struct dwarf_expr_context *
95new_dwarf_expr_context (void)
96{
97 struct dwarf_expr_context *retval;
98
99 retval = xcalloc (1, sizeof (struct dwarf_expr_context));
100 retval->stack_len = 0;
101 retval->stack_allocated = 10;
102 retval->stack = xmalloc (retval->stack_allocated
103 * sizeof (struct dwarf_stack_value));
104 retval->num_pieces = 0;
105 retval->pieces = 0;
106 retval->max_recursion_depth = 0x100;
107 return retval;
108}
109
110/* Release the memory allocated to CTX. */
111
112void
113free_dwarf_expr_context (struct dwarf_expr_context *ctx)
114{
115 xfree (ctx->stack);
116 xfree (ctx->pieces);
117 xfree (ctx);
118}
119
120/* Helper for make_cleanup_free_dwarf_expr_context. */
121
122static void
123free_dwarf_expr_context_cleanup (void *arg)
124{
125 free_dwarf_expr_context (arg);
126}
127
128/* Return a cleanup that calls free_dwarf_expr_context. */
129
130struct cleanup *
131make_cleanup_free_dwarf_expr_context (struct dwarf_expr_context *ctx)
132{
133 return make_cleanup (free_dwarf_expr_context_cleanup, ctx);
134}
135
136/* Expand the memory allocated to CTX's stack to contain at least
137 NEED more elements than are currently used. */
138
139static void
140dwarf_expr_grow_stack (struct dwarf_expr_context *ctx, size_t need)
141{
142 if (ctx->stack_len + need > ctx->stack_allocated)
143 {
144 size_t newlen = ctx->stack_len + need + 10;
145
146 ctx->stack = xrealloc (ctx->stack,
147 newlen * sizeof (struct dwarf_stack_value));
148 ctx->stack_allocated = newlen;
149 }
150}
151
152/* Push VALUE onto CTX's stack. */
153
154static void
155dwarf_expr_push (struct dwarf_expr_context *ctx, struct value *value,
156 int in_stack_memory)
157{
158 struct dwarf_stack_value *v;
159
160 dwarf_expr_grow_stack (ctx, 1);
161 v = &ctx->stack[ctx->stack_len++];
162 v->value = value;
163 v->in_stack_memory = in_stack_memory;
164}
165
166/* Push VALUE onto CTX's stack. */
167
168void
169dwarf_expr_push_address (struct dwarf_expr_context *ctx, CORE_ADDR value,
170 int in_stack_memory)
171{
172 dwarf_expr_push (ctx,
173 value_from_ulongest (dwarf_expr_address_type (ctx), value),
174 in_stack_memory);
175}
176
177/* Pop the top item off of CTX's stack. */
178
179static void
180dwarf_expr_pop (struct dwarf_expr_context *ctx)
181{
182 if (ctx->stack_len <= 0)
183 error (_("dwarf expression stack underflow"));
184 ctx->stack_len--;
185}
186
187/* Retrieve the N'th item on CTX's stack. */
188
189struct value *
190dwarf_expr_fetch (struct dwarf_expr_context *ctx, int n)
191{
192 if (ctx->stack_len <= n)
193 error (_("Asked for position %d of stack, "
194 "stack only has %d elements on it."),
195 n, ctx->stack_len);
196 return ctx->stack[ctx->stack_len - (1 + n)].value;
197}
198
199/* Require that TYPE be an integral type; throw an exception if not. */
200
201static void
202dwarf_require_integral (struct type *type)
203{
204 if (TYPE_CODE (type) != TYPE_CODE_INT
205 && TYPE_CODE (type) != TYPE_CODE_CHAR
206 && TYPE_CODE (type) != TYPE_CODE_BOOL)
207 error (_("integral type expected in DWARF expression"));
208}
209
210/* Return the unsigned form of TYPE. TYPE is necessarily an integral
211 type. */
212
213static struct type *
214get_unsigned_type (struct gdbarch *gdbarch, struct type *type)
215{
216 switch (TYPE_LENGTH (type))
217 {
218 case 1:
219 return builtin_type (gdbarch)->builtin_uint8;
220 case 2:
221 return builtin_type (gdbarch)->builtin_uint16;
222 case 4:
223 return builtin_type (gdbarch)->builtin_uint32;
224 case 8:
225 return builtin_type (gdbarch)->builtin_uint64;
226 default:
227 error (_("no unsigned variant found for type, while evaluating "
228 "DWARF expression"));
229 }
230}
231
232/* Return the signed form of TYPE. TYPE is necessarily an integral
233 type. */
234
235static struct type *
236get_signed_type (struct gdbarch *gdbarch, struct type *type)
237{
238 switch (TYPE_LENGTH (type))
239 {
240 case 1:
241 return builtin_type (gdbarch)->builtin_int8;
242 case 2:
243 return builtin_type (gdbarch)->builtin_int16;
244 case 4:
245 return builtin_type (gdbarch)->builtin_int32;
246 case 8:
247 return builtin_type (gdbarch)->builtin_int64;
248 default:
249 error (_("no signed variant found for type, while evaluating "
250 "DWARF expression"));
251 }
252}
253
254/* Retrieve the N'th item on CTX's stack, converted to an address. */
255
256CORE_ADDR
257dwarf_expr_fetch_address (struct dwarf_expr_context *ctx, int n)
258{
259 struct value *result_val = dwarf_expr_fetch (ctx, n);
260 enum bfd_endian byte_order = gdbarch_byte_order (ctx->gdbarch);
261 ULONGEST result;
262
263 dwarf_require_integral (value_type (result_val));
264 result = extract_unsigned_integer (value_contents (result_val),
265 TYPE_LENGTH (value_type (result_val)),
266 byte_order);
267
268 /* For most architectures, calling extract_unsigned_integer() alone
269 is sufficient for extracting an address. However, some
270 architectures (e.g. MIPS) use signed addresses and using
271 extract_unsigned_integer() will not produce a correct
272 result. Make sure we invoke gdbarch_integer_to_address()
273 for those architectures which require it. */
274 if (gdbarch_integer_to_address_p (ctx->gdbarch))
275 {
276 gdb_byte *buf = alloca (ctx->addr_size);
277 struct type *int_type = get_unsigned_type (ctx->gdbarch,
278 value_type (result_val));
279
280 store_unsigned_integer (buf, ctx->addr_size, byte_order, result);
281 return gdbarch_integer_to_address (ctx->gdbarch, int_type, buf);
282 }
283
284 return (CORE_ADDR) result;
285}
286
287/* Retrieve the in_stack_memory flag of the N'th item on CTX's stack. */
288
289int
290dwarf_expr_fetch_in_stack_memory (struct dwarf_expr_context *ctx, int n)
291{
292 if (ctx->stack_len <= n)
293 error (_("Asked for position %d of stack, "
294 "stack only has %d elements on it."),
295 n, ctx->stack_len);
296 return ctx->stack[ctx->stack_len - (1 + n)].in_stack_memory;
297}
298
299/* Return true if the expression stack is empty. */
300
301static int
302dwarf_expr_stack_empty_p (struct dwarf_expr_context *ctx)
303{
304 return ctx->stack_len == 0;
305}
306
307/* Add a new piece to CTX's piece list. */
308static void
309add_piece (struct dwarf_expr_context *ctx, ULONGEST size, ULONGEST offset)
310{
311 struct dwarf_expr_piece *p;
312
313 ctx->num_pieces++;
314
315 ctx->pieces = xrealloc (ctx->pieces,
316 (ctx->num_pieces
317 * sizeof (struct dwarf_expr_piece)));
318
319 p = &ctx->pieces[ctx->num_pieces - 1];
320 p->location = ctx->location;
321 p->size = size;
322 p->offset = offset;
323
324 if (p->location == DWARF_VALUE_LITERAL)
325 {
326 p->v.literal.data = ctx->data;
327 p->v.literal.length = ctx->len;
328 }
329 else if (dwarf_expr_stack_empty_p (ctx))
330 {
331 p->location = DWARF_VALUE_OPTIMIZED_OUT;
332 /* Also reset the context's location, for our callers. This is
333 a somewhat strange approach, but this lets us avoid setting
334 the location to DWARF_VALUE_MEMORY in all the individual
335 cases in the evaluator. */
336 ctx->location = DWARF_VALUE_OPTIMIZED_OUT;
337 }
338 else if (p->location == DWARF_VALUE_MEMORY)
339 {
340 p->v.mem.addr = dwarf_expr_fetch_address (ctx, 0);
341 p->v.mem.in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
342 }
343 else if (p->location == DWARF_VALUE_IMPLICIT_POINTER)
344 {
345 p->v.ptr.die = ctx->len;
346 p->v.ptr.offset = value_as_long (dwarf_expr_fetch (ctx, 0));
347 }
348 else if (p->location == DWARF_VALUE_REGISTER)
349 p->v.regno = value_as_long (dwarf_expr_fetch (ctx, 0));
350 else
351 {
352 p->v.value = dwarf_expr_fetch (ctx, 0);
353 }
354}
355
356/* Evaluate the expression at ADDR (LEN bytes long) using the context
357 CTX. */
358
359void
360dwarf_expr_eval (struct dwarf_expr_context *ctx, const gdb_byte *addr,
361 size_t len)
362{
363 int old_recursion_depth = ctx->recursion_depth;
364
365 execute_stack_op (ctx, addr, addr + len);
366
367 /* CTX RECURSION_DEPTH becomes invalid if an exception was thrown here. */
368
369 gdb_assert (ctx->recursion_depth == old_recursion_depth);
370}
371
372/* Decode the unsigned LEB128 constant at BUF into the variable pointed to
373 by R, and return the new value of BUF. Verify that it doesn't extend
374 past BUF_END. */
375
376const gdb_byte *
377read_uleb128 (const gdb_byte *buf, const gdb_byte *buf_end, ULONGEST * r)
378{
379 unsigned shift = 0;
380 ULONGEST result = 0;
381 gdb_byte byte;
382
383 while (1)
384 {
385 if (buf >= buf_end)
386 error (_("read_uleb128: Corrupted DWARF expression."));
387
388 byte = *buf++;
389 result |= ((ULONGEST) (byte & 0x7f)) << shift;
390 if ((byte & 0x80) == 0)
391 break;
392 shift += 7;
393 }
394 *r = result;
395 return buf;
396}
397
398/* Decode the signed LEB128 constant at BUF into the variable pointed to
399 by R, and return the new value of BUF. Verify that it doesn't extend
400 past BUF_END. */
401
402const gdb_byte *
403read_sleb128 (const gdb_byte *buf, const gdb_byte *buf_end, LONGEST * r)
404{
405 unsigned shift = 0;
406 LONGEST result = 0;
407 gdb_byte byte;
408
409 while (1)
410 {
411 if (buf >= buf_end)
412 error (_("read_sleb128: Corrupted DWARF expression."));
413
414 byte = *buf++;
415 result |= ((ULONGEST) (byte & 0x7f)) << shift;
416 shift += 7;
417 if ((byte & 0x80) == 0)
418 break;
419 }
420 if (shift < (sizeof (*r) * 8) && (byte & 0x40) != 0)
421 result |= -(1 << shift);
422
423 *r = result;
424 return buf;
425}
426\f
427
428/* Check that the current operator is either at the end of an
429 expression, or that it is followed by a composition operator. */
430
431void
432dwarf_expr_require_composition (const gdb_byte *op_ptr, const gdb_byte *op_end,
433 const char *op_name)
434{
435 /* It seems like DW_OP_GNU_uninit should be handled here. However,
436 it doesn't seem to make sense for DW_OP_*_value, and it was not
437 checked at the other place that this function is called. */
438 if (op_ptr != op_end && *op_ptr != DW_OP_piece && *op_ptr != DW_OP_bit_piece)
439 error (_("DWARF-2 expression error: `%s' operations must be "
440 "used either alone or in conjunction with DW_OP_piece "
441 "or DW_OP_bit_piece."),
442 op_name);
443}
444
445/* Return true iff the types T1 and T2 are "the same". This only does
446 checks that might reasonably be needed to compare DWARF base
447 types. */
448
449static int
450base_types_equal_p (struct type *t1, struct type *t2)
451{
452 if (TYPE_CODE (t1) != TYPE_CODE (t2))
453 return 0;
454 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
455 return 0;
456 return TYPE_LENGTH (t1) == TYPE_LENGTH (t2);
457}
458
459/* A convenience function to call get_base_type on CTX and return the
460 result. DIE is the DIE whose type we need. SIZE is non-zero if
461 this function should verify that the resulting type has the correct
462 size. */
463
464static struct type *
465dwarf_get_base_type (struct dwarf_expr_context *ctx, ULONGEST die, int size)
466{
467 struct type *result;
468
469 if (ctx->get_base_type)
470 {
471 result = ctx->get_base_type (ctx, die);
472 if (result == NULL)
473 error (_("Could not find type for DW_OP_GNU_const_type"));
474 if (size != 0 && TYPE_LENGTH (result) != size)
475 error (_("DW_OP_GNU_const_type has different sizes for type and data"));
476 }
477 else
478 /* Anything will do. */
479 result = builtin_type (ctx->gdbarch)->builtin_int;
480
481 return result;
482}
483
484/* The engine for the expression evaluator. Using the context in CTX,
485 evaluate the expression between OP_PTR and OP_END. */
486
487static void
488execute_stack_op (struct dwarf_expr_context *ctx,
489 const gdb_byte *op_ptr, const gdb_byte *op_end)
490{
491 enum bfd_endian byte_order = gdbarch_byte_order (ctx->gdbarch);
492 /* Old-style "untyped" DWARF values need special treatment in a
493 couple of places, specifically DW_OP_mod and DW_OP_shr. We need
494 a special type for these values so we can distinguish them from
495 values that have an explicit type, because explicitly-typed
496 values do not need special treatment. This special type must be
497 different (in the `==' sense) from any base type coming from the
498 CU. */
499 struct type *address_type = dwarf_expr_address_type (ctx);
500
501 ctx->location = DWARF_VALUE_MEMORY;
502 ctx->initialized = 1; /* Default is initialized. */
503
504 if (ctx->recursion_depth > ctx->max_recursion_depth)
505 error (_("DWARF-2 expression error: Loop detected (%d)."),
506 ctx->recursion_depth);
507 ctx->recursion_depth++;
508
509 while (op_ptr < op_end)
510 {
511 enum dwarf_location_atom op = *op_ptr++;
512 ULONGEST result;
513 /* Assume the value is not in stack memory.
514 Code that knows otherwise sets this to 1.
515 Some arithmetic on stack addresses can probably be assumed to still
516 be a stack address, but we skip this complication for now.
517 This is just an optimization, so it's always ok to punt
518 and leave this as 0. */
519 int in_stack_memory = 0;
520 ULONGEST uoffset, reg;
521 LONGEST offset;
522 struct value *result_val = NULL;
523
524 switch (op)
525 {
526 case DW_OP_lit0:
527 case DW_OP_lit1:
528 case DW_OP_lit2:
529 case DW_OP_lit3:
530 case DW_OP_lit4:
531 case DW_OP_lit5:
532 case DW_OP_lit6:
533 case DW_OP_lit7:
534 case DW_OP_lit8:
535 case DW_OP_lit9:
536 case DW_OP_lit10:
537 case DW_OP_lit11:
538 case DW_OP_lit12:
539 case DW_OP_lit13:
540 case DW_OP_lit14:
541 case DW_OP_lit15:
542 case DW_OP_lit16:
543 case DW_OP_lit17:
544 case DW_OP_lit18:
545 case DW_OP_lit19:
546 case DW_OP_lit20:
547 case DW_OP_lit21:
548 case DW_OP_lit22:
549 case DW_OP_lit23:
550 case DW_OP_lit24:
551 case DW_OP_lit25:
552 case DW_OP_lit26:
553 case DW_OP_lit27:
554 case DW_OP_lit28:
555 case DW_OP_lit29:
556 case DW_OP_lit30:
557 case DW_OP_lit31:
558 result = op - DW_OP_lit0;
559 result_val = value_from_ulongest (address_type, result);
560 break;
561
562 case DW_OP_addr:
563 result = extract_unsigned_integer (op_ptr,
564 ctx->addr_size, byte_order);
565 op_ptr += ctx->addr_size;
566 /* Some versions of GCC emit DW_OP_addr before
567 DW_OP_GNU_push_tls_address. In this case the value is an
568 index, not an address. We don't support things like
569 branching between the address and the TLS op. */
570 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
571 result += ctx->offset;
572 result_val = value_from_ulongest (address_type, result);
573 break;
574
575 case DW_OP_const1u:
576 result = extract_unsigned_integer (op_ptr, 1, byte_order);
577 result_val = value_from_ulongest (address_type, result);
578 op_ptr += 1;
579 break;
580 case DW_OP_const1s:
581 result = extract_signed_integer (op_ptr, 1, byte_order);
582 result_val = value_from_ulongest (address_type, result);
583 op_ptr += 1;
584 break;
585 case DW_OP_const2u:
586 result = extract_unsigned_integer (op_ptr, 2, byte_order);
587 result_val = value_from_ulongest (address_type, result);
588 op_ptr += 2;
589 break;
590 case DW_OP_const2s:
591 result = extract_signed_integer (op_ptr, 2, byte_order);
592 result_val = value_from_ulongest (address_type, result);
593 op_ptr += 2;
594 break;
595 case DW_OP_const4u:
596 result = extract_unsigned_integer (op_ptr, 4, byte_order);
597 result_val = value_from_ulongest (address_type, result);
598 op_ptr += 4;
599 break;
600 case DW_OP_const4s:
601 result = extract_signed_integer (op_ptr, 4, byte_order);
602 result_val = value_from_ulongest (address_type, result);
603 op_ptr += 4;
604 break;
605 case DW_OP_const8u:
606 result = extract_unsigned_integer (op_ptr, 8, byte_order);
607 result_val = value_from_ulongest (address_type, result);
608 op_ptr += 8;
609 break;
610 case DW_OP_const8s:
611 result = extract_signed_integer (op_ptr, 8, byte_order);
612 result_val = value_from_ulongest (address_type, result);
613 op_ptr += 8;
614 break;
615 case DW_OP_constu:
616 op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
617 result = uoffset;
618 result_val = value_from_ulongest (address_type, result);
619 break;
620 case DW_OP_consts:
621 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
622 result = offset;
623 result_val = value_from_ulongest (address_type, result);
624 break;
625
626 /* The DW_OP_reg operations are required to occur alone in
627 location expressions. */
628 case DW_OP_reg0:
629 case DW_OP_reg1:
630 case DW_OP_reg2:
631 case DW_OP_reg3:
632 case DW_OP_reg4:
633 case DW_OP_reg5:
634 case DW_OP_reg6:
635 case DW_OP_reg7:
636 case DW_OP_reg8:
637 case DW_OP_reg9:
638 case DW_OP_reg10:
639 case DW_OP_reg11:
640 case DW_OP_reg12:
641 case DW_OP_reg13:
642 case DW_OP_reg14:
643 case DW_OP_reg15:
644 case DW_OP_reg16:
645 case DW_OP_reg17:
646 case DW_OP_reg18:
647 case DW_OP_reg19:
648 case DW_OP_reg20:
649 case DW_OP_reg21:
650 case DW_OP_reg22:
651 case DW_OP_reg23:
652 case DW_OP_reg24:
653 case DW_OP_reg25:
654 case DW_OP_reg26:
655 case DW_OP_reg27:
656 case DW_OP_reg28:
657 case DW_OP_reg29:
658 case DW_OP_reg30:
659 case DW_OP_reg31:
660 if (op_ptr != op_end
661 && *op_ptr != DW_OP_piece
662 && *op_ptr != DW_OP_bit_piece
663 && *op_ptr != DW_OP_GNU_uninit)
664 error (_("DWARF-2 expression error: DW_OP_reg operations must be "
665 "used either alone or in conjunction with DW_OP_piece "
666 "or DW_OP_bit_piece."));
667
668 result = op - DW_OP_reg0;
669 result_val = value_from_ulongest (address_type, result);
670 ctx->location = DWARF_VALUE_REGISTER;
671 break;
672
673 case DW_OP_regx:
674 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
675 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
676
677 result = reg;
678 result_val = value_from_ulongest (address_type, result);
679 ctx->location = DWARF_VALUE_REGISTER;
680 break;
681
682 case DW_OP_implicit_value:
683 {
684 ULONGEST len;
685
686 op_ptr = read_uleb128 (op_ptr, op_end, &len);
687 if (op_ptr + len > op_end)
688 error (_("DW_OP_implicit_value: too few bytes available."));
689 ctx->len = len;
690 ctx->data = op_ptr;
691 ctx->location = DWARF_VALUE_LITERAL;
692 op_ptr += len;
693 dwarf_expr_require_composition (op_ptr, op_end,
694 "DW_OP_implicit_value");
695 }
696 goto no_push;
697
698 case DW_OP_stack_value:
699 ctx->location = DWARF_VALUE_STACK;
700 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
701 goto no_push;
702
703 case DW_OP_GNU_implicit_pointer:
704 {
705 ULONGEST die;
706 LONGEST len;
707
708 /* The referred-to DIE. */
709 ctx->len = extract_unsigned_integer (op_ptr, ctx->addr_size,
710 byte_order);
711 op_ptr += ctx->addr_size;
712
713 /* The byte offset into the data. */
714 op_ptr = read_sleb128 (op_ptr, op_end, &len);
715 result = (ULONGEST) len;
716 result_val = value_from_ulongest (address_type, result);
717
718 ctx->location = DWARF_VALUE_IMPLICIT_POINTER;
719 dwarf_expr_require_composition (op_ptr, op_end,
720 "DW_OP_GNU_implicit_pointer");
721 }
722 break;
723
724 case DW_OP_breg0:
725 case DW_OP_breg1:
726 case DW_OP_breg2:
727 case DW_OP_breg3:
728 case DW_OP_breg4:
729 case DW_OP_breg5:
730 case DW_OP_breg6:
731 case DW_OP_breg7:
732 case DW_OP_breg8:
733 case DW_OP_breg9:
734 case DW_OP_breg10:
735 case DW_OP_breg11:
736 case DW_OP_breg12:
737 case DW_OP_breg13:
738 case DW_OP_breg14:
739 case DW_OP_breg15:
740 case DW_OP_breg16:
741 case DW_OP_breg17:
742 case DW_OP_breg18:
743 case DW_OP_breg19:
744 case DW_OP_breg20:
745 case DW_OP_breg21:
746 case DW_OP_breg22:
747 case DW_OP_breg23:
748 case DW_OP_breg24:
749 case DW_OP_breg25:
750 case DW_OP_breg26:
751 case DW_OP_breg27:
752 case DW_OP_breg28:
753 case DW_OP_breg29:
754 case DW_OP_breg30:
755 case DW_OP_breg31:
756 {
757 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
758 result = (ctx->read_reg) (ctx->baton, op - DW_OP_breg0);
759 result += offset;
760 result_val = value_from_ulongest (address_type, result);
761 }
762 break;
763 case DW_OP_bregx:
764 {
765 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
766 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
767 result = (ctx->read_reg) (ctx->baton, reg);
768 result += offset;
769 result_val = value_from_ulongest (address_type, result);
770 }
771 break;
772 case DW_OP_fbreg:
773 {
774 const gdb_byte *datastart;
775 size_t datalen;
776 unsigned int before_stack_len;
777
778 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
779 /* Rather than create a whole new context, we simply
780 record the stack length before execution, then reset it
781 afterwards, effectively erasing whatever the recursive
782 call put there. */
783 before_stack_len = ctx->stack_len;
784 /* FIXME: cagney/2003-03-26: This code should be using
785 get_frame_base_address(), and then implement a dwarf2
786 specific this_base method. */
787 (ctx->get_frame_base) (ctx->baton, &datastart, &datalen);
788 dwarf_expr_eval (ctx, datastart, datalen);
789 if (ctx->location == DWARF_VALUE_MEMORY)
790 result = dwarf_expr_fetch_address (ctx, 0);
791 else if (ctx->location == DWARF_VALUE_REGISTER)
792 result
793 = (ctx->read_reg) (ctx->baton,
794 value_as_long (dwarf_expr_fetch (ctx, 0)));
795 else
796 error (_("Not implemented: computing frame "
797 "base using explicit value operator"));
798 result = result + offset;
799 result_val = value_from_ulongest (address_type, result);
800 in_stack_memory = 1;
801 ctx->stack_len = before_stack_len;
802 ctx->location = DWARF_VALUE_MEMORY;
803 }
804 break;
805
806 case DW_OP_dup:
807 result_val = dwarf_expr_fetch (ctx, 0);
808 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
809 break;
810
811 case DW_OP_drop:
812 dwarf_expr_pop (ctx);
813 goto no_push;
814
815 case DW_OP_pick:
816 offset = *op_ptr++;
817 result_val = dwarf_expr_fetch (ctx, offset);
818 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, offset);
819 break;
820
821 case DW_OP_swap:
822 {
823 struct dwarf_stack_value t1, t2;
824
825 if (ctx->stack_len < 2)
826 error (_("Not enough elements for "
827 "DW_OP_swap. Need 2, have %d."),
828 ctx->stack_len);
829 t1 = ctx->stack[ctx->stack_len - 1];
830 t2 = ctx->stack[ctx->stack_len - 2];
831 ctx->stack[ctx->stack_len - 1] = t2;
832 ctx->stack[ctx->stack_len - 2] = t1;
833 goto no_push;
834 }
835
836 case DW_OP_over:
837 result_val = dwarf_expr_fetch (ctx, 1);
838 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 1);
839 break;
840
841 case DW_OP_rot:
842 {
843 struct dwarf_stack_value t1, t2, t3;
844
845 if (ctx->stack_len < 3)
846 error (_("Not enough elements for "
847 "DW_OP_rot. Need 3, have %d."),
848 ctx->stack_len);
849 t1 = ctx->stack[ctx->stack_len - 1];
850 t2 = ctx->stack[ctx->stack_len - 2];
851 t3 = ctx->stack[ctx->stack_len - 3];
852 ctx->stack[ctx->stack_len - 1] = t2;
853 ctx->stack[ctx->stack_len - 2] = t3;
854 ctx->stack[ctx->stack_len - 3] = t1;
855 goto no_push;
856 }
857
858 case DW_OP_deref:
859 case DW_OP_deref_size:
860 case DW_OP_GNU_deref_type:
861 {
862 int addr_size = (op == DW_OP_deref ? ctx->addr_size : *op_ptr++);
863 gdb_byte *buf = alloca (addr_size);
864 CORE_ADDR addr = dwarf_expr_fetch_address (ctx, 0);
865 struct type *type;
866
867 dwarf_expr_pop (ctx);
868
869 if (op == DW_OP_GNU_deref_type)
870 {
871 ULONGEST type_die;
872
873 op_ptr = read_uleb128 (op_ptr, op_end, &type_die);
874 type = dwarf_get_base_type (ctx, type_die, 0);
875 }
876 else
877 type = address_type;
878
879 (ctx->read_mem) (ctx->baton, buf, addr, addr_size);
880
881 /* If the size of the object read from memory is different
882 from the type length, we need to zero-extend it. */
883 if (TYPE_LENGTH (type) != addr_size)
884 {
885 ULONGEST result =
886 extract_unsigned_integer (buf, addr_size, byte_order);
887
888 buf = alloca (TYPE_LENGTH (type));
889 store_unsigned_integer (buf, TYPE_LENGTH (type),
890 byte_order, result);
891 }
892
893 result_val = value_from_contents_and_address (type, buf, addr);
894 break;
895 }
896
897 case DW_OP_abs:
898 case DW_OP_neg:
899 case DW_OP_not:
900 case DW_OP_plus_uconst:
901 {
902 /* Unary operations. */
903 result_val = dwarf_expr_fetch (ctx, 0);
904 dwarf_expr_pop (ctx);
905
906 switch (op)
907 {
908 case DW_OP_abs:
909 if (value_less (result_val,
910 value_zero (value_type (result_val), not_lval)))
911 result_val = value_neg (result_val);
912 break;
913 case DW_OP_neg:
914 result_val = value_neg (result_val);
915 break;
916 case DW_OP_not:
917 dwarf_require_integral (value_type (result_val));
918 result_val = value_complement (result_val);
919 break;
920 case DW_OP_plus_uconst:
921 dwarf_require_integral (value_type (result_val));
922 result = value_as_long (result_val);
923 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
924 result += reg;
925 result_val = value_from_ulongest (address_type, result);
926 break;
927 }
928 }
929 break;
930
931 case DW_OP_and:
932 case DW_OP_div:
933 case DW_OP_minus:
934 case DW_OP_mod:
935 case DW_OP_mul:
936 case DW_OP_or:
937 case DW_OP_plus:
938 case DW_OP_shl:
939 case DW_OP_shr:
940 case DW_OP_shra:
941 case DW_OP_xor:
942 case DW_OP_le:
943 case DW_OP_ge:
944 case DW_OP_eq:
945 case DW_OP_lt:
946 case DW_OP_gt:
947 case DW_OP_ne:
948 {
949 /* Binary operations. */
950 struct value *first, *second;
951
952 second = dwarf_expr_fetch (ctx, 0);
953 dwarf_expr_pop (ctx);
954
955 first = dwarf_expr_fetch (ctx, 0);
956 dwarf_expr_pop (ctx);
957
958 if (! base_types_equal_p (value_type (first), value_type (second)))
959 error (_("Incompatible types on DWARF stack"));
960
961 switch (op)
962 {
963 case DW_OP_and:
964 dwarf_require_integral (value_type (first));
965 dwarf_require_integral (value_type (second));
966 result_val = value_binop (first, second, BINOP_BITWISE_AND);
967 break;
968 case DW_OP_div:
969 result_val = value_binop (first, second, BINOP_DIV);
970 break;
971 case DW_OP_minus:
972 result_val = value_binop (first, second, BINOP_SUB);
973 break;
974 case DW_OP_mod:
975 {
976 int cast_back = 0;
977 struct type *orig_type = value_type (first);
978
979 /* We have to special-case "old-style" untyped values
980 -- these must have mod computed using unsigned
981 math. */
982 if (orig_type == address_type)
983 {
984 struct type *utype
985 = get_unsigned_type (ctx->gdbarch, orig_type);
986
987 cast_back = 1;
988 first = value_cast (utype, first);
989 second = value_cast (utype, second);
990 }
991 /* Note that value_binop doesn't handle float or
992 decimal float here. This seems unimportant. */
993 result_val = value_binop (first, second, BINOP_MOD);
994 if (cast_back)
995 result_val = value_cast (orig_type, result_val);
996 }
997 break;
998 case DW_OP_mul:
999 result_val = value_binop (first, second, BINOP_MUL);
1000 break;
1001 case DW_OP_or:
1002 dwarf_require_integral (value_type (first));
1003 dwarf_require_integral (value_type (second));
1004 result_val = value_binop (first, second, BINOP_BITWISE_IOR);
1005 break;
1006 case DW_OP_plus:
1007 result_val = value_binop (first, second, BINOP_ADD);
1008 break;
1009 case DW_OP_shl:
1010 dwarf_require_integral (value_type (first));
1011 dwarf_require_integral (value_type (second));
1012 result_val = value_binop (first, second, BINOP_LSH);
1013 break;
1014 case DW_OP_shr:
1015 dwarf_require_integral (value_type (first));
1016 dwarf_require_integral (value_type (second));
1017 if (!TYPE_UNSIGNED (value_type (first)))
1018 {
1019 struct type *utype
1020 = get_unsigned_type (ctx->gdbarch, value_type (first));
1021
1022 first = value_cast (utype, first);
1023 }
1024
1025 result_val = value_binop (first, second, BINOP_RSH);
1026 /* Make sure we wind up with the same type we started
1027 with. */
1028 if (value_type (result_val) != value_type (second))
1029 result_val = value_cast (value_type (second), result_val);
1030 break;
1031 case DW_OP_shra:
1032 dwarf_require_integral (value_type (first));
1033 dwarf_require_integral (value_type (second));
1034 if (TYPE_UNSIGNED (value_type (first)))
1035 {
1036 struct type *stype
1037 = get_signed_type (ctx->gdbarch, value_type (first));
1038
1039 first = value_cast (stype, first);
1040 }
1041
1042 result_val = value_binop (first, second, BINOP_RSH);
1043 /* Make sure we wind up with the same type we started
1044 with. */
1045 if (value_type (result_val) != value_type (second))
1046 result_val = value_cast (value_type (second), result_val);
1047 break;
1048 case DW_OP_xor:
1049 dwarf_require_integral (value_type (first));
1050 dwarf_require_integral (value_type (second));
1051 result_val = value_binop (first, second, BINOP_BITWISE_XOR);
1052 break;
1053 case DW_OP_le:
1054 /* A <= B is !(B < A). */
1055 result = ! value_less (second, first);
1056 result_val = value_from_ulongest (address_type, result);
1057 break;
1058 case DW_OP_ge:
1059 /* A >= B is !(A < B). */
1060 result = ! value_less (first, second);
1061 result_val = value_from_ulongest (address_type, result);
1062 break;
1063 case DW_OP_eq:
1064 result = value_equal (first, second);
1065 result_val = value_from_ulongest (address_type, result);
1066 break;
1067 case DW_OP_lt:
1068 result = value_less (first, second);
1069 result_val = value_from_ulongest (address_type, result);
1070 break;
1071 case DW_OP_gt:
1072 /* A > B is B < A. */
1073 result = value_less (second, first);
1074 result_val = value_from_ulongest (address_type, result);
1075 break;
1076 case DW_OP_ne:
1077 result = ! value_equal (first, second);
1078 result_val = value_from_ulongest (address_type, result);
1079 break;
1080 default:
1081 internal_error (__FILE__, __LINE__,
1082 _("Can't be reached."));
1083 }
1084 }
1085 break;
1086
1087 case DW_OP_call_frame_cfa:
1088 result = (ctx->get_frame_cfa) (ctx->baton);
1089 result_val = value_from_ulongest (address_type, result);
1090 in_stack_memory = 1;
1091 break;
1092
1093 case DW_OP_GNU_push_tls_address:
1094 /* Variable is at a constant offset in the thread-local
1095 storage block into the objfile for the current thread and
1096 the dynamic linker module containing this expression. Here
1097 we return returns the offset from that base. The top of the
1098 stack has the offset from the beginning of the thread
1099 control block at which the variable is located. Nothing
1100 should follow this operator, so the top of stack would be
1101 returned. */
1102 result = value_as_long (dwarf_expr_fetch (ctx, 0));
1103 dwarf_expr_pop (ctx);
1104 result = (ctx->get_tls_address) (ctx->baton, result);
1105 result_val = value_from_ulongest (address_type, result);
1106 break;
1107
1108 case DW_OP_skip:
1109 offset = extract_signed_integer (op_ptr, 2, byte_order);
1110 op_ptr += 2;
1111 op_ptr += offset;
1112 goto no_push;
1113
1114 case DW_OP_bra:
1115 {
1116 struct value *val;
1117
1118 offset = extract_signed_integer (op_ptr, 2, byte_order);
1119 op_ptr += 2;
1120 val = dwarf_expr_fetch (ctx, 0);
1121 dwarf_require_integral (value_type (val));
1122 if (value_as_long (val) != 0)
1123 op_ptr += offset;
1124 dwarf_expr_pop (ctx);
1125 }
1126 goto no_push;
1127
1128 case DW_OP_nop:
1129 goto no_push;
1130
1131 case DW_OP_piece:
1132 {
1133 ULONGEST size;
1134
1135 /* Record the piece. */
1136 op_ptr = read_uleb128 (op_ptr, op_end, &size);
1137 add_piece (ctx, 8 * size, 0);
1138
1139 /* Pop off the address/regnum, and reset the location
1140 type. */
1141 if (ctx->location != DWARF_VALUE_LITERAL
1142 && ctx->location != DWARF_VALUE_OPTIMIZED_OUT)
1143 dwarf_expr_pop (ctx);
1144 ctx->location = DWARF_VALUE_MEMORY;
1145 }
1146 goto no_push;
1147
1148 case DW_OP_bit_piece:
1149 {
1150 ULONGEST size, offset;
1151
1152 /* Record the piece. */
1153 op_ptr = read_uleb128 (op_ptr, op_end, &size);
1154 op_ptr = read_uleb128 (op_ptr, op_end, &offset);
1155 add_piece (ctx, size, offset);
1156
1157 /* Pop off the address/regnum, and reset the location
1158 type. */
1159 if (ctx->location != DWARF_VALUE_LITERAL
1160 && ctx->location != DWARF_VALUE_OPTIMIZED_OUT)
1161 dwarf_expr_pop (ctx);
1162 ctx->location = DWARF_VALUE_MEMORY;
1163 }
1164 goto no_push;
1165
1166 case DW_OP_GNU_uninit:
1167 if (op_ptr != op_end)
1168 error (_("DWARF-2 expression error: DW_OP_GNU_uninit must always "
1169 "be the very last op."));
1170
1171 ctx->initialized = 0;
1172 goto no_push;
1173
1174 case DW_OP_call2:
1175 result = extract_unsigned_integer (op_ptr, 2, byte_order);
1176 op_ptr += 2;
1177 ctx->dwarf_call (ctx, result);
1178 goto no_push;
1179
1180 case DW_OP_call4:
1181 result = extract_unsigned_integer (op_ptr, 4, byte_order);
1182 op_ptr += 4;
1183 ctx->dwarf_call (ctx, result);
1184 goto no_push;
1185
1186 case DW_OP_GNU_entry_value:
1187 /* This operation is not yet supported by GDB. */
1188 ctx->location = DWARF_VALUE_OPTIMIZED_OUT;
1189 ctx->stack_len = 0;
1190 ctx->num_pieces = 0;
1191 goto abort_expression;
1192
1193 case DW_OP_GNU_const_type:
1194 {
1195 ULONGEST type_die;
1196 int n;
1197 const gdb_byte *data;
1198 struct type *type;
1199
1200 op_ptr = read_uleb128 (op_ptr, op_end, &type_die);
1201 n = *op_ptr++;
1202 data = op_ptr;
1203 op_ptr += n;
1204
1205 type = dwarf_get_base_type (ctx, type_die, n);
1206 result_val = value_from_contents (type, data);
1207 }
1208 break;
1209
1210 case DW_OP_GNU_regval_type:
1211 {
1212 ULONGEST type_die;
1213 struct type *type;
1214
1215 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
1216 op_ptr = read_uleb128 (op_ptr, op_end, &type_die);
1217
1218 type = dwarf_get_base_type (ctx, type_die, 0);
1219 result = (ctx->read_reg) (ctx->baton, reg);
1220 result_val = value_from_ulongest (type, result);
1221 }
1222 break;
1223
1224 case DW_OP_GNU_convert:
1225 case DW_OP_GNU_reinterpret:
1226 {
1227 ULONGEST type_die;
1228 struct type *type;
1229
1230 op_ptr = read_uleb128 (op_ptr, op_end, &type_die);
1231
1232 type = dwarf_get_base_type (ctx, type_die, 0);
1233
1234 result_val = dwarf_expr_fetch (ctx, 0);
1235 dwarf_expr_pop (ctx);
1236
1237 if (op == DW_OP_GNU_convert)
1238 result_val = value_cast (type, result_val);
1239 else if (type == value_type (result_val))
1240 {
1241 /* Nothing. */
1242 }
1243 else if (TYPE_LENGTH (type)
1244 != TYPE_LENGTH (value_type (result_val)))
1245 error (_("DW_OP_GNU_reinterpret has wrong size"));
1246 else
1247 result_val
1248 = value_from_contents (type,
1249 value_contents_all (result_val));
1250 }
1251 break;
1252
1253 default:
1254 error (_("Unhandled dwarf expression opcode 0x%x"), op);
1255 }
1256
1257 /* Most things push a result value. */
1258 gdb_assert (result_val != NULL);
1259 dwarf_expr_push (ctx, result_val, in_stack_memory);
1260 no_push:
1261 ;
1262 }
1263
1264 /* To simplify our main caller, if the result is an implicit
1265 pointer, then make a pieced value. This is ok because we can't
1266 have implicit pointers in contexts where pieces are invalid. */
1267 if (ctx->location == DWARF_VALUE_IMPLICIT_POINTER)
1268 add_piece (ctx, 8 * ctx->addr_size, 0);
1269
1270abort_expression:
1271 ctx->recursion_depth--;
1272 gdb_assert (ctx->recursion_depth >= 0);
1273}
1274
1275void
1276_initialize_dwarf2expr (void)
1277{
1278 dwarf_arch_cookie
1279 = gdbarch_data_register_post_init (dwarf_gdbarch_types_init);
1280}
This page took 0.03192 seconds and 4 git commands to generate.