* tls.m4 (GCC_CHECK_TLS): Rename have_tls to gcc_cv_have_tls.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
... / ...
CommitLineData
1/* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support.
12
13 This file is part of GDB.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27
28#include "defs.h"
29#include "bfd.h"
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "objfiles.h"
33#include "elf/dwarf2.h"
34#include "buildsym.h"
35#include "demangle.h"
36#include "expression.h"
37#include "filenames.h" /* for DOSish file names */
38#include "macrotab.h"
39#include "language.h"
40#include "complaints.h"
41#include "bcache.h"
42#include "dwarf2expr.h"
43#include "dwarf2loc.h"
44#include "cp-support.h"
45#include "hashtab.h"
46#include "command.h"
47#include "gdbcmd.h"
48
49#include <fcntl.h>
50#include "gdb_string.h"
51#include "gdb_assert.h"
52#include <sys/types.h>
53
54/* A note on memory usage for this file.
55
56 At the present time, this code reads the debug info sections into
57 the objfile's objfile_obstack. A definite improvement for startup
58 time, on platforms which do not emit relocations for debug
59 sections, would be to use mmap instead. The object's complete
60 debug information is loaded into memory, partly to simplify
61 absolute DIE references.
62
63 Whether using obstacks or mmap, the sections should remain loaded
64 until the objfile is released, and pointers into the section data
65 can be used for any other data associated to the objfile (symbol
66 names, type names, location expressions to name a few). */
67
68#if 0
69/* .debug_info header for a compilation unit
70 Because of alignment constraints, this structure has padding and cannot
71 be mapped directly onto the beginning of the .debug_info section. */
72typedef struct comp_unit_header
73 {
74 unsigned int length; /* length of the .debug_info
75 contribution */
76 unsigned short version; /* version number -- 2 for DWARF
77 version 2 */
78 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
79 unsigned char addr_size; /* byte size of an address -- 4 */
80 }
81_COMP_UNIT_HEADER;
82#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
83#endif
84
85/* .debug_pubnames header
86 Because of alignment constraints, this structure has padding and cannot
87 be mapped directly onto the beginning of the .debug_info section. */
88typedef struct pubnames_header
89 {
90 unsigned int length; /* length of the .debug_pubnames
91 contribution */
92 unsigned char version; /* version number -- 2 for DWARF
93 version 2 */
94 unsigned int info_offset; /* offset into .debug_info section */
95 unsigned int info_size; /* byte size of .debug_info section
96 portion */
97 }
98_PUBNAMES_HEADER;
99#define _ACTUAL_PUBNAMES_HEADER_SIZE 13
100
101/* .debug_pubnames header
102 Because of alignment constraints, this structure has padding and cannot
103 be mapped directly onto the beginning of the .debug_info section. */
104typedef struct aranges_header
105 {
106 unsigned int length; /* byte len of the .debug_aranges
107 contribution */
108 unsigned short version; /* version number -- 2 for DWARF
109 version 2 */
110 unsigned int info_offset; /* offset into .debug_info section */
111 unsigned char addr_size; /* byte size of an address */
112 unsigned char seg_size; /* byte size of segment descriptor */
113 }
114_ARANGES_HEADER;
115#define _ACTUAL_ARANGES_HEADER_SIZE 12
116
117/* .debug_line statement program prologue
118 Because of alignment constraints, this structure has padding and cannot
119 be mapped directly onto the beginning of the .debug_info section. */
120typedef struct statement_prologue
121 {
122 unsigned int total_length; /* byte length of the statement
123 information */
124 unsigned short version; /* version number -- 2 for DWARF
125 version 2 */
126 unsigned int prologue_length; /* # bytes between prologue &
127 stmt program */
128 unsigned char minimum_instruction_length; /* byte size of
129 smallest instr */
130 unsigned char default_is_stmt; /* initial value of is_stmt
131 register */
132 char line_base;
133 unsigned char line_range;
134 unsigned char opcode_base; /* number assigned to first special
135 opcode */
136 unsigned char *standard_opcode_lengths;
137 }
138_STATEMENT_PROLOGUE;
139
140static const struct objfile_data *dwarf2_objfile_data_key;
141
142struct dwarf2_per_objfile
143{
144 /* Sizes of debugging sections. */
145 unsigned int info_size;
146 unsigned int abbrev_size;
147 unsigned int line_size;
148 unsigned int pubnames_size;
149 unsigned int aranges_size;
150 unsigned int loc_size;
151 unsigned int macinfo_size;
152 unsigned int str_size;
153 unsigned int ranges_size;
154 unsigned int frame_size;
155 unsigned int eh_frame_size;
156
157 /* Loaded data from the sections. */
158 gdb_byte *info_buffer;
159 gdb_byte *abbrev_buffer;
160 gdb_byte *line_buffer;
161 gdb_byte *str_buffer;
162 gdb_byte *macinfo_buffer;
163 gdb_byte *ranges_buffer;
164 gdb_byte *loc_buffer;
165
166 /* A list of all the compilation units. This is used to locate
167 the target compilation unit of a particular reference. */
168 struct dwarf2_per_cu_data **all_comp_units;
169
170 /* The number of compilation units in ALL_COMP_UNITS. */
171 int n_comp_units;
172
173 /* A chain of compilation units that are currently read in, so that
174 they can be freed later. */
175 struct dwarf2_per_cu_data *read_in_chain;
176
177 /* A flag indicating wether this objfile has a section loaded at a
178 VMA of 0. */
179 int has_section_at_zero;
180};
181
182static struct dwarf2_per_objfile *dwarf2_per_objfile;
183
184static asection *dwarf_info_section;
185static asection *dwarf_abbrev_section;
186static asection *dwarf_line_section;
187static asection *dwarf_pubnames_section;
188static asection *dwarf_aranges_section;
189static asection *dwarf_loc_section;
190static asection *dwarf_macinfo_section;
191static asection *dwarf_str_section;
192static asection *dwarf_ranges_section;
193asection *dwarf_frame_section;
194asection *dwarf_eh_frame_section;
195
196/* names of the debugging sections */
197
198#define INFO_SECTION ".debug_info"
199#define ABBREV_SECTION ".debug_abbrev"
200#define LINE_SECTION ".debug_line"
201#define PUBNAMES_SECTION ".debug_pubnames"
202#define ARANGES_SECTION ".debug_aranges"
203#define LOC_SECTION ".debug_loc"
204#define MACINFO_SECTION ".debug_macinfo"
205#define STR_SECTION ".debug_str"
206#define RANGES_SECTION ".debug_ranges"
207#define FRAME_SECTION ".debug_frame"
208#define EH_FRAME_SECTION ".eh_frame"
209
210/* local data types */
211
212/* We hold several abbreviation tables in memory at the same time. */
213#ifndef ABBREV_HASH_SIZE
214#define ABBREV_HASH_SIZE 121
215#endif
216
217/* The data in a compilation unit header, after target2host
218 translation, looks like this. */
219struct comp_unit_head
220{
221 unsigned long length;
222 short version;
223 unsigned int abbrev_offset;
224 unsigned char addr_size;
225 unsigned char signed_addr_p;
226
227 /* Size of file offsets; either 4 or 8. */
228 unsigned int offset_size;
229
230 /* Size of the length field; either 4 or 12. */
231 unsigned int initial_length_size;
232
233 /* Offset to the first byte of this compilation unit header in the
234 .debug_info section, for resolving relative reference dies. */
235 unsigned int offset;
236
237 /* Pointer to this compilation unit header in the .debug_info
238 section. */
239 gdb_byte *cu_head_ptr;
240
241 /* Pointer to the first die of this compilation unit. This will be
242 the first byte following the compilation unit header. */
243 gdb_byte *first_die_ptr;
244
245 /* Pointer to the next compilation unit header in the program. */
246 struct comp_unit_head *next;
247
248 /* Base address of this compilation unit. */
249 CORE_ADDR base_address;
250
251 /* Non-zero if base_address has been set. */
252 int base_known;
253};
254
255/* Fixed size for the DIE hash table. */
256#ifndef REF_HASH_SIZE
257#define REF_HASH_SIZE 1021
258#endif
259
260/* Internal state when decoding a particular compilation unit. */
261struct dwarf2_cu
262{
263 /* The objfile containing this compilation unit. */
264 struct objfile *objfile;
265
266 /* The header of the compilation unit.
267
268 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
269 should logically be moved to the dwarf2_cu structure. */
270 struct comp_unit_head header;
271
272 struct function_range *first_fn, *last_fn, *cached_fn;
273
274 /* The language we are debugging. */
275 enum language language;
276 const struct language_defn *language_defn;
277
278 const char *producer;
279
280 /* The generic symbol table building routines have separate lists for
281 file scope symbols and all all other scopes (local scopes). So
282 we need to select the right one to pass to add_symbol_to_list().
283 We do it by keeping a pointer to the correct list in list_in_scope.
284
285 FIXME: The original dwarf code just treated the file scope as the
286 first local scope, and all other local scopes as nested local
287 scopes, and worked fine. Check to see if we really need to
288 distinguish these in buildsym.c. */
289 struct pending **list_in_scope;
290
291 /* Maintain an array of referenced fundamental types for the current
292 compilation unit being read. For DWARF version 1, we have to construct
293 the fundamental types on the fly, since no information about the
294 fundamental types is supplied. Each such fundamental type is created by
295 calling a language dependent routine to create the type, and then a
296 pointer to that type is then placed in the array at the index specified
297 by it's FT_<TYPENAME> value. The array has a fixed size set by the
298 FT_NUM_MEMBERS compile time constant, which is the number of predefined
299 fundamental types gdb knows how to construct. */
300 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
301
302 /* DWARF abbreviation table associated with this compilation unit. */
303 struct abbrev_info **dwarf2_abbrevs;
304
305 /* Storage for the abbrev table. */
306 struct obstack abbrev_obstack;
307
308 /* Hash table holding all the loaded partial DIEs. */
309 htab_t partial_dies;
310
311 /* Storage for things with the same lifetime as this read-in compilation
312 unit, including partial DIEs. */
313 struct obstack comp_unit_obstack;
314
315 /* When multiple dwarf2_cu structures are living in memory, this field
316 chains them all together, so that they can be released efficiently.
317 We will probably also want a generation counter so that most-recently-used
318 compilation units are cached... */
319 struct dwarf2_per_cu_data *read_in_chain;
320
321 /* Backchain to our per_cu entry if the tree has been built. */
322 struct dwarf2_per_cu_data *per_cu;
323
324 /* How many compilation units ago was this CU last referenced? */
325 int last_used;
326
327 /* A hash table of die offsets for following references. */
328 struct die_info *die_ref_table[REF_HASH_SIZE];
329
330 /* Full DIEs if read in. */
331 struct die_info *dies;
332
333 /* A set of pointers to dwarf2_per_cu_data objects for compilation
334 units referenced by this one. Only set during full symbol processing;
335 partial symbol tables do not have dependencies. */
336 htab_t dependencies;
337
338 /* Header data from the line table, during full symbol processing. */
339 struct line_header *line_header;
340
341 /* Mark used when releasing cached dies. */
342 unsigned int mark : 1;
343
344 /* This flag will be set if this compilation unit might include
345 inter-compilation-unit references. */
346 unsigned int has_form_ref_addr : 1;
347
348 /* This flag will be set if this compilation unit includes any
349 DW_TAG_namespace DIEs. If we know that there are explicit
350 DIEs for namespaces, we don't need to try to infer them
351 from mangled names. */
352 unsigned int has_namespace_info : 1;
353};
354
355/* Persistent data held for a compilation unit, even when not
356 processing it. We put a pointer to this structure in the
357 read_symtab_private field of the psymtab. If we encounter
358 inter-compilation-unit references, we also maintain a sorted
359 list of all compilation units. */
360
361struct dwarf2_per_cu_data
362{
363 /* The start offset and length of this compilation unit. 2**30-1
364 bytes should suffice to store the length of any compilation unit
365 - if it doesn't, GDB will fall over anyway. */
366 unsigned long offset;
367 unsigned long length : 30;
368
369 /* Flag indicating this compilation unit will be read in before
370 any of the current compilation units are processed. */
371 unsigned long queued : 1;
372
373 /* This flag will be set if we need to load absolutely all DIEs
374 for this compilation unit, instead of just the ones we think
375 are interesting. It gets set if we look for a DIE in the
376 hash table and don't find it. */
377 unsigned int load_all_dies : 1;
378
379 /* Set iff currently read in. */
380 struct dwarf2_cu *cu;
381
382 /* If full symbols for this CU have been read in, then this field
383 holds a map of DIE offsets to types. It isn't always possible
384 to reconstruct this information later, so we have to preserve
385 it. */
386 htab_t type_hash;
387
388 /* The partial symbol table associated with this compilation unit,
389 or NULL for partial units (which do not have an associated
390 symtab). */
391 struct partial_symtab *psymtab;
392};
393
394/* The line number information for a compilation unit (found in the
395 .debug_line section) begins with a "statement program header",
396 which contains the following information. */
397struct line_header
398{
399 unsigned int total_length;
400 unsigned short version;
401 unsigned int header_length;
402 unsigned char minimum_instruction_length;
403 unsigned char default_is_stmt;
404 int line_base;
405 unsigned char line_range;
406 unsigned char opcode_base;
407
408 /* standard_opcode_lengths[i] is the number of operands for the
409 standard opcode whose value is i. This means that
410 standard_opcode_lengths[0] is unused, and the last meaningful
411 element is standard_opcode_lengths[opcode_base - 1]. */
412 unsigned char *standard_opcode_lengths;
413
414 /* The include_directories table. NOTE! These strings are not
415 allocated with xmalloc; instead, they are pointers into
416 debug_line_buffer. If you try to free them, `free' will get
417 indigestion. */
418 unsigned int num_include_dirs, include_dirs_size;
419 char **include_dirs;
420
421 /* The file_names table. NOTE! These strings are not allocated
422 with xmalloc; instead, they are pointers into debug_line_buffer.
423 Don't try to free them directly. */
424 unsigned int num_file_names, file_names_size;
425 struct file_entry
426 {
427 char *name;
428 unsigned int dir_index;
429 unsigned int mod_time;
430 unsigned int length;
431 int included_p; /* Non-zero if referenced by the Line Number Program. */
432 struct symtab *symtab; /* The associated symbol table, if any. */
433 } *file_names;
434
435 /* The start and end of the statement program following this
436 header. These point into dwarf2_per_objfile->line_buffer. */
437 gdb_byte *statement_program_start, *statement_program_end;
438};
439
440/* When we construct a partial symbol table entry we only
441 need this much information. */
442struct partial_die_info
443 {
444 /* Offset of this DIE. */
445 unsigned int offset;
446
447 /* DWARF-2 tag for this DIE. */
448 ENUM_BITFIELD(dwarf_tag) tag : 16;
449
450 /* Language code associated with this DIE. This is only used
451 for the compilation unit DIE. */
452 unsigned int language : 8;
453
454 /* Assorted flags describing the data found in this DIE. */
455 unsigned int has_children : 1;
456 unsigned int is_external : 1;
457 unsigned int is_declaration : 1;
458 unsigned int has_type : 1;
459 unsigned int has_specification : 1;
460 unsigned int has_stmt_list : 1;
461 unsigned int has_pc_info : 1;
462
463 /* Flag set if the SCOPE field of this structure has been
464 computed. */
465 unsigned int scope_set : 1;
466
467 /* Flag set if the DIE has a byte_size attribute. */
468 unsigned int has_byte_size : 1;
469
470 /* The name of this DIE. Normally the value of DW_AT_name, but
471 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
472 other fashion. */
473 char *name;
474 char *dirname;
475
476 /* The scope to prepend to our children. This is generally
477 allocated on the comp_unit_obstack, so will disappear
478 when this compilation unit leaves the cache. */
479 char *scope;
480
481 /* The location description associated with this DIE, if any. */
482 struct dwarf_block *locdesc;
483
484 /* If HAS_PC_INFO, the PC range associated with this DIE. */
485 CORE_ADDR lowpc;
486 CORE_ADDR highpc;
487
488 /* Pointer into the info_buffer pointing at the target of
489 DW_AT_sibling, if any. */
490 gdb_byte *sibling;
491
492 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
493 DW_AT_specification (or DW_AT_abstract_origin or
494 DW_AT_extension). */
495 unsigned int spec_offset;
496
497 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
498 unsigned int line_offset;
499
500 /* Pointers to this DIE's parent, first child, and next sibling,
501 if any. */
502 struct partial_die_info *die_parent, *die_child, *die_sibling;
503 };
504
505/* This data structure holds the information of an abbrev. */
506struct abbrev_info
507 {
508 unsigned int number; /* number identifying abbrev */
509 enum dwarf_tag tag; /* dwarf tag */
510 unsigned short has_children; /* boolean */
511 unsigned short num_attrs; /* number of attributes */
512 struct attr_abbrev *attrs; /* an array of attribute descriptions */
513 struct abbrev_info *next; /* next in chain */
514 };
515
516struct attr_abbrev
517 {
518 enum dwarf_attribute name;
519 enum dwarf_form form;
520 };
521
522/* This data structure holds a complete die structure. */
523struct die_info
524 {
525 enum dwarf_tag tag; /* Tag indicating type of die */
526 unsigned int abbrev; /* Abbrev number */
527 unsigned int offset; /* Offset in .debug_info section */
528 unsigned int num_attrs; /* Number of attributes */
529 struct attribute *attrs; /* An array of attributes */
530 struct die_info *next_ref; /* Next die in ref hash table */
531
532 /* The dies in a compilation unit form an n-ary tree. PARENT
533 points to this die's parent; CHILD points to the first child of
534 this node; and all the children of a given node are chained
535 together via their SIBLING fields, terminated by a die whose
536 tag is zero. */
537 struct die_info *child; /* Its first child, if any. */
538 struct die_info *sibling; /* Its next sibling, if any. */
539 struct die_info *parent; /* Its parent, if any. */
540
541 struct type *type; /* Cached type information */
542 };
543
544/* Attributes have a name and a value */
545struct attribute
546 {
547 enum dwarf_attribute name;
548 enum dwarf_form form;
549 union
550 {
551 char *str;
552 struct dwarf_block *blk;
553 unsigned long unsnd;
554 long int snd;
555 CORE_ADDR addr;
556 }
557 u;
558 };
559
560struct function_range
561{
562 const char *name;
563 CORE_ADDR lowpc, highpc;
564 int seen_line;
565 struct function_range *next;
566};
567
568/* Get at parts of an attribute structure */
569
570#define DW_STRING(attr) ((attr)->u.str)
571#define DW_UNSND(attr) ((attr)->u.unsnd)
572#define DW_BLOCK(attr) ((attr)->u.blk)
573#define DW_SND(attr) ((attr)->u.snd)
574#define DW_ADDR(attr) ((attr)->u.addr)
575
576/* Blocks are a bunch of untyped bytes. */
577struct dwarf_block
578 {
579 unsigned int size;
580 gdb_byte *data;
581 };
582
583#ifndef ATTR_ALLOC_CHUNK
584#define ATTR_ALLOC_CHUNK 4
585#endif
586
587/* Allocate fields for structs, unions and enums in this size. */
588#ifndef DW_FIELD_ALLOC_CHUNK
589#define DW_FIELD_ALLOC_CHUNK 4
590#endif
591
592/* A zeroed version of a partial die for initialization purposes. */
593static struct partial_die_info zeroed_partial_die;
594
595/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
596 but this would require a corresponding change in unpack_field_as_long
597 and friends. */
598static int bits_per_byte = 8;
599
600/* The routines that read and process dies for a C struct or C++ class
601 pass lists of data member fields and lists of member function fields
602 in an instance of a field_info structure, as defined below. */
603struct field_info
604 {
605 /* List of data member and baseclasses fields. */
606 struct nextfield
607 {
608 struct nextfield *next;
609 int accessibility;
610 int virtuality;
611 struct field field;
612 }
613 *fields;
614
615 /* Number of fields. */
616 int nfields;
617
618 /* Number of baseclasses. */
619 int nbaseclasses;
620
621 /* Set if the accesibility of one of the fields is not public. */
622 int non_public_fields;
623
624 /* Member function fields array, entries are allocated in the order they
625 are encountered in the object file. */
626 struct nextfnfield
627 {
628 struct nextfnfield *next;
629 struct fn_field fnfield;
630 }
631 *fnfields;
632
633 /* Member function fieldlist array, contains name of possibly overloaded
634 member function, number of overloaded member functions and a pointer
635 to the head of the member function field chain. */
636 struct fnfieldlist
637 {
638 char *name;
639 int length;
640 struct nextfnfield *head;
641 }
642 *fnfieldlists;
643
644 /* Number of entries in the fnfieldlists array. */
645 int nfnfields;
646 };
647
648/* One item on the queue of compilation units to read in full symbols
649 for. */
650struct dwarf2_queue_item
651{
652 struct dwarf2_per_cu_data *per_cu;
653 struct dwarf2_queue_item *next;
654};
655
656/* The current queue. */
657static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
658
659/* Loaded secondary compilation units are kept in memory until they
660 have not been referenced for the processing of this many
661 compilation units. Set this to zero to disable caching. Cache
662 sizes of up to at least twenty will improve startup time for
663 typical inter-CU-reference binaries, at an obvious memory cost. */
664static int dwarf2_max_cache_age = 5;
665static void
666show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
667 struct cmd_list_element *c, const char *value)
668{
669 fprintf_filtered (file, _("\
670The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
671 value);
672}
673
674
675/* Various complaints about symbol reading that don't abort the process */
676
677static void
678dwarf2_statement_list_fits_in_line_number_section_complaint (void)
679{
680 complaint (&symfile_complaints,
681 _("statement list doesn't fit in .debug_line section"));
682}
683
684static void
685dwarf2_debug_line_missing_file_complaint (void)
686{
687 complaint (&symfile_complaints,
688 _(".debug_line section has line data without a file"));
689}
690
691static void
692dwarf2_complex_location_expr_complaint (void)
693{
694 complaint (&symfile_complaints, _("location expression too complex"));
695}
696
697static void
698dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
699 int arg3)
700{
701 complaint (&symfile_complaints,
702 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
703 arg2, arg3);
704}
705
706static void
707dwarf2_macros_too_long_complaint (void)
708{
709 complaint (&symfile_complaints,
710 _("macro info runs off end of `.debug_macinfo' section"));
711}
712
713static void
714dwarf2_macro_malformed_definition_complaint (const char *arg1)
715{
716 complaint (&symfile_complaints,
717 _("macro debug info contains a malformed macro definition:\n`%s'"),
718 arg1);
719}
720
721static void
722dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
723{
724 complaint (&symfile_complaints,
725 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
726}
727
728/* local function prototypes */
729
730static void dwarf2_locate_sections (bfd *, asection *, void *);
731
732#if 0
733static void dwarf2_build_psymtabs_easy (struct objfile *, int);
734#endif
735
736static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
737 struct objfile *);
738
739static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
740 struct partial_die_info *,
741 struct partial_symtab *);
742
743static void dwarf2_build_psymtabs_hard (struct objfile *, int);
744
745static void scan_partial_symbols (struct partial_die_info *,
746 CORE_ADDR *, CORE_ADDR *,
747 struct dwarf2_cu *);
748
749static void add_partial_symbol (struct partial_die_info *,
750 struct dwarf2_cu *);
751
752static int pdi_needs_namespace (enum dwarf_tag tag);
753
754static void add_partial_namespace (struct partial_die_info *pdi,
755 CORE_ADDR *lowpc, CORE_ADDR *highpc,
756 struct dwarf2_cu *cu);
757
758static void add_partial_enumeration (struct partial_die_info *enum_pdi,
759 struct dwarf2_cu *cu);
760
761static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
762 gdb_byte *info_ptr,
763 bfd *abfd,
764 struct dwarf2_cu *cu);
765
766static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
767
768static void psymtab_to_symtab_1 (struct partial_symtab *);
769
770gdb_byte *dwarf2_read_section (struct objfile *, asection *);
771
772static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
773
774static void dwarf2_free_abbrev_table (void *);
775
776static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
777 struct dwarf2_cu *);
778
779static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
780 struct dwarf2_cu *);
781
782static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
783 struct dwarf2_cu *);
784
785static gdb_byte *read_partial_die (struct partial_die_info *,
786 struct abbrev_info *abbrev, unsigned int,
787 bfd *, gdb_byte *, struct dwarf2_cu *);
788
789static struct partial_die_info *find_partial_die (unsigned long,
790 struct dwarf2_cu *);
791
792static void fixup_partial_die (struct partial_die_info *,
793 struct dwarf2_cu *);
794
795static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
796 struct dwarf2_cu *, int *);
797
798static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
799 bfd *, gdb_byte *, struct dwarf2_cu *);
800
801static gdb_byte *read_attribute_value (struct attribute *, unsigned,
802 bfd *, gdb_byte *, struct dwarf2_cu *);
803
804static unsigned int read_1_byte (bfd *, gdb_byte *);
805
806static int read_1_signed_byte (bfd *, gdb_byte *);
807
808static unsigned int read_2_bytes (bfd *, gdb_byte *);
809
810static unsigned int read_4_bytes (bfd *, gdb_byte *);
811
812static unsigned long read_8_bytes (bfd *, gdb_byte *);
813
814static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
815 unsigned int *);
816
817static LONGEST read_initial_length (bfd *, gdb_byte *,
818 struct comp_unit_head *, unsigned int *);
819
820static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
821 unsigned int *);
822
823static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
824
825static char *read_string (bfd *, gdb_byte *, unsigned int *);
826
827static char *read_indirect_string (bfd *, gdb_byte *,
828 const struct comp_unit_head *,
829 unsigned int *);
830
831static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
832
833static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
834
835static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
836
837static void set_cu_language (unsigned int, struct dwarf2_cu *);
838
839static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
840 struct dwarf2_cu *);
841
842static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
843 struct dwarf2_cu *cu);
844
845static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
846
847static struct die_info *die_specification (struct die_info *die,
848 struct dwarf2_cu *);
849
850static void free_line_header (struct line_header *lh);
851
852static void add_file_name (struct line_header *, char *, unsigned int,
853 unsigned int, unsigned int);
854
855static struct line_header *(dwarf_decode_line_header
856 (unsigned int offset,
857 bfd *abfd, struct dwarf2_cu *cu));
858
859static void dwarf_decode_lines (struct line_header *, char *, bfd *,
860 struct dwarf2_cu *, struct partial_symtab *);
861
862static void dwarf2_start_subfile (char *, char *, char *);
863
864static struct symbol *new_symbol (struct die_info *, struct type *,
865 struct dwarf2_cu *);
866
867static void dwarf2_const_value (struct attribute *, struct symbol *,
868 struct dwarf2_cu *);
869
870static void dwarf2_const_value_data (struct attribute *attr,
871 struct symbol *sym,
872 int bits);
873
874static struct type *die_type (struct die_info *, struct dwarf2_cu *);
875
876static struct type *die_containing_type (struct die_info *,
877 struct dwarf2_cu *);
878
879static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
880
881static void read_type_die (struct die_info *, struct dwarf2_cu *);
882
883static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
884
885static char *typename_concat (struct obstack *,
886 const char *prefix,
887 const char *suffix,
888 struct dwarf2_cu *);
889
890static void read_typedef (struct die_info *, struct dwarf2_cu *);
891
892static void read_base_type (struct die_info *, struct dwarf2_cu *);
893
894static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
895
896static void read_file_scope (struct die_info *, struct dwarf2_cu *);
897
898static void read_func_scope (struct die_info *, struct dwarf2_cu *);
899
900static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
901
902static int dwarf2_get_pc_bounds (struct die_info *,
903 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
904
905static void get_scope_pc_bounds (struct die_info *,
906 CORE_ADDR *, CORE_ADDR *,
907 struct dwarf2_cu *);
908
909static void dwarf2_add_field (struct field_info *, struct die_info *,
910 struct dwarf2_cu *);
911
912static void dwarf2_attach_fields_to_type (struct field_info *,
913 struct type *, struct dwarf2_cu *);
914
915static void dwarf2_add_member_fn (struct field_info *,
916 struct die_info *, struct type *,
917 struct dwarf2_cu *);
918
919static void dwarf2_attach_fn_fields_to_type (struct field_info *,
920 struct type *, struct dwarf2_cu *);
921
922static void read_structure_type (struct die_info *, struct dwarf2_cu *);
923
924static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
925
926static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
927
928static void read_common_block (struct die_info *, struct dwarf2_cu *);
929
930static void read_namespace (struct die_info *die, struct dwarf2_cu *);
931
932static const char *namespace_name (struct die_info *die,
933 int *is_anonymous, struct dwarf2_cu *);
934
935static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
936
937static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
938
939static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
940
941static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
942
943static void read_array_type (struct die_info *, struct dwarf2_cu *);
944
945static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
946 struct dwarf2_cu *);
947
948static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
949
950static void read_tag_ptr_to_member_type (struct die_info *,
951 struct dwarf2_cu *);
952
953static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
954
955static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
956
957static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
958
959static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
960
961static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
962
963static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
964
965static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
966 struct dwarf2_cu *,
967 gdb_byte **new_info_ptr,
968 struct die_info *parent);
969
970static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
971 struct dwarf2_cu *,
972 gdb_byte **new_info_ptr,
973 struct die_info *parent);
974
975static void free_die_list (struct die_info *);
976
977static void process_die (struct die_info *, struct dwarf2_cu *);
978
979static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
980
981static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
982
983static struct die_info *dwarf2_extension (struct die_info *die,
984 struct dwarf2_cu *);
985
986static char *dwarf_tag_name (unsigned int);
987
988static char *dwarf_attr_name (unsigned int);
989
990static char *dwarf_form_name (unsigned int);
991
992static char *dwarf_stack_op_name (unsigned int);
993
994static char *dwarf_bool_name (unsigned int);
995
996static char *dwarf_type_encoding_name (unsigned int);
997
998#if 0
999static char *dwarf_cfi_name (unsigned int);
1000
1001struct die_info *copy_die (struct die_info *);
1002#endif
1003
1004static struct die_info *sibling_die (struct die_info *);
1005
1006static void dump_die (struct die_info *);
1007
1008static void dump_die_list (struct die_info *);
1009
1010static void store_in_ref_table (unsigned int, struct die_info *,
1011 struct dwarf2_cu *);
1012
1013static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1014 struct dwarf2_cu *);
1015
1016static int dwarf2_get_attr_constant_value (struct attribute *, int);
1017
1018static struct die_info *follow_die_ref (struct die_info *,
1019 struct attribute *,
1020 struct dwarf2_cu *);
1021
1022static struct type *dwarf2_fundamental_type (struct objfile *, int,
1023 struct dwarf2_cu *);
1024
1025/* memory allocation interface */
1026
1027static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1028
1029static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1030
1031static struct die_info *dwarf_alloc_die (void);
1032
1033static void initialize_cu_func_list (struct dwarf2_cu *);
1034
1035static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1036 struct dwarf2_cu *);
1037
1038static void dwarf_decode_macros (struct line_header *, unsigned int,
1039 char *, bfd *, struct dwarf2_cu *);
1040
1041static int attr_form_is_block (struct attribute *);
1042
1043static void dwarf2_symbol_mark_computed (struct attribute *attr,
1044 struct symbol *sym,
1045 struct dwarf2_cu *cu);
1046
1047static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1048 struct dwarf2_cu *cu);
1049
1050static void free_stack_comp_unit (void *);
1051
1052static hashval_t partial_die_hash (const void *item);
1053
1054static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1055
1056static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1057 (unsigned long offset, struct objfile *objfile);
1058
1059static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1060 (unsigned long offset, struct objfile *objfile);
1061
1062static void free_one_comp_unit (void *);
1063
1064static void free_cached_comp_units (void *);
1065
1066static void age_cached_comp_units (void);
1067
1068static void free_one_cached_comp_unit (void *);
1069
1070static void set_die_type (struct die_info *, struct type *,
1071 struct dwarf2_cu *);
1072
1073static void reset_die_and_siblings_types (struct die_info *,
1074 struct dwarf2_cu *);
1075
1076static void create_all_comp_units (struct objfile *);
1077
1078static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1079 struct objfile *);
1080
1081static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1082
1083static void dwarf2_add_dependence (struct dwarf2_cu *,
1084 struct dwarf2_per_cu_data *);
1085
1086static void dwarf2_mark (struct dwarf2_cu *);
1087
1088static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1089
1090static void read_set_type (struct die_info *, struct dwarf2_cu *);
1091
1092
1093/* Try to locate the sections we need for DWARF 2 debugging
1094 information and return true if we have enough to do something. */
1095
1096int
1097dwarf2_has_info (struct objfile *objfile)
1098{
1099 struct dwarf2_per_objfile *data;
1100
1101 /* Initialize per-objfile state. */
1102 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1103 memset (data, 0, sizeof (*data));
1104 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1105 dwarf2_per_objfile = data;
1106
1107 dwarf_info_section = 0;
1108 dwarf_abbrev_section = 0;
1109 dwarf_line_section = 0;
1110 dwarf_str_section = 0;
1111 dwarf_macinfo_section = 0;
1112 dwarf_frame_section = 0;
1113 dwarf_eh_frame_section = 0;
1114 dwarf_ranges_section = 0;
1115 dwarf_loc_section = 0;
1116
1117 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1118 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1119}
1120
1121/* This function is mapped across the sections and remembers the
1122 offset and size of each of the debugging sections we are interested
1123 in. */
1124
1125static void
1126dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1127{
1128 if (strcmp (sectp->name, INFO_SECTION) == 0)
1129 {
1130 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1131 dwarf_info_section = sectp;
1132 }
1133 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1134 {
1135 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1136 dwarf_abbrev_section = sectp;
1137 }
1138 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1139 {
1140 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1141 dwarf_line_section = sectp;
1142 }
1143 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1144 {
1145 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1146 dwarf_pubnames_section = sectp;
1147 }
1148 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1149 {
1150 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1151 dwarf_aranges_section = sectp;
1152 }
1153 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1154 {
1155 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1156 dwarf_loc_section = sectp;
1157 }
1158 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1159 {
1160 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1161 dwarf_macinfo_section = sectp;
1162 }
1163 else if (strcmp (sectp->name, STR_SECTION) == 0)
1164 {
1165 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1166 dwarf_str_section = sectp;
1167 }
1168 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1169 {
1170 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1171 dwarf_frame_section = sectp;
1172 }
1173 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1174 {
1175 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1176 if (aflag & SEC_HAS_CONTENTS)
1177 {
1178 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1179 dwarf_eh_frame_section = sectp;
1180 }
1181 }
1182 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1183 {
1184 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1185 dwarf_ranges_section = sectp;
1186 }
1187
1188 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1189 && bfd_section_vma (abfd, sectp) == 0)
1190 dwarf2_per_objfile->has_section_at_zero = 1;
1191}
1192
1193/* Build a partial symbol table. */
1194
1195void
1196dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1197{
1198 /* We definitely need the .debug_info and .debug_abbrev sections */
1199
1200 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1201 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1202
1203 if (dwarf_line_section)
1204 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1205 else
1206 dwarf2_per_objfile->line_buffer = NULL;
1207
1208 if (dwarf_str_section)
1209 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1210 else
1211 dwarf2_per_objfile->str_buffer = NULL;
1212
1213 if (dwarf_macinfo_section)
1214 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1215 dwarf_macinfo_section);
1216 else
1217 dwarf2_per_objfile->macinfo_buffer = NULL;
1218
1219 if (dwarf_ranges_section)
1220 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1221 else
1222 dwarf2_per_objfile->ranges_buffer = NULL;
1223
1224 if (dwarf_loc_section)
1225 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1226 else
1227 dwarf2_per_objfile->loc_buffer = NULL;
1228
1229 if (mainline
1230 || (objfile->global_psymbols.size == 0
1231 && objfile->static_psymbols.size == 0))
1232 {
1233 init_psymbol_list (objfile, 1024);
1234 }
1235
1236#if 0
1237 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1238 {
1239 /* Things are significantly easier if we have .debug_aranges and
1240 .debug_pubnames sections */
1241
1242 dwarf2_build_psymtabs_easy (objfile, mainline);
1243 }
1244 else
1245#endif
1246 /* only test this case for now */
1247 {
1248 /* In this case we have to work a bit harder */
1249 dwarf2_build_psymtabs_hard (objfile, mainline);
1250 }
1251}
1252
1253#if 0
1254/* Build the partial symbol table from the information in the
1255 .debug_pubnames and .debug_aranges sections. */
1256
1257static void
1258dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1259{
1260 bfd *abfd = objfile->obfd;
1261 char *aranges_buffer, *pubnames_buffer;
1262 char *aranges_ptr, *pubnames_ptr;
1263 unsigned int entry_length, version, info_offset, info_size;
1264
1265 pubnames_buffer = dwarf2_read_section (objfile,
1266 dwarf_pubnames_section);
1267 pubnames_ptr = pubnames_buffer;
1268 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1269 {
1270 struct comp_unit_head cu_header;
1271 unsigned int bytes_read;
1272
1273 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1274 &bytes_read);
1275 pubnames_ptr += bytes_read;
1276 version = read_1_byte (abfd, pubnames_ptr);
1277 pubnames_ptr += 1;
1278 info_offset = read_4_bytes (abfd, pubnames_ptr);
1279 pubnames_ptr += 4;
1280 info_size = read_4_bytes (abfd, pubnames_ptr);
1281 pubnames_ptr += 4;
1282 }
1283
1284 aranges_buffer = dwarf2_read_section (objfile,
1285 dwarf_aranges_section);
1286
1287}
1288#endif
1289
1290/* Read in the comp unit header information from the debug_info at
1291 info_ptr. */
1292
1293static gdb_byte *
1294read_comp_unit_head (struct comp_unit_head *cu_header,
1295 gdb_byte *info_ptr, bfd *abfd)
1296{
1297 int signed_addr;
1298 unsigned int bytes_read;
1299 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1300 &bytes_read);
1301 info_ptr += bytes_read;
1302 cu_header->version = read_2_bytes (abfd, info_ptr);
1303 info_ptr += 2;
1304 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1305 &bytes_read);
1306 info_ptr += bytes_read;
1307 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1308 info_ptr += 1;
1309 signed_addr = bfd_get_sign_extend_vma (abfd);
1310 if (signed_addr < 0)
1311 internal_error (__FILE__, __LINE__,
1312 _("read_comp_unit_head: dwarf from non elf file"));
1313 cu_header->signed_addr_p = signed_addr;
1314 return info_ptr;
1315}
1316
1317static gdb_byte *
1318partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1319 bfd *abfd)
1320{
1321 gdb_byte *beg_of_comp_unit = info_ptr;
1322
1323 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1324
1325 if (header->version != 2 && header->version != 3)
1326 error (_("Dwarf Error: wrong version in compilation unit header "
1327 "(is %d, should be %d) [in module %s]"), header->version,
1328 2, bfd_get_filename (abfd));
1329
1330 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1331 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1332 "(offset 0x%lx + 6) [in module %s]"),
1333 (long) header->abbrev_offset,
1334 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1335 bfd_get_filename (abfd));
1336
1337 if (beg_of_comp_unit + header->length + header->initial_length_size
1338 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1339 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1340 "(offset 0x%lx + 0) [in module %s]"),
1341 (long) header->length,
1342 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1343 bfd_get_filename (abfd));
1344
1345 return info_ptr;
1346}
1347
1348/* Allocate a new partial symtab for file named NAME and mark this new
1349 partial symtab as being an include of PST. */
1350
1351static void
1352dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1353 struct objfile *objfile)
1354{
1355 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1356
1357 subpst->section_offsets = pst->section_offsets;
1358 subpst->textlow = 0;
1359 subpst->texthigh = 0;
1360
1361 subpst->dependencies = (struct partial_symtab **)
1362 obstack_alloc (&objfile->objfile_obstack,
1363 sizeof (struct partial_symtab *));
1364 subpst->dependencies[0] = pst;
1365 subpst->number_of_dependencies = 1;
1366
1367 subpst->globals_offset = 0;
1368 subpst->n_global_syms = 0;
1369 subpst->statics_offset = 0;
1370 subpst->n_static_syms = 0;
1371 subpst->symtab = NULL;
1372 subpst->read_symtab = pst->read_symtab;
1373 subpst->readin = 0;
1374
1375 /* No private part is necessary for include psymtabs. This property
1376 can be used to differentiate between such include psymtabs and
1377 the regular ones. */
1378 subpst->read_symtab_private = NULL;
1379}
1380
1381/* Read the Line Number Program data and extract the list of files
1382 included by the source file represented by PST. Build an include
1383 partial symtab for each of these included files.
1384
1385 This procedure assumes that there *is* a Line Number Program in
1386 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1387 before calling this procedure. */
1388
1389static void
1390dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1391 struct partial_die_info *pdi,
1392 struct partial_symtab *pst)
1393{
1394 struct objfile *objfile = cu->objfile;
1395 bfd *abfd = objfile->obfd;
1396 struct line_header *lh;
1397
1398 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1399 if (lh == NULL)
1400 return; /* No linetable, so no includes. */
1401
1402 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1403
1404 free_line_header (lh);
1405}
1406
1407
1408/* Build the partial symbol table by doing a quick pass through the
1409 .debug_info and .debug_abbrev sections. */
1410
1411static void
1412dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1413{
1414 /* Instead of reading this into a big buffer, we should probably use
1415 mmap() on architectures that support it. (FIXME) */
1416 bfd *abfd = objfile->obfd;
1417 gdb_byte *info_ptr;
1418 gdb_byte *beg_of_comp_unit;
1419 struct partial_die_info comp_unit_die;
1420 struct partial_symtab *pst;
1421 struct cleanup *back_to;
1422 CORE_ADDR lowpc, highpc, baseaddr;
1423
1424 info_ptr = dwarf2_per_objfile->info_buffer;
1425
1426 /* Any cached compilation units will be linked by the per-objfile
1427 read_in_chain. Make sure to free them when we're done. */
1428 back_to = make_cleanup (free_cached_comp_units, NULL);
1429
1430 create_all_comp_units (objfile);
1431
1432 /* Since the objects we're extracting from .debug_info vary in
1433 length, only the individual functions to extract them (like
1434 read_comp_unit_head and load_partial_die) can really know whether
1435 the buffer is large enough to hold another complete object.
1436
1437 At the moment, they don't actually check that. If .debug_info
1438 holds just one extra byte after the last compilation unit's dies,
1439 then read_comp_unit_head will happily read off the end of the
1440 buffer. read_partial_die is similarly casual. Those functions
1441 should be fixed.
1442
1443 For this loop condition, simply checking whether there's any data
1444 left at all should be sufficient. */
1445 while (info_ptr < (dwarf2_per_objfile->info_buffer
1446 + dwarf2_per_objfile->info_size))
1447 {
1448 struct cleanup *back_to_inner;
1449 struct dwarf2_cu cu;
1450 struct abbrev_info *abbrev;
1451 unsigned int bytes_read;
1452 struct dwarf2_per_cu_data *this_cu;
1453
1454 beg_of_comp_unit = info_ptr;
1455
1456 memset (&cu, 0, sizeof (cu));
1457
1458 obstack_init (&cu.comp_unit_obstack);
1459
1460 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1461
1462 cu.objfile = objfile;
1463 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1464
1465 /* Complete the cu_header */
1466 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1467 cu.header.first_die_ptr = info_ptr;
1468 cu.header.cu_head_ptr = beg_of_comp_unit;
1469
1470 cu.list_in_scope = &file_symbols;
1471
1472 /* Read the abbrevs for this compilation unit into a table */
1473 dwarf2_read_abbrevs (abfd, &cu);
1474 make_cleanup (dwarf2_free_abbrev_table, &cu);
1475
1476 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1477
1478 /* Read the compilation unit die */
1479 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1480 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1481 abfd, info_ptr, &cu);
1482
1483 if (comp_unit_die.tag == DW_TAG_partial_unit)
1484 {
1485 info_ptr = (beg_of_comp_unit + cu.header.length
1486 + cu.header.initial_length_size);
1487 do_cleanups (back_to_inner);
1488 continue;
1489 }
1490
1491 /* Set the language we're debugging */
1492 set_cu_language (comp_unit_die.language, &cu);
1493
1494 /* Allocate a new partial symbol table structure */
1495 pst = start_psymtab_common (objfile, objfile->section_offsets,
1496 comp_unit_die.name ? comp_unit_die.name : "",
1497 comp_unit_die.lowpc,
1498 objfile->global_psymbols.next,
1499 objfile->static_psymbols.next);
1500
1501 if (comp_unit_die.dirname)
1502 pst->dirname = xstrdup (comp_unit_die.dirname);
1503
1504 pst->read_symtab_private = (char *) this_cu;
1505
1506 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1507
1508 /* Store the function that reads in the rest of the symbol table */
1509 pst->read_symtab = dwarf2_psymtab_to_symtab;
1510
1511 /* If this compilation unit was already read in, free the
1512 cached copy in order to read it in again. This is
1513 necessary because we skipped some symbols when we first
1514 read in the compilation unit (see load_partial_dies).
1515 This problem could be avoided, but the benefit is
1516 unclear. */
1517 if (this_cu->cu != NULL)
1518 free_one_cached_comp_unit (this_cu->cu);
1519
1520 cu.per_cu = this_cu;
1521
1522 /* Note that this is a pointer to our stack frame, being
1523 added to a global data structure. It will be cleaned up
1524 in free_stack_comp_unit when we finish with this
1525 compilation unit. */
1526 this_cu->cu = &cu;
1527
1528 this_cu->psymtab = pst;
1529
1530 /* Check if comp unit has_children.
1531 If so, read the rest of the partial symbols from this comp unit.
1532 If not, there's no more debug_info for this comp unit. */
1533 if (comp_unit_die.has_children)
1534 {
1535 struct partial_die_info *first_die;
1536
1537 lowpc = ((CORE_ADDR) -1);
1538 highpc = ((CORE_ADDR) 0);
1539
1540 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1541
1542 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1543
1544 /* If we didn't find a lowpc, set it to highpc to avoid
1545 complaints from `maint check'. */
1546 if (lowpc == ((CORE_ADDR) -1))
1547 lowpc = highpc;
1548
1549 /* If the compilation unit didn't have an explicit address range,
1550 then use the information extracted from its child dies. */
1551 if (! comp_unit_die.has_pc_info)
1552 {
1553 comp_unit_die.lowpc = lowpc;
1554 comp_unit_die.highpc = highpc;
1555 }
1556 }
1557 pst->textlow = comp_unit_die.lowpc + baseaddr;
1558 pst->texthigh = comp_unit_die.highpc + baseaddr;
1559
1560 pst->n_global_syms = objfile->global_psymbols.next -
1561 (objfile->global_psymbols.list + pst->globals_offset);
1562 pst->n_static_syms = objfile->static_psymbols.next -
1563 (objfile->static_psymbols.list + pst->statics_offset);
1564 sort_pst_symbols (pst);
1565
1566 /* If there is already a psymtab or symtab for a file of this
1567 name, remove it. (If there is a symtab, more drastic things
1568 also happen.) This happens in VxWorks. */
1569 free_named_symtabs (pst->filename);
1570
1571 info_ptr = beg_of_comp_unit + cu.header.length
1572 + cu.header.initial_length_size;
1573
1574 if (comp_unit_die.has_stmt_list)
1575 {
1576 /* Get the list of files included in the current compilation unit,
1577 and build a psymtab for each of them. */
1578 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1579 }
1580
1581 do_cleanups (back_to_inner);
1582 }
1583 do_cleanups (back_to);
1584}
1585
1586/* Load the DIEs for a secondary CU into memory. */
1587
1588static void
1589load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1590{
1591 bfd *abfd = objfile->obfd;
1592 gdb_byte *info_ptr, *beg_of_comp_unit;
1593 struct partial_die_info comp_unit_die;
1594 struct dwarf2_cu *cu;
1595 struct abbrev_info *abbrev;
1596 unsigned int bytes_read;
1597 struct cleanup *back_to;
1598
1599 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1600 beg_of_comp_unit = info_ptr;
1601
1602 cu = xmalloc (sizeof (struct dwarf2_cu));
1603 memset (cu, 0, sizeof (struct dwarf2_cu));
1604
1605 obstack_init (&cu->comp_unit_obstack);
1606
1607 cu->objfile = objfile;
1608 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1609
1610 /* Complete the cu_header. */
1611 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1612 cu->header.first_die_ptr = info_ptr;
1613 cu->header.cu_head_ptr = beg_of_comp_unit;
1614
1615 /* Read the abbrevs for this compilation unit into a table. */
1616 dwarf2_read_abbrevs (abfd, cu);
1617 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1618
1619 /* Read the compilation unit die. */
1620 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1621 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1622 abfd, info_ptr, cu);
1623
1624 /* Set the language we're debugging. */
1625 set_cu_language (comp_unit_die.language, cu);
1626
1627 /* Link this compilation unit into the compilation unit tree. */
1628 this_cu->cu = cu;
1629 cu->per_cu = this_cu;
1630
1631 /* Check if comp unit has_children.
1632 If so, read the rest of the partial symbols from this comp unit.
1633 If not, there's no more debug_info for this comp unit. */
1634 if (comp_unit_die.has_children)
1635 load_partial_dies (abfd, info_ptr, 0, cu);
1636
1637 do_cleanups (back_to);
1638}
1639
1640/* Create a list of all compilation units in OBJFILE. We do this only
1641 if an inter-comp-unit reference is found; presumably if there is one,
1642 there will be many, and one will occur early in the .debug_info section.
1643 So there's no point in building this list incrementally. */
1644
1645static void
1646create_all_comp_units (struct objfile *objfile)
1647{
1648 int n_allocated;
1649 int n_comp_units;
1650 struct dwarf2_per_cu_data **all_comp_units;
1651 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
1652
1653 n_comp_units = 0;
1654 n_allocated = 10;
1655 all_comp_units = xmalloc (n_allocated
1656 * sizeof (struct dwarf2_per_cu_data *));
1657
1658 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1659 {
1660 struct comp_unit_head cu_header;
1661 gdb_byte *beg_of_comp_unit;
1662 struct dwarf2_per_cu_data *this_cu;
1663 unsigned long offset;
1664 unsigned int bytes_read;
1665
1666 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1667
1668 /* Read just enough information to find out where the next
1669 compilation unit is. */
1670 cu_header.initial_length_size = 0;
1671 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1672 &cu_header, &bytes_read);
1673
1674 /* Save the compilation unit for later lookup. */
1675 this_cu = obstack_alloc (&objfile->objfile_obstack,
1676 sizeof (struct dwarf2_per_cu_data));
1677 memset (this_cu, 0, sizeof (*this_cu));
1678 this_cu->offset = offset;
1679 this_cu->length = cu_header.length + cu_header.initial_length_size;
1680
1681 if (n_comp_units == n_allocated)
1682 {
1683 n_allocated *= 2;
1684 all_comp_units = xrealloc (all_comp_units,
1685 n_allocated
1686 * sizeof (struct dwarf2_per_cu_data *));
1687 }
1688 all_comp_units[n_comp_units++] = this_cu;
1689
1690 info_ptr = info_ptr + this_cu->length;
1691 }
1692
1693 dwarf2_per_objfile->all_comp_units
1694 = obstack_alloc (&objfile->objfile_obstack,
1695 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1696 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1697 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1698 xfree (all_comp_units);
1699 dwarf2_per_objfile->n_comp_units = n_comp_units;
1700}
1701
1702/* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1703 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1704 in CU. */
1705
1706static void
1707scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1708 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1709{
1710 struct objfile *objfile = cu->objfile;
1711 bfd *abfd = objfile->obfd;
1712 struct partial_die_info *pdi;
1713
1714 /* Now, march along the PDI's, descending into ones which have
1715 interesting children but skipping the children of the other ones,
1716 until we reach the end of the compilation unit. */
1717
1718 pdi = first_die;
1719
1720 while (pdi != NULL)
1721 {
1722 fixup_partial_die (pdi, cu);
1723
1724 /* Anonymous namespaces have no name but have interesting
1725 children, so we need to look at them. Ditto for anonymous
1726 enums. */
1727
1728 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1729 || pdi->tag == DW_TAG_enumeration_type)
1730 {
1731 switch (pdi->tag)
1732 {
1733 case DW_TAG_subprogram:
1734 if (pdi->has_pc_info)
1735 {
1736 if (pdi->lowpc < *lowpc)
1737 {
1738 *lowpc = pdi->lowpc;
1739 }
1740 if (pdi->highpc > *highpc)
1741 {
1742 *highpc = pdi->highpc;
1743 }
1744 if (!pdi->is_declaration)
1745 {
1746 add_partial_symbol (pdi, cu);
1747 }
1748 }
1749 break;
1750 case DW_TAG_variable:
1751 case DW_TAG_typedef:
1752 case DW_TAG_union_type:
1753 if (!pdi->is_declaration)
1754 {
1755 add_partial_symbol (pdi, cu);
1756 }
1757 break;
1758 case DW_TAG_class_type:
1759 case DW_TAG_structure_type:
1760 if (!pdi->is_declaration)
1761 {
1762 add_partial_symbol (pdi, cu);
1763 }
1764 break;
1765 case DW_TAG_enumeration_type:
1766 if (!pdi->is_declaration)
1767 add_partial_enumeration (pdi, cu);
1768 break;
1769 case DW_TAG_base_type:
1770 case DW_TAG_subrange_type:
1771 /* File scope base type definitions are added to the partial
1772 symbol table. */
1773 add_partial_symbol (pdi, cu);
1774 break;
1775 case DW_TAG_namespace:
1776 add_partial_namespace (pdi, lowpc, highpc, cu);
1777 break;
1778 default:
1779 break;
1780 }
1781 }
1782
1783 /* If the die has a sibling, skip to the sibling. */
1784
1785 pdi = pdi->die_sibling;
1786 }
1787}
1788
1789/* Functions used to compute the fully scoped name of a partial DIE.
1790
1791 Normally, this is simple. For C++, the parent DIE's fully scoped
1792 name is concatenated with "::" and the partial DIE's name. For
1793 Java, the same thing occurs except that "." is used instead of "::".
1794 Enumerators are an exception; they use the scope of their parent
1795 enumeration type, i.e. the name of the enumeration type is not
1796 prepended to the enumerator.
1797
1798 There are two complexities. One is DW_AT_specification; in this
1799 case "parent" means the parent of the target of the specification,
1800 instead of the direct parent of the DIE. The other is compilers
1801 which do not emit DW_TAG_namespace; in this case we try to guess
1802 the fully qualified name of structure types from their members'
1803 linkage names. This must be done using the DIE's children rather
1804 than the children of any DW_AT_specification target. We only need
1805 to do this for structures at the top level, i.e. if the target of
1806 any DW_AT_specification (if any; otherwise the DIE itself) does not
1807 have a parent. */
1808
1809/* Compute the scope prefix associated with PDI's parent, in
1810 compilation unit CU. The result will be allocated on CU's
1811 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1812 field. NULL is returned if no prefix is necessary. */
1813static char *
1814partial_die_parent_scope (struct partial_die_info *pdi,
1815 struct dwarf2_cu *cu)
1816{
1817 char *grandparent_scope;
1818 struct partial_die_info *parent, *real_pdi;
1819
1820 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1821 then this means the parent of the specification DIE. */
1822
1823 real_pdi = pdi;
1824 while (real_pdi->has_specification)
1825 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1826
1827 parent = real_pdi->die_parent;
1828 if (parent == NULL)
1829 return NULL;
1830
1831 if (parent->scope_set)
1832 return parent->scope;
1833
1834 fixup_partial_die (parent, cu);
1835
1836 grandparent_scope = partial_die_parent_scope (parent, cu);
1837
1838 if (parent->tag == DW_TAG_namespace
1839 || parent->tag == DW_TAG_structure_type
1840 || parent->tag == DW_TAG_class_type
1841 || parent->tag == DW_TAG_union_type)
1842 {
1843 if (grandparent_scope == NULL)
1844 parent->scope = parent->name;
1845 else
1846 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1847 parent->name, cu);
1848 }
1849 else if (parent->tag == DW_TAG_enumeration_type)
1850 /* Enumerators should not get the name of the enumeration as a prefix. */
1851 parent->scope = grandparent_scope;
1852 else
1853 {
1854 /* FIXME drow/2004-04-01: What should we be doing with
1855 function-local names? For partial symbols, we should probably be
1856 ignoring them. */
1857 complaint (&symfile_complaints,
1858 _("unhandled containing DIE tag %d for DIE at %d"),
1859 parent->tag, pdi->offset);
1860 parent->scope = grandparent_scope;
1861 }
1862
1863 parent->scope_set = 1;
1864 return parent->scope;
1865}
1866
1867/* Return the fully scoped name associated with PDI, from compilation unit
1868 CU. The result will be allocated with malloc. */
1869static char *
1870partial_die_full_name (struct partial_die_info *pdi,
1871 struct dwarf2_cu *cu)
1872{
1873 char *parent_scope;
1874
1875 parent_scope = partial_die_parent_scope (pdi, cu);
1876 if (parent_scope == NULL)
1877 return NULL;
1878 else
1879 return typename_concat (NULL, parent_scope, pdi->name, cu);
1880}
1881
1882static void
1883add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1884{
1885 struct objfile *objfile = cu->objfile;
1886 CORE_ADDR addr = 0;
1887 char *actual_name = NULL;
1888 const char *my_prefix;
1889 const struct partial_symbol *psym = NULL;
1890 CORE_ADDR baseaddr;
1891 int built_actual_name = 0;
1892
1893 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1894
1895 if (pdi_needs_namespace (pdi->tag))
1896 {
1897 actual_name = partial_die_full_name (pdi, cu);
1898 if (actual_name)
1899 built_actual_name = 1;
1900 }
1901
1902 if (actual_name == NULL)
1903 actual_name = pdi->name;
1904
1905 switch (pdi->tag)
1906 {
1907 case DW_TAG_subprogram:
1908 if (pdi->is_external)
1909 {
1910 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1911 mst_text, objfile); */
1912 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1913 VAR_DOMAIN, LOC_BLOCK,
1914 &objfile->global_psymbols,
1915 0, pdi->lowpc + baseaddr,
1916 cu->language, objfile);
1917 }
1918 else
1919 {
1920 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1921 mst_file_text, objfile); */
1922 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1923 VAR_DOMAIN, LOC_BLOCK,
1924 &objfile->static_psymbols,
1925 0, pdi->lowpc + baseaddr,
1926 cu->language, objfile);
1927 }
1928 break;
1929 case DW_TAG_variable:
1930 if (pdi->is_external)
1931 {
1932 /* Global Variable.
1933 Don't enter into the minimal symbol tables as there is
1934 a minimal symbol table entry from the ELF symbols already.
1935 Enter into partial symbol table if it has a location
1936 descriptor or a type.
1937 If the location descriptor is missing, new_symbol will create
1938 a LOC_UNRESOLVED symbol, the address of the variable will then
1939 be determined from the minimal symbol table whenever the variable
1940 is referenced.
1941 The address for the partial symbol table entry is not
1942 used by GDB, but it comes in handy for debugging partial symbol
1943 table building. */
1944
1945 if (pdi->locdesc)
1946 addr = decode_locdesc (pdi->locdesc, cu);
1947 if (pdi->locdesc || pdi->has_type)
1948 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1949 VAR_DOMAIN, LOC_STATIC,
1950 &objfile->global_psymbols,
1951 0, addr + baseaddr,
1952 cu->language, objfile);
1953 }
1954 else
1955 {
1956 /* Static Variable. Skip symbols without location descriptors. */
1957 if (pdi->locdesc == NULL)
1958 {
1959 if (built_actual_name)
1960 xfree (actual_name);
1961 return;
1962 }
1963 addr = decode_locdesc (pdi->locdesc, cu);
1964 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1965 mst_file_data, objfile); */
1966 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1967 VAR_DOMAIN, LOC_STATIC,
1968 &objfile->static_psymbols,
1969 0, addr + baseaddr,
1970 cu->language, objfile);
1971 }
1972 break;
1973 case DW_TAG_typedef:
1974 case DW_TAG_base_type:
1975 case DW_TAG_subrange_type:
1976 add_psymbol_to_list (actual_name, strlen (actual_name),
1977 VAR_DOMAIN, LOC_TYPEDEF,
1978 &objfile->static_psymbols,
1979 0, (CORE_ADDR) 0, cu->language, objfile);
1980 break;
1981 case DW_TAG_namespace:
1982 add_psymbol_to_list (actual_name, strlen (actual_name),
1983 VAR_DOMAIN, LOC_TYPEDEF,
1984 &objfile->global_psymbols,
1985 0, (CORE_ADDR) 0, cu->language, objfile);
1986 break;
1987 case DW_TAG_class_type:
1988 case DW_TAG_structure_type:
1989 case DW_TAG_union_type:
1990 case DW_TAG_enumeration_type:
1991 /* Skip external references. The DWARF standard says in the section
1992 about "Structure, Union, and Class Type Entries": "An incomplete
1993 structure, union or class type is represented by a structure,
1994 union or class entry that does not have a byte size attribute
1995 and that has a DW_AT_declaration attribute." */
1996 if (!pdi->has_byte_size && pdi->is_declaration)
1997 {
1998 if (built_actual_name)
1999 xfree (actual_name);
2000 return;
2001 }
2002
2003 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2004 static vs. global. */
2005 add_psymbol_to_list (actual_name, strlen (actual_name),
2006 STRUCT_DOMAIN, LOC_TYPEDEF,
2007 (cu->language == language_cplus
2008 || cu->language == language_java)
2009 ? &objfile->global_psymbols
2010 : &objfile->static_psymbols,
2011 0, (CORE_ADDR) 0, cu->language, objfile);
2012
2013 if (cu->language == language_cplus
2014 || cu->language == language_java
2015 || cu->language == language_ada)
2016 {
2017 /* For C++ and Java, these implicitly act as typedefs as well. */
2018 add_psymbol_to_list (actual_name, strlen (actual_name),
2019 VAR_DOMAIN, LOC_TYPEDEF,
2020 &objfile->global_psymbols,
2021 0, (CORE_ADDR) 0, cu->language, objfile);
2022 }
2023 break;
2024 case DW_TAG_enumerator:
2025 add_psymbol_to_list (actual_name, strlen (actual_name),
2026 VAR_DOMAIN, LOC_CONST,
2027 (cu->language == language_cplus
2028 || cu->language == language_java)
2029 ? &objfile->global_psymbols
2030 : &objfile->static_psymbols,
2031 0, (CORE_ADDR) 0, cu->language, objfile);
2032 break;
2033 default:
2034 break;
2035 }
2036
2037 /* Check to see if we should scan the name for possible namespace
2038 info. Only do this if this is C++, if we don't have namespace
2039 debugging info in the file, if the psym is of an appropriate type
2040 (otherwise we'll have psym == NULL), and if we actually had a
2041 mangled name to begin with. */
2042
2043 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2044 cases which do not set PSYM above? */
2045
2046 if (cu->language == language_cplus
2047 && cu->has_namespace_info == 0
2048 && psym != NULL
2049 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2050 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2051 objfile);
2052
2053 if (built_actual_name)
2054 xfree (actual_name);
2055}
2056
2057/* Determine whether a die of type TAG living in a C++ class or
2058 namespace needs to have the name of the scope prepended to the
2059 name listed in the die. */
2060
2061static int
2062pdi_needs_namespace (enum dwarf_tag tag)
2063{
2064 switch (tag)
2065 {
2066 case DW_TAG_namespace:
2067 case DW_TAG_typedef:
2068 case DW_TAG_class_type:
2069 case DW_TAG_structure_type:
2070 case DW_TAG_union_type:
2071 case DW_TAG_enumeration_type:
2072 case DW_TAG_enumerator:
2073 return 1;
2074 default:
2075 return 0;
2076 }
2077}
2078
2079/* Read a partial die corresponding to a namespace; also, add a symbol
2080 corresponding to that namespace to the symbol table. NAMESPACE is
2081 the name of the enclosing namespace. */
2082
2083static void
2084add_partial_namespace (struct partial_die_info *pdi,
2085 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2086 struct dwarf2_cu *cu)
2087{
2088 struct objfile *objfile = cu->objfile;
2089
2090 /* Add a symbol for the namespace. */
2091
2092 add_partial_symbol (pdi, cu);
2093
2094 /* Now scan partial symbols in that namespace. */
2095
2096 if (pdi->has_children)
2097 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2098}
2099
2100/* See if we can figure out if the class lives in a namespace. We do
2101 this by looking for a member function; its demangled name will
2102 contain namespace info, if there is any. */
2103
2104static void
2105guess_structure_name (struct partial_die_info *struct_pdi,
2106 struct dwarf2_cu *cu)
2107{
2108 if ((cu->language == language_cplus
2109 || cu->language == language_java)
2110 && cu->has_namespace_info == 0
2111 && struct_pdi->has_children)
2112 {
2113 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2114 what template types look like, because the demangler
2115 frequently doesn't give the same name as the debug info. We
2116 could fix this by only using the demangled name to get the
2117 prefix (but see comment in read_structure_type). */
2118
2119 struct partial_die_info *child_pdi = struct_pdi->die_child;
2120 struct partial_die_info *real_pdi;
2121
2122 /* If this DIE (this DIE's specification, if any) has a parent, then
2123 we should not do this. We'll prepend the parent's fully qualified
2124 name when we create the partial symbol. */
2125
2126 real_pdi = struct_pdi;
2127 while (real_pdi->has_specification)
2128 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2129
2130 if (real_pdi->die_parent != NULL)
2131 return;
2132
2133 while (child_pdi != NULL)
2134 {
2135 if (child_pdi->tag == DW_TAG_subprogram)
2136 {
2137 char *actual_class_name
2138 = language_class_name_from_physname (cu->language_defn,
2139 child_pdi->name);
2140 if (actual_class_name != NULL)
2141 {
2142 struct_pdi->name
2143 = obsavestring (actual_class_name,
2144 strlen (actual_class_name),
2145 &cu->comp_unit_obstack);
2146 xfree (actual_class_name);
2147 }
2148 break;
2149 }
2150
2151 child_pdi = child_pdi->die_sibling;
2152 }
2153 }
2154}
2155
2156/* Read a partial die corresponding to an enumeration type. */
2157
2158static void
2159add_partial_enumeration (struct partial_die_info *enum_pdi,
2160 struct dwarf2_cu *cu)
2161{
2162 struct objfile *objfile = cu->objfile;
2163 bfd *abfd = objfile->obfd;
2164 struct partial_die_info *pdi;
2165
2166 if (enum_pdi->name != NULL)
2167 add_partial_symbol (enum_pdi, cu);
2168
2169 pdi = enum_pdi->die_child;
2170 while (pdi)
2171 {
2172 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2173 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2174 else
2175 add_partial_symbol (pdi, cu);
2176 pdi = pdi->die_sibling;
2177 }
2178}
2179
2180/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2181 Return the corresponding abbrev, or NULL if the number is zero (indicating
2182 an empty DIE). In either case *BYTES_READ will be set to the length of
2183 the initial number. */
2184
2185static struct abbrev_info *
2186peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2187 struct dwarf2_cu *cu)
2188{
2189 bfd *abfd = cu->objfile->obfd;
2190 unsigned int abbrev_number;
2191 struct abbrev_info *abbrev;
2192
2193 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2194
2195 if (abbrev_number == 0)
2196 return NULL;
2197
2198 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2199 if (!abbrev)
2200 {
2201 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2202 bfd_get_filename (abfd));
2203 }
2204
2205 return abbrev;
2206}
2207
2208/* Scan the debug information for CU starting at INFO_PTR. Returns a
2209 pointer to the end of a series of DIEs, terminated by an empty
2210 DIE. Any children of the skipped DIEs will also be skipped. */
2211
2212static gdb_byte *
2213skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
2214{
2215 struct abbrev_info *abbrev;
2216 unsigned int bytes_read;
2217
2218 while (1)
2219 {
2220 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2221 if (abbrev == NULL)
2222 return info_ptr + bytes_read;
2223 else
2224 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2225 }
2226}
2227
2228/* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2229 should point just after the initial uleb128 of a DIE, and the
2230 abbrev corresponding to that skipped uleb128 should be passed in
2231 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2232 children. */
2233
2234static gdb_byte *
2235skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
2236 struct dwarf2_cu *cu)
2237{
2238 unsigned int bytes_read;
2239 struct attribute attr;
2240 bfd *abfd = cu->objfile->obfd;
2241 unsigned int form, i;
2242
2243 for (i = 0; i < abbrev->num_attrs; i++)
2244 {
2245 /* The only abbrev we care about is DW_AT_sibling. */
2246 if (abbrev->attrs[i].name == DW_AT_sibling)
2247 {
2248 read_attribute (&attr, &abbrev->attrs[i],
2249 abfd, info_ptr, cu);
2250 if (attr.form == DW_FORM_ref_addr)
2251 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2252 else
2253 return dwarf2_per_objfile->info_buffer
2254 + dwarf2_get_ref_die_offset (&attr, cu);
2255 }
2256
2257 /* If it isn't DW_AT_sibling, skip this attribute. */
2258 form = abbrev->attrs[i].form;
2259 skip_attribute:
2260 switch (form)
2261 {
2262 case DW_FORM_addr:
2263 case DW_FORM_ref_addr:
2264 info_ptr += cu->header.addr_size;
2265 break;
2266 case DW_FORM_data1:
2267 case DW_FORM_ref1:
2268 case DW_FORM_flag:
2269 info_ptr += 1;
2270 break;
2271 case DW_FORM_data2:
2272 case DW_FORM_ref2:
2273 info_ptr += 2;
2274 break;
2275 case DW_FORM_data4:
2276 case DW_FORM_ref4:
2277 info_ptr += 4;
2278 break;
2279 case DW_FORM_data8:
2280 case DW_FORM_ref8:
2281 info_ptr += 8;
2282 break;
2283 case DW_FORM_string:
2284 read_string (abfd, info_ptr, &bytes_read);
2285 info_ptr += bytes_read;
2286 break;
2287 case DW_FORM_strp:
2288 info_ptr += cu->header.offset_size;
2289 break;
2290 case DW_FORM_block:
2291 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2292 info_ptr += bytes_read;
2293 break;
2294 case DW_FORM_block1:
2295 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2296 break;
2297 case DW_FORM_block2:
2298 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2299 break;
2300 case DW_FORM_block4:
2301 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2302 break;
2303 case DW_FORM_sdata:
2304 case DW_FORM_udata:
2305 case DW_FORM_ref_udata:
2306 info_ptr = skip_leb128 (abfd, info_ptr);
2307 break;
2308 case DW_FORM_indirect:
2309 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2310 info_ptr += bytes_read;
2311 /* We need to continue parsing from here, so just go back to
2312 the top. */
2313 goto skip_attribute;
2314
2315 default:
2316 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2317 dwarf_form_name (form),
2318 bfd_get_filename (abfd));
2319 }
2320 }
2321
2322 if (abbrev->has_children)
2323 return skip_children (info_ptr, cu);
2324 else
2325 return info_ptr;
2326}
2327
2328/* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2329 the next DIE after ORIG_PDI. */
2330
2331static gdb_byte *
2332locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
2333 bfd *abfd, struct dwarf2_cu *cu)
2334{
2335 /* Do we know the sibling already? */
2336
2337 if (orig_pdi->sibling)
2338 return orig_pdi->sibling;
2339
2340 /* Are there any children to deal with? */
2341
2342 if (!orig_pdi->has_children)
2343 return info_ptr;
2344
2345 /* Skip the children the long way. */
2346
2347 return skip_children (info_ptr, cu);
2348}
2349
2350/* Expand this partial symbol table into a full symbol table. */
2351
2352static void
2353dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2354{
2355 /* FIXME: This is barely more than a stub. */
2356 if (pst != NULL)
2357 {
2358 if (pst->readin)
2359 {
2360 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2361 }
2362 else
2363 {
2364 if (info_verbose)
2365 {
2366 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2367 gdb_flush (gdb_stdout);
2368 }
2369
2370 /* Restore our global data. */
2371 dwarf2_per_objfile = objfile_data (pst->objfile,
2372 dwarf2_objfile_data_key);
2373
2374 psymtab_to_symtab_1 (pst);
2375
2376 /* Finish up the debug error message. */
2377 if (info_verbose)
2378 printf_filtered (_("done.\n"));
2379 }
2380 }
2381}
2382
2383/* Add PER_CU to the queue. */
2384
2385static void
2386queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2387{
2388 struct dwarf2_queue_item *item;
2389
2390 per_cu->queued = 1;
2391 item = xmalloc (sizeof (*item));
2392 item->per_cu = per_cu;
2393 item->next = NULL;
2394
2395 if (dwarf2_queue == NULL)
2396 dwarf2_queue = item;
2397 else
2398 dwarf2_queue_tail->next = item;
2399
2400 dwarf2_queue_tail = item;
2401}
2402
2403/* Process the queue. */
2404
2405static void
2406process_queue (struct objfile *objfile)
2407{
2408 struct dwarf2_queue_item *item, *next_item;
2409
2410 /* Initially, there is just one item on the queue. Load its DIEs,
2411 and the DIEs of any other compilation units it requires,
2412 transitively. */
2413
2414 for (item = dwarf2_queue; item != NULL; item = item->next)
2415 {
2416 /* Read in this compilation unit. This may add new items to
2417 the end of the queue. */
2418 load_full_comp_unit (item->per_cu, objfile);
2419
2420 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2421 dwarf2_per_objfile->read_in_chain = item->per_cu;
2422
2423 /* If this compilation unit has already had full symbols created,
2424 reset the TYPE fields in each DIE. */
2425 if (item->per_cu->type_hash)
2426 reset_die_and_siblings_types (item->per_cu->cu->dies,
2427 item->per_cu->cu);
2428 }
2429
2430 /* Now everything left on the queue needs to be read in. Process
2431 them, one at a time, removing from the queue as we finish. */
2432 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2433 {
2434 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
2435 process_full_comp_unit (item->per_cu);
2436
2437 item->per_cu->queued = 0;
2438 next_item = item->next;
2439 xfree (item);
2440 }
2441
2442 dwarf2_queue_tail = NULL;
2443}
2444
2445/* Free all allocated queue entries. This function only releases anything if
2446 an error was thrown; if the queue was processed then it would have been
2447 freed as we went along. */
2448
2449static void
2450dwarf2_release_queue (void *dummy)
2451{
2452 struct dwarf2_queue_item *item, *last;
2453
2454 item = dwarf2_queue;
2455 while (item)
2456 {
2457 /* Anything still marked queued is likely to be in an
2458 inconsistent state, so discard it. */
2459 if (item->per_cu->queued)
2460 {
2461 if (item->per_cu->cu != NULL)
2462 free_one_cached_comp_unit (item->per_cu->cu);
2463 item->per_cu->queued = 0;
2464 }
2465
2466 last = item;
2467 item = item->next;
2468 xfree (last);
2469 }
2470
2471 dwarf2_queue = dwarf2_queue_tail = NULL;
2472}
2473
2474/* Read in full symbols for PST, and anything it depends on. */
2475
2476static void
2477psymtab_to_symtab_1 (struct partial_symtab *pst)
2478{
2479 struct dwarf2_per_cu_data *per_cu;
2480 struct cleanup *back_to;
2481 int i;
2482
2483 for (i = 0; i < pst->number_of_dependencies; i++)
2484 if (!pst->dependencies[i]->readin)
2485 {
2486 /* Inform about additional files that need to be read in. */
2487 if (info_verbose)
2488 {
2489 /* FIXME: i18n: Need to make this a single string. */
2490 fputs_filtered (" ", gdb_stdout);
2491 wrap_here ("");
2492 fputs_filtered ("and ", gdb_stdout);
2493 wrap_here ("");
2494 printf_filtered ("%s...", pst->dependencies[i]->filename);
2495 wrap_here (""); /* Flush output */
2496 gdb_flush (gdb_stdout);
2497 }
2498 psymtab_to_symtab_1 (pst->dependencies[i]);
2499 }
2500
2501 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2502
2503 if (per_cu == NULL)
2504 {
2505 /* It's an include file, no symbols to read for it.
2506 Everything is in the parent symtab. */
2507 pst->readin = 1;
2508 return;
2509 }
2510
2511 back_to = make_cleanup (dwarf2_release_queue, NULL);
2512
2513 queue_comp_unit (per_cu);
2514
2515 process_queue (pst->objfile);
2516
2517 /* Age the cache, releasing compilation units that have not
2518 been used recently. */
2519 age_cached_comp_units ();
2520
2521 do_cleanups (back_to);
2522}
2523
2524/* Load the DIEs associated with PST and PER_CU into memory. */
2525
2526static struct dwarf2_cu *
2527load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
2528{
2529 bfd *abfd = objfile->obfd;
2530 struct dwarf2_cu *cu;
2531 unsigned long offset;
2532 gdb_byte *info_ptr;
2533 struct cleanup *back_to, *free_cu_cleanup;
2534 struct attribute *attr;
2535 CORE_ADDR baseaddr;
2536
2537 /* Set local variables from the partial symbol table info. */
2538 offset = per_cu->offset;
2539
2540 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2541
2542 cu = xmalloc (sizeof (struct dwarf2_cu));
2543 memset (cu, 0, sizeof (struct dwarf2_cu));
2544
2545 /* If an error occurs while loading, release our storage. */
2546 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2547
2548 cu->objfile = objfile;
2549
2550 /* read in the comp_unit header */
2551 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2552
2553 /* Read the abbrevs for this compilation unit */
2554 dwarf2_read_abbrevs (abfd, cu);
2555 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2556
2557 cu->header.offset = offset;
2558
2559 cu->per_cu = per_cu;
2560 per_cu->cu = cu;
2561
2562 /* We use this obstack for block values in dwarf_alloc_block. */
2563 obstack_init (&cu->comp_unit_obstack);
2564
2565 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2566
2567 /* We try not to read any attributes in this function, because not
2568 all objfiles needed for references have been loaded yet, and symbol
2569 table processing isn't initialized. But we have to set the CU language,
2570 or we won't be able to build types correctly. */
2571 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2572 if (attr)
2573 set_cu_language (DW_UNSND (attr), cu);
2574 else
2575 set_cu_language (language_minimal, cu);
2576
2577 do_cleanups (back_to);
2578
2579 /* We've successfully allocated this compilation unit. Let our caller
2580 clean it up when finished with it. */
2581 discard_cleanups (free_cu_cleanup);
2582
2583 return cu;
2584}
2585
2586/* Generate full symbol information for PST and CU, whose DIEs have
2587 already been loaded into memory. */
2588
2589static void
2590process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2591{
2592 struct partial_symtab *pst = per_cu->psymtab;
2593 struct dwarf2_cu *cu = per_cu->cu;
2594 struct objfile *objfile = pst->objfile;
2595 bfd *abfd = objfile->obfd;
2596 CORE_ADDR lowpc, highpc;
2597 struct symtab *symtab;
2598 struct cleanup *back_to;
2599 struct attribute *attr;
2600 CORE_ADDR baseaddr;
2601
2602 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2603
2604 /* We're in the global namespace. */
2605 processing_current_prefix = "";
2606
2607 buildsym_init ();
2608 back_to = make_cleanup (really_free_pendings, NULL);
2609
2610 cu->list_in_scope = &file_symbols;
2611
2612 /* Find the base address of the compilation unit for range lists and
2613 location lists. It will normally be specified by DW_AT_low_pc.
2614 In DWARF-3 draft 4, the base address could be overridden by
2615 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2616 compilation units with discontinuous ranges. */
2617
2618 cu->header.base_known = 0;
2619 cu->header.base_address = 0;
2620
2621 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2622 if (attr)
2623 {
2624 cu->header.base_address = DW_ADDR (attr);
2625 cu->header.base_known = 1;
2626 }
2627 else
2628 {
2629 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2630 if (attr)
2631 {
2632 cu->header.base_address = DW_ADDR (attr);
2633 cu->header.base_known = 1;
2634 }
2635 }
2636
2637 /* Do line number decoding in read_file_scope () */
2638 process_die (cu->dies, cu);
2639
2640 /* Some compilers don't define a DW_AT_high_pc attribute for the
2641 compilation unit. If the DW_AT_high_pc is missing, synthesize
2642 it, by scanning the DIE's below the compilation unit. */
2643 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2644
2645 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2646
2647 /* Set symtab language to language from DW_AT_language.
2648 If the compilation is from a C file generated by language preprocessors,
2649 do not set the language if it was already deduced by start_subfile. */
2650 if (symtab != NULL
2651 && !(cu->language == language_c && symtab->language != language_c))
2652 {
2653 symtab->language = cu->language;
2654 }
2655 pst->symtab = symtab;
2656 pst->readin = 1;
2657
2658 do_cleanups (back_to);
2659}
2660
2661/* Process a die and its children. */
2662
2663static void
2664process_die (struct die_info *die, struct dwarf2_cu *cu)
2665{
2666 switch (die->tag)
2667 {
2668 case DW_TAG_padding:
2669 break;
2670 case DW_TAG_compile_unit:
2671 read_file_scope (die, cu);
2672 break;
2673 case DW_TAG_subprogram:
2674 read_subroutine_type (die, cu);
2675 read_func_scope (die, cu);
2676 break;
2677 case DW_TAG_inlined_subroutine:
2678 /* FIXME: These are ignored for now.
2679 They could be used to set breakpoints on all inlined instances
2680 of a function and make GDB `next' properly over inlined functions. */
2681 break;
2682 case DW_TAG_lexical_block:
2683 case DW_TAG_try_block:
2684 case DW_TAG_catch_block:
2685 read_lexical_block_scope (die, cu);
2686 break;
2687 case DW_TAG_class_type:
2688 case DW_TAG_structure_type:
2689 case DW_TAG_union_type:
2690 read_structure_type (die, cu);
2691 process_structure_scope (die, cu);
2692 break;
2693 case DW_TAG_enumeration_type:
2694 read_enumeration_type (die, cu);
2695 process_enumeration_scope (die, cu);
2696 break;
2697
2698 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2699 a symbol or process any children. Therefore it doesn't do anything
2700 that won't be done on-demand by read_type_die. */
2701 case DW_TAG_subroutine_type:
2702 read_subroutine_type (die, cu);
2703 break;
2704 case DW_TAG_set_type:
2705 read_set_type (die, cu);
2706 break;
2707 case DW_TAG_array_type:
2708 read_array_type (die, cu);
2709 break;
2710 case DW_TAG_pointer_type:
2711 read_tag_pointer_type (die, cu);
2712 break;
2713 case DW_TAG_ptr_to_member_type:
2714 read_tag_ptr_to_member_type (die, cu);
2715 break;
2716 case DW_TAG_reference_type:
2717 read_tag_reference_type (die, cu);
2718 break;
2719 case DW_TAG_string_type:
2720 read_tag_string_type (die, cu);
2721 break;
2722 /* END FIXME */
2723
2724 case DW_TAG_base_type:
2725 read_base_type (die, cu);
2726 /* Add a typedef symbol for the type definition, if it has a
2727 DW_AT_name. */
2728 new_symbol (die, die->type, cu);
2729 break;
2730 case DW_TAG_subrange_type:
2731 read_subrange_type (die, cu);
2732 /* Add a typedef symbol for the type definition, if it has a
2733 DW_AT_name. */
2734 new_symbol (die, die->type, cu);
2735 break;
2736 case DW_TAG_common_block:
2737 read_common_block (die, cu);
2738 break;
2739 case DW_TAG_common_inclusion:
2740 break;
2741 case DW_TAG_namespace:
2742 processing_has_namespace_info = 1;
2743 read_namespace (die, cu);
2744 break;
2745 case DW_TAG_imported_declaration:
2746 case DW_TAG_imported_module:
2747 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2748 information contained in these. DW_TAG_imported_declaration
2749 dies shouldn't have children; DW_TAG_imported_module dies
2750 shouldn't in the C++ case, but conceivably could in the
2751 Fortran case, so we'll have to replace this gdb_assert if
2752 Fortran compilers start generating that info. */
2753 processing_has_namespace_info = 1;
2754 gdb_assert (die->child == NULL);
2755 break;
2756 default:
2757 new_symbol (die, NULL, cu);
2758 break;
2759 }
2760}
2761
2762static void
2763initialize_cu_func_list (struct dwarf2_cu *cu)
2764{
2765 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2766}
2767
2768static void
2769free_cu_line_header (void *arg)
2770{
2771 struct dwarf2_cu *cu = arg;
2772
2773 free_line_header (cu->line_header);
2774 cu->line_header = NULL;
2775}
2776
2777static void
2778read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2779{
2780 struct objfile *objfile = cu->objfile;
2781 struct comp_unit_head *cu_header = &cu->header;
2782 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2783 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2784 CORE_ADDR highpc = ((CORE_ADDR) 0);
2785 struct attribute *attr;
2786 char *name = NULL;
2787 char *comp_dir = NULL;
2788 struct die_info *child_die;
2789 bfd *abfd = objfile->obfd;
2790 struct line_header *line_header = 0;
2791 CORE_ADDR baseaddr;
2792
2793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2794
2795 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2796
2797 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2798 from finish_block. */
2799 if (lowpc == ((CORE_ADDR) -1))
2800 lowpc = highpc;
2801 lowpc += baseaddr;
2802 highpc += baseaddr;
2803
2804 attr = dwarf2_attr (die, DW_AT_name, cu);
2805 if (attr)
2806 {
2807 name = DW_STRING (attr);
2808 }
2809
2810 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2811 if (attr)
2812 comp_dir = DW_STRING (attr);
2813 else if (name != NULL && IS_ABSOLUTE_PATH (name))
2814 {
2815 comp_dir = ldirname (name);
2816 if (comp_dir != NULL)
2817 make_cleanup (xfree, comp_dir);
2818 }
2819 if (comp_dir != NULL)
2820 {
2821 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2822 directory, get rid of it. */
2823 char *cp = strchr (comp_dir, ':');
2824
2825 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2826 comp_dir = cp + 1;
2827 }
2828
2829 if (name == NULL)
2830 name = "<unknown>";
2831
2832 attr = dwarf2_attr (die, DW_AT_language, cu);
2833 if (attr)
2834 {
2835 set_cu_language (DW_UNSND (attr), cu);
2836 }
2837
2838 attr = dwarf2_attr (die, DW_AT_producer, cu);
2839 if (attr)
2840 cu->producer = DW_STRING (attr);
2841
2842 /* We assume that we're processing GCC output. */
2843 processing_gcc_compilation = 2;
2844
2845 /* The compilation unit may be in a different language or objfile,
2846 zero out all remembered fundamental types. */
2847 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2848
2849 start_symtab (name, comp_dir, lowpc);
2850 record_debugformat ("DWARF 2");
2851 record_producer (cu->producer);
2852
2853 initialize_cu_func_list (cu);
2854
2855 /* Decode line number information if present. We do this before
2856 processing child DIEs, so that the line header table is available
2857 for DW_AT_decl_file. */
2858 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2859 if (attr)
2860 {
2861 unsigned int line_offset = DW_UNSND (attr);
2862 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2863 if (line_header)
2864 {
2865 cu->line_header = line_header;
2866 make_cleanup (free_cu_line_header, cu);
2867 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2868 }
2869 }
2870
2871 /* Process all dies in compilation unit. */
2872 if (die->child != NULL)
2873 {
2874 child_die = die->child;
2875 while (child_die && child_die->tag)
2876 {
2877 process_die (child_die, cu);
2878 child_die = sibling_die (child_die);
2879 }
2880 }
2881
2882 /* Decode macro information, if present. Dwarf 2 macro information
2883 refers to information in the line number info statement program
2884 header, so we can only read it if we've read the header
2885 successfully. */
2886 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2887 if (attr && line_header)
2888 {
2889 unsigned int macro_offset = DW_UNSND (attr);
2890 dwarf_decode_macros (line_header, macro_offset,
2891 comp_dir, abfd, cu);
2892 }
2893 do_cleanups (back_to);
2894}
2895
2896static void
2897add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2898 struct dwarf2_cu *cu)
2899{
2900 struct function_range *thisfn;
2901
2902 thisfn = (struct function_range *)
2903 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2904 thisfn->name = name;
2905 thisfn->lowpc = lowpc;
2906 thisfn->highpc = highpc;
2907 thisfn->seen_line = 0;
2908 thisfn->next = NULL;
2909
2910 if (cu->last_fn == NULL)
2911 cu->first_fn = thisfn;
2912 else
2913 cu->last_fn->next = thisfn;
2914
2915 cu->last_fn = thisfn;
2916}
2917
2918static void
2919read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2920{
2921 struct objfile *objfile = cu->objfile;
2922 struct context_stack *new;
2923 CORE_ADDR lowpc;
2924 CORE_ADDR highpc;
2925 struct die_info *child_die;
2926 struct attribute *attr;
2927 char *name;
2928 const char *previous_prefix = processing_current_prefix;
2929 struct cleanup *back_to = NULL;
2930 CORE_ADDR baseaddr;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 name = dwarf2_linkage_name (die, cu);
2935
2936 /* Ignore functions with missing or empty names and functions with
2937 missing or invalid low and high pc attributes. */
2938 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2939 return;
2940
2941 if (cu->language == language_cplus
2942 || cu->language == language_java)
2943 {
2944 struct die_info *spec_die = die_specification (die, cu);
2945
2946 /* NOTE: carlton/2004-01-23: We have to be careful in the
2947 presence of DW_AT_specification. For example, with GCC 3.4,
2948 given the code
2949
2950 namespace N {
2951 void foo() {
2952 // Definition of N::foo.
2953 }
2954 }
2955
2956 then we'll have a tree of DIEs like this:
2957
2958 1: DW_TAG_compile_unit
2959 2: DW_TAG_namespace // N
2960 3: DW_TAG_subprogram // declaration of N::foo
2961 4: DW_TAG_subprogram // definition of N::foo
2962 DW_AT_specification // refers to die #3
2963
2964 Thus, when processing die #4, we have to pretend that we're
2965 in the context of its DW_AT_specification, namely the contex
2966 of die #3. */
2967
2968 if (spec_die != NULL)
2969 {
2970 char *specification_prefix = determine_prefix (spec_die, cu);
2971 processing_current_prefix = specification_prefix;
2972 back_to = make_cleanup (xfree, specification_prefix);
2973 }
2974 }
2975
2976 lowpc += baseaddr;
2977 highpc += baseaddr;
2978
2979 /* Record the function range for dwarf_decode_lines. */
2980 add_to_cu_func_list (name, lowpc, highpc, cu);
2981
2982 new = push_context (0, lowpc);
2983 new->name = new_symbol (die, die->type, cu);
2984
2985 /* If there is a location expression for DW_AT_frame_base, record
2986 it. */
2987 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2988 if (attr)
2989 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2990 expression is being recorded directly in the function's symbol
2991 and not in a separate frame-base object. I guess this hack is
2992 to avoid adding some sort of frame-base adjunct/annex to the
2993 function's symbol :-(. The problem with doing this is that it
2994 results in a function symbol with a location expression that
2995 has nothing to do with the location of the function, ouch! The
2996 relationship should be: a function's symbol has-a frame base; a
2997 frame-base has-a location expression. */
2998 dwarf2_symbol_mark_computed (attr, new->name, cu);
2999
3000 cu->list_in_scope = &local_symbols;
3001
3002 if (die->child != NULL)
3003 {
3004 child_die = die->child;
3005 while (child_die && child_die->tag)
3006 {
3007 process_die (child_die, cu);
3008 child_die = sibling_die (child_die);
3009 }
3010 }
3011
3012 new = pop_context ();
3013 /* Make a block for the local symbols within. */
3014 finish_block (new->name, &local_symbols, new->old_blocks,
3015 lowpc, highpc, objfile);
3016
3017 /* In C++, we can have functions nested inside functions (e.g., when
3018 a function declares a class that has methods). This means that
3019 when we finish processing a function scope, we may need to go
3020 back to building a containing block's symbol lists. */
3021 local_symbols = new->locals;
3022 param_symbols = new->params;
3023
3024 /* If we've finished processing a top-level function, subsequent
3025 symbols go in the file symbol list. */
3026 if (outermost_context_p ())
3027 cu->list_in_scope = &file_symbols;
3028
3029 processing_current_prefix = previous_prefix;
3030 if (back_to != NULL)
3031 do_cleanups (back_to);
3032}
3033
3034/* Process all the DIES contained within a lexical block scope. Start
3035 a new scope, process the dies, and then close the scope. */
3036
3037static void
3038read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
3039{
3040 struct objfile *objfile = cu->objfile;
3041 struct context_stack *new;
3042 CORE_ADDR lowpc, highpc;
3043 struct die_info *child_die;
3044 CORE_ADDR baseaddr;
3045
3046 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3047
3048 /* Ignore blocks with missing or invalid low and high pc attributes. */
3049 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3050 as multiple lexical blocks? Handling children in a sane way would
3051 be nasty. Might be easier to properly extend generic blocks to
3052 describe ranges. */
3053 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3054 return;
3055 lowpc += baseaddr;
3056 highpc += baseaddr;
3057
3058 push_context (0, lowpc);
3059 if (die->child != NULL)
3060 {
3061 child_die = die->child;
3062 while (child_die && child_die->tag)
3063 {
3064 process_die (child_die, cu);
3065 child_die = sibling_die (child_die);
3066 }
3067 }
3068 new = pop_context ();
3069
3070 if (local_symbols != NULL)
3071 {
3072 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3073 highpc, objfile);
3074 }
3075 local_symbols = new->locals;
3076}
3077
3078/* Get low and high pc attributes from a die. Return 1 if the attributes
3079 are present and valid, otherwise, return 0. Return -1 if the range is
3080 discontinuous, i.e. derived from DW_AT_ranges information. */
3081static int
3082dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3083 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3084{
3085 struct objfile *objfile = cu->objfile;
3086 struct comp_unit_head *cu_header = &cu->header;
3087 struct attribute *attr;
3088 bfd *obfd = objfile->obfd;
3089 CORE_ADDR low = 0;
3090 CORE_ADDR high = 0;
3091 int ret = 0;
3092
3093 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3094 if (attr)
3095 {
3096 high = DW_ADDR (attr);
3097 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3098 if (attr)
3099 low = DW_ADDR (attr);
3100 else
3101 /* Found high w/o low attribute. */
3102 return 0;
3103
3104 /* Found consecutive range of addresses. */
3105 ret = 1;
3106 }
3107 else
3108 {
3109 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3110 if (attr != NULL)
3111 {
3112 unsigned int addr_size = cu_header->addr_size;
3113 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3114 /* Value of the DW_AT_ranges attribute is the offset in the
3115 .debug_ranges section. */
3116 unsigned int offset = DW_UNSND (attr);
3117 /* Base address selection entry. */
3118 CORE_ADDR base;
3119 int found_base;
3120 unsigned int dummy;
3121 gdb_byte *buffer;
3122 CORE_ADDR marker;
3123 int low_set;
3124
3125 found_base = cu_header->base_known;
3126 base = cu_header->base_address;
3127
3128 if (offset >= dwarf2_per_objfile->ranges_size)
3129 {
3130 complaint (&symfile_complaints,
3131 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3132 offset);
3133 return 0;
3134 }
3135 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3136
3137 /* Read in the largest possible address. */
3138 marker = read_address (obfd, buffer, cu, &dummy);
3139 if ((marker & mask) == mask)
3140 {
3141 /* If we found the largest possible address, then
3142 read the base address. */
3143 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3144 buffer += 2 * addr_size;
3145 offset += 2 * addr_size;
3146 found_base = 1;
3147 }
3148
3149 low_set = 0;
3150
3151 while (1)
3152 {
3153 CORE_ADDR range_beginning, range_end;
3154
3155 range_beginning = read_address (obfd, buffer, cu, &dummy);
3156 buffer += addr_size;
3157 range_end = read_address (obfd, buffer, cu, &dummy);
3158 buffer += addr_size;
3159 offset += 2 * addr_size;
3160
3161 /* An end of list marker is a pair of zero addresses. */
3162 if (range_beginning == 0 && range_end == 0)
3163 /* Found the end of list entry. */
3164 break;
3165
3166 /* Each base address selection entry is a pair of 2 values.
3167 The first is the largest possible address, the second is
3168 the base address. Check for a base address here. */
3169 if ((range_beginning & mask) == mask)
3170 {
3171 /* If we found the largest possible address, then
3172 read the base address. */
3173 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3174 found_base = 1;
3175 continue;
3176 }
3177
3178 if (!found_base)
3179 {
3180 /* We have no valid base address for the ranges
3181 data. */
3182 complaint (&symfile_complaints,
3183 _("Invalid .debug_ranges data (no base address)"));
3184 return 0;
3185 }
3186
3187 range_beginning += base;
3188 range_end += base;
3189
3190 /* FIXME: This is recording everything as a low-high
3191 segment of consecutive addresses. We should have a
3192 data structure for discontiguous block ranges
3193 instead. */
3194 if (! low_set)
3195 {
3196 low = range_beginning;
3197 high = range_end;
3198 low_set = 1;
3199 }
3200 else
3201 {
3202 if (range_beginning < low)
3203 low = range_beginning;
3204 if (range_end > high)
3205 high = range_end;
3206 }
3207 }
3208
3209 if (! low_set)
3210 /* If the first entry is an end-of-list marker, the range
3211 describes an empty scope, i.e. no instructions. */
3212 return 0;
3213
3214 ret = -1;
3215 }
3216 }
3217
3218 if (high < low)
3219 return 0;
3220
3221 /* When using the GNU linker, .gnu.linkonce. sections are used to
3222 eliminate duplicate copies of functions and vtables and such.
3223 The linker will arbitrarily choose one and discard the others.
3224 The AT_*_pc values for such functions refer to local labels in
3225 these sections. If the section from that file was discarded, the
3226 labels are not in the output, so the relocs get a value of 0.
3227 If this is a discarded function, mark the pc bounds as invalid,
3228 so that GDB will ignore it. */
3229 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
3230 return 0;
3231
3232 *lowpc = low;
3233 *highpc = high;
3234 return ret;
3235}
3236
3237/* Get the low and high pc's represented by the scope DIE, and store
3238 them in *LOWPC and *HIGHPC. If the correct values can't be
3239 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3240
3241static void
3242get_scope_pc_bounds (struct die_info *die,
3243 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3244 struct dwarf2_cu *cu)
3245{
3246 CORE_ADDR best_low = (CORE_ADDR) -1;
3247 CORE_ADDR best_high = (CORE_ADDR) 0;
3248 CORE_ADDR current_low, current_high;
3249
3250 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3251 {
3252 best_low = current_low;
3253 best_high = current_high;
3254 }
3255 else
3256 {
3257 struct die_info *child = die->child;
3258
3259 while (child && child->tag)
3260 {
3261 switch (child->tag) {
3262 case DW_TAG_subprogram:
3263 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3264 {
3265 best_low = min (best_low, current_low);
3266 best_high = max (best_high, current_high);
3267 }
3268 break;
3269 case DW_TAG_namespace:
3270 /* FIXME: carlton/2004-01-16: Should we do this for
3271 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3272 that current GCC's always emit the DIEs corresponding
3273 to definitions of methods of classes as children of a
3274 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3275 the DIEs giving the declarations, which could be
3276 anywhere). But I don't see any reason why the
3277 standards says that they have to be there. */
3278 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3279
3280 if (current_low != ((CORE_ADDR) -1))
3281 {
3282 best_low = min (best_low, current_low);
3283 best_high = max (best_high, current_high);
3284 }
3285 break;
3286 default:
3287 /* Ignore. */
3288 break;
3289 }
3290
3291 child = sibling_die (child);
3292 }
3293 }
3294
3295 *lowpc = best_low;
3296 *highpc = best_high;
3297}
3298
3299/* Add an aggregate field to the field list. */
3300
3301static void
3302dwarf2_add_field (struct field_info *fip, struct die_info *die,
3303 struct dwarf2_cu *cu)
3304{
3305 struct objfile *objfile = cu->objfile;
3306 struct nextfield *new_field;
3307 struct attribute *attr;
3308 struct field *fp;
3309 char *fieldname = "";
3310
3311 /* Allocate a new field list entry and link it in. */
3312 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3313 make_cleanup (xfree, new_field);
3314 memset (new_field, 0, sizeof (struct nextfield));
3315 new_field->next = fip->fields;
3316 fip->fields = new_field;
3317 fip->nfields++;
3318
3319 /* Handle accessibility and virtuality of field.
3320 The default accessibility for members is public, the default
3321 accessibility for inheritance is private. */
3322 if (die->tag != DW_TAG_inheritance)
3323 new_field->accessibility = DW_ACCESS_public;
3324 else
3325 new_field->accessibility = DW_ACCESS_private;
3326 new_field->virtuality = DW_VIRTUALITY_none;
3327
3328 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3329 if (attr)
3330 new_field->accessibility = DW_UNSND (attr);
3331 if (new_field->accessibility != DW_ACCESS_public)
3332 fip->non_public_fields = 1;
3333 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3334 if (attr)
3335 new_field->virtuality = DW_UNSND (attr);
3336
3337 fp = &new_field->field;
3338
3339 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3340 {
3341 /* Data member other than a C++ static data member. */
3342
3343 /* Get type of field. */
3344 fp->type = die_type (die, cu);
3345
3346 FIELD_STATIC_KIND (*fp) = 0;
3347
3348 /* Get bit size of field (zero if none). */
3349 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3350 if (attr)
3351 {
3352 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3353 }
3354 else
3355 {
3356 FIELD_BITSIZE (*fp) = 0;
3357 }
3358
3359 /* Get bit offset of field. */
3360 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3361 if (attr)
3362 {
3363 FIELD_BITPOS (*fp) =
3364 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3365 }
3366 else
3367 FIELD_BITPOS (*fp) = 0;
3368 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3369 if (attr)
3370 {
3371 if (BITS_BIG_ENDIAN)
3372 {
3373 /* For big endian bits, the DW_AT_bit_offset gives the
3374 additional bit offset from the MSB of the containing
3375 anonymous object to the MSB of the field. We don't
3376 have to do anything special since we don't need to
3377 know the size of the anonymous object. */
3378 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3379 }
3380 else
3381 {
3382 /* For little endian bits, compute the bit offset to the
3383 MSB of the anonymous object, subtract off the number of
3384 bits from the MSB of the field to the MSB of the
3385 object, and then subtract off the number of bits of
3386 the field itself. The result is the bit offset of
3387 the LSB of the field. */
3388 int anonymous_size;
3389 int bit_offset = DW_UNSND (attr);
3390
3391 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3392 if (attr)
3393 {
3394 /* The size of the anonymous object containing
3395 the bit field is explicit, so use the
3396 indicated size (in bytes). */
3397 anonymous_size = DW_UNSND (attr);
3398 }
3399 else
3400 {
3401 /* The size of the anonymous object containing
3402 the bit field must be inferred from the type
3403 attribute of the data member containing the
3404 bit field. */
3405 anonymous_size = TYPE_LENGTH (fp->type);
3406 }
3407 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3408 - bit_offset - FIELD_BITSIZE (*fp);
3409 }
3410 }
3411
3412 /* Get name of field. */
3413 attr = dwarf2_attr (die, DW_AT_name, cu);
3414 if (attr && DW_STRING (attr))
3415 fieldname = DW_STRING (attr);
3416
3417 /* The name is already allocated along with this objfile, so we don't
3418 need to duplicate it for the type. */
3419 fp->name = fieldname;
3420
3421 /* Change accessibility for artificial fields (e.g. virtual table
3422 pointer or virtual base class pointer) to private. */
3423 if (dwarf2_attr (die, DW_AT_artificial, cu))
3424 {
3425 new_field->accessibility = DW_ACCESS_private;
3426 fip->non_public_fields = 1;
3427 }
3428 }
3429 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3430 {
3431 /* C++ static member. */
3432
3433 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3434 is a declaration, but all versions of G++ as of this writing
3435 (so through at least 3.2.1) incorrectly generate
3436 DW_TAG_variable tags. */
3437
3438 char *physname;
3439
3440 /* Get name of field. */
3441 attr = dwarf2_attr (die, DW_AT_name, cu);
3442 if (attr && DW_STRING (attr))
3443 fieldname = DW_STRING (attr);
3444 else
3445 return;
3446
3447 /* Get physical name. */
3448 physname = dwarf2_linkage_name (die, cu);
3449
3450 /* The name is already allocated along with this objfile, so we don't
3451 need to duplicate it for the type. */
3452 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3453 FIELD_TYPE (*fp) = die_type (die, cu);
3454 FIELD_NAME (*fp) = fieldname;
3455 }
3456 else if (die->tag == DW_TAG_inheritance)
3457 {
3458 /* C++ base class field. */
3459 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3460 if (attr)
3461 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3462 * bits_per_byte);
3463 FIELD_BITSIZE (*fp) = 0;
3464 FIELD_STATIC_KIND (*fp) = 0;
3465 FIELD_TYPE (*fp) = die_type (die, cu);
3466 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3467 fip->nbaseclasses++;
3468 }
3469}
3470
3471/* Create the vector of fields, and attach it to the type. */
3472
3473static void
3474dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3475 struct dwarf2_cu *cu)
3476{
3477 int nfields = fip->nfields;
3478
3479 /* Record the field count, allocate space for the array of fields,
3480 and create blank accessibility bitfields if necessary. */
3481 TYPE_NFIELDS (type) = nfields;
3482 TYPE_FIELDS (type) = (struct field *)
3483 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3484 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3485
3486 if (fip->non_public_fields)
3487 {
3488 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3489
3490 TYPE_FIELD_PRIVATE_BITS (type) =
3491 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3492 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3493
3494 TYPE_FIELD_PROTECTED_BITS (type) =
3495 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3496 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3497
3498 TYPE_FIELD_IGNORE_BITS (type) =
3499 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3500 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3501 }
3502
3503 /* If the type has baseclasses, allocate and clear a bit vector for
3504 TYPE_FIELD_VIRTUAL_BITS. */
3505 if (fip->nbaseclasses)
3506 {
3507 int num_bytes = B_BYTES (fip->nbaseclasses);
3508 unsigned char *pointer;
3509
3510 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3511 pointer = TYPE_ALLOC (type, num_bytes);
3512 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
3513 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3514 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3515 }
3516
3517 /* Copy the saved-up fields into the field vector. Start from the head
3518 of the list, adding to the tail of the field array, so that they end
3519 up in the same order in the array in which they were added to the list. */
3520 while (nfields-- > 0)
3521 {
3522 TYPE_FIELD (type, nfields) = fip->fields->field;
3523 switch (fip->fields->accessibility)
3524 {
3525 case DW_ACCESS_private:
3526 SET_TYPE_FIELD_PRIVATE (type, nfields);
3527 break;
3528
3529 case DW_ACCESS_protected:
3530 SET_TYPE_FIELD_PROTECTED (type, nfields);
3531 break;
3532
3533 case DW_ACCESS_public:
3534 break;
3535
3536 default:
3537 /* Unknown accessibility. Complain and treat it as public. */
3538 {
3539 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3540 fip->fields->accessibility);
3541 }
3542 break;
3543 }
3544 if (nfields < fip->nbaseclasses)
3545 {
3546 switch (fip->fields->virtuality)
3547 {
3548 case DW_VIRTUALITY_virtual:
3549 case DW_VIRTUALITY_pure_virtual:
3550 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3551 break;
3552 }
3553 }
3554 fip->fields = fip->fields->next;
3555 }
3556}
3557
3558/* Add a member function to the proper fieldlist. */
3559
3560static void
3561dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3562 struct type *type, struct dwarf2_cu *cu)
3563{
3564 struct objfile *objfile = cu->objfile;
3565 struct attribute *attr;
3566 struct fnfieldlist *flp;
3567 int i;
3568 struct fn_field *fnp;
3569 char *fieldname;
3570 char *physname;
3571 struct nextfnfield *new_fnfield;
3572
3573 /* Get name of member function. */
3574 attr = dwarf2_attr (die, DW_AT_name, cu);
3575 if (attr && DW_STRING (attr))
3576 fieldname = DW_STRING (attr);
3577 else
3578 return;
3579
3580 /* Get the mangled name. */
3581 physname = dwarf2_linkage_name (die, cu);
3582
3583 /* Look up member function name in fieldlist. */
3584 for (i = 0; i < fip->nfnfields; i++)
3585 {
3586 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3587 break;
3588 }
3589
3590 /* Create new list element if necessary. */
3591 if (i < fip->nfnfields)
3592 flp = &fip->fnfieldlists[i];
3593 else
3594 {
3595 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3596 {
3597 fip->fnfieldlists = (struct fnfieldlist *)
3598 xrealloc (fip->fnfieldlists,
3599 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3600 * sizeof (struct fnfieldlist));
3601 if (fip->nfnfields == 0)
3602 make_cleanup (free_current_contents, &fip->fnfieldlists);
3603 }
3604 flp = &fip->fnfieldlists[fip->nfnfields];
3605 flp->name = fieldname;
3606 flp->length = 0;
3607 flp->head = NULL;
3608 fip->nfnfields++;
3609 }
3610
3611 /* Create a new member function field and chain it to the field list
3612 entry. */
3613 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3614 make_cleanup (xfree, new_fnfield);
3615 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3616 new_fnfield->next = flp->head;
3617 flp->head = new_fnfield;
3618 flp->length++;
3619
3620 /* Fill in the member function field info. */
3621 fnp = &new_fnfield->fnfield;
3622 /* The name is already allocated along with this objfile, so we don't
3623 need to duplicate it for the type. */
3624 fnp->physname = physname ? physname : "";
3625 fnp->type = alloc_type (objfile);
3626 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3627 {
3628 int nparams = TYPE_NFIELDS (die->type);
3629
3630 /* TYPE is the domain of this method, and DIE->TYPE is the type
3631 of the method itself (TYPE_CODE_METHOD). */
3632 smash_to_method_type (fnp->type, type,
3633 TYPE_TARGET_TYPE (die->type),
3634 TYPE_FIELDS (die->type),
3635 TYPE_NFIELDS (die->type),
3636 TYPE_VARARGS (die->type));
3637
3638 /* Handle static member functions.
3639 Dwarf2 has no clean way to discern C++ static and non-static
3640 member functions. G++ helps GDB by marking the first
3641 parameter for non-static member functions (which is the
3642 this pointer) as artificial. We obtain this information
3643 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3644 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3645 fnp->voffset = VOFFSET_STATIC;
3646 }
3647 else
3648 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3649 physname);
3650
3651 /* Get fcontext from DW_AT_containing_type if present. */
3652 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3653 fnp->fcontext = die_containing_type (die, cu);
3654
3655 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3656 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3657
3658 /* Get accessibility. */
3659 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3660 if (attr)
3661 {
3662 switch (DW_UNSND (attr))
3663 {
3664 case DW_ACCESS_private:
3665 fnp->is_private = 1;
3666 break;
3667 case DW_ACCESS_protected:
3668 fnp->is_protected = 1;
3669 break;
3670 }
3671 }
3672
3673 /* Check for artificial methods. */
3674 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3675 if (attr && DW_UNSND (attr) != 0)
3676 fnp->is_artificial = 1;
3677
3678 /* Get index in virtual function table if it is a virtual member function. */
3679 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3680 if (attr)
3681 {
3682 /* Support the .debug_loc offsets */
3683 if (attr_form_is_block (attr))
3684 {
3685 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3686 }
3687 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3688 {
3689 dwarf2_complex_location_expr_complaint ();
3690 }
3691 else
3692 {
3693 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3694 fieldname);
3695 }
3696 }
3697}
3698
3699/* Create the vector of member function fields, and attach it to the type. */
3700
3701static void
3702dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3703 struct dwarf2_cu *cu)
3704{
3705 struct fnfieldlist *flp;
3706 int total_length = 0;
3707 int i;
3708
3709 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3710 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3711 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3712
3713 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3714 {
3715 struct nextfnfield *nfp = flp->head;
3716 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3717 int k;
3718
3719 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3720 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3721 fn_flp->fn_fields = (struct fn_field *)
3722 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3723 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3724 fn_flp->fn_fields[k] = nfp->fnfield;
3725
3726 total_length += flp->length;
3727 }
3728
3729 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3730 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3731}
3732
3733/* Returns non-zero if NAME is the name of a vtable member in CU's
3734 language, zero otherwise. */
3735static int
3736is_vtable_name (const char *name, struct dwarf2_cu *cu)
3737{
3738 static const char vptr[] = "_vptr";
3739 static const char vtable[] = "vtable";
3740
3741 /* Look for the C++ and Java forms of the vtable. */
3742 if ((cu->language == language_java
3743 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3744 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3745 && is_cplus_marker (name[sizeof (vptr) - 1])))
3746 return 1;
3747
3748 return 0;
3749}
3750
3751/* GCC outputs unnamed structures that are really pointers to member
3752 functions, with the ABI-specified layout. If DIE (from CU) describes
3753 such a structure, set its type, and return nonzero. Otherwise return
3754 zero.
3755
3756 GCC shouldn't do this; it should just output pointer to member DIEs.
3757 This is GCC PR debug/28767. */
3758
3759static int
3760quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3761{
3762 struct objfile *objfile = cu->objfile;
3763 struct type *type;
3764 struct die_info *pfn_die, *delta_die;
3765 struct attribute *pfn_name, *delta_name;
3766 struct type *pfn_type, *domain_type;
3767
3768 /* Check for a structure with no name and two children. */
3769 if (die->tag != DW_TAG_structure_type
3770 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3771 || die->child == NULL
3772 || die->child->sibling == NULL
3773 || (die->child->sibling->sibling != NULL
3774 && die->child->sibling->sibling->tag != DW_TAG_padding))
3775 return 0;
3776
3777 /* Check for __pfn and __delta members. */
3778 pfn_die = die->child;
3779 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3780 if (pfn_die->tag != DW_TAG_member
3781 || pfn_name == NULL
3782 || DW_STRING (pfn_name) == NULL
3783 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3784 return 0;
3785
3786 delta_die = pfn_die->sibling;
3787 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3788 if (delta_die->tag != DW_TAG_member
3789 || delta_name == NULL
3790 || DW_STRING (delta_name) == NULL
3791 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3792 return 0;
3793
3794 /* Find the type of the method. */
3795 pfn_type = die_type (pfn_die, cu);
3796 if (pfn_type == NULL
3797 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3798 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3799 return 0;
3800
3801 /* Look for the "this" argument. */
3802 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3803 if (TYPE_NFIELDS (pfn_type) == 0
3804 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3805 return 0;
3806
3807 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3808 type = alloc_type (objfile);
3809 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3810 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3811 TYPE_VARARGS (pfn_type));
3812 type = lookup_methodptr_type (type);
3813 set_die_type (die, type, cu);
3814
3815 return 1;
3816}
3817
3818/* Called when we find the DIE that starts a structure or union scope
3819 (definition) to process all dies that define the members of the
3820 structure or union.
3821
3822 NOTE: we need to call struct_type regardless of whether or not the
3823 DIE has an at_name attribute, since it might be an anonymous
3824 structure or union. This gets the type entered into our set of
3825 user defined types.
3826
3827 However, if the structure is incomplete (an opaque struct/union)
3828 then suppress creating a symbol table entry for it since gdb only
3829 wants to find the one with the complete definition. Note that if
3830 it is complete, we just call new_symbol, which does it's own
3831 checking about whether the struct/union is anonymous or not (and
3832 suppresses creating a symbol table entry itself). */
3833
3834static void
3835read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3836{
3837 struct objfile *objfile = cu->objfile;
3838 struct type *type;
3839 struct attribute *attr;
3840 const char *previous_prefix = processing_current_prefix;
3841 struct cleanup *back_to = NULL;
3842
3843 if (die->type)
3844 return;
3845
3846 if (quirk_gcc_member_function_pointer (die, cu))
3847 return;
3848
3849 type = alloc_type (objfile);
3850 INIT_CPLUS_SPECIFIC (type);
3851 attr = dwarf2_attr (die, DW_AT_name, cu);
3852 if (attr && DW_STRING (attr))
3853 {
3854 if (cu->language == language_cplus
3855 || cu->language == language_java)
3856 {
3857 char *new_prefix = determine_class_name (die, cu);
3858 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3859 strlen (new_prefix),
3860 &objfile->objfile_obstack);
3861 back_to = make_cleanup (xfree, new_prefix);
3862 processing_current_prefix = new_prefix;
3863 }
3864 else
3865 {
3866 /* The name is already allocated along with this objfile, so
3867 we don't need to duplicate it for the type. */
3868 TYPE_TAG_NAME (type) = DW_STRING (attr);
3869 }
3870 }
3871
3872 if (die->tag == DW_TAG_structure_type)
3873 {
3874 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3875 }
3876 else if (die->tag == DW_TAG_union_type)
3877 {
3878 TYPE_CODE (type) = TYPE_CODE_UNION;
3879 }
3880 else
3881 {
3882 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3883 in gdbtypes.h. */
3884 TYPE_CODE (type) = TYPE_CODE_CLASS;
3885 }
3886
3887 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3888 if (attr)
3889 {
3890 TYPE_LENGTH (type) = DW_UNSND (attr);
3891 }
3892 else
3893 {
3894 TYPE_LENGTH (type) = 0;
3895 }
3896
3897 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
3898 if (die_is_declaration (die, cu))
3899 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3900
3901 /* We need to add the type field to the die immediately so we don't
3902 infinitely recurse when dealing with pointers to the structure
3903 type within the structure itself. */
3904 set_die_type (die, type, cu);
3905
3906 if (die->child != NULL && ! die_is_declaration (die, cu))
3907 {
3908 struct field_info fi;
3909 struct die_info *child_die;
3910 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3911
3912 memset (&fi, 0, sizeof (struct field_info));
3913
3914 child_die = die->child;
3915
3916 while (child_die && child_die->tag)
3917 {
3918 if (child_die->tag == DW_TAG_member
3919 || child_die->tag == DW_TAG_variable)
3920 {
3921 /* NOTE: carlton/2002-11-05: A C++ static data member
3922 should be a DW_TAG_member that is a declaration, but
3923 all versions of G++ as of this writing (so through at
3924 least 3.2.1) incorrectly generate DW_TAG_variable
3925 tags for them instead. */
3926 dwarf2_add_field (&fi, child_die, cu);
3927 }
3928 else if (child_die->tag == DW_TAG_subprogram)
3929 {
3930 /* C++ member function. */
3931 read_type_die (child_die, cu);
3932 dwarf2_add_member_fn (&fi, child_die, type, cu);
3933 }
3934 else if (child_die->tag == DW_TAG_inheritance)
3935 {
3936 /* C++ base class field. */
3937 dwarf2_add_field (&fi, child_die, cu);
3938 }
3939 child_die = sibling_die (child_die);
3940 }
3941
3942 /* Attach fields and member functions to the type. */
3943 if (fi.nfields)
3944 dwarf2_attach_fields_to_type (&fi, type, cu);
3945 if (fi.nfnfields)
3946 {
3947 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3948
3949 /* Get the type which refers to the base class (possibly this
3950 class itself) which contains the vtable pointer for the current
3951 class from the DW_AT_containing_type attribute. */
3952
3953 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3954 {
3955 struct type *t = die_containing_type (die, cu);
3956
3957 TYPE_VPTR_BASETYPE (type) = t;
3958 if (type == t)
3959 {
3960 int i;
3961
3962 /* Our own class provides vtbl ptr. */
3963 for (i = TYPE_NFIELDS (t) - 1;
3964 i >= TYPE_N_BASECLASSES (t);
3965 --i)
3966 {
3967 char *fieldname = TYPE_FIELD_NAME (t, i);
3968
3969 if (is_vtable_name (fieldname, cu))
3970 {
3971 TYPE_VPTR_FIELDNO (type) = i;
3972 break;
3973 }
3974 }
3975
3976 /* Complain if virtual function table field not found. */
3977 if (i < TYPE_N_BASECLASSES (t))
3978 complaint (&symfile_complaints,
3979 _("virtual function table pointer not found when defining class '%s'"),
3980 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3981 "");
3982 }
3983 else
3984 {
3985 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3986 }
3987 }
3988 else if (cu->producer
3989 && strncmp (cu->producer,
3990 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3991 {
3992 /* The IBM XLC compiler does not provide direct indication
3993 of the containing type, but the vtable pointer is
3994 always named __vfp. */
3995
3996 int i;
3997
3998 for (i = TYPE_NFIELDS (type) - 1;
3999 i >= TYPE_N_BASECLASSES (type);
4000 --i)
4001 {
4002 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4003 {
4004 TYPE_VPTR_FIELDNO (type) = i;
4005 TYPE_VPTR_BASETYPE (type) = type;
4006 break;
4007 }
4008 }
4009 }
4010 }
4011
4012 do_cleanups (back_to);
4013 }
4014
4015 processing_current_prefix = previous_prefix;
4016 if (back_to != NULL)
4017 do_cleanups (back_to);
4018}
4019
4020static void
4021process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4022{
4023 struct objfile *objfile = cu->objfile;
4024 const char *previous_prefix = processing_current_prefix;
4025 struct die_info *child_die = die->child;
4026
4027 if (TYPE_TAG_NAME (die->type) != NULL)
4028 processing_current_prefix = TYPE_TAG_NAME (die->type);
4029
4030 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4031 snapshots) has been known to create a die giving a declaration
4032 for a class that has, as a child, a die giving a definition for a
4033 nested class. So we have to process our children even if the
4034 current die is a declaration. Normally, of course, a declaration
4035 won't have any children at all. */
4036
4037 while (child_die != NULL && child_die->tag)
4038 {
4039 if (child_die->tag == DW_TAG_member
4040 || child_die->tag == DW_TAG_variable
4041 || child_die->tag == DW_TAG_inheritance)
4042 {
4043 /* Do nothing. */
4044 }
4045 else
4046 process_die (child_die, cu);
4047
4048 child_die = sibling_die (child_die);
4049 }
4050
4051 /* Do not consider external references. According to the DWARF standard,
4052 these DIEs are identified by the fact that they have no byte_size
4053 attribute, and a declaration attribute. */
4054 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4055 || !die_is_declaration (die, cu))
4056 new_symbol (die, die->type, cu);
4057
4058 processing_current_prefix = previous_prefix;
4059}
4060
4061/* Given a DW_AT_enumeration_type die, set its type. We do not
4062 complete the type's fields yet, or create any symbols. */
4063
4064static void
4065read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
4066{
4067 struct objfile *objfile = cu->objfile;
4068 struct type *type;
4069 struct attribute *attr;
4070
4071 if (die->type)
4072 return;
4073
4074 type = alloc_type (objfile);
4075
4076 TYPE_CODE (type) = TYPE_CODE_ENUM;
4077 attr = dwarf2_attr (die, DW_AT_name, cu);
4078 if (attr && DW_STRING (attr))
4079 {
4080 char *name = DW_STRING (attr);
4081
4082 if (processing_has_namespace_info)
4083 {
4084 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4085 processing_current_prefix,
4086 name, cu);
4087 }
4088 else
4089 {
4090 /* The name is already allocated along with this objfile, so
4091 we don't need to duplicate it for the type. */
4092 TYPE_TAG_NAME (type) = name;
4093 }
4094 }
4095
4096 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4097 if (attr)
4098 {
4099 TYPE_LENGTH (type) = DW_UNSND (attr);
4100 }
4101 else
4102 {
4103 TYPE_LENGTH (type) = 0;
4104 }
4105
4106 set_die_type (die, type, cu);
4107}
4108
4109/* Determine the name of the type represented by DIE, which should be
4110 a named C++ or Java compound type. Return the name in question; the caller
4111 is responsible for xfree()'ing it. */
4112
4113static char *
4114determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4115{
4116 struct cleanup *back_to = NULL;
4117 struct die_info *spec_die = die_specification (die, cu);
4118 char *new_prefix = NULL;
4119
4120 /* If this is the definition of a class that is declared by another
4121 die, then processing_current_prefix may not be accurate; see
4122 read_func_scope for a similar example. */
4123 if (spec_die != NULL)
4124 {
4125 char *specification_prefix = determine_prefix (spec_die, cu);
4126 processing_current_prefix = specification_prefix;
4127 back_to = make_cleanup (xfree, specification_prefix);
4128 }
4129
4130 /* If we don't have namespace debug info, guess the name by trying
4131 to demangle the names of members, just like we did in
4132 guess_structure_name. */
4133 if (!processing_has_namespace_info)
4134 {
4135 struct die_info *child;
4136
4137 for (child = die->child;
4138 child != NULL && child->tag != 0;
4139 child = sibling_die (child))
4140 {
4141 if (child->tag == DW_TAG_subprogram)
4142 {
4143 new_prefix
4144 = language_class_name_from_physname (cu->language_defn,
4145 dwarf2_linkage_name
4146 (child, cu));
4147
4148 if (new_prefix != NULL)
4149 break;
4150 }
4151 }
4152 }
4153
4154 if (new_prefix == NULL)
4155 {
4156 const char *name = dwarf2_name (die, cu);
4157 new_prefix = typename_concat (NULL, processing_current_prefix,
4158 name ? name : "<<anonymous>>",
4159 cu);
4160 }
4161
4162 if (back_to != NULL)
4163 do_cleanups (back_to);
4164
4165 return new_prefix;
4166}
4167
4168/* Given a pointer to a die which begins an enumeration, process all
4169 the dies that define the members of the enumeration, and create the
4170 symbol for the enumeration type.
4171
4172 NOTE: We reverse the order of the element list. */
4173
4174static void
4175process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4176{
4177 struct objfile *objfile = cu->objfile;
4178 struct die_info *child_die;
4179 struct field *fields;
4180 struct attribute *attr;
4181 struct symbol *sym;
4182 int num_fields;
4183 int unsigned_enum = 1;
4184
4185 num_fields = 0;
4186 fields = NULL;
4187 if (die->child != NULL)
4188 {
4189 child_die = die->child;
4190 while (child_die && child_die->tag)
4191 {
4192 if (child_die->tag != DW_TAG_enumerator)
4193 {
4194 process_die (child_die, cu);
4195 }
4196 else
4197 {
4198 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4199 if (attr)
4200 {
4201 sym = new_symbol (child_die, die->type, cu);
4202 if (SYMBOL_VALUE (sym) < 0)
4203 unsigned_enum = 0;
4204
4205 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4206 {
4207 fields = (struct field *)
4208 xrealloc (fields,
4209 (num_fields + DW_FIELD_ALLOC_CHUNK)
4210 * sizeof (struct field));
4211 }
4212
4213 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4214 FIELD_TYPE (fields[num_fields]) = NULL;
4215 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4216 FIELD_BITSIZE (fields[num_fields]) = 0;
4217 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4218
4219 num_fields++;
4220 }
4221 }
4222
4223 child_die = sibling_die (child_die);
4224 }
4225
4226 if (num_fields)
4227 {
4228 TYPE_NFIELDS (die->type) = num_fields;
4229 TYPE_FIELDS (die->type) = (struct field *)
4230 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4231 memcpy (TYPE_FIELDS (die->type), fields,
4232 sizeof (struct field) * num_fields);
4233 xfree (fields);
4234 }
4235 if (unsigned_enum)
4236 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4237 }
4238
4239 new_symbol (die, die->type, cu);
4240}
4241
4242/* Extract all information from a DW_TAG_array_type DIE and put it in
4243 the DIE's type field. For now, this only handles one dimensional
4244 arrays. */
4245
4246static void
4247read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4248{
4249 struct objfile *objfile = cu->objfile;
4250 struct die_info *child_die;
4251 struct type *type = NULL;
4252 struct type *element_type, *range_type, *index_type;
4253 struct type **range_types = NULL;
4254 struct attribute *attr;
4255 int ndim = 0;
4256 struct cleanup *back_to;
4257
4258 /* Return if we've already decoded this type. */
4259 if (die->type)
4260 {
4261 return;
4262 }
4263
4264 element_type = die_type (die, cu);
4265
4266 /* Irix 6.2 native cc creates array types without children for
4267 arrays with unspecified length. */
4268 if (die->child == NULL)
4269 {
4270 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4271 range_type = create_range_type (NULL, index_type, 0, -1);
4272 set_die_type (die, create_array_type (NULL, element_type, range_type),
4273 cu);
4274 return;
4275 }
4276
4277 back_to = make_cleanup (null_cleanup, NULL);
4278 child_die = die->child;
4279 while (child_die && child_die->tag)
4280 {
4281 if (child_die->tag == DW_TAG_subrange_type)
4282 {
4283 read_subrange_type (child_die, cu);
4284
4285 if (child_die->type != NULL)
4286 {
4287 /* The range type was succesfully read. Save it for
4288 the array type creation. */
4289 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4290 {
4291 range_types = (struct type **)
4292 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4293 * sizeof (struct type *));
4294 if (ndim == 0)
4295 make_cleanup (free_current_contents, &range_types);
4296 }
4297 range_types[ndim++] = child_die->type;
4298 }
4299 }
4300 child_die = sibling_die (child_die);
4301 }
4302
4303 /* Dwarf2 dimensions are output from left to right, create the
4304 necessary array types in backwards order. */
4305
4306 type = element_type;
4307
4308 if (read_array_order (die, cu) == DW_ORD_col_major)
4309 {
4310 int i = 0;
4311 while (i < ndim)
4312 type = create_array_type (NULL, type, range_types[i++]);
4313 }
4314 else
4315 {
4316 while (ndim-- > 0)
4317 type = create_array_type (NULL, type, range_types[ndim]);
4318 }
4319
4320 /* Understand Dwarf2 support for vector types (like they occur on
4321 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4322 array type. This is not part of the Dwarf2/3 standard yet, but a
4323 custom vendor extension. The main difference between a regular
4324 array and the vector variant is that vectors are passed by value
4325 to functions. */
4326 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4327 if (attr)
4328 make_vector_type (type);
4329
4330 attr = dwarf2_attr (die, DW_AT_name, cu);
4331 if (attr && DW_STRING (attr))
4332 TYPE_NAME (type) = DW_STRING (attr);
4333
4334 do_cleanups (back_to);
4335
4336 /* Install the type in the die. */
4337 set_die_type (die, type, cu);
4338}
4339
4340static enum dwarf_array_dim_ordering
4341read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4342{
4343 struct attribute *attr;
4344
4345 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4346
4347 if (attr) return DW_SND (attr);
4348
4349 /*
4350 GNU F77 is a special case, as at 08/2004 array type info is the
4351 opposite order to the dwarf2 specification, but data is still
4352 laid out as per normal fortran.
4353
4354 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4355 version checking.
4356 */
4357
4358 if (cu->language == language_fortran &&
4359 cu->producer && strstr (cu->producer, "GNU F77"))
4360 {
4361 return DW_ORD_row_major;
4362 }
4363
4364 switch (cu->language_defn->la_array_ordering)
4365 {
4366 case array_column_major:
4367 return DW_ORD_col_major;
4368 case array_row_major:
4369 default:
4370 return DW_ORD_row_major;
4371 };
4372}
4373
4374/* Extract all information from a DW_TAG_set_type DIE and put it in
4375 the DIE's type field. */
4376
4377static void
4378read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4379{
4380 if (die->type == NULL)
4381 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4382}
4383
4384/* First cut: install each common block member as a global variable. */
4385
4386static void
4387read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4388{
4389 struct die_info *child_die;
4390 struct attribute *attr;
4391 struct symbol *sym;
4392 CORE_ADDR base = (CORE_ADDR) 0;
4393
4394 attr = dwarf2_attr (die, DW_AT_location, cu);
4395 if (attr)
4396 {
4397 /* Support the .debug_loc offsets */
4398 if (attr_form_is_block (attr))
4399 {
4400 base = decode_locdesc (DW_BLOCK (attr), cu);
4401 }
4402 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4403 {
4404 dwarf2_complex_location_expr_complaint ();
4405 }
4406 else
4407 {
4408 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4409 "common block member");
4410 }
4411 }
4412 if (die->child != NULL)
4413 {
4414 child_die = die->child;
4415 while (child_die && child_die->tag)
4416 {
4417 sym = new_symbol (child_die, NULL, cu);
4418 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4419 if (attr)
4420 {
4421 SYMBOL_VALUE_ADDRESS (sym) =
4422 base + decode_locdesc (DW_BLOCK (attr), cu);
4423 add_symbol_to_list (sym, &global_symbols);
4424 }
4425 child_die = sibling_die (child_die);
4426 }
4427 }
4428}
4429
4430/* Read a C++ namespace. */
4431
4432static void
4433read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4434{
4435 struct objfile *objfile = cu->objfile;
4436 const char *previous_prefix = processing_current_prefix;
4437 const char *name;
4438 int is_anonymous;
4439 struct die_info *current_die;
4440 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4441
4442 name = namespace_name (die, &is_anonymous, cu);
4443
4444 /* Now build the name of the current namespace. */
4445
4446 if (previous_prefix[0] == '\0')
4447 {
4448 processing_current_prefix = name;
4449 }
4450 else
4451 {
4452 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4453 make_cleanup (xfree, temp_name);
4454 processing_current_prefix = temp_name;
4455 }
4456
4457 /* Add a symbol associated to this if we haven't seen the namespace
4458 before. Also, add a using directive if it's an anonymous
4459 namespace. */
4460
4461 if (dwarf2_extension (die, cu) == NULL)
4462 {
4463 struct type *type;
4464
4465 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4466 this cast will hopefully become unnecessary. */
4467 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4468 (char *) processing_current_prefix,
4469 objfile);
4470 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4471
4472 new_symbol (die, type, cu);
4473 set_die_type (die, type, cu);
4474
4475 if (is_anonymous)
4476 cp_add_using_directive (processing_current_prefix,
4477 strlen (previous_prefix),
4478 strlen (processing_current_prefix));
4479 }
4480
4481 if (die->child != NULL)
4482 {
4483 struct die_info *child_die = die->child;
4484
4485 while (child_die && child_die->tag)
4486 {
4487 process_die (child_die, cu);
4488 child_die = sibling_die (child_die);
4489 }
4490 }
4491
4492 processing_current_prefix = previous_prefix;
4493 do_cleanups (back_to);
4494}
4495
4496/* Return the name of the namespace represented by DIE. Set
4497 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4498 namespace. */
4499
4500static const char *
4501namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4502{
4503 struct die_info *current_die;
4504 const char *name = NULL;
4505
4506 /* Loop through the extensions until we find a name. */
4507
4508 for (current_die = die;
4509 current_die != NULL;
4510 current_die = dwarf2_extension (die, cu))
4511 {
4512 name = dwarf2_name (current_die, cu);
4513 if (name != NULL)
4514 break;
4515 }
4516
4517 /* Is it an anonymous namespace? */
4518
4519 *is_anonymous = (name == NULL);
4520 if (*is_anonymous)
4521 name = "(anonymous namespace)";
4522
4523 return name;
4524}
4525
4526/* Extract all information from a DW_TAG_pointer_type DIE and add to
4527 the user defined type vector. */
4528
4529static void
4530read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4531{
4532 struct comp_unit_head *cu_header = &cu->header;
4533 struct type *type;
4534 struct attribute *attr_byte_size;
4535 struct attribute *attr_address_class;
4536 int byte_size, addr_class;
4537
4538 if (die->type)
4539 {
4540 return;
4541 }
4542
4543 type = lookup_pointer_type (die_type (die, cu));
4544
4545 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4546 if (attr_byte_size)
4547 byte_size = DW_UNSND (attr_byte_size);
4548 else
4549 byte_size = cu_header->addr_size;
4550
4551 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4552 if (attr_address_class)
4553 addr_class = DW_UNSND (attr_address_class);
4554 else
4555 addr_class = DW_ADDR_none;
4556
4557 /* If the pointer size or address class is different than the
4558 default, create a type variant marked as such and set the
4559 length accordingly. */
4560 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4561 {
4562 if (gdbarch_address_class_type_flags_p (current_gdbarch))
4563 {
4564 int type_flags;
4565
4566 type_flags = gdbarch_address_class_type_flags
4567 (current_gdbarch, byte_size, addr_class);
4568 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4569 type = make_type_with_address_space (type, type_flags);
4570 }
4571 else if (TYPE_LENGTH (type) != byte_size)
4572 {
4573 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4574 }
4575 else {
4576 /* Should we also complain about unhandled address classes? */
4577 }
4578 }
4579
4580 TYPE_LENGTH (type) = byte_size;
4581 set_die_type (die, type, cu);
4582}
4583
4584/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4585 the user defined type vector. */
4586
4587static void
4588read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4589{
4590 struct objfile *objfile = cu->objfile;
4591 struct type *type;
4592 struct type *to_type;
4593 struct type *domain;
4594
4595 if (die->type)
4596 {
4597 return;
4598 }
4599
4600 to_type = die_type (die, cu);
4601 domain = die_containing_type (die, cu);
4602
4603 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4604 type = lookup_methodptr_type (to_type);
4605 else
4606 type = lookup_memberptr_type (to_type, domain);
4607
4608 set_die_type (die, type, cu);
4609}
4610
4611/* Extract all information from a DW_TAG_reference_type DIE and add to
4612 the user defined type vector. */
4613
4614static void
4615read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4616{
4617 struct comp_unit_head *cu_header = &cu->header;
4618 struct type *type;
4619 struct attribute *attr;
4620
4621 if (die->type)
4622 {
4623 return;
4624 }
4625
4626 type = lookup_reference_type (die_type (die, cu));
4627 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4628 if (attr)
4629 {
4630 TYPE_LENGTH (type) = DW_UNSND (attr);
4631 }
4632 else
4633 {
4634 TYPE_LENGTH (type) = cu_header->addr_size;
4635 }
4636 set_die_type (die, type, cu);
4637}
4638
4639static void
4640read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4641{
4642 struct type *base_type;
4643
4644 if (die->type)
4645 {
4646 return;
4647 }
4648
4649 base_type = die_type (die, cu);
4650 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4651 cu);
4652}
4653
4654static void
4655read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4656{
4657 struct type *base_type;
4658
4659 if (die->type)
4660 {
4661 return;
4662 }
4663
4664 base_type = die_type (die, cu);
4665 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4666 cu);
4667}
4668
4669/* Extract all information from a DW_TAG_string_type DIE and add to
4670 the user defined type vector. It isn't really a user defined type,
4671 but it behaves like one, with other DIE's using an AT_user_def_type
4672 attribute to reference it. */
4673
4674static void
4675read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4676{
4677 struct objfile *objfile = cu->objfile;
4678 struct type *type, *range_type, *index_type, *char_type;
4679 struct attribute *attr;
4680 unsigned int length;
4681
4682 if (die->type)
4683 {
4684 return;
4685 }
4686
4687 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4688 if (attr)
4689 {
4690 length = DW_UNSND (attr);
4691 }
4692 else
4693 {
4694 /* check for the DW_AT_byte_size attribute */
4695 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4696 if (attr)
4697 {
4698 length = DW_UNSND (attr);
4699 }
4700 else
4701 {
4702 length = 1;
4703 }
4704 }
4705 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4706 range_type = create_range_type (NULL, index_type, 1, length);
4707 if (cu->language == language_fortran)
4708 {
4709 /* Need to create a unique string type for bounds
4710 information */
4711 type = create_string_type (0, range_type);
4712 }
4713 else
4714 {
4715 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4716 type = create_string_type (char_type, range_type);
4717 }
4718 set_die_type (die, type, cu);
4719}
4720
4721/* Handle DIES due to C code like:
4722
4723 struct foo
4724 {
4725 int (*funcp)(int a, long l);
4726 int b;
4727 };
4728
4729 ('funcp' generates a DW_TAG_subroutine_type DIE)
4730 */
4731
4732static void
4733read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4734{
4735 struct type *type; /* Type that this function returns */
4736 struct type *ftype; /* Function that returns above type */
4737 struct attribute *attr;
4738
4739 /* Decode the type that this subroutine returns */
4740 if (die->type)
4741 {
4742 return;
4743 }
4744 type = die_type (die, cu);
4745 ftype = make_function_type (type, (struct type **) 0);
4746
4747 /* All functions in C++, Pascal and Java have prototypes. */
4748 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4749 if ((attr && (DW_UNSND (attr) != 0))
4750 || cu->language == language_cplus
4751 || cu->language == language_java
4752 || cu->language == language_pascal)
4753 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4754
4755 if (die->child != NULL)
4756 {
4757 struct die_info *child_die;
4758 int nparams = 0;
4759 int iparams = 0;
4760
4761 /* Count the number of parameters.
4762 FIXME: GDB currently ignores vararg functions, but knows about
4763 vararg member functions. */
4764 child_die = die->child;
4765 while (child_die && child_die->tag)
4766 {
4767 if (child_die->tag == DW_TAG_formal_parameter)
4768 nparams++;
4769 else if (child_die->tag == DW_TAG_unspecified_parameters)
4770 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4771 child_die = sibling_die (child_die);
4772 }
4773
4774 /* Allocate storage for parameters and fill them in. */
4775 TYPE_NFIELDS (ftype) = nparams;
4776 TYPE_FIELDS (ftype) = (struct field *)
4777 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
4778
4779 child_die = die->child;
4780 while (child_die && child_die->tag)
4781 {
4782 if (child_die->tag == DW_TAG_formal_parameter)
4783 {
4784 /* Dwarf2 has no clean way to discern C++ static and non-static
4785 member functions. G++ helps GDB by marking the first
4786 parameter for non-static member functions (which is the
4787 this pointer) as artificial. We pass this information
4788 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4789 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4790 if (attr)
4791 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4792 else
4793 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4794 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4795 iparams++;
4796 }
4797 child_die = sibling_die (child_die);
4798 }
4799 }
4800
4801 set_die_type (die, ftype, cu);
4802}
4803
4804static void
4805read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4806{
4807 struct objfile *objfile = cu->objfile;
4808 struct attribute *attr;
4809 char *name = NULL;
4810
4811 if (!die->type)
4812 {
4813 attr = dwarf2_attr (die, DW_AT_name, cu);
4814 if (attr && DW_STRING (attr))
4815 {
4816 name = DW_STRING (attr);
4817 }
4818 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4819 TYPE_FLAG_TARGET_STUB, name, objfile),
4820 cu);
4821 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4822 }
4823}
4824
4825/* Find a representation of a given base type and install
4826 it in the TYPE field of the die. */
4827
4828static void
4829read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4830{
4831 struct objfile *objfile = cu->objfile;
4832 struct type *type;
4833 struct attribute *attr;
4834 int encoding = 0, size = 0;
4835
4836 /* If we've already decoded this die, this is a no-op. */
4837 if (die->type)
4838 {
4839 return;
4840 }
4841
4842 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4843 if (attr)
4844 {
4845 encoding = DW_UNSND (attr);
4846 }
4847 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4848 if (attr)
4849 {
4850 size = DW_UNSND (attr);
4851 }
4852 attr = dwarf2_attr (die, DW_AT_name, cu);
4853 if (attr && DW_STRING (attr))
4854 {
4855 enum type_code code = TYPE_CODE_INT;
4856 int type_flags = 0;
4857
4858 switch (encoding)
4859 {
4860 case DW_ATE_address:
4861 /* Turn DW_ATE_address into a void * pointer. */
4862 code = TYPE_CODE_PTR;
4863 type_flags |= TYPE_FLAG_UNSIGNED;
4864 break;
4865 case DW_ATE_boolean:
4866 code = TYPE_CODE_BOOL;
4867 type_flags |= TYPE_FLAG_UNSIGNED;
4868 break;
4869 case DW_ATE_complex_float:
4870 code = TYPE_CODE_COMPLEX;
4871 break;
4872 case DW_ATE_float:
4873 code = TYPE_CODE_FLT;
4874 break;
4875 case DW_ATE_signed:
4876 break;
4877 case DW_ATE_unsigned:
4878 type_flags |= TYPE_FLAG_UNSIGNED;
4879 break;
4880 case DW_ATE_signed_char:
4881 if (cu->language == language_m2)
4882 code = TYPE_CODE_CHAR;
4883 break;
4884 case DW_ATE_unsigned_char:
4885 if (cu->language == language_m2)
4886 code = TYPE_CODE_CHAR;
4887 type_flags |= TYPE_FLAG_UNSIGNED;
4888 break;
4889 default:
4890 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4891 dwarf_type_encoding_name (encoding));
4892 break;
4893 }
4894 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4895 if (encoding == DW_ATE_address)
4896 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4897 cu);
4898 else if (encoding == DW_ATE_complex_float)
4899 {
4900 if (size == 32)
4901 TYPE_TARGET_TYPE (type)
4902 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4903 else if (size == 16)
4904 TYPE_TARGET_TYPE (type)
4905 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4906 else if (size == 8)
4907 TYPE_TARGET_TYPE (type)
4908 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4909 }
4910 }
4911 else
4912 {
4913 type = dwarf_base_type (encoding, size, cu);
4914 }
4915 set_die_type (die, type, cu);
4916}
4917
4918/* Read the given DW_AT_subrange DIE. */
4919
4920static void
4921read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4922{
4923 struct type *base_type;
4924 struct type *range_type;
4925 struct attribute *attr;
4926 int low = 0;
4927 int high = -1;
4928
4929 /* If we have already decoded this die, then nothing more to do. */
4930 if (die->type)
4931 return;
4932
4933 base_type = die_type (die, cu);
4934 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4935 {
4936 complaint (&symfile_complaints,
4937 _("DW_AT_type missing from DW_TAG_subrange_type"));
4938 base_type
4939 = dwarf_base_type (DW_ATE_signed,
4940 gdbarch_addr_bit (current_gdbarch) / 8, cu);
4941 }
4942
4943 if (cu->language == language_fortran)
4944 {
4945 /* FORTRAN implies a lower bound of 1, if not given. */
4946 low = 1;
4947 }
4948
4949 /* FIXME: For variable sized arrays either of these could be
4950 a variable rather than a constant value. We'll allow it,
4951 but we don't know how to handle it. */
4952 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4953 if (attr)
4954 low = dwarf2_get_attr_constant_value (attr, 0);
4955
4956 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4957 if (attr)
4958 {
4959 if (attr->form == DW_FORM_block1)
4960 {
4961 /* GCC encodes arrays with unspecified or dynamic length
4962 with a DW_FORM_block1 attribute.
4963 FIXME: GDB does not yet know how to handle dynamic
4964 arrays properly, treat them as arrays with unspecified
4965 length for now.
4966
4967 FIXME: jimb/2003-09-22: GDB does not really know
4968 how to handle arrays of unspecified length
4969 either; we just represent them as zero-length
4970 arrays. Choose an appropriate upper bound given
4971 the lower bound we've computed above. */
4972 high = low - 1;
4973 }
4974 else
4975 high = dwarf2_get_attr_constant_value (attr, 1);
4976 }
4977
4978 range_type = create_range_type (NULL, base_type, low, high);
4979
4980 attr = dwarf2_attr (die, DW_AT_name, cu);
4981 if (attr && DW_STRING (attr))
4982 TYPE_NAME (range_type) = DW_STRING (attr);
4983
4984 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4985 if (attr)
4986 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4987
4988 set_die_type (die, range_type, cu);
4989}
4990
4991static void
4992read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
4993{
4994 struct type *type;
4995 struct attribute *attr;
4996
4997 if (die->type)
4998 return;
4999
5000 /* For now, we only support the C meaning of an unspecified type: void. */
5001
5002 attr = dwarf2_attr (die, DW_AT_name, cu);
5003 type = init_type (TYPE_CODE_VOID, 0, 0, attr ? DW_STRING (attr) : "",
5004 cu->objfile);
5005
5006 set_die_type (die, type, cu);
5007}
5008
5009/* Read a whole compilation unit into a linked list of dies. */
5010
5011static struct die_info *
5012read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
5013{
5014 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
5015}
5016
5017/* Read a single die and all its descendents. Set the die's sibling
5018 field to NULL; set other fields in the die correctly, and set all
5019 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5020 location of the info_ptr after reading all of those dies. PARENT
5021 is the parent of the die in question. */
5022
5023static struct die_info *
5024read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
5025 struct dwarf2_cu *cu,
5026 gdb_byte **new_info_ptr,
5027 struct die_info *parent)
5028{
5029 struct die_info *die;
5030 gdb_byte *cur_ptr;
5031 int has_children;
5032
5033 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
5034 store_in_ref_table (die->offset, die, cu);
5035
5036 if (has_children)
5037 {
5038 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
5039 new_info_ptr, die);
5040 }
5041 else
5042 {
5043 die->child = NULL;
5044 *new_info_ptr = cur_ptr;
5045 }
5046
5047 die->sibling = NULL;
5048 die->parent = parent;
5049 return die;
5050}
5051
5052/* Read a die, all of its descendents, and all of its siblings; set
5053 all of the fields of all of the dies correctly. Arguments are as
5054 in read_die_and_children. */
5055
5056static struct die_info *
5057read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
5058 struct dwarf2_cu *cu,
5059 gdb_byte **new_info_ptr,
5060 struct die_info *parent)
5061{
5062 struct die_info *first_die, *last_sibling;
5063 gdb_byte *cur_ptr;
5064
5065 cur_ptr = info_ptr;
5066 first_die = last_sibling = NULL;
5067
5068 while (1)
5069 {
5070 struct die_info *die
5071 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
5072
5073 if (!first_die)
5074 {
5075 first_die = die;
5076 }
5077 else
5078 {
5079 last_sibling->sibling = die;
5080 }
5081
5082 if (die->tag == 0)
5083 {
5084 *new_info_ptr = cur_ptr;
5085 return first_die;
5086 }
5087 else
5088 {
5089 last_sibling = die;
5090 }
5091 }
5092}
5093
5094/* Free a linked list of dies. */
5095
5096static void
5097free_die_list (struct die_info *dies)
5098{
5099 struct die_info *die, *next;
5100
5101 die = dies;
5102 while (die)
5103 {
5104 if (die->child != NULL)
5105 free_die_list (die->child);
5106 next = die->sibling;
5107 xfree (die->attrs);
5108 xfree (die);
5109 die = next;
5110 }
5111}
5112
5113/* Read the contents of the section at OFFSET and of size SIZE from the
5114 object file specified by OBJFILE into the objfile_obstack and return it. */
5115
5116gdb_byte *
5117dwarf2_read_section (struct objfile *objfile, asection *sectp)
5118{
5119 bfd *abfd = objfile->obfd;
5120 gdb_byte *buf, *retbuf;
5121 bfd_size_type size = bfd_get_section_size (sectp);
5122
5123 if (size == 0)
5124 return NULL;
5125
5126 buf = obstack_alloc (&objfile->objfile_obstack, size);
5127 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
5128 if (retbuf != NULL)
5129 return retbuf;
5130
5131 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5132 || bfd_bread (buf, size, abfd) != size)
5133 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
5134 bfd_get_filename (abfd));
5135
5136 return buf;
5137}
5138
5139/* In DWARF version 2, the description of the debugging information is
5140 stored in a separate .debug_abbrev section. Before we read any
5141 dies from a section we read in all abbreviations and install them
5142 in a hash table. This function also sets flags in CU describing
5143 the data found in the abbrev table. */
5144
5145static void
5146dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
5147{
5148 struct comp_unit_head *cu_header = &cu->header;
5149 gdb_byte *abbrev_ptr;
5150 struct abbrev_info *cur_abbrev;
5151 unsigned int abbrev_number, bytes_read, abbrev_name;
5152 unsigned int abbrev_form, hash_number;
5153 struct attr_abbrev *cur_attrs;
5154 unsigned int allocated_attrs;
5155
5156 /* Initialize dwarf2 abbrevs */
5157 obstack_init (&cu->abbrev_obstack);
5158 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5159 (ABBREV_HASH_SIZE
5160 * sizeof (struct abbrev_info *)));
5161 memset (cu->dwarf2_abbrevs, 0,
5162 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
5163
5164 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
5165 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5166 abbrev_ptr += bytes_read;
5167
5168 allocated_attrs = ATTR_ALLOC_CHUNK;
5169 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5170
5171 /* loop until we reach an abbrev number of 0 */
5172 while (abbrev_number)
5173 {
5174 cur_abbrev = dwarf_alloc_abbrev (cu);
5175
5176 /* read in abbrev header */
5177 cur_abbrev->number = abbrev_number;
5178 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5179 abbrev_ptr += bytes_read;
5180 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5181 abbrev_ptr += 1;
5182
5183 if (cur_abbrev->tag == DW_TAG_namespace)
5184 cu->has_namespace_info = 1;
5185
5186 /* now read in declarations */
5187 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5188 abbrev_ptr += bytes_read;
5189 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5190 abbrev_ptr += bytes_read;
5191 while (abbrev_name)
5192 {
5193 if (cur_abbrev->num_attrs == allocated_attrs)
5194 {
5195 allocated_attrs += ATTR_ALLOC_CHUNK;
5196 cur_attrs
5197 = xrealloc (cur_attrs, (allocated_attrs
5198 * sizeof (struct attr_abbrev)));
5199 }
5200
5201 /* Record whether this compilation unit might have
5202 inter-compilation-unit references. If we don't know what form
5203 this attribute will have, then it might potentially be a
5204 DW_FORM_ref_addr, so we conservatively expect inter-CU
5205 references. */
5206
5207 if (abbrev_form == DW_FORM_ref_addr
5208 || abbrev_form == DW_FORM_indirect)
5209 cu->has_form_ref_addr = 1;
5210
5211 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5212 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5213 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5214 abbrev_ptr += bytes_read;
5215 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5216 abbrev_ptr += bytes_read;
5217 }
5218
5219 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5220 (cur_abbrev->num_attrs
5221 * sizeof (struct attr_abbrev)));
5222 memcpy (cur_abbrev->attrs, cur_attrs,
5223 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5224
5225 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5226 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5227 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5228
5229 /* Get next abbreviation.
5230 Under Irix6 the abbreviations for a compilation unit are not
5231 always properly terminated with an abbrev number of 0.
5232 Exit loop if we encounter an abbreviation which we have
5233 already read (which means we are about to read the abbreviations
5234 for the next compile unit) or if the end of the abbreviation
5235 table is reached. */
5236 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5237 >= dwarf2_per_objfile->abbrev_size)
5238 break;
5239 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5240 abbrev_ptr += bytes_read;
5241 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5242 break;
5243 }
5244
5245 xfree (cur_attrs);
5246}
5247
5248/* Release the memory used by the abbrev table for a compilation unit. */
5249
5250static void
5251dwarf2_free_abbrev_table (void *ptr_to_cu)
5252{
5253 struct dwarf2_cu *cu = ptr_to_cu;
5254
5255 obstack_free (&cu->abbrev_obstack, NULL);
5256 cu->dwarf2_abbrevs = NULL;
5257}
5258
5259/* Lookup an abbrev_info structure in the abbrev hash table. */
5260
5261static struct abbrev_info *
5262dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5263{
5264 unsigned int hash_number;
5265 struct abbrev_info *abbrev;
5266
5267 hash_number = number % ABBREV_HASH_SIZE;
5268 abbrev = cu->dwarf2_abbrevs[hash_number];
5269
5270 while (abbrev)
5271 {
5272 if (abbrev->number == number)
5273 return abbrev;
5274 else
5275 abbrev = abbrev->next;
5276 }
5277 return NULL;
5278}
5279
5280/* Returns nonzero if TAG represents a type that we might generate a partial
5281 symbol for. */
5282
5283static int
5284is_type_tag_for_partial (int tag)
5285{
5286 switch (tag)
5287 {
5288#if 0
5289 /* Some types that would be reasonable to generate partial symbols for,
5290 that we don't at present. */
5291 case DW_TAG_array_type:
5292 case DW_TAG_file_type:
5293 case DW_TAG_ptr_to_member_type:
5294 case DW_TAG_set_type:
5295 case DW_TAG_string_type:
5296 case DW_TAG_subroutine_type:
5297#endif
5298 case DW_TAG_base_type:
5299 case DW_TAG_class_type:
5300 case DW_TAG_enumeration_type:
5301 case DW_TAG_structure_type:
5302 case DW_TAG_subrange_type:
5303 case DW_TAG_typedef:
5304 case DW_TAG_union_type:
5305 return 1;
5306 default:
5307 return 0;
5308 }
5309}
5310
5311/* Load all DIEs that are interesting for partial symbols into memory. */
5312
5313static struct partial_die_info *
5314load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
5315 struct dwarf2_cu *cu)
5316{
5317 struct partial_die_info *part_die;
5318 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5319 struct abbrev_info *abbrev;
5320 unsigned int bytes_read;
5321 unsigned int load_all = 0;
5322
5323 int nesting_level = 1;
5324
5325 parent_die = NULL;
5326 last_die = NULL;
5327
5328 if (cu->per_cu && cu->per_cu->load_all_dies)
5329 load_all = 1;
5330
5331 cu->partial_dies
5332 = htab_create_alloc_ex (cu->header.length / 12,
5333 partial_die_hash,
5334 partial_die_eq,
5335 NULL,
5336 &cu->comp_unit_obstack,
5337 hashtab_obstack_allocate,
5338 dummy_obstack_deallocate);
5339
5340 part_die = obstack_alloc (&cu->comp_unit_obstack,
5341 sizeof (struct partial_die_info));
5342
5343 while (1)
5344 {
5345 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5346
5347 /* A NULL abbrev means the end of a series of children. */
5348 if (abbrev == NULL)
5349 {
5350 if (--nesting_level == 0)
5351 {
5352 /* PART_DIE was probably the last thing allocated on the
5353 comp_unit_obstack, so we could call obstack_free
5354 here. We don't do that because the waste is small,
5355 and will be cleaned up when we're done with this
5356 compilation unit. This way, we're also more robust
5357 against other users of the comp_unit_obstack. */
5358 return first_die;
5359 }
5360 info_ptr += bytes_read;
5361 last_die = parent_die;
5362 parent_die = parent_die->die_parent;
5363 continue;
5364 }
5365
5366 /* Check whether this DIE is interesting enough to save. Normally
5367 we would not be interested in members here, but there may be
5368 later variables referencing them via DW_AT_specification (for
5369 static members). */
5370 if (!load_all
5371 && !is_type_tag_for_partial (abbrev->tag)
5372 && abbrev->tag != DW_TAG_enumerator
5373 && abbrev->tag != DW_TAG_subprogram
5374 && abbrev->tag != DW_TAG_variable
5375 && abbrev->tag != DW_TAG_namespace
5376 && abbrev->tag != DW_TAG_member)
5377 {
5378 /* Otherwise we skip to the next sibling, if any. */
5379 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5380 continue;
5381 }
5382
5383 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5384 abfd, info_ptr, cu);
5385
5386 /* This two-pass algorithm for processing partial symbols has a
5387 high cost in cache pressure. Thus, handle some simple cases
5388 here which cover the majority of C partial symbols. DIEs
5389 which neither have specification tags in them, nor could have
5390 specification tags elsewhere pointing at them, can simply be
5391 processed and discarded.
5392
5393 This segment is also optional; scan_partial_symbols and
5394 add_partial_symbol will handle these DIEs if we chain
5395 them in normally. When compilers which do not emit large
5396 quantities of duplicate debug information are more common,
5397 this code can probably be removed. */
5398
5399 /* Any complete simple types at the top level (pretty much all
5400 of them, for a language without namespaces), can be processed
5401 directly. */
5402 if (parent_die == NULL
5403 && part_die->has_specification == 0
5404 && part_die->is_declaration == 0
5405 && (part_die->tag == DW_TAG_typedef
5406 || part_die->tag == DW_TAG_base_type
5407 || part_die->tag == DW_TAG_subrange_type))
5408 {
5409 if (building_psymtab && part_die->name != NULL)
5410 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5411 VAR_DOMAIN, LOC_TYPEDEF,
5412 &cu->objfile->static_psymbols,
5413 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5414 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5415 continue;
5416 }
5417
5418 /* If we're at the second level, and we're an enumerator, and
5419 our parent has no specification (meaning possibly lives in a
5420 namespace elsewhere), then we can add the partial symbol now
5421 instead of queueing it. */
5422 if (part_die->tag == DW_TAG_enumerator
5423 && parent_die != NULL
5424 && parent_die->die_parent == NULL
5425 && parent_die->tag == DW_TAG_enumeration_type
5426 && parent_die->has_specification == 0)
5427 {
5428 if (part_die->name == NULL)
5429 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5430 else if (building_psymtab)
5431 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5432 VAR_DOMAIN, LOC_CONST,
5433 (cu->language == language_cplus
5434 || cu->language == language_java)
5435 ? &cu->objfile->global_psymbols
5436 : &cu->objfile->static_psymbols,
5437 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5438
5439 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5440 continue;
5441 }
5442
5443 /* We'll save this DIE so link it in. */
5444 part_die->die_parent = parent_die;
5445 part_die->die_sibling = NULL;
5446 part_die->die_child = NULL;
5447
5448 if (last_die && last_die == parent_die)
5449 last_die->die_child = part_die;
5450 else if (last_die)
5451 last_die->die_sibling = part_die;
5452
5453 last_die = part_die;
5454
5455 if (first_die == NULL)
5456 first_die = part_die;
5457
5458 /* Maybe add the DIE to the hash table. Not all DIEs that we
5459 find interesting need to be in the hash table, because we
5460 also have the parent/sibling/child chains; only those that we
5461 might refer to by offset later during partial symbol reading.
5462
5463 For now this means things that might have be the target of a
5464 DW_AT_specification, DW_AT_abstract_origin, or
5465 DW_AT_extension. DW_AT_extension will refer only to
5466 namespaces; DW_AT_abstract_origin refers to functions (and
5467 many things under the function DIE, but we do not recurse
5468 into function DIEs during partial symbol reading) and
5469 possibly variables as well; DW_AT_specification refers to
5470 declarations. Declarations ought to have the DW_AT_declaration
5471 flag. It happens that GCC forgets to put it in sometimes, but
5472 only for functions, not for types.
5473
5474 Adding more things than necessary to the hash table is harmless
5475 except for the performance cost. Adding too few will result in
5476 wasted time in find_partial_die, when we reread the compilation
5477 unit with load_all_dies set. */
5478
5479 if (load_all
5480 || abbrev->tag == DW_TAG_subprogram
5481 || abbrev->tag == DW_TAG_variable
5482 || abbrev->tag == DW_TAG_namespace
5483 || part_die->is_declaration)
5484 {
5485 void **slot;
5486
5487 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5488 part_die->offset, INSERT);
5489 *slot = part_die;
5490 }
5491
5492 part_die = obstack_alloc (&cu->comp_unit_obstack,
5493 sizeof (struct partial_die_info));
5494
5495 /* For some DIEs we want to follow their children (if any). For C
5496 we have no reason to follow the children of structures; for other
5497 languages we have to, both so that we can get at method physnames
5498 to infer fully qualified class names, and for DW_AT_specification. */
5499 if (last_die->has_children
5500 && (load_all
5501 || last_die->tag == DW_TAG_namespace
5502 || last_die->tag == DW_TAG_enumeration_type
5503 || (cu->language != language_c
5504 && (last_die->tag == DW_TAG_class_type
5505 || last_die->tag == DW_TAG_structure_type
5506 || last_die->tag == DW_TAG_union_type))))
5507 {
5508 nesting_level++;
5509 parent_die = last_die;
5510 continue;
5511 }
5512
5513 /* Otherwise we skip to the next sibling, if any. */
5514 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5515
5516 /* Back to the top, do it again. */
5517 }
5518}
5519
5520/* Read a minimal amount of information into the minimal die structure. */
5521
5522static gdb_byte *
5523read_partial_die (struct partial_die_info *part_die,
5524 struct abbrev_info *abbrev,
5525 unsigned int abbrev_len, bfd *abfd,
5526 gdb_byte *info_ptr, struct dwarf2_cu *cu)
5527{
5528 unsigned int bytes_read, i;
5529 struct attribute attr;
5530 int has_low_pc_attr = 0;
5531 int has_high_pc_attr = 0;
5532
5533 memset (part_die, 0, sizeof (struct partial_die_info));
5534
5535 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5536
5537 info_ptr += abbrev_len;
5538
5539 if (abbrev == NULL)
5540 return info_ptr;
5541
5542 part_die->tag = abbrev->tag;
5543 part_die->has_children = abbrev->has_children;
5544
5545 for (i = 0; i < abbrev->num_attrs; ++i)
5546 {
5547 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5548
5549 /* Store the data if it is of an attribute we want to keep in a
5550 partial symbol table. */
5551 switch (attr.name)
5552 {
5553 case DW_AT_name:
5554
5555 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5556 if (part_die->name == NULL)
5557 part_die->name = DW_STRING (&attr);
5558 break;
5559 case DW_AT_comp_dir:
5560 if (part_die->dirname == NULL)
5561 part_die->dirname = DW_STRING (&attr);
5562 break;
5563 case DW_AT_MIPS_linkage_name:
5564 part_die->name = DW_STRING (&attr);
5565 break;
5566 case DW_AT_low_pc:
5567 has_low_pc_attr = 1;
5568 part_die->lowpc = DW_ADDR (&attr);
5569 break;
5570 case DW_AT_high_pc:
5571 has_high_pc_attr = 1;
5572 part_die->highpc = DW_ADDR (&attr);
5573 break;
5574 case DW_AT_location:
5575 /* Support the .debug_loc offsets */
5576 if (attr_form_is_block (&attr))
5577 {
5578 part_die->locdesc = DW_BLOCK (&attr);
5579 }
5580 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5581 {
5582 dwarf2_complex_location_expr_complaint ();
5583 }
5584 else
5585 {
5586 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5587 "partial symbol information");
5588 }
5589 break;
5590 case DW_AT_language:
5591 part_die->language = DW_UNSND (&attr);
5592 break;
5593 case DW_AT_external:
5594 part_die->is_external = DW_UNSND (&attr);
5595 break;
5596 case DW_AT_declaration:
5597 part_die->is_declaration = DW_UNSND (&attr);
5598 break;
5599 case DW_AT_type:
5600 part_die->has_type = 1;
5601 break;
5602 case DW_AT_abstract_origin:
5603 case DW_AT_specification:
5604 case DW_AT_extension:
5605 part_die->has_specification = 1;
5606 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5607 break;
5608 case DW_AT_sibling:
5609 /* Ignore absolute siblings, they might point outside of
5610 the current compile unit. */
5611 if (attr.form == DW_FORM_ref_addr)
5612 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5613 else
5614 part_die->sibling = dwarf2_per_objfile->info_buffer
5615 + dwarf2_get_ref_die_offset (&attr, cu);
5616 break;
5617 case DW_AT_stmt_list:
5618 part_die->has_stmt_list = 1;
5619 part_die->line_offset = DW_UNSND (&attr);
5620 break;
5621 case DW_AT_byte_size:
5622 part_die->has_byte_size = 1;
5623 break;
5624 default:
5625 break;
5626 }
5627 }
5628
5629 /* When using the GNU linker, .gnu.linkonce. sections are used to
5630 eliminate duplicate copies of functions and vtables and such.
5631 The linker will arbitrarily choose one and discard the others.
5632 The AT_*_pc values for such functions refer to local labels in
5633 these sections. If the section from that file was discarded, the
5634 labels are not in the output, so the relocs get a value of 0.
5635 If this is a discarded function, mark the pc bounds as invalid,
5636 so that GDB will ignore it. */
5637 if (has_low_pc_attr && has_high_pc_attr
5638 && part_die->lowpc < part_die->highpc
5639 && (part_die->lowpc != 0
5640 || dwarf2_per_objfile->has_section_at_zero))
5641 part_die->has_pc_info = 1;
5642 return info_ptr;
5643}
5644
5645/* Find a cached partial DIE at OFFSET in CU. */
5646
5647static struct partial_die_info *
5648find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5649{
5650 struct partial_die_info *lookup_die = NULL;
5651 struct partial_die_info part_die;
5652
5653 part_die.offset = offset;
5654 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5655
5656 return lookup_die;
5657}
5658
5659/* Find a partial DIE at OFFSET, which may or may not be in CU. */
5660
5661static struct partial_die_info *
5662find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5663{
5664 struct dwarf2_per_cu_data *per_cu = NULL;
5665 struct partial_die_info *pd = NULL;
5666
5667 if (offset >= cu->header.offset
5668 && offset < cu->header.offset + cu->header.length)
5669 {
5670 pd = find_partial_die_in_comp_unit (offset, cu);
5671 if (pd != NULL)
5672 return pd;
5673 }
5674
5675 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5676
5677 if (per_cu->cu == NULL)
5678 {
5679 load_comp_unit (per_cu, cu->objfile);
5680 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5681 dwarf2_per_objfile->read_in_chain = per_cu;
5682 }
5683
5684 per_cu->cu->last_used = 0;
5685 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5686
5687 if (pd == NULL && per_cu->load_all_dies == 0)
5688 {
5689 struct cleanup *back_to;
5690 struct partial_die_info comp_unit_die;
5691 struct abbrev_info *abbrev;
5692 unsigned int bytes_read;
5693 char *info_ptr;
5694
5695 per_cu->load_all_dies = 1;
5696
5697 /* Re-read the DIEs. */
5698 back_to = make_cleanup (null_cleanup, 0);
5699 if (per_cu->cu->dwarf2_abbrevs == NULL)
5700 {
5701 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5702 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5703 }
5704 info_ptr = per_cu->cu->header.first_die_ptr;
5705 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5706 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5707 per_cu->cu->objfile->obfd, info_ptr,
5708 per_cu->cu);
5709 if (comp_unit_die.has_children)
5710 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5711 do_cleanups (back_to);
5712
5713 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5714 }
5715
5716 if (pd == NULL)
5717 internal_error (__FILE__, __LINE__,
5718 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5719 offset, bfd_get_filename (cu->objfile->obfd));
5720 return pd;
5721}
5722
5723/* Adjust PART_DIE before generating a symbol for it. This function
5724 may set the is_external flag or change the DIE's name. */
5725
5726static void
5727fixup_partial_die (struct partial_die_info *part_die,
5728 struct dwarf2_cu *cu)
5729{
5730 /* If we found a reference attribute and the DIE has no name, try
5731 to find a name in the referred to DIE. */
5732
5733 if (part_die->name == NULL && part_die->has_specification)
5734 {
5735 struct partial_die_info *spec_die;
5736
5737 spec_die = find_partial_die (part_die->spec_offset, cu);
5738
5739 fixup_partial_die (spec_die, cu);
5740
5741 if (spec_die->name)
5742 {
5743 part_die->name = spec_die->name;
5744
5745 /* Copy DW_AT_external attribute if it is set. */
5746 if (spec_die->is_external)
5747 part_die->is_external = spec_die->is_external;
5748 }
5749 }
5750
5751 /* Set default names for some unnamed DIEs. */
5752 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5753 || part_die->tag == DW_TAG_class_type))
5754 part_die->name = "(anonymous class)";
5755
5756 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5757 part_die->name = "(anonymous namespace)";
5758
5759 if (part_die->tag == DW_TAG_structure_type
5760 || part_die->tag == DW_TAG_class_type
5761 || part_die->tag == DW_TAG_union_type)
5762 guess_structure_name (part_die, cu);
5763}
5764
5765/* Read the die from the .debug_info section buffer. Set DIEP to
5766 point to a newly allocated die with its information, except for its
5767 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5768 whether the die has children or not. */
5769
5770static gdb_byte *
5771read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
5772 struct dwarf2_cu *cu, int *has_children)
5773{
5774 unsigned int abbrev_number, bytes_read, i, offset;
5775 struct abbrev_info *abbrev;
5776 struct die_info *die;
5777
5778 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5779 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5780 info_ptr += bytes_read;
5781 if (!abbrev_number)
5782 {
5783 die = dwarf_alloc_die ();
5784 die->tag = 0;
5785 die->abbrev = abbrev_number;
5786 die->type = NULL;
5787 *diep = die;
5788 *has_children = 0;
5789 return info_ptr;
5790 }
5791
5792 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5793 if (!abbrev)
5794 {
5795 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5796 abbrev_number,
5797 bfd_get_filename (abfd));
5798 }
5799 die = dwarf_alloc_die ();
5800 die->offset = offset;
5801 die->tag = abbrev->tag;
5802 die->abbrev = abbrev_number;
5803 die->type = NULL;
5804
5805 die->num_attrs = abbrev->num_attrs;
5806 die->attrs = (struct attribute *)
5807 xmalloc (die->num_attrs * sizeof (struct attribute));
5808
5809 for (i = 0; i < abbrev->num_attrs; ++i)
5810 {
5811 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5812 abfd, info_ptr, cu);
5813
5814 /* If this attribute is an absolute reference to a different
5815 compilation unit, make sure that compilation unit is loaded
5816 also. */
5817 if (die->attrs[i].form == DW_FORM_ref_addr
5818 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5819 || (DW_ADDR (&die->attrs[i])
5820 >= cu->header.offset + cu->header.length)))
5821 {
5822 struct dwarf2_per_cu_data *per_cu;
5823 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5824 cu->objfile);
5825
5826 /* Mark the dependence relation so that we don't flush PER_CU
5827 too early. */
5828 dwarf2_add_dependence (cu, per_cu);
5829
5830 /* If it's already on the queue, we have nothing to do. */
5831 if (per_cu->queued)
5832 continue;
5833
5834 /* If the compilation unit is already loaded, just mark it as
5835 used. */
5836 if (per_cu->cu != NULL)
5837 {
5838 per_cu->cu->last_used = 0;
5839 continue;
5840 }
5841
5842 /* Add it to the queue. */
5843 queue_comp_unit (per_cu);
5844 }
5845 }
5846
5847 *diep = die;
5848 *has_children = abbrev->has_children;
5849 return info_ptr;
5850}
5851
5852/* Read an attribute value described by an attribute form. */
5853
5854static gdb_byte *
5855read_attribute_value (struct attribute *attr, unsigned form,
5856 bfd *abfd, gdb_byte *info_ptr,
5857 struct dwarf2_cu *cu)
5858{
5859 struct comp_unit_head *cu_header = &cu->header;
5860 unsigned int bytes_read;
5861 struct dwarf_block *blk;
5862
5863 attr->form = form;
5864 switch (form)
5865 {
5866 case DW_FORM_addr:
5867 case DW_FORM_ref_addr:
5868 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5869 info_ptr += bytes_read;
5870 break;
5871 case DW_FORM_block2:
5872 blk = dwarf_alloc_block (cu);
5873 blk->size = read_2_bytes (abfd, info_ptr);
5874 info_ptr += 2;
5875 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5876 info_ptr += blk->size;
5877 DW_BLOCK (attr) = blk;
5878 break;
5879 case DW_FORM_block4:
5880 blk = dwarf_alloc_block (cu);
5881 blk->size = read_4_bytes (abfd, info_ptr);
5882 info_ptr += 4;
5883 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5884 info_ptr += blk->size;
5885 DW_BLOCK (attr) = blk;
5886 break;
5887 case DW_FORM_data2:
5888 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5889 info_ptr += 2;
5890 break;
5891 case DW_FORM_data4:
5892 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5893 info_ptr += 4;
5894 break;
5895 case DW_FORM_data8:
5896 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5897 info_ptr += 8;
5898 break;
5899 case DW_FORM_string:
5900 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5901 info_ptr += bytes_read;
5902 break;
5903 case DW_FORM_strp:
5904 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5905 &bytes_read);
5906 info_ptr += bytes_read;
5907 break;
5908 case DW_FORM_block:
5909 blk = dwarf_alloc_block (cu);
5910 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5911 info_ptr += bytes_read;
5912 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5913 info_ptr += blk->size;
5914 DW_BLOCK (attr) = blk;
5915 break;
5916 case DW_FORM_block1:
5917 blk = dwarf_alloc_block (cu);
5918 blk->size = read_1_byte (abfd, info_ptr);
5919 info_ptr += 1;
5920 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5921 info_ptr += blk->size;
5922 DW_BLOCK (attr) = blk;
5923 break;
5924 case DW_FORM_data1:
5925 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5926 info_ptr += 1;
5927 break;
5928 case DW_FORM_flag:
5929 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5930 info_ptr += 1;
5931 break;
5932 case DW_FORM_sdata:
5933 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5934 info_ptr += bytes_read;
5935 break;
5936 case DW_FORM_udata:
5937 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5938 info_ptr += bytes_read;
5939 break;
5940 case DW_FORM_ref1:
5941 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5942 info_ptr += 1;
5943 break;
5944 case DW_FORM_ref2:
5945 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5946 info_ptr += 2;
5947 break;
5948 case DW_FORM_ref4:
5949 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5950 info_ptr += 4;
5951 break;
5952 case DW_FORM_ref8:
5953 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5954 info_ptr += 8;
5955 break;
5956 case DW_FORM_ref_udata:
5957 DW_ADDR (attr) = (cu->header.offset
5958 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5959 info_ptr += bytes_read;
5960 break;
5961 case DW_FORM_indirect:
5962 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5963 info_ptr += bytes_read;
5964 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5965 break;
5966 default:
5967 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
5968 dwarf_form_name (form),
5969 bfd_get_filename (abfd));
5970 }
5971 return info_ptr;
5972}
5973
5974/* Read an attribute described by an abbreviated attribute. */
5975
5976static gdb_byte *
5977read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5978 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
5979{
5980 attr->name = abbrev->name;
5981 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5982}
5983
5984/* read dwarf information from a buffer */
5985
5986static unsigned int
5987read_1_byte (bfd *abfd, gdb_byte *buf)
5988{
5989 return bfd_get_8 (abfd, buf);
5990}
5991
5992static int
5993read_1_signed_byte (bfd *abfd, gdb_byte *buf)
5994{
5995 return bfd_get_signed_8 (abfd, buf);
5996}
5997
5998static unsigned int
5999read_2_bytes (bfd *abfd, gdb_byte *buf)
6000{
6001 return bfd_get_16 (abfd, buf);
6002}
6003
6004static int
6005read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
6006{
6007 return bfd_get_signed_16 (abfd, buf);
6008}
6009
6010static unsigned int
6011read_4_bytes (bfd *abfd, gdb_byte *buf)
6012{
6013 return bfd_get_32 (abfd, buf);
6014}
6015
6016static int
6017read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
6018{
6019 return bfd_get_signed_32 (abfd, buf);
6020}
6021
6022static unsigned long
6023read_8_bytes (bfd *abfd, gdb_byte *buf)
6024{
6025 return bfd_get_64 (abfd, buf);
6026}
6027
6028static CORE_ADDR
6029read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
6030 unsigned int *bytes_read)
6031{
6032 struct comp_unit_head *cu_header = &cu->header;
6033 CORE_ADDR retval = 0;
6034
6035 if (cu_header->signed_addr_p)
6036 {
6037 switch (cu_header->addr_size)
6038 {
6039 case 2:
6040 retval = bfd_get_signed_16 (abfd, buf);
6041 break;
6042 case 4:
6043 retval = bfd_get_signed_32 (abfd, buf);
6044 break;
6045 case 8:
6046 retval = bfd_get_signed_64 (abfd, buf);
6047 break;
6048 default:
6049 internal_error (__FILE__, __LINE__,
6050 _("read_address: bad switch, signed [in module %s]"),
6051 bfd_get_filename (abfd));
6052 }
6053 }
6054 else
6055 {
6056 switch (cu_header->addr_size)
6057 {
6058 case 2:
6059 retval = bfd_get_16 (abfd, buf);
6060 break;
6061 case 4:
6062 retval = bfd_get_32 (abfd, buf);
6063 break;
6064 case 8:
6065 retval = bfd_get_64 (abfd, buf);
6066 break;
6067 default:
6068 internal_error (__FILE__, __LINE__,
6069 _("read_address: bad switch, unsigned [in module %s]"),
6070 bfd_get_filename (abfd));
6071 }
6072 }
6073
6074 *bytes_read = cu_header->addr_size;
6075 return retval;
6076}
6077
6078/* Read the initial length from a section. The (draft) DWARF 3
6079 specification allows the initial length to take up either 4 bytes
6080 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6081 bytes describe the length and all offsets will be 8 bytes in length
6082 instead of 4.
6083
6084 An older, non-standard 64-bit format is also handled by this
6085 function. The older format in question stores the initial length
6086 as an 8-byte quantity without an escape value. Lengths greater
6087 than 2^32 aren't very common which means that the initial 4 bytes
6088 is almost always zero. Since a length value of zero doesn't make
6089 sense for the 32-bit format, this initial zero can be considered to
6090 be an escape value which indicates the presence of the older 64-bit
6091 format. As written, the code can't detect (old format) lengths
6092 greater than 4GB. If it becomes necessary to handle lengths
6093 somewhat larger than 4GB, we could allow other small values (such
6094 as the non-sensical values of 1, 2, and 3) to also be used as
6095 escape values indicating the presence of the old format.
6096
6097 The value returned via bytes_read should be used to increment the
6098 relevant pointer after calling read_initial_length().
6099
6100 As a side effect, this function sets the fields initial_length_size
6101 and offset_size in cu_header to the values appropriate for the
6102 length field. (The format of the initial length field determines
6103 the width of file offsets to be fetched later with read_offset().)
6104
6105 [ Note: read_initial_length() and read_offset() are based on the
6106 document entitled "DWARF Debugging Information Format", revision
6107 3, draft 8, dated November 19, 2001. This document was obtained
6108 from:
6109
6110 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6111
6112 This document is only a draft and is subject to change. (So beware.)
6113
6114 Details regarding the older, non-standard 64-bit format were
6115 determined empirically by examining 64-bit ELF files produced by
6116 the SGI toolchain on an IRIX 6.5 machine.
6117
6118 - Kevin, July 16, 2002
6119 ] */
6120
6121static LONGEST
6122read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
6123 unsigned int *bytes_read)
6124{
6125 LONGEST length = bfd_get_32 (abfd, buf);
6126
6127 if (length == 0xffffffff)
6128 {
6129 length = bfd_get_64 (abfd, buf + 4);
6130 *bytes_read = 12;
6131 }
6132 else if (length == 0)
6133 {
6134 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
6135 length = bfd_get_64 (abfd, buf);
6136 *bytes_read = 8;
6137 }
6138 else
6139 {
6140 *bytes_read = 4;
6141 }
6142
6143 if (cu_header)
6144 {
6145 gdb_assert (cu_header->initial_length_size == 0
6146 || cu_header->initial_length_size == 4
6147 || cu_header->initial_length_size == 8
6148 || cu_header->initial_length_size == 12);
6149
6150 if (cu_header->initial_length_size != 0
6151 && cu_header->initial_length_size != *bytes_read)
6152 complaint (&symfile_complaints,
6153 _("intermixed 32-bit and 64-bit DWARF sections"));
6154
6155 cu_header->initial_length_size = *bytes_read;
6156 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6157 }
6158
6159 return length;
6160}
6161
6162/* Read an offset from the data stream. The size of the offset is
6163 given by cu_header->offset_size. */
6164
6165static LONGEST
6166read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
6167 unsigned int *bytes_read)
6168{
6169 LONGEST retval = 0;
6170
6171 switch (cu_header->offset_size)
6172 {
6173 case 4:
6174 retval = bfd_get_32 (abfd, buf);
6175 *bytes_read = 4;
6176 break;
6177 case 8:
6178 retval = bfd_get_64 (abfd, buf);
6179 *bytes_read = 8;
6180 break;
6181 default:
6182 internal_error (__FILE__, __LINE__,
6183 _("read_offset: bad switch [in module %s]"),
6184 bfd_get_filename (abfd));
6185 }
6186
6187 return retval;
6188}
6189
6190static gdb_byte *
6191read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
6192{
6193 /* If the size of a host char is 8 bits, we can return a pointer
6194 to the buffer, otherwise we have to copy the data to a buffer
6195 allocated on the temporary obstack. */
6196 gdb_assert (HOST_CHAR_BIT == 8);
6197 return buf;
6198}
6199
6200static char *
6201read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6202{
6203 /* If the size of a host char is 8 bits, we can return a pointer
6204 to the string, otherwise we have to copy the string to a buffer
6205 allocated on the temporary obstack. */
6206 gdb_assert (HOST_CHAR_BIT == 8);
6207 if (*buf == '\0')
6208 {
6209 *bytes_read_ptr = 1;
6210 return NULL;
6211 }
6212 *bytes_read_ptr = strlen ((char *) buf) + 1;
6213 return (char *) buf;
6214}
6215
6216static char *
6217read_indirect_string (bfd *abfd, gdb_byte *buf,
6218 const struct comp_unit_head *cu_header,
6219 unsigned int *bytes_read_ptr)
6220{
6221 LONGEST str_offset = read_offset (abfd, buf, cu_header,
6222 bytes_read_ptr);
6223
6224 if (dwarf2_per_objfile->str_buffer == NULL)
6225 {
6226 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
6227 bfd_get_filename (abfd));
6228 return NULL;
6229 }
6230 if (str_offset >= dwarf2_per_objfile->str_size)
6231 {
6232 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
6233 bfd_get_filename (abfd));
6234 return NULL;
6235 }
6236 gdb_assert (HOST_CHAR_BIT == 8);
6237 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
6238 return NULL;
6239 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
6240}
6241
6242static unsigned long
6243read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6244{
6245 unsigned long result;
6246 unsigned int num_read;
6247 int i, shift;
6248 unsigned char byte;
6249
6250 result = 0;
6251 shift = 0;
6252 num_read = 0;
6253 i = 0;
6254 while (1)
6255 {
6256 byte = bfd_get_8 (abfd, buf);
6257 buf++;
6258 num_read++;
6259 result |= ((unsigned long)(byte & 127) << shift);
6260 if ((byte & 128) == 0)
6261 {
6262 break;
6263 }
6264 shift += 7;
6265 }
6266 *bytes_read_ptr = num_read;
6267 return result;
6268}
6269
6270static long
6271read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6272{
6273 long result;
6274 int i, shift, num_read;
6275 unsigned char byte;
6276
6277 result = 0;
6278 shift = 0;
6279 num_read = 0;
6280 i = 0;
6281 while (1)
6282 {
6283 byte = bfd_get_8 (abfd, buf);
6284 buf++;
6285 num_read++;
6286 result |= ((long)(byte & 127) << shift);
6287 shift += 7;
6288 if ((byte & 128) == 0)
6289 {
6290 break;
6291 }
6292 }
6293 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6294 result |= -(((long)1) << shift);
6295 *bytes_read_ptr = num_read;
6296 return result;
6297}
6298
6299/* Return a pointer to just past the end of an LEB128 number in BUF. */
6300
6301static gdb_byte *
6302skip_leb128 (bfd *abfd, gdb_byte *buf)
6303{
6304 int byte;
6305
6306 while (1)
6307 {
6308 byte = bfd_get_8 (abfd, buf);
6309 buf++;
6310 if ((byte & 128) == 0)
6311 return buf;
6312 }
6313}
6314
6315static void
6316set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6317{
6318 switch (lang)
6319 {
6320 case DW_LANG_C89:
6321 case DW_LANG_C:
6322 cu->language = language_c;
6323 break;
6324 case DW_LANG_C_plus_plus:
6325 cu->language = language_cplus;
6326 break;
6327 case DW_LANG_Fortran77:
6328 case DW_LANG_Fortran90:
6329 case DW_LANG_Fortran95:
6330 cu->language = language_fortran;
6331 break;
6332 case DW_LANG_Mips_Assembler:
6333 cu->language = language_asm;
6334 break;
6335 case DW_LANG_Java:
6336 cu->language = language_java;
6337 break;
6338 case DW_LANG_Ada83:
6339 case DW_LANG_Ada95:
6340 cu->language = language_ada;
6341 break;
6342 case DW_LANG_Modula2:
6343 cu->language = language_m2;
6344 break;
6345 case DW_LANG_Pascal83:
6346 cu->language = language_pascal;
6347 break;
6348 case DW_LANG_Cobol74:
6349 case DW_LANG_Cobol85:
6350 default:
6351 cu->language = language_minimal;
6352 break;
6353 }
6354 cu->language_defn = language_def (cu->language);
6355}
6356
6357/* Return the named attribute or NULL if not there. */
6358
6359static struct attribute *
6360dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6361{
6362 unsigned int i;
6363 struct attribute *spec = NULL;
6364
6365 for (i = 0; i < die->num_attrs; ++i)
6366 {
6367 if (die->attrs[i].name == name)
6368 return &die->attrs[i];
6369 if (die->attrs[i].name == DW_AT_specification
6370 || die->attrs[i].name == DW_AT_abstract_origin)
6371 spec = &die->attrs[i];
6372 }
6373
6374 if (spec)
6375 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6376
6377 return NULL;
6378}
6379
6380/* Return non-zero iff the attribute NAME is defined for the given DIE,
6381 and holds a non-zero value. This function should only be used for
6382 DW_FORM_flag attributes. */
6383
6384static int
6385dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6386{
6387 struct attribute *attr = dwarf2_attr (die, name, cu);
6388
6389 return (attr && DW_UNSND (attr));
6390}
6391
6392static int
6393die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6394{
6395 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6396 which value is non-zero. However, we have to be careful with
6397 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6398 (via dwarf2_flag_true_p) follows this attribute. So we may
6399 end up accidently finding a declaration attribute that belongs
6400 to a different DIE referenced by the specification attribute,
6401 even though the given DIE does not have a declaration attribute. */
6402 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6403 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6404}
6405
6406/* Return the die giving the specification for DIE, if there is
6407 one. */
6408
6409static struct die_info *
6410die_specification (struct die_info *die, struct dwarf2_cu *cu)
6411{
6412 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6413
6414 if (spec_attr == NULL)
6415 return NULL;
6416 else
6417 return follow_die_ref (die, spec_attr, cu);
6418}
6419
6420/* Free the line_header structure *LH, and any arrays and strings it
6421 refers to. */
6422static void
6423free_line_header (struct line_header *lh)
6424{
6425 if (lh->standard_opcode_lengths)
6426 xfree (lh->standard_opcode_lengths);
6427
6428 /* Remember that all the lh->file_names[i].name pointers are
6429 pointers into debug_line_buffer, and don't need to be freed. */
6430 if (lh->file_names)
6431 xfree (lh->file_names);
6432
6433 /* Similarly for the include directory names. */
6434 if (lh->include_dirs)
6435 xfree (lh->include_dirs);
6436
6437 xfree (lh);
6438}
6439
6440
6441/* Add an entry to LH's include directory table. */
6442static void
6443add_include_dir (struct line_header *lh, char *include_dir)
6444{
6445 /* Grow the array if necessary. */
6446 if (lh->include_dirs_size == 0)
6447 {
6448 lh->include_dirs_size = 1; /* for testing */
6449 lh->include_dirs = xmalloc (lh->include_dirs_size
6450 * sizeof (*lh->include_dirs));
6451 }
6452 else if (lh->num_include_dirs >= lh->include_dirs_size)
6453 {
6454 lh->include_dirs_size *= 2;
6455 lh->include_dirs = xrealloc (lh->include_dirs,
6456 (lh->include_dirs_size
6457 * sizeof (*lh->include_dirs)));
6458 }
6459
6460 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6461}
6462
6463
6464/* Add an entry to LH's file name table. */
6465static void
6466add_file_name (struct line_header *lh,
6467 char *name,
6468 unsigned int dir_index,
6469 unsigned int mod_time,
6470 unsigned int length)
6471{
6472 struct file_entry *fe;
6473
6474 /* Grow the array if necessary. */
6475 if (lh->file_names_size == 0)
6476 {
6477 lh->file_names_size = 1; /* for testing */
6478 lh->file_names = xmalloc (lh->file_names_size
6479 * sizeof (*lh->file_names));
6480 }
6481 else if (lh->num_file_names >= lh->file_names_size)
6482 {
6483 lh->file_names_size *= 2;
6484 lh->file_names = xrealloc (lh->file_names,
6485 (lh->file_names_size
6486 * sizeof (*lh->file_names)));
6487 }
6488
6489 fe = &lh->file_names[lh->num_file_names++];
6490 fe->name = name;
6491 fe->dir_index = dir_index;
6492 fe->mod_time = mod_time;
6493 fe->length = length;
6494 fe->included_p = 0;
6495 fe->symtab = NULL;
6496}
6497
6498
6499/* Read the statement program header starting at OFFSET in
6500 .debug_line, according to the endianness of ABFD. Return a pointer
6501 to a struct line_header, allocated using xmalloc.
6502
6503 NOTE: the strings in the include directory and file name tables of
6504 the returned object point into debug_line_buffer, and must not be
6505 freed. */
6506static struct line_header *
6507dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6508 struct dwarf2_cu *cu)
6509{
6510 struct cleanup *back_to;
6511 struct line_header *lh;
6512 gdb_byte *line_ptr;
6513 unsigned int bytes_read;
6514 int i;
6515 char *cur_dir, *cur_file;
6516
6517 if (dwarf2_per_objfile->line_buffer == NULL)
6518 {
6519 complaint (&symfile_complaints, _("missing .debug_line section"));
6520 return 0;
6521 }
6522
6523 /* Make sure that at least there's room for the total_length field.
6524 That could be 12 bytes long, but we're just going to fudge that. */
6525 if (offset + 4 >= dwarf2_per_objfile->line_size)
6526 {
6527 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6528 return 0;
6529 }
6530
6531 lh = xmalloc (sizeof (*lh));
6532 memset (lh, 0, sizeof (*lh));
6533 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6534 (void *) lh);
6535
6536 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6537
6538 /* Read in the header. */
6539 lh->total_length =
6540 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6541 line_ptr += bytes_read;
6542 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6543 + dwarf2_per_objfile->line_size))
6544 {
6545 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6546 return 0;
6547 }
6548 lh->statement_program_end = line_ptr + lh->total_length;
6549 lh->version = read_2_bytes (abfd, line_ptr);
6550 line_ptr += 2;
6551 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6552 line_ptr += bytes_read;
6553 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6554 line_ptr += 1;
6555 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6556 line_ptr += 1;
6557 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6558 line_ptr += 1;
6559 lh->line_range = read_1_byte (abfd, line_ptr);
6560 line_ptr += 1;
6561 lh->opcode_base = read_1_byte (abfd, line_ptr);
6562 line_ptr += 1;
6563 lh->standard_opcode_lengths
6564 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
6565
6566 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6567 for (i = 1; i < lh->opcode_base; ++i)
6568 {
6569 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6570 line_ptr += 1;
6571 }
6572
6573 /* Read directory table. */
6574 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6575 {
6576 line_ptr += bytes_read;
6577 add_include_dir (lh, cur_dir);
6578 }
6579 line_ptr += bytes_read;
6580
6581 /* Read file name table. */
6582 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6583 {
6584 unsigned int dir_index, mod_time, length;
6585
6586 line_ptr += bytes_read;
6587 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6588 line_ptr += bytes_read;
6589 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6590 line_ptr += bytes_read;
6591 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6592 line_ptr += bytes_read;
6593
6594 add_file_name (lh, cur_file, dir_index, mod_time, length);
6595 }
6596 line_ptr += bytes_read;
6597 lh->statement_program_start = line_ptr;
6598
6599 if (line_ptr > (dwarf2_per_objfile->line_buffer
6600 + dwarf2_per_objfile->line_size))
6601 complaint (&symfile_complaints,
6602 _("line number info header doesn't fit in `.debug_line' section"));
6603
6604 discard_cleanups (back_to);
6605 return lh;
6606}
6607
6608/* This function exists to work around a bug in certain compilers
6609 (particularly GCC 2.95), in which the first line number marker of a
6610 function does not show up until after the prologue, right before
6611 the second line number marker. This function shifts ADDRESS down
6612 to the beginning of the function if necessary, and is called on
6613 addresses passed to record_line. */
6614
6615static CORE_ADDR
6616check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6617{
6618 struct function_range *fn;
6619
6620 /* Find the function_range containing address. */
6621 if (!cu->first_fn)
6622 return address;
6623
6624 if (!cu->cached_fn)
6625 cu->cached_fn = cu->first_fn;
6626
6627 fn = cu->cached_fn;
6628 while (fn)
6629 if (fn->lowpc <= address && fn->highpc > address)
6630 goto found;
6631 else
6632 fn = fn->next;
6633
6634 fn = cu->first_fn;
6635 while (fn && fn != cu->cached_fn)
6636 if (fn->lowpc <= address && fn->highpc > address)
6637 goto found;
6638 else
6639 fn = fn->next;
6640
6641 return address;
6642
6643 found:
6644 if (fn->seen_line)
6645 return address;
6646 if (address != fn->lowpc)
6647 complaint (&symfile_complaints,
6648 _("misplaced first line number at 0x%lx for '%s'"),
6649 (unsigned long) address, fn->name);
6650 fn->seen_line = 1;
6651 return fn->lowpc;
6652}
6653
6654/* Decode the Line Number Program (LNP) for the given line_header
6655 structure and CU. The actual information extracted and the type
6656 of structures created from the LNP depends on the value of PST.
6657
6658 1. If PST is NULL, then this procedure uses the data from the program
6659 to create all necessary symbol tables, and their linetables.
6660 The compilation directory of the file is passed in COMP_DIR,
6661 and must not be NULL.
6662
6663 2. If PST is not NULL, this procedure reads the program to determine
6664 the list of files included by the unit represented by PST, and
6665 builds all the associated partial symbol tables. In this case,
6666 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6667 is not used to compute the full name of the symtab, and therefore
6668 omitting it when building the partial symtab does not introduce
6669 the potential for inconsistency - a partial symtab and its associated
6670 symbtab having a different fullname -). */
6671
6672static void
6673dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6674 struct dwarf2_cu *cu, struct partial_symtab *pst)
6675{
6676 gdb_byte *line_ptr, *extended_end;
6677 gdb_byte *line_end;
6678 unsigned int bytes_read, extended_len;
6679 unsigned char op_code, extended_op, adj_opcode;
6680 CORE_ADDR baseaddr;
6681 struct objfile *objfile = cu->objfile;
6682 const int decode_for_pst_p = (pst != NULL);
6683 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
6684
6685 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6686
6687 line_ptr = lh->statement_program_start;
6688 line_end = lh->statement_program_end;
6689
6690 /* Read the statement sequences until there's nothing left. */
6691 while (line_ptr < line_end)
6692 {
6693 /* state machine registers */
6694 CORE_ADDR address = 0;
6695 unsigned int file = 1;
6696 unsigned int line = 1;
6697 unsigned int column = 0;
6698 int is_stmt = lh->default_is_stmt;
6699 int basic_block = 0;
6700 int end_sequence = 0;
6701
6702 if (!decode_for_pst_p && lh->num_file_names >= file)
6703 {
6704 /* Start a subfile for the current file of the state machine. */
6705 /* lh->include_dirs and lh->file_names are 0-based, but the
6706 directory and file name numbers in the statement program
6707 are 1-based. */
6708 struct file_entry *fe = &lh->file_names[file - 1];
6709 char *dir = NULL;
6710
6711 if (fe->dir_index)
6712 dir = lh->include_dirs[fe->dir_index - 1];
6713
6714 dwarf2_start_subfile (fe->name, dir, comp_dir);
6715 }
6716
6717 /* Decode the table. */
6718 while (!end_sequence)
6719 {
6720 op_code = read_1_byte (abfd, line_ptr);
6721 line_ptr += 1;
6722
6723 if (op_code >= lh->opcode_base)
6724 {
6725 /* Special operand. */
6726 adj_opcode = op_code - lh->opcode_base;
6727 address += (adj_opcode / lh->line_range)
6728 * lh->minimum_instruction_length;
6729 line += lh->line_base + (adj_opcode % lh->line_range);
6730 if (lh->num_file_names < file)
6731 dwarf2_debug_line_missing_file_complaint ();
6732 else
6733 {
6734 lh->file_names[file - 1].included_p = 1;
6735 if (!decode_for_pst_p)
6736 {
6737 if (last_subfile != current_subfile)
6738 {
6739 if (last_subfile)
6740 record_line (last_subfile, 0, address);
6741 last_subfile = current_subfile;
6742 }
6743 /* Append row to matrix using current values. */
6744 record_line (current_subfile, line,
6745 check_cu_functions (address, cu));
6746 }
6747 }
6748 basic_block = 1;
6749 }
6750 else switch (op_code)
6751 {
6752 case DW_LNS_extended_op:
6753 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6754 line_ptr += bytes_read;
6755 extended_end = line_ptr + extended_len;
6756 extended_op = read_1_byte (abfd, line_ptr);
6757 line_ptr += 1;
6758 switch (extended_op)
6759 {
6760 case DW_LNE_end_sequence:
6761 end_sequence = 1;
6762
6763 if (lh->num_file_names < file)
6764 dwarf2_debug_line_missing_file_complaint ();
6765 else
6766 {
6767 lh->file_names[file - 1].included_p = 1;
6768 if (!decode_for_pst_p)
6769 record_line (current_subfile, 0, address);
6770 }
6771 break;
6772 case DW_LNE_set_address:
6773 address = read_address (abfd, line_ptr, cu, &bytes_read);
6774 line_ptr += bytes_read;
6775 address += baseaddr;
6776 break;
6777 case DW_LNE_define_file:
6778 {
6779 char *cur_file;
6780 unsigned int dir_index, mod_time, length;
6781
6782 cur_file = read_string (abfd, line_ptr, &bytes_read);
6783 line_ptr += bytes_read;
6784 dir_index =
6785 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6786 line_ptr += bytes_read;
6787 mod_time =
6788 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6789 line_ptr += bytes_read;
6790 length =
6791 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6792 line_ptr += bytes_read;
6793 add_file_name (lh, cur_file, dir_index, mod_time, length);
6794 }
6795 break;
6796 default:
6797 complaint (&symfile_complaints,
6798 _("mangled .debug_line section"));
6799 return;
6800 }
6801 /* Make sure that we parsed the extended op correctly. If e.g.
6802 we expected a different address size than the producer used,
6803 we may have read the wrong number of bytes. */
6804 if (line_ptr != extended_end)
6805 {
6806 complaint (&symfile_complaints,
6807 _("mangled .debug_line section"));
6808 return;
6809 }
6810 break;
6811 case DW_LNS_copy:
6812 if (lh->num_file_names < file)
6813 dwarf2_debug_line_missing_file_complaint ();
6814 else
6815 {
6816 lh->file_names[file - 1].included_p = 1;
6817 if (!decode_for_pst_p)
6818 {
6819 if (last_subfile != current_subfile)
6820 {
6821 if (last_subfile)
6822 record_line (last_subfile, 0, address);
6823 last_subfile = current_subfile;
6824 }
6825 record_line (current_subfile, line,
6826 check_cu_functions (address, cu));
6827 }
6828 }
6829 basic_block = 0;
6830 break;
6831 case DW_LNS_advance_pc:
6832 address += lh->minimum_instruction_length
6833 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6834 line_ptr += bytes_read;
6835 break;
6836 case DW_LNS_advance_line:
6837 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6838 line_ptr += bytes_read;
6839 break;
6840 case DW_LNS_set_file:
6841 {
6842 /* The arrays lh->include_dirs and lh->file_names are
6843 0-based, but the directory and file name numbers in
6844 the statement program are 1-based. */
6845 struct file_entry *fe;
6846 char *dir = NULL;
6847
6848 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6849 line_ptr += bytes_read;
6850 if (lh->num_file_names < file)
6851 dwarf2_debug_line_missing_file_complaint ();
6852 else
6853 {
6854 fe = &lh->file_names[file - 1];
6855 if (fe->dir_index)
6856 dir = lh->include_dirs[fe->dir_index - 1];
6857 if (!decode_for_pst_p)
6858 {
6859 last_subfile = current_subfile;
6860 dwarf2_start_subfile (fe->name, dir, comp_dir);
6861 }
6862 }
6863 }
6864 break;
6865 case DW_LNS_set_column:
6866 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6867 line_ptr += bytes_read;
6868 break;
6869 case DW_LNS_negate_stmt:
6870 is_stmt = (!is_stmt);
6871 break;
6872 case DW_LNS_set_basic_block:
6873 basic_block = 1;
6874 break;
6875 /* Add to the address register of the state machine the
6876 address increment value corresponding to special opcode
6877 255. I.e., this value is scaled by the minimum
6878 instruction length since special opcode 255 would have
6879 scaled the the increment. */
6880 case DW_LNS_const_add_pc:
6881 address += (lh->minimum_instruction_length
6882 * ((255 - lh->opcode_base) / lh->line_range));
6883 break;
6884 case DW_LNS_fixed_advance_pc:
6885 address += read_2_bytes (abfd, line_ptr);
6886 line_ptr += 2;
6887 break;
6888 default:
6889 {
6890 /* Unknown standard opcode, ignore it. */
6891 int i;
6892
6893 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6894 {
6895 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6896 line_ptr += bytes_read;
6897 }
6898 }
6899 }
6900 }
6901 }
6902
6903 if (decode_for_pst_p)
6904 {
6905 int file_index;
6906
6907 /* Now that we're done scanning the Line Header Program, we can
6908 create the psymtab of each included file. */
6909 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6910 if (lh->file_names[file_index].included_p == 1)
6911 {
6912 const struct file_entry fe = lh->file_names [file_index];
6913 char *include_name = fe.name;
6914 char *dir_name = NULL;
6915 char *pst_filename = pst->filename;
6916
6917 if (fe.dir_index)
6918 dir_name = lh->include_dirs[fe.dir_index - 1];
6919
6920 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6921 {
6922 include_name = concat (dir_name, SLASH_STRING,
6923 include_name, (char *)NULL);
6924 make_cleanup (xfree, include_name);
6925 }
6926
6927 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6928 {
6929 pst_filename = concat (pst->dirname, SLASH_STRING,
6930 pst_filename, (char *)NULL);
6931 make_cleanup (xfree, pst_filename);
6932 }
6933
6934 if (strcmp (include_name, pst_filename) != 0)
6935 dwarf2_create_include_psymtab (include_name, pst, objfile);
6936 }
6937 }
6938 else
6939 {
6940 /* Make sure a symtab is created for every file, even files
6941 which contain only variables (i.e. no code with associated
6942 line numbers). */
6943
6944 int i;
6945 struct file_entry *fe;
6946
6947 for (i = 0; i < lh->num_file_names; i++)
6948 {
6949 char *dir = NULL;
6950 fe = &lh->file_names[i];
6951 if (fe->dir_index)
6952 dir = lh->include_dirs[fe->dir_index - 1];
6953 dwarf2_start_subfile (fe->name, dir, comp_dir);
6954
6955 /* Skip the main file; we don't need it, and it must be
6956 allocated last, so that it will show up before the
6957 non-primary symtabs in the objfile's symtab list. */
6958 if (current_subfile == first_subfile)
6959 continue;
6960
6961 if (current_subfile->symtab == NULL)
6962 current_subfile->symtab = allocate_symtab (current_subfile->name,
6963 cu->objfile);
6964 fe->symtab = current_subfile->symtab;
6965 }
6966 }
6967}
6968
6969/* Start a subfile for DWARF. FILENAME is the name of the file and
6970 DIRNAME the name of the source directory which contains FILENAME
6971 or NULL if not known. COMP_DIR is the compilation directory for the
6972 linetable's compilation unit or NULL if not known.
6973 This routine tries to keep line numbers from identical absolute and
6974 relative file names in a common subfile.
6975
6976 Using the `list' example from the GDB testsuite, which resides in
6977 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6978 of /srcdir/list0.c yields the following debugging information for list0.c:
6979
6980 DW_AT_name: /srcdir/list0.c
6981 DW_AT_comp_dir: /compdir
6982 files.files[0].name: list0.h
6983 files.files[0].dir: /srcdir
6984 files.files[1].name: list0.c
6985 files.files[1].dir: /srcdir
6986
6987 The line number information for list0.c has to end up in a single
6988 subfile, so that `break /srcdir/list0.c:1' works as expected.
6989 start_subfile will ensure that this happens provided that we pass the
6990 concatenation of files.files[1].dir and files.files[1].name as the
6991 subfile's name. */
6992
6993static void
6994dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
6995{
6996 char *fullname;
6997
6998 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
6999 `start_symtab' will always pass the contents of DW_AT_comp_dir as
7000 second argument to start_subfile. To be consistent, we do the
7001 same here. In order not to lose the line information directory,
7002 we concatenate it to the filename when it makes sense.
7003 Note that the Dwarf3 standard says (speaking of filenames in line
7004 information): ``The directory index is ignored for file names
7005 that represent full path names''. Thus ignoring dirname in the
7006 `else' branch below isn't an issue. */
7007
7008 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
7009 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
7010 else
7011 fullname = filename;
7012
7013 start_subfile (fullname, comp_dir);
7014
7015 if (fullname != filename)
7016 xfree (fullname);
7017}
7018
7019static void
7020var_decode_location (struct attribute *attr, struct symbol *sym,
7021 struct dwarf2_cu *cu)
7022{
7023 struct objfile *objfile = cu->objfile;
7024 struct comp_unit_head *cu_header = &cu->header;
7025
7026 /* NOTE drow/2003-01-30: There used to be a comment and some special
7027 code here to turn a symbol with DW_AT_external and a
7028 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7029 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7030 with some versions of binutils) where shared libraries could have
7031 relocations against symbols in their debug information - the
7032 minimal symbol would have the right address, but the debug info
7033 would not. It's no longer necessary, because we will explicitly
7034 apply relocations when we read in the debug information now. */
7035
7036 /* A DW_AT_location attribute with no contents indicates that a
7037 variable has been optimized away. */
7038 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7039 {
7040 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7041 return;
7042 }
7043
7044 /* Handle one degenerate form of location expression specially, to
7045 preserve GDB's previous behavior when section offsets are
7046 specified. If this is just a DW_OP_addr then mark this symbol
7047 as LOC_STATIC. */
7048
7049 if (attr_form_is_block (attr)
7050 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7051 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7052 {
7053 unsigned int dummy;
7054
7055 SYMBOL_VALUE_ADDRESS (sym) =
7056 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
7057 fixup_symbol_section (sym, objfile);
7058 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7059 SYMBOL_SECTION (sym));
7060 SYMBOL_CLASS (sym) = LOC_STATIC;
7061 return;
7062 }
7063
7064 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7065 expression evaluator, and use LOC_COMPUTED only when necessary
7066 (i.e. when the value of a register or memory location is
7067 referenced, or a thread-local block, etc.). Then again, it might
7068 not be worthwhile. I'm assuming that it isn't unless performance
7069 or memory numbers show me otherwise. */
7070
7071 dwarf2_symbol_mark_computed (attr, sym, cu);
7072 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7073}
7074
7075/* Given a pointer to a DWARF information entry, figure out if we need
7076 to make a symbol table entry for it, and if so, create a new entry
7077 and return a pointer to it.
7078 If TYPE is NULL, determine symbol type from the die, otherwise
7079 used the passed type. */
7080
7081static struct symbol *
7082new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
7083{
7084 struct objfile *objfile = cu->objfile;
7085 struct symbol *sym = NULL;
7086 char *name;
7087 struct attribute *attr = NULL;
7088 struct attribute *attr2 = NULL;
7089 CORE_ADDR baseaddr;
7090
7091 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7092
7093 if (die->tag != DW_TAG_namespace)
7094 name = dwarf2_linkage_name (die, cu);
7095 else
7096 name = TYPE_NAME (type);
7097
7098 if (name)
7099 {
7100 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
7101 sizeof (struct symbol));
7102 OBJSTAT (objfile, n_syms++);
7103 memset (sym, 0, sizeof (struct symbol));
7104
7105 /* Cache this symbol's name and the name's demangled form (if any). */
7106 SYMBOL_LANGUAGE (sym) = cu->language;
7107 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
7108
7109 /* Default assumptions.
7110 Use the passed type or decode it from the die. */
7111 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7112 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7113 if (type != NULL)
7114 SYMBOL_TYPE (sym) = type;
7115 else
7116 SYMBOL_TYPE (sym) = die_type (die, cu);
7117 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
7118 if (attr)
7119 {
7120 SYMBOL_LINE (sym) = DW_UNSND (attr);
7121 }
7122
7123 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7124 if (attr)
7125 {
7126 int file_index = DW_UNSND (attr);
7127 if (cu->line_header == NULL
7128 || file_index > cu->line_header->num_file_names)
7129 complaint (&symfile_complaints,
7130 _("file index out of range"));
7131 else if (file_index > 0)
7132 {
7133 struct file_entry *fe;
7134 fe = &cu->line_header->file_names[file_index - 1];
7135 SYMBOL_SYMTAB (sym) = fe->symtab;
7136 }
7137 }
7138
7139 switch (die->tag)
7140 {
7141 case DW_TAG_label:
7142 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
7143 if (attr)
7144 {
7145 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7146 }
7147 SYMBOL_CLASS (sym) = LOC_LABEL;
7148 break;
7149 case DW_TAG_subprogram:
7150 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7151 finish_block. */
7152 SYMBOL_CLASS (sym) = LOC_BLOCK;
7153 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7154 if (attr2 && (DW_UNSND (attr2) != 0))
7155 {
7156 add_symbol_to_list (sym, &global_symbols);
7157 }
7158 else
7159 {
7160 add_symbol_to_list (sym, cu->list_in_scope);
7161 }
7162 break;
7163 case DW_TAG_variable:
7164 /* Compilation with minimal debug info may result in variables
7165 with missing type entries. Change the misleading `void' type
7166 to something sensible. */
7167 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
7168 SYMBOL_TYPE (sym)
7169 = builtin_type (current_gdbarch)->nodebug_data_symbol;
7170
7171 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7172 if (attr)
7173 {
7174 dwarf2_const_value (attr, sym, cu);
7175 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7176 if (attr2 && (DW_UNSND (attr2) != 0))
7177 add_symbol_to_list (sym, &global_symbols);
7178 else
7179 add_symbol_to_list (sym, cu->list_in_scope);
7180 break;
7181 }
7182 attr = dwarf2_attr (die, DW_AT_location, cu);
7183 if (attr)
7184 {
7185 var_decode_location (attr, sym, cu);
7186 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7187 if (attr2 && (DW_UNSND (attr2) != 0))
7188 add_symbol_to_list (sym, &global_symbols);
7189 else
7190 add_symbol_to_list (sym, cu->list_in_scope);
7191 }
7192 else
7193 {
7194 /* We do not know the address of this symbol.
7195 If it is an external symbol and we have type information
7196 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7197 The address of the variable will then be determined from
7198 the minimal symbol table whenever the variable is
7199 referenced. */
7200 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7201 if (attr2 && (DW_UNSND (attr2) != 0)
7202 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
7203 {
7204 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7205 add_symbol_to_list (sym, &global_symbols);
7206 }
7207 }
7208 break;
7209 case DW_TAG_formal_parameter:
7210 attr = dwarf2_attr (die, DW_AT_location, cu);
7211 if (attr)
7212 {
7213 var_decode_location (attr, sym, cu);
7214 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7215 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7216 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
7217 }
7218 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7219 if (attr)
7220 {
7221 dwarf2_const_value (attr, sym, cu);
7222 }
7223 add_symbol_to_list (sym, cu->list_in_scope);
7224 break;
7225 case DW_TAG_unspecified_parameters:
7226 /* From varargs functions; gdb doesn't seem to have any
7227 interest in this information, so just ignore it for now.
7228 (FIXME?) */
7229 break;
7230 case DW_TAG_class_type:
7231 case DW_TAG_structure_type:
7232 case DW_TAG_union_type:
7233 case DW_TAG_set_type:
7234 case DW_TAG_enumeration_type:
7235 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7236 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7237
7238 /* Make sure that the symbol includes appropriate enclosing
7239 classes/namespaces in its name. These are calculated in
7240 read_structure_type, and the correct name is saved in
7241 the type. */
7242
7243 if (cu->language == language_cplus
7244 || cu->language == language_java)
7245 {
7246 struct type *type = SYMBOL_TYPE (sym);
7247
7248 if (TYPE_TAG_NAME (type) != NULL)
7249 {
7250 /* FIXME: carlton/2003-11-10: Should this use
7251 SYMBOL_SET_NAMES instead? (The same problem also
7252 arises further down in this function.) */
7253 /* The type's name is already allocated along with
7254 this objfile, so we don't need to duplicate it
7255 for the symbol. */
7256 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
7257 }
7258 }
7259
7260 {
7261 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
7262 really ever be static objects: otherwise, if you try
7263 to, say, break of a class's method and you're in a file
7264 which doesn't mention that class, it won't work unless
7265 the check for all static symbols in lookup_symbol_aux
7266 saves you. See the OtherFileClass tests in
7267 gdb.c++/namespace.exp. */
7268
7269 struct pending **list_to_add;
7270
7271 list_to_add = (cu->list_in_scope == &file_symbols
7272 && (cu->language == language_cplus
7273 || cu->language == language_java)
7274 ? &global_symbols : cu->list_in_scope);
7275
7276 add_symbol_to_list (sym, list_to_add);
7277
7278 /* The semantics of C++ state that "struct foo { ... }" also
7279 defines a typedef for "foo". A Java class declaration also
7280 defines a typedef for the class. Synthesize a typedef symbol
7281 so that "ptype foo" works as expected. */
7282 if (cu->language == language_cplus
7283 || cu->language == language_java
7284 || cu->language == language_ada)
7285 {
7286 struct symbol *typedef_sym = (struct symbol *)
7287 obstack_alloc (&objfile->objfile_obstack,
7288 sizeof (struct symbol));
7289 *typedef_sym = *sym;
7290 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
7291 /* The symbol's name is already allocated along with
7292 this objfile, so we don't need to duplicate it for
7293 the type. */
7294 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
7295 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
7296 add_symbol_to_list (typedef_sym, list_to_add);
7297 }
7298 }
7299 break;
7300 case DW_TAG_typedef:
7301 if (processing_has_namespace_info
7302 && processing_current_prefix[0] != '\0')
7303 {
7304 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7305 processing_current_prefix,
7306 name, cu);
7307 }
7308 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7309 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7310 add_symbol_to_list (sym, cu->list_in_scope);
7311 break;
7312 case DW_TAG_base_type:
7313 case DW_TAG_subrange_type:
7314 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7315 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7316 add_symbol_to_list (sym, cu->list_in_scope);
7317 break;
7318 case DW_TAG_enumerator:
7319 if (processing_has_namespace_info
7320 && processing_current_prefix[0] != '\0')
7321 {
7322 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7323 processing_current_prefix,
7324 name, cu);
7325 }
7326 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7327 if (attr)
7328 {
7329 dwarf2_const_value (attr, sym, cu);
7330 }
7331 {
7332 /* NOTE: carlton/2003-11-10: See comment above in the
7333 DW_TAG_class_type, etc. block. */
7334
7335 struct pending **list_to_add;
7336
7337 list_to_add = (cu->list_in_scope == &file_symbols
7338 && (cu->language == language_cplus
7339 || cu->language == language_java)
7340 ? &global_symbols : cu->list_in_scope);
7341
7342 add_symbol_to_list (sym, list_to_add);
7343 }
7344 break;
7345 case DW_TAG_namespace:
7346 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7347 add_symbol_to_list (sym, &global_symbols);
7348 break;
7349 default:
7350 /* Not a tag we recognize. Hopefully we aren't processing
7351 trash data, but since we must specifically ignore things
7352 we don't recognize, there is nothing else we should do at
7353 this point. */
7354 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7355 dwarf_tag_name (die->tag));
7356 break;
7357 }
7358 }
7359 return (sym);
7360}
7361
7362/* Copy constant value from an attribute to a symbol. */
7363
7364static void
7365dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7366 struct dwarf2_cu *cu)
7367{
7368 struct objfile *objfile = cu->objfile;
7369 struct comp_unit_head *cu_header = &cu->header;
7370 struct dwarf_block *blk;
7371
7372 switch (attr->form)
7373 {
7374 case DW_FORM_addr:
7375 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7376 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7377 cu_header->addr_size,
7378 TYPE_LENGTH (SYMBOL_TYPE
7379 (sym)));
7380 SYMBOL_VALUE_BYTES (sym) =
7381 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7382 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7383 it's body - store_unsigned_integer. */
7384 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7385 DW_ADDR (attr));
7386 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7387 break;
7388 case DW_FORM_block1:
7389 case DW_FORM_block2:
7390 case DW_FORM_block4:
7391 case DW_FORM_block:
7392 blk = DW_BLOCK (attr);
7393 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7394 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7395 blk->size,
7396 TYPE_LENGTH (SYMBOL_TYPE
7397 (sym)));
7398 SYMBOL_VALUE_BYTES (sym) =
7399 obstack_alloc (&objfile->objfile_obstack, blk->size);
7400 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7401 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7402 break;
7403
7404 /* The DW_AT_const_value attributes are supposed to carry the
7405 symbol's value "represented as it would be on the target
7406 architecture." By the time we get here, it's already been
7407 converted to host endianness, so we just need to sign- or
7408 zero-extend it as appropriate. */
7409 case DW_FORM_data1:
7410 dwarf2_const_value_data (attr, sym, 8);
7411 break;
7412 case DW_FORM_data2:
7413 dwarf2_const_value_data (attr, sym, 16);
7414 break;
7415 case DW_FORM_data4:
7416 dwarf2_const_value_data (attr, sym, 32);
7417 break;
7418 case DW_FORM_data8:
7419 dwarf2_const_value_data (attr, sym, 64);
7420 break;
7421
7422 case DW_FORM_sdata:
7423 SYMBOL_VALUE (sym) = DW_SND (attr);
7424 SYMBOL_CLASS (sym) = LOC_CONST;
7425 break;
7426
7427 case DW_FORM_udata:
7428 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7429 SYMBOL_CLASS (sym) = LOC_CONST;
7430 break;
7431
7432 default:
7433 complaint (&symfile_complaints,
7434 _("unsupported const value attribute form: '%s'"),
7435 dwarf_form_name (attr->form));
7436 SYMBOL_VALUE (sym) = 0;
7437 SYMBOL_CLASS (sym) = LOC_CONST;
7438 break;
7439 }
7440}
7441
7442
7443/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7444 or zero-extend it as appropriate for the symbol's type. */
7445static void
7446dwarf2_const_value_data (struct attribute *attr,
7447 struct symbol *sym,
7448 int bits)
7449{
7450 LONGEST l = DW_UNSND (attr);
7451
7452 if (bits < sizeof (l) * 8)
7453 {
7454 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7455 l &= ((LONGEST) 1 << bits) - 1;
7456 else
7457 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7458 }
7459
7460 SYMBOL_VALUE (sym) = l;
7461 SYMBOL_CLASS (sym) = LOC_CONST;
7462}
7463
7464
7465/* Return the type of the die in question using its DW_AT_type attribute. */
7466
7467static struct type *
7468die_type (struct die_info *die, struct dwarf2_cu *cu)
7469{
7470 struct type *type;
7471 struct attribute *type_attr;
7472 struct die_info *type_die;
7473
7474 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7475 if (!type_attr)
7476 {
7477 /* A missing DW_AT_type represents a void type. */
7478 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7479 }
7480 else
7481 type_die = follow_die_ref (die, type_attr, cu);
7482
7483 type = tag_type_to_type (type_die, cu);
7484 if (!type)
7485 {
7486 dump_die (type_die);
7487 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7488 cu->objfile->name);
7489 }
7490 return type;
7491}
7492
7493/* Return the containing type of the die in question using its
7494 DW_AT_containing_type attribute. */
7495
7496static struct type *
7497die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7498{
7499 struct type *type = NULL;
7500 struct attribute *type_attr;
7501 struct die_info *type_die = NULL;
7502
7503 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7504 if (type_attr)
7505 {
7506 type_die = follow_die_ref (die, type_attr, cu);
7507 type = tag_type_to_type (type_die, cu);
7508 }
7509 if (!type)
7510 {
7511 if (type_die)
7512 dump_die (type_die);
7513 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7514 cu->objfile->name);
7515 }
7516 return type;
7517}
7518
7519static struct type *
7520tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7521{
7522 if (die->type)
7523 {
7524 return die->type;
7525 }
7526 else
7527 {
7528 read_type_die (die, cu);
7529 if (!die->type)
7530 {
7531 dump_die (die);
7532 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7533 cu->objfile->name);
7534 }
7535 return die->type;
7536 }
7537}
7538
7539static void
7540read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7541{
7542 char *prefix = determine_prefix (die, cu);
7543 const char *old_prefix = processing_current_prefix;
7544 struct cleanup *back_to = make_cleanup (xfree, prefix);
7545 processing_current_prefix = prefix;
7546
7547 switch (die->tag)
7548 {
7549 case DW_TAG_class_type:
7550 case DW_TAG_structure_type:
7551 case DW_TAG_union_type:
7552 read_structure_type (die, cu);
7553 break;
7554 case DW_TAG_enumeration_type:
7555 read_enumeration_type (die, cu);
7556 break;
7557 case DW_TAG_subprogram:
7558 case DW_TAG_subroutine_type:
7559 read_subroutine_type (die, cu);
7560 break;
7561 case DW_TAG_array_type:
7562 read_array_type (die, cu);
7563 break;
7564 case DW_TAG_set_type:
7565 read_set_type (die, cu);
7566 break;
7567 case DW_TAG_pointer_type:
7568 read_tag_pointer_type (die, cu);
7569 break;
7570 case DW_TAG_ptr_to_member_type:
7571 read_tag_ptr_to_member_type (die, cu);
7572 break;
7573 case DW_TAG_reference_type:
7574 read_tag_reference_type (die, cu);
7575 break;
7576 case DW_TAG_const_type:
7577 read_tag_const_type (die, cu);
7578 break;
7579 case DW_TAG_volatile_type:
7580 read_tag_volatile_type (die, cu);
7581 break;
7582 case DW_TAG_string_type:
7583 read_tag_string_type (die, cu);
7584 break;
7585 case DW_TAG_typedef:
7586 read_typedef (die, cu);
7587 break;
7588 case DW_TAG_subrange_type:
7589 read_subrange_type (die, cu);
7590 break;
7591 case DW_TAG_base_type:
7592 read_base_type (die, cu);
7593 break;
7594 case DW_TAG_unspecified_type:
7595 read_unspecified_type (die, cu);
7596 break;
7597 default:
7598 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
7599 dwarf_tag_name (die->tag));
7600 break;
7601 }
7602
7603 processing_current_prefix = old_prefix;
7604 do_cleanups (back_to);
7605}
7606
7607/* Return the name of the namespace/class that DIE is defined within,
7608 or "" if we can't tell. The caller should xfree the result. */
7609
7610/* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7611 therein) for an example of how to use this function to deal with
7612 DW_AT_specification. */
7613
7614static char *
7615determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7616{
7617 struct die_info *parent;
7618
7619 if (cu->language != language_cplus
7620 && cu->language != language_java)
7621 return NULL;
7622
7623 parent = die->parent;
7624
7625 if (parent == NULL)
7626 {
7627 return xstrdup ("");
7628 }
7629 else
7630 {
7631 switch (parent->tag) {
7632 case DW_TAG_namespace:
7633 {
7634 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7635 before doing this check? */
7636 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7637 {
7638 return xstrdup (TYPE_TAG_NAME (parent->type));
7639 }
7640 else
7641 {
7642 int dummy;
7643 char *parent_prefix = determine_prefix (parent, cu);
7644 char *retval = typename_concat (NULL, parent_prefix,
7645 namespace_name (parent, &dummy,
7646 cu),
7647 cu);
7648 xfree (parent_prefix);
7649 return retval;
7650 }
7651 }
7652 break;
7653 case DW_TAG_class_type:
7654 case DW_TAG_structure_type:
7655 {
7656 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7657 {
7658 return xstrdup (TYPE_TAG_NAME (parent->type));
7659 }
7660 else
7661 {
7662 const char *old_prefix = processing_current_prefix;
7663 char *new_prefix = determine_prefix (parent, cu);
7664 char *retval;
7665
7666 processing_current_prefix = new_prefix;
7667 retval = determine_class_name (parent, cu);
7668 processing_current_prefix = old_prefix;
7669
7670 xfree (new_prefix);
7671 return retval;
7672 }
7673 }
7674 default:
7675 return determine_prefix (parent, cu);
7676 }
7677 }
7678}
7679
7680/* Return a newly-allocated string formed by concatenating PREFIX and
7681 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7682 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7683 perform an obconcat, otherwise allocate storage for the result. The CU argument
7684 is used to determine the language and hence, the appropriate separator. */
7685
7686#define MAX_SEP_LEN 2 /* sizeof ("::") */
7687
7688static char *
7689typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7690 struct dwarf2_cu *cu)
7691{
7692 char *sep;
7693
7694 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7695 sep = "";
7696 else if (cu->language == language_java)
7697 sep = ".";
7698 else
7699 sep = "::";
7700
7701 if (obs == NULL)
7702 {
7703 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7704 retval[0] = '\0';
7705
7706 if (prefix)
7707 {
7708 strcpy (retval, prefix);
7709 strcat (retval, sep);
7710 }
7711 if (suffix)
7712 strcat (retval, suffix);
7713
7714 return retval;
7715 }
7716 else
7717 {
7718 /* We have an obstack. */
7719 return obconcat (obs, prefix, sep, suffix);
7720 }
7721}
7722
7723static struct type *
7724dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7725{
7726 struct objfile *objfile = cu->objfile;
7727
7728 /* FIXME - this should not produce a new (struct type *)
7729 every time. It should cache base types. */
7730 struct type *type;
7731 switch (encoding)
7732 {
7733 case DW_ATE_address:
7734 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7735 return type;
7736 case DW_ATE_boolean:
7737 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7738 return type;
7739 case DW_ATE_complex_float:
7740 if (size == 16)
7741 {
7742 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7743 }
7744 else
7745 {
7746 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7747 }
7748 return type;
7749 case DW_ATE_float:
7750 if (size == 8)
7751 {
7752 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7753 }
7754 else
7755 {
7756 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7757 }
7758 return type;
7759 case DW_ATE_signed:
7760 switch (size)
7761 {
7762 case 1:
7763 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7764 break;
7765 case 2:
7766 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7767 break;
7768 default:
7769 case 4:
7770 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7771 break;
7772 }
7773 return type;
7774 case DW_ATE_signed_char:
7775 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7776 return type;
7777 case DW_ATE_unsigned:
7778 switch (size)
7779 {
7780 case 1:
7781 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7782 break;
7783 case 2:
7784 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7785 break;
7786 default:
7787 case 4:
7788 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7789 break;
7790 }
7791 return type;
7792 case DW_ATE_unsigned_char:
7793 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7794 return type;
7795 default:
7796 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7797 return type;
7798 }
7799}
7800
7801#if 0
7802struct die_info *
7803copy_die (struct die_info *old_die)
7804{
7805 struct die_info *new_die;
7806 int i, num_attrs;
7807
7808 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7809 memset (new_die, 0, sizeof (struct die_info));
7810
7811 new_die->tag = old_die->tag;
7812 new_die->has_children = old_die->has_children;
7813 new_die->abbrev = old_die->abbrev;
7814 new_die->offset = old_die->offset;
7815 new_die->type = NULL;
7816
7817 num_attrs = old_die->num_attrs;
7818 new_die->num_attrs = num_attrs;
7819 new_die->attrs = (struct attribute *)
7820 xmalloc (num_attrs * sizeof (struct attribute));
7821
7822 for (i = 0; i < old_die->num_attrs; ++i)
7823 {
7824 new_die->attrs[i].name = old_die->attrs[i].name;
7825 new_die->attrs[i].form = old_die->attrs[i].form;
7826 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7827 }
7828
7829 new_die->next = NULL;
7830 return new_die;
7831}
7832#endif
7833
7834/* Return sibling of die, NULL if no sibling. */
7835
7836static struct die_info *
7837sibling_die (struct die_info *die)
7838{
7839 return die->sibling;
7840}
7841
7842/* Get linkage name of a die, return NULL if not found. */
7843
7844static char *
7845dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7846{
7847 struct attribute *attr;
7848
7849 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7850 if (attr && DW_STRING (attr))
7851 return DW_STRING (attr);
7852 attr = dwarf2_attr (die, DW_AT_name, cu);
7853 if (attr && DW_STRING (attr))
7854 return DW_STRING (attr);
7855 return NULL;
7856}
7857
7858/* Get name of a die, return NULL if not found. */
7859
7860static char *
7861dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7862{
7863 struct attribute *attr;
7864
7865 attr = dwarf2_attr (die, DW_AT_name, cu);
7866 if (attr && DW_STRING (attr))
7867 return DW_STRING (attr);
7868 return NULL;
7869}
7870
7871/* Return the die that this die in an extension of, or NULL if there
7872 is none. */
7873
7874static struct die_info *
7875dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7876{
7877 struct attribute *attr;
7878
7879 attr = dwarf2_attr (die, DW_AT_extension, cu);
7880 if (attr == NULL)
7881 return NULL;
7882
7883 return follow_die_ref (die, attr, cu);
7884}
7885
7886/* Convert a DIE tag into its string name. */
7887
7888static char *
7889dwarf_tag_name (unsigned tag)
7890{
7891 switch (tag)
7892 {
7893 case DW_TAG_padding:
7894 return "DW_TAG_padding";
7895 case DW_TAG_array_type:
7896 return "DW_TAG_array_type";
7897 case DW_TAG_class_type:
7898 return "DW_TAG_class_type";
7899 case DW_TAG_entry_point:
7900 return "DW_TAG_entry_point";
7901 case DW_TAG_enumeration_type:
7902 return "DW_TAG_enumeration_type";
7903 case DW_TAG_formal_parameter:
7904 return "DW_TAG_formal_parameter";
7905 case DW_TAG_imported_declaration:
7906 return "DW_TAG_imported_declaration";
7907 case DW_TAG_label:
7908 return "DW_TAG_label";
7909 case DW_TAG_lexical_block:
7910 return "DW_TAG_lexical_block";
7911 case DW_TAG_member:
7912 return "DW_TAG_member";
7913 case DW_TAG_pointer_type:
7914 return "DW_TAG_pointer_type";
7915 case DW_TAG_reference_type:
7916 return "DW_TAG_reference_type";
7917 case DW_TAG_compile_unit:
7918 return "DW_TAG_compile_unit";
7919 case DW_TAG_string_type:
7920 return "DW_TAG_string_type";
7921 case DW_TAG_structure_type:
7922 return "DW_TAG_structure_type";
7923 case DW_TAG_subroutine_type:
7924 return "DW_TAG_subroutine_type";
7925 case DW_TAG_typedef:
7926 return "DW_TAG_typedef";
7927 case DW_TAG_union_type:
7928 return "DW_TAG_union_type";
7929 case DW_TAG_unspecified_parameters:
7930 return "DW_TAG_unspecified_parameters";
7931 case DW_TAG_variant:
7932 return "DW_TAG_variant";
7933 case DW_TAG_common_block:
7934 return "DW_TAG_common_block";
7935 case DW_TAG_common_inclusion:
7936 return "DW_TAG_common_inclusion";
7937 case DW_TAG_inheritance:
7938 return "DW_TAG_inheritance";
7939 case DW_TAG_inlined_subroutine:
7940 return "DW_TAG_inlined_subroutine";
7941 case DW_TAG_module:
7942 return "DW_TAG_module";
7943 case DW_TAG_ptr_to_member_type:
7944 return "DW_TAG_ptr_to_member_type";
7945 case DW_TAG_set_type:
7946 return "DW_TAG_set_type";
7947 case DW_TAG_subrange_type:
7948 return "DW_TAG_subrange_type";
7949 case DW_TAG_with_stmt:
7950 return "DW_TAG_with_stmt";
7951 case DW_TAG_access_declaration:
7952 return "DW_TAG_access_declaration";
7953 case DW_TAG_base_type:
7954 return "DW_TAG_base_type";
7955 case DW_TAG_catch_block:
7956 return "DW_TAG_catch_block";
7957 case DW_TAG_const_type:
7958 return "DW_TAG_const_type";
7959 case DW_TAG_constant:
7960 return "DW_TAG_constant";
7961 case DW_TAG_enumerator:
7962 return "DW_TAG_enumerator";
7963 case DW_TAG_file_type:
7964 return "DW_TAG_file_type";
7965 case DW_TAG_friend:
7966 return "DW_TAG_friend";
7967 case DW_TAG_namelist:
7968 return "DW_TAG_namelist";
7969 case DW_TAG_namelist_item:
7970 return "DW_TAG_namelist_item";
7971 case DW_TAG_packed_type:
7972 return "DW_TAG_packed_type";
7973 case DW_TAG_subprogram:
7974 return "DW_TAG_subprogram";
7975 case DW_TAG_template_type_param:
7976 return "DW_TAG_template_type_param";
7977 case DW_TAG_template_value_param:
7978 return "DW_TAG_template_value_param";
7979 case DW_TAG_thrown_type:
7980 return "DW_TAG_thrown_type";
7981 case DW_TAG_try_block:
7982 return "DW_TAG_try_block";
7983 case DW_TAG_variant_part:
7984 return "DW_TAG_variant_part";
7985 case DW_TAG_variable:
7986 return "DW_TAG_variable";
7987 case DW_TAG_volatile_type:
7988 return "DW_TAG_volatile_type";
7989 case DW_TAG_dwarf_procedure:
7990 return "DW_TAG_dwarf_procedure";
7991 case DW_TAG_restrict_type:
7992 return "DW_TAG_restrict_type";
7993 case DW_TAG_interface_type:
7994 return "DW_TAG_interface_type";
7995 case DW_TAG_namespace:
7996 return "DW_TAG_namespace";
7997 case DW_TAG_imported_module:
7998 return "DW_TAG_imported_module";
7999 case DW_TAG_unspecified_type:
8000 return "DW_TAG_unspecified_type";
8001 case DW_TAG_partial_unit:
8002 return "DW_TAG_partial_unit";
8003 case DW_TAG_imported_unit:
8004 return "DW_TAG_imported_unit";
8005 case DW_TAG_condition:
8006 return "DW_TAG_condition";
8007 case DW_TAG_shared_type:
8008 return "DW_TAG_shared_type";
8009 case DW_TAG_MIPS_loop:
8010 return "DW_TAG_MIPS_loop";
8011 case DW_TAG_HP_array_descriptor:
8012 return "DW_TAG_HP_array_descriptor";
8013 case DW_TAG_format_label:
8014 return "DW_TAG_format_label";
8015 case DW_TAG_function_template:
8016 return "DW_TAG_function_template";
8017 case DW_TAG_class_template:
8018 return "DW_TAG_class_template";
8019 case DW_TAG_GNU_BINCL:
8020 return "DW_TAG_GNU_BINCL";
8021 case DW_TAG_GNU_EINCL:
8022 return "DW_TAG_GNU_EINCL";
8023 case DW_TAG_upc_shared_type:
8024 return "DW_TAG_upc_shared_type";
8025 case DW_TAG_upc_strict_type:
8026 return "DW_TAG_upc_strict_type";
8027 case DW_TAG_upc_relaxed_type:
8028 return "DW_TAG_upc_relaxed_type";
8029 case DW_TAG_PGI_kanji_type:
8030 return "DW_TAG_PGI_kanji_type";
8031 case DW_TAG_PGI_interface_block:
8032 return "DW_TAG_PGI_interface_block";
8033 default:
8034 return "DW_TAG_<unknown>";
8035 }
8036}
8037
8038/* Convert a DWARF attribute code into its string name. */
8039
8040static char *
8041dwarf_attr_name (unsigned attr)
8042{
8043 switch (attr)
8044 {
8045 case DW_AT_sibling:
8046 return "DW_AT_sibling";
8047 case DW_AT_location:
8048 return "DW_AT_location";
8049 case DW_AT_name:
8050 return "DW_AT_name";
8051 case DW_AT_ordering:
8052 return "DW_AT_ordering";
8053 case DW_AT_subscr_data:
8054 return "DW_AT_subscr_data";
8055 case DW_AT_byte_size:
8056 return "DW_AT_byte_size";
8057 case DW_AT_bit_offset:
8058 return "DW_AT_bit_offset";
8059 case DW_AT_bit_size:
8060 return "DW_AT_bit_size";
8061 case DW_AT_element_list:
8062 return "DW_AT_element_list";
8063 case DW_AT_stmt_list:
8064 return "DW_AT_stmt_list";
8065 case DW_AT_low_pc:
8066 return "DW_AT_low_pc";
8067 case DW_AT_high_pc:
8068 return "DW_AT_high_pc";
8069 case DW_AT_language:
8070 return "DW_AT_language";
8071 case DW_AT_member:
8072 return "DW_AT_member";
8073 case DW_AT_discr:
8074 return "DW_AT_discr";
8075 case DW_AT_discr_value:
8076 return "DW_AT_discr_value";
8077 case DW_AT_visibility:
8078 return "DW_AT_visibility";
8079 case DW_AT_import:
8080 return "DW_AT_import";
8081 case DW_AT_string_length:
8082 return "DW_AT_string_length";
8083 case DW_AT_common_reference:
8084 return "DW_AT_common_reference";
8085 case DW_AT_comp_dir:
8086 return "DW_AT_comp_dir";
8087 case DW_AT_const_value:
8088 return "DW_AT_const_value";
8089 case DW_AT_containing_type:
8090 return "DW_AT_containing_type";
8091 case DW_AT_default_value:
8092 return "DW_AT_default_value";
8093 case DW_AT_inline:
8094 return "DW_AT_inline";
8095 case DW_AT_is_optional:
8096 return "DW_AT_is_optional";
8097 case DW_AT_lower_bound:
8098 return "DW_AT_lower_bound";
8099 case DW_AT_producer:
8100 return "DW_AT_producer";
8101 case DW_AT_prototyped:
8102 return "DW_AT_prototyped";
8103 case DW_AT_return_addr:
8104 return "DW_AT_return_addr";
8105 case DW_AT_start_scope:
8106 return "DW_AT_start_scope";
8107 case DW_AT_stride_size:
8108 return "DW_AT_stride_size";
8109 case DW_AT_upper_bound:
8110 return "DW_AT_upper_bound";
8111 case DW_AT_abstract_origin:
8112 return "DW_AT_abstract_origin";
8113 case DW_AT_accessibility:
8114 return "DW_AT_accessibility";
8115 case DW_AT_address_class:
8116 return "DW_AT_address_class";
8117 case DW_AT_artificial:
8118 return "DW_AT_artificial";
8119 case DW_AT_base_types:
8120 return "DW_AT_base_types";
8121 case DW_AT_calling_convention:
8122 return "DW_AT_calling_convention";
8123 case DW_AT_count:
8124 return "DW_AT_count";
8125 case DW_AT_data_member_location:
8126 return "DW_AT_data_member_location";
8127 case DW_AT_decl_column:
8128 return "DW_AT_decl_column";
8129 case DW_AT_decl_file:
8130 return "DW_AT_decl_file";
8131 case DW_AT_decl_line:
8132 return "DW_AT_decl_line";
8133 case DW_AT_declaration:
8134 return "DW_AT_declaration";
8135 case DW_AT_discr_list:
8136 return "DW_AT_discr_list";
8137 case DW_AT_encoding:
8138 return "DW_AT_encoding";
8139 case DW_AT_external:
8140 return "DW_AT_external";
8141 case DW_AT_frame_base:
8142 return "DW_AT_frame_base";
8143 case DW_AT_friend:
8144 return "DW_AT_friend";
8145 case DW_AT_identifier_case:
8146 return "DW_AT_identifier_case";
8147 case DW_AT_macro_info:
8148 return "DW_AT_macro_info";
8149 case DW_AT_namelist_items:
8150 return "DW_AT_namelist_items";
8151 case DW_AT_priority:
8152 return "DW_AT_priority";
8153 case DW_AT_segment:
8154 return "DW_AT_segment";
8155 case DW_AT_specification:
8156 return "DW_AT_specification";
8157 case DW_AT_static_link:
8158 return "DW_AT_static_link";
8159 case DW_AT_type:
8160 return "DW_AT_type";
8161 case DW_AT_use_location:
8162 return "DW_AT_use_location";
8163 case DW_AT_variable_parameter:
8164 return "DW_AT_variable_parameter";
8165 case DW_AT_virtuality:
8166 return "DW_AT_virtuality";
8167 case DW_AT_vtable_elem_location:
8168 return "DW_AT_vtable_elem_location";
8169 /* DWARF 3 values. */
8170 case DW_AT_allocated:
8171 return "DW_AT_allocated";
8172 case DW_AT_associated:
8173 return "DW_AT_associated";
8174 case DW_AT_data_location:
8175 return "DW_AT_data_location";
8176 case DW_AT_stride:
8177 return "DW_AT_stride";
8178 case DW_AT_entry_pc:
8179 return "DW_AT_entry_pc";
8180 case DW_AT_use_UTF8:
8181 return "DW_AT_use_UTF8";
8182 case DW_AT_extension:
8183 return "DW_AT_extension";
8184 case DW_AT_ranges:
8185 return "DW_AT_ranges";
8186 case DW_AT_trampoline:
8187 return "DW_AT_trampoline";
8188 case DW_AT_call_column:
8189 return "DW_AT_call_column";
8190 case DW_AT_call_file:
8191 return "DW_AT_call_file";
8192 case DW_AT_call_line:
8193 return "DW_AT_call_line";
8194 case DW_AT_description:
8195 return "DW_AT_description";
8196 case DW_AT_binary_scale:
8197 return "DW_AT_binary_scale";
8198 case DW_AT_decimal_scale:
8199 return "DW_AT_decimal_scale";
8200 case DW_AT_small:
8201 return "DW_AT_small";
8202 case DW_AT_decimal_sign:
8203 return "DW_AT_decimal_sign";
8204 case DW_AT_digit_count:
8205 return "DW_AT_digit_count";
8206 case DW_AT_picture_string:
8207 return "DW_AT_picture_string";
8208 case DW_AT_mutable:
8209 return "DW_AT_mutable";
8210 case DW_AT_threads_scaled:
8211 return "DW_AT_threads_scaled";
8212 case DW_AT_explicit:
8213 return "DW_AT_explicit";
8214 case DW_AT_object_pointer:
8215 return "DW_AT_object_pointer";
8216 case DW_AT_endianity:
8217 return "DW_AT_endianity";
8218 case DW_AT_elemental:
8219 return "DW_AT_elemental";
8220 case DW_AT_pure:
8221 return "DW_AT_pure";
8222 case DW_AT_recursive:
8223 return "DW_AT_recursive";
8224#ifdef MIPS
8225 /* SGI/MIPS extensions. */
8226 case DW_AT_MIPS_fde:
8227 return "DW_AT_MIPS_fde";
8228 case DW_AT_MIPS_loop_begin:
8229 return "DW_AT_MIPS_loop_begin";
8230 case DW_AT_MIPS_tail_loop_begin:
8231 return "DW_AT_MIPS_tail_loop_begin";
8232 case DW_AT_MIPS_epilog_begin:
8233 return "DW_AT_MIPS_epilog_begin";
8234 case DW_AT_MIPS_loop_unroll_factor:
8235 return "DW_AT_MIPS_loop_unroll_factor";
8236 case DW_AT_MIPS_software_pipeline_depth:
8237 return "DW_AT_MIPS_software_pipeline_depth";
8238 case DW_AT_MIPS_linkage_name:
8239 return "DW_AT_MIPS_linkage_name";
8240 case DW_AT_MIPS_stride:
8241 return "DW_AT_MIPS_stride";
8242 case DW_AT_MIPS_abstract_name:
8243 return "DW_AT_MIPS_abstract_name";
8244 case DW_AT_MIPS_clone_origin:
8245 return "DW_AT_MIPS_clone_origin";
8246 case DW_AT_MIPS_has_inlines:
8247 return "DW_AT_MIPS_has_inlines";
8248#endif
8249 /* HP extensions. */
8250 case DW_AT_HP_block_index:
8251 return "DW_AT_HP_block_index";
8252 case DW_AT_HP_unmodifiable:
8253 return "DW_AT_HP_unmodifiable";
8254 case DW_AT_HP_actuals_stmt_list:
8255 return "DW_AT_HP_actuals_stmt_list";
8256 case DW_AT_HP_proc_per_section:
8257 return "DW_AT_HP_proc_per_section";
8258 case DW_AT_HP_raw_data_ptr:
8259 return "DW_AT_HP_raw_data_ptr";
8260 case DW_AT_HP_pass_by_reference:
8261 return "DW_AT_HP_pass_by_reference";
8262 case DW_AT_HP_opt_level:
8263 return "DW_AT_HP_opt_level";
8264 case DW_AT_HP_prof_version_id:
8265 return "DW_AT_HP_prof_version_id";
8266 case DW_AT_HP_opt_flags:
8267 return "DW_AT_HP_opt_flags";
8268 case DW_AT_HP_cold_region_low_pc:
8269 return "DW_AT_HP_cold_region_low_pc";
8270 case DW_AT_HP_cold_region_high_pc:
8271 return "DW_AT_HP_cold_region_high_pc";
8272 case DW_AT_HP_all_variables_modifiable:
8273 return "DW_AT_HP_all_variables_modifiable";
8274 case DW_AT_HP_linkage_name:
8275 return "DW_AT_HP_linkage_name";
8276 case DW_AT_HP_prof_flags:
8277 return "DW_AT_HP_prof_flags";
8278 /* GNU extensions. */
8279 case DW_AT_sf_names:
8280 return "DW_AT_sf_names";
8281 case DW_AT_src_info:
8282 return "DW_AT_src_info";
8283 case DW_AT_mac_info:
8284 return "DW_AT_mac_info";
8285 case DW_AT_src_coords:
8286 return "DW_AT_src_coords";
8287 case DW_AT_body_begin:
8288 return "DW_AT_body_begin";
8289 case DW_AT_body_end:
8290 return "DW_AT_body_end";
8291 case DW_AT_GNU_vector:
8292 return "DW_AT_GNU_vector";
8293 /* VMS extensions. */
8294 case DW_AT_VMS_rtnbeg_pd_address:
8295 return "DW_AT_VMS_rtnbeg_pd_address";
8296 /* UPC extension. */
8297 case DW_AT_upc_threads_scaled:
8298 return "DW_AT_upc_threads_scaled";
8299 /* PGI (STMicroelectronics) extensions. */
8300 case DW_AT_PGI_lbase:
8301 return "DW_AT_PGI_lbase";
8302 case DW_AT_PGI_soffset:
8303 return "DW_AT_PGI_soffset";
8304 case DW_AT_PGI_lstride:
8305 return "DW_AT_PGI_lstride";
8306 default:
8307 return "DW_AT_<unknown>";
8308 }
8309}
8310
8311/* Convert a DWARF value form code into its string name. */
8312
8313static char *
8314dwarf_form_name (unsigned form)
8315{
8316 switch (form)
8317 {
8318 case DW_FORM_addr:
8319 return "DW_FORM_addr";
8320 case DW_FORM_block2:
8321 return "DW_FORM_block2";
8322 case DW_FORM_block4:
8323 return "DW_FORM_block4";
8324 case DW_FORM_data2:
8325 return "DW_FORM_data2";
8326 case DW_FORM_data4:
8327 return "DW_FORM_data4";
8328 case DW_FORM_data8:
8329 return "DW_FORM_data8";
8330 case DW_FORM_string:
8331 return "DW_FORM_string";
8332 case DW_FORM_block:
8333 return "DW_FORM_block";
8334 case DW_FORM_block1:
8335 return "DW_FORM_block1";
8336 case DW_FORM_data1:
8337 return "DW_FORM_data1";
8338 case DW_FORM_flag:
8339 return "DW_FORM_flag";
8340 case DW_FORM_sdata:
8341 return "DW_FORM_sdata";
8342 case DW_FORM_strp:
8343 return "DW_FORM_strp";
8344 case DW_FORM_udata:
8345 return "DW_FORM_udata";
8346 case DW_FORM_ref_addr:
8347 return "DW_FORM_ref_addr";
8348 case DW_FORM_ref1:
8349 return "DW_FORM_ref1";
8350 case DW_FORM_ref2:
8351 return "DW_FORM_ref2";
8352 case DW_FORM_ref4:
8353 return "DW_FORM_ref4";
8354 case DW_FORM_ref8:
8355 return "DW_FORM_ref8";
8356 case DW_FORM_ref_udata:
8357 return "DW_FORM_ref_udata";
8358 case DW_FORM_indirect:
8359 return "DW_FORM_indirect";
8360 default:
8361 return "DW_FORM_<unknown>";
8362 }
8363}
8364
8365/* Convert a DWARF stack opcode into its string name. */
8366
8367static char *
8368dwarf_stack_op_name (unsigned op)
8369{
8370 switch (op)
8371 {
8372 case DW_OP_addr:
8373 return "DW_OP_addr";
8374 case DW_OP_deref:
8375 return "DW_OP_deref";
8376 case DW_OP_const1u:
8377 return "DW_OP_const1u";
8378 case DW_OP_const1s:
8379 return "DW_OP_const1s";
8380 case DW_OP_const2u:
8381 return "DW_OP_const2u";
8382 case DW_OP_const2s:
8383 return "DW_OP_const2s";
8384 case DW_OP_const4u:
8385 return "DW_OP_const4u";
8386 case DW_OP_const4s:
8387 return "DW_OP_const4s";
8388 case DW_OP_const8u:
8389 return "DW_OP_const8u";
8390 case DW_OP_const8s:
8391 return "DW_OP_const8s";
8392 case DW_OP_constu:
8393 return "DW_OP_constu";
8394 case DW_OP_consts:
8395 return "DW_OP_consts";
8396 case DW_OP_dup:
8397 return "DW_OP_dup";
8398 case DW_OP_drop:
8399 return "DW_OP_drop";
8400 case DW_OP_over:
8401 return "DW_OP_over";
8402 case DW_OP_pick:
8403 return "DW_OP_pick";
8404 case DW_OP_swap:
8405 return "DW_OP_swap";
8406 case DW_OP_rot:
8407 return "DW_OP_rot";
8408 case DW_OP_xderef:
8409 return "DW_OP_xderef";
8410 case DW_OP_abs:
8411 return "DW_OP_abs";
8412 case DW_OP_and:
8413 return "DW_OP_and";
8414 case DW_OP_div:
8415 return "DW_OP_div";
8416 case DW_OP_minus:
8417 return "DW_OP_minus";
8418 case DW_OP_mod:
8419 return "DW_OP_mod";
8420 case DW_OP_mul:
8421 return "DW_OP_mul";
8422 case DW_OP_neg:
8423 return "DW_OP_neg";
8424 case DW_OP_not:
8425 return "DW_OP_not";
8426 case DW_OP_or:
8427 return "DW_OP_or";
8428 case DW_OP_plus:
8429 return "DW_OP_plus";
8430 case DW_OP_plus_uconst:
8431 return "DW_OP_plus_uconst";
8432 case DW_OP_shl:
8433 return "DW_OP_shl";
8434 case DW_OP_shr:
8435 return "DW_OP_shr";
8436 case DW_OP_shra:
8437 return "DW_OP_shra";
8438 case DW_OP_xor:
8439 return "DW_OP_xor";
8440 case DW_OP_bra:
8441 return "DW_OP_bra";
8442 case DW_OP_eq:
8443 return "DW_OP_eq";
8444 case DW_OP_ge:
8445 return "DW_OP_ge";
8446 case DW_OP_gt:
8447 return "DW_OP_gt";
8448 case DW_OP_le:
8449 return "DW_OP_le";
8450 case DW_OP_lt:
8451 return "DW_OP_lt";
8452 case DW_OP_ne:
8453 return "DW_OP_ne";
8454 case DW_OP_skip:
8455 return "DW_OP_skip";
8456 case DW_OP_lit0:
8457 return "DW_OP_lit0";
8458 case DW_OP_lit1:
8459 return "DW_OP_lit1";
8460 case DW_OP_lit2:
8461 return "DW_OP_lit2";
8462 case DW_OP_lit3:
8463 return "DW_OP_lit3";
8464 case DW_OP_lit4:
8465 return "DW_OP_lit4";
8466 case DW_OP_lit5:
8467 return "DW_OP_lit5";
8468 case DW_OP_lit6:
8469 return "DW_OP_lit6";
8470 case DW_OP_lit7:
8471 return "DW_OP_lit7";
8472 case DW_OP_lit8:
8473 return "DW_OP_lit8";
8474 case DW_OP_lit9:
8475 return "DW_OP_lit9";
8476 case DW_OP_lit10:
8477 return "DW_OP_lit10";
8478 case DW_OP_lit11:
8479 return "DW_OP_lit11";
8480 case DW_OP_lit12:
8481 return "DW_OP_lit12";
8482 case DW_OP_lit13:
8483 return "DW_OP_lit13";
8484 case DW_OP_lit14:
8485 return "DW_OP_lit14";
8486 case DW_OP_lit15:
8487 return "DW_OP_lit15";
8488 case DW_OP_lit16:
8489 return "DW_OP_lit16";
8490 case DW_OP_lit17:
8491 return "DW_OP_lit17";
8492 case DW_OP_lit18:
8493 return "DW_OP_lit18";
8494 case DW_OP_lit19:
8495 return "DW_OP_lit19";
8496 case DW_OP_lit20:
8497 return "DW_OP_lit20";
8498 case DW_OP_lit21:
8499 return "DW_OP_lit21";
8500 case DW_OP_lit22:
8501 return "DW_OP_lit22";
8502 case DW_OP_lit23:
8503 return "DW_OP_lit23";
8504 case DW_OP_lit24:
8505 return "DW_OP_lit24";
8506 case DW_OP_lit25:
8507 return "DW_OP_lit25";
8508 case DW_OP_lit26:
8509 return "DW_OP_lit26";
8510 case DW_OP_lit27:
8511 return "DW_OP_lit27";
8512 case DW_OP_lit28:
8513 return "DW_OP_lit28";
8514 case DW_OP_lit29:
8515 return "DW_OP_lit29";
8516 case DW_OP_lit30:
8517 return "DW_OP_lit30";
8518 case DW_OP_lit31:
8519 return "DW_OP_lit31";
8520 case DW_OP_reg0:
8521 return "DW_OP_reg0";
8522 case DW_OP_reg1:
8523 return "DW_OP_reg1";
8524 case DW_OP_reg2:
8525 return "DW_OP_reg2";
8526 case DW_OP_reg3:
8527 return "DW_OP_reg3";
8528 case DW_OP_reg4:
8529 return "DW_OP_reg4";
8530 case DW_OP_reg5:
8531 return "DW_OP_reg5";
8532 case DW_OP_reg6:
8533 return "DW_OP_reg6";
8534 case DW_OP_reg7:
8535 return "DW_OP_reg7";
8536 case DW_OP_reg8:
8537 return "DW_OP_reg8";
8538 case DW_OP_reg9:
8539 return "DW_OP_reg9";
8540 case DW_OP_reg10:
8541 return "DW_OP_reg10";
8542 case DW_OP_reg11:
8543 return "DW_OP_reg11";
8544 case DW_OP_reg12:
8545 return "DW_OP_reg12";
8546 case DW_OP_reg13:
8547 return "DW_OP_reg13";
8548 case DW_OP_reg14:
8549 return "DW_OP_reg14";
8550 case DW_OP_reg15:
8551 return "DW_OP_reg15";
8552 case DW_OP_reg16:
8553 return "DW_OP_reg16";
8554 case DW_OP_reg17:
8555 return "DW_OP_reg17";
8556 case DW_OP_reg18:
8557 return "DW_OP_reg18";
8558 case DW_OP_reg19:
8559 return "DW_OP_reg19";
8560 case DW_OP_reg20:
8561 return "DW_OP_reg20";
8562 case DW_OP_reg21:
8563 return "DW_OP_reg21";
8564 case DW_OP_reg22:
8565 return "DW_OP_reg22";
8566 case DW_OP_reg23:
8567 return "DW_OP_reg23";
8568 case DW_OP_reg24:
8569 return "DW_OP_reg24";
8570 case DW_OP_reg25:
8571 return "DW_OP_reg25";
8572 case DW_OP_reg26:
8573 return "DW_OP_reg26";
8574 case DW_OP_reg27:
8575 return "DW_OP_reg27";
8576 case DW_OP_reg28:
8577 return "DW_OP_reg28";
8578 case DW_OP_reg29:
8579 return "DW_OP_reg29";
8580 case DW_OP_reg30:
8581 return "DW_OP_reg30";
8582 case DW_OP_reg31:
8583 return "DW_OP_reg31";
8584 case DW_OP_breg0:
8585 return "DW_OP_breg0";
8586 case DW_OP_breg1:
8587 return "DW_OP_breg1";
8588 case DW_OP_breg2:
8589 return "DW_OP_breg2";
8590 case DW_OP_breg3:
8591 return "DW_OP_breg3";
8592 case DW_OP_breg4:
8593 return "DW_OP_breg4";
8594 case DW_OP_breg5:
8595 return "DW_OP_breg5";
8596 case DW_OP_breg6:
8597 return "DW_OP_breg6";
8598 case DW_OP_breg7:
8599 return "DW_OP_breg7";
8600 case DW_OP_breg8:
8601 return "DW_OP_breg8";
8602 case DW_OP_breg9:
8603 return "DW_OP_breg9";
8604 case DW_OP_breg10:
8605 return "DW_OP_breg10";
8606 case DW_OP_breg11:
8607 return "DW_OP_breg11";
8608 case DW_OP_breg12:
8609 return "DW_OP_breg12";
8610 case DW_OP_breg13:
8611 return "DW_OP_breg13";
8612 case DW_OP_breg14:
8613 return "DW_OP_breg14";
8614 case DW_OP_breg15:
8615 return "DW_OP_breg15";
8616 case DW_OP_breg16:
8617 return "DW_OP_breg16";
8618 case DW_OP_breg17:
8619 return "DW_OP_breg17";
8620 case DW_OP_breg18:
8621 return "DW_OP_breg18";
8622 case DW_OP_breg19:
8623 return "DW_OP_breg19";
8624 case DW_OP_breg20:
8625 return "DW_OP_breg20";
8626 case DW_OP_breg21:
8627 return "DW_OP_breg21";
8628 case DW_OP_breg22:
8629 return "DW_OP_breg22";
8630 case DW_OP_breg23:
8631 return "DW_OP_breg23";
8632 case DW_OP_breg24:
8633 return "DW_OP_breg24";
8634 case DW_OP_breg25:
8635 return "DW_OP_breg25";
8636 case DW_OP_breg26:
8637 return "DW_OP_breg26";
8638 case DW_OP_breg27:
8639 return "DW_OP_breg27";
8640 case DW_OP_breg28:
8641 return "DW_OP_breg28";
8642 case DW_OP_breg29:
8643 return "DW_OP_breg29";
8644 case DW_OP_breg30:
8645 return "DW_OP_breg30";
8646 case DW_OP_breg31:
8647 return "DW_OP_breg31";
8648 case DW_OP_regx:
8649 return "DW_OP_regx";
8650 case DW_OP_fbreg:
8651 return "DW_OP_fbreg";
8652 case DW_OP_bregx:
8653 return "DW_OP_bregx";
8654 case DW_OP_piece:
8655 return "DW_OP_piece";
8656 case DW_OP_deref_size:
8657 return "DW_OP_deref_size";
8658 case DW_OP_xderef_size:
8659 return "DW_OP_xderef_size";
8660 case DW_OP_nop:
8661 return "DW_OP_nop";
8662 /* DWARF 3 extensions. */
8663 case DW_OP_push_object_address:
8664 return "DW_OP_push_object_address";
8665 case DW_OP_call2:
8666 return "DW_OP_call2";
8667 case DW_OP_call4:
8668 return "DW_OP_call4";
8669 case DW_OP_call_ref:
8670 return "DW_OP_call_ref";
8671 /* GNU extensions. */
8672 case DW_OP_form_tls_address:
8673 return "DW_OP_form_tls_address";
8674 case DW_OP_call_frame_cfa:
8675 return "DW_OP_call_frame_cfa";
8676 case DW_OP_bit_piece:
8677 return "DW_OP_bit_piece";
8678 case DW_OP_GNU_push_tls_address:
8679 return "DW_OP_GNU_push_tls_address";
8680 case DW_OP_GNU_uninit:
8681 return "DW_OP_GNU_uninit";
8682 /* HP extensions. */
8683 case DW_OP_HP_is_value:
8684 return "DW_OP_HP_is_value";
8685 case DW_OP_HP_fltconst4:
8686 return "DW_OP_HP_fltconst4";
8687 case DW_OP_HP_fltconst8:
8688 return "DW_OP_HP_fltconst8";
8689 case DW_OP_HP_mod_range:
8690 return "DW_OP_HP_mod_range";
8691 case DW_OP_HP_unmod_range:
8692 return "DW_OP_HP_unmod_range";
8693 case DW_OP_HP_tls:
8694 return "DW_OP_HP_tls";
8695 default:
8696 return "OP_<unknown>";
8697 }
8698}
8699
8700static char *
8701dwarf_bool_name (unsigned mybool)
8702{
8703 if (mybool)
8704 return "TRUE";
8705 else
8706 return "FALSE";
8707}
8708
8709/* Convert a DWARF type code into its string name. */
8710
8711static char *
8712dwarf_type_encoding_name (unsigned enc)
8713{
8714 switch (enc)
8715 {
8716 case DW_ATE_void:
8717 return "DW_ATE_void";
8718 case DW_ATE_address:
8719 return "DW_ATE_address";
8720 case DW_ATE_boolean:
8721 return "DW_ATE_boolean";
8722 case DW_ATE_complex_float:
8723 return "DW_ATE_complex_float";
8724 case DW_ATE_float:
8725 return "DW_ATE_float";
8726 case DW_ATE_signed:
8727 return "DW_ATE_signed";
8728 case DW_ATE_signed_char:
8729 return "DW_ATE_signed_char";
8730 case DW_ATE_unsigned:
8731 return "DW_ATE_unsigned";
8732 case DW_ATE_unsigned_char:
8733 return "DW_ATE_unsigned_char";
8734 /* DWARF 3. */
8735 case DW_ATE_imaginary_float:
8736 return "DW_ATE_imaginary_float";
8737 case DW_ATE_packed_decimal:
8738 return "DW_ATE_packed_decimal";
8739 case DW_ATE_numeric_string:
8740 return "DW_ATE_numeric_string";
8741 case DW_ATE_edited:
8742 return "DW_ATE_edited";
8743 case DW_ATE_signed_fixed:
8744 return "DW_ATE_signed_fixed";
8745 case DW_ATE_unsigned_fixed:
8746 return "DW_ATE_unsigned_fixed";
8747 case DW_ATE_decimal_float:
8748 return "DW_ATE_decimal_float";
8749 /* HP extensions. */
8750 case DW_ATE_HP_float80:
8751 return "DW_ATE_HP_float80";
8752 case DW_ATE_HP_complex_float80:
8753 return "DW_ATE_HP_complex_float80";
8754 case DW_ATE_HP_float128:
8755 return "DW_ATE_HP_float128";
8756 case DW_ATE_HP_complex_float128:
8757 return "DW_ATE_HP_complex_float128";
8758 case DW_ATE_HP_floathpintel:
8759 return "DW_ATE_HP_floathpintel";
8760 case DW_ATE_HP_imaginary_float80:
8761 return "DW_ATE_HP_imaginary_float80";
8762 case DW_ATE_HP_imaginary_float128:
8763 return "DW_ATE_HP_imaginary_float128";
8764 default:
8765 return "DW_ATE_<unknown>";
8766 }
8767}
8768
8769/* Convert a DWARF call frame info operation to its string name. */
8770
8771#if 0
8772static char *
8773dwarf_cfi_name (unsigned cfi_opc)
8774{
8775 switch (cfi_opc)
8776 {
8777 case DW_CFA_advance_loc:
8778 return "DW_CFA_advance_loc";
8779 case DW_CFA_offset:
8780 return "DW_CFA_offset";
8781 case DW_CFA_restore:
8782 return "DW_CFA_restore";
8783 case DW_CFA_nop:
8784 return "DW_CFA_nop";
8785 case DW_CFA_set_loc:
8786 return "DW_CFA_set_loc";
8787 case DW_CFA_advance_loc1:
8788 return "DW_CFA_advance_loc1";
8789 case DW_CFA_advance_loc2:
8790 return "DW_CFA_advance_loc2";
8791 case DW_CFA_advance_loc4:
8792 return "DW_CFA_advance_loc4";
8793 case DW_CFA_offset_extended:
8794 return "DW_CFA_offset_extended";
8795 case DW_CFA_restore_extended:
8796 return "DW_CFA_restore_extended";
8797 case DW_CFA_undefined:
8798 return "DW_CFA_undefined";
8799 case DW_CFA_same_value:
8800 return "DW_CFA_same_value";
8801 case DW_CFA_register:
8802 return "DW_CFA_register";
8803 case DW_CFA_remember_state:
8804 return "DW_CFA_remember_state";
8805 case DW_CFA_restore_state:
8806 return "DW_CFA_restore_state";
8807 case DW_CFA_def_cfa:
8808 return "DW_CFA_def_cfa";
8809 case DW_CFA_def_cfa_register:
8810 return "DW_CFA_def_cfa_register";
8811 case DW_CFA_def_cfa_offset:
8812 return "DW_CFA_def_cfa_offset";
8813 /* DWARF 3. */
8814 case DW_CFA_def_cfa_expression:
8815 return "DW_CFA_def_cfa_expression";
8816 case DW_CFA_expression:
8817 return "DW_CFA_expression";
8818 case DW_CFA_offset_extended_sf:
8819 return "DW_CFA_offset_extended_sf";
8820 case DW_CFA_def_cfa_sf:
8821 return "DW_CFA_def_cfa_sf";
8822 case DW_CFA_def_cfa_offset_sf:
8823 return "DW_CFA_def_cfa_offset_sf";
8824 case DW_CFA_val_offset:
8825 return "DW_CFA_val_offset";
8826 case DW_CFA_val_offset_sf:
8827 return "DW_CFA_val_offset_sf";
8828 case DW_CFA_val_expression:
8829 return "DW_CFA_val_expression";
8830 /* SGI/MIPS specific. */
8831 case DW_CFA_MIPS_advance_loc8:
8832 return "DW_CFA_MIPS_advance_loc8";
8833 /* GNU extensions. */
8834 case DW_CFA_GNU_window_save:
8835 return "DW_CFA_GNU_window_save";
8836 case DW_CFA_GNU_args_size:
8837 return "DW_CFA_GNU_args_size";
8838 case DW_CFA_GNU_negative_offset_extended:
8839 return "DW_CFA_GNU_negative_offset_extended";
8840 default:
8841 return "DW_CFA_<unknown>";
8842 }
8843}
8844#endif
8845
8846static void
8847dump_die (struct die_info *die)
8848{
8849 unsigned int i;
8850
8851 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8852 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8853 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8854 dwarf_bool_name (die->child != NULL));
8855
8856 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8857 for (i = 0; i < die->num_attrs; ++i)
8858 {
8859 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8860 dwarf_attr_name (die->attrs[i].name),
8861 dwarf_form_name (die->attrs[i].form));
8862 switch (die->attrs[i].form)
8863 {
8864 case DW_FORM_ref_addr:
8865 case DW_FORM_addr:
8866 fprintf_unfiltered (gdb_stderr, "address: ");
8867 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8868 break;
8869 case DW_FORM_block2:
8870 case DW_FORM_block4:
8871 case DW_FORM_block:
8872 case DW_FORM_block1:
8873 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8874 break;
8875 case DW_FORM_ref1:
8876 case DW_FORM_ref2:
8877 case DW_FORM_ref4:
8878 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8879 (long) (DW_ADDR (&die->attrs[i])));
8880 break;
8881 case DW_FORM_data1:
8882 case DW_FORM_data2:
8883 case DW_FORM_data4:
8884 case DW_FORM_data8:
8885 case DW_FORM_udata:
8886 case DW_FORM_sdata:
8887 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8888 break;
8889 case DW_FORM_string:
8890 case DW_FORM_strp:
8891 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8892 DW_STRING (&die->attrs[i])
8893 ? DW_STRING (&die->attrs[i]) : "");
8894 break;
8895 case DW_FORM_flag:
8896 if (DW_UNSND (&die->attrs[i]))
8897 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8898 else
8899 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8900 break;
8901 case DW_FORM_indirect:
8902 /* the reader will have reduced the indirect form to
8903 the "base form" so this form should not occur */
8904 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8905 break;
8906 default:
8907 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8908 die->attrs[i].form);
8909 }
8910 fprintf_unfiltered (gdb_stderr, "\n");
8911 }
8912}
8913
8914static void
8915dump_die_list (struct die_info *die)
8916{
8917 while (die)
8918 {
8919 dump_die (die);
8920 if (die->child != NULL)
8921 dump_die_list (die->child);
8922 if (die->sibling != NULL)
8923 dump_die_list (die->sibling);
8924 }
8925}
8926
8927static void
8928store_in_ref_table (unsigned int offset, struct die_info *die,
8929 struct dwarf2_cu *cu)
8930{
8931 int h;
8932 struct die_info *old;
8933
8934 h = (offset % REF_HASH_SIZE);
8935 old = cu->die_ref_table[h];
8936 die->next_ref = old;
8937 cu->die_ref_table[h] = die;
8938}
8939
8940static unsigned int
8941dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8942{
8943 unsigned int result = 0;
8944
8945 switch (attr->form)
8946 {
8947 case DW_FORM_ref_addr:
8948 case DW_FORM_ref1:
8949 case DW_FORM_ref2:
8950 case DW_FORM_ref4:
8951 case DW_FORM_ref8:
8952 case DW_FORM_ref_udata:
8953 result = DW_ADDR (attr);
8954 break;
8955 default:
8956 complaint (&symfile_complaints,
8957 _("unsupported die ref attribute form: '%s'"),
8958 dwarf_form_name (attr->form));
8959 }
8960 return result;
8961}
8962
8963/* Return the constant value held by the given attribute. Return -1
8964 if the value held by the attribute is not constant. */
8965
8966static int
8967dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8968{
8969 if (attr->form == DW_FORM_sdata)
8970 return DW_SND (attr);
8971 else if (attr->form == DW_FORM_udata
8972 || attr->form == DW_FORM_data1
8973 || attr->form == DW_FORM_data2
8974 || attr->form == DW_FORM_data4
8975 || attr->form == DW_FORM_data8)
8976 return DW_UNSND (attr);
8977 else
8978 {
8979 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
8980 dwarf_form_name (attr->form));
8981 return default_value;
8982 }
8983}
8984
8985static struct die_info *
8986follow_die_ref (struct die_info *src_die, struct attribute *attr,
8987 struct dwarf2_cu *cu)
8988{
8989 struct die_info *die;
8990 unsigned int offset;
8991 int h;
8992 struct die_info temp_die;
8993 struct dwarf2_cu *target_cu;
8994
8995 offset = dwarf2_get_ref_die_offset (attr, cu);
8996
8997 if (DW_ADDR (attr) < cu->header.offset
8998 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8999 {
9000 struct dwarf2_per_cu_data *per_cu;
9001 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
9002 cu->objfile);
9003 target_cu = per_cu->cu;
9004 }
9005 else
9006 target_cu = cu;
9007
9008 h = (offset % REF_HASH_SIZE);
9009 die = target_cu->die_ref_table[h];
9010 while (die)
9011 {
9012 if (die->offset == offset)
9013 return die;
9014 die = die->next_ref;
9015 }
9016
9017 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9018 "at 0x%lx [in module %s]"),
9019 (long) src_die->offset, (long) offset, cu->objfile->name);
9020
9021 return NULL;
9022}
9023
9024static struct type *
9025dwarf2_fundamental_type (struct objfile *objfile, int typeid,
9026 struct dwarf2_cu *cu)
9027{
9028 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
9029 {
9030 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
9031 typeid, objfile->name);
9032 }
9033
9034 /* Look for this particular type in the fundamental type vector. If
9035 one is not found, create and install one appropriate for the
9036 current language and the current target machine. */
9037
9038 if (cu->ftypes[typeid] == NULL)
9039 {
9040 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
9041 }
9042
9043 return (cu->ftypes[typeid]);
9044}
9045
9046/* Decode simple location descriptions.
9047 Given a pointer to a dwarf block that defines a location, compute
9048 the location and return the value.
9049
9050 NOTE drow/2003-11-18: This function is called in two situations
9051 now: for the address of static or global variables (partial symbols
9052 only) and for offsets into structures which are expected to be
9053 (more or less) constant. The partial symbol case should go away,
9054 and only the constant case should remain. That will let this
9055 function complain more accurately. A few special modes are allowed
9056 without complaint for global variables (for instance, global
9057 register values and thread-local values).
9058
9059 A location description containing no operations indicates that the
9060 object is optimized out. The return value is 0 for that case.
9061 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9062 callers will only want a very basic result and this can become a
9063 complaint.
9064
9065 Note that stack[0] is unused except as a default error return.
9066 Note that stack overflow is not yet handled. */
9067
9068static CORE_ADDR
9069decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
9070{
9071 struct objfile *objfile = cu->objfile;
9072 struct comp_unit_head *cu_header = &cu->header;
9073 int i;
9074 int size = blk->size;
9075 gdb_byte *data = blk->data;
9076 CORE_ADDR stack[64];
9077 int stacki;
9078 unsigned int bytes_read, unsnd;
9079 gdb_byte op;
9080
9081 i = 0;
9082 stacki = 0;
9083 stack[stacki] = 0;
9084
9085 while (i < size)
9086 {
9087 op = data[i++];
9088 switch (op)
9089 {
9090 case DW_OP_lit0:
9091 case DW_OP_lit1:
9092 case DW_OP_lit2:
9093 case DW_OP_lit3:
9094 case DW_OP_lit4:
9095 case DW_OP_lit5:
9096 case DW_OP_lit6:
9097 case DW_OP_lit7:
9098 case DW_OP_lit8:
9099 case DW_OP_lit9:
9100 case DW_OP_lit10:
9101 case DW_OP_lit11:
9102 case DW_OP_lit12:
9103 case DW_OP_lit13:
9104 case DW_OP_lit14:
9105 case DW_OP_lit15:
9106 case DW_OP_lit16:
9107 case DW_OP_lit17:
9108 case DW_OP_lit18:
9109 case DW_OP_lit19:
9110 case DW_OP_lit20:
9111 case DW_OP_lit21:
9112 case DW_OP_lit22:
9113 case DW_OP_lit23:
9114 case DW_OP_lit24:
9115 case DW_OP_lit25:
9116 case DW_OP_lit26:
9117 case DW_OP_lit27:
9118 case DW_OP_lit28:
9119 case DW_OP_lit29:
9120 case DW_OP_lit30:
9121 case DW_OP_lit31:
9122 stack[++stacki] = op - DW_OP_lit0;
9123 break;
9124
9125 case DW_OP_reg0:
9126 case DW_OP_reg1:
9127 case DW_OP_reg2:
9128 case DW_OP_reg3:
9129 case DW_OP_reg4:
9130 case DW_OP_reg5:
9131 case DW_OP_reg6:
9132 case DW_OP_reg7:
9133 case DW_OP_reg8:
9134 case DW_OP_reg9:
9135 case DW_OP_reg10:
9136 case DW_OP_reg11:
9137 case DW_OP_reg12:
9138 case DW_OP_reg13:
9139 case DW_OP_reg14:
9140 case DW_OP_reg15:
9141 case DW_OP_reg16:
9142 case DW_OP_reg17:
9143 case DW_OP_reg18:
9144 case DW_OP_reg19:
9145 case DW_OP_reg20:
9146 case DW_OP_reg21:
9147 case DW_OP_reg22:
9148 case DW_OP_reg23:
9149 case DW_OP_reg24:
9150 case DW_OP_reg25:
9151 case DW_OP_reg26:
9152 case DW_OP_reg27:
9153 case DW_OP_reg28:
9154 case DW_OP_reg29:
9155 case DW_OP_reg30:
9156 case DW_OP_reg31:
9157 stack[++stacki] = op - DW_OP_reg0;
9158 if (i < size)
9159 dwarf2_complex_location_expr_complaint ();
9160 break;
9161
9162 case DW_OP_regx:
9163 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9164 i += bytes_read;
9165 stack[++stacki] = unsnd;
9166 if (i < size)
9167 dwarf2_complex_location_expr_complaint ();
9168 break;
9169
9170 case DW_OP_addr:
9171 stack[++stacki] = read_address (objfile->obfd, &data[i],
9172 cu, &bytes_read);
9173 i += bytes_read;
9174 break;
9175
9176 case DW_OP_const1u:
9177 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9178 i += 1;
9179 break;
9180
9181 case DW_OP_const1s:
9182 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9183 i += 1;
9184 break;
9185
9186 case DW_OP_const2u:
9187 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9188 i += 2;
9189 break;
9190
9191 case DW_OP_const2s:
9192 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9193 i += 2;
9194 break;
9195
9196 case DW_OP_const4u:
9197 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9198 i += 4;
9199 break;
9200
9201 case DW_OP_const4s:
9202 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9203 i += 4;
9204 break;
9205
9206 case DW_OP_constu:
9207 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
9208 &bytes_read);
9209 i += bytes_read;
9210 break;
9211
9212 case DW_OP_consts:
9213 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9214 i += bytes_read;
9215 break;
9216
9217 case DW_OP_dup:
9218 stack[stacki + 1] = stack[stacki];
9219 stacki++;
9220 break;
9221
9222 case DW_OP_plus:
9223 stack[stacki - 1] += stack[stacki];
9224 stacki--;
9225 break;
9226
9227 case DW_OP_plus_uconst:
9228 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9229 i += bytes_read;
9230 break;
9231
9232 case DW_OP_minus:
9233 stack[stacki - 1] -= stack[stacki];
9234 stacki--;
9235 break;
9236
9237 case DW_OP_deref:
9238 /* If we're not the last op, then we definitely can't encode
9239 this using GDB's address_class enum. This is valid for partial
9240 global symbols, although the variable's address will be bogus
9241 in the psymtab. */
9242 if (i < size)
9243 dwarf2_complex_location_expr_complaint ();
9244 break;
9245
9246 case DW_OP_GNU_push_tls_address:
9247 /* The top of the stack has the offset from the beginning
9248 of the thread control block at which the variable is located. */
9249 /* Nothing should follow this operator, so the top of stack would
9250 be returned. */
9251 /* This is valid for partial global symbols, but the variable's
9252 address will be bogus in the psymtab. */
9253 if (i < size)
9254 dwarf2_complex_location_expr_complaint ();
9255 break;
9256
9257 case DW_OP_GNU_uninit:
9258 break;
9259
9260 default:
9261 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9262 dwarf_stack_op_name (op));
9263 return (stack[stacki]);
9264 }
9265 }
9266 return (stack[stacki]);
9267}
9268
9269/* memory allocation interface */
9270
9271static struct dwarf_block *
9272dwarf_alloc_block (struct dwarf2_cu *cu)
9273{
9274 struct dwarf_block *blk;
9275
9276 blk = (struct dwarf_block *)
9277 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
9278 return (blk);
9279}
9280
9281static struct abbrev_info *
9282dwarf_alloc_abbrev (struct dwarf2_cu *cu)
9283{
9284 struct abbrev_info *abbrev;
9285
9286 abbrev = (struct abbrev_info *)
9287 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
9288 memset (abbrev, 0, sizeof (struct abbrev_info));
9289 return (abbrev);
9290}
9291
9292static struct die_info *
9293dwarf_alloc_die (void)
9294{
9295 struct die_info *die;
9296
9297 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9298 memset (die, 0, sizeof (struct die_info));
9299 return (die);
9300}
9301
9302\f
9303/* Macro support. */
9304
9305
9306/* Return the full name of file number I in *LH's file name table.
9307 Use COMP_DIR as the name of the current directory of the
9308 compilation. The result is allocated using xmalloc; the caller is
9309 responsible for freeing it. */
9310static char *
9311file_full_name (int file, struct line_header *lh, const char *comp_dir)
9312{
9313 /* Is the file number a valid index into the line header's file name
9314 table? Remember that file numbers start with one, not zero. */
9315 if (1 <= file && file <= lh->num_file_names)
9316 {
9317 struct file_entry *fe = &lh->file_names[file - 1];
9318
9319 if (IS_ABSOLUTE_PATH (fe->name))
9320 return xstrdup (fe->name);
9321 else
9322 {
9323 const char *dir;
9324 int dir_len;
9325 char *full_name;
9326
9327 if (fe->dir_index)
9328 dir = lh->include_dirs[fe->dir_index - 1];
9329 else
9330 dir = comp_dir;
9331
9332 if (dir)
9333 {
9334 dir_len = strlen (dir);
9335 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9336 strcpy (full_name, dir);
9337 full_name[dir_len] = '/';
9338 strcpy (full_name + dir_len + 1, fe->name);
9339 return full_name;
9340 }
9341 else
9342 return xstrdup (fe->name);
9343 }
9344 }
9345 else
9346 {
9347 /* The compiler produced a bogus file number. We can at least
9348 record the macro definitions made in the file, even if we
9349 won't be able to find the file by name. */
9350 char fake_name[80];
9351 sprintf (fake_name, "<bad macro file number %d>", file);
9352
9353 complaint (&symfile_complaints,
9354 _("bad file number in macro information (%d)"),
9355 file);
9356
9357 return xstrdup (fake_name);
9358 }
9359}
9360
9361
9362static struct macro_source_file *
9363macro_start_file (int file, int line,
9364 struct macro_source_file *current_file,
9365 const char *comp_dir,
9366 struct line_header *lh, struct objfile *objfile)
9367{
9368 /* The full name of this source file. */
9369 char *full_name = file_full_name (file, lh, comp_dir);
9370
9371 /* We don't create a macro table for this compilation unit
9372 at all until we actually get a filename. */
9373 if (! pending_macros)
9374 pending_macros = new_macro_table (&objfile->objfile_obstack,
9375 objfile->macro_cache);
9376
9377 if (! current_file)
9378 /* If we have no current file, then this must be the start_file
9379 directive for the compilation unit's main source file. */
9380 current_file = macro_set_main (pending_macros, full_name);
9381 else
9382 current_file = macro_include (current_file, line, full_name);
9383
9384 xfree (full_name);
9385
9386 return current_file;
9387}
9388
9389
9390/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9391 followed by a null byte. */
9392static char *
9393copy_string (const char *buf, int len)
9394{
9395 char *s = xmalloc (len + 1);
9396 memcpy (s, buf, len);
9397 s[len] = '\0';
9398
9399 return s;
9400}
9401
9402
9403static const char *
9404consume_improper_spaces (const char *p, const char *body)
9405{
9406 if (*p == ' ')
9407 {
9408 complaint (&symfile_complaints,
9409 _("macro definition contains spaces in formal argument list:\n`%s'"),
9410 body);
9411
9412 while (*p == ' ')
9413 p++;
9414 }
9415
9416 return p;
9417}
9418
9419
9420static void
9421parse_macro_definition (struct macro_source_file *file, int line,
9422 const char *body)
9423{
9424 const char *p;
9425
9426 /* The body string takes one of two forms. For object-like macro
9427 definitions, it should be:
9428
9429 <macro name> " " <definition>
9430
9431 For function-like macro definitions, it should be:
9432
9433 <macro name> "() " <definition>
9434 or
9435 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9436
9437 Spaces may appear only where explicitly indicated, and in the
9438 <definition>.
9439
9440 The Dwarf 2 spec says that an object-like macro's name is always
9441 followed by a space, but versions of GCC around March 2002 omit
9442 the space when the macro's definition is the empty string.
9443
9444 The Dwarf 2 spec says that there should be no spaces between the
9445 formal arguments in a function-like macro's formal argument list,
9446 but versions of GCC around March 2002 include spaces after the
9447 commas. */
9448
9449
9450 /* Find the extent of the macro name. The macro name is terminated
9451 by either a space or null character (for an object-like macro) or
9452 an opening paren (for a function-like macro). */
9453 for (p = body; *p; p++)
9454 if (*p == ' ' || *p == '(')
9455 break;
9456
9457 if (*p == ' ' || *p == '\0')
9458 {
9459 /* It's an object-like macro. */
9460 int name_len = p - body;
9461 char *name = copy_string (body, name_len);
9462 const char *replacement;
9463
9464 if (*p == ' ')
9465 replacement = body + name_len + 1;
9466 else
9467 {
9468 dwarf2_macro_malformed_definition_complaint (body);
9469 replacement = body + name_len;
9470 }
9471
9472 macro_define_object (file, line, name, replacement);
9473
9474 xfree (name);
9475 }
9476 else if (*p == '(')
9477 {
9478 /* It's a function-like macro. */
9479 char *name = copy_string (body, p - body);
9480 int argc = 0;
9481 int argv_size = 1;
9482 char **argv = xmalloc (argv_size * sizeof (*argv));
9483
9484 p++;
9485
9486 p = consume_improper_spaces (p, body);
9487
9488 /* Parse the formal argument list. */
9489 while (*p && *p != ')')
9490 {
9491 /* Find the extent of the current argument name. */
9492 const char *arg_start = p;
9493
9494 while (*p && *p != ',' && *p != ')' && *p != ' ')
9495 p++;
9496
9497 if (! *p || p == arg_start)
9498 dwarf2_macro_malformed_definition_complaint (body);
9499 else
9500 {
9501 /* Make sure argv has room for the new argument. */
9502 if (argc >= argv_size)
9503 {
9504 argv_size *= 2;
9505 argv = xrealloc (argv, argv_size * sizeof (*argv));
9506 }
9507
9508 argv[argc++] = copy_string (arg_start, p - arg_start);
9509 }
9510
9511 p = consume_improper_spaces (p, body);
9512
9513 /* Consume the comma, if present. */
9514 if (*p == ',')
9515 {
9516 p++;
9517
9518 p = consume_improper_spaces (p, body);
9519 }
9520 }
9521
9522 if (*p == ')')
9523 {
9524 p++;
9525
9526 if (*p == ' ')
9527 /* Perfectly formed definition, no complaints. */
9528 macro_define_function (file, line, name,
9529 argc, (const char **) argv,
9530 p + 1);
9531 else if (*p == '\0')
9532 {
9533 /* Complain, but do define it. */
9534 dwarf2_macro_malformed_definition_complaint (body);
9535 macro_define_function (file, line, name,
9536 argc, (const char **) argv,
9537 p);
9538 }
9539 else
9540 /* Just complain. */
9541 dwarf2_macro_malformed_definition_complaint (body);
9542 }
9543 else
9544 /* Just complain. */
9545 dwarf2_macro_malformed_definition_complaint (body);
9546
9547 xfree (name);
9548 {
9549 int i;
9550
9551 for (i = 0; i < argc; i++)
9552 xfree (argv[i]);
9553 }
9554 xfree (argv);
9555 }
9556 else
9557 dwarf2_macro_malformed_definition_complaint (body);
9558}
9559
9560
9561static void
9562dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9563 char *comp_dir, bfd *abfd,
9564 struct dwarf2_cu *cu)
9565{
9566 gdb_byte *mac_ptr, *mac_end;
9567 struct macro_source_file *current_file = 0;
9568
9569 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9570 {
9571 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9572 return;
9573 }
9574
9575 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9576 mac_end = dwarf2_per_objfile->macinfo_buffer
9577 + dwarf2_per_objfile->macinfo_size;
9578
9579 for (;;)
9580 {
9581 enum dwarf_macinfo_record_type macinfo_type;
9582
9583 /* Do we at least have room for a macinfo type byte? */
9584 if (mac_ptr >= mac_end)
9585 {
9586 dwarf2_macros_too_long_complaint ();
9587 return;
9588 }
9589
9590 macinfo_type = read_1_byte (abfd, mac_ptr);
9591 mac_ptr++;
9592
9593 switch (macinfo_type)
9594 {
9595 /* A zero macinfo type indicates the end of the macro
9596 information. */
9597 case 0:
9598 return;
9599
9600 case DW_MACINFO_define:
9601 case DW_MACINFO_undef:
9602 {
9603 unsigned int bytes_read;
9604 int line;
9605 char *body;
9606
9607 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9608 mac_ptr += bytes_read;
9609 body = read_string (abfd, mac_ptr, &bytes_read);
9610 mac_ptr += bytes_read;
9611
9612 if (! current_file)
9613 complaint (&symfile_complaints,
9614 _("debug info gives macro %s outside of any file: %s"),
9615 macinfo_type ==
9616 DW_MACINFO_define ? "definition" : macinfo_type ==
9617 DW_MACINFO_undef ? "undefinition" :
9618 "something-or-other", body);
9619 else
9620 {
9621 if (macinfo_type == DW_MACINFO_define)
9622 parse_macro_definition (current_file, line, body);
9623 else if (macinfo_type == DW_MACINFO_undef)
9624 macro_undef (current_file, line, body);
9625 }
9626 }
9627 break;
9628
9629 case DW_MACINFO_start_file:
9630 {
9631 unsigned int bytes_read;
9632 int line, file;
9633
9634 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9635 mac_ptr += bytes_read;
9636 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9637 mac_ptr += bytes_read;
9638
9639 current_file = macro_start_file (file, line,
9640 current_file, comp_dir,
9641 lh, cu->objfile);
9642 }
9643 break;
9644
9645 case DW_MACINFO_end_file:
9646 if (! current_file)
9647 complaint (&symfile_complaints,
9648 _("macro debug info has an unmatched `close_file' directive"));
9649 else
9650 {
9651 current_file = current_file->included_by;
9652 if (! current_file)
9653 {
9654 enum dwarf_macinfo_record_type next_type;
9655
9656 /* GCC circa March 2002 doesn't produce the zero
9657 type byte marking the end of the compilation
9658 unit. Complain if it's not there, but exit no
9659 matter what. */
9660
9661 /* Do we at least have room for a macinfo type byte? */
9662 if (mac_ptr >= mac_end)
9663 {
9664 dwarf2_macros_too_long_complaint ();
9665 return;
9666 }
9667
9668 /* We don't increment mac_ptr here, so this is just
9669 a look-ahead. */
9670 next_type = read_1_byte (abfd, mac_ptr);
9671 if (next_type != 0)
9672 complaint (&symfile_complaints,
9673 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9674
9675 return;
9676 }
9677 }
9678 break;
9679
9680 case DW_MACINFO_vendor_ext:
9681 {
9682 unsigned int bytes_read;
9683 int constant;
9684 char *string;
9685
9686 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9687 mac_ptr += bytes_read;
9688 string = read_string (abfd, mac_ptr, &bytes_read);
9689 mac_ptr += bytes_read;
9690
9691 /* We don't recognize any vendor extensions. */
9692 }
9693 break;
9694 }
9695 }
9696}
9697
9698/* Check if the attribute's form is a DW_FORM_block*
9699 if so return true else false. */
9700static int
9701attr_form_is_block (struct attribute *attr)
9702{
9703 return (attr == NULL ? 0 :
9704 attr->form == DW_FORM_block1
9705 || attr->form == DW_FORM_block2
9706 || attr->form == DW_FORM_block4
9707 || attr->form == DW_FORM_block);
9708}
9709
9710static void
9711dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9712 struct dwarf2_cu *cu)
9713{
9714 struct objfile *objfile = cu->objfile;
9715
9716 /* Save the master objfile, so that we can report and look up the
9717 correct file containing this variable. */
9718 if (objfile->separate_debug_objfile_backlink)
9719 objfile = objfile->separate_debug_objfile_backlink;
9720
9721 if ((attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9722 /* ".debug_loc" may not exist at all, or the offset may be outside
9723 the section. If so, fall through to the complaint in the
9724 other branch. */
9725 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
9726 {
9727 struct dwarf2_loclist_baton *baton;
9728
9729 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9730 sizeof (struct dwarf2_loclist_baton));
9731 baton->objfile = objfile;
9732
9733 /* We don't know how long the location list is, but make sure we
9734 don't run off the edge of the section. */
9735 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9736 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9737 baton->base_address = cu->header.base_address;
9738 if (cu->header.base_known == 0)
9739 complaint (&symfile_complaints,
9740 _("Location list used without specifying the CU base address."));
9741
9742 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9743 SYMBOL_LOCATION_BATON (sym) = baton;
9744 }
9745 else
9746 {
9747 struct dwarf2_locexpr_baton *baton;
9748
9749 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9750 sizeof (struct dwarf2_locexpr_baton));
9751 baton->objfile = objfile;
9752
9753 if (attr_form_is_block (attr))
9754 {
9755 /* Note that we're just copying the block's data pointer
9756 here, not the actual data. We're still pointing into the
9757 info_buffer for SYM's objfile; right now we never release
9758 that buffer, but when we do clean up properly this may
9759 need to change. */
9760 baton->size = DW_BLOCK (attr)->size;
9761 baton->data = DW_BLOCK (attr)->data;
9762 }
9763 else
9764 {
9765 dwarf2_invalid_attrib_class_complaint ("location description",
9766 SYMBOL_NATURAL_NAME (sym));
9767 baton->size = 0;
9768 baton->data = NULL;
9769 }
9770
9771 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9772 SYMBOL_LOCATION_BATON (sym) = baton;
9773 }
9774}
9775
9776/* Locate the compilation unit from CU's objfile which contains the
9777 DIE at OFFSET. Raises an error on failure. */
9778
9779static struct dwarf2_per_cu_data *
9780dwarf2_find_containing_comp_unit (unsigned long offset,
9781 struct objfile *objfile)
9782{
9783 struct dwarf2_per_cu_data *this_cu;
9784 int low, high;
9785
9786 low = 0;
9787 high = dwarf2_per_objfile->n_comp_units - 1;
9788 while (high > low)
9789 {
9790 int mid = low + (high - low) / 2;
9791 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9792 high = mid;
9793 else
9794 low = mid + 1;
9795 }
9796 gdb_assert (low == high);
9797 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9798 {
9799 if (low == 0)
9800 error (_("Dwarf Error: could not find partial DIE containing "
9801 "offset 0x%lx [in module %s]"),
9802 (long) offset, bfd_get_filename (objfile->obfd));
9803
9804 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9805 return dwarf2_per_objfile->all_comp_units[low-1];
9806 }
9807 else
9808 {
9809 this_cu = dwarf2_per_objfile->all_comp_units[low];
9810 if (low == dwarf2_per_objfile->n_comp_units - 1
9811 && offset >= this_cu->offset + this_cu->length)
9812 error (_("invalid dwarf2 offset %ld"), offset);
9813 gdb_assert (offset < this_cu->offset + this_cu->length);
9814 return this_cu;
9815 }
9816}
9817
9818/* Locate the compilation unit from OBJFILE which is located at exactly
9819 OFFSET. Raises an error on failure. */
9820
9821static struct dwarf2_per_cu_data *
9822dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9823{
9824 struct dwarf2_per_cu_data *this_cu;
9825 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9826 if (this_cu->offset != offset)
9827 error (_("no compilation unit with offset %ld."), offset);
9828 return this_cu;
9829}
9830
9831/* Release one cached compilation unit, CU. We unlink it from the tree
9832 of compilation units, but we don't remove it from the read_in_chain;
9833 the caller is responsible for that. */
9834
9835static void
9836free_one_comp_unit (void *data)
9837{
9838 struct dwarf2_cu *cu = data;
9839
9840 if (cu->per_cu != NULL)
9841 cu->per_cu->cu = NULL;
9842 cu->per_cu = NULL;
9843
9844 obstack_free (&cu->comp_unit_obstack, NULL);
9845 if (cu->dies)
9846 free_die_list (cu->dies);
9847
9848 xfree (cu);
9849}
9850
9851/* This cleanup function is passed the address of a dwarf2_cu on the stack
9852 when we're finished with it. We can't free the pointer itself, but be
9853 sure to unlink it from the cache. Also release any associated storage
9854 and perform cache maintenance.
9855
9856 Only used during partial symbol parsing. */
9857
9858static void
9859free_stack_comp_unit (void *data)
9860{
9861 struct dwarf2_cu *cu = data;
9862
9863 obstack_free (&cu->comp_unit_obstack, NULL);
9864 cu->partial_dies = NULL;
9865
9866 if (cu->per_cu != NULL)
9867 {
9868 /* This compilation unit is on the stack in our caller, so we
9869 should not xfree it. Just unlink it. */
9870 cu->per_cu->cu = NULL;
9871 cu->per_cu = NULL;
9872
9873 /* If we had a per-cu pointer, then we may have other compilation
9874 units loaded, so age them now. */
9875 age_cached_comp_units ();
9876 }
9877}
9878
9879/* Free all cached compilation units. */
9880
9881static void
9882free_cached_comp_units (void *data)
9883{
9884 struct dwarf2_per_cu_data *per_cu, **last_chain;
9885
9886 per_cu = dwarf2_per_objfile->read_in_chain;
9887 last_chain = &dwarf2_per_objfile->read_in_chain;
9888 while (per_cu != NULL)
9889 {
9890 struct dwarf2_per_cu_data *next_cu;
9891
9892 next_cu = per_cu->cu->read_in_chain;
9893
9894 free_one_comp_unit (per_cu->cu);
9895 *last_chain = next_cu;
9896
9897 per_cu = next_cu;
9898 }
9899}
9900
9901/* Increase the age counter on each cached compilation unit, and free
9902 any that are too old. */
9903
9904static void
9905age_cached_comp_units (void)
9906{
9907 struct dwarf2_per_cu_data *per_cu, **last_chain;
9908
9909 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9910 per_cu = dwarf2_per_objfile->read_in_chain;
9911 while (per_cu != NULL)
9912 {
9913 per_cu->cu->last_used ++;
9914 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9915 dwarf2_mark (per_cu->cu);
9916 per_cu = per_cu->cu->read_in_chain;
9917 }
9918
9919 per_cu = dwarf2_per_objfile->read_in_chain;
9920 last_chain = &dwarf2_per_objfile->read_in_chain;
9921 while (per_cu != NULL)
9922 {
9923 struct dwarf2_per_cu_data *next_cu;
9924
9925 next_cu = per_cu->cu->read_in_chain;
9926
9927 if (!per_cu->cu->mark)
9928 {
9929 free_one_comp_unit (per_cu->cu);
9930 *last_chain = next_cu;
9931 }
9932 else
9933 last_chain = &per_cu->cu->read_in_chain;
9934
9935 per_cu = next_cu;
9936 }
9937}
9938
9939/* Remove a single compilation unit from the cache. */
9940
9941static void
9942free_one_cached_comp_unit (void *target_cu)
9943{
9944 struct dwarf2_per_cu_data *per_cu, **last_chain;
9945
9946 per_cu = dwarf2_per_objfile->read_in_chain;
9947 last_chain = &dwarf2_per_objfile->read_in_chain;
9948 while (per_cu != NULL)
9949 {
9950 struct dwarf2_per_cu_data *next_cu;
9951
9952 next_cu = per_cu->cu->read_in_chain;
9953
9954 if (per_cu->cu == target_cu)
9955 {
9956 free_one_comp_unit (per_cu->cu);
9957 *last_chain = next_cu;
9958 break;
9959 }
9960 else
9961 last_chain = &per_cu->cu->read_in_chain;
9962
9963 per_cu = next_cu;
9964 }
9965}
9966
9967/* A pair of DIE offset and GDB type pointer. We store these
9968 in a hash table separate from the DIEs, and preserve them
9969 when the DIEs are flushed out of cache. */
9970
9971struct dwarf2_offset_and_type
9972{
9973 unsigned int offset;
9974 struct type *type;
9975};
9976
9977/* Hash function for a dwarf2_offset_and_type. */
9978
9979static hashval_t
9980offset_and_type_hash (const void *item)
9981{
9982 const struct dwarf2_offset_and_type *ofs = item;
9983 return ofs->offset;
9984}
9985
9986/* Equality function for a dwarf2_offset_and_type. */
9987
9988static int
9989offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9990{
9991 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9992 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9993 return ofs_lhs->offset == ofs_rhs->offset;
9994}
9995
9996/* Set the type associated with DIE to TYPE. Save it in CU's hash
9997 table if necessary. */
9998
9999static void
10000set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10001{
10002 struct dwarf2_offset_and_type **slot, ofs;
10003
10004 die->type = type;
10005
10006 if (cu->per_cu == NULL)
10007 return;
10008
10009 if (cu->per_cu->type_hash == NULL)
10010 cu->per_cu->type_hash
10011 = htab_create_alloc_ex (cu->header.length / 24,
10012 offset_and_type_hash,
10013 offset_and_type_eq,
10014 NULL,
10015 &cu->objfile->objfile_obstack,
10016 hashtab_obstack_allocate,
10017 dummy_obstack_deallocate);
10018
10019 ofs.offset = die->offset;
10020 ofs.type = type;
10021 slot = (struct dwarf2_offset_and_type **)
10022 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
10023 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10024 **slot = ofs;
10025}
10026
10027/* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
10028 have a saved type. */
10029
10030static struct type *
10031get_die_type (struct die_info *die, htab_t type_hash)
10032{
10033 struct dwarf2_offset_and_type *slot, ofs;
10034
10035 ofs.offset = die->offset;
10036 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10037 if (slot)
10038 return slot->type;
10039 else
10040 return NULL;
10041}
10042
10043/* Restore the types of the DIE tree starting at START_DIE from the hash
10044 table saved in CU. */
10045
10046static void
10047reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
10048{
10049 struct die_info *die;
10050
10051 if (cu->per_cu->type_hash == NULL)
10052 return;
10053
10054 for (die = start_die; die != NULL; die = die->sibling)
10055 {
10056 die->type = get_die_type (die, cu->per_cu->type_hash);
10057 if (die->child != NULL)
10058 reset_die_and_siblings_types (die->child, cu);
10059 }
10060}
10061
10062/* Set the mark field in CU and in every other compilation unit in the
10063 cache that we must keep because we are keeping CU. */
10064
10065/* Add a dependence relationship from CU to REF_PER_CU. */
10066
10067static void
10068dwarf2_add_dependence (struct dwarf2_cu *cu,
10069 struct dwarf2_per_cu_data *ref_per_cu)
10070{
10071 void **slot;
10072
10073 if (cu->dependencies == NULL)
10074 cu->dependencies
10075 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10076 NULL, &cu->comp_unit_obstack,
10077 hashtab_obstack_allocate,
10078 dummy_obstack_deallocate);
10079
10080 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10081 if (*slot == NULL)
10082 *slot = ref_per_cu;
10083}
10084
10085/* Set the mark field in CU and in every other compilation unit in the
10086 cache that we must keep because we are keeping CU. */
10087
10088static int
10089dwarf2_mark_helper (void **slot, void *data)
10090{
10091 struct dwarf2_per_cu_data *per_cu;
10092
10093 per_cu = (struct dwarf2_per_cu_data *) *slot;
10094 if (per_cu->cu->mark)
10095 return 1;
10096 per_cu->cu->mark = 1;
10097
10098 if (per_cu->cu->dependencies != NULL)
10099 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10100
10101 return 1;
10102}
10103
10104static void
10105dwarf2_mark (struct dwarf2_cu *cu)
10106{
10107 if (cu->mark)
10108 return;
10109 cu->mark = 1;
10110 if (cu->dependencies != NULL)
10111 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
10112}
10113
10114static void
10115dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10116{
10117 while (per_cu)
10118 {
10119 per_cu->cu->mark = 0;
10120 per_cu = per_cu->cu->read_in_chain;
10121 }
10122}
10123
10124/* Trivial hash function for partial_die_info: the hash value of a DIE
10125 is its offset in .debug_info for this objfile. */
10126
10127static hashval_t
10128partial_die_hash (const void *item)
10129{
10130 const struct partial_die_info *part_die = item;
10131 return part_die->offset;
10132}
10133
10134/* Trivial comparison function for partial_die_info structures: two DIEs
10135 are equal if they have the same offset. */
10136
10137static int
10138partial_die_eq (const void *item_lhs, const void *item_rhs)
10139{
10140 const struct partial_die_info *part_die_lhs = item_lhs;
10141 const struct partial_die_info *part_die_rhs = item_rhs;
10142 return part_die_lhs->offset == part_die_rhs->offset;
10143}
10144
10145static struct cmd_list_element *set_dwarf2_cmdlist;
10146static struct cmd_list_element *show_dwarf2_cmdlist;
10147
10148static void
10149set_dwarf2_cmd (char *args, int from_tty)
10150{
10151 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10152}
10153
10154static void
10155show_dwarf2_cmd (char *args, int from_tty)
10156{
10157 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10158}
10159
10160void _initialize_dwarf2_read (void);
10161
10162void
10163_initialize_dwarf2_read (void)
10164{
10165 dwarf2_objfile_data_key = register_objfile_data ();
10166
10167 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10168Set DWARF 2 specific variables.\n\
10169Configure DWARF 2 variables such as the cache size"),
10170 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10171 0/*allow-unknown*/, &maintenance_set_cmdlist);
10172
10173 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10174Show DWARF 2 specific variables\n\
10175Show DWARF 2 variables such as the cache size"),
10176 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10177 0/*allow-unknown*/, &maintenance_show_cmdlist);
10178
10179 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
10180 &dwarf2_max_cache_age, _("\
10181Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10182Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10183A higher limit means that cached compilation units will be stored\n\
10184in memory longer, and more total memory will be used. Zero disables\n\
10185caching, which can slow down startup."),
10186 NULL,
10187 show_dwarf2_max_cache_age,
10188 &set_dwarf2_cmdlist,
10189 &show_dwarf2_cmdlist);
10190}
This page took 0.054699 seconds and 4 git commands to generate.