daily update
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
... / ...
CommitLineData
1/* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31#include "defs.h"
32#include "bfd.h"
33#include "elf-bfd.h"
34#include "symtab.h"
35#include "gdbtypes.h"
36#include "objfiles.h"
37#include "dwarf2.h"
38#include "buildsym.h"
39#include "demangle.h"
40#include "gdb-demangle.h"
41#include "expression.h"
42#include "filenames.h" /* for DOSish file names */
43#include "macrotab.h"
44#include "language.h"
45#include "complaints.h"
46#include "bcache.h"
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
49#include "cp-support.h"
50#include "hashtab.h"
51#include "command.h"
52#include "gdbcmd.h"
53#include "block.h"
54#include "addrmap.h"
55#include "typeprint.h"
56#include "jv-lang.h"
57#include "psympriv.h"
58#include "exceptions.h"
59#include <sys/stat.h>
60#include "completer.h"
61#include "vec.h"
62#include "c-lang.h"
63#include "go-lang.h"
64#include "valprint.h"
65#include "gdbcore.h" /* for gnutarget */
66#include "gdb/gdb-index.h"
67#include <ctype.h>
68#include "gdb_bfd.h"
69#include "f-lang.h"
70#include "source.h"
71#include "filestuff.h"
72#include "build-id.h"
73
74#include <fcntl.h>
75#include <sys/types.h>
76
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83static unsigned int dwarf2_read_debug = 0;
84
85/* When non-zero, dump DIEs after they are read in. */
86static unsigned int dwarf2_die_debug = 0;
87
88/* When non-zero, cross-check physname against demangler. */
89static int check_physname = 0;
90
91/* When non-zero, do not reject deprecated .gdb_index sections. */
92static int use_deprecated_index_sections = 0;
93
94static const struct objfile_data *dwarf2_objfile_data_key;
95
96/* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98static int dwarf2_locexpr_index;
99static int dwarf2_loclist_index;
100static int dwarf2_locexpr_block_index;
101static int dwarf2_loclist_block_index;
102
103/* A descriptor for dwarf sections.
104
105 S.ASECTION, SIZE are typically initialized when the objfile is first
106 scanned. BUFFER, READIN are filled in later when the section is read.
107 If the section contained compressed data then SIZE is updated to record
108 the uncompressed size of the section.
109
110 DWP file format V2 introduces a wrinkle that is easiest to handle by
111 creating the concept of virtual sections contained within a real section.
112 In DWP V2 the sections of the input DWO files are concatenated together
113 into one section, but section offsets are kept relative to the original
114 input section.
115 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
116 the real section this "virtual" section is contained in, and BUFFER,SIZE
117 describe the virtual section. */
118
119struct dwarf2_section_info
120{
121 union
122 {
123 /* If this is a real section, the bfd section. */
124 asection *asection;
125 /* If this is a virtual section, pointer to the containing ("real")
126 section. */
127 struct dwarf2_section_info *containing_section;
128 } s;
129 /* Pointer to section data, only valid if readin. */
130 const gdb_byte *buffer;
131 /* The size of the section, real or virtual. */
132 bfd_size_type size;
133 /* If this is a virtual section, the offset in the real section.
134 Only valid if is_virtual. */
135 bfd_size_type virtual_offset;
136 /* True if we have tried to read this section. */
137 char readin;
138 /* True if this is a virtual section, False otherwise.
139 This specifies which of s.asection and s.containing_section to use. */
140 char is_virtual;
141};
142
143typedef struct dwarf2_section_info dwarf2_section_info_def;
144DEF_VEC_O (dwarf2_section_info_def);
145
146/* All offsets in the index are of this type. It must be
147 architecture-independent. */
148typedef uint32_t offset_type;
149
150DEF_VEC_I (offset_type);
151
152/* Ensure only legit values are used. */
153#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
154 do { \
155 gdb_assert ((unsigned int) (value) <= 1); \
156 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
157 } while (0)
158
159/* Ensure only legit values are used. */
160#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
161 do { \
162 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
163 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
164 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
165 } while (0)
166
167/* Ensure we don't use more than the alloted nuber of bits for the CU. */
168#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
169 do { \
170 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
171 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
172 } while (0)
173
174/* A description of the mapped index. The file format is described in
175 a comment by the code that writes the index. */
176struct mapped_index
177{
178 /* Index data format version. */
179 int version;
180
181 /* The total length of the buffer. */
182 off_t total_size;
183
184 /* A pointer to the address table data. */
185 const gdb_byte *address_table;
186
187 /* Size of the address table data in bytes. */
188 offset_type address_table_size;
189
190 /* The symbol table, implemented as a hash table. */
191 const offset_type *symbol_table;
192
193 /* Size in slots, each slot is 2 offset_types. */
194 offset_type symbol_table_slots;
195
196 /* A pointer to the constant pool. */
197 const char *constant_pool;
198};
199
200typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
201DEF_VEC_P (dwarf2_per_cu_ptr);
202
203/* Collection of data recorded per objfile.
204 This hangs off of dwarf2_objfile_data_key. */
205
206struct dwarf2_per_objfile
207{
208 struct dwarf2_section_info info;
209 struct dwarf2_section_info abbrev;
210 struct dwarf2_section_info line;
211 struct dwarf2_section_info loc;
212 struct dwarf2_section_info macinfo;
213 struct dwarf2_section_info macro;
214 struct dwarf2_section_info str;
215 struct dwarf2_section_info ranges;
216 struct dwarf2_section_info addr;
217 struct dwarf2_section_info frame;
218 struct dwarf2_section_info eh_frame;
219 struct dwarf2_section_info gdb_index;
220
221 VEC (dwarf2_section_info_def) *types;
222
223 /* Back link. */
224 struct objfile *objfile;
225
226 /* Table of all the compilation units. This is used to locate
227 the target compilation unit of a particular reference. */
228 struct dwarf2_per_cu_data **all_comp_units;
229
230 /* The number of compilation units in ALL_COMP_UNITS. */
231 int n_comp_units;
232
233 /* The number of .debug_types-related CUs. */
234 int n_type_units;
235
236 /* The number of elements allocated in all_type_units.
237 If there are skeleton-less TUs, we add them to all_type_units lazily. */
238 int n_allocated_type_units;
239
240 /* The .debug_types-related CUs (TUs).
241 This is stored in malloc space because we may realloc it. */
242 struct signatured_type **all_type_units;
243
244 /* Table of struct type_unit_group objects.
245 The hash key is the DW_AT_stmt_list value. */
246 htab_t type_unit_groups;
247
248 /* A table mapping .debug_types signatures to its signatured_type entry.
249 This is NULL if the .debug_types section hasn't been read in yet. */
250 htab_t signatured_types;
251
252 /* Type unit statistics, to see how well the scaling improvements
253 are doing. */
254 struct tu_stats
255 {
256 int nr_uniq_abbrev_tables;
257 int nr_symtabs;
258 int nr_symtab_sharers;
259 int nr_stmt_less_type_units;
260 int nr_all_type_units_reallocs;
261 } tu_stats;
262
263 /* A chain of compilation units that are currently read in, so that
264 they can be freed later. */
265 struct dwarf2_per_cu_data *read_in_chain;
266
267 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
268 This is NULL if the table hasn't been allocated yet. */
269 htab_t dwo_files;
270
271 /* Non-zero if we've check for whether there is a DWP file. */
272 int dwp_checked;
273
274 /* The DWP file if there is one, or NULL. */
275 struct dwp_file *dwp_file;
276
277 /* The shared '.dwz' file, if one exists. This is used when the
278 original data was compressed using 'dwz -m'. */
279 struct dwz_file *dwz_file;
280
281 /* A flag indicating wether this objfile has a section loaded at a
282 VMA of 0. */
283 int has_section_at_zero;
284
285 /* True if we are using the mapped index,
286 or we are faking it for OBJF_READNOW's sake. */
287 unsigned char using_index;
288
289 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
290 struct mapped_index *index_table;
291
292 /* When using index_table, this keeps track of all quick_file_names entries.
293 TUs typically share line table entries with a CU, so we maintain a
294 separate table of all line table entries to support the sharing.
295 Note that while there can be way more TUs than CUs, we've already
296 sorted all the TUs into "type unit groups", grouped by their
297 DW_AT_stmt_list value. Therefore the only sharing done here is with a
298 CU and its associated TU group if there is one. */
299 htab_t quick_file_names_table;
300
301 /* Set during partial symbol reading, to prevent queueing of full
302 symbols. */
303 int reading_partial_symbols;
304
305 /* Table mapping type DIEs to their struct type *.
306 This is NULL if not allocated yet.
307 The mapping is done via (CU/TU + DIE offset) -> type. */
308 htab_t die_type_hash;
309
310 /* The CUs we recently read. */
311 VEC (dwarf2_per_cu_ptr) *just_read_cus;
312};
313
314static struct dwarf2_per_objfile *dwarf2_per_objfile;
315
316/* Default names of the debugging sections. */
317
318/* Note that if the debugging section has been compressed, it might
319 have a name like .zdebug_info. */
320
321static const struct dwarf2_debug_sections dwarf2_elf_names =
322{
323 { ".debug_info", ".zdebug_info" },
324 { ".debug_abbrev", ".zdebug_abbrev" },
325 { ".debug_line", ".zdebug_line" },
326 { ".debug_loc", ".zdebug_loc" },
327 { ".debug_macinfo", ".zdebug_macinfo" },
328 { ".debug_macro", ".zdebug_macro" },
329 { ".debug_str", ".zdebug_str" },
330 { ".debug_ranges", ".zdebug_ranges" },
331 { ".debug_types", ".zdebug_types" },
332 { ".debug_addr", ".zdebug_addr" },
333 { ".debug_frame", ".zdebug_frame" },
334 { ".eh_frame", NULL },
335 { ".gdb_index", ".zgdb_index" },
336 23
337};
338
339/* List of DWO/DWP sections. */
340
341static const struct dwop_section_names
342{
343 struct dwarf2_section_names abbrev_dwo;
344 struct dwarf2_section_names info_dwo;
345 struct dwarf2_section_names line_dwo;
346 struct dwarf2_section_names loc_dwo;
347 struct dwarf2_section_names macinfo_dwo;
348 struct dwarf2_section_names macro_dwo;
349 struct dwarf2_section_names str_dwo;
350 struct dwarf2_section_names str_offsets_dwo;
351 struct dwarf2_section_names types_dwo;
352 struct dwarf2_section_names cu_index;
353 struct dwarf2_section_names tu_index;
354}
355dwop_section_names =
356{
357 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
358 { ".debug_info.dwo", ".zdebug_info.dwo" },
359 { ".debug_line.dwo", ".zdebug_line.dwo" },
360 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
361 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
362 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
363 { ".debug_str.dwo", ".zdebug_str.dwo" },
364 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
365 { ".debug_types.dwo", ".zdebug_types.dwo" },
366 { ".debug_cu_index", ".zdebug_cu_index" },
367 { ".debug_tu_index", ".zdebug_tu_index" },
368};
369
370/* local data types */
371
372/* The data in a compilation unit header, after target2host
373 translation, looks like this. */
374struct comp_unit_head
375{
376 unsigned int length;
377 short version;
378 unsigned char addr_size;
379 unsigned char signed_addr_p;
380 sect_offset abbrev_offset;
381
382 /* Size of file offsets; either 4 or 8. */
383 unsigned int offset_size;
384
385 /* Size of the length field; either 4 or 12. */
386 unsigned int initial_length_size;
387
388 /* Offset to the first byte of this compilation unit header in the
389 .debug_info section, for resolving relative reference dies. */
390 sect_offset offset;
391
392 /* Offset to first die in this cu from the start of the cu.
393 This will be the first byte following the compilation unit header. */
394 cu_offset first_die_offset;
395};
396
397/* Type used for delaying computation of method physnames.
398 See comments for compute_delayed_physnames. */
399struct delayed_method_info
400{
401 /* The type to which the method is attached, i.e., its parent class. */
402 struct type *type;
403
404 /* The index of the method in the type's function fieldlists. */
405 int fnfield_index;
406
407 /* The index of the method in the fieldlist. */
408 int index;
409
410 /* The name of the DIE. */
411 const char *name;
412
413 /* The DIE associated with this method. */
414 struct die_info *die;
415};
416
417typedef struct delayed_method_info delayed_method_info;
418DEF_VEC_O (delayed_method_info);
419
420/* Internal state when decoding a particular compilation unit. */
421struct dwarf2_cu
422{
423 /* The objfile containing this compilation unit. */
424 struct objfile *objfile;
425
426 /* The header of the compilation unit. */
427 struct comp_unit_head header;
428
429 /* Base address of this compilation unit. */
430 CORE_ADDR base_address;
431
432 /* Non-zero if base_address has been set. */
433 int base_known;
434
435 /* The language we are debugging. */
436 enum language language;
437 const struct language_defn *language_defn;
438
439 const char *producer;
440
441 /* The generic symbol table building routines have separate lists for
442 file scope symbols and all all other scopes (local scopes). So
443 we need to select the right one to pass to add_symbol_to_list().
444 We do it by keeping a pointer to the correct list in list_in_scope.
445
446 FIXME: The original dwarf code just treated the file scope as the
447 first local scope, and all other local scopes as nested local
448 scopes, and worked fine. Check to see if we really need to
449 distinguish these in buildsym.c. */
450 struct pending **list_in_scope;
451
452 /* The abbrev table for this CU.
453 Normally this points to the abbrev table in the objfile.
454 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
455 struct abbrev_table *abbrev_table;
456
457 /* Hash table holding all the loaded partial DIEs
458 with partial_die->offset.SECT_OFF as hash. */
459 htab_t partial_dies;
460
461 /* Storage for things with the same lifetime as this read-in compilation
462 unit, including partial DIEs. */
463 struct obstack comp_unit_obstack;
464
465 /* When multiple dwarf2_cu structures are living in memory, this field
466 chains them all together, so that they can be released efficiently.
467 We will probably also want a generation counter so that most-recently-used
468 compilation units are cached... */
469 struct dwarf2_per_cu_data *read_in_chain;
470
471 /* Backlink to our per_cu entry. */
472 struct dwarf2_per_cu_data *per_cu;
473
474 /* How many compilation units ago was this CU last referenced? */
475 int last_used;
476
477 /* A hash table of DIE cu_offset for following references with
478 die_info->offset.sect_off as hash. */
479 htab_t die_hash;
480
481 /* Full DIEs if read in. */
482 struct die_info *dies;
483
484 /* A set of pointers to dwarf2_per_cu_data objects for compilation
485 units referenced by this one. Only set during full symbol processing;
486 partial symbol tables do not have dependencies. */
487 htab_t dependencies;
488
489 /* Header data from the line table, during full symbol processing. */
490 struct line_header *line_header;
491
492 /* A list of methods which need to have physnames computed
493 after all type information has been read. */
494 VEC (delayed_method_info) *method_list;
495
496 /* To be copied to symtab->call_site_htab. */
497 htab_t call_site_htab;
498
499 /* Non-NULL if this CU came from a DWO file.
500 There is an invariant here that is important to remember:
501 Except for attributes copied from the top level DIE in the "main"
502 (or "stub") file in preparation for reading the DWO file
503 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
504 Either there isn't a DWO file (in which case this is NULL and the point
505 is moot), or there is and either we're not going to read it (in which
506 case this is NULL) or there is and we are reading it (in which case this
507 is non-NULL). */
508 struct dwo_unit *dwo_unit;
509
510 /* The DW_AT_addr_base attribute if present, zero otherwise
511 (zero is a valid value though).
512 Note this value comes from the Fission stub CU/TU's DIE. */
513 ULONGEST addr_base;
514
515 /* The DW_AT_ranges_base attribute if present, zero otherwise
516 (zero is a valid value though).
517 Note this value comes from the Fission stub CU/TU's DIE.
518 Also note that the value is zero in the non-DWO case so this value can
519 be used without needing to know whether DWO files are in use or not.
520 N.B. This does not apply to DW_AT_ranges appearing in
521 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
522 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
523 DW_AT_ranges_base *would* have to be applied, and we'd have to care
524 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
525 ULONGEST ranges_base;
526
527 /* Mark used when releasing cached dies. */
528 unsigned int mark : 1;
529
530 /* This CU references .debug_loc. See the symtab->locations_valid field.
531 This test is imperfect as there may exist optimized debug code not using
532 any location list and still facing inlining issues if handled as
533 unoptimized code. For a future better test see GCC PR other/32998. */
534 unsigned int has_loclist : 1;
535
536 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
537 if all the producer_is_* fields are valid. This information is cached
538 because profiling CU expansion showed excessive time spent in
539 producer_is_gxx_lt_4_6. */
540 unsigned int checked_producer : 1;
541 unsigned int producer_is_gxx_lt_4_6 : 1;
542 unsigned int producer_is_gcc_lt_4_3 : 1;
543 unsigned int producer_is_icc : 1;
544
545 /* When set, the file that we're processing is known to have
546 debugging info for C++ namespaces. GCC 3.3.x did not produce
547 this information, but later versions do. */
548
549 unsigned int processing_has_namespace_info : 1;
550};
551
552/* Persistent data held for a compilation unit, even when not
553 processing it. We put a pointer to this structure in the
554 read_symtab_private field of the psymtab. */
555
556struct dwarf2_per_cu_data
557{
558 /* The start offset and length of this compilation unit.
559 NOTE: Unlike comp_unit_head.length, this length includes
560 initial_length_size.
561 If the DIE refers to a DWO file, this is always of the original die,
562 not the DWO file. */
563 sect_offset offset;
564 unsigned int length;
565
566 /* Flag indicating this compilation unit will be read in before
567 any of the current compilation units are processed. */
568 unsigned int queued : 1;
569
570 /* This flag will be set when reading partial DIEs if we need to load
571 absolutely all DIEs for this compilation unit, instead of just the ones
572 we think are interesting. It gets set if we look for a DIE in the
573 hash table and don't find it. */
574 unsigned int load_all_dies : 1;
575
576 /* Non-zero if this CU is from .debug_types.
577 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
578 this is non-zero. */
579 unsigned int is_debug_types : 1;
580
581 /* Non-zero if this CU is from the .dwz file. */
582 unsigned int is_dwz : 1;
583
584 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
585 This flag is only valid if is_debug_types is true.
586 We can't read a CU directly from a DWO file: There are required
587 attributes in the stub. */
588 unsigned int reading_dwo_directly : 1;
589
590 /* Non-zero if the TU has been read.
591 This is used to assist the "Stay in DWO Optimization" for Fission:
592 When reading a DWO, it's faster to read TUs from the DWO instead of
593 fetching them from random other DWOs (due to comdat folding).
594 If the TU has already been read, the optimization is unnecessary
595 (and unwise - we don't want to change where gdb thinks the TU lives
596 "midflight").
597 This flag is only valid if is_debug_types is true. */
598 unsigned int tu_read : 1;
599
600 /* The section this CU/TU lives in.
601 If the DIE refers to a DWO file, this is always the original die,
602 not the DWO file. */
603 struct dwarf2_section_info *section;
604
605 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
606 of the CU cache it gets reset to NULL again. */
607 struct dwarf2_cu *cu;
608
609 /* The corresponding objfile.
610 Normally we can get the objfile from dwarf2_per_objfile.
611 However we can enter this file with just a "per_cu" handle. */
612 struct objfile *objfile;
613
614 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
615 is active. Otherwise, the 'psymtab' field is active. */
616 union
617 {
618 /* The partial symbol table associated with this compilation unit,
619 or NULL for unread partial units. */
620 struct partial_symtab *psymtab;
621
622 /* Data needed by the "quick" functions. */
623 struct dwarf2_per_cu_quick_data *quick;
624 } v;
625
626 /* The CUs we import using DW_TAG_imported_unit. This is filled in
627 while reading psymtabs, used to compute the psymtab dependencies,
628 and then cleared. Then it is filled in again while reading full
629 symbols, and only deleted when the objfile is destroyed.
630
631 This is also used to work around a difference between the way gold
632 generates .gdb_index version <=7 and the way gdb does. Arguably this
633 is a gold bug. For symbols coming from TUs, gold records in the index
634 the CU that includes the TU instead of the TU itself. This breaks
635 dw2_lookup_symbol: It assumes that if the index says symbol X lives
636 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
637 will find X. Alas TUs live in their own symtab, so after expanding CU Y
638 we need to look in TU Z to find X. Fortunately, this is akin to
639 DW_TAG_imported_unit, so we just use the same mechanism: For
640 .gdb_index version <=7 this also records the TUs that the CU referred
641 to. Concurrently with this change gdb was modified to emit version 8
642 indices so we only pay a price for gold generated indices.
643 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
644 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
645};
646
647/* Entry in the signatured_types hash table. */
648
649struct signatured_type
650{
651 /* The "per_cu" object of this type.
652 This struct is used iff per_cu.is_debug_types.
653 N.B.: This is the first member so that it's easy to convert pointers
654 between them. */
655 struct dwarf2_per_cu_data per_cu;
656
657 /* The type's signature. */
658 ULONGEST signature;
659
660 /* Offset in the TU of the type's DIE, as read from the TU header.
661 If this TU is a DWO stub and the definition lives in a DWO file
662 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
663 cu_offset type_offset_in_tu;
664
665 /* Offset in the section of the type's DIE.
666 If the definition lives in a DWO file, this is the offset in the
667 .debug_types.dwo section.
668 The value is zero until the actual value is known.
669 Zero is otherwise not a valid section offset. */
670 sect_offset type_offset_in_section;
671
672 /* Type units are grouped by their DW_AT_stmt_list entry so that they
673 can share them. This points to the containing symtab. */
674 struct type_unit_group *type_unit_group;
675
676 /* The type.
677 The first time we encounter this type we fully read it in and install it
678 in the symbol tables. Subsequent times we only need the type. */
679 struct type *type;
680
681 /* Containing DWO unit.
682 This field is valid iff per_cu.reading_dwo_directly. */
683 struct dwo_unit *dwo_unit;
684};
685
686typedef struct signatured_type *sig_type_ptr;
687DEF_VEC_P (sig_type_ptr);
688
689/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
690 This includes type_unit_group and quick_file_names. */
691
692struct stmt_list_hash
693{
694 /* The DWO unit this table is from or NULL if there is none. */
695 struct dwo_unit *dwo_unit;
696
697 /* Offset in .debug_line or .debug_line.dwo. */
698 sect_offset line_offset;
699};
700
701/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
702 an object of this type. */
703
704struct type_unit_group
705{
706 /* dwarf2read.c's main "handle" on a TU symtab.
707 To simplify things we create an artificial CU that "includes" all the
708 type units using this stmt_list so that the rest of the code still has
709 a "per_cu" handle on the symtab.
710 This PER_CU is recognized by having no section. */
711#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
712 struct dwarf2_per_cu_data per_cu;
713
714 /* The TUs that share this DW_AT_stmt_list entry.
715 This is added to while parsing type units to build partial symtabs,
716 and is deleted afterwards and not used again. */
717 VEC (sig_type_ptr) *tus;
718
719 /* The primary symtab.
720 Type units in a group needn't all be defined in the same source file,
721 so we create an essentially anonymous symtab as the primary symtab. */
722 struct symtab *primary_symtab;
723
724 /* The data used to construct the hash key. */
725 struct stmt_list_hash hash;
726
727 /* The number of symtabs from the line header.
728 The value here must match line_header.num_file_names. */
729 unsigned int num_symtabs;
730
731 /* The symbol tables for this TU (obtained from the files listed in
732 DW_AT_stmt_list).
733 WARNING: The order of entries here must match the order of entries
734 in the line header. After the first TU using this type_unit_group, the
735 line header for the subsequent TUs is recreated from this. This is done
736 because we need to use the same symtabs for each TU using the same
737 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
738 there's no guarantee the line header doesn't have duplicate entries. */
739 struct symtab **symtabs;
740};
741
742/* These sections are what may appear in a (real or virtual) DWO file. */
743
744struct dwo_sections
745{
746 struct dwarf2_section_info abbrev;
747 struct dwarf2_section_info line;
748 struct dwarf2_section_info loc;
749 struct dwarf2_section_info macinfo;
750 struct dwarf2_section_info macro;
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info str_offsets;
753 /* In the case of a virtual DWO file, these two are unused. */
754 struct dwarf2_section_info info;
755 VEC (dwarf2_section_info_def) *types;
756};
757
758/* CUs/TUs in DWP/DWO files. */
759
760struct dwo_unit
761{
762 /* Backlink to the containing struct dwo_file. */
763 struct dwo_file *dwo_file;
764
765 /* The "id" that distinguishes this CU/TU.
766 .debug_info calls this "dwo_id", .debug_types calls this "signature".
767 Since signatures came first, we stick with it for consistency. */
768 ULONGEST signature;
769
770 /* The section this CU/TU lives in, in the DWO file. */
771 struct dwarf2_section_info *section;
772
773 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
774 sect_offset offset;
775 unsigned int length;
776
777 /* For types, offset in the type's DIE of the type defined by this TU. */
778 cu_offset type_offset_in_tu;
779};
780
781/* include/dwarf2.h defines the DWP section codes.
782 It defines a max value but it doesn't define a min value, which we
783 use for error checking, so provide one. */
784
785enum dwp_v2_section_ids
786{
787 DW_SECT_MIN = 1
788};
789
790/* Data for one DWO file.
791
792 This includes virtual DWO files (a virtual DWO file is a DWO file as it
793 appears in a DWP file). DWP files don't really have DWO files per se -
794 comdat folding of types "loses" the DWO file they came from, and from
795 a high level view DWP files appear to contain a mass of random types.
796 However, to maintain consistency with the non-DWP case we pretend DWP
797 files contain virtual DWO files, and we assign each TU with one virtual
798 DWO file (generally based on the line and abbrev section offsets -
799 a heuristic that seems to work in practice). */
800
801struct dwo_file
802{
803 /* The DW_AT_GNU_dwo_name attribute.
804 For virtual DWO files the name is constructed from the section offsets
805 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
806 from related CU+TUs. */
807 const char *dwo_name;
808
809 /* The DW_AT_comp_dir attribute. */
810 const char *comp_dir;
811
812 /* The bfd, when the file is open. Otherwise this is NULL.
813 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
814 bfd *dbfd;
815
816 /* The sections that make up this DWO file.
817 Remember that for virtual DWO files in DWP V2, these are virtual
818 sections (for lack of a better name). */
819 struct dwo_sections sections;
820
821 /* The CU in the file.
822 We only support one because having more than one requires hacking the
823 dwo_name of each to match, which is highly unlikely to happen.
824 Doing this means all TUs can share comp_dir: We also assume that
825 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
826 struct dwo_unit *cu;
827
828 /* Table of TUs in the file.
829 Each element is a struct dwo_unit. */
830 htab_t tus;
831};
832
833/* These sections are what may appear in a DWP file. */
834
835struct dwp_sections
836{
837 /* These are used by both DWP version 1 and 2. */
838 struct dwarf2_section_info str;
839 struct dwarf2_section_info cu_index;
840 struct dwarf2_section_info tu_index;
841
842 /* These are only used by DWP version 2 files.
843 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
844 sections are referenced by section number, and are not recorded here.
845 In DWP version 2 there is at most one copy of all these sections, each
846 section being (effectively) comprised of the concatenation of all of the
847 individual sections that exist in the version 1 format.
848 To keep the code simple we treat each of these concatenated pieces as a
849 section itself (a virtual section?). */
850 struct dwarf2_section_info abbrev;
851 struct dwarf2_section_info info;
852 struct dwarf2_section_info line;
853 struct dwarf2_section_info loc;
854 struct dwarf2_section_info macinfo;
855 struct dwarf2_section_info macro;
856 struct dwarf2_section_info str_offsets;
857 struct dwarf2_section_info types;
858};
859
860/* These sections are what may appear in a virtual DWO file in DWP version 1.
861 A virtual DWO file is a DWO file as it appears in a DWP file. */
862
863struct virtual_v1_dwo_sections
864{
865 struct dwarf2_section_info abbrev;
866 struct dwarf2_section_info line;
867 struct dwarf2_section_info loc;
868 struct dwarf2_section_info macinfo;
869 struct dwarf2_section_info macro;
870 struct dwarf2_section_info str_offsets;
871 /* Each DWP hash table entry records one CU or one TU.
872 That is recorded here, and copied to dwo_unit.section. */
873 struct dwarf2_section_info info_or_types;
874};
875
876/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
877 In version 2, the sections of the DWO files are concatenated together
878 and stored in one section of that name. Thus each ELF section contains
879 several "virtual" sections. */
880
881struct virtual_v2_dwo_sections
882{
883 bfd_size_type abbrev_offset;
884 bfd_size_type abbrev_size;
885
886 bfd_size_type line_offset;
887 bfd_size_type line_size;
888
889 bfd_size_type loc_offset;
890 bfd_size_type loc_size;
891
892 bfd_size_type macinfo_offset;
893 bfd_size_type macinfo_size;
894
895 bfd_size_type macro_offset;
896 bfd_size_type macro_size;
897
898 bfd_size_type str_offsets_offset;
899 bfd_size_type str_offsets_size;
900
901 /* Each DWP hash table entry records one CU or one TU.
902 That is recorded here, and copied to dwo_unit.section. */
903 bfd_size_type info_or_types_offset;
904 bfd_size_type info_or_types_size;
905};
906
907/* Contents of DWP hash tables. */
908
909struct dwp_hash_table
910{
911 uint32_t version, nr_columns;
912 uint32_t nr_units, nr_slots;
913 const gdb_byte *hash_table, *unit_table;
914 union
915 {
916 struct
917 {
918 const gdb_byte *indices;
919 } v1;
920 struct
921 {
922 /* This is indexed by column number and gives the id of the section
923 in that column. */
924#define MAX_NR_V2_DWO_SECTIONS \
925 (1 /* .debug_info or .debug_types */ \
926 + 1 /* .debug_abbrev */ \
927 + 1 /* .debug_line */ \
928 + 1 /* .debug_loc */ \
929 + 1 /* .debug_str_offsets */ \
930 + 1 /* .debug_macro or .debug_macinfo */)
931 int section_ids[MAX_NR_V2_DWO_SECTIONS];
932 const gdb_byte *offsets;
933 const gdb_byte *sizes;
934 } v2;
935 } section_pool;
936};
937
938/* Data for one DWP file. */
939
940struct dwp_file
941{
942 /* Name of the file. */
943 const char *name;
944
945 /* File format version. */
946 int version;
947
948 /* The bfd. */
949 bfd *dbfd;
950
951 /* Section info for this file. */
952 struct dwp_sections sections;
953
954 /* Table of CUs in the file. */
955 const struct dwp_hash_table *cus;
956
957 /* Table of TUs in the file. */
958 const struct dwp_hash_table *tus;
959
960 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
961 htab_t loaded_cus;
962 htab_t loaded_tus;
963
964 /* Table to map ELF section numbers to their sections.
965 This is only needed for the DWP V1 file format. */
966 unsigned int num_sections;
967 asection **elf_sections;
968};
969
970/* This represents a '.dwz' file. */
971
972struct dwz_file
973{
974 /* A dwz file can only contain a few sections. */
975 struct dwarf2_section_info abbrev;
976 struct dwarf2_section_info info;
977 struct dwarf2_section_info str;
978 struct dwarf2_section_info line;
979 struct dwarf2_section_info macro;
980 struct dwarf2_section_info gdb_index;
981
982 /* The dwz's BFD. */
983 bfd *dwz_bfd;
984};
985
986/* Struct used to pass misc. parameters to read_die_and_children, et
987 al. which are used for both .debug_info and .debug_types dies.
988 All parameters here are unchanging for the life of the call. This
989 struct exists to abstract away the constant parameters of die reading. */
990
991struct die_reader_specs
992{
993 /* The bfd of die_section. */
994 bfd* abfd;
995
996 /* The CU of the DIE we are parsing. */
997 struct dwarf2_cu *cu;
998
999 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1000 struct dwo_file *dwo_file;
1001
1002 /* The section the die comes from.
1003 This is either .debug_info or .debug_types, or the .dwo variants. */
1004 struct dwarf2_section_info *die_section;
1005
1006 /* die_section->buffer. */
1007 const gdb_byte *buffer;
1008
1009 /* The end of the buffer. */
1010 const gdb_byte *buffer_end;
1011
1012 /* The value of the DW_AT_comp_dir attribute. */
1013 const char *comp_dir;
1014};
1015
1016/* Type of function passed to init_cutu_and_read_dies, et.al. */
1017typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1018 const gdb_byte *info_ptr,
1019 struct die_info *comp_unit_die,
1020 int has_children,
1021 void *data);
1022
1023/* The line number information for a compilation unit (found in the
1024 .debug_line section) begins with a "statement program header",
1025 which contains the following information. */
1026struct line_header
1027{
1028 unsigned int total_length;
1029 unsigned short version;
1030 unsigned int header_length;
1031 unsigned char minimum_instruction_length;
1032 unsigned char maximum_ops_per_instruction;
1033 unsigned char default_is_stmt;
1034 int line_base;
1035 unsigned char line_range;
1036 unsigned char opcode_base;
1037
1038 /* standard_opcode_lengths[i] is the number of operands for the
1039 standard opcode whose value is i. This means that
1040 standard_opcode_lengths[0] is unused, and the last meaningful
1041 element is standard_opcode_lengths[opcode_base - 1]. */
1042 unsigned char *standard_opcode_lengths;
1043
1044 /* The include_directories table. NOTE! These strings are not
1045 allocated with xmalloc; instead, they are pointers into
1046 debug_line_buffer. If you try to free them, `free' will get
1047 indigestion. */
1048 unsigned int num_include_dirs, include_dirs_size;
1049 const char **include_dirs;
1050
1051 /* The file_names table. NOTE! These strings are not allocated
1052 with xmalloc; instead, they are pointers into debug_line_buffer.
1053 Don't try to free them directly. */
1054 unsigned int num_file_names, file_names_size;
1055 struct file_entry
1056 {
1057 const char *name;
1058 unsigned int dir_index;
1059 unsigned int mod_time;
1060 unsigned int length;
1061 int included_p; /* Non-zero if referenced by the Line Number Program. */
1062 struct symtab *symtab; /* The associated symbol table, if any. */
1063 } *file_names;
1064
1065 /* The start and end of the statement program following this
1066 header. These point into dwarf2_per_objfile->line_buffer. */
1067 const gdb_byte *statement_program_start, *statement_program_end;
1068};
1069
1070/* When we construct a partial symbol table entry we only
1071 need this much information. */
1072struct partial_die_info
1073 {
1074 /* Offset of this DIE. */
1075 sect_offset offset;
1076
1077 /* DWARF-2 tag for this DIE. */
1078 ENUM_BITFIELD(dwarf_tag) tag : 16;
1079
1080 /* Assorted flags describing the data found in this DIE. */
1081 unsigned int has_children : 1;
1082 unsigned int is_external : 1;
1083 unsigned int is_declaration : 1;
1084 unsigned int has_type : 1;
1085 unsigned int has_specification : 1;
1086 unsigned int has_pc_info : 1;
1087 unsigned int may_be_inlined : 1;
1088
1089 /* Flag set if the SCOPE field of this structure has been
1090 computed. */
1091 unsigned int scope_set : 1;
1092
1093 /* Flag set if the DIE has a byte_size attribute. */
1094 unsigned int has_byte_size : 1;
1095
1096 /* Flag set if any of the DIE's children are template arguments. */
1097 unsigned int has_template_arguments : 1;
1098
1099 /* Flag set if fixup_partial_die has been called on this die. */
1100 unsigned int fixup_called : 1;
1101
1102 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1103 unsigned int is_dwz : 1;
1104
1105 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1106 unsigned int spec_is_dwz : 1;
1107
1108 /* The name of this DIE. Normally the value of DW_AT_name, but
1109 sometimes a default name for unnamed DIEs. */
1110 const char *name;
1111
1112 /* The linkage name, if present. */
1113 const char *linkage_name;
1114
1115 /* The scope to prepend to our children. This is generally
1116 allocated on the comp_unit_obstack, so will disappear
1117 when this compilation unit leaves the cache. */
1118 const char *scope;
1119
1120 /* Some data associated with the partial DIE. The tag determines
1121 which field is live. */
1122 union
1123 {
1124 /* The location description associated with this DIE, if any. */
1125 struct dwarf_block *locdesc;
1126 /* The offset of an import, for DW_TAG_imported_unit. */
1127 sect_offset offset;
1128 } d;
1129
1130 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1131 CORE_ADDR lowpc;
1132 CORE_ADDR highpc;
1133
1134 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1135 DW_AT_sibling, if any. */
1136 /* NOTE: This member isn't strictly necessary, read_partial_die could
1137 return DW_AT_sibling values to its caller load_partial_dies. */
1138 const gdb_byte *sibling;
1139
1140 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1141 DW_AT_specification (or DW_AT_abstract_origin or
1142 DW_AT_extension). */
1143 sect_offset spec_offset;
1144
1145 /* Pointers to this DIE's parent, first child, and next sibling,
1146 if any. */
1147 struct partial_die_info *die_parent, *die_child, *die_sibling;
1148 };
1149
1150/* This data structure holds the information of an abbrev. */
1151struct abbrev_info
1152 {
1153 unsigned int number; /* number identifying abbrev */
1154 enum dwarf_tag tag; /* dwarf tag */
1155 unsigned short has_children; /* boolean */
1156 unsigned short num_attrs; /* number of attributes */
1157 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1158 struct abbrev_info *next; /* next in chain */
1159 };
1160
1161struct attr_abbrev
1162 {
1163 ENUM_BITFIELD(dwarf_attribute) name : 16;
1164 ENUM_BITFIELD(dwarf_form) form : 16;
1165 };
1166
1167/* Size of abbrev_table.abbrev_hash_table. */
1168#define ABBREV_HASH_SIZE 121
1169
1170/* Top level data structure to contain an abbreviation table. */
1171
1172struct abbrev_table
1173{
1174 /* Where the abbrev table came from.
1175 This is used as a sanity check when the table is used. */
1176 sect_offset offset;
1177
1178 /* Storage for the abbrev table. */
1179 struct obstack abbrev_obstack;
1180
1181 /* Hash table of abbrevs.
1182 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1183 It could be statically allocated, but the previous code didn't so we
1184 don't either. */
1185 struct abbrev_info **abbrevs;
1186};
1187
1188/* Attributes have a name and a value. */
1189struct attribute
1190 {
1191 ENUM_BITFIELD(dwarf_attribute) name : 16;
1192 ENUM_BITFIELD(dwarf_form) form : 15;
1193
1194 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1195 field should be in u.str (existing only for DW_STRING) but it is kept
1196 here for better struct attribute alignment. */
1197 unsigned int string_is_canonical : 1;
1198
1199 union
1200 {
1201 const char *str;
1202 struct dwarf_block *blk;
1203 ULONGEST unsnd;
1204 LONGEST snd;
1205 CORE_ADDR addr;
1206 ULONGEST signature;
1207 }
1208 u;
1209 };
1210
1211/* This data structure holds a complete die structure. */
1212struct die_info
1213 {
1214 /* DWARF-2 tag for this DIE. */
1215 ENUM_BITFIELD(dwarf_tag) tag : 16;
1216
1217 /* Number of attributes */
1218 unsigned char num_attrs;
1219
1220 /* True if we're presently building the full type name for the
1221 type derived from this DIE. */
1222 unsigned char building_fullname : 1;
1223
1224 /* True if this die is in process. PR 16581. */
1225 unsigned char in_process : 1;
1226
1227 /* Abbrev number */
1228 unsigned int abbrev;
1229
1230 /* Offset in .debug_info or .debug_types section. */
1231 sect_offset offset;
1232
1233 /* The dies in a compilation unit form an n-ary tree. PARENT
1234 points to this die's parent; CHILD points to the first child of
1235 this node; and all the children of a given node are chained
1236 together via their SIBLING fields. */
1237 struct die_info *child; /* Its first child, if any. */
1238 struct die_info *sibling; /* Its next sibling, if any. */
1239 struct die_info *parent; /* Its parent, if any. */
1240
1241 /* An array of attributes, with NUM_ATTRS elements. There may be
1242 zero, but it's not common and zero-sized arrays are not
1243 sufficiently portable C. */
1244 struct attribute attrs[1];
1245 };
1246
1247/* Get at parts of an attribute structure. */
1248
1249#define DW_STRING(attr) ((attr)->u.str)
1250#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1251#define DW_UNSND(attr) ((attr)->u.unsnd)
1252#define DW_BLOCK(attr) ((attr)->u.blk)
1253#define DW_SND(attr) ((attr)->u.snd)
1254#define DW_ADDR(attr) ((attr)->u.addr)
1255#define DW_SIGNATURE(attr) ((attr)->u.signature)
1256
1257/* Blocks are a bunch of untyped bytes. */
1258struct dwarf_block
1259 {
1260 size_t size;
1261
1262 /* Valid only if SIZE is not zero. */
1263 const gdb_byte *data;
1264 };
1265
1266#ifndef ATTR_ALLOC_CHUNK
1267#define ATTR_ALLOC_CHUNK 4
1268#endif
1269
1270/* Allocate fields for structs, unions and enums in this size. */
1271#ifndef DW_FIELD_ALLOC_CHUNK
1272#define DW_FIELD_ALLOC_CHUNK 4
1273#endif
1274
1275/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1276 but this would require a corresponding change in unpack_field_as_long
1277 and friends. */
1278static int bits_per_byte = 8;
1279
1280/* The routines that read and process dies for a C struct or C++ class
1281 pass lists of data member fields and lists of member function fields
1282 in an instance of a field_info structure, as defined below. */
1283struct field_info
1284 {
1285 /* List of data member and baseclasses fields. */
1286 struct nextfield
1287 {
1288 struct nextfield *next;
1289 int accessibility;
1290 int virtuality;
1291 struct field field;
1292 }
1293 *fields, *baseclasses;
1294
1295 /* Number of fields (including baseclasses). */
1296 int nfields;
1297
1298 /* Number of baseclasses. */
1299 int nbaseclasses;
1300
1301 /* Set if the accesibility of one of the fields is not public. */
1302 int non_public_fields;
1303
1304 /* Member function fields array, entries are allocated in the order they
1305 are encountered in the object file. */
1306 struct nextfnfield
1307 {
1308 struct nextfnfield *next;
1309 struct fn_field fnfield;
1310 }
1311 *fnfields;
1312
1313 /* Member function fieldlist array, contains name of possibly overloaded
1314 member function, number of overloaded member functions and a pointer
1315 to the head of the member function field chain. */
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 }
1322 *fnfieldlists;
1323
1324 /* Number of entries in the fnfieldlists array. */
1325 int nfnfields;
1326
1327 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1328 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1329 struct typedef_field_list
1330 {
1331 struct typedef_field field;
1332 struct typedef_field_list *next;
1333 }
1334 *typedef_field_list;
1335 unsigned typedef_field_list_count;
1336 };
1337
1338/* One item on the queue of compilation units to read in full symbols
1339 for. */
1340struct dwarf2_queue_item
1341{
1342 struct dwarf2_per_cu_data *per_cu;
1343 enum language pretend_language;
1344 struct dwarf2_queue_item *next;
1345};
1346
1347/* The current queue. */
1348static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1349
1350/* Loaded secondary compilation units are kept in memory until they
1351 have not been referenced for the processing of this many
1352 compilation units. Set this to zero to disable caching. Cache
1353 sizes of up to at least twenty will improve startup time for
1354 typical inter-CU-reference binaries, at an obvious memory cost. */
1355static int dwarf2_max_cache_age = 5;
1356static void
1357show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1358 struct cmd_list_element *c, const char *value)
1359{
1360 fprintf_filtered (file, _("The upper bound on the age of cached "
1361 "dwarf2 compilation units is %s.\n"),
1362 value);
1363}
1364\f
1365/* local function prototypes */
1366
1367static const char *get_section_name (const struct dwarf2_section_info *);
1368
1369static const char *get_section_file_name (const struct dwarf2_section_info *);
1370
1371static void dwarf2_locate_sections (bfd *, asection *, void *);
1372
1373static void dwarf2_find_base_address (struct die_info *die,
1374 struct dwarf2_cu *cu);
1375
1376static struct partial_symtab *create_partial_symtab
1377 (struct dwarf2_per_cu_data *per_cu, const char *name);
1378
1379static void dwarf2_build_psymtabs_hard (struct objfile *);
1380
1381static void scan_partial_symbols (struct partial_die_info *,
1382 CORE_ADDR *, CORE_ADDR *,
1383 int, struct dwarf2_cu *);
1384
1385static void add_partial_symbol (struct partial_die_info *,
1386 struct dwarf2_cu *);
1387
1388static void add_partial_namespace (struct partial_die_info *pdi,
1389 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1390 int need_pc, struct dwarf2_cu *cu);
1391
1392static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1393 CORE_ADDR *highpc, int need_pc,
1394 struct dwarf2_cu *cu);
1395
1396static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1397 struct dwarf2_cu *cu);
1398
1399static void add_partial_subprogram (struct partial_die_info *pdi,
1400 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1401 int need_pc, struct dwarf2_cu *cu);
1402
1403static void dwarf2_read_symtab (struct partial_symtab *,
1404 struct objfile *);
1405
1406static void psymtab_to_symtab_1 (struct partial_symtab *);
1407
1408static struct abbrev_info *abbrev_table_lookup_abbrev
1409 (const struct abbrev_table *, unsigned int);
1410
1411static struct abbrev_table *abbrev_table_read_table
1412 (struct dwarf2_section_info *, sect_offset);
1413
1414static void abbrev_table_free (struct abbrev_table *);
1415
1416static void abbrev_table_free_cleanup (void *);
1417
1418static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1419 struct dwarf2_section_info *);
1420
1421static void dwarf2_free_abbrev_table (void *);
1422
1423static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1424
1425static struct partial_die_info *load_partial_dies
1426 (const struct die_reader_specs *, const gdb_byte *, int);
1427
1428static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1429 struct partial_die_info *,
1430 struct abbrev_info *,
1431 unsigned int,
1432 const gdb_byte *);
1433
1434static struct partial_die_info *find_partial_die (sect_offset, int,
1435 struct dwarf2_cu *);
1436
1437static void fixup_partial_die (struct partial_die_info *,
1438 struct dwarf2_cu *);
1439
1440static const gdb_byte *read_attribute (const struct die_reader_specs *,
1441 struct attribute *, struct attr_abbrev *,
1442 const gdb_byte *);
1443
1444static unsigned int read_1_byte (bfd *, const gdb_byte *);
1445
1446static int read_1_signed_byte (bfd *, const gdb_byte *);
1447
1448static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1449
1450static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1451
1452static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1453
1454static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1455 unsigned int *);
1456
1457static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1458
1459static LONGEST read_checked_initial_length_and_offset
1460 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1461 unsigned int *, unsigned int *);
1462
1463static LONGEST read_offset (bfd *, const gdb_byte *,
1464 const struct comp_unit_head *,
1465 unsigned int *);
1466
1467static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1468
1469static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1470 sect_offset);
1471
1472static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1473
1474static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1475
1476static const char *read_indirect_string (bfd *, const gdb_byte *,
1477 const struct comp_unit_head *,
1478 unsigned int *);
1479
1480static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1481
1482static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1483
1484static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1485
1486static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1487 const gdb_byte *,
1488 unsigned int *);
1489
1490static const char *read_str_index (const struct die_reader_specs *reader,
1491 ULONGEST str_index);
1492
1493static void set_cu_language (unsigned int, struct dwarf2_cu *);
1494
1495static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1496 struct dwarf2_cu *);
1497
1498static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1499 unsigned int);
1500
1501static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1502 struct dwarf2_cu *cu);
1503
1504static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1505
1506static struct die_info *die_specification (struct die_info *die,
1507 struct dwarf2_cu **);
1508
1509static void free_line_header (struct line_header *lh);
1510
1511static struct line_header *dwarf_decode_line_header (unsigned int offset,
1512 struct dwarf2_cu *cu);
1513
1514static void dwarf_decode_lines (struct line_header *, const char *,
1515 struct dwarf2_cu *, struct partial_symtab *,
1516 int);
1517
1518static void dwarf2_start_subfile (const char *, const char *, const char *);
1519
1520static void dwarf2_start_symtab (struct dwarf2_cu *,
1521 const char *, const char *, CORE_ADDR);
1522
1523static struct symbol *new_symbol (struct die_info *, struct type *,
1524 struct dwarf2_cu *);
1525
1526static struct symbol *new_symbol_full (struct die_info *, struct type *,
1527 struct dwarf2_cu *, struct symbol *);
1528
1529static void dwarf2_const_value (const struct attribute *, struct symbol *,
1530 struct dwarf2_cu *);
1531
1532static void dwarf2_const_value_attr (const struct attribute *attr,
1533 struct type *type,
1534 const char *name,
1535 struct obstack *obstack,
1536 struct dwarf2_cu *cu, LONGEST *value,
1537 const gdb_byte **bytes,
1538 struct dwarf2_locexpr_baton **baton);
1539
1540static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1541
1542static int need_gnat_info (struct dwarf2_cu *);
1543
1544static struct type *die_descriptive_type (struct die_info *,
1545 struct dwarf2_cu *);
1546
1547static void set_descriptive_type (struct type *, struct die_info *,
1548 struct dwarf2_cu *);
1549
1550static struct type *die_containing_type (struct die_info *,
1551 struct dwarf2_cu *);
1552
1553static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1554 struct dwarf2_cu *);
1555
1556static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1557
1558static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1559
1560static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1561
1562static char *typename_concat (struct obstack *obs, const char *prefix,
1563 const char *suffix, int physname,
1564 struct dwarf2_cu *cu);
1565
1566static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1567
1568static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1569
1570static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1571
1572static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1573
1574static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1575
1576static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1577 struct dwarf2_cu *, struct partial_symtab *);
1578
1579static int dwarf2_get_pc_bounds (struct die_info *,
1580 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1581 struct partial_symtab *);
1582
1583static void get_scope_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *,
1585 struct dwarf2_cu *);
1586
1587static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1588 CORE_ADDR, struct dwarf2_cu *);
1589
1590static void dwarf2_add_field (struct field_info *, struct die_info *,
1591 struct dwarf2_cu *);
1592
1593static void dwarf2_attach_fields_to_type (struct field_info *,
1594 struct type *, struct dwarf2_cu *);
1595
1596static void dwarf2_add_member_fn (struct field_info *,
1597 struct die_info *, struct type *,
1598 struct dwarf2_cu *);
1599
1600static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1601 struct type *,
1602 struct dwarf2_cu *);
1603
1604static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1605
1606static void read_common_block (struct die_info *, struct dwarf2_cu *);
1607
1608static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1609
1610static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1611
1612static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1613
1614static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1615
1616static struct type *read_module_type (struct die_info *die,
1617 struct dwarf2_cu *cu);
1618
1619static const char *namespace_name (struct die_info *die,
1620 int *is_anonymous, struct dwarf2_cu *);
1621
1622static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1623
1624static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1625
1626static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1627 struct dwarf2_cu *);
1628
1629static struct die_info *read_die_and_siblings_1
1630 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1631 struct die_info *);
1632
1633static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1634 const gdb_byte *info_ptr,
1635 const gdb_byte **new_info_ptr,
1636 struct die_info *parent);
1637
1638static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1639 struct die_info **, const gdb_byte *,
1640 int *, int);
1641
1642static const gdb_byte *read_full_die (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *);
1645
1646static void process_die (struct die_info *, struct dwarf2_cu *);
1647
1648static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1649 struct obstack *);
1650
1651static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1652
1653static const char *dwarf2_full_name (const char *name,
1654 struct die_info *die,
1655 struct dwarf2_cu *cu);
1656
1657static const char *dwarf2_physname (const char *name, struct die_info *die,
1658 struct dwarf2_cu *cu);
1659
1660static struct die_info *dwarf2_extension (struct die_info *die,
1661 struct dwarf2_cu **);
1662
1663static const char *dwarf_tag_name (unsigned int);
1664
1665static const char *dwarf_attr_name (unsigned int);
1666
1667static const char *dwarf_form_name (unsigned int);
1668
1669static char *dwarf_bool_name (unsigned int);
1670
1671static const char *dwarf_type_encoding_name (unsigned int);
1672
1673static struct die_info *sibling_die (struct die_info *);
1674
1675static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1676
1677static void dump_die_for_error (struct die_info *);
1678
1679static void dump_die_1 (struct ui_file *, int level, int max_level,
1680 struct die_info *);
1681
1682/*static*/ void dump_die (struct die_info *, int max_level);
1683
1684static void store_in_ref_table (struct die_info *,
1685 struct dwarf2_cu *);
1686
1687static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1688
1689static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1690
1691static struct die_info *follow_die_ref_or_sig (struct die_info *,
1692 const struct attribute *,
1693 struct dwarf2_cu **);
1694
1695static struct die_info *follow_die_ref (struct die_info *,
1696 const struct attribute *,
1697 struct dwarf2_cu **);
1698
1699static struct die_info *follow_die_sig (struct die_info *,
1700 const struct attribute *,
1701 struct dwarf2_cu **);
1702
1703static struct type *get_signatured_type (struct die_info *, ULONGEST,
1704 struct dwarf2_cu *);
1705
1706static struct type *get_DW_AT_signature_type (struct die_info *,
1707 const struct attribute *,
1708 struct dwarf2_cu *);
1709
1710static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1711
1712static void read_signatured_type (struct signatured_type *);
1713
1714/* memory allocation interface */
1715
1716static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1717
1718static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1719
1720static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1721 const char *, int);
1722
1723static int attr_form_is_block (const struct attribute *);
1724
1725static int attr_form_is_section_offset (const struct attribute *);
1726
1727static int attr_form_is_constant (const struct attribute *);
1728
1729static int attr_form_is_ref (const struct attribute *);
1730
1731static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1732 struct dwarf2_loclist_baton *baton,
1733 const struct attribute *attr);
1734
1735static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1736 struct symbol *sym,
1737 struct dwarf2_cu *cu,
1738 int is_block);
1739
1740static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1741 const gdb_byte *info_ptr,
1742 struct abbrev_info *abbrev);
1743
1744static void free_stack_comp_unit (void *);
1745
1746static hashval_t partial_die_hash (const void *item);
1747
1748static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1749
1750static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1751 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1752
1753static void init_one_comp_unit (struct dwarf2_cu *cu,
1754 struct dwarf2_per_cu_data *per_cu);
1755
1756static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1757 struct die_info *comp_unit_die,
1758 enum language pretend_language);
1759
1760static void free_heap_comp_unit (void *);
1761
1762static void free_cached_comp_units (void *);
1763
1764static void age_cached_comp_units (void);
1765
1766static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1767
1768static struct type *set_die_type (struct die_info *, struct type *,
1769 struct dwarf2_cu *);
1770
1771static void create_all_comp_units (struct objfile *);
1772
1773static int create_all_type_units (struct objfile *);
1774
1775static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1776 enum language);
1777
1778static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1779 enum language);
1780
1781static void process_full_type_unit (struct dwarf2_per_cu_data *,
1782 enum language);
1783
1784static void dwarf2_add_dependence (struct dwarf2_cu *,
1785 struct dwarf2_per_cu_data *);
1786
1787static void dwarf2_mark (struct dwarf2_cu *);
1788
1789static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1790
1791static struct type *get_die_type_at_offset (sect_offset,
1792 struct dwarf2_per_cu_data *);
1793
1794static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1795
1796static void dwarf2_release_queue (void *dummy);
1797
1798static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1799 enum language pretend_language);
1800
1801static void process_queue (void);
1802
1803static void find_file_and_directory (struct die_info *die,
1804 struct dwarf2_cu *cu,
1805 const char **name, const char **comp_dir);
1806
1807static char *file_full_name (int file, struct line_header *lh,
1808 const char *comp_dir);
1809
1810static const gdb_byte *read_and_check_comp_unit_head
1811 (struct comp_unit_head *header,
1812 struct dwarf2_section_info *section,
1813 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1814 int is_debug_types_section);
1815
1816static void init_cutu_and_read_dies
1817 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1818 int use_existing_cu, int keep,
1819 die_reader_func_ftype *die_reader_func, void *data);
1820
1821static void init_cutu_and_read_dies_simple
1822 (struct dwarf2_per_cu_data *this_cu,
1823 die_reader_func_ftype *die_reader_func, void *data);
1824
1825static htab_t allocate_signatured_type_table (struct objfile *objfile);
1826
1827static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1828
1829static struct dwo_unit *lookup_dwo_unit_in_dwp
1830 (struct dwp_file *dwp_file, const char *comp_dir,
1831 ULONGEST signature, int is_debug_types);
1832
1833static struct dwp_file *get_dwp_file (void);
1834
1835static struct dwo_unit *lookup_dwo_comp_unit
1836 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1837
1838static struct dwo_unit *lookup_dwo_type_unit
1839 (struct signatured_type *, const char *, const char *);
1840
1841static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1842
1843static void free_dwo_file_cleanup (void *);
1844
1845static void process_cu_includes (void);
1846
1847static void check_producer (struct dwarf2_cu *cu);
1848\f
1849/* Various complaints about symbol reading that don't abort the process. */
1850
1851static void
1852dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1853{
1854 complaint (&symfile_complaints,
1855 _("statement list doesn't fit in .debug_line section"));
1856}
1857
1858static void
1859dwarf2_debug_line_missing_file_complaint (void)
1860{
1861 complaint (&symfile_complaints,
1862 _(".debug_line section has line data without a file"));
1863}
1864
1865static void
1866dwarf2_debug_line_missing_end_sequence_complaint (void)
1867{
1868 complaint (&symfile_complaints,
1869 _(".debug_line section has line "
1870 "program sequence without an end"));
1871}
1872
1873static void
1874dwarf2_complex_location_expr_complaint (void)
1875{
1876 complaint (&symfile_complaints, _("location expression too complex"));
1877}
1878
1879static void
1880dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1881 int arg3)
1882{
1883 complaint (&symfile_complaints,
1884 _("const value length mismatch for '%s', got %d, expected %d"),
1885 arg1, arg2, arg3);
1886}
1887
1888static void
1889dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1890{
1891 complaint (&symfile_complaints,
1892 _("debug info runs off end of %s section"
1893 " [in module %s]"),
1894 get_section_name (section),
1895 get_section_file_name (section));
1896}
1897
1898static void
1899dwarf2_macro_malformed_definition_complaint (const char *arg1)
1900{
1901 complaint (&symfile_complaints,
1902 _("macro debug info contains a "
1903 "malformed macro definition:\n`%s'"),
1904 arg1);
1905}
1906
1907static void
1908dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1909{
1910 complaint (&symfile_complaints,
1911 _("invalid attribute class or form for '%s' in '%s'"),
1912 arg1, arg2);
1913}
1914\f
1915#if WORDS_BIGENDIAN
1916
1917/* Convert VALUE between big- and little-endian. */
1918static offset_type
1919byte_swap (offset_type value)
1920{
1921 offset_type result;
1922
1923 result = (value & 0xff) << 24;
1924 result |= (value & 0xff00) << 8;
1925 result |= (value & 0xff0000) >> 8;
1926 result |= (value & 0xff000000) >> 24;
1927 return result;
1928}
1929
1930#define MAYBE_SWAP(V) byte_swap (V)
1931
1932#else
1933#define MAYBE_SWAP(V) (V)
1934#endif /* WORDS_BIGENDIAN */
1935
1936/* Read the given attribute value as an address, taking the attribute's
1937 form into account. */
1938
1939static CORE_ADDR
1940attr_value_as_address (struct attribute *attr)
1941{
1942 CORE_ADDR addr;
1943
1944 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1945 {
1946 /* Aside from a few clearly defined exceptions, attributes that
1947 contain an address must always be in DW_FORM_addr form.
1948 Unfortunately, some compilers happen to be violating this
1949 requirement by encoding addresses using other forms, such
1950 as DW_FORM_data4 for example. For those broken compilers,
1951 we try to do our best, without any guarantee of success,
1952 to interpret the address correctly. It would also be nice
1953 to generate a complaint, but that would require us to maintain
1954 a list of legitimate cases where a non-address form is allowed,
1955 as well as update callers to pass in at least the CU's DWARF
1956 version. This is more overhead than what we're willing to
1957 expand for a pretty rare case. */
1958 addr = DW_UNSND (attr);
1959 }
1960 else
1961 addr = DW_ADDR (attr);
1962
1963 return addr;
1964}
1965
1966/* The suffix for an index file. */
1967#define INDEX_SUFFIX ".gdb-index"
1968
1969/* Try to locate the sections we need for DWARF 2 debugging
1970 information and return true if we have enough to do something.
1971 NAMES points to the dwarf2 section names, or is NULL if the standard
1972 ELF names are used. */
1973
1974int
1975dwarf2_has_info (struct objfile *objfile,
1976 const struct dwarf2_debug_sections *names)
1977{
1978 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1979 if (!dwarf2_per_objfile)
1980 {
1981 /* Initialize per-objfile state. */
1982 struct dwarf2_per_objfile *data
1983 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1984
1985 memset (data, 0, sizeof (*data));
1986 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1987 dwarf2_per_objfile = data;
1988
1989 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1990 (void *) names);
1991 dwarf2_per_objfile->objfile = objfile;
1992 }
1993 return (!dwarf2_per_objfile->info.is_virtual
1994 && dwarf2_per_objfile->info.s.asection != NULL
1995 && !dwarf2_per_objfile->abbrev.is_virtual
1996 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1997}
1998
1999/* Return the containing section of virtual section SECTION. */
2000
2001static struct dwarf2_section_info *
2002get_containing_section (const struct dwarf2_section_info *section)
2003{
2004 gdb_assert (section->is_virtual);
2005 return section->s.containing_section;
2006}
2007
2008/* Return the bfd owner of SECTION. */
2009
2010static struct bfd *
2011get_section_bfd_owner (const struct dwarf2_section_info *section)
2012{
2013 if (section->is_virtual)
2014 {
2015 section = get_containing_section (section);
2016 gdb_assert (!section->is_virtual);
2017 }
2018 return section->s.asection->owner;
2019}
2020
2021/* Return the bfd section of SECTION.
2022 Returns NULL if the section is not present. */
2023
2024static asection *
2025get_section_bfd_section (const struct dwarf2_section_info *section)
2026{
2027 if (section->is_virtual)
2028 {
2029 section = get_containing_section (section);
2030 gdb_assert (!section->is_virtual);
2031 }
2032 return section->s.asection;
2033}
2034
2035/* Return the name of SECTION. */
2036
2037static const char *
2038get_section_name (const struct dwarf2_section_info *section)
2039{
2040 asection *sectp = get_section_bfd_section (section);
2041
2042 gdb_assert (sectp != NULL);
2043 return bfd_section_name (get_section_bfd_owner (section), sectp);
2044}
2045
2046/* Return the name of the file SECTION is in. */
2047
2048static const char *
2049get_section_file_name (const struct dwarf2_section_info *section)
2050{
2051 bfd *abfd = get_section_bfd_owner (section);
2052
2053 return bfd_get_filename (abfd);
2054}
2055
2056/* Return the id of SECTION.
2057 Returns 0 if SECTION doesn't exist. */
2058
2059static int
2060get_section_id (const struct dwarf2_section_info *section)
2061{
2062 asection *sectp = get_section_bfd_section (section);
2063
2064 if (sectp == NULL)
2065 return 0;
2066 return sectp->id;
2067}
2068
2069/* Return the flags of SECTION.
2070 SECTION (or containing section if this is a virtual section) must exist. */
2071
2072static int
2073get_section_flags (const struct dwarf2_section_info *section)
2074{
2075 asection *sectp = get_section_bfd_section (section);
2076
2077 gdb_assert (sectp != NULL);
2078 return bfd_get_section_flags (sectp->owner, sectp);
2079}
2080
2081/* When loading sections, we look either for uncompressed section or for
2082 compressed section names. */
2083
2084static int
2085section_is_p (const char *section_name,
2086 const struct dwarf2_section_names *names)
2087{
2088 if (names->normal != NULL
2089 && strcmp (section_name, names->normal) == 0)
2090 return 1;
2091 if (names->compressed != NULL
2092 && strcmp (section_name, names->compressed) == 0)
2093 return 1;
2094 return 0;
2095}
2096
2097/* This function is mapped across the sections and remembers the
2098 offset and size of each of the debugging sections we are interested
2099 in. */
2100
2101static void
2102dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2103{
2104 const struct dwarf2_debug_sections *names;
2105 flagword aflag = bfd_get_section_flags (abfd, sectp);
2106
2107 if (vnames == NULL)
2108 names = &dwarf2_elf_names;
2109 else
2110 names = (const struct dwarf2_debug_sections *) vnames;
2111
2112 if ((aflag & SEC_HAS_CONTENTS) == 0)
2113 {
2114 }
2115 else if (section_is_p (sectp->name, &names->info))
2116 {
2117 dwarf2_per_objfile->info.s.asection = sectp;
2118 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2119 }
2120 else if (section_is_p (sectp->name, &names->abbrev))
2121 {
2122 dwarf2_per_objfile->abbrev.s.asection = sectp;
2123 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2124 }
2125 else if (section_is_p (sectp->name, &names->line))
2126 {
2127 dwarf2_per_objfile->line.s.asection = sectp;
2128 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2129 }
2130 else if (section_is_p (sectp->name, &names->loc))
2131 {
2132 dwarf2_per_objfile->loc.s.asection = sectp;
2133 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2134 }
2135 else if (section_is_p (sectp->name, &names->macinfo))
2136 {
2137 dwarf2_per_objfile->macinfo.s.asection = sectp;
2138 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2139 }
2140 else if (section_is_p (sectp->name, &names->macro))
2141 {
2142 dwarf2_per_objfile->macro.s.asection = sectp;
2143 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2144 }
2145 else if (section_is_p (sectp->name, &names->str))
2146 {
2147 dwarf2_per_objfile->str.s.asection = sectp;
2148 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2149 }
2150 else if (section_is_p (sectp->name, &names->addr))
2151 {
2152 dwarf2_per_objfile->addr.s.asection = sectp;
2153 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2154 }
2155 else if (section_is_p (sectp->name, &names->frame))
2156 {
2157 dwarf2_per_objfile->frame.s.asection = sectp;
2158 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2159 }
2160 else if (section_is_p (sectp->name, &names->eh_frame))
2161 {
2162 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2163 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2164 }
2165 else if (section_is_p (sectp->name, &names->ranges))
2166 {
2167 dwarf2_per_objfile->ranges.s.asection = sectp;
2168 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2169 }
2170 else if (section_is_p (sectp->name, &names->types))
2171 {
2172 struct dwarf2_section_info type_section;
2173
2174 memset (&type_section, 0, sizeof (type_section));
2175 type_section.s.asection = sectp;
2176 type_section.size = bfd_get_section_size (sectp);
2177
2178 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2179 &type_section);
2180 }
2181 else if (section_is_p (sectp->name, &names->gdb_index))
2182 {
2183 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2184 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2185 }
2186
2187 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2188 && bfd_section_vma (abfd, sectp) == 0)
2189 dwarf2_per_objfile->has_section_at_zero = 1;
2190}
2191
2192/* A helper function that decides whether a section is empty,
2193 or not present. */
2194
2195static int
2196dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2197{
2198 if (section->is_virtual)
2199 return section->size == 0;
2200 return section->s.asection == NULL || section->size == 0;
2201}
2202
2203/* Read the contents of the section INFO.
2204 OBJFILE is the main object file, but not necessarily the file where
2205 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2206 of the DWO file.
2207 If the section is compressed, uncompress it before returning. */
2208
2209static void
2210dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2211{
2212 asection *sectp;
2213 bfd *abfd;
2214 gdb_byte *buf, *retbuf;
2215
2216 if (info->readin)
2217 return;
2218 info->buffer = NULL;
2219 info->readin = 1;
2220
2221 if (dwarf2_section_empty_p (info))
2222 return;
2223
2224 sectp = get_section_bfd_section (info);
2225
2226 /* If this is a virtual section we need to read in the real one first. */
2227 if (info->is_virtual)
2228 {
2229 struct dwarf2_section_info *containing_section =
2230 get_containing_section (info);
2231
2232 gdb_assert (sectp != NULL);
2233 if ((sectp->flags & SEC_RELOC) != 0)
2234 {
2235 error (_("Dwarf Error: DWP format V2 with relocations is not"
2236 " supported in section %s [in module %s]"),
2237 get_section_name (info), get_section_file_name (info));
2238 }
2239 dwarf2_read_section (objfile, containing_section);
2240 /* Other code should have already caught virtual sections that don't
2241 fit. */
2242 gdb_assert (info->virtual_offset + info->size
2243 <= containing_section->size);
2244 /* If the real section is empty or there was a problem reading the
2245 section we shouldn't get here. */
2246 gdb_assert (containing_section->buffer != NULL);
2247 info->buffer = containing_section->buffer + info->virtual_offset;
2248 return;
2249 }
2250
2251 /* If the section has relocations, we must read it ourselves.
2252 Otherwise we attach it to the BFD. */
2253 if ((sectp->flags & SEC_RELOC) == 0)
2254 {
2255 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2256 return;
2257 }
2258
2259 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2260 info->buffer = buf;
2261
2262 /* When debugging .o files, we may need to apply relocations; see
2263 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2264 We never compress sections in .o files, so we only need to
2265 try this when the section is not compressed. */
2266 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2267 if (retbuf != NULL)
2268 {
2269 info->buffer = retbuf;
2270 return;
2271 }
2272
2273 abfd = get_section_bfd_owner (info);
2274 gdb_assert (abfd != NULL);
2275
2276 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2277 || bfd_bread (buf, info->size, abfd) != info->size)
2278 {
2279 error (_("Dwarf Error: Can't read DWARF data"
2280 " in section %s [in module %s]"),
2281 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2282 }
2283}
2284
2285/* A helper function that returns the size of a section in a safe way.
2286 If you are positive that the section has been read before using the
2287 size, then it is safe to refer to the dwarf2_section_info object's
2288 "size" field directly. In other cases, you must call this
2289 function, because for compressed sections the size field is not set
2290 correctly until the section has been read. */
2291
2292static bfd_size_type
2293dwarf2_section_size (struct objfile *objfile,
2294 struct dwarf2_section_info *info)
2295{
2296 if (!info->readin)
2297 dwarf2_read_section (objfile, info);
2298 return info->size;
2299}
2300
2301/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2302 SECTION_NAME. */
2303
2304void
2305dwarf2_get_section_info (struct objfile *objfile,
2306 enum dwarf2_section_enum sect,
2307 asection **sectp, const gdb_byte **bufp,
2308 bfd_size_type *sizep)
2309{
2310 struct dwarf2_per_objfile *data
2311 = objfile_data (objfile, dwarf2_objfile_data_key);
2312 struct dwarf2_section_info *info;
2313
2314 /* We may see an objfile without any DWARF, in which case we just
2315 return nothing. */
2316 if (data == NULL)
2317 {
2318 *sectp = NULL;
2319 *bufp = NULL;
2320 *sizep = 0;
2321 return;
2322 }
2323 switch (sect)
2324 {
2325 case DWARF2_DEBUG_FRAME:
2326 info = &data->frame;
2327 break;
2328 case DWARF2_EH_FRAME:
2329 info = &data->eh_frame;
2330 break;
2331 default:
2332 gdb_assert_not_reached ("unexpected section");
2333 }
2334
2335 dwarf2_read_section (objfile, info);
2336
2337 *sectp = get_section_bfd_section (info);
2338 *bufp = info->buffer;
2339 *sizep = info->size;
2340}
2341
2342/* A helper function to find the sections for a .dwz file. */
2343
2344static void
2345locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2346{
2347 struct dwz_file *dwz_file = arg;
2348
2349 /* Note that we only support the standard ELF names, because .dwz
2350 is ELF-only (at the time of writing). */
2351 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2352 {
2353 dwz_file->abbrev.s.asection = sectp;
2354 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2355 }
2356 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2357 {
2358 dwz_file->info.s.asection = sectp;
2359 dwz_file->info.size = bfd_get_section_size (sectp);
2360 }
2361 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2362 {
2363 dwz_file->str.s.asection = sectp;
2364 dwz_file->str.size = bfd_get_section_size (sectp);
2365 }
2366 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2367 {
2368 dwz_file->line.s.asection = sectp;
2369 dwz_file->line.size = bfd_get_section_size (sectp);
2370 }
2371 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2372 {
2373 dwz_file->macro.s.asection = sectp;
2374 dwz_file->macro.size = bfd_get_section_size (sectp);
2375 }
2376 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2377 {
2378 dwz_file->gdb_index.s.asection = sectp;
2379 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2380 }
2381}
2382
2383/* Open the separate '.dwz' debug file, if needed. Return NULL if
2384 there is no .gnu_debugaltlink section in the file. Error if there
2385 is such a section but the file cannot be found. */
2386
2387static struct dwz_file *
2388dwarf2_get_dwz_file (void)
2389{
2390 bfd *dwz_bfd;
2391 char *data;
2392 struct cleanup *cleanup;
2393 const char *filename;
2394 struct dwz_file *result;
2395 bfd_size_type buildid_len_arg;
2396 size_t buildid_len;
2397 bfd_byte *buildid;
2398
2399 if (dwarf2_per_objfile->dwz_file != NULL)
2400 return dwarf2_per_objfile->dwz_file;
2401
2402 bfd_set_error (bfd_error_no_error);
2403 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2404 &buildid_len_arg, &buildid);
2405 if (data == NULL)
2406 {
2407 if (bfd_get_error () == bfd_error_no_error)
2408 return NULL;
2409 error (_("could not read '.gnu_debugaltlink' section: %s"),
2410 bfd_errmsg (bfd_get_error ()));
2411 }
2412 cleanup = make_cleanup (xfree, data);
2413 make_cleanup (xfree, buildid);
2414
2415 buildid_len = (size_t) buildid_len_arg;
2416
2417 filename = (const char *) data;
2418 if (!IS_ABSOLUTE_PATH (filename))
2419 {
2420 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2421 char *rel;
2422
2423 make_cleanup (xfree, abs);
2424 abs = ldirname (abs);
2425 make_cleanup (xfree, abs);
2426
2427 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2428 make_cleanup (xfree, rel);
2429 filename = rel;
2430 }
2431
2432 /* First try the file name given in the section. If that doesn't
2433 work, try to use the build-id instead. */
2434 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2435 if (dwz_bfd != NULL)
2436 {
2437 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2438 {
2439 gdb_bfd_unref (dwz_bfd);
2440 dwz_bfd = NULL;
2441 }
2442 }
2443
2444 if (dwz_bfd == NULL)
2445 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2446
2447 if (dwz_bfd == NULL)
2448 error (_("could not find '.gnu_debugaltlink' file for %s"),
2449 objfile_name (dwarf2_per_objfile->objfile));
2450
2451 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2452 struct dwz_file);
2453 result->dwz_bfd = dwz_bfd;
2454
2455 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2456
2457 do_cleanups (cleanup);
2458
2459 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2460 dwarf2_per_objfile->dwz_file = result;
2461 return result;
2462}
2463\f
2464/* DWARF quick_symbols_functions support. */
2465
2466/* TUs can share .debug_line entries, and there can be a lot more TUs than
2467 unique line tables, so we maintain a separate table of all .debug_line
2468 derived entries to support the sharing.
2469 All the quick functions need is the list of file names. We discard the
2470 line_header when we're done and don't need to record it here. */
2471struct quick_file_names
2472{
2473 /* The data used to construct the hash key. */
2474 struct stmt_list_hash hash;
2475
2476 /* The number of entries in file_names, real_names. */
2477 unsigned int num_file_names;
2478
2479 /* The file names from the line table, after being run through
2480 file_full_name. */
2481 const char **file_names;
2482
2483 /* The file names from the line table after being run through
2484 gdb_realpath. These are computed lazily. */
2485 const char **real_names;
2486};
2487
2488/* When using the index (and thus not using psymtabs), each CU has an
2489 object of this type. This is used to hold information needed by
2490 the various "quick" methods. */
2491struct dwarf2_per_cu_quick_data
2492{
2493 /* The file table. This can be NULL if there was no file table
2494 or it's currently not read in.
2495 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2496 struct quick_file_names *file_names;
2497
2498 /* The corresponding symbol table. This is NULL if symbols for this
2499 CU have not yet been read. */
2500 struct symtab *symtab;
2501
2502 /* A temporary mark bit used when iterating over all CUs in
2503 expand_symtabs_matching. */
2504 unsigned int mark : 1;
2505
2506 /* True if we've tried to read the file table and found there isn't one.
2507 There will be no point in trying to read it again next time. */
2508 unsigned int no_file_data : 1;
2509};
2510
2511/* Utility hash function for a stmt_list_hash. */
2512
2513static hashval_t
2514hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2515{
2516 hashval_t v = 0;
2517
2518 if (stmt_list_hash->dwo_unit != NULL)
2519 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2520 v += stmt_list_hash->line_offset.sect_off;
2521 return v;
2522}
2523
2524/* Utility equality function for a stmt_list_hash. */
2525
2526static int
2527eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2528 const struct stmt_list_hash *rhs)
2529{
2530 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2531 return 0;
2532 if (lhs->dwo_unit != NULL
2533 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2534 return 0;
2535
2536 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2537}
2538
2539/* Hash function for a quick_file_names. */
2540
2541static hashval_t
2542hash_file_name_entry (const void *e)
2543{
2544 const struct quick_file_names *file_data = e;
2545
2546 return hash_stmt_list_entry (&file_data->hash);
2547}
2548
2549/* Equality function for a quick_file_names. */
2550
2551static int
2552eq_file_name_entry (const void *a, const void *b)
2553{
2554 const struct quick_file_names *ea = a;
2555 const struct quick_file_names *eb = b;
2556
2557 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2558}
2559
2560/* Delete function for a quick_file_names. */
2561
2562static void
2563delete_file_name_entry (void *e)
2564{
2565 struct quick_file_names *file_data = e;
2566 int i;
2567
2568 for (i = 0; i < file_data->num_file_names; ++i)
2569 {
2570 xfree ((void*) file_data->file_names[i]);
2571 if (file_data->real_names)
2572 xfree ((void*) file_data->real_names[i]);
2573 }
2574
2575 /* The space for the struct itself lives on objfile_obstack,
2576 so we don't free it here. */
2577}
2578
2579/* Create a quick_file_names hash table. */
2580
2581static htab_t
2582create_quick_file_names_table (unsigned int nr_initial_entries)
2583{
2584 return htab_create_alloc (nr_initial_entries,
2585 hash_file_name_entry, eq_file_name_entry,
2586 delete_file_name_entry, xcalloc, xfree);
2587}
2588
2589/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2590 have to be created afterwards. You should call age_cached_comp_units after
2591 processing PER_CU->CU. dw2_setup must have been already called. */
2592
2593static void
2594load_cu (struct dwarf2_per_cu_data *per_cu)
2595{
2596 if (per_cu->is_debug_types)
2597 load_full_type_unit (per_cu);
2598 else
2599 load_full_comp_unit (per_cu, language_minimal);
2600
2601 gdb_assert (per_cu->cu != NULL);
2602
2603 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2604}
2605
2606/* Read in the symbols for PER_CU. */
2607
2608static void
2609dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2610{
2611 struct cleanup *back_to;
2612
2613 /* Skip type_unit_groups, reading the type units they contain
2614 is handled elsewhere. */
2615 if (IS_TYPE_UNIT_GROUP (per_cu))
2616 return;
2617
2618 back_to = make_cleanup (dwarf2_release_queue, NULL);
2619
2620 if (dwarf2_per_objfile->using_index
2621 ? per_cu->v.quick->symtab == NULL
2622 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2623 {
2624 queue_comp_unit (per_cu, language_minimal);
2625 load_cu (per_cu);
2626
2627 /* If we just loaded a CU from a DWO, and we're working with an index
2628 that may badly handle TUs, load all the TUs in that DWO as well.
2629 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2630 if (!per_cu->is_debug_types
2631 && per_cu->cu->dwo_unit != NULL
2632 && dwarf2_per_objfile->index_table != NULL
2633 && dwarf2_per_objfile->index_table->version <= 7
2634 /* DWP files aren't supported yet. */
2635 && get_dwp_file () == NULL)
2636 queue_and_load_all_dwo_tus (per_cu);
2637 }
2638
2639 process_queue ();
2640
2641 /* Age the cache, releasing compilation units that have not
2642 been used recently. */
2643 age_cached_comp_units ();
2644
2645 do_cleanups (back_to);
2646}
2647
2648/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2649 the objfile from which this CU came. Returns the resulting symbol
2650 table. */
2651
2652static struct symtab *
2653dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2654{
2655 gdb_assert (dwarf2_per_objfile->using_index);
2656 if (!per_cu->v.quick->symtab)
2657 {
2658 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2659 increment_reading_symtab ();
2660 dw2_do_instantiate_symtab (per_cu);
2661 process_cu_includes ();
2662 do_cleanups (back_to);
2663 }
2664 return per_cu->v.quick->symtab;
2665}
2666
2667/* Return the CU/TU given its index.
2668
2669 This is intended for loops like:
2670
2671 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2672 + dwarf2_per_objfile->n_type_units); ++i)
2673 {
2674 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2675
2676 ...;
2677 }
2678*/
2679
2680static struct dwarf2_per_cu_data *
2681dw2_get_cutu (int index)
2682{
2683 if (index >= dwarf2_per_objfile->n_comp_units)
2684 {
2685 index -= dwarf2_per_objfile->n_comp_units;
2686 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2687 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2688 }
2689
2690 return dwarf2_per_objfile->all_comp_units[index];
2691}
2692
2693/* Return the CU given its index.
2694 This differs from dw2_get_cutu in that it's for when you know INDEX
2695 refers to a CU. */
2696
2697static struct dwarf2_per_cu_data *
2698dw2_get_cu (int index)
2699{
2700 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2701
2702 return dwarf2_per_objfile->all_comp_units[index];
2703}
2704
2705/* A helper for create_cus_from_index that handles a given list of
2706 CUs. */
2707
2708static void
2709create_cus_from_index_list (struct objfile *objfile,
2710 const gdb_byte *cu_list, offset_type n_elements,
2711 struct dwarf2_section_info *section,
2712 int is_dwz,
2713 int base_offset)
2714{
2715 offset_type i;
2716
2717 for (i = 0; i < n_elements; i += 2)
2718 {
2719 struct dwarf2_per_cu_data *the_cu;
2720 ULONGEST offset, length;
2721
2722 gdb_static_assert (sizeof (ULONGEST) >= 8);
2723 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2724 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2725 cu_list += 2 * 8;
2726
2727 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2728 struct dwarf2_per_cu_data);
2729 the_cu->offset.sect_off = offset;
2730 the_cu->length = length;
2731 the_cu->objfile = objfile;
2732 the_cu->section = section;
2733 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2734 struct dwarf2_per_cu_quick_data);
2735 the_cu->is_dwz = is_dwz;
2736 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2737 }
2738}
2739
2740/* Read the CU list from the mapped index, and use it to create all
2741 the CU objects for this objfile. */
2742
2743static void
2744create_cus_from_index (struct objfile *objfile,
2745 const gdb_byte *cu_list, offset_type cu_list_elements,
2746 const gdb_byte *dwz_list, offset_type dwz_elements)
2747{
2748 struct dwz_file *dwz;
2749
2750 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2751 dwarf2_per_objfile->all_comp_units
2752 = obstack_alloc (&objfile->objfile_obstack,
2753 dwarf2_per_objfile->n_comp_units
2754 * sizeof (struct dwarf2_per_cu_data *));
2755
2756 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2757 &dwarf2_per_objfile->info, 0, 0);
2758
2759 if (dwz_elements == 0)
2760 return;
2761
2762 dwz = dwarf2_get_dwz_file ();
2763 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2764 cu_list_elements / 2);
2765}
2766
2767/* Create the signatured type hash table from the index. */
2768
2769static void
2770create_signatured_type_table_from_index (struct objfile *objfile,
2771 struct dwarf2_section_info *section,
2772 const gdb_byte *bytes,
2773 offset_type elements)
2774{
2775 offset_type i;
2776 htab_t sig_types_hash;
2777
2778 dwarf2_per_objfile->n_type_units
2779 = dwarf2_per_objfile->n_allocated_type_units
2780 = elements / 3;
2781 dwarf2_per_objfile->all_type_units
2782 = xmalloc (dwarf2_per_objfile->n_type_units
2783 * sizeof (struct signatured_type *));
2784
2785 sig_types_hash = allocate_signatured_type_table (objfile);
2786
2787 for (i = 0; i < elements; i += 3)
2788 {
2789 struct signatured_type *sig_type;
2790 ULONGEST offset, type_offset_in_tu, signature;
2791 void **slot;
2792
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2795 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2796 BFD_ENDIAN_LITTLE);
2797 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2798 bytes += 3 * 8;
2799
2800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2801 struct signatured_type);
2802 sig_type->signature = signature;
2803 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2804 sig_type->per_cu.is_debug_types = 1;
2805 sig_type->per_cu.section = section;
2806 sig_type->per_cu.offset.sect_off = offset;
2807 sig_type->per_cu.objfile = objfile;
2808 sig_type->per_cu.v.quick
2809 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2810 struct dwarf2_per_cu_quick_data);
2811
2812 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2813 *slot = sig_type;
2814
2815 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2816 }
2817
2818 dwarf2_per_objfile->signatured_types = sig_types_hash;
2819}
2820
2821/* Read the address map data from the mapped index, and use it to
2822 populate the objfile's psymtabs_addrmap. */
2823
2824static void
2825create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2826{
2827 const gdb_byte *iter, *end;
2828 struct obstack temp_obstack;
2829 struct addrmap *mutable_map;
2830 struct cleanup *cleanup;
2831 CORE_ADDR baseaddr;
2832
2833 obstack_init (&temp_obstack);
2834 cleanup = make_cleanup_obstack_free (&temp_obstack);
2835 mutable_map = addrmap_create_mutable (&temp_obstack);
2836
2837 iter = index->address_table;
2838 end = iter + index->address_table_size;
2839
2840 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2841
2842 while (iter < end)
2843 {
2844 ULONGEST hi, lo, cu_index;
2845 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2846 iter += 8;
2847 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2848 iter += 8;
2849 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2850 iter += 4;
2851
2852 if (lo > hi)
2853 {
2854 complaint (&symfile_complaints,
2855 _(".gdb_index address table has invalid range (%s - %s)"),
2856 hex_string (lo), hex_string (hi));
2857 continue;
2858 }
2859
2860 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2861 {
2862 complaint (&symfile_complaints,
2863 _(".gdb_index address table has invalid CU number %u"),
2864 (unsigned) cu_index);
2865 continue;
2866 }
2867
2868 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2869 dw2_get_cutu (cu_index));
2870 }
2871
2872 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2873 &objfile->objfile_obstack);
2874 do_cleanups (cleanup);
2875}
2876
2877/* The hash function for strings in the mapped index. This is the same as
2878 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2879 implementation. This is necessary because the hash function is tied to the
2880 format of the mapped index file. The hash values do not have to match with
2881 SYMBOL_HASH_NEXT.
2882
2883 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2884
2885static hashval_t
2886mapped_index_string_hash (int index_version, const void *p)
2887{
2888 const unsigned char *str = (const unsigned char *) p;
2889 hashval_t r = 0;
2890 unsigned char c;
2891
2892 while ((c = *str++) != 0)
2893 {
2894 if (index_version >= 5)
2895 c = tolower (c);
2896 r = r * 67 + c - 113;
2897 }
2898
2899 return r;
2900}
2901
2902/* Find a slot in the mapped index INDEX for the object named NAME.
2903 If NAME is found, set *VEC_OUT to point to the CU vector in the
2904 constant pool and return 1. If NAME cannot be found, return 0. */
2905
2906static int
2907find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2908 offset_type **vec_out)
2909{
2910 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2911 offset_type hash;
2912 offset_type slot, step;
2913 int (*cmp) (const char *, const char *);
2914
2915 if (current_language->la_language == language_cplus
2916 || current_language->la_language == language_java
2917 || current_language->la_language == language_fortran)
2918 {
2919 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2920 not contain any. */
2921 const char *paren = strchr (name, '(');
2922
2923 if (paren)
2924 {
2925 char *dup;
2926
2927 dup = xmalloc (paren - name + 1);
2928 memcpy (dup, name, paren - name);
2929 dup[paren - name] = 0;
2930
2931 make_cleanup (xfree, dup);
2932 name = dup;
2933 }
2934 }
2935
2936 /* Index version 4 did not support case insensitive searches. But the
2937 indices for case insensitive languages are built in lowercase, therefore
2938 simulate our NAME being searched is also lowercased. */
2939 hash = mapped_index_string_hash ((index->version == 4
2940 && case_sensitivity == case_sensitive_off
2941 ? 5 : index->version),
2942 name);
2943
2944 slot = hash & (index->symbol_table_slots - 1);
2945 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2946 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2947
2948 for (;;)
2949 {
2950 /* Convert a slot number to an offset into the table. */
2951 offset_type i = 2 * slot;
2952 const char *str;
2953 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2954 {
2955 do_cleanups (back_to);
2956 return 0;
2957 }
2958
2959 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2960 if (!cmp (name, str))
2961 {
2962 *vec_out = (offset_type *) (index->constant_pool
2963 + MAYBE_SWAP (index->symbol_table[i + 1]));
2964 do_cleanups (back_to);
2965 return 1;
2966 }
2967
2968 slot = (slot + step) & (index->symbol_table_slots - 1);
2969 }
2970}
2971
2972/* A helper function that reads the .gdb_index from SECTION and fills
2973 in MAP. FILENAME is the name of the file containing the section;
2974 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2975 ok to use deprecated sections.
2976
2977 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2978 out parameters that are filled in with information about the CU and
2979 TU lists in the section.
2980
2981 Returns 1 if all went well, 0 otherwise. */
2982
2983static int
2984read_index_from_section (struct objfile *objfile,
2985 const char *filename,
2986 int deprecated_ok,
2987 struct dwarf2_section_info *section,
2988 struct mapped_index *map,
2989 const gdb_byte **cu_list,
2990 offset_type *cu_list_elements,
2991 const gdb_byte **types_list,
2992 offset_type *types_list_elements)
2993{
2994 const gdb_byte *addr;
2995 offset_type version;
2996 offset_type *metadata;
2997 int i;
2998
2999 if (dwarf2_section_empty_p (section))
3000 return 0;
3001
3002 /* Older elfutils strip versions could keep the section in the main
3003 executable while splitting it for the separate debug info file. */
3004 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3005 return 0;
3006
3007 dwarf2_read_section (objfile, section);
3008
3009 addr = section->buffer;
3010 /* Version check. */
3011 version = MAYBE_SWAP (*(offset_type *) addr);
3012 /* Versions earlier than 3 emitted every copy of a psymbol. This
3013 causes the index to behave very poorly for certain requests. Version 3
3014 contained incomplete addrmap. So, it seems better to just ignore such
3015 indices. */
3016 if (version < 4)
3017 {
3018 static int warning_printed = 0;
3019 if (!warning_printed)
3020 {
3021 warning (_("Skipping obsolete .gdb_index section in %s."),
3022 filename);
3023 warning_printed = 1;
3024 }
3025 return 0;
3026 }
3027 /* Index version 4 uses a different hash function than index version
3028 5 and later.
3029
3030 Versions earlier than 6 did not emit psymbols for inlined
3031 functions. Using these files will cause GDB not to be able to
3032 set breakpoints on inlined functions by name, so we ignore these
3033 indices unless the user has done
3034 "set use-deprecated-index-sections on". */
3035 if (version < 6 && !deprecated_ok)
3036 {
3037 static int warning_printed = 0;
3038 if (!warning_printed)
3039 {
3040 warning (_("\
3041Skipping deprecated .gdb_index section in %s.\n\
3042Do \"set use-deprecated-index-sections on\" before the file is read\n\
3043to use the section anyway."),
3044 filename);
3045 warning_printed = 1;
3046 }
3047 return 0;
3048 }
3049 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3050 of the TU (for symbols coming from TUs),
3051 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3052 Plus gold-generated indices can have duplicate entries for global symbols,
3053 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3054 These are just performance bugs, and we can't distinguish gdb-generated
3055 indices from gold-generated ones, so issue no warning here. */
3056
3057 /* Indexes with higher version than the one supported by GDB may be no
3058 longer backward compatible. */
3059 if (version > 8)
3060 return 0;
3061
3062 map->version = version;
3063 map->total_size = section->size;
3064
3065 metadata = (offset_type *) (addr + sizeof (offset_type));
3066
3067 i = 0;
3068 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3069 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3070 / 8);
3071 ++i;
3072
3073 *types_list = addr + MAYBE_SWAP (metadata[i]);
3074 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3075 - MAYBE_SWAP (metadata[i]))
3076 / 8);
3077 ++i;
3078
3079 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3080 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3081 - MAYBE_SWAP (metadata[i]));
3082 ++i;
3083
3084 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3085 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3086 - MAYBE_SWAP (metadata[i]))
3087 / (2 * sizeof (offset_type)));
3088 ++i;
3089
3090 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3091
3092 return 1;
3093}
3094
3095
3096/* Read the index file. If everything went ok, initialize the "quick"
3097 elements of all the CUs and return 1. Otherwise, return 0. */
3098
3099static int
3100dwarf2_read_index (struct objfile *objfile)
3101{
3102 struct mapped_index local_map, *map;
3103 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3104 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3105 struct dwz_file *dwz;
3106
3107 if (!read_index_from_section (objfile, objfile_name (objfile),
3108 use_deprecated_index_sections,
3109 &dwarf2_per_objfile->gdb_index, &local_map,
3110 &cu_list, &cu_list_elements,
3111 &types_list, &types_list_elements))
3112 return 0;
3113
3114 /* Don't use the index if it's empty. */
3115 if (local_map.symbol_table_slots == 0)
3116 return 0;
3117
3118 /* If there is a .dwz file, read it so we can get its CU list as
3119 well. */
3120 dwz = dwarf2_get_dwz_file ();
3121 if (dwz != NULL)
3122 {
3123 struct mapped_index dwz_map;
3124 const gdb_byte *dwz_types_ignore;
3125 offset_type dwz_types_elements_ignore;
3126
3127 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3128 1,
3129 &dwz->gdb_index, &dwz_map,
3130 &dwz_list, &dwz_list_elements,
3131 &dwz_types_ignore,
3132 &dwz_types_elements_ignore))
3133 {
3134 warning (_("could not read '.gdb_index' section from %s; skipping"),
3135 bfd_get_filename (dwz->dwz_bfd));
3136 return 0;
3137 }
3138 }
3139
3140 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3141 dwz_list_elements);
3142
3143 if (types_list_elements)
3144 {
3145 struct dwarf2_section_info *section;
3146
3147 /* We can only handle a single .debug_types when we have an
3148 index. */
3149 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3150 return 0;
3151
3152 section = VEC_index (dwarf2_section_info_def,
3153 dwarf2_per_objfile->types, 0);
3154
3155 create_signatured_type_table_from_index (objfile, section, types_list,
3156 types_list_elements);
3157 }
3158
3159 create_addrmap_from_index (objfile, &local_map);
3160
3161 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3162 *map = local_map;
3163
3164 dwarf2_per_objfile->index_table = map;
3165 dwarf2_per_objfile->using_index = 1;
3166 dwarf2_per_objfile->quick_file_names_table =
3167 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3168
3169 return 1;
3170}
3171
3172/* A helper for the "quick" functions which sets the global
3173 dwarf2_per_objfile according to OBJFILE. */
3174
3175static void
3176dw2_setup (struct objfile *objfile)
3177{
3178 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3179 gdb_assert (dwarf2_per_objfile);
3180}
3181
3182/* die_reader_func for dw2_get_file_names. */
3183
3184static void
3185dw2_get_file_names_reader (const struct die_reader_specs *reader,
3186 const gdb_byte *info_ptr,
3187 struct die_info *comp_unit_die,
3188 int has_children,
3189 void *data)
3190{
3191 struct dwarf2_cu *cu = reader->cu;
3192 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3193 struct objfile *objfile = dwarf2_per_objfile->objfile;
3194 struct dwarf2_per_cu_data *lh_cu;
3195 struct line_header *lh;
3196 struct attribute *attr;
3197 int i;
3198 const char *name, *comp_dir;
3199 void **slot;
3200 struct quick_file_names *qfn;
3201 unsigned int line_offset;
3202
3203 gdb_assert (! this_cu->is_debug_types);
3204
3205 /* Our callers never want to match partial units -- instead they
3206 will match the enclosing full CU. */
3207 if (comp_unit_die->tag == DW_TAG_partial_unit)
3208 {
3209 this_cu->v.quick->no_file_data = 1;
3210 return;
3211 }
3212
3213 lh_cu = this_cu;
3214 lh = NULL;
3215 slot = NULL;
3216 line_offset = 0;
3217
3218 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3219 if (attr)
3220 {
3221 struct quick_file_names find_entry;
3222
3223 line_offset = DW_UNSND (attr);
3224
3225 /* We may have already read in this line header (TU line header sharing).
3226 If we have we're done. */
3227 find_entry.hash.dwo_unit = cu->dwo_unit;
3228 find_entry.hash.line_offset.sect_off = line_offset;
3229 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3230 &find_entry, INSERT);
3231 if (*slot != NULL)
3232 {
3233 lh_cu->v.quick->file_names = *slot;
3234 return;
3235 }
3236
3237 lh = dwarf_decode_line_header (line_offset, cu);
3238 }
3239 if (lh == NULL)
3240 {
3241 lh_cu->v.quick->no_file_data = 1;
3242 return;
3243 }
3244
3245 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3246 qfn->hash.dwo_unit = cu->dwo_unit;
3247 qfn->hash.line_offset.sect_off = line_offset;
3248 gdb_assert (slot != NULL);
3249 *slot = qfn;
3250
3251 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3252
3253 qfn->num_file_names = lh->num_file_names;
3254 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3255 lh->num_file_names * sizeof (char *));
3256 for (i = 0; i < lh->num_file_names; ++i)
3257 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3258 qfn->real_names = NULL;
3259
3260 free_line_header (lh);
3261
3262 lh_cu->v.quick->file_names = qfn;
3263}
3264
3265/* A helper for the "quick" functions which attempts to read the line
3266 table for THIS_CU. */
3267
3268static struct quick_file_names *
3269dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3270{
3271 /* This should never be called for TUs. */
3272 gdb_assert (! this_cu->is_debug_types);
3273 /* Nor type unit groups. */
3274 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3275
3276 if (this_cu->v.quick->file_names != NULL)
3277 return this_cu->v.quick->file_names;
3278 /* If we know there is no line data, no point in looking again. */
3279 if (this_cu->v.quick->no_file_data)
3280 return NULL;
3281
3282 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3283
3284 if (this_cu->v.quick->no_file_data)
3285 return NULL;
3286 return this_cu->v.quick->file_names;
3287}
3288
3289/* A helper for the "quick" functions which computes and caches the
3290 real path for a given file name from the line table. */
3291
3292static const char *
3293dw2_get_real_path (struct objfile *objfile,
3294 struct quick_file_names *qfn, int index)
3295{
3296 if (qfn->real_names == NULL)
3297 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3298 qfn->num_file_names, const char *);
3299
3300 if (qfn->real_names[index] == NULL)
3301 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3302
3303 return qfn->real_names[index];
3304}
3305
3306static struct symtab *
3307dw2_find_last_source_symtab (struct objfile *objfile)
3308{
3309 int index;
3310
3311 dw2_setup (objfile);
3312 index = dwarf2_per_objfile->n_comp_units - 1;
3313 return dw2_instantiate_symtab (dw2_get_cutu (index));
3314}
3315
3316/* Traversal function for dw2_forget_cached_source_info. */
3317
3318static int
3319dw2_free_cached_file_names (void **slot, void *info)
3320{
3321 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3322
3323 if (file_data->real_names)
3324 {
3325 int i;
3326
3327 for (i = 0; i < file_data->num_file_names; ++i)
3328 {
3329 xfree ((void*) file_data->real_names[i]);
3330 file_data->real_names[i] = NULL;
3331 }
3332 }
3333
3334 return 1;
3335}
3336
3337static void
3338dw2_forget_cached_source_info (struct objfile *objfile)
3339{
3340 dw2_setup (objfile);
3341
3342 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3343 dw2_free_cached_file_names, NULL);
3344}
3345
3346/* Helper function for dw2_map_symtabs_matching_filename that expands
3347 the symtabs and calls the iterator. */
3348
3349static int
3350dw2_map_expand_apply (struct objfile *objfile,
3351 struct dwarf2_per_cu_data *per_cu,
3352 const char *name, const char *real_path,
3353 int (*callback) (struct symtab *, void *),
3354 void *data)
3355{
3356 struct symtab *last_made = objfile->symtabs;
3357
3358 /* Don't visit already-expanded CUs. */
3359 if (per_cu->v.quick->symtab)
3360 return 0;
3361
3362 /* This may expand more than one symtab, and we want to iterate over
3363 all of them. */
3364 dw2_instantiate_symtab (per_cu);
3365
3366 return iterate_over_some_symtabs (name, real_path, callback, data,
3367 objfile->symtabs, last_made);
3368}
3369
3370/* Implementation of the map_symtabs_matching_filename method. */
3371
3372static int
3373dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3374 const char *real_path,
3375 int (*callback) (struct symtab *, void *),
3376 void *data)
3377{
3378 int i;
3379 const char *name_basename = lbasename (name);
3380
3381 dw2_setup (objfile);
3382
3383 /* The rule is CUs specify all the files, including those used by
3384 any TU, so there's no need to scan TUs here. */
3385
3386 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3387 {
3388 int j;
3389 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3390 struct quick_file_names *file_data;
3391
3392 /* We only need to look at symtabs not already expanded. */
3393 if (per_cu->v.quick->symtab)
3394 continue;
3395
3396 file_data = dw2_get_file_names (per_cu);
3397 if (file_data == NULL)
3398 continue;
3399
3400 for (j = 0; j < file_data->num_file_names; ++j)
3401 {
3402 const char *this_name = file_data->file_names[j];
3403 const char *this_real_name;
3404
3405 if (compare_filenames_for_search (this_name, name))
3406 {
3407 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3408 callback, data))
3409 return 1;
3410 continue;
3411 }
3412
3413 /* Before we invoke realpath, which can get expensive when many
3414 files are involved, do a quick comparison of the basenames. */
3415 if (! basenames_may_differ
3416 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3417 continue;
3418
3419 this_real_name = dw2_get_real_path (objfile, file_data, j);
3420 if (compare_filenames_for_search (this_real_name, name))
3421 {
3422 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3423 callback, data))
3424 return 1;
3425 continue;
3426 }
3427
3428 if (real_path != NULL)
3429 {
3430 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3431 gdb_assert (IS_ABSOLUTE_PATH (name));
3432 if (this_real_name != NULL
3433 && FILENAME_CMP (real_path, this_real_name) == 0)
3434 {
3435 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3436 callback, data))
3437 return 1;
3438 continue;
3439 }
3440 }
3441 }
3442 }
3443
3444 return 0;
3445}
3446
3447/* Struct used to manage iterating over all CUs looking for a symbol. */
3448
3449struct dw2_symtab_iterator
3450{
3451 /* The internalized form of .gdb_index. */
3452 struct mapped_index *index;
3453 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3454 int want_specific_block;
3455 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3456 Unused if !WANT_SPECIFIC_BLOCK. */
3457 int block_index;
3458 /* The kind of symbol we're looking for. */
3459 domain_enum domain;
3460 /* The list of CUs from the index entry of the symbol,
3461 or NULL if not found. */
3462 offset_type *vec;
3463 /* The next element in VEC to look at. */
3464 int next;
3465 /* The number of elements in VEC, or zero if there is no match. */
3466 int length;
3467 /* Have we seen a global version of the symbol?
3468 If so we can ignore all further global instances.
3469 This is to work around gold/15646, inefficient gold-generated
3470 indices. */
3471 int global_seen;
3472};
3473
3474/* Initialize the index symtab iterator ITER.
3475 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3476 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3477
3478static void
3479dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3480 struct mapped_index *index,
3481 int want_specific_block,
3482 int block_index,
3483 domain_enum domain,
3484 const char *name)
3485{
3486 iter->index = index;
3487 iter->want_specific_block = want_specific_block;
3488 iter->block_index = block_index;
3489 iter->domain = domain;
3490 iter->next = 0;
3491 iter->global_seen = 0;
3492
3493 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3494 iter->length = MAYBE_SWAP (*iter->vec);
3495 else
3496 {
3497 iter->vec = NULL;
3498 iter->length = 0;
3499 }
3500}
3501
3502/* Return the next matching CU or NULL if there are no more. */
3503
3504static struct dwarf2_per_cu_data *
3505dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3506{
3507 for ( ; iter->next < iter->length; ++iter->next)
3508 {
3509 offset_type cu_index_and_attrs =
3510 MAYBE_SWAP (iter->vec[iter->next + 1]);
3511 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3512 struct dwarf2_per_cu_data *per_cu;
3513 int want_static = iter->block_index != GLOBAL_BLOCK;
3514 /* This value is only valid for index versions >= 7. */
3515 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3516 gdb_index_symbol_kind symbol_kind =
3517 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3518 /* Only check the symbol attributes if they're present.
3519 Indices prior to version 7 don't record them,
3520 and indices >= 7 may elide them for certain symbols
3521 (gold does this). */
3522 int attrs_valid =
3523 (iter->index->version >= 7
3524 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3525
3526 /* Don't crash on bad data. */
3527 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3528 + dwarf2_per_objfile->n_type_units))
3529 {
3530 complaint (&symfile_complaints,
3531 _(".gdb_index entry has bad CU index"
3532 " [in module %s]"),
3533 objfile_name (dwarf2_per_objfile->objfile));
3534 continue;
3535 }
3536
3537 per_cu = dw2_get_cutu (cu_index);
3538
3539 /* Skip if already read in. */
3540 if (per_cu->v.quick->symtab)
3541 continue;
3542
3543 /* Check static vs global. */
3544 if (attrs_valid)
3545 {
3546 if (iter->want_specific_block
3547 && want_static != is_static)
3548 continue;
3549 /* Work around gold/15646. */
3550 if (!is_static && iter->global_seen)
3551 continue;
3552 if (!is_static)
3553 iter->global_seen = 1;
3554 }
3555
3556 /* Only check the symbol's kind if it has one. */
3557 if (attrs_valid)
3558 {
3559 switch (iter->domain)
3560 {
3561 case VAR_DOMAIN:
3562 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3563 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3564 /* Some types are also in VAR_DOMAIN. */
3565 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3566 continue;
3567 break;
3568 case STRUCT_DOMAIN:
3569 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3570 continue;
3571 break;
3572 case LABEL_DOMAIN:
3573 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3574 continue;
3575 break;
3576 default:
3577 break;
3578 }
3579 }
3580
3581 ++iter->next;
3582 return per_cu;
3583 }
3584
3585 return NULL;
3586}
3587
3588static struct symtab *
3589dw2_lookup_symbol (struct objfile *objfile, int block_index,
3590 const char *name, domain_enum domain)
3591{
3592 struct symtab *stab_best = NULL;
3593 struct mapped_index *index;
3594
3595 dw2_setup (objfile);
3596
3597 index = dwarf2_per_objfile->index_table;
3598
3599 /* index is NULL if OBJF_READNOW. */
3600 if (index)
3601 {
3602 struct dw2_symtab_iterator iter;
3603 struct dwarf2_per_cu_data *per_cu;
3604
3605 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3606
3607 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3608 {
3609 struct symbol *sym = NULL;
3610 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3611
3612 /* Some caution must be observed with overloaded functions
3613 and methods, since the index will not contain any overload
3614 information (but NAME might contain it). */
3615 if (stab->primary)
3616 {
3617 const struct blockvector *bv = BLOCKVECTOR (stab);
3618 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3619
3620 sym = lookup_block_symbol (block, name, domain);
3621 }
3622
3623 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3624 {
3625 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3626 return stab;
3627
3628 stab_best = stab;
3629 }
3630
3631 /* Keep looking through other CUs. */
3632 }
3633 }
3634
3635 return stab_best;
3636}
3637
3638static void
3639dw2_print_stats (struct objfile *objfile)
3640{
3641 int i, total, count;
3642
3643 dw2_setup (objfile);
3644 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3645 count = 0;
3646 for (i = 0; i < total; ++i)
3647 {
3648 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3649
3650 if (!per_cu->v.quick->symtab)
3651 ++count;
3652 }
3653 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3654 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3655}
3656
3657/* This dumps minimal information about the index.
3658 It is called via "mt print objfiles".
3659 One use is to verify .gdb_index has been loaded by the
3660 gdb.dwarf2/gdb-index.exp testcase. */
3661
3662static void
3663dw2_dump (struct objfile *objfile)
3664{
3665 dw2_setup (objfile);
3666 gdb_assert (dwarf2_per_objfile->using_index);
3667 printf_filtered (".gdb_index:");
3668 if (dwarf2_per_objfile->index_table != NULL)
3669 {
3670 printf_filtered (" version %d\n",
3671 dwarf2_per_objfile->index_table->version);
3672 }
3673 else
3674 printf_filtered (" faked for \"readnow\"\n");
3675 printf_filtered ("\n");
3676}
3677
3678static void
3679dw2_relocate (struct objfile *objfile,
3680 const struct section_offsets *new_offsets,
3681 const struct section_offsets *delta)
3682{
3683 /* There's nothing to relocate here. */
3684}
3685
3686static void
3687dw2_expand_symtabs_for_function (struct objfile *objfile,
3688 const char *func_name)
3689{
3690 struct mapped_index *index;
3691
3692 dw2_setup (objfile);
3693
3694 index = dwarf2_per_objfile->index_table;
3695
3696 /* index is NULL if OBJF_READNOW. */
3697 if (index)
3698 {
3699 struct dw2_symtab_iterator iter;
3700 struct dwarf2_per_cu_data *per_cu;
3701
3702 /* Note: It doesn't matter what we pass for block_index here. */
3703 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3704 func_name);
3705
3706 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3707 dw2_instantiate_symtab (per_cu);
3708 }
3709}
3710
3711static void
3712dw2_expand_all_symtabs (struct objfile *objfile)
3713{
3714 int i;
3715
3716 dw2_setup (objfile);
3717
3718 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3719 + dwarf2_per_objfile->n_type_units); ++i)
3720 {
3721 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3722
3723 dw2_instantiate_symtab (per_cu);
3724 }
3725}
3726
3727static void
3728dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3729 const char *fullname)
3730{
3731 int i;
3732
3733 dw2_setup (objfile);
3734
3735 /* We don't need to consider type units here.
3736 This is only called for examining code, e.g. expand_line_sal.
3737 There can be an order of magnitude (or more) more type units
3738 than comp units, and we avoid them if we can. */
3739
3740 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3741 {
3742 int j;
3743 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3744 struct quick_file_names *file_data;
3745
3746 /* We only need to look at symtabs not already expanded. */
3747 if (per_cu->v.quick->symtab)
3748 continue;
3749
3750 file_data = dw2_get_file_names (per_cu);
3751 if (file_data == NULL)
3752 continue;
3753
3754 for (j = 0; j < file_data->num_file_names; ++j)
3755 {
3756 const char *this_fullname = file_data->file_names[j];
3757
3758 if (filename_cmp (this_fullname, fullname) == 0)
3759 {
3760 dw2_instantiate_symtab (per_cu);
3761 break;
3762 }
3763 }
3764 }
3765}
3766
3767static void
3768dw2_map_matching_symbols (struct objfile *objfile,
3769 const char * name, domain_enum namespace,
3770 int global,
3771 int (*callback) (struct block *,
3772 struct symbol *, void *),
3773 void *data, symbol_compare_ftype *match,
3774 symbol_compare_ftype *ordered_compare)
3775{
3776 /* Currently unimplemented; used for Ada. The function can be called if the
3777 current language is Ada for a non-Ada objfile using GNU index. As Ada
3778 does not look for non-Ada symbols this function should just return. */
3779}
3780
3781static void
3782dw2_expand_symtabs_matching
3783 (struct objfile *objfile,
3784 expand_symtabs_file_matcher_ftype *file_matcher,
3785 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3786 enum search_domain kind,
3787 void *data)
3788{
3789 int i;
3790 offset_type iter;
3791 struct mapped_index *index;
3792
3793 dw2_setup (objfile);
3794
3795 /* index_table is NULL if OBJF_READNOW. */
3796 if (!dwarf2_per_objfile->index_table)
3797 return;
3798 index = dwarf2_per_objfile->index_table;
3799
3800 if (file_matcher != NULL)
3801 {
3802 struct cleanup *cleanup;
3803 htab_t visited_found, visited_not_found;
3804
3805 visited_found = htab_create_alloc (10,
3806 htab_hash_pointer, htab_eq_pointer,
3807 NULL, xcalloc, xfree);
3808 cleanup = make_cleanup_htab_delete (visited_found);
3809 visited_not_found = htab_create_alloc (10,
3810 htab_hash_pointer, htab_eq_pointer,
3811 NULL, xcalloc, xfree);
3812 make_cleanup_htab_delete (visited_not_found);
3813
3814 /* The rule is CUs specify all the files, including those used by
3815 any TU, so there's no need to scan TUs here. */
3816
3817 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3818 {
3819 int j;
3820 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3821 struct quick_file_names *file_data;
3822 void **slot;
3823
3824 per_cu->v.quick->mark = 0;
3825
3826 /* We only need to look at symtabs not already expanded. */
3827 if (per_cu->v.quick->symtab)
3828 continue;
3829
3830 file_data = dw2_get_file_names (per_cu);
3831 if (file_data == NULL)
3832 continue;
3833
3834 if (htab_find (visited_not_found, file_data) != NULL)
3835 continue;
3836 else if (htab_find (visited_found, file_data) != NULL)
3837 {
3838 per_cu->v.quick->mark = 1;
3839 continue;
3840 }
3841
3842 for (j = 0; j < file_data->num_file_names; ++j)
3843 {
3844 const char *this_real_name;
3845
3846 if (file_matcher (file_data->file_names[j], data, 0))
3847 {
3848 per_cu->v.quick->mark = 1;
3849 break;
3850 }
3851
3852 /* Before we invoke realpath, which can get expensive when many
3853 files are involved, do a quick comparison of the basenames. */
3854 if (!basenames_may_differ
3855 && !file_matcher (lbasename (file_data->file_names[j]),
3856 data, 1))
3857 continue;
3858
3859 this_real_name = dw2_get_real_path (objfile, file_data, j);
3860 if (file_matcher (this_real_name, data, 0))
3861 {
3862 per_cu->v.quick->mark = 1;
3863 break;
3864 }
3865 }
3866
3867 slot = htab_find_slot (per_cu->v.quick->mark
3868 ? visited_found
3869 : visited_not_found,
3870 file_data, INSERT);
3871 *slot = file_data;
3872 }
3873
3874 do_cleanups (cleanup);
3875 }
3876
3877 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3878 {
3879 offset_type idx = 2 * iter;
3880 const char *name;
3881 offset_type *vec, vec_len, vec_idx;
3882 int global_seen = 0;
3883
3884 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3885 continue;
3886
3887 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3888
3889 if (! (*symbol_matcher) (name, data))
3890 continue;
3891
3892 /* The name was matched, now expand corresponding CUs that were
3893 marked. */
3894 vec = (offset_type *) (index->constant_pool
3895 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3896 vec_len = MAYBE_SWAP (vec[0]);
3897 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3898 {
3899 struct dwarf2_per_cu_data *per_cu;
3900 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3901 /* This value is only valid for index versions >= 7. */
3902 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3903 gdb_index_symbol_kind symbol_kind =
3904 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3905 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3906 /* Only check the symbol attributes if they're present.
3907 Indices prior to version 7 don't record them,
3908 and indices >= 7 may elide them for certain symbols
3909 (gold does this). */
3910 int attrs_valid =
3911 (index->version >= 7
3912 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3913
3914 /* Work around gold/15646. */
3915 if (attrs_valid)
3916 {
3917 if (!is_static && global_seen)
3918 continue;
3919 if (!is_static)
3920 global_seen = 1;
3921 }
3922
3923 /* Only check the symbol's kind if it has one. */
3924 if (attrs_valid)
3925 {
3926 switch (kind)
3927 {
3928 case VARIABLES_DOMAIN:
3929 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3930 continue;
3931 break;
3932 case FUNCTIONS_DOMAIN:
3933 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3934 continue;
3935 break;
3936 case TYPES_DOMAIN:
3937 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3938 continue;
3939 break;
3940 default:
3941 break;
3942 }
3943 }
3944
3945 /* Don't crash on bad data. */
3946 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3947 + dwarf2_per_objfile->n_type_units))
3948 {
3949 complaint (&symfile_complaints,
3950 _(".gdb_index entry has bad CU index"
3951 " [in module %s]"), objfile_name (objfile));
3952 continue;
3953 }
3954
3955 per_cu = dw2_get_cutu (cu_index);
3956 if (file_matcher == NULL || per_cu->v.quick->mark)
3957 dw2_instantiate_symtab (per_cu);
3958 }
3959 }
3960}
3961
3962/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3963 symtab. */
3964
3965static struct symtab *
3966recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3967{
3968 int i;
3969
3970 if (BLOCKVECTOR (symtab) != NULL
3971 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3972 return symtab;
3973
3974 if (symtab->includes == NULL)
3975 return NULL;
3976
3977 for (i = 0; symtab->includes[i]; ++i)
3978 {
3979 struct symtab *s = symtab->includes[i];
3980
3981 s = recursively_find_pc_sect_symtab (s, pc);
3982 if (s != NULL)
3983 return s;
3984 }
3985
3986 return NULL;
3987}
3988
3989static struct symtab *
3990dw2_find_pc_sect_symtab (struct objfile *objfile,
3991 struct bound_minimal_symbol msymbol,
3992 CORE_ADDR pc,
3993 struct obj_section *section,
3994 int warn_if_readin)
3995{
3996 struct dwarf2_per_cu_data *data;
3997 struct symtab *result;
3998
3999 dw2_setup (objfile);
4000
4001 if (!objfile->psymtabs_addrmap)
4002 return NULL;
4003
4004 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4005 if (!data)
4006 return NULL;
4007
4008 if (warn_if_readin && data->v.quick->symtab)
4009 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4010 paddress (get_objfile_arch (objfile), pc));
4011
4012 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4013 gdb_assert (result != NULL);
4014 return result;
4015}
4016
4017static void
4018dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4019 void *data, int need_fullname)
4020{
4021 int i;
4022 struct cleanup *cleanup;
4023 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4024 NULL, xcalloc, xfree);
4025
4026 cleanup = make_cleanup_htab_delete (visited);
4027 dw2_setup (objfile);
4028
4029 /* The rule is CUs specify all the files, including those used by
4030 any TU, so there's no need to scan TUs here.
4031 We can ignore file names coming from already-expanded CUs. */
4032
4033 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4034 {
4035 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4036
4037 if (per_cu->v.quick->symtab)
4038 {
4039 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4040 INSERT);
4041
4042 *slot = per_cu->v.quick->file_names;
4043 }
4044 }
4045
4046 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4047 {
4048 int j;
4049 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4050 struct quick_file_names *file_data;
4051 void **slot;
4052
4053 /* We only need to look at symtabs not already expanded. */
4054 if (per_cu->v.quick->symtab)
4055 continue;
4056
4057 file_data = dw2_get_file_names (per_cu);
4058 if (file_data == NULL)
4059 continue;
4060
4061 slot = htab_find_slot (visited, file_data, INSERT);
4062 if (*slot)
4063 {
4064 /* Already visited. */
4065 continue;
4066 }
4067 *slot = file_data;
4068
4069 for (j = 0; j < file_data->num_file_names; ++j)
4070 {
4071 const char *this_real_name;
4072
4073 if (need_fullname)
4074 this_real_name = dw2_get_real_path (objfile, file_data, j);
4075 else
4076 this_real_name = NULL;
4077 (*fun) (file_data->file_names[j], this_real_name, data);
4078 }
4079 }
4080
4081 do_cleanups (cleanup);
4082}
4083
4084static int
4085dw2_has_symbols (struct objfile *objfile)
4086{
4087 return 1;
4088}
4089
4090const struct quick_symbol_functions dwarf2_gdb_index_functions =
4091{
4092 dw2_has_symbols,
4093 dw2_find_last_source_symtab,
4094 dw2_forget_cached_source_info,
4095 dw2_map_symtabs_matching_filename,
4096 dw2_lookup_symbol,
4097 dw2_print_stats,
4098 dw2_dump,
4099 dw2_relocate,
4100 dw2_expand_symtabs_for_function,
4101 dw2_expand_all_symtabs,
4102 dw2_expand_symtabs_with_fullname,
4103 dw2_map_matching_symbols,
4104 dw2_expand_symtabs_matching,
4105 dw2_find_pc_sect_symtab,
4106 dw2_map_symbol_filenames
4107};
4108
4109/* Initialize for reading DWARF for this objfile. Return 0 if this
4110 file will use psymtabs, or 1 if using the GNU index. */
4111
4112int
4113dwarf2_initialize_objfile (struct objfile *objfile)
4114{
4115 /* If we're about to read full symbols, don't bother with the
4116 indices. In this case we also don't care if some other debug
4117 format is making psymtabs, because they are all about to be
4118 expanded anyway. */
4119 if ((objfile->flags & OBJF_READNOW))
4120 {
4121 int i;
4122
4123 dwarf2_per_objfile->using_index = 1;
4124 create_all_comp_units (objfile);
4125 create_all_type_units (objfile);
4126 dwarf2_per_objfile->quick_file_names_table =
4127 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4128
4129 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4130 + dwarf2_per_objfile->n_type_units); ++i)
4131 {
4132 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4133
4134 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4135 struct dwarf2_per_cu_quick_data);
4136 }
4137
4138 /* Return 1 so that gdb sees the "quick" functions. However,
4139 these functions will be no-ops because we will have expanded
4140 all symtabs. */
4141 return 1;
4142 }
4143
4144 if (dwarf2_read_index (objfile))
4145 return 1;
4146
4147 return 0;
4148}
4149
4150\f
4151
4152/* Build a partial symbol table. */
4153
4154void
4155dwarf2_build_psymtabs (struct objfile *objfile)
4156{
4157 volatile struct gdb_exception except;
4158
4159 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4160 {
4161 init_psymbol_list (objfile, 1024);
4162 }
4163
4164 TRY_CATCH (except, RETURN_MASK_ERROR)
4165 {
4166 /* This isn't really ideal: all the data we allocate on the
4167 objfile's obstack is still uselessly kept around. However,
4168 freeing it seems unsafe. */
4169 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4170
4171 dwarf2_build_psymtabs_hard (objfile);
4172 discard_cleanups (cleanups);
4173 }
4174 if (except.reason < 0)
4175 exception_print (gdb_stderr, except);
4176}
4177
4178/* Return the total length of the CU described by HEADER. */
4179
4180static unsigned int
4181get_cu_length (const struct comp_unit_head *header)
4182{
4183 return header->initial_length_size + header->length;
4184}
4185
4186/* Return TRUE if OFFSET is within CU_HEADER. */
4187
4188static inline int
4189offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4190{
4191 sect_offset bottom = { cu_header->offset.sect_off };
4192 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4193
4194 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4195}
4196
4197/* Find the base address of the compilation unit for range lists and
4198 location lists. It will normally be specified by DW_AT_low_pc.
4199 In DWARF-3 draft 4, the base address could be overridden by
4200 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4201 compilation units with discontinuous ranges. */
4202
4203static void
4204dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4205{
4206 struct attribute *attr;
4207
4208 cu->base_known = 0;
4209 cu->base_address = 0;
4210
4211 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4212 if (attr)
4213 {
4214 cu->base_address = attr_value_as_address (attr);
4215 cu->base_known = 1;
4216 }
4217 else
4218 {
4219 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4220 if (attr)
4221 {
4222 cu->base_address = attr_value_as_address (attr);
4223 cu->base_known = 1;
4224 }
4225 }
4226}
4227
4228/* Read in the comp unit header information from the debug_info at info_ptr.
4229 NOTE: This leaves members offset, first_die_offset to be filled in
4230 by the caller. */
4231
4232static const gdb_byte *
4233read_comp_unit_head (struct comp_unit_head *cu_header,
4234 const gdb_byte *info_ptr, bfd *abfd)
4235{
4236 int signed_addr;
4237 unsigned int bytes_read;
4238
4239 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4240 cu_header->initial_length_size = bytes_read;
4241 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4242 info_ptr += bytes_read;
4243 cu_header->version = read_2_bytes (abfd, info_ptr);
4244 info_ptr += 2;
4245 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4246 &bytes_read);
4247 info_ptr += bytes_read;
4248 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4249 info_ptr += 1;
4250 signed_addr = bfd_get_sign_extend_vma (abfd);
4251 if (signed_addr < 0)
4252 internal_error (__FILE__, __LINE__,
4253 _("read_comp_unit_head: dwarf from non elf file"));
4254 cu_header->signed_addr_p = signed_addr;
4255
4256 return info_ptr;
4257}
4258
4259/* Helper function that returns the proper abbrev section for
4260 THIS_CU. */
4261
4262static struct dwarf2_section_info *
4263get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4264{
4265 struct dwarf2_section_info *abbrev;
4266
4267 if (this_cu->is_dwz)
4268 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4269 else
4270 abbrev = &dwarf2_per_objfile->abbrev;
4271
4272 return abbrev;
4273}
4274
4275/* Subroutine of read_and_check_comp_unit_head and
4276 read_and_check_type_unit_head to simplify them.
4277 Perform various error checking on the header. */
4278
4279static void
4280error_check_comp_unit_head (struct comp_unit_head *header,
4281 struct dwarf2_section_info *section,
4282 struct dwarf2_section_info *abbrev_section)
4283{
4284 bfd *abfd = get_section_bfd_owner (section);
4285 const char *filename = get_section_file_name (section);
4286
4287 if (header->version != 2 && header->version != 3 && header->version != 4)
4288 error (_("Dwarf Error: wrong version in compilation unit header "
4289 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4290 filename);
4291
4292 if (header->abbrev_offset.sect_off
4293 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4294 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4295 "(offset 0x%lx + 6) [in module %s]"),
4296 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4297 filename);
4298
4299 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4300 avoid potential 32-bit overflow. */
4301 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4302 > section->size)
4303 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4304 "(offset 0x%lx + 0) [in module %s]"),
4305 (long) header->length, (long) header->offset.sect_off,
4306 filename);
4307}
4308
4309/* Read in a CU/TU header and perform some basic error checking.
4310 The contents of the header are stored in HEADER.
4311 The result is a pointer to the start of the first DIE. */
4312
4313static const gdb_byte *
4314read_and_check_comp_unit_head (struct comp_unit_head *header,
4315 struct dwarf2_section_info *section,
4316 struct dwarf2_section_info *abbrev_section,
4317 const gdb_byte *info_ptr,
4318 int is_debug_types_section)
4319{
4320 const gdb_byte *beg_of_comp_unit = info_ptr;
4321 bfd *abfd = get_section_bfd_owner (section);
4322
4323 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4324
4325 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4326
4327 /* If we're reading a type unit, skip over the signature and
4328 type_offset fields. */
4329 if (is_debug_types_section)
4330 info_ptr += 8 /*signature*/ + header->offset_size;
4331
4332 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4333
4334 error_check_comp_unit_head (header, section, abbrev_section);
4335
4336 return info_ptr;
4337}
4338
4339/* Read in the types comp unit header information from .debug_types entry at
4340 types_ptr. The result is a pointer to one past the end of the header. */
4341
4342static const gdb_byte *
4343read_and_check_type_unit_head (struct comp_unit_head *header,
4344 struct dwarf2_section_info *section,
4345 struct dwarf2_section_info *abbrev_section,
4346 const gdb_byte *info_ptr,
4347 ULONGEST *signature,
4348 cu_offset *type_offset_in_tu)
4349{
4350 const gdb_byte *beg_of_comp_unit = info_ptr;
4351 bfd *abfd = get_section_bfd_owner (section);
4352
4353 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4354
4355 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4356
4357 /* If we're reading a type unit, skip over the signature and
4358 type_offset fields. */
4359 if (signature != NULL)
4360 *signature = read_8_bytes (abfd, info_ptr);
4361 info_ptr += 8;
4362 if (type_offset_in_tu != NULL)
4363 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4364 header->offset_size);
4365 info_ptr += header->offset_size;
4366
4367 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4368
4369 error_check_comp_unit_head (header, section, abbrev_section);
4370
4371 return info_ptr;
4372}
4373
4374/* Fetch the abbreviation table offset from a comp or type unit header. */
4375
4376static sect_offset
4377read_abbrev_offset (struct dwarf2_section_info *section,
4378 sect_offset offset)
4379{
4380 bfd *abfd = get_section_bfd_owner (section);
4381 const gdb_byte *info_ptr;
4382 unsigned int length, initial_length_size, offset_size;
4383 sect_offset abbrev_offset;
4384
4385 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4386 info_ptr = section->buffer + offset.sect_off;
4387 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4388 offset_size = initial_length_size == 4 ? 4 : 8;
4389 info_ptr += initial_length_size + 2 /*version*/;
4390 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4391 return abbrev_offset;
4392}
4393
4394/* Allocate a new partial symtab for file named NAME and mark this new
4395 partial symtab as being an include of PST. */
4396
4397static void
4398dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4399 struct objfile *objfile)
4400{
4401 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4402
4403 if (!IS_ABSOLUTE_PATH (subpst->filename))
4404 {
4405 /* It shares objfile->objfile_obstack. */
4406 subpst->dirname = pst->dirname;
4407 }
4408
4409 subpst->section_offsets = pst->section_offsets;
4410 subpst->textlow = 0;
4411 subpst->texthigh = 0;
4412
4413 subpst->dependencies = (struct partial_symtab **)
4414 obstack_alloc (&objfile->objfile_obstack,
4415 sizeof (struct partial_symtab *));
4416 subpst->dependencies[0] = pst;
4417 subpst->number_of_dependencies = 1;
4418
4419 subpst->globals_offset = 0;
4420 subpst->n_global_syms = 0;
4421 subpst->statics_offset = 0;
4422 subpst->n_static_syms = 0;
4423 subpst->symtab = NULL;
4424 subpst->read_symtab = pst->read_symtab;
4425 subpst->readin = 0;
4426
4427 /* No private part is necessary for include psymtabs. This property
4428 can be used to differentiate between such include psymtabs and
4429 the regular ones. */
4430 subpst->read_symtab_private = NULL;
4431}
4432
4433/* Read the Line Number Program data and extract the list of files
4434 included by the source file represented by PST. Build an include
4435 partial symtab for each of these included files. */
4436
4437static void
4438dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4439 struct die_info *die,
4440 struct partial_symtab *pst)
4441{
4442 struct line_header *lh = NULL;
4443 struct attribute *attr;
4444
4445 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4446 if (attr)
4447 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4448 if (lh == NULL)
4449 return; /* No linetable, so no includes. */
4450
4451 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4452 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4453
4454 free_line_header (lh);
4455}
4456
4457static hashval_t
4458hash_signatured_type (const void *item)
4459{
4460 const struct signatured_type *sig_type = item;
4461
4462 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4463 return sig_type->signature;
4464}
4465
4466static int
4467eq_signatured_type (const void *item_lhs, const void *item_rhs)
4468{
4469 const struct signatured_type *lhs = item_lhs;
4470 const struct signatured_type *rhs = item_rhs;
4471
4472 return lhs->signature == rhs->signature;
4473}
4474
4475/* Allocate a hash table for signatured types. */
4476
4477static htab_t
4478allocate_signatured_type_table (struct objfile *objfile)
4479{
4480 return htab_create_alloc_ex (41,
4481 hash_signatured_type,
4482 eq_signatured_type,
4483 NULL,
4484 &objfile->objfile_obstack,
4485 hashtab_obstack_allocate,
4486 dummy_obstack_deallocate);
4487}
4488
4489/* A helper function to add a signatured type CU to a table. */
4490
4491static int
4492add_signatured_type_cu_to_table (void **slot, void *datum)
4493{
4494 struct signatured_type *sigt = *slot;
4495 struct signatured_type ***datap = datum;
4496
4497 **datap = sigt;
4498 ++*datap;
4499
4500 return 1;
4501}
4502
4503/* Create the hash table of all entries in the .debug_types
4504 (or .debug_types.dwo) section(s).
4505 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4506 otherwise it is NULL.
4507
4508 The result is a pointer to the hash table or NULL if there are no types.
4509
4510 Note: This function processes DWO files only, not DWP files. */
4511
4512static htab_t
4513create_debug_types_hash_table (struct dwo_file *dwo_file,
4514 VEC (dwarf2_section_info_def) *types)
4515{
4516 struct objfile *objfile = dwarf2_per_objfile->objfile;
4517 htab_t types_htab = NULL;
4518 int ix;
4519 struct dwarf2_section_info *section;
4520 struct dwarf2_section_info *abbrev_section;
4521
4522 if (VEC_empty (dwarf2_section_info_def, types))
4523 return NULL;
4524
4525 abbrev_section = (dwo_file != NULL
4526 ? &dwo_file->sections.abbrev
4527 : &dwarf2_per_objfile->abbrev);
4528
4529 if (dwarf2_read_debug)
4530 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4531 dwo_file ? ".dwo" : "",
4532 get_section_file_name (abbrev_section));
4533
4534 for (ix = 0;
4535 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4536 ++ix)
4537 {
4538 bfd *abfd;
4539 const gdb_byte *info_ptr, *end_ptr;
4540
4541 dwarf2_read_section (objfile, section);
4542 info_ptr = section->buffer;
4543
4544 if (info_ptr == NULL)
4545 continue;
4546
4547 /* We can't set abfd until now because the section may be empty or
4548 not present, in which case the bfd is unknown. */
4549 abfd = get_section_bfd_owner (section);
4550
4551 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4552 because we don't need to read any dies: the signature is in the
4553 header. */
4554
4555 end_ptr = info_ptr + section->size;
4556 while (info_ptr < end_ptr)
4557 {
4558 sect_offset offset;
4559 cu_offset type_offset_in_tu;
4560 ULONGEST signature;
4561 struct signatured_type *sig_type;
4562 struct dwo_unit *dwo_tu;
4563 void **slot;
4564 const gdb_byte *ptr = info_ptr;
4565 struct comp_unit_head header;
4566 unsigned int length;
4567
4568 offset.sect_off = ptr - section->buffer;
4569
4570 /* We need to read the type's signature in order to build the hash
4571 table, but we don't need anything else just yet. */
4572
4573 ptr = read_and_check_type_unit_head (&header, section,
4574 abbrev_section, ptr,
4575 &signature, &type_offset_in_tu);
4576
4577 length = get_cu_length (&header);
4578
4579 /* Skip dummy type units. */
4580 if (ptr >= info_ptr + length
4581 || peek_abbrev_code (abfd, ptr) == 0)
4582 {
4583 info_ptr += length;
4584 continue;
4585 }
4586
4587 if (types_htab == NULL)
4588 {
4589 if (dwo_file)
4590 types_htab = allocate_dwo_unit_table (objfile);
4591 else
4592 types_htab = allocate_signatured_type_table (objfile);
4593 }
4594
4595 if (dwo_file)
4596 {
4597 sig_type = NULL;
4598 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4599 struct dwo_unit);
4600 dwo_tu->dwo_file = dwo_file;
4601 dwo_tu->signature = signature;
4602 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4603 dwo_tu->section = section;
4604 dwo_tu->offset = offset;
4605 dwo_tu->length = length;
4606 }
4607 else
4608 {
4609 /* N.B.: type_offset is not usable if this type uses a DWO file.
4610 The real type_offset is in the DWO file. */
4611 dwo_tu = NULL;
4612 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4613 struct signatured_type);
4614 sig_type->signature = signature;
4615 sig_type->type_offset_in_tu = type_offset_in_tu;
4616 sig_type->per_cu.objfile = objfile;
4617 sig_type->per_cu.is_debug_types = 1;
4618 sig_type->per_cu.section = section;
4619 sig_type->per_cu.offset = offset;
4620 sig_type->per_cu.length = length;
4621 }
4622
4623 slot = htab_find_slot (types_htab,
4624 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4625 INSERT);
4626 gdb_assert (slot != NULL);
4627 if (*slot != NULL)
4628 {
4629 sect_offset dup_offset;
4630
4631 if (dwo_file)
4632 {
4633 const struct dwo_unit *dup_tu = *slot;
4634
4635 dup_offset = dup_tu->offset;
4636 }
4637 else
4638 {
4639 const struct signatured_type *dup_tu = *slot;
4640
4641 dup_offset = dup_tu->per_cu.offset;
4642 }
4643
4644 complaint (&symfile_complaints,
4645 _("debug type entry at offset 0x%x is duplicate to"
4646 " the entry at offset 0x%x, signature %s"),
4647 offset.sect_off, dup_offset.sect_off,
4648 hex_string (signature));
4649 }
4650 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4651
4652 if (dwarf2_read_debug > 1)
4653 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4654 offset.sect_off,
4655 hex_string (signature));
4656
4657 info_ptr += length;
4658 }
4659 }
4660
4661 return types_htab;
4662}
4663
4664/* Create the hash table of all entries in the .debug_types section,
4665 and initialize all_type_units.
4666 The result is zero if there is an error (e.g. missing .debug_types section),
4667 otherwise non-zero. */
4668
4669static int
4670create_all_type_units (struct objfile *objfile)
4671{
4672 htab_t types_htab;
4673 struct signatured_type **iter;
4674
4675 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4676 if (types_htab == NULL)
4677 {
4678 dwarf2_per_objfile->signatured_types = NULL;
4679 return 0;
4680 }
4681
4682 dwarf2_per_objfile->signatured_types = types_htab;
4683
4684 dwarf2_per_objfile->n_type_units
4685 = dwarf2_per_objfile->n_allocated_type_units
4686 = htab_elements (types_htab);
4687 dwarf2_per_objfile->all_type_units
4688 = xmalloc (dwarf2_per_objfile->n_type_units
4689 * sizeof (struct signatured_type *));
4690 iter = &dwarf2_per_objfile->all_type_units[0];
4691 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4692 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4693 == dwarf2_per_objfile->n_type_units);
4694
4695 return 1;
4696}
4697
4698/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4699 If SLOT is non-NULL, it is the entry to use in the hash table.
4700 Otherwise we find one. */
4701
4702static struct signatured_type *
4703add_type_unit (ULONGEST sig, void **slot)
4704{
4705 struct objfile *objfile = dwarf2_per_objfile->objfile;
4706 int n_type_units = dwarf2_per_objfile->n_type_units;
4707 struct signatured_type *sig_type;
4708
4709 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4710 ++n_type_units;
4711 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4712 {
4713 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4714 dwarf2_per_objfile->n_allocated_type_units = 1;
4715 dwarf2_per_objfile->n_allocated_type_units *= 2;
4716 dwarf2_per_objfile->all_type_units
4717 = xrealloc (dwarf2_per_objfile->all_type_units,
4718 dwarf2_per_objfile->n_allocated_type_units
4719 * sizeof (struct signatured_type *));
4720 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4721 }
4722 dwarf2_per_objfile->n_type_units = n_type_units;
4723
4724 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4725 struct signatured_type);
4726 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4727 sig_type->signature = sig;
4728 sig_type->per_cu.is_debug_types = 1;
4729 if (dwarf2_per_objfile->using_index)
4730 {
4731 sig_type->per_cu.v.quick =
4732 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4733 struct dwarf2_per_cu_quick_data);
4734 }
4735
4736 if (slot == NULL)
4737 {
4738 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4739 sig_type, INSERT);
4740 }
4741 gdb_assert (*slot == NULL);
4742 *slot = sig_type;
4743 /* The rest of sig_type must be filled in by the caller. */
4744 return sig_type;
4745}
4746
4747/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4748 Fill in SIG_ENTRY with DWO_ENTRY. */
4749
4750static void
4751fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4752 struct signatured_type *sig_entry,
4753 struct dwo_unit *dwo_entry)
4754{
4755 /* Make sure we're not clobbering something we don't expect to. */
4756 gdb_assert (! sig_entry->per_cu.queued);
4757 gdb_assert (sig_entry->per_cu.cu == NULL);
4758 if (dwarf2_per_objfile->using_index)
4759 {
4760 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4761 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4762 }
4763 else
4764 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4765 gdb_assert (sig_entry->signature == dwo_entry->signature);
4766 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4767 gdb_assert (sig_entry->type_unit_group == NULL);
4768 gdb_assert (sig_entry->dwo_unit == NULL);
4769
4770 sig_entry->per_cu.section = dwo_entry->section;
4771 sig_entry->per_cu.offset = dwo_entry->offset;
4772 sig_entry->per_cu.length = dwo_entry->length;
4773 sig_entry->per_cu.reading_dwo_directly = 1;
4774 sig_entry->per_cu.objfile = objfile;
4775 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4776 sig_entry->dwo_unit = dwo_entry;
4777}
4778
4779/* Subroutine of lookup_signatured_type.
4780 If we haven't read the TU yet, create the signatured_type data structure
4781 for a TU to be read in directly from a DWO file, bypassing the stub.
4782 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4783 using .gdb_index, then when reading a CU we want to stay in the DWO file
4784 containing that CU. Otherwise we could end up reading several other DWO
4785 files (due to comdat folding) to process the transitive closure of all the
4786 mentioned TUs, and that can be slow. The current DWO file will have every
4787 type signature that it needs.
4788 We only do this for .gdb_index because in the psymtab case we already have
4789 to read all the DWOs to build the type unit groups. */
4790
4791static struct signatured_type *
4792lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4793{
4794 struct objfile *objfile = dwarf2_per_objfile->objfile;
4795 struct dwo_file *dwo_file;
4796 struct dwo_unit find_dwo_entry, *dwo_entry;
4797 struct signatured_type find_sig_entry, *sig_entry;
4798 void **slot;
4799
4800 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4801
4802 /* If TU skeletons have been removed then we may not have read in any
4803 TUs yet. */
4804 if (dwarf2_per_objfile->signatured_types == NULL)
4805 {
4806 dwarf2_per_objfile->signatured_types
4807 = allocate_signatured_type_table (objfile);
4808 }
4809
4810 /* We only ever need to read in one copy of a signatured type.
4811 Use the global signatured_types array to do our own comdat-folding
4812 of types. If this is the first time we're reading this TU, and
4813 the TU has an entry in .gdb_index, replace the recorded data from
4814 .gdb_index with this TU. */
4815
4816 find_sig_entry.signature = sig;
4817 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4818 &find_sig_entry, INSERT);
4819 sig_entry = *slot;
4820
4821 /* We can get here with the TU already read, *or* in the process of being
4822 read. Don't reassign the global entry to point to this DWO if that's
4823 the case. Also note that if the TU is already being read, it may not
4824 have come from a DWO, the program may be a mix of Fission-compiled
4825 code and non-Fission-compiled code. */
4826
4827 /* Have we already tried to read this TU?
4828 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4829 needn't exist in the global table yet). */
4830 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4831 return sig_entry;
4832
4833 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4834 dwo_unit of the TU itself. */
4835 dwo_file = cu->dwo_unit->dwo_file;
4836
4837 /* Ok, this is the first time we're reading this TU. */
4838 if (dwo_file->tus == NULL)
4839 return NULL;
4840 find_dwo_entry.signature = sig;
4841 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4842 if (dwo_entry == NULL)
4843 return NULL;
4844
4845 /* If the global table doesn't have an entry for this TU, add one. */
4846 if (sig_entry == NULL)
4847 sig_entry = add_type_unit (sig, slot);
4848
4849 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4850 sig_entry->per_cu.tu_read = 1;
4851 return sig_entry;
4852}
4853
4854/* Subroutine of lookup_signatured_type.
4855 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4856 then try the DWP file. If the TU stub (skeleton) has been removed then
4857 it won't be in .gdb_index. */
4858
4859static struct signatured_type *
4860lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4861{
4862 struct objfile *objfile = dwarf2_per_objfile->objfile;
4863 struct dwp_file *dwp_file = get_dwp_file ();
4864 struct dwo_unit *dwo_entry;
4865 struct signatured_type find_sig_entry, *sig_entry;
4866 void **slot;
4867
4868 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4869 gdb_assert (dwp_file != NULL);
4870
4871 /* If TU skeletons have been removed then we may not have read in any
4872 TUs yet. */
4873 if (dwarf2_per_objfile->signatured_types == NULL)
4874 {
4875 dwarf2_per_objfile->signatured_types
4876 = allocate_signatured_type_table (objfile);
4877 }
4878
4879 find_sig_entry.signature = sig;
4880 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4881 &find_sig_entry, INSERT);
4882 sig_entry = *slot;
4883
4884 /* Have we already tried to read this TU?
4885 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4886 needn't exist in the global table yet). */
4887 if (sig_entry != NULL)
4888 return sig_entry;
4889
4890 if (dwp_file->tus == NULL)
4891 return NULL;
4892 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4893 sig, 1 /* is_debug_types */);
4894 if (dwo_entry == NULL)
4895 return NULL;
4896
4897 sig_entry = add_type_unit (sig, slot);
4898 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4899
4900 return sig_entry;
4901}
4902
4903/* Lookup a signature based type for DW_FORM_ref_sig8.
4904 Returns NULL if signature SIG is not present in the table.
4905 It is up to the caller to complain about this. */
4906
4907static struct signatured_type *
4908lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4909{
4910 if (cu->dwo_unit
4911 && dwarf2_per_objfile->using_index)
4912 {
4913 /* We're in a DWO/DWP file, and we're using .gdb_index.
4914 These cases require special processing. */
4915 if (get_dwp_file () == NULL)
4916 return lookup_dwo_signatured_type (cu, sig);
4917 else
4918 return lookup_dwp_signatured_type (cu, sig);
4919 }
4920 else
4921 {
4922 struct signatured_type find_entry, *entry;
4923
4924 if (dwarf2_per_objfile->signatured_types == NULL)
4925 return NULL;
4926 find_entry.signature = sig;
4927 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4928 return entry;
4929 }
4930}
4931\f
4932/* Low level DIE reading support. */
4933
4934/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4935
4936static void
4937init_cu_die_reader (struct die_reader_specs *reader,
4938 struct dwarf2_cu *cu,
4939 struct dwarf2_section_info *section,
4940 struct dwo_file *dwo_file)
4941{
4942 gdb_assert (section->readin && section->buffer != NULL);
4943 reader->abfd = get_section_bfd_owner (section);
4944 reader->cu = cu;
4945 reader->dwo_file = dwo_file;
4946 reader->die_section = section;
4947 reader->buffer = section->buffer;
4948 reader->buffer_end = section->buffer + section->size;
4949 reader->comp_dir = NULL;
4950}
4951
4952/* Subroutine of init_cutu_and_read_dies to simplify it.
4953 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4954 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4955 already.
4956
4957 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4958 from it to the DIE in the DWO. If NULL we are skipping the stub.
4959 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4960 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4961 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4962 STUB_COMP_DIR may be non-NULL.
4963 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4964 are filled in with the info of the DIE from the DWO file.
4965 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4966 provided an abbrev table to use.
4967 The result is non-zero if a valid (non-dummy) DIE was found. */
4968
4969static int
4970read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4971 struct dwo_unit *dwo_unit,
4972 int abbrev_table_provided,
4973 struct die_info *stub_comp_unit_die,
4974 const char *stub_comp_dir,
4975 struct die_reader_specs *result_reader,
4976 const gdb_byte **result_info_ptr,
4977 struct die_info **result_comp_unit_die,
4978 int *result_has_children)
4979{
4980 struct objfile *objfile = dwarf2_per_objfile->objfile;
4981 struct dwarf2_cu *cu = this_cu->cu;
4982 struct dwarf2_section_info *section;
4983 bfd *abfd;
4984 const gdb_byte *begin_info_ptr, *info_ptr;
4985 ULONGEST signature; /* Or dwo_id. */
4986 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4987 int i,num_extra_attrs;
4988 struct dwarf2_section_info *dwo_abbrev_section;
4989 struct attribute *attr;
4990 struct die_info *comp_unit_die;
4991
4992 /* At most one of these may be provided. */
4993 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
4994
4995 /* These attributes aren't processed until later:
4996 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4997 DW_AT_comp_dir is used now, to find the DWO file, but it is also
4998 referenced later. However, these attributes are found in the stub
4999 which we won't have later. In order to not impose this complication
5000 on the rest of the code, we read them here and copy them to the
5001 DWO CU/TU die. */
5002
5003 stmt_list = NULL;
5004 low_pc = NULL;
5005 high_pc = NULL;
5006 ranges = NULL;
5007 comp_dir = NULL;
5008
5009 if (stub_comp_unit_die != NULL)
5010 {
5011 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5012 DWO file. */
5013 if (! this_cu->is_debug_types)
5014 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5015 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5016 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5017 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5018 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5019
5020 /* There should be a DW_AT_addr_base attribute here (if needed).
5021 We need the value before we can process DW_FORM_GNU_addr_index. */
5022 cu->addr_base = 0;
5023 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5024 if (attr)
5025 cu->addr_base = DW_UNSND (attr);
5026
5027 /* There should be a DW_AT_ranges_base attribute here (if needed).
5028 We need the value before we can process DW_AT_ranges. */
5029 cu->ranges_base = 0;
5030 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5031 if (attr)
5032 cu->ranges_base = DW_UNSND (attr);
5033 }
5034 else if (stub_comp_dir != NULL)
5035 {
5036 /* Reconstruct the comp_dir attribute to simplify the code below. */
5037 comp_dir = (struct attribute *)
5038 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5039 comp_dir->name = DW_AT_comp_dir;
5040 comp_dir->form = DW_FORM_string;
5041 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5042 DW_STRING (comp_dir) = stub_comp_dir;
5043 }
5044
5045 /* Set up for reading the DWO CU/TU. */
5046 cu->dwo_unit = dwo_unit;
5047 section = dwo_unit->section;
5048 dwarf2_read_section (objfile, section);
5049 abfd = get_section_bfd_owner (section);
5050 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5051 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5052 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5053
5054 if (this_cu->is_debug_types)
5055 {
5056 ULONGEST header_signature;
5057 cu_offset type_offset_in_tu;
5058 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5059
5060 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5061 dwo_abbrev_section,
5062 info_ptr,
5063 &header_signature,
5064 &type_offset_in_tu);
5065 /* This is not an assert because it can be caused by bad debug info. */
5066 if (sig_type->signature != header_signature)
5067 {
5068 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5069 " TU at offset 0x%x [in module %s]"),
5070 hex_string (sig_type->signature),
5071 hex_string (header_signature),
5072 dwo_unit->offset.sect_off,
5073 bfd_get_filename (abfd));
5074 }
5075 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5076 /* For DWOs coming from DWP files, we don't know the CU length
5077 nor the type's offset in the TU until now. */
5078 dwo_unit->length = get_cu_length (&cu->header);
5079 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5080
5081 /* Establish the type offset that can be used to lookup the type.
5082 For DWO files, we don't know it until now. */
5083 sig_type->type_offset_in_section.sect_off =
5084 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5085 }
5086 else
5087 {
5088 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5089 dwo_abbrev_section,
5090 info_ptr, 0);
5091 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5092 /* For DWOs coming from DWP files, we don't know the CU length
5093 until now. */
5094 dwo_unit->length = get_cu_length (&cu->header);
5095 }
5096
5097 /* Replace the CU's original abbrev table with the DWO's.
5098 Reminder: We can't read the abbrev table until we've read the header. */
5099 if (abbrev_table_provided)
5100 {
5101 /* Don't free the provided abbrev table, the caller of
5102 init_cutu_and_read_dies owns it. */
5103 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5104 /* Ensure the DWO abbrev table gets freed. */
5105 make_cleanup (dwarf2_free_abbrev_table, cu);
5106 }
5107 else
5108 {
5109 dwarf2_free_abbrev_table (cu);
5110 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5111 /* Leave any existing abbrev table cleanup as is. */
5112 }
5113
5114 /* Read in the die, but leave space to copy over the attributes
5115 from the stub. This has the benefit of simplifying the rest of
5116 the code - all the work to maintain the illusion of a single
5117 DW_TAG_{compile,type}_unit DIE is done here. */
5118 num_extra_attrs = ((stmt_list != NULL)
5119 + (low_pc != NULL)
5120 + (high_pc != NULL)
5121 + (ranges != NULL)
5122 + (comp_dir != NULL));
5123 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5124 result_has_children, num_extra_attrs);
5125
5126 /* Copy over the attributes from the stub to the DIE we just read in. */
5127 comp_unit_die = *result_comp_unit_die;
5128 i = comp_unit_die->num_attrs;
5129 if (stmt_list != NULL)
5130 comp_unit_die->attrs[i++] = *stmt_list;
5131 if (low_pc != NULL)
5132 comp_unit_die->attrs[i++] = *low_pc;
5133 if (high_pc != NULL)
5134 comp_unit_die->attrs[i++] = *high_pc;
5135 if (ranges != NULL)
5136 comp_unit_die->attrs[i++] = *ranges;
5137 if (comp_dir != NULL)
5138 comp_unit_die->attrs[i++] = *comp_dir;
5139 comp_unit_die->num_attrs += num_extra_attrs;
5140
5141 if (dwarf2_die_debug)
5142 {
5143 fprintf_unfiltered (gdb_stdlog,
5144 "Read die from %s@0x%x of %s:\n",
5145 get_section_name (section),
5146 (unsigned) (begin_info_ptr - section->buffer),
5147 bfd_get_filename (abfd));
5148 dump_die (comp_unit_die, dwarf2_die_debug);
5149 }
5150
5151 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5152 TUs by skipping the stub and going directly to the entry in the DWO file.
5153 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5154 to get it via circuitous means. Blech. */
5155 if (comp_dir != NULL)
5156 result_reader->comp_dir = DW_STRING (comp_dir);
5157
5158 /* Skip dummy compilation units. */
5159 if (info_ptr >= begin_info_ptr + dwo_unit->length
5160 || peek_abbrev_code (abfd, info_ptr) == 0)
5161 return 0;
5162
5163 *result_info_ptr = info_ptr;
5164 return 1;
5165}
5166
5167/* Subroutine of init_cutu_and_read_dies to simplify it.
5168 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5169 Returns NULL if the specified DWO unit cannot be found. */
5170
5171static struct dwo_unit *
5172lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5173 struct die_info *comp_unit_die)
5174{
5175 struct dwarf2_cu *cu = this_cu->cu;
5176 struct attribute *attr;
5177 ULONGEST signature;
5178 struct dwo_unit *dwo_unit;
5179 const char *comp_dir, *dwo_name;
5180
5181 gdb_assert (cu != NULL);
5182
5183 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5184 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5185 gdb_assert (attr != NULL);
5186 dwo_name = DW_STRING (attr);
5187 comp_dir = NULL;
5188 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5189 if (attr)
5190 comp_dir = DW_STRING (attr);
5191
5192 if (this_cu->is_debug_types)
5193 {
5194 struct signatured_type *sig_type;
5195
5196 /* Since this_cu is the first member of struct signatured_type,
5197 we can go from a pointer to one to a pointer to the other. */
5198 sig_type = (struct signatured_type *) this_cu;
5199 signature = sig_type->signature;
5200 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5201 }
5202 else
5203 {
5204 struct attribute *attr;
5205
5206 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5207 if (! attr)
5208 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5209 " [in module %s]"),
5210 dwo_name, objfile_name (this_cu->objfile));
5211 signature = DW_UNSND (attr);
5212 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5213 signature);
5214 }
5215
5216 return dwo_unit;
5217}
5218
5219/* Subroutine of init_cutu_and_read_dies to simplify it.
5220 See it for a description of the parameters.
5221 Read a TU directly from a DWO file, bypassing the stub.
5222
5223 Note: This function could be a little bit simpler if we shared cleanups
5224 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5225 to do, so we keep this function self-contained. Or we could move this
5226 into our caller, but it's complex enough already. */
5227
5228static void
5229init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5230 int use_existing_cu, int keep,
5231 die_reader_func_ftype *die_reader_func,
5232 void *data)
5233{
5234 struct dwarf2_cu *cu;
5235 struct signatured_type *sig_type;
5236 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5237 struct die_reader_specs reader;
5238 const gdb_byte *info_ptr;
5239 struct die_info *comp_unit_die;
5240 int has_children;
5241
5242 /* Verify we can do the following downcast, and that we have the
5243 data we need. */
5244 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5245 sig_type = (struct signatured_type *) this_cu;
5246 gdb_assert (sig_type->dwo_unit != NULL);
5247
5248 cleanups = make_cleanup (null_cleanup, NULL);
5249
5250 if (use_existing_cu && this_cu->cu != NULL)
5251 {
5252 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5253 cu = this_cu->cu;
5254 /* There's no need to do the rereading_dwo_cu handling that
5255 init_cutu_and_read_dies does since we don't read the stub. */
5256 }
5257 else
5258 {
5259 /* If !use_existing_cu, this_cu->cu must be NULL. */
5260 gdb_assert (this_cu->cu == NULL);
5261 cu = xmalloc (sizeof (*cu));
5262 init_one_comp_unit (cu, this_cu);
5263 /* If an error occurs while loading, release our storage. */
5264 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5265 }
5266
5267 /* A future optimization, if needed, would be to use an existing
5268 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5269 could share abbrev tables. */
5270
5271 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5272 0 /* abbrev_table_provided */,
5273 NULL /* stub_comp_unit_die */,
5274 sig_type->dwo_unit->dwo_file->comp_dir,
5275 &reader, &info_ptr,
5276 &comp_unit_die, &has_children) == 0)
5277 {
5278 /* Dummy die. */
5279 do_cleanups (cleanups);
5280 return;
5281 }
5282
5283 /* All the "real" work is done here. */
5284 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5285
5286 /* This duplicates the code in init_cutu_and_read_dies,
5287 but the alternative is making the latter more complex.
5288 This function is only for the special case of using DWO files directly:
5289 no point in overly complicating the general case just to handle this. */
5290 if (free_cu_cleanup != NULL)
5291 {
5292 if (keep)
5293 {
5294 /* We've successfully allocated this compilation unit. Let our
5295 caller clean it up when finished with it. */
5296 discard_cleanups (free_cu_cleanup);
5297
5298 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5299 So we have to manually free the abbrev table. */
5300 dwarf2_free_abbrev_table (cu);
5301
5302 /* Link this CU into read_in_chain. */
5303 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5304 dwarf2_per_objfile->read_in_chain = this_cu;
5305 }
5306 else
5307 do_cleanups (free_cu_cleanup);
5308 }
5309
5310 do_cleanups (cleanups);
5311}
5312
5313/* Initialize a CU (or TU) and read its DIEs.
5314 If the CU defers to a DWO file, read the DWO file as well.
5315
5316 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5317 Otherwise the table specified in the comp unit header is read in and used.
5318 This is an optimization for when we already have the abbrev table.
5319
5320 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5321 Otherwise, a new CU is allocated with xmalloc.
5322
5323 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5324 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5325
5326 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5327 linker) then DIE_READER_FUNC will not get called. */
5328
5329static void
5330init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5331 struct abbrev_table *abbrev_table,
5332 int use_existing_cu, int keep,
5333 die_reader_func_ftype *die_reader_func,
5334 void *data)
5335{
5336 struct objfile *objfile = dwarf2_per_objfile->objfile;
5337 struct dwarf2_section_info *section = this_cu->section;
5338 bfd *abfd = get_section_bfd_owner (section);
5339 struct dwarf2_cu *cu;
5340 const gdb_byte *begin_info_ptr, *info_ptr;
5341 struct die_reader_specs reader;
5342 struct die_info *comp_unit_die;
5343 int has_children;
5344 struct attribute *attr;
5345 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5346 struct signatured_type *sig_type = NULL;
5347 struct dwarf2_section_info *abbrev_section;
5348 /* Non-zero if CU currently points to a DWO file and we need to
5349 reread it. When this happens we need to reread the skeleton die
5350 before we can reread the DWO file (this only applies to CUs, not TUs). */
5351 int rereading_dwo_cu = 0;
5352
5353 if (dwarf2_die_debug)
5354 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5355 this_cu->is_debug_types ? "type" : "comp",
5356 this_cu->offset.sect_off);
5357
5358 if (use_existing_cu)
5359 gdb_assert (keep);
5360
5361 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5362 file (instead of going through the stub), short-circuit all of this. */
5363 if (this_cu->reading_dwo_directly)
5364 {
5365 /* Narrow down the scope of possibilities to have to understand. */
5366 gdb_assert (this_cu->is_debug_types);
5367 gdb_assert (abbrev_table == NULL);
5368 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5369 die_reader_func, data);
5370 return;
5371 }
5372
5373 cleanups = make_cleanup (null_cleanup, NULL);
5374
5375 /* This is cheap if the section is already read in. */
5376 dwarf2_read_section (objfile, section);
5377
5378 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5379
5380 abbrev_section = get_abbrev_section_for_cu (this_cu);
5381
5382 if (use_existing_cu && this_cu->cu != NULL)
5383 {
5384 cu = this_cu->cu;
5385 /* If this CU is from a DWO file we need to start over, we need to
5386 refetch the attributes from the skeleton CU.
5387 This could be optimized by retrieving those attributes from when we
5388 were here the first time: the previous comp_unit_die was stored in
5389 comp_unit_obstack. But there's no data yet that we need this
5390 optimization. */
5391 if (cu->dwo_unit != NULL)
5392 rereading_dwo_cu = 1;
5393 }
5394 else
5395 {
5396 /* If !use_existing_cu, this_cu->cu must be NULL. */
5397 gdb_assert (this_cu->cu == NULL);
5398 cu = xmalloc (sizeof (*cu));
5399 init_one_comp_unit (cu, this_cu);
5400 /* If an error occurs while loading, release our storage. */
5401 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5402 }
5403
5404 /* Get the header. */
5405 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5406 {
5407 /* We already have the header, there's no need to read it in again. */
5408 info_ptr += cu->header.first_die_offset.cu_off;
5409 }
5410 else
5411 {
5412 if (this_cu->is_debug_types)
5413 {
5414 ULONGEST signature;
5415 cu_offset type_offset_in_tu;
5416
5417 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5418 abbrev_section, info_ptr,
5419 &signature,
5420 &type_offset_in_tu);
5421
5422 /* Since per_cu is the first member of struct signatured_type,
5423 we can go from a pointer to one to a pointer to the other. */
5424 sig_type = (struct signatured_type *) this_cu;
5425 gdb_assert (sig_type->signature == signature);
5426 gdb_assert (sig_type->type_offset_in_tu.cu_off
5427 == type_offset_in_tu.cu_off);
5428 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5429
5430 /* LENGTH has not been set yet for type units if we're
5431 using .gdb_index. */
5432 this_cu->length = get_cu_length (&cu->header);
5433
5434 /* Establish the type offset that can be used to lookup the type. */
5435 sig_type->type_offset_in_section.sect_off =
5436 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5437 }
5438 else
5439 {
5440 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5441 abbrev_section,
5442 info_ptr, 0);
5443
5444 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5445 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5446 }
5447 }
5448
5449 /* Skip dummy compilation units. */
5450 if (info_ptr >= begin_info_ptr + this_cu->length
5451 || peek_abbrev_code (abfd, info_ptr) == 0)
5452 {
5453 do_cleanups (cleanups);
5454 return;
5455 }
5456
5457 /* If we don't have them yet, read the abbrevs for this compilation unit.
5458 And if we need to read them now, make sure they're freed when we're
5459 done. Note that it's important that if the CU had an abbrev table
5460 on entry we don't free it when we're done: Somewhere up the call stack
5461 it may be in use. */
5462 if (abbrev_table != NULL)
5463 {
5464 gdb_assert (cu->abbrev_table == NULL);
5465 gdb_assert (cu->header.abbrev_offset.sect_off
5466 == abbrev_table->offset.sect_off);
5467 cu->abbrev_table = abbrev_table;
5468 }
5469 else if (cu->abbrev_table == NULL)
5470 {
5471 dwarf2_read_abbrevs (cu, abbrev_section);
5472 make_cleanup (dwarf2_free_abbrev_table, cu);
5473 }
5474 else if (rereading_dwo_cu)
5475 {
5476 dwarf2_free_abbrev_table (cu);
5477 dwarf2_read_abbrevs (cu, abbrev_section);
5478 }
5479
5480 /* Read the top level CU/TU die. */
5481 init_cu_die_reader (&reader, cu, section, NULL);
5482 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5483
5484 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5485 from the DWO file.
5486 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5487 DWO CU, that this test will fail (the attribute will not be present). */
5488 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5489 if (attr)
5490 {
5491 struct dwo_unit *dwo_unit;
5492 struct die_info *dwo_comp_unit_die;
5493
5494 if (has_children)
5495 {
5496 complaint (&symfile_complaints,
5497 _("compilation unit with DW_AT_GNU_dwo_name"
5498 " has children (offset 0x%x) [in module %s]"),
5499 this_cu->offset.sect_off, bfd_get_filename (abfd));
5500 }
5501 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5502 if (dwo_unit != NULL)
5503 {
5504 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5505 abbrev_table != NULL,
5506 comp_unit_die, NULL,
5507 &reader, &info_ptr,
5508 &dwo_comp_unit_die, &has_children) == 0)
5509 {
5510 /* Dummy die. */
5511 do_cleanups (cleanups);
5512 return;
5513 }
5514 comp_unit_die = dwo_comp_unit_die;
5515 }
5516 else
5517 {
5518 /* Yikes, we couldn't find the rest of the DIE, we only have
5519 the stub. A complaint has already been logged. There's
5520 not much more we can do except pass on the stub DIE to
5521 die_reader_func. We don't want to throw an error on bad
5522 debug info. */
5523 }
5524 }
5525
5526 /* All of the above is setup for this call. Yikes. */
5527 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5528
5529 /* Done, clean up. */
5530 if (free_cu_cleanup != NULL)
5531 {
5532 if (keep)
5533 {
5534 /* We've successfully allocated this compilation unit. Let our
5535 caller clean it up when finished with it. */
5536 discard_cleanups (free_cu_cleanup);
5537
5538 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5539 So we have to manually free the abbrev table. */
5540 dwarf2_free_abbrev_table (cu);
5541
5542 /* Link this CU into read_in_chain. */
5543 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5544 dwarf2_per_objfile->read_in_chain = this_cu;
5545 }
5546 else
5547 do_cleanups (free_cu_cleanup);
5548 }
5549
5550 do_cleanups (cleanups);
5551}
5552
5553/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5554 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5555 to have already done the lookup to find the DWO file).
5556
5557 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5558 THIS_CU->is_debug_types, but nothing else.
5559
5560 We fill in THIS_CU->length.
5561
5562 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5563 linker) then DIE_READER_FUNC will not get called.
5564
5565 THIS_CU->cu is always freed when done.
5566 This is done in order to not leave THIS_CU->cu in a state where we have
5567 to care whether it refers to the "main" CU or the DWO CU. */
5568
5569static void
5570init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5571 struct dwo_file *dwo_file,
5572 die_reader_func_ftype *die_reader_func,
5573 void *data)
5574{
5575 struct objfile *objfile = dwarf2_per_objfile->objfile;
5576 struct dwarf2_section_info *section = this_cu->section;
5577 bfd *abfd = get_section_bfd_owner (section);
5578 struct dwarf2_section_info *abbrev_section;
5579 struct dwarf2_cu cu;
5580 const gdb_byte *begin_info_ptr, *info_ptr;
5581 struct die_reader_specs reader;
5582 struct cleanup *cleanups;
5583 struct die_info *comp_unit_die;
5584 int has_children;
5585
5586 if (dwarf2_die_debug)
5587 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5588 this_cu->is_debug_types ? "type" : "comp",
5589 this_cu->offset.sect_off);
5590
5591 gdb_assert (this_cu->cu == NULL);
5592
5593 abbrev_section = (dwo_file != NULL
5594 ? &dwo_file->sections.abbrev
5595 : get_abbrev_section_for_cu (this_cu));
5596
5597 /* This is cheap if the section is already read in. */
5598 dwarf2_read_section (objfile, section);
5599
5600 init_one_comp_unit (&cu, this_cu);
5601
5602 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5603
5604 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5605 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5606 abbrev_section, info_ptr,
5607 this_cu->is_debug_types);
5608
5609 this_cu->length = get_cu_length (&cu.header);
5610
5611 /* Skip dummy compilation units. */
5612 if (info_ptr >= begin_info_ptr + this_cu->length
5613 || peek_abbrev_code (abfd, info_ptr) == 0)
5614 {
5615 do_cleanups (cleanups);
5616 return;
5617 }
5618
5619 dwarf2_read_abbrevs (&cu, abbrev_section);
5620 make_cleanup (dwarf2_free_abbrev_table, &cu);
5621
5622 init_cu_die_reader (&reader, &cu, section, dwo_file);
5623 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5624
5625 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5626
5627 do_cleanups (cleanups);
5628}
5629
5630/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5631 does not lookup the specified DWO file.
5632 This cannot be used to read DWO files.
5633
5634 THIS_CU->cu is always freed when done.
5635 This is done in order to not leave THIS_CU->cu in a state where we have
5636 to care whether it refers to the "main" CU or the DWO CU.
5637 We can revisit this if the data shows there's a performance issue. */
5638
5639static void
5640init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5641 die_reader_func_ftype *die_reader_func,
5642 void *data)
5643{
5644 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5645}
5646\f
5647/* Type Unit Groups.
5648
5649 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5650 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5651 so that all types coming from the same compilation (.o file) are grouped
5652 together. A future step could be to put the types in the same symtab as
5653 the CU the types ultimately came from. */
5654
5655static hashval_t
5656hash_type_unit_group (const void *item)
5657{
5658 const struct type_unit_group *tu_group = item;
5659
5660 return hash_stmt_list_entry (&tu_group->hash);
5661}
5662
5663static int
5664eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5665{
5666 const struct type_unit_group *lhs = item_lhs;
5667 const struct type_unit_group *rhs = item_rhs;
5668
5669 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5670}
5671
5672/* Allocate a hash table for type unit groups. */
5673
5674static htab_t
5675allocate_type_unit_groups_table (void)
5676{
5677 return htab_create_alloc_ex (3,
5678 hash_type_unit_group,
5679 eq_type_unit_group,
5680 NULL,
5681 &dwarf2_per_objfile->objfile->objfile_obstack,
5682 hashtab_obstack_allocate,
5683 dummy_obstack_deallocate);
5684}
5685
5686/* Type units that don't have DW_AT_stmt_list are grouped into their own
5687 partial symtabs. We combine several TUs per psymtab to not let the size
5688 of any one psymtab grow too big. */
5689#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5690#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5691
5692/* Helper routine for get_type_unit_group.
5693 Create the type_unit_group object used to hold one or more TUs. */
5694
5695static struct type_unit_group *
5696create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5697{
5698 struct objfile *objfile = dwarf2_per_objfile->objfile;
5699 struct dwarf2_per_cu_data *per_cu;
5700 struct type_unit_group *tu_group;
5701
5702 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5703 struct type_unit_group);
5704 per_cu = &tu_group->per_cu;
5705 per_cu->objfile = objfile;
5706
5707 if (dwarf2_per_objfile->using_index)
5708 {
5709 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5710 struct dwarf2_per_cu_quick_data);
5711 }
5712 else
5713 {
5714 unsigned int line_offset = line_offset_struct.sect_off;
5715 struct partial_symtab *pst;
5716 char *name;
5717
5718 /* Give the symtab a useful name for debug purposes. */
5719 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5720 name = xstrprintf ("<type_units_%d>",
5721 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5722 else
5723 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5724
5725 pst = create_partial_symtab (per_cu, name);
5726 pst->anonymous = 1;
5727
5728 xfree (name);
5729 }
5730
5731 tu_group->hash.dwo_unit = cu->dwo_unit;
5732 tu_group->hash.line_offset = line_offset_struct;
5733
5734 return tu_group;
5735}
5736
5737/* Look up the type_unit_group for type unit CU, and create it if necessary.
5738 STMT_LIST is a DW_AT_stmt_list attribute. */
5739
5740static struct type_unit_group *
5741get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5742{
5743 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5744 struct type_unit_group *tu_group;
5745 void **slot;
5746 unsigned int line_offset;
5747 struct type_unit_group type_unit_group_for_lookup;
5748
5749 if (dwarf2_per_objfile->type_unit_groups == NULL)
5750 {
5751 dwarf2_per_objfile->type_unit_groups =
5752 allocate_type_unit_groups_table ();
5753 }
5754
5755 /* Do we need to create a new group, or can we use an existing one? */
5756
5757 if (stmt_list)
5758 {
5759 line_offset = DW_UNSND (stmt_list);
5760 ++tu_stats->nr_symtab_sharers;
5761 }
5762 else
5763 {
5764 /* Ugh, no stmt_list. Rare, but we have to handle it.
5765 We can do various things here like create one group per TU or
5766 spread them over multiple groups to split up the expansion work.
5767 To avoid worst case scenarios (too many groups or too large groups)
5768 we, umm, group them in bunches. */
5769 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5770 | (tu_stats->nr_stmt_less_type_units
5771 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5772 ++tu_stats->nr_stmt_less_type_units;
5773 }
5774
5775 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5776 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5777 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5778 &type_unit_group_for_lookup, INSERT);
5779 if (*slot != NULL)
5780 {
5781 tu_group = *slot;
5782 gdb_assert (tu_group != NULL);
5783 }
5784 else
5785 {
5786 sect_offset line_offset_struct;
5787
5788 line_offset_struct.sect_off = line_offset;
5789 tu_group = create_type_unit_group (cu, line_offset_struct);
5790 *slot = tu_group;
5791 ++tu_stats->nr_symtabs;
5792 }
5793
5794 return tu_group;
5795}
5796\f
5797/* Partial symbol tables. */
5798
5799/* Create a psymtab named NAME and assign it to PER_CU.
5800
5801 The caller must fill in the following details:
5802 dirname, textlow, texthigh. */
5803
5804static struct partial_symtab *
5805create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5806{
5807 struct objfile *objfile = per_cu->objfile;
5808 struct partial_symtab *pst;
5809
5810 pst = start_psymtab_common (objfile, objfile->section_offsets,
5811 name, 0,
5812 objfile->global_psymbols.next,
5813 objfile->static_psymbols.next);
5814
5815 pst->psymtabs_addrmap_supported = 1;
5816
5817 /* This is the glue that links PST into GDB's symbol API. */
5818 pst->read_symtab_private = per_cu;
5819 pst->read_symtab = dwarf2_read_symtab;
5820 per_cu->v.psymtab = pst;
5821
5822 return pst;
5823}
5824
5825/* The DATA object passed to process_psymtab_comp_unit_reader has this
5826 type. */
5827
5828struct process_psymtab_comp_unit_data
5829{
5830 /* True if we are reading a DW_TAG_partial_unit. */
5831
5832 int want_partial_unit;
5833
5834 /* The "pretend" language that is used if the CU doesn't declare a
5835 language. */
5836
5837 enum language pretend_language;
5838};
5839
5840/* die_reader_func for process_psymtab_comp_unit. */
5841
5842static void
5843process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5844 const gdb_byte *info_ptr,
5845 struct die_info *comp_unit_die,
5846 int has_children,
5847 void *data)
5848{
5849 struct dwarf2_cu *cu = reader->cu;
5850 struct objfile *objfile = cu->objfile;
5851 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5852 struct attribute *attr;
5853 CORE_ADDR baseaddr;
5854 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5855 struct partial_symtab *pst;
5856 int has_pc_info;
5857 const char *filename;
5858 struct process_psymtab_comp_unit_data *info = data;
5859
5860 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5861 return;
5862
5863 gdb_assert (! per_cu->is_debug_types);
5864
5865 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5866
5867 cu->list_in_scope = &file_symbols;
5868
5869 /* Allocate a new partial symbol table structure. */
5870 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5871 if (attr == NULL || !DW_STRING (attr))
5872 filename = "";
5873 else
5874 filename = DW_STRING (attr);
5875
5876 pst = create_partial_symtab (per_cu, filename);
5877
5878 /* This must be done before calling dwarf2_build_include_psymtabs. */
5879 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5880 if (attr != NULL)
5881 pst->dirname = DW_STRING (attr);
5882
5883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5884
5885 dwarf2_find_base_address (comp_unit_die, cu);
5886
5887 /* Possibly set the default values of LOWPC and HIGHPC from
5888 `DW_AT_ranges'. */
5889 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5890 &best_highpc, cu, pst);
5891 if (has_pc_info == 1 && best_lowpc < best_highpc)
5892 /* Store the contiguous range if it is not empty; it can be empty for
5893 CUs with no code. */
5894 addrmap_set_empty (objfile->psymtabs_addrmap,
5895 best_lowpc + baseaddr,
5896 best_highpc + baseaddr - 1, pst);
5897
5898 /* Check if comp unit has_children.
5899 If so, read the rest of the partial symbols from this comp unit.
5900 If not, there's no more debug_info for this comp unit. */
5901 if (has_children)
5902 {
5903 struct partial_die_info *first_die;
5904 CORE_ADDR lowpc, highpc;
5905
5906 lowpc = ((CORE_ADDR) -1);
5907 highpc = ((CORE_ADDR) 0);
5908
5909 first_die = load_partial_dies (reader, info_ptr, 1);
5910
5911 scan_partial_symbols (first_die, &lowpc, &highpc,
5912 ! has_pc_info, cu);
5913
5914 /* If we didn't find a lowpc, set it to highpc to avoid
5915 complaints from `maint check'. */
5916 if (lowpc == ((CORE_ADDR) -1))
5917 lowpc = highpc;
5918
5919 /* If the compilation unit didn't have an explicit address range,
5920 then use the information extracted from its child dies. */
5921 if (! has_pc_info)
5922 {
5923 best_lowpc = lowpc;
5924 best_highpc = highpc;
5925 }
5926 }
5927 pst->textlow = best_lowpc + baseaddr;
5928 pst->texthigh = best_highpc + baseaddr;
5929
5930 pst->n_global_syms = objfile->global_psymbols.next -
5931 (objfile->global_psymbols.list + pst->globals_offset);
5932 pst->n_static_syms = objfile->static_psymbols.next -
5933 (objfile->static_psymbols.list + pst->statics_offset);
5934 sort_pst_symbols (objfile, pst);
5935
5936 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5937 {
5938 int i;
5939 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5940 struct dwarf2_per_cu_data *iter;
5941
5942 /* Fill in 'dependencies' here; we fill in 'users' in a
5943 post-pass. */
5944 pst->number_of_dependencies = len;
5945 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5946 len * sizeof (struct symtab *));
5947 for (i = 0;
5948 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5949 i, iter);
5950 ++i)
5951 pst->dependencies[i] = iter->v.psymtab;
5952
5953 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5954 }
5955
5956 /* Get the list of files included in the current compilation unit,
5957 and build a psymtab for each of them. */
5958 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5959
5960 if (dwarf2_read_debug)
5961 {
5962 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5963
5964 fprintf_unfiltered (gdb_stdlog,
5965 "Psymtab for %s unit @0x%x: %s - %s"
5966 ", %d global, %d static syms\n",
5967 per_cu->is_debug_types ? "type" : "comp",
5968 per_cu->offset.sect_off,
5969 paddress (gdbarch, pst->textlow),
5970 paddress (gdbarch, pst->texthigh),
5971 pst->n_global_syms, pst->n_static_syms);
5972 }
5973}
5974
5975/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5976 Process compilation unit THIS_CU for a psymtab. */
5977
5978static void
5979process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5980 int want_partial_unit,
5981 enum language pretend_language)
5982{
5983 struct process_psymtab_comp_unit_data info;
5984
5985 /* If this compilation unit was already read in, free the
5986 cached copy in order to read it in again. This is
5987 necessary because we skipped some symbols when we first
5988 read in the compilation unit (see load_partial_dies).
5989 This problem could be avoided, but the benefit is unclear. */
5990 if (this_cu->cu != NULL)
5991 free_one_cached_comp_unit (this_cu);
5992
5993 gdb_assert (! this_cu->is_debug_types);
5994 info.want_partial_unit = want_partial_unit;
5995 info.pretend_language = pretend_language;
5996 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5997 process_psymtab_comp_unit_reader,
5998 &info);
5999
6000 /* Age out any secondary CUs. */
6001 age_cached_comp_units ();
6002}
6003
6004/* Reader function for build_type_psymtabs. */
6005
6006static void
6007build_type_psymtabs_reader (const struct die_reader_specs *reader,
6008 const gdb_byte *info_ptr,
6009 struct die_info *type_unit_die,
6010 int has_children,
6011 void *data)
6012{
6013 struct objfile *objfile = dwarf2_per_objfile->objfile;
6014 struct dwarf2_cu *cu = reader->cu;
6015 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6016 struct signatured_type *sig_type;
6017 struct type_unit_group *tu_group;
6018 struct attribute *attr;
6019 struct partial_die_info *first_die;
6020 CORE_ADDR lowpc, highpc;
6021 struct partial_symtab *pst;
6022
6023 gdb_assert (data == NULL);
6024 gdb_assert (per_cu->is_debug_types);
6025 sig_type = (struct signatured_type *) per_cu;
6026
6027 if (! has_children)
6028 return;
6029
6030 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6031 tu_group = get_type_unit_group (cu, attr);
6032
6033 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6034
6035 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6036 cu->list_in_scope = &file_symbols;
6037 pst = create_partial_symtab (per_cu, "");
6038 pst->anonymous = 1;
6039
6040 first_die = load_partial_dies (reader, info_ptr, 1);
6041
6042 lowpc = (CORE_ADDR) -1;
6043 highpc = (CORE_ADDR) 0;
6044 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6045
6046 pst->n_global_syms = objfile->global_psymbols.next -
6047 (objfile->global_psymbols.list + pst->globals_offset);
6048 pst->n_static_syms = objfile->static_psymbols.next -
6049 (objfile->static_psymbols.list + pst->statics_offset);
6050 sort_pst_symbols (objfile, pst);
6051}
6052
6053/* Struct used to sort TUs by their abbreviation table offset. */
6054
6055struct tu_abbrev_offset
6056{
6057 struct signatured_type *sig_type;
6058 sect_offset abbrev_offset;
6059};
6060
6061/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6062
6063static int
6064sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6065{
6066 const struct tu_abbrev_offset * const *a = ap;
6067 const struct tu_abbrev_offset * const *b = bp;
6068 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6069 unsigned int boff = (*b)->abbrev_offset.sect_off;
6070
6071 return (aoff > boff) - (aoff < boff);
6072}
6073
6074/* Efficiently read all the type units.
6075 This does the bulk of the work for build_type_psymtabs.
6076
6077 The efficiency is because we sort TUs by the abbrev table they use and
6078 only read each abbrev table once. In one program there are 200K TUs
6079 sharing 8K abbrev tables.
6080
6081 The main purpose of this function is to support building the
6082 dwarf2_per_objfile->type_unit_groups table.
6083 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6084 can collapse the search space by grouping them by stmt_list.
6085 The savings can be significant, in the same program from above the 200K TUs
6086 share 8K stmt_list tables.
6087
6088 FUNC is expected to call get_type_unit_group, which will create the
6089 struct type_unit_group if necessary and add it to
6090 dwarf2_per_objfile->type_unit_groups. */
6091
6092static void
6093build_type_psymtabs_1 (void)
6094{
6095 struct objfile *objfile = dwarf2_per_objfile->objfile;
6096 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6097 struct cleanup *cleanups;
6098 struct abbrev_table *abbrev_table;
6099 sect_offset abbrev_offset;
6100 struct tu_abbrev_offset *sorted_by_abbrev;
6101 struct type_unit_group **iter;
6102 int i;
6103
6104 /* It's up to the caller to not call us multiple times. */
6105 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6106
6107 if (dwarf2_per_objfile->n_type_units == 0)
6108 return;
6109
6110 /* TUs typically share abbrev tables, and there can be way more TUs than
6111 abbrev tables. Sort by abbrev table to reduce the number of times we
6112 read each abbrev table in.
6113 Alternatives are to punt or to maintain a cache of abbrev tables.
6114 This is simpler and efficient enough for now.
6115
6116 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6117 symtab to use). Typically TUs with the same abbrev offset have the same
6118 stmt_list value too so in practice this should work well.
6119
6120 The basic algorithm here is:
6121
6122 sort TUs by abbrev table
6123 for each TU with same abbrev table:
6124 read abbrev table if first user
6125 read TU top level DIE
6126 [IWBN if DWO skeletons had DW_AT_stmt_list]
6127 call FUNC */
6128
6129 if (dwarf2_read_debug)
6130 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6131
6132 /* Sort in a separate table to maintain the order of all_type_units
6133 for .gdb_index: TU indices directly index all_type_units. */
6134 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6135 dwarf2_per_objfile->n_type_units);
6136 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6137 {
6138 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6139
6140 sorted_by_abbrev[i].sig_type = sig_type;
6141 sorted_by_abbrev[i].abbrev_offset =
6142 read_abbrev_offset (sig_type->per_cu.section,
6143 sig_type->per_cu.offset);
6144 }
6145 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6146 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6147 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6148
6149 abbrev_offset.sect_off = ~(unsigned) 0;
6150 abbrev_table = NULL;
6151 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6152
6153 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6154 {
6155 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6156
6157 /* Switch to the next abbrev table if necessary. */
6158 if (abbrev_table == NULL
6159 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6160 {
6161 if (abbrev_table != NULL)
6162 {
6163 abbrev_table_free (abbrev_table);
6164 /* Reset to NULL in case abbrev_table_read_table throws
6165 an error: abbrev_table_free_cleanup will get called. */
6166 abbrev_table = NULL;
6167 }
6168 abbrev_offset = tu->abbrev_offset;
6169 abbrev_table =
6170 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6171 abbrev_offset);
6172 ++tu_stats->nr_uniq_abbrev_tables;
6173 }
6174
6175 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6176 build_type_psymtabs_reader, NULL);
6177 }
6178
6179 do_cleanups (cleanups);
6180}
6181
6182/* Print collected type unit statistics. */
6183
6184static void
6185print_tu_stats (void)
6186{
6187 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6188
6189 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6190 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6191 dwarf2_per_objfile->n_type_units);
6192 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6193 tu_stats->nr_uniq_abbrev_tables);
6194 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6195 tu_stats->nr_symtabs);
6196 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6197 tu_stats->nr_symtab_sharers);
6198 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6199 tu_stats->nr_stmt_less_type_units);
6200 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6201 tu_stats->nr_all_type_units_reallocs);
6202}
6203
6204/* Traversal function for build_type_psymtabs. */
6205
6206static int
6207build_type_psymtab_dependencies (void **slot, void *info)
6208{
6209 struct objfile *objfile = dwarf2_per_objfile->objfile;
6210 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6211 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6212 struct partial_symtab *pst = per_cu->v.psymtab;
6213 int len = VEC_length (sig_type_ptr, tu_group->tus);
6214 struct signatured_type *iter;
6215 int i;
6216
6217 gdb_assert (len > 0);
6218 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6219
6220 pst->number_of_dependencies = len;
6221 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6222 len * sizeof (struct psymtab *));
6223 for (i = 0;
6224 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6225 ++i)
6226 {
6227 gdb_assert (iter->per_cu.is_debug_types);
6228 pst->dependencies[i] = iter->per_cu.v.psymtab;
6229 iter->type_unit_group = tu_group;
6230 }
6231
6232 VEC_free (sig_type_ptr, tu_group->tus);
6233
6234 return 1;
6235}
6236
6237/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6238 Build partial symbol tables for the .debug_types comp-units. */
6239
6240static void
6241build_type_psymtabs (struct objfile *objfile)
6242{
6243 if (! create_all_type_units (objfile))
6244 return;
6245
6246 build_type_psymtabs_1 ();
6247}
6248
6249/* Traversal function for process_skeletonless_type_unit.
6250 Read a TU in a DWO file and build partial symbols for it. */
6251
6252static int
6253process_skeletonless_type_unit (void **slot, void *info)
6254{
6255 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6256 struct objfile *objfile = info;
6257 struct signatured_type find_entry, *entry;
6258
6259 /* If this TU doesn't exist in the global table, add it and read it in. */
6260
6261 if (dwarf2_per_objfile->signatured_types == NULL)
6262 {
6263 dwarf2_per_objfile->signatured_types
6264 = allocate_signatured_type_table (objfile);
6265 }
6266
6267 find_entry.signature = dwo_unit->signature;
6268 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6269 INSERT);
6270 /* If we've already seen this type there's nothing to do. What's happening
6271 is we're doing our own version of comdat-folding here. */
6272 if (*slot != NULL)
6273 return 1;
6274
6275 /* This does the job that create_all_type_units would have done for
6276 this TU. */
6277 entry = add_type_unit (dwo_unit->signature, slot);
6278 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6279 *slot = entry;
6280
6281 /* This does the job that build_type_psymtabs_1 would have done. */
6282 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6283 build_type_psymtabs_reader, NULL);
6284
6285 return 1;
6286}
6287
6288/* Traversal function for process_skeletonless_type_units. */
6289
6290static int
6291process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6292{
6293 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6294
6295 if (dwo_file->tus != NULL)
6296 {
6297 htab_traverse_noresize (dwo_file->tus,
6298 process_skeletonless_type_unit, info);
6299 }
6300
6301 return 1;
6302}
6303
6304/* Scan all TUs of DWO files, verifying we've processed them.
6305 This is needed in case a TU was emitted without its skeleton.
6306 Note: This can't be done until we know what all the DWO files are. */
6307
6308static void
6309process_skeletonless_type_units (struct objfile *objfile)
6310{
6311 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6312 if (get_dwp_file () == NULL
6313 && dwarf2_per_objfile->dwo_files != NULL)
6314 {
6315 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6316 process_dwo_file_for_skeletonless_type_units,
6317 objfile);
6318 }
6319}
6320
6321/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6322
6323static void
6324psymtabs_addrmap_cleanup (void *o)
6325{
6326 struct objfile *objfile = o;
6327
6328 objfile->psymtabs_addrmap = NULL;
6329}
6330
6331/* Compute the 'user' field for each psymtab in OBJFILE. */
6332
6333static void
6334set_partial_user (struct objfile *objfile)
6335{
6336 int i;
6337
6338 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6339 {
6340 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6341 struct partial_symtab *pst = per_cu->v.psymtab;
6342 int j;
6343
6344 if (pst == NULL)
6345 continue;
6346
6347 for (j = 0; j < pst->number_of_dependencies; ++j)
6348 {
6349 /* Set the 'user' field only if it is not already set. */
6350 if (pst->dependencies[j]->user == NULL)
6351 pst->dependencies[j]->user = pst;
6352 }
6353 }
6354}
6355
6356/* Build the partial symbol table by doing a quick pass through the
6357 .debug_info and .debug_abbrev sections. */
6358
6359static void
6360dwarf2_build_psymtabs_hard (struct objfile *objfile)
6361{
6362 struct cleanup *back_to, *addrmap_cleanup;
6363 struct obstack temp_obstack;
6364 int i;
6365
6366 if (dwarf2_read_debug)
6367 {
6368 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6369 objfile_name (objfile));
6370 }
6371
6372 dwarf2_per_objfile->reading_partial_symbols = 1;
6373
6374 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6375
6376 /* Any cached compilation units will be linked by the per-objfile
6377 read_in_chain. Make sure to free them when we're done. */
6378 back_to = make_cleanup (free_cached_comp_units, NULL);
6379
6380 build_type_psymtabs (objfile);
6381
6382 create_all_comp_units (objfile);
6383
6384 /* Create a temporary address map on a temporary obstack. We later
6385 copy this to the final obstack. */
6386 obstack_init (&temp_obstack);
6387 make_cleanup_obstack_free (&temp_obstack);
6388 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6389 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6390
6391 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6392 {
6393 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6394
6395 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6396 }
6397
6398 /* This has to wait until we read the CUs, we need the list of DWOs. */
6399 process_skeletonless_type_units (objfile);
6400
6401 /* Now that all TUs have been processed we can fill in the dependencies. */
6402 if (dwarf2_per_objfile->type_unit_groups != NULL)
6403 {
6404 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6405 build_type_psymtab_dependencies, NULL);
6406 }
6407
6408 if (dwarf2_read_debug)
6409 print_tu_stats ();
6410
6411 set_partial_user (objfile);
6412
6413 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6414 &objfile->objfile_obstack);
6415 discard_cleanups (addrmap_cleanup);
6416
6417 do_cleanups (back_to);
6418
6419 if (dwarf2_read_debug)
6420 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6421 objfile_name (objfile));
6422}
6423
6424/* die_reader_func for load_partial_comp_unit. */
6425
6426static void
6427load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6428 const gdb_byte *info_ptr,
6429 struct die_info *comp_unit_die,
6430 int has_children,
6431 void *data)
6432{
6433 struct dwarf2_cu *cu = reader->cu;
6434
6435 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6436
6437 /* Check if comp unit has_children.
6438 If so, read the rest of the partial symbols from this comp unit.
6439 If not, there's no more debug_info for this comp unit. */
6440 if (has_children)
6441 load_partial_dies (reader, info_ptr, 0);
6442}
6443
6444/* Load the partial DIEs for a secondary CU into memory.
6445 This is also used when rereading a primary CU with load_all_dies. */
6446
6447static void
6448load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6449{
6450 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6451 load_partial_comp_unit_reader, NULL);
6452}
6453
6454static void
6455read_comp_units_from_section (struct objfile *objfile,
6456 struct dwarf2_section_info *section,
6457 unsigned int is_dwz,
6458 int *n_allocated,
6459 int *n_comp_units,
6460 struct dwarf2_per_cu_data ***all_comp_units)
6461{
6462 const gdb_byte *info_ptr;
6463 bfd *abfd = get_section_bfd_owner (section);
6464
6465 if (dwarf2_read_debug)
6466 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6467 get_section_name (section),
6468 get_section_file_name (section));
6469
6470 dwarf2_read_section (objfile, section);
6471
6472 info_ptr = section->buffer;
6473
6474 while (info_ptr < section->buffer + section->size)
6475 {
6476 unsigned int length, initial_length_size;
6477 struct dwarf2_per_cu_data *this_cu;
6478 sect_offset offset;
6479
6480 offset.sect_off = info_ptr - section->buffer;
6481
6482 /* Read just enough information to find out where the next
6483 compilation unit is. */
6484 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6485
6486 /* Save the compilation unit for later lookup. */
6487 this_cu = obstack_alloc (&objfile->objfile_obstack,
6488 sizeof (struct dwarf2_per_cu_data));
6489 memset (this_cu, 0, sizeof (*this_cu));
6490 this_cu->offset = offset;
6491 this_cu->length = length + initial_length_size;
6492 this_cu->is_dwz = is_dwz;
6493 this_cu->objfile = objfile;
6494 this_cu->section = section;
6495
6496 if (*n_comp_units == *n_allocated)
6497 {
6498 *n_allocated *= 2;
6499 *all_comp_units = xrealloc (*all_comp_units,
6500 *n_allocated
6501 * sizeof (struct dwarf2_per_cu_data *));
6502 }
6503 (*all_comp_units)[*n_comp_units] = this_cu;
6504 ++*n_comp_units;
6505
6506 info_ptr = info_ptr + this_cu->length;
6507 }
6508}
6509
6510/* Create a list of all compilation units in OBJFILE.
6511 This is only done for -readnow and building partial symtabs. */
6512
6513static void
6514create_all_comp_units (struct objfile *objfile)
6515{
6516 int n_allocated;
6517 int n_comp_units;
6518 struct dwarf2_per_cu_data **all_comp_units;
6519 struct dwz_file *dwz;
6520
6521 n_comp_units = 0;
6522 n_allocated = 10;
6523 all_comp_units = xmalloc (n_allocated
6524 * sizeof (struct dwarf2_per_cu_data *));
6525
6526 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6527 &n_allocated, &n_comp_units, &all_comp_units);
6528
6529 dwz = dwarf2_get_dwz_file ();
6530 if (dwz != NULL)
6531 read_comp_units_from_section (objfile, &dwz->info, 1,
6532 &n_allocated, &n_comp_units,
6533 &all_comp_units);
6534
6535 dwarf2_per_objfile->all_comp_units
6536 = obstack_alloc (&objfile->objfile_obstack,
6537 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6538 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6539 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6540 xfree (all_comp_units);
6541 dwarf2_per_objfile->n_comp_units = n_comp_units;
6542}
6543
6544/* Process all loaded DIEs for compilation unit CU, starting at
6545 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6546 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6547 DW_AT_ranges). If NEED_PC is set, then this function will set
6548 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6549 and record the covered ranges in the addrmap. */
6550
6551static void
6552scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6553 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6554{
6555 struct partial_die_info *pdi;
6556
6557 /* Now, march along the PDI's, descending into ones which have
6558 interesting children but skipping the children of the other ones,
6559 until we reach the end of the compilation unit. */
6560
6561 pdi = first_die;
6562
6563 while (pdi != NULL)
6564 {
6565 fixup_partial_die (pdi, cu);
6566
6567 /* Anonymous namespaces or modules have no name but have interesting
6568 children, so we need to look at them. Ditto for anonymous
6569 enums. */
6570
6571 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6572 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6573 || pdi->tag == DW_TAG_imported_unit)
6574 {
6575 switch (pdi->tag)
6576 {
6577 case DW_TAG_subprogram:
6578 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6579 break;
6580 case DW_TAG_constant:
6581 case DW_TAG_variable:
6582 case DW_TAG_typedef:
6583 case DW_TAG_union_type:
6584 if (!pdi->is_declaration)
6585 {
6586 add_partial_symbol (pdi, cu);
6587 }
6588 break;
6589 case DW_TAG_class_type:
6590 case DW_TAG_interface_type:
6591 case DW_TAG_structure_type:
6592 if (!pdi->is_declaration)
6593 {
6594 add_partial_symbol (pdi, cu);
6595 }
6596 break;
6597 case DW_TAG_enumeration_type:
6598 if (!pdi->is_declaration)
6599 add_partial_enumeration (pdi, cu);
6600 break;
6601 case DW_TAG_base_type:
6602 case DW_TAG_subrange_type:
6603 /* File scope base type definitions are added to the partial
6604 symbol table. */
6605 add_partial_symbol (pdi, cu);
6606 break;
6607 case DW_TAG_namespace:
6608 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6609 break;
6610 case DW_TAG_module:
6611 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6612 break;
6613 case DW_TAG_imported_unit:
6614 {
6615 struct dwarf2_per_cu_data *per_cu;
6616
6617 /* For now we don't handle imported units in type units. */
6618 if (cu->per_cu->is_debug_types)
6619 {
6620 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6621 " supported in type units [in module %s]"),
6622 objfile_name (cu->objfile));
6623 }
6624
6625 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6626 pdi->is_dwz,
6627 cu->objfile);
6628
6629 /* Go read the partial unit, if needed. */
6630 if (per_cu->v.psymtab == NULL)
6631 process_psymtab_comp_unit (per_cu, 1, cu->language);
6632
6633 VEC_safe_push (dwarf2_per_cu_ptr,
6634 cu->per_cu->imported_symtabs, per_cu);
6635 }
6636 break;
6637 case DW_TAG_imported_declaration:
6638 add_partial_symbol (pdi, cu);
6639 break;
6640 default:
6641 break;
6642 }
6643 }
6644
6645 /* If the die has a sibling, skip to the sibling. */
6646
6647 pdi = pdi->die_sibling;
6648 }
6649}
6650
6651/* Functions used to compute the fully scoped name of a partial DIE.
6652
6653 Normally, this is simple. For C++, the parent DIE's fully scoped
6654 name is concatenated with "::" and the partial DIE's name. For
6655 Java, the same thing occurs except that "." is used instead of "::".
6656 Enumerators are an exception; they use the scope of their parent
6657 enumeration type, i.e. the name of the enumeration type is not
6658 prepended to the enumerator.
6659
6660 There are two complexities. One is DW_AT_specification; in this
6661 case "parent" means the parent of the target of the specification,
6662 instead of the direct parent of the DIE. The other is compilers
6663 which do not emit DW_TAG_namespace; in this case we try to guess
6664 the fully qualified name of structure types from their members'
6665 linkage names. This must be done using the DIE's children rather
6666 than the children of any DW_AT_specification target. We only need
6667 to do this for structures at the top level, i.e. if the target of
6668 any DW_AT_specification (if any; otherwise the DIE itself) does not
6669 have a parent. */
6670
6671/* Compute the scope prefix associated with PDI's parent, in
6672 compilation unit CU. The result will be allocated on CU's
6673 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6674 field. NULL is returned if no prefix is necessary. */
6675static const char *
6676partial_die_parent_scope (struct partial_die_info *pdi,
6677 struct dwarf2_cu *cu)
6678{
6679 const char *grandparent_scope;
6680 struct partial_die_info *parent, *real_pdi;
6681
6682 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6683 then this means the parent of the specification DIE. */
6684
6685 real_pdi = pdi;
6686 while (real_pdi->has_specification)
6687 real_pdi = find_partial_die (real_pdi->spec_offset,
6688 real_pdi->spec_is_dwz, cu);
6689
6690 parent = real_pdi->die_parent;
6691 if (parent == NULL)
6692 return NULL;
6693
6694 if (parent->scope_set)
6695 return parent->scope;
6696
6697 fixup_partial_die (parent, cu);
6698
6699 grandparent_scope = partial_die_parent_scope (parent, cu);
6700
6701 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6702 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6703 Work around this problem here. */
6704 if (cu->language == language_cplus
6705 && parent->tag == DW_TAG_namespace
6706 && strcmp (parent->name, "::") == 0
6707 && grandparent_scope == NULL)
6708 {
6709 parent->scope = NULL;
6710 parent->scope_set = 1;
6711 return NULL;
6712 }
6713
6714 if (pdi->tag == DW_TAG_enumerator)
6715 /* Enumerators should not get the name of the enumeration as a prefix. */
6716 parent->scope = grandparent_scope;
6717 else if (parent->tag == DW_TAG_namespace
6718 || parent->tag == DW_TAG_module
6719 || parent->tag == DW_TAG_structure_type
6720 || parent->tag == DW_TAG_class_type
6721 || parent->tag == DW_TAG_interface_type
6722 || parent->tag == DW_TAG_union_type
6723 || parent->tag == DW_TAG_enumeration_type)
6724 {
6725 if (grandparent_scope == NULL)
6726 parent->scope = parent->name;
6727 else
6728 parent->scope = typename_concat (&cu->comp_unit_obstack,
6729 grandparent_scope,
6730 parent->name, 0, cu);
6731 }
6732 else
6733 {
6734 /* FIXME drow/2004-04-01: What should we be doing with
6735 function-local names? For partial symbols, we should probably be
6736 ignoring them. */
6737 complaint (&symfile_complaints,
6738 _("unhandled containing DIE tag %d for DIE at %d"),
6739 parent->tag, pdi->offset.sect_off);
6740 parent->scope = grandparent_scope;
6741 }
6742
6743 parent->scope_set = 1;
6744 return parent->scope;
6745}
6746
6747/* Return the fully scoped name associated with PDI, from compilation unit
6748 CU. The result will be allocated with malloc. */
6749
6750static char *
6751partial_die_full_name (struct partial_die_info *pdi,
6752 struct dwarf2_cu *cu)
6753{
6754 const char *parent_scope;
6755
6756 /* If this is a template instantiation, we can not work out the
6757 template arguments from partial DIEs. So, unfortunately, we have
6758 to go through the full DIEs. At least any work we do building
6759 types here will be reused if full symbols are loaded later. */
6760 if (pdi->has_template_arguments)
6761 {
6762 fixup_partial_die (pdi, cu);
6763
6764 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6765 {
6766 struct die_info *die;
6767 struct attribute attr;
6768 struct dwarf2_cu *ref_cu = cu;
6769
6770 /* DW_FORM_ref_addr is using section offset. */
6771 attr.name = 0;
6772 attr.form = DW_FORM_ref_addr;
6773 attr.u.unsnd = pdi->offset.sect_off;
6774 die = follow_die_ref (NULL, &attr, &ref_cu);
6775
6776 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6777 }
6778 }
6779
6780 parent_scope = partial_die_parent_scope (pdi, cu);
6781 if (parent_scope == NULL)
6782 return NULL;
6783 else
6784 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6785}
6786
6787static void
6788add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6789{
6790 struct objfile *objfile = cu->objfile;
6791 CORE_ADDR addr = 0;
6792 const char *actual_name = NULL;
6793 CORE_ADDR baseaddr;
6794 char *built_actual_name;
6795
6796 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6797
6798 built_actual_name = partial_die_full_name (pdi, cu);
6799 if (built_actual_name != NULL)
6800 actual_name = built_actual_name;
6801
6802 if (actual_name == NULL)
6803 actual_name = pdi->name;
6804
6805 switch (pdi->tag)
6806 {
6807 case DW_TAG_subprogram:
6808 if (pdi->is_external || cu->language == language_ada)
6809 {
6810 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6811 of the global scope. But in Ada, we want to be able to access
6812 nested procedures globally. So all Ada subprograms are stored
6813 in the global scope. */
6814 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6815 mst_text, objfile); */
6816 add_psymbol_to_list (actual_name, strlen (actual_name),
6817 built_actual_name != NULL,
6818 VAR_DOMAIN, LOC_BLOCK,
6819 &objfile->global_psymbols,
6820 0, pdi->lowpc + baseaddr,
6821 cu->language, objfile);
6822 }
6823 else
6824 {
6825 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6826 mst_file_text, objfile); */
6827 add_psymbol_to_list (actual_name, strlen (actual_name),
6828 built_actual_name != NULL,
6829 VAR_DOMAIN, LOC_BLOCK,
6830 &objfile->static_psymbols,
6831 0, pdi->lowpc + baseaddr,
6832 cu->language, objfile);
6833 }
6834 break;
6835 case DW_TAG_constant:
6836 {
6837 struct psymbol_allocation_list *list;
6838
6839 if (pdi->is_external)
6840 list = &objfile->global_psymbols;
6841 else
6842 list = &objfile->static_psymbols;
6843 add_psymbol_to_list (actual_name, strlen (actual_name),
6844 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6845 list, 0, 0, cu->language, objfile);
6846 }
6847 break;
6848 case DW_TAG_variable:
6849 if (pdi->d.locdesc)
6850 addr = decode_locdesc (pdi->d.locdesc, cu);
6851
6852 if (pdi->d.locdesc
6853 && addr == 0
6854 && !dwarf2_per_objfile->has_section_at_zero)
6855 {
6856 /* A global or static variable may also have been stripped
6857 out by the linker if unused, in which case its address
6858 will be nullified; do not add such variables into partial
6859 symbol table then. */
6860 }
6861 else if (pdi->is_external)
6862 {
6863 /* Global Variable.
6864 Don't enter into the minimal symbol tables as there is
6865 a minimal symbol table entry from the ELF symbols already.
6866 Enter into partial symbol table if it has a location
6867 descriptor or a type.
6868 If the location descriptor is missing, new_symbol will create
6869 a LOC_UNRESOLVED symbol, the address of the variable will then
6870 be determined from the minimal symbol table whenever the variable
6871 is referenced.
6872 The address for the partial symbol table entry is not
6873 used by GDB, but it comes in handy for debugging partial symbol
6874 table building. */
6875
6876 if (pdi->d.locdesc || pdi->has_type)
6877 add_psymbol_to_list (actual_name, strlen (actual_name),
6878 built_actual_name != NULL,
6879 VAR_DOMAIN, LOC_STATIC,
6880 &objfile->global_psymbols,
6881 0, addr + baseaddr,
6882 cu->language, objfile);
6883 }
6884 else
6885 {
6886 /* Static Variable. Skip symbols without location descriptors. */
6887 if (pdi->d.locdesc == NULL)
6888 {
6889 xfree (built_actual_name);
6890 return;
6891 }
6892 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6893 mst_file_data, objfile); */
6894 add_psymbol_to_list (actual_name, strlen (actual_name),
6895 built_actual_name != NULL,
6896 VAR_DOMAIN, LOC_STATIC,
6897 &objfile->static_psymbols,
6898 0, addr + baseaddr,
6899 cu->language, objfile);
6900 }
6901 break;
6902 case DW_TAG_typedef:
6903 case DW_TAG_base_type:
6904 case DW_TAG_subrange_type:
6905 add_psymbol_to_list (actual_name, strlen (actual_name),
6906 built_actual_name != NULL,
6907 VAR_DOMAIN, LOC_TYPEDEF,
6908 &objfile->static_psymbols,
6909 0, (CORE_ADDR) 0, cu->language, objfile);
6910 break;
6911 case DW_TAG_imported_declaration:
6912 case DW_TAG_namespace:
6913 add_psymbol_to_list (actual_name, strlen (actual_name),
6914 built_actual_name != NULL,
6915 VAR_DOMAIN, LOC_TYPEDEF,
6916 &objfile->global_psymbols,
6917 0, (CORE_ADDR) 0, cu->language, objfile);
6918 break;
6919 case DW_TAG_module:
6920 add_psymbol_to_list (actual_name, strlen (actual_name),
6921 built_actual_name != NULL,
6922 MODULE_DOMAIN, LOC_TYPEDEF,
6923 &objfile->global_psymbols,
6924 0, (CORE_ADDR) 0, cu->language, objfile);
6925 break;
6926 case DW_TAG_class_type:
6927 case DW_TAG_interface_type:
6928 case DW_TAG_structure_type:
6929 case DW_TAG_union_type:
6930 case DW_TAG_enumeration_type:
6931 /* Skip external references. The DWARF standard says in the section
6932 about "Structure, Union, and Class Type Entries": "An incomplete
6933 structure, union or class type is represented by a structure,
6934 union or class entry that does not have a byte size attribute
6935 and that has a DW_AT_declaration attribute." */
6936 if (!pdi->has_byte_size && pdi->is_declaration)
6937 {
6938 xfree (built_actual_name);
6939 return;
6940 }
6941
6942 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6943 static vs. global. */
6944 add_psymbol_to_list (actual_name, strlen (actual_name),
6945 built_actual_name != NULL,
6946 STRUCT_DOMAIN, LOC_TYPEDEF,
6947 (cu->language == language_cplus
6948 || cu->language == language_java)
6949 ? &objfile->global_psymbols
6950 : &objfile->static_psymbols,
6951 0, (CORE_ADDR) 0, cu->language, objfile);
6952
6953 break;
6954 case DW_TAG_enumerator:
6955 add_psymbol_to_list (actual_name, strlen (actual_name),
6956 built_actual_name != NULL,
6957 VAR_DOMAIN, LOC_CONST,
6958 (cu->language == language_cplus
6959 || cu->language == language_java)
6960 ? &objfile->global_psymbols
6961 : &objfile->static_psymbols,
6962 0, (CORE_ADDR) 0, cu->language, objfile);
6963 break;
6964 default:
6965 break;
6966 }
6967
6968 xfree (built_actual_name);
6969}
6970
6971/* Read a partial die corresponding to a namespace; also, add a symbol
6972 corresponding to that namespace to the symbol table. NAMESPACE is
6973 the name of the enclosing namespace. */
6974
6975static void
6976add_partial_namespace (struct partial_die_info *pdi,
6977 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6978 int need_pc, struct dwarf2_cu *cu)
6979{
6980 /* Add a symbol for the namespace. */
6981
6982 add_partial_symbol (pdi, cu);
6983
6984 /* Now scan partial symbols in that namespace. */
6985
6986 if (pdi->has_children)
6987 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6988}
6989
6990/* Read a partial die corresponding to a Fortran module. */
6991
6992static void
6993add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6994 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6995{
6996 /* Add a symbol for the namespace. */
6997
6998 add_partial_symbol (pdi, cu);
6999
7000 /* Now scan partial symbols in that module. */
7001
7002 if (pdi->has_children)
7003 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
7004}
7005
7006/* Read a partial die corresponding to a subprogram and create a partial
7007 symbol for that subprogram. When the CU language allows it, this
7008 routine also defines a partial symbol for each nested subprogram
7009 that this subprogram contains.
7010
7011 DIE my also be a lexical block, in which case we simply search
7012 recursively for suprograms defined inside that lexical block.
7013 Again, this is only performed when the CU language allows this
7014 type of definitions. */
7015
7016static void
7017add_partial_subprogram (struct partial_die_info *pdi,
7018 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7019 int need_pc, struct dwarf2_cu *cu)
7020{
7021 if (pdi->tag == DW_TAG_subprogram)
7022 {
7023 if (pdi->has_pc_info)
7024 {
7025 if (pdi->lowpc < *lowpc)
7026 *lowpc = pdi->lowpc;
7027 if (pdi->highpc > *highpc)
7028 *highpc = pdi->highpc;
7029 if (need_pc)
7030 {
7031 CORE_ADDR baseaddr;
7032 struct objfile *objfile = cu->objfile;
7033
7034 baseaddr = ANOFFSET (objfile->section_offsets,
7035 SECT_OFF_TEXT (objfile));
7036 addrmap_set_empty (objfile->psymtabs_addrmap,
7037 pdi->lowpc + baseaddr,
7038 pdi->highpc - 1 + baseaddr,
7039 cu->per_cu->v.psymtab);
7040 }
7041 }
7042
7043 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7044 {
7045 if (!pdi->is_declaration)
7046 /* Ignore subprogram DIEs that do not have a name, they are
7047 illegal. Do not emit a complaint at this point, we will
7048 do so when we convert this psymtab into a symtab. */
7049 if (pdi->name)
7050 add_partial_symbol (pdi, cu);
7051 }
7052 }
7053
7054 if (! pdi->has_children)
7055 return;
7056
7057 if (cu->language == language_ada)
7058 {
7059 pdi = pdi->die_child;
7060 while (pdi != NULL)
7061 {
7062 fixup_partial_die (pdi, cu);
7063 if (pdi->tag == DW_TAG_subprogram
7064 || pdi->tag == DW_TAG_lexical_block)
7065 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
7066 pdi = pdi->die_sibling;
7067 }
7068 }
7069}
7070
7071/* Read a partial die corresponding to an enumeration type. */
7072
7073static void
7074add_partial_enumeration (struct partial_die_info *enum_pdi,
7075 struct dwarf2_cu *cu)
7076{
7077 struct partial_die_info *pdi;
7078
7079 if (enum_pdi->name != NULL)
7080 add_partial_symbol (enum_pdi, cu);
7081
7082 pdi = enum_pdi->die_child;
7083 while (pdi)
7084 {
7085 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7086 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7087 else
7088 add_partial_symbol (pdi, cu);
7089 pdi = pdi->die_sibling;
7090 }
7091}
7092
7093/* Return the initial uleb128 in the die at INFO_PTR. */
7094
7095static unsigned int
7096peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7097{
7098 unsigned int bytes_read;
7099
7100 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7101}
7102
7103/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7104 Return the corresponding abbrev, or NULL if the number is zero (indicating
7105 an empty DIE). In either case *BYTES_READ will be set to the length of
7106 the initial number. */
7107
7108static struct abbrev_info *
7109peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7110 struct dwarf2_cu *cu)
7111{
7112 bfd *abfd = cu->objfile->obfd;
7113 unsigned int abbrev_number;
7114 struct abbrev_info *abbrev;
7115
7116 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7117
7118 if (abbrev_number == 0)
7119 return NULL;
7120
7121 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7122 if (!abbrev)
7123 {
7124 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7125 abbrev_number, bfd_get_filename (abfd));
7126 }
7127
7128 return abbrev;
7129}
7130
7131/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7132 Returns a pointer to the end of a series of DIEs, terminated by an empty
7133 DIE. Any children of the skipped DIEs will also be skipped. */
7134
7135static const gdb_byte *
7136skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7137{
7138 struct dwarf2_cu *cu = reader->cu;
7139 struct abbrev_info *abbrev;
7140 unsigned int bytes_read;
7141
7142 while (1)
7143 {
7144 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7145 if (abbrev == NULL)
7146 return info_ptr + bytes_read;
7147 else
7148 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7149 }
7150}
7151
7152/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7153 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7154 abbrev corresponding to that skipped uleb128 should be passed in
7155 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7156 children. */
7157
7158static const gdb_byte *
7159skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7160 struct abbrev_info *abbrev)
7161{
7162 unsigned int bytes_read;
7163 struct attribute attr;
7164 bfd *abfd = reader->abfd;
7165 struct dwarf2_cu *cu = reader->cu;
7166 const gdb_byte *buffer = reader->buffer;
7167 const gdb_byte *buffer_end = reader->buffer_end;
7168 const gdb_byte *start_info_ptr = info_ptr;
7169 unsigned int form, i;
7170
7171 for (i = 0; i < abbrev->num_attrs; i++)
7172 {
7173 /* The only abbrev we care about is DW_AT_sibling. */
7174 if (abbrev->attrs[i].name == DW_AT_sibling)
7175 {
7176 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7177 if (attr.form == DW_FORM_ref_addr)
7178 complaint (&symfile_complaints,
7179 _("ignoring absolute DW_AT_sibling"));
7180 else
7181 {
7182 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7183 const gdb_byte *sibling_ptr = buffer + off;
7184
7185 if (sibling_ptr < info_ptr)
7186 complaint (&symfile_complaints,
7187 _("DW_AT_sibling points backwards"));
7188 else if (sibling_ptr > reader->buffer_end)
7189 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7190 else
7191 return sibling_ptr;
7192 }
7193 }
7194
7195 /* If it isn't DW_AT_sibling, skip this attribute. */
7196 form = abbrev->attrs[i].form;
7197 skip_attribute:
7198 switch (form)
7199 {
7200 case DW_FORM_ref_addr:
7201 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7202 and later it is offset sized. */
7203 if (cu->header.version == 2)
7204 info_ptr += cu->header.addr_size;
7205 else
7206 info_ptr += cu->header.offset_size;
7207 break;
7208 case DW_FORM_GNU_ref_alt:
7209 info_ptr += cu->header.offset_size;
7210 break;
7211 case DW_FORM_addr:
7212 info_ptr += cu->header.addr_size;
7213 break;
7214 case DW_FORM_data1:
7215 case DW_FORM_ref1:
7216 case DW_FORM_flag:
7217 info_ptr += 1;
7218 break;
7219 case DW_FORM_flag_present:
7220 break;
7221 case DW_FORM_data2:
7222 case DW_FORM_ref2:
7223 info_ptr += 2;
7224 break;
7225 case DW_FORM_data4:
7226 case DW_FORM_ref4:
7227 info_ptr += 4;
7228 break;
7229 case DW_FORM_data8:
7230 case DW_FORM_ref8:
7231 case DW_FORM_ref_sig8:
7232 info_ptr += 8;
7233 break;
7234 case DW_FORM_string:
7235 read_direct_string (abfd, info_ptr, &bytes_read);
7236 info_ptr += bytes_read;
7237 break;
7238 case DW_FORM_sec_offset:
7239 case DW_FORM_strp:
7240 case DW_FORM_GNU_strp_alt:
7241 info_ptr += cu->header.offset_size;
7242 break;
7243 case DW_FORM_exprloc:
7244 case DW_FORM_block:
7245 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7246 info_ptr += bytes_read;
7247 break;
7248 case DW_FORM_block1:
7249 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7250 break;
7251 case DW_FORM_block2:
7252 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7253 break;
7254 case DW_FORM_block4:
7255 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7256 break;
7257 case DW_FORM_sdata:
7258 case DW_FORM_udata:
7259 case DW_FORM_ref_udata:
7260 case DW_FORM_GNU_addr_index:
7261 case DW_FORM_GNU_str_index:
7262 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7263 break;
7264 case DW_FORM_indirect:
7265 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7266 info_ptr += bytes_read;
7267 /* We need to continue parsing from here, so just go back to
7268 the top. */
7269 goto skip_attribute;
7270
7271 default:
7272 error (_("Dwarf Error: Cannot handle %s "
7273 "in DWARF reader [in module %s]"),
7274 dwarf_form_name (form),
7275 bfd_get_filename (abfd));
7276 }
7277 }
7278
7279 if (abbrev->has_children)
7280 return skip_children (reader, info_ptr);
7281 else
7282 return info_ptr;
7283}
7284
7285/* Locate ORIG_PDI's sibling.
7286 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7287
7288static const gdb_byte *
7289locate_pdi_sibling (const struct die_reader_specs *reader,
7290 struct partial_die_info *orig_pdi,
7291 const gdb_byte *info_ptr)
7292{
7293 /* Do we know the sibling already? */
7294
7295 if (orig_pdi->sibling)
7296 return orig_pdi->sibling;
7297
7298 /* Are there any children to deal with? */
7299
7300 if (!orig_pdi->has_children)
7301 return info_ptr;
7302
7303 /* Skip the children the long way. */
7304
7305 return skip_children (reader, info_ptr);
7306}
7307
7308/* Expand this partial symbol table into a full symbol table. SELF is
7309 not NULL. */
7310
7311static void
7312dwarf2_read_symtab (struct partial_symtab *self,
7313 struct objfile *objfile)
7314{
7315 if (self->readin)
7316 {
7317 warning (_("bug: psymtab for %s is already read in."),
7318 self->filename);
7319 }
7320 else
7321 {
7322 if (info_verbose)
7323 {
7324 printf_filtered (_("Reading in symbols for %s..."),
7325 self->filename);
7326 gdb_flush (gdb_stdout);
7327 }
7328
7329 /* Restore our global data. */
7330 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7331
7332 /* If this psymtab is constructed from a debug-only objfile, the
7333 has_section_at_zero flag will not necessarily be correct. We
7334 can get the correct value for this flag by looking at the data
7335 associated with the (presumably stripped) associated objfile. */
7336 if (objfile->separate_debug_objfile_backlink)
7337 {
7338 struct dwarf2_per_objfile *dpo_backlink
7339 = objfile_data (objfile->separate_debug_objfile_backlink,
7340 dwarf2_objfile_data_key);
7341
7342 dwarf2_per_objfile->has_section_at_zero
7343 = dpo_backlink->has_section_at_zero;
7344 }
7345
7346 dwarf2_per_objfile->reading_partial_symbols = 0;
7347
7348 psymtab_to_symtab_1 (self);
7349
7350 /* Finish up the debug error message. */
7351 if (info_verbose)
7352 printf_filtered (_("done.\n"));
7353 }
7354
7355 process_cu_includes ();
7356}
7357\f
7358/* Reading in full CUs. */
7359
7360/* Add PER_CU to the queue. */
7361
7362static void
7363queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7364 enum language pretend_language)
7365{
7366 struct dwarf2_queue_item *item;
7367
7368 per_cu->queued = 1;
7369 item = xmalloc (sizeof (*item));
7370 item->per_cu = per_cu;
7371 item->pretend_language = pretend_language;
7372 item->next = NULL;
7373
7374 if (dwarf2_queue == NULL)
7375 dwarf2_queue = item;
7376 else
7377 dwarf2_queue_tail->next = item;
7378
7379 dwarf2_queue_tail = item;
7380}
7381
7382/* If PER_CU is not yet queued, add it to the queue.
7383 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7384 dependency.
7385 The result is non-zero if PER_CU was queued, otherwise the result is zero
7386 meaning either PER_CU is already queued or it is already loaded.
7387
7388 N.B. There is an invariant here that if a CU is queued then it is loaded.
7389 The caller is required to load PER_CU if we return non-zero. */
7390
7391static int
7392maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7393 struct dwarf2_per_cu_data *per_cu,
7394 enum language pretend_language)
7395{
7396 /* We may arrive here during partial symbol reading, if we need full
7397 DIEs to process an unusual case (e.g. template arguments). Do
7398 not queue PER_CU, just tell our caller to load its DIEs. */
7399 if (dwarf2_per_objfile->reading_partial_symbols)
7400 {
7401 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7402 return 1;
7403 return 0;
7404 }
7405
7406 /* Mark the dependence relation so that we don't flush PER_CU
7407 too early. */
7408 if (dependent_cu != NULL)
7409 dwarf2_add_dependence (dependent_cu, per_cu);
7410
7411 /* If it's already on the queue, we have nothing to do. */
7412 if (per_cu->queued)
7413 return 0;
7414
7415 /* If the compilation unit is already loaded, just mark it as
7416 used. */
7417 if (per_cu->cu != NULL)
7418 {
7419 per_cu->cu->last_used = 0;
7420 return 0;
7421 }
7422
7423 /* Add it to the queue. */
7424 queue_comp_unit (per_cu, pretend_language);
7425
7426 return 1;
7427}
7428
7429/* Process the queue. */
7430
7431static void
7432process_queue (void)
7433{
7434 struct dwarf2_queue_item *item, *next_item;
7435
7436 if (dwarf2_read_debug)
7437 {
7438 fprintf_unfiltered (gdb_stdlog,
7439 "Expanding one or more symtabs of objfile %s ...\n",
7440 objfile_name (dwarf2_per_objfile->objfile));
7441 }
7442
7443 /* The queue starts out with one item, but following a DIE reference
7444 may load a new CU, adding it to the end of the queue. */
7445 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7446 {
7447 if (dwarf2_per_objfile->using_index
7448 ? !item->per_cu->v.quick->symtab
7449 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7450 {
7451 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7452 unsigned int debug_print_threshold;
7453 char buf[100];
7454
7455 if (per_cu->is_debug_types)
7456 {
7457 struct signatured_type *sig_type =
7458 (struct signatured_type *) per_cu;
7459
7460 sprintf (buf, "TU %s at offset 0x%x",
7461 hex_string (sig_type->signature),
7462 per_cu->offset.sect_off);
7463 /* There can be 100s of TUs.
7464 Only print them in verbose mode. */
7465 debug_print_threshold = 2;
7466 }
7467 else
7468 {
7469 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7470 debug_print_threshold = 1;
7471 }
7472
7473 if (dwarf2_read_debug >= debug_print_threshold)
7474 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7475
7476 if (per_cu->is_debug_types)
7477 process_full_type_unit (per_cu, item->pretend_language);
7478 else
7479 process_full_comp_unit (per_cu, item->pretend_language);
7480
7481 if (dwarf2_read_debug >= debug_print_threshold)
7482 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7483 }
7484
7485 item->per_cu->queued = 0;
7486 next_item = item->next;
7487 xfree (item);
7488 }
7489
7490 dwarf2_queue_tail = NULL;
7491
7492 if (dwarf2_read_debug)
7493 {
7494 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7495 objfile_name (dwarf2_per_objfile->objfile));
7496 }
7497}
7498
7499/* Free all allocated queue entries. This function only releases anything if
7500 an error was thrown; if the queue was processed then it would have been
7501 freed as we went along. */
7502
7503static void
7504dwarf2_release_queue (void *dummy)
7505{
7506 struct dwarf2_queue_item *item, *last;
7507
7508 item = dwarf2_queue;
7509 while (item)
7510 {
7511 /* Anything still marked queued is likely to be in an
7512 inconsistent state, so discard it. */
7513 if (item->per_cu->queued)
7514 {
7515 if (item->per_cu->cu != NULL)
7516 free_one_cached_comp_unit (item->per_cu);
7517 item->per_cu->queued = 0;
7518 }
7519
7520 last = item;
7521 item = item->next;
7522 xfree (last);
7523 }
7524
7525 dwarf2_queue = dwarf2_queue_tail = NULL;
7526}
7527
7528/* Read in full symbols for PST, and anything it depends on. */
7529
7530static void
7531psymtab_to_symtab_1 (struct partial_symtab *pst)
7532{
7533 struct dwarf2_per_cu_data *per_cu;
7534 int i;
7535
7536 if (pst->readin)
7537 return;
7538
7539 for (i = 0; i < pst->number_of_dependencies; i++)
7540 if (!pst->dependencies[i]->readin
7541 && pst->dependencies[i]->user == NULL)
7542 {
7543 /* Inform about additional files that need to be read in. */
7544 if (info_verbose)
7545 {
7546 /* FIXME: i18n: Need to make this a single string. */
7547 fputs_filtered (" ", gdb_stdout);
7548 wrap_here ("");
7549 fputs_filtered ("and ", gdb_stdout);
7550 wrap_here ("");
7551 printf_filtered ("%s...", pst->dependencies[i]->filename);
7552 wrap_here (""); /* Flush output. */
7553 gdb_flush (gdb_stdout);
7554 }
7555 psymtab_to_symtab_1 (pst->dependencies[i]);
7556 }
7557
7558 per_cu = pst->read_symtab_private;
7559
7560 if (per_cu == NULL)
7561 {
7562 /* It's an include file, no symbols to read for it.
7563 Everything is in the parent symtab. */
7564 pst->readin = 1;
7565 return;
7566 }
7567
7568 dw2_do_instantiate_symtab (per_cu);
7569}
7570
7571/* Trivial hash function for die_info: the hash value of a DIE
7572 is its offset in .debug_info for this objfile. */
7573
7574static hashval_t
7575die_hash (const void *item)
7576{
7577 const struct die_info *die = item;
7578
7579 return die->offset.sect_off;
7580}
7581
7582/* Trivial comparison function for die_info structures: two DIEs
7583 are equal if they have the same offset. */
7584
7585static int
7586die_eq (const void *item_lhs, const void *item_rhs)
7587{
7588 const struct die_info *die_lhs = item_lhs;
7589 const struct die_info *die_rhs = item_rhs;
7590
7591 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7592}
7593
7594/* die_reader_func for load_full_comp_unit.
7595 This is identical to read_signatured_type_reader,
7596 but is kept separate for now. */
7597
7598static void
7599load_full_comp_unit_reader (const struct die_reader_specs *reader,
7600 const gdb_byte *info_ptr,
7601 struct die_info *comp_unit_die,
7602 int has_children,
7603 void *data)
7604{
7605 struct dwarf2_cu *cu = reader->cu;
7606 enum language *language_ptr = data;
7607
7608 gdb_assert (cu->die_hash == NULL);
7609 cu->die_hash =
7610 htab_create_alloc_ex (cu->header.length / 12,
7611 die_hash,
7612 die_eq,
7613 NULL,
7614 &cu->comp_unit_obstack,
7615 hashtab_obstack_allocate,
7616 dummy_obstack_deallocate);
7617
7618 if (has_children)
7619 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7620 &info_ptr, comp_unit_die);
7621 cu->dies = comp_unit_die;
7622 /* comp_unit_die is not stored in die_hash, no need. */
7623
7624 /* We try not to read any attributes in this function, because not
7625 all CUs needed for references have been loaded yet, and symbol
7626 table processing isn't initialized. But we have to set the CU language,
7627 or we won't be able to build types correctly.
7628 Similarly, if we do not read the producer, we can not apply
7629 producer-specific interpretation. */
7630 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7631}
7632
7633/* Load the DIEs associated with PER_CU into memory. */
7634
7635static void
7636load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7637 enum language pretend_language)
7638{
7639 gdb_assert (! this_cu->is_debug_types);
7640
7641 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7642 load_full_comp_unit_reader, &pretend_language);
7643}
7644
7645/* Add a DIE to the delayed physname list. */
7646
7647static void
7648add_to_method_list (struct type *type, int fnfield_index, int index,
7649 const char *name, struct die_info *die,
7650 struct dwarf2_cu *cu)
7651{
7652 struct delayed_method_info mi;
7653 mi.type = type;
7654 mi.fnfield_index = fnfield_index;
7655 mi.index = index;
7656 mi.name = name;
7657 mi.die = die;
7658 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7659}
7660
7661/* A cleanup for freeing the delayed method list. */
7662
7663static void
7664free_delayed_list (void *ptr)
7665{
7666 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7667 if (cu->method_list != NULL)
7668 {
7669 VEC_free (delayed_method_info, cu->method_list);
7670 cu->method_list = NULL;
7671 }
7672}
7673
7674/* Compute the physnames of any methods on the CU's method list.
7675
7676 The computation of method physnames is delayed in order to avoid the
7677 (bad) condition that one of the method's formal parameters is of an as yet
7678 incomplete type. */
7679
7680static void
7681compute_delayed_physnames (struct dwarf2_cu *cu)
7682{
7683 int i;
7684 struct delayed_method_info *mi;
7685 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7686 {
7687 const char *physname;
7688 struct fn_fieldlist *fn_flp
7689 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7690 physname = dwarf2_physname (mi->name, mi->die, cu);
7691 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7692 }
7693}
7694
7695/* Go objects should be embedded in a DW_TAG_module DIE,
7696 and it's not clear if/how imported objects will appear.
7697 To keep Go support simple until that's worked out,
7698 go back through what we've read and create something usable.
7699 We could do this while processing each DIE, and feels kinda cleaner,
7700 but that way is more invasive.
7701 This is to, for example, allow the user to type "p var" or "b main"
7702 without having to specify the package name, and allow lookups
7703 of module.object to work in contexts that use the expression
7704 parser. */
7705
7706static void
7707fixup_go_packaging (struct dwarf2_cu *cu)
7708{
7709 char *package_name = NULL;
7710 struct pending *list;
7711 int i;
7712
7713 for (list = global_symbols; list != NULL; list = list->next)
7714 {
7715 for (i = 0; i < list->nsyms; ++i)
7716 {
7717 struct symbol *sym = list->symbol[i];
7718
7719 if (SYMBOL_LANGUAGE (sym) == language_go
7720 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7721 {
7722 char *this_package_name = go_symbol_package_name (sym);
7723
7724 if (this_package_name == NULL)
7725 continue;
7726 if (package_name == NULL)
7727 package_name = this_package_name;
7728 else
7729 {
7730 if (strcmp (package_name, this_package_name) != 0)
7731 complaint (&symfile_complaints,
7732 _("Symtab %s has objects from two different Go packages: %s and %s"),
7733 (SYMBOL_SYMTAB (sym)
7734 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7735 : objfile_name (cu->objfile)),
7736 this_package_name, package_name);
7737 xfree (this_package_name);
7738 }
7739 }
7740 }
7741 }
7742
7743 if (package_name != NULL)
7744 {
7745 struct objfile *objfile = cu->objfile;
7746 const char *saved_package_name
7747 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7748 package_name,
7749 strlen (package_name));
7750 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7751 saved_package_name, objfile);
7752 struct symbol *sym;
7753
7754 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7755
7756 sym = allocate_symbol (objfile);
7757 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7758 SYMBOL_SET_NAMES (sym, saved_package_name,
7759 strlen (saved_package_name), 0, objfile);
7760 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7761 e.g., "main" finds the "main" module and not C's main(). */
7762 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7763 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7764 SYMBOL_TYPE (sym) = type;
7765
7766 add_symbol_to_list (sym, &global_symbols);
7767
7768 xfree (package_name);
7769 }
7770}
7771
7772/* Return the symtab for PER_CU. This works properly regardless of
7773 whether we're using the index or psymtabs. */
7774
7775static struct symtab *
7776get_symtab (struct dwarf2_per_cu_data *per_cu)
7777{
7778 return (dwarf2_per_objfile->using_index
7779 ? per_cu->v.quick->symtab
7780 : per_cu->v.psymtab->symtab);
7781}
7782
7783/* A helper function for computing the list of all symbol tables
7784 included by PER_CU. */
7785
7786static void
7787recursively_compute_inclusions (VEC (symtab_ptr) **result,
7788 htab_t all_children, htab_t all_type_symtabs,
7789 struct dwarf2_per_cu_data *per_cu,
7790 struct symtab *immediate_parent)
7791{
7792 void **slot;
7793 int ix;
7794 struct symtab *symtab;
7795 struct dwarf2_per_cu_data *iter;
7796
7797 slot = htab_find_slot (all_children, per_cu, INSERT);
7798 if (*slot != NULL)
7799 {
7800 /* This inclusion and its children have been processed. */
7801 return;
7802 }
7803
7804 *slot = per_cu;
7805 /* Only add a CU if it has a symbol table. */
7806 symtab = get_symtab (per_cu);
7807 if (symtab != NULL)
7808 {
7809 /* If this is a type unit only add its symbol table if we haven't
7810 seen it yet (type unit per_cu's can share symtabs). */
7811 if (per_cu->is_debug_types)
7812 {
7813 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7814 if (*slot == NULL)
7815 {
7816 *slot = symtab;
7817 VEC_safe_push (symtab_ptr, *result, symtab);
7818 if (symtab->user == NULL)
7819 symtab->user = immediate_parent;
7820 }
7821 }
7822 else
7823 {
7824 VEC_safe_push (symtab_ptr, *result, symtab);
7825 if (symtab->user == NULL)
7826 symtab->user = immediate_parent;
7827 }
7828 }
7829
7830 for (ix = 0;
7831 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7832 ++ix)
7833 {
7834 recursively_compute_inclusions (result, all_children,
7835 all_type_symtabs, iter, symtab);
7836 }
7837}
7838
7839/* Compute the symtab 'includes' fields for the symtab related to
7840 PER_CU. */
7841
7842static void
7843compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7844{
7845 gdb_assert (! per_cu->is_debug_types);
7846
7847 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7848 {
7849 int ix, len;
7850 struct dwarf2_per_cu_data *per_cu_iter;
7851 struct symtab *symtab_iter;
7852 VEC (symtab_ptr) *result_symtabs = NULL;
7853 htab_t all_children, all_type_symtabs;
7854 struct symtab *symtab = get_symtab (per_cu);
7855
7856 /* If we don't have a symtab, we can just skip this case. */
7857 if (symtab == NULL)
7858 return;
7859
7860 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7861 NULL, xcalloc, xfree);
7862 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7863 NULL, xcalloc, xfree);
7864
7865 for (ix = 0;
7866 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7867 ix, per_cu_iter);
7868 ++ix)
7869 {
7870 recursively_compute_inclusions (&result_symtabs, all_children,
7871 all_type_symtabs, per_cu_iter,
7872 symtab);
7873 }
7874
7875 /* Now we have a transitive closure of all the included symtabs. */
7876 len = VEC_length (symtab_ptr, result_symtabs);
7877 symtab->includes
7878 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7879 (len + 1) * sizeof (struct symtab *));
7880 for (ix = 0;
7881 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7882 ++ix)
7883 symtab->includes[ix] = symtab_iter;
7884 symtab->includes[len] = NULL;
7885
7886 VEC_free (symtab_ptr, result_symtabs);
7887 htab_delete (all_children);
7888 htab_delete (all_type_symtabs);
7889 }
7890}
7891
7892/* Compute the 'includes' field for the symtabs of all the CUs we just
7893 read. */
7894
7895static void
7896process_cu_includes (void)
7897{
7898 int ix;
7899 struct dwarf2_per_cu_data *iter;
7900
7901 for (ix = 0;
7902 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7903 ix, iter);
7904 ++ix)
7905 {
7906 if (! iter->is_debug_types)
7907 compute_symtab_includes (iter);
7908 }
7909
7910 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7911}
7912
7913/* Generate full symbol information for PER_CU, whose DIEs have
7914 already been loaded into memory. */
7915
7916static void
7917process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7918 enum language pretend_language)
7919{
7920 struct dwarf2_cu *cu = per_cu->cu;
7921 struct objfile *objfile = per_cu->objfile;
7922 CORE_ADDR lowpc, highpc;
7923 struct symtab *symtab;
7924 struct cleanup *back_to, *delayed_list_cleanup;
7925 CORE_ADDR baseaddr;
7926 struct block *static_block;
7927
7928 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7929
7930 buildsym_init ();
7931 back_to = make_cleanup (really_free_pendings, NULL);
7932 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7933
7934 cu->list_in_scope = &file_symbols;
7935
7936 cu->language = pretend_language;
7937 cu->language_defn = language_def (cu->language);
7938
7939 /* Do line number decoding in read_file_scope () */
7940 process_die (cu->dies, cu);
7941
7942 /* For now fudge the Go package. */
7943 if (cu->language == language_go)
7944 fixup_go_packaging (cu);
7945
7946 /* Now that we have processed all the DIEs in the CU, all the types
7947 should be complete, and it should now be safe to compute all of the
7948 physnames. */
7949 compute_delayed_physnames (cu);
7950 do_cleanups (delayed_list_cleanup);
7951
7952 /* Some compilers don't define a DW_AT_high_pc attribute for the
7953 compilation unit. If the DW_AT_high_pc is missing, synthesize
7954 it, by scanning the DIE's below the compilation unit. */
7955 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7956
7957 static_block
7958 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7959
7960 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7961 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7962 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7963 addrmap to help ensure it has an accurate map of pc values belonging to
7964 this comp unit. */
7965 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7966
7967 symtab = end_symtab_from_static_block (static_block, objfile,
7968 SECT_OFF_TEXT (objfile), 0);
7969
7970 if (symtab != NULL)
7971 {
7972 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7973
7974 /* Set symtab language to language from DW_AT_language. If the
7975 compilation is from a C file generated by language preprocessors, do
7976 not set the language if it was already deduced by start_subfile. */
7977 if (!(cu->language == language_c && symtab->language != language_c))
7978 symtab->language = cu->language;
7979
7980 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7981 produce DW_AT_location with location lists but it can be possibly
7982 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7983 there were bugs in prologue debug info, fixed later in GCC-4.5
7984 by "unwind info for epilogues" patch (which is not directly related).
7985
7986 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7987 needed, it would be wrong due to missing DW_AT_producer there.
7988
7989 Still one can confuse GDB by using non-standard GCC compilation
7990 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7991 */
7992 if (cu->has_loclist && gcc_4_minor >= 5)
7993 symtab->locations_valid = 1;
7994
7995 if (gcc_4_minor >= 5)
7996 symtab->epilogue_unwind_valid = 1;
7997
7998 symtab->call_site_htab = cu->call_site_htab;
7999 }
8000
8001 if (dwarf2_per_objfile->using_index)
8002 per_cu->v.quick->symtab = symtab;
8003 else
8004 {
8005 struct partial_symtab *pst = per_cu->v.psymtab;
8006 pst->symtab = symtab;
8007 pst->readin = 1;
8008 }
8009
8010 /* Push it for inclusion processing later. */
8011 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8012
8013 do_cleanups (back_to);
8014}
8015
8016/* Generate full symbol information for type unit PER_CU, whose DIEs have
8017 already been loaded into memory. */
8018
8019static void
8020process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8021 enum language pretend_language)
8022{
8023 struct dwarf2_cu *cu = per_cu->cu;
8024 struct objfile *objfile = per_cu->objfile;
8025 struct symtab *symtab;
8026 struct cleanup *back_to, *delayed_list_cleanup;
8027 struct signatured_type *sig_type;
8028
8029 gdb_assert (per_cu->is_debug_types);
8030 sig_type = (struct signatured_type *) per_cu;
8031
8032 buildsym_init ();
8033 back_to = make_cleanup (really_free_pendings, NULL);
8034 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8035
8036 cu->list_in_scope = &file_symbols;
8037
8038 cu->language = pretend_language;
8039 cu->language_defn = language_def (cu->language);
8040
8041 /* The symbol tables are set up in read_type_unit_scope. */
8042 process_die (cu->dies, cu);
8043
8044 /* For now fudge the Go package. */
8045 if (cu->language == language_go)
8046 fixup_go_packaging (cu);
8047
8048 /* Now that we have processed all the DIEs in the CU, all the types
8049 should be complete, and it should now be safe to compute all of the
8050 physnames. */
8051 compute_delayed_physnames (cu);
8052 do_cleanups (delayed_list_cleanup);
8053
8054 /* TUs share symbol tables.
8055 If this is the first TU to use this symtab, complete the construction
8056 of it with end_expandable_symtab. Otherwise, complete the addition of
8057 this TU's symbols to the existing symtab. */
8058 if (sig_type->type_unit_group->primary_symtab == NULL)
8059 {
8060 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
8061 sig_type->type_unit_group->primary_symtab = symtab;
8062
8063 if (symtab != NULL)
8064 {
8065 /* Set symtab language to language from DW_AT_language. If the
8066 compilation is from a C file generated by language preprocessors,
8067 do not set the language if it was already deduced by
8068 start_subfile. */
8069 if (!(cu->language == language_c && symtab->language != language_c))
8070 symtab->language = cu->language;
8071 }
8072 }
8073 else
8074 {
8075 augment_type_symtab (objfile,
8076 sig_type->type_unit_group->primary_symtab);
8077 symtab = sig_type->type_unit_group->primary_symtab;
8078 }
8079
8080 if (dwarf2_per_objfile->using_index)
8081 per_cu->v.quick->symtab = symtab;
8082 else
8083 {
8084 struct partial_symtab *pst = per_cu->v.psymtab;
8085 pst->symtab = symtab;
8086 pst->readin = 1;
8087 }
8088
8089 do_cleanups (back_to);
8090}
8091
8092/* Process an imported unit DIE. */
8093
8094static void
8095process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8096{
8097 struct attribute *attr;
8098
8099 /* For now we don't handle imported units in type units. */
8100 if (cu->per_cu->is_debug_types)
8101 {
8102 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8103 " supported in type units [in module %s]"),
8104 objfile_name (cu->objfile));
8105 }
8106
8107 attr = dwarf2_attr (die, DW_AT_import, cu);
8108 if (attr != NULL)
8109 {
8110 struct dwarf2_per_cu_data *per_cu;
8111 struct symtab *imported_symtab;
8112 sect_offset offset;
8113 int is_dwz;
8114
8115 offset = dwarf2_get_ref_die_offset (attr);
8116 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8117 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8118
8119 /* If necessary, add it to the queue and load its DIEs. */
8120 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8121 load_full_comp_unit (per_cu, cu->language);
8122
8123 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8124 per_cu);
8125 }
8126}
8127
8128/* Reset the in_process bit of a die. */
8129
8130static void
8131reset_die_in_process (void *arg)
8132{
8133 struct die_info *die = arg;
8134
8135 die->in_process = 0;
8136}
8137
8138/* Process a die and its children. */
8139
8140static void
8141process_die (struct die_info *die, struct dwarf2_cu *cu)
8142{
8143 struct cleanup *in_process;
8144
8145 /* We should only be processing those not already in process. */
8146 gdb_assert (!die->in_process);
8147
8148 die->in_process = 1;
8149 in_process = make_cleanup (reset_die_in_process,die);
8150
8151 switch (die->tag)
8152 {
8153 case DW_TAG_padding:
8154 break;
8155 case DW_TAG_compile_unit:
8156 case DW_TAG_partial_unit:
8157 read_file_scope (die, cu);
8158 break;
8159 case DW_TAG_type_unit:
8160 read_type_unit_scope (die, cu);
8161 break;
8162 case DW_TAG_subprogram:
8163 case DW_TAG_inlined_subroutine:
8164 read_func_scope (die, cu);
8165 break;
8166 case DW_TAG_lexical_block:
8167 case DW_TAG_try_block:
8168 case DW_TAG_catch_block:
8169 read_lexical_block_scope (die, cu);
8170 break;
8171 case DW_TAG_GNU_call_site:
8172 read_call_site_scope (die, cu);
8173 break;
8174 case DW_TAG_class_type:
8175 case DW_TAG_interface_type:
8176 case DW_TAG_structure_type:
8177 case DW_TAG_union_type:
8178 process_structure_scope (die, cu);
8179 break;
8180 case DW_TAG_enumeration_type:
8181 process_enumeration_scope (die, cu);
8182 break;
8183
8184 /* These dies have a type, but processing them does not create
8185 a symbol or recurse to process the children. Therefore we can
8186 read them on-demand through read_type_die. */
8187 case DW_TAG_subroutine_type:
8188 case DW_TAG_set_type:
8189 case DW_TAG_array_type:
8190 case DW_TAG_pointer_type:
8191 case DW_TAG_ptr_to_member_type:
8192 case DW_TAG_reference_type:
8193 case DW_TAG_string_type:
8194 break;
8195
8196 case DW_TAG_base_type:
8197 case DW_TAG_subrange_type:
8198 case DW_TAG_typedef:
8199 /* Add a typedef symbol for the type definition, if it has a
8200 DW_AT_name. */
8201 new_symbol (die, read_type_die (die, cu), cu);
8202 break;
8203 case DW_TAG_common_block:
8204 read_common_block (die, cu);
8205 break;
8206 case DW_TAG_common_inclusion:
8207 break;
8208 case DW_TAG_namespace:
8209 cu->processing_has_namespace_info = 1;
8210 read_namespace (die, cu);
8211 break;
8212 case DW_TAG_module:
8213 cu->processing_has_namespace_info = 1;
8214 read_module (die, cu);
8215 break;
8216 case DW_TAG_imported_declaration:
8217 cu->processing_has_namespace_info = 1;
8218 if (read_namespace_alias (die, cu))
8219 break;
8220 /* The declaration is not a global namespace alias: fall through. */
8221 case DW_TAG_imported_module:
8222 cu->processing_has_namespace_info = 1;
8223 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8224 || cu->language != language_fortran))
8225 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8226 dwarf_tag_name (die->tag));
8227 read_import_statement (die, cu);
8228 break;
8229
8230 case DW_TAG_imported_unit:
8231 process_imported_unit_die (die, cu);
8232 break;
8233
8234 default:
8235 new_symbol (die, NULL, cu);
8236 break;
8237 }
8238
8239 do_cleanups (in_process);
8240}
8241\f
8242/* DWARF name computation. */
8243
8244/* A helper function for dwarf2_compute_name which determines whether DIE
8245 needs to have the name of the scope prepended to the name listed in the
8246 die. */
8247
8248static int
8249die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8250{
8251 struct attribute *attr;
8252
8253 switch (die->tag)
8254 {
8255 case DW_TAG_namespace:
8256 case DW_TAG_typedef:
8257 case DW_TAG_class_type:
8258 case DW_TAG_interface_type:
8259 case DW_TAG_structure_type:
8260 case DW_TAG_union_type:
8261 case DW_TAG_enumeration_type:
8262 case DW_TAG_enumerator:
8263 case DW_TAG_subprogram:
8264 case DW_TAG_member:
8265 case DW_TAG_imported_declaration:
8266 return 1;
8267
8268 case DW_TAG_variable:
8269 case DW_TAG_constant:
8270 /* We only need to prefix "globally" visible variables. These include
8271 any variable marked with DW_AT_external or any variable that
8272 lives in a namespace. [Variables in anonymous namespaces
8273 require prefixing, but they are not DW_AT_external.] */
8274
8275 if (dwarf2_attr (die, DW_AT_specification, cu))
8276 {
8277 struct dwarf2_cu *spec_cu = cu;
8278
8279 return die_needs_namespace (die_specification (die, &spec_cu),
8280 spec_cu);
8281 }
8282
8283 attr = dwarf2_attr (die, DW_AT_external, cu);
8284 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8285 && die->parent->tag != DW_TAG_module)
8286 return 0;
8287 /* A variable in a lexical block of some kind does not need a
8288 namespace, even though in C++ such variables may be external
8289 and have a mangled name. */
8290 if (die->parent->tag == DW_TAG_lexical_block
8291 || die->parent->tag == DW_TAG_try_block
8292 || die->parent->tag == DW_TAG_catch_block
8293 || die->parent->tag == DW_TAG_subprogram)
8294 return 0;
8295 return 1;
8296
8297 default:
8298 return 0;
8299 }
8300}
8301
8302/* Retrieve the last character from a mem_file. */
8303
8304static void
8305do_ui_file_peek_last (void *object, const char *buffer, long length)
8306{
8307 char *last_char_p = (char *) object;
8308
8309 if (length > 0)
8310 *last_char_p = buffer[length - 1];
8311}
8312
8313/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8314 compute the physname for the object, which include a method's:
8315 - formal parameters (C++/Java),
8316 - receiver type (Go),
8317 - return type (Java).
8318
8319 The term "physname" is a bit confusing.
8320 For C++, for example, it is the demangled name.
8321 For Go, for example, it's the mangled name.
8322
8323 For Ada, return the DIE's linkage name rather than the fully qualified
8324 name. PHYSNAME is ignored..
8325
8326 The result is allocated on the objfile_obstack and canonicalized. */
8327
8328static const char *
8329dwarf2_compute_name (const char *name,
8330 struct die_info *die, struct dwarf2_cu *cu,
8331 int physname)
8332{
8333 struct objfile *objfile = cu->objfile;
8334
8335 if (name == NULL)
8336 name = dwarf2_name (die, cu);
8337
8338 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8339 compute it by typename_concat inside GDB. */
8340 if (cu->language == language_ada
8341 || (cu->language == language_fortran && physname))
8342 {
8343 /* For Ada unit, we prefer the linkage name over the name, as
8344 the former contains the exported name, which the user expects
8345 to be able to reference. Ideally, we want the user to be able
8346 to reference this entity using either natural or linkage name,
8347 but we haven't started looking at this enhancement yet. */
8348 struct attribute *attr;
8349
8350 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8351 if (attr == NULL)
8352 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8353 if (attr && DW_STRING (attr))
8354 return DW_STRING (attr);
8355 }
8356
8357 /* These are the only languages we know how to qualify names in. */
8358 if (name != NULL
8359 && (cu->language == language_cplus || cu->language == language_java
8360 || cu->language == language_fortran))
8361 {
8362 if (die_needs_namespace (die, cu))
8363 {
8364 long length;
8365 const char *prefix;
8366 struct ui_file *buf;
8367 char *intermediate_name;
8368 const char *canonical_name = NULL;
8369
8370 prefix = determine_prefix (die, cu);
8371 buf = mem_fileopen ();
8372 if (*prefix != '\0')
8373 {
8374 char *prefixed_name = typename_concat (NULL, prefix, name,
8375 physname, cu);
8376
8377 fputs_unfiltered (prefixed_name, buf);
8378 xfree (prefixed_name);
8379 }
8380 else
8381 fputs_unfiltered (name, buf);
8382
8383 /* Template parameters may be specified in the DIE's DW_AT_name, or
8384 as children with DW_TAG_template_type_param or
8385 DW_TAG_value_type_param. If the latter, add them to the name
8386 here. If the name already has template parameters, then
8387 skip this step; some versions of GCC emit both, and
8388 it is more efficient to use the pre-computed name.
8389
8390 Something to keep in mind about this process: it is very
8391 unlikely, or in some cases downright impossible, to produce
8392 something that will match the mangled name of a function.
8393 If the definition of the function has the same debug info,
8394 we should be able to match up with it anyway. But fallbacks
8395 using the minimal symbol, for instance to find a method
8396 implemented in a stripped copy of libstdc++, will not work.
8397 If we do not have debug info for the definition, we will have to
8398 match them up some other way.
8399
8400 When we do name matching there is a related problem with function
8401 templates; two instantiated function templates are allowed to
8402 differ only by their return types, which we do not add here. */
8403
8404 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8405 {
8406 struct attribute *attr;
8407 struct die_info *child;
8408 int first = 1;
8409
8410 die->building_fullname = 1;
8411
8412 for (child = die->child; child != NULL; child = child->sibling)
8413 {
8414 struct type *type;
8415 LONGEST value;
8416 const gdb_byte *bytes;
8417 struct dwarf2_locexpr_baton *baton;
8418 struct value *v;
8419
8420 if (child->tag != DW_TAG_template_type_param
8421 && child->tag != DW_TAG_template_value_param)
8422 continue;
8423
8424 if (first)
8425 {
8426 fputs_unfiltered ("<", buf);
8427 first = 0;
8428 }
8429 else
8430 fputs_unfiltered (", ", buf);
8431
8432 attr = dwarf2_attr (child, DW_AT_type, cu);
8433 if (attr == NULL)
8434 {
8435 complaint (&symfile_complaints,
8436 _("template parameter missing DW_AT_type"));
8437 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8438 continue;
8439 }
8440 type = die_type (child, cu);
8441
8442 if (child->tag == DW_TAG_template_type_param)
8443 {
8444 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8445 continue;
8446 }
8447
8448 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8449 if (attr == NULL)
8450 {
8451 complaint (&symfile_complaints,
8452 _("template parameter missing "
8453 "DW_AT_const_value"));
8454 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8455 continue;
8456 }
8457
8458 dwarf2_const_value_attr (attr, type, name,
8459 &cu->comp_unit_obstack, cu,
8460 &value, &bytes, &baton);
8461
8462 if (TYPE_NOSIGN (type))
8463 /* GDB prints characters as NUMBER 'CHAR'. If that's
8464 changed, this can use value_print instead. */
8465 c_printchar (value, type, buf);
8466 else
8467 {
8468 struct value_print_options opts;
8469
8470 if (baton != NULL)
8471 v = dwarf2_evaluate_loc_desc (type, NULL,
8472 baton->data,
8473 baton->size,
8474 baton->per_cu);
8475 else if (bytes != NULL)
8476 {
8477 v = allocate_value (type);
8478 memcpy (value_contents_writeable (v), bytes,
8479 TYPE_LENGTH (type));
8480 }
8481 else
8482 v = value_from_longest (type, value);
8483
8484 /* Specify decimal so that we do not depend on
8485 the radix. */
8486 get_formatted_print_options (&opts, 'd');
8487 opts.raw = 1;
8488 value_print (v, buf, &opts);
8489 release_value (v);
8490 value_free (v);
8491 }
8492 }
8493
8494 die->building_fullname = 0;
8495
8496 if (!first)
8497 {
8498 /* Close the argument list, with a space if necessary
8499 (nested templates). */
8500 char last_char = '\0';
8501 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8502 if (last_char == '>')
8503 fputs_unfiltered (" >", buf);
8504 else
8505 fputs_unfiltered (">", buf);
8506 }
8507 }
8508
8509 /* For Java and C++ methods, append formal parameter type
8510 information, if PHYSNAME. */
8511
8512 if (physname && die->tag == DW_TAG_subprogram
8513 && (cu->language == language_cplus
8514 || cu->language == language_java))
8515 {
8516 struct type *type = read_type_die (die, cu);
8517
8518 c_type_print_args (type, buf, 1, cu->language,
8519 &type_print_raw_options);
8520
8521 if (cu->language == language_java)
8522 {
8523 /* For java, we must append the return type to method
8524 names. */
8525 if (die->tag == DW_TAG_subprogram)
8526 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8527 0, 0, &type_print_raw_options);
8528 }
8529 else if (cu->language == language_cplus)
8530 {
8531 /* Assume that an artificial first parameter is
8532 "this", but do not crash if it is not. RealView
8533 marks unnamed (and thus unused) parameters as
8534 artificial; there is no way to differentiate
8535 the two cases. */
8536 if (TYPE_NFIELDS (type) > 0
8537 && TYPE_FIELD_ARTIFICIAL (type, 0)
8538 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8539 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8540 0))))
8541 fputs_unfiltered (" const", buf);
8542 }
8543 }
8544
8545 intermediate_name = ui_file_xstrdup (buf, &length);
8546 ui_file_delete (buf);
8547
8548 if (cu->language == language_cplus)
8549 canonical_name
8550 = dwarf2_canonicalize_name (intermediate_name, cu,
8551 &objfile->per_bfd->storage_obstack);
8552
8553 /* If we only computed INTERMEDIATE_NAME, or if
8554 INTERMEDIATE_NAME is already canonical, then we need to
8555 copy it to the appropriate obstack. */
8556 if (canonical_name == NULL || canonical_name == intermediate_name)
8557 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8558 intermediate_name,
8559 strlen (intermediate_name));
8560 else
8561 name = canonical_name;
8562
8563 xfree (intermediate_name);
8564 }
8565 }
8566
8567 return name;
8568}
8569
8570/* Return the fully qualified name of DIE, based on its DW_AT_name.
8571 If scope qualifiers are appropriate they will be added. The result
8572 will be allocated on the storage_obstack, or NULL if the DIE does
8573 not have a name. NAME may either be from a previous call to
8574 dwarf2_name or NULL.
8575
8576 The output string will be canonicalized (if C++/Java). */
8577
8578static const char *
8579dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8580{
8581 return dwarf2_compute_name (name, die, cu, 0);
8582}
8583
8584/* Construct a physname for the given DIE in CU. NAME may either be
8585 from a previous call to dwarf2_name or NULL. The result will be
8586 allocated on the objfile_objstack or NULL if the DIE does not have a
8587 name.
8588
8589 The output string will be canonicalized (if C++/Java). */
8590
8591static const char *
8592dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8593{
8594 struct objfile *objfile = cu->objfile;
8595 struct attribute *attr;
8596 const char *retval, *mangled = NULL, *canon = NULL;
8597 struct cleanup *back_to;
8598 int need_copy = 1;
8599
8600 /* In this case dwarf2_compute_name is just a shortcut not building anything
8601 on its own. */
8602 if (!die_needs_namespace (die, cu))
8603 return dwarf2_compute_name (name, die, cu, 1);
8604
8605 back_to = make_cleanup (null_cleanup, NULL);
8606
8607 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8608 if (!attr)
8609 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8610
8611 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8612 has computed. */
8613 if (attr && DW_STRING (attr))
8614 {
8615 char *demangled;
8616
8617 mangled = DW_STRING (attr);
8618
8619 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8620 type. It is easier for GDB users to search for such functions as
8621 `name(params)' than `long name(params)'. In such case the minimal
8622 symbol names do not match the full symbol names but for template
8623 functions there is never a need to look up their definition from their
8624 declaration so the only disadvantage remains the minimal symbol
8625 variant `long name(params)' does not have the proper inferior type.
8626 */
8627
8628 if (cu->language == language_go)
8629 {
8630 /* This is a lie, but we already lie to the caller new_symbol_full.
8631 new_symbol_full assumes we return the mangled name.
8632 This just undoes that lie until things are cleaned up. */
8633 demangled = NULL;
8634 }
8635 else
8636 {
8637 demangled = gdb_demangle (mangled,
8638 (DMGL_PARAMS | DMGL_ANSI
8639 | (cu->language == language_java
8640 ? DMGL_JAVA | DMGL_RET_POSTFIX
8641 : DMGL_RET_DROP)));
8642 }
8643 if (demangled)
8644 {
8645 make_cleanup (xfree, demangled);
8646 canon = demangled;
8647 }
8648 else
8649 {
8650 canon = mangled;
8651 need_copy = 0;
8652 }
8653 }
8654
8655 if (canon == NULL || check_physname)
8656 {
8657 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8658
8659 if (canon != NULL && strcmp (physname, canon) != 0)
8660 {
8661 /* It may not mean a bug in GDB. The compiler could also
8662 compute DW_AT_linkage_name incorrectly. But in such case
8663 GDB would need to be bug-to-bug compatible. */
8664
8665 complaint (&symfile_complaints,
8666 _("Computed physname <%s> does not match demangled <%s> "
8667 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8668 physname, canon, mangled, die->offset.sect_off,
8669 objfile_name (objfile));
8670
8671 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8672 is available here - over computed PHYSNAME. It is safer
8673 against both buggy GDB and buggy compilers. */
8674
8675 retval = canon;
8676 }
8677 else
8678 {
8679 retval = physname;
8680 need_copy = 0;
8681 }
8682 }
8683 else
8684 retval = canon;
8685
8686 if (need_copy)
8687 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8688 retval, strlen (retval));
8689
8690 do_cleanups (back_to);
8691 return retval;
8692}
8693
8694/* Inspect DIE in CU for a namespace alias. If one exists, record
8695 a new symbol for it.
8696
8697 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8698
8699static int
8700read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8701{
8702 struct attribute *attr;
8703
8704 /* If the die does not have a name, this is not a namespace
8705 alias. */
8706 attr = dwarf2_attr (die, DW_AT_name, cu);
8707 if (attr != NULL)
8708 {
8709 int num;
8710 struct die_info *d = die;
8711 struct dwarf2_cu *imported_cu = cu;
8712
8713 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8714 keep inspecting DIEs until we hit the underlying import. */
8715#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8716 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8717 {
8718 attr = dwarf2_attr (d, DW_AT_import, cu);
8719 if (attr == NULL)
8720 break;
8721
8722 d = follow_die_ref (d, attr, &imported_cu);
8723 if (d->tag != DW_TAG_imported_declaration)
8724 break;
8725 }
8726
8727 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8728 {
8729 complaint (&symfile_complaints,
8730 _("DIE at 0x%x has too many recursively imported "
8731 "declarations"), d->offset.sect_off);
8732 return 0;
8733 }
8734
8735 if (attr != NULL)
8736 {
8737 struct type *type;
8738 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8739
8740 type = get_die_type_at_offset (offset, cu->per_cu);
8741 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8742 {
8743 /* This declaration is a global namespace alias. Add
8744 a symbol for it whose type is the aliased namespace. */
8745 new_symbol (die, type, cu);
8746 return 1;
8747 }
8748 }
8749 }
8750
8751 return 0;
8752}
8753
8754/* Read the import statement specified by the given die and record it. */
8755
8756static void
8757read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8758{
8759 struct objfile *objfile = cu->objfile;
8760 struct attribute *import_attr;
8761 struct die_info *imported_die, *child_die;
8762 struct dwarf2_cu *imported_cu;
8763 const char *imported_name;
8764 const char *imported_name_prefix;
8765 const char *canonical_name;
8766 const char *import_alias;
8767 const char *imported_declaration = NULL;
8768 const char *import_prefix;
8769 VEC (const_char_ptr) *excludes = NULL;
8770 struct cleanup *cleanups;
8771
8772 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8773 if (import_attr == NULL)
8774 {
8775 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8776 dwarf_tag_name (die->tag));
8777 return;
8778 }
8779
8780 imported_cu = cu;
8781 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8782 imported_name = dwarf2_name (imported_die, imported_cu);
8783 if (imported_name == NULL)
8784 {
8785 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8786
8787 The import in the following code:
8788 namespace A
8789 {
8790 typedef int B;
8791 }
8792
8793 int main ()
8794 {
8795 using A::B;
8796 B b;
8797 return b;
8798 }
8799
8800 ...
8801 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8802 <52> DW_AT_decl_file : 1
8803 <53> DW_AT_decl_line : 6
8804 <54> DW_AT_import : <0x75>
8805 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8806 <59> DW_AT_name : B
8807 <5b> DW_AT_decl_file : 1
8808 <5c> DW_AT_decl_line : 2
8809 <5d> DW_AT_type : <0x6e>
8810 ...
8811 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8812 <76> DW_AT_byte_size : 4
8813 <77> DW_AT_encoding : 5 (signed)
8814
8815 imports the wrong die ( 0x75 instead of 0x58 ).
8816 This case will be ignored until the gcc bug is fixed. */
8817 return;
8818 }
8819
8820 /* Figure out the local name after import. */
8821 import_alias = dwarf2_name (die, cu);
8822
8823 /* Figure out where the statement is being imported to. */
8824 import_prefix = determine_prefix (die, cu);
8825
8826 /* Figure out what the scope of the imported die is and prepend it
8827 to the name of the imported die. */
8828 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8829
8830 if (imported_die->tag != DW_TAG_namespace
8831 && imported_die->tag != DW_TAG_module)
8832 {
8833 imported_declaration = imported_name;
8834 canonical_name = imported_name_prefix;
8835 }
8836 else if (strlen (imported_name_prefix) > 0)
8837 canonical_name = obconcat (&objfile->objfile_obstack,
8838 imported_name_prefix, "::", imported_name,
8839 (char *) NULL);
8840 else
8841 canonical_name = imported_name;
8842
8843 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8844
8845 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8846 for (child_die = die->child; child_die && child_die->tag;
8847 child_die = sibling_die (child_die))
8848 {
8849 /* DWARF-4: A Fortran use statement with a “rename list” may be
8850 represented by an imported module entry with an import attribute
8851 referring to the module and owned entries corresponding to those
8852 entities that are renamed as part of being imported. */
8853
8854 if (child_die->tag != DW_TAG_imported_declaration)
8855 {
8856 complaint (&symfile_complaints,
8857 _("child DW_TAG_imported_declaration expected "
8858 "- DIE at 0x%x [in module %s]"),
8859 child_die->offset.sect_off, objfile_name (objfile));
8860 continue;
8861 }
8862
8863 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8864 if (import_attr == NULL)
8865 {
8866 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8867 dwarf_tag_name (child_die->tag));
8868 continue;
8869 }
8870
8871 imported_cu = cu;
8872 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8873 &imported_cu);
8874 imported_name = dwarf2_name (imported_die, imported_cu);
8875 if (imported_name == NULL)
8876 {
8877 complaint (&symfile_complaints,
8878 _("child DW_TAG_imported_declaration has unknown "
8879 "imported name - DIE at 0x%x [in module %s]"),
8880 child_die->offset.sect_off, objfile_name (objfile));
8881 continue;
8882 }
8883
8884 VEC_safe_push (const_char_ptr, excludes, imported_name);
8885
8886 process_die (child_die, cu);
8887 }
8888
8889 cp_add_using_directive (import_prefix,
8890 canonical_name,
8891 import_alias,
8892 imported_declaration,
8893 excludes,
8894 0,
8895 &objfile->objfile_obstack);
8896
8897 do_cleanups (cleanups);
8898}
8899
8900/* Cleanup function for handle_DW_AT_stmt_list. */
8901
8902static void
8903free_cu_line_header (void *arg)
8904{
8905 struct dwarf2_cu *cu = arg;
8906
8907 free_line_header (cu->line_header);
8908 cu->line_header = NULL;
8909}
8910
8911/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8912 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8913 this, it was first present in GCC release 4.3.0. */
8914
8915static int
8916producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8917{
8918 if (!cu->checked_producer)
8919 check_producer (cu);
8920
8921 return cu->producer_is_gcc_lt_4_3;
8922}
8923
8924static void
8925find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8926 const char **name, const char **comp_dir)
8927{
8928 struct attribute *attr;
8929
8930 *name = NULL;
8931 *comp_dir = NULL;
8932
8933 /* Find the filename. Do not use dwarf2_name here, since the filename
8934 is not a source language identifier. */
8935 attr = dwarf2_attr (die, DW_AT_name, cu);
8936 if (attr)
8937 {
8938 *name = DW_STRING (attr);
8939 }
8940
8941 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8942 if (attr)
8943 *comp_dir = DW_STRING (attr);
8944 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8945 && IS_ABSOLUTE_PATH (*name))
8946 {
8947 char *d = ldirname (*name);
8948
8949 *comp_dir = d;
8950 if (d != NULL)
8951 make_cleanup (xfree, d);
8952 }
8953 if (*comp_dir != NULL)
8954 {
8955 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8956 directory, get rid of it. */
8957 char *cp = strchr (*comp_dir, ':');
8958
8959 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8960 *comp_dir = cp + 1;
8961 }
8962
8963 if (*name == NULL)
8964 *name = "<unknown>";
8965}
8966
8967/* Handle DW_AT_stmt_list for a compilation unit.
8968 DIE is the DW_TAG_compile_unit die for CU.
8969 COMP_DIR is the compilation directory.
8970 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8971
8972static void
8973handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8974 const char *comp_dir) /* ARI: editCase function */
8975{
8976 struct attribute *attr;
8977
8978 gdb_assert (! cu->per_cu->is_debug_types);
8979
8980 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8981 if (attr)
8982 {
8983 unsigned int line_offset = DW_UNSND (attr);
8984 struct line_header *line_header
8985 = dwarf_decode_line_header (line_offset, cu);
8986
8987 if (line_header)
8988 {
8989 cu->line_header = line_header;
8990 make_cleanup (free_cu_line_header, cu);
8991 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8992 }
8993 }
8994}
8995
8996/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8997
8998static void
8999read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9000{
9001 struct objfile *objfile = dwarf2_per_objfile->objfile;
9002 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9003 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9004 CORE_ADDR highpc = ((CORE_ADDR) 0);
9005 struct attribute *attr;
9006 const char *name = NULL;
9007 const char *comp_dir = NULL;
9008 struct die_info *child_die;
9009 bfd *abfd = objfile->obfd;
9010 CORE_ADDR baseaddr;
9011
9012 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9013
9014 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9015
9016 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9017 from finish_block. */
9018 if (lowpc == ((CORE_ADDR) -1))
9019 lowpc = highpc;
9020 lowpc += baseaddr;
9021 highpc += baseaddr;
9022
9023 find_file_and_directory (die, cu, &name, &comp_dir);
9024
9025 prepare_one_comp_unit (cu, die, cu->language);
9026
9027 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9028 standardised yet. As a workaround for the language detection we fall
9029 back to the DW_AT_producer string. */
9030 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9031 cu->language = language_opencl;
9032
9033 /* Similar hack for Go. */
9034 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9035 set_cu_language (DW_LANG_Go, cu);
9036
9037 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9038
9039 /* Decode line number information if present. We do this before
9040 processing child DIEs, so that the line header table is available
9041 for DW_AT_decl_file. */
9042 handle_DW_AT_stmt_list (die, cu, comp_dir);
9043
9044 /* Process all dies in compilation unit. */
9045 if (die->child != NULL)
9046 {
9047 child_die = die->child;
9048 while (child_die && child_die->tag)
9049 {
9050 process_die (child_die, cu);
9051 child_die = sibling_die (child_die);
9052 }
9053 }
9054
9055 /* Decode macro information, if present. Dwarf 2 macro information
9056 refers to information in the line number info statement program
9057 header, so we can only read it if we've read the header
9058 successfully. */
9059 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9060 if (attr && cu->line_header)
9061 {
9062 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9063 complaint (&symfile_complaints,
9064 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9065
9066 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
9067 }
9068 else
9069 {
9070 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9071 if (attr && cu->line_header)
9072 {
9073 unsigned int macro_offset = DW_UNSND (attr);
9074
9075 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
9076 }
9077 }
9078
9079 do_cleanups (back_to);
9080}
9081
9082/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9083 Create the set of symtabs used by this TU, or if this TU is sharing
9084 symtabs with another TU and the symtabs have already been created
9085 then restore those symtabs in the line header.
9086 We don't need the pc/line-number mapping for type units. */
9087
9088static void
9089setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9090{
9091 struct objfile *objfile = dwarf2_per_objfile->objfile;
9092 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9093 struct type_unit_group *tu_group;
9094 int first_time;
9095 struct line_header *lh;
9096 struct attribute *attr;
9097 unsigned int i, line_offset;
9098 struct signatured_type *sig_type;
9099
9100 gdb_assert (per_cu->is_debug_types);
9101 sig_type = (struct signatured_type *) per_cu;
9102
9103 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9104
9105 /* If we're using .gdb_index (includes -readnow) then
9106 per_cu->type_unit_group may not have been set up yet. */
9107 if (sig_type->type_unit_group == NULL)
9108 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9109 tu_group = sig_type->type_unit_group;
9110
9111 /* If we've already processed this stmt_list there's no real need to
9112 do it again, we could fake it and just recreate the part we need
9113 (file name,index -> symtab mapping). If data shows this optimization
9114 is useful we can do it then. */
9115 first_time = tu_group->primary_symtab == NULL;
9116
9117 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9118 debug info. */
9119 lh = NULL;
9120 if (attr != NULL)
9121 {
9122 line_offset = DW_UNSND (attr);
9123 lh = dwarf_decode_line_header (line_offset, cu);
9124 }
9125 if (lh == NULL)
9126 {
9127 if (first_time)
9128 dwarf2_start_symtab (cu, "", NULL, 0);
9129 else
9130 {
9131 gdb_assert (tu_group->symtabs == NULL);
9132 restart_symtab (0);
9133 }
9134 /* Note: The primary symtab will get allocated at the end. */
9135 return;
9136 }
9137
9138 cu->line_header = lh;
9139 make_cleanup (free_cu_line_header, cu);
9140
9141 if (first_time)
9142 {
9143 dwarf2_start_symtab (cu, "", NULL, 0);
9144
9145 tu_group->num_symtabs = lh->num_file_names;
9146 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9147
9148 for (i = 0; i < lh->num_file_names; ++i)
9149 {
9150 const char *dir = NULL;
9151 struct file_entry *fe = &lh->file_names[i];
9152
9153 if (fe->dir_index)
9154 dir = lh->include_dirs[fe->dir_index - 1];
9155 dwarf2_start_subfile (fe->name, dir, NULL);
9156
9157 /* Note: We don't have to watch for the main subfile here, type units
9158 don't have DW_AT_name. */
9159
9160 if (current_subfile->symtab == NULL)
9161 {
9162 /* NOTE: start_subfile will recognize when it's been passed
9163 a file it has already seen. So we can't assume there's a
9164 simple mapping from lh->file_names to subfiles,
9165 lh->file_names may contain dups. */
9166 current_subfile->symtab = allocate_symtab (current_subfile->name,
9167 objfile);
9168 }
9169
9170 fe->symtab = current_subfile->symtab;
9171 tu_group->symtabs[i] = fe->symtab;
9172 }
9173 }
9174 else
9175 {
9176 restart_symtab (0);
9177
9178 for (i = 0; i < lh->num_file_names; ++i)
9179 {
9180 struct file_entry *fe = &lh->file_names[i];
9181
9182 fe->symtab = tu_group->symtabs[i];
9183 }
9184 }
9185
9186 /* The main symtab is allocated last. Type units don't have DW_AT_name
9187 so they don't have a "real" (so to speak) symtab anyway.
9188 There is later code that will assign the main symtab to all symbols
9189 that don't have one. We need to handle the case of a symbol with a
9190 missing symtab (DW_AT_decl_file) anyway. */
9191}
9192
9193/* Process DW_TAG_type_unit.
9194 For TUs we want to skip the first top level sibling if it's not the
9195 actual type being defined by this TU. In this case the first top
9196 level sibling is there to provide context only. */
9197
9198static void
9199read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9200{
9201 struct die_info *child_die;
9202
9203 prepare_one_comp_unit (cu, die, language_minimal);
9204
9205 /* Initialize (or reinitialize) the machinery for building symtabs.
9206 We do this before processing child DIEs, so that the line header table
9207 is available for DW_AT_decl_file. */
9208 setup_type_unit_groups (die, cu);
9209
9210 if (die->child != NULL)
9211 {
9212 child_die = die->child;
9213 while (child_die && child_die->tag)
9214 {
9215 process_die (child_die, cu);
9216 child_die = sibling_die (child_die);
9217 }
9218 }
9219}
9220\f
9221/* DWO/DWP files.
9222
9223 http://gcc.gnu.org/wiki/DebugFission
9224 http://gcc.gnu.org/wiki/DebugFissionDWP
9225
9226 To simplify handling of both DWO files ("object" files with the DWARF info)
9227 and DWP files (a file with the DWOs packaged up into one file), we treat
9228 DWP files as having a collection of virtual DWO files. */
9229
9230static hashval_t
9231hash_dwo_file (const void *item)
9232{
9233 const struct dwo_file *dwo_file = item;
9234 hashval_t hash;
9235
9236 hash = htab_hash_string (dwo_file->dwo_name);
9237 if (dwo_file->comp_dir != NULL)
9238 hash += htab_hash_string (dwo_file->comp_dir);
9239 return hash;
9240}
9241
9242static int
9243eq_dwo_file (const void *item_lhs, const void *item_rhs)
9244{
9245 const struct dwo_file *lhs = item_lhs;
9246 const struct dwo_file *rhs = item_rhs;
9247
9248 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9249 return 0;
9250 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9251 return lhs->comp_dir == rhs->comp_dir;
9252 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9253}
9254
9255/* Allocate a hash table for DWO files. */
9256
9257static htab_t
9258allocate_dwo_file_hash_table (void)
9259{
9260 struct objfile *objfile = dwarf2_per_objfile->objfile;
9261
9262 return htab_create_alloc_ex (41,
9263 hash_dwo_file,
9264 eq_dwo_file,
9265 NULL,
9266 &objfile->objfile_obstack,
9267 hashtab_obstack_allocate,
9268 dummy_obstack_deallocate);
9269}
9270
9271/* Lookup DWO file DWO_NAME. */
9272
9273static void **
9274lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9275{
9276 struct dwo_file find_entry;
9277 void **slot;
9278
9279 if (dwarf2_per_objfile->dwo_files == NULL)
9280 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9281
9282 memset (&find_entry, 0, sizeof (find_entry));
9283 find_entry.dwo_name = dwo_name;
9284 find_entry.comp_dir = comp_dir;
9285 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9286
9287 return slot;
9288}
9289
9290static hashval_t
9291hash_dwo_unit (const void *item)
9292{
9293 const struct dwo_unit *dwo_unit = item;
9294
9295 /* This drops the top 32 bits of the id, but is ok for a hash. */
9296 return dwo_unit->signature;
9297}
9298
9299static int
9300eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9301{
9302 const struct dwo_unit *lhs = item_lhs;
9303 const struct dwo_unit *rhs = item_rhs;
9304
9305 /* The signature is assumed to be unique within the DWO file.
9306 So while object file CU dwo_id's always have the value zero,
9307 that's OK, assuming each object file DWO file has only one CU,
9308 and that's the rule for now. */
9309 return lhs->signature == rhs->signature;
9310}
9311
9312/* Allocate a hash table for DWO CUs,TUs.
9313 There is one of these tables for each of CUs,TUs for each DWO file. */
9314
9315static htab_t
9316allocate_dwo_unit_table (struct objfile *objfile)
9317{
9318 /* Start out with a pretty small number.
9319 Generally DWO files contain only one CU and maybe some TUs. */
9320 return htab_create_alloc_ex (3,
9321 hash_dwo_unit,
9322 eq_dwo_unit,
9323 NULL,
9324 &objfile->objfile_obstack,
9325 hashtab_obstack_allocate,
9326 dummy_obstack_deallocate);
9327}
9328
9329/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9330
9331struct create_dwo_cu_data
9332{
9333 struct dwo_file *dwo_file;
9334 struct dwo_unit dwo_unit;
9335};
9336
9337/* die_reader_func for create_dwo_cu. */
9338
9339static void
9340create_dwo_cu_reader (const struct die_reader_specs *reader,
9341 const gdb_byte *info_ptr,
9342 struct die_info *comp_unit_die,
9343 int has_children,
9344 void *datap)
9345{
9346 struct dwarf2_cu *cu = reader->cu;
9347 struct objfile *objfile = dwarf2_per_objfile->objfile;
9348 sect_offset offset = cu->per_cu->offset;
9349 struct dwarf2_section_info *section = cu->per_cu->section;
9350 struct create_dwo_cu_data *data = datap;
9351 struct dwo_file *dwo_file = data->dwo_file;
9352 struct dwo_unit *dwo_unit = &data->dwo_unit;
9353 struct attribute *attr;
9354
9355 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9356 if (attr == NULL)
9357 {
9358 complaint (&symfile_complaints,
9359 _("Dwarf Error: debug entry at offset 0x%x is missing"
9360 " its dwo_id [in module %s]"),
9361 offset.sect_off, dwo_file->dwo_name);
9362 return;
9363 }
9364
9365 dwo_unit->dwo_file = dwo_file;
9366 dwo_unit->signature = DW_UNSND (attr);
9367 dwo_unit->section = section;
9368 dwo_unit->offset = offset;
9369 dwo_unit->length = cu->per_cu->length;
9370
9371 if (dwarf2_read_debug)
9372 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9373 offset.sect_off, hex_string (dwo_unit->signature));
9374}
9375
9376/* Create the dwo_unit for the lone CU in DWO_FILE.
9377 Note: This function processes DWO files only, not DWP files. */
9378
9379static struct dwo_unit *
9380create_dwo_cu (struct dwo_file *dwo_file)
9381{
9382 struct objfile *objfile = dwarf2_per_objfile->objfile;
9383 struct dwarf2_section_info *section = &dwo_file->sections.info;
9384 bfd *abfd;
9385 htab_t cu_htab;
9386 const gdb_byte *info_ptr, *end_ptr;
9387 struct create_dwo_cu_data create_dwo_cu_data;
9388 struct dwo_unit *dwo_unit;
9389
9390 dwarf2_read_section (objfile, section);
9391 info_ptr = section->buffer;
9392
9393 if (info_ptr == NULL)
9394 return NULL;
9395
9396 /* We can't set abfd until now because the section may be empty or
9397 not present, in which case section->asection will be NULL. */
9398 abfd = get_section_bfd_owner (section);
9399
9400 if (dwarf2_read_debug)
9401 {
9402 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9403 get_section_name (section),
9404 get_section_file_name (section));
9405 }
9406
9407 create_dwo_cu_data.dwo_file = dwo_file;
9408 dwo_unit = NULL;
9409
9410 end_ptr = info_ptr + section->size;
9411 while (info_ptr < end_ptr)
9412 {
9413 struct dwarf2_per_cu_data per_cu;
9414
9415 memset (&create_dwo_cu_data.dwo_unit, 0,
9416 sizeof (create_dwo_cu_data.dwo_unit));
9417 memset (&per_cu, 0, sizeof (per_cu));
9418 per_cu.objfile = objfile;
9419 per_cu.is_debug_types = 0;
9420 per_cu.offset.sect_off = info_ptr - section->buffer;
9421 per_cu.section = section;
9422
9423 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9424 create_dwo_cu_reader,
9425 &create_dwo_cu_data);
9426
9427 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9428 {
9429 /* If we've already found one, complain. We only support one
9430 because having more than one requires hacking the dwo_name of
9431 each to match, which is highly unlikely to happen. */
9432 if (dwo_unit != NULL)
9433 {
9434 complaint (&symfile_complaints,
9435 _("Multiple CUs in DWO file %s [in module %s]"),
9436 dwo_file->dwo_name, objfile_name (objfile));
9437 break;
9438 }
9439
9440 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9441 *dwo_unit = create_dwo_cu_data.dwo_unit;
9442 }
9443
9444 info_ptr += per_cu.length;
9445 }
9446
9447 return dwo_unit;
9448}
9449
9450/* DWP file .debug_{cu,tu}_index section format:
9451 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9452
9453 DWP Version 1:
9454
9455 Both index sections have the same format, and serve to map a 64-bit
9456 signature to a set of section numbers. Each section begins with a header,
9457 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9458 indexes, and a pool of 32-bit section numbers. The index sections will be
9459 aligned at 8-byte boundaries in the file.
9460
9461 The index section header consists of:
9462
9463 V, 32 bit version number
9464 -, 32 bits unused
9465 N, 32 bit number of compilation units or type units in the index
9466 M, 32 bit number of slots in the hash table
9467
9468 Numbers are recorded using the byte order of the application binary.
9469
9470 The hash table begins at offset 16 in the section, and consists of an array
9471 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9472 order of the application binary). Unused slots in the hash table are 0.
9473 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9474
9475 The parallel table begins immediately after the hash table
9476 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9477 array of 32-bit indexes (using the byte order of the application binary),
9478 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9479 table contains a 32-bit index into the pool of section numbers. For unused
9480 hash table slots, the corresponding entry in the parallel table will be 0.
9481
9482 The pool of section numbers begins immediately following the hash table
9483 (at offset 16 + 12 * M from the beginning of the section). The pool of
9484 section numbers consists of an array of 32-bit words (using the byte order
9485 of the application binary). Each item in the array is indexed starting
9486 from 0. The hash table entry provides the index of the first section
9487 number in the set. Additional section numbers in the set follow, and the
9488 set is terminated by a 0 entry (section number 0 is not used in ELF).
9489
9490 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9491 section must be the first entry in the set, and the .debug_abbrev.dwo must
9492 be the second entry. Other members of the set may follow in any order.
9493
9494 ---
9495
9496 DWP Version 2:
9497
9498 DWP Version 2 combines all the .debug_info, etc. sections into one,
9499 and the entries in the index tables are now offsets into these sections.
9500 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9501 section.
9502
9503 Index Section Contents:
9504 Header
9505 Hash Table of Signatures dwp_hash_table.hash_table
9506 Parallel Table of Indices dwp_hash_table.unit_table
9507 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9508 Table of Section Sizes dwp_hash_table.v2.sizes
9509
9510 The index section header consists of:
9511
9512 V, 32 bit version number
9513 L, 32 bit number of columns in the table of section offsets
9514 N, 32 bit number of compilation units or type units in the index
9515 M, 32 bit number of slots in the hash table
9516
9517 Numbers are recorded using the byte order of the application binary.
9518
9519 The hash table has the same format as version 1.
9520 The parallel table of indices has the same format as version 1,
9521 except that the entries are origin-1 indices into the table of sections
9522 offsets and the table of section sizes.
9523
9524 The table of offsets begins immediately following the parallel table
9525 (at offset 16 + 12 * M from the beginning of the section). The table is
9526 a two-dimensional array of 32-bit words (using the byte order of the
9527 application binary), with L columns and N+1 rows, in row-major order.
9528 Each row in the array is indexed starting from 0. The first row provides
9529 a key to the remaining rows: each column in this row provides an identifier
9530 for a debug section, and the offsets in the same column of subsequent rows
9531 refer to that section. The section identifiers are:
9532
9533 DW_SECT_INFO 1 .debug_info.dwo
9534 DW_SECT_TYPES 2 .debug_types.dwo
9535 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9536 DW_SECT_LINE 4 .debug_line.dwo
9537 DW_SECT_LOC 5 .debug_loc.dwo
9538 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9539 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9540 DW_SECT_MACRO 8 .debug_macro.dwo
9541
9542 The offsets provided by the CU and TU index sections are the base offsets
9543 for the contributions made by each CU or TU to the corresponding section
9544 in the package file. Each CU and TU header contains an abbrev_offset
9545 field, used to find the abbreviations table for that CU or TU within the
9546 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9547 be interpreted as relative to the base offset given in the index section.
9548 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9549 should be interpreted as relative to the base offset for .debug_line.dwo,
9550 and offsets into other debug sections obtained from DWARF attributes should
9551 also be interpreted as relative to the corresponding base offset.
9552
9553 The table of sizes begins immediately following the table of offsets.
9554 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9555 with L columns and N rows, in row-major order. Each row in the array is
9556 indexed starting from 1 (row 0 is shared by the two tables).
9557
9558 ---
9559
9560 Hash table lookup is handled the same in version 1 and 2:
9561
9562 We assume that N and M will not exceed 2^32 - 1.
9563 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9564
9565 Given a 64-bit compilation unit signature or a type signature S, an entry
9566 in the hash table is located as follows:
9567
9568 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9569 the low-order k bits all set to 1.
9570
9571 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9572
9573 3) If the hash table entry at index H matches the signature, use that
9574 entry. If the hash table entry at index H is unused (all zeroes),
9575 terminate the search: the signature is not present in the table.
9576
9577 4) Let H = (H + H') modulo M. Repeat at Step 3.
9578
9579 Because M > N and H' and M are relatively prime, the search is guaranteed
9580 to stop at an unused slot or find the match. */
9581
9582/* Create a hash table to map DWO IDs to their CU/TU entry in
9583 .debug_{info,types}.dwo in DWP_FILE.
9584 Returns NULL if there isn't one.
9585 Note: This function processes DWP files only, not DWO files. */
9586
9587static struct dwp_hash_table *
9588create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9589{
9590 struct objfile *objfile = dwarf2_per_objfile->objfile;
9591 bfd *dbfd = dwp_file->dbfd;
9592 const gdb_byte *index_ptr, *index_end;
9593 struct dwarf2_section_info *index;
9594 uint32_t version, nr_columns, nr_units, nr_slots;
9595 struct dwp_hash_table *htab;
9596
9597 if (is_debug_types)
9598 index = &dwp_file->sections.tu_index;
9599 else
9600 index = &dwp_file->sections.cu_index;
9601
9602 if (dwarf2_section_empty_p (index))
9603 return NULL;
9604 dwarf2_read_section (objfile, index);
9605
9606 index_ptr = index->buffer;
9607 index_end = index_ptr + index->size;
9608
9609 version = read_4_bytes (dbfd, index_ptr);
9610 index_ptr += 4;
9611 if (version == 2)
9612 nr_columns = read_4_bytes (dbfd, index_ptr);
9613 else
9614 nr_columns = 0;
9615 index_ptr += 4;
9616 nr_units = read_4_bytes (dbfd, index_ptr);
9617 index_ptr += 4;
9618 nr_slots = read_4_bytes (dbfd, index_ptr);
9619 index_ptr += 4;
9620
9621 if (version != 1 && version != 2)
9622 {
9623 error (_("Dwarf Error: unsupported DWP file version (%s)"
9624 " [in module %s]"),
9625 pulongest (version), dwp_file->name);
9626 }
9627 if (nr_slots != (nr_slots & -nr_slots))
9628 {
9629 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9630 " is not power of 2 [in module %s]"),
9631 pulongest (nr_slots), dwp_file->name);
9632 }
9633
9634 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9635 htab->version = version;
9636 htab->nr_columns = nr_columns;
9637 htab->nr_units = nr_units;
9638 htab->nr_slots = nr_slots;
9639 htab->hash_table = index_ptr;
9640 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9641
9642 /* Exit early if the table is empty. */
9643 if (nr_slots == 0 || nr_units == 0
9644 || (version == 2 && nr_columns == 0))
9645 {
9646 /* All must be zero. */
9647 if (nr_slots != 0 || nr_units != 0
9648 || (version == 2 && nr_columns != 0))
9649 {
9650 complaint (&symfile_complaints,
9651 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9652 " all zero [in modules %s]"),
9653 dwp_file->name);
9654 }
9655 return htab;
9656 }
9657
9658 if (version == 1)
9659 {
9660 htab->section_pool.v1.indices =
9661 htab->unit_table + sizeof (uint32_t) * nr_slots;
9662 /* It's harder to decide whether the section is too small in v1.
9663 V1 is deprecated anyway so we punt. */
9664 }
9665 else
9666 {
9667 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9668 int *ids = htab->section_pool.v2.section_ids;
9669 /* Reverse map for error checking. */
9670 int ids_seen[DW_SECT_MAX + 1];
9671 int i;
9672
9673 if (nr_columns < 2)
9674 {
9675 error (_("Dwarf Error: bad DWP hash table, too few columns"
9676 " in section table [in module %s]"),
9677 dwp_file->name);
9678 }
9679 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9680 {
9681 error (_("Dwarf Error: bad DWP hash table, too many columns"
9682 " in section table [in module %s]"),
9683 dwp_file->name);
9684 }
9685 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9686 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9687 for (i = 0; i < nr_columns; ++i)
9688 {
9689 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9690
9691 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9692 {
9693 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9694 " in section table [in module %s]"),
9695 id, dwp_file->name);
9696 }
9697 if (ids_seen[id] != -1)
9698 {
9699 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9700 " id %d in section table [in module %s]"),
9701 id, dwp_file->name);
9702 }
9703 ids_seen[id] = i;
9704 ids[i] = id;
9705 }
9706 /* Must have exactly one info or types section. */
9707 if (((ids_seen[DW_SECT_INFO] != -1)
9708 + (ids_seen[DW_SECT_TYPES] != -1))
9709 != 1)
9710 {
9711 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9712 " DWO info/types section [in module %s]"),
9713 dwp_file->name);
9714 }
9715 /* Must have an abbrev section. */
9716 if (ids_seen[DW_SECT_ABBREV] == -1)
9717 {
9718 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9719 " section [in module %s]"),
9720 dwp_file->name);
9721 }
9722 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9723 htab->section_pool.v2.sizes =
9724 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9725 * nr_units * nr_columns);
9726 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9727 * nr_units * nr_columns))
9728 > index_end)
9729 {
9730 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9731 " [in module %s]"),
9732 dwp_file->name);
9733 }
9734 }
9735
9736 return htab;
9737}
9738
9739/* Update SECTIONS with the data from SECTP.
9740
9741 This function is like the other "locate" section routines that are
9742 passed to bfd_map_over_sections, but in this context the sections to
9743 read comes from the DWP V1 hash table, not the full ELF section table.
9744
9745 The result is non-zero for success, or zero if an error was found. */
9746
9747static int
9748locate_v1_virtual_dwo_sections (asection *sectp,
9749 struct virtual_v1_dwo_sections *sections)
9750{
9751 const struct dwop_section_names *names = &dwop_section_names;
9752
9753 if (section_is_p (sectp->name, &names->abbrev_dwo))
9754 {
9755 /* There can be only one. */
9756 if (sections->abbrev.s.asection != NULL)
9757 return 0;
9758 sections->abbrev.s.asection = sectp;
9759 sections->abbrev.size = bfd_get_section_size (sectp);
9760 }
9761 else if (section_is_p (sectp->name, &names->info_dwo)
9762 || section_is_p (sectp->name, &names->types_dwo))
9763 {
9764 /* There can be only one. */
9765 if (sections->info_or_types.s.asection != NULL)
9766 return 0;
9767 sections->info_or_types.s.asection = sectp;
9768 sections->info_or_types.size = bfd_get_section_size (sectp);
9769 }
9770 else if (section_is_p (sectp->name, &names->line_dwo))
9771 {
9772 /* There can be only one. */
9773 if (sections->line.s.asection != NULL)
9774 return 0;
9775 sections->line.s.asection = sectp;
9776 sections->line.size = bfd_get_section_size (sectp);
9777 }
9778 else if (section_is_p (sectp->name, &names->loc_dwo))
9779 {
9780 /* There can be only one. */
9781 if (sections->loc.s.asection != NULL)
9782 return 0;
9783 sections->loc.s.asection = sectp;
9784 sections->loc.size = bfd_get_section_size (sectp);
9785 }
9786 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9787 {
9788 /* There can be only one. */
9789 if (sections->macinfo.s.asection != NULL)
9790 return 0;
9791 sections->macinfo.s.asection = sectp;
9792 sections->macinfo.size = bfd_get_section_size (sectp);
9793 }
9794 else if (section_is_p (sectp->name, &names->macro_dwo))
9795 {
9796 /* There can be only one. */
9797 if (sections->macro.s.asection != NULL)
9798 return 0;
9799 sections->macro.s.asection = sectp;
9800 sections->macro.size = bfd_get_section_size (sectp);
9801 }
9802 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9803 {
9804 /* There can be only one. */
9805 if (sections->str_offsets.s.asection != NULL)
9806 return 0;
9807 sections->str_offsets.s.asection = sectp;
9808 sections->str_offsets.size = bfd_get_section_size (sectp);
9809 }
9810 else
9811 {
9812 /* No other kind of section is valid. */
9813 return 0;
9814 }
9815
9816 return 1;
9817}
9818
9819/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9820 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9821 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9822 This is for DWP version 1 files. */
9823
9824static struct dwo_unit *
9825create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9826 uint32_t unit_index,
9827 const char *comp_dir,
9828 ULONGEST signature, int is_debug_types)
9829{
9830 struct objfile *objfile = dwarf2_per_objfile->objfile;
9831 const struct dwp_hash_table *dwp_htab =
9832 is_debug_types ? dwp_file->tus : dwp_file->cus;
9833 bfd *dbfd = dwp_file->dbfd;
9834 const char *kind = is_debug_types ? "TU" : "CU";
9835 struct dwo_file *dwo_file;
9836 struct dwo_unit *dwo_unit;
9837 struct virtual_v1_dwo_sections sections;
9838 void **dwo_file_slot;
9839 char *virtual_dwo_name;
9840 struct dwarf2_section_info *cutu;
9841 struct cleanup *cleanups;
9842 int i;
9843
9844 gdb_assert (dwp_file->version == 1);
9845
9846 if (dwarf2_read_debug)
9847 {
9848 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9849 kind,
9850 pulongest (unit_index), hex_string (signature),
9851 dwp_file->name);
9852 }
9853
9854 /* Fetch the sections of this DWO unit.
9855 Put a limit on the number of sections we look for so that bad data
9856 doesn't cause us to loop forever. */
9857
9858#define MAX_NR_V1_DWO_SECTIONS \
9859 (1 /* .debug_info or .debug_types */ \
9860 + 1 /* .debug_abbrev */ \
9861 + 1 /* .debug_line */ \
9862 + 1 /* .debug_loc */ \
9863 + 1 /* .debug_str_offsets */ \
9864 + 1 /* .debug_macro or .debug_macinfo */ \
9865 + 1 /* trailing zero */)
9866
9867 memset (&sections, 0, sizeof (sections));
9868 cleanups = make_cleanup (null_cleanup, 0);
9869
9870 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9871 {
9872 asection *sectp;
9873 uint32_t section_nr =
9874 read_4_bytes (dbfd,
9875 dwp_htab->section_pool.v1.indices
9876 + (unit_index + i) * sizeof (uint32_t));
9877
9878 if (section_nr == 0)
9879 break;
9880 if (section_nr >= dwp_file->num_sections)
9881 {
9882 error (_("Dwarf Error: bad DWP hash table, section number too large"
9883 " [in module %s]"),
9884 dwp_file->name);
9885 }
9886
9887 sectp = dwp_file->elf_sections[section_nr];
9888 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9889 {
9890 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9891 " [in module %s]"),
9892 dwp_file->name);
9893 }
9894 }
9895
9896 if (i < 2
9897 || dwarf2_section_empty_p (&sections.info_or_types)
9898 || dwarf2_section_empty_p (&sections.abbrev))
9899 {
9900 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9901 " [in module %s]"),
9902 dwp_file->name);
9903 }
9904 if (i == MAX_NR_V1_DWO_SECTIONS)
9905 {
9906 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9907 " [in module %s]"),
9908 dwp_file->name);
9909 }
9910
9911 /* It's easier for the rest of the code if we fake a struct dwo_file and
9912 have dwo_unit "live" in that. At least for now.
9913
9914 The DWP file can be made up of a random collection of CUs and TUs.
9915 However, for each CU + set of TUs that came from the same original DWO
9916 file, we can combine them back into a virtual DWO file to save space
9917 (fewer struct dwo_file objects to allocate). Remember that for really
9918 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9919
9920 virtual_dwo_name =
9921 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9922 get_section_id (&sections.abbrev),
9923 get_section_id (&sections.line),
9924 get_section_id (&sections.loc),
9925 get_section_id (&sections.str_offsets));
9926 make_cleanup (xfree, virtual_dwo_name);
9927 /* Can we use an existing virtual DWO file? */
9928 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9929 /* Create one if necessary. */
9930 if (*dwo_file_slot == NULL)
9931 {
9932 if (dwarf2_read_debug)
9933 {
9934 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9935 virtual_dwo_name);
9936 }
9937 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9938 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9939 virtual_dwo_name,
9940 strlen (virtual_dwo_name));
9941 dwo_file->comp_dir = comp_dir;
9942 dwo_file->sections.abbrev = sections.abbrev;
9943 dwo_file->sections.line = sections.line;
9944 dwo_file->sections.loc = sections.loc;
9945 dwo_file->sections.macinfo = sections.macinfo;
9946 dwo_file->sections.macro = sections.macro;
9947 dwo_file->sections.str_offsets = sections.str_offsets;
9948 /* The "str" section is global to the entire DWP file. */
9949 dwo_file->sections.str = dwp_file->sections.str;
9950 /* The info or types section is assigned below to dwo_unit,
9951 there's no need to record it in dwo_file.
9952 Also, we can't simply record type sections in dwo_file because
9953 we record a pointer into the vector in dwo_unit. As we collect more
9954 types we'll grow the vector and eventually have to reallocate space
9955 for it, invalidating all copies of pointers into the previous
9956 contents. */
9957 *dwo_file_slot = dwo_file;
9958 }
9959 else
9960 {
9961 if (dwarf2_read_debug)
9962 {
9963 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9964 virtual_dwo_name);
9965 }
9966 dwo_file = *dwo_file_slot;
9967 }
9968 do_cleanups (cleanups);
9969
9970 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9971 dwo_unit->dwo_file = dwo_file;
9972 dwo_unit->signature = signature;
9973 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9974 sizeof (struct dwarf2_section_info));
9975 *dwo_unit->section = sections.info_or_types;
9976 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9977
9978 return dwo_unit;
9979}
9980
9981/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9982 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9983 piece within that section used by a TU/CU, return a virtual section
9984 of just that piece. */
9985
9986static struct dwarf2_section_info
9987create_dwp_v2_section (struct dwarf2_section_info *section,
9988 bfd_size_type offset, bfd_size_type size)
9989{
9990 struct dwarf2_section_info result;
9991 asection *sectp;
9992
9993 gdb_assert (section != NULL);
9994 gdb_assert (!section->is_virtual);
9995
9996 memset (&result, 0, sizeof (result));
9997 result.s.containing_section = section;
9998 result.is_virtual = 1;
9999
10000 if (size == 0)
10001 return result;
10002
10003 sectp = get_section_bfd_section (section);
10004
10005 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10006 bounds of the real section. This is a pretty-rare event, so just
10007 flag an error (easier) instead of a warning and trying to cope. */
10008 if (sectp == NULL
10009 || offset + size > bfd_get_section_size (sectp))
10010 {
10011 bfd *abfd = sectp->owner;
10012
10013 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10014 " in section %s [in module %s]"),
10015 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10016 objfile_name (dwarf2_per_objfile->objfile));
10017 }
10018
10019 result.virtual_offset = offset;
10020 result.size = size;
10021 return result;
10022}
10023
10024/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10025 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10026 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10027 This is for DWP version 2 files. */
10028
10029static struct dwo_unit *
10030create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10031 uint32_t unit_index,
10032 const char *comp_dir,
10033 ULONGEST signature, int is_debug_types)
10034{
10035 struct objfile *objfile = dwarf2_per_objfile->objfile;
10036 const struct dwp_hash_table *dwp_htab =
10037 is_debug_types ? dwp_file->tus : dwp_file->cus;
10038 bfd *dbfd = dwp_file->dbfd;
10039 const char *kind = is_debug_types ? "TU" : "CU";
10040 struct dwo_file *dwo_file;
10041 struct dwo_unit *dwo_unit;
10042 struct virtual_v2_dwo_sections sections;
10043 void **dwo_file_slot;
10044 char *virtual_dwo_name;
10045 struct dwarf2_section_info *cutu;
10046 struct cleanup *cleanups;
10047 int i;
10048
10049 gdb_assert (dwp_file->version == 2);
10050
10051 if (dwarf2_read_debug)
10052 {
10053 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10054 kind,
10055 pulongest (unit_index), hex_string (signature),
10056 dwp_file->name);
10057 }
10058
10059 /* Fetch the section offsets of this DWO unit. */
10060
10061 memset (&sections, 0, sizeof (sections));
10062 cleanups = make_cleanup (null_cleanup, 0);
10063
10064 for (i = 0; i < dwp_htab->nr_columns; ++i)
10065 {
10066 uint32_t offset = read_4_bytes (dbfd,
10067 dwp_htab->section_pool.v2.offsets
10068 + (((unit_index - 1) * dwp_htab->nr_columns
10069 + i)
10070 * sizeof (uint32_t)));
10071 uint32_t size = read_4_bytes (dbfd,
10072 dwp_htab->section_pool.v2.sizes
10073 + (((unit_index - 1) * dwp_htab->nr_columns
10074 + i)
10075 * sizeof (uint32_t)));
10076
10077 switch (dwp_htab->section_pool.v2.section_ids[i])
10078 {
10079 case DW_SECT_INFO:
10080 case DW_SECT_TYPES:
10081 sections.info_or_types_offset = offset;
10082 sections.info_or_types_size = size;
10083 break;
10084 case DW_SECT_ABBREV:
10085 sections.abbrev_offset = offset;
10086 sections.abbrev_size = size;
10087 break;
10088 case DW_SECT_LINE:
10089 sections.line_offset = offset;
10090 sections.line_size = size;
10091 break;
10092 case DW_SECT_LOC:
10093 sections.loc_offset = offset;
10094 sections.loc_size = size;
10095 break;
10096 case DW_SECT_STR_OFFSETS:
10097 sections.str_offsets_offset = offset;
10098 sections.str_offsets_size = size;
10099 break;
10100 case DW_SECT_MACINFO:
10101 sections.macinfo_offset = offset;
10102 sections.macinfo_size = size;
10103 break;
10104 case DW_SECT_MACRO:
10105 sections.macro_offset = offset;
10106 sections.macro_size = size;
10107 break;
10108 }
10109 }
10110
10111 /* It's easier for the rest of the code if we fake a struct dwo_file and
10112 have dwo_unit "live" in that. At least for now.
10113
10114 The DWP file can be made up of a random collection of CUs and TUs.
10115 However, for each CU + set of TUs that came from the same original DWO
10116 file, we can combine them back into a virtual DWO file to save space
10117 (fewer struct dwo_file objects to allocate). Remember that for really
10118 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10119
10120 virtual_dwo_name =
10121 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10122 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10123 (long) (sections.line_size ? sections.line_offset : 0),
10124 (long) (sections.loc_size ? sections.loc_offset : 0),
10125 (long) (sections.str_offsets_size
10126 ? sections.str_offsets_offset : 0));
10127 make_cleanup (xfree, virtual_dwo_name);
10128 /* Can we use an existing virtual DWO file? */
10129 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10130 /* Create one if necessary. */
10131 if (*dwo_file_slot == NULL)
10132 {
10133 if (dwarf2_read_debug)
10134 {
10135 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10136 virtual_dwo_name);
10137 }
10138 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10139 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10140 virtual_dwo_name,
10141 strlen (virtual_dwo_name));
10142 dwo_file->comp_dir = comp_dir;
10143 dwo_file->sections.abbrev =
10144 create_dwp_v2_section (&dwp_file->sections.abbrev,
10145 sections.abbrev_offset, sections.abbrev_size);
10146 dwo_file->sections.line =
10147 create_dwp_v2_section (&dwp_file->sections.line,
10148 sections.line_offset, sections.line_size);
10149 dwo_file->sections.loc =
10150 create_dwp_v2_section (&dwp_file->sections.loc,
10151 sections.loc_offset, sections.loc_size);
10152 dwo_file->sections.macinfo =
10153 create_dwp_v2_section (&dwp_file->sections.macinfo,
10154 sections.macinfo_offset, sections.macinfo_size);
10155 dwo_file->sections.macro =
10156 create_dwp_v2_section (&dwp_file->sections.macro,
10157 sections.macro_offset, sections.macro_size);
10158 dwo_file->sections.str_offsets =
10159 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10160 sections.str_offsets_offset,
10161 sections.str_offsets_size);
10162 /* The "str" section is global to the entire DWP file. */
10163 dwo_file->sections.str = dwp_file->sections.str;
10164 /* The info or types section is assigned below to dwo_unit,
10165 there's no need to record it in dwo_file.
10166 Also, we can't simply record type sections in dwo_file because
10167 we record a pointer into the vector in dwo_unit. As we collect more
10168 types we'll grow the vector and eventually have to reallocate space
10169 for it, invalidating all copies of pointers into the previous
10170 contents. */
10171 *dwo_file_slot = dwo_file;
10172 }
10173 else
10174 {
10175 if (dwarf2_read_debug)
10176 {
10177 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10178 virtual_dwo_name);
10179 }
10180 dwo_file = *dwo_file_slot;
10181 }
10182 do_cleanups (cleanups);
10183
10184 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10185 dwo_unit->dwo_file = dwo_file;
10186 dwo_unit->signature = signature;
10187 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10188 sizeof (struct dwarf2_section_info));
10189 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10190 ? &dwp_file->sections.types
10191 : &dwp_file->sections.info,
10192 sections.info_or_types_offset,
10193 sections.info_or_types_size);
10194 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10195
10196 return dwo_unit;
10197}
10198
10199/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10200 Returns NULL if the signature isn't found. */
10201
10202static struct dwo_unit *
10203lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10204 ULONGEST signature, int is_debug_types)
10205{
10206 const struct dwp_hash_table *dwp_htab =
10207 is_debug_types ? dwp_file->tus : dwp_file->cus;
10208 bfd *dbfd = dwp_file->dbfd;
10209 uint32_t mask = dwp_htab->nr_slots - 1;
10210 uint32_t hash = signature & mask;
10211 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10212 unsigned int i;
10213 void **slot;
10214 struct dwo_unit find_dwo_cu, *dwo_cu;
10215
10216 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10217 find_dwo_cu.signature = signature;
10218 slot = htab_find_slot (is_debug_types
10219 ? dwp_file->loaded_tus
10220 : dwp_file->loaded_cus,
10221 &find_dwo_cu, INSERT);
10222
10223 if (*slot != NULL)
10224 return *slot;
10225
10226 /* Use a for loop so that we don't loop forever on bad debug info. */
10227 for (i = 0; i < dwp_htab->nr_slots; ++i)
10228 {
10229 ULONGEST signature_in_table;
10230
10231 signature_in_table =
10232 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10233 if (signature_in_table == signature)
10234 {
10235 uint32_t unit_index =
10236 read_4_bytes (dbfd,
10237 dwp_htab->unit_table + hash * sizeof (uint32_t));
10238
10239 if (dwp_file->version == 1)
10240 {
10241 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10242 comp_dir, signature,
10243 is_debug_types);
10244 }
10245 else
10246 {
10247 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10248 comp_dir, signature,
10249 is_debug_types);
10250 }
10251 return *slot;
10252 }
10253 if (signature_in_table == 0)
10254 return NULL;
10255 hash = (hash + hash2) & mask;
10256 }
10257
10258 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10259 " [in module %s]"),
10260 dwp_file->name);
10261}
10262
10263/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10264 Open the file specified by FILE_NAME and hand it off to BFD for
10265 preliminary analysis. Return a newly initialized bfd *, which
10266 includes a canonicalized copy of FILE_NAME.
10267 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10268 SEARCH_CWD is true if the current directory is to be searched.
10269 It will be searched before debug-file-directory.
10270 If successful, the file is added to the bfd include table of the
10271 objfile's bfd (see gdb_bfd_record_inclusion).
10272 If unable to find/open the file, return NULL.
10273 NOTE: This function is derived from symfile_bfd_open. */
10274
10275static bfd *
10276try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10277{
10278 bfd *sym_bfd;
10279 int desc, flags;
10280 char *absolute_name;
10281 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10282 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10283 to debug_file_directory. */
10284 char *search_path;
10285 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10286
10287 if (search_cwd)
10288 {
10289 if (*debug_file_directory != '\0')
10290 search_path = concat (".", dirname_separator_string,
10291 debug_file_directory, NULL);
10292 else
10293 search_path = xstrdup (".");
10294 }
10295 else
10296 search_path = xstrdup (debug_file_directory);
10297
10298 flags = OPF_RETURN_REALPATH;
10299 if (is_dwp)
10300 flags |= OPF_SEARCH_IN_PATH;
10301 desc = openp (search_path, flags, file_name,
10302 O_RDONLY | O_BINARY, &absolute_name);
10303 xfree (search_path);
10304 if (desc < 0)
10305 return NULL;
10306
10307 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10308 xfree (absolute_name);
10309 if (sym_bfd == NULL)
10310 return NULL;
10311 bfd_set_cacheable (sym_bfd, 1);
10312
10313 if (!bfd_check_format (sym_bfd, bfd_object))
10314 {
10315 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10316 return NULL;
10317 }
10318
10319 /* Success. Record the bfd as having been included by the objfile's bfd.
10320 This is important because things like demangled_names_hash lives in the
10321 objfile's per_bfd space and may have references to things like symbol
10322 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10323 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10324
10325 return sym_bfd;
10326}
10327
10328/* Try to open DWO file FILE_NAME.
10329 COMP_DIR is the DW_AT_comp_dir attribute.
10330 The result is the bfd handle of the file.
10331 If there is a problem finding or opening the file, return NULL.
10332 Upon success, the canonicalized path of the file is stored in the bfd,
10333 same as symfile_bfd_open. */
10334
10335static bfd *
10336open_dwo_file (const char *file_name, const char *comp_dir)
10337{
10338 bfd *abfd;
10339
10340 if (IS_ABSOLUTE_PATH (file_name))
10341 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10342
10343 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10344
10345 if (comp_dir != NULL)
10346 {
10347 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10348
10349 /* NOTE: If comp_dir is a relative path, this will also try the
10350 search path, which seems useful. */
10351 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10352 xfree (path_to_try);
10353 if (abfd != NULL)
10354 return abfd;
10355 }
10356
10357 /* That didn't work, try debug-file-directory, which, despite its name,
10358 is a list of paths. */
10359
10360 if (*debug_file_directory == '\0')
10361 return NULL;
10362
10363 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10364}
10365
10366/* This function is mapped across the sections and remembers the offset and
10367 size of each of the DWO debugging sections we are interested in. */
10368
10369static void
10370dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10371{
10372 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10373 const struct dwop_section_names *names = &dwop_section_names;
10374
10375 if (section_is_p (sectp->name, &names->abbrev_dwo))
10376 {
10377 dwo_sections->abbrev.s.asection = sectp;
10378 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10379 }
10380 else if (section_is_p (sectp->name, &names->info_dwo))
10381 {
10382 dwo_sections->info.s.asection = sectp;
10383 dwo_sections->info.size = bfd_get_section_size (sectp);
10384 }
10385 else if (section_is_p (sectp->name, &names->line_dwo))
10386 {
10387 dwo_sections->line.s.asection = sectp;
10388 dwo_sections->line.size = bfd_get_section_size (sectp);
10389 }
10390 else if (section_is_p (sectp->name, &names->loc_dwo))
10391 {
10392 dwo_sections->loc.s.asection = sectp;
10393 dwo_sections->loc.size = bfd_get_section_size (sectp);
10394 }
10395 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10396 {
10397 dwo_sections->macinfo.s.asection = sectp;
10398 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10399 }
10400 else if (section_is_p (sectp->name, &names->macro_dwo))
10401 {
10402 dwo_sections->macro.s.asection = sectp;
10403 dwo_sections->macro.size = bfd_get_section_size (sectp);
10404 }
10405 else if (section_is_p (sectp->name, &names->str_dwo))
10406 {
10407 dwo_sections->str.s.asection = sectp;
10408 dwo_sections->str.size = bfd_get_section_size (sectp);
10409 }
10410 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10411 {
10412 dwo_sections->str_offsets.s.asection = sectp;
10413 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10414 }
10415 else if (section_is_p (sectp->name, &names->types_dwo))
10416 {
10417 struct dwarf2_section_info type_section;
10418
10419 memset (&type_section, 0, sizeof (type_section));
10420 type_section.s.asection = sectp;
10421 type_section.size = bfd_get_section_size (sectp);
10422 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10423 &type_section);
10424 }
10425}
10426
10427/* Initialize the use of the DWO file specified by DWO_NAME and referenced
10428 by PER_CU. This is for the non-DWP case.
10429 The result is NULL if DWO_NAME can't be found. */
10430
10431static struct dwo_file *
10432open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10433 const char *dwo_name, const char *comp_dir)
10434{
10435 struct objfile *objfile = dwarf2_per_objfile->objfile;
10436 struct dwo_file *dwo_file;
10437 bfd *dbfd;
10438 struct cleanup *cleanups;
10439
10440 dbfd = open_dwo_file (dwo_name, comp_dir);
10441 if (dbfd == NULL)
10442 {
10443 if (dwarf2_read_debug)
10444 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10445 return NULL;
10446 }
10447 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10448 dwo_file->dwo_name = dwo_name;
10449 dwo_file->comp_dir = comp_dir;
10450 dwo_file->dbfd = dbfd;
10451
10452 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10453
10454 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10455
10456 dwo_file->cu = create_dwo_cu (dwo_file);
10457
10458 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10459 dwo_file->sections.types);
10460
10461 discard_cleanups (cleanups);
10462
10463 if (dwarf2_read_debug)
10464 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10465
10466 return dwo_file;
10467}
10468
10469/* This function is mapped across the sections and remembers the offset and
10470 size of each of the DWP debugging sections common to version 1 and 2 that
10471 we are interested in. */
10472
10473static void
10474dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10475 void *dwp_file_ptr)
10476{
10477 struct dwp_file *dwp_file = dwp_file_ptr;
10478 const struct dwop_section_names *names = &dwop_section_names;
10479 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10480
10481 /* Record the ELF section number for later lookup: this is what the
10482 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10483 gdb_assert (elf_section_nr < dwp_file->num_sections);
10484 dwp_file->elf_sections[elf_section_nr] = sectp;
10485
10486 /* Look for specific sections that we need. */
10487 if (section_is_p (sectp->name, &names->str_dwo))
10488 {
10489 dwp_file->sections.str.s.asection = sectp;
10490 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10491 }
10492 else if (section_is_p (sectp->name, &names->cu_index))
10493 {
10494 dwp_file->sections.cu_index.s.asection = sectp;
10495 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10496 }
10497 else if (section_is_p (sectp->name, &names->tu_index))
10498 {
10499 dwp_file->sections.tu_index.s.asection = sectp;
10500 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10501 }
10502}
10503
10504/* This function is mapped across the sections and remembers the offset and
10505 size of each of the DWP version 2 debugging sections that we are interested
10506 in. This is split into a separate function because we don't know if we
10507 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10508
10509static void
10510dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10511{
10512 struct dwp_file *dwp_file = dwp_file_ptr;
10513 const struct dwop_section_names *names = &dwop_section_names;
10514 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10515
10516 /* Record the ELF section number for later lookup: this is what the
10517 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10518 gdb_assert (elf_section_nr < dwp_file->num_sections);
10519 dwp_file->elf_sections[elf_section_nr] = sectp;
10520
10521 /* Look for specific sections that we need. */
10522 if (section_is_p (sectp->name, &names->abbrev_dwo))
10523 {
10524 dwp_file->sections.abbrev.s.asection = sectp;
10525 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10526 }
10527 else if (section_is_p (sectp->name, &names->info_dwo))
10528 {
10529 dwp_file->sections.info.s.asection = sectp;
10530 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10531 }
10532 else if (section_is_p (sectp->name, &names->line_dwo))
10533 {
10534 dwp_file->sections.line.s.asection = sectp;
10535 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10536 }
10537 else if (section_is_p (sectp->name, &names->loc_dwo))
10538 {
10539 dwp_file->sections.loc.s.asection = sectp;
10540 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10541 }
10542 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10543 {
10544 dwp_file->sections.macinfo.s.asection = sectp;
10545 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10546 }
10547 else if (section_is_p (sectp->name, &names->macro_dwo))
10548 {
10549 dwp_file->sections.macro.s.asection = sectp;
10550 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10551 }
10552 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10553 {
10554 dwp_file->sections.str_offsets.s.asection = sectp;
10555 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10556 }
10557 else if (section_is_p (sectp->name, &names->types_dwo))
10558 {
10559 dwp_file->sections.types.s.asection = sectp;
10560 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10561 }
10562}
10563
10564/* Hash function for dwp_file loaded CUs/TUs. */
10565
10566static hashval_t
10567hash_dwp_loaded_cutus (const void *item)
10568{
10569 const struct dwo_unit *dwo_unit = item;
10570
10571 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10572 return dwo_unit->signature;
10573}
10574
10575/* Equality function for dwp_file loaded CUs/TUs. */
10576
10577static int
10578eq_dwp_loaded_cutus (const void *a, const void *b)
10579{
10580 const struct dwo_unit *dua = a;
10581 const struct dwo_unit *dub = b;
10582
10583 return dua->signature == dub->signature;
10584}
10585
10586/* Allocate a hash table for dwp_file loaded CUs/TUs. */
10587
10588static htab_t
10589allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10590{
10591 return htab_create_alloc_ex (3,
10592 hash_dwp_loaded_cutus,
10593 eq_dwp_loaded_cutus,
10594 NULL,
10595 &objfile->objfile_obstack,
10596 hashtab_obstack_allocate,
10597 dummy_obstack_deallocate);
10598}
10599
10600/* Try to open DWP file FILE_NAME.
10601 The result is the bfd handle of the file.
10602 If there is a problem finding or opening the file, return NULL.
10603 Upon success, the canonicalized path of the file is stored in the bfd,
10604 same as symfile_bfd_open. */
10605
10606static bfd *
10607open_dwp_file (const char *file_name)
10608{
10609 bfd *abfd;
10610
10611 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10612 if (abfd != NULL)
10613 return abfd;
10614
10615 /* Work around upstream bug 15652.
10616 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10617 [Whether that's a "bug" is debatable, but it is getting in our way.]
10618 We have no real idea where the dwp file is, because gdb's realpath-ing
10619 of the executable's path may have discarded the needed info.
10620 [IWBN if the dwp file name was recorded in the executable, akin to
10621 .gnu_debuglink, but that doesn't exist yet.]
10622 Strip the directory from FILE_NAME and search again. */
10623 if (*debug_file_directory != '\0')
10624 {
10625 /* Don't implicitly search the current directory here.
10626 If the user wants to search "." to handle this case,
10627 it must be added to debug-file-directory. */
10628 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10629 0 /*search_cwd*/);
10630 }
10631
10632 return NULL;
10633}
10634
10635/* Initialize the use of the DWP file for the current objfile.
10636 By convention the name of the DWP file is ${objfile}.dwp.
10637 The result is NULL if it can't be found. */
10638
10639static struct dwp_file *
10640open_and_init_dwp_file (void)
10641{
10642 struct objfile *objfile = dwarf2_per_objfile->objfile;
10643 struct dwp_file *dwp_file;
10644 char *dwp_name;
10645 bfd *dbfd;
10646 struct cleanup *cleanups;
10647
10648 /* Try to find first .dwp for the binary file before any symbolic links
10649 resolving. */
10650 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10651 cleanups = make_cleanup (xfree, dwp_name);
10652
10653 dbfd = open_dwp_file (dwp_name);
10654 if (dbfd == NULL
10655 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10656 {
10657 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10658 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10659 make_cleanup (xfree, dwp_name);
10660 dbfd = open_dwp_file (dwp_name);
10661 }
10662
10663 if (dbfd == NULL)
10664 {
10665 if (dwarf2_read_debug)
10666 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10667 do_cleanups (cleanups);
10668 return NULL;
10669 }
10670 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10671 dwp_file->name = bfd_get_filename (dbfd);
10672 dwp_file->dbfd = dbfd;
10673 do_cleanups (cleanups);
10674
10675 /* +1: section 0 is unused */
10676 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10677 dwp_file->elf_sections =
10678 OBSTACK_CALLOC (&objfile->objfile_obstack,
10679 dwp_file->num_sections, asection *);
10680
10681 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10682
10683 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10684
10685 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10686
10687 /* The DWP file version is stored in the hash table. Oh well. */
10688 if (dwp_file->cus->version != dwp_file->tus->version)
10689 {
10690 /* Technically speaking, we should try to limp along, but this is
10691 pretty bizarre. We use pulongest here because that's the established
10692 portability solution (e.g, we cannot use %u for uint32_t). */
10693 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10694 " TU version %s [in DWP file %s]"),
10695 pulongest (dwp_file->cus->version),
10696 pulongest (dwp_file->tus->version), dwp_name);
10697 }
10698 dwp_file->version = dwp_file->cus->version;
10699
10700 if (dwp_file->version == 2)
10701 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10702
10703 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10704 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10705
10706 if (dwarf2_read_debug)
10707 {
10708 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10709 fprintf_unfiltered (gdb_stdlog,
10710 " %s CUs, %s TUs\n",
10711 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10712 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10713 }
10714
10715 return dwp_file;
10716}
10717
10718/* Wrapper around open_and_init_dwp_file, only open it once. */
10719
10720static struct dwp_file *
10721get_dwp_file (void)
10722{
10723 if (! dwarf2_per_objfile->dwp_checked)
10724 {
10725 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10726 dwarf2_per_objfile->dwp_checked = 1;
10727 }
10728 return dwarf2_per_objfile->dwp_file;
10729}
10730
10731/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10732 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10733 or in the DWP file for the objfile, referenced by THIS_UNIT.
10734 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10735 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10736
10737 This is called, for example, when wanting to read a variable with a
10738 complex location. Therefore we don't want to do file i/o for every call.
10739 Therefore we don't want to look for a DWO file on every call.
10740 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10741 then we check if we've already seen DWO_NAME, and only THEN do we check
10742 for a DWO file.
10743
10744 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10745 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10746
10747static struct dwo_unit *
10748lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10749 const char *dwo_name, const char *comp_dir,
10750 ULONGEST signature, int is_debug_types)
10751{
10752 struct objfile *objfile = dwarf2_per_objfile->objfile;
10753 const char *kind = is_debug_types ? "TU" : "CU";
10754 void **dwo_file_slot;
10755 struct dwo_file *dwo_file;
10756 struct dwp_file *dwp_file;
10757
10758 /* First see if there's a DWP file.
10759 If we have a DWP file but didn't find the DWO inside it, don't
10760 look for the original DWO file. It makes gdb behave differently
10761 depending on whether one is debugging in the build tree. */
10762
10763 dwp_file = get_dwp_file ();
10764 if (dwp_file != NULL)
10765 {
10766 const struct dwp_hash_table *dwp_htab =
10767 is_debug_types ? dwp_file->tus : dwp_file->cus;
10768
10769 if (dwp_htab != NULL)
10770 {
10771 struct dwo_unit *dwo_cutu =
10772 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10773 signature, is_debug_types);
10774
10775 if (dwo_cutu != NULL)
10776 {
10777 if (dwarf2_read_debug)
10778 {
10779 fprintf_unfiltered (gdb_stdlog,
10780 "Virtual DWO %s %s found: @%s\n",
10781 kind, hex_string (signature),
10782 host_address_to_string (dwo_cutu));
10783 }
10784 return dwo_cutu;
10785 }
10786 }
10787 }
10788 else
10789 {
10790 /* No DWP file, look for the DWO file. */
10791
10792 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10793 if (*dwo_file_slot == NULL)
10794 {
10795 /* Read in the file and build a table of the CUs/TUs it contains. */
10796 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10797 }
10798 /* NOTE: This will be NULL if unable to open the file. */
10799 dwo_file = *dwo_file_slot;
10800
10801 if (dwo_file != NULL)
10802 {
10803 struct dwo_unit *dwo_cutu = NULL;
10804
10805 if (is_debug_types && dwo_file->tus)
10806 {
10807 struct dwo_unit find_dwo_cutu;
10808
10809 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10810 find_dwo_cutu.signature = signature;
10811 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10812 }
10813 else if (!is_debug_types && dwo_file->cu)
10814 {
10815 if (signature == dwo_file->cu->signature)
10816 dwo_cutu = dwo_file->cu;
10817 }
10818
10819 if (dwo_cutu != NULL)
10820 {
10821 if (dwarf2_read_debug)
10822 {
10823 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10824 kind, dwo_name, hex_string (signature),
10825 host_address_to_string (dwo_cutu));
10826 }
10827 return dwo_cutu;
10828 }
10829 }
10830 }
10831
10832 /* We didn't find it. This could mean a dwo_id mismatch, or
10833 someone deleted the DWO/DWP file, or the search path isn't set up
10834 correctly to find the file. */
10835
10836 if (dwarf2_read_debug)
10837 {
10838 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10839 kind, dwo_name, hex_string (signature));
10840 }
10841
10842 /* This is a warning and not a complaint because it can be caused by
10843 pilot error (e.g., user accidentally deleting the DWO). */
10844 {
10845 /* Print the name of the DWP file if we looked there, helps the user
10846 better diagnose the problem. */
10847 char *dwp_text = NULL;
10848 struct cleanup *cleanups;
10849
10850 if (dwp_file != NULL)
10851 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10852 cleanups = make_cleanup (xfree, dwp_text);
10853
10854 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10855 " [in module %s]"),
10856 kind, dwo_name, hex_string (signature),
10857 dwp_text != NULL ? dwp_text : "",
10858 this_unit->is_debug_types ? "TU" : "CU",
10859 this_unit->offset.sect_off, objfile_name (objfile));
10860
10861 do_cleanups (cleanups);
10862 }
10863 return NULL;
10864}
10865
10866/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10867 See lookup_dwo_cutu_unit for details. */
10868
10869static struct dwo_unit *
10870lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10871 const char *dwo_name, const char *comp_dir,
10872 ULONGEST signature)
10873{
10874 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10875}
10876
10877/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10878 See lookup_dwo_cutu_unit for details. */
10879
10880static struct dwo_unit *
10881lookup_dwo_type_unit (struct signatured_type *this_tu,
10882 const char *dwo_name, const char *comp_dir)
10883{
10884 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10885}
10886
10887/* Traversal function for queue_and_load_all_dwo_tus. */
10888
10889static int
10890queue_and_load_dwo_tu (void **slot, void *info)
10891{
10892 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10893 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10894 ULONGEST signature = dwo_unit->signature;
10895 struct signatured_type *sig_type =
10896 lookup_dwo_signatured_type (per_cu->cu, signature);
10897
10898 if (sig_type != NULL)
10899 {
10900 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10901
10902 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10903 a real dependency of PER_CU on SIG_TYPE. That is detected later
10904 while processing PER_CU. */
10905 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10906 load_full_type_unit (sig_cu);
10907 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10908 }
10909
10910 return 1;
10911}
10912
10913/* Queue all TUs contained in the DWO of PER_CU to be read in.
10914 The DWO may have the only definition of the type, though it may not be
10915 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10916 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10917
10918static void
10919queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10920{
10921 struct dwo_unit *dwo_unit;
10922 struct dwo_file *dwo_file;
10923
10924 gdb_assert (!per_cu->is_debug_types);
10925 gdb_assert (get_dwp_file () == NULL);
10926 gdb_assert (per_cu->cu != NULL);
10927
10928 dwo_unit = per_cu->cu->dwo_unit;
10929 gdb_assert (dwo_unit != NULL);
10930
10931 dwo_file = dwo_unit->dwo_file;
10932 if (dwo_file->tus != NULL)
10933 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10934}
10935
10936/* Free all resources associated with DWO_FILE.
10937 Close the DWO file and munmap the sections.
10938 All memory should be on the objfile obstack. */
10939
10940static void
10941free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10942{
10943 int ix;
10944 struct dwarf2_section_info *section;
10945
10946 /* Note: dbfd is NULL for virtual DWO files. */
10947 gdb_bfd_unref (dwo_file->dbfd);
10948
10949 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10950}
10951
10952/* Wrapper for free_dwo_file for use in cleanups. */
10953
10954static void
10955free_dwo_file_cleanup (void *arg)
10956{
10957 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10958 struct objfile *objfile = dwarf2_per_objfile->objfile;
10959
10960 free_dwo_file (dwo_file, objfile);
10961}
10962
10963/* Traversal function for free_dwo_files. */
10964
10965static int
10966free_dwo_file_from_slot (void **slot, void *info)
10967{
10968 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10969 struct objfile *objfile = (struct objfile *) info;
10970
10971 free_dwo_file (dwo_file, objfile);
10972
10973 return 1;
10974}
10975
10976/* Free all resources associated with DWO_FILES. */
10977
10978static void
10979free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10980{
10981 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10982}
10983\f
10984/* Read in various DIEs. */
10985
10986/* qsort helper for inherit_abstract_dies. */
10987
10988static int
10989unsigned_int_compar (const void *ap, const void *bp)
10990{
10991 unsigned int a = *(unsigned int *) ap;
10992 unsigned int b = *(unsigned int *) bp;
10993
10994 return (a > b) - (b > a);
10995}
10996
10997/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10998 Inherit only the children of the DW_AT_abstract_origin DIE not being
10999 already referenced by DW_AT_abstract_origin from the children of the
11000 current DIE. */
11001
11002static void
11003inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11004{
11005 struct die_info *child_die;
11006 unsigned die_children_count;
11007 /* CU offsets which were referenced by children of the current DIE. */
11008 sect_offset *offsets;
11009 sect_offset *offsets_end, *offsetp;
11010 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11011 struct die_info *origin_die;
11012 /* Iterator of the ORIGIN_DIE children. */
11013 struct die_info *origin_child_die;
11014 struct cleanup *cleanups;
11015 struct attribute *attr;
11016 struct dwarf2_cu *origin_cu;
11017 struct pending **origin_previous_list_in_scope;
11018
11019 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11020 if (!attr)
11021 return;
11022
11023 /* Note that following die references may follow to a die in a
11024 different cu. */
11025
11026 origin_cu = cu;
11027 origin_die = follow_die_ref (die, attr, &origin_cu);
11028
11029 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11030 symbols in. */
11031 origin_previous_list_in_scope = origin_cu->list_in_scope;
11032 origin_cu->list_in_scope = cu->list_in_scope;
11033
11034 if (die->tag != origin_die->tag
11035 && !(die->tag == DW_TAG_inlined_subroutine
11036 && origin_die->tag == DW_TAG_subprogram))
11037 complaint (&symfile_complaints,
11038 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11039 die->offset.sect_off, origin_die->offset.sect_off);
11040
11041 child_die = die->child;
11042 die_children_count = 0;
11043 while (child_die && child_die->tag)
11044 {
11045 child_die = sibling_die (child_die);
11046 die_children_count++;
11047 }
11048 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11049 cleanups = make_cleanup (xfree, offsets);
11050
11051 offsets_end = offsets;
11052 child_die = die->child;
11053 while (child_die && child_die->tag)
11054 {
11055 /* For each CHILD_DIE, find the corresponding child of
11056 ORIGIN_DIE. If there is more than one layer of
11057 DW_AT_abstract_origin, follow them all; there shouldn't be,
11058 but GCC versions at least through 4.4 generate this (GCC PR
11059 40573). */
11060 struct die_info *child_origin_die = child_die;
11061 struct dwarf2_cu *child_origin_cu = cu;
11062
11063 while (1)
11064 {
11065 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11066 child_origin_cu);
11067 if (attr == NULL)
11068 break;
11069 child_origin_die = follow_die_ref (child_origin_die, attr,
11070 &child_origin_cu);
11071 }
11072
11073 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11074 counterpart may exist. */
11075 if (child_origin_die != child_die)
11076 {
11077 if (child_die->tag != child_origin_die->tag
11078 && !(child_die->tag == DW_TAG_inlined_subroutine
11079 && child_origin_die->tag == DW_TAG_subprogram))
11080 complaint (&symfile_complaints,
11081 _("Child DIE 0x%x and its abstract origin 0x%x have "
11082 "different tags"), child_die->offset.sect_off,
11083 child_origin_die->offset.sect_off);
11084 if (child_origin_die->parent != origin_die)
11085 complaint (&symfile_complaints,
11086 _("Child DIE 0x%x and its abstract origin 0x%x have "
11087 "different parents"), child_die->offset.sect_off,
11088 child_origin_die->offset.sect_off);
11089 else
11090 *offsets_end++ = child_origin_die->offset;
11091 }
11092 child_die = sibling_die (child_die);
11093 }
11094 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11095 unsigned_int_compar);
11096 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11097 if (offsetp[-1].sect_off == offsetp->sect_off)
11098 complaint (&symfile_complaints,
11099 _("Multiple children of DIE 0x%x refer "
11100 "to DIE 0x%x as their abstract origin"),
11101 die->offset.sect_off, offsetp->sect_off);
11102
11103 offsetp = offsets;
11104 origin_child_die = origin_die->child;
11105 while (origin_child_die && origin_child_die->tag)
11106 {
11107 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11108 while (offsetp < offsets_end
11109 && offsetp->sect_off < origin_child_die->offset.sect_off)
11110 offsetp++;
11111 if (offsetp >= offsets_end
11112 || offsetp->sect_off > origin_child_die->offset.sect_off)
11113 {
11114 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11115 Check whether we're already processing ORIGIN_CHILD_DIE.
11116 This can happen with mutually referenced abstract_origins.
11117 PR 16581. */
11118 if (!origin_child_die->in_process)
11119 process_die (origin_child_die, origin_cu);
11120 }
11121 origin_child_die = sibling_die (origin_child_die);
11122 }
11123 origin_cu->list_in_scope = origin_previous_list_in_scope;
11124
11125 do_cleanups (cleanups);
11126}
11127
11128static void
11129read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11130{
11131 struct objfile *objfile = cu->objfile;
11132 struct context_stack *new;
11133 CORE_ADDR lowpc;
11134 CORE_ADDR highpc;
11135 struct die_info *child_die;
11136 struct attribute *attr, *call_line, *call_file;
11137 const char *name;
11138 CORE_ADDR baseaddr;
11139 struct block *block;
11140 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11141 VEC (symbolp) *template_args = NULL;
11142 struct template_symbol *templ_func = NULL;
11143
11144 if (inlined_func)
11145 {
11146 /* If we do not have call site information, we can't show the
11147 caller of this inlined function. That's too confusing, so
11148 only use the scope for local variables. */
11149 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11150 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11151 if (call_line == NULL || call_file == NULL)
11152 {
11153 read_lexical_block_scope (die, cu);
11154 return;
11155 }
11156 }
11157
11158 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11159
11160 name = dwarf2_name (die, cu);
11161
11162 /* Ignore functions with missing or empty names. These are actually
11163 illegal according to the DWARF standard. */
11164 if (name == NULL)
11165 {
11166 complaint (&symfile_complaints,
11167 _("missing name for subprogram DIE at %d"),
11168 die->offset.sect_off);
11169 return;
11170 }
11171
11172 /* Ignore functions with missing or invalid low and high pc attributes. */
11173 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11174 {
11175 attr = dwarf2_attr (die, DW_AT_external, cu);
11176 if (!attr || !DW_UNSND (attr))
11177 complaint (&symfile_complaints,
11178 _("cannot get low and high bounds "
11179 "for subprogram DIE at %d"),
11180 die->offset.sect_off);
11181 return;
11182 }
11183
11184 lowpc += baseaddr;
11185 highpc += baseaddr;
11186
11187 /* If we have any template arguments, then we must allocate a
11188 different sort of symbol. */
11189 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11190 {
11191 if (child_die->tag == DW_TAG_template_type_param
11192 || child_die->tag == DW_TAG_template_value_param)
11193 {
11194 templ_func = allocate_template_symbol (objfile);
11195 templ_func->base.is_cplus_template_function = 1;
11196 break;
11197 }
11198 }
11199
11200 new = push_context (0, lowpc);
11201 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11202 (struct symbol *) templ_func);
11203
11204 /* If there is a location expression for DW_AT_frame_base, record
11205 it. */
11206 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11207 if (attr)
11208 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11209
11210 cu->list_in_scope = &local_symbols;
11211
11212 if (die->child != NULL)
11213 {
11214 child_die = die->child;
11215 while (child_die && child_die->tag)
11216 {
11217 if (child_die->tag == DW_TAG_template_type_param
11218 || child_die->tag == DW_TAG_template_value_param)
11219 {
11220 struct symbol *arg = new_symbol (child_die, NULL, cu);
11221
11222 if (arg != NULL)
11223 VEC_safe_push (symbolp, template_args, arg);
11224 }
11225 else
11226 process_die (child_die, cu);
11227 child_die = sibling_die (child_die);
11228 }
11229 }
11230
11231 inherit_abstract_dies (die, cu);
11232
11233 /* If we have a DW_AT_specification, we might need to import using
11234 directives from the context of the specification DIE. See the
11235 comment in determine_prefix. */
11236 if (cu->language == language_cplus
11237 && dwarf2_attr (die, DW_AT_specification, cu))
11238 {
11239 struct dwarf2_cu *spec_cu = cu;
11240 struct die_info *spec_die = die_specification (die, &spec_cu);
11241
11242 while (spec_die)
11243 {
11244 child_die = spec_die->child;
11245 while (child_die && child_die->tag)
11246 {
11247 if (child_die->tag == DW_TAG_imported_module)
11248 process_die (child_die, spec_cu);
11249 child_die = sibling_die (child_die);
11250 }
11251
11252 /* In some cases, GCC generates specification DIEs that
11253 themselves contain DW_AT_specification attributes. */
11254 spec_die = die_specification (spec_die, &spec_cu);
11255 }
11256 }
11257
11258 new = pop_context ();
11259 /* Make a block for the local symbols within. */
11260 block = finish_block (new->name, &local_symbols, new->old_blocks,
11261 lowpc, highpc, objfile);
11262
11263 /* For C++, set the block's scope. */
11264 if ((cu->language == language_cplus || cu->language == language_fortran)
11265 && cu->processing_has_namespace_info)
11266 block_set_scope (block, determine_prefix (die, cu),
11267 &objfile->objfile_obstack);
11268
11269 /* If we have address ranges, record them. */
11270 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11271
11272 /* Attach template arguments to function. */
11273 if (! VEC_empty (symbolp, template_args))
11274 {
11275 gdb_assert (templ_func != NULL);
11276
11277 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11278 templ_func->template_arguments
11279 = obstack_alloc (&objfile->objfile_obstack,
11280 (templ_func->n_template_arguments
11281 * sizeof (struct symbol *)));
11282 memcpy (templ_func->template_arguments,
11283 VEC_address (symbolp, template_args),
11284 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11285 VEC_free (symbolp, template_args);
11286 }
11287
11288 /* In C++, we can have functions nested inside functions (e.g., when
11289 a function declares a class that has methods). This means that
11290 when we finish processing a function scope, we may need to go
11291 back to building a containing block's symbol lists. */
11292 local_symbols = new->locals;
11293 using_directives = new->using_directives;
11294
11295 /* If we've finished processing a top-level function, subsequent
11296 symbols go in the file symbol list. */
11297 if (outermost_context_p ())
11298 cu->list_in_scope = &file_symbols;
11299}
11300
11301/* Process all the DIES contained within a lexical block scope. Start
11302 a new scope, process the dies, and then close the scope. */
11303
11304static void
11305read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11306{
11307 struct objfile *objfile = cu->objfile;
11308 struct context_stack *new;
11309 CORE_ADDR lowpc, highpc;
11310 struct die_info *child_die;
11311 CORE_ADDR baseaddr;
11312
11313 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11314
11315 /* Ignore blocks with missing or invalid low and high pc attributes. */
11316 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11317 as multiple lexical blocks? Handling children in a sane way would
11318 be nasty. Might be easier to properly extend generic blocks to
11319 describe ranges. */
11320 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11321 return;
11322 lowpc += baseaddr;
11323 highpc += baseaddr;
11324
11325 push_context (0, lowpc);
11326 if (die->child != NULL)
11327 {
11328 child_die = die->child;
11329 while (child_die && child_die->tag)
11330 {
11331 process_die (child_die, cu);
11332 child_die = sibling_die (child_die);
11333 }
11334 }
11335 new = pop_context ();
11336
11337 if (local_symbols != NULL || using_directives != NULL)
11338 {
11339 struct block *block
11340 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11341 highpc, objfile);
11342
11343 /* Note that recording ranges after traversing children, as we
11344 do here, means that recording a parent's ranges entails
11345 walking across all its children's ranges as they appear in
11346 the address map, which is quadratic behavior.
11347
11348 It would be nicer to record the parent's ranges before
11349 traversing its children, simply overriding whatever you find
11350 there. But since we don't even decide whether to create a
11351 block until after we've traversed its children, that's hard
11352 to do. */
11353 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11354 }
11355 local_symbols = new->locals;
11356 using_directives = new->using_directives;
11357}
11358
11359/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11360
11361static void
11362read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11363{
11364 struct objfile *objfile = cu->objfile;
11365 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11366 CORE_ADDR pc, baseaddr;
11367 struct attribute *attr;
11368 struct call_site *call_site, call_site_local;
11369 void **slot;
11370 int nparams;
11371 struct die_info *child_die;
11372
11373 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11374
11375 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11376 if (!attr)
11377 {
11378 complaint (&symfile_complaints,
11379 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11380 "DIE 0x%x [in module %s]"),
11381 die->offset.sect_off, objfile_name (objfile));
11382 return;
11383 }
11384 pc = attr_value_as_address (attr) + baseaddr;
11385
11386 if (cu->call_site_htab == NULL)
11387 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11388 NULL, &objfile->objfile_obstack,
11389 hashtab_obstack_allocate, NULL);
11390 call_site_local.pc = pc;
11391 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11392 if (*slot != NULL)
11393 {
11394 complaint (&symfile_complaints,
11395 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11396 "DIE 0x%x [in module %s]"),
11397 paddress (gdbarch, pc), die->offset.sect_off,
11398 objfile_name (objfile));
11399 return;
11400 }
11401
11402 /* Count parameters at the caller. */
11403
11404 nparams = 0;
11405 for (child_die = die->child; child_die && child_die->tag;
11406 child_die = sibling_die (child_die))
11407 {
11408 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11409 {
11410 complaint (&symfile_complaints,
11411 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11412 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11413 child_die->tag, child_die->offset.sect_off,
11414 objfile_name (objfile));
11415 continue;
11416 }
11417
11418 nparams++;
11419 }
11420
11421 call_site = obstack_alloc (&objfile->objfile_obstack,
11422 (sizeof (*call_site)
11423 + (sizeof (*call_site->parameter)
11424 * (nparams - 1))));
11425 *slot = call_site;
11426 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11427 call_site->pc = pc;
11428
11429 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11430 {
11431 struct die_info *func_die;
11432
11433 /* Skip also over DW_TAG_inlined_subroutine. */
11434 for (func_die = die->parent;
11435 func_die && func_die->tag != DW_TAG_subprogram
11436 && func_die->tag != DW_TAG_subroutine_type;
11437 func_die = func_die->parent);
11438
11439 /* DW_AT_GNU_all_call_sites is a superset
11440 of DW_AT_GNU_all_tail_call_sites. */
11441 if (func_die
11442 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11443 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11444 {
11445 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11446 not complete. But keep CALL_SITE for look ups via call_site_htab,
11447 both the initial caller containing the real return address PC and
11448 the final callee containing the current PC of a chain of tail
11449 calls do not need to have the tail call list complete. But any
11450 function candidate for a virtual tail call frame searched via
11451 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11452 determined unambiguously. */
11453 }
11454 else
11455 {
11456 struct type *func_type = NULL;
11457
11458 if (func_die)
11459 func_type = get_die_type (func_die, cu);
11460 if (func_type != NULL)
11461 {
11462 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11463
11464 /* Enlist this call site to the function. */
11465 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11466 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11467 }
11468 else
11469 complaint (&symfile_complaints,
11470 _("Cannot find function owning DW_TAG_GNU_call_site "
11471 "DIE 0x%x [in module %s]"),
11472 die->offset.sect_off, objfile_name (objfile));
11473 }
11474 }
11475
11476 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11477 if (attr == NULL)
11478 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11479 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11480 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11481 /* Keep NULL DWARF_BLOCK. */;
11482 else if (attr_form_is_block (attr))
11483 {
11484 struct dwarf2_locexpr_baton *dlbaton;
11485
11486 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11487 dlbaton->data = DW_BLOCK (attr)->data;
11488 dlbaton->size = DW_BLOCK (attr)->size;
11489 dlbaton->per_cu = cu->per_cu;
11490
11491 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11492 }
11493 else if (attr_form_is_ref (attr))
11494 {
11495 struct dwarf2_cu *target_cu = cu;
11496 struct die_info *target_die;
11497
11498 target_die = follow_die_ref (die, attr, &target_cu);
11499 gdb_assert (target_cu->objfile == objfile);
11500 if (die_is_declaration (target_die, target_cu))
11501 {
11502 const char *target_physname = NULL;
11503 struct attribute *target_attr;
11504
11505 /* Prefer the mangled name; otherwise compute the demangled one. */
11506 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11507 if (target_attr == NULL)
11508 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11509 target_cu);
11510 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11511 target_physname = DW_STRING (target_attr);
11512 else
11513 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11514 if (target_physname == NULL)
11515 complaint (&symfile_complaints,
11516 _("DW_AT_GNU_call_site_target target DIE has invalid "
11517 "physname, for referencing DIE 0x%x [in module %s]"),
11518 die->offset.sect_off, objfile_name (objfile));
11519 else
11520 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11521 }
11522 else
11523 {
11524 CORE_ADDR lowpc;
11525
11526 /* DW_AT_entry_pc should be preferred. */
11527 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11528 complaint (&symfile_complaints,
11529 _("DW_AT_GNU_call_site_target target DIE has invalid "
11530 "low pc, for referencing DIE 0x%x [in module %s]"),
11531 die->offset.sect_off, objfile_name (objfile));
11532 else
11533 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11534 }
11535 }
11536 else
11537 complaint (&symfile_complaints,
11538 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11539 "block nor reference, for DIE 0x%x [in module %s]"),
11540 die->offset.sect_off, objfile_name (objfile));
11541
11542 call_site->per_cu = cu->per_cu;
11543
11544 for (child_die = die->child;
11545 child_die && child_die->tag;
11546 child_die = sibling_die (child_die))
11547 {
11548 struct call_site_parameter *parameter;
11549 struct attribute *loc, *origin;
11550
11551 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11552 {
11553 /* Already printed the complaint above. */
11554 continue;
11555 }
11556
11557 gdb_assert (call_site->parameter_count < nparams);
11558 parameter = &call_site->parameter[call_site->parameter_count];
11559
11560 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11561 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11562 register is contained in DW_AT_GNU_call_site_value. */
11563
11564 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11565 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11566 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11567 {
11568 sect_offset offset;
11569
11570 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11571 offset = dwarf2_get_ref_die_offset (origin);
11572 if (!offset_in_cu_p (&cu->header, offset))
11573 {
11574 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11575 binding can be done only inside one CU. Such referenced DIE
11576 therefore cannot be even moved to DW_TAG_partial_unit. */
11577 complaint (&symfile_complaints,
11578 _("DW_AT_abstract_origin offset is not in CU for "
11579 "DW_TAG_GNU_call_site child DIE 0x%x "
11580 "[in module %s]"),
11581 child_die->offset.sect_off, objfile_name (objfile));
11582 continue;
11583 }
11584 parameter->u.param_offset.cu_off = (offset.sect_off
11585 - cu->header.offset.sect_off);
11586 }
11587 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11588 {
11589 complaint (&symfile_complaints,
11590 _("No DW_FORM_block* DW_AT_location for "
11591 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11592 child_die->offset.sect_off, objfile_name (objfile));
11593 continue;
11594 }
11595 else
11596 {
11597 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11598 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11599 if (parameter->u.dwarf_reg != -1)
11600 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11601 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11602 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11603 &parameter->u.fb_offset))
11604 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11605 else
11606 {
11607 complaint (&symfile_complaints,
11608 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11609 "for DW_FORM_block* DW_AT_location is supported for "
11610 "DW_TAG_GNU_call_site child DIE 0x%x "
11611 "[in module %s]"),
11612 child_die->offset.sect_off, objfile_name (objfile));
11613 continue;
11614 }
11615 }
11616
11617 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11618 if (!attr_form_is_block (attr))
11619 {
11620 complaint (&symfile_complaints,
11621 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11622 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11623 child_die->offset.sect_off, objfile_name (objfile));
11624 continue;
11625 }
11626 parameter->value = DW_BLOCK (attr)->data;
11627 parameter->value_size = DW_BLOCK (attr)->size;
11628
11629 /* Parameters are not pre-cleared by memset above. */
11630 parameter->data_value = NULL;
11631 parameter->data_value_size = 0;
11632 call_site->parameter_count++;
11633
11634 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11635 if (attr)
11636 {
11637 if (!attr_form_is_block (attr))
11638 complaint (&symfile_complaints,
11639 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11640 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11641 child_die->offset.sect_off, objfile_name (objfile));
11642 else
11643 {
11644 parameter->data_value = DW_BLOCK (attr)->data;
11645 parameter->data_value_size = DW_BLOCK (attr)->size;
11646 }
11647 }
11648 }
11649}
11650
11651/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11652 Return 1 if the attributes are present and valid, otherwise, return 0.
11653 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11654
11655static int
11656dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11657 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11658 struct partial_symtab *ranges_pst)
11659{
11660 struct objfile *objfile = cu->objfile;
11661 struct comp_unit_head *cu_header = &cu->header;
11662 bfd *obfd = objfile->obfd;
11663 unsigned int addr_size = cu_header->addr_size;
11664 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11665 /* Base address selection entry. */
11666 CORE_ADDR base;
11667 int found_base;
11668 unsigned int dummy;
11669 const gdb_byte *buffer;
11670 CORE_ADDR marker;
11671 int low_set;
11672 CORE_ADDR low = 0;
11673 CORE_ADDR high = 0;
11674 CORE_ADDR baseaddr;
11675
11676 found_base = cu->base_known;
11677 base = cu->base_address;
11678
11679 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11680 if (offset >= dwarf2_per_objfile->ranges.size)
11681 {
11682 complaint (&symfile_complaints,
11683 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11684 offset);
11685 return 0;
11686 }
11687 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11688
11689 /* Read in the largest possible address. */
11690 marker = read_address (obfd, buffer, cu, &dummy);
11691 if ((marker & mask) == mask)
11692 {
11693 /* If we found the largest possible address, then
11694 read the base address. */
11695 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11696 buffer += 2 * addr_size;
11697 offset += 2 * addr_size;
11698 found_base = 1;
11699 }
11700
11701 low_set = 0;
11702
11703 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11704
11705 while (1)
11706 {
11707 CORE_ADDR range_beginning, range_end;
11708
11709 range_beginning = read_address (obfd, buffer, cu, &dummy);
11710 buffer += addr_size;
11711 range_end = read_address (obfd, buffer, cu, &dummy);
11712 buffer += addr_size;
11713 offset += 2 * addr_size;
11714
11715 /* An end of list marker is a pair of zero addresses. */
11716 if (range_beginning == 0 && range_end == 0)
11717 /* Found the end of list entry. */
11718 break;
11719
11720 /* Each base address selection entry is a pair of 2 values.
11721 The first is the largest possible address, the second is
11722 the base address. Check for a base address here. */
11723 if ((range_beginning & mask) == mask)
11724 {
11725 /* If we found the largest possible address, then
11726 read the base address. */
11727 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11728 found_base = 1;
11729 continue;
11730 }
11731
11732 if (!found_base)
11733 {
11734 /* We have no valid base address for the ranges
11735 data. */
11736 complaint (&symfile_complaints,
11737 _("Invalid .debug_ranges data (no base address)"));
11738 return 0;
11739 }
11740
11741 if (range_beginning > range_end)
11742 {
11743 /* Inverted range entries are invalid. */
11744 complaint (&symfile_complaints,
11745 _("Invalid .debug_ranges data (inverted range)"));
11746 return 0;
11747 }
11748
11749 /* Empty range entries have no effect. */
11750 if (range_beginning == range_end)
11751 continue;
11752
11753 range_beginning += base;
11754 range_end += base;
11755
11756 /* A not-uncommon case of bad debug info.
11757 Don't pollute the addrmap with bad data. */
11758 if (range_beginning + baseaddr == 0
11759 && !dwarf2_per_objfile->has_section_at_zero)
11760 {
11761 complaint (&symfile_complaints,
11762 _(".debug_ranges entry has start address of zero"
11763 " [in module %s]"), objfile_name (objfile));
11764 continue;
11765 }
11766
11767 if (ranges_pst != NULL)
11768 addrmap_set_empty (objfile->psymtabs_addrmap,
11769 range_beginning + baseaddr,
11770 range_end - 1 + baseaddr,
11771 ranges_pst);
11772
11773 /* FIXME: This is recording everything as a low-high
11774 segment of consecutive addresses. We should have a
11775 data structure for discontiguous block ranges
11776 instead. */
11777 if (! low_set)
11778 {
11779 low = range_beginning;
11780 high = range_end;
11781 low_set = 1;
11782 }
11783 else
11784 {
11785 if (range_beginning < low)
11786 low = range_beginning;
11787 if (range_end > high)
11788 high = range_end;
11789 }
11790 }
11791
11792 if (! low_set)
11793 /* If the first entry is an end-of-list marker, the range
11794 describes an empty scope, i.e. no instructions. */
11795 return 0;
11796
11797 if (low_return)
11798 *low_return = low;
11799 if (high_return)
11800 *high_return = high;
11801 return 1;
11802}
11803
11804/* Get low and high pc attributes from a die. Return 1 if the attributes
11805 are present and valid, otherwise, return 0. Return -1 if the range is
11806 discontinuous, i.e. derived from DW_AT_ranges information. */
11807
11808static int
11809dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11810 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11811 struct partial_symtab *pst)
11812{
11813 struct attribute *attr;
11814 struct attribute *attr_high;
11815 CORE_ADDR low = 0;
11816 CORE_ADDR high = 0;
11817 int ret = 0;
11818
11819 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11820 if (attr_high)
11821 {
11822 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11823 if (attr)
11824 {
11825 low = attr_value_as_address (attr);
11826 high = attr_value_as_address (attr_high);
11827 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11828 high += low;
11829 }
11830 else
11831 /* Found high w/o low attribute. */
11832 return 0;
11833
11834 /* Found consecutive range of addresses. */
11835 ret = 1;
11836 }
11837 else
11838 {
11839 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11840 if (attr != NULL)
11841 {
11842 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11843 We take advantage of the fact that DW_AT_ranges does not appear
11844 in DW_TAG_compile_unit of DWO files. */
11845 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11846 unsigned int ranges_offset = (DW_UNSND (attr)
11847 + (need_ranges_base
11848 ? cu->ranges_base
11849 : 0));
11850
11851 /* Value of the DW_AT_ranges attribute is the offset in the
11852 .debug_ranges section. */
11853 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11854 return 0;
11855 /* Found discontinuous range of addresses. */
11856 ret = -1;
11857 }
11858 }
11859
11860 /* read_partial_die has also the strict LOW < HIGH requirement. */
11861 if (high <= low)
11862 return 0;
11863
11864 /* When using the GNU linker, .gnu.linkonce. sections are used to
11865 eliminate duplicate copies of functions and vtables and such.
11866 The linker will arbitrarily choose one and discard the others.
11867 The AT_*_pc values for such functions refer to local labels in
11868 these sections. If the section from that file was discarded, the
11869 labels are not in the output, so the relocs get a value of 0.
11870 If this is a discarded function, mark the pc bounds as invalid,
11871 so that GDB will ignore it. */
11872 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11873 return 0;
11874
11875 *lowpc = low;
11876 if (highpc)
11877 *highpc = high;
11878 return ret;
11879}
11880
11881/* Assuming that DIE represents a subprogram DIE or a lexical block, get
11882 its low and high PC addresses. Do nothing if these addresses could not
11883 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11884 and HIGHPC to the high address if greater than HIGHPC. */
11885
11886static void
11887dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11888 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11889 struct dwarf2_cu *cu)
11890{
11891 CORE_ADDR low, high;
11892 struct die_info *child = die->child;
11893
11894 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11895 {
11896 *lowpc = min (*lowpc, low);
11897 *highpc = max (*highpc, high);
11898 }
11899
11900 /* If the language does not allow nested subprograms (either inside
11901 subprograms or lexical blocks), we're done. */
11902 if (cu->language != language_ada)
11903 return;
11904
11905 /* Check all the children of the given DIE. If it contains nested
11906 subprograms, then check their pc bounds. Likewise, we need to
11907 check lexical blocks as well, as they may also contain subprogram
11908 definitions. */
11909 while (child && child->tag)
11910 {
11911 if (child->tag == DW_TAG_subprogram
11912 || child->tag == DW_TAG_lexical_block)
11913 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11914 child = sibling_die (child);
11915 }
11916}
11917
11918/* Get the low and high pc's represented by the scope DIE, and store
11919 them in *LOWPC and *HIGHPC. If the correct values can't be
11920 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11921
11922static void
11923get_scope_pc_bounds (struct die_info *die,
11924 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11925 struct dwarf2_cu *cu)
11926{
11927 CORE_ADDR best_low = (CORE_ADDR) -1;
11928 CORE_ADDR best_high = (CORE_ADDR) 0;
11929 CORE_ADDR current_low, current_high;
11930
11931 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11932 {
11933 best_low = current_low;
11934 best_high = current_high;
11935 }
11936 else
11937 {
11938 struct die_info *child = die->child;
11939
11940 while (child && child->tag)
11941 {
11942 switch (child->tag) {
11943 case DW_TAG_subprogram:
11944 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11945 break;
11946 case DW_TAG_namespace:
11947 case DW_TAG_module:
11948 /* FIXME: carlton/2004-01-16: Should we do this for
11949 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11950 that current GCC's always emit the DIEs corresponding
11951 to definitions of methods of classes as children of a
11952 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11953 the DIEs giving the declarations, which could be
11954 anywhere). But I don't see any reason why the
11955 standards says that they have to be there. */
11956 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11957
11958 if (current_low != ((CORE_ADDR) -1))
11959 {
11960 best_low = min (best_low, current_low);
11961 best_high = max (best_high, current_high);
11962 }
11963 break;
11964 default:
11965 /* Ignore. */
11966 break;
11967 }
11968
11969 child = sibling_die (child);
11970 }
11971 }
11972
11973 *lowpc = best_low;
11974 *highpc = best_high;
11975}
11976
11977/* Record the address ranges for BLOCK, offset by BASEADDR, as given
11978 in DIE. */
11979
11980static void
11981dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11982 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11983{
11984 struct objfile *objfile = cu->objfile;
11985 struct attribute *attr;
11986 struct attribute *attr_high;
11987
11988 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11989 if (attr_high)
11990 {
11991 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11992 if (attr)
11993 {
11994 CORE_ADDR low = attr_value_as_address (attr);
11995 CORE_ADDR high = attr_value_as_address (attr_high);
11996
11997 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11998 high += low;
11999
12000 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12001 }
12002 }
12003
12004 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12005 if (attr)
12006 {
12007 bfd *obfd = objfile->obfd;
12008 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12009 We take advantage of the fact that DW_AT_ranges does not appear
12010 in DW_TAG_compile_unit of DWO files. */
12011 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12012
12013 /* The value of the DW_AT_ranges attribute is the offset of the
12014 address range list in the .debug_ranges section. */
12015 unsigned long offset = (DW_UNSND (attr)
12016 + (need_ranges_base ? cu->ranges_base : 0));
12017 const gdb_byte *buffer;
12018
12019 /* For some target architectures, but not others, the
12020 read_address function sign-extends the addresses it returns.
12021 To recognize base address selection entries, we need a
12022 mask. */
12023 unsigned int addr_size = cu->header.addr_size;
12024 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12025
12026 /* The base address, to which the next pair is relative. Note
12027 that this 'base' is a DWARF concept: most entries in a range
12028 list are relative, to reduce the number of relocs against the
12029 debugging information. This is separate from this function's
12030 'baseaddr' argument, which GDB uses to relocate debugging
12031 information from a shared library based on the address at
12032 which the library was loaded. */
12033 CORE_ADDR base = cu->base_address;
12034 int base_known = cu->base_known;
12035
12036 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12037 if (offset >= dwarf2_per_objfile->ranges.size)
12038 {
12039 complaint (&symfile_complaints,
12040 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12041 offset);
12042 return;
12043 }
12044 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12045
12046 for (;;)
12047 {
12048 unsigned int bytes_read;
12049 CORE_ADDR start, end;
12050
12051 start = read_address (obfd, buffer, cu, &bytes_read);
12052 buffer += bytes_read;
12053 end = read_address (obfd, buffer, cu, &bytes_read);
12054 buffer += bytes_read;
12055
12056 /* Did we find the end of the range list? */
12057 if (start == 0 && end == 0)
12058 break;
12059
12060 /* Did we find a base address selection entry? */
12061 else if ((start & base_select_mask) == base_select_mask)
12062 {
12063 base = end;
12064 base_known = 1;
12065 }
12066
12067 /* We found an ordinary address range. */
12068 else
12069 {
12070 if (!base_known)
12071 {
12072 complaint (&symfile_complaints,
12073 _("Invalid .debug_ranges data "
12074 "(no base address)"));
12075 return;
12076 }
12077
12078 if (start > end)
12079 {
12080 /* Inverted range entries are invalid. */
12081 complaint (&symfile_complaints,
12082 _("Invalid .debug_ranges data "
12083 "(inverted range)"));
12084 return;
12085 }
12086
12087 /* Empty range entries have no effect. */
12088 if (start == end)
12089 continue;
12090
12091 start += base + baseaddr;
12092 end += base + baseaddr;
12093
12094 /* A not-uncommon case of bad debug info.
12095 Don't pollute the addrmap with bad data. */
12096 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12097 {
12098 complaint (&symfile_complaints,
12099 _(".debug_ranges entry has start address of zero"
12100 " [in module %s]"), objfile_name (objfile));
12101 continue;
12102 }
12103
12104 record_block_range (block, start, end - 1);
12105 }
12106 }
12107 }
12108}
12109
12110/* Check whether the producer field indicates either of GCC < 4.6, or the
12111 Intel C/C++ compiler, and cache the result in CU. */
12112
12113static void
12114check_producer (struct dwarf2_cu *cu)
12115{
12116 const char *cs;
12117 int major, minor, release;
12118
12119 if (cu->producer == NULL)
12120 {
12121 /* For unknown compilers expect their behavior is DWARF version
12122 compliant.
12123
12124 GCC started to support .debug_types sections by -gdwarf-4 since
12125 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12126 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12127 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12128 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12129 }
12130 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12131 {
12132 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12133
12134 cs = &cu->producer[strlen ("GNU ")];
12135 while (*cs && !isdigit (*cs))
12136 cs++;
12137 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12138 {
12139 /* Not recognized as GCC. */
12140 }
12141 else
12142 {
12143 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12144 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12145 }
12146 }
12147 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12148 cu->producer_is_icc = 1;
12149 else
12150 {
12151 /* For other non-GCC compilers, expect their behavior is DWARF version
12152 compliant. */
12153 }
12154
12155 cu->checked_producer = 1;
12156}
12157
12158/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12159 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12160 during 4.6.0 experimental. */
12161
12162static int
12163producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12164{
12165 if (!cu->checked_producer)
12166 check_producer (cu);
12167
12168 return cu->producer_is_gxx_lt_4_6;
12169}
12170
12171/* Return the default accessibility type if it is not overriden by
12172 DW_AT_accessibility. */
12173
12174static enum dwarf_access_attribute
12175dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12176{
12177 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12178 {
12179 /* The default DWARF 2 accessibility for members is public, the default
12180 accessibility for inheritance is private. */
12181
12182 if (die->tag != DW_TAG_inheritance)
12183 return DW_ACCESS_public;
12184 else
12185 return DW_ACCESS_private;
12186 }
12187 else
12188 {
12189 /* DWARF 3+ defines the default accessibility a different way. The same
12190 rules apply now for DW_TAG_inheritance as for the members and it only
12191 depends on the container kind. */
12192
12193 if (die->parent->tag == DW_TAG_class_type)
12194 return DW_ACCESS_private;
12195 else
12196 return DW_ACCESS_public;
12197 }
12198}
12199
12200/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12201 offset. If the attribute was not found return 0, otherwise return
12202 1. If it was found but could not properly be handled, set *OFFSET
12203 to 0. */
12204
12205static int
12206handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12207 LONGEST *offset)
12208{
12209 struct attribute *attr;
12210
12211 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12212 if (attr != NULL)
12213 {
12214 *offset = 0;
12215
12216 /* Note that we do not check for a section offset first here.
12217 This is because DW_AT_data_member_location is new in DWARF 4,
12218 so if we see it, we can assume that a constant form is really
12219 a constant and not a section offset. */
12220 if (attr_form_is_constant (attr))
12221 *offset = dwarf2_get_attr_constant_value (attr, 0);
12222 else if (attr_form_is_section_offset (attr))
12223 dwarf2_complex_location_expr_complaint ();
12224 else if (attr_form_is_block (attr))
12225 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12226 else
12227 dwarf2_complex_location_expr_complaint ();
12228
12229 return 1;
12230 }
12231
12232 return 0;
12233}
12234
12235/* Add an aggregate field to the field list. */
12236
12237static void
12238dwarf2_add_field (struct field_info *fip, struct die_info *die,
12239 struct dwarf2_cu *cu)
12240{
12241 struct objfile *objfile = cu->objfile;
12242 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12243 struct nextfield *new_field;
12244 struct attribute *attr;
12245 struct field *fp;
12246 const char *fieldname = "";
12247
12248 /* Allocate a new field list entry and link it in. */
12249 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12250 make_cleanup (xfree, new_field);
12251 memset (new_field, 0, sizeof (struct nextfield));
12252
12253 if (die->tag == DW_TAG_inheritance)
12254 {
12255 new_field->next = fip->baseclasses;
12256 fip->baseclasses = new_field;
12257 }
12258 else
12259 {
12260 new_field->next = fip->fields;
12261 fip->fields = new_field;
12262 }
12263 fip->nfields++;
12264
12265 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12266 if (attr)
12267 new_field->accessibility = DW_UNSND (attr);
12268 else
12269 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12270 if (new_field->accessibility != DW_ACCESS_public)
12271 fip->non_public_fields = 1;
12272
12273 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12274 if (attr)
12275 new_field->virtuality = DW_UNSND (attr);
12276 else
12277 new_field->virtuality = DW_VIRTUALITY_none;
12278
12279 fp = &new_field->field;
12280
12281 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12282 {
12283 LONGEST offset;
12284
12285 /* Data member other than a C++ static data member. */
12286
12287 /* Get type of field. */
12288 fp->type = die_type (die, cu);
12289
12290 SET_FIELD_BITPOS (*fp, 0);
12291
12292 /* Get bit size of field (zero if none). */
12293 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12294 if (attr)
12295 {
12296 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12297 }
12298 else
12299 {
12300 FIELD_BITSIZE (*fp) = 0;
12301 }
12302
12303 /* Get bit offset of field. */
12304 if (handle_data_member_location (die, cu, &offset))
12305 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12306 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12307 if (attr)
12308 {
12309 if (gdbarch_bits_big_endian (gdbarch))
12310 {
12311 /* For big endian bits, the DW_AT_bit_offset gives the
12312 additional bit offset from the MSB of the containing
12313 anonymous object to the MSB of the field. We don't
12314 have to do anything special since we don't need to
12315 know the size of the anonymous object. */
12316 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12317 }
12318 else
12319 {
12320 /* For little endian bits, compute the bit offset to the
12321 MSB of the anonymous object, subtract off the number of
12322 bits from the MSB of the field to the MSB of the
12323 object, and then subtract off the number of bits of
12324 the field itself. The result is the bit offset of
12325 the LSB of the field. */
12326 int anonymous_size;
12327 int bit_offset = DW_UNSND (attr);
12328
12329 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12330 if (attr)
12331 {
12332 /* The size of the anonymous object containing
12333 the bit field is explicit, so use the
12334 indicated size (in bytes). */
12335 anonymous_size = DW_UNSND (attr);
12336 }
12337 else
12338 {
12339 /* The size of the anonymous object containing
12340 the bit field must be inferred from the type
12341 attribute of the data member containing the
12342 bit field. */
12343 anonymous_size = TYPE_LENGTH (fp->type);
12344 }
12345 SET_FIELD_BITPOS (*fp,
12346 (FIELD_BITPOS (*fp)
12347 + anonymous_size * bits_per_byte
12348 - bit_offset - FIELD_BITSIZE (*fp)));
12349 }
12350 }
12351
12352 /* Get name of field. */
12353 fieldname = dwarf2_name (die, cu);
12354 if (fieldname == NULL)
12355 fieldname = "";
12356
12357 /* The name is already allocated along with this objfile, so we don't
12358 need to duplicate it for the type. */
12359 fp->name = fieldname;
12360
12361 /* Change accessibility for artificial fields (e.g. virtual table
12362 pointer or virtual base class pointer) to private. */
12363 if (dwarf2_attr (die, DW_AT_artificial, cu))
12364 {
12365 FIELD_ARTIFICIAL (*fp) = 1;
12366 new_field->accessibility = DW_ACCESS_private;
12367 fip->non_public_fields = 1;
12368 }
12369 }
12370 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12371 {
12372 /* C++ static member. */
12373
12374 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12375 is a declaration, but all versions of G++ as of this writing
12376 (so through at least 3.2.1) incorrectly generate
12377 DW_TAG_variable tags. */
12378
12379 const char *physname;
12380
12381 /* Get name of field. */
12382 fieldname = dwarf2_name (die, cu);
12383 if (fieldname == NULL)
12384 return;
12385
12386 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12387 if (attr
12388 /* Only create a symbol if this is an external value.
12389 new_symbol checks this and puts the value in the global symbol
12390 table, which we want. If it is not external, new_symbol
12391 will try to put the value in cu->list_in_scope which is wrong. */
12392 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12393 {
12394 /* A static const member, not much different than an enum as far as
12395 we're concerned, except that we can support more types. */
12396 new_symbol (die, NULL, cu);
12397 }
12398
12399 /* Get physical name. */
12400 physname = dwarf2_physname (fieldname, die, cu);
12401
12402 /* The name is already allocated along with this objfile, so we don't
12403 need to duplicate it for the type. */
12404 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12405 FIELD_TYPE (*fp) = die_type (die, cu);
12406 FIELD_NAME (*fp) = fieldname;
12407 }
12408 else if (die->tag == DW_TAG_inheritance)
12409 {
12410 LONGEST offset;
12411
12412 /* C++ base class field. */
12413 if (handle_data_member_location (die, cu, &offset))
12414 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12415 FIELD_BITSIZE (*fp) = 0;
12416 FIELD_TYPE (*fp) = die_type (die, cu);
12417 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12418 fip->nbaseclasses++;
12419 }
12420}
12421
12422/* Add a typedef defined in the scope of the FIP's class. */
12423
12424static void
12425dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12426 struct dwarf2_cu *cu)
12427{
12428 struct objfile *objfile = cu->objfile;
12429 struct typedef_field_list *new_field;
12430 struct attribute *attr;
12431 struct typedef_field *fp;
12432 char *fieldname = "";
12433
12434 /* Allocate a new field list entry and link it in. */
12435 new_field = xzalloc (sizeof (*new_field));
12436 make_cleanup (xfree, new_field);
12437
12438 gdb_assert (die->tag == DW_TAG_typedef);
12439
12440 fp = &new_field->field;
12441
12442 /* Get name of field. */
12443 fp->name = dwarf2_name (die, cu);
12444 if (fp->name == NULL)
12445 return;
12446
12447 fp->type = read_type_die (die, cu);
12448
12449 new_field->next = fip->typedef_field_list;
12450 fip->typedef_field_list = new_field;
12451 fip->typedef_field_list_count++;
12452}
12453
12454/* Create the vector of fields, and attach it to the type. */
12455
12456static void
12457dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12458 struct dwarf2_cu *cu)
12459{
12460 int nfields = fip->nfields;
12461
12462 /* Record the field count, allocate space for the array of fields,
12463 and create blank accessibility bitfields if necessary. */
12464 TYPE_NFIELDS (type) = nfields;
12465 TYPE_FIELDS (type) = (struct field *)
12466 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12467 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12468
12469 if (fip->non_public_fields && cu->language != language_ada)
12470 {
12471 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12472
12473 TYPE_FIELD_PRIVATE_BITS (type) =
12474 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12475 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12476
12477 TYPE_FIELD_PROTECTED_BITS (type) =
12478 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12479 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12480
12481 TYPE_FIELD_IGNORE_BITS (type) =
12482 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12483 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12484 }
12485
12486 /* If the type has baseclasses, allocate and clear a bit vector for
12487 TYPE_FIELD_VIRTUAL_BITS. */
12488 if (fip->nbaseclasses && cu->language != language_ada)
12489 {
12490 int num_bytes = B_BYTES (fip->nbaseclasses);
12491 unsigned char *pointer;
12492
12493 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12494 pointer = TYPE_ALLOC (type, num_bytes);
12495 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12496 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12497 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12498 }
12499
12500 /* Copy the saved-up fields into the field vector. Start from the head of
12501 the list, adding to the tail of the field array, so that they end up in
12502 the same order in the array in which they were added to the list. */
12503 while (nfields-- > 0)
12504 {
12505 struct nextfield *fieldp;
12506
12507 if (fip->fields)
12508 {
12509 fieldp = fip->fields;
12510 fip->fields = fieldp->next;
12511 }
12512 else
12513 {
12514 fieldp = fip->baseclasses;
12515 fip->baseclasses = fieldp->next;
12516 }
12517
12518 TYPE_FIELD (type, nfields) = fieldp->field;
12519 switch (fieldp->accessibility)
12520 {
12521 case DW_ACCESS_private:
12522 if (cu->language != language_ada)
12523 SET_TYPE_FIELD_PRIVATE (type, nfields);
12524 break;
12525
12526 case DW_ACCESS_protected:
12527 if (cu->language != language_ada)
12528 SET_TYPE_FIELD_PROTECTED (type, nfields);
12529 break;
12530
12531 case DW_ACCESS_public:
12532 break;
12533
12534 default:
12535 /* Unknown accessibility. Complain and treat it as public. */
12536 {
12537 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12538 fieldp->accessibility);
12539 }
12540 break;
12541 }
12542 if (nfields < fip->nbaseclasses)
12543 {
12544 switch (fieldp->virtuality)
12545 {
12546 case DW_VIRTUALITY_virtual:
12547 case DW_VIRTUALITY_pure_virtual:
12548 if (cu->language == language_ada)
12549 error (_("unexpected virtuality in component of Ada type"));
12550 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12551 break;
12552 }
12553 }
12554 }
12555}
12556
12557/* Return true if this member function is a constructor, false
12558 otherwise. */
12559
12560static int
12561dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12562{
12563 const char *fieldname;
12564 const char *typename;
12565 int len;
12566
12567 if (die->parent == NULL)
12568 return 0;
12569
12570 if (die->parent->tag != DW_TAG_structure_type
12571 && die->parent->tag != DW_TAG_union_type
12572 && die->parent->tag != DW_TAG_class_type)
12573 return 0;
12574
12575 fieldname = dwarf2_name (die, cu);
12576 typename = dwarf2_name (die->parent, cu);
12577 if (fieldname == NULL || typename == NULL)
12578 return 0;
12579
12580 len = strlen (fieldname);
12581 return (strncmp (fieldname, typename, len) == 0
12582 && (typename[len] == '\0' || typename[len] == '<'));
12583}
12584
12585/* Add a member function to the proper fieldlist. */
12586
12587static void
12588dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12589 struct type *type, struct dwarf2_cu *cu)
12590{
12591 struct objfile *objfile = cu->objfile;
12592 struct attribute *attr;
12593 struct fnfieldlist *flp;
12594 int i;
12595 struct fn_field *fnp;
12596 const char *fieldname;
12597 struct nextfnfield *new_fnfield;
12598 struct type *this_type;
12599 enum dwarf_access_attribute accessibility;
12600
12601 if (cu->language == language_ada)
12602 error (_("unexpected member function in Ada type"));
12603
12604 /* Get name of member function. */
12605 fieldname = dwarf2_name (die, cu);
12606 if (fieldname == NULL)
12607 return;
12608
12609 /* Look up member function name in fieldlist. */
12610 for (i = 0; i < fip->nfnfields; i++)
12611 {
12612 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12613 break;
12614 }
12615
12616 /* Create new list element if necessary. */
12617 if (i < fip->nfnfields)
12618 flp = &fip->fnfieldlists[i];
12619 else
12620 {
12621 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12622 {
12623 fip->fnfieldlists = (struct fnfieldlist *)
12624 xrealloc (fip->fnfieldlists,
12625 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12626 * sizeof (struct fnfieldlist));
12627 if (fip->nfnfields == 0)
12628 make_cleanup (free_current_contents, &fip->fnfieldlists);
12629 }
12630 flp = &fip->fnfieldlists[fip->nfnfields];
12631 flp->name = fieldname;
12632 flp->length = 0;
12633 flp->head = NULL;
12634 i = fip->nfnfields++;
12635 }
12636
12637 /* Create a new member function field and chain it to the field list
12638 entry. */
12639 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12640 make_cleanup (xfree, new_fnfield);
12641 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12642 new_fnfield->next = flp->head;
12643 flp->head = new_fnfield;
12644 flp->length++;
12645
12646 /* Fill in the member function field info. */
12647 fnp = &new_fnfield->fnfield;
12648
12649 /* Delay processing of the physname until later. */
12650 if (cu->language == language_cplus || cu->language == language_java)
12651 {
12652 add_to_method_list (type, i, flp->length - 1, fieldname,
12653 die, cu);
12654 }
12655 else
12656 {
12657 const char *physname = dwarf2_physname (fieldname, die, cu);
12658 fnp->physname = physname ? physname : "";
12659 }
12660
12661 fnp->type = alloc_type (objfile);
12662 this_type = read_type_die (die, cu);
12663 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12664 {
12665 int nparams = TYPE_NFIELDS (this_type);
12666
12667 /* TYPE is the domain of this method, and THIS_TYPE is the type
12668 of the method itself (TYPE_CODE_METHOD). */
12669 smash_to_method_type (fnp->type, type,
12670 TYPE_TARGET_TYPE (this_type),
12671 TYPE_FIELDS (this_type),
12672 TYPE_NFIELDS (this_type),
12673 TYPE_VARARGS (this_type));
12674
12675 /* Handle static member functions.
12676 Dwarf2 has no clean way to discern C++ static and non-static
12677 member functions. G++ helps GDB by marking the first
12678 parameter for non-static member functions (which is the this
12679 pointer) as artificial. We obtain this information from
12680 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12681 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12682 fnp->voffset = VOFFSET_STATIC;
12683 }
12684 else
12685 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12686 dwarf2_full_name (fieldname, die, cu));
12687
12688 /* Get fcontext from DW_AT_containing_type if present. */
12689 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12690 fnp->fcontext = die_containing_type (die, cu);
12691
12692 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12693 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12694
12695 /* Get accessibility. */
12696 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12697 if (attr)
12698 accessibility = DW_UNSND (attr);
12699 else
12700 accessibility = dwarf2_default_access_attribute (die, cu);
12701 switch (accessibility)
12702 {
12703 case DW_ACCESS_private:
12704 fnp->is_private = 1;
12705 break;
12706 case DW_ACCESS_protected:
12707 fnp->is_protected = 1;
12708 break;
12709 }
12710
12711 /* Check for artificial methods. */
12712 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12713 if (attr && DW_UNSND (attr) != 0)
12714 fnp->is_artificial = 1;
12715
12716 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12717
12718 /* Get index in virtual function table if it is a virtual member
12719 function. For older versions of GCC, this is an offset in the
12720 appropriate virtual table, as specified by DW_AT_containing_type.
12721 For everyone else, it is an expression to be evaluated relative
12722 to the object address. */
12723
12724 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12725 if (attr)
12726 {
12727 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12728 {
12729 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12730 {
12731 /* Old-style GCC. */
12732 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12733 }
12734 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12735 || (DW_BLOCK (attr)->size > 1
12736 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12737 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12738 {
12739 struct dwarf_block blk;
12740 int offset;
12741
12742 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12743 ? 1 : 2);
12744 blk.size = DW_BLOCK (attr)->size - offset;
12745 blk.data = DW_BLOCK (attr)->data + offset;
12746 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12747 if ((fnp->voffset % cu->header.addr_size) != 0)
12748 dwarf2_complex_location_expr_complaint ();
12749 else
12750 fnp->voffset /= cu->header.addr_size;
12751 fnp->voffset += 2;
12752 }
12753 else
12754 dwarf2_complex_location_expr_complaint ();
12755
12756 if (!fnp->fcontext)
12757 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12758 }
12759 else if (attr_form_is_section_offset (attr))
12760 {
12761 dwarf2_complex_location_expr_complaint ();
12762 }
12763 else
12764 {
12765 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12766 fieldname);
12767 }
12768 }
12769 else
12770 {
12771 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12772 if (attr && DW_UNSND (attr))
12773 {
12774 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12775 complaint (&symfile_complaints,
12776 _("Member function \"%s\" (offset %d) is virtual "
12777 "but the vtable offset is not specified"),
12778 fieldname, die->offset.sect_off);
12779 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12780 TYPE_CPLUS_DYNAMIC (type) = 1;
12781 }
12782 }
12783}
12784
12785/* Create the vector of member function fields, and attach it to the type. */
12786
12787static void
12788dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12789 struct dwarf2_cu *cu)
12790{
12791 struct fnfieldlist *flp;
12792 int i;
12793
12794 if (cu->language == language_ada)
12795 error (_("unexpected member functions in Ada type"));
12796
12797 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12798 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12799 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12800
12801 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12802 {
12803 struct nextfnfield *nfp = flp->head;
12804 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12805 int k;
12806
12807 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12808 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12809 fn_flp->fn_fields = (struct fn_field *)
12810 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12811 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12812 fn_flp->fn_fields[k] = nfp->fnfield;
12813 }
12814
12815 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12816}
12817
12818/* Returns non-zero if NAME is the name of a vtable member in CU's
12819 language, zero otherwise. */
12820static int
12821is_vtable_name (const char *name, struct dwarf2_cu *cu)
12822{
12823 static const char vptr[] = "_vptr";
12824 static const char vtable[] = "vtable";
12825
12826 /* Look for the C++ and Java forms of the vtable. */
12827 if ((cu->language == language_java
12828 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12829 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12830 && is_cplus_marker (name[sizeof (vptr) - 1])))
12831 return 1;
12832
12833 return 0;
12834}
12835
12836/* GCC outputs unnamed structures that are really pointers to member
12837 functions, with the ABI-specified layout. If TYPE describes
12838 such a structure, smash it into a member function type.
12839
12840 GCC shouldn't do this; it should just output pointer to member DIEs.
12841 This is GCC PR debug/28767. */
12842
12843static void
12844quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12845{
12846 struct type *pfn_type, *domain_type, *new_type;
12847
12848 /* Check for a structure with no name and two children. */
12849 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12850 return;
12851
12852 /* Check for __pfn and __delta members. */
12853 if (TYPE_FIELD_NAME (type, 0) == NULL
12854 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12855 || TYPE_FIELD_NAME (type, 1) == NULL
12856 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12857 return;
12858
12859 /* Find the type of the method. */
12860 pfn_type = TYPE_FIELD_TYPE (type, 0);
12861 if (pfn_type == NULL
12862 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12863 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12864 return;
12865
12866 /* Look for the "this" argument. */
12867 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12868 if (TYPE_NFIELDS (pfn_type) == 0
12869 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12870 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12871 return;
12872
12873 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12874 new_type = alloc_type (objfile);
12875 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12876 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12877 TYPE_VARARGS (pfn_type));
12878 smash_to_methodptr_type (type, new_type);
12879}
12880
12881/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12882 (icc). */
12883
12884static int
12885producer_is_icc (struct dwarf2_cu *cu)
12886{
12887 if (!cu->checked_producer)
12888 check_producer (cu);
12889
12890 return cu->producer_is_icc;
12891}
12892
12893/* Called when we find the DIE that starts a structure or union scope
12894 (definition) to create a type for the structure or union. Fill in
12895 the type's name and general properties; the members will not be
12896 processed until process_structure_scope. A symbol table entry for
12897 the type will also not be done until process_structure_scope (assuming
12898 the type has a name).
12899
12900 NOTE: we need to call these functions regardless of whether or not the
12901 DIE has a DW_AT_name attribute, since it might be an anonymous
12902 structure or union. This gets the type entered into our set of
12903 user defined types. */
12904
12905static struct type *
12906read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12907{
12908 struct objfile *objfile = cu->objfile;
12909 struct type *type;
12910 struct attribute *attr;
12911 const char *name;
12912
12913 /* If the definition of this type lives in .debug_types, read that type.
12914 Don't follow DW_AT_specification though, that will take us back up
12915 the chain and we want to go down. */
12916 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12917 if (attr)
12918 {
12919 type = get_DW_AT_signature_type (die, attr, cu);
12920
12921 /* The type's CU may not be the same as CU.
12922 Ensure TYPE is recorded with CU in die_type_hash. */
12923 return set_die_type (die, type, cu);
12924 }
12925
12926 type = alloc_type (objfile);
12927 INIT_CPLUS_SPECIFIC (type);
12928
12929 name = dwarf2_name (die, cu);
12930 if (name != NULL)
12931 {
12932 if (cu->language == language_cplus
12933 || cu->language == language_java)
12934 {
12935 const char *full_name = dwarf2_full_name (name, die, cu);
12936
12937 /* dwarf2_full_name might have already finished building the DIE's
12938 type. If so, there is no need to continue. */
12939 if (get_die_type (die, cu) != NULL)
12940 return get_die_type (die, cu);
12941
12942 TYPE_TAG_NAME (type) = full_name;
12943 if (die->tag == DW_TAG_structure_type
12944 || die->tag == DW_TAG_class_type)
12945 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12946 }
12947 else
12948 {
12949 /* The name is already allocated along with this objfile, so
12950 we don't need to duplicate it for the type. */
12951 TYPE_TAG_NAME (type) = name;
12952 if (die->tag == DW_TAG_class_type)
12953 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12954 }
12955 }
12956
12957 if (die->tag == DW_TAG_structure_type)
12958 {
12959 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12960 }
12961 else if (die->tag == DW_TAG_union_type)
12962 {
12963 TYPE_CODE (type) = TYPE_CODE_UNION;
12964 }
12965 else
12966 {
12967 TYPE_CODE (type) = TYPE_CODE_CLASS;
12968 }
12969
12970 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12971 TYPE_DECLARED_CLASS (type) = 1;
12972
12973 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12974 if (attr)
12975 {
12976 TYPE_LENGTH (type) = DW_UNSND (attr);
12977 }
12978 else
12979 {
12980 TYPE_LENGTH (type) = 0;
12981 }
12982
12983 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
12984 {
12985 /* ICC does not output the required DW_AT_declaration
12986 on incomplete types, but gives them a size of zero. */
12987 TYPE_STUB (type) = 1;
12988 }
12989 else
12990 TYPE_STUB_SUPPORTED (type) = 1;
12991
12992 if (die_is_declaration (die, cu))
12993 TYPE_STUB (type) = 1;
12994 else if (attr == NULL && die->child == NULL
12995 && producer_is_realview (cu->producer))
12996 /* RealView does not output the required DW_AT_declaration
12997 on incomplete types. */
12998 TYPE_STUB (type) = 1;
12999
13000 /* We need to add the type field to the die immediately so we don't
13001 infinitely recurse when dealing with pointers to the structure
13002 type within the structure itself. */
13003 set_die_type (die, type, cu);
13004
13005 /* set_die_type should be already done. */
13006 set_descriptive_type (type, die, cu);
13007
13008 return type;
13009}
13010
13011/* Finish creating a structure or union type, including filling in
13012 its members and creating a symbol for it. */
13013
13014static void
13015process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13016{
13017 struct objfile *objfile = cu->objfile;
13018 struct die_info *child_die = die->child;
13019 struct type *type;
13020
13021 type = get_die_type (die, cu);
13022 if (type == NULL)
13023 type = read_structure_type (die, cu);
13024
13025 if (die->child != NULL && ! die_is_declaration (die, cu))
13026 {
13027 struct field_info fi;
13028 struct die_info *child_die;
13029 VEC (symbolp) *template_args = NULL;
13030 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13031
13032 memset (&fi, 0, sizeof (struct field_info));
13033
13034 child_die = die->child;
13035
13036 while (child_die && child_die->tag)
13037 {
13038 if (child_die->tag == DW_TAG_member
13039 || child_die->tag == DW_TAG_variable)
13040 {
13041 /* NOTE: carlton/2002-11-05: A C++ static data member
13042 should be a DW_TAG_member that is a declaration, but
13043 all versions of G++ as of this writing (so through at
13044 least 3.2.1) incorrectly generate DW_TAG_variable
13045 tags for them instead. */
13046 dwarf2_add_field (&fi, child_die, cu);
13047 }
13048 else if (child_die->tag == DW_TAG_subprogram)
13049 {
13050 /* C++ member function. */
13051 dwarf2_add_member_fn (&fi, child_die, type, cu);
13052 }
13053 else if (child_die->tag == DW_TAG_inheritance)
13054 {
13055 /* C++ base class field. */
13056 dwarf2_add_field (&fi, child_die, cu);
13057 }
13058 else if (child_die->tag == DW_TAG_typedef)
13059 dwarf2_add_typedef (&fi, child_die, cu);
13060 else if (child_die->tag == DW_TAG_template_type_param
13061 || child_die->tag == DW_TAG_template_value_param)
13062 {
13063 struct symbol *arg = new_symbol (child_die, NULL, cu);
13064
13065 if (arg != NULL)
13066 VEC_safe_push (symbolp, template_args, arg);
13067 }
13068
13069 child_die = sibling_die (child_die);
13070 }
13071
13072 /* Attach template arguments to type. */
13073 if (! VEC_empty (symbolp, template_args))
13074 {
13075 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13076 TYPE_N_TEMPLATE_ARGUMENTS (type)
13077 = VEC_length (symbolp, template_args);
13078 TYPE_TEMPLATE_ARGUMENTS (type)
13079 = obstack_alloc (&objfile->objfile_obstack,
13080 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13081 * sizeof (struct symbol *)));
13082 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13083 VEC_address (symbolp, template_args),
13084 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13085 * sizeof (struct symbol *)));
13086 VEC_free (symbolp, template_args);
13087 }
13088
13089 /* Attach fields and member functions to the type. */
13090 if (fi.nfields)
13091 dwarf2_attach_fields_to_type (&fi, type, cu);
13092 if (fi.nfnfields)
13093 {
13094 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13095
13096 /* Get the type which refers to the base class (possibly this
13097 class itself) which contains the vtable pointer for the current
13098 class from the DW_AT_containing_type attribute. This use of
13099 DW_AT_containing_type is a GNU extension. */
13100
13101 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13102 {
13103 struct type *t = die_containing_type (die, cu);
13104
13105 TYPE_VPTR_BASETYPE (type) = t;
13106 if (type == t)
13107 {
13108 int i;
13109
13110 /* Our own class provides vtbl ptr. */
13111 for (i = TYPE_NFIELDS (t) - 1;
13112 i >= TYPE_N_BASECLASSES (t);
13113 --i)
13114 {
13115 const char *fieldname = TYPE_FIELD_NAME (t, i);
13116
13117 if (is_vtable_name (fieldname, cu))
13118 {
13119 TYPE_VPTR_FIELDNO (type) = i;
13120 break;
13121 }
13122 }
13123
13124 /* Complain if virtual function table field not found. */
13125 if (i < TYPE_N_BASECLASSES (t))
13126 complaint (&symfile_complaints,
13127 _("virtual function table pointer "
13128 "not found when defining class '%s'"),
13129 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13130 "");
13131 }
13132 else
13133 {
13134 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13135 }
13136 }
13137 else if (cu->producer
13138 && strncmp (cu->producer,
13139 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13140 {
13141 /* The IBM XLC compiler does not provide direct indication
13142 of the containing type, but the vtable pointer is
13143 always named __vfp. */
13144
13145 int i;
13146
13147 for (i = TYPE_NFIELDS (type) - 1;
13148 i >= TYPE_N_BASECLASSES (type);
13149 --i)
13150 {
13151 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13152 {
13153 TYPE_VPTR_FIELDNO (type) = i;
13154 TYPE_VPTR_BASETYPE (type) = type;
13155 break;
13156 }
13157 }
13158 }
13159 }
13160
13161 /* Copy fi.typedef_field_list linked list elements content into the
13162 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13163 if (fi.typedef_field_list)
13164 {
13165 int i = fi.typedef_field_list_count;
13166
13167 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13168 TYPE_TYPEDEF_FIELD_ARRAY (type)
13169 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13170 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13171
13172 /* Reverse the list order to keep the debug info elements order. */
13173 while (--i >= 0)
13174 {
13175 struct typedef_field *dest, *src;
13176
13177 dest = &TYPE_TYPEDEF_FIELD (type, i);
13178 src = &fi.typedef_field_list->field;
13179 fi.typedef_field_list = fi.typedef_field_list->next;
13180 *dest = *src;
13181 }
13182 }
13183
13184 do_cleanups (back_to);
13185
13186 if (HAVE_CPLUS_STRUCT (type))
13187 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13188 }
13189
13190 quirk_gcc_member_function_pointer (type, objfile);
13191
13192 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13193 snapshots) has been known to create a die giving a declaration
13194 for a class that has, as a child, a die giving a definition for a
13195 nested class. So we have to process our children even if the
13196 current die is a declaration. Normally, of course, a declaration
13197 won't have any children at all. */
13198
13199 while (child_die != NULL && child_die->tag)
13200 {
13201 if (child_die->tag == DW_TAG_member
13202 || child_die->tag == DW_TAG_variable
13203 || child_die->tag == DW_TAG_inheritance
13204 || child_die->tag == DW_TAG_template_value_param
13205 || child_die->tag == DW_TAG_template_type_param)
13206 {
13207 /* Do nothing. */
13208 }
13209 else
13210 process_die (child_die, cu);
13211
13212 child_die = sibling_die (child_die);
13213 }
13214
13215 /* Do not consider external references. According to the DWARF standard,
13216 these DIEs are identified by the fact that they have no byte_size
13217 attribute, and a declaration attribute. */
13218 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13219 || !die_is_declaration (die, cu))
13220 new_symbol (die, type, cu);
13221}
13222
13223/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13224 update TYPE using some information only available in DIE's children. */
13225
13226static void
13227update_enumeration_type_from_children (struct die_info *die,
13228 struct type *type,
13229 struct dwarf2_cu *cu)
13230{
13231 struct obstack obstack;
13232 struct die_info *child_die = die->child;
13233 int unsigned_enum = 1;
13234 int flag_enum = 1;
13235 ULONGEST mask = 0;
13236 struct cleanup *old_chain;
13237
13238 obstack_init (&obstack);
13239 old_chain = make_cleanup_obstack_free (&obstack);
13240
13241 while (child_die != NULL && child_die->tag)
13242 {
13243 struct attribute *attr;
13244 LONGEST value;
13245 const gdb_byte *bytes;
13246 struct dwarf2_locexpr_baton *baton;
13247 const char *name;
13248 if (child_die->tag != DW_TAG_enumerator)
13249 continue;
13250
13251 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13252 if (attr == NULL)
13253 continue;
13254
13255 name = dwarf2_name (child_die, cu);
13256 if (name == NULL)
13257 name = "<anonymous enumerator>";
13258
13259 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13260 &value, &bytes, &baton);
13261 if (value < 0)
13262 {
13263 unsigned_enum = 0;
13264 flag_enum = 0;
13265 }
13266 else if ((mask & value) != 0)
13267 flag_enum = 0;
13268 else
13269 mask |= value;
13270
13271 /* If we already know that the enum type is neither unsigned, nor
13272 a flag type, no need to look at the rest of the enumerates. */
13273 if (!unsigned_enum && !flag_enum)
13274 break;
13275 child_die = sibling_die (child_die);
13276 }
13277
13278 if (unsigned_enum)
13279 TYPE_UNSIGNED (type) = 1;
13280 if (flag_enum)
13281 TYPE_FLAG_ENUM (type) = 1;
13282
13283 do_cleanups (old_chain);
13284}
13285
13286/* Given a DW_AT_enumeration_type die, set its type. We do not
13287 complete the type's fields yet, or create any symbols. */
13288
13289static struct type *
13290read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13291{
13292 struct objfile *objfile = cu->objfile;
13293 struct type *type;
13294 struct attribute *attr;
13295 const char *name;
13296
13297 /* If the definition of this type lives in .debug_types, read that type.
13298 Don't follow DW_AT_specification though, that will take us back up
13299 the chain and we want to go down. */
13300 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13301 if (attr)
13302 {
13303 type = get_DW_AT_signature_type (die, attr, cu);
13304
13305 /* The type's CU may not be the same as CU.
13306 Ensure TYPE is recorded with CU in die_type_hash. */
13307 return set_die_type (die, type, cu);
13308 }
13309
13310 type = alloc_type (objfile);
13311
13312 TYPE_CODE (type) = TYPE_CODE_ENUM;
13313 name = dwarf2_full_name (NULL, die, cu);
13314 if (name != NULL)
13315 TYPE_TAG_NAME (type) = name;
13316
13317 attr = dwarf2_attr (die, DW_AT_type, cu);
13318 if (attr != NULL)
13319 {
13320 struct type *underlying_type = die_type (die, cu);
13321
13322 TYPE_TARGET_TYPE (type) = underlying_type;
13323 }
13324
13325 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13326 if (attr)
13327 {
13328 TYPE_LENGTH (type) = DW_UNSND (attr);
13329 }
13330 else
13331 {
13332 TYPE_LENGTH (type) = 0;
13333 }
13334
13335 /* The enumeration DIE can be incomplete. In Ada, any type can be
13336 declared as private in the package spec, and then defined only
13337 inside the package body. Such types are known as Taft Amendment
13338 Types. When another package uses such a type, an incomplete DIE
13339 may be generated by the compiler. */
13340 if (die_is_declaration (die, cu))
13341 TYPE_STUB (type) = 1;
13342
13343 /* Finish the creation of this type by using the enum's children.
13344 We must call this even when the underlying type has been provided
13345 so that we can determine if we're looking at a "flag" enum. */
13346 update_enumeration_type_from_children (die, type, cu);
13347
13348 /* If this type has an underlying type that is not a stub, then we
13349 may use its attributes. We always use the "unsigned" attribute
13350 in this situation, because ordinarily we guess whether the type
13351 is unsigned -- but the guess can be wrong and the underlying type
13352 can tell us the reality. However, we defer to a local size
13353 attribute if one exists, because this lets the compiler override
13354 the underlying type if needed. */
13355 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13356 {
13357 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13358 if (TYPE_LENGTH (type) == 0)
13359 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13360 }
13361
13362 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13363
13364 return set_die_type (die, type, cu);
13365}
13366
13367/* Given a pointer to a die which begins an enumeration, process all
13368 the dies that define the members of the enumeration, and create the
13369 symbol for the enumeration type.
13370
13371 NOTE: We reverse the order of the element list. */
13372
13373static void
13374process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13375{
13376 struct type *this_type;
13377
13378 this_type = get_die_type (die, cu);
13379 if (this_type == NULL)
13380 this_type = read_enumeration_type (die, cu);
13381
13382 if (die->child != NULL)
13383 {
13384 struct die_info *child_die;
13385 struct symbol *sym;
13386 struct field *fields = NULL;
13387 int num_fields = 0;
13388 const char *name;
13389
13390 child_die = die->child;
13391 while (child_die && child_die->tag)
13392 {
13393 if (child_die->tag != DW_TAG_enumerator)
13394 {
13395 process_die (child_die, cu);
13396 }
13397 else
13398 {
13399 name = dwarf2_name (child_die, cu);
13400 if (name)
13401 {
13402 sym = new_symbol (child_die, this_type, cu);
13403
13404 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13405 {
13406 fields = (struct field *)
13407 xrealloc (fields,
13408 (num_fields + DW_FIELD_ALLOC_CHUNK)
13409 * sizeof (struct field));
13410 }
13411
13412 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13413 FIELD_TYPE (fields[num_fields]) = NULL;
13414 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13415 FIELD_BITSIZE (fields[num_fields]) = 0;
13416
13417 num_fields++;
13418 }
13419 }
13420
13421 child_die = sibling_die (child_die);
13422 }
13423
13424 if (num_fields)
13425 {
13426 TYPE_NFIELDS (this_type) = num_fields;
13427 TYPE_FIELDS (this_type) = (struct field *)
13428 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13429 memcpy (TYPE_FIELDS (this_type), fields,
13430 sizeof (struct field) * num_fields);
13431 xfree (fields);
13432 }
13433 }
13434
13435 /* If we are reading an enum from a .debug_types unit, and the enum
13436 is a declaration, and the enum is not the signatured type in the
13437 unit, then we do not want to add a symbol for it. Adding a
13438 symbol would in some cases obscure the true definition of the
13439 enum, giving users an incomplete type when the definition is
13440 actually available. Note that we do not want to do this for all
13441 enums which are just declarations, because C++0x allows forward
13442 enum declarations. */
13443 if (cu->per_cu->is_debug_types
13444 && die_is_declaration (die, cu))
13445 {
13446 struct signatured_type *sig_type;
13447
13448 sig_type = (struct signatured_type *) cu->per_cu;
13449 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13450 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13451 return;
13452 }
13453
13454 new_symbol (die, this_type, cu);
13455}
13456
13457/* Extract all information from a DW_TAG_array_type DIE and put it in
13458 the DIE's type field. For now, this only handles one dimensional
13459 arrays. */
13460
13461static struct type *
13462read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13463{
13464 struct objfile *objfile = cu->objfile;
13465 struct die_info *child_die;
13466 struct type *type;
13467 struct type *element_type, *range_type, *index_type;
13468 struct type **range_types = NULL;
13469 struct attribute *attr;
13470 int ndim = 0;
13471 struct cleanup *back_to;
13472 const char *name;
13473 unsigned int bit_stride = 0;
13474
13475 element_type = die_type (die, cu);
13476
13477 /* The die_type call above may have already set the type for this DIE. */
13478 type = get_die_type (die, cu);
13479 if (type)
13480 return type;
13481
13482 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13483 if (attr != NULL)
13484 bit_stride = DW_UNSND (attr) * 8;
13485
13486 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13487 if (attr != NULL)
13488 bit_stride = DW_UNSND (attr);
13489
13490 /* Irix 6.2 native cc creates array types without children for
13491 arrays with unspecified length. */
13492 if (die->child == NULL)
13493 {
13494 index_type = objfile_type (objfile)->builtin_int;
13495 range_type = create_static_range_type (NULL, index_type, 0, -1);
13496 type = create_array_type_with_stride (NULL, element_type, range_type,
13497 bit_stride);
13498 return set_die_type (die, type, cu);
13499 }
13500
13501 back_to = make_cleanup (null_cleanup, NULL);
13502 child_die = die->child;
13503 while (child_die && child_die->tag)
13504 {
13505 if (child_die->tag == DW_TAG_subrange_type)
13506 {
13507 struct type *child_type = read_type_die (child_die, cu);
13508
13509 if (child_type != NULL)
13510 {
13511 /* The range type was succesfully read. Save it for the
13512 array type creation. */
13513 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13514 {
13515 range_types = (struct type **)
13516 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13517 * sizeof (struct type *));
13518 if (ndim == 0)
13519 make_cleanup (free_current_contents, &range_types);
13520 }
13521 range_types[ndim++] = child_type;
13522 }
13523 }
13524 child_die = sibling_die (child_die);
13525 }
13526
13527 /* Dwarf2 dimensions are output from left to right, create the
13528 necessary array types in backwards order. */
13529
13530 type = element_type;
13531
13532 if (read_array_order (die, cu) == DW_ORD_col_major)
13533 {
13534 int i = 0;
13535
13536 while (i < ndim)
13537 type = create_array_type_with_stride (NULL, type, range_types[i++],
13538 bit_stride);
13539 }
13540 else
13541 {
13542 while (ndim-- > 0)
13543 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13544 bit_stride);
13545 }
13546
13547 /* Understand Dwarf2 support for vector types (like they occur on
13548 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13549 array type. This is not part of the Dwarf2/3 standard yet, but a
13550 custom vendor extension. The main difference between a regular
13551 array and the vector variant is that vectors are passed by value
13552 to functions. */
13553 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13554 if (attr)
13555 make_vector_type (type);
13556
13557 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13558 implementation may choose to implement triple vectors using this
13559 attribute. */
13560 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13561 if (attr)
13562 {
13563 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13564 TYPE_LENGTH (type) = DW_UNSND (attr);
13565 else
13566 complaint (&symfile_complaints,
13567 _("DW_AT_byte_size for array type smaller "
13568 "than the total size of elements"));
13569 }
13570
13571 name = dwarf2_name (die, cu);
13572 if (name)
13573 TYPE_NAME (type) = name;
13574
13575 /* Install the type in the die. */
13576 set_die_type (die, type, cu);
13577
13578 /* set_die_type should be already done. */
13579 set_descriptive_type (type, die, cu);
13580
13581 do_cleanups (back_to);
13582
13583 return type;
13584}
13585
13586static enum dwarf_array_dim_ordering
13587read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13588{
13589 struct attribute *attr;
13590
13591 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13592
13593 if (attr) return DW_SND (attr);
13594
13595 /* GNU F77 is a special case, as at 08/2004 array type info is the
13596 opposite order to the dwarf2 specification, but data is still
13597 laid out as per normal fortran.
13598
13599 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13600 version checking. */
13601
13602 if (cu->language == language_fortran
13603 && cu->producer && strstr (cu->producer, "GNU F77"))
13604 {
13605 return DW_ORD_row_major;
13606 }
13607
13608 switch (cu->language_defn->la_array_ordering)
13609 {
13610 case array_column_major:
13611 return DW_ORD_col_major;
13612 case array_row_major:
13613 default:
13614 return DW_ORD_row_major;
13615 };
13616}
13617
13618/* Extract all information from a DW_TAG_set_type DIE and put it in
13619 the DIE's type field. */
13620
13621static struct type *
13622read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13623{
13624 struct type *domain_type, *set_type;
13625 struct attribute *attr;
13626
13627 domain_type = die_type (die, cu);
13628
13629 /* The die_type call above may have already set the type for this DIE. */
13630 set_type = get_die_type (die, cu);
13631 if (set_type)
13632 return set_type;
13633
13634 set_type = create_set_type (NULL, domain_type);
13635
13636 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13637 if (attr)
13638 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13639
13640 return set_die_type (die, set_type, cu);
13641}
13642
13643/* A helper for read_common_block that creates a locexpr baton.
13644 SYM is the symbol which we are marking as computed.
13645 COMMON_DIE is the DIE for the common block.
13646 COMMON_LOC is the location expression attribute for the common
13647 block itself.
13648 MEMBER_LOC is the location expression attribute for the particular
13649 member of the common block that we are processing.
13650 CU is the CU from which the above come. */
13651
13652static void
13653mark_common_block_symbol_computed (struct symbol *sym,
13654 struct die_info *common_die,
13655 struct attribute *common_loc,
13656 struct attribute *member_loc,
13657 struct dwarf2_cu *cu)
13658{
13659 struct objfile *objfile = dwarf2_per_objfile->objfile;
13660 struct dwarf2_locexpr_baton *baton;
13661 gdb_byte *ptr;
13662 unsigned int cu_off;
13663 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13664 LONGEST offset = 0;
13665
13666 gdb_assert (common_loc && member_loc);
13667 gdb_assert (attr_form_is_block (common_loc));
13668 gdb_assert (attr_form_is_block (member_loc)
13669 || attr_form_is_constant (member_loc));
13670
13671 baton = obstack_alloc (&objfile->objfile_obstack,
13672 sizeof (struct dwarf2_locexpr_baton));
13673 baton->per_cu = cu->per_cu;
13674 gdb_assert (baton->per_cu);
13675
13676 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13677
13678 if (attr_form_is_constant (member_loc))
13679 {
13680 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13681 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13682 }
13683 else
13684 baton->size += DW_BLOCK (member_loc)->size;
13685
13686 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13687 baton->data = ptr;
13688
13689 *ptr++ = DW_OP_call4;
13690 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13691 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13692 ptr += 4;
13693
13694 if (attr_form_is_constant (member_loc))
13695 {
13696 *ptr++ = DW_OP_addr;
13697 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13698 ptr += cu->header.addr_size;
13699 }
13700 else
13701 {
13702 /* We have to copy the data here, because DW_OP_call4 will only
13703 use a DW_AT_location attribute. */
13704 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13705 ptr += DW_BLOCK (member_loc)->size;
13706 }
13707
13708 *ptr++ = DW_OP_plus;
13709 gdb_assert (ptr - baton->data == baton->size);
13710
13711 SYMBOL_LOCATION_BATON (sym) = baton;
13712 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13713}
13714
13715/* Create appropriate locally-scoped variables for all the
13716 DW_TAG_common_block entries. Also create a struct common_block
13717 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13718 is used to sepate the common blocks name namespace from regular
13719 variable names. */
13720
13721static void
13722read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13723{
13724 struct attribute *attr;
13725
13726 attr = dwarf2_attr (die, DW_AT_location, cu);
13727 if (attr)
13728 {
13729 /* Support the .debug_loc offsets. */
13730 if (attr_form_is_block (attr))
13731 {
13732 /* Ok. */
13733 }
13734 else if (attr_form_is_section_offset (attr))
13735 {
13736 dwarf2_complex_location_expr_complaint ();
13737 attr = NULL;
13738 }
13739 else
13740 {
13741 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13742 "common block member");
13743 attr = NULL;
13744 }
13745 }
13746
13747 if (die->child != NULL)
13748 {
13749 struct objfile *objfile = cu->objfile;
13750 struct die_info *child_die;
13751 size_t n_entries = 0, size;
13752 struct common_block *common_block;
13753 struct symbol *sym;
13754
13755 for (child_die = die->child;
13756 child_die && child_die->tag;
13757 child_die = sibling_die (child_die))
13758 ++n_entries;
13759
13760 size = (sizeof (struct common_block)
13761 + (n_entries - 1) * sizeof (struct symbol *));
13762 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13763 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13764 common_block->n_entries = 0;
13765
13766 for (child_die = die->child;
13767 child_die && child_die->tag;
13768 child_die = sibling_die (child_die))
13769 {
13770 /* Create the symbol in the DW_TAG_common_block block in the current
13771 symbol scope. */
13772 sym = new_symbol (child_die, NULL, cu);
13773 if (sym != NULL)
13774 {
13775 struct attribute *member_loc;
13776
13777 common_block->contents[common_block->n_entries++] = sym;
13778
13779 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13780 cu);
13781 if (member_loc)
13782 {
13783 /* GDB has handled this for a long time, but it is
13784 not specified by DWARF. It seems to have been
13785 emitted by gfortran at least as recently as:
13786 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13787 complaint (&symfile_complaints,
13788 _("Variable in common block has "
13789 "DW_AT_data_member_location "
13790 "- DIE at 0x%x [in module %s]"),
13791 child_die->offset.sect_off,
13792 objfile_name (cu->objfile));
13793
13794 if (attr_form_is_section_offset (member_loc))
13795 dwarf2_complex_location_expr_complaint ();
13796 else if (attr_form_is_constant (member_loc)
13797 || attr_form_is_block (member_loc))
13798 {
13799 if (attr)
13800 mark_common_block_symbol_computed (sym, die, attr,
13801 member_loc, cu);
13802 }
13803 else
13804 dwarf2_complex_location_expr_complaint ();
13805 }
13806 }
13807 }
13808
13809 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13810 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13811 }
13812}
13813
13814/* Create a type for a C++ namespace. */
13815
13816static struct type *
13817read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13818{
13819 struct objfile *objfile = cu->objfile;
13820 const char *previous_prefix, *name;
13821 int is_anonymous;
13822 struct type *type;
13823
13824 /* For extensions, reuse the type of the original namespace. */
13825 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13826 {
13827 struct die_info *ext_die;
13828 struct dwarf2_cu *ext_cu = cu;
13829
13830 ext_die = dwarf2_extension (die, &ext_cu);
13831 type = read_type_die (ext_die, ext_cu);
13832
13833 /* EXT_CU may not be the same as CU.
13834 Ensure TYPE is recorded with CU in die_type_hash. */
13835 return set_die_type (die, type, cu);
13836 }
13837
13838 name = namespace_name (die, &is_anonymous, cu);
13839
13840 /* Now build the name of the current namespace. */
13841
13842 previous_prefix = determine_prefix (die, cu);
13843 if (previous_prefix[0] != '\0')
13844 name = typename_concat (&objfile->objfile_obstack,
13845 previous_prefix, name, 0, cu);
13846
13847 /* Create the type. */
13848 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13849 objfile);
13850 TYPE_NAME (type) = name;
13851 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13852
13853 return set_die_type (die, type, cu);
13854}
13855
13856/* Read a C++ namespace. */
13857
13858static void
13859read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13860{
13861 struct objfile *objfile = cu->objfile;
13862 int is_anonymous;
13863
13864 /* Add a symbol associated to this if we haven't seen the namespace
13865 before. Also, add a using directive if it's an anonymous
13866 namespace. */
13867
13868 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13869 {
13870 struct type *type;
13871
13872 type = read_type_die (die, cu);
13873 new_symbol (die, type, cu);
13874
13875 namespace_name (die, &is_anonymous, cu);
13876 if (is_anonymous)
13877 {
13878 const char *previous_prefix = determine_prefix (die, cu);
13879
13880 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13881 NULL, NULL, 0, &objfile->objfile_obstack);
13882 }
13883 }
13884
13885 if (die->child != NULL)
13886 {
13887 struct die_info *child_die = die->child;
13888
13889 while (child_die && child_die->tag)
13890 {
13891 process_die (child_die, cu);
13892 child_die = sibling_die (child_die);
13893 }
13894 }
13895}
13896
13897/* Read a Fortran module as type. This DIE can be only a declaration used for
13898 imported module. Still we need that type as local Fortran "use ... only"
13899 declaration imports depend on the created type in determine_prefix. */
13900
13901static struct type *
13902read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13903{
13904 struct objfile *objfile = cu->objfile;
13905 const char *module_name;
13906 struct type *type;
13907
13908 module_name = dwarf2_name (die, cu);
13909 if (!module_name)
13910 complaint (&symfile_complaints,
13911 _("DW_TAG_module has no name, offset 0x%x"),
13912 die->offset.sect_off);
13913 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13914
13915 /* determine_prefix uses TYPE_TAG_NAME. */
13916 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13917
13918 return set_die_type (die, type, cu);
13919}
13920
13921/* Read a Fortran module. */
13922
13923static void
13924read_module (struct die_info *die, struct dwarf2_cu *cu)
13925{
13926 struct die_info *child_die = die->child;
13927 struct type *type;
13928
13929 type = read_type_die (die, cu);
13930 new_symbol (die, type, cu);
13931
13932 while (child_die && child_die->tag)
13933 {
13934 process_die (child_die, cu);
13935 child_die = sibling_die (child_die);
13936 }
13937}
13938
13939/* Return the name of the namespace represented by DIE. Set
13940 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13941 namespace. */
13942
13943static const char *
13944namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13945{
13946 struct die_info *current_die;
13947 const char *name = NULL;
13948
13949 /* Loop through the extensions until we find a name. */
13950
13951 for (current_die = die;
13952 current_die != NULL;
13953 current_die = dwarf2_extension (die, &cu))
13954 {
13955 name = dwarf2_name (current_die, cu);
13956 if (name != NULL)
13957 break;
13958 }
13959
13960 /* Is it an anonymous namespace? */
13961
13962 *is_anonymous = (name == NULL);
13963 if (*is_anonymous)
13964 name = CP_ANONYMOUS_NAMESPACE_STR;
13965
13966 return name;
13967}
13968
13969/* Extract all information from a DW_TAG_pointer_type DIE and add to
13970 the user defined type vector. */
13971
13972static struct type *
13973read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13974{
13975 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13976 struct comp_unit_head *cu_header = &cu->header;
13977 struct type *type;
13978 struct attribute *attr_byte_size;
13979 struct attribute *attr_address_class;
13980 int byte_size, addr_class;
13981 struct type *target_type;
13982
13983 target_type = die_type (die, cu);
13984
13985 /* The die_type call above may have already set the type for this DIE. */
13986 type = get_die_type (die, cu);
13987 if (type)
13988 return type;
13989
13990 type = lookup_pointer_type (target_type);
13991
13992 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13993 if (attr_byte_size)
13994 byte_size = DW_UNSND (attr_byte_size);
13995 else
13996 byte_size = cu_header->addr_size;
13997
13998 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13999 if (attr_address_class)
14000 addr_class = DW_UNSND (attr_address_class);
14001 else
14002 addr_class = DW_ADDR_none;
14003
14004 /* If the pointer size or address class is different than the
14005 default, create a type variant marked as such and set the
14006 length accordingly. */
14007 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14008 {
14009 if (gdbarch_address_class_type_flags_p (gdbarch))
14010 {
14011 int type_flags;
14012
14013 type_flags = gdbarch_address_class_type_flags
14014 (gdbarch, byte_size, addr_class);
14015 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14016 == 0);
14017 type = make_type_with_address_space (type, type_flags);
14018 }
14019 else if (TYPE_LENGTH (type) != byte_size)
14020 {
14021 complaint (&symfile_complaints,
14022 _("invalid pointer size %d"), byte_size);
14023 }
14024 else
14025 {
14026 /* Should we also complain about unhandled address classes? */
14027 }
14028 }
14029
14030 TYPE_LENGTH (type) = byte_size;
14031 return set_die_type (die, type, cu);
14032}
14033
14034/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14035 the user defined type vector. */
14036
14037static struct type *
14038read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14039{
14040 struct type *type;
14041 struct type *to_type;
14042 struct type *domain;
14043
14044 to_type = die_type (die, cu);
14045 domain = die_containing_type (die, cu);
14046
14047 /* The calls above may have already set the type for this DIE. */
14048 type = get_die_type (die, cu);
14049 if (type)
14050 return type;
14051
14052 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14053 type = lookup_methodptr_type (to_type);
14054 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14055 {
14056 struct type *new_type = alloc_type (cu->objfile);
14057
14058 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14059 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14060 TYPE_VARARGS (to_type));
14061 type = lookup_methodptr_type (new_type);
14062 }
14063 else
14064 type = lookup_memberptr_type (to_type, domain);
14065
14066 return set_die_type (die, type, cu);
14067}
14068
14069/* Extract all information from a DW_TAG_reference_type DIE and add to
14070 the user defined type vector. */
14071
14072static struct type *
14073read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14074{
14075 struct comp_unit_head *cu_header = &cu->header;
14076 struct type *type, *target_type;
14077 struct attribute *attr;
14078
14079 target_type = die_type (die, cu);
14080
14081 /* The die_type call above may have already set the type for this DIE. */
14082 type = get_die_type (die, cu);
14083 if (type)
14084 return type;
14085
14086 type = lookup_reference_type (target_type);
14087 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14088 if (attr)
14089 {
14090 TYPE_LENGTH (type) = DW_UNSND (attr);
14091 }
14092 else
14093 {
14094 TYPE_LENGTH (type) = cu_header->addr_size;
14095 }
14096 return set_die_type (die, type, cu);
14097}
14098
14099/* Add the given cv-qualifiers to the element type of the array. GCC
14100 outputs DWARF type qualifiers that apply to an array, not the
14101 element type. But GDB relies on the array element type to carry
14102 the cv-qualifiers. This mimics section 6.7.3 of the C99
14103 specification. */
14104
14105static struct type *
14106add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14107 struct type *base_type, int cnst, int voltl)
14108{
14109 struct type *el_type, *inner_array;
14110
14111 base_type = copy_type (base_type);
14112 inner_array = base_type;
14113
14114 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14115 {
14116 TYPE_TARGET_TYPE (inner_array) =
14117 copy_type (TYPE_TARGET_TYPE (inner_array));
14118 inner_array = TYPE_TARGET_TYPE (inner_array);
14119 }
14120
14121 el_type = TYPE_TARGET_TYPE (inner_array);
14122 cnst |= TYPE_CONST (el_type);
14123 voltl |= TYPE_VOLATILE (el_type);
14124 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14125
14126 return set_die_type (die, base_type, cu);
14127}
14128
14129static struct type *
14130read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14131{
14132 struct type *base_type, *cv_type;
14133
14134 base_type = die_type (die, cu);
14135
14136 /* The die_type call above may have already set the type for this DIE. */
14137 cv_type = get_die_type (die, cu);
14138 if (cv_type)
14139 return cv_type;
14140
14141 /* In case the const qualifier is applied to an array type, the element type
14142 is so qualified, not the array type (section 6.7.3 of C99). */
14143 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14144 return add_array_cv_type (die, cu, base_type, 1, 0);
14145
14146 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14147 return set_die_type (die, cv_type, cu);
14148}
14149
14150static struct type *
14151read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14152{
14153 struct type *base_type, *cv_type;
14154
14155 base_type = die_type (die, cu);
14156
14157 /* The die_type call above may have already set the type for this DIE. */
14158 cv_type = get_die_type (die, cu);
14159 if (cv_type)
14160 return cv_type;
14161
14162 /* In case the volatile qualifier is applied to an array type, the
14163 element type is so qualified, not the array type (section 6.7.3
14164 of C99). */
14165 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14166 return add_array_cv_type (die, cu, base_type, 0, 1);
14167
14168 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14169 return set_die_type (die, cv_type, cu);
14170}
14171
14172/* Handle DW_TAG_restrict_type. */
14173
14174static struct type *
14175read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14176{
14177 struct type *base_type, *cv_type;
14178
14179 base_type = die_type (die, cu);
14180
14181 /* The die_type call above may have already set the type for this DIE. */
14182 cv_type = get_die_type (die, cu);
14183 if (cv_type)
14184 return cv_type;
14185
14186 cv_type = make_restrict_type (base_type);
14187 return set_die_type (die, cv_type, cu);
14188}
14189
14190/* Extract all information from a DW_TAG_string_type DIE and add to
14191 the user defined type vector. It isn't really a user defined type,
14192 but it behaves like one, with other DIE's using an AT_user_def_type
14193 attribute to reference it. */
14194
14195static struct type *
14196read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14197{
14198 struct objfile *objfile = cu->objfile;
14199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14200 struct type *type, *range_type, *index_type, *char_type;
14201 struct attribute *attr;
14202 unsigned int length;
14203
14204 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14205 if (attr)
14206 {
14207 length = DW_UNSND (attr);
14208 }
14209 else
14210 {
14211 /* Check for the DW_AT_byte_size attribute. */
14212 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14213 if (attr)
14214 {
14215 length = DW_UNSND (attr);
14216 }
14217 else
14218 {
14219 length = 1;
14220 }
14221 }
14222
14223 index_type = objfile_type (objfile)->builtin_int;
14224 range_type = create_static_range_type (NULL, index_type, 1, length);
14225 char_type = language_string_char_type (cu->language_defn, gdbarch);
14226 type = create_string_type (NULL, char_type, range_type);
14227
14228 return set_die_type (die, type, cu);
14229}
14230
14231/* Assuming that DIE corresponds to a function, returns nonzero
14232 if the function is prototyped. */
14233
14234static int
14235prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14236{
14237 struct attribute *attr;
14238
14239 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14240 if (attr && (DW_UNSND (attr) != 0))
14241 return 1;
14242
14243 /* The DWARF standard implies that the DW_AT_prototyped attribute
14244 is only meaninful for C, but the concept also extends to other
14245 languages that allow unprototyped functions (Eg: Objective C).
14246 For all other languages, assume that functions are always
14247 prototyped. */
14248 if (cu->language != language_c
14249 && cu->language != language_objc
14250 && cu->language != language_opencl)
14251 return 1;
14252
14253 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14254 prototyped and unprototyped functions; default to prototyped,
14255 since that is more common in modern code (and RealView warns
14256 about unprototyped functions). */
14257 if (producer_is_realview (cu->producer))
14258 return 1;
14259
14260 return 0;
14261}
14262
14263/* Handle DIES due to C code like:
14264
14265 struct foo
14266 {
14267 int (*funcp)(int a, long l);
14268 int b;
14269 };
14270
14271 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14272
14273static struct type *
14274read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14275{
14276 struct objfile *objfile = cu->objfile;
14277 struct type *type; /* Type that this function returns. */
14278 struct type *ftype; /* Function that returns above type. */
14279 struct attribute *attr;
14280
14281 type = die_type (die, cu);
14282
14283 /* The die_type call above may have already set the type for this DIE. */
14284 ftype = get_die_type (die, cu);
14285 if (ftype)
14286 return ftype;
14287
14288 ftype = lookup_function_type (type);
14289
14290 if (prototyped_function_p (die, cu))
14291 TYPE_PROTOTYPED (ftype) = 1;
14292
14293 /* Store the calling convention in the type if it's available in
14294 the subroutine die. Otherwise set the calling convention to
14295 the default value DW_CC_normal. */
14296 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14297 if (attr)
14298 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14299 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14300 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14301 else
14302 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14303
14304 /* We need to add the subroutine type to the die immediately so
14305 we don't infinitely recurse when dealing with parameters
14306 declared as the same subroutine type. */
14307 set_die_type (die, ftype, cu);
14308
14309 if (die->child != NULL)
14310 {
14311 struct type *void_type = objfile_type (objfile)->builtin_void;
14312 struct die_info *child_die;
14313 int nparams, iparams;
14314
14315 /* Count the number of parameters.
14316 FIXME: GDB currently ignores vararg functions, but knows about
14317 vararg member functions. */
14318 nparams = 0;
14319 child_die = die->child;
14320 while (child_die && child_die->tag)
14321 {
14322 if (child_die->tag == DW_TAG_formal_parameter)
14323 nparams++;
14324 else if (child_die->tag == DW_TAG_unspecified_parameters)
14325 TYPE_VARARGS (ftype) = 1;
14326 child_die = sibling_die (child_die);
14327 }
14328
14329 /* Allocate storage for parameters and fill them in. */
14330 TYPE_NFIELDS (ftype) = nparams;
14331 TYPE_FIELDS (ftype) = (struct field *)
14332 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14333
14334 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14335 even if we error out during the parameters reading below. */
14336 for (iparams = 0; iparams < nparams; iparams++)
14337 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14338
14339 iparams = 0;
14340 child_die = die->child;
14341 while (child_die && child_die->tag)
14342 {
14343 if (child_die->tag == DW_TAG_formal_parameter)
14344 {
14345 struct type *arg_type;
14346
14347 /* DWARF version 2 has no clean way to discern C++
14348 static and non-static member functions. G++ helps
14349 GDB by marking the first parameter for non-static
14350 member functions (which is the this pointer) as
14351 artificial. We pass this information to
14352 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14353
14354 DWARF version 3 added DW_AT_object_pointer, which GCC
14355 4.5 does not yet generate. */
14356 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14357 if (attr)
14358 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14359 else
14360 {
14361 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14362
14363 /* GCC/43521: In java, the formal parameter
14364 "this" is sometimes not marked with DW_AT_artificial. */
14365 if (cu->language == language_java)
14366 {
14367 const char *name = dwarf2_name (child_die, cu);
14368
14369 if (name && !strcmp (name, "this"))
14370 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14371 }
14372 }
14373 arg_type = die_type (child_die, cu);
14374
14375 /* RealView does not mark THIS as const, which the testsuite
14376 expects. GCC marks THIS as const in method definitions,
14377 but not in the class specifications (GCC PR 43053). */
14378 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14379 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14380 {
14381 int is_this = 0;
14382 struct dwarf2_cu *arg_cu = cu;
14383 const char *name = dwarf2_name (child_die, cu);
14384
14385 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14386 if (attr)
14387 {
14388 /* If the compiler emits this, use it. */
14389 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14390 is_this = 1;
14391 }
14392 else if (name && strcmp (name, "this") == 0)
14393 /* Function definitions will have the argument names. */
14394 is_this = 1;
14395 else if (name == NULL && iparams == 0)
14396 /* Declarations may not have the names, so like
14397 elsewhere in GDB, assume an artificial first
14398 argument is "this". */
14399 is_this = 1;
14400
14401 if (is_this)
14402 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14403 arg_type, 0);
14404 }
14405
14406 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14407 iparams++;
14408 }
14409 child_die = sibling_die (child_die);
14410 }
14411 }
14412
14413 return ftype;
14414}
14415
14416static struct type *
14417read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14418{
14419 struct objfile *objfile = cu->objfile;
14420 const char *name = NULL;
14421 struct type *this_type, *target_type;
14422
14423 name = dwarf2_full_name (NULL, die, cu);
14424 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14425 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14426 TYPE_NAME (this_type) = name;
14427 set_die_type (die, this_type, cu);
14428 target_type = die_type (die, cu);
14429 if (target_type != this_type)
14430 TYPE_TARGET_TYPE (this_type) = target_type;
14431 else
14432 {
14433 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14434 spec and cause infinite loops in GDB. */
14435 complaint (&symfile_complaints,
14436 _("Self-referential DW_TAG_typedef "
14437 "- DIE at 0x%x [in module %s]"),
14438 die->offset.sect_off, objfile_name (objfile));
14439 TYPE_TARGET_TYPE (this_type) = NULL;
14440 }
14441 return this_type;
14442}
14443
14444/* Find a representation of a given base type and install
14445 it in the TYPE field of the die. */
14446
14447static struct type *
14448read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14449{
14450 struct objfile *objfile = cu->objfile;
14451 struct type *type;
14452 struct attribute *attr;
14453 int encoding = 0, size = 0;
14454 const char *name;
14455 enum type_code code = TYPE_CODE_INT;
14456 int type_flags = 0;
14457 struct type *target_type = NULL;
14458
14459 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14460 if (attr)
14461 {
14462 encoding = DW_UNSND (attr);
14463 }
14464 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14465 if (attr)
14466 {
14467 size = DW_UNSND (attr);
14468 }
14469 name = dwarf2_name (die, cu);
14470 if (!name)
14471 {
14472 complaint (&symfile_complaints,
14473 _("DW_AT_name missing from DW_TAG_base_type"));
14474 }
14475
14476 switch (encoding)
14477 {
14478 case DW_ATE_address:
14479 /* Turn DW_ATE_address into a void * pointer. */
14480 code = TYPE_CODE_PTR;
14481 type_flags |= TYPE_FLAG_UNSIGNED;
14482 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14483 break;
14484 case DW_ATE_boolean:
14485 code = TYPE_CODE_BOOL;
14486 type_flags |= TYPE_FLAG_UNSIGNED;
14487 break;
14488 case DW_ATE_complex_float:
14489 code = TYPE_CODE_COMPLEX;
14490 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14491 break;
14492 case DW_ATE_decimal_float:
14493 code = TYPE_CODE_DECFLOAT;
14494 break;
14495 case DW_ATE_float:
14496 code = TYPE_CODE_FLT;
14497 break;
14498 case DW_ATE_signed:
14499 break;
14500 case DW_ATE_unsigned:
14501 type_flags |= TYPE_FLAG_UNSIGNED;
14502 if (cu->language == language_fortran
14503 && name
14504 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14505 code = TYPE_CODE_CHAR;
14506 break;
14507 case DW_ATE_signed_char:
14508 if (cu->language == language_ada || cu->language == language_m2
14509 || cu->language == language_pascal
14510 || cu->language == language_fortran)
14511 code = TYPE_CODE_CHAR;
14512 break;
14513 case DW_ATE_unsigned_char:
14514 if (cu->language == language_ada || cu->language == language_m2
14515 || cu->language == language_pascal
14516 || cu->language == language_fortran)
14517 code = TYPE_CODE_CHAR;
14518 type_flags |= TYPE_FLAG_UNSIGNED;
14519 break;
14520 case DW_ATE_UTF:
14521 /* We just treat this as an integer and then recognize the
14522 type by name elsewhere. */
14523 break;
14524
14525 default:
14526 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14527 dwarf_type_encoding_name (encoding));
14528 break;
14529 }
14530
14531 type = init_type (code, size, type_flags, NULL, objfile);
14532 TYPE_NAME (type) = name;
14533 TYPE_TARGET_TYPE (type) = target_type;
14534
14535 if (name && strcmp (name, "char") == 0)
14536 TYPE_NOSIGN (type) = 1;
14537
14538 return set_die_type (die, type, cu);
14539}
14540
14541/* Parse dwarf attribute if it's a block, reference or constant and put the
14542 resulting value of the attribute into struct bound_prop.
14543 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14544
14545static int
14546attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14547 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14548{
14549 struct dwarf2_property_baton *baton;
14550 struct obstack *obstack = &cu->objfile->objfile_obstack;
14551
14552 if (attr == NULL || prop == NULL)
14553 return 0;
14554
14555 if (attr_form_is_block (attr))
14556 {
14557 baton = obstack_alloc (obstack, sizeof (*baton));
14558 baton->referenced_type = NULL;
14559 baton->locexpr.per_cu = cu->per_cu;
14560 baton->locexpr.size = DW_BLOCK (attr)->size;
14561 baton->locexpr.data = DW_BLOCK (attr)->data;
14562 prop->data.baton = baton;
14563 prop->kind = PROP_LOCEXPR;
14564 gdb_assert (prop->data.baton != NULL);
14565 }
14566 else if (attr_form_is_ref (attr))
14567 {
14568 struct dwarf2_cu *target_cu = cu;
14569 struct die_info *target_die;
14570 struct attribute *target_attr;
14571
14572 target_die = follow_die_ref (die, attr, &target_cu);
14573 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14574 if (target_attr == NULL)
14575 return 0;
14576
14577 if (attr_form_is_section_offset (target_attr))
14578 {
14579 baton = obstack_alloc (obstack, sizeof (*baton));
14580 baton->referenced_type = die_type (target_die, target_cu);
14581 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14582 prop->data.baton = baton;
14583 prop->kind = PROP_LOCLIST;
14584 gdb_assert (prop->data.baton != NULL);
14585 }
14586 else if (attr_form_is_block (target_attr))
14587 {
14588 baton = obstack_alloc (obstack, sizeof (*baton));
14589 baton->referenced_type = die_type (target_die, target_cu);
14590 baton->locexpr.per_cu = cu->per_cu;
14591 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14592 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14593 prop->data.baton = baton;
14594 prop->kind = PROP_LOCEXPR;
14595 gdb_assert (prop->data.baton != NULL);
14596 }
14597 else
14598 {
14599 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14600 "dynamic property");
14601 return 0;
14602 }
14603 }
14604 else if (attr_form_is_constant (attr))
14605 {
14606 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14607 prop->kind = PROP_CONST;
14608 }
14609 else
14610 {
14611 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14612 dwarf2_name (die, cu));
14613 return 0;
14614 }
14615
14616 return 1;
14617}
14618
14619/* Read the given DW_AT_subrange DIE. */
14620
14621static struct type *
14622read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14623{
14624 struct type *base_type, *orig_base_type;
14625 struct type *range_type;
14626 struct attribute *attr;
14627 struct dynamic_prop low, high;
14628 int low_default_is_valid;
14629 int high_bound_is_count = 0;
14630 const char *name;
14631 LONGEST negative_mask;
14632
14633 orig_base_type = die_type (die, cu);
14634 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14635 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14636 creating the range type, but we use the result of check_typedef
14637 when examining properties of the type. */
14638 base_type = check_typedef (orig_base_type);
14639
14640 /* The die_type call above may have already set the type for this DIE. */
14641 range_type = get_die_type (die, cu);
14642 if (range_type)
14643 return range_type;
14644
14645 low.kind = PROP_CONST;
14646 high.kind = PROP_CONST;
14647 high.data.const_val = 0;
14648
14649 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14650 omitting DW_AT_lower_bound. */
14651 switch (cu->language)
14652 {
14653 case language_c:
14654 case language_cplus:
14655 low.data.const_val = 0;
14656 low_default_is_valid = 1;
14657 break;
14658 case language_fortran:
14659 low.data.const_val = 1;
14660 low_default_is_valid = 1;
14661 break;
14662 case language_d:
14663 case language_java:
14664 case language_objc:
14665 low.data.const_val = 0;
14666 low_default_is_valid = (cu->header.version >= 4);
14667 break;
14668 case language_ada:
14669 case language_m2:
14670 case language_pascal:
14671 low.data.const_val = 1;
14672 low_default_is_valid = (cu->header.version >= 4);
14673 break;
14674 default:
14675 low.data.const_val = 0;
14676 low_default_is_valid = 0;
14677 break;
14678 }
14679
14680 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14681 if (attr)
14682 attr_to_dynamic_prop (attr, die, cu, &low);
14683 else if (!low_default_is_valid)
14684 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14685 "- DIE at 0x%x [in module %s]"),
14686 die->offset.sect_off, objfile_name (cu->objfile));
14687
14688 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14689 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14690 {
14691 attr = dwarf2_attr (die, DW_AT_count, cu);
14692 if (attr_to_dynamic_prop (attr, die, cu, &high))
14693 {
14694 /* If bounds are constant do the final calculation here. */
14695 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14696 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14697 else
14698 high_bound_is_count = 1;
14699 }
14700 }
14701
14702 /* Dwarf-2 specifications explicitly allows to create subrange types
14703 without specifying a base type.
14704 In that case, the base type must be set to the type of
14705 the lower bound, upper bound or count, in that order, if any of these
14706 three attributes references an object that has a type.
14707 If no base type is found, the Dwarf-2 specifications say that
14708 a signed integer type of size equal to the size of an address should
14709 be used.
14710 For the following C code: `extern char gdb_int [];'
14711 GCC produces an empty range DIE.
14712 FIXME: muller/2010-05-28: Possible references to object for low bound,
14713 high bound or count are not yet handled by this code. */
14714 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14715 {
14716 struct objfile *objfile = cu->objfile;
14717 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14718 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14719 struct type *int_type = objfile_type (objfile)->builtin_int;
14720
14721 /* Test "int", "long int", and "long long int" objfile types,
14722 and select the first one having a size above or equal to the
14723 architecture address size. */
14724 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14725 base_type = int_type;
14726 else
14727 {
14728 int_type = objfile_type (objfile)->builtin_long;
14729 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14730 base_type = int_type;
14731 else
14732 {
14733 int_type = objfile_type (objfile)->builtin_long_long;
14734 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14735 base_type = int_type;
14736 }
14737 }
14738 }
14739
14740 /* Normally, the DWARF producers are expected to use a signed
14741 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14742 But this is unfortunately not always the case, as witnessed
14743 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14744 is used instead. To work around that ambiguity, we treat
14745 the bounds as signed, and thus sign-extend their values, when
14746 the base type is signed. */
14747 negative_mask =
14748 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14749 if (low.kind == PROP_CONST
14750 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14751 low.data.const_val |= negative_mask;
14752 if (high.kind == PROP_CONST
14753 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14754 high.data.const_val |= negative_mask;
14755
14756 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14757
14758 if (high_bound_is_count)
14759 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14760
14761 /* Ada expects an empty array on no boundary attributes. */
14762 if (attr == NULL && cu->language != language_ada)
14763 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14764
14765 name = dwarf2_name (die, cu);
14766 if (name)
14767 TYPE_NAME (range_type) = name;
14768
14769 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14770 if (attr)
14771 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14772
14773 set_die_type (die, range_type, cu);
14774
14775 /* set_die_type should be already done. */
14776 set_descriptive_type (range_type, die, cu);
14777
14778 return range_type;
14779}
14780
14781static struct type *
14782read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14783{
14784 struct type *type;
14785
14786 /* For now, we only support the C meaning of an unspecified type: void. */
14787
14788 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14789 TYPE_NAME (type) = dwarf2_name (die, cu);
14790
14791 return set_die_type (die, type, cu);
14792}
14793
14794/* Read a single die and all its descendents. Set the die's sibling
14795 field to NULL; set other fields in the die correctly, and set all
14796 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14797 location of the info_ptr after reading all of those dies. PARENT
14798 is the parent of the die in question. */
14799
14800static struct die_info *
14801read_die_and_children (const struct die_reader_specs *reader,
14802 const gdb_byte *info_ptr,
14803 const gdb_byte **new_info_ptr,
14804 struct die_info *parent)
14805{
14806 struct die_info *die;
14807 const gdb_byte *cur_ptr;
14808 int has_children;
14809
14810 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14811 if (die == NULL)
14812 {
14813 *new_info_ptr = cur_ptr;
14814 return NULL;
14815 }
14816 store_in_ref_table (die, reader->cu);
14817
14818 if (has_children)
14819 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14820 else
14821 {
14822 die->child = NULL;
14823 *new_info_ptr = cur_ptr;
14824 }
14825
14826 die->sibling = NULL;
14827 die->parent = parent;
14828 return die;
14829}
14830
14831/* Read a die, all of its descendents, and all of its siblings; set
14832 all of the fields of all of the dies correctly. Arguments are as
14833 in read_die_and_children. */
14834
14835static struct die_info *
14836read_die_and_siblings_1 (const struct die_reader_specs *reader,
14837 const gdb_byte *info_ptr,
14838 const gdb_byte **new_info_ptr,
14839 struct die_info *parent)
14840{
14841 struct die_info *first_die, *last_sibling;
14842 const gdb_byte *cur_ptr;
14843
14844 cur_ptr = info_ptr;
14845 first_die = last_sibling = NULL;
14846
14847 while (1)
14848 {
14849 struct die_info *die
14850 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14851
14852 if (die == NULL)
14853 {
14854 *new_info_ptr = cur_ptr;
14855 return first_die;
14856 }
14857
14858 if (!first_die)
14859 first_die = die;
14860 else
14861 last_sibling->sibling = die;
14862
14863 last_sibling = die;
14864 }
14865}
14866
14867/* Read a die, all of its descendents, and all of its siblings; set
14868 all of the fields of all of the dies correctly. Arguments are as
14869 in read_die_and_children.
14870 This the main entry point for reading a DIE and all its children. */
14871
14872static struct die_info *
14873read_die_and_siblings (const struct die_reader_specs *reader,
14874 const gdb_byte *info_ptr,
14875 const gdb_byte **new_info_ptr,
14876 struct die_info *parent)
14877{
14878 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14879 new_info_ptr, parent);
14880
14881 if (dwarf2_die_debug)
14882 {
14883 fprintf_unfiltered (gdb_stdlog,
14884 "Read die from %s@0x%x of %s:\n",
14885 get_section_name (reader->die_section),
14886 (unsigned) (info_ptr - reader->die_section->buffer),
14887 bfd_get_filename (reader->abfd));
14888 dump_die (die, dwarf2_die_debug);
14889 }
14890
14891 return die;
14892}
14893
14894/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14895 attributes.
14896 The caller is responsible for filling in the extra attributes
14897 and updating (*DIEP)->num_attrs.
14898 Set DIEP to point to a newly allocated die with its information,
14899 except for its child, sibling, and parent fields.
14900 Set HAS_CHILDREN to tell whether the die has children or not. */
14901
14902static const gdb_byte *
14903read_full_die_1 (const struct die_reader_specs *reader,
14904 struct die_info **diep, const gdb_byte *info_ptr,
14905 int *has_children, int num_extra_attrs)
14906{
14907 unsigned int abbrev_number, bytes_read, i;
14908 sect_offset offset;
14909 struct abbrev_info *abbrev;
14910 struct die_info *die;
14911 struct dwarf2_cu *cu = reader->cu;
14912 bfd *abfd = reader->abfd;
14913
14914 offset.sect_off = info_ptr - reader->buffer;
14915 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14916 info_ptr += bytes_read;
14917 if (!abbrev_number)
14918 {
14919 *diep = NULL;
14920 *has_children = 0;
14921 return info_ptr;
14922 }
14923
14924 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14925 if (!abbrev)
14926 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14927 abbrev_number,
14928 bfd_get_filename (abfd));
14929
14930 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14931 die->offset = offset;
14932 die->tag = abbrev->tag;
14933 die->abbrev = abbrev_number;
14934
14935 /* Make the result usable.
14936 The caller needs to update num_attrs after adding the extra
14937 attributes. */
14938 die->num_attrs = abbrev->num_attrs;
14939
14940 for (i = 0; i < abbrev->num_attrs; ++i)
14941 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14942 info_ptr);
14943
14944 *diep = die;
14945 *has_children = abbrev->has_children;
14946 return info_ptr;
14947}
14948
14949/* Read a die and all its attributes.
14950 Set DIEP to point to a newly allocated die with its information,
14951 except for its child, sibling, and parent fields.
14952 Set HAS_CHILDREN to tell whether the die has children or not. */
14953
14954static const gdb_byte *
14955read_full_die (const struct die_reader_specs *reader,
14956 struct die_info **diep, const gdb_byte *info_ptr,
14957 int *has_children)
14958{
14959 const gdb_byte *result;
14960
14961 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14962
14963 if (dwarf2_die_debug)
14964 {
14965 fprintf_unfiltered (gdb_stdlog,
14966 "Read die from %s@0x%x of %s:\n",
14967 get_section_name (reader->die_section),
14968 (unsigned) (info_ptr - reader->die_section->buffer),
14969 bfd_get_filename (reader->abfd));
14970 dump_die (*diep, dwarf2_die_debug);
14971 }
14972
14973 return result;
14974}
14975\f
14976/* Abbreviation tables.
14977
14978 In DWARF version 2, the description of the debugging information is
14979 stored in a separate .debug_abbrev section. Before we read any
14980 dies from a section we read in all abbreviations and install them
14981 in a hash table. */
14982
14983/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14984
14985static struct abbrev_info *
14986abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14987{
14988 struct abbrev_info *abbrev;
14989
14990 abbrev = (struct abbrev_info *)
14991 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14992 memset (abbrev, 0, sizeof (struct abbrev_info));
14993 return abbrev;
14994}
14995
14996/* Add an abbreviation to the table. */
14997
14998static void
14999abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15000 unsigned int abbrev_number,
15001 struct abbrev_info *abbrev)
15002{
15003 unsigned int hash_number;
15004
15005 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15006 abbrev->next = abbrev_table->abbrevs[hash_number];
15007 abbrev_table->abbrevs[hash_number] = abbrev;
15008}
15009
15010/* Look up an abbrev in the table.
15011 Returns NULL if the abbrev is not found. */
15012
15013static struct abbrev_info *
15014abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15015 unsigned int abbrev_number)
15016{
15017 unsigned int hash_number;
15018 struct abbrev_info *abbrev;
15019
15020 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15021 abbrev = abbrev_table->abbrevs[hash_number];
15022
15023 while (abbrev)
15024 {
15025 if (abbrev->number == abbrev_number)
15026 return abbrev;
15027 abbrev = abbrev->next;
15028 }
15029 return NULL;
15030}
15031
15032/* Read in an abbrev table. */
15033
15034static struct abbrev_table *
15035abbrev_table_read_table (struct dwarf2_section_info *section,
15036 sect_offset offset)
15037{
15038 struct objfile *objfile = dwarf2_per_objfile->objfile;
15039 bfd *abfd = get_section_bfd_owner (section);
15040 struct abbrev_table *abbrev_table;
15041 const gdb_byte *abbrev_ptr;
15042 struct abbrev_info *cur_abbrev;
15043 unsigned int abbrev_number, bytes_read, abbrev_name;
15044 unsigned int abbrev_form;
15045 struct attr_abbrev *cur_attrs;
15046 unsigned int allocated_attrs;
15047
15048 abbrev_table = XNEW (struct abbrev_table);
15049 abbrev_table->offset = offset;
15050 obstack_init (&abbrev_table->abbrev_obstack);
15051 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15052 (ABBREV_HASH_SIZE
15053 * sizeof (struct abbrev_info *)));
15054 memset (abbrev_table->abbrevs, 0,
15055 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15056
15057 dwarf2_read_section (objfile, section);
15058 abbrev_ptr = section->buffer + offset.sect_off;
15059 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15060 abbrev_ptr += bytes_read;
15061
15062 allocated_attrs = ATTR_ALLOC_CHUNK;
15063 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15064
15065 /* Loop until we reach an abbrev number of 0. */
15066 while (abbrev_number)
15067 {
15068 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15069
15070 /* read in abbrev header */
15071 cur_abbrev->number = abbrev_number;
15072 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15073 abbrev_ptr += bytes_read;
15074 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15075 abbrev_ptr += 1;
15076
15077 /* now read in declarations */
15078 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15079 abbrev_ptr += bytes_read;
15080 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15081 abbrev_ptr += bytes_read;
15082 while (abbrev_name)
15083 {
15084 if (cur_abbrev->num_attrs == allocated_attrs)
15085 {
15086 allocated_attrs += ATTR_ALLOC_CHUNK;
15087 cur_attrs
15088 = xrealloc (cur_attrs, (allocated_attrs
15089 * sizeof (struct attr_abbrev)));
15090 }
15091
15092 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15093 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15094 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15095 abbrev_ptr += bytes_read;
15096 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15097 abbrev_ptr += bytes_read;
15098 }
15099
15100 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15101 (cur_abbrev->num_attrs
15102 * sizeof (struct attr_abbrev)));
15103 memcpy (cur_abbrev->attrs, cur_attrs,
15104 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15105
15106 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15107
15108 /* Get next abbreviation.
15109 Under Irix6 the abbreviations for a compilation unit are not
15110 always properly terminated with an abbrev number of 0.
15111 Exit loop if we encounter an abbreviation which we have
15112 already read (which means we are about to read the abbreviations
15113 for the next compile unit) or if the end of the abbreviation
15114 table is reached. */
15115 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15116 break;
15117 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15118 abbrev_ptr += bytes_read;
15119 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15120 break;
15121 }
15122
15123 xfree (cur_attrs);
15124 return abbrev_table;
15125}
15126
15127/* Free the resources held by ABBREV_TABLE. */
15128
15129static void
15130abbrev_table_free (struct abbrev_table *abbrev_table)
15131{
15132 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15133 xfree (abbrev_table);
15134}
15135
15136/* Same as abbrev_table_free but as a cleanup.
15137 We pass in a pointer to the pointer to the table so that we can
15138 set the pointer to NULL when we're done. It also simplifies
15139 build_type_psymtabs_1. */
15140
15141static void
15142abbrev_table_free_cleanup (void *table_ptr)
15143{
15144 struct abbrev_table **abbrev_table_ptr = table_ptr;
15145
15146 if (*abbrev_table_ptr != NULL)
15147 abbrev_table_free (*abbrev_table_ptr);
15148 *abbrev_table_ptr = NULL;
15149}
15150
15151/* Read the abbrev table for CU from ABBREV_SECTION. */
15152
15153static void
15154dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15155 struct dwarf2_section_info *abbrev_section)
15156{
15157 cu->abbrev_table =
15158 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15159}
15160
15161/* Release the memory used by the abbrev table for a compilation unit. */
15162
15163static void
15164dwarf2_free_abbrev_table (void *ptr_to_cu)
15165{
15166 struct dwarf2_cu *cu = ptr_to_cu;
15167
15168 if (cu->abbrev_table != NULL)
15169 abbrev_table_free (cu->abbrev_table);
15170 /* Set this to NULL so that we SEGV if we try to read it later,
15171 and also because free_comp_unit verifies this is NULL. */
15172 cu->abbrev_table = NULL;
15173}
15174\f
15175/* Returns nonzero if TAG represents a type that we might generate a partial
15176 symbol for. */
15177
15178static int
15179is_type_tag_for_partial (int tag)
15180{
15181 switch (tag)
15182 {
15183#if 0
15184 /* Some types that would be reasonable to generate partial symbols for,
15185 that we don't at present. */
15186 case DW_TAG_array_type:
15187 case DW_TAG_file_type:
15188 case DW_TAG_ptr_to_member_type:
15189 case DW_TAG_set_type:
15190 case DW_TAG_string_type:
15191 case DW_TAG_subroutine_type:
15192#endif
15193 case DW_TAG_base_type:
15194 case DW_TAG_class_type:
15195 case DW_TAG_interface_type:
15196 case DW_TAG_enumeration_type:
15197 case DW_TAG_structure_type:
15198 case DW_TAG_subrange_type:
15199 case DW_TAG_typedef:
15200 case DW_TAG_union_type:
15201 return 1;
15202 default:
15203 return 0;
15204 }
15205}
15206
15207/* Load all DIEs that are interesting for partial symbols into memory. */
15208
15209static struct partial_die_info *
15210load_partial_dies (const struct die_reader_specs *reader,
15211 const gdb_byte *info_ptr, int building_psymtab)
15212{
15213 struct dwarf2_cu *cu = reader->cu;
15214 struct objfile *objfile = cu->objfile;
15215 struct partial_die_info *part_die;
15216 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15217 struct abbrev_info *abbrev;
15218 unsigned int bytes_read;
15219 unsigned int load_all = 0;
15220 int nesting_level = 1;
15221
15222 parent_die = NULL;
15223 last_die = NULL;
15224
15225 gdb_assert (cu->per_cu != NULL);
15226 if (cu->per_cu->load_all_dies)
15227 load_all = 1;
15228
15229 cu->partial_dies
15230 = htab_create_alloc_ex (cu->header.length / 12,
15231 partial_die_hash,
15232 partial_die_eq,
15233 NULL,
15234 &cu->comp_unit_obstack,
15235 hashtab_obstack_allocate,
15236 dummy_obstack_deallocate);
15237
15238 part_die = obstack_alloc (&cu->comp_unit_obstack,
15239 sizeof (struct partial_die_info));
15240
15241 while (1)
15242 {
15243 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15244
15245 /* A NULL abbrev means the end of a series of children. */
15246 if (abbrev == NULL)
15247 {
15248 if (--nesting_level == 0)
15249 {
15250 /* PART_DIE was probably the last thing allocated on the
15251 comp_unit_obstack, so we could call obstack_free
15252 here. We don't do that because the waste is small,
15253 and will be cleaned up when we're done with this
15254 compilation unit. This way, we're also more robust
15255 against other users of the comp_unit_obstack. */
15256 return first_die;
15257 }
15258 info_ptr += bytes_read;
15259 last_die = parent_die;
15260 parent_die = parent_die->die_parent;
15261 continue;
15262 }
15263
15264 /* Check for template arguments. We never save these; if
15265 they're seen, we just mark the parent, and go on our way. */
15266 if (parent_die != NULL
15267 && cu->language == language_cplus
15268 && (abbrev->tag == DW_TAG_template_type_param
15269 || abbrev->tag == DW_TAG_template_value_param))
15270 {
15271 parent_die->has_template_arguments = 1;
15272
15273 if (!load_all)
15274 {
15275 /* We don't need a partial DIE for the template argument. */
15276 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15277 continue;
15278 }
15279 }
15280
15281 /* We only recurse into c++ subprograms looking for template arguments.
15282 Skip their other children. */
15283 if (!load_all
15284 && cu->language == language_cplus
15285 && parent_die != NULL
15286 && parent_die->tag == DW_TAG_subprogram)
15287 {
15288 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15289 continue;
15290 }
15291
15292 /* Check whether this DIE is interesting enough to save. Normally
15293 we would not be interested in members here, but there may be
15294 later variables referencing them via DW_AT_specification (for
15295 static members). */
15296 if (!load_all
15297 && !is_type_tag_for_partial (abbrev->tag)
15298 && abbrev->tag != DW_TAG_constant
15299 && abbrev->tag != DW_TAG_enumerator
15300 && abbrev->tag != DW_TAG_subprogram
15301 && abbrev->tag != DW_TAG_lexical_block
15302 && abbrev->tag != DW_TAG_variable
15303 && abbrev->tag != DW_TAG_namespace
15304 && abbrev->tag != DW_TAG_module
15305 && abbrev->tag != DW_TAG_member
15306 && abbrev->tag != DW_TAG_imported_unit
15307 && abbrev->tag != DW_TAG_imported_declaration)
15308 {
15309 /* Otherwise we skip to the next sibling, if any. */
15310 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15311 continue;
15312 }
15313
15314 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15315 info_ptr);
15316
15317 /* This two-pass algorithm for processing partial symbols has a
15318 high cost in cache pressure. Thus, handle some simple cases
15319 here which cover the majority of C partial symbols. DIEs
15320 which neither have specification tags in them, nor could have
15321 specification tags elsewhere pointing at them, can simply be
15322 processed and discarded.
15323
15324 This segment is also optional; scan_partial_symbols and
15325 add_partial_symbol will handle these DIEs if we chain
15326 them in normally. When compilers which do not emit large
15327 quantities of duplicate debug information are more common,
15328 this code can probably be removed. */
15329
15330 /* Any complete simple types at the top level (pretty much all
15331 of them, for a language without namespaces), can be processed
15332 directly. */
15333 if (parent_die == NULL
15334 && part_die->has_specification == 0
15335 && part_die->is_declaration == 0
15336 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15337 || part_die->tag == DW_TAG_base_type
15338 || part_die->tag == DW_TAG_subrange_type))
15339 {
15340 if (building_psymtab && part_die->name != NULL)
15341 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15342 VAR_DOMAIN, LOC_TYPEDEF,
15343 &objfile->static_psymbols,
15344 0, (CORE_ADDR) 0, cu->language, objfile);
15345 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15346 continue;
15347 }
15348
15349 /* The exception for DW_TAG_typedef with has_children above is
15350 a workaround of GCC PR debug/47510. In the case of this complaint
15351 type_name_no_tag_or_error will error on such types later.
15352
15353 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15354 it could not find the child DIEs referenced later, this is checked
15355 above. In correct DWARF DW_TAG_typedef should have no children. */
15356
15357 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15358 complaint (&symfile_complaints,
15359 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15360 "- DIE at 0x%x [in module %s]"),
15361 part_die->offset.sect_off, objfile_name (objfile));
15362
15363 /* If we're at the second level, and we're an enumerator, and
15364 our parent has no specification (meaning possibly lives in a
15365 namespace elsewhere), then we can add the partial symbol now
15366 instead of queueing it. */
15367 if (part_die->tag == DW_TAG_enumerator
15368 && parent_die != NULL
15369 && parent_die->die_parent == NULL
15370 && parent_die->tag == DW_TAG_enumeration_type
15371 && parent_die->has_specification == 0)
15372 {
15373 if (part_die->name == NULL)
15374 complaint (&symfile_complaints,
15375 _("malformed enumerator DIE ignored"));
15376 else if (building_psymtab)
15377 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15378 VAR_DOMAIN, LOC_CONST,
15379 (cu->language == language_cplus
15380 || cu->language == language_java)
15381 ? &objfile->global_psymbols
15382 : &objfile->static_psymbols,
15383 0, (CORE_ADDR) 0, cu->language, objfile);
15384
15385 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15386 continue;
15387 }
15388
15389 /* We'll save this DIE so link it in. */
15390 part_die->die_parent = parent_die;
15391 part_die->die_sibling = NULL;
15392 part_die->die_child = NULL;
15393
15394 if (last_die && last_die == parent_die)
15395 last_die->die_child = part_die;
15396 else if (last_die)
15397 last_die->die_sibling = part_die;
15398
15399 last_die = part_die;
15400
15401 if (first_die == NULL)
15402 first_die = part_die;
15403
15404 /* Maybe add the DIE to the hash table. Not all DIEs that we
15405 find interesting need to be in the hash table, because we
15406 also have the parent/sibling/child chains; only those that we
15407 might refer to by offset later during partial symbol reading.
15408
15409 For now this means things that might have be the target of a
15410 DW_AT_specification, DW_AT_abstract_origin, or
15411 DW_AT_extension. DW_AT_extension will refer only to
15412 namespaces; DW_AT_abstract_origin refers to functions (and
15413 many things under the function DIE, but we do not recurse
15414 into function DIEs during partial symbol reading) and
15415 possibly variables as well; DW_AT_specification refers to
15416 declarations. Declarations ought to have the DW_AT_declaration
15417 flag. It happens that GCC forgets to put it in sometimes, but
15418 only for functions, not for types.
15419
15420 Adding more things than necessary to the hash table is harmless
15421 except for the performance cost. Adding too few will result in
15422 wasted time in find_partial_die, when we reread the compilation
15423 unit with load_all_dies set. */
15424
15425 if (load_all
15426 || abbrev->tag == DW_TAG_constant
15427 || abbrev->tag == DW_TAG_subprogram
15428 || abbrev->tag == DW_TAG_variable
15429 || abbrev->tag == DW_TAG_namespace
15430 || part_die->is_declaration)
15431 {
15432 void **slot;
15433
15434 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15435 part_die->offset.sect_off, INSERT);
15436 *slot = part_die;
15437 }
15438
15439 part_die = obstack_alloc (&cu->comp_unit_obstack,
15440 sizeof (struct partial_die_info));
15441
15442 /* For some DIEs we want to follow their children (if any). For C
15443 we have no reason to follow the children of structures; for other
15444 languages we have to, so that we can get at method physnames
15445 to infer fully qualified class names, for DW_AT_specification,
15446 and for C++ template arguments. For C++, we also look one level
15447 inside functions to find template arguments (if the name of the
15448 function does not already contain the template arguments).
15449
15450 For Ada, we need to scan the children of subprograms and lexical
15451 blocks as well because Ada allows the definition of nested
15452 entities that could be interesting for the debugger, such as
15453 nested subprograms for instance. */
15454 if (last_die->has_children
15455 && (load_all
15456 || last_die->tag == DW_TAG_namespace
15457 || last_die->tag == DW_TAG_module
15458 || last_die->tag == DW_TAG_enumeration_type
15459 || (cu->language == language_cplus
15460 && last_die->tag == DW_TAG_subprogram
15461 && (last_die->name == NULL
15462 || strchr (last_die->name, '<') == NULL))
15463 || (cu->language != language_c
15464 && (last_die->tag == DW_TAG_class_type
15465 || last_die->tag == DW_TAG_interface_type
15466 || last_die->tag == DW_TAG_structure_type
15467 || last_die->tag == DW_TAG_union_type))
15468 || (cu->language == language_ada
15469 && (last_die->tag == DW_TAG_subprogram
15470 || last_die->tag == DW_TAG_lexical_block))))
15471 {
15472 nesting_level++;
15473 parent_die = last_die;
15474 continue;
15475 }
15476
15477 /* Otherwise we skip to the next sibling, if any. */
15478 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15479
15480 /* Back to the top, do it again. */
15481 }
15482}
15483
15484/* Read a minimal amount of information into the minimal die structure. */
15485
15486static const gdb_byte *
15487read_partial_die (const struct die_reader_specs *reader,
15488 struct partial_die_info *part_die,
15489 struct abbrev_info *abbrev, unsigned int abbrev_len,
15490 const gdb_byte *info_ptr)
15491{
15492 struct dwarf2_cu *cu = reader->cu;
15493 struct objfile *objfile = cu->objfile;
15494 const gdb_byte *buffer = reader->buffer;
15495 unsigned int i;
15496 struct attribute attr;
15497 int has_low_pc_attr = 0;
15498 int has_high_pc_attr = 0;
15499 int high_pc_relative = 0;
15500
15501 memset (part_die, 0, sizeof (struct partial_die_info));
15502
15503 part_die->offset.sect_off = info_ptr - buffer;
15504
15505 info_ptr += abbrev_len;
15506
15507 if (abbrev == NULL)
15508 return info_ptr;
15509
15510 part_die->tag = abbrev->tag;
15511 part_die->has_children = abbrev->has_children;
15512
15513 for (i = 0; i < abbrev->num_attrs; ++i)
15514 {
15515 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15516
15517 /* Store the data if it is of an attribute we want to keep in a
15518 partial symbol table. */
15519 switch (attr.name)
15520 {
15521 case DW_AT_name:
15522 switch (part_die->tag)
15523 {
15524 case DW_TAG_compile_unit:
15525 case DW_TAG_partial_unit:
15526 case DW_TAG_type_unit:
15527 /* Compilation units have a DW_AT_name that is a filename, not
15528 a source language identifier. */
15529 case DW_TAG_enumeration_type:
15530 case DW_TAG_enumerator:
15531 /* These tags always have simple identifiers already; no need
15532 to canonicalize them. */
15533 part_die->name = DW_STRING (&attr);
15534 break;
15535 default:
15536 part_die->name
15537 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15538 &objfile->per_bfd->storage_obstack);
15539 break;
15540 }
15541 break;
15542 case DW_AT_linkage_name:
15543 case DW_AT_MIPS_linkage_name:
15544 /* Note that both forms of linkage name might appear. We
15545 assume they will be the same, and we only store the last
15546 one we see. */
15547 if (cu->language == language_ada)
15548 part_die->name = DW_STRING (&attr);
15549 part_die->linkage_name = DW_STRING (&attr);
15550 break;
15551 case DW_AT_low_pc:
15552 has_low_pc_attr = 1;
15553 part_die->lowpc = attr_value_as_address (&attr);
15554 break;
15555 case DW_AT_high_pc:
15556 has_high_pc_attr = 1;
15557 part_die->highpc = attr_value_as_address (&attr);
15558 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15559 high_pc_relative = 1;
15560 break;
15561 case DW_AT_location:
15562 /* Support the .debug_loc offsets. */
15563 if (attr_form_is_block (&attr))
15564 {
15565 part_die->d.locdesc = DW_BLOCK (&attr);
15566 }
15567 else if (attr_form_is_section_offset (&attr))
15568 {
15569 dwarf2_complex_location_expr_complaint ();
15570 }
15571 else
15572 {
15573 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15574 "partial symbol information");
15575 }
15576 break;
15577 case DW_AT_external:
15578 part_die->is_external = DW_UNSND (&attr);
15579 break;
15580 case DW_AT_declaration:
15581 part_die->is_declaration = DW_UNSND (&attr);
15582 break;
15583 case DW_AT_type:
15584 part_die->has_type = 1;
15585 break;
15586 case DW_AT_abstract_origin:
15587 case DW_AT_specification:
15588 case DW_AT_extension:
15589 part_die->has_specification = 1;
15590 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15591 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15592 || cu->per_cu->is_dwz);
15593 break;
15594 case DW_AT_sibling:
15595 /* Ignore absolute siblings, they might point outside of
15596 the current compile unit. */
15597 if (attr.form == DW_FORM_ref_addr)
15598 complaint (&symfile_complaints,
15599 _("ignoring absolute DW_AT_sibling"));
15600 else
15601 {
15602 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15603 const gdb_byte *sibling_ptr = buffer + off;
15604
15605 if (sibling_ptr < info_ptr)
15606 complaint (&symfile_complaints,
15607 _("DW_AT_sibling points backwards"));
15608 else if (sibling_ptr > reader->buffer_end)
15609 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15610 else
15611 part_die->sibling = sibling_ptr;
15612 }
15613 break;
15614 case DW_AT_byte_size:
15615 part_die->has_byte_size = 1;
15616 break;
15617 case DW_AT_calling_convention:
15618 /* DWARF doesn't provide a way to identify a program's source-level
15619 entry point. DW_AT_calling_convention attributes are only meant
15620 to describe functions' calling conventions.
15621
15622 However, because it's a necessary piece of information in
15623 Fortran, and because DW_CC_program is the only piece of debugging
15624 information whose definition refers to a 'main program' at all,
15625 several compilers have begun marking Fortran main programs with
15626 DW_CC_program --- even when those functions use the standard
15627 calling conventions.
15628
15629 So until DWARF specifies a way to provide this information and
15630 compilers pick up the new representation, we'll support this
15631 practice. */
15632 if (DW_UNSND (&attr) == DW_CC_program
15633 && cu->language == language_fortran)
15634 set_objfile_main_name (objfile, part_die->name, language_fortran);
15635 break;
15636 case DW_AT_inline:
15637 if (DW_UNSND (&attr) == DW_INL_inlined
15638 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15639 part_die->may_be_inlined = 1;
15640 break;
15641
15642 case DW_AT_import:
15643 if (part_die->tag == DW_TAG_imported_unit)
15644 {
15645 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15646 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15647 || cu->per_cu->is_dwz);
15648 }
15649 break;
15650
15651 default:
15652 break;
15653 }
15654 }
15655
15656 if (high_pc_relative)
15657 part_die->highpc += part_die->lowpc;
15658
15659 if (has_low_pc_attr && has_high_pc_attr)
15660 {
15661 /* When using the GNU linker, .gnu.linkonce. sections are used to
15662 eliminate duplicate copies of functions and vtables and such.
15663 The linker will arbitrarily choose one and discard the others.
15664 The AT_*_pc values for such functions refer to local labels in
15665 these sections. If the section from that file was discarded, the
15666 labels are not in the output, so the relocs get a value of 0.
15667 If this is a discarded function, mark the pc bounds as invalid,
15668 so that GDB will ignore it. */
15669 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15670 {
15671 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15672
15673 complaint (&symfile_complaints,
15674 _("DW_AT_low_pc %s is zero "
15675 "for DIE at 0x%x [in module %s]"),
15676 paddress (gdbarch, part_die->lowpc),
15677 part_die->offset.sect_off, objfile_name (objfile));
15678 }
15679 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15680 else if (part_die->lowpc >= part_die->highpc)
15681 {
15682 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15683
15684 complaint (&symfile_complaints,
15685 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15686 "for DIE at 0x%x [in module %s]"),
15687 paddress (gdbarch, part_die->lowpc),
15688 paddress (gdbarch, part_die->highpc),
15689 part_die->offset.sect_off, objfile_name (objfile));
15690 }
15691 else
15692 part_die->has_pc_info = 1;
15693 }
15694
15695 return info_ptr;
15696}
15697
15698/* Find a cached partial DIE at OFFSET in CU. */
15699
15700static struct partial_die_info *
15701find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15702{
15703 struct partial_die_info *lookup_die = NULL;
15704 struct partial_die_info part_die;
15705
15706 part_die.offset = offset;
15707 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15708 offset.sect_off);
15709
15710 return lookup_die;
15711}
15712
15713/* Find a partial DIE at OFFSET, which may or may not be in CU,
15714 except in the case of .debug_types DIEs which do not reference
15715 outside their CU (they do however referencing other types via
15716 DW_FORM_ref_sig8). */
15717
15718static struct partial_die_info *
15719find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15720{
15721 struct objfile *objfile = cu->objfile;
15722 struct dwarf2_per_cu_data *per_cu = NULL;
15723 struct partial_die_info *pd = NULL;
15724
15725 if (offset_in_dwz == cu->per_cu->is_dwz
15726 && offset_in_cu_p (&cu->header, offset))
15727 {
15728 pd = find_partial_die_in_comp_unit (offset, cu);
15729 if (pd != NULL)
15730 return pd;
15731 /* We missed recording what we needed.
15732 Load all dies and try again. */
15733 per_cu = cu->per_cu;
15734 }
15735 else
15736 {
15737 /* TUs don't reference other CUs/TUs (except via type signatures). */
15738 if (cu->per_cu->is_debug_types)
15739 {
15740 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15741 " external reference to offset 0x%lx [in module %s].\n"),
15742 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15743 bfd_get_filename (objfile->obfd));
15744 }
15745 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15746 objfile);
15747
15748 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15749 load_partial_comp_unit (per_cu);
15750
15751 per_cu->cu->last_used = 0;
15752 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15753 }
15754
15755 /* If we didn't find it, and not all dies have been loaded,
15756 load them all and try again. */
15757
15758 if (pd == NULL && per_cu->load_all_dies == 0)
15759 {
15760 per_cu->load_all_dies = 1;
15761
15762 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15763 THIS_CU->cu may already be in use. So we can't just free it and
15764 replace its DIEs with the ones we read in. Instead, we leave those
15765 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15766 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15767 set. */
15768 load_partial_comp_unit (per_cu);
15769
15770 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15771 }
15772
15773 if (pd == NULL)
15774 internal_error (__FILE__, __LINE__,
15775 _("could not find partial DIE 0x%x "
15776 "in cache [from module %s]\n"),
15777 offset.sect_off, bfd_get_filename (objfile->obfd));
15778 return pd;
15779}
15780
15781/* See if we can figure out if the class lives in a namespace. We do
15782 this by looking for a member function; its demangled name will
15783 contain namespace info, if there is any. */
15784
15785static void
15786guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15787 struct dwarf2_cu *cu)
15788{
15789 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15790 what template types look like, because the demangler
15791 frequently doesn't give the same name as the debug info. We
15792 could fix this by only using the demangled name to get the
15793 prefix (but see comment in read_structure_type). */
15794
15795 struct partial_die_info *real_pdi;
15796 struct partial_die_info *child_pdi;
15797
15798 /* If this DIE (this DIE's specification, if any) has a parent, then
15799 we should not do this. We'll prepend the parent's fully qualified
15800 name when we create the partial symbol. */
15801
15802 real_pdi = struct_pdi;
15803 while (real_pdi->has_specification)
15804 real_pdi = find_partial_die (real_pdi->spec_offset,
15805 real_pdi->spec_is_dwz, cu);
15806
15807 if (real_pdi->die_parent != NULL)
15808 return;
15809
15810 for (child_pdi = struct_pdi->die_child;
15811 child_pdi != NULL;
15812 child_pdi = child_pdi->die_sibling)
15813 {
15814 if (child_pdi->tag == DW_TAG_subprogram
15815 && child_pdi->linkage_name != NULL)
15816 {
15817 char *actual_class_name
15818 = language_class_name_from_physname (cu->language_defn,
15819 child_pdi->linkage_name);
15820 if (actual_class_name != NULL)
15821 {
15822 struct_pdi->name
15823 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15824 actual_class_name,
15825 strlen (actual_class_name));
15826 xfree (actual_class_name);
15827 }
15828 break;
15829 }
15830 }
15831}
15832
15833/* Adjust PART_DIE before generating a symbol for it. This function
15834 may set the is_external flag or change the DIE's name. */
15835
15836static void
15837fixup_partial_die (struct partial_die_info *part_die,
15838 struct dwarf2_cu *cu)
15839{
15840 /* Once we've fixed up a die, there's no point in doing so again.
15841 This also avoids a memory leak if we were to call
15842 guess_partial_die_structure_name multiple times. */
15843 if (part_die->fixup_called)
15844 return;
15845
15846 /* If we found a reference attribute and the DIE has no name, try
15847 to find a name in the referred to DIE. */
15848
15849 if (part_die->name == NULL && part_die->has_specification)
15850 {
15851 struct partial_die_info *spec_die;
15852
15853 spec_die = find_partial_die (part_die->spec_offset,
15854 part_die->spec_is_dwz, cu);
15855
15856 fixup_partial_die (spec_die, cu);
15857
15858 if (spec_die->name)
15859 {
15860 part_die->name = spec_die->name;
15861
15862 /* Copy DW_AT_external attribute if it is set. */
15863 if (spec_die->is_external)
15864 part_die->is_external = spec_die->is_external;
15865 }
15866 }
15867
15868 /* Set default names for some unnamed DIEs. */
15869
15870 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15871 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15872
15873 /* If there is no parent die to provide a namespace, and there are
15874 children, see if we can determine the namespace from their linkage
15875 name. */
15876 if (cu->language == language_cplus
15877 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15878 && part_die->die_parent == NULL
15879 && part_die->has_children
15880 && (part_die->tag == DW_TAG_class_type
15881 || part_die->tag == DW_TAG_structure_type
15882 || part_die->tag == DW_TAG_union_type))
15883 guess_partial_die_structure_name (part_die, cu);
15884
15885 /* GCC might emit a nameless struct or union that has a linkage
15886 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15887 if (part_die->name == NULL
15888 && (part_die->tag == DW_TAG_class_type
15889 || part_die->tag == DW_TAG_interface_type
15890 || part_die->tag == DW_TAG_structure_type
15891 || part_die->tag == DW_TAG_union_type)
15892 && part_die->linkage_name != NULL)
15893 {
15894 char *demangled;
15895
15896 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15897 if (demangled)
15898 {
15899 const char *base;
15900
15901 /* Strip any leading namespaces/classes, keep only the base name.
15902 DW_AT_name for named DIEs does not contain the prefixes. */
15903 base = strrchr (demangled, ':');
15904 if (base && base > demangled && base[-1] == ':')
15905 base++;
15906 else
15907 base = demangled;
15908
15909 part_die->name
15910 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15911 base, strlen (base));
15912 xfree (demangled);
15913 }
15914 }
15915
15916 part_die->fixup_called = 1;
15917}
15918
15919/* Read an attribute value described by an attribute form. */
15920
15921static const gdb_byte *
15922read_attribute_value (const struct die_reader_specs *reader,
15923 struct attribute *attr, unsigned form,
15924 const gdb_byte *info_ptr)
15925{
15926 struct dwarf2_cu *cu = reader->cu;
15927 bfd *abfd = reader->abfd;
15928 struct comp_unit_head *cu_header = &cu->header;
15929 unsigned int bytes_read;
15930 struct dwarf_block *blk;
15931
15932 attr->form = form;
15933 switch (form)
15934 {
15935 case DW_FORM_ref_addr:
15936 if (cu->header.version == 2)
15937 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15938 else
15939 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15940 &cu->header, &bytes_read);
15941 info_ptr += bytes_read;
15942 break;
15943 case DW_FORM_GNU_ref_alt:
15944 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15945 info_ptr += bytes_read;
15946 break;
15947 case DW_FORM_addr:
15948 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15949 info_ptr += bytes_read;
15950 break;
15951 case DW_FORM_block2:
15952 blk = dwarf_alloc_block (cu);
15953 blk->size = read_2_bytes (abfd, info_ptr);
15954 info_ptr += 2;
15955 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15956 info_ptr += blk->size;
15957 DW_BLOCK (attr) = blk;
15958 break;
15959 case DW_FORM_block4:
15960 blk = dwarf_alloc_block (cu);
15961 blk->size = read_4_bytes (abfd, info_ptr);
15962 info_ptr += 4;
15963 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15964 info_ptr += blk->size;
15965 DW_BLOCK (attr) = blk;
15966 break;
15967 case DW_FORM_data2:
15968 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15969 info_ptr += 2;
15970 break;
15971 case DW_FORM_data4:
15972 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15973 info_ptr += 4;
15974 break;
15975 case DW_FORM_data8:
15976 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15977 info_ptr += 8;
15978 break;
15979 case DW_FORM_sec_offset:
15980 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15981 info_ptr += bytes_read;
15982 break;
15983 case DW_FORM_string:
15984 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15985 DW_STRING_IS_CANONICAL (attr) = 0;
15986 info_ptr += bytes_read;
15987 break;
15988 case DW_FORM_strp:
15989 if (!cu->per_cu->is_dwz)
15990 {
15991 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15992 &bytes_read);
15993 DW_STRING_IS_CANONICAL (attr) = 0;
15994 info_ptr += bytes_read;
15995 break;
15996 }
15997 /* FALLTHROUGH */
15998 case DW_FORM_GNU_strp_alt:
15999 {
16000 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16001 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16002 &bytes_read);
16003
16004 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16005 DW_STRING_IS_CANONICAL (attr) = 0;
16006 info_ptr += bytes_read;
16007 }
16008 break;
16009 case DW_FORM_exprloc:
16010 case DW_FORM_block:
16011 blk = dwarf_alloc_block (cu);
16012 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16013 info_ptr += bytes_read;
16014 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16015 info_ptr += blk->size;
16016 DW_BLOCK (attr) = blk;
16017 break;
16018 case DW_FORM_block1:
16019 blk = dwarf_alloc_block (cu);
16020 blk->size = read_1_byte (abfd, info_ptr);
16021 info_ptr += 1;
16022 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16023 info_ptr += blk->size;
16024 DW_BLOCK (attr) = blk;
16025 break;
16026 case DW_FORM_data1:
16027 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16028 info_ptr += 1;
16029 break;
16030 case DW_FORM_flag:
16031 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16032 info_ptr += 1;
16033 break;
16034 case DW_FORM_flag_present:
16035 DW_UNSND (attr) = 1;
16036 break;
16037 case DW_FORM_sdata:
16038 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16039 info_ptr += bytes_read;
16040 break;
16041 case DW_FORM_udata:
16042 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16043 info_ptr += bytes_read;
16044 break;
16045 case DW_FORM_ref1:
16046 DW_UNSND (attr) = (cu->header.offset.sect_off
16047 + read_1_byte (abfd, info_ptr));
16048 info_ptr += 1;
16049 break;
16050 case DW_FORM_ref2:
16051 DW_UNSND (attr) = (cu->header.offset.sect_off
16052 + read_2_bytes (abfd, info_ptr));
16053 info_ptr += 2;
16054 break;
16055 case DW_FORM_ref4:
16056 DW_UNSND (attr) = (cu->header.offset.sect_off
16057 + read_4_bytes (abfd, info_ptr));
16058 info_ptr += 4;
16059 break;
16060 case DW_FORM_ref8:
16061 DW_UNSND (attr) = (cu->header.offset.sect_off
16062 + read_8_bytes (abfd, info_ptr));
16063 info_ptr += 8;
16064 break;
16065 case DW_FORM_ref_sig8:
16066 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16067 info_ptr += 8;
16068 break;
16069 case DW_FORM_ref_udata:
16070 DW_UNSND (attr) = (cu->header.offset.sect_off
16071 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16072 info_ptr += bytes_read;
16073 break;
16074 case DW_FORM_indirect:
16075 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16076 info_ptr += bytes_read;
16077 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16078 break;
16079 case DW_FORM_GNU_addr_index:
16080 if (reader->dwo_file == NULL)
16081 {
16082 /* For now flag a hard error.
16083 Later we can turn this into a complaint. */
16084 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16085 dwarf_form_name (form),
16086 bfd_get_filename (abfd));
16087 }
16088 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16089 info_ptr += bytes_read;
16090 break;
16091 case DW_FORM_GNU_str_index:
16092 if (reader->dwo_file == NULL)
16093 {
16094 /* For now flag a hard error.
16095 Later we can turn this into a complaint if warranted. */
16096 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16097 dwarf_form_name (form),
16098 bfd_get_filename (abfd));
16099 }
16100 {
16101 ULONGEST str_index =
16102 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16103
16104 DW_STRING (attr) = read_str_index (reader, str_index);
16105 DW_STRING_IS_CANONICAL (attr) = 0;
16106 info_ptr += bytes_read;
16107 }
16108 break;
16109 default:
16110 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16111 dwarf_form_name (form),
16112 bfd_get_filename (abfd));
16113 }
16114
16115 /* Super hack. */
16116 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16117 attr->form = DW_FORM_GNU_ref_alt;
16118
16119 /* We have seen instances where the compiler tried to emit a byte
16120 size attribute of -1 which ended up being encoded as an unsigned
16121 0xffffffff. Although 0xffffffff is technically a valid size value,
16122 an object of this size seems pretty unlikely so we can relatively
16123 safely treat these cases as if the size attribute was invalid and
16124 treat them as zero by default. */
16125 if (attr->name == DW_AT_byte_size
16126 && form == DW_FORM_data4
16127 && DW_UNSND (attr) >= 0xffffffff)
16128 {
16129 complaint
16130 (&symfile_complaints,
16131 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16132 hex_string (DW_UNSND (attr)));
16133 DW_UNSND (attr) = 0;
16134 }
16135
16136 return info_ptr;
16137}
16138
16139/* Read an attribute described by an abbreviated attribute. */
16140
16141static const gdb_byte *
16142read_attribute (const struct die_reader_specs *reader,
16143 struct attribute *attr, struct attr_abbrev *abbrev,
16144 const gdb_byte *info_ptr)
16145{
16146 attr->name = abbrev->name;
16147 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16148}
16149
16150/* Read dwarf information from a buffer. */
16151
16152static unsigned int
16153read_1_byte (bfd *abfd, const gdb_byte *buf)
16154{
16155 return bfd_get_8 (abfd, buf);
16156}
16157
16158static int
16159read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16160{
16161 return bfd_get_signed_8 (abfd, buf);
16162}
16163
16164static unsigned int
16165read_2_bytes (bfd *abfd, const gdb_byte *buf)
16166{
16167 return bfd_get_16 (abfd, buf);
16168}
16169
16170static int
16171read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16172{
16173 return bfd_get_signed_16 (abfd, buf);
16174}
16175
16176static unsigned int
16177read_4_bytes (bfd *abfd, const gdb_byte *buf)
16178{
16179 return bfd_get_32 (abfd, buf);
16180}
16181
16182static int
16183read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16184{
16185 return bfd_get_signed_32 (abfd, buf);
16186}
16187
16188static ULONGEST
16189read_8_bytes (bfd *abfd, const gdb_byte *buf)
16190{
16191 return bfd_get_64 (abfd, buf);
16192}
16193
16194static CORE_ADDR
16195read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16196 unsigned int *bytes_read)
16197{
16198 struct comp_unit_head *cu_header = &cu->header;
16199 CORE_ADDR retval = 0;
16200
16201 if (cu_header->signed_addr_p)
16202 {
16203 switch (cu_header->addr_size)
16204 {
16205 case 2:
16206 retval = bfd_get_signed_16 (abfd, buf);
16207 break;
16208 case 4:
16209 retval = bfd_get_signed_32 (abfd, buf);
16210 break;
16211 case 8:
16212 retval = bfd_get_signed_64 (abfd, buf);
16213 break;
16214 default:
16215 internal_error (__FILE__, __LINE__,
16216 _("read_address: bad switch, signed [in module %s]"),
16217 bfd_get_filename (abfd));
16218 }
16219 }
16220 else
16221 {
16222 switch (cu_header->addr_size)
16223 {
16224 case 2:
16225 retval = bfd_get_16 (abfd, buf);
16226 break;
16227 case 4:
16228 retval = bfd_get_32 (abfd, buf);
16229 break;
16230 case 8:
16231 retval = bfd_get_64 (abfd, buf);
16232 break;
16233 default:
16234 internal_error (__FILE__, __LINE__,
16235 _("read_address: bad switch, "
16236 "unsigned [in module %s]"),
16237 bfd_get_filename (abfd));
16238 }
16239 }
16240
16241 *bytes_read = cu_header->addr_size;
16242 return retval;
16243}
16244
16245/* Read the initial length from a section. The (draft) DWARF 3
16246 specification allows the initial length to take up either 4 bytes
16247 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16248 bytes describe the length and all offsets will be 8 bytes in length
16249 instead of 4.
16250
16251 An older, non-standard 64-bit format is also handled by this
16252 function. The older format in question stores the initial length
16253 as an 8-byte quantity without an escape value. Lengths greater
16254 than 2^32 aren't very common which means that the initial 4 bytes
16255 is almost always zero. Since a length value of zero doesn't make
16256 sense for the 32-bit format, this initial zero can be considered to
16257 be an escape value which indicates the presence of the older 64-bit
16258 format. As written, the code can't detect (old format) lengths
16259 greater than 4GB. If it becomes necessary to handle lengths
16260 somewhat larger than 4GB, we could allow other small values (such
16261 as the non-sensical values of 1, 2, and 3) to also be used as
16262 escape values indicating the presence of the old format.
16263
16264 The value returned via bytes_read should be used to increment the
16265 relevant pointer after calling read_initial_length().
16266
16267 [ Note: read_initial_length() and read_offset() are based on the
16268 document entitled "DWARF Debugging Information Format", revision
16269 3, draft 8, dated November 19, 2001. This document was obtained
16270 from:
16271
16272 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16273
16274 This document is only a draft and is subject to change. (So beware.)
16275
16276 Details regarding the older, non-standard 64-bit format were
16277 determined empirically by examining 64-bit ELF files produced by
16278 the SGI toolchain on an IRIX 6.5 machine.
16279
16280 - Kevin, July 16, 2002
16281 ] */
16282
16283static LONGEST
16284read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16285{
16286 LONGEST length = bfd_get_32 (abfd, buf);
16287
16288 if (length == 0xffffffff)
16289 {
16290 length = bfd_get_64 (abfd, buf + 4);
16291 *bytes_read = 12;
16292 }
16293 else if (length == 0)
16294 {
16295 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16296 length = bfd_get_64 (abfd, buf);
16297 *bytes_read = 8;
16298 }
16299 else
16300 {
16301 *bytes_read = 4;
16302 }
16303
16304 return length;
16305}
16306
16307/* Cover function for read_initial_length.
16308 Returns the length of the object at BUF, and stores the size of the
16309 initial length in *BYTES_READ and stores the size that offsets will be in
16310 *OFFSET_SIZE.
16311 If the initial length size is not equivalent to that specified in
16312 CU_HEADER then issue a complaint.
16313 This is useful when reading non-comp-unit headers. */
16314
16315static LONGEST
16316read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16317 const struct comp_unit_head *cu_header,
16318 unsigned int *bytes_read,
16319 unsigned int *offset_size)
16320{
16321 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16322
16323 gdb_assert (cu_header->initial_length_size == 4
16324 || cu_header->initial_length_size == 8
16325 || cu_header->initial_length_size == 12);
16326
16327 if (cu_header->initial_length_size != *bytes_read)
16328 complaint (&symfile_complaints,
16329 _("intermixed 32-bit and 64-bit DWARF sections"));
16330
16331 *offset_size = (*bytes_read == 4) ? 4 : 8;
16332 return length;
16333}
16334
16335/* Read an offset from the data stream. The size of the offset is
16336 given by cu_header->offset_size. */
16337
16338static LONGEST
16339read_offset (bfd *abfd, const gdb_byte *buf,
16340 const struct comp_unit_head *cu_header,
16341 unsigned int *bytes_read)
16342{
16343 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16344
16345 *bytes_read = cu_header->offset_size;
16346 return offset;
16347}
16348
16349/* Read an offset from the data stream. */
16350
16351static LONGEST
16352read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16353{
16354 LONGEST retval = 0;
16355
16356 switch (offset_size)
16357 {
16358 case 4:
16359 retval = bfd_get_32 (abfd, buf);
16360 break;
16361 case 8:
16362 retval = bfd_get_64 (abfd, buf);
16363 break;
16364 default:
16365 internal_error (__FILE__, __LINE__,
16366 _("read_offset_1: bad switch [in module %s]"),
16367 bfd_get_filename (abfd));
16368 }
16369
16370 return retval;
16371}
16372
16373static const gdb_byte *
16374read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16375{
16376 /* If the size of a host char is 8 bits, we can return a pointer
16377 to the buffer, otherwise we have to copy the data to a buffer
16378 allocated on the temporary obstack. */
16379 gdb_assert (HOST_CHAR_BIT == 8);
16380 return buf;
16381}
16382
16383static const char *
16384read_direct_string (bfd *abfd, const gdb_byte *buf,
16385 unsigned int *bytes_read_ptr)
16386{
16387 /* If the size of a host char is 8 bits, we can return a pointer
16388 to the string, otherwise we have to copy the string to a buffer
16389 allocated on the temporary obstack. */
16390 gdb_assert (HOST_CHAR_BIT == 8);
16391 if (*buf == '\0')
16392 {
16393 *bytes_read_ptr = 1;
16394 return NULL;
16395 }
16396 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16397 return (const char *) buf;
16398}
16399
16400static const char *
16401read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16402{
16403 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16404 if (dwarf2_per_objfile->str.buffer == NULL)
16405 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16406 bfd_get_filename (abfd));
16407 if (str_offset >= dwarf2_per_objfile->str.size)
16408 error (_("DW_FORM_strp pointing outside of "
16409 ".debug_str section [in module %s]"),
16410 bfd_get_filename (abfd));
16411 gdb_assert (HOST_CHAR_BIT == 8);
16412 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16413 return NULL;
16414 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16415}
16416
16417/* Read a string at offset STR_OFFSET in the .debug_str section from
16418 the .dwz file DWZ. Throw an error if the offset is too large. If
16419 the string consists of a single NUL byte, return NULL; otherwise
16420 return a pointer to the string. */
16421
16422static const char *
16423read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16424{
16425 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16426
16427 if (dwz->str.buffer == NULL)
16428 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16429 "section [in module %s]"),
16430 bfd_get_filename (dwz->dwz_bfd));
16431 if (str_offset >= dwz->str.size)
16432 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16433 ".debug_str section [in module %s]"),
16434 bfd_get_filename (dwz->dwz_bfd));
16435 gdb_assert (HOST_CHAR_BIT == 8);
16436 if (dwz->str.buffer[str_offset] == '\0')
16437 return NULL;
16438 return (const char *) (dwz->str.buffer + str_offset);
16439}
16440
16441static const char *
16442read_indirect_string (bfd *abfd, const gdb_byte *buf,
16443 const struct comp_unit_head *cu_header,
16444 unsigned int *bytes_read_ptr)
16445{
16446 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16447
16448 return read_indirect_string_at_offset (abfd, str_offset);
16449}
16450
16451static ULONGEST
16452read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16453 unsigned int *bytes_read_ptr)
16454{
16455 ULONGEST result;
16456 unsigned int num_read;
16457 int i, shift;
16458 unsigned char byte;
16459
16460 result = 0;
16461 shift = 0;
16462 num_read = 0;
16463 i = 0;
16464 while (1)
16465 {
16466 byte = bfd_get_8 (abfd, buf);
16467 buf++;
16468 num_read++;
16469 result |= ((ULONGEST) (byte & 127) << shift);
16470 if ((byte & 128) == 0)
16471 {
16472 break;
16473 }
16474 shift += 7;
16475 }
16476 *bytes_read_ptr = num_read;
16477 return result;
16478}
16479
16480static LONGEST
16481read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16482 unsigned int *bytes_read_ptr)
16483{
16484 LONGEST result;
16485 int i, shift, num_read;
16486 unsigned char byte;
16487
16488 result = 0;
16489 shift = 0;
16490 num_read = 0;
16491 i = 0;
16492 while (1)
16493 {
16494 byte = bfd_get_8 (abfd, buf);
16495 buf++;
16496 num_read++;
16497 result |= ((LONGEST) (byte & 127) << shift);
16498 shift += 7;
16499 if ((byte & 128) == 0)
16500 {
16501 break;
16502 }
16503 }
16504 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16505 result |= -(((LONGEST) 1) << shift);
16506 *bytes_read_ptr = num_read;
16507 return result;
16508}
16509
16510/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16511 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16512 ADDR_SIZE is the size of addresses from the CU header. */
16513
16514static CORE_ADDR
16515read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16516{
16517 struct objfile *objfile = dwarf2_per_objfile->objfile;
16518 bfd *abfd = objfile->obfd;
16519 const gdb_byte *info_ptr;
16520
16521 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16522 if (dwarf2_per_objfile->addr.buffer == NULL)
16523 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16524 objfile_name (objfile));
16525 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16526 error (_("DW_FORM_addr_index pointing outside of "
16527 ".debug_addr section [in module %s]"),
16528 objfile_name (objfile));
16529 info_ptr = (dwarf2_per_objfile->addr.buffer
16530 + addr_base + addr_index * addr_size);
16531 if (addr_size == 4)
16532 return bfd_get_32 (abfd, info_ptr);
16533 else
16534 return bfd_get_64 (abfd, info_ptr);
16535}
16536
16537/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16538
16539static CORE_ADDR
16540read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16541{
16542 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16543}
16544
16545/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16546
16547static CORE_ADDR
16548read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16549 unsigned int *bytes_read)
16550{
16551 bfd *abfd = cu->objfile->obfd;
16552 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16553
16554 return read_addr_index (cu, addr_index);
16555}
16556
16557/* Data structure to pass results from dwarf2_read_addr_index_reader
16558 back to dwarf2_read_addr_index. */
16559
16560struct dwarf2_read_addr_index_data
16561{
16562 ULONGEST addr_base;
16563 int addr_size;
16564};
16565
16566/* die_reader_func for dwarf2_read_addr_index. */
16567
16568static void
16569dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16570 const gdb_byte *info_ptr,
16571 struct die_info *comp_unit_die,
16572 int has_children,
16573 void *data)
16574{
16575 struct dwarf2_cu *cu = reader->cu;
16576 struct dwarf2_read_addr_index_data *aidata =
16577 (struct dwarf2_read_addr_index_data *) data;
16578
16579 aidata->addr_base = cu->addr_base;
16580 aidata->addr_size = cu->header.addr_size;
16581}
16582
16583/* Given an index in .debug_addr, fetch the value.
16584 NOTE: This can be called during dwarf expression evaluation,
16585 long after the debug information has been read, and thus per_cu->cu
16586 may no longer exist. */
16587
16588CORE_ADDR
16589dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16590 unsigned int addr_index)
16591{
16592 struct objfile *objfile = per_cu->objfile;
16593 struct dwarf2_cu *cu = per_cu->cu;
16594 ULONGEST addr_base;
16595 int addr_size;
16596
16597 /* This is intended to be called from outside this file. */
16598 dw2_setup (objfile);
16599
16600 /* We need addr_base and addr_size.
16601 If we don't have PER_CU->cu, we have to get it.
16602 Nasty, but the alternative is storing the needed info in PER_CU,
16603 which at this point doesn't seem justified: it's not clear how frequently
16604 it would get used and it would increase the size of every PER_CU.
16605 Entry points like dwarf2_per_cu_addr_size do a similar thing
16606 so we're not in uncharted territory here.
16607 Alas we need to be a bit more complicated as addr_base is contained
16608 in the DIE.
16609
16610 We don't need to read the entire CU(/TU).
16611 We just need the header and top level die.
16612
16613 IWBN to use the aging mechanism to let us lazily later discard the CU.
16614 For now we skip this optimization. */
16615
16616 if (cu != NULL)
16617 {
16618 addr_base = cu->addr_base;
16619 addr_size = cu->header.addr_size;
16620 }
16621 else
16622 {
16623 struct dwarf2_read_addr_index_data aidata;
16624
16625 /* Note: We can't use init_cutu_and_read_dies_simple here,
16626 we need addr_base. */
16627 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16628 dwarf2_read_addr_index_reader, &aidata);
16629 addr_base = aidata.addr_base;
16630 addr_size = aidata.addr_size;
16631 }
16632
16633 return read_addr_index_1 (addr_index, addr_base, addr_size);
16634}
16635
16636/* Given a DW_FORM_GNU_str_index, fetch the string.
16637 This is only used by the Fission support. */
16638
16639static const char *
16640read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16641{
16642 struct objfile *objfile = dwarf2_per_objfile->objfile;
16643 const char *objf_name = objfile_name (objfile);
16644 bfd *abfd = objfile->obfd;
16645 struct dwarf2_cu *cu = reader->cu;
16646 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16647 struct dwarf2_section_info *str_offsets_section =
16648 &reader->dwo_file->sections.str_offsets;
16649 const gdb_byte *info_ptr;
16650 ULONGEST str_offset;
16651 static const char form_name[] = "DW_FORM_GNU_str_index";
16652
16653 dwarf2_read_section (objfile, str_section);
16654 dwarf2_read_section (objfile, str_offsets_section);
16655 if (str_section->buffer == NULL)
16656 error (_("%s used without .debug_str.dwo section"
16657 " in CU at offset 0x%lx [in module %s]"),
16658 form_name, (long) cu->header.offset.sect_off, objf_name);
16659 if (str_offsets_section->buffer == NULL)
16660 error (_("%s used without .debug_str_offsets.dwo section"
16661 " in CU at offset 0x%lx [in module %s]"),
16662 form_name, (long) cu->header.offset.sect_off, objf_name);
16663 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16664 error (_("%s pointing outside of .debug_str_offsets.dwo"
16665 " section in CU at offset 0x%lx [in module %s]"),
16666 form_name, (long) cu->header.offset.sect_off, objf_name);
16667 info_ptr = (str_offsets_section->buffer
16668 + str_index * cu->header.offset_size);
16669 if (cu->header.offset_size == 4)
16670 str_offset = bfd_get_32 (abfd, info_ptr);
16671 else
16672 str_offset = bfd_get_64 (abfd, info_ptr);
16673 if (str_offset >= str_section->size)
16674 error (_("Offset from %s pointing outside of"
16675 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16676 form_name, (long) cu->header.offset.sect_off, objf_name);
16677 return (const char *) (str_section->buffer + str_offset);
16678}
16679
16680/* Return the length of an LEB128 number in BUF. */
16681
16682static int
16683leb128_size (const gdb_byte *buf)
16684{
16685 const gdb_byte *begin = buf;
16686 gdb_byte byte;
16687
16688 while (1)
16689 {
16690 byte = *buf++;
16691 if ((byte & 128) == 0)
16692 return buf - begin;
16693 }
16694}
16695
16696static void
16697set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16698{
16699 switch (lang)
16700 {
16701 case DW_LANG_C89:
16702 case DW_LANG_C99:
16703 case DW_LANG_C:
16704 case DW_LANG_UPC:
16705 cu->language = language_c;
16706 break;
16707 case DW_LANG_C_plus_plus:
16708 cu->language = language_cplus;
16709 break;
16710 case DW_LANG_D:
16711 cu->language = language_d;
16712 break;
16713 case DW_LANG_Fortran77:
16714 case DW_LANG_Fortran90:
16715 case DW_LANG_Fortran95:
16716 cu->language = language_fortran;
16717 break;
16718 case DW_LANG_Go:
16719 cu->language = language_go;
16720 break;
16721 case DW_LANG_Mips_Assembler:
16722 cu->language = language_asm;
16723 break;
16724 case DW_LANG_Java:
16725 cu->language = language_java;
16726 break;
16727 case DW_LANG_Ada83:
16728 case DW_LANG_Ada95:
16729 cu->language = language_ada;
16730 break;
16731 case DW_LANG_Modula2:
16732 cu->language = language_m2;
16733 break;
16734 case DW_LANG_Pascal83:
16735 cu->language = language_pascal;
16736 break;
16737 case DW_LANG_ObjC:
16738 cu->language = language_objc;
16739 break;
16740 case DW_LANG_Cobol74:
16741 case DW_LANG_Cobol85:
16742 default:
16743 cu->language = language_minimal;
16744 break;
16745 }
16746 cu->language_defn = language_def (cu->language);
16747}
16748
16749/* Return the named attribute or NULL if not there. */
16750
16751static struct attribute *
16752dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16753{
16754 for (;;)
16755 {
16756 unsigned int i;
16757 struct attribute *spec = NULL;
16758
16759 for (i = 0; i < die->num_attrs; ++i)
16760 {
16761 if (die->attrs[i].name == name)
16762 return &die->attrs[i];
16763 if (die->attrs[i].name == DW_AT_specification
16764 || die->attrs[i].name == DW_AT_abstract_origin)
16765 spec = &die->attrs[i];
16766 }
16767
16768 if (!spec)
16769 break;
16770
16771 die = follow_die_ref (die, spec, &cu);
16772 }
16773
16774 return NULL;
16775}
16776
16777/* Return the named attribute or NULL if not there,
16778 but do not follow DW_AT_specification, etc.
16779 This is for use in contexts where we're reading .debug_types dies.
16780 Following DW_AT_specification, DW_AT_abstract_origin will take us
16781 back up the chain, and we want to go down. */
16782
16783static struct attribute *
16784dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16785{
16786 unsigned int i;
16787
16788 for (i = 0; i < die->num_attrs; ++i)
16789 if (die->attrs[i].name == name)
16790 return &die->attrs[i];
16791
16792 return NULL;
16793}
16794
16795/* Return non-zero iff the attribute NAME is defined for the given DIE,
16796 and holds a non-zero value. This function should only be used for
16797 DW_FORM_flag or DW_FORM_flag_present attributes. */
16798
16799static int
16800dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16801{
16802 struct attribute *attr = dwarf2_attr (die, name, cu);
16803
16804 return (attr && DW_UNSND (attr));
16805}
16806
16807static int
16808die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16809{
16810 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16811 which value is non-zero. However, we have to be careful with
16812 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16813 (via dwarf2_flag_true_p) follows this attribute. So we may
16814 end up accidently finding a declaration attribute that belongs
16815 to a different DIE referenced by the specification attribute,
16816 even though the given DIE does not have a declaration attribute. */
16817 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16818 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16819}
16820
16821/* Return the die giving the specification for DIE, if there is
16822 one. *SPEC_CU is the CU containing DIE on input, and the CU
16823 containing the return value on output. If there is no
16824 specification, but there is an abstract origin, that is
16825 returned. */
16826
16827static struct die_info *
16828die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16829{
16830 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16831 *spec_cu);
16832
16833 if (spec_attr == NULL)
16834 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16835
16836 if (spec_attr == NULL)
16837 return NULL;
16838 else
16839 return follow_die_ref (die, spec_attr, spec_cu);
16840}
16841
16842/* Free the line_header structure *LH, and any arrays and strings it
16843 refers to.
16844 NOTE: This is also used as a "cleanup" function. */
16845
16846static void
16847free_line_header (struct line_header *lh)
16848{
16849 if (lh->standard_opcode_lengths)
16850 xfree (lh->standard_opcode_lengths);
16851
16852 /* Remember that all the lh->file_names[i].name pointers are
16853 pointers into debug_line_buffer, and don't need to be freed. */
16854 if (lh->file_names)
16855 xfree (lh->file_names);
16856
16857 /* Similarly for the include directory names. */
16858 if (lh->include_dirs)
16859 xfree (lh->include_dirs);
16860
16861 xfree (lh);
16862}
16863
16864/* Add an entry to LH's include directory table. */
16865
16866static void
16867add_include_dir (struct line_header *lh, const char *include_dir)
16868{
16869 /* Grow the array if necessary. */
16870 if (lh->include_dirs_size == 0)
16871 {
16872 lh->include_dirs_size = 1; /* for testing */
16873 lh->include_dirs = xmalloc (lh->include_dirs_size
16874 * sizeof (*lh->include_dirs));
16875 }
16876 else if (lh->num_include_dirs >= lh->include_dirs_size)
16877 {
16878 lh->include_dirs_size *= 2;
16879 lh->include_dirs = xrealloc (lh->include_dirs,
16880 (lh->include_dirs_size
16881 * sizeof (*lh->include_dirs)));
16882 }
16883
16884 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16885}
16886
16887/* Add an entry to LH's file name table. */
16888
16889static void
16890add_file_name (struct line_header *lh,
16891 const char *name,
16892 unsigned int dir_index,
16893 unsigned int mod_time,
16894 unsigned int length)
16895{
16896 struct file_entry *fe;
16897
16898 /* Grow the array if necessary. */
16899 if (lh->file_names_size == 0)
16900 {
16901 lh->file_names_size = 1; /* for testing */
16902 lh->file_names = xmalloc (lh->file_names_size
16903 * sizeof (*lh->file_names));
16904 }
16905 else if (lh->num_file_names >= lh->file_names_size)
16906 {
16907 lh->file_names_size *= 2;
16908 lh->file_names = xrealloc (lh->file_names,
16909 (lh->file_names_size
16910 * sizeof (*lh->file_names)));
16911 }
16912
16913 fe = &lh->file_names[lh->num_file_names++];
16914 fe->name = name;
16915 fe->dir_index = dir_index;
16916 fe->mod_time = mod_time;
16917 fe->length = length;
16918 fe->included_p = 0;
16919 fe->symtab = NULL;
16920}
16921
16922/* A convenience function to find the proper .debug_line section for a
16923 CU. */
16924
16925static struct dwarf2_section_info *
16926get_debug_line_section (struct dwarf2_cu *cu)
16927{
16928 struct dwarf2_section_info *section;
16929
16930 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16931 DWO file. */
16932 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16933 section = &cu->dwo_unit->dwo_file->sections.line;
16934 else if (cu->per_cu->is_dwz)
16935 {
16936 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16937
16938 section = &dwz->line;
16939 }
16940 else
16941 section = &dwarf2_per_objfile->line;
16942
16943 return section;
16944}
16945
16946/* Read the statement program header starting at OFFSET in
16947 .debug_line, or .debug_line.dwo. Return a pointer
16948 to a struct line_header, allocated using xmalloc.
16949
16950 NOTE: the strings in the include directory and file name tables of
16951 the returned object point into the dwarf line section buffer,
16952 and must not be freed. */
16953
16954static struct line_header *
16955dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16956{
16957 struct cleanup *back_to;
16958 struct line_header *lh;
16959 const gdb_byte *line_ptr;
16960 unsigned int bytes_read, offset_size;
16961 int i;
16962 const char *cur_dir, *cur_file;
16963 struct dwarf2_section_info *section;
16964 bfd *abfd;
16965
16966 section = get_debug_line_section (cu);
16967 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16968 if (section->buffer == NULL)
16969 {
16970 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16971 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16972 else
16973 complaint (&symfile_complaints, _("missing .debug_line section"));
16974 return 0;
16975 }
16976
16977 /* We can't do this until we know the section is non-empty.
16978 Only then do we know we have such a section. */
16979 abfd = get_section_bfd_owner (section);
16980
16981 /* Make sure that at least there's room for the total_length field.
16982 That could be 12 bytes long, but we're just going to fudge that. */
16983 if (offset + 4 >= section->size)
16984 {
16985 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16986 return 0;
16987 }
16988
16989 lh = xmalloc (sizeof (*lh));
16990 memset (lh, 0, sizeof (*lh));
16991 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16992 (void *) lh);
16993
16994 line_ptr = section->buffer + offset;
16995
16996 /* Read in the header. */
16997 lh->total_length =
16998 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16999 &bytes_read, &offset_size);
17000 line_ptr += bytes_read;
17001 if (line_ptr + lh->total_length > (section->buffer + section->size))
17002 {
17003 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17004 do_cleanups (back_to);
17005 return 0;
17006 }
17007 lh->statement_program_end = line_ptr + lh->total_length;
17008 lh->version = read_2_bytes (abfd, line_ptr);
17009 line_ptr += 2;
17010 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17011 line_ptr += offset_size;
17012 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17013 line_ptr += 1;
17014 if (lh->version >= 4)
17015 {
17016 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17017 line_ptr += 1;
17018 }
17019 else
17020 lh->maximum_ops_per_instruction = 1;
17021
17022 if (lh->maximum_ops_per_instruction == 0)
17023 {
17024 lh->maximum_ops_per_instruction = 1;
17025 complaint (&symfile_complaints,
17026 _("invalid maximum_ops_per_instruction "
17027 "in `.debug_line' section"));
17028 }
17029
17030 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17031 line_ptr += 1;
17032 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17033 line_ptr += 1;
17034 lh->line_range = read_1_byte (abfd, line_ptr);
17035 line_ptr += 1;
17036 lh->opcode_base = read_1_byte (abfd, line_ptr);
17037 line_ptr += 1;
17038 lh->standard_opcode_lengths
17039 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17040
17041 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17042 for (i = 1; i < lh->opcode_base; ++i)
17043 {
17044 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17045 line_ptr += 1;
17046 }
17047
17048 /* Read directory table. */
17049 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17050 {
17051 line_ptr += bytes_read;
17052 add_include_dir (lh, cur_dir);
17053 }
17054 line_ptr += bytes_read;
17055
17056 /* Read file name table. */
17057 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17058 {
17059 unsigned int dir_index, mod_time, length;
17060
17061 line_ptr += bytes_read;
17062 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17063 line_ptr += bytes_read;
17064 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17065 line_ptr += bytes_read;
17066 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17067 line_ptr += bytes_read;
17068
17069 add_file_name (lh, cur_file, dir_index, mod_time, length);
17070 }
17071 line_ptr += bytes_read;
17072 lh->statement_program_start = line_ptr;
17073
17074 if (line_ptr > (section->buffer + section->size))
17075 complaint (&symfile_complaints,
17076 _("line number info header doesn't "
17077 "fit in `.debug_line' section"));
17078
17079 discard_cleanups (back_to);
17080 return lh;
17081}
17082
17083/* Subroutine of dwarf_decode_lines to simplify it.
17084 Return the file name of the psymtab for included file FILE_INDEX
17085 in line header LH of PST.
17086 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17087 If space for the result is malloc'd, it will be freed by a cleanup.
17088 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17089
17090 The function creates dangling cleanup registration. */
17091
17092static const char *
17093psymtab_include_file_name (const struct line_header *lh, int file_index,
17094 const struct partial_symtab *pst,
17095 const char *comp_dir)
17096{
17097 const struct file_entry fe = lh->file_names [file_index];
17098 const char *include_name = fe.name;
17099 const char *include_name_to_compare = include_name;
17100 const char *dir_name = NULL;
17101 const char *pst_filename;
17102 char *copied_name = NULL;
17103 int file_is_pst;
17104
17105 if (fe.dir_index)
17106 dir_name = lh->include_dirs[fe.dir_index - 1];
17107
17108 if (!IS_ABSOLUTE_PATH (include_name)
17109 && (dir_name != NULL || comp_dir != NULL))
17110 {
17111 /* Avoid creating a duplicate psymtab for PST.
17112 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17113 Before we do the comparison, however, we need to account
17114 for DIR_NAME and COMP_DIR.
17115 First prepend dir_name (if non-NULL). If we still don't
17116 have an absolute path prepend comp_dir (if non-NULL).
17117 However, the directory we record in the include-file's
17118 psymtab does not contain COMP_DIR (to match the
17119 corresponding symtab(s)).
17120
17121 Example:
17122
17123 bash$ cd /tmp
17124 bash$ gcc -g ./hello.c
17125 include_name = "hello.c"
17126 dir_name = "."
17127 DW_AT_comp_dir = comp_dir = "/tmp"
17128 DW_AT_name = "./hello.c"
17129
17130 */
17131
17132 if (dir_name != NULL)
17133 {
17134 char *tem = concat (dir_name, SLASH_STRING,
17135 include_name, (char *)NULL);
17136
17137 make_cleanup (xfree, tem);
17138 include_name = tem;
17139 include_name_to_compare = include_name;
17140 }
17141 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17142 {
17143 char *tem = concat (comp_dir, SLASH_STRING,
17144 include_name, (char *)NULL);
17145
17146 make_cleanup (xfree, tem);
17147 include_name_to_compare = tem;
17148 }
17149 }
17150
17151 pst_filename = pst->filename;
17152 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17153 {
17154 copied_name = concat (pst->dirname, SLASH_STRING,
17155 pst_filename, (char *)NULL);
17156 pst_filename = copied_name;
17157 }
17158
17159 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17160
17161 if (copied_name != NULL)
17162 xfree (copied_name);
17163
17164 if (file_is_pst)
17165 return NULL;
17166 return include_name;
17167}
17168
17169/* Ignore this record_line request. */
17170
17171static void
17172noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17173{
17174 return;
17175}
17176
17177/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17178 in the line table of subfile SUBFILE. */
17179
17180static void
17181dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17182 unsigned int line, CORE_ADDR address,
17183 record_line_ftype p_record_line)
17184{
17185 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17186
17187 (*p_record_line) (current_subfile, line, addr);
17188}
17189
17190/* Subroutine of dwarf_decode_lines_1 to simplify it.
17191 Mark the end of a set of line number records.
17192 The arguments are the same as for dwarf_record_line.
17193 If SUBFILE is NULL the request is ignored. */
17194
17195static void
17196dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17197 CORE_ADDR address, record_line_ftype p_record_line)
17198{
17199 if (subfile != NULL)
17200 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17201}
17202
17203/* Subroutine of dwarf_decode_lines to simplify it.
17204 Process the line number information in LH. */
17205
17206static void
17207dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
17208 struct dwarf2_cu *cu, const int decode_for_pst_p)
17209{
17210 const gdb_byte *line_ptr, *extended_end;
17211 const gdb_byte *line_end;
17212 unsigned int bytes_read, extended_len;
17213 unsigned char op_code, extended_op;
17214 CORE_ADDR baseaddr;
17215 struct objfile *objfile = cu->objfile;
17216 bfd *abfd = objfile->obfd;
17217 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17218 struct subfile *last_subfile = NULL;
17219 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17220 = record_line;
17221
17222 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17223
17224 line_ptr = lh->statement_program_start;
17225 line_end = lh->statement_program_end;
17226
17227 /* Read the statement sequences until there's nothing left. */
17228 while (line_ptr < line_end)
17229 {
17230 /* state machine registers */
17231 CORE_ADDR address = 0;
17232 unsigned int file = 1;
17233 unsigned int line = 1;
17234 int is_stmt = lh->default_is_stmt;
17235 int end_sequence = 0;
17236 unsigned char op_index = 0;
17237
17238 if (!decode_for_pst_p && lh->num_file_names >= file)
17239 {
17240 /* Start a subfile for the current file of the state machine. */
17241 /* lh->include_dirs and lh->file_names are 0-based, but the
17242 directory and file name numbers in the statement program
17243 are 1-based. */
17244 struct file_entry *fe = &lh->file_names[file - 1];
17245 const char *dir = NULL;
17246
17247 if (fe->dir_index)
17248 dir = lh->include_dirs[fe->dir_index - 1];
17249
17250 dwarf2_start_subfile (fe->name, dir, comp_dir);
17251 }
17252
17253 /* Decode the table. */
17254 while (!end_sequence)
17255 {
17256 op_code = read_1_byte (abfd, line_ptr);
17257 line_ptr += 1;
17258 if (line_ptr > line_end)
17259 {
17260 dwarf2_debug_line_missing_end_sequence_complaint ();
17261 break;
17262 }
17263
17264 if (op_code >= lh->opcode_base)
17265 {
17266 /* Special opcode. */
17267 unsigned char adj_opcode;
17268
17269 adj_opcode = op_code - lh->opcode_base;
17270 address += (((op_index + (adj_opcode / lh->line_range))
17271 / lh->maximum_ops_per_instruction)
17272 * lh->minimum_instruction_length);
17273 op_index = ((op_index + (adj_opcode / lh->line_range))
17274 % lh->maximum_ops_per_instruction);
17275 line += lh->line_base + (adj_opcode % lh->line_range);
17276 if (lh->num_file_names < file || file == 0)
17277 dwarf2_debug_line_missing_file_complaint ();
17278 /* For now we ignore lines not starting on an
17279 instruction boundary. */
17280 else if (op_index == 0)
17281 {
17282 lh->file_names[file - 1].included_p = 1;
17283 if (!decode_for_pst_p && is_stmt)
17284 {
17285 if (last_subfile != current_subfile)
17286 {
17287 dwarf_finish_line (gdbarch, last_subfile,
17288 address, p_record_line);
17289 last_subfile = current_subfile;
17290 }
17291 /* Append row to matrix using current values. */
17292 dwarf_record_line (gdbarch, current_subfile,
17293 line, address, p_record_line);
17294 }
17295 }
17296 }
17297 else switch (op_code)
17298 {
17299 case DW_LNS_extended_op:
17300 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17301 &bytes_read);
17302 line_ptr += bytes_read;
17303 extended_end = line_ptr + extended_len;
17304 extended_op = read_1_byte (abfd, line_ptr);
17305 line_ptr += 1;
17306 switch (extended_op)
17307 {
17308 case DW_LNE_end_sequence:
17309 p_record_line = record_line;
17310 end_sequence = 1;
17311 break;
17312 case DW_LNE_set_address:
17313 address = read_address (abfd, line_ptr, cu, &bytes_read);
17314
17315 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17316 {
17317 /* This line table is for a function which has been
17318 GCd by the linker. Ignore it. PR gdb/12528 */
17319
17320 long line_offset
17321 = line_ptr - get_debug_line_section (cu)->buffer;
17322
17323 complaint (&symfile_complaints,
17324 _(".debug_line address at offset 0x%lx is 0 "
17325 "[in module %s]"),
17326 line_offset, objfile_name (objfile));
17327 p_record_line = noop_record_line;
17328 /* Note: p_record_line is left as noop_record_line
17329 until we see DW_LNE_end_sequence. */
17330 }
17331
17332 op_index = 0;
17333 line_ptr += bytes_read;
17334 address += baseaddr;
17335 break;
17336 case DW_LNE_define_file:
17337 {
17338 const char *cur_file;
17339 unsigned int dir_index, mod_time, length;
17340
17341 cur_file = read_direct_string (abfd, line_ptr,
17342 &bytes_read);
17343 line_ptr += bytes_read;
17344 dir_index =
17345 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17346 line_ptr += bytes_read;
17347 mod_time =
17348 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17349 line_ptr += bytes_read;
17350 length =
17351 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17352 line_ptr += bytes_read;
17353 add_file_name (lh, cur_file, dir_index, mod_time, length);
17354 }
17355 break;
17356 case DW_LNE_set_discriminator:
17357 /* The discriminator is not interesting to the debugger;
17358 just ignore it. */
17359 line_ptr = extended_end;
17360 break;
17361 default:
17362 complaint (&symfile_complaints,
17363 _("mangled .debug_line section"));
17364 return;
17365 }
17366 /* Make sure that we parsed the extended op correctly. If e.g.
17367 we expected a different address size than the producer used,
17368 we may have read the wrong number of bytes. */
17369 if (line_ptr != extended_end)
17370 {
17371 complaint (&symfile_complaints,
17372 _("mangled .debug_line section"));
17373 return;
17374 }
17375 break;
17376 case DW_LNS_copy:
17377 if (lh->num_file_names < file || file == 0)
17378 dwarf2_debug_line_missing_file_complaint ();
17379 else
17380 {
17381 lh->file_names[file - 1].included_p = 1;
17382 if (!decode_for_pst_p && is_stmt)
17383 {
17384 if (last_subfile != current_subfile)
17385 {
17386 dwarf_finish_line (gdbarch, last_subfile,
17387 address, p_record_line);
17388 last_subfile = current_subfile;
17389 }
17390 dwarf_record_line (gdbarch, current_subfile,
17391 line, address, p_record_line);
17392 }
17393 }
17394 break;
17395 case DW_LNS_advance_pc:
17396 {
17397 CORE_ADDR adjust
17398 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17399
17400 address += (((op_index + adjust)
17401 / lh->maximum_ops_per_instruction)
17402 * lh->minimum_instruction_length);
17403 op_index = ((op_index + adjust)
17404 % lh->maximum_ops_per_instruction);
17405 line_ptr += bytes_read;
17406 }
17407 break;
17408 case DW_LNS_advance_line:
17409 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17410 line_ptr += bytes_read;
17411 break;
17412 case DW_LNS_set_file:
17413 {
17414 /* The arrays lh->include_dirs and lh->file_names are
17415 0-based, but the directory and file name numbers in
17416 the statement program are 1-based. */
17417 struct file_entry *fe;
17418 const char *dir = NULL;
17419
17420 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17421 line_ptr += bytes_read;
17422 if (lh->num_file_names < file || file == 0)
17423 dwarf2_debug_line_missing_file_complaint ();
17424 else
17425 {
17426 fe = &lh->file_names[file - 1];
17427 if (fe->dir_index)
17428 dir = lh->include_dirs[fe->dir_index - 1];
17429 if (!decode_for_pst_p)
17430 {
17431 last_subfile = current_subfile;
17432 dwarf2_start_subfile (fe->name, dir, comp_dir);
17433 }
17434 }
17435 }
17436 break;
17437 case DW_LNS_set_column:
17438 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17439 line_ptr += bytes_read;
17440 break;
17441 case DW_LNS_negate_stmt:
17442 is_stmt = (!is_stmt);
17443 break;
17444 case DW_LNS_set_basic_block:
17445 break;
17446 /* Add to the address register of the state machine the
17447 address increment value corresponding to special opcode
17448 255. I.e., this value is scaled by the minimum
17449 instruction length since special opcode 255 would have
17450 scaled the increment. */
17451 case DW_LNS_const_add_pc:
17452 {
17453 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17454
17455 address += (((op_index + adjust)
17456 / lh->maximum_ops_per_instruction)
17457 * lh->minimum_instruction_length);
17458 op_index = ((op_index + adjust)
17459 % lh->maximum_ops_per_instruction);
17460 }
17461 break;
17462 case DW_LNS_fixed_advance_pc:
17463 address += read_2_bytes (abfd, line_ptr);
17464 op_index = 0;
17465 line_ptr += 2;
17466 break;
17467 default:
17468 {
17469 /* Unknown standard opcode, ignore it. */
17470 int i;
17471
17472 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17473 {
17474 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17475 line_ptr += bytes_read;
17476 }
17477 }
17478 }
17479 }
17480 if (lh->num_file_names < file || file == 0)
17481 dwarf2_debug_line_missing_file_complaint ();
17482 else
17483 {
17484 lh->file_names[file - 1].included_p = 1;
17485 if (!decode_for_pst_p)
17486 {
17487 dwarf_finish_line (gdbarch, current_subfile, address,
17488 p_record_line);
17489 }
17490 }
17491 }
17492}
17493
17494/* Decode the Line Number Program (LNP) for the given line_header
17495 structure and CU. The actual information extracted and the type
17496 of structures created from the LNP depends on the value of PST.
17497
17498 1. If PST is NULL, then this procedure uses the data from the program
17499 to create all necessary symbol tables, and their linetables.
17500
17501 2. If PST is not NULL, this procedure reads the program to determine
17502 the list of files included by the unit represented by PST, and
17503 builds all the associated partial symbol tables.
17504
17505 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17506 It is used for relative paths in the line table.
17507 NOTE: When processing partial symtabs (pst != NULL),
17508 comp_dir == pst->dirname.
17509
17510 NOTE: It is important that psymtabs have the same file name (via strcmp)
17511 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17512 symtab we don't use it in the name of the psymtabs we create.
17513 E.g. expand_line_sal requires this when finding psymtabs to expand.
17514 A good testcase for this is mb-inline.exp. */
17515
17516static void
17517dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17518 struct dwarf2_cu *cu, struct partial_symtab *pst,
17519 int want_line_info)
17520{
17521 struct objfile *objfile = cu->objfile;
17522 const int decode_for_pst_p = (pst != NULL);
17523 struct subfile *first_subfile = current_subfile;
17524
17525 if (want_line_info)
17526 dwarf_decode_lines_1 (lh, comp_dir, cu, decode_for_pst_p);
17527
17528 if (decode_for_pst_p)
17529 {
17530 int file_index;
17531
17532 /* Now that we're done scanning the Line Header Program, we can
17533 create the psymtab of each included file. */
17534 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17535 if (lh->file_names[file_index].included_p == 1)
17536 {
17537 const char *include_name =
17538 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17539 if (include_name != NULL)
17540 dwarf2_create_include_psymtab (include_name, pst, objfile);
17541 }
17542 }
17543 else
17544 {
17545 /* Make sure a symtab is created for every file, even files
17546 which contain only variables (i.e. no code with associated
17547 line numbers). */
17548 int i;
17549
17550 for (i = 0; i < lh->num_file_names; i++)
17551 {
17552 const char *dir = NULL;
17553 struct file_entry *fe;
17554
17555 fe = &lh->file_names[i];
17556 if (fe->dir_index)
17557 dir = lh->include_dirs[fe->dir_index - 1];
17558 dwarf2_start_subfile (fe->name, dir, comp_dir);
17559
17560 /* Skip the main file; we don't need it, and it must be
17561 allocated last, so that it will show up before the
17562 non-primary symtabs in the objfile's symtab list. */
17563 if (current_subfile == first_subfile)
17564 continue;
17565
17566 if (current_subfile->symtab == NULL)
17567 current_subfile->symtab = allocate_symtab (current_subfile->name,
17568 objfile);
17569 fe->symtab = current_subfile->symtab;
17570 }
17571 }
17572}
17573
17574/* Start a subfile for DWARF. FILENAME is the name of the file and
17575 DIRNAME the name of the source directory which contains FILENAME
17576 or NULL if not known. COMP_DIR is the compilation directory for the
17577 linetable's compilation unit or NULL if not known.
17578 This routine tries to keep line numbers from identical absolute and
17579 relative file names in a common subfile.
17580
17581 Using the `list' example from the GDB testsuite, which resides in
17582 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17583 of /srcdir/list0.c yields the following debugging information for list0.c:
17584
17585 DW_AT_name: /srcdir/list0.c
17586 DW_AT_comp_dir: /compdir
17587 files.files[0].name: list0.h
17588 files.files[0].dir: /srcdir
17589 files.files[1].name: list0.c
17590 files.files[1].dir: /srcdir
17591
17592 The line number information for list0.c has to end up in a single
17593 subfile, so that `break /srcdir/list0.c:1' works as expected.
17594 start_subfile will ensure that this happens provided that we pass the
17595 concatenation of files.files[1].dir and files.files[1].name as the
17596 subfile's name. */
17597
17598static void
17599dwarf2_start_subfile (const char *filename, const char *dirname,
17600 const char *comp_dir)
17601{
17602 char *copy = NULL;
17603
17604 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17605 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17606 second argument to start_subfile. To be consistent, we do the
17607 same here. In order not to lose the line information directory,
17608 we concatenate it to the filename when it makes sense.
17609 Note that the Dwarf3 standard says (speaking of filenames in line
17610 information): ``The directory index is ignored for file names
17611 that represent full path names''. Thus ignoring dirname in the
17612 `else' branch below isn't an issue. */
17613
17614 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17615 {
17616 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17617 filename = copy;
17618 }
17619
17620 start_subfile (filename, comp_dir);
17621
17622 if (copy != NULL)
17623 xfree (copy);
17624}
17625
17626/* Start a symtab for DWARF.
17627 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17628
17629static void
17630dwarf2_start_symtab (struct dwarf2_cu *cu,
17631 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17632{
17633 start_symtab (name, comp_dir, low_pc);
17634 record_debugformat ("DWARF 2");
17635 record_producer (cu->producer);
17636
17637 /* We assume that we're processing GCC output. */
17638 processing_gcc_compilation = 2;
17639
17640 cu->processing_has_namespace_info = 0;
17641}
17642
17643static void
17644var_decode_location (struct attribute *attr, struct symbol *sym,
17645 struct dwarf2_cu *cu)
17646{
17647 struct objfile *objfile = cu->objfile;
17648 struct comp_unit_head *cu_header = &cu->header;
17649
17650 /* NOTE drow/2003-01-30: There used to be a comment and some special
17651 code here to turn a symbol with DW_AT_external and a
17652 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17653 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17654 with some versions of binutils) where shared libraries could have
17655 relocations against symbols in their debug information - the
17656 minimal symbol would have the right address, but the debug info
17657 would not. It's no longer necessary, because we will explicitly
17658 apply relocations when we read in the debug information now. */
17659
17660 /* A DW_AT_location attribute with no contents indicates that a
17661 variable has been optimized away. */
17662 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17663 {
17664 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17665 return;
17666 }
17667
17668 /* Handle one degenerate form of location expression specially, to
17669 preserve GDB's previous behavior when section offsets are
17670 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17671 then mark this symbol as LOC_STATIC. */
17672
17673 if (attr_form_is_block (attr)
17674 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17675 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17676 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17677 && (DW_BLOCK (attr)->size
17678 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17679 {
17680 unsigned int dummy;
17681
17682 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17683 SYMBOL_VALUE_ADDRESS (sym) =
17684 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17685 else
17686 SYMBOL_VALUE_ADDRESS (sym) =
17687 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17688 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17689 fixup_symbol_section (sym, objfile);
17690 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17691 SYMBOL_SECTION (sym));
17692 return;
17693 }
17694
17695 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17696 expression evaluator, and use LOC_COMPUTED only when necessary
17697 (i.e. when the value of a register or memory location is
17698 referenced, or a thread-local block, etc.). Then again, it might
17699 not be worthwhile. I'm assuming that it isn't unless performance
17700 or memory numbers show me otherwise. */
17701
17702 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17703
17704 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17705 cu->has_loclist = 1;
17706}
17707
17708/* Given a pointer to a DWARF information entry, figure out if we need
17709 to make a symbol table entry for it, and if so, create a new entry
17710 and return a pointer to it.
17711 If TYPE is NULL, determine symbol type from the die, otherwise
17712 used the passed type.
17713 If SPACE is not NULL, use it to hold the new symbol. If it is
17714 NULL, allocate a new symbol on the objfile's obstack. */
17715
17716static struct symbol *
17717new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17718 struct symbol *space)
17719{
17720 struct objfile *objfile = cu->objfile;
17721 struct symbol *sym = NULL;
17722 const char *name;
17723 struct attribute *attr = NULL;
17724 struct attribute *attr2 = NULL;
17725 CORE_ADDR baseaddr;
17726 struct pending **list_to_add = NULL;
17727
17728 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17729
17730 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17731
17732 name = dwarf2_name (die, cu);
17733 if (name)
17734 {
17735 const char *linkagename;
17736 int suppress_add = 0;
17737
17738 if (space)
17739 sym = space;
17740 else
17741 sym = allocate_symbol (objfile);
17742 OBJSTAT (objfile, n_syms++);
17743
17744 /* Cache this symbol's name and the name's demangled form (if any). */
17745 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17746 linkagename = dwarf2_physname (name, die, cu);
17747 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17748
17749 /* Fortran does not have mangling standard and the mangling does differ
17750 between gfortran, iFort etc. */
17751 if (cu->language == language_fortran
17752 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17753 symbol_set_demangled_name (&(sym->ginfo),
17754 dwarf2_full_name (name, die, cu),
17755 NULL);
17756
17757 /* Default assumptions.
17758 Use the passed type or decode it from the die. */
17759 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17760 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17761 if (type != NULL)
17762 SYMBOL_TYPE (sym) = type;
17763 else
17764 SYMBOL_TYPE (sym) = die_type (die, cu);
17765 attr = dwarf2_attr (die,
17766 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17767 cu);
17768 if (attr)
17769 {
17770 SYMBOL_LINE (sym) = DW_UNSND (attr);
17771 }
17772
17773 attr = dwarf2_attr (die,
17774 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17775 cu);
17776 if (attr)
17777 {
17778 int file_index = DW_UNSND (attr);
17779
17780 if (cu->line_header == NULL
17781 || file_index > cu->line_header->num_file_names)
17782 complaint (&symfile_complaints,
17783 _("file index out of range"));
17784 else if (file_index > 0)
17785 {
17786 struct file_entry *fe;
17787
17788 fe = &cu->line_header->file_names[file_index - 1];
17789 SYMBOL_SYMTAB (sym) = fe->symtab;
17790 }
17791 }
17792
17793 switch (die->tag)
17794 {
17795 case DW_TAG_label:
17796 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17797 if (attr)
17798 SYMBOL_VALUE_ADDRESS (sym)
17799 = attr_value_as_address (attr) + baseaddr;
17800 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17801 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17802 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17803 add_symbol_to_list (sym, cu->list_in_scope);
17804 break;
17805 case DW_TAG_subprogram:
17806 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17807 finish_block. */
17808 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17809 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17810 if ((attr2 && (DW_UNSND (attr2) != 0))
17811 || cu->language == language_ada)
17812 {
17813 /* Subprograms marked external are stored as a global symbol.
17814 Ada subprograms, whether marked external or not, are always
17815 stored as a global symbol, because we want to be able to
17816 access them globally. For instance, we want to be able
17817 to break on a nested subprogram without having to
17818 specify the context. */
17819 list_to_add = &global_symbols;
17820 }
17821 else
17822 {
17823 list_to_add = cu->list_in_scope;
17824 }
17825 break;
17826 case DW_TAG_inlined_subroutine:
17827 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17828 finish_block. */
17829 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17830 SYMBOL_INLINED (sym) = 1;
17831 list_to_add = cu->list_in_scope;
17832 break;
17833 case DW_TAG_template_value_param:
17834 suppress_add = 1;
17835 /* Fall through. */
17836 case DW_TAG_constant:
17837 case DW_TAG_variable:
17838 case DW_TAG_member:
17839 /* Compilation with minimal debug info may result in
17840 variables with missing type entries. Change the
17841 misleading `void' type to something sensible. */
17842 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17843 SYMBOL_TYPE (sym)
17844 = objfile_type (objfile)->nodebug_data_symbol;
17845
17846 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17847 /* In the case of DW_TAG_member, we should only be called for
17848 static const members. */
17849 if (die->tag == DW_TAG_member)
17850 {
17851 /* dwarf2_add_field uses die_is_declaration,
17852 so we do the same. */
17853 gdb_assert (die_is_declaration (die, cu));
17854 gdb_assert (attr);
17855 }
17856 if (attr)
17857 {
17858 dwarf2_const_value (attr, sym, cu);
17859 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17860 if (!suppress_add)
17861 {
17862 if (attr2 && (DW_UNSND (attr2) != 0))
17863 list_to_add = &global_symbols;
17864 else
17865 list_to_add = cu->list_in_scope;
17866 }
17867 break;
17868 }
17869 attr = dwarf2_attr (die, DW_AT_location, cu);
17870 if (attr)
17871 {
17872 var_decode_location (attr, sym, cu);
17873 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17874
17875 /* Fortran explicitly imports any global symbols to the local
17876 scope by DW_TAG_common_block. */
17877 if (cu->language == language_fortran && die->parent
17878 && die->parent->tag == DW_TAG_common_block)
17879 attr2 = NULL;
17880
17881 if (SYMBOL_CLASS (sym) == LOC_STATIC
17882 && SYMBOL_VALUE_ADDRESS (sym) == 0
17883 && !dwarf2_per_objfile->has_section_at_zero)
17884 {
17885 /* When a static variable is eliminated by the linker,
17886 the corresponding debug information is not stripped
17887 out, but the variable address is set to null;
17888 do not add such variables into symbol table. */
17889 }
17890 else if (attr2 && (DW_UNSND (attr2) != 0))
17891 {
17892 /* Workaround gfortran PR debug/40040 - it uses
17893 DW_AT_location for variables in -fPIC libraries which may
17894 get overriden by other libraries/executable and get
17895 a different address. Resolve it by the minimal symbol
17896 which may come from inferior's executable using copy
17897 relocation. Make this workaround only for gfortran as for
17898 other compilers GDB cannot guess the minimal symbol
17899 Fortran mangling kind. */
17900 if (cu->language == language_fortran && die->parent
17901 && die->parent->tag == DW_TAG_module
17902 && cu->producer
17903 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17904 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17905
17906 /* A variable with DW_AT_external is never static,
17907 but it may be block-scoped. */
17908 list_to_add = (cu->list_in_scope == &file_symbols
17909 ? &global_symbols : cu->list_in_scope);
17910 }
17911 else
17912 list_to_add = cu->list_in_scope;
17913 }
17914 else
17915 {
17916 /* We do not know the address of this symbol.
17917 If it is an external symbol and we have type information
17918 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17919 The address of the variable will then be determined from
17920 the minimal symbol table whenever the variable is
17921 referenced. */
17922 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17923
17924 /* Fortran explicitly imports any global symbols to the local
17925 scope by DW_TAG_common_block. */
17926 if (cu->language == language_fortran && die->parent
17927 && die->parent->tag == DW_TAG_common_block)
17928 {
17929 /* SYMBOL_CLASS doesn't matter here because
17930 read_common_block is going to reset it. */
17931 if (!suppress_add)
17932 list_to_add = cu->list_in_scope;
17933 }
17934 else if (attr2 && (DW_UNSND (attr2) != 0)
17935 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17936 {
17937 /* A variable with DW_AT_external is never static, but it
17938 may be block-scoped. */
17939 list_to_add = (cu->list_in_scope == &file_symbols
17940 ? &global_symbols : cu->list_in_scope);
17941
17942 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17943 }
17944 else if (!die_is_declaration (die, cu))
17945 {
17946 /* Use the default LOC_OPTIMIZED_OUT class. */
17947 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17948 if (!suppress_add)
17949 list_to_add = cu->list_in_scope;
17950 }
17951 }
17952 break;
17953 case DW_TAG_formal_parameter:
17954 /* If we are inside a function, mark this as an argument. If
17955 not, we might be looking at an argument to an inlined function
17956 when we do not have enough information to show inlined frames;
17957 pretend it's a local variable in that case so that the user can
17958 still see it. */
17959 if (context_stack_depth > 0
17960 && context_stack[context_stack_depth - 1].name != NULL)
17961 SYMBOL_IS_ARGUMENT (sym) = 1;
17962 attr = dwarf2_attr (die, DW_AT_location, cu);
17963 if (attr)
17964 {
17965 var_decode_location (attr, sym, cu);
17966 }
17967 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17968 if (attr)
17969 {
17970 dwarf2_const_value (attr, sym, cu);
17971 }
17972
17973 list_to_add = cu->list_in_scope;
17974 break;
17975 case DW_TAG_unspecified_parameters:
17976 /* From varargs functions; gdb doesn't seem to have any
17977 interest in this information, so just ignore it for now.
17978 (FIXME?) */
17979 break;
17980 case DW_TAG_template_type_param:
17981 suppress_add = 1;
17982 /* Fall through. */
17983 case DW_TAG_class_type:
17984 case DW_TAG_interface_type:
17985 case DW_TAG_structure_type:
17986 case DW_TAG_union_type:
17987 case DW_TAG_set_type:
17988 case DW_TAG_enumeration_type:
17989 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17990 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17991
17992 {
17993 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17994 really ever be static objects: otherwise, if you try
17995 to, say, break of a class's method and you're in a file
17996 which doesn't mention that class, it won't work unless
17997 the check for all static symbols in lookup_symbol_aux
17998 saves you. See the OtherFileClass tests in
17999 gdb.c++/namespace.exp. */
18000
18001 if (!suppress_add)
18002 {
18003 list_to_add = (cu->list_in_scope == &file_symbols
18004 && (cu->language == language_cplus
18005 || cu->language == language_java)
18006 ? &global_symbols : cu->list_in_scope);
18007
18008 /* The semantics of C++ state that "struct foo {
18009 ... }" also defines a typedef for "foo". A Java
18010 class declaration also defines a typedef for the
18011 class. */
18012 if (cu->language == language_cplus
18013 || cu->language == language_java
18014 || cu->language == language_ada)
18015 {
18016 /* The symbol's name is already allocated along
18017 with this objfile, so we don't need to
18018 duplicate it for the type. */
18019 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18020 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18021 }
18022 }
18023 }
18024 break;
18025 case DW_TAG_typedef:
18026 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18027 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18028 list_to_add = cu->list_in_scope;
18029 break;
18030 case DW_TAG_base_type:
18031 case DW_TAG_subrange_type:
18032 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18033 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18034 list_to_add = cu->list_in_scope;
18035 break;
18036 case DW_TAG_enumerator:
18037 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18038 if (attr)
18039 {
18040 dwarf2_const_value (attr, sym, cu);
18041 }
18042 {
18043 /* NOTE: carlton/2003-11-10: See comment above in the
18044 DW_TAG_class_type, etc. block. */
18045
18046 list_to_add = (cu->list_in_scope == &file_symbols
18047 && (cu->language == language_cplus
18048 || cu->language == language_java)
18049 ? &global_symbols : cu->list_in_scope);
18050 }
18051 break;
18052 case DW_TAG_imported_declaration:
18053 case DW_TAG_namespace:
18054 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18055 list_to_add = &global_symbols;
18056 break;
18057 case DW_TAG_module:
18058 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18059 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18060 list_to_add = &global_symbols;
18061 break;
18062 case DW_TAG_common_block:
18063 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18064 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18065 add_symbol_to_list (sym, cu->list_in_scope);
18066 break;
18067 default:
18068 /* Not a tag we recognize. Hopefully we aren't processing
18069 trash data, but since we must specifically ignore things
18070 we don't recognize, there is nothing else we should do at
18071 this point. */
18072 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18073 dwarf_tag_name (die->tag));
18074 break;
18075 }
18076
18077 if (suppress_add)
18078 {
18079 sym->hash_next = objfile->template_symbols;
18080 objfile->template_symbols = sym;
18081 list_to_add = NULL;
18082 }
18083
18084 if (list_to_add != NULL)
18085 add_symbol_to_list (sym, list_to_add);
18086
18087 /* For the benefit of old versions of GCC, check for anonymous
18088 namespaces based on the demangled name. */
18089 if (!cu->processing_has_namespace_info
18090 && cu->language == language_cplus)
18091 cp_scan_for_anonymous_namespaces (sym, objfile);
18092 }
18093 return (sym);
18094}
18095
18096/* A wrapper for new_symbol_full that always allocates a new symbol. */
18097
18098static struct symbol *
18099new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18100{
18101 return new_symbol_full (die, type, cu, NULL);
18102}
18103
18104/* Given an attr with a DW_FORM_dataN value in host byte order,
18105 zero-extend it as appropriate for the symbol's type. The DWARF
18106 standard (v4) is not entirely clear about the meaning of using
18107 DW_FORM_dataN for a constant with a signed type, where the type is
18108 wider than the data. The conclusion of a discussion on the DWARF
18109 list was that this is unspecified. We choose to always zero-extend
18110 because that is the interpretation long in use by GCC. */
18111
18112static gdb_byte *
18113dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18114 struct dwarf2_cu *cu, LONGEST *value, int bits)
18115{
18116 struct objfile *objfile = cu->objfile;
18117 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18118 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18119 LONGEST l = DW_UNSND (attr);
18120
18121 if (bits < sizeof (*value) * 8)
18122 {
18123 l &= ((LONGEST) 1 << bits) - 1;
18124 *value = l;
18125 }
18126 else if (bits == sizeof (*value) * 8)
18127 *value = l;
18128 else
18129 {
18130 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18131 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18132 return bytes;
18133 }
18134
18135 return NULL;
18136}
18137
18138/* Read a constant value from an attribute. Either set *VALUE, or if
18139 the value does not fit in *VALUE, set *BYTES - either already
18140 allocated on the objfile obstack, or newly allocated on OBSTACK,
18141 or, set *BATON, if we translated the constant to a location
18142 expression. */
18143
18144static void
18145dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18146 const char *name, struct obstack *obstack,
18147 struct dwarf2_cu *cu,
18148 LONGEST *value, const gdb_byte **bytes,
18149 struct dwarf2_locexpr_baton **baton)
18150{
18151 struct objfile *objfile = cu->objfile;
18152 struct comp_unit_head *cu_header = &cu->header;
18153 struct dwarf_block *blk;
18154 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18155 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18156
18157 *value = 0;
18158 *bytes = NULL;
18159 *baton = NULL;
18160
18161 switch (attr->form)
18162 {
18163 case DW_FORM_addr:
18164 case DW_FORM_GNU_addr_index:
18165 {
18166 gdb_byte *data;
18167
18168 if (TYPE_LENGTH (type) != cu_header->addr_size)
18169 dwarf2_const_value_length_mismatch_complaint (name,
18170 cu_header->addr_size,
18171 TYPE_LENGTH (type));
18172 /* Symbols of this form are reasonably rare, so we just
18173 piggyback on the existing location code rather than writing
18174 a new implementation of symbol_computed_ops. */
18175 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18176 (*baton)->per_cu = cu->per_cu;
18177 gdb_assert ((*baton)->per_cu);
18178
18179 (*baton)->size = 2 + cu_header->addr_size;
18180 data = obstack_alloc (obstack, (*baton)->size);
18181 (*baton)->data = data;
18182
18183 data[0] = DW_OP_addr;
18184 store_unsigned_integer (&data[1], cu_header->addr_size,
18185 byte_order, DW_ADDR (attr));
18186 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18187 }
18188 break;
18189 case DW_FORM_string:
18190 case DW_FORM_strp:
18191 case DW_FORM_GNU_str_index:
18192 case DW_FORM_GNU_strp_alt:
18193 /* DW_STRING is already allocated on the objfile obstack, point
18194 directly to it. */
18195 *bytes = (const gdb_byte *) DW_STRING (attr);
18196 break;
18197 case DW_FORM_block1:
18198 case DW_FORM_block2:
18199 case DW_FORM_block4:
18200 case DW_FORM_block:
18201 case DW_FORM_exprloc:
18202 blk = DW_BLOCK (attr);
18203 if (TYPE_LENGTH (type) != blk->size)
18204 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18205 TYPE_LENGTH (type));
18206 *bytes = blk->data;
18207 break;
18208
18209 /* The DW_AT_const_value attributes are supposed to carry the
18210 symbol's value "represented as it would be on the target
18211 architecture." By the time we get here, it's already been
18212 converted to host endianness, so we just need to sign- or
18213 zero-extend it as appropriate. */
18214 case DW_FORM_data1:
18215 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18216 break;
18217 case DW_FORM_data2:
18218 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18219 break;
18220 case DW_FORM_data4:
18221 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18222 break;
18223 case DW_FORM_data8:
18224 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18225 break;
18226
18227 case DW_FORM_sdata:
18228 *value = DW_SND (attr);
18229 break;
18230
18231 case DW_FORM_udata:
18232 *value = DW_UNSND (attr);
18233 break;
18234
18235 default:
18236 complaint (&symfile_complaints,
18237 _("unsupported const value attribute form: '%s'"),
18238 dwarf_form_name (attr->form));
18239 *value = 0;
18240 break;
18241 }
18242}
18243
18244
18245/* Copy constant value from an attribute to a symbol. */
18246
18247static void
18248dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18249 struct dwarf2_cu *cu)
18250{
18251 struct objfile *objfile = cu->objfile;
18252 struct comp_unit_head *cu_header = &cu->header;
18253 LONGEST value;
18254 const gdb_byte *bytes;
18255 struct dwarf2_locexpr_baton *baton;
18256
18257 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18258 SYMBOL_PRINT_NAME (sym),
18259 &objfile->objfile_obstack, cu,
18260 &value, &bytes, &baton);
18261
18262 if (baton != NULL)
18263 {
18264 SYMBOL_LOCATION_BATON (sym) = baton;
18265 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18266 }
18267 else if (bytes != NULL)
18268 {
18269 SYMBOL_VALUE_BYTES (sym) = bytes;
18270 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18271 }
18272 else
18273 {
18274 SYMBOL_VALUE (sym) = value;
18275 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18276 }
18277}
18278
18279/* Return the type of the die in question using its DW_AT_type attribute. */
18280
18281static struct type *
18282die_type (struct die_info *die, struct dwarf2_cu *cu)
18283{
18284 struct attribute *type_attr;
18285
18286 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18287 if (!type_attr)
18288 {
18289 /* A missing DW_AT_type represents a void type. */
18290 return objfile_type (cu->objfile)->builtin_void;
18291 }
18292
18293 return lookup_die_type (die, type_attr, cu);
18294}
18295
18296/* True iff CU's producer generates GNAT Ada auxiliary information
18297 that allows to find parallel types through that information instead
18298 of having to do expensive parallel lookups by type name. */
18299
18300static int
18301need_gnat_info (struct dwarf2_cu *cu)
18302{
18303 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18304 of GNAT produces this auxiliary information, without any indication
18305 that it is produced. Part of enhancing the FSF version of GNAT
18306 to produce that information will be to put in place an indicator
18307 that we can use in order to determine whether the descriptive type
18308 info is available or not. One suggestion that has been made is
18309 to use a new attribute, attached to the CU die. For now, assume
18310 that the descriptive type info is not available. */
18311 return 0;
18312}
18313
18314/* Return the auxiliary type of the die in question using its
18315 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18316 attribute is not present. */
18317
18318static struct type *
18319die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18320{
18321 struct attribute *type_attr;
18322
18323 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18324 if (!type_attr)
18325 return NULL;
18326
18327 return lookup_die_type (die, type_attr, cu);
18328}
18329
18330/* If DIE has a descriptive_type attribute, then set the TYPE's
18331 descriptive type accordingly. */
18332
18333static void
18334set_descriptive_type (struct type *type, struct die_info *die,
18335 struct dwarf2_cu *cu)
18336{
18337 struct type *descriptive_type = die_descriptive_type (die, cu);
18338
18339 if (descriptive_type)
18340 {
18341 ALLOCATE_GNAT_AUX_TYPE (type);
18342 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18343 }
18344}
18345
18346/* Return the containing type of the die in question using its
18347 DW_AT_containing_type attribute. */
18348
18349static struct type *
18350die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18351{
18352 struct attribute *type_attr;
18353
18354 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18355 if (!type_attr)
18356 error (_("Dwarf Error: Problem turning containing type into gdb type "
18357 "[in module %s]"), objfile_name (cu->objfile));
18358
18359 return lookup_die_type (die, type_attr, cu);
18360}
18361
18362/* Return an error marker type to use for the ill formed type in DIE/CU. */
18363
18364static struct type *
18365build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18366{
18367 struct objfile *objfile = dwarf2_per_objfile->objfile;
18368 char *message, *saved;
18369
18370 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18371 objfile_name (objfile),
18372 cu->header.offset.sect_off,
18373 die->offset.sect_off);
18374 saved = obstack_copy0 (&objfile->objfile_obstack,
18375 message, strlen (message));
18376 xfree (message);
18377
18378 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18379}
18380
18381/* Look up the type of DIE in CU using its type attribute ATTR.
18382 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18383 DW_AT_containing_type.
18384 If there is no type substitute an error marker. */
18385
18386static struct type *
18387lookup_die_type (struct die_info *die, const struct attribute *attr,
18388 struct dwarf2_cu *cu)
18389{
18390 struct objfile *objfile = cu->objfile;
18391 struct type *this_type;
18392
18393 gdb_assert (attr->name == DW_AT_type
18394 || attr->name == DW_AT_GNAT_descriptive_type
18395 || attr->name == DW_AT_containing_type);
18396
18397 /* First see if we have it cached. */
18398
18399 if (attr->form == DW_FORM_GNU_ref_alt)
18400 {
18401 struct dwarf2_per_cu_data *per_cu;
18402 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18403
18404 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18405 this_type = get_die_type_at_offset (offset, per_cu);
18406 }
18407 else if (attr_form_is_ref (attr))
18408 {
18409 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18410
18411 this_type = get_die_type_at_offset (offset, cu->per_cu);
18412 }
18413 else if (attr->form == DW_FORM_ref_sig8)
18414 {
18415 ULONGEST signature = DW_SIGNATURE (attr);
18416
18417 return get_signatured_type (die, signature, cu);
18418 }
18419 else
18420 {
18421 complaint (&symfile_complaints,
18422 _("Dwarf Error: Bad type attribute %s in DIE"
18423 " at 0x%x [in module %s]"),
18424 dwarf_attr_name (attr->name), die->offset.sect_off,
18425 objfile_name (objfile));
18426 return build_error_marker_type (cu, die);
18427 }
18428
18429 /* If not cached we need to read it in. */
18430
18431 if (this_type == NULL)
18432 {
18433 struct die_info *type_die = NULL;
18434 struct dwarf2_cu *type_cu = cu;
18435
18436 if (attr_form_is_ref (attr))
18437 type_die = follow_die_ref (die, attr, &type_cu);
18438 if (type_die == NULL)
18439 return build_error_marker_type (cu, die);
18440 /* If we find the type now, it's probably because the type came
18441 from an inter-CU reference and the type's CU got expanded before
18442 ours. */
18443 this_type = read_type_die (type_die, type_cu);
18444 }
18445
18446 /* If we still don't have a type use an error marker. */
18447
18448 if (this_type == NULL)
18449 return build_error_marker_type (cu, die);
18450
18451 return this_type;
18452}
18453
18454/* Return the type in DIE, CU.
18455 Returns NULL for invalid types.
18456
18457 This first does a lookup in die_type_hash,
18458 and only reads the die in if necessary.
18459
18460 NOTE: This can be called when reading in partial or full symbols. */
18461
18462static struct type *
18463read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18464{
18465 struct type *this_type;
18466
18467 this_type = get_die_type (die, cu);
18468 if (this_type)
18469 return this_type;
18470
18471 return read_type_die_1 (die, cu);
18472}
18473
18474/* Read the type in DIE, CU.
18475 Returns NULL for invalid types. */
18476
18477static struct type *
18478read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18479{
18480 struct type *this_type = NULL;
18481
18482 switch (die->tag)
18483 {
18484 case DW_TAG_class_type:
18485 case DW_TAG_interface_type:
18486 case DW_TAG_structure_type:
18487 case DW_TAG_union_type:
18488 this_type = read_structure_type (die, cu);
18489 break;
18490 case DW_TAG_enumeration_type:
18491 this_type = read_enumeration_type (die, cu);
18492 break;
18493 case DW_TAG_subprogram:
18494 case DW_TAG_subroutine_type:
18495 case DW_TAG_inlined_subroutine:
18496 this_type = read_subroutine_type (die, cu);
18497 break;
18498 case DW_TAG_array_type:
18499 this_type = read_array_type (die, cu);
18500 break;
18501 case DW_TAG_set_type:
18502 this_type = read_set_type (die, cu);
18503 break;
18504 case DW_TAG_pointer_type:
18505 this_type = read_tag_pointer_type (die, cu);
18506 break;
18507 case DW_TAG_ptr_to_member_type:
18508 this_type = read_tag_ptr_to_member_type (die, cu);
18509 break;
18510 case DW_TAG_reference_type:
18511 this_type = read_tag_reference_type (die, cu);
18512 break;
18513 case DW_TAG_const_type:
18514 this_type = read_tag_const_type (die, cu);
18515 break;
18516 case DW_TAG_volatile_type:
18517 this_type = read_tag_volatile_type (die, cu);
18518 break;
18519 case DW_TAG_restrict_type:
18520 this_type = read_tag_restrict_type (die, cu);
18521 break;
18522 case DW_TAG_string_type:
18523 this_type = read_tag_string_type (die, cu);
18524 break;
18525 case DW_TAG_typedef:
18526 this_type = read_typedef (die, cu);
18527 break;
18528 case DW_TAG_subrange_type:
18529 this_type = read_subrange_type (die, cu);
18530 break;
18531 case DW_TAG_base_type:
18532 this_type = read_base_type (die, cu);
18533 break;
18534 case DW_TAG_unspecified_type:
18535 this_type = read_unspecified_type (die, cu);
18536 break;
18537 case DW_TAG_namespace:
18538 this_type = read_namespace_type (die, cu);
18539 break;
18540 case DW_TAG_module:
18541 this_type = read_module_type (die, cu);
18542 break;
18543 default:
18544 complaint (&symfile_complaints,
18545 _("unexpected tag in read_type_die: '%s'"),
18546 dwarf_tag_name (die->tag));
18547 break;
18548 }
18549
18550 return this_type;
18551}
18552
18553/* See if we can figure out if the class lives in a namespace. We do
18554 this by looking for a member function; its demangled name will
18555 contain namespace info, if there is any.
18556 Return the computed name or NULL.
18557 Space for the result is allocated on the objfile's obstack.
18558 This is the full-die version of guess_partial_die_structure_name.
18559 In this case we know DIE has no useful parent. */
18560
18561static char *
18562guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18563{
18564 struct die_info *spec_die;
18565 struct dwarf2_cu *spec_cu;
18566 struct die_info *child;
18567
18568 spec_cu = cu;
18569 spec_die = die_specification (die, &spec_cu);
18570 if (spec_die != NULL)
18571 {
18572 die = spec_die;
18573 cu = spec_cu;
18574 }
18575
18576 for (child = die->child;
18577 child != NULL;
18578 child = child->sibling)
18579 {
18580 if (child->tag == DW_TAG_subprogram)
18581 {
18582 struct attribute *attr;
18583
18584 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18585 if (attr == NULL)
18586 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18587 if (attr != NULL)
18588 {
18589 char *actual_name
18590 = language_class_name_from_physname (cu->language_defn,
18591 DW_STRING (attr));
18592 char *name = NULL;
18593
18594 if (actual_name != NULL)
18595 {
18596 const char *die_name = dwarf2_name (die, cu);
18597
18598 if (die_name != NULL
18599 && strcmp (die_name, actual_name) != 0)
18600 {
18601 /* Strip off the class name from the full name.
18602 We want the prefix. */
18603 int die_name_len = strlen (die_name);
18604 int actual_name_len = strlen (actual_name);
18605
18606 /* Test for '::' as a sanity check. */
18607 if (actual_name_len > die_name_len + 2
18608 && actual_name[actual_name_len
18609 - die_name_len - 1] == ':')
18610 name =
18611 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18612 actual_name,
18613 actual_name_len - die_name_len - 2);
18614 }
18615 }
18616 xfree (actual_name);
18617 return name;
18618 }
18619 }
18620 }
18621
18622 return NULL;
18623}
18624
18625/* GCC might emit a nameless typedef that has a linkage name. Determine the
18626 prefix part in such case. See
18627 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18628
18629static char *
18630anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18631{
18632 struct attribute *attr;
18633 char *base;
18634
18635 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18636 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18637 return NULL;
18638
18639 attr = dwarf2_attr (die, DW_AT_name, cu);
18640 if (attr != NULL && DW_STRING (attr) != NULL)
18641 return NULL;
18642
18643 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18644 if (attr == NULL)
18645 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18646 if (attr == NULL || DW_STRING (attr) == NULL)
18647 return NULL;
18648
18649 /* dwarf2_name had to be already called. */
18650 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18651
18652 /* Strip the base name, keep any leading namespaces/classes. */
18653 base = strrchr (DW_STRING (attr), ':');
18654 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18655 return "";
18656
18657 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18658 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18659}
18660
18661/* Return the name of the namespace/class that DIE is defined within,
18662 or "" if we can't tell. The caller should not xfree the result.
18663
18664 For example, if we're within the method foo() in the following
18665 code:
18666
18667 namespace N {
18668 class C {
18669 void foo () {
18670 }
18671 };
18672 }
18673
18674 then determine_prefix on foo's die will return "N::C". */
18675
18676static const char *
18677determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18678{
18679 struct die_info *parent, *spec_die;
18680 struct dwarf2_cu *spec_cu;
18681 struct type *parent_type;
18682 char *retval;
18683
18684 if (cu->language != language_cplus && cu->language != language_java
18685 && cu->language != language_fortran)
18686 return "";
18687
18688 retval = anonymous_struct_prefix (die, cu);
18689 if (retval)
18690 return retval;
18691
18692 /* We have to be careful in the presence of DW_AT_specification.
18693 For example, with GCC 3.4, given the code
18694
18695 namespace N {
18696 void foo() {
18697 // Definition of N::foo.
18698 }
18699 }
18700
18701 then we'll have a tree of DIEs like this:
18702
18703 1: DW_TAG_compile_unit
18704 2: DW_TAG_namespace // N
18705 3: DW_TAG_subprogram // declaration of N::foo
18706 4: DW_TAG_subprogram // definition of N::foo
18707 DW_AT_specification // refers to die #3
18708
18709 Thus, when processing die #4, we have to pretend that we're in
18710 the context of its DW_AT_specification, namely the contex of die
18711 #3. */
18712 spec_cu = cu;
18713 spec_die = die_specification (die, &spec_cu);
18714 if (spec_die == NULL)
18715 parent = die->parent;
18716 else
18717 {
18718 parent = spec_die->parent;
18719 cu = spec_cu;
18720 }
18721
18722 if (parent == NULL)
18723 return "";
18724 else if (parent->building_fullname)
18725 {
18726 const char *name;
18727 const char *parent_name;
18728
18729 /* It has been seen on RealView 2.2 built binaries,
18730 DW_TAG_template_type_param types actually _defined_ as
18731 children of the parent class:
18732
18733 enum E {};
18734 template class <class Enum> Class{};
18735 Class<enum E> class_e;
18736
18737 1: DW_TAG_class_type (Class)
18738 2: DW_TAG_enumeration_type (E)
18739 3: DW_TAG_enumerator (enum1:0)
18740 3: DW_TAG_enumerator (enum2:1)
18741 ...
18742 2: DW_TAG_template_type_param
18743 DW_AT_type DW_FORM_ref_udata (E)
18744
18745 Besides being broken debug info, it can put GDB into an
18746 infinite loop. Consider:
18747
18748 When we're building the full name for Class<E>, we'll start
18749 at Class, and go look over its template type parameters,
18750 finding E. We'll then try to build the full name of E, and
18751 reach here. We're now trying to build the full name of E,
18752 and look over the parent DIE for containing scope. In the
18753 broken case, if we followed the parent DIE of E, we'd again
18754 find Class, and once again go look at its template type
18755 arguments, etc., etc. Simply don't consider such parent die
18756 as source-level parent of this die (it can't be, the language
18757 doesn't allow it), and break the loop here. */
18758 name = dwarf2_name (die, cu);
18759 parent_name = dwarf2_name (parent, cu);
18760 complaint (&symfile_complaints,
18761 _("template param type '%s' defined within parent '%s'"),
18762 name ? name : "<unknown>",
18763 parent_name ? parent_name : "<unknown>");
18764 return "";
18765 }
18766 else
18767 switch (parent->tag)
18768 {
18769 case DW_TAG_namespace:
18770 parent_type = read_type_die (parent, cu);
18771 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18772 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18773 Work around this problem here. */
18774 if (cu->language == language_cplus
18775 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18776 return "";
18777 /* We give a name to even anonymous namespaces. */
18778 return TYPE_TAG_NAME (parent_type);
18779 case DW_TAG_class_type:
18780 case DW_TAG_interface_type:
18781 case DW_TAG_structure_type:
18782 case DW_TAG_union_type:
18783 case DW_TAG_module:
18784 parent_type = read_type_die (parent, cu);
18785 if (TYPE_TAG_NAME (parent_type) != NULL)
18786 return TYPE_TAG_NAME (parent_type);
18787 else
18788 /* An anonymous structure is only allowed non-static data
18789 members; no typedefs, no member functions, et cetera.
18790 So it does not need a prefix. */
18791 return "";
18792 case DW_TAG_compile_unit:
18793 case DW_TAG_partial_unit:
18794 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18795 if (cu->language == language_cplus
18796 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18797 && die->child != NULL
18798 && (die->tag == DW_TAG_class_type
18799 || die->tag == DW_TAG_structure_type
18800 || die->tag == DW_TAG_union_type))
18801 {
18802 char *name = guess_full_die_structure_name (die, cu);
18803 if (name != NULL)
18804 return name;
18805 }
18806 return "";
18807 case DW_TAG_enumeration_type:
18808 parent_type = read_type_die (parent, cu);
18809 if (TYPE_DECLARED_CLASS (parent_type))
18810 {
18811 if (TYPE_TAG_NAME (parent_type) != NULL)
18812 return TYPE_TAG_NAME (parent_type);
18813 return "";
18814 }
18815 /* Fall through. */
18816 default:
18817 return determine_prefix (parent, cu);
18818 }
18819}
18820
18821/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18822 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18823 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18824 an obconcat, otherwise allocate storage for the result. The CU argument is
18825 used to determine the language and hence, the appropriate separator. */
18826
18827#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18828
18829static char *
18830typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18831 int physname, struct dwarf2_cu *cu)
18832{
18833 const char *lead = "";
18834 const char *sep;
18835
18836 if (suffix == NULL || suffix[0] == '\0'
18837 || prefix == NULL || prefix[0] == '\0')
18838 sep = "";
18839 else if (cu->language == language_java)
18840 sep = ".";
18841 else if (cu->language == language_fortran && physname)
18842 {
18843 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18844 DW_AT_MIPS_linkage_name is preferred and used instead. */
18845
18846 lead = "__";
18847 sep = "_MOD_";
18848 }
18849 else
18850 sep = "::";
18851
18852 if (prefix == NULL)
18853 prefix = "";
18854 if (suffix == NULL)
18855 suffix = "";
18856
18857 if (obs == NULL)
18858 {
18859 char *retval
18860 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18861
18862 strcpy (retval, lead);
18863 strcat (retval, prefix);
18864 strcat (retval, sep);
18865 strcat (retval, suffix);
18866 return retval;
18867 }
18868 else
18869 {
18870 /* We have an obstack. */
18871 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18872 }
18873}
18874
18875/* Return sibling of die, NULL if no sibling. */
18876
18877static struct die_info *
18878sibling_die (struct die_info *die)
18879{
18880 return die->sibling;
18881}
18882
18883/* Get name of a die, return NULL if not found. */
18884
18885static const char *
18886dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18887 struct obstack *obstack)
18888{
18889 if (name && cu->language == language_cplus)
18890 {
18891 char *canon_name = cp_canonicalize_string (name);
18892
18893 if (canon_name != NULL)
18894 {
18895 if (strcmp (canon_name, name) != 0)
18896 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18897 xfree (canon_name);
18898 }
18899 }
18900
18901 return name;
18902}
18903
18904/* Get name of a die, return NULL if not found. */
18905
18906static const char *
18907dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18908{
18909 struct attribute *attr;
18910
18911 attr = dwarf2_attr (die, DW_AT_name, cu);
18912 if ((!attr || !DW_STRING (attr))
18913 && die->tag != DW_TAG_class_type
18914 && die->tag != DW_TAG_interface_type
18915 && die->tag != DW_TAG_structure_type
18916 && die->tag != DW_TAG_union_type)
18917 return NULL;
18918
18919 switch (die->tag)
18920 {
18921 case DW_TAG_compile_unit:
18922 case DW_TAG_partial_unit:
18923 /* Compilation units have a DW_AT_name that is a filename, not
18924 a source language identifier. */
18925 case DW_TAG_enumeration_type:
18926 case DW_TAG_enumerator:
18927 /* These tags always have simple identifiers already; no need
18928 to canonicalize them. */
18929 return DW_STRING (attr);
18930
18931 case DW_TAG_subprogram:
18932 /* Java constructors will all be named "<init>", so return
18933 the class name when we see this special case. */
18934 if (cu->language == language_java
18935 && DW_STRING (attr) != NULL
18936 && strcmp (DW_STRING (attr), "<init>") == 0)
18937 {
18938 struct dwarf2_cu *spec_cu = cu;
18939 struct die_info *spec_die;
18940
18941 /* GCJ will output '<init>' for Java constructor names.
18942 For this special case, return the name of the parent class. */
18943
18944 /* GCJ may output suprogram DIEs with AT_specification set.
18945 If so, use the name of the specified DIE. */
18946 spec_die = die_specification (die, &spec_cu);
18947 if (spec_die != NULL)
18948 return dwarf2_name (spec_die, spec_cu);
18949
18950 do
18951 {
18952 die = die->parent;
18953 if (die->tag == DW_TAG_class_type)
18954 return dwarf2_name (die, cu);
18955 }
18956 while (die->tag != DW_TAG_compile_unit
18957 && die->tag != DW_TAG_partial_unit);
18958 }
18959 break;
18960
18961 case DW_TAG_class_type:
18962 case DW_TAG_interface_type:
18963 case DW_TAG_structure_type:
18964 case DW_TAG_union_type:
18965 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18966 structures or unions. These were of the form "._%d" in GCC 4.1,
18967 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18968 and GCC 4.4. We work around this problem by ignoring these. */
18969 if (attr && DW_STRING (attr)
18970 && (strncmp (DW_STRING (attr), "._", 2) == 0
18971 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18972 return NULL;
18973
18974 /* GCC might emit a nameless typedef that has a linkage name. See
18975 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18976 if (!attr || DW_STRING (attr) == NULL)
18977 {
18978 char *demangled = NULL;
18979
18980 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18981 if (attr == NULL)
18982 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18983
18984 if (attr == NULL || DW_STRING (attr) == NULL)
18985 return NULL;
18986
18987 /* Avoid demangling DW_STRING (attr) the second time on a second
18988 call for the same DIE. */
18989 if (!DW_STRING_IS_CANONICAL (attr))
18990 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18991
18992 if (demangled)
18993 {
18994 char *base;
18995
18996 /* FIXME: we already did this for the partial symbol... */
18997 DW_STRING (attr)
18998 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18999 demangled, strlen (demangled));
19000 DW_STRING_IS_CANONICAL (attr) = 1;
19001 xfree (demangled);
19002
19003 /* Strip any leading namespaces/classes, keep only the base name.
19004 DW_AT_name for named DIEs does not contain the prefixes. */
19005 base = strrchr (DW_STRING (attr), ':');
19006 if (base && base > DW_STRING (attr) && base[-1] == ':')
19007 return &base[1];
19008 else
19009 return DW_STRING (attr);
19010 }
19011 }
19012 break;
19013
19014 default:
19015 break;
19016 }
19017
19018 if (!DW_STRING_IS_CANONICAL (attr))
19019 {
19020 DW_STRING (attr)
19021 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19022 &cu->objfile->per_bfd->storage_obstack);
19023 DW_STRING_IS_CANONICAL (attr) = 1;
19024 }
19025 return DW_STRING (attr);
19026}
19027
19028/* Return the die that this die in an extension of, or NULL if there
19029 is none. *EXT_CU is the CU containing DIE on input, and the CU
19030 containing the return value on output. */
19031
19032static struct die_info *
19033dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19034{
19035 struct attribute *attr;
19036
19037 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19038 if (attr == NULL)
19039 return NULL;
19040
19041 return follow_die_ref (die, attr, ext_cu);
19042}
19043
19044/* Convert a DIE tag into its string name. */
19045
19046static const char *
19047dwarf_tag_name (unsigned tag)
19048{
19049 const char *name = get_DW_TAG_name (tag);
19050
19051 if (name == NULL)
19052 return "DW_TAG_<unknown>";
19053
19054 return name;
19055}
19056
19057/* Convert a DWARF attribute code into its string name. */
19058
19059static const char *
19060dwarf_attr_name (unsigned attr)
19061{
19062 const char *name;
19063
19064#ifdef MIPS /* collides with DW_AT_HP_block_index */
19065 if (attr == DW_AT_MIPS_fde)
19066 return "DW_AT_MIPS_fde";
19067#else
19068 if (attr == DW_AT_HP_block_index)
19069 return "DW_AT_HP_block_index";
19070#endif
19071
19072 name = get_DW_AT_name (attr);
19073
19074 if (name == NULL)
19075 return "DW_AT_<unknown>";
19076
19077 return name;
19078}
19079
19080/* Convert a DWARF value form code into its string name. */
19081
19082static const char *
19083dwarf_form_name (unsigned form)
19084{
19085 const char *name = get_DW_FORM_name (form);
19086
19087 if (name == NULL)
19088 return "DW_FORM_<unknown>";
19089
19090 return name;
19091}
19092
19093static char *
19094dwarf_bool_name (unsigned mybool)
19095{
19096 if (mybool)
19097 return "TRUE";
19098 else
19099 return "FALSE";
19100}
19101
19102/* Convert a DWARF type code into its string name. */
19103
19104static const char *
19105dwarf_type_encoding_name (unsigned enc)
19106{
19107 const char *name = get_DW_ATE_name (enc);
19108
19109 if (name == NULL)
19110 return "DW_ATE_<unknown>";
19111
19112 return name;
19113}
19114
19115static void
19116dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19117{
19118 unsigned int i;
19119
19120 print_spaces (indent, f);
19121 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19122 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19123
19124 if (die->parent != NULL)
19125 {
19126 print_spaces (indent, f);
19127 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19128 die->parent->offset.sect_off);
19129 }
19130
19131 print_spaces (indent, f);
19132 fprintf_unfiltered (f, " has children: %s\n",
19133 dwarf_bool_name (die->child != NULL));
19134
19135 print_spaces (indent, f);
19136 fprintf_unfiltered (f, " attributes:\n");
19137
19138 for (i = 0; i < die->num_attrs; ++i)
19139 {
19140 print_spaces (indent, f);
19141 fprintf_unfiltered (f, " %s (%s) ",
19142 dwarf_attr_name (die->attrs[i].name),
19143 dwarf_form_name (die->attrs[i].form));
19144
19145 switch (die->attrs[i].form)
19146 {
19147 case DW_FORM_addr:
19148 case DW_FORM_GNU_addr_index:
19149 fprintf_unfiltered (f, "address: ");
19150 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19151 break;
19152 case DW_FORM_block2:
19153 case DW_FORM_block4:
19154 case DW_FORM_block:
19155 case DW_FORM_block1:
19156 fprintf_unfiltered (f, "block: size %s",
19157 pulongest (DW_BLOCK (&die->attrs[i])->size));
19158 break;
19159 case DW_FORM_exprloc:
19160 fprintf_unfiltered (f, "expression: size %s",
19161 pulongest (DW_BLOCK (&die->attrs[i])->size));
19162 break;
19163 case DW_FORM_ref_addr:
19164 fprintf_unfiltered (f, "ref address: ");
19165 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19166 break;
19167 case DW_FORM_GNU_ref_alt:
19168 fprintf_unfiltered (f, "alt ref address: ");
19169 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19170 break;
19171 case DW_FORM_ref1:
19172 case DW_FORM_ref2:
19173 case DW_FORM_ref4:
19174 case DW_FORM_ref8:
19175 case DW_FORM_ref_udata:
19176 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19177 (long) (DW_UNSND (&die->attrs[i])));
19178 break;
19179 case DW_FORM_data1:
19180 case DW_FORM_data2:
19181 case DW_FORM_data4:
19182 case DW_FORM_data8:
19183 case DW_FORM_udata:
19184 case DW_FORM_sdata:
19185 fprintf_unfiltered (f, "constant: %s",
19186 pulongest (DW_UNSND (&die->attrs[i])));
19187 break;
19188 case DW_FORM_sec_offset:
19189 fprintf_unfiltered (f, "section offset: %s",
19190 pulongest (DW_UNSND (&die->attrs[i])));
19191 break;
19192 case DW_FORM_ref_sig8:
19193 fprintf_unfiltered (f, "signature: %s",
19194 hex_string (DW_SIGNATURE (&die->attrs[i])));
19195 break;
19196 case DW_FORM_string:
19197 case DW_FORM_strp:
19198 case DW_FORM_GNU_str_index:
19199 case DW_FORM_GNU_strp_alt:
19200 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19201 DW_STRING (&die->attrs[i])
19202 ? DW_STRING (&die->attrs[i]) : "",
19203 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19204 break;
19205 case DW_FORM_flag:
19206 if (DW_UNSND (&die->attrs[i]))
19207 fprintf_unfiltered (f, "flag: TRUE");
19208 else
19209 fprintf_unfiltered (f, "flag: FALSE");
19210 break;
19211 case DW_FORM_flag_present:
19212 fprintf_unfiltered (f, "flag: TRUE");
19213 break;
19214 case DW_FORM_indirect:
19215 /* The reader will have reduced the indirect form to
19216 the "base form" so this form should not occur. */
19217 fprintf_unfiltered (f,
19218 "unexpected attribute form: DW_FORM_indirect");
19219 break;
19220 default:
19221 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19222 die->attrs[i].form);
19223 break;
19224 }
19225 fprintf_unfiltered (f, "\n");
19226 }
19227}
19228
19229static void
19230dump_die_for_error (struct die_info *die)
19231{
19232 dump_die_shallow (gdb_stderr, 0, die);
19233}
19234
19235static void
19236dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19237{
19238 int indent = level * 4;
19239
19240 gdb_assert (die != NULL);
19241
19242 if (level >= max_level)
19243 return;
19244
19245 dump_die_shallow (f, indent, die);
19246
19247 if (die->child != NULL)
19248 {
19249 print_spaces (indent, f);
19250 fprintf_unfiltered (f, " Children:");
19251 if (level + 1 < max_level)
19252 {
19253 fprintf_unfiltered (f, "\n");
19254 dump_die_1 (f, level + 1, max_level, die->child);
19255 }
19256 else
19257 {
19258 fprintf_unfiltered (f,
19259 " [not printed, max nesting level reached]\n");
19260 }
19261 }
19262
19263 if (die->sibling != NULL && level > 0)
19264 {
19265 dump_die_1 (f, level, max_level, die->sibling);
19266 }
19267}
19268
19269/* This is called from the pdie macro in gdbinit.in.
19270 It's not static so gcc will keep a copy callable from gdb. */
19271
19272void
19273dump_die (struct die_info *die, int max_level)
19274{
19275 dump_die_1 (gdb_stdlog, 0, max_level, die);
19276}
19277
19278static void
19279store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19280{
19281 void **slot;
19282
19283 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19284 INSERT);
19285
19286 *slot = die;
19287}
19288
19289/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19290 required kind. */
19291
19292static sect_offset
19293dwarf2_get_ref_die_offset (const struct attribute *attr)
19294{
19295 sect_offset retval = { DW_UNSND (attr) };
19296
19297 if (attr_form_is_ref (attr))
19298 return retval;
19299
19300 retval.sect_off = 0;
19301 complaint (&symfile_complaints,
19302 _("unsupported die ref attribute form: '%s'"),
19303 dwarf_form_name (attr->form));
19304 return retval;
19305}
19306
19307/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19308 * the value held by the attribute is not constant. */
19309
19310static LONGEST
19311dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19312{
19313 if (attr->form == DW_FORM_sdata)
19314 return DW_SND (attr);
19315 else if (attr->form == DW_FORM_udata
19316 || attr->form == DW_FORM_data1
19317 || attr->form == DW_FORM_data2
19318 || attr->form == DW_FORM_data4
19319 || attr->form == DW_FORM_data8)
19320 return DW_UNSND (attr);
19321 else
19322 {
19323 complaint (&symfile_complaints,
19324 _("Attribute value is not a constant (%s)"),
19325 dwarf_form_name (attr->form));
19326 return default_value;
19327 }
19328}
19329
19330/* Follow reference or signature attribute ATTR of SRC_DIE.
19331 On entry *REF_CU is the CU of SRC_DIE.
19332 On exit *REF_CU is the CU of the result. */
19333
19334static struct die_info *
19335follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19336 struct dwarf2_cu **ref_cu)
19337{
19338 struct die_info *die;
19339
19340 if (attr_form_is_ref (attr))
19341 die = follow_die_ref (src_die, attr, ref_cu);
19342 else if (attr->form == DW_FORM_ref_sig8)
19343 die = follow_die_sig (src_die, attr, ref_cu);
19344 else
19345 {
19346 dump_die_for_error (src_die);
19347 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19348 objfile_name ((*ref_cu)->objfile));
19349 }
19350
19351 return die;
19352}
19353
19354/* Follow reference OFFSET.
19355 On entry *REF_CU is the CU of the source die referencing OFFSET.
19356 On exit *REF_CU is the CU of the result.
19357 Returns NULL if OFFSET is invalid. */
19358
19359static struct die_info *
19360follow_die_offset (sect_offset offset, int offset_in_dwz,
19361 struct dwarf2_cu **ref_cu)
19362{
19363 struct die_info temp_die;
19364 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19365
19366 gdb_assert (cu->per_cu != NULL);
19367
19368 target_cu = cu;
19369
19370 if (cu->per_cu->is_debug_types)
19371 {
19372 /* .debug_types CUs cannot reference anything outside their CU.
19373 If they need to, they have to reference a signatured type via
19374 DW_FORM_ref_sig8. */
19375 if (! offset_in_cu_p (&cu->header, offset))
19376 return NULL;
19377 }
19378 else if (offset_in_dwz != cu->per_cu->is_dwz
19379 || ! offset_in_cu_p (&cu->header, offset))
19380 {
19381 struct dwarf2_per_cu_data *per_cu;
19382
19383 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19384 cu->objfile);
19385
19386 /* If necessary, add it to the queue and load its DIEs. */
19387 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19388 load_full_comp_unit (per_cu, cu->language);
19389
19390 target_cu = per_cu->cu;
19391 }
19392 else if (cu->dies == NULL)
19393 {
19394 /* We're loading full DIEs during partial symbol reading. */
19395 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19396 load_full_comp_unit (cu->per_cu, language_minimal);
19397 }
19398
19399 *ref_cu = target_cu;
19400 temp_die.offset = offset;
19401 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19402}
19403
19404/* Follow reference attribute ATTR of SRC_DIE.
19405 On entry *REF_CU is the CU of SRC_DIE.
19406 On exit *REF_CU is the CU of the result. */
19407
19408static struct die_info *
19409follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19410 struct dwarf2_cu **ref_cu)
19411{
19412 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19413 struct dwarf2_cu *cu = *ref_cu;
19414 struct die_info *die;
19415
19416 die = follow_die_offset (offset,
19417 (attr->form == DW_FORM_GNU_ref_alt
19418 || cu->per_cu->is_dwz),
19419 ref_cu);
19420 if (!die)
19421 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19422 "at 0x%x [in module %s]"),
19423 offset.sect_off, src_die->offset.sect_off,
19424 objfile_name (cu->objfile));
19425
19426 return die;
19427}
19428
19429/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19430 Returned value is intended for DW_OP_call*. Returned
19431 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19432
19433struct dwarf2_locexpr_baton
19434dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19435 struct dwarf2_per_cu_data *per_cu,
19436 CORE_ADDR (*get_frame_pc) (void *baton),
19437 void *baton)
19438{
19439 struct dwarf2_cu *cu;
19440 struct die_info *die;
19441 struct attribute *attr;
19442 struct dwarf2_locexpr_baton retval;
19443
19444 dw2_setup (per_cu->objfile);
19445
19446 if (per_cu->cu == NULL)
19447 load_cu (per_cu);
19448 cu = per_cu->cu;
19449
19450 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19451 if (!die)
19452 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19453 offset.sect_off, objfile_name (per_cu->objfile));
19454
19455 attr = dwarf2_attr (die, DW_AT_location, cu);
19456 if (!attr)
19457 {
19458 /* DWARF: "If there is no such attribute, then there is no effect.".
19459 DATA is ignored if SIZE is 0. */
19460
19461 retval.data = NULL;
19462 retval.size = 0;
19463 }
19464 else if (attr_form_is_section_offset (attr))
19465 {
19466 struct dwarf2_loclist_baton loclist_baton;
19467 CORE_ADDR pc = (*get_frame_pc) (baton);
19468 size_t size;
19469
19470 fill_in_loclist_baton (cu, &loclist_baton, attr);
19471
19472 retval.data = dwarf2_find_location_expression (&loclist_baton,
19473 &size, pc);
19474 retval.size = size;
19475 }
19476 else
19477 {
19478 if (!attr_form_is_block (attr))
19479 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19480 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19481 offset.sect_off, objfile_name (per_cu->objfile));
19482
19483 retval.data = DW_BLOCK (attr)->data;
19484 retval.size = DW_BLOCK (attr)->size;
19485 }
19486 retval.per_cu = cu->per_cu;
19487
19488 age_cached_comp_units ();
19489
19490 return retval;
19491}
19492
19493/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19494 offset. */
19495
19496struct dwarf2_locexpr_baton
19497dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19498 struct dwarf2_per_cu_data *per_cu,
19499 CORE_ADDR (*get_frame_pc) (void *baton),
19500 void *baton)
19501{
19502 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19503
19504 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19505}
19506
19507/* Write a constant of a given type as target-ordered bytes into
19508 OBSTACK. */
19509
19510static const gdb_byte *
19511write_constant_as_bytes (struct obstack *obstack,
19512 enum bfd_endian byte_order,
19513 struct type *type,
19514 ULONGEST value,
19515 LONGEST *len)
19516{
19517 gdb_byte *result;
19518
19519 *len = TYPE_LENGTH (type);
19520 result = obstack_alloc (obstack, *len);
19521 store_unsigned_integer (result, *len, byte_order, value);
19522
19523 return result;
19524}
19525
19526/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19527 pointer to the constant bytes and set LEN to the length of the
19528 data. If memory is needed, allocate it on OBSTACK. If the DIE
19529 does not have a DW_AT_const_value, return NULL. */
19530
19531const gdb_byte *
19532dwarf2_fetch_constant_bytes (sect_offset offset,
19533 struct dwarf2_per_cu_data *per_cu,
19534 struct obstack *obstack,
19535 LONGEST *len)
19536{
19537 struct dwarf2_cu *cu;
19538 struct die_info *die;
19539 struct attribute *attr;
19540 const gdb_byte *result = NULL;
19541 struct type *type;
19542 LONGEST value;
19543 enum bfd_endian byte_order;
19544
19545 dw2_setup (per_cu->objfile);
19546
19547 if (per_cu->cu == NULL)
19548 load_cu (per_cu);
19549 cu = per_cu->cu;
19550
19551 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19552 if (!die)
19553 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19554 offset.sect_off, objfile_name (per_cu->objfile));
19555
19556
19557 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19558 if (attr == NULL)
19559 return NULL;
19560
19561 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19562 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19563
19564 switch (attr->form)
19565 {
19566 case DW_FORM_addr:
19567 case DW_FORM_GNU_addr_index:
19568 {
19569 gdb_byte *tem;
19570
19571 *len = cu->header.addr_size;
19572 tem = obstack_alloc (obstack, *len);
19573 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19574 result = tem;
19575 }
19576 break;
19577 case DW_FORM_string:
19578 case DW_FORM_strp:
19579 case DW_FORM_GNU_str_index:
19580 case DW_FORM_GNU_strp_alt:
19581 /* DW_STRING is already allocated on the objfile obstack, point
19582 directly to it. */
19583 result = (const gdb_byte *) DW_STRING (attr);
19584 *len = strlen (DW_STRING (attr));
19585 break;
19586 case DW_FORM_block1:
19587 case DW_FORM_block2:
19588 case DW_FORM_block4:
19589 case DW_FORM_block:
19590 case DW_FORM_exprloc:
19591 result = DW_BLOCK (attr)->data;
19592 *len = DW_BLOCK (attr)->size;
19593 break;
19594
19595 /* The DW_AT_const_value attributes are supposed to carry the
19596 symbol's value "represented as it would be on the target
19597 architecture." By the time we get here, it's already been
19598 converted to host endianness, so we just need to sign- or
19599 zero-extend it as appropriate. */
19600 case DW_FORM_data1:
19601 type = die_type (die, cu);
19602 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19603 if (result == NULL)
19604 result = write_constant_as_bytes (obstack, byte_order,
19605 type, value, len);
19606 break;
19607 case DW_FORM_data2:
19608 type = die_type (die, cu);
19609 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19610 if (result == NULL)
19611 result = write_constant_as_bytes (obstack, byte_order,
19612 type, value, len);
19613 break;
19614 case DW_FORM_data4:
19615 type = die_type (die, cu);
19616 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19617 if (result == NULL)
19618 result = write_constant_as_bytes (obstack, byte_order,
19619 type, value, len);
19620 break;
19621 case DW_FORM_data8:
19622 type = die_type (die, cu);
19623 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19624 if (result == NULL)
19625 result = write_constant_as_bytes (obstack, byte_order,
19626 type, value, len);
19627 break;
19628
19629 case DW_FORM_sdata:
19630 type = die_type (die, cu);
19631 result = write_constant_as_bytes (obstack, byte_order,
19632 type, DW_SND (attr), len);
19633 break;
19634
19635 case DW_FORM_udata:
19636 type = die_type (die, cu);
19637 result = write_constant_as_bytes (obstack, byte_order,
19638 type, DW_UNSND (attr), len);
19639 break;
19640
19641 default:
19642 complaint (&symfile_complaints,
19643 _("unsupported const value attribute form: '%s'"),
19644 dwarf_form_name (attr->form));
19645 break;
19646 }
19647
19648 return result;
19649}
19650
19651/* Return the type of the DIE at DIE_OFFSET in the CU named by
19652 PER_CU. */
19653
19654struct type *
19655dwarf2_get_die_type (cu_offset die_offset,
19656 struct dwarf2_per_cu_data *per_cu)
19657{
19658 sect_offset die_offset_sect;
19659
19660 dw2_setup (per_cu->objfile);
19661
19662 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19663 return get_die_type_at_offset (die_offset_sect, per_cu);
19664}
19665
19666/* Follow type unit SIG_TYPE referenced by SRC_DIE.
19667 On entry *REF_CU is the CU of SRC_DIE.
19668 On exit *REF_CU is the CU of the result.
19669 Returns NULL if the referenced DIE isn't found. */
19670
19671static struct die_info *
19672follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19673 struct dwarf2_cu **ref_cu)
19674{
19675 struct objfile *objfile = (*ref_cu)->objfile;
19676 struct die_info temp_die;
19677 struct dwarf2_cu *sig_cu;
19678 struct die_info *die;
19679
19680 /* While it might be nice to assert sig_type->type == NULL here,
19681 we can get here for DW_AT_imported_declaration where we need
19682 the DIE not the type. */
19683
19684 /* If necessary, add it to the queue and load its DIEs. */
19685
19686 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19687 read_signatured_type (sig_type);
19688
19689 sig_cu = sig_type->per_cu.cu;
19690 gdb_assert (sig_cu != NULL);
19691 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19692 temp_die.offset = sig_type->type_offset_in_section;
19693 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19694 temp_die.offset.sect_off);
19695 if (die)
19696 {
19697 /* For .gdb_index version 7 keep track of included TUs.
19698 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19699 if (dwarf2_per_objfile->index_table != NULL
19700 && dwarf2_per_objfile->index_table->version <= 7)
19701 {
19702 VEC_safe_push (dwarf2_per_cu_ptr,
19703 (*ref_cu)->per_cu->imported_symtabs,
19704 sig_cu->per_cu);
19705 }
19706
19707 *ref_cu = sig_cu;
19708 return die;
19709 }
19710
19711 return NULL;
19712}
19713
19714/* Follow signatured type referenced by ATTR in SRC_DIE.
19715 On entry *REF_CU is the CU of SRC_DIE.
19716 On exit *REF_CU is the CU of the result.
19717 The result is the DIE of the type.
19718 If the referenced type cannot be found an error is thrown. */
19719
19720static struct die_info *
19721follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19722 struct dwarf2_cu **ref_cu)
19723{
19724 ULONGEST signature = DW_SIGNATURE (attr);
19725 struct signatured_type *sig_type;
19726 struct die_info *die;
19727
19728 gdb_assert (attr->form == DW_FORM_ref_sig8);
19729
19730 sig_type = lookup_signatured_type (*ref_cu, signature);
19731 /* sig_type will be NULL if the signatured type is missing from
19732 the debug info. */
19733 if (sig_type == NULL)
19734 {
19735 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19736 " from DIE at 0x%x [in module %s]"),
19737 hex_string (signature), src_die->offset.sect_off,
19738 objfile_name ((*ref_cu)->objfile));
19739 }
19740
19741 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19742 if (die == NULL)
19743 {
19744 dump_die_for_error (src_die);
19745 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19746 " from DIE at 0x%x [in module %s]"),
19747 hex_string (signature), src_die->offset.sect_off,
19748 objfile_name ((*ref_cu)->objfile));
19749 }
19750
19751 return die;
19752}
19753
19754/* Get the type specified by SIGNATURE referenced in DIE/CU,
19755 reading in and processing the type unit if necessary. */
19756
19757static struct type *
19758get_signatured_type (struct die_info *die, ULONGEST signature,
19759 struct dwarf2_cu *cu)
19760{
19761 struct signatured_type *sig_type;
19762 struct dwarf2_cu *type_cu;
19763 struct die_info *type_die;
19764 struct type *type;
19765
19766 sig_type = lookup_signatured_type (cu, signature);
19767 /* sig_type will be NULL if the signatured type is missing from
19768 the debug info. */
19769 if (sig_type == NULL)
19770 {
19771 complaint (&symfile_complaints,
19772 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19773 " from DIE at 0x%x [in module %s]"),
19774 hex_string (signature), die->offset.sect_off,
19775 objfile_name (dwarf2_per_objfile->objfile));
19776 return build_error_marker_type (cu, die);
19777 }
19778
19779 /* If we already know the type we're done. */
19780 if (sig_type->type != NULL)
19781 return sig_type->type;
19782
19783 type_cu = cu;
19784 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19785 if (type_die != NULL)
19786 {
19787 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19788 is created. This is important, for example, because for c++ classes
19789 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19790 type = read_type_die (type_die, type_cu);
19791 if (type == NULL)
19792 {
19793 complaint (&symfile_complaints,
19794 _("Dwarf Error: Cannot build signatured type %s"
19795 " referenced from DIE at 0x%x [in module %s]"),
19796 hex_string (signature), die->offset.sect_off,
19797 objfile_name (dwarf2_per_objfile->objfile));
19798 type = build_error_marker_type (cu, die);
19799 }
19800 }
19801 else
19802 {
19803 complaint (&symfile_complaints,
19804 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19805 " from DIE at 0x%x [in module %s]"),
19806 hex_string (signature), die->offset.sect_off,
19807 objfile_name (dwarf2_per_objfile->objfile));
19808 type = build_error_marker_type (cu, die);
19809 }
19810 sig_type->type = type;
19811
19812 return type;
19813}
19814
19815/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19816 reading in and processing the type unit if necessary. */
19817
19818static struct type *
19819get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19820 struct dwarf2_cu *cu) /* ARI: editCase function */
19821{
19822 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19823 if (attr_form_is_ref (attr))
19824 {
19825 struct dwarf2_cu *type_cu = cu;
19826 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19827
19828 return read_type_die (type_die, type_cu);
19829 }
19830 else if (attr->form == DW_FORM_ref_sig8)
19831 {
19832 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19833 }
19834 else
19835 {
19836 complaint (&symfile_complaints,
19837 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19838 " at 0x%x [in module %s]"),
19839 dwarf_form_name (attr->form), die->offset.sect_off,
19840 objfile_name (dwarf2_per_objfile->objfile));
19841 return build_error_marker_type (cu, die);
19842 }
19843}
19844
19845/* Load the DIEs associated with type unit PER_CU into memory. */
19846
19847static void
19848load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19849{
19850 struct signatured_type *sig_type;
19851
19852 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19853 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19854
19855 /* We have the per_cu, but we need the signatured_type.
19856 Fortunately this is an easy translation. */
19857 gdb_assert (per_cu->is_debug_types);
19858 sig_type = (struct signatured_type *) per_cu;
19859
19860 gdb_assert (per_cu->cu == NULL);
19861
19862 read_signatured_type (sig_type);
19863
19864 gdb_assert (per_cu->cu != NULL);
19865}
19866
19867/* die_reader_func for read_signatured_type.
19868 This is identical to load_full_comp_unit_reader,
19869 but is kept separate for now. */
19870
19871static void
19872read_signatured_type_reader (const struct die_reader_specs *reader,
19873 const gdb_byte *info_ptr,
19874 struct die_info *comp_unit_die,
19875 int has_children,
19876 void *data)
19877{
19878 struct dwarf2_cu *cu = reader->cu;
19879
19880 gdb_assert (cu->die_hash == NULL);
19881 cu->die_hash =
19882 htab_create_alloc_ex (cu->header.length / 12,
19883 die_hash,
19884 die_eq,
19885 NULL,
19886 &cu->comp_unit_obstack,
19887 hashtab_obstack_allocate,
19888 dummy_obstack_deallocate);
19889
19890 if (has_children)
19891 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19892 &info_ptr, comp_unit_die);
19893 cu->dies = comp_unit_die;
19894 /* comp_unit_die is not stored in die_hash, no need. */
19895
19896 /* We try not to read any attributes in this function, because not
19897 all CUs needed for references have been loaded yet, and symbol
19898 table processing isn't initialized. But we have to set the CU language,
19899 or we won't be able to build types correctly.
19900 Similarly, if we do not read the producer, we can not apply
19901 producer-specific interpretation. */
19902 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19903}
19904
19905/* Read in a signatured type and build its CU and DIEs.
19906 If the type is a stub for the real type in a DWO file,
19907 read in the real type from the DWO file as well. */
19908
19909static void
19910read_signatured_type (struct signatured_type *sig_type)
19911{
19912 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19913
19914 gdb_assert (per_cu->is_debug_types);
19915 gdb_assert (per_cu->cu == NULL);
19916
19917 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19918 read_signatured_type_reader, NULL);
19919 sig_type->per_cu.tu_read = 1;
19920}
19921
19922/* Decode simple location descriptions.
19923 Given a pointer to a dwarf block that defines a location, compute
19924 the location and return the value.
19925
19926 NOTE drow/2003-11-18: This function is called in two situations
19927 now: for the address of static or global variables (partial symbols
19928 only) and for offsets into structures which are expected to be
19929 (more or less) constant. The partial symbol case should go away,
19930 and only the constant case should remain. That will let this
19931 function complain more accurately. A few special modes are allowed
19932 without complaint for global variables (for instance, global
19933 register values and thread-local values).
19934
19935 A location description containing no operations indicates that the
19936 object is optimized out. The return value is 0 for that case.
19937 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19938 callers will only want a very basic result and this can become a
19939 complaint.
19940
19941 Note that stack[0] is unused except as a default error return. */
19942
19943static CORE_ADDR
19944decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19945{
19946 struct objfile *objfile = cu->objfile;
19947 size_t i;
19948 size_t size = blk->size;
19949 const gdb_byte *data = blk->data;
19950 CORE_ADDR stack[64];
19951 int stacki;
19952 unsigned int bytes_read, unsnd;
19953 gdb_byte op;
19954
19955 i = 0;
19956 stacki = 0;
19957 stack[stacki] = 0;
19958 stack[++stacki] = 0;
19959
19960 while (i < size)
19961 {
19962 op = data[i++];
19963 switch (op)
19964 {
19965 case DW_OP_lit0:
19966 case DW_OP_lit1:
19967 case DW_OP_lit2:
19968 case DW_OP_lit3:
19969 case DW_OP_lit4:
19970 case DW_OP_lit5:
19971 case DW_OP_lit6:
19972 case DW_OP_lit7:
19973 case DW_OP_lit8:
19974 case DW_OP_lit9:
19975 case DW_OP_lit10:
19976 case DW_OP_lit11:
19977 case DW_OP_lit12:
19978 case DW_OP_lit13:
19979 case DW_OP_lit14:
19980 case DW_OP_lit15:
19981 case DW_OP_lit16:
19982 case DW_OP_lit17:
19983 case DW_OP_lit18:
19984 case DW_OP_lit19:
19985 case DW_OP_lit20:
19986 case DW_OP_lit21:
19987 case DW_OP_lit22:
19988 case DW_OP_lit23:
19989 case DW_OP_lit24:
19990 case DW_OP_lit25:
19991 case DW_OP_lit26:
19992 case DW_OP_lit27:
19993 case DW_OP_lit28:
19994 case DW_OP_lit29:
19995 case DW_OP_lit30:
19996 case DW_OP_lit31:
19997 stack[++stacki] = op - DW_OP_lit0;
19998 break;
19999
20000 case DW_OP_reg0:
20001 case DW_OP_reg1:
20002 case DW_OP_reg2:
20003 case DW_OP_reg3:
20004 case DW_OP_reg4:
20005 case DW_OP_reg5:
20006 case DW_OP_reg6:
20007 case DW_OP_reg7:
20008 case DW_OP_reg8:
20009 case DW_OP_reg9:
20010 case DW_OP_reg10:
20011 case DW_OP_reg11:
20012 case DW_OP_reg12:
20013 case DW_OP_reg13:
20014 case DW_OP_reg14:
20015 case DW_OP_reg15:
20016 case DW_OP_reg16:
20017 case DW_OP_reg17:
20018 case DW_OP_reg18:
20019 case DW_OP_reg19:
20020 case DW_OP_reg20:
20021 case DW_OP_reg21:
20022 case DW_OP_reg22:
20023 case DW_OP_reg23:
20024 case DW_OP_reg24:
20025 case DW_OP_reg25:
20026 case DW_OP_reg26:
20027 case DW_OP_reg27:
20028 case DW_OP_reg28:
20029 case DW_OP_reg29:
20030 case DW_OP_reg30:
20031 case DW_OP_reg31:
20032 stack[++stacki] = op - DW_OP_reg0;
20033 if (i < size)
20034 dwarf2_complex_location_expr_complaint ();
20035 break;
20036
20037 case DW_OP_regx:
20038 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20039 i += bytes_read;
20040 stack[++stacki] = unsnd;
20041 if (i < size)
20042 dwarf2_complex_location_expr_complaint ();
20043 break;
20044
20045 case DW_OP_addr:
20046 stack[++stacki] = read_address (objfile->obfd, &data[i],
20047 cu, &bytes_read);
20048 i += bytes_read;
20049 break;
20050
20051 case DW_OP_const1u:
20052 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20053 i += 1;
20054 break;
20055
20056 case DW_OP_const1s:
20057 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20058 i += 1;
20059 break;
20060
20061 case DW_OP_const2u:
20062 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20063 i += 2;
20064 break;
20065
20066 case DW_OP_const2s:
20067 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20068 i += 2;
20069 break;
20070
20071 case DW_OP_const4u:
20072 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20073 i += 4;
20074 break;
20075
20076 case DW_OP_const4s:
20077 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20078 i += 4;
20079 break;
20080
20081 case DW_OP_const8u:
20082 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20083 i += 8;
20084 break;
20085
20086 case DW_OP_constu:
20087 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20088 &bytes_read);
20089 i += bytes_read;
20090 break;
20091
20092 case DW_OP_consts:
20093 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20094 i += bytes_read;
20095 break;
20096
20097 case DW_OP_dup:
20098 stack[stacki + 1] = stack[stacki];
20099 stacki++;
20100 break;
20101
20102 case DW_OP_plus:
20103 stack[stacki - 1] += stack[stacki];
20104 stacki--;
20105 break;
20106
20107 case DW_OP_plus_uconst:
20108 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20109 &bytes_read);
20110 i += bytes_read;
20111 break;
20112
20113 case DW_OP_minus:
20114 stack[stacki - 1] -= stack[stacki];
20115 stacki--;
20116 break;
20117
20118 case DW_OP_deref:
20119 /* If we're not the last op, then we definitely can't encode
20120 this using GDB's address_class enum. This is valid for partial
20121 global symbols, although the variable's address will be bogus
20122 in the psymtab. */
20123 if (i < size)
20124 dwarf2_complex_location_expr_complaint ();
20125 break;
20126
20127 case DW_OP_GNU_push_tls_address:
20128 /* The top of the stack has the offset from the beginning
20129 of the thread control block at which the variable is located. */
20130 /* Nothing should follow this operator, so the top of stack would
20131 be returned. */
20132 /* This is valid for partial global symbols, but the variable's
20133 address will be bogus in the psymtab. Make it always at least
20134 non-zero to not look as a variable garbage collected by linker
20135 which have DW_OP_addr 0. */
20136 if (i < size)
20137 dwarf2_complex_location_expr_complaint ();
20138 stack[stacki]++;
20139 break;
20140
20141 case DW_OP_GNU_uninit:
20142 break;
20143
20144 case DW_OP_GNU_addr_index:
20145 case DW_OP_GNU_const_index:
20146 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20147 &bytes_read);
20148 i += bytes_read;
20149 break;
20150
20151 default:
20152 {
20153 const char *name = get_DW_OP_name (op);
20154
20155 if (name)
20156 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20157 name);
20158 else
20159 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20160 op);
20161 }
20162
20163 return (stack[stacki]);
20164 }
20165
20166 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20167 outside of the allocated space. Also enforce minimum>0. */
20168 if (stacki >= ARRAY_SIZE (stack) - 1)
20169 {
20170 complaint (&symfile_complaints,
20171 _("location description stack overflow"));
20172 return 0;
20173 }
20174
20175 if (stacki <= 0)
20176 {
20177 complaint (&symfile_complaints,
20178 _("location description stack underflow"));
20179 return 0;
20180 }
20181 }
20182 return (stack[stacki]);
20183}
20184
20185/* memory allocation interface */
20186
20187static struct dwarf_block *
20188dwarf_alloc_block (struct dwarf2_cu *cu)
20189{
20190 struct dwarf_block *blk;
20191
20192 blk = (struct dwarf_block *)
20193 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20194 return (blk);
20195}
20196
20197static struct die_info *
20198dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20199{
20200 struct die_info *die;
20201 size_t size = sizeof (struct die_info);
20202
20203 if (num_attrs > 1)
20204 size += (num_attrs - 1) * sizeof (struct attribute);
20205
20206 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20207 memset (die, 0, sizeof (struct die_info));
20208 return (die);
20209}
20210
20211\f
20212/* Macro support. */
20213
20214/* Return file name relative to the compilation directory of file number I in
20215 *LH's file name table. The result is allocated using xmalloc; the caller is
20216 responsible for freeing it. */
20217
20218static char *
20219file_file_name (int file, struct line_header *lh)
20220{
20221 /* Is the file number a valid index into the line header's file name
20222 table? Remember that file numbers start with one, not zero. */
20223 if (1 <= file && file <= lh->num_file_names)
20224 {
20225 struct file_entry *fe = &lh->file_names[file - 1];
20226
20227 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20228 return xstrdup (fe->name);
20229 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20230 fe->name, NULL);
20231 }
20232 else
20233 {
20234 /* The compiler produced a bogus file number. We can at least
20235 record the macro definitions made in the file, even if we
20236 won't be able to find the file by name. */
20237 char fake_name[80];
20238
20239 xsnprintf (fake_name, sizeof (fake_name),
20240 "<bad macro file number %d>", file);
20241
20242 complaint (&symfile_complaints,
20243 _("bad file number in macro information (%d)"),
20244 file);
20245
20246 return xstrdup (fake_name);
20247 }
20248}
20249
20250/* Return the full name of file number I in *LH's file name table.
20251 Use COMP_DIR as the name of the current directory of the
20252 compilation. The result is allocated using xmalloc; the caller is
20253 responsible for freeing it. */
20254static char *
20255file_full_name (int file, struct line_header *lh, const char *comp_dir)
20256{
20257 /* Is the file number a valid index into the line header's file name
20258 table? Remember that file numbers start with one, not zero. */
20259 if (1 <= file && file <= lh->num_file_names)
20260 {
20261 char *relative = file_file_name (file, lh);
20262
20263 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20264 return relative;
20265 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20266 }
20267 else
20268 return file_file_name (file, lh);
20269}
20270
20271
20272static struct macro_source_file *
20273macro_start_file (int file, int line,
20274 struct macro_source_file *current_file,
20275 const char *comp_dir,
20276 struct line_header *lh, struct objfile *objfile)
20277{
20278 /* File name relative to the compilation directory of this source file. */
20279 char *file_name = file_file_name (file, lh);
20280
20281 if (! current_file)
20282 {
20283 /* Note: We don't create a macro table for this compilation unit
20284 at all until we actually get a filename. */
20285 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20286
20287 /* If we have no current file, then this must be the start_file
20288 directive for the compilation unit's main source file. */
20289 current_file = macro_set_main (macro_table, file_name);
20290 macro_define_special (macro_table);
20291 }
20292 else
20293 current_file = macro_include (current_file, line, file_name);
20294
20295 xfree (file_name);
20296
20297 return current_file;
20298}
20299
20300
20301/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20302 followed by a null byte. */
20303static char *
20304copy_string (const char *buf, int len)
20305{
20306 char *s = xmalloc (len + 1);
20307
20308 memcpy (s, buf, len);
20309 s[len] = '\0';
20310 return s;
20311}
20312
20313
20314static const char *
20315consume_improper_spaces (const char *p, const char *body)
20316{
20317 if (*p == ' ')
20318 {
20319 complaint (&symfile_complaints,
20320 _("macro definition contains spaces "
20321 "in formal argument list:\n`%s'"),
20322 body);
20323
20324 while (*p == ' ')
20325 p++;
20326 }
20327
20328 return p;
20329}
20330
20331
20332static void
20333parse_macro_definition (struct macro_source_file *file, int line,
20334 const char *body)
20335{
20336 const char *p;
20337
20338 /* The body string takes one of two forms. For object-like macro
20339 definitions, it should be:
20340
20341 <macro name> " " <definition>
20342
20343 For function-like macro definitions, it should be:
20344
20345 <macro name> "() " <definition>
20346 or
20347 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20348
20349 Spaces may appear only where explicitly indicated, and in the
20350 <definition>.
20351
20352 The Dwarf 2 spec says that an object-like macro's name is always
20353 followed by a space, but versions of GCC around March 2002 omit
20354 the space when the macro's definition is the empty string.
20355
20356 The Dwarf 2 spec says that there should be no spaces between the
20357 formal arguments in a function-like macro's formal argument list,
20358 but versions of GCC around March 2002 include spaces after the
20359 commas. */
20360
20361
20362 /* Find the extent of the macro name. The macro name is terminated
20363 by either a space or null character (for an object-like macro) or
20364 an opening paren (for a function-like macro). */
20365 for (p = body; *p; p++)
20366 if (*p == ' ' || *p == '(')
20367 break;
20368
20369 if (*p == ' ' || *p == '\0')
20370 {
20371 /* It's an object-like macro. */
20372 int name_len = p - body;
20373 char *name = copy_string (body, name_len);
20374 const char *replacement;
20375
20376 if (*p == ' ')
20377 replacement = body + name_len + 1;
20378 else
20379 {
20380 dwarf2_macro_malformed_definition_complaint (body);
20381 replacement = body + name_len;
20382 }
20383
20384 macro_define_object (file, line, name, replacement);
20385
20386 xfree (name);
20387 }
20388 else if (*p == '(')
20389 {
20390 /* It's a function-like macro. */
20391 char *name = copy_string (body, p - body);
20392 int argc = 0;
20393 int argv_size = 1;
20394 char **argv = xmalloc (argv_size * sizeof (*argv));
20395
20396 p++;
20397
20398 p = consume_improper_spaces (p, body);
20399
20400 /* Parse the formal argument list. */
20401 while (*p && *p != ')')
20402 {
20403 /* Find the extent of the current argument name. */
20404 const char *arg_start = p;
20405
20406 while (*p && *p != ',' && *p != ')' && *p != ' ')
20407 p++;
20408
20409 if (! *p || p == arg_start)
20410 dwarf2_macro_malformed_definition_complaint (body);
20411 else
20412 {
20413 /* Make sure argv has room for the new argument. */
20414 if (argc >= argv_size)
20415 {
20416 argv_size *= 2;
20417 argv = xrealloc (argv, argv_size * sizeof (*argv));
20418 }
20419
20420 argv[argc++] = copy_string (arg_start, p - arg_start);
20421 }
20422
20423 p = consume_improper_spaces (p, body);
20424
20425 /* Consume the comma, if present. */
20426 if (*p == ',')
20427 {
20428 p++;
20429
20430 p = consume_improper_spaces (p, body);
20431 }
20432 }
20433
20434 if (*p == ')')
20435 {
20436 p++;
20437
20438 if (*p == ' ')
20439 /* Perfectly formed definition, no complaints. */
20440 macro_define_function (file, line, name,
20441 argc, (const char **) argv,
20442 p + 1);
20443 else if (*p == '\0')
20444 {
20445 /* Complain, but do define it. */
20446 dwarf2_macro_malformed_definition_complaint (body);
20447 macro_define_function (file, line, name,
20448 argc, (const char **) argv,
20449 p);
20450 }
20451 else
20452 /* Just complain. */
20453 dwarf2_macro_malformed_definition_complaint (body);
20454 }
20455 else
20456 /* Just complain. */
20457 dwarf2_macro_malformed_definition_complaint (body);
20458
20459 xfree (name);
20460 {
20461 int i;
20462
20463 for (i = 0; i < argc; i++)
20464 xfree (argv[i]);
20465 }
20466 xfree (argv);
20467 }
20468 else
20469 dwarf2_macro_malformed_definition_complaint (body);
20470}
20471
20472/* Skip some bytes from BYTES according to the form given in FORM.
20473 Returns the new pointer. */
20474
20475static const gdb_byte *
20476skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20477 enum dwarf_form form,
20478 unsigned int offset_size,
20479 struct dwarf2_section_info *section)
20480{
20481 unsigned int bytes_read;
20482
20483 switch (form)
20484 {
20485 case DW_FORM_data1:
20486 case DW_FORM_flag:
20487 ++bytes;
20488 break;
20489
20490 case DW_FORM_data2:
20491 bytes += 2;
20492 break;
20493
20494 case DW_FORM_data4:
20495 bytes += 4;
20496 break;
20497
20498 case DW_FORM_data8:
20499 bytes += 8;
20500 break;
20501
20502 case DW_FORM_string:
20503 read_direct_string (abfd, bytes, &bytes_read);
20504 bytes += bytes_read;
20505 break;
20506
20507 case DW_FORM_sec_offset:
20508 case DW_FORM_strp:
20509 case DW_FORM_GNU_strp_alt:
20510 bytes += offset_size;
20511 break;
20512
20513 case DW_FORM_block:
20514 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20515 bytes += bytes_read;
20516 break;
20517
20518 case DW_FORM_block1:
20519 bytes += 1 + read_1_byte (abfd, bytes);
20520 break;
20521 case DW_FORM_block2:
20522 bytes += 2 + read_2_bytes (abfd, bytes);
20523 break;
20524 case DW_FORM_block4:
20525 bytes += 4 + read_4_bytes (abfd, bytes);
20526 break;
20527
20528 case DW_FORM_sdata:
20529 case DW_FORM_udata:
20530 case DW_FORM_GNU_addr_index:
20531 case DW_FORM_GNU_str_index:
20532 bytes = gdb_skip_leb128 (bytes, buffer_end);
20533 if (bytes == NULL)
20534 {
20535 dwarf2_section_buffer_overflow_complaint (section);
20536 return NULL;
20537 }
20538 break;
20539
20540 default:
20541 {
20542 complain:
20543 complaint (&symfile_complaints,
20544 _("invalid form 0x%x in `%s'"),
20545 form, get_section_name (section));
20546 return NULL;
20547 }
20548 }
20549
20550 return bytes;
20551}
20552
20553/* A helper for dwarf_decode_macros that handles skipping an unknown
20554 opcode. Returns an updated pointer to the macro data buffer; or,
20555 on error, issues a complaint and returns NULL. */
20556
20557static const gdb_byte *
20558skip_unknown_opcode (unsigned int opcode,
20559 const gdb_byte **opcode_definitions,
20560 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20561 bfd *abfd,
20562 unsigned int offset_size,
20563 struct dwarf2_section_info *section)
20564{
20565 unsigned int bytes_read, i;
20566 unsigned long arg;
20567 const gdb_byte *defn;
20568
20569 if (opcode_definitions[opcode] == NULL)
20570 {
20571 complaint (&symfile_complaints,
20572 _("unrecognized DW_MACFINO opcode 0x%x"),
20573 opcode);
20574 return NULL;
20575 }
20576
20577 defn = opcode_definitions[opcode];
20578 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20579 defn += bytes_read;
20580
20581 for (i = 0; i < arg; ++i)
20582 {
20583 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20584 section);
20585 if (mac_ptr == NULL)
20586 {
20587 /* skip_form_bytes already issued the complaint. */
20588 return NULL;
20589 }
20590 }
20591
20592 return mac_ptr;
20593}
20594
20595/* A helper function which parses the header of a macro section.
20596 If the macro section is the extended (for now called "GNU") type,
20597 then this updates *OFFSET_SIZE. Returns a pointer to just after
20598 the header, or issues a complaint and returns NULL on error. */
20599
20600static const gdb_byte *
20601dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20602 bfd *abfd,
20603 const gdb_byte *mac_ptr,
20604 unsigned int *offset_size,
20605 int section_is_gnu)
20606{
20607 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20608
20609 if (section_is_gnu)
20610 {
20611 unsigned int version, flags;
20612
20613 version = read_2_bytes (abfd, mac_ptr);
20614 if (version != 4)
20615 {
20616 complaint (&symfile_complaints,
20617 _("unrecognized version `%d' in .debug_macro section"),
20618 version);
20619 return NULL;
20620 }
20621 mac_ptr += 2;
20622
20623 flags = read_1_byte (abfd, mac_ptr);
20624 ++mac_ptr;
20625 *offset_size = (flags & 1) ? 8 : 4;
20626
20627 if ((flags & 2) != 0)
20628 /* We don't need the line table offset. */
20629 mac_ptr += *offset_size;
20630
20631 /* Vendor opcode descriptions. */
20632 if ((flags & 4) != 0)
20633 {
20634 unsigned int i, count;
20635
20636 count = read_1_byte (abfd, mac_ptr);
20637 ++mac_ptr;
20638 for (i = 0; i < count; ++i)
20639 {
20640 unsigned int opcode, bytes_read;
20641 unsigned long arg;
20642
20643 opcode = read_1_byte (abfd, mac_ptr);
20644 ++mac_ptr;
20645 opcode_definitions[opcode] = mac_ptr;
20646 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20647 mac_ptr += bytes_read;
20648 mac_ptr += arg;
20649 }
20650 }
20651 }
20652
20653 return mac_ptr;
20654}
20655
20656/* A helper for dwarf_decode_macros that handles the GNU extensions,
20657 including DW_MACRO_GNU_transparent_include. */
20658
20659static void
20660dwarf_decode_macro_bytes (bfd *abfd,
20661 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20662 struct macro_source_file *current_file,
20663 struct line_header *lh, const char *comp_dir,
20664 struct dwarf2_section_info *section,
20665 int section_is_gnu, int section_is_dwz,
20666 unsigned int offset_size,
20667 struct objfile *objfile,
20668 htab_t include_hash)
20669{
20670 enum dwarf_macro_record_type macinfo_type;
20671 int at_commandline;
20672 const gdb_byte *opcode_definitions[256];
20673
20674 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20675 &offset_size, section_is_gnu);
20676 if (mac_ptr == NULL)
20677 {
20678 /* We already issued a complaint. */
20679 return;
20680 }
20681
20682 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20683 GDB is still reading the definitions from command line. First
20684 DW_MACINFO_start_file will need to be ignored as it was already executed
20685 to create CURRENT_FILE for the main source holding also the command line
20686 definitions. On first met DW_MACINFO_start_file this flag is reset to
20687 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20688
20689 at_commandline = 1;
20690
20691 do
20692 {
20693 /* Do we at least have room for a macinfo type byte? */
20694 if (mac_ptr >= mac_end)
20695 {
20696 dwarf2_section_buffer_overflow_complaint (section);
20697 break;
20698 }
20699
20700 macinfo_type = read_1_byte (abfd, mac_ptr);
20701 mac_ptr++;
20702
20703 /* Note that we rely on the fact that the corresponding GNU and
20704 DWARF constants are the same. */
20705 switch (macinfo_type)
20706 {
20707 /* A zero macinfo type indicates the end of the macro
20708 information. */
20709 case 0:
20710 break;
20711
20712 case DW_MACRO_GNU_define:
20713 case DW_MACRO_GNU_undef:
20714 case DW_MACRO_GNU_define_indirect:
20715 case DW_MACRO_GNU_undef_indirect:
20716 case DW_MACRO_GNU_define_indirect_alt:
20717 case DW_MACRO_GNU_undef_indirect_alt:
20718 {
20719 unsigned int bytes_read;
20720 int line;
20721 const char *body;
20722 int is_define;
20723
20724 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20725 mac_ptr += bytes_read;
20726
20727 if (macinfo_type == DW_MACRO_GNU_define
20728 || macinfo_type == DW_MACRO_GNU_undef)
20729 {
20730 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20731 mac_ptr += bytes_read;
20732 }
20733 else
20734 {
20735 LONGEST str_offset;
20736
20737 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20738 mac_ptr += offset_size;
20739
20740 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20741 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20742 || section_is_dwz)
20743 {
20744 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20745
20746 body = read_indirect_string_from_dwz (dwz, str_offset);
20747 }
20748 else
20749 body = read_indirect_string_at_offset (abfd, str_offset);
20750 }
20751
20752 is_define = (macinfo_type == DW_MACRO_GNU_define
20753 || macinfo_type == DW_MACRO_GNU_define_indirect
20754 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20755 if (! current_file)
20756 {
20757 /* DWARF violation as no main source is present. */
20758 complaint (&symfile_complaints,
20759 _("debug info with no main source gives macro %s "
20760 "on line %d: %s"),
20761 is_define ? _("definition") : _("undefinition"),
20762 line, body);
20763 break;
20764 }
20765 if ((line == 0 && !at_commandline)
20766 || (line != 0 && at_commandline))
20767 complaint (&symfile_complaints,
20768 _("debug info gives %s macro %s with %s line %d: %s"),
20769 at_commandline ? _("command-line") : _("in-file"),
20770 is_define ? _("definition") : _("undefinition"),
20771 line == 0 ? _("zero") : _("non-zero"), line, body);
20772
20773 if (is_define)
20774 parse_macro_definition (current_file, line, body);
20775 else
20776 {
20777 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20778 || macinfo_type == DW_MACRO_GNU_undef_indirect
20779 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20780 macro_undef (current_file, line, body);
20781 }
20782 }
20783 break;
20784
20785 case DW_MACRO_GNU_start_file:
20786 {
20787 unsigned int bytes_read;
20788 int line, file;
20789
20790 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20791 mac_ptr += bytes_read;
20792 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20793 mac_ptr += bytes_read;
20794
20795 if ((line == 0 && !at_commandline)
20796 || (line != 0 && at_commandline))
20797 complaint (&symfile_complaints,
20798 _("debug info gives source %d included "
20799 "from %s at %s line %d"),
20800 file, at_commandline ? _("command-line") : _("file"),
20801 line == 0 ? _("zero") : _("non-zero"), line);
20802
20803 if (at_commandline)
20804 {
20805 /* This DW_MACRO_GNU_start_file was executed in the
20806 pass one. */
20807 at_commandline = 0;
20808 }
20809 else
20810 current_file = macro_start_file (file, line,
20811 current_file, comp_dir,
20812 lh, objfile);
20813 }
20814 break;
20815
20816 case DW_MACRO_GNU_end_file:
20817 if (! current_file)
20818 complaint (&symfile_complaints,
20819 _("macro debug info has an unmatched "
20820 "`close_file' directive"));
20821 else
20822 {
20823 current_file = current_file->included_by;
20824 if (! current_file)
20825 {
20826 enum dwarf_macro_record_type next_type;
20827
20828 /* GCC circa March 2002 doesn't produce the zero
20829 type byte marking the end of the compilation
20830 unit. Complain if it's not there, but exit no
20831 matter what. */
20832
20833 /* Do we at least have room for a macinfo type byte? */
20834 if (mac_ptr >= mac_end)
20835 {
20836 dwarf2_section_buffer_overflow_complaint (section);
20837 return;
20838 }
20839
20840 /* We don't increment mac_ptr here, so this is just
20841 a look-ahead. */
20842 next_type = read_1_byte (abfd, mac_ptr);
20843 if (next_type != 0)
20844 complaint (&symfile_complaints,
20845 _("no terminating 0-type entry for "
20846 "macros in `.debug_macinfo' section"));
20847
20848 return;
20849 }
20850 }
20851 break;
20852
20853 case DW_MACRO_GNU_transparent_include:
20854 case DW_MACRO_GNU_transparent_include_alt:
20855 {
20856 LONGEST offset;
20857 void **slot;
20858 bfd *include_bfd = abfd;
20859 struct dwarf2_section_info *include_section = section;
20860 struct dwarf2_section_info alt_section;
20861 const gdb_byte *include_mac_end = mac_end;
20862 int is_dwz = section_is_dwz;
20863 const gdb_byte *new_mac_ptr;
20864
20865 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20866 mac_ptr += offset_size;
20867
20868 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20869 {
20870 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20871
20872 dwarf2_read_section (dwarf2_per_objfile->objfile,
20873 &dwz->macro);
20874
20875 include_section = &dwz->macro;
20876 include_bfd = get_section_bfd_owner (include_section);
20877 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20878 is_dwz = 1;
20879 }
20880
20881 new_mac_ptr = include_section->buffer + offset;
20882 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20883
20884 if (*slot != NULL)
20885 {
20886 /* This has actually happened; see
20887 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20888 complaint (&symfile_complaints,
20889 _("recursive DW_MACRO_GNU_transparent_include in "
20890 ".debug_macro section"));
20891 }
20892 else
20893 {
20894 *slot = (void *) new_mac_ptr;
20895
20896 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20897 include_mac_end, current_file,
20898 lh, comp_dir,
20899 section, section_is_gnu, is_dwz,
20900 offset_size, objfile, include_hash);
20901
20902 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20903 }
20904 }
20905 break;
20906
20907 case DW_MACINFO_vendor_ext:
20908 if (!section_is_gnu)
20909 {
20910 unsigned int bytes_read;
20911 int constant;
20912
20913 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20914 mac_ptr += bytes_read;
20915 read_direct_string (abfd, mac_ptr, &bytes_read);
20916 mac_ptr += bytes_read;
20917
20918 /* We don't recognize any vendor extensions. */
20919 break;
20920 }
20921 /* FALLTHROUGH */
20922
20923 default:
20924 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20925 mac_ptr, mac_end, abfd, offset_size,
20926 section);
20927 if (mac_ptr == NULL)
20928 return;
20929 break;
20930 }
20931 } while (macinfo_type != 0);
20932}
20933
20934static void
20935dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20936 const char *comp_dir, int section_is_gnu)
20937{
20938 struct objfile *objfile = dwarf2_per_objfile->objfile;
20939 struct line_header *lh = cu->line_header;
20940 bfd *abfd;
20941 const gdb_byte *mac_ptr, *mac_end;
20942 struct macro_source_file *current_file = 0;
20943 enum dwarf_macro_record_type macinfo_type;
20944 unsigned int offset_size = cu->header.offset_size;
20945 const gdb_byte *opcode_definitions[256];
20946 struct cleanup *cleanup;
20947 htab_t include_hash;
20948 void **slot;
20949 struct dwarf2_section_info *section;
20950 const char *section_name;
20951
20952 if (cu->dwo_unit != NULL)
20953 {
20954 if (section_is_gnu)
20955 {
20956 section = &cu->dwo_unit->dwo_file->sections.macro;
20957 section_name = ".debug_macro.dwo";
20958 }
20959 else
20960 {
20961 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20962 section_name = ".debug_macinfo.dwo";
20963 }
20964 }
20965 else
20966 {
20967 if (section_is_gnu)
20968 {
20969 section = &dwarf2_per_objfile->macro;
20970 section_name = ".debug_macro";
20971 }
20972 else
20973 {
20974 section = &dwarf2_per_objfile->macinfo;
20975 section_name = ".debug_macinfo";
20976 }
20977 }
20978
20979 dwarf2_read_section (objfile, section);
20980 if (section->buffer == NULL)
20981 {
20982 complaint (&symfile_complaints, _("missing %s section"), section_name);
20983 return;
20984 }
20985 abfd = get_section_bfd_owner (section);
20986
20987 /* First pass: Find the name of the base filename.
20988 This filename is needed in order to process all macros whose definition
20989 (or undefinition) comes from the command line. These macros are defined
20990 before the first DW_MACINFO_start_file entry, and yet still need to be
20991 associated to the base file.
20992
20993 To determine the base file name, we scan the macro definitions until we
20994 reach the first DW_MACINFO_start_file entry. We then initialize
20995 CURRENT_FILE accordingly so that any macro definition found before the
20996 first DW_MACINFO_start_file can still be associated to the base file. */
20997
20998 mac_ptr = section->buffer + offset;
20999 mac_end = section->buffer + section->size;
21000
21001 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21002 &offset_size, section_is_gnu);
21003 if (mac_ptr == NULL)
21004 {
21005 /* We already issued a complaint. */
21006 return;
21007 }
21008
21009 do
21010 {
21011 /* Do we at least have room for a macinfo type byte? */
21012 if (mac_ptr >= mac_end)
21013 {
21014 /* Complaint is printed during the second pass as GDB will probably
21015 stop the first pass earlier upon finding
21016 DW_MACINFO_start_file. */
21017 break;
21018 }
21019
21020 macinfo_type = read_1_byte (abfd, mac_ptr);
21021 mac_ptr++;
21022
21023 /* Note that we rely on the fact that the corresponding GNU and
21024 DWARF constants are the same. */
21025 switch (macinfo_type)
21026 {
21027 /* A zero macinfo type indicates the end of the macro
21028 information. */
21029 case 0:
21030 break;
21031
21032 case DW_MACRO_GNU_define:
21033 case DW_MACRO_GNU_undef:
21034 /* Only skip the data by MAC_PTR. */
21035 {
21036 unsigned int bytes_read;
21037
21038 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21039 mac_ptr += bytes_read;
21040 read_direct_string (abfd, mac_ptr, &bytes_read);
21041 mac_ptr += bytes_read;
21042 }
21043 break;
21044
21045 case DW_MACRO_GNU_start_file:
21046 {
21047 unsigned int bytes_read;
21048 int line, file;
21049
21050 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21051 mac_ptr += bytes_read;
21052 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21053 mac_ptr += bytes_read;
21054
21055 current_file = macro_start_file (file, line, current_file,
21056 comp_dir, lh, objfile);
21057 }
21058 break;
21059
21060 case DW_MACRO_GNU_end_file:
21061 /* No data to skip by MAC_PTR. */
21062 break;
21063
21064 case DW_MACRO_GNU_define_indirect:
21065 case DW_MACRO_GNU_undef_indirect:
21066 case DW_MACRO_GNU_define_indirect_alt:
21067 case DW_MACRO_GNU_undef_indirect_alt:
21068 {
21069 unsigned int bytes_read;
21070
21071 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21072 mac_ptr += bytes_read;
21073 mac_ptr += offset_size;
21074 }
21075 break;
21076
21077 case DW_MACRO_GNU_transparent_include:
21078 case DW_MACRO_GNU_transparent_include_alt:
21079 /* Note that, according to the spec, a transparent include
21080 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21081 skip this opcode. */
21082 mac_ptr += offset_size;
21083 break;
21084
21085 case DW_MACINFO_vendor_ext:
21086 /* Only skip the data by MAC_PTR. */
21087 if (!section_is_gnu)
21088 {
21089 unsigned int bytes_read;
21090
21091 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21092 mac_ptr += bytes_read;
21093 read_direct_string (abfd, mac_ptr, &bytes_read);
21094 mac_ptr += bytes_read;
21095 }
21096 /* FALLTHROUGH */
21097
21098 default:
21099 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21100 mac_ptr, mac_end, abfd, offset_size,
21101 section);
21102 if (mac_ptr == NULL)
21103 return;
21104 break;
21105 }
21106 } while (macinfo_type != 0 && current_file == NULL);
21107
21108 /* Second pass: Process all entries.
21109
21110 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21111 command-line macro definitions/undefinitions. This flag is unset when we
21112 reach the first DW_MACINFO_start_file entry. */
21113
21114 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21115 NULL, xcalloc, xfree);
21116 cleanup = make_cleanup_htab_delete (include_hash);
21117 mac_ptr = section->buffer + offset;
21118 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21119 *slot = (void *) mac_ptr;
21120 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21121 current_file, lh, comp_dir, section,
21122 section_is_gnu, 0,
21123 offset_size, objfile, include_hash);
21124 do_cleanups (cleanup);
21125}
21126
21127/* Check if the attribute's form is a DW_FORM_block*
21128 if so return true else false. */
21129
21130static int
21131attr_form_is_block (const struct attribute *attr)
21132{
21133 return (attr == NULL ? 0 :
21134 attr->form == DW_FORM_block1
21135 || attr->form == DW_FORM_block2
21136 || attr->form == DW_FORM_block4
21137 || attr->form == DW_FORM_block
21138 || attr->form == DW_FORM_exprloc);
21139}
21140
21141/* Return non-zero if ATTR's value is a section offset --- classes
21142 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21143 You may use DW_UNSND (attr) to retrieve such offsets.
21144
21145 Section 7.5.4, "Attribute Encodings", explains that no attribute
21146 may have a value that belongs to more than one of these classes; it
21147 would be ambiguous if we did, because we use the same forms for all
21148 of them. */
21149
21150static int
21151attr_form_is_section_offset (const struct attribute *attr)
21152{
21153 return (attr->form == DW_FORM_data4
21154 || attr->form == DW_FORM_data8
21155 || attr->form == DW_FORM_sec_offset);
21156}
21157
21158/* Return non-zero if ATTR's value falls in the 'constant' class, or
21159 zero otherwise. When this function returns true, you can apply
21160 dwarf2_get_attr_constant_value to it.
21161
21162 However, note that for some attributes you must check
21163 attr_form_is_section_offset before using this test. DW_FORM_data4
21164 and DW_FORM_data8 are members of both the constant class, and of
21165 the classes that contain offsets into other debug sections
21166 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21167 that, if an attribute's can be either a constant or one of the
21168 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21169 taken as section offsets, not constants. */
21170
21171static int
21172attr_form_is_constant (const struct attribute *attr)
21173{
21174 switch (attr->form)
21175 {
21176 case DW_FORM_sdata:
21177 case DW_FORM_udata:
21178 case DW_FORM_data1:
21179 case DW_FORM_data2:
21180 case DW_FORM_data4:
21181 case DW_FORM_data8:
21182 return 1;
21183 default:
21184 return 0;
21185 }
21186}
21187
21188
21189/* DW_ADDR is always stored already as sect_offset; despite for the forms
21190 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21191
21192static int
21193attr_form_is_ref (const struct attribute *attr)
21194{
21195 switch (attr->form)
21196 {
21197 case DW_FORM_ref_addr:
21198 case DW_FORM_ref1:
21199 case DW_FORM_ref2:
21200 case DW_FORM_ref4:
21201 case DW_FORM_ref8:
21202 case DW_FORM_ref_udata:
21203 case DW_FORM_GNU_ref_alt:
21204 return 1;
21205 default:
21206 return 0;
21207 }
21208}
21209
21210/* Return the .debug_loc section to use for CU.
21211 For DWO files use .debug_loc.dwo. */
21212
21213static struct dwarf2_section_info *
21214cu_debug_loc_section (struct dwarf2_cu *cu)
21215{
21216 if (cu->dwo_unit)
21217 return &cu->dwo_unit->dwo_file->sections.loc;
21218 return &dwarf2_per_objfile->loc;
21219}
21220
21221/* A helper function that fills in a dwarf2_loclist_baton. */
21222
21223static void
21224fill_in_loclist_baton (struct dwarf2_cu *cu,
21225 struct dwarf2_loclist_baton *baton,
21226 const struct attribute *attr)
21227{
21228 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21229
21230 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21231
21232 baton->per_cu = cu->per_cu;
21233 gdb_assert (baton->per_cu);
21234 /* We don't know how long the location list is, but make sure we
21235 don't run off the edge of the section. */
21236 baton->size = section->size - DW_UNSND (attr);
21237 baton->data = section->buffer + DW_UNSND (attr);
21238 baton->base_address = cu->base_address;
21239 baton->from_dwo = cu->dwo_unit != NULL;
21240}
21241
21242static void
21243dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21244 struct dwarf2_cu *cu, int is_block)
21245{
21246 struct objfile *objfile = dwarf2_per_objfile->objfile;
21247 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21248
21249 if (attr_form_is_section_offset (attr)
21250 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21251 the section. If so, fall through to the complaint in the
21252 other branch. */
21253 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21254 {
21255 struct dwarf2_loclist_baton *baton;
21256
21257 baton = obstack_alloc (&objfile->objfile_obstack,
21258 sizeof (struct dwarf2_loclist_baton));
21259
21260 fill_in_loclist_baton (cu, baton, attr);
21261
21262 if (cu->base_known == 0)
21263 complaint (&symfile_complaints,
21264 _("Location list used without "
21265 "specifying the CU base address."));
21266
21267 SYMBOL_ACLASS_INDEX (sym) = (is_block
21268 ? dwarf2_loclist_block_index
21269 : dwarf2_loclist_index);
21270 SYMBOL_LOCATION_BATON (sym) = baton;
21271 }
21272 else
21273 {
21274 struct dwarf2_locexpr_baton *baton;
21275
21276 baton = obstack_alloc (&objfile->objfile_obstack,
21277 sizeof (struct dwarf2_locexpr_baton));
21278 baton->per_cu = cu->per_cu;
21279 gdb_assert (baton->per_cu);
21280
21281 if (attr_form_is_block (attr))
21282 {
21283 /* Note that we're just copying the block's data pointer
21284 here, not the actual data. We're still pointing into the
21285 info_buffer for SYM's objfile; right now we never release
21286 that buffer, but when we do clean up properly this may
21287 need to change. */
21288 baton->size = DW_BLOCK (attr)->size;
21289 baton->data = DW_BLOCK (attr)->data;
21290 }
21291 else
21292 {
21293 dwarf2_invalid_attrib_class_complaint ("location description",
21294 SYMBOL_NATURAL_NAME (sym));
21295 baton->size = 0;
21296 }
21297
21298 SYMBOL_ACLASS_INDEX (sym) = (is_block
21299 ? dwarf2_locexpr_block_index
21300 : dwarf2_locexpr_index);
21301 SYMBOL_LOCATION_BATON (sym) = baton;
21302 }
21303}
21304
21305/* Return the OBJFILE associated with the compilation unit CU. If CU
21306 came from a separate debuginfo file, then the master objfile is
21307 returned. */
21308
21309struct objfile *
21310dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21311{
21312 struct objfile *objfile = per_cu->objfile;
21313
21314 /* Return the master objfile, so that we can report and look up the
21315 correct file containing this variable. */
21316 if (objfile->separate_debug_objfile_backlink)
21317 objfile = objfile->separate_debug_objfile_backlink;
21318
21319 return objfile;
21320}
21321
21322/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21323 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21324 CU_HEADERP first. */
21325
21326static const struct comp_unit_head *
21327per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21328 struct dwarf2_per_cu_data *per_cu)
21329{
21330 const gdb_byte *info_ptr;
21331
21332 if (per_cu->cu)
21333 return &per_cu->cu->header;
21334
21335 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21336
21337 memset (cu_headerp, 0, sizeof (*cu_headerp));
21338 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21339
21340 return cu_headerp;
21341}
21342
21343/* Return the address size given in the compilation unit header for CU. */
21344
21345int
21346dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21347{
21348 struct comp_unit_head cu_header_local;
21349 const struct comp_unit_head *cu_headerp;
21350
21351 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21352
21353 return cu_headerp->addr_size;
21354}
21355
21356/* Return the offset size given in the compilation unit header for CU. */
21357
21358int
21359dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21360{
21361 struct comp_unit_head cu_header_local;
21362 const struct comp_unit_head *cu_headerp;
21363
21364 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21365
21366 return cu_headerp->offset_size;
21367}
21368
21369/* See its dwarf2loc.h declaration. */
21370
21371int
21372dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21373{
21374 struct comp_unit_head cu_header_local;
21375 const struct comp_unit_head *cu_headerp;
21376
21377 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21378
21379 if (cu_headerp->version == 2)
21380 return cu_headerp->addr_size;
21381 else
21382 return cu_headerp->offset_size;
21383}
21384
21385/* Return the text offset of the CU. The returned offset comes from
21386 this CU's objfile. If this objfile came from a separate debuginfo
21387 file, then the offset may be different from the corresponding
21388 offset in the parent objfile. */
21389
21390CORE_ADDR
21391dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21392{
21393 struct objfile *objfile = per_cu->objfile;
21394
21395 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21396}
21397
21398/* Locate the .debug_info compilation unit from CU's objfile which contains
21399 the DIE at OFFSET. Raises an error on failure. */
21400
21401static struct dwarf2_per_cu_data *
21402dwarf2_find_containing_comp_unit (sect_offset offset,
21403 unsigned int offset_in_dwz,
21404 struct objfile *objfile)
21405{
21406 struct dwarf2_per_cu_data *this_cu;
21407 int low, high;
21408 const sect_offset *cu_off;
21409
21410 low = 0;
21411 high = dwarf2_per_objfile->n_comp_units - 1;
21412 while (high > low)
21413 {
21414 struct dwarf2_per_cu_data *mid_cu;
21415 int mid = low + (high - low) / 2;
21416
21417 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21418 cu_off = &mid_cu->offset;
21419 if (mid_cu->is_dwz > offset_in_dwz
21420 || (mid_cu->is_dwz == offset_in_dwz
21421 && cu_off->sect_off >= offset.sect_off))
21422 high = mid;
21423 else
21424 low = mid + 1;
21425 }
21426 gdb_assert (low == high);
21427 this_cu = dwarf2_per_objfile->all_comp_units[low];
21428 cu_off = &this_cu->offset;
21429 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21430 {
21431 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21432 error (_("Dwarf Error: could not find partial DIE containing "
21433 "offset 0x%lx [in module %s]"),
21434 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21435
21436 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21437 <= offset.sect_off);
21438 return dwarf2_per_objfile->all_comp_units[low-1];
21439 }
21440 else
21441 {
21442 this_cu = dwarf2_per_objfile->all_comp_units[low];
21443 if (low == dwarf2_per_objfile->n_comp_units - 1
21444 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21445 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21446 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21447 return this_cu;
21448 }
21449}
21450
21451/* Initialize dwarf2_cu CU, owned by PER_CU. */
21452
21453static void
21454init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21455{
21456 memset (cu, 0, sizeof (*cu));
21457 per_cu->cu = cu;
21458 cu->per_cu = per_cu;
21459 cu->objfile = per_cu->objfile;
21460 obstack_init (&cu->comp_unit_obstack);
21461}
21462
21463/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21464
21465static void
21466prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21467 enum language pretend_language)
21468{
21469 struct attribute *attr;
21470
21471 /* Set the language we're debugging. */
21472 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21473 if (attr)
21474 set_cu_language (DW_UNSND (attr), cu);
21475 else
21476 {
21477 cu->language = pretend_language;
21478 cu->language_defn = language_def (cu->language);
21479 }
21480
21481 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21482 if (attr)
21483 cu->producer = DW_STRING (attr);
21484}
21485
21486/* Release one cached compilation unit, CU. We unlink it from the tree
21487 of compilation units, but we don't remove it from the read_in_chain;
21488 the caller is responsible for that.
21489 NOTE: DATA is a void * because this function is also used as a
21490 cleanup routine. */
21491
21492static void
21493free_heap_comp_unit (void *data)
21494{
21495 struct dwarf2_cu *cu = data;
21496
21497 gdb_assert (cu->per_cu != NULL);
21498 cu->per_cu->cu = NULL;
21499 cu->per_cu = NULL;
21500
21501 obstack_free (&cu->comp_unit_obstack, NULL);
21502
21503 xfree (cu);
21504}
21505
21506/* This cleanup function is passed the address of a dwarf2_cu on the stack
21507 when we're finished with it. We can't free the pointer itself, but be
21508 sure to unlink it from the cache. Also release any associated storage. */
21509
21510static void
21511free_stack_comp_unit (void *data)
21512{
21513 struct dwarf2_cu *cu = data;
21514
21515 gdb_assert (cu->per_cu != NULL);
21516 cu->per_cu->cu = NULL;
21517 cu->per_cu = NULL;
21518
21519 obstack_free (&cu->comp_unit_obstack, NULL);
21520 cu->partial_dies = NULL;
21521}
21522
21523/* Free all cached compilation units. */
21524
21525static void
21526free_cached_comp_units (void *data)
21527{
21528 struct dwarf2_per_cu_data *per_cu, **last_chain;
21529
21530 per_cu = dwarf2_per_objfile->read_in_chain;
21531 last_chain = &dwarf2_per_objfile->read_in_chain;
21532 while (per_cu != NULL)
21533 {
21534 struct dwarf2_per_cu_data *next_cu;
21535
21536 next_cu = per_cu->cu->read_in_chain;
21537
21538 free_heap_comp_unit (per_cu->cu);
21539 *last_chain = next_cu;
21540
21541 per_cu = next_cu;
21542 }
21543}
21544
21545/* Increase the age counter on each cached compilation unit, and free
21546 any that are too old. */
21547
21548static void
21549age_cached_comp_units (void)
21550{
21551 struct dwarf2_per_cu_data *per_cu, **last_chain;
21552
21553 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21554 per_cu = dwarf2_per_objfile->read_in_chain;
21555 while (per_cu != NULL)
21556 {
21557 per_cu->cu->last_used ++;
21558 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21559 dwarf2_mark (per_cu->cu);
21560 per_cu = per_cu->cu->read_in_chain;
21561 }
21562
21563 per_cu = dwarf2_per_objfile->read_in_chain;
21564 last_chain = &dwarf2_per_objfile->read_in_chain;
21565 while (per_cu != NULL)
21566 {
21567 struct dwarf2_per_cu_data *next_cu;
21568
21569 next_cu = per_cu->cu->read_in_chain;
21570
21571 if (!per_cu->cu->mark)
21572 {
21573 free_heap_comp_unit (per_cu->cu);
21574 *last_chain = next_cu;
21575 }
21576 else
21577 last_chain = &per_cu->cu->read_in_chain;
21578
21579 per_cu = next_cu;
21580 }
21581}
21582
21583/* Remove a single compilation unit from the cache. */
21584
21585static void
21586free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21587{
21588 struct dwarf2_per_cu_data *per_cu, **last_chain;
21589
21590 per_cu = dwarf2_per_objfile->read_in_chain;
21591 last_chain = &dwarf2_per_objfile->read_in_chain;
21592 while (per_cu != NULL)
21593 {
21594 struct dwarf2_per_cu_data *next_cu;
21595
21596 next_cu = per_cu->cu->read_in_chain;
21597
21598 if (per_cu == target_per_cu)
21599 {
21600 free_heap_comp_unit (per_cu->cu);
21601 per_cu->cu = NULL;
21602 *last_chain = next_cu;
21603 break;
21604 }
21605 else
21606 last_chain = &per_cu->cu->read_in_chain;
21607
21608 per_cu = next_cu;
21609 }
21610}
21611
21612/* Release all extra memory associated with OBJFILE. */
21613
21614void
21615dwarf2_free_objfile (struct objfile *objfile)
21616{
21617 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21618
21619 if (dwarf2_per_objfile == NULL)
21620 return;
21621
21622 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21623 free_cached_comp_units (NULL);
21624
21625 if (dwarf2_per_objfile->quick_file_names_table)
21626 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21627
21628 /* Everything else should be on the objfile obstack. */
21629}
21630
21631/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21632 We store these in a hash table separate from the DIEs, and preserve them
21633 when the DIEs are flushed out of cache.
21634
21635 The CU "per_cu" pointer is needed because offset alone is not enough to
21636 uniquely identify the type. A file may have multiple .debug_types sections,
21637 or the type may come from a DWO file. Furthermore, while it's more logical
21638 to use per_cu->section+offset, with Fission the section with the data is in
21639 the DWO file but we don't know that section at the point we need it.
21640 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21641 because we can enter the lookup routine, get_die_type_at_offset, from
21642 outside this file, and thus won't necessarily have PER_CU->cu.
21643 Fortunately, PER_CU is stable for the life of the objfile. */
21644
21645struct dwarf2_per_cu_offset_and_type
21646{
21647 const struct dwarf2_per_cu_data *per_cu;
21648 sect_offset offset;
21649 struct type *type;
21650};
21651
21652/* Hash function for a dwarf2_per_cu_offset_and_type. */
21653
21654static hashval_t
21655per_cu_offset_and_type_hash (const void *item)
21656{
21657 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21658
21659 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21660}
21661
21662/* Equality function for a dwarf2_per_cu_offset_and_type. */
21663
21664static int
21665per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21666{
21667 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21668 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21669
21670 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21671 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21672}
21673
21674/* Set the type associated with DIE to TYPE. Save it in CU's hash
21675 table if necessary. For convenience, return TYPE.
21676
21677 The DIEs reading must have careful ordering to:
21678 * Not cause infite loops trying to read in DIEs as a prerequisite for
21679 reading current DIE.
21680 * Not trying to dereference contents of still incompletely read in types
21681 while reading in other DIEs.
21682 * Enable referencing still incompletely read in types just by a pointer to
21683 the type without accessing its fields.
21684
21685 Therefore caller should follow these rules:
21686 * Try to fetch any prerequisite types we may need to build this DIE type
21687 before building the type and calling set_die_type.
21688 * After building type call set_die_type for current DIE as soon as
21689 possible before fetching more types to complete the current type.
21690 * Make the type as complete as possible before fetching more types. */
21691
21692static struct type *
21693set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21694{
21695 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21696 struct objfile *objfile = cu->objfile;
21697 struct attribute *attr;
21698 struct dynamic_prop prop;
21699
21700 /* For Ada types, make sure that the gnat-specific data is always
21701 initialized (if not already set). There are a few types where
21702 we should not be doing so, because the type-specific area is
21703 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21704 where the type-specific area is used to store the floatformat).
21705 But this is not a problem, because the gnat-specific information
21706 is actually not needed for these types. */
21707 if (need_gnat_info (cu)
21708 && TYPE_CODE (type) != TYPE_CODE_FUNC
21709 && TYPE_CODE (type) != TYPE_CODE_FLT
21710 && !HAVE_GNAT_AUX_INFO (type))
21711 INIT_GNAT_SPECIFIC (type);
21712
21713 /* Read DW_AT_data_location and set in type. */
21714 attr = dwarf2_attr (die, DW_AT_data_location, cu);
21715 if (attr_to_dynamic_prop (attr, die, cu, &prop))
21716 {
21717 TYPE_DATA_LOCATION (type)
21718 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
21719 *TYPE_DATA_LOCATION (type) = prop;
21720 }
21721
21722 if (dwarf2_per_objfile->die_type_hash == NULL)
21723 {
21724 dwarf2_per_objfile->die_type_hash =
21725 htab_create_alloc_ex (127,
21726 per_cu_offset_and_type_hash,
21727 per_cu_offset_and_type_eq,
21728 NULL,
21729 &objfile->objfile_obstack,
21730 hashtab_obstack_allocate,
21731 dummy_obstack_deallocate);
21732 }
21733
21734 ofs.per_cu = cu->per_cu;
21735 ofs.offset = die->offset;
21736 ofs.type = type;
21737 slot = (struct dwarf2_per_cu_offset_and_type **)
21738 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21739 if (*slot)
21740 complaint (&symfile_complaints,
21741 _("A problem internal to GDB: DIE 0x%x has type already set"),
21742 die->offset.sect_off);
21743 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21744 **slot = ofs;
21745 return type;
21746}
21747
21748/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21749 or return NULL if the die does not have a saved type. */
21750
21751static struct type *
21752get_die_type_at_offset (sect_offset offset,
21753 struct dwarf2_per_cu_data *per_cu)
21754{
21755 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21756
21757 if (dwarf2_per_objfile->die_type_hash == NULL)
21758 return NULL;
21759
21760 ofs.per_cu = per_cu;
21761 ofs.offset = offset;
21762 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21763 if (slot)
21764 return slot->type;
21765 else
21766 return NULL;
21767}
21768
21769/* Look up the type for DIE in CU in die_type_hash,
21770 or return NULL if DIE does not have a saved type. */
21771
21772static struct type *
21773get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21774{
21775 return get_die_type_at_offset (die->offset, cu->per_cu);
21776}
21777
21778/* Add a dependence relationship from CU to REF_PER_CU. */
21779
21780static void
21781dwarf2_add_dependence (struct dwarf2_cu *cu,
21782 struct dwarf2_per_cu_data *ref_per_cu)
21783{
21784 void **slot;
21785
21786 if (cu->dependencies == NULL)
21787 cu->dependencies
21788 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21789 NULL, &cu->comp_unit_obstack,
21790 hashtab_obstack_allocate,
21791 dummy_obstack_deallocate);
21792
21793 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21794 if (*slot == NULL)
21795 *slot = ref_per_cu;
21796}
21797
21798/* Subroutine of dwarf2_mark to pass to htab_traverse.
21799 Set the mark field in every compilation unit in the
21800 cache that we must keep because we are keeping CU. */
21801
21802static int
21803dwarf2_mark_helper (void **slot, void *data)
21804{
21805 struct dwarf2_per_cu_data *per_cu;
21806
21807 per_cu = (struct dwarf2_per_cu_data *) *slot;
21808
21809 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21810 reading of the chain. As such dependencies remain valid it is not much
21811 useful to track and undo them during QUIT cleanups. */
21812 if (per_cu->cu == NULL)
21813 return 1;
21814
21815 if (per_cu->cu->mark)
21816 return 1;
21817 per_cu->cu->mark = 1;
21818
21819 if (per_cu->cu->dependencies != NULL)
21820 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21821
21822 return 1;
21823}
21824
21825/* Set the mark field in CU and in every other compilation unit in the
21826 cache that we must keep because we are keeping CU. */
21827
21828static void
21829dwarf2_mark (struct dwarf2_cu *cu)
21830{
21831 if (cu->mark)
21832 return;
21833 cu->mark = 1;
21834 if (cu->dependencies != NULL)
21835 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21836}
21837
21838static void
21839dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21840{
21841 while (per_cu)
21842 {
21843 per_cu->cu->mark = 0;
21844 per_cu = per_cu->cu->read_in_chain;
21845 }
21846}
21847
21848/* Trivial hash function for partial_die_info: the hash value of a DIE
21849 is its offset in .debug_info for this objfile. */
21850
21851static hashval_t
21852partial_die_hash (const void *item)
21853{
21854 const struct partial_die_info *part_die = item;
21855
21856 return part_die->offset.sect_off;
21857}
21858
21859/* Trivial comparison function for partial_die_info structures: two DIEs
21860 are equal if they have the same offset. */
21861
21862static int
21863partial_die_eq (const void *item_lhs, const void *item_rhs)
21864{
21865 const struct partial_die_info *part_die_lhs = item_lhs;
21866 const struct partial_die_info *part_die_rhs = item_rhs;
21867
21868 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21869}
21870
21871static struct cmd_list_element *set_dwarf2_cmdlist;
21872static struct cmd_list_element *show_dwarf2_cmdlist;
21873
21874static void
21875set_dwarf2_cmd (char *args, int from_tty)
21876{
21877 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21878 gdb_stdout);
21879}
21880
21881static void
21882show_dwarf2_cmd (char *args, int from_tty)
21883{
21884 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21885}
21886
21887/* Free data associated with OBJFILE, if necessary. */
21888
21889static void
21890dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21891{
21892 struct dwarf2_per_objfile *data = d;
21893 int ix;
21894
21895 /* Make sure we don't accidentally use dwarf2_per_objfile while
21896 cleaning up. */
21897 dwarf2_per_objfile = NULL;
21898
21899 for (ix = 0; ix < data->n_comp_units; ++ix)
21900 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21901
21902 for (ix = 0; ix < data->n_type_units; ++ix)
21903 VEC_free (dwarf2_per_cu_ptr,
21904 data->all_type_units[ix]->per_cu.imported_symtabs);
21905 xfree (data->all_type_units);
21906
21907 VEC_free (dwarf2_section_info_def, data->types);
21908
21909 if (data->dwo_files)
21910 free_dwo_files (data->dwo_files, objfile);
21911 if (data->dwp_file)
21912 gdb_bfd_unref (data->dwp_file->dbfd);
21913
21914 if (data->dwz_file && data->dwz_file->dwz_bfd)
21915 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21916}
21917
21918\f
21919/* The "save gdb-index" command. */
21920
21921/* The contents of the hash table we create when building the string
21922 table. */
21923struct strtab_entry
21924{
21925 offset_type offset;
21926 const char *str;
21927};
21928
21929/* Hash function for a strtab_entry.
21930
21931 Function is used only during write_hash_table so no index format backward
21932 compatibility is needed. */
21933
21934static hashval_t
21935hash_strtab_entry (const void *e)
21936{
21937 const struct strtab_entry *entry = e;
21938 return mapped_index_string_hash (INT_MAX, entry->str);
21939}
21940
21941/* Equality function for a strtab_entry. */
21942
21943static int
21944eq_strtab_entry (const void *a, const void *b)
21945{
21946 const struct strtab_entry *ea = a;
21947 const struct strtab_entry *eb = b;
21948 return !strcmp (ea->str, eb->str);
21949}
21950
21951/* Create a strtab_entry hash table. */
21952
21953static htab_t
21954create_strtab (void)
21955{
21956 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21957 xfree, xcalloc, xfree);
21958}
21959
21960/* Add a string to the constant pool. Return the string's offset in
21961 host order. */
21962
21963static offset_type
21964add_string (htab_t table, struct obstack *cpool, const char *str)
21965{
21966 void **slot;
21967 struct strtab_entry entry;
21968 struct strtab_entry *result;
21969
21970 entry.str = str;
21971 slot = htab_find_slot (table, &entry, INSERT);
21972 if (*slot)
21973 result = *slot;
21974 else
21975 {
21976 result = XNEW (struct strtab_entry);
21977 result->offset = obstack_object_size (cpool);
21978 result->str = str;
21979 obstack_grow_str0 (cpool, str);
21980 *slot = result;
21981 }
21982 return result->offset;
21983}
21984
21985/* An entry in the symbol table. */
21986struct symtab_index_entry
21987{
21988 /* The name of the symbol. */
21989 const char *name;
21990 /* The offset of the name in the constant pool. */
21991 offset_type index_offset;
21992 /* A sorted vector of the indices of all the CUs that hold an object
21993 of this name. */
21994 VEC (offset_type) *cu_indices;
21995};
21996
21997/* The symbol table. This is a power-of-2-sized hash table. */
21998struct mapped_symtab
21999{
22000 offset_type n_elements;
22001 offset_type size;
22002 struct symtab_index_entry **data;
22003};
22004
22005/* Hash function for a symtab_index_entry. */
22006
22007static hashval_t
22008hash_symtab_entry (const void *e)
22009{
22010 const struct symtab_index_entry *entry = e;
22011 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22012 sizeof (offset_type) * VEC_length (offset_type,
22013 entry->cu_indices),
22014 0);
22015}
22016
22017/* Equality function for a symtab_index_entry. */
22018
22019static int
22020eq_symtab_entry (const void *a, const void *b)
22021{
22022 const struct symtab_index_entry *ea = a;
22023 const struct symtab_index_entry *eb = b;
22024 int len = VEC_length (offset_type, ea->cu_indices);
22025 if (len != VEC_length (offset_type, eb->cu_indices))
22026 return 0;
22027 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22028 VEC_address (offset_type, eb->cu_indices),
22029 sizeof (offset_type) * len);
22030}
22031
22032/* Destroy a symtab_index_entry. */
22033
22034static void
22035delete_symtab_entry (void *p)
22036{
22037 struct symtab_index_entry *entry = p;
22038 VEC_free (offset_type, entry->cu_indices);
22039 xfree (entry);
22040}
22041
22042/* Create a hash table holding symtab_index_entry objects. */
22043
22044static htab_t
22045create_symbol_hash_table (void)
22046{
22047 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22048 delete_symtab_entry, xcalloc, xfree);
22049}
22050
22051/* Create a new mapped symtab object. */
22052
22053static struct mapped_symtab *
22054create_mapped_symtab (void)
22055{
22056 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22057 symtab->n_elements = 0;
22058 symtab->size = 1024;
22059 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22060 return symtab;
22061}
22062
22063/* Destroy a mapped_symtab. */
22064
22065static void
22066cleanup_mapped_symtab (void *p)
22067{
22068 struct mapped_symtab *symtab = p;
22069 /* The contents of the array are freed when the other hash table is
22070 destroyed. */
22071 xfree (symtab->data);
22072 xfree (symtab);
22073}
22074
22075/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22076 the slot.
22077
22078 Function is used only during write_hash_table so no index format backward
22079 compatibility is needed. */
22080
22081static struct symtab_index_entry **
22082find_slot (struct mapped_symtab *symtab, const char *name)
22083{
22084 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22085
22086 index = hash & (symtab->size - 1);
22087 step = ((hash * 17) & (symtab->size - 1)) | 1;
22088
22089 for (;;)
22090 {
22091 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22092 return &symtab->data[index];
22093 index = (index + step) & (symtab->size - 1);
22094 }
22095}
22096
22097/* Expand SYMTAB's hash table. */
22098
22099static void
22100hash_expand (struct mapped_symtab *symtab)
22101{
22102 offset_type old_size = symtab->size;
22103 offset_type i;
22104 struct symtab_index_entry **old_entries = symtab->data;
22105
22106 symtab->size *= 2;
22107 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22108
22109 for (i = 0; i < old_size; ++i)
22110 {
22111 if (old_entries[i])
22112 {
22113 struct symtab_index_entry **slot = find_slot (symtab,
22114 old_entries[i]->name);
22115 *slot = old_entries[i];
22116 }
22117 }
22118
22119 xfree (old_entries);
22120}
22121
22122/* Add an entry to SYMTAB. NAME is the name of the symbol.
22123 CU_INDEX is the index of the CU in which the symbol appears.
22124 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22125
22126static void
22127add_index_entry (struct mapped_symtab *symtab, const char *name,
22128 int is_static, gdb_index_symbol_kind kind,
22129 offset_type cu_index)
22130{
22131 struct symtab_index_entry **slot;
22132 offset_type cu_index_and_attrs;
22133
22134 ++symtab->n_elements;
22135 if (4 * symtab->n_elements / 3 >= symtab->size)
22136 hash_expand (symtab);
22137
22138 slot = find_slot (symtab, name);
22139 if (!*slot)
22140 {
22141 *slot = XNEW (struct symtab_index_entry);
22142 (*slot)->name = name;
22143 /* index_offset is set later. */
22144 (*slot)->cu_indices = NULL;
22145 }
22146
22147 cu_index_and_attrs = 0;
22148 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22149 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22150 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22151
22152 /* We don't want to record an index value twice as we want to avoid the
22153 duplication.
22154 We process all global symbols and then all static symbols
22155 (which would allow us to avoid the duplication by only having to check
22156 the last entry pushed), but a symbol could have multiple kinds in one CU.
22157 To keep things simple we don't worry about the duplication here and
22158 sort and uniqufy the list after we've processed all symbols. */
22159 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22160}
22161
22162/* qsort helper routine for uniquify_cu_indices. */
22163
22164static int
22165offset_type_compare (const void *ap, const void *bp)
22166{
22167 offset_type a = *(offset_type *) ap;
22168 offset_type b = *(offset_type *) bp;
22169
22170 return (a > b) - (b > a);
22171}
22172
22173/* Sort and remove duplicates of all symbols' cu_indices lists. */
22174
22175static void
22176uniquify_cu_indices (struct mapped_symtab *symtab)
22177{
22178 int i;
22179
22180 for (i = 0; i < symtab->size; ++i)
22181 {
22182 struct symtab_index_entry *entry = symtab->data[i];
22183
22184 if (entry
22185 && entry->cu_indices != NULL)
22186 {
22187 unsigned int next_to_insert, next_to_check;
22188 offset_type last_value;
22189
22190 qsort (VEC_address (offset_type, entry->cu_indices),
22191 VEC_length (offset_type, entry->cu_indices),
22192 sizeof (offset_type), offset_type_compare);
22193
22194 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22195 next_to_insert = 1;
22196 for (next_to_check = 1;
22197 next_to_check < VEC_length (offset_type, entry->cu_indices);
22198 ++next_to_check)
22199 {
22200 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22201 != last_value)
22202 {
22203 last_value = VEC_index (offset_type, entry->cu_indices,
22204 next_to_check);
22205 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22206 last_value);
22207 ++next_to_insert;
22208 }
22209 }
22210 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22211 }
22212 }
22213}
22214
22215/* Add a vector of indices to the constant pool. */
22216
22217static offset_type
22218add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22219 struct symtab_index_entry *entry)
22220{
22221 void **slot;
22222
22223 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22224 if (!*slot)
22225 {
22226 offset_type len = VEC_length (offset_type, entry->cu_indices);
22227 offset_type val = MAYBE_SWAP (len);
22228 offset_type iter;
22229 int i;
22230
22231 *slot = entry;
22232 entry->index_offset = obstack_object_size (cpool);
22233
22234 obstack_grow (cpool, &val, sizeof (val));
22235 for (i = 0;
22236 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22237 ++i)
22238 {
22239 val = MAYBE_SWAP (iter);
22240 obstack_grow (cpool, &val, sizeof (val));
22241 }
22242 }
22243 else
22244 {
22245 struct symtab_index_entry *old_entry = *slot;
22246 entry->index_offset = old_entry->index_offset;
22247 entry = old_entry;
22248 }
22249 return entry->index_offset;
22250}
22251
22252/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22253 constant pool entries going into the obstack CPOOL. */
22254
22255static void
22256write_hash_table (struct mapped_symtab *symtab,
22257 struct obstack *output, struct obstack *cpool)
22258{
22259 offset_type i;
22260 htab_t symbol_hash_table;
22261 htab_t str_table;
22262
22263 symbol_hash_table = create_symbol_hash_table ();
22264 str_table = create_strtab ();
22265
22266 /* We add all the index vectors to the constant pool first, to
22267 ensure alignment is ok. */
22268 for (i = 0; i < symtab->size; ++i)
22269 {
22270 if (symtab->data[i])
22271 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22272 }
22273
22274 /* Now write out the hash table. */
22275 for (i = 0; i < symtab->size; ++i)
22276 {
22277 offset_type str_off, vec_off;
22278
22279 if (symtab->data[i])
22280 {
22281 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22282 vec_off = symtab->data[i]->index_offset;
22283 }
22284 else
22285 {
22286 /* While 0 is a valid constant pool index, it is not valid
22287 to have 0 for both offsets. */
22288 str_off = 0;
22289 vec_off = 0;
22290 }
22291
22292 str_off = MAYBE_SWAP (str_off);
22293 vec_off = MAYBE_SWAP (vec_off);
22294
22295 obstack_grow (output, &str_off, sizeof (str_off));
22296 obstack_grow (output, &vec_off, sizeof (vec_off));
22297 }
22298
22299 htab_delete (str_table);
22300 htab_delete (symbol_hash_table);
22301}
22302
22303/* Struct to map psymtab to CU index in the index file. */
22304struct psymtab_cu_index_map
22305{
22306 struct partial_symtab *psymtab;
22307 unsigned int cu_index;
22308};
22309
22310static hashval_t
22311hash_psymtab_cu_index (const void *item)
22312{
22313 const struct psymtab_cu_index_map *map = item;
22314
22315 return htab_hash_pointer (map->psymtab);
22316}
22317
22318static int
22319eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22320{
22321 const struct psymtab_cu_index_map *lhs = item_lhs;
22322 const struct psymtab_cu_index_map *rhs = item_rhs;
22323
22324 return lhs->psymtab == rhs->psymtab;
22325}
22326
22327/* Helper struct for building the address table. */
22328struct addrmap_index_data
22329{
22330 struct objfile *objfile;
22331 struct obstack *addr_obstack;
22332 htab_t cu_index_htab;
22333
22334 /* Non-zero if the previous_* fields are valid.
22335 We can't write an entry until we see the next entry (since it is only then
22336 that we know the end of the entry). */
22337 int previous_valid;
22338 /* Index of the CU in the table of all CUs in the index file. */
22339 unsigned int previous_cu_index;
22340 /* Start address of the CU. */
22341 CORE_ADDR previous_cu_start;
22342};
22343
22344/* Write an address entry to OBSTACK. */
22345
22346static void
22347add_address_entry (struct objfile *objfile, struct obstack *obstack,
22348 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22349{
22350 offset_type cu_index_to_write;
22351 gdb_byte addr[8];
22352 CORE_ADDR baseaddr;
22353
22354 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22355
22356 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22357 obstack_grow (obstack, addr, 8);
22358 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22359 obstack_grow (obstack, addr, 8);
22360 cu_index_to_write = MAYBE_SWAP (cu_index);
22361 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22362}
22363
22364/* Worker function for traversing an addrmap to build the address table. */
22365
22366static int
22367add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22368{
22369 struct addrmap_index_data *data = datap;
22370 struct partial_symtab *pst = obj;
22371
22372 if (data->previous_valid)
22373 add_address_entry (data->objfile, data->addr_obstack,
22374 data->previous_cu_start, start_addr,
22375 data->previous_cu_index);
22376
22377 data->previous_cu_start = start_addr;
22378 if (pst != NULL)
22379 {
22380 struct psymtab_cu_index_map find_map, *map;
22381 find_map.psymtab = pst;
22382 map = htab_find (data->cu_index_htab, &find_map);
22383 gdb_assert (map != NULL);
22384 data->previous_cu_index = map->cu_index;
22385 data->previous_valid = 1;
22386 }
22387 else
22388 data->previous_valid = 0;
22389
22390 return 0;
22391}
22392
22393/* Write OBJFILE's address map to OBSTACK.
22394 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22395 in the index file. */
22396
22397static void
22398write_address_map (struct objfile *objfile, struct obstack *obstack,
22399 htab_t cu_index_htab)
22400{
22401 struct addrmap_index_data addrmap_index_data;
22402
22403 /* When writing the address table, we have to cope with the fact that
22404 the addrmap iterator only provides the start of a region; we have to
22405 wait until the next invocation to get the start of the next region. */
22406
22407 addrmap_index_data.objfile = objfile;
22408 addrmap_index_data.addr_obstack = obstack;
22409 addrmap_index_data.cu_index_htab = cu_index_htab;
22410 addrmap_index_data.previous_valid = 0;
22411
22412 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22413 &addrmap_index_data);
22414
22415 /* It's highly unlikely the last entry (end address = 0xff...ff)
22416 is valid, but we should still handle it.
22417 The end address is recorded as the start of the next region, but that
22418 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22419 anyway. */
22420 if (addrmap_index_data.previous_valid)
22421 add_address_entry (objfile, obstack,
22422 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22423 addrmap_index_data.previous_cu_index);
22424}
22425
22426/* Return the symbol kind of PSYM. */
22427
22428static gdb_index_symbol_kind
22429symbol_kind (struct partial_symbol *psym)
22430{
22431 domain_enum domain = PSYMBOL_DOMAIN (psym);
22432 enum address_class aclass = PSYMBOL_CLASS (psym);
22433
22434 switch (domain)
22435 {
22436 case VAR_DOMAIN:
22437 switch (aclass)
22438 {
22439 case LOC_BLOCK:
22440 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22441 case LOC_TYPEDEF:
22442 return GDB_INDEX_SYMBOL_KIND_TYPE;
22443 case LOC_COMPUTED:
22444 case LOC_CONST_BYTES:
22445 case LOC_OPTIMIZED_OUT:
22446 case LOC_STATIC:
22447 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22448 case LOC_CONST:
22449 /* Note: It's currently impossible to recognize psyms as enum values
22450 short of reading the type info. For now punt. */
22451 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22452 default:
22453 /* There are other LOC_FOO values that one might want to classify
22454 as variables, but dwarf2read.c doesn't currently use them. */
22455 return GDB_INDEX_SYMBOL_KIND_OTHER;
22456 }
22457 case STRUCT_DOMAIN:
22458 return GDB_INDEX_SYMBOL_KIND_TYPE;
22459 default:
22460 return GDB_INDEX_SYMBOL_KIND_OTHER;
22461 }
22462}
22463
22464/* Add a list of partial symbols to SYMTAB. */
22465
22466static void
22467write_psymbols (struct mapped_symtab *symtab,
22468 htab_t psyms_seen,
22469 struct partial_symbol **psymp,
22470 int count,
22471 offset_type cu_index,
22472 int is_static)
22473{
22474 for (; count-- > 0; ++psymp)
22475 {
22476 struct partial_symbol *psym = *psymp;
22477 void **slot;
22478
22479 if (SYMBOL_LANGUAGE (psym) == language_ada)
22480 error (_("Ada is not currently supported by the index"));
22481
22482 /* Only add a given psymbol once. */
22483 slot = htab_find_slot (psyms_seen, psym, INSERT);
22484 if (!*slot)
22485 {
22486 gdb_index_symbol_kind kind = symbol_kind (psym);
22487
22488 *slot = psym;
22489 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22490 is_static, kind, cu_index);
22491 }
22492 }
22493}
22494
22495/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22496 exception if there is an error. */
22497
22498static void
22499write_obstack (FILE *file, struct obstack *obstack)
22500{
22501 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22502 file)
22503 != obstack_object_size (obstack))
22504 error (_("couldn't data write to file"));
22505}
22506
22507/* Unlink a file if the argument is not NULL. */
22508
22509static void
22510unlink_if_set (void *p)
22511{
22512 char **filename = p;
22513 if (*filename)
22514 unlink (*filename);
22515}
22516
22517/* A helper struct used when iterating over debug_types. */
22518struct signatured_type_index_data
22519{
22520 struct objfile *objfile;
22521 struct mapped_symtab *symtab;
22522 struct obstack *types_list;
22523 htab_t psyms_seen;
22524 int cu_index;
22525};
22526
22527/* A helper function that writes a single signatured_type to an
22528 obstack. */
22529
22530static int
22531write_one_signatured_type (void **slot, void *d)
22532{
22533 struct signatured_type_index_data *info = d;
22534 struct signatured_type *entry = (struct signatured_type *) *slot;
22535 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22536 gdb_byte val[8];
22537
22538 write_psymbols (info->symtab,
22539 info->psyms_seen,
22540 info->objfile->global_psymbols.list
22541 + psymtab->globals_offset,
22542 psymtab->n_global_syms, info->cu_index,
22543 0);
22544 write_psymbols (info->symtab,
22545 info->psyms_seen,
22546 info->objfile->static_psymbols.list
22547 + psymtab->statics_offset,
22548 psymtab->n_static_syms, info->cu_index,
22549 1);
22550
22551 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22552 entry->per_cu.offset.sect_off);
22553 obstack_grow (info->types_list, val, 8);
22554 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22555 entry->type_offset_in_tu.cu_off);
22556 obstack_grow (info->types_list, val, 8);
22557 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22558 obstack_grow (info->types_list, val, 8);
22559
22560 ++info->cu_index;
22561
22562 return 1;
22563}
22564
22565/* Recurse into all "included" dependencies and write their symbols as
22566 if they appeared in this psymtab. */
22567
22568static void
22569recursively_write_psymbols (struct objfile *objfile,
22570 struct partial_symtab *psymtab,
22571 struct mapped_symtab *symtab,
22572 htab_t psyms_seen,
22573 offset_type cu_index)
22574{
22575 int i;
22576
22577 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22578 if (psymtab->dependencies[i]->user != NULL)
22579 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22580 symtab, psyms_seen, cu_index);
22581
22582 write_psymbols (symtab,
22583 psyms_seen,
22584 objfile->global_psymbols.list + psymtab->globals_offset,
22585 psymtab->n_global_syms, cu_index,
22586 0);
22587 write_psymbols (symtab,
22588 psyms_seen,
22589 objfile->static_psymbols.list + psymtab->statics_offset,
22590 psymtab->n_static_syms, cu_index,
22591 1);
22592}
22593
22594/* Create an index file for OBJFILE in the directory DIR. */
22595
22596static void
22597write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22598{
22599 struct cleanup *cleanup;
22600 char *filename, *cleanup_filename;
22601 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22602 struct obstack cu_list, types_cu_list;
22603 int i;
22604 FILE *out_file;
22605 struct mapped_symtab *symtab;
22606 offset_type val, size_of_contents, total_len;
22607 struct stat st;
22608 htab_t psyms_seen;
22609 htab_t cu_index_htab;
22610 struct psymtab_cu_index_map *psymtab_cu_index_map;
22611
22612 if (dwarf2_per_objfile->using_index)
22613 error (_("Cannot use an index to create the index"));
22614
22615 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22616 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22617
22618 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22619 return;
22620
22621 if (stat (objfile_name (objfile), &st) < 0)
22622 perror_with_name (objfile_name (objfile));
22623
22624 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22625 INDEX_SUFFIX, (char *) NULL);
22626 cleanup = make_cleanup (xfree, filename);
22627
22628 out_file = gdb_fopen_cloexec (filename, "wb");
22629 if (!out_file)
22630 error (_("Can't open `%s' for writing"), filename);
22631
22632 cleanup_filename = filename;
22633 make_cleanup (unlink_if_set, &cleanup_filename);
22634
22635 symtab = create_mapped_symtab ();
22636 make_cleanup (cleanup_mapped_symtab, symtab);
22637
22638 obstack_init (&addr_obstack);
22639 make_cleanup_obstack_free (&addr_obstack);
22640
22641 obstack_init (&cu_list);
22642 make_cleanup_obstack_free (&cu_list);
22643
22644 obstack_init (&types_cu_list);
22645 make_cleanup_obstack_free (&types_cu_list);
22646
22647 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22648 NULL, xcalloc, xfree);
22649 make_cleanup_htab_delete (psyms_seen);
22650
22651 /* While we're scanning CU's create a table that maps a psymtab pointer
22652 (which is what addrmap records) to its index (which is what is recorded
22653 in the index file). This will later be needed to write the address
22654 table. */
22655 cu_index_htab = htab_create_alloc (100,
22656 hash_psymtab_cu_index,
22657 eq_psymtab_cu_index,
22658 NULL, xcalloc, xfree);
22659 make_cleanup_htab_delete (cu_index_htab);
22660 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22661 xmalloc (sizeof (struct psymtab_cu_index_map)
22662 * dwarf2_per_objfile->n_comp_units);
22663 make_cleanup (xfree, psymtab_cu_index_map);
22664
22665 /* The CU list is already sorted, so we don't need to do additional
22666 work here. Also, the debug_types entries do not appear in
22667 all_comp_units, but only in their own hash table. */
22668 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22669 {
22670 struct dwarf2_per_cu_data *per_cu
22671 = dwarf2_per_objfile->all_comp_units[i];
22672 struct partial_symtab *psymtab = per_cu->v.psymtab;
22673 gdb_byte val[8];
22674 struct psymtab_cu_index_map *map;
22675 void **slot;
22676
22677 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22678 It may be referenced from a local scope but in such case it does not
22679 need to be present in .gdb_index. */
22680 if (psymtab == NULL)
22681 continue;
22682
22683 if (psymtab->user == NULL)
22684 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22685
22686 map = &psymtab_cu_index_map[i];
22687 map->psymtab = psymtab;
22688 map->cu_index = i;
22689 slot = htab_find_slot (cu_index_htab, map, INSERT);
22690 gdb_assert (slot != NULL);
22691 gdb_assert (*slot == NULL);
22692 *slot = map;
22693
22694 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22695 per_cu->offset.sect_off);
22696 obstack_grow (&cu_list, val, 8);
22697 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22698 obstack_grow (&cu_list, val, 8);
22699 }
22700
22701 /* Dump the address map. */
22702 write_address_map (objfile, &addr_obstack, cu_index_htab);
22703
22704 /* Write out the .debug_type entries, if any. */
22705 if (dwarf2_per_objfile->signatured_types)
22706 {
22707 struct signatured_type_index_data sig_data;
22708
22709 sig_data.objfile = objfile;
22710 sig_data.symtab = symtab;
22711 sig_data.types_list = &types_cu_list;
22712 sig_data.psyms_seen = psyms_seen;
22713 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22714 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22715 write_one_signatured_type, &sig_data);
22716 }
22717
22718 /* Now that we've processed all symbols we can shrink their cu_indices
22719 lists. */
22720 uniquify_cu_indices (symtab);
22721
22722 obstack_init (&constant_pool);
22723 make_cleanup_obstack_free (&constant_pool);
22724 obstack_init (&symtab_obstack);
22725 make_cleanup_obstack_free (&symtab_obstack);
22726 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22727
22728 obstack_init (&contents);
22729 make_cleanup_obstack_free (&contents);
22730 size_of_contents = 6 * sizeof (offset_type);
22731 total_len = size_of_contents;
22732
22733 /* The version number. */
22734 val = MAYBE_SWAP (8);
22735 obstack_grow (&contents, &val, sizeof (val));
22736
22737 /* The offset of the CU list from the start of the file. */
22738 val = MAYBE_SWAP (total_len);
22739 obstack_grow (&contents, &val, sizeof (val));
22740 total_len += obstack_object_size (&cu_list);
22741
22742 /* The offset of the types CU list from the start of the file. */
22743 val = MAYBE_SWAP (total_len);
22744 obstack_grow (&contents, &val, sizeof (val));
22745 total_len += obstack_object_size (&types_cu_list);
22746
22747 /* The offset of the address table from the start of the file. */
22748 val = MAYBE_SWAP (total_len);
22749 obstack_grow (&contents, &val, sizeof (val));
22750 total_len += obstack_object_size (&addr_obstack);
22751
22752 /* The offset of the symbol table from the start of the file. */
22753 val = MAYBE_SWAP (total_len);
22754 obstack_grow (&contents, &val, sizeof (val));
22755 total_len += obstack_object_size (&symtab_obstack);
22756
22757 /* The offset of the constant pool from the start of the file. */
22758 val = MAYBE_SWAP (total_len);
22759 obstack_grow (&contents, &val, sizeof (val));
22760 total_len += obstack_object_size (&constant_pool);
22761
22762 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22763
22764 write_obstack (out_file, &contents);
22765 write_obstack (out_file, &cu_list);
22766 write_obstack (out_file, &types_cu_list);
22767 write_obstack (out_file, &addr_obstack);
22768 write_obstack (out_file, &symtab_obstack);
22769 write_obstack (out_file, &constant_pool);
22770
22771 fclose (out_file);
22772
22773 /* We want to keep the file, so we set cleanup_filename to NULL
22774 here. See unlink_if_set. */
22775 cleanup_filename = NULL;
22776
22777 do_cleanups (cleanup);
22778}
22779
22780/* Implementation of the `save gdb-index' command.
22781
22782 Note that the file format used by this command is documented in the
22783 GDB manual. Any changes here must be documented there. */
22784
22785static void
22786save_gdb_index_command (char *arg, int from_tty)
22787{
22788 struct objfile *objfile;
22789
22790 if (!arg || !*arg)
22791 error (_("usage: save gdb-index DIRECTORY"));
22792
22793 ALL_OBJFILES (objfile)
22794 {
22795 struct stat st;
22796
22797 /* If the objfile does not correspond to an actual file, skip it. */
22798 if (stat (objfile_name (objfile), &st) < 0)
22799 continue;
22800
22801 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22802 if (dwarf2_per_objfile)
22803 {
22804 volatile struct gdb_exception except;
22805
22806 TRY_CATCH (except, RETURN_MASK_ERROR)
22807 {
22808 write_psymtabs_to_index (objfile, arg);
22809 }
22810 if (except.reason < 0)
22811 exception_fprintf (gdb_stderr, except,
22812 _("Error while writing index for `%s': "),
22813 objfile_name (objfile));
22814 }
22815 }
22816}
22817
22818\f
22819
22820int dwarf2_always_disassemble;
22821
22822static void
22823show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22824 struct cmd_list_element *c, const char *value)
22825{
22826 fprintf_filtered (file,
22827 _("Whether to always disassemble "
22828 "DWARF expressions is %s.\n"),
22829 value);
22830}
22831
22832static void
22833show_check_physname (struct ui_file *file, int from_tty,
22834 struct cmd_list_element *c, const char *value)
22835{
22836 fprintf_filtered (file,
22837 _("Whether to check \"physname\" is %s.\n"),
22838 value);
22839}
22840
22841void _initialize_dwarf2_read (void);
22842
22843void
22844_initialize_dwarf2_read (void)
22845{
22846 struct cmd_list_element *c;
22847
22848 dwarf2_objfile_data_key
22849 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22850
22851 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22852Set DWARF 2 specific variables.\n\
22853Configure DWARF 2 variables such as the cache size"),
22854 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22855 0/*allow-unknown*/, &maintenance_set_cmdlist);
22856
22857 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22858Show DWARF 2 specific variables\n\
22859Show DWARF 2 variables such as the cache size"),
22860 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22861 0/*allow-unknown*/, &maintenance_show_cmdlist);
22862
22863 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22864 &dwarf2_max_cache_age, _("\
22865Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22866Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22867A higher limit means that cached compilation units will be stored\n\
22868in memory longer, and more total memory will be used. Zero disables\n\
22869caching, which can slow down startup."),
22870 NULL,
22871 show_dwarf2_max_cache_age,
22872 &set_dwarf2_cmdlist,
22873 &show_dwarf2_cmdlist);
22874
22875 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22876 &dwarf2_always_disassemble, _("\
22877Set whether `info address' always disassembles DWARF expressions."), _("\
22878Show whether `info address' always disassembles DWARF expressions."), _("\
22879When enabled, DWARF expressions are always printed in an assembly-like\n\
22880syntax. When disabled, expressions will be printed in a more\n\
22881conversational style, when possible."),
22882 NULL,
22883 show_dwarf2_always_disassemble,
22884 &set_dwarf2_cmdlist,
22885 &show_dwarf2_cmdlist);
22886
22887 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22888Set debugging of the dwarf2 reader."), _("\
22889Show debugging of the dwarf2 reader."), _("\
22890When enabled (non-zero), debugging messages are printed during dwarf2\n\
22891reading and symtab expansion. A value of 1 (one) provides basic\n\
22892information. A value greater than 1 provides more verbose information."),
22893 NULL,
22894 NULL,
22895 &setdebuglist, &showdebuglist);
22896
22897 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22898Set debugging of the dwarf2 DIE reader."), _("\
22899Show debugging of the dwarf2 DIE reader."), _("\
22900When enabled (non-zero), DIEs are dumped after they are read in.\n\
22901The value is the maximum depth to print."),
22902 NULL,
22903 NULL,
22904 &setdebuglist, &showdebuglist);
22905
22906 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22907Set cross-checking of \"physname\" code against demangler."), _("\
22908Show cross-checking of \"physname\" code against demangler."), _("\
22909When enabled, GDB's internal \"physname\" code is checked against\n\
22910the demangler."),
22911 NULL, show_check_physname,
22912 &setdebuglist, &showdebuglist);
22913
22914 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22915 no_class, &use_deprecated_index_sections, _("\
22916Set whether to use deprecated gdb_index sections."), _("\
22917Show whether to use deprecated gdb_index sections."), _("\
22918When enabled, deprecated .gdb_index sections are used anyway.\n\
22919Normally they are ignored either because of a missing feature or\n\
22920performance issue.\n\
22921Warning: This option must be enabled before gdb reads the file."),
22922 NULL,
22923 NULL,
22924 &setlist, &showlist);
22925
22926 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22927 _("\
22928Save a gdb-index file.\n\
22929Usage: save gdb-index DIRECTORY"),
22930 &save_cmdlist);
22931 set_cmd_completer (c, filename_completer);
22932
22933 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22934 &dwarf2_locexpr_funcs);
22935 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22936 &dwarf2_loclist_funcs);
22937
22938 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22939 &dwarf2_block_frame_base_locexpr_funcs);
22940 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22941 &dwarf2_block_frame_base_loclist_funcs);
22942}
This page took 0.105418 seconds and 4 git commands to generate.