merge from gcc
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
... / ...
CommitLineData
1/* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31#include "defs.h"
32#include "bfd.h"
33#include "symtab.h"
34#include "gdbtypes.h"
35#include "objfiles.h"
36#include "dwarf2.h"
37#include "buildsym.h"
38#include "demangle.h"
39#include "gdb-demangle.h"
40#include "expression.h"
41#include "filenames.h" /* for DOSish file names */
42#include "macrotab.h"
43#include "language.h"
44#include "complaints.h"
45#include "bcache.h"
46#include "dwarf2expr.h"
47#include "dwarf2loc.h"
48#include "cp-support.h"
49#include "hashtab.h"
50#include "command.h"
51#include "gdbcmd.h"
52#include "block.h"
53#include "addrmap.h"
54#include "typeprint.h"
55#include "jv-lang.h"
56#include "psympriv.h"
57#include "exceptions.h"
58#include "gdb_stat.h"
59#include "completer.h"
60#include "vec.h"
61#include "c-lang.h"
62#include "valprint.h"
63#include <ctype.h>
64
65#include <fcntl.h>
66#include "gdb_string.h"
67#include "gdb_assert.h"
68#include <sys/types.h>
69#ifdef HAVE_ZLIB_H
70#include <zlib.h>
71#endif
72#ifdef HAVE_MMAP
73#include <sys/mman.h>
74#ifndef MAP_FAILED
75#define MAP_FAILED ((void *) -1)
76#endif
77#endif
78
79typedef struct symbol *symbolp;
80DEF_VEC_P (symbolp);
81
82/* When non-zero, dump DIEs after they are read in. */
83static int dwarf2_die_debug = 0;
84
85/* When non-zero, cross-check physname against demangler. */
86static int check_physname = 0;
87
88/* When non-zero, do not reject deprecated .gdb_index sections. */
89int use_deprecated_index_sections = 0;
90
91static int pagesize;
92
93/* When set, the file that we're processing is known to have debugging
94 info for C++ namespaces. GCC 3.3.x did not produce this information,
95 but later versions do. */
96
97static int processing_has_namespace_info;
98
99static const struct objfile_data *dwarf2_objfile_data_key;
100
101struct dwarf2_section_info
102{
103 asection *asection;
104 gdb_byte *buffer;
105 bfd_size_type size;
106 /* Not NULL if the section was actually mmapped. */
107 void *map_addr;
108 /* Page aligned size of mmapped area. */
109 bfd_size_type map_len;
110 /* True if we have tried to read this section. */
111 int readin;
112};
113
114typedef struct dwarf2_section_info dwarf2_section_info_def;
115DEF_VEC_O (dwarf2_section_info_def);
116
117/* All offsets in the index are of this type. It must be
118 architecture-independent. */
119typedef uint32_t offset_type;
120
121DEF_VEC_I (offset_type);
122
123/* A description of the mapped index. The file format is described in
124 a comment by the code that writes the index. */
125struct mapped_index
126{
127 /* Index data format version. */
128 int version;
129
130 /* The total length of the buffer. */
131 off_t total_size;
132
133 /* A pointer to the address table data. */
134 const gdb_byte *address_table;
135
136 /* Size of the address table data in bytes. */
137 offset_type address_table_size;
138
139 /* The symbol table, implemented as a hash table. */
140 const offset_type *symbol_table;
141
142 /* Size in slots, each slot is 2 offset_types. */
143 offset_type symbol_table_slots;
144
145 /* A pointer to the constant pool. */
146 const char *constant_pool;
147};
148
149/* Collection of data recorded per objfile.
150 This hangs off of dwarf2_objfile_data_key. */
151
152struct dwarf2_per_objfile
153{
154 struct dwarf2_section_info info;
155 struct dwarf2_section_info abbrev;
156 struct dwarf2_section_info line;
157 struct dwarf2_section_info loc;
158 struct dwarf2_section_info macinfo;
159 struct dwarf2_section_info macro;
160 struct dwarf2_section_info str;
161 struct dwarf2_section_info ranges;
162 struct dwarf2_section_info frame;
163 struct dwarf2_section_info eh_frame;
164 struct dwarf2_section_info gdb_index;
165
166 VEC (dwarf2_section_info_def) *types;
167
168 /* Back link. */
169 struct objfile *objfile;
170
171 /* Table of all the compilation units. This is used to locate
172 the target compilation unit of a particular reference. */
173 struct dwarf2_per_cu_data **all_comp_units;
174
175 /* The number of compilation units in ALL_COMP_UNITS. */
176 int n_comp_units;
177
178 /* The number of .debug_types-related CUs. */
179 int n_type_units;
180
181 /* The .debug_types-related CUs (TUs). */
182 struct dwarf2_per_cu_data **all_type_units;
183
184 /* A chain of compilation units that are currently read in, so that
185 they can be freed later. */
186 struct dwarf2_per_cu_data *read_in_chain;
187
188 /* A table mapping .debug_types signatures to its signatured_type entry.
189 This is NULL if the .debug_types section hasn't been read in yet. */
190 htab_t signatured_types;
191
192 /* A flag indicating wether this objfile has a section loaded at a
193 VMA of 0. */
194 int has_section_at_zero;
195
196 /* True if we are using the mapped index,
197 or we are faking it for OBJF_READNOW's sake. */
198 unsigned char using_index;
199
200 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
201 struct mapped_index *index_table;
202
203 /* When using index_table, this keeps track of all quick_file_names entries.
204 TUs can share line table entries with CUs or other TUs, and there can be
205 a lot more TUs than unique line tables, so we maintain a separate table
206 of all line table entries to support the sharing. */
207 htab_t quick_file_names_table;
208
209 /* Set during partial symbol reading, to prevent queueing of full
210 symbols. */
211 int reading_partial_symbols;
212
213 /* Table mapping type .debug_info DIE offsets to types.
214 This is NULL if not allocated yet.
215 It (currently) makes sense to allocate debug_types_type_hash lazily.
216 To keep things simple we allocate both lazily. */
217 htab_t debug_info_type_hash;
218
219 /* Table mapping type .debug_types DIE sect_offset to types.
220 This is NULL if not allocated yet. */
221 htab_t debug_types_type_hash;
222};
223
224static struct dwarf2_per_objfile *dwarf2_per_objfile;
225
226/* Default names of the debugging sections. */
227
228/* Note that if the debugging section has been compressed, it might
229 have a name like .zdebug_info. */
230
231static const struct dwarf2_debug_sections dwarf2_elf_names =
232{
233 { ".debug_info", ".zdebug_info" },
234 { ".debug_abbrev", ".zdebug_abbrev" },
235 { ".debug_line", ".zdebug_line" },
236 { ".debug_loc", ".zdebug_loc" },
237 { ".debug_macinfo", ".zdebug_macinfo" },
238 { ".debug_macro", ".zdebug_macro" },
239 { ".debug_str", ".zdebug_str" },
240 { ".debug_ranges", ".zdebug_ranges" },
241 { ".debug_types", ".zdebug_types" },
242 { ".debug_frame", ".zdebug_frame" },
243 { ".eh_frame", NULL },
244 { ".gdb_index", ".zgdb_index" },
245 23
246};
247
248/* local data types */
249
250/* We hold several abbreviation tables in memory at the same time. */
251#ifndef ABBREV_HASH_SIZE
252#define ABBREV_HASH_SIZE 121
253#endif
254
255/* The data in a compilation unit header, after target2host
256 translation, looks like this. */
257struct comp_unit_head
258{
259 unsigned int length;
260 short version;
261 unsigned char addr_size;
262 unsigned char signed_addr_p;
263 sect_offset abbrev_offset;
264
265 /* Size of file offsets; either 4 or 8. */
266 unsigned int offset_size;
267
268 /* Size of the length field; either 4 or 12. */
269 unsigned int initial_length_size;
270
271 /* Offset to the first byte of this compilation unit header in the
272 .debug_info section, for resolving relative reference dies. */
273 sect_offset offset;
274
275 /* Offset to first die in this cu from the start of the cu.
276 This will be the first byte following the compilation unit header. */
277 cu_offset first_die_offset;
278};
279
280/* Type used for delaying computation of method physnames.
281 See comments for compute_delayed_physnames. */
282struct delayed_method_info
283{
284 /* The type to which the method is attached, i.e., its parent class. */
285 struct type *type;
286
287 /* The index of the method in the type's function fieldlists. */
288 int fnfield_index;
289
290 /* The index of the method in the fieldlist. */
291 int index;
292
293 /* The name of the DIE. */
294 const char *name;
295
296 /* The DIE associated with this method. */
297 struct die_info *die;
298};
299
300typedef struct delayed_method_info delayed_method_info;
301DEF_VEC_O (delayed_method_info);
302
303/* Internal state when decoding a particular compilation unit. */
304struct dwarf2_cu
305{
306 /* The objfile containing this compilation unit. */
307 struct objfile *objfile;
308
309 /* The header of the compilation unit. */
310 struct comp_unit_head header;
311
312 /* Base address of this compilation unit. */
313 CORE_ADDR base_address;
314
315 /* Non-zero if base_address has been set. */
316 int base_known;
317
318 /* The language we are debugging. */
319 enum language language;
320 const struct language_defn *language_defn;
321
322 const char *producer;
323
324 /* The generic symbol table building routines have separate lists for
325 file scope symbols and all all other scopes (local scopes). So
326 we need to select the right one to pass to add_symbol_to_list().
327 We do it by keeping a pointer to the correct list in list_in_scope.
328
329 FIXME: The original dwarf code just treated the file scope as the
330 first local scope, and all other local scopes as nested local
331 scopes, and worked fine. Check to see if we really need to
332 distinguish these in buildsym.c. */
333 struct pending **list_in_scope;
334
335 /* DWARF abbreviation table associated with this compilation unit. */
336 struct abbrev_info **dwarf2_abbrevs;
337
338 /* Storage for the abbrev table. */
339 struct obstack abbrev_obstack;
340
341 /* Hash table holding all the loaded partial DIEs
342 with partial_die->offset.SECT_OFF as hash. */
343 htab_t partial_dies;
344
345 /* Storage for things with the same lifetime as this read-in compilation
346 unit, including partial DIEs. */
347 struct obstack comp_unit_obstack;
348
349 /* When multiple dwarf2_cu structures are living in memory, this field
350 chains them all together, so that they can be released efficiently.
351 We will probably also want a generation counter so that most-recently-used
352 compilation units are cached... */
353 struct dwarf2_per_cu_data *read_in_chain;
354
355 /* Backchain to our per_cu entry if the tree has been built. */
356 struct dwarf2_per_cu_data *per_cu;
357
358 /* How many compilation units ago was this CU last referenced? */
359 int last_used;
360
361 /* A hash table of DIE cu_offset for following references with
362 die_info->offset.sect_off as hash. */
363 htab_t die_hash;
364
365 /* Full DIEs if read in. */
366 struct die_info *dies;
367
368 /* A set of pointers to dwarf2_per_cu_data objects for compilation
369 units referenced by this one. Only set during full symbol processing;
370 partial symbol tables do not have dependencies. */
371 htab_t dependencies;
372
373 /* Header data from the line table, during full symbol processing. */
374 struct line_header *line_header;
375
376 /* A list of methods which need to have physnames computed
377 after all type information has been read. */
378 VEC (delayed_method_info) *method_list;
379
380 /* To be copied to symtab->call_site_htab. */
381 htab_t call_site_htab;
382
383 /* Mark used when releasing cached dies. */
384 unsigned int mark : 1;
385
386 /* This CU references .debug_loc. See the symtab->locations_valid field.
387 This test is imperfect as there may exist optimized debug code not using
388 any location list and still facing inlining issues if handled as
389 unoptimized code. For a future better test see GCC PR other/32998. */
390 unsigned int has_loclist : 1;
391
392 /* These cache the results of producer_is_gxx_lt_4_6.
393 CHECKED_PRODUCER is set if PRODUCER_IS_GXX_LT_4_6 is valid. This
394 information is cached because profiling CU expansion showed
395 excessive time spent in producer_is_gxx_lt_4_6. */
396 unsigned int checked_producer : 1;
397 unsigned int producer_is_gxx_lt_4_6 : 1;
398};
399
400/* Persistent data held for a compilation unit, even when not
401 processing it. We put a pointer to this structure in the
402 read_symtab_private field of the psymtab. */
403
404struct dwarf2_per_cu_data
405{
406 /* The start offset and length of this compilation unit. 2**29-1
407 bytes should suffice to store the length of any compilation unit
408 - if it doesn't, GDB will fall over anyway.
409 NOTE: Unlike comp_unit_head.length, this length includes
410 initial_length_size. */
411 sect_offset offset;
412 unsigned int length : 29;
413
414 /* Flag indicating this compilation unit will be read in before
415 any of the current compilation units are processed. */
416 unsigned int queued : 1;
417
418 /* This flag will be set if we need to load absolutely all DIEs
419 for this compilation unit, instead of just the ones we think
420 are interesting. It gets set if we look for a DIE in the
421 hash table and don't find it. */
422 unsigned int load_all_dies : 1;
423
424 /* Non-null if this CU is from .debug_types; in which case it points
425 to the section. Otherwise it's from .debug_info. */
426 struct dwarf2_section_info *debug_types_section;
427
428 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
429 of the CU cache it gets reset to NULL again. */
430 struct dwarf2_cu *cu;
431
432 /* The corresponding objfile.
433 Normally we can get the objfile from dwarf2_per_objfile.
434 However we can enter this file with just a "per_cu" handle. */
435 struct objfile *objfile;
436
437 /* When using partial symbol tables, the 'psymtab' field is active.
438 Otherwise the 'quick' field is active. */
439 union
440 {
441 /* The partial symbol table associated with this compilation unit,
442 or NULL for partial units (which do not have an associated
443 symtab). */
444 struct partial_symtab *psymtab;
445
446 /* Data needed by the "quick" functions. */
447 struct dwarf2_per_cu_quick_data *quick;
448 } v;
449};
450
451/* Entry in the signatured_types hash table. */
452
453struct signatured_type
454{
455 ULONGEST signature;
456
457 /* Offset in this TU of the type defined by this TU. */
458 cu_offset type_offset;
459
460 /* The CU(/TU) of this type. */
461 struct dwarf2_per_cu_data per_cu;
462};
463
464/* Struct used to pass misc. parameters to read_die_and_children, et
465 al. which are used for both .debug_info and .debug_types dies.
466 All parameters here are unchanging for the life of the call. This
467 struct exists to abstract away the constant parameters of die
468 reading. */
469
470struct die_reader_specs
471{
472 /* The bfd of this objfile. */
473 bfd* abfd;
474
475 /* The CU of the DIE we are parsing. */
476 struct dwarf2_cu *cu;
477
478 /* Pointer to start of section buffer.
479 This is either the start of .debug_info or .debug_types. */
480 const gdb_byte *buffer;
481};
482
483/* The line number information for a compilation unit (found in the
484 .debug_line section) begins with a "statement program header",
485 which contains the following information. */
486struct line_header
487{
488 unsigned int total_length;
489 unsigned short version;
490 unsigned int header_length;
491 unsigned char minimum_instruction_length;
492 unsigned char maximum_ops_per_instruction;
493 unsigned char default_is_stmt;
494 int line_base;
495 unsigned char line_range;
496 unsigned char opcode_base;
497
498 /* standard_opcode_lengths[i] is the number of operands for the
499 standard opcode whose value is i. This means that
500 standard_opcode_lengths[0] is unused, and the last meaningful
501 element is standard_opcode_lengths[opcode_base - 1]. */
502 unsigned char *standard_opcode_lengths;
503
504 /* The include_directories table. NOTE! These strings are not
505 allocated with xmalloc; instead, they are pointers into
506 debug_line_buffer. If you try to free them, `free' will get
507 indigestion. */
508 unsigned int num_include_dirs, include_dirs_size;
509 char **include_dirs;
510
511 /* The file_names table. NOTE! These strings are not allocated
512 with xmalloc; instead, they are pointers into debug_line_buffer.
513 Don't try to free them directly. */
514 unsigned int num_file_names, file_names_size;
515 struct file_entry
516 {
517 char *name;
518 unsigned int dir_index;
519 unsigned int mod_time;
520 unsigned int length;
521 int included_p; /* Non-zero if referenced by the Line Number Program. */
522 struct symtab *symtab; /* The associated symbol table, if any. */
523 } *file_names;
524
525 /* The start and end of the statement program following this
526 header. These point into dwarf2_per_objfile->line_buffer. */
527 gdb_byte *statement_program_start, *statement_program_end;
528};
529
530/* When we construct a partial symbol table entry we only
531 need this much information. */
532struct partial_die_info
533 {
534 /* Offset of this DIE. */
535 sect_offset offset;
536
537 /* DWARF-2 tag for this DIE. */
538 ENUM_BITFIELD(dwarf_tag) tag : 16;
539
540 /* Assorted flags describing the data found in this DIE. */
541 unsigned int has_children : 1;
542 unsigned int is_external : 1;
543 unsigned int is_declaration : 1;
544 unsigned int has_type : 1;
545 unsigned int has_specification : 1;
546 unsigned int has_pc_info : 1;
547 unsigned int may_be_inlined : 1;
548
549 /* Flag set if the SCOPE field of this structure has been
550 computed. */
551 unsigned int scope_set : 1;
552
553 /* Flag set if the DIE has a byte_size attribute. */
554 unsigned int has_byte_size : 1;
555
556 /* Flag set if any of the DIE's children are template arguments. */
557 unsigned int has_template_arguments : 1;
558
559 /* Flag set if fixup_partial_die has been called on this die. */
560 unsigned int fixup_called : 1;
561
562 /* The name of this DIE. Normally the value of DW_AT_name, but
563 sometimes a default name for unnamed DIEs. */
564 char *name;
565
566 /* The linkage name, if present. */
567 const char *linkage_name;
568
569 /* The scope to prepend to our children. This is generally
570 allocated on the comp_unit_obstack, so will disappear
571 when this compilation unit leaves the cache. */
572 char *scope;
573
574 /* The location description associated with this DIE, if any. */
575 struct dwarf_block *locdesc;
576
577 /* If HAS_PC_INFO, the PC range associated with this DIE. */
578 CORE_ADDR lowpc;
579 CORE_ADDR highpc;
580
581 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
582 DW_AT_sibling, if any. */
583 /* NOTE: This member isn't strictly necessary, read_partial_die could
584 return DW_AT_sibling values to its caller load_partial_dies. */
585 gdb_byte *sibling;
586
587 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
588 DW_AT_specification (or DW_AT_abstract_origin or
589 DW_AT_extension). */
590 sect_offset spec_offset;
591
592 /* Pointers to this DIE's parent, first child, and next sibling,
593 if any. */
594 struct partial_die_info *die_parent, *die_child, *die_sibling;
595 };
596
597/* This data structure holds the information of an abbrev. */
598struct abbrev_info
599 {
600 unsigned int number; /* number identifying abbrev */
601 enum dwarf_tag tag; /* dwarf tag */
602 unsigned short has_children; /* boolean */
603 unsigned short num_attrs; /* number of attributes */
604 struct attr_abbrev *attrs; /* an array of attribute descriptions */
605 struct abbrev_info *next; /* next in chain */
606 };
607
608struct attr_abbrev
609 {
610 ENUM_BITFIELD(dwarf_attribute) name : 16;
611 ENUM_BITFIELD(dwarf_form) form : 16;
612 };
613
614/* Attributes have a name and a value. */
615struct attribute
616 {
617 ENUM_BITFIELD(dwarf_attribute) name : 16;
618 ENUM_BITFIELD(dwarf_form) form : 15;
619
620 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
621 field should be in u.str (existing only for DW_STRING) but it is kept
622 here for better struct attribute alignment. */
623 unsigned int string_is_canonical : 1;
624
625 union
626 {
627 char *str;
628 struct dwarf_block *blk;
629 ULONGEST unsnd;
630 LONGEST snd;
631 CORE_ADDR addr;
632 struct signatured_type *signatured_type;
633 }
634 u;
635 };
636
637/* This data structure holds a complete die structure. */
638struct die_info
639 {
640 /* DWARF-2 tag for this DIE. */
641 ENUM_BITFIELD(dwarf_tag) tag : 16;
642
643 /* Number of attributes */
644 unsigned char num_attrs;
645
646 /* True if we're presently building the full type name for the
647 type derived from this DIE. */
648 unsigned char building_fullname : 1;
649
650 /* Abbrev number */
651 unsigned int abbrev;
652
653 /* Offset in .debug_info or .debug_types section. */
654 sect_offset offset;
655
656 /* The dies in a compilation unit form an n-ary tree. PARENT
657 points to this die's parent; CHILD points to the first child of
658 this node; and all the children of a given node are chained
659 together via their SIBLING fields. */
660 struct die_info *child; /* Its first child, if any. */
661 struct die_info *sibling; /* Its next sibling, if any. */
662 struct die_info *parent; /* Its parent, if any. */
663
664 /* An array of attributes, with NUM_ATTRS elements. There may be
665 zero, but it's not common and zero-sized arrays are not
666 sufficiently portable C. */
667 struct attribute attrs[1];
668 };
669
670/* Get at parts of an attribute structure. */
671
672#define DW_STRING(attr) ((attr)->u.str)
673#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
674#define DW_UNSND(attr) ((attr)->u.unsnd)
675#define DW_BLOCK(attr) ((attr)->u.blk)
676#define DW_SND(attr) ((attr)->u.snd)
677#define DW_ADDR(attr) ((attr)->u.addr)
678#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
679
680/* Blocks are a bunch of untyped bytes. */
681struct dwarf_block
682 {
683 unsigned int size;
684
685 /* Valid only if SIZE is not zero. */
686 gdb_byte *data;
687 };
688
689#ifndef ATTR_ALLOC_CHUNK
690#define ATTR_ALLOC_CHUNK 4
691#endif
692
693/* Allocate fields for structs, unions and enums in this size. */
694#ifndef DW_FIELD_ALLOC_CHUNK
695#define DW_FIELD_ALLOC_CHUNK 4
696#endif
697
698/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
699 but this would require a corresponding change in unpack_field_as_long
700 and friends. */
701static int bits_per_byte = 8;
702
703/* The routines that read and process dies for a C struct or C++ class
704 pass lists of data member fields and lists of member function fields
705 in an instance of a field_info structure, as defined below. */
706struct field_info
707 {
708 /* List of data member and baseclasses fields. */
709 struct nextfield
710 {
711 struct nextfield *next;
712 int accessibility;
713 int virtuality;
714 struct field field;
715 }
716 *fields, *baseclasses;
717
718 /* Number of fields (including baseclasses). */
719 int nfields;
720
721 /* Number of baseclasses. */
722 int nbaseclasses;
723
724 /* Set if the accesibility of one of the fields is not public. */
725 int non_public_fields;
726
727 /* Member function fields array, entries are allocated in the order they
728 are encountered in the object file. */
729 struct nextfnfield
730 {
731 struct nextfnfield *next;
732 struct fn_field fnfield;
733 }
734 *fnfields;
735
736 /* Member function fieldlist array, contains name of possibly overloaded
737 member function, number of overloaded member functions and a pointer
738 to the head of the member function field chain. */
739 struct fnfieldlist
740 {
741 char *name;
742 int length;
743 struct nextfnfield *head;
744 }
745 *fnfieldlists;
746
747 /* Number of entries in the fnfieldlists array. */
748 int nfnfields;
749
750 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
751 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
752 struct typedef_field_list
753 {
754 struct typedef_field field;
755 struct typedef_field_list *next;
756 }
757 *typedef_field_list;
758 unsigned typedef_field_list_count;
759 };
760
761/* One item on the queue of compilation units to read in full symbols
762 for. */
763struct dwarf2_queue_item
764{
765 struct dwarf2_per_cu_data *per_cu;
766 struct dwarf2_queue_item *next;
767};
768
769/* The current queue. */
770static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
771
772/* Loaded secondary compilation units are kept in memory until they
773 have not been referenced for the processing of this many
774 compilation units. Set this to zero to disable caching. Cache
775 sizes of up to at least twenty will improve startup time for
776 typical inter-CU-reference binaries, at an obvious memory cost. */
777static int dwarf2_max_cache_age = 5;
778static void
779show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
780 struct cmd_list_element *c, const char *value)
781{
782 fprintf_filtered (file, _("The upper bound on the age of cached "
783 "dwarf2 compilation units is %s.\n"),
784 value);
785}
786
787
788/* Various complaints about symbol reading that don't abort the process. */
789
790static void
791dwarf2_statement_list_fits_in_line_number_section_complaint (void)
792{
793 complaint (&symfile_complaints,
794 _("statement list doesn't fit in .debug_line section"));
795}
796
797static void
798dwarf2_debug_line_missing_file_complaint (void)
799{
800 complaint (&symfile_complaints,
801 _(".debug_line section has line data without a file"));
802}
803
804static void
805dwarf2_debug_line_missing_end_sequence_complaint (void)
806{
807 complaint (&symfile_complaints,
808 _(".debug_line section has line "
809 "program sequence without an end"));
810}
811
812static void
813dwarf2_complex_location_expr_complaint (void)
814{
815 complaint (&symfile_complaints, _("location expression too complex"));
816}
817
818static void
819dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
820 int arg3)
821{
822 complaint (&symfile_complaints,
823 _("const value length mismatch for '%s', got %d, expected %d"),
824 arg1, arg2, arg3);
825}
826
827static void
828dwarf2_macros_too_long_complaint (struct dwarf2_section_info *section)
829{
830 complaint (&symfile_complaints,
831 _("macro info runs off end of `%s' section"),
832 section->asection->name);
833}
834
835static void
836dwarf2_macro_malformed_definition_complaint (const char *arg1)
837{
838 complaint (&symfile_complaints,
839 _("macro debug info contains a "
840 "malformed macro definition:\n`%s'"),
841 arg1);
842}
843
844static void
845dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
846{
847 complaint (&symfile_complaints,
848 _("invalid attribute class or form for '%s' in '%s'"),
849 arg1, arg2);
850}
851
852/* local function prototypes */
853
854static void dwarf2_locate_sections (bfd *, asection *, void *);
855
856static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
857 struct objfile *);
858
859static void dwarf2_find_base_address (struct die_info *die,
860 struct dwarf2_cu *cu);
861
862static void dwarf2_build_psymtabs_hard (struct objfile *);
863
864static void scan_partial_symbols (struct partial_die_info *,
865 CORE_ADDR *, CORE_ADDR *,
866 int, struct dwarf2_cu *);
867
868static void add_partial_symbol (struct partial_die_info *,
869 struct dwarf2_cu *);
870
871static void add_partial_namespace (struct partial_die_info *pdi,
872 CORE_ADDR *lowpc, CORE_ADDR *highpc,
873 int need_pc, struct dwarf2_cu *cu);
874
875static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
876 CORE_ADDR *highpc, int need_pc,
877 struct dwarf2_cu *cu);
878
879static void add_partial_enumeration (struct partial_die_info *enum_pdi,
880 struct dwarf2_cu *cu);
881
882static void add_partial_subprogram (struct partial_die_info *pdi,
883 CORE_ADDR *lowpc, CORE_ADDR *highpc,
884 int need_pc, struct dwarf2_cu *cu);
885
886static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
887 gdb_byte *buffer, gdb_byte *info_ptr,
888 bfd *abfd, struct dwarf2_cu *cu);
889
890static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
891
892static void psymtab_to_symtab_1 (struct partial_symtab *);
893
894static void dwarf2_read_abbrevs (struct dwarf2_cu *cu);
895
896static void dwarf2_free_abbrev_table (void *);
897
898static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
899
900static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
901 struct dwarf2_cu *);
902
903static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
904 struct dwarf2_cu *);
905
906static struct partial_die_info *load_partial_dies (bfd *,
907 gdb_byte *, gdb_byte *,
908 int, struct dwarf2_cu *);
909
910static gdb_byte *read_partial_die (struct partial_die_info *,
911 struct abbrev_info *abbrev,
912 unsigned int, bfd *,
913 gdb_byte *, gdb_byte *,
914 struct dwarf2_cu *);
915
916static struct partial_die_info *find_partial_die (sect_offset,
917 struct dwarf2_cu *);
918
919static void fixup_partial_die (struct partial_die_info *,
920 struct dwarf2_cu *);
921
922static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
923 bfd *, gdb_byte *, struct dwarf2_cu *);
924
925static gdb_byte *read_attribute_value (struct attribute *, unsigned,
926 bfd *, gdb_byte *, struct dwarf2_cu *);
927
928static unsigned int read_1_byte (bfd *, gdb_byte *);
929
930static int read_1_signed_byte (bfd *, gdb_byte *);
931
932static unsigned int read_2_bytes (bfd *, gdb_byte *);
933
934static unsigned int read_4_bytes (bfd *, gdb_byte *);
935
936static ULONGEST read_8_bytes (bfd *, gdb_byte *);
937
938static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
939 unsigned int *);
940
941static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
942
943static LONGEST read_checked_initial_length_and_offset
944 (bfd *, gdb_byte *, const struct comp_unit_head *,
945 unsigned int *, unsigned int *);
946
947static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
948 unsigned int *);
949
950static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
951
952static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
953
954static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
955
956static char *read_indirect_string (bfd *, gdb_byte *,
957 const struct comp_unit_head *,
958 unsigned int *);
959
960static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
961
962static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
963
964static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
965
966static void set_cu_language (unsigned int, struct dwarf2_cu *);
967
968static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
969 struct dwarf2_cu *);
970
971static struct attribute *dwarf2_attr_no_follow (struct die_info *,
972 unsigned int,
973 struct dwarf2_cu *);
974
975static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
976 struct dwarf2_cu *cu);
977
978static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
979
980static struct die_info *die_specification (struct die_info *die,
981 struct dwarf2_cu **);
982
983static void free_line_header (struct line_header *lh);
984
985static void add_file_name (struct line_header *, char *, unsigned int,
986 unsigned int, unsigned int);
987
988static struct line_header *(dwarf_decode_line_header
989 (unsigned int offset,
990 bfd *abfd, struct dwarf2_cu *cu));
991
992static void dwarf_decode_lines (struct line_header *, const char *,
993 struct dwarf2_cu *, struct partial_symtab *,
994 int);
995
996static void dwarf2_start_subfile (char *, const char *, const char *);
997
998static struct symbol *new_symbol (struct die_info *, struct type *,
999 struct dwarf2_cu *);
1000
1001static struct symbol *new_symbol_full (struct die_info *, struct type *,
1002 struct dwarf2_cu *, struct symbol *);
1003
1004static void dwarf2_const_value (struct attribute *, struct symbol *,
1005 struct dwarf2_cu *);
1006
1007static void dwarf2_const_value_attr (struct attribute *attr,
1008 struct type *type,
1009 const char *name,
1010 struct obstack *obstack,
1011 struct dwarf2_cu *cu, long *value,
1012 gdb_byte **bytes,
1013 struct dwarf2_locexpr_baton **baton);
1014
1015static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1016
1017static int need_gnat_info (struct dwarf2_cu *);
1018
1019static struct type *die_descriptive_type (struct die_info *,
1020 struct dwarf2_cu *);
1021
1022static void set_descriptive_type (struct type *, struct die_info *,
1023 struct dwarf2_cu *);
1024
1025static struct type *die_containing_type (struct die_info *,
1026 struct dwarf2_cu *);
1027
1028static struct type *lookup_die_type (struct die_info *, struct attribute *,
1029 struct dwarf2_cu *);
1030
1031static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1032
1033static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1034
1035static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1036
1037static char *typename_concat (struct obstack *obs, const char *prefix,
1038 const char *suffix, int physname,
1039 struct dwarf2_cu *cu);
1040
1041static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1042
1043static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1044
1045static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1046
1047static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1048
1049static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1050
1051static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1052 struct dwarf2_cu *, struct partial_symtab *);
1053
1054static int dwarf2_get_pc_bounds (struct die_info *,
1055 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1056 struct partial_symtab *);
1057
1058static void get_scope_pc_bounds (struct die_info *,
1059 CORE_ADDR *, CORE_ADDR *,
1060 struct dwarf2_cu *);
1061
1062static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1063 CORE_ADDR, struct dwarf2_cu *);
1064
1065static void dwarf2_add_field (struct field_info *, struct die_info *,
1066 struct dwarf2_cu *);
1067
1068static void dwarf2_attach_fields_to_type (struct field_info *,
1069 struct type *, struct dwarf2_cu *);
1070
1071static void dwarf2_add_member_fn (struct field_info *,
1072 struct die_info *, struct type *,
1073 struct dwarf2_cu *);
1074
1075static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1076 struct type *,
1077 struct dwarf2_cu *);
1078
1079static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1080
1081static void read_common_block (struct die_info *, struct dwarf2_cu *);
1082
1083static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1084
1085static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1086
1087static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1088
1089static struct type *read_module_type (struct die_info *die,
1090 struct dwarf2_cu *cu);
1091
1092static const char *namespace_name (struct die_info *die,
1093 int *is_anonymous, struct dwarf2_cu *);
1094
1095static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1096
1097static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1098
1099static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1100 struct dwarf2_cu *);
1101
1102static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1103
1104static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1105 gdb_byte *info_ptr,
1106 gdb_byte **new_info_ptr,
1107 struct die_info *parent);
1108
1109static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1110 gdb_byte *info_ptr,
1111 gdb_byte **new_info_ptr,
1112 struct die_info *parent);
1113
1114static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1115 gdb_byte *info_ptr,
1116 gdb_byte **new_info_ptr,
1117 struct die_info *parent);
1118
1119static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1120 struct die_info **, gdb_byte *,
1121 int *);
1122
1123static void process_die (struct die_info *, struct dwarf2_cu *);
1124
1125static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1126 struct obstack *);
1127
1128static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1129
1130static const char *dwarf2_full_name (char *name,
1131 struct die_info *die,
1132 struct dwarf2_cu *cu);
1133
1134static struct die_info *dwarf2_extension (struct die_info *die,
1135 struct dwarf2_cu **);
1136
1137static char *dwarf_tag_name (unsigned int);
1138
1139static char *dwarf_attr_name (unsigned int);
1140
1141static char *dwarf_form_name (unsigned int);
1142
1143static char *dwarf_bool_name (unsigned int);
1144
1145static char *dwarf_type_encoding_name (unsigned int);
1146
1147#if 0
1148static char *dwarf_cfi_name (unsigned int);
1149#endif
1150
1151static struct die_info *sibling_die (struct die_info *);
1152
1153static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1154
1155static void dump_die_for_error (struct die_info *);
1156
1157static void dump_die_1 (struct ui_file *, int level, int max_level,
1158 struct die_info *);
1159
1160/*static*/ void dump_die (struct die_info *, int max_level);
1161
1162static void store_in_ref_table (struct die_info *,
1163 struct dwarf2_cu *);
1164
1165static int is_ref_attr (struct attribute *);
1166
1167static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1168
1169static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1170
1171static struct die_info *follow_die_ref_or_sig (struct die_info *,
1172 struct attribute *,
1173 struct dwarf2_cu **);
1174
1175static struct die_info *follow_die_ref (struct die_info *,
1176 struct attribute *,
1177 struct dwarf2_cu **);
1178
1179static struct die_info *follow_die_sig (struct die_info *,
1180 struct attribute *,
1181 struct dwarf2_cu **);
1182
1183static struct signatured_type *lookup_signatured_type_at_offset
1184 (struct objfile *objfile,
1185 struct dwarf2_section_info *section, sect_offset offset);
1186
1187static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1188
1189static void read_signatured_type (struct signatured_type *type_sig);
1190
1191/* memory allocation interface */
1192
1193static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1194
1195static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1196
1197static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1198
1199static void dwarf_decode_macros (struct line_header *, unsigned int,
1200 char *, bfd *, struct dwarf2_cu *,
1201 struct dwarf2_section_info *,
1202 int);
1203
1204static int attr_form_is_block (struct attribute *);
1205
1206static int attr_form_is_section_offset (struct attribute *);
1207
1208static int attr_form_is_constant (struct attribute *);
1209
1210static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1211 struct dwarf2_loclist_baton *baton,
1212 struct attribute *attr);
1213
1214static void dwarf2_symbol_mark_computed (struct attribute *attr,
1215 struct symbol *sym,
1216 struct dwarf2_cu *cu);
1217
1218static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1219 struct abbrev_info *abbrev,
1220 struct dwarf2_cu *cu);
1221
1222static void free_stack_comp_unit (void *);
1223
1224static hashval_t partial_die_hash (const void *item);
1225
1226static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1227
1228static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1229 (sect_offset offset, struct objfile *objfile);
1230
1231static void init_one_comp_unit (struct dwarf2_cu *cu,
1232 struct dwarf2_per_cu_data *per_cu);
1233
1234static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1235 struct die_info *comp_unit_die);
1236
1237static void free_heap_comp_unit (void *);
1238
1239static void free_cached_comp_units (void *);
1240
1241static void age_cached_comp_units (void);
1242
1243static void free_one_cached_comp_unit (void *);
1244
1245static struct type *set_die_type (struct die_info *, struct type *,
1246 struct dwarf2_cu *);
1247
1248static void create_all_comp_units (struct objfile *);
1249
1250static int create_debug_types_hash_table (struct objfile *objfile);
1251
1252static void load_full_comp_unit (struct dwarf2_per_cu_data *);
1253
1254static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1255
1256static void dwarf2_add_dependence (struct dwarf2_cu *,
1257 struct dwarf2_per_cu_data *);
1258
1259static void dwarf2_mark (struct dwarf2_cu *);
1260
1261static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1262
1263static struct type *get_die_type_at_offset (sect_offset,
1264 struct dwarf2_per_cu_data *per_cu);
1265
1266static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1267
1268static void dwarf2_release_queue (void *dummy);
1269
1270static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu);
1271
1272static void process_queue (void);
1273
1274static void find_file_and_directory (struct die_info *die,
1275 struct dwarf2_cu *cu,
1276 char **name, char **comp_dir);
1277
1278static char *file_full_name (int file, struct line_header *lh,
1279 const char *comp_dir);
1280
1281static gdb_byte *read_and_check_comp_unit_head
1282 (struct comp_unit_head *header,
1283 struct dwarf2_section_info *section, gdb_byte *info_ptr,
1284 int is_debug_types_section);
1285
1286static void init_cu_die_reader (struct die_reader_specs *reader,
1287 struct dwarf2_cu *cu);
1288
1289static htab_t allocate_signatured_type_table (struct objfile *objfile);
1290
1291#if WORDS_BIGENDIAN
1292
1293/* Convert VALUE between big- and little-endian. */
1294static offset_type
1295byte_swap (offset_type value)
1296{
1297 offset_type result;
1298
1299 result = (value & 0xff) << 24;
1300 result |= (value & 0xff00) << 8;
1301 result |= (value & 0xff0000) >> 8;
1302 result |= (value & 0xff000000) >> 24;
1303 return result;
1304}
1305
1306#define MAYBE_SWAP(V) byte_swap (V)
1307
1308#else
1309#define MAYBE_SWAP(V) (V)
1310#endif /* WORDS_BIGENDIAN */
1311
1312/* The suffix for an index file. */
1313#define INDEX_SUFFIX ".gdb-index"
1314
1315static const char *dwarf2_physname (char *name, struct die_info *die,
1316 struct dwarf2_cu *cu);
1317
1318/* Try to locate the sections we need for DWARF 2 debugging
1319 information and return true if we have enough to do something.
1320 NAMES points to the dwarf2 section names, or is NULL if the standard
1321 ELF names are used. */
1322
1323int
1324dwarf2_has_info (struct objfile *objfile,
1325 const struct dwarf2_debug_sections *names)
1326{
1327 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1328 if (!dwarf2_per_objfile)
1329 {
1330 /* Initialize per-objfile state. */
1331 struct dwarf2_per_objfile *data
1332 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1333
1334 memset (data, 0, sizeof (*data));
1335 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1336 dwarf2_per_objfile = data;
1337
1338 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1339 (void *) names);
1340 dwarf2_per_objfile->objfile = objfile;
1341 }
1342 return (dwarf2_per_objfile->info.asection != NULL
1343 && dwarf2_per_objfile->abbrev.asection != NULL);
1344}
1345
1346/* When loading sections, we look either for uncompressed section or for
1347 compressed section names. */
1348
1349static int
1350section_is_p (const char *section_name,
1351 const struct dwarf2_section_names *names)
1352{
1353 if (names->normal != NULL
1354 && strcmp (section_name, names->normal) == 0)
1355 return 1;
1356 if (names->compressed != NULL
1357 && strcmp (section_name, names->compressed) == 0)
1358 return 1;
1359 return 0;
1360}
1361
1362/* This function is mapped across the sections and remembers the
1363 offset and size of each of the debugging sections we are interested
1364 in. */
1365
1366static void
1367dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1368{
1369 const struct dwarf2_debug_sections *names;
1370
1371 if (vnames == NULL)
1372 names = &dwarf2_elf_names;
1373 else
1374 names = (const struct dwarf2_debug_sections *) vnames;
1375
1376 if (section_is_p (sectp->name, &names->info))
1377 {
1378 dwarf2_per_objfile->info.asection = sectp;
1379 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1380 }
1381 else if (section_is_p (sectp->name, &names->abbrev))
1382 {
1383 dwarf2_per_objfile->abbrev.asection = sectp;
1384 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1385 }
1386 else if (section_is_p (sectp->name, &names->line))
1387 {
1388 dwarf2_per_objfile->line.asection = sectp;
1389 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1390 }
1391 else if (section_is_p (sectp->name, &names->loc))
1392 {
1393 dwarf2_per_objfile->loc.asection = sectp;
1394 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1395 }
1396 else if (section_is_p (sectp->name, &names->macinfo))
1397 {
1398 dwarf2_per_objfile->macinfo.asection = sectp;
1399 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1400 }
1401 else if (section_is_p (sectp->name, &names->macro))
1402 {
1403 dwarf2_per_objfile->macro.asection = sectp;
1404 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1405 }
1406 else if (section_is_p (sectp->name, &names->str))
1407 {
1408 dwarf2_per_objfile->str.asection = sectp;
1409 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1410 }
1411 else if (section_is_p (sectp->name, &names->frame))
1412 {
1413 dwarf2_per_objfile->frame.asection = sectp;
1414 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1415 }
1416 else if (section_is_p (sectp->name, &names->eh_frame))
1417 {
1418 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1419
1420 if (aflag & SEC_HAS_CONTENTS)
1421 {
1422 dwarf2_per_objfile->eh_frame.asection = sectp;
1423 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1424 }
1425 }
1426 else if (section_is_p (sectp->name, &names->ranges))
1427 {
1428 dwarf2_per_objfile->ranges.asection = sectp;
1429 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1430 }
1431 else if (section_is_p (sectp->name, &names->types))
1432 {
1433 struct dwarf2_section_info type_section;
1434
1435 memset (&type_section, 0, sizeof (type_section));
1436 type_section.asection = sectp;
1437 type_section.size = bfd_get_section_size (sectp);
1438
1439 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1440 &type_section);
1441 }
1442 else if (section_is_p (sectp->name, &names->gdb_index))
1443 {
1444 dwarf2_per_objfile->gdb_index.asection = sectp;
1445 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1446 }
1447
1448 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1449 && bfd_section_vma (abfd, sectp) == 0)
1450 dwarf2_per_objfile->has_section_at_zero = 1;
1451}
1452
1453/* Decompress a section that was compressed using zlib. Store the
1454 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1455
1456static void
1457zlib_decompress_section (struct objfile *objfile, asection *sectp,
1458 gdb_byte **outbuf, bfd_size_type *outsize)
1459{
1460 bfd *abfd = objfile->obfd;
1461#ifndef HAVE_ZLIB_H
1462 error (_("Support for zlib-compressed DWARF data (from '%s') "
1463 "is disabled in this copy of GDB"),
1464 bfd_get_filename (abfd));
1465#else
1466 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1467 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1468 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1469 bfd_size_type uncompressed_size;
1470 gdb_byte *uncompressed_buffer;
1471 z_stream strm;
1472 int rc;
1473 int header_size = 12;
1474
1475 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1476 || bfd_bread (compressed_buffer,
1477 compressed_size, abfd) != compressed_size)
1478 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1479 bfd_get_filename (abfd));
1480
1481 /* Read the zlib header. In this case, it should be "ZLIB" followed
1482 by the uncompressed section size, 8 bytes in big-endian order. */
1483 if (compressed_size < header_size
1484 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1485 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1486 bfd_get_filename (abfd));
1487 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1488 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1489 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1490 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1491 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1492 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1493 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1494 uncompressed_size += compressed_buffer[11];
1495
1496 /* It is possible the section consists of several compressed
1497 buffers concatenated together, so we uncompress in a loop. */
1498 strm.zalloc = NULL;
1499 strm.zfree = NULL;
1500 strm.opaque = NULL;
1501 strm.avail_in = compressed_size - header_size;
1502 strm.next_in = (Bytef*) compressed_buffer + header_size;
1503 strm.avail_out = uncompressed_size;
1504 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1505 uncompressed_size);
1506 rc = inflateInit (&strm);
1507 while (strm.avail_in > 0)
1508 {
1509 if (rc != Z_OK)
1510 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1511 bfd_get_filename (abfd), rc);
1512 strm.next_out = ((Bytef*) uncompressed_buffer
1513 + (uncompressed_size - strm.avail_out));
1514 rc = inflate (&strm, Z_FINISH);
1515 if (rc != Z_STREAM_END)
1516 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1517 bfd_get_filename (abfd), rc);
1518 rc = inflateReset (&strm);
1519 }
1520 rc = inflateEnd (&strm);
1521 if (rc != Z_OK
1522 || strm.avail_out != 0)
1523 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1524 bfd_get_filename (abfd), rc);
1525
1526 do_cleanups (cleanup);
1527 *outbuf = uncompressed_buffer;
1528 *outsize = uncompressed_size;
1529#endif
1530}
1531
1532/* A helper function that decides whether a section is empty. */
1533
1534static int
1535dwarf2_section_empty_p (struct dwarf2_section_info *info)
1536{
1537 return info->asection == NULL || info->size == 0;
1538}
1539
1540/* Read the contents of the section INFO from object file specified by
1541 OBJFILE, store info about the section into INFO.
1542 If the section is compressed, uncompress it before returning. */
1543
1544static void
1545dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1546{
1547 bfd *abfd = objfile->obfd;
1548 asection *sectp = info->asection;
1549 gdb_byte *buf, *retbuf;
1550 unsigned char header[4];
1551
1552 if (info->readin)
1553 return;
1554 info->buffer = NULL;
1555 info->map_addr = NULL;
1556 info->readin = 1;
1557
1558 if (dwarf2_section_empty_p (info))
1559 return;
1560
1561 /* Check if the file has a 4-byte header indicating compression. */
1562 if (info->size > sizeof (header)
1563 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1564 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1565 {
1566 /* Upon decompression, update the buffer and its size. */
1567 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1568 {
1569 zlib_decompress_section (objfile, sectp, &info->buffer,
1570 &info->size);
1571 return;
1572 }
1573 }
1574
1575#ifdef HAVE_MMAP
1576 if (pagesize == 0)
1577 pagesize = getpagesize ();
1578
1579 /* Only try to mmap sections which are large enough: we don't want to
1580 waste space due to fragmentation. Also, only try mmap for sections
1581 without relocations. */
1582
1583 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1584 {
1585 info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ,
1586 MAP_PRIVATE, sectp->filepos,
1587 &info->map_addr, &info->map_len);
1588
1589 if ((caddr_t)info->buffer != MAP_FAILED)
1590 {
1591#if HAVE_POSIX_MADVISE
1592 posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED);
1593#endif
1594 return;
1595 }
1596 }
1597#endif
1598
1599 /* If we get here, we are a normal, not-compressed section. */
1600 info->buffer = buf
1601 = obstack_alloc (&objfile->objfile_obstack, info->size);
1602
1603 /* When debugging .o files, we may need to apply relocations; see
1604 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1605 We never compress sections in .o files, so we only need to
1606 try this when the section is not compressed. */
1607 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1608 if (retbuf != NULL)
1609 {
1610 info->buffer = retbuf;
1611 return;
1612 }
1613
1614 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1615 || bfd_bread (buf, info->size, abfd) != info->size)
1616 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1617 bfd_get_filename (abfd));
1618}
1619
1620/* A helper function that returns the size of a section in a safe way.
1621 If you are positive that the section has been read before using the
1622 size, then it is safe to refer to the dwarf2_section_info object's
1623 "size" field directly. In other cases, you must call this
1624 function, because for compressed sections the size field is not set
1625 correctly until the section has been read. */
1626
1627static bfd_size_type
1628dwarf2_section_size (struct objfile *objfile,
1629 struct dwarf2_section_info *info)
1630{
1631 if (!info->readin)
1632 dwarf2_read_section (objfile, info);
1633 return info->size;
1634}
1635
1636/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1637 SECTION_NAME. */
1638
1639void
1640dwarf2_get_section_info (struct objfile *objfile,
1641 enum dwarf2_section_enum sect,
1642 asection **sectp, gdb_byte **bufp,
1643 bfd_size_type *sizep)
1644{
1645 struct dwarf2_per_objfile *data
1646 = objfile_data (objfile, dwarf2_objfile_data_key);
1647 struct dwarf2_section_info *info;
1648
1649 /* We may see an objfile without any DWARF, in which case we just
1650 return nothing. */
1651 if (data == NULL)
1652 {
1653 *sectp = NULL;
1654 *bufp = NULL;
1655 *sizep = 0;
1656 return;
1657 }
1658 switch (sect)
1659 {
1660 case DWARF2_DEBUG_FRAME:
1661 info = &data->frame;
1662 break;
1663 case DWARF2_EH_FRAME:
1664 info = &data->eh_frame;
1665 break;
1666 default:
1667 gdb_assert_not_reached ("unexpected section");
1668 }
1669
1670 dwarf2_read_section (objfile, info);
1671
1672 *sectp = info->asection;
1673 *bufp = info->buffer;
1674 *sizep = info->size;
1675}
1676
1677\f
1678/* DWARF quick_symbols_functions support. */
1679
1680/* TUs can share .debug_line entries, and there can be a lot more TUs than
1681 unique line tables, so we maintain a separate table of all .debug_line
1682 derived entries to support the sharing.
1683 All the quick functions need is the list of file names. We discard the
1684 line_header when we're done and don't need to record it here. */
1685struct quick_file_names
1686{
1687 /* The offset in .debug_line of the line table. We hash on this. */
1688 unsigned int offset;
1689
1690 /* The number of entries in file_names, real_names. */
1691 unsigned int num_file_names;
1692
1693 /* The file names from the line table, after being run through
1694 file_full_name. */
1695 const char **file_names;
1696
1697 /* The file names from the line table after being run through
1698 gdb_realpath. These are computed lazily. */
1699 const char **real_names;
1700};
1701
1702/* When using the index (and thus not using psymtabs), each CU has an
1703 object of this type. This is used to hold information needed by
1704 the various "quick" methods. */
1705struct dwarf2_per_cu_quick_data
1706{
1707 /* The file table. This can be NULL if there was no file table
1708 or it's currently not read in.
1709 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1710 struct quick_file_names *file_names;
1711
1712 /* The corresponding symbol table. This is NULL if symbols for this
1713 CU have not yet been read. */
1714 struct symtab *symtab;
1715
1716 /* A temporary mark bit used when iterating over all CUs in
1717 expand_symtabs_matching. */
1718 unsigned int mark : 1;
1719
1720 /* True if we've tried to read the file table and found there isn't one.
1721 There will be no point in trying to read it again next time. */
1722 unsigned int no_file_data : 1;
1723};
1724
1725/* Hash function for a quick_file_names. */
1726
1727static hashval_t
1728hash_file_name_entry (const void *e)
1729{
1730 const struct quick_file_names *file_data = e;
1731
1732 return file_data->offset;
1733}
1734
1735/* Equality function for a quick_file_names. */
1736
1737static int
1738eq_file_name_entry (const void *a, const void *b)
1739{
1740 const struct quick_file_names *ea = a;
1741 const struct quick_file_names *eb = b;
1742
1743 return ea->offset == eb->offset;
1744}
1745
1746/* Delete function for a quick_file_names. */
1747
1748static void
1749delete_file_name_entry (void *e)
1750{
1751 struct quick_file_names *file_data = e;
1752 int i;
1753
1754 for (i = 0; i < file_data->num_file_names; ++i)
1755 {
1756 xfree ((void*) file_data->file_names[i]);
1757 if (file_data->real_names)
1758 xfree ((void*) file_data->real_names[i]);
1759 }
1760
1761 /* The space for the struct itself lives on objfile_obstack,
1762 so we don't free it here. */
1763}
1764
1765/* Create a quick_file_names hash table. */
1766
1767static htab_t
1768create_quick_file_names_table (unsigned int nr_initial_entries)
1769{
1770 return htab_create_alloc (nr_initial_entries,
1771 hash_file_name_entry, eq_file_name_entry,
1772 delete_file_name_entry, xcalloc, xfree);
1773}
1774
1775/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
1776 have to be created afterwards. You should call age_cached_comp_units after
1777 processing PER_CU->CU. dw2_setup must have been already called. */
1778
1779static void
1780load_cu (struct dwarf2_per_cu_data *per_cu)
1781{
1782 if (per_cu->debug_types_section)
1783 load_full_type_unit (per_cu);
1784 else
1785 load_full_comp_unit (per_cu);
1786
1787 gdb_assert (per_cu->cu != NULL);
1788
1789 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
1790}
1791
1792/* Read in the symbols for PER_CU. */
1793
1794static void
1795dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
1796{
1797 struct cleanup *back_to;
1798
1799 back_to = make_cleanup (dwarf2_release_queue, NULL);
1800
1801 queue_comp_unit (per_cu);
1802
1803 load_cu (per_cu);
1804
1805 process_queue ();
1806
1807 /* Age the cache, releasing compilation units that have not
1808 been used recently. */
1809 age_cached_comp_units ();
1810
1811 do_cleanups (back_to);
1812}
1813
1814/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1815 the objfile from which this CU came. Returns the resulting symbol
1816 table. */
1817
1818static struct symtab *
1819dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
1820{
1821 if (!per_cu->v.quick->symtab)
1822 {
1823 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1824 increment_reading_symtab ();
1825 dw2_do_instantiate_symtab (per_cu);
1826 do_cleanups (back_to);
1827 }
1828 return per_cu->v.quick->symtab;
1829}
1830
1831/* Return the CU given its index. */
1832
1833static struct dwarf2_per_cu_data *
1834dw2_get_cu (int index)
1835{
1836 if (index >= dwarf2_per_objfile->n_comp_units)
1837 {
1838 index -= dwarf2_per_objfile->n_comp_units;
1839 return dwarf2_per_objfile->all_type_units[index];
1840 }
1841 return dwarf2_per_objfile->all_comp_units[index];
1842}
1843
1844/* A helper function that knows how to read a 64-bit value in a way
1845 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1846 otherwise. */
1847
1848static int
1849extract_cu_value (const char *bytes, ULONGEST *result)
1850{
1851 if (sizeof (ULONGEST) < 8)
1852 {
1853 int i;
1854
1855 /* Ignore the upper 4 bytes if they are all zero. */
1856 for (i = 0; i < 4; ++i)
1857 if (bytes[i + 4] != 0)
1858 return 0;
1859
1860 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1861 }
1862 else
1863 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1864 return 1;
1865}
1866
1867/* Read the CU list from the mapped index, and use it to create all
1868 the CU objects for this objfile. Return 0 if something went wrong,
1869 1 if everything went ok. */
1870
1871static int
1872create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1873 offset_type cu_list_elements)
1874{
1875 offset_type i;
1876
1877 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1878 dwarf2_per_objfile->all_comp_units
1879 = obstack_alloc (&objfile->objfile_obstack,
1880 dwarf2_per_objfile->n_comp_units
1881 * sizeof (struct dwarf2_per_cu_data *));
1882
1883 for (i = 0; i < cu_list_elements; i += 2)
1884 {
1885 struct dwarf2_per_cu_data *the_cu;
1886 ULONGEST offset, length;
1887
1888 if (!extract_cu_value (cu_list, &offset)
1889 || !extract_cu_value (cu_list + 8, &length))
1890 return 0;
1891 cu_list += 2 * 8;
1892
1893 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1894 struct dwarf2_per_cu_data);
1895 the_cu->offset.sect_off = offset;
1896 the_cu->length = length;
1897 the_cu->objfile = objfile;
1898 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1899 struct dwarf2_per_cu_quick_data);
1900 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1901 }
1902
1903 return 1;
1904}
1905
1906/* Create the signatured type hash table from the index. */
1907
1908static int
1909create_signatured_type_table_from_index (struct objfile *objfile,
1910 struct dwarf2_section_info *section,
1911 const gdb_byte *bytes,
1912 offset_type elements)
1913{
1914 offset_type i;
1915 htab_t sig_types_hash;
1916
1917 dwarf2_per_objfile->n_type_units = elements / 3;
1918 dwarf2_per_objfile->all_type_units
1919 = obstack_alloc (&objfile->objfile_obstack,
1920 dwarf2_per_objfile->n_type_units
1921 * sizeof (struct dwarf2_per_cu_data *));
1922
1923 sig_types_hash = allocate_signatured_type_table (objfile);
1924
1925 for (i = 0; i < elements; i += 3)
1926 {
1927 struct signatured_type *type_sig;
1928 ULONGEST offset, type_offset, signature;
1929 void **slot;
1930
1931 if (!extract_cu_value (bytes, &offset)
1932 || !extract_cu_value (bytes + 8, &type_offset))
1933 return 0;
1934 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1935 bytes += 3 * 8;
1936
1937 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1938 struct signatured_type);
1939 type_sig->signature = signature;
1940 type_sig->type_offset.cu_off = type_offset;
1941 type_sig->per_cu.debug_types_section = section;
1942 type_sig->per_cu.offset.sect_off = offset;
1943 type_sig->per_cu.objfile = objfile;
1944 type_sig->per_cu.v.quick
1945 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1946 struct dwarf2_per_cu_quick_data);
1947
1948 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1949 *slot = type_sig;
1950
1951 dwarf2_per_objfile->all_type_units[i / 3] = &type_sig->per_cu;
1952 }
1953
1954 dwarf2_per_objfile->signatured_types = sig_types_hash;
1955
1956 return 1;
1957}
1958
1959/* Read the address map data from the mapped index, and use it to
1960 populate the objfile's psymtabs_addrmap. */
1961
1962static void
1963create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1964{
1965 const gdb_byte *iter, *end;
1966 struct obstack temp_obstack;
1967 struct addrmap *mutable_map;
1968 struct cleanup *cleanup;
1969 CORE_ADDR baseaddr;
1970
1971 obstack_init (&temp_obstack);
1972 cleanup = make_cleanup_obstack_free (&temp_obstack);
1973 mutable_map = addrmap_create_mutable (&temp_obstack);
1974
1975 iter = index->address_table;
1976 end = iter + index->address_table_size;
1977
1978 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1979
1980 while (iter < end)
1981 {
1982 ULONGEST hi, lo, cu_index;
1983 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1984 iter += 8;
1985 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1986 iter += 8;
1987 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1988 iter += 4;
1989
1990 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1991 dw2_get_cu (cu_index));
1992 }
1993
1994 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1995 &objfile->objfile_obstack);
1996 do_cleanups (cleanup);
1997}
1998
1999/* The hash function for strings in the mapped index. This is the same as
2000 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2001 implementation. This is necessary because the hash function is tied to the
2002 format of the mapped index file. The hash values do not have to match with
2003 SYMBOL_HASH_NEXT.
2004
2005 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2006
2007static hashval_t
2008mapped_index_string_hash (int index_version, const void *p)
2009{
2010 const unsigned char *str = (const unsigned char *) p;
2011 hashval_t r = 0;
2012 unsigned char c;
2013
2014 while ((c = *str++) != 0)
2015 {
2016 if (index_version >= 5)
2017 c = tolower (c);
2018 r = r * 67 + c - 113;
2019 }
2020
2021 return r;
2022}
2023
2024/* Find a slot in the mapped index INDEX for the object named NAME.
2025 If NAME is found, set *VEC_OUT to point to the CU vector in the
2026 constant pool and return 1. If NAME cannot be found, return 0. */
2027
2028static int
2029find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2030 offset_type **vec_out)
2031{
2032 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2033 offset_type hash;
2034 offset_type slot, step;
2035 int (*cmp) (const char *, const char *);
2036
2037 if (current_language->la_language == language_cplus
2038 || current_language->la_language == language_java
2039 || current_language->la_language == language_fortran)
2040 {
2041 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2042 not contain any. */
2043 const char *paren = strchr (name, '(');
2044
2045 if (paren)
2046 {
2047 char *dup;
2048
2049 dup = xmalloc (paren - name + 1);
2050 memcpy (dup, name, paren - name);
2051 dup[paren - name] = 0;
2052
2053 make_cleanup (xfree, dup);
2054 name = dup;
2055 }
2056 }
2057
2058 /* Index version 4 did not support case insensitive searches. But the
2059 indices for case insensitive languages are built in lowercase, therefore
2060 simulate our NAME being searched is also lowercased. */
2061 hash = mapped_index_string_hash ((index->version == 4
2062 && case_sensitivity == case_sensitive_off
2063 ? 5 : index->version),
2064 name);
2065
2066 slot = hash & (index->symbol_table_slots - 1);
2067 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2068 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2069
2070 for (;;)
2071 {
2072 /* Convert a slot number to an offset into the table. */
2073 offset_type i = 2 * slot;
2074 const char *str;
2075 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2076 {
2077 do_cleanups (back_to);
2078 return 0;
2079 }
2080
2081 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2082 if (!cmp (name, str))
2083 {
2084 *vec_out = (offset_type *) (index->constant_pool
2085 + MAYBE_SWAP (index->symbol_table[i + 1]));
2086 do_cleanups (back_to);
2087 return 1;
2088 }
2089
2090 slot = (slot + step) & (index->symbol_table_slots - 1);
2091 }
2092}
2093
2094/* Read the index file. If everything went ok, initialize the "quick"
2095 elements of all the CUs and return 1. Otherwise, return 0. */
2096
2097static int
2098dwarf2_read_index (struct objfile *objfile)
2099{
2100 char *addr;
2101 struct mapped_index *map;
2102 offset_type *metadata;
2103 const gdb_byte *cu_list;
2104 const gdb_byte *types_list = NULL;
2105 offset_type version, cu_list_elements;
2106 offset_type types_list_elements = 0;
2107 int i;
2108
2109 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2110 return 0;
2111
2112 /* Older elfutils strip versions could keep the section in the main
2113 executable while splitting it for the separate debug info file. */
2114 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2115 & SEC_HAS_CONTENTS) == 0)
2116 return 0;
2117
2118 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2119
2120 addr = dwarf2_per_objfile->gdb_index.buffer;
2121 /* Version check. */
2122 version = MAYBE_SWAP (*(offset_type *) addr);
2123 /* Versions earlier than 3 emitted every copy of a psymbol. This
2124 causes the index to behave very poorly for certain requests. Version 3
2125 contained incomplete addrmap. So, it seems better to just ignore such
2126 indices. */
2127 if (version < 4)
2128 {
2129 static int warning_printed = 0;
2130 if (!warning_printed)
2131 {
2132 warning (_("Skipping obsolete .gdb_index section in %s."),
2133 objfile->name);
2134 warning_printed = 1;
2135 }
2136 return 0;
2137 }
2138 /* Index version 4 uses a different hash function than index version
2139 5 and later.
2140
2141 Versions earlier than 6 did not emit psymbols for inlined
2142 functions. Using these files will cause GDB not to be able to
2143 set breakpoints on inlined functions by name, so we ignore these
2144 indices unless the --use-deprecated-index-sections command line
2145 option was supplied. */
2146 if (version < 6 && !use_deprecated_index_sections)
2147 {
2148 static int warning_printed = 0;
2149 if (!warning_printed)
2150 {
2151 warning (_("Skipping deprecated .gdb_index section in %s, pass "
2152 "--use-deprecated-index-sections to use them anyway"),
2153 objfile->name);
2154 warning_printed = 1;
2155 }
2156 return 0;
2157 }
2158 /* Indexes with higher version than the one supported by GDB may be no
2159 longer backward compatible. */
2160 if (version > 6)
2161 return 0;
2162
2163 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2164 map->version = version;
2165 map->total_size = dwarf2_per_objfile->gdb_index.size;
2166
2167 metadata = (offset_type *) (addr + sizeof (offset_type));
2168
2169 i = 0;
2170 cu_list = addr + MAYBE_SWAP (metadata[i]);
2171 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2172 / 8);
2173 ++i;
2174
2175 types_list = addr + MAYBE_SWAP (metadata[i]);
2176 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2177 - MAYBE_SWAP (metadata[i]))
2178 / 8);
2179 ++i;
2180
2181 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2182 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2183 - MAYBE_SWAP (metadata[i]));
2184 ++i;
2185
2186 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2187 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2188 - MAYBE_SWAP (metadata[i]))
2189 / (2 * sizeof (offset_type)));
2190 ++i;
2191
2192 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2193
2194 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2195 return 0;
2196
2197 if (types_list_elements)
2198 {
2199 struct dwarf2_section_info *section;
2200
2201 /* We can only handle a single .debug_types when we have an
2202 index. */
2203 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2204 return 0;
2205
2206 section = VEC_index (dwarf2_section_info_def,
2207 dwarf2_per_objfile->types, 0);
2208
2209 if (!create_signatured_type_table_from_index (objfile, section,
2210 types_list,
2211 types_list_elements))
2212 return 0;
2213 }
2214
2215 create_addrmap_from_index (objfile, map);
2216
2217 dwarf2_per_objfile->index_table = map;
2218 dwarf2_per_objfile->using_index = 1;
2219 dwarf2_per_objfile->quick_file_names_table =
2220 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2221
2222 return 1;
2223}
2224
2225/* A helper for the "quick" functions which sets the global
2226 dwarf2_per_objfile according to OBJFILE. */
2227
2228static void
2229dw2_setup (struct objfile *objfile)
2230{
2231 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2232 gdb_assert (dwarf2_per_objfile);
2233}
2234
2235/* A helper for the "quick" functions which attempts to read the line
2236 table for THIS_CU. */
2237
2238static struct quick_file_names *
2239dw2_get_file_names (struct objfile *objfile,
2240 struct dwarf2_per_cu_data *this_cu)
2241{
2242 bfd *abfd = objfile->obfd;
2243 struct line_header *lh;
2244 struct attribute *attr;
2245 struct cleanup *cleanups;
2246 struct die_info *comp_unit_die;
2247 struct dwarf2_section_info* sec;
2248 gdb_byte *info_ptr;
2249 int has_children, i;
2250 struct dwarf2_cu cu;
2251 unsigned int bytes_read;
2252 struct die_reader_specs reader_specs;
2253 char *name, *comp_dir;
2254 void **slot;
2255 struct quick_file_names *qfn;
2256 unsigned int line_offset;
2257
2258 if (this_cu->v.quick->file_names != NULL)
2259 return this_cu->v.quick->file_names;
2260 /* If we know there is no line data, no point in looking again. */
2261 if (this_cu->v.quick->no_file_data)
2262 return NULL;
2263
2264 init_one_comp_unit (&cu, this_cu);
2265 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2266
2267 if (this_cu->debug_types_section)
2268 sec = this_cu->debug_types_section;
2269 else
2270 sec = &dwarf2_per_objfile->info;
2271 dwarf2_read_section (objfile, sec);
2272 info_ptr = sec->buffer + this_cu->offset.sect_off;
2273
2274 info_ptr = read_and_check_comp_unit_head (&cu.header, sec, info_ptr,
2275 this_cu->debug_types_section != NULL);
2276
2277 /* Skip dummy compilation units. */
2278 if (info_ptr >= (sec->buffer + sec->size)
2279 || peek_abbrev_code (abfd, info_ptr) == 0)
2280 {
2281 do_cleanups (cleanups);
2282 return NULL;
2283 }
2284
2285 dwarf2_read_abbrevs (&cu);
2286 make_cleanup (dwarf2_free_abbrev_table, &cu);
2287
2288 init_cu_die_reader (&reader_specs, &cu);
2289 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2290 &has_children);
2291
2292 lh = NULL;
2293 slot = NULL;
2294 line_offset = 0;
2295 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2296 if (attr)
2297 {
2298 struct quick_file_names find_entry;
2299
2300 line_offset = DW_UNSND (attr);
2301
2302 /* We may have already read in this line header (TU line header sharing).
2303 If we have we're done. */
2304 find_entry.offset = line_offset;
2305 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2306 &find_entry, INSERT);
2307 if (*slot != NULL)
2308 {
2309 do_cleanups (cleanups);
2310 this_cu->v.quick->file_names = *slot;
2311 return *slot;
2312 }
2313
2314 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2315 }
2316 if (lh == NULL)
2317 {
2318 do_cleanups (cleanups);
2319 this_cu->v.quick->no_file_data = 1;
2320 return NULL;
2321 }
2322
2323 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2324 qfn->offset = line_offset;
2325 gdb_assert (slot != NULL);
2326 *slot = qfn;
2327
2328 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2329
2330 qfn->num_file_names = lh->num_file_names;
2331 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2332 lh->num_file_names * sizeof (char *));
2333 for (i = 0; i < lh->num_file_names; ++i)
2334 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2335 qfn->real_names = NULL;
2336
2337 free_line_header (lh);
2338 do_cleanups (cleanups);
2339
2340 this_cu->v.quick->file_names = qfn;
2341 return qfn;
2342}
2343
2344/* A helper for the "quick" functions which computes and caches the
2345 real path for a given file name from the line table. */
2346
2347static const char *
2348dw2_get_real_path (struct objfile *objfile,
2349 struct quick_file_names *qfn, int index)
2350{
2351 if (qfn->real_names == NULL)
2352 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2353 qfn->num_file_names, sizeof (char *));
2354
2355 if (qfn->real_names[index] == NULL)
2356 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2357
2358 return qfn->real_names[index];
2359}
2360
2361static struct symtab *
2362dw2_find_last_source_symtab (struct objfile *objfile)
2363{
2364 int index;
2365
2366 dw2_setup (objfile);
2367 index = dwarf2_per_objfile->n_comp_units - 1;
2368 return dw2_instantiate_symtab (dw2_get_cu (index));
2369}
2370
2371/* Traversal function for dw2_forget_cached_source_info. */
2372
2373static int
2374dw2_free_cached_file_names (void **slot, void *info)
2375{
2376 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2377
2378 if (file_data->real_names)
2379 {
2380 int i;
2381
2382 for (i = 0; i < file_data->num_file_names; ++i)
2383 {
2384 xfree ((void*) file_data->real_names[i]);
2385 file_data->real_names[i] = NULL;
2386 }
2387 }
2388
2389 return 1;
2390}
2391
2392static void
2393dw2_forget_cached_source_info (struct objfile *objfile)
2394{
2395 dw2_setup (objfile);
2396
2397 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2398 dw2_free_cached_file_names, NULL);
2399}
2400
2401/* Helper function for dw2_map_symtabs_matching_filename that expands
2402 the symtabs and calls the iterator. */
2403
2404static int
2405dw2_map_expand_apply (struct objfile *objfile,
2406 struct dwarf2_per_cu_data *per_cu,
2407 const char *name,
2408 const char *full_path, const char *real_path,
2409 int (*callback) (struct symtab *, void *),
2410 void *data)
2411{
2412 struct symtab *last_made = objfile->symtabs;
2413
2414 /* Don't visit already-expanded CUs. */
2415 if (per_cu->v.quick->symtab)
2416 return 0;
2417
2418 /* This may expand more than one symtab, and we want to iterate over
2419 all of them. */
2420 dw2_instantiate_symtab (per_cu);
2421
2422 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
2423 objfile->symtabs, last_made);
2424}
2425
2426/* Implementation of the map_symtabs_matching_filename method. */
2427
2428static int
2429dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
2430 const char *full_path, const char *real_path,
2431 int (*callback) (struct symtab *, void *),
2432 void *data)
2433{
2434 int i;
2435 const char *name_basename = lbasename (name);
2436 int name_len = strlen (name);
2437 int is_abs = IS_ABSOLUTE_PATH (name);
2438
2439 dw2_setup (objfile);
2440
2441 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2442 + dwarf2_per_objfile->n_type_units); ++i)
2443 {
2444 int j;
2445 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2446 struct quick_file_names *file_data;
2447
2448 /* We only need to look at symtabs not already expanded. */
2449 if (per_cu->v.quick->symtab)
2450 continue;
2451
2452 file_data = dw2_get_file_names (objfile, per_cu);
2453 if (file_data == NULL)
2454 continue;
2455
2456 for (j = 0; j < file_data->num_file_names; ++j)
2457 {
2458 const char *this_name = file_data->file_names[j];
2459
2460 if (FILENAME_CMP (name, this_name) == 0
2461 || (!is_abs && compare_filenames_for_search (this_name,
2462 name, name_len)))
2463 {
2464 if (dw2_map_expand_apply (objfile, per_cu,
2465 name, full_path, real_path,
2466 callback, data))
2467 return 1;
2468 }
2469
2470 /* Before we invoke realpath, which can get expensive when many
2471 files are involved, do a quick comparison of the basenames. */
2472 if (! basenames_may_differ
2473 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
2474 continue;
2475
2476 if (full_path != NULL)
2477 {
2478 const char *this_real_name = dw2_get_real_path (objfile,
2479 file_data, j);
2480
2481 if (this_real_name != NULL
2482 && (FILENAME_CMP (full_path, this_real_name) == 0
2483 || (!is_abs
2484 && compare_filenames_for_search (this_real_name,
2485 name, name_len))))
2486 {
2487 if (dw2_map_expand_apply (objfile, per_cu,
2488 name, full_path, real_path,
2489 callback, data))
2490 return 1;
2491 }
2492 }
2493
2494 if (real_path != NULL)
2495 {
2496 const char *this_real_name = dw2_get_real_path (objfile,
2497 file_data, j);
2498
2499 if (this_real_name != NULL
2500 && (FILENAME_CMP (real_path, this_real_name) == 0
2501 || (!is_abs
2502 && compare_filenames_for_search (this_real_name,
2503 name, name_len))))
2504 {
2505 if (dw2_map_expand_apply (objfile, per_cu,
2506 name, full_path, real_path,
2507 callback, data))
2508 return 1;
2509 }
2510 }
2511 }
2512 }
2513
2514 return 0;
2515}
2516
2517static struct symtab *
2518dw2_lookup_symbol (struct objfile *objfile, int block_index,
2519 const char *name, domain_enum domain)
2520{
2521 /* We do all the work in the pre_expand_symtabs_matching hook
2522 instead. */
2523 return NULL;
2524}
2525
2526/* A helper function that expands all symtabs that hold an object
2527 named NAME. */
2528
2529static void
2530dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2531{
2532 dw2_setup (objfile);
2533
2534 /* index_table is NULL if OBJF_READNOW. */
2535 if (dwarf2_per_objfile->index_table)
2536 {
2537 offset_type *vec;
2538
2539 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2540 name, &vec))
2541 {
2542 offset_type i, len = MAYBE_SWAP (*vec);
2543 for (i = 0; i < len; ++i)
2544 {
2545 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2546 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2547
2548 dw2_instantiate_symtab (per_cu);
2549 }
2550 }
2551 }
2552}
2553
2554static void
2555dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2556 enum block_enum block_kind, const char *name,
2557 domain_enum domain)
2558{
2559 dw2_do_expand_symtabs_matching (objfile, name);
2560}
2561
2562static void
2563dw2_print_stats (struct objfile *objfile)
2564{
2565 int i, count;
2566
2567 dw2_setup (objfile);
2568 count = 0;
2569 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2570 + dwarf2_per_objfile->n_type_units); ++i)
2571 {
2572 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2573
2574 if (!per_cu->v.quick->symtab)
2575 ++count;
2576 }
2577 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2578}
2579
2580static void
2581dw2_dump (struct objfile *objfile)
2582{
2583 /* Nothing worth printing. */
2584}
2585
2586static void
2587dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2588 struct section_offsets *delta)
2589{
2590 /* There's nothing to relocate here. */
2591}
2592
2593static void
2594dw2_expand_symtabs_for_function (struct objfile *objfile,
2595 const char *func_name)
2596{
2597 dw2_do_expand_symtabs_matching (objfile, func_name);
2598}
2599
2600static void
2601dw2_expand_all_symtabs (struct objfile *objfile)
2602{
2603 int i;
2604
2605 dw2_setup (objfile);
2606
2607 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2608 + dwarf2_per_objfile->n_type_units); ++i)
2609 {
2610 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2611
2612 dw2_instantiate_symtab (per_cu);
2613 }
2614}
2615
2616static void
2617dw2_expand_symtabs_with_filename (struct objfile *objfile,
2618 const char *filename)
2619{
2620 int i;
2621
2622 dw2_setup (objfile);
2623
2624 /* We don't need to consider type units here.
2625 This is only called for examining code, e.g. expand_line_sal.
2626 There can be an order of magnitude (or more) more type units
2627 than comp units, and we avoid them if we can. */
2628
2629 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2630 {
2631 int j;
2632 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2633 struct quick_file_names *file_data;
2634
2635 /* We only need to look at symtabs not already expanded. */
2636 if (per_cu->v.quick->symtab)
2637 continue;
2638
2639 file_data = dw2_get_file_names (objfile, per_cu);
2640 if (file_data == NULL)
2641 continue;
2642
2643 for (j = 0; j < file_data->num_file_names; ++j)
2644 {
2645 const char *this_name = file_data->file_names[j];
2646 if (FILENAME_CMP (this_name, filename) == 0)
2647 {
2648 dw2_instantiate_symtab (per_cu);
2649 break;
2650 }
2651 }
2652 }
2653}
2654
2655static const char *
2656dw2_find_symbol_file (struct objfile *objfile, const char *name)
2657{
2658 struct dwarf2_per_cu_data *per_cu;
2659 offset_type *vec;
2660 struct quick_file_names *file_data;
2661
2662 dw2_setup (objfile);
2663
2664 /* index_table is NULL if OBJF_READNOW. */
2665 if (!dwarf2_per_objfile->index_table)
2666 {
2667 struct symtab *s;
2668
2669 ALL_OBJFILE_SYMTABS (objfile, s)
2670 if (s->primary)
2671 {
2672 struct blockvector *bv = BLOCKVECTOR (s);
2673 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2674 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
2675
2676 if (sym)
2677 return sym->symtab->filename;
2678 }
2679 return NULL;
2680 }
2681
2682 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2683 name, &vec))
2684 return NULL;
2685
2686 /* Note that this just looks at the very first one named NAME -- but
2687 actually we are looking for a function. find_main_filename
2688 should be rewritten so that it doesn't require a custom hook. It
2689 could just use the ordinary symbol tables. */
2690 /* vec[0] is the length, which must always be >0. */
2691 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2692
2693 file_data = dw2_get_file_names (objfile, per_cu);
2694 if (file_data == NULL)
2695 return NULL;
2696
2697 return file_data->file_names[file_data->num_file_names - 1];
2698}
2699
2700static void
2701dw2_map_matching_symbols (const char * name, domain_enum namespace,
2702 struct objfile *objfile, int global,
2703 int (*callback) (struct block *,
2704 struct symbol *, void *),
2705 void *data, symbol_compare_ftype *match,
2706 symbol_compare_ftype *ordered_compare)
2707{
2708 /* Currently unimplemented; used for Ada. The function can be called if the
2709 current language is Ada for a non-Ada objfile using GNU index. As Ada
2710 does not look for non-Ada symbols this function should just return. */
2711}
2712
2713static void
2714dw2_expand_symtabs_matching
2715 (struct objfile *objfile,
2716 int (*file_matcher) (const char *, void *),
2717 int (*name_matcher) (const char *, void *),
2718 enum search_domain kind,
2719 void *data)
2720{
2721 int i;
2722 offset_type iter;
2723 struct mapped_index *index;
2724
2725 dw2_setup (objfile);
2726
2727 /* index_table is NULL if OBJF_READNOW. */
2728 if (!dwarf2_per_objfile->index_table)
2729 return;
2730 index = dwarf2_per_objfile->index_table;
2731
2732 if (file_matcher != NULL)
2733 {
2734 struct cleanup *cleanup;
2735 htab_t visited_found, visited_not_found;
2736
2737 visited_found = htab_create_alloc (10,
2738 htab_hash_pointer, htab_eq_pointer,
2739 NULL, xcalloc, xfree);
2740 cleanup = make_cleanup_htab_delete (visited_found);
2741 visited_not_found = htab_create_alloc (10,
2742 htab_hash_pointer, htab_eq_pointer,
2743 NULL, xcalloc, xfree);
2744 make_cleanup_htab_delete (visited_not_found);
2745
2746 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2747 + dwarf2_per_objfile->n_type_units); ++i)
2748 {
2749 int j;
2750 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2751 struct quick_file_names *file_data;
2752 void **slot;
2753
2754 per_cu->v.quick->mark = 0;
2755
2756 /* We only need to look at symtabs not already expanded. */
2757 if (per_cu->v.quick->symtab)
2758 continue;
2759
2760 file_data = dw2_get_file_names (objfile, per_cu);
2761 if (file_data == NULL)
2762 continue;
2763
2764 if (htab_find (visited_not_found, file_data) != NULL)
2765 continue;
2766 else if (htab_find (visited_found, file_data) != NULL)
2767 {
2768 per_cu->v.quick->mark = 1;
2769 continue;
2770 }
2771
2772 for (j = 0; j < file_data->num_file_names; ++j)
2773 {
2774 if (file_matcher (file_data->file_names[j], data))
2775 {
2776 per_cu->v.quick->mark = 1;
2777 break;
2778 }
2779 }
2780
2781 slot = htab_find_slot (per_cu->v.quick->mark
2782 ? visited_found
2783 : visited_not_found,
2784 file_data, INSERT);
2785 *slot = file_data;
2786 }
2787
2788 do_cleanups (cleanup);
2789 }
2790
2791 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2792 {
2793 offset_type idx = 2 * iter;
2794 const char *name;
2795 offset_type *vec, vec_len, vec_idx;
2796
2797 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2798 continue;
2799
2800 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2801
2802 if (! (*name_matcher) (name, data))
2803 continue;
2804
2805 /* The name was matched, now expand corresponding CUs that were
2806 marked. */
2807 vec = (offset_type *) (index->constant_pool
2808 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2809 vec_len = MAYBE_SWAP (vec[0]);
2810 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2811 {
2812 struct dwarf2_per_cu_data *per_cu;
2813
2814 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2815 if (file_matcher == NULL || per_cu->v.quick->mark)
2816 dw2_instantiate_symtab (per_cu);
2817 }
2818 }
2819}
2820
2821static struct symtab *
2822dw2_find_pc_sect_symtab (struct objfile *objfile,
2823 struct minimal_symbol *msymbol,
2824 CORE_ADDR pc,
2825 struct obj_section *section,
2826 int warn_if_readin)
2827{
2828 struct dwarf2_per_cu_data *data;
2829
2830 dw2_setup (objfile);
2831
2832 if (!objfile->psymtabs_addrmap)
2833 return NULL;
2834
2835 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2836 if (!data)
2837 return NULL;
2838
2839 if (warn_if_readin && data->v.quick->symtab)
2840 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2841 paddress (get_objfile_arch (objfile), pc));
2842
2843 return dw2_instantiate_symtab (data);
2844}
2845
2846static void
2847dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
2848 void *data, int need_fullname)
2849{
2850 int i;
2851 struct cleanup *cleanup;
2852 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
2853 NULL, xcalloc, xfree);
2854
2855 cleanup = make_cleanup_htab_delete (visited);
2856 dw2_setup (objfile);
2857
2858 /* We can ignore file names coming from already-expanded CUs. */
2859 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2860 + dwarf2_per_objfile->n_type_units); ++i)
2861 {
2862 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2863
2864 if (per_cu->v.quick->symtab)
2865 {
2866 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
2867 INSERT);
2868
2869 *slot = per_cu->v.quick->file_names;
2870 }
2871 }
2872
2873 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2874 + dwarf2_per_objfile->n_type_units); ++i)
2875 {
2876 int j;
2877 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2878 struct quick_file_names *file_data;
2879 void **slot;
2880
2881 /* We only need to look at symtabs not already expanded. */
2882 if (per_cu->v.quick->symtab)
2883 continue;
2884
2885 file_data = dw2_get_file_names (objfile, per_cu);
2886 if (file_data == NULL)
2887 continue;
2888
2889 slot = htab_find_slot (visited, file_data, INSERT);
2890 if (*slot)
2891 {
2892 /* Already visited. */
2893 continue;
2894 }
2895 *slot = file_data;
2896
2897 for (j = 0; j < file_data->num_file_names; ++j)
2898 {
2899 const char *this_real_name;
2900
2901 if (need_fullname)
2902 this_real_name = dw2_get_real_path (objfile, file_data, j);
2903 else
2904 this_real_name = NULL;
2905 (*fun) (file_data->file_names[j], this_real_name, data);
2906 }
2907 }
2908
2909 do_cleanups (cleanup);
2910}
2911
2912static int
2913dw2_has_symbols (struct objfile *objfile)
2914{
2915 return 1;
2916}
2917
2918const struct quick_symbol_functions dwarf2_gdb_index_functions =
2919{
2920 dw2_has_symbols,
2921 dw2_find_last_source_symtab,
2922 dw2_forget_cached_source_info,
2923 dw2_map_symtabs_matching_filename,
2924 dw2_lookup_symbol,
2925 dw2_pre_expand_symtabs_matching,
2926 dw2_print_stats,
2927 dw2_dump,
2928 dw2_relocate,
2929 dw2_expand_symtabs_for_function,
2930 dw2_expand_all_symtabs,
2931 dw2_expand_symtabs_with_filename,
2932 dw2_find_symbol_file,
2933 dw2_map_matching_symbols,
2934 dw2_expand_symtabs_matching,
2935 dw2_find_pc_sect_symtab,
2936 dw2_map_symbol_filenames
2937};
2938
2939/* Initialize for reading DWARF for this objfile. Return 0 if this
2940 file will use psymtabs, or 1 if using the GNU index. */
2941
2942int
2943dwarf2_initialize_objfile (struct objfile *objfile)
2944{
2945 /* If we're about to read full symbols, don't bother with the
2946 indices. In this case we also don't care if some other debug
2947 format is making psymtabs, because they are all about to be
2948 expanded anyway. */
2949 if ((objfile->flags & OBJF_READNOW))
2950 {
2951 int i;
2952
2953 dwarf2_per_objfile->using_index = 1;
2954 create_all_comp_units (objfile);
2955 create_debug_types_hash_table (objfile);
2956 dwarf2_per_objfile->quick_file_names_table =
2957 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2958
2959 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2960 + dwarf2_per_objfile->n_type_units); ++i)
2961 {
2962 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2963
2964 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2965 struct dwarf2_per_cu_quick_data);
2966 }
2967
2968 /* Return 1 so that gdb sees the "quick" functions. However,
2969 these functions will be no-ops because we will have expanded
2970 all symtabs. */
2971 return 1;
2972 }
2973
2974 if (dwarf2_read_index (objfile))
2975 return 1;
2976
2977 return 0;
2978}
2979
2980\f
2981
2982/* Build a partial symbol table. */
2983
2984void
2985dwarf2_build_psymtabs (struct objfile *objfile)
2986{
2987 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2988 {
2989 init_psymbol_list (objfile, 1024);
2990 }
2991
2992 dwarf2_build_psymtabs_hard (objfile);
2993}
2994
2995/* Return TRUE if OFFSET is within CU_HEADER. */
2996
2997static inline int
2998offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
2999{
3000 sect_offset bottom = { cu_header->offset.sect_off };
3001 sect_offset top = { (cu_header->offset.sect_off + cu_header->length
3002 + cu_header->initial_length_size) };
3003
3004 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3005}
3006
3007/* Read in the comp unit header information from the debug_info at info_ptr.
3008 NOTE: This leaves members offset, first_die_offset to be filled in
3009 by the caller. */
3010
3011static gdb_byte *
3012read_comp_unit_head (struct comp_unit_head *cu_header,
3013 gdb_byte *info_ptr, bfd *abfd)
3014{
3015 int signed_addr;
3016 unsigned int bytes_read;
3017
3018 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3019 cu_header->initial_length_size = bytes_read;
3020 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3021 info_ptr += bytes_read;
3022 cu_header->version = read_2_bytes (abfd, info_ptr);
3023 info_ptr += 2;
3024 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3025 &bytes_read);
3026 info_ptr += bytes_read;
3027 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3028 info_ptr += 1;
3029 signed_addr = bfd_get_sign_extend_vma (abfd);
3030 if (signed_addr < 0)
3031 internal_error (__FILE__, __LINE__,
3032 _("read_comp_unit_head: dwarf from non elf file"));
3033 cu_header->signed_addr_p = signed_addr;
3034
3035 return info_ptr;
3036}
3037
3038/* Subroutine of read_and_check_comp_unit_head and
3039 read_and_check_type_unit_head to simplify them.
3040 Perform various error checking on the header. */
3041
3042static void
3043error_check_comp_unit_head (struct comp_unit_head *header,
3044 struct dwarf2_section_info *section)
3045{
3046 bfd *abfd = section->asection->owner;
3047 const char *filename = bfd_get_filename (abfd);
3048
3049 if (header->version != 2 && header->version != 3 && header->version != 4)
3050 error (_("Dwarf Error: wrong version in compilation unit header "
3051 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3052 filename);
3053
3054 if (header->abbrev_offset.sect_off
3055 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
3056 &dwarf2_per_objfile->abbrev))
3057 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3058 "(offset 0x%lx + 6) [in module %s]"),
3059 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3060 filename);
3061
3062 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3063 avoid potential 32-bit overflow. */
3064 if (((unsigned long) header->offset.sect_off
3065 + header->length + header->initial_length_size)
3066 > section->size)
3067 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3068 "(offset 0x%lx + 0) [in module %s]"),
3069 (long) header->length, (long) header->offset.sect_off,
3070 filename);
3071}
3072
3073/* Read in a CU/TU header and perform some basic error checking.
3074 The contents of the header are stored in HEADER.
3075 The result is a pointer to the start of the first DIE. */
3076
3077static gdb_byte *
3078read_and_check_comp_unit_head (struct comp_unit_head *header,
3079 struct dwarf2_section_info *section,
3080 gdb_byte *info_ptr,
3081 int is_debug_types_section)
3082{
3083 gdb_byte *beg_of_comp_unit = info_ptr;
3084 bfd *abfd = section->asection->owner;
3085
3086 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3087
3088 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3089
3090 /* If we're reading a type unit, skip over the signature and
3091 type_offset fields. */
3092 if (is_debug_types_section)
3093 info_ptr += 8 /*signature*/ + header->offset_size;
3094
3095 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3096
3097 error_check_comp_unit_head (header, section);
3098
3099 return info_ptr;
3100}
3101
3102/* Read in the types comp unit header information from .debug_types entry at
3103 types_ptr. The result is a pointer to one past the end of the header. */
3104
3105static gdb_byte *
3106read_and_check_type_unit_head (struct comp_unit_head *header,
3107 struct dwarf2_section_info *section,
3108 gdb_byte *info_ptr,
3109 ULONGEST *signature, cu_offset *type_offset)
3110{
3111 gdb_byte *beg_of_comp_unit = info_ptr;
3112 bfd *abfd = section->asection->owner;
3113
3114 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3115
3116 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3117
3118 /* If we're reading a type unit, skip over the signature and
3119 type_offset fields. */
3120 if (signature != NULL)
3121 *signature = read_8_bytes (abfd, info_ptr);
3122 info_ptr += 8;
3123 if (type_offset != NULL)
3124 type_offset->cu_off = read_offset_1 (abfd, info_ptr, header->offset_size);
3125 info_ptr += header->offset_size;
3126
3127 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3128
3129 error_check_comp_unit_head (header, section);
3130
3131 return info_ptr;
3132}
3133
3134/* Allocate a new partial symtab for file named NAME and mark this new
3135 partial symtab as being an include of PST. */
3136
3137static void
3138dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3139 struct objfile *objfile)
3140{
3141 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3142
3143 subpst->section_offsets = pst->section_offsets;
3144 subpst->textlow = 0;
3145 subpst->texthigh = 0;
3146
3147 subpst->dependencies = (struct partial_symtab **)
3148 obstack_alloc (&objfile->objfile_obstack,
3149 sizeof (struct partial_symtab *));
3150 subpst->dependencies[0] = pst;
3151 subpst->number_of_dependencies = 1;
3152
3153 subpst->globals_offset = 0;
3154 subpst->n_global_syms = 0;
3155 subpst->statics_offset = 0;
3156 subpst->n_static_syms = 0;
3157 subpst->symtab = NULL;
3158 subpst->read_symtab = pst->read_symtab;
3159 subpst->readin = 0;
3160
3161 /* No private part is necessary for include psymtabs. This property
3162 can be used to differentiate between such include psymtabs and
3163 the regular ones. */
3164 subpst->read_symtab_private = NULL;
3165}
3166
3167/* Read the Line Number Program data and extract the list of files
3168 included by the source file represented by PST. Build an include
3169 partial symtab for each of these included files. */
3170
3171static void
3172dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
3173 struct die_info *die,
3174 struct partial_symtab *pst)
3175{
3176 struct objfile *objfile = cu->objfile;
3177 bfd *abfd = objfile->obfd;
3178 struct line_header *lh = NULL;
3179 struct attribute *attr;
3180
3181 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3182 if (attr)
3183 {
3184 unsigned int line_offset = DW_UNSND (attr);
3185
3186 lh = dwarf_decode_line_header (line_offset, abfd, cu);
3187 }
3188 if (lh == NULL)
3189 return; /* No linetable, so no includes. */
3190
3191 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
3192 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
3193
3194 free_line_header (lh);
3195}
3196
3197static hashval_t
3198hash_type_signature (const void *item)
3199{
3200 const struct signatured_type *type_sig = item;
3201
3202 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3203 return type_sig->signature;
3204}
3205
3206static int
3207eq_type_signature (const void *item_lhs, const void *item_rhs)
3208{
3209 const struct signatured_type *lhs = item_lhs;
3210 const struct signatured_type *rhs = item_rhs;
3211
3212 return lhs->signature == rhs->signature;
3213}
3214
3215/* Allocate a hash table for signatured types. */
3216
3217static htab_t
3218allocate_signatured_type_table (struct objfile *objfile)
3219{
3220 return htab_create_alloc_ex (41,
3221 hash_type_signature,
3222 eq_type_signature,
3223 NULL,
3224 &objfile->objfile_obstack,
3225 hashtab_obstack_allocate,
3226 dummy_obstack_deallocate);
3227}
3228
3229/* A helper function to add a signatured type CU to a table. */
3230
3231static int
3232add_signatured_type_cu_to_table (void **slot, void *datum)
3233{
3234 struct signatured_type *sigt = *slot;
3235 struct dwarf2_per_cu_data ***datap = datum;
3236
3237 **datap = &sigt->per_cu;
3238 ++*datap;
3239
3240 return 1;
3241}
3242
3243/* Create the hash table of all entries in the .debug_types section(s).
3244 The result is zero if there is an error (e.g. missing .debug_types section),
3245 otherwise non-zero. */
3246
3247static int
3248create_debug_types_hash_table (struct objfile *objfile)
3249{
3250 htab_t types_htab = NULL;
3251 struct dwarf2_per_cu_data **iter;
3252 int ix;
3253 struct dwarf2_section_info *section;
3254
3255 if (VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types))
3256 {
3257 dwarf2_per_objfile->signatured_types = NULL;
3258 return 0;
3259 }
3260
3261 for (ix = 0;
3262 VEC_iterate (dwarf2_section_info_def, dwarf2_per_objfile->types,
3263 ix, section);
3264 ++ix)
3265 {
3266 gdb_byte *info_ptr, *end_ptr;
3267
3268 dwarf2_read_section (objfile, section);
3269 info_ptr = section->buffer;
3270
3271 if (info_ptr == NULL)
3272 continue;
3273
3274 if (types_htab == NULL)
3275 types_htab = allocate_signatured_type_table (objfile);
3276
3277 if (dwarf2_die_debug)
3278 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3279
3280 end_ptr = info_ptr + section->size;
3281 while (info_ptr < end_ptr)
3282 {
3283 sect_offset offset;
3284 cu_offset type_offset;
3285 ULONGEST signature;
3286 struct signatured_type *type_sig;
3287 void **slot;
3288 gdb_byte *ptr = info_ptr;
3289 struct comp_unit_head header;
3290
3291 offset.sect_off = ptr - section->buffer;
3292
3293 /* We need to read the type's signature in order to build the hash
3294 table, but we don't need anything else just yet. */
3295
3296 ptr = read_and_check_type_unit_head (&header, section, ptr,
3297 &signature, &type_offset);
3298
3299 /* Skip dummy type units. */
3300 if (ptr >= end_ptr || peek_abbrev_code (objfile->obfd, ptr) == 0)
3301 {
3302 info_ptr = info_ptr + header.initial_length_size + header.length;
3303 continue;
3304 }
3305
3306 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3307 memset (type_sig, 0, sizeof (*type_sig));
3308 type_sig->signature = signature;
3309 type_sig->type_offset = type_offset;
3310 type_sig->per_cu.objfile = objfile;
3311 type_sig->per_cu.debug_types_section = section;
3312 type_sig->per_cu.offset = offset;
3313
3314 slot = htab_find_slot (types_htab, type_sig, INSERT);
3315 gdb_assert (slot != NULL);
3316 if (*slot != NULL)
3317 {
3318 const struct signatured_type *dup_sig = *slot;
3319
3320 complaint (&symfile_complaints,
3321 _("debug type entry at offset 0x%x is duplicate to the "
3322 "entry at offset 0x%x, signature 0x%s"),
3323 offset.sect_off, dup_sig->per_cu.offset.sect_off,
3324 phex (signature, sizeof (signature)));
3325 gdb_assert (signature == dup_sig->signature);
3326 }
3327 *slot = type_sig;
3328
3329 if (dwarf2_die_debug)
3330 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3331 offset.sect_off,
3332 phex (signature, sizeof (signature)));
3333
3334 info_ptr = info_ptr + header.initial_length_size + header.length;
3335 }
3336 }
3337
3338 dwarf2_per_objfile->signatured_types = types_htab;
3339
3340 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
3341 dwarf2_per_objfile->all_type_units
3342 = obstack_alloc (&objfile->objfile_obstack,
3343 dwarf2_per_objfile->n_type_units
3344 * sizeof (struct dwarf2_per_cu_data *));
3345 iter = &dwarf2_per_objfile->all_type_units[0];
3346 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
3347 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
3348 == dwarf2_per_objfile->n_type_units);
3349
3350 return 1;
3351}
3352
3353/* Lookup a signature based type.
3354 Returns NULL if SIG is not present in the table. */
3355
3356static struct signatured_type *
3357lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3358{
3359 struct signatured_type find_entry, *entry;
3360
3361 if (dwarf2_per_objfile->signatured_types == NULL)
3362 {
3363 complaint (&symfile_complaints,
3364 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
3365 return 0;
3366 }
3367
3368 find_entry.signature = sig;
3369 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3370 return entry;
3371}
3372
3373/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3374
3375static void
3376init_cu_die_reader (struct die_reader_specs *reader,
3377 struct dwarf2_cu *cu)
3378{
3379 reader->abfd = cu->objfile->obfd;
3380 reader->cu = cu;
3381 if (cu->per_cu->debug_types_section)
3382 {
3383 gdb_assert (cu->per_cu->debug_types_section->readin);
3384 reader->buffer = cu->per_cu->debug_types_section->buffer;
3385 }
3386 else
3387 {
3388 gdb_assert (dwarf2_per_objfile->info.readin);
3389 reader->buffer = dwarf2_per_objfile->info.buffer;
3390 }
3391}
3392
3393/* Find the base address of the compilation unit for range lists and
3394 location lists. It will normally be specified by DW_AT_low_pc.
3395 In DWARF-3 draft 4, the base address could be overridden by
3396 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3397 compilation units with discontinuous ranges. */
3398
3399static void
3400dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3401{
3402 struct attribute *attr;
3403
3404 cu->base_known = 0;
3405 cu->base_address = 0;
3406
3407 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3408 if (attr)
3409 {
3410 cu->base_address = DW_ADDR (attr);
3411 cu->base_known = 1;
3412 }
3413 else
3414 {
3415 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3416 if (attr)
3417 {
3418 cu->base_address = DW_ADDR (attr);
3419 cu->base_known = 1;
3420 }
3421 }
3422}
3423
3424/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3425 to combine the common parts.
3426 Process compilation unit THIS_CU for a psymtab.
3427 SECTION is the section the CU/TU comes from,
3428 either .debug_info or .debug_types. */
3429
3430static void
3431process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
3432 struct dwarf2_section_info *section,
3433 int is_debug_types_section)
3434{
3435 struct objfile *objfile = this_cu->objfile;
3436 bfd *abfd = objfile->obfd;
3437 gdb_byte *buffer = section->buffer;
3438 gdb_byte *info_ptr = buffer + this_cu->offset.sect_off;
3439 unsigned int buffer_size = section->size;
3440 gdb_byte *beg_of_comp_unit = info_ptr;
3441 struct die_info *comp_unit_die;
3442 struct partial_symtab *pst;
3443 CORE_ADDR baseaddr;
3444 struct cleanup *back_to_inner;
3445 struct dwarf2_cu cu;
3446 int has_children, has_pc_info;
3447 struct attribute *attr;
3448 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3449 struct die_reader_specs reader_specs;
3450 const char *filename;
3451
3452 /* If this compilation unit was already read in, free the
3453 cached copy in order to read it in again. This is
3454 necessary because we skipped some symbols when we first
3455 read in the compilation unit (see load_partial_dies).
3456 This problem could be avoided, but the benefit is
3457 unclear. */
3458 if (this_cu->cu != NULL)
3459 free_one_cached_comp_unit (this_cu->cu);
3460
3461 /* Note that this is a pointer to our stack frame, being
3462 added to a global data structure. It will be cleaned up
3463 in free_stack_comp_unit when we finish with this
3464 compilation unit. */
3465 init_one_comp_unit (&cu, this_cu);
3466 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3467
3468 info_ptr = read_and_check_comp_unit_head (&cu.header, section, info_ptr,
3469 is_debug_types_section);
3470
3471 /* Skip dummy compilation units. */
3472 if (info_ptr >= buffer + buffer_size
3473 || peek_abbrev_code (abfd, info_ptr) == 0)
3474 {
3475 do_cleanups (back_to_inner);
3476 return;
3477 }
3478
3479 cu.list_in_scope = &file_symbols;
3480
3481 /* Read the abbrevs for this compilation unit into a table. */
3482 dwarf2_read_abbrevs (&cu);
3483 make_cleanup (dwarf2_free_abbrev_table, &cu);
3484
3485 /* Read the compilation unit die. */
3486 init_cu_die_reader (&reader_specs, &cu);
3487 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3488 &has_children);
3489
3490 if (is_debug_types_section)
3491 {
3492 /* LENGTH has not been set yet for type units. */
3493 gdb_assert (this_cu->offset.sect_off == cu.header.offset.sect_off);
3494 this_cu->length = cu.header.length + cu.header.initial_length_size;
3495 }
3496 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3497 {
3498 do_cleanups (back_to_inner);
3499 return;
3500 }
3501
3502 prepare_one_comp_unit (&cu, comp_unit_die);
3503
3504 /* Allocate a new partial symbol table structure. */
3505 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3506 if (attr == NULL || !DW_STRING (attr))
3507 filename = "";
3508 else
3509 filename = DW_STRING (attr);
3510 pst = start_psymtab_common (objfile, objfile->section_offsets,
3511 filename,
3512 /* TEXTLOW and TEXTHIGH are set below. */
3513 0,
3514 objfile->global_psymbols.next,
3515 objfile->static_psymbols.next);
3516 pst->psymtabs_addrmap_supported = 1;
3517
3518 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3519 if (attr != NULL)
3520 pst->dirname = DW_STRING (attr);
3521
3522 pst->read_symtab_private = this_cu;
3523
3524 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3525
3526 /* Store the function that reads in the rest of the symbol table. */
3527 pst->read_symtab = dwarf2_psymtab_to_symtab;
3528
3529 this_cu->v.psymtab = pst;
3530
3531 dwarf2_find_base_address (comp_unit_die, &cu);
3532
3533 /* Possibly set the default values of LOWPC and HIGHPC from
3534 `DW_AT_ranges'. */
3535 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3536 &best_highpc, &cu, pst);
3537 if (has_pc_info == 1 && best_lowpc < best_highpc)
3538 /* Store the contiguous range if it is not empty; it can be empty for
3539 CUs with no code. */
3540 addrmap_set_empty (objfile->psymtabs_addrmap,
3541 best_lowpc + baseaddr,
3542 best_highpc + baseaddr - 1, pst);
3543
3544 /* Check if comp unit has_children.
3545 If so, read the rest of the partial symbols from this comp unit.
3546 If not, there's no more debug_info for this comp unit. */
3547 if (has_children)
3548 {
3549 struct partial_die_info *first_die;
3550 CORE_ADDR lowpc, highpc;
3551
3552 lowpc = ((CORE_ADDR) -1);
3553 highpc = ((CORE_ADDR) 0);
3554
3555 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3556
3557 scan_partial_symbols (first_die, &lowpc, &highpc,
3558 ! has_pc_info, &cu);
3559
3560 /* If we didn't find a lowpc, set it to highpc to avoid
3561 complaints from `maint check'. */
3562 if (lowpc == ((CORE_ADDR) -1))
3563 lowpc = highpc;
3564
3565 /* If the compilation unit didn't have an explicit address range,
3566 then use the information extracted from its child dies. */
3567 if (! has_pc_info)
3568 {
3569 best_lowpc = lowpc;
3570 best_highpc = highpc;
3571 }
3572 }
3573 pst->textlow = best_lowpc + baseaddr;
3574 pst->texthigh = best_highpc + baseaddr;
3575
3576 pst->n_global_syms = objfile->global_psymbols.next -
3577 (objfile->global_psymbols.list + pst->globals_offset);
3578 pst->n_static_syms = objfile->static_psymbols.next -
3579 (objfile->static_psymbols.list + pst->statics_offset);
3580 sort_pst_symbols (pst);
3581
3582 if (is_debug_types_section)
3583 {
3584 /* It's not clear we want to do anything with stmt lists here.
3585 Waiting to see what gcc ultimately does. */
3586 }
3587 else
3588 {
3589 /* Get the list of files included in the current compilation unit,
3590 and build a psymtab for each of them. */
3591 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3592 }
3593
3594 do_cleanups (back_to_inner);
3595}
3596
3597/* Traversal function for htab_traverse_noresize.
3598 Process one .debug_types comp-unit. */
3599
3600static int
3601process_type_comp_unit (void **slot, void *info)
3602{
3603 struct signatured_type *entry = (struct signatured_type *) *slot;
3604 struct dwarf2_per_cu_data *this_cu;
3605
3606 gdb_assert (info == NULL);
3607 this_cu = &entry->per_cu;
3608
3609 gdb_assert (this_cu->debug_types_section->readin);
3610 process_psymtab_comp_unit (this_cu, this_cu->debug_types_section, 1);
3611
3612 return 1;
3613}
3614
3615/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3616 Build partial symbol tables for the .debug_types comp-units. */
3617
3618static void
3619build_type_psymtabs (struct objfile *objfile)
3620{
3621 if (! create_debug_types_hash_table (objfile))
3622 return;
3623
3624 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3625 process_type_comp_unit, NULL);
3626}
3627
3628/* A cleanup function that clears objfile's psymtabs_addrmap field. */
3629
3630static void
3631psymtabs_addrmap_cleanup (void *o)
3632{
3633 struct objfile *objfile = o;
3634
3635 objfile->psymtabs_addrmap = NULL;
3636}
3637
3638/* Build the partial symbol table by doing a quick pass through the
3639 .debug_info and .debug_abbrev sections. */
3640
3641static void
3642dwarf2_build_psymtabs_hard (struct objfile *objfile)
3643{
3644 struct cleanup *back_to, *addrmap_cleanup;
3645 struct obstack temp_obstack;
3646 int i;
3647
3648 dwarf2_per_objfile->reading_partial_symbols = 1;
3649
3650 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3651
3652 /* Any cached compilation units will be linked by the per-objfile
3653 read_in_chain. Make sure to free them when we're done. */
3654 back_to = make_cleanup (free_cached_comp_units, NULL);
3655
3656 build_type_psymtabs (objfile);
3657
3658 create_all_comp_units (objfile);
3659
3660 /* Create a temporary address map on a temporary obstack. We later
3661 copy this to the final obstack. */
3662 obstack_init (&temp_obstack);
3663 make_cleanup_obstack_free (&temp_obstack);
3664 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3665 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3666
3667 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3668 {
3669 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3670
3671 process_psymtab_comp_unit (per_cu, &dwarf2_per_objfile->info, 0);
3672 }
3673
3674 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3675 &objfile->objfile_obstack);
3676 discard_cleanups (addrmap_cleanup);
3677
3678 do_cleanups (back_to);
3679}
3680
3681/* Load the partial DIEs for a secondary CU into memory. */
3682
3683static void
3684load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
3685{
3686 struct objfile *objfile = this_cu->objfile;
3687 bfd *abfd = objfile->obfd;
3688 gdb_byte *info_ptr;
3689 struct die_info *comp_unit_die;
3690 struct dwarf2_cu *cu;
3691 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3692 int has_children;
3693 struct die_reader_specs reader_specs;
3694 int read_cu = 0;
3695 struct dwarf2_section_info *section = &dwarf2_per_objfile->info;
3696
3697 gdb_assert (! this_cu->debug_types_section);
3698
3699 gdb_assert (section->readin);
3700 info_ptr = section->buffer + this_cu->offset.sect_off;
3701
3702 if (this_cu->cu == NULL)
3703 {
3704 cu = xmalloc (sizeof (*cu));
3705 init_one_comp_unit (cu, this_cu);
3706
3707 read_cu = 1;
3708
3709 /* If an error occurs while loading, release our storage. */
3710 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
3711
3712 info_ptr = read_and_check_comp_unit_head (&cu->header, section, info_ptr,
3713 0);
3714
3715 /* Skip dummy compilation units. */
3716 if (info_ptr >= (section->buffer + section->size)
3717 || peek_abbrev_code (abfd, info_ptr) == 0)
3718 {
3719 do_cleanups (free_cu_cleanup);
3720 return;
3721 }
3722 }
3723 else
3724 {
3725 cu = this_cu->cu;
3726 info_ptr += cu->header.first_die_offset.cu_off;
3727 }
3728
3729 /* Read the abbrevs for this compilation unit into a table. */
3730 gdb_assert (cu->dwarf2_abbrevs == NULL);
3731 dwarf2_read_abbrevs (cu);
3732 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3733
3734 /* Read the compilation unit die. */
3735 init_cu_die_reader (&reader_specs, cu);
3736 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3737 &has_children);
3738
3739 prepare_one_comp_unit (cu, comp_unit_die);
3740
3741 /* Check if comp unit has_children.
3742 If so, read the rest of the partial symbols from this comp unit.
3743 If not, there's no more debug_info for this comp unit. */
3744 if (has_children)
3745 load_partial_dies (abfd, section->buffer, info_ptr, 0, cu);
3746
3747 do_cleanups (free_abbrevs_cleanup);
3748
3749 if (read_cu)
3750 {
3751 /* We've successfully allocated this compilation unit. Let our
3752 caller clean it up when finished with it. */
3753 discard_cleanups (free_cu_cleanup);
3754
3755 /* Link this CU into read_in_chain. */
3756 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3757 dwarf2_per_objfile->read_in_chain = this_cu;
3758 }
3759}
3760
3761/* Create a list of all compilation units in OBJFILE.
3762 This is only done for -readnow and building partial symtabs. */
3763
3764static void
3765create_all_comp_units (struct objfile *objfile)
3766{
3767 int n_allocated;
3768 int n_comp_units;
3769 struct dwarf2_per_cu_data **all_comp_units;
3770 gdb_byte *info_ptr;
3771
3772 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3773 info_ptr = dwarf2_per_objfile->info.buffer;
3774
3775 n_comp_units = 0;
3776 n_allocated = 10;
3777 all_comp_units = xmalloc (n_allocated
3778 * sizeof (struct dwarf2_per_cu_data *));
3779
3780 while (info_ptr < dwarf2_per_objfile->info.buffer
3781 + dwarf2_per_objfile->info.size)
3782 {
3783 unsigned int length, initial_length_size;
3784 struct dwarf2_per_cu_data *this_cu;
3785 sect_offset offset;
3786
3787 offset.sect_off = info_ptr - dwarf2_per_objfile->info.buffer;
3788
3789 /* Read just enough information to find out where the next
3790 compilation unit is. */
3791 length = read_initial_length (objfile->obfd, info_ptr,
3792 &initial_length_size);
3793
3794 /* Save the compilation unit for later lookup. */
3795 this_cu = obstack_alloc (&objfile->objfile_obstack,
3796 sizeof (struct dwarf2_per_cu_data));
3797 memset (this_cu, 0, sizeof (*this_cu));
3798 this_cu->offset = offset;
3799 this_cu->length = length + initial_length_size;
3800 this_cu->objfile = objfile;
3801
3802 if (n_comp_units == n_allocated)
3803 {
3804 n_allocated *= 2;
3805 all_comp_units = xrealloc (all_comp_units,
3806 n_allocated
3807 * sizeof (struct dwarf2_per_cu_data *));
3808 }
3809 all_comp_units[n_comp_units++] = this_cu;
3810
3811 info_ptr = info_ptr + this_cu->length;
3812 }
3813
3814 dwarf2_per_objfile->all_comp_units
3815 = obstack_alloc (&objfile->objfile_obstack,
3816 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3817 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3818 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3819 xfree (all_comp_units);
3820 dwarf2_per_objfile->n_comp_units = n_comp_units;
3821}
3822
3823/* Process all loaded DIEs for compilation unit CU, starting at
3824 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3825 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3826 DW_AT_ranges). If NEED_PC is set, then this function will set
3827 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3828 and record the covered ranges in the addrmap. */
3829
3830static void
3831scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3832 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3833{
3834 struct partial_die_info *pdi;
3835
3836 /* Now, march along the PDI's, descending into ones which have
3837 interesting children but skipping the children of the other ones,
3838 until we reach the end of the compilation unit. */
3839
3840 pdi = first_die;
3841
3842 while (pdi != NULL)
3843 {
3844 fixup_partial_die (pdi, cu);
3845
3846 /* Anonymous namespaces or modules have no name but have interesting
3847 children, so we need to look at them. Ditto for anonymous
3848 enums. */
3849
3850 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3851 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3852 {
3853 switch (pdi->tag)
3854 {
3855 case DW_TAG_subprogram:
3856 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3857 break;
3858 case DW_TAG_constant:
3859 case DW_TAG_variable:
3860 case DW_TAG_typedef:
3861 case DW_TAG_union_type:
3862 if (!pdi->is_declaration)
3863 {
3864 add_partial_symbol (pdi, cu);
3865 }
3866 break;
3867 case DW_TAG_class_type:
3868 case DW_TAG_interface_type:
3869 case DW_TAG_structure_type:
3870 if (!pdi->is_declaration)
3871 {
3872 add_partial_symbol (pdi, cu);
3873 }
3874 break;
3875 case DW_TAG_enumeration_type:
3876 if (!pdi->is_declaration)
3877 add_partial_enumeration (pdi, cu);
3878 break;
3879 case DW_TAG_base_type:
3880 case DW_TAG_subrange_type:
3881 /* File scope base type definitions are added to the partial
3882 symbol table. */
3883 add_partial_symbol (pdi, cu);
3884 break;
3885 case DW_TAG_namespace:
3886 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3887 break;
3888 case DW_TAG_module:
3889 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3890 break;
3891 default:
3892 break;
3893 }
3894 }
3895
3896 /* If the die has a sibling, skip to the sibling. */
3897
3898 pdi = pdi->die_sibling;
3899 }
3900}
3901
3902/* Functions used to compute the fully scoped name of a partial DIE.
3903
3904 Normally, this is simple. For C++, the parent DIE's fully scoped
3905 name is concatenated with "::" and the partial DIE's name. For
3906 Java, the same thing occurs except that "." is used instead of "::".
3907 Enumerators are an exception; they use the scope of their parent
3908 enumeration type, i.e. the name of the enumeration type is not
3909 prepended to the enumerator.
3910
3911 There are two complexities. One is DW_AT_specification; in this
3912 case "parent" means the parent of the target of the specification,
3913 instead of the direct parent of the DIE. The other is compilers
3914 which do not emit DW_TAG_namespace; in this case we try to guess
3915 the fully qualified name of structure types from their members'
3916 linkage names. This must be done using the DIE's children rather
3917 than the children of any DW_AT_specification target. We only need
3918 to do this for structures at the top level, i.e. if the target of
3919 any DW_AT_specification (if any; otherwise the DIE itself) does not
3920 have a parent. */
3921
3922/* Compute the scope prefix associated with PDI's parent, in
3923 compilation unit CU. The result will be allocated on CU's
3924 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3925 field. NULL is returned if no prefix is necessary. */
3926static char *
3927partial_die_parent_scope (struct partial_die_info *pdi,
3928 struct dwarf2_cu *cu)
3929{
3930 char *grandparent_scope;
3931 struct partial_die_info *parent, *real_pdi;
3932
3933 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3934 then this means the parent of the specification DIE. */
3935
3936 real_pdi = pdi;
3937 while (real_pdi->has_specification)
3938 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3939
3940 parent = real_pdi->die_parent;
3941 if (parent == NULL)
3942 return NULL;
3943
3944 if (parent->scope_set)
3945 return parent->scope;
3946
3947 fixup_partial_die (parent, cu);
3948
3949 grandparent_scope = partial_die_parent_scope (parent, cu);
3950
3951 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3952 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3953 Work around this problem here. */
3954 if (cu->language == language_cplus
3955 && parent->tag == DW_TAG_namespace
3956 && strcmp (parent->name, "::") == 0
3957 && grandparent_scope == NULL)
3958 {
3959 parent->scope = NULL;
3960 parent->scope_set = 1;
3961 return NULL;
3962 }
3963
3964 if (pdi->tag == DW_TAG_enumerator)
3965 /* Enumerators should not get the name of the enumeration as a prefix. */
3966 parent->scope = grandparent_scope;
3967 else if (parent->tag == DW_TAG_namespace
3968 || parent->tag == DW_TAG_module
3969 || parent->tag == DW_TAG_structure_type
3970 || parent->tag == DW_TAG_class_type
3971 || parent->tag == DW_TAG_interface_type
3972 || parent->tag == DW_TAG_union_type
3973 || parent->tag == DW_TAG_enumeration_type)
3974 {
3975 if (grandparent_scope == NULL)
3976 parent->scope = parent->name;
3977 else
3978 parent->scope = typename_concat (&cu->comp_unit_obstack,
3979 grandparent_scope,
3980 parent->name, 0, cu);
3981 }
3982 else
3983 {
3984 /* FIXME drow/2004-04-01: What should we be doing with
3985 function-local names? For partial symbols, we should probably be
3986 ignoring them. */
3987 complaint (&symfile_complaints,
3988 _("unhandled containing DIE tag %d for DIE at %d"),
3989 parent->tag, pdi->offset.sect_off);
3990 parent->scope = grandparent_scope;
3991 }
3992
3993 parent->scope_set = 1;
3994 return parent->scope;
3995}
3996
3997/* Return the fully scoped name associated with PDI, from compilation unit
3998 CU. The result will be allocated with malloc. */
3999static char *
4000partial_die_full_name (struct partial_die_info *pdi,
4001 struct dwarf2_cu *cu)
4002{
4003 char *parent_scope;
4004
4005 /* If this is a template instantiation, we can not work out the
4006 template arguments from partial DIEs. So, unfortunately, we have
4007 to go through the full DIEs. At least any work we do building
4008 types here will be reused if full symbols are loaded later. */
4009 if (pdi->has_template_arguments)
4010 {
4011 fixup_partial_die (pdi, cu);
4012
4013 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
4014 {
4015 struct die_info *die;
4016 struct attribute attr;
4017 struct dwarf2_cu *ref_cu = cu;
4018
4019 /* DW_FORM_ref_addr is using section offset. */
4020 attr.name = 0;
4021 attr.form = DW_FORM_ref_addr;
4022 attr.u.addr = pdi->offset.sect_off;
4023 die = follow_die_ref (NULL, &attr, &ref_cu);
4024
4025 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
4026 }
4027 }
4028
4029 parent_scope = partial_die_parent_scope (pdi, cu);
4030 if (parent_scope == NULL)
4031 return NULL;
4032 else
4033 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
4034}
4035
4036static void
4037add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
4038{
4039 struct objfile *objfile = cu->objfile;
4040 CORE_ADDR addr = 0;
4041 char *actual_name = NULL;
4042 CORE_ADDR baseaddr;
4043 int built_actual_name = 0;
4044
4045 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4046
4047 actual_name = partial_die_full_name (pdi, cu);
4048 if (actual_name)
4049 built_actual_name = 1;
4050
4051 if (actual_name == NULL)
4052 actual_name = pdi->name;
4053
4054 switch (pdi->tag)
4055 {
4056 case DW_TAG_subprogram:
4057 if (pdi->is_external || cu->language == language_ada)
4058 {
4059 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
4060 of the global scope. But in Ada, we want to be able to access
4061 nested procedures globally. So all Ada subprograms are stored
4062 in the global scope. */
4063 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4064 mst_text, objfile); */
4065 add_psymbol_to_list (actual_name, strlen (actual_name),
4066 built_actual_name,
4067 VAR_DOMAIN, LOC_BLOCK,
4068 &objfile->global_psymbols,
4069 0, pdi->lowpc + baseaddr,
4070 cu->language, objfile);
4071 }
4072 else
4073 {
4074 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4075 mst_file_text, objfile); */
4076 add_psymbol_to_list (actual_name, strlen (actual_name),
4077 built_actual_name,
4078 VAR_DOMAIN, LOC_BLOCK,
4079 &objfile->static_psymbols,
4080 0, pdi->lowpc + baseaddr,
4081 cu->language, objfile);
4082 }
4083 break;
4084 case DW_TAG_constant:
4085 {
4086 struct psymbol_allocation_list *list;
4087
4088 if (pdi->is_external)
4089 list = &objfile->global_psymbols;
4090 else
4091 list = &objfile->static_psymbols;
4092 add_psymbol_to_list (actual_name, strlen (actual_name),
4093 built_actual_name, VAR_DOMAIN, LOC_STATIC,
4094 list, 0, 0, cu->language, objfile);
4095 }
4096 break;
4097 case DW_TAG_variable:
4098 if (pdi->locdesc)
4099 addr = decode_locdesc (pdi->locdesc, cu);
4100
4101 if (pdi->locdesc
4102 && addr == 0
4103 && !dwarf2_per_objfile->has_section_at_zero)
4104 {
4105 /* A global or static variable may also have been stripped
4106 out by the linker if unused, in which case its address
4107 will be nullified; do not add such variables into partial
4108 symbol table then. */
4109 }
4110 else if (pdi->is_external)
4111 {
4112 /* Global Variable.
4113 Don't enter into the minimal symbol tables as there is
4114 a minimal symbol table entry from the ELF symbols already.
4115 Enter into partial symbol table if it has a location
4116 descriptor or a type.
4117 If the location descriptor is missing, new_symbol will create
4118 a LOC_UNRESOLVED symbol, the address of the variable will then
4119 be determined from the minimal symbol table whenever the variable
4120 is referenced.
4121 The address for the partial symbol table entry is not
4122 used by GDB, but it comes in handy for debugging partial symbol
4123 table building. */
4124
4125 if (pdi->locdesc || pdi->has_type)
4126 add_psymbol_to_list (actual_name, strlen (actual_name),
4127 built_actual_name,
4128 VAR_DOMAIN, LOC_STATIC,
4129 &objfile->global_psymbols,
4130 0, addr + baseaddr,
4131 cu->language, objfile);
4132 }
4133 else
4134 {
4135 /* Static Variable. Skip symbols without location descriptors. */
4136 if (pdi->locdesc == NULL)
4137 {
4138 if (built_actual_name)
4139 xfree (actual_name);
4140 return;
4141 }
4142 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
4143 mst_file_data, objfile); */
4144 add_psymbol_to_list (actual_name, strlen (actual_name),
4145 built_actual_name,
4146 VAR_DOMAIN, LOC_STATIC,
4147 &objfile->static_psymbols,
4148 0, addr + baseaddr,
4149 cu->language, objfile);
4150 }
4151 break;
4152 case DW_TAG_typedef:
4153 case DW_TAG_base_type:
4154 case DW_TAG_subrange_type:
4155 add_psymbol_to_list (actual_name, strlen (actual_name),
4156 built_actual_name,
4157 VAR_DOMAIN, LOC_TYPEDEF,
4158 &objfile->static_psymbols,
4159 0, (CORE_ADDR) 0, cu->language, objfile);
4160 break;
4161 case DW_TAG_namespace:
4162 add_psymbol_to_list (actual_name, strlen (actual_name),
4163 built_actual_name,
4164 VAR_DOMAIN, LOC_TYPEDEF,
4165 &objfile->global_psymbols,
4166 0, (CORE_ADDR) 0, cu->language, objfile);
4167 break;
4168 case DW_TAG_class_type:
4169 case DW_TAG_interface_type:
4170 case DW_TAG_structure_type:
4171 case DW_TAG_union_type:
4172 case DW_TAG_enumeration_type:
4173 /* Skip external references. The DWARF standard says in the section
4174 about "Structure, Union, and Class Type Entries": "An incomplete
4175 structure, union or class type is represented by a structure,
4176 union or class entry that does not have a byte size attribute
4177 and that has a DW_AT_declaration attribute." */
4178 if (!pdi->has_byte_size && pdi->is_declaration)
4179 {
4180 if (built_actual_name)
4181 xfree (actual_name);
4182 return;
4183 }
4184
4185 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
4186 static vs. global. */
4187 add_psymbol_to_list (actual_name, strlen (actual_name),
4188 built_actual_name,
4189 STRUCT_DOMAIN, LOC_TYPEDEF,
4190 (cu->language == language_cplus
4191 || cu->language == language_java)
4192 ? &objfile->global_psymbols
4193 : &objfile->static_psymbols,
4194 0, (CORE_ADDR) 0, cu->language, objfile);
4195
4196 break;
4197 case DW_TAG_enumerator:
4198 add_psymbol_to_list (actual_name, strlen (actual_name),
4199 built_actual_name,
4200 VAR_DOMAIN, LOC_CONST,
4201 (cu->language == language_cplus
4202 || cu->language == language_java)
4203 ? &objfile->global_psymbols
4204 : &objfile->static_psymbols,
4205 0, (CORE_ADDR) 0, cu->language, objfile);
4206 break;
4207 default:
4208 break;
4209 }
4210
4211 if (built_actual_name)
4212 xfree (actual_name);
4213}
4214
4215/* Read a partial die corresponding to a namespace; also, add a symbol
4216 corresponding to that namespace to the symbol table. NAMESPACE is
4217 the name of the enclosing namespace. */
4218
4219static void
4220add_partial_namespace (struct partial_die_info *pdi,
4221 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4222 int need_pc, struct dwarf2_cu *cu)
4223{
4224 /* Add a symbol for the namespace. */
4225
4226 add_partial_symbol (pdi, cu);
4227
4228 /* Now scan partial symbols in that namespace. */
4229
4230 if (pdi->has_children)
4231 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4232}
4233
4234/* Read a partial die corresponding to a Fortran module. */
4235
4236static void
4237add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4238 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4239{
4240 /* Now scan partial symbols in that module. */
4241
4242 if (pdi->has_children)
4243 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4244}
4245
4246/* Read a partial die corresponding to a subprogram and create a partial
4247 symbol for that subprogram. When the CU language allows it, this
4248 routine also defines a partial symbol for each nested subprogram
4249 that this subprogram contains.
4250
4251 DIE my also be a lexical block, in which case we simply search
4252 recursively for suprograms defined inside that lexical block.
4253 Again, this is only performed when the CU language allows this
4254 type of definitions. */
4255
4256static void
4257add_partial_subprogram (struct partial_die_info *pdi,
4258 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4259 int need_pc, struct dwarf2_cu *cu)
4260{
4261 if (pdi->tag == DW_TAG_subprogram)
4262 {
4263 if (pdi->has_pc_info)
4264 {
4265 if (pdi->lowpc < *lowpc)
4266 *lowpc = pdi->lowpc;
4267 if (pdi->highpc > *highpc)
4268 *highpc = pdi->highpc;
4269 if (need_pc)
4270 {
4271 CORE_ADDR baseaddr;
4272 struct objfile *objfile = cu->objfile;
4273
4274 baseaddr = ANOFFSET (objfile->section_offsets,
4275 SECT_OFF_TEXT (objfile));
4276 addrmap_set_empty (objfile->psymtabs_addrmap,
4277 pdi->lowpc + baseaddr,
4278 pdi->highpc - 1 + baseaddr,
4279 cu->per_cu->v.psymtab);
4280 }
4281 }
4282
4283 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
4284 {
4285 if (!pdi->is_declaration)
4286 /* Ignore subprogram DIEs that do not have a name, they are
4287 illegal. Do not emit a complaint at this point, we will
4288 do so when we convert this psymtab into a symtab. */
4289 if (pdi->name)
4290 add_partial_symbol (pdi, cu);
4291 }
4292 }
4293
4294 if (! pdi->has_children)
4295 return;
4296
4297 if (cu->language == language_ada)
4298 {
4299 pdi = pdi->die_child;
4300 while (pdi != NULL)
4301 {
4302 fixup_partial_die (pdi, cu);
4303 if (pdi->tag == DW_TAG_subprogram
4304 || pdi->tag == DW_TAG_lexical_block)
4305 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4306 pdi = pdi->die_sibling;
4307 }
4308 }
4309}
4310
4311/* Read a partial die corresponding to an enumeration type. */
4312
4313static void
4314add_partial_enumeration (struct partial_die_info *enum_pdi,
4315 struct dwarf2_cu *cu)
4316{
4317 struct partial_die_info *pdi;
4318
4319 if (enum_pdi->name != NULL)
4320 add_partial_symbol (enum_pdi, cu);
4321
4322 pdi = enum_pdi->die_child;
4323 while (pdi)
4324 {
4325 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4326 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4327 else
4328 add_partial_symbol (pdi, cu);
4329 pdi = pdi->die_sibling;
4330 }
4331}
4332
4333/* Return the initial uleb128 in the die at INFO_PTR. */
4334
4335static unsigned int
4336peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
4337{
4338 unsigned int bytes_read;
4339
4340 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4341}
4342
4343/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4344 Return the corresponding abbrev, or NULL if the number is zero (indicating
4345 an empty DIE). In either case *BYTES_READ will be set to the length of
4346 the initial number. */
4347
4348static struct abbrev_info *
4349peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4350 struct dwarf2_cu *cu)
4351{
4352 bfd *abfd = cu->objfile->obfd;
4353 unsigned int abbrev_number;
4354 struct abbrev_info *abbrev;
4355
4356 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4357
4358 if (abbrev_number == 0)
4359 return NULL;
4360
4361 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4362 if (!abbrev)
4363 {
4364 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4365 abbrev_number, bfd_get_filename (abfd));
4366 }
4367
4368 return abbrev;
4369}
4370
4371/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4372 Returns a pointer to the end of a series of DIEs, terminated by an empty
4373 DIE. Any children of the skipped DIEs will also be skipped. */
4374
4375static gdb_byte *
4376skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4377{
4378 struct abbrev_info *abbrev;
4379 unsigned int bytes_read;
4380
4381 while (1)
4382 {
4383 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4384 if (abbrev == NULL)
4385 return info_ptr + bytes_read;
4386 else
4387 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4388 }
4389}
4390
4391/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4392 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4393 abbrev corresponding to that skipped uleb128 should be passed in
4394 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4395 children. */
4396
4397static gdb_byte *
4398skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4399 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4400{
4401 unsigned int bytes_read;
4402 struct attribute attr;
4403 bfd *abfd = cu->objfile->obfd;
4404 unsigned int form, i;
4405
4406 for (i = 0; i < abbrev->num_attrs; i++)
4407 {
4408 /* The only abbrev we care about is DW_AT_sibling. */
4409 if (abbrev->attrs[i].name == DW_AT_sibling)
4410 {
4411 read_attribute (&attr, &abbrev->attrs[i],
4412 abfd, info_ptr, cu);
4413 if (attr.form == DW_FORM_ref_addr)
4414 complaint (&symfile_complaints,
4415 _("ignoring absolute DW_AT_sibling"));
4416 else
4417 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
4418 }
4419
4420 /* If it isn't DW_AT_sibling, skip this attribute. */
4421 form = abbrev->attrs[i].form;
4422 skip_attribute:
4423 switch (form)
4424 {
4425 case DW_FORM_ref_addr:
4426 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4427 and later it is offset sized. */
4428 if (cu->header.version == 2)
4429 info_ptr += cu->header.addr_size;
4430 else
4431 info_ptr += cu->header.offset_size;
4432 break;
4433 case DW_FORM_addr:
4434 info_ptr += cu->header.addr_size;
4435 break;
4436 case DW_FORM_data1:
4437 case DW_FORM_ref1:
4438 case DW_FORM_flag:
4439 info_ptr += 1;
4440 break;
4441 case DW_FORM_flag_present:
4442 break;
4443 case DW_FORM_data2:
4444 case DW_FORM_ref2:
4445 info_ptr += 2;
4446 break;
4447 case DW_FORM_data4:
4448 case DW_FORM_ref4:
4449 info_ptr += 4;
4450 break;
4451 case DW_FORM_data8:
4452 case DW_FORM_ref8:
4453 case DW_FORM_ref_sig8:
4454 info_ptr += 8;
4455 break;
4456 case DW_FORM_string:
4457 read_direct_string (abfd, info_ptr, &bytes_read);
4458 info_ptr += bytes_read;
4459 break;
4460 case DW_FORM_sec_offset:
4461 case DW_FORM_strp:
4462 info_ptr += cu->header.offset_size;
4463 break;
4464 case DW_FORM_exprloc:
4465 case DW_FORM_block:
4466 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4467 info_ptr += bytes_read;
4468 break;
4469 case DW_FORM_block1:
4470 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4471 break;
4472 case DW_FORM_block2:
4473 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4474 break;
4475 case DW_FORM_block4:
4476 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4477 break;
4478 case DW_FORM_sdata:
4479 case DW_FORM_udata:
4480 case DW_FORM_ref_udata:
4481 info_ptr = skip_leb128 (abfd, info_ptr);
4482 break;
4483 case DW_FORM_indirect:
4484 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4485 info_ptr += bytes_read;
4486 /* We need to continue parsing from here, so just go back to
4487 the top. */
4488 goto skip_attribute;
4489
4490 default:
4491 error (_("Dwarf Error: Cannot handle %s "
4492 "in DWARF reader [in module %s]"),
4493 dwarf_form_name (form),
4494 bfd_get_filename (abfd));
4495 }
4496 }
4497
4498 if (abbrev->has_children)
4499 return skip_children (buffer, info_ptr, cu);
4500 else
4501 return info_ptr;
4502}
4503
4504/* Locate ORIG_PDI's sibling.
4505 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4506 in BUFFER. */
4507
4508static gdb_byte *
4509locate_pdi_sibling (struct partial_die_info *orig_pdi,
4510 gdb_byte *buffer, gdb_byte *info_ptr,
4511 bfd *abfd, struct dwarf2_cu *cu)
4512{
4513 /* Do we know the sibling already? */
4514
4515 if (orig_pdi->sibling)
4516 return orig_pdi->sibling;
4517
4518 /* Are there any children to deal with? */
4519
4520 if (!orig_pdi->has_children)
4521 return info_ptr;
4522
4523 /* Skip the children the long way. */
4524
4525 return skip_children (buffer, info_ptr, cu);
4526}
4527
4528/* Expand this partial symbol table into a full symbol table. */
4529
4530static void
4531dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4532{
4533 if (pst != NULL)
4534 {
4535 if (pst->readin)
4536 {
4537 warning (_("bug: psymtab for %s is already read in."),
4538 pst->filename);
4539 }
4540 else
4541 {
4542 if (info_verbose)
4543 {
4544 printf_filtered (_("Reading in symbols for %s..."),
4545 pst->filename);
4546 gdb_flush (gdb_stdout);
4547 }
4548
4549 /* Restore our global data. */
4550 dwarf2_per_objfile = objfile_data (pst->objfile,
4551 dwarf2_objfile_data_key);
4552
4553 /* If this psymtab is constructed from a debug-only objfile, the
4554 has_section_at_zero flag will not necessarily be correct. We
4555 can get the correct value for this flag by looking at the data
4556 associated with the (presumably stripped) associated objfile. */
4557 if (pst->objfile->separate_debug_objfile_backlink)
4558 {
4559 struct dwarf2_per_objfile *dpo_backlink
4560 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4561 dwarf2_objfile_data_key);
4562
4563 dwarf2_per_objfile->has_section_at_zero
4564 = dpo_backlink->has_section_at_zero;
4565 }
4566
4567 dwarf2_per_objfile->reading_partial_symbols = 0;
4568
4569 psymtab_to_symtab_1 (pst);
4570
4571 /* Finish up the debug error message. */
4572 if (info_verbose)
4573 printf_filtered (_("done.\n"));
4574 }
4575 }
4576}
4577\f
4578/* Reading in full CUs. */
4579
4580/* Add PER_CU to the queue. */
4581
4582static void
4583queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
4584{
4585 struct dwarf2_queue_item *item;
4586
4587 per_cu->queued = 1;
4588 item = xmalloc (sizeof (*item));
4589 item->per_cu = per_cu;
4590 item->next = NULL;
4591
4592 if (dwarf2_queue == NULL)
4593 dwarf2_queue = item;
4594 else
4595 dwarf2_queue_tail->next = item;
4596
4597 dwarf2_queue_tail = item;
4598}
4599
4600/* Process the queue. */
4601
4602static void
4603process_queue (void)
4604{
4605 struct dwarf2_queue_item *item, *next_item;
4606
4607 /* The queue starts out with one item, but following a DIE reference
4608 may load a new CU, adding it to the end of the queue. */
4609 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4610 {
4611 if (dwarf2_per_objfile->using_index
4612 ? !item->per_cu->v.quick->symtab
4613 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4614 process_full_comp_unit (item->per_cu);
4615
4616 item->per_cu->queued = 0;
4617 next_item = item->next;
4618 xfree (item);
4619 }
4620
4621 dwarf2_queue_tail = NULL;
4622}
4623
4624/* Free all allocated queue entries. This function only releases anything if
4625 an error was thrown; if the queue was processed then it would have been
4626 freed as we went along. */
4627
4628static void
4629dwarf2_release_queue (void *dummy)
4630{
4631 struct dwarf2_queue_item *item, *last;
4632
4633 item = dwarf2_queue;
4634 while (item)
4635 {
4636 /* Anything still marked queued is likely to be in an
4637 inconsistent state, so discard it. */
4638 if (item->per_cu->queued)
4639 {
4640 if (item->per_cu->cu != NULL)
4641 free_one_cached_comp_unit (item->per_cu->cu);
4642 item->per_cu->queued = 0;
4643 }
4644
4645 last = item;
4646 item = item->next;
4647 xfree (last);
4648 }
4649
4650 dwarf2_queue = dwarf2_queue_tail = NULL;
4651}
4652
4653/* Read in full symbols for PST, and anything it depends on. */
4654
4655static void
4656psymtab_to_symtab_1 (struct partial_symtab *pst)
4657{
4658 struct dwarf2_per_cu_data *per_cu;
4659 struct cleanup *back_to;
4660 int i;
4661
4662 for (i = 0; i < pst->number_of_dependencies; i++)
4663 if (!pst->dependencies[i]->readin)
4664 {
4665 /* Inform about additional files that need to be read in. */
4666 if (info_verbose)
4667 {
4668 /* FIXME: i18n: Need to make this a single string. */
4669 fputs_filtered (" ", gdb_stdout);
4670 wrap_here ("");
4671 fputs_filtered ("and ", gdb_stdout);
4672 wrap_here ("");
4673 printf_filtered ("%s...", pst->dependencies[i]->filename);
4674 wrap_here (""); /* Flush output. */
4675 gdb_flush (gdb_stdout);
4676 }
4677 psymtab_to_symtab_1 (pst->dependencies[i]);
4678 }
4679
4680 per_cu = pst->read_symtab_private;
4681
4682 if (per_cu == NULL)
4683 {
4684 /* It's an include file, no symbols to read for it.
4685 Everything is in the parent symtab. */
4686 pst->readin = 1;
4687 return;
4688 }
4689
4690 dw2_do_instantiate_symtab (per_cu);
4691}
4692
4693/* Load the DIEs associated with PER_CU into memory. */
4694
4695static void
4696load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4697{
4698 struct objfile *objfile = per_cu->objfile;
4699 bfd *abfd = objfile->obfd;
4700 struct dwarf2_cu *cu;
4701 sect_offset offset;
4702 gdb_byte *info_ptr, *beg_of_comp_unit;
4703 struct cleanup *free_cu_cleanup = NULL;
4704 struct attribute *attr;
4705 int read_cu = 0;
4706
4707 gdb_assert (! per_cu->debug_types_section);
4708
4709 /* Set local variables from the partial symbol table info. */
4710 offset = per_cu->offset;
4711
4712 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4713 info_ptr = dwarf2_per_objfile->info.buffer + offset.sect_off;
4714 beg_of_comp_unit = info_ptr;
4715
4716 if (per_cu->cu == NULL)
4717 {
4718 cu = xmalloc (sizeof (*cu));
4719 init_one_comp_unit (cu, per_cu);
4720
4721 read_cu = 1;
4722
4723 /* If an error occurs while loading, release our storage. */
4724 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4725
4726 /* Read in the comp_unit header. */
4727 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4728
4729 /* Skip dummy compilation units. */
4730 if (info_ptr >= (dwarf2_per_objfile->info.buffer
4731 + dwarf2_per_objfile->info.size)
4732 || peek_abbrev_code (abfd, info_ptr) == 0)
4733 {
4734 do_cleanups (free_cu_cleanup);
4735 return;
4736 }
4737
4738 /* Complete the cu_header. */
4739 cu->header.offset = offset;
4740 cu->header.first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4741 }
4742 else
4743 {
4744 cu = per_cu->cu;
4745 info_ptr += cu->header.first_die_offset.cu_off;
4746 }
4747
4748 cu->dies = read_comp_unit (info_ptr, cu);
4749
4750 /* We try not to read any attributes in this function, because not
4751 all CUs needed for references have been loaded yet, and symbol
4752 table processing isn't initialized. But we have to set the CU language,
4753 or we won't be able to build types correctly. */
4754 prepare_one_comp_unit (cu, cu->dies);
4755
4756 /* Similarly, if we do not read the producer, we can not apply
4757 producer-specific interpretation. */
4758 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4759 if (attr)
4760 cu->producer = DW_STRING (attr);
4761
4762 if (read_cu)
4763 {
4764 /* We've successfully allocated this compilation unit. Let our
4765 caller clean it up when finished with it. */
4766 discard_cleanups (free_cu_cleanup);
4767
4768 /* Link this CU into read_in_chain. */
4769 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4770 dwarf2_per_objfile->read_in_chain = per_cu;
4771 }
4772}
4773
4774/* Add a DIE to the delayed physname list. */
4775
4776static void
4777add_to_method_list (struct type *type, int fnfield_index, int index,
4778 const char *name, struct die_info *die,
4779 struct dwarf2_cu *cu)
4780{
4781 struct delayed_method_info mi;
4782 mi.type = type;
4783 mi.fnfield_index = fnfield_index;
4784 mi.index = index;
4785 mi.name = name;
4786 mi.die = die;
4787 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4788}
4789
4790/* A cleanup for freeing the delayed method list. */
4791
4792static void
4793free_delayed_list (void *ptr)
4794{
4795 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4796 if (cu->method_list != NULL)
4797 {
4798 VEC_free (delayed_method_info, cu->method_list);
4799 cu->method_list = NULL;
4800 }
4801}
4802
4803/* Compute the physnames of any methods on the CU's method list.
4804
4805 The computation of method physnames is delayed in order to avoid the
4806 (bad) condition that one of the method's formal parameters is of an as yet
4807 incomplete type. */
4808
4809static void
4810compute_delayed_physnames (struct dwarf2_cu *cu)
4811{
4812 int i;
4813 struct delayed_method_info *mi;
4814 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4815 {
4816 const char *physname;
4817 struct fn_fieldlist *fn_flp
4818 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4819 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
4820 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4821 }
4822}
4823
4824/* Generate full symbol information for PER_CU, whose DIEs have
4825 already been loaded into memory. */
4826
4827static void
4828process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4829{
4830 struct dwarf2_cu *cu = per_cu->cu;
4831 struct objfile *objfile = per_cu->objfile;
4832 CORE_ADDR lowpc, highpc;
4833 struct symtab *symtab;
4834 struct cleanup *back_to, *delayed_list_cleanup;
4835 CORE_ADDR baseaddr;
4836
4837 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4838
4839 buildsym_init ();
4840 back_to = make_cleanup (really_free_pendings, NULL);
4841 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4842
4843 cu->list_in_scope = &file_symbols;
4844
4845 /* Do line number decoding in read_file_scope () */
4846 process_die (cu->dies, cu);
4847
4848 /* Now that we have processed all the DIEs in the CU, all the types
4849 should be complete, and it should now be safe to compute all of the
4850 physnames. */
4851 compute_delayed_physnames (cu);
4852 do_cleanups (delayed_list_cleanup);
4853
4854 /* Some compilers don't define a DW_AT_high_pc attribute for the
4855 compilation unit. If the DW_AT_high_pc is missing, synthesize
4856 it, by scanning the DIE's below the compilation unit. */
4857 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4858
4859 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4860
4861 if (symtab != NULL)
4862 {
4863 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4864
4865 /* Set symtab language to language from DW_AT_language. If the
4866 compilation is from a C file generated by language preprocessors, do
4867 not set the language if it was already deduced by start_subfile. */
4868 if (!(cu->language == language_c && symtab->language != language_c))
4869 symtab->language = cu->language;
4870
4871 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
4872 produce DW_AT_location with location lists but it can be possibly
4873 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
4874 there were bugs in prologue debug info, fixed later in GCC-4.5
4875 by "unwind info for epilogues" patch (which is not directly related).
4876
4877 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
4878 needed, it would be wrong due to missing DW_AT_producer there.
4879
4880 Still one can confuse GDB by using non-standard GCC compilation
4881 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
4882 */
4883 if (cu->has_loclist && gcc_4_minor >= 5)
4884 symtab->locations_valid = 1;
4885
4886 if (gcc_4_minor >= 5)
4887 symtab->epilogue_unwind_valid = 1;
4888
4889 symtab->call_site_htab = cu->call_site_htab;
4890 }
4891
4892 if (dwarf2_per_objfile->using_index)
4893 per_cu->v.quick->symtab = symtab;
4894 else
4895 {
4896 struct partial_symtab *pst = per_cu->v.psymtab;
4897 pst->symtab = symtab;
4898 pst->readin = 1;
4899 }
4900
4901 do_cleanups (back_to);
4902}
4903
4904/* Process a die and its children. */
4905
4906static void
4907process_die (struct die_info *die, struct dwarf2_cu *cu)
4908{
4909 switch (die->tag)
4910 {
4911 case DW_TAG_padding:
4912 break;
4913 case DW_TAG_compile_unit:
4914 read_file_scope (die, cu);
4915 break;
4916 case DW_TAG_type_unit:
4917 read_type_unit_scope (die, cu);
4918 break;
4919 case DW_TAG_subprogram:
4920 case DW_TAG_inlined_subroutine:
4921 read_func_scope (die, cu);
4922 break;
4923 case DW_TAG_lexical_block:
4924 case DW_TAG_try_block:
4925 case DW_TAG_catch_block:
4926 read_lexical_block_scope (die, cu);
4927 break;
4928 case DW_TAG_GNU_call_site:
4929 read_call_site_scope (die, cu);
4930 break;
4931 case DW_TAG_class_type:
4932 case DW_TAG_interface_type:
4933 case DW_TAG_structure_type:
4934 case DW_TAG_union_type:
4935 process_structure_scope (die, cu);
4936 break;
4937 case DW_TAG_enumeration_type:
4938 process_enumeration_scope (die, cu);
4939 break;
4940
4941 /* These dies have a type, but processing them does not create
4942 a symbol or recurse to process the children. Therefore we can
4943 read them on-demand through read_type_die. */
4944 case DW_TAG_subroutine_type:
4945 case DW_TAG_set_type:
4946 case DW_TAG_array_type:
4947 case DW_TAG_pointer_type:
4948 case DW_TAG_ptr_to_member_type:
4949 case DW_TAG_reference_type:
4950 case DW_TAG_string_type:
4951 break;
4952
4953 case DW_TAG_base_type:
4954 case DW_TAG_subrange_type:
4955 case DW_TAG_typedef:
4956 /* Add a typedef symbol for the type definition, if it has a
4957 DW_AT_name. */
4958 new_symbol (die, read_type_die (die, cu), cu);
4959 break;
4960 case DW_TAG_common_block:
4961 read_common_block (die, cu);
4962 break;
4963 case DW_TAG_common_inclusion:
4964 break;
4965 case DW_TAG_namespace:
4966 processing_has_namespace_info = 1;
4967 read_namespace (die, cu);
4968 break;
4969 case DW_TAG_module:
4970 processing_has_namespace_info = 1;
4971 read_module (die, cu);
4972 break;
4973 case DW_TAG_imported_declaration:
4974 case DW_TAG_imported_module:
4975 processing_has_namespace_info = 1;
4976 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4977 || cu->language != language_fortran))
4978 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4979 dwarf_tag_name (die->tag));
4980 read_import_statement (die, cu);
4981 break;
4982 default:
4983 new_symbol (die, NULL, cu);
4984 break;
4985 }
4986}
4987
4988/* A helper function for dwarf2_compute_name which determines whether DIE
4989 needs to have the name of the scope prepended to the name listed in the
4990 die. */
4991
4992static int
4993die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4994{
4995 struct attribute *attr;
4996
4997 switch (die->tag)
4998 {
4999 case DW_TAG_namespace:
5000 case DW_TAG_typedef:
5001 case DW_TAG_class_type:
5002 case DW_TAG_interface_type:
5003 case DW_TAG_structure_type:
5004 case DW_TAG_union_type:
5005 case DW_TAG_enumeration_type:
5006 case DW_TAG_enumerator:
5007 case DW_TAG_subprogram:
5008 case DW_TAG_member:
5009 return 1;
5010
5011 case DW_TAG_variable:
5012 case DW_TAG_constant:
5013 /* We only need to prefix "globally" visible variables. These include
5014 any variable marked with DW_AT_external or any variable that
5015 lives in a namespace. [Variables in anonymous namespaces
5016 require prefixing, but they are not DW_AT_external.] */
5017
5018 if (dwarf2_attr (die, DW_AT_specification, cu))
5019 {
5020 struct dwarf2_cu *spec_cu = cu;
5021
5022 return die_needs_namespace (die_specification (die, &spec_cu),
5023 spec_cu);
5024 }
5025
5026 attr = dwarf2_attr (die, DW_AT_external, cu);
5027 if (attr == NULL && die->parent->tag != DW_TAG_namespace
5028 && die->parent->tag != DW_TAG_module)
5029 return 0;
5030 /* A variable in a lexical block of some kind does not need a
5031 namespace, even though in C++ such variables may be external
5032 and have a mangled name. */
5033 if (die->parent->tag == DW_TAG_lexical_block
5034 || die->parent->tag == DW_TAG_try_block
5035 || die->parent->tag == DW_TAG_catch_block
5036 || die->parent->tag == DW_TAG_subprogram)
5037 return 0;
5038 return 1;
5039
5040 default:
5041 return 0;
5042 }
5043}
5044
5045/* Retrieve the last character from a mem_file. */
5046
5047static void
5048do_ui_file_peek_last (void *object, const char *buffer, long length)
5049{
5050 char *last_char_p = (char *) object;
5051
5052 if (length > 0)
5053 *last_char_p = buffer[length - 1];
5054}
5055
5056/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
5057 compute the physname for the object, which include a method's
5058 formal parameters (C++/Java) and return type (Java).
5059
5060 For Ada, return the DIE's linkage name rather than the fully qualified
5061 name. PHYSNAME is ignored..
5062
5063 The result is allocated on the objfile_obstack and canonicalized. */
5064
5065static const char *
5066dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
5067 int physname)
5068{
5069 struct objfile *objfile = cu->objfile;
5070
5071 if (name == NULL)
5072 name = dwarf2_name (die, cu);
5073
5074 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
5075 compute it by typename_concat inside GDB. */
5076 if (cu->language == language_ada
5077 || (cu->language == language_fortran && physname))
5078 {
5079 /* For Ada unit, we prefer the linkage name over the name, as
5080 the former contains the exported name, which the user expects
5081 to be able to reference. Ideally, we want the user to be able
5082 to reference this entity using either natural or linkage name,
5083 but we haven't started looking at this enhancement yet. */
5084 struct attribute *attr;
5085
5086 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5087 if (attr == NULL)
5088 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5089 if (attr && DW_STRING (attr))
5090 return DW_STRING (attr);
5091 }
5092
5093 /* These are the only languages we know how to qualify names in. */
5094 if (name != NULL
5095 && (cu->language == language_cplus || cu->language == language_java
5096 || cu->language == language_fortran))
5097 {
5098 if (die_needs_namespace (die, cu))
5099 {
5100 long length;
5101 const char *prefix;
5102 struct ui_file *buf;
5103
5104 prefix = determine_prefix (die, cu);
5105 buf = mem_fileopen ();
5106 if (*prefix != '\0')
5107 {
5108 char *prefixed_name = typename_concat (NULL, prefix, name,
5109 physname, cu);
5110
5111 fputs_unfiltered (prefixed_name, buf);
5112 xfree (prefixed_name);
5113 }
5114 else
5115 fputs_unfiltered (name, buf);
5116
5117 /* Template parameters may be specified in the DIE's DW_AT_name, or
5118 as children with DW_TAG_template_type_param or
5119 DW_TAG_value_type_param. If the latter, add them to the name
5120 here. If the name already has template parameters, then
5121 skip this step; some versions of GCC emit both, and
5122 it is more efficient to use the pre-computed name.
5123
5124 Something to keep in mind about this process: it is very
5125 unlikely, or in some cases downright impossible, to produce
5126 something that will match the mangled name of a function.
5127 If the definition of the function has the same debug info,
5128 we should be able to match up with it anyway. But fallbacks
5129 using the minimal symbol, for instance to find a method
5130 implemented in a stripped copy of libstdc++, will not work.
5131 If we do not have debug info for the definition, we will have to
5132 match them up some other way.
5133
5134 When we do name matching there is a related problem with function
5135 templates; two instantiated function templates are allowed to
5136 differ only by their return types, which we do not add here. */
5137
5138 if (cu->language == language_cplus && strchr (name, '<') == NULL)
5139 {
5140 struct attribute *attr;
5141 struct die_info *child;
5142 int first = 1;
5143
5144 die->building_fullname = 1;
5145
5146 for (child = die->child; child != NULL; child = child->sibling)
5147 {
5148 struct type *type;
5149 long value;
5150 gdb_byte *bytes;
5151 struct dwarf2_locexpr_baton *baton;
5152 struct value *v;
5153
5154 if (child->tag != DW_TAG_template_type_param
5155 && child->tag != DW_TAG_template_value_param)
5156 continue;
5157
5158 if (first)
5159 {
5160 fputs_unfiltered ("<", buf);
5161 first = 0;
5162 }
5163 else
5164 fputs_unfiltered (", ", buf);
5165
5166 attr = dwarf2_attr (child, DW_AT_type, cu);
5167 if (attr == NULL)
5168 {
5169 complaint (&symfile_complaints,
5170 _("template parameter missing DW_AT_type"));
5171 fputs_unfiltered ("UNKNOWN_TYPE", buf);
5172 continue;
5173 }
5174 type = die_type (child, cu);
5175
5176 if (child->tag == DW_TAG_template_type_param)
5177 {
5178 c_print_type (type, "", buf, -1, 0);
5179 continue;
5180 }
5181
5182 attr = dwarf2_attr (child, DW_AT_const_value, cu);
5183 if (attr == NULL)
5184 {
5185 complaint (&symfile_complaints,
5186 _("template parameter missing "
5187 "DW_AT_const_value"));
5188 fputs_unfiltered ("UNKNOWN_VALUE", buf);
5189 continue;
5190 }
5191
5192 dwarf2_const_value_attr (attr, type, name,
5193 &cu->comp_unit_obstack, cu,
5194 &value, &bytes, &baton);
5195
5196 if (TYPE_NOSIGN (type))
5197 /* GDB prints characters as NUMBER 'CHAR'. If that's
5198 changed, this can use value_print instead. */
5199 c_printchar (value, type, buf);
5200 else
5201 {
5202 struct value_print_options opts;
5203
5204 if (baton != NULL)
5205 v = dwarf2_evaluate_loc_desc (type, NULL,
5206 baton->data,
5207 baton->size,
5208 baton->per_cu);
5209 else if (bytes != NULL)
5210 {
5211 v = allocate_value (type);
5212 memcpy (value_contents_writeable (v), bytes,
5213 TYPE_LENGTH (type));
5214 }
5215 else
5216 v = value_from_longest (type, value);
5217
5218 /* Specify decimal so that we do not depend on
5219 the radix. */
5220 get_formatted_print_options (&opts, 'd');
5221 opts.raw = 1;
5222 value_print (v, buf, &opts);
5223 release_value (v);
5224 value_free (v);
5225 }
5226 }
5227
5228 die->building_fullname = 0;
5229
5230 if (!first)
5231 {
5232 /* Close the argument list, with a space if necessary
5233 (nested templates). */
5234 char last_char = '\0';
5235 ui_file_put (buf, do_ui_file_peek_last, &last_char);
5236 if (last_char == '>')
5237 fputs_unfiltered (" >", buf);
5238 else
5239 fputs_unfiltered (">", buf);
5240 }
5241 }
5242
5243 /* For Java and C++ methods, append formal parameter type
5244 information, if PHYSNAME. */
5245
5246 if (physname && die->tag == DW_TAG_subprogram
5247 && (cu->language == language_cplus
5248 || cu->language == language_java))
5249 {
5250 struct type *type = read_type_die (die, cu);
5251
5252 c_type_print_args (type, buf, 1, cu->language);
5253
5254 if (cu->language == language_java)
5255 {
5256 /* For java, we must append the return type to method
5257 names. */
5258 if (die->tag == DW_TAG_subprogram)
5259 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5260 0, 0);
5261 }
5262 else if (cu->language == language_cplus)
5263 {
5264 /* Assume that an artificial first parameter is
5265 "this", but do not crash if it is not. RealView
5266 marks unnamed (and thus unused) parameters as
5267 artificial; there is no way to differentiate
5268 the two cases. */
5269 if (TYPE_NFIELDS (type) > 0
5270 && TYPE_FIELD_ARTIFICIAL (type, 0)
5271 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
5272 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5273 0))))
5274 fputs_unfiltered (" const", buf);
5275 }
5276 }
5277
5278 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
5279 &length);
5280 ui_file_delete (buf);
5281
5282 if (cu->language == language_cplus)
5283 {
5284 char *cname
5285 = dwarf2_canonicalize_name (name, cu,
5286 &objfile->objfile_obstack);
5287
5288 if (cname != NULL)
5289 name = cname;
5290 }
5291 }
5292 }
5293
5294 return name;
5295}
5296
5297/* Return the fully qualified name of DIE, based on its DW_AT_name.
5298 If scope qualifiers are appropriate they will be added. The result
5299 will be allocated on the objfile_obstack, or NULL if the DIE does
5300 not have a name. NAME may either be from a previous call to
5301 dwarf2_name or NULL.
5302
5303 The output string will be canonicalized (if C++/Java). */
5304
5305static const char *
5306dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5307{
5308 return dwarf2_compute_name (name, die, cu, 0);
5309}
5310
5311/* Construct a physname for the given DIE in CU. NAME may either be
5312 from a previous call to dwarf2_name or NULL. The result will be
5313 allocated on the objfile_objstack or NULL if the DIE does not have a
5314 name.
5315
5316 The output string will be canonicalized (if C++/Java). */
5317
5318static const char *
5319dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5320{
5321 struct objfile *objfile = cu->objfile;
5322 struct attribute *attr;
5323 const char *retval, *mangled = NULL, *canon = NULL;
5324 struct cleanup *back_to;
5325 int need_copy = 1;
5326
5327 /* In this case dwarf2_compute_name is just a shortcut not building anything
5328 on its own. */
5329 if (!die_needs_namespace (die, cu))
5330 return dwarf2_compute_name (name, die, cu, 1);
5331
5332 back_to = make_cleanup (null_cleanup, NULL);
5333
5334 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5335 if (!attr)
5336 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5337
5338 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
5339 has computed. */
5340 if (attr && DW_STRING (attr))
5341 {
5342 char *demangled;
5343
5344 mangled = DW_STRING (attr);
5345
5346 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
5347 type. It is easier for GDB users to search for such functions as
5348 `name(params)' than `long name(params)'. In such case the minimal
5349 symbol names do not match the full symbol names but for template
5350 functions there is never a need to look up their definition from their
5351 declaration so the only disadvantage remains the minimal symbol
5352 variant `long name(params)' does not have the proper inferior type.
5353 */
5354
5355 demangled = cplus_demangle (mangled, (DMGL_PARAMS | DMGL_ANSI
5356 | (cu->language == language_java
5357 ? DMGL_JAVA | DMGL_RET_POSTFIX
5358 : DMGL_RET_DROP)));
5359 if (demangled)
5360 {
5361 make_cleanup (xfree, demangled);
5362 canon = demangled;
5363 }
5364 else
5365 {
5366 canon = mangled;
5367 need_copy = 0;
5368 }
5369 }
5370
5371 if (canon == NULL || check_physname)
5372 {
5373 const char *physname = dwarf2_compute_name (name, die, cu, 1);
5374
5375 if (canon != NULL && strcmp (physname, canon) != 0)
5376 {
5377 /* It may not mean a bug in GDB. The compiler could also
5378 compute DW_AT_linkage_name incorrectly. But in such case
5379 GDB would need to be bug-to-bug compatible. */
5380
5381 complaint (&symfile_complaints,
5382 _("Computed physname <%s> does not match demangled <%s> "
5383 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
5384 physname, canon, mangled, die->offset.sect_off, objfile->name);
5385
5386 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
5387 is available here - over computed PHYSNAME. It is safer
5388 against both buggy GDB and buggy compilers. */
5389
5390 retval = canon;
5391 }
5392 else
5393 {
5394 retval = physname;
5395 need_copy = 0;
5396 }
5397 }
5398 else
5399 retval = canon;
5400
5401 if (need_copy)
5402 retval = obsavestring (retval, strlen (retval),
5403 &objfile->objfile_obstack);
5404
5405 do_cleanups (back_to);
5406 return retval;
5407}
5408
5409/* Read the import statement specified by the given die and record it. */
5410
5411static void
5412read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5413{
5414 struct objfile *objfile = cu->objfile;
5415 struct attribute *import_attr;
5416 struct die_info *imported_die, *child_die;
5417 struct dwarf2_cu *imported_cu;
5418 const char *imported_name;
5419 const char *imported_name_prefix;
5420 const char *canonical_name;
5421 const char *import_alias;
5422 const char *imported_declaration = NULL;
5423 const char *import_prefix;
5424 VEC (const_char_ptr) *excludes = NULL;
5425 struct cleanup *cleanups;
5426
5427 char *temp;
5428
5429 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5430 if (import_attr == NULL)
5431 {
5432 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5433 dwarf_tag_name (die->tag));
5434 return;
5435 }
5436
5437 imported_cu = cu;
5438 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5439 imported_name = dwarf2_name (imported_die, imported_cu);
5440 if (imported_name == NULL)
5441 {
5442 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5443
5444 The import in the following code:
5445 namespace A
5446 {
5447 typedef int B;
5448 }
5449
5450 int main ()
5451 {
5452 using A::B;
5453 B b;
5454 return b;
5455 }
5456
5457 ...
5458 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5459 <52> DW_AT_decl_file : 1
5460 <53> DW_AT_decl_line : 6
5461 <54> DW_AT_import : <0x75>
5462 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5463 <59> DW_AT_name : B
5464 <5b> DW_AT_decl_file : 1
5465 <5c> DW_AT_decl_line : 2
5466 <5d> DW_AT_type : <0x6e>
5467 ...
5468 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5469 <76> DW_AT_byte_size : 4
5470 <77> DW_AT_encoding : 5 (signed)
5471
5472 imports the wrong die ( 0x75 instead of 0x58 ).
5473 This case will be ignored until the gcc bug is fixed. */
5474 return;
5475 }
5476
5477 /* Figure out the local name after import. */
5478 import_alias = dwarf2_name (die, cu);
5479
5480 /* Figure out where the statement is being imported to. */
5481 import_prefix = determine_prefix (die, cu);
5482
5483 /* Figure out what the scope of the imported die is and prepend it
5484 to the name of the imported die. */
5485 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5486
5487 if (imported_die->tag != DW_TAG_namespace
5488 && imported_die->tag != DW_TAG_module)
5489 {
5490 imported_declaration = imported_name;
5491 canonical_name = imported_name_prefix;
5492 }
5493 else if (strlen (imported_name_prefix) > 0)
5494 {
5495 temp = alloca (strlen (imported_name_prefix)
5496 + 2 + strlen (imported_name) + 1);
5497 strcpy (temp, imported_name_prefix);
5498 strcat (temp, "::");
5499 strcat (temp, imported_name);
5500 canonical_name = temp;
5501 }
5502 else
5503 canonical_name = imported_name;
5504
5505 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
5506
5507 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
5508 for (child_die = die->child; child_die && child_die->tag;
5509 child_die = sibling_die (child_die))
5510 {
5511 /* DWARF-4: A Fortran use statement with a “rename list” may be
5512 represented by an imported module entry with an import attribute
5513 referring to the module and owned entries corresponding to those
5514 entities that are renamed as part of being imported. */
5515
5516 if (child_die->tag != DW_TAG_imported_declaration)
5517 {
5518 complaint (&symfile_complaints,
5519 _("child DW_TAG_imported_declaration expected "
5520 "- DIE at 0x%x [in module %s]"),
5521 child_die->offset.sect_off, objfile->name);
5522 continue;
5523 }
5524
5525 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
5526 if (import_attr == NULL)
5527 {
5528 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5529 dwarf_tag_name (child_die->tag));
5530 continue;
5531 }
5532
5533 imported_cu = cu;
5534 imported_die = follow_die_ref_or_sig (child_die, import_attr,
5535 &imported_cu);
5536 imported_name = dwarf2_name (imported_die, imported_cu);
5537 if (imported_name == NULL)
5538 {
5539 complaint (&symfile_complaints,
5540 _("child DW_TAG_imported_declaration has unknown "
5541 "imported name - DIE at 0x%x [in module %s]"),
5542 child_die->offset.sect_off, objfile->name);
5543 continue;
5544 }
5545
5546 VEC_safe_push (const_char_ptr, excludes, imported_name);
5547
5548 process_die (child_die, cu);
5549 }
5550
5551 cp_add_using_directive (import_prefix,
5552 canonical_name,
5553 import_alias,
5554 imported_declaration,
5555 excludes,
5556 &objfile->objfile_obstack);
5557
5558 do_cleanups (cleanups);
5559}
5560
5561/* Cleanup function for read_file_scope. */
5562
5563static void
5564free_cu_line_header (void *arg)
5565{
5566 struct dwarf2_cu *cu = arg;
5567
5568 free_line_header (cu->line_header);
5569 cu->line_header = NULL;
5570}
5571
5572static void
5573find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5574 char **name, char **comp_dir)
5575{
5576 struct attribute *attr;
5577
5578 *name = NULL;
5579 *comp_dir = NULL;
5580
5581 /* Find the filename. Do not use dwarf2_name here, since the filename
5582 is not a source language identifier. */
5583 attr = dwarf2_attr (die, DW_AT_name, cu);
5584 if (attr)
5585 {
5586 *name = DW_STRING (attr);
5587 }
5588
5589 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5590 if (attr)
5591 *comp_dir = DW_STRING (attr);
5592 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5593 {
5594 *comp_dir = ldirname (*name);
5595 if (*comp_dir != NULL)
5596 make_cleanup (xfree, *comp_dir);
5597 }
5598 if (*comp_dir != NULL)
5599 {
5600 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5601 directory, get rid of it. */
5602 char *cp = strchr (*comp_dir, ':');
5603
5604 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5605 *comp_dir = cp + 1;
5606 }
5607
5608 if (*name == NULL)
5609 *name = "<unknown>";
5610}
5611
5612/* Handle DW_AT_stmt_list for a compilation unit or type unit.
5613 DIE is the DW_TAG_compile_unit or DW_TAG_type_unit die for CU.
5614 COMP_DIR is the compilation directory.
5615 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
5616
5617static void
5618handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
5619 const char *comp_dir, int want_line_info)
5620{
5621 struct attribute *attr;
5622 struct objfile *objfile = cu->objfile;
5623 bfd *abfd = objfile->obfd;
5624
5625 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5626 if (attr)
5627 {
5628 unsigned int line_offset = DW_UNSND (attr);
5629 struct line_header *line_header
5630 = dwarf_decode_line_header (line_offset, abfd, cu);
5631
5632 if (line_header)
5633 {
5634 cu->line_header = line_header;
5635 make_cleanup (free_cu_line_header, cu);
5636 dwarf_decode_lines (line_header, comp_dir, cu, NULL, want_line_info);
5637 }
5638 }
5639}
5640
5641/* Process DW_TAG_compile_unit. */
5642
5643static void
5644read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5645{
5646 struct objfile *objfile = cu->objfile;
5647 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5648 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5649 CORE_ADDR highpc = ((CORE_ADDR) 0);
5650 struct attribute *attr;
5651 char *name = NULL;
5652 char *comp_dir = NULL;
5653 struct die_info *child_die;
5654 bfd *abfd = objfile->obfd;
5655 CORE_ADDR baseaddr;
5656
5657 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5658
5659 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5660
5661 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5662 from finish_block. */
5663 if (lowpc == ((CORE_ADDR) -1))
5664 lowpc = highpc;
5665 lowpc += baseaddr;
5666 highpc += baseaddr;
5667
5668 find_file_and_directory (die, cu, &name, &comp_dir);
5669
5670 attr = dwarf2_attr (die, DW_AT_language, cu);
5671 if (attr)
5672 {
5673 set_cu_language (DW_UNSND (attr), cu);
5674 }
5675
5676 attr = dwarf2_attr (die, DW_AT_producer, cu);
5677 if (attr)
5678 cu->producer = DW_STRING (attr);
5679
5680 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5681 standardised yet. As a workaround for the language detection we fall
5682 back to the DW_AT_producer string. */
5683 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5684 cu->language = language_opencl;
5685
5686 /* We assume that we're processing GCC output. */
5687 processing_gcc_compilation = 2;
5688
5689 processing_has_namespace_info = 0;
5690
5691 start_symtab (name, comp_dir, lowpc);
5692 record_debugformat ("DWARF 2");
5693 record_producer (cu->producer);
5694
5695 /* Decode line number information if present. We do this before
5696 processing child DIEs, so that the line header table is available
5697 for DW_AT_decl_file. */
5698 handle_DW_AT_stmt_list (die, cu, comp_dir, 1);
5699
5700 /* Process all dies in compilation unit. */
5701 if (die->child != NULL)
5702 {
5703 child_die = die->child;
5704 while (child_die && child_die->tag)
5705 {
5706 process_die (child_die, cu);
5707 child_die = sibling_die (child_die);
5708 }
5709 }
5710
5711 /* Decode macro information, if present. Dwarf 2 macro information
5712 refers to information in the line number info statement program
5713 header, so we can only read it if we've read the header
5714 successfully. */
5715 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
5716 if (attr && cu->line_header)
5717 {
5718 if (dwarf2_attr (die, DW_AT_macro_info, cu))
5719 complaint (&symfile_complaints,
5720 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
5721
5722 dwarf_decode_macros (cu->line_header, DW_UNSND (attr),
5723 comp_dir, abfd, cu,
5724 &dwarf2_per_objfile->macro, 1);
5725 }
5726 else
5727 {
5728 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5729 if (attr && cu->line_header)
5730 {
5731 unsigned int macro_offset = DW_UNSND (attr);
5732
5733 dwarf_decode_macros (cu->line_header, macro_offset,
5734 comp_dir, abfd, cu,
5735 &dwarf2_per_objfile->macinfo, 0);
5736 }
5737 }
5738
5739 do_cleanups (back_to);
5740}
5741
5742/* Process DW_TAG_type_unit.
5743 For TUs we want to skip the first top level sibling if it's not the
5744 actual type being defined by this TU. In this case the first top
5745 level sibling is there to provide context only. */
5746
5747static void
5748read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5749{
5750 struct objfile *objfile = cu->objfile;
5751 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5752 CORE_ADDR lowpc;
5753 struct attribute *attr;
5754 char *name = NULL;
5755 char *comp_dir = NULL;
5756 struct die_info *child_die;
5757 bfd *abfd = objfile->obfd;
5758
5759 /* start_symtab needs a low pc, but we don't really have one.
5760 Do what read_file_scope would do in the absence of such info. */
5761 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5762
5763 /* Find the filename. Do not use dwarf2_name here, since the filename
5764 is not a source language identifier. */
5765 attr = dwarf2_attr (die, DW_AT_name, cu);
5766 if (attr)
5767 name = DW_STRING (attr);
5768
5769 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5770 if (attr)
5771 comp_dir = DW_STRING (attr);
5772 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5773 {
5774 comp_dir = ldirname (name);
5775 if (comp_dir != NULL)
5776 make_cleanup (xfree, comp_dir);
5777 }
5778
5779 if (name == NULL)
5780 name = "<unknown>";
5781
5782 attr = dwarf2_attr (die, DW_AT_language, cu);
5783 if (attr)
5784 set_cu_language (DW_UNSND (attr), cu);
5785
5786 /* This isn't technically needed today. It is done for symmetry
5787 with read_file_scope. */
5788 attr = dwarf2_attr (die, DW_AT_producer, cu);
5789 if (attr)
5790 cu->producer = DW_STRING (attr);
5791
5792 /* We assume that we're processing GCC output. */
5793 processing_gcc_compilation = 2;
5794
5795 processing_has_namespace_info = 0;
5796
5797 start_symtab (name, comp_dir, lowpc);
5798 record_debugformat ("DWARF 2");
5799 record_producer (cu->producer);
5800
5801 /* Decode line number information if present. We do this before
5802 processing child DIEs, so that the line header table is available
5803 for DW_AT_decl_file.
5804 We don't need the pc/line-number mapping for type units. */
5805 handle_DW_AT_stmt_list (die, cu, comp_dir, 0);
5806
5807 /* Process the dies in the type unit. */
5808 if (die->child == NULL)
5809 {
5810 dump_die_for_error (die);
5811 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5812 bfd_get_filename (abfd));
5813 }
5814
5815 child_die = die->child;
5816
5817 while (child_die && child_die->tag)
5818 {
5819 process_die (child_die, cu);
5820
5821 child_die = sibling_die (child_die);
5822 }
5823
5824 do_cleanups (back_to);
5825}
5826
5827/* qsort helper for inherit_abstract_dies. */
5828
5829static int
5830unsigned_int_compar (const void *ap, const void *bp)
5831{
5832 unsigned int a = *(unsigned int *) ap;
5833 unsigned int b = *(unsigned int *) bp;
5834
5835 return (a > b) - (b > a);
5836}
5837
5838/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5839 Inherit only the children of the DW_AT_abstract_origin DIE not being
5840 already referenced by DW_AT_abstract_origin from the children of the
5841 current DIE. */
5842
5843static void
5844inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5845{
5846 struct die_info *child_die;
5847 unsigned die_children_count;
5848 /* CU offsets which were referenced by children of the current DIE. */
5849 sect_offset *offsets;
5850 sect_offset *offsets_end, *offsetp;
5851 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5852 struct die_info *origin_die;
5853 /* Iterator of the ORIGIN_DIE children. */
5854 struct die_info *origin_child_die;
5855 struct cleanup *cleanups;
5856 struct attribute *attr;
5857 struct dwarf2_cu *origin_cu;
5858 struct pending **origin_previous_list_in_scope;
5859
5860 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5861 if (!attr)
5862 return;
5863
5864 /* Note that following die references may follow to a die in a
5865 different cu. */
5866
5867 origin_cu = cu;
5868 origin_die = follow_die_ref (die, attr, &origin_cu);
5869
5870 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5871 symbols in. */
5872 origin_previous_list_in_scope = origin_cu->list_in_scope;
5873 origin_cu->list_in_scope = cu->list_in_scope;
5874
5875 if (die->tag != origin_die->tag
5876 && !(die->tag == DW_TAG_inlined_subroutine
5877 && origin_die->tag == DW_TAG_subprogram))
5878 complaint (&symfile_complaints,
5879 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5880 die->offset.sect_off, origin_die->offset.sect_off);
5881
5882 child_die = die->child;
5883 die_children_count = 0;
5884 while (child_die && child_die->tag)
5885 {
5886 child_die = sibling_die (child_die);
5887 die_children_count++;
5888 }
5889 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5890 cleanups = make_cleanup (xfree, offsets);
5891
5892 offsets_end = offsets;
5893 child_die = die->child;
5894 while (child_die && child_die->tag)
5895 {
5896 /* For each CHILD_DIE, find the corresponding child of
5897 ORIGIN_DIE. If there is more than one layer of
5898 DW_AT_abstract_origin, follow them all; there shouldn't be,
5899 but GCC versions at least through 4.4 generate this (GCC PR
5900 40573). */
5901 struct die_info *child_origin_die = child_die;
5902 struct dwarf2_cu *child_origin_cu = cu;
5903
5904 while (1)
5905 {
5906 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5907 child_origin_cu);
5908 if (attr == NULL)
5909 break;
5910 child_origin_die = follow_die_ref (child_origin_die, attr,
5911 &child_origin_cu);
5912 }
5913
5914 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5915 counterpart may exist. */
5916 if (child_origin_die != child_die)
5917 {
5918 if (child_die->tag != child_origin_die->tag
5919 && !(child_die->tag == DW_TAG_inlined_subroutine
5920 && child_origin_die->tag == DW_TAG_subprogram))
5921 complaint (&symfile_complaints,
5922 _("Child DIE 0x%x and its abstract origin 0x%x have "
5923 "different tags"), child_die->offset.sect_off,
5924 child_origin_die->offset.sect_off);
5925 if (child_origin_die->parent != origin_die)
5926 complaint (&symfile_complaints,
5927 _("Child DIE 0x%x and its abstract origin 0x%x have "
5928 "different parents"), child_die->offset.sect_off,
5929 child_origin_die->offset.sect_off);
5930 else
5931 *offsets_end++ = child_origin_die->offset;
5932 }
5933 child_die = sibling_die (child_die);
5934 }
5935 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5936 unsigned_int_compar);
5937 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5938 if (offsetp[-1].sect_off == offsetp->sect_off)
5939 complaint (&symfile_complaints,
5940 _("Multiple children of DIE 0x%x refer "
5941 "to DIE 0x%x as their abstract origin"),
5942 die->offset.sect_off, offsetp->sect_off);
5943
5944 offsetp = offsets;
5945 origin_child_die = origin_die->child;
5946 while (origin_child_die && origin_child_die->tag)
5947 {
5948 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5949 while (offsetp < offsets_end
5950 && offsetp->sect_off < origin_child_die->offset.sect_off)
5951 offsetp++;
5952 if (offsetp >= offsets_end
5953 || offsetp->sect_off > origin_child_die->offset.sect_off)
5954 {
5955 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5956 process_die (origin_child_die, origin_cu);
5957 }
5958 origin_child_die = sibling_die (origin_child_die);
5959 }
5960 origin_cu->list_in_scope = origin_previous_list_in_scope;
5961
5962 do_cleanups (cleanups);
5963}
5964
5965static void
5966read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5967{
5968 struct objfile *objfile = cu->objfile;
5969 struct context_stack *new;
5970 CORE_ADDR lowpc;
5971 CORE_ADDR highpc;
5972 struct die_info *child_die;
5973 struct attribute *attr, *call_line, *call_file;
5974 char *name;
5975 CORE_ADDR baseaddr;
5976 struct block *block;
5977 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5978 VEC (symbolp) *template_args = NULL;
5979 struct template_symbol *templ_func = NULL;
5980
5981 if (inlined_func)
5982 {
5983 /* If we do not have call site information, we can't show the
5984 caller of this inlined function. That's too confusing, so
5985 only use the scope for local variables. */
5986 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5987 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5988 if (call_line == NULL || call_file == NULL)
5989 {
5990 read_lexical_block_scope (die, cu);
5991 return;
5992 }
5993 }
5994
5995 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5996
5997 name = dwarf2_name (die, cu);
5998
5999 /* Ignore functions with missing or empty names. These are actually
6000 illegal according to the DWARF standard. */
6001 if (name == NULL)
6002 {
6003 complaint (&symfile_complaints,
6004 _("missing name for subprogram DIE at %d"),
6005 die->offset.sect_off);
6006 return;
6007 }
6008
6009 /* Ignore functions with missing or invalid low and high pc attributes. */
6010 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6011 {
6012 attr = dwarf2_attr (die, DW_AT_external, cu);
6013 if (!attr || !DW_UNSND (attr))
6014 complaint (&symfile_complaints,
6015 _("cannot get low and high bounds "
6016 "for subprogram DIE at %d"),
6017 die->offset.sect_off);
6018 return;
6019 }
6020
6021 lowpc += baseaddr;
6022 highpc += baseaddr;
6023
6024 /* If we have any template arguments, then we must allocate a
6025 different sort of symbol. */
6026 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
6027 {
6028 if (child_die->tag == DW_TAG_template_type_param
6029 || child_die->tag == DW_TAG_template_value_param)
6030 {
6031 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6032 struct template_symbol);
6033 templ_func->base.is_cplus_template_function = 1;
6034 break;
6035 }
6036 }
6037
6038 new = push_context (0, lowpc);
6039 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
6040 (struct symbol *) templ_func);
6041
6042 /* If there is a location expression for DW_AT_frame_base, record
6043 it. */
6044 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
6045 if (attr)
6046 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
6047 expression is being recorded directly in the function's symbol
6048 and not in a separate frame-base object. I guess this hack is
6049 to avoid adding some sort of frame-base adjunct/annex to the
6050 function's symbol :-(. The problem with doing this is that it
6051 results in a function symbol with a location expression that
6052 has nothing to do with the location of the function, ouch! The
6053 relationship should be: a function's symbol has-a frame base; a
6054 frame-base has-a location expression. */
6055 dwarf2_symbol_mark_computed (attr, new->name, cu);
6056
6057 cu->list_in_scope = &local_symbols;
6058
6059 if (die->child != NULL)
6060 {
6061 child_die = die->child;
6062 while (child_die && child_die->tag)
6063 {
6064 if (child_die->tag == DW_TAG_template_type_param
6065 || child_die->tag == DW_TAG_template_value_param)
6066 {
6067 struct symbol *arg = new_symbol (child_die, NULL, cu);
6068
6069 if (arg != NULL)
6070 VEC_safe_push (symbolp, template_args, arg);
6071 }
6072 else
6073 process_die (child_die, cu);
6074 child_die = sibling_die (child_die);
6075 }
6076 }
6077
6078 inherit_abstract_dies (die, cu);
6079
6080 /* If we have a DW_AT_specification, we might need to import using
6081 directives from the context of the specification DIE. See the
6082 comment in determine_prefix. */
6083 if (cu->language == language_cplus
6084 && dwarf2_attr (die, DW_AT_specification, cu))
6085 {
6086 struct dwarf2_cu *spec_cu = cu;
6087 struct die_info *spec_die = die_specification (die, &spec_cu);
6088
6089 while (spec_die)
6090 {
6091 child_die = spec_die->child;
6092 while (child_die && child_die->tag)
6093 {
6094 if (child_die->tag == DW_TAG_imported_module)
6095 process_die (child_die, spec_cu);
6096 child_die = sibling_die (child_die);
6097 }
6098
6099 /* In some cases, GCC generates specification DIEs that
6100 themselves contain DW_AT_specification attributes. */
6101 spec_die = die_specification (spec_die, &spec_cu);
6102 }
6103 }
6104
6105 new = pop_context ();
6106 /* Make a block for the local symbols within. */
6107 block = finish_block (new->name, &local_symbols, new->old_blocks,
6108 lowpc, highpc, objfile);
6109
6110 /* For C++, set the block's scope. */
6111 if (cu->language == language_cplus || cu->language == language_fortran)
6112 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
6113 determine_prefix (die, cu),
6114 processing_has_namespace_info);
6115
6116 /* If we have address ranges, record them. */
6117 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6118
6119 /* Attach template arguments to function. */
6120 if (! VEC_empty (symbolp, template_args))
6121 {
6122 gdb_assert (templ_func != NULL);
6123
6124 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
6125 templ_func->template_arguments
6126 = obstack_alloc (&objfile->objfile_obstack,
6127 (templ_func->n_template_arguments
6128 * sizeof (struct symbol *)));
6129 memcpy (templ_func->template_arguments,
6130 VEC_address (symbolp, template_args),
6131 (templ_func->n_template_arguments * sizeof (struct symbol *)));
6132 VEC_free (symbolp, template_args);
6133 }
6134
6135 /* In C++, we can have functions nested inside functions (e.g., when
6136 a function declares a class that has methods). This means that
6137 when we finish processing a function scope, we may need to go
6138 back to building a containing block's symbol lists. */
6139 local_symbols = new->locals;
6140 param_symbols = new->params;
6141 using_directives = new->using_directives;
6142
6143 /* If we've finished processing a top-level function, subsequent
6144 symbols go in the file symbol list. */
6145 if (outermost_context_p ())
6146 cu->list_in_scope = &file_symbols;
6147}
6148
6149/* Process all the DIES contained within a lexical block scope. Start
6150 a new scope, process the dies, and then close the scope. */
6151
6152static void
6153read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
6154{
6155 struct objfile *objfile = cu->objfile;
6156 struct context_stack *new;
6157 CORE_ADDR lowpc, highpc;
6158 struct die_info *child_die;
6159 CORE_ADDR baseaddr;
6160
6161 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6162
6163 /* Ignore blocks with missing or invalid low and high pc attributes. */
6164 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
6165 as multiple lexical blocks? Handling children in a sane way would
6166 be nasty. Might be easier to properly extend generic blocks to
6167 describe ranges. */
6168 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6169 return;
6170 lowpc += baseaddr;
6171 highpc += baseaddr;
6172
6173 push_context (0, lowpc);
6174 if (die->child != NULL)
6175 {
6176 child_die = die->child;
6177 while (child_die && child_die->tag)
6178 {
6179 process_die (child_die, cu);
6180 child_die = sibling_die (child_die);
6181 }
6182 }
6183 new = pop_context ();
6184
6185 if (local_symbols != NULL || using_directives != NULL)
6186 {
6187 struct block *block
6188 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
6189 highpc, objfile);
6190
6191 /* Note that recording ranges after traversing children, as we
6192 do here, means that recording a parent's ranges entails
6193 walking across all its children's ranges as they appear in
6194 the address map, which is quadratic behavior.
6195
6196 It would be nicer to record the parent's ranges before
6197 traversing its children, simply overriding whatever you find
6198 there. But since we don't even decide whether to create a
6199 block until after we've traversed its children, that's hard
6200 to do. */
6201 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6202 }
6203 local_symbols = new->locals;
6204 using_directives = new->using_directives;
6205}
6206
6207/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
6208
6209static void
6210read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
6211{
6212 struct objfile *objfile = cu->objfile;
6213 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6214 CORE_ADDR pc, baseaddr;
6215 struct attribute *attr;
6216 struct call_site *call_site, call_site_local;
6217 void **slot;
6218 int nparams;
6219 struct die_info *child_die;
6220
6221 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6222
6223 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6224 if (!attr)
6225 {
6226 complaint (&symfile_complaints,
6227 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
6228 "DIE 0x%x [in module %s]"),
6229 die->offset.sect_off, objfile->name);
6230 return;
6231 }
6232 pc = DW_ADDR (attr) + baseaddr;
6233
6234 if (cu->call_site_htab == NULL)
6235 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
6236 NULL, &objfile->objfile_obstack,
6237 hashtab_obstack_allocate, NULL);
6238 call_site_local.pc = pc;
6239 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
6240 if (*slot != NULL)
6241 {
6242 complaint (&symfile_complaints,
6243 _("Duplicate PC %s for DW_TAG_GNU_call_site "
6244 "DIE 0x%x [in module %s]"),
6245 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
6246 return;
6247 }
6248
6249 /* Count parameters at the caller. */
6250
6251 nparams = 0;
6252 for (child_die = die->child; child_die && child_die->tag;
6253 child_die = sibling_die (child_die))
6254 {
6255 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6256 {
6257 complaint (&symfile_complaints,
6258 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
6259 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6260 child_die->tag, child_die->offset.sect_off, objfile->name);
6261 continue;
6262 }
6263
6264 nparams++;
6265 }
6266
6267 call_site = obstack_alloc (&objfile->objfile_obstack,
6268 (sizeof (*call_site)
6269 + (sizeof (*call_site->parameter)
6270 * (nparams - 1))));
6271 *slot = call_site;
6272 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
6273 call_site->pc = pc;
6274
6275 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
6276 {
6277 struct die_info *func_die;
6278
6279 /* Skip also over DW_TAG_inlined_subroutine. */
6280 for (func_die = die->parent;
6281 func_die && func_die->tag != DW_TAG_subprogram
6282 && func_die->tag != DW_TAG_subroutine_type;
6283 func_die = func_die->parent);
6284
6285 /* DW_AT_GNU_all_call_sites is a superset
6286 of DW_AT_GNU_all_tail_call_sites. */
6287 if (func_die
6288 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
6289 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
6290 {
6291 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
6292 not complete. But keep CALL_SITE for look ups via call_site_htab,
6293 both the initial caller containing the real return address PC and
6294 the final callee containing the current PC of a chain of tail
6295 calls do not need to have the tail call list complete. But any
6296 function candidate for a virtual tail call frame searched via
6297 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
6298 determined unambiguously. */
6299 }
6300 else
6301 {
6302 struct type *func_type = NULL;
6303
6304 if (func_die)
6305 func_type = get_die_type (func_die, cu);
6306 if (func_type != NULL)
6307 {
6308 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
6309
6310 /* Enlist this call site to the function. */
6311 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
6312 TYPE_TAIL_CALL_LIST (func_type) = call_site;
6313 }
6314 else
6315 complaint (&symfile_complaints,
6316 _("Cannot find function owning DW_TAG_GNU_call_site "
6317 "DIE 0x%x [in module %s]"),
6318 die->offset.sect_off, objfile->name);
6319 }
6320 }
6321
6322 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
6323 if (attr == NULL)
6324 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
6325 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
6326 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
6327 /* Keep NULL DWARF_BLOCK. */;
6328 else if (attr_form_is_block (attr))
6329 {
6330 struct dwarf2_locexpr_baton *dlbaton;
6331
6332 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
6333 dlbaton->data = DW_BLOCK (attr)->data;
6334 dlbaton->size = DW_BLOCK (attr)->size;
6335 dlbaton->per_cu = cu->per_cu;
6336
6337 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
6338 }
6339 else if (is_ref_attr (attr))
6340 {
6341 struct dwarf2_cu *target_cu = cu;
6342 struct die_info *target_die;
6343
6344 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
6345 gdb_assert (target_cu->objfile == objfile);
6346 if (die_is_declaration (target_die, target_cu))
6347 {
6348 const char *target_physname;
6349
6350 target_physname = dwarf2_physname (NULL, target_die, target_cu);
6351 if (target_physname == NULL)
6352 complaint (&symfile_complaints,
6353 _("DW_AT_GNU_call_site_target target DIE has invalid "
6354 "physname, for referencing DIE 0x%x [in module %s]"),
6355 die->offset.sect_off, objfile->name);
6356 else
6357 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
6358 }
6359 else
6360 {
6361 CORE_ADDR lowpc;
6362
6363 /* DW_AT_entry_pc should be preferred. */
6364 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
6365 complaint (&symfile_complaints,
6366 _("DW_AT_GNU_call_site_target target DIE has invalid "
6367 "low pc, for referencing DIE 0x%x [in module %s]"),
6368 die->offset.sect_off, objfile->name);
6369 else
6370 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
6371 }
6372 }
6373 else
6374 complaint (&symfile_complaints,
6375 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
6376 "block nor reference, for DIE 0x%x [in module %s]"),
6377 die->offset.sect_off, objfile->name);
6378
6379 call_site->per_cu = cu->per_cu;
6380
6381 for (child_die = die->child;
6382 child_die && child_die->tag;
6383 child_die = sibling_die (child_die))
6384 {
6385 struct dwarf2_locexpr_baton *dlbaton;
6386 struct call_site_parameter *parameter;
6387
6388 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6389 {
6390 /* Already printed the complaint above. */
6391 continue;
6392 }
6393
6394 gdb_assert (call_site->parameter_count < nparams);
6395 parameter = &call_site->parameter[call_site->parameter_count];
6396
6397 /* DW_AT_location specifies the register number. Value of the data
6398 assumed for the register is contained in DW_AT_GNU_call_site_value. */
6399
6400 attr = dwarf2_attr (child_die, DW_AT_location, cu);
6401 if (!attr || !attr_form_is_block (attr))
6402 {
6403 complaint (&symfile_complaints,
6404 _("No DW_FORM_block* DW_AT_location for "
6405 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6406 child_die->offset.sect_off, objfile->name);
6407 continue;
6408 }
6409 parameter->dwarf_reg = dwarf_block_to_dwarf_reg (DW_BLOCK (attr)->data,
6410 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size]);
6411 if (parameter->dwarf_reg == -1
6412 && !dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (attr)->data,
6413 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size],
6414 &parameter->fb_offset))
6415 {
6416 complaint (&symfile_complaints,
6417 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
6418 "for DW_FORM_block* DW_AT_location for "
6419 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6420 child_die->offset.sect_off, objfile->name);
6421 continue;
6422 }
6423
6424 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
6425 if (!attr_form_is_block (attr))
6426 {
6427 complaint (&symfile_complaints,
6428 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
6429 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6430 child_die->offset.sect_off, objfile->name);
6431 continue;
6432 }
6433 parameter->value = DW_BLOCK (attr)->data;
6434 parameter->value_size = DW_BLOCK (attr)->size;
6435
6436 /* Parameters are not pre-cleared by memset above. */
6437 parameter->data_value = NULL;
6438 parameter->data_value_size = 0;
6439 call_site->parameter_count++;
6440
6441 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
6442 if (attr)
6443 {
6444 if (!attr_form_is_block (attr))
6445 complaint (&symfile_complaints,
6446 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
6447 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6448 child_die->offset.sect_off, objfile->name);
6449 else
6450 {
6451 parameter->data_value = DW_BLOCK (attr)->data;
6452 parameter->data_value_size = DW_BLOCK (attr)->size;
6453 }
6454 }
6455 }
6456}
6457
6458/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
6459 Return 1 if the attributes are present and valid, otherwise, return 0.
6460 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
6461
6462static int
6463dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
6464 CORE_ADDR *high_return, struct dwarf2_cu *cu,
6465 struct partial_symtab *ranges_pst)
6466{
6467 struct objfile *objfile = cu->objfile;
6468 struct comp_unit_head *cu_header = &cu->header;
6469 bfd *obfd = objfile->obfd;
6470 unsigned int addr_size = cu_header->addr_size;
6471 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6472 /* Base address selection entry. */
6473 CORE_ADDR base;
6474 int found_base;
6475 unsigned int dummy;
6476 gdb_byte *buffer;
6477 CORE_ADDR marker;
6478 int low_set;
6479 CORE_ADDR low = 0;
6480 CORE_ADDR high = 0;
6481 CORE_ADDR baseaddr;
6482
6483 found_base = cu->base_known;
6484 base = cu->base_address;
6485
6486 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
6487 if (offset >= dwarf2_per_objfile->ranges.size)
6488 {
6489 complaint (&symfile_complaints,
6490 _("Offset %d out of bounds for DW_AT_ranges attribute"),
6491 offset);
6492 return 0;
6493 }
6494 buffer = dwarf2_per_objfile->ranges.buffer + offset;
6495
6496 /* Read in the largest possible address. */
6497 marker = read_address (obfd, buffer, cu, &dummy);
6498 if ((marker & mask) == mask)
6499 {
6500 /* If we found the largest possible address, then
6501 read the base address. */
6502 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6503 buffer += 2 * addr_size;
6504 offset += 2 * addr_size;
6505 found_base = 1;
6506 }
6507
6508 low_set = 0;
6509
6510 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6511
6512 while (1)
6513 {
6514 CORE_ADDR range_beginning, range_end;
6515
6516 range_beginning = read_address (obfd, buffer, cu, &dummy);
6517 buffer += addr_size;
6518 range_end = read_address (obfd, buffer, cu, &dummy);
6519 buffer += addr_size;
6520 offset += 2 * addr_size;
6521
6522 /* An end of list marker is a pair of zero addresses. */
6523 if (range_beginning == 0 && range_end == 0)
6524 /* Found the end of list entry. */
6525 break;
6526
6527 /* Each base address selection entry is a pair of 2 values.
6528 The first is the largest possible address, the second is
6529 the base address. Check for a base address here. */
6530 if ((range_beginning & mask) == mask)
6531 {
6532 /* If we found the largest possible address, then
6533 read the base address. */
6534 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6535 found_base = 1;
6536 continue;
6537 }
6538
6539 if (!found_base)
6540 {
6541 /* We have no valid base address for the ranges
6542 data. */
6543 complaint (&symfile_complaints,
6544 _("Invalid .debug_ranges data (no base address)"));
6545 return 0;
6546 }
6547
6548 if (range_beginning > range_end)
6549 {
6550 /* Inverted range entries are invalid. */
6551 complaint (&symfile_complaints,
6552 _("Invalid .debug_ranges data (inverted range)"));
6553 return 0;
6554 }
6555
6556 /* Empty range entries have no effect. */
6557 if (range_beginning == range_end)
6558 continue;
6559
6560 range_beginning += base;
6561 range_end += base;
6562
6563 if (ranges_pst != NULL)
6564 addrmap_set_empty (objfile->psymtabs_addrmap,
6565 range_beginning + baseaddr,
6566 range_end - 1 + baseaddr,
6567 ranges_pst);
6568
6569 /* FIXME: This is recording everything as a low-high
6570 segment of consecutive addresses. We should have a
6571 data structure for discontiguous block ranges
6572 instead. */
6573 if (! low_set)
6574 {
6575 low = range_beginning;
6576 high = range_end;
6577 low_set = 1;
6578 }
6579 else
6580 {
6581 if (range_beginning < low)
6582 low = range_beginning;
6583 if (range_end > high)
6584 high = range_end;
6585 }
6586 }
6587
6588 if (! low_set)
6589 /* If the first entry is an end-of-list marker, the range
6590 describes an empty scope, i.e. no instructions. */
6591 return 0;
6592
6593 if (low_return)
6594 *low_return = low;
6595 if (high_return)
6596 *high_return = high;
6597 return 1;
6598}
6599
6600/* Get low and high pc attributes from a die. Return 1 if the attributes
6601 are present and valid, otherwise, return 0. Return -1 if the range is
6602 discontinuous, i.e. derived from DW_AT_ranges information. */
6603static int
6604dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
6605 CORE_ADDR *highpc, struct dwarf2_cu *cu,
6606 struct partial_symtab *pst)
6607{
6608 struct attribute *attr;
6609 CORE_ADDR low = 0;
6610 CORE_ADDR high = 0;
6611 int ret = 0;
6612
6613 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6614 if (attr)
6615 {
6616 high = DW_ADDR (attr);
6617 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6618 if (attr)
6619 low = DW_ADDR (attr);
6620 else
6621 /* Found high w/o low attribute. */
6622 return 0;
6623
6624 /* Found consecutive range of addresses. */
6625 ret = 1;
6626 }
6627 else
6628 {
6629 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6630 if (attr != NULL)
6631 {
6632 /* Value of the DW_AT_ranges attribute is the offset in the
6633 .debug_ranges section. */
6634 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
6635 return 0;
6636 /* Found discontinuous range of addresses. */
6637 ret = -1;
6638 }
6639 }
6640
6641 /* read_partial_die has also the strict LOW < HIGH requirement. */
6642 if (high <= low)
6643 return 0;
6644
6645 /* When using the GNU linker, .gnu.linkonce. sections are used to
6646 eliminate duplicate copies of functions and vtables and such.
6647 The linker will arbitrarily choose one and discard the others.
6648 The AT_*_pc values for such functions refer to local labels in
6649 these sections. If the section from that file was discarded, the
6650 labels are not in the output, so the relocs get a value of 0.
6651 If this is a discarded function, mark the pc bounds as invalid,
6652 so that GDB will ignore it. */
6653 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
6654 return 0;
6655
6656 *lowpc = low;
6657 if (highpc)
6658 *highpc = high;
6659 return ret;
6660}
6661
6662/* Assuming that DIE represents a subprogram DIE or a lexical block, get
6663 its low and high PC addresses. Do nothing if these addresses could not
6664 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6665 and HIGHPC to the high address if greater than HIGHPC. */
6666
6667static void
6668dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6669 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6670 struct dwarf2_cu *cu)
6671{
6672 CORE_ADDR low, high;
6673 struct die_info *child = die->child;
6674
6675 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
6676 {
6677 *lowpc = min (*lowpc, low);
6678 *highpc = max (*highpc, high);
6679 }
6680
6681 /* If the language does not allow nested subprograms (either inside
6682 subprograms or lexical blocks), we're done. */
6683 if (cu->language != language_ada)
6684 return;
6685
6686 /* Check all the children of the given DIE. If it contains nested
6687 subprograms, then check their pc bounds. Likewise, we need to
6688 check lexical blocks as well, as they may also contain subprogram
6689 definitions. */
6690 while (child && child->tag)
6691 {
6692 if (child->tag == DW_TAG_subprogram
6693 || child->tag == DW_TAG_lexical_block)
6694 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6695 child = sibling_die (child);
6696 }
6697}
6698
6699/* Get the low and high pc's represented by the scope DIE, and store
6700 them in *LOWPC and *HIGHPC. If the correct values can't be
6701 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6702
6703static void
6704get_scope_pc_bounds (struct die_info *die,
6705 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6706 struct dwarf2_cu *cu)
6707{
6708 CORE_ADDR best_low = (CORE_ADDR) -1;
6709 CORE_ADDR best_high = (CORE_ADDR) 0;
6710 CORE_ADDR current_low, current_high;
6711
6712 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6713 {
6714 best_low = current_low;
6715 best_high = current_high;
6716 }
6717 else
6718 {
6719 struct die_info *child = die->child;
6720
6721 while (child && child->tag)
6722 {
6723 switch (child->tag) {
6724 case DW_TAG_subprogram:
6725 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6726 break;
6727 case DW_TAG_namespace:
6728 case DW_TAG_module:
6729 /* FIXME: carlton/2004-01-16: Should we do this for
6730 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6731 that current GCC's always emit the DIEs corresponding
6732 to definitions of methods of classes as children of a
6733 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6734 the DIEs giving the declarations, which could be
6735 anywhere). But I don't see any reason why the
6736 standards says that they have to be there. */
6737 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6738
6739 if (current_low != ((CORE_ADDR) -1))
6740 {
6741 best_low = min (best_low, current_low);
6742 best_high = max (best_high, current_high);
6743 }
6744 break;
6745 default:
6746 /* Ignore. */
6747 break;
6748 }
6749
6750 child = sibling_die (child);
6751 }
6752 }
6753
6754 *lowpc = best_low;
6755 *highpc = best_high;
6756}
6757
6758/* Record the address ranges for BLOCK, offset by BASEADDR, as given
6759 in DIE. */
6760static void
6761dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6762 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6763{
6764 struct objfile *objfile = cu->objfile;
6765 struct attribute *attr;
6766
6767 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6768 if (attr)
6769 {
6770 CORE_ADDR high = DW_ADDR (attr);
6771
6772 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6773 if (attr)
6774 {
6775 CORE_ADDR low = DW_ADDR (attr);
6776
6777 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6778 }
6779 }
6780
6781 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6782 if (attr)
6783 {
6784 bfd *obfd = objfile->obfd;
6785
6786 /* The value of the DW_AT_ranges attribute is the offset of the
6787 address range list in the .debug_ranges section. */
6788 unsigned long offset = DW_UNSND (attr);
6789 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6790
6791 /* For some target architectures, but not others, the
6792 read_address function sign-extends the addresses it returns.
6793 To recognize base address selection entries, we need a
6794 mask. */
6795 unsigned int addr_size = cu->header.addr_size;
6796 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6797
6798 /* The base address, to which the next pair is relative. Note
6799 that this 'base' is a DWARF concept: most entries in a range
6800 list are relative, to reduce the number of relocs against the
6801 debugging information. This is separate from this function's
6802 'baseaddr' argument, which GDB uses to relocate debugging
6803 information from a shared library based on the address at
6804 which the library was loaded. */
6805 CORE_ADDR base = cu->base_address;
6806 int base_known = cu->base_known;
6807
6808 gdb_assert (dwarf2_per_objfile->ranges.readin);
6809 if (offset >= dwarf2_per_objfile->ranges.size)
6810 {
6811 complaint (&symfile_complaints,
6812 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6813 offset);
6814 return;
6815 }
6816
6817 for (;;)
6818 {
6819 unsigned int bytes_read;
6820 CORE_ADDR start, end;
6821
6822 start = read_address (obfd, buffer, cu, &bytes_read);
6823 buffer += bytes_read;
6824 end = read_address (obfd, buffer, cu, &bytes_read);
6825 buffer += bytes_read;
6826
6827 /* Did we find the end of the range list? */
6828 if (start == 0 && end == 0)
6829 break;
6830
6831 /* Did we find a base address selection entry? */
6832 else if ((start & base_select_mask) == base_select_mask)
6833 {
6834 base = end;
6835 base_known = 1;
6836 }
6837
6838 /* We found an ordinary address range. */
6839 else
6840 {
6841 if (!base_known)
6842 {
6843 complaint (&symfile_complaints,
6844 _("Invalid .debug_ranges data "
6845 "(no base address)"));
6846 return;
6847 }
6848
6849 if (start > end)
6850 {
6851 /* Inverted range entries are invalid. */
6852 complaint (&symfile_complaints,
6853 _("Invalid .debug_ranges data "
6854 "(inverted range)"));
6855 return;
6856 }
6857
6858 /* Empty range entries have no effect. */
6859 if (start == end)
6860 continue;
6861
6862 record_block_range (block,
6863 baseaddr + base + start,
6864 baseaddr + base + end - 1);
6865 }
6866 }
6867 }
6868}
6869
6870/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
6871 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
6872 during 4.6.0 experimental. */
6873
6874static int
6875producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
6876{
6877 const char *cs;
6878 int major, minor, release;
6879 int result = 0;
6880
6881 if (cu->producer == NULL)
6882 {
6883 /* For unknown compilers expect their behavior is DWARF version
6884 compliant.
6885
6886 GCC started to support .debug_types sections by -gdwarf-4 since
6887 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
6888 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
6889 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
6890 interpreted incorrectly by GDB now - GCC PR debug/48229. */
6891
6892 return 0;
6893 }
6894
6895 if (cu->checked_producer)
6896 return cu->producer_is_gxx_lt_4_6;
6897
6898 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
6899
6900 if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) != 0)
6901 {
6902 /* For non-GCC compilers expect their behavior is DWARF version
6903 compliant. */
6904 }
6905 else
6906 {
6907 cs = &cu->producer[strlen ("GNU ")];
6908 while (*cs && !isdigit (*cs))
6909 cs++;
6910 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
6911 {
6912 /* Not recognized as GCC. */
6913 }
6914 else
6915 result = major < 4 || (major == 4 && minor < 6);
6916 }
6917
6918 cu->checked_producer = 1;
6919 cu->producer_is_gxx_lt_4_6 = result;
6920
6921 return result;
6922}
6923
6924/* Return the default accessibility type if it is not overriden by
6925 DW_AT_accessibility. */
6926
6927static enum dwarf_access_attribute
6928dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
6929{
6930 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
6931 {
6932 /* The default DWARF 2 accessibility for members is public, the default
6933 accessibility for inheritance is private. */
6934
6935 if (die->tag != DW_TAG_inheritance)
6936 return DW_ACCESS_public;
6937 else
6938 return DW_ACCESS_private;
6939 }
6940 else
6941 {
6942 /* DWARF 3+ defines the default accessibility a different way. The same
6943 rules apply now for DW_TAG_inheritance as for the members and it only
6944 depends on the container kind. */
6945
6946 if (die->parent->tag == DW_TAG_class_type)
6947 return DW_ACCESS_private;
6948 else
6949 return DW_ACCESS_public;
6950 }
6951}
6952
6953/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
6954 offset. If the attribute was not found return 0, otherwise return
6955 1. If it was found but could not properly be handled, set *OFFSET
6956 to 0. */
6957
6958static int
6959handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
6960 LONGEST *offset)
6961{
6962 struct attribute *attr;
6963
6964 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6965 if (attr != NULL)
6966 {
6967 *offset = 0;
6968
6969 /* Note that we do not check for a section offset first here.
6970 This is because DW_AT_data_member_location is new in DWARF 4,
6971 so if we see it, we can assume that a constant form is really
6972 a constant and not a section offset. */
6973 if (attr_form_is_constant (attr))
6974 *offset = dwarf2_get_attr_constant_value (attr, 0);
6975 else if (attr_form_is_section_offset (attr))
6976 dwarf2_complex_location_expr_complaint ();
6977 else if (attr_form_is_block (attr))
6978 *offset = decode_locdesc (DW_BLOCK (attr), cu);
6979 else
6980 dwarf2_complex_location_expr_complaint ();
6981
6982 return 1;
6983 }
6984
6985 return 0;
6986}
6987
6988/* Add an aggregate field to the field list. */
6989
6990static void
6991dwarf2_add_field (struct field_info *fip, struct die_info *die,
6992 struct dwarf2_cu *cu)
6993{
6994 struct objfile *objfile = cu->objfile;
6995 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6996 struct nextfield *new_field;
6997 struct attribute *attr;
6998 struct field *fp;
6999 char *fieldname = "";
7000
7001 /* Allocate a new field list entry and link it in. */
7002 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
7003 make_cleanup (xfree, new_field);
7004 memset (new_field, 0, sizeof (struct nextfield));
7005
7006 if (die->tag == DW_TAG_inheritance)
7007 {
7008 new_field->next = fip->baseclasses;
7009 fip->baseclasses = new_field;
7010 }
7011 else
7012 {
7013 new_field->next = fip->fields;
7014 fip->fields = new_field;
7015 }
7016 fip->nfields++;
7017
7018 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7019 if (attr)
7020 new_field->accessibility = DW_UNSND (attr);
7021 else
7022 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
7023 if (new_field->accessibility != DW_ACCESS_public)
7024 fip->non_public_fields = 1;
7025
7026 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7027 if (attr)
7028 new_field->virtuality = DW_UNSND (attr);
7029 else
7030 new_field->virtuality = DW_VIRTUALITY_none;
7031
7032 fp = &new_field->field;
7033
7034 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
7035 {
7036 LONGEST offset;
7037
7038 /* Data member other than a C++ static data member. */
7039
7040 /* Get type of field. */
7041 fp->type = die_type (die, cu);
7042
7043 SET_FIELD_BITPOS (*fp, 0);
7044
7045 /* Get bit size of field (zero if none). */
7046 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
7047 if (attr)
7048 {
7049 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
7050 }
7051 else
7052 {
7053 FIELD_BITSIZE (*fp) = 0;
7054 }
7055
7056 /* Get bit offset of field. */
7057 if (handle_data_member_location (die, cu, &offset))
7058 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7059 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
7060 if (attr)
7061 {
7062 if (gdbarch_bits_big_endian (gdbarch))
7063 {
7064 /* For big endian bits, the DW_AT_bit_offset gives the
7065 additional bit offset from the MSB of the containing
7066 anonymous object to the MSB of the field. We don't
7067 have to do anything special since we don't need to
7068 know the size of the anonymous object. */
7069 FIELD_BITPOS (*fp) += DW_UNSND (attr);
7070 }
7071 else
7072 {
7073 /* For little endian bits, compute the bit offset to the
7074 MSB of the anonymous object, subtract off the number of
7075 bits from the MSB of the field to the MSB of the
7076 object, and then subtract off the number of bits of
7077 the field itself. The result is the bit offset of
7078 the LSB of the field. */
7079 int anonymous_size;
7080 int bit_offset = DW_UNSND (attr);
7081
7082 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7083 if (attr)
7084 {
7085 /* The size of the anonymous object containing
7086 the bit field is explicit, so use the
7087 indicated size (in bytes). */
7088 anonymous_size = DW_UNSND (attr);
7089 }
7090 else
7091 {
7092 /* The size of the anonymous object containing
7093 the bit field must be inferred from the type
7094 attribute of the data member containing the
7095 bit field. */
7096 anonymous_size = TYPE_LENGTH (fp->type);
7097 }
7098 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
7099 - bit_offset - FIELD_BITSIZE (*fp);
7100 }
7101 }
7102
7103 /* Get name of field. */
7104 fieldname = dwarf2_name (die, cu);
7105 if (fieldname == NULL)
7106 fieldname = "";
7107
7108 /* The name is already allocated along with this objfile, so we don't
7109 need to duplicate it for the type. */
7110 fp->name = fieldname;
7111
7112 /* Change accessibility for artificial fields (e.g. virtual table
7113 pointer or virtual base class pointer) to private. */
7114 if (dwarf2_attr (die, DW_AT_artificial, cu))
7115 {
7116 FIELD_ARTIFICIAL (*fp) = 1;
7117 new_field->accessibility = DW_ACCESS_private;
7118 fip->non_public_fields = 1;
7119 }
7120 }
7121 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
7122 {
7123 /* C++ static member. */
7124
7125 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
7126 is a declaration, but all versions of G++ as of this writing
7127 (so through at least 3.2.1) incorrectly generate
7128 DW_TAG_variable tags. */
7129
7130 const char *physname;
7131
7132 /* Get name of field. */
7133 fieldname = dwarf2_name (die, cu);
7134 if (fieldname == NULL)
7135 return;
7136
7137 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7138 if (attr
7139 /* Only create a symbol if this is an external value.
7140 new_symbol checks this and puts the value in the global symbol
7141 table, which we want. If it is not external, new_symbol
7142 will try to put the value in cu->list_in_scope which is wrong. */
7143 && dwarf2_flag_true_p (die, DW_AT_external, cu))
7144 {
7145 /* A static const member, not much different than an enum as far as
7146 we're concerned, except that we can support more types. */
7147 new_symbol (die, NULL, cu);
7148 }
7149
7150 /* Get physical name. */
7151 physname = dwarf2_physname (fieldname, die, cu);
7152
7153 /* The name is already allocated along with this objfile, so we don't
7154 need to duplicate it for the type. */
7155 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
7156 FIELD_TYPE (*fp) = die_type (die, cu);
7157 FIELD_NAME (*fp) = fieldname;
7158 }
7159 else if (die->tag == DW_TAG_inheritance)
7160 {
7161 LONGEST offset;
7162
7163 /* C++ base class field. */
7164 if (handle_data_member_location (die, cu, &offset))
7165 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7166 FIELD_BITSIZE (*fp) = 0;
7167 FIELD_TYPE (*fp) = die_type (die, cu);
7168 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
7169 fip->nbaseclasses++;
7170 }
7171}
7172
7173/* Add a typedef defined in the scope of the FIP's class. */
7174
7175static void
7176dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
7177 struct dwarf2_cu *cu)
7178{
7179 struct objfile *objfile = cu->objfile;
7180 struct typedef_field_list *new_field;
7181 struct attribute *attr;
7182 struct typedef_field *fp;
7183 char *fieldname = "";
7184
7185 /* Allocate a new field list entry and link it in. */
7186 new_field = xzalloc (sizeof (*new_field));
7187 make_cleanup (xfree, new_field);
7188
7189 gdb_assert (die->tag == DW_TAG_typedef);
7190
7191 fp = &new_field->field;
7192
7193 /* Get name of field. */
7194 fp->name = dwarf2_name (die, cu);
7195 if (fp->name == NULL)
7196 return;
7197
7198 fp->type = read_type_die (die, cu);
7199
7200 new_field->next = fip->typedef_field_list;
7201 fip->typedef_field_list = new_field;
7202 fip->typedef_field_list_count++;
7203}
7204
7205/* Create the vector of fields, and attach it to the type. */
7206
7207static void
7208dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
7209 struct dwarf2_cu *cu)
7210{
7211 int nfields = fip->nfields;
7212
7213 /* Record the field count, allocate space for the array of fields,
7214 and create blank accessibility bitfields if necessary. */
7215 TYPE_NFIELDS (type) = nfields;
7216 TYPE_FIELDS (type) = (struct field *)
7217 TYPE_ALLOC (type, sizeof (struct field) * nfields);
7218 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
7219
7220 if (fip->non_public_fields && cu->language != language_ada)
7221 {
7222 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7223
7224 TYPE_FIELD_PRIVATE_BITS (type) =
7225 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7226 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
7227
7228 TYPE_FIELD_PROTECTED_BITS (type) =
7229 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7230 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
7231
7232 TYPE_FIELD_IGNORE_BITS (type) =
7233 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7234 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
7235 }
7236
7237 /* If the type has baseclasses, allocate and clear a bit vector for
7238 TYPE_FIELD_VIRTUAL_BITS. */
7239 if (fip->nbaseclasses && cu->language != language_ada)
7240 {
7241 int num_bytes = B_BYTES (fip->nbaseclasses);
7242 unsigned char *pointer;
7243
7244 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7245 pointer = TYPE_ALLOC (type, num_bytes);
7246 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
7247 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
7248 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
7249 }
7250
7251 /* Copy the saved-up fields into the field vector. Start from the head of
7252 the list, adding to the tail of the field array, so that they end up in
7253 the same order in the array in which they were added to the list. */
7254 while (nfields-- > 0)
7255 {
7256 struct nextfield *fieldp;
7257
7258 if (fip->fields)
7259 {
7260 fieldp = fip->fields;
7261 fip->fields = fieldp->next;
7262 }
7263 else
7264 {
7265 fieldp = fip->baseclasses;
7266 fip->baseclasses = fieldp->next;
7267 }
7268
7269 TYPE_FIELD (type, nfields) = fieldp->field;
7270 switch (fieldp->accessibility)
7271 {
7272 case DW_ACCESS_private:
7273 if (cu->language != language_ada)
7274 SET_TYPE_FIELD_PRIVATE (type, nfields);
7275 break;
7276
7277 case DW_ACCESS_protected:
7278 if (cu->language != language_ada)
7279 SET_TYPE_FIELD_PROTECTED (type, nfields);
7280 break;
7281
7282 case DW_ACCESS_public:
7283 break;
7284
7285 default:
7286 /* Unknown accessibility. Complain and treat it as public. */
7287 {
7288 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7289 fieldp->accessibility);
7290 }
7291 break;
7292 }
7293 if (nfields < fip->nbaseclasses)
7294 {
7295 switch (fieldp->virtuality)
7296 {
7297 case DW_VIRTUALITY_virtual:
7298 case DW_VIRTUALITY_pure_virtual:
7299 if (cu->language == language_ada)
7300 error (_("unexpected virtuality in component of Ada type"));
7301 SET_TYPE_FIELD_VIRTUAL (type, nfields);
7302 break;
7303 }
7304 }
7305 }
7306}
7307
7308/* Add a member function to the proper fieldlist. */
7309
7310static void
7311dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
7312 struct type *type, struct dwarf2_cu *cu)
7313{
7314 struct objfile *objfile = cu->objfile;
7315 struct attribute *attr;
7316 struct fnfieldlist *flp;
7317 int i;
7318 struct fn_field *fnp;
7319 char *fieldname;
7320 struct nextfnfield *new_fnfield;
7321 struct type *this_type;
7322 enum dwarf_access_attribute accessibility;
7323
7324 if (cu->language == language_ada)
7325 error (_("unexpected member function in Ada type"));
7326
7327 /* Get name of member function. */
7328 fieldname = dwarf2_name (die, cu);
7329 if (fieldname == NULL)
7330 return;
7331
7332 /* Look up member function name in fieldlist. */
7333 for (i = 0; i < fip->nfnfields; i++)
7334 {
7335 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
7336 break;
7337 }
7338
7339 /* Create new list element if necessary. */
7340 if (i < fip->nfnfields)
7341 flp = &fip->fnfieldlists[i];
7342 else
7343 {
7344 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
7345 {
7346 fip->fnfieldlists = (struct fnfieldlist *)
7347 xrealloc (fip->fnfieldlists,
7348 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
7349 * sizeof (struct fnfieldlist));
7350 if (fip->nfnfields == 0)
7351 make_cleanup (free_current_contents, &fip->fnfieldlists);
7352 }
7353 flp = &fip->fnfieldlists[fip->nfnfields];
7354 flp->name = fieldname;
7355 flp->length = 0;
7356 flp->head = NULL;
7357 i = fip->nfnfields++;
7358 }
7359
7360 /* Create a new member function field and chain it to the field list
7361 entry. */
7362 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
7363 make_cleanup (xfree, new_fnfield);
7364 memset (new_fnfield, 0, sizeof (struct nextfnfield));
7365 new_fnfield->next = flp->head;
7366 flp->head = new_fnfield;
7367 flp->length++;
7368
7369 /* Fill in the member function field info. */
7370 fnp = &new_fnfield->fnfield;
7371
7372 /* Delay processing of the physname until later. */
7373 if (cu->language == language_cplus || cu->language == language_java)
7374 {
7375 add_to_method_list (type, i, flp->length - 1, fieldname,
7376 die, cu);
7377 }
7378 else
7379 {
7380 const char *physname = dwarf2_physname (fieldname, die, cu);
7381 fnp->physname = physname ? physname : "";
7382 }
7383
7384 fnp->type = alloc_type (objfile);
7385 this_type = read_type_die (die, cu);
7386 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
7387 {
7388 int nparams = TYPE_NFIELDS (this_type);
7389
7390 /* TYPE is the domain of this method, and THIS_TYPE is the type
7391 of the method itself (TYPE_CODE_METHOD). */
7392 smash_to_method_type (fnp->type, type,
7393 TYPE_TARGET_TYPE (this_type),
7394 TYPE_FIELDS (this_type),
7395 TYPE_NFIELDS (this_type),
7396 TYPE_VARARGS (this_type));
7397
7398 /* Handle static member functions.
7399 Dwarf2 has no clean way to discern C++ static and non-static
7400 member functions. G++ helps GDB by marking the first
7401 parameter for non-static member functions (which is the this
7402 pointer) as artificial. We obtain this information from
7403 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
7404 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
7405 fnp->voffset = VOFFSET_STATIC;
7406 }
7407 else
7408 complaint (&symfile_complaints, _("member function type missing for '%s'"),
7409 dwarf2_full_name (fieldname, die, cu));
7410
7411 /* Get fcontext from DW_AT_containing_type if present. */
7412 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7413 fnp->fcontext = die_containing_type (die, cu);
7414
7415 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
7416 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
7417
7418 /* Get accessibility. */
7419 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7420 if (attr)
7421 accessibility = DW_UNSND (attr);
7422 else
7423 accessibility = dwarf2_default_access_attribute (die, cu);
7424 switch (accessibility)
7425 {
7426 case DW_ACCESS_private:
7427 fnp->is_private = 1;
7428 break;
7429 case DW_ACCESS_protected:
7430 fnp->is_protected = 1;
7431 break;
7432 }
7433
7434 /* Check for artificial methods. */
7435 attr = dwarf2_attr (die, DW_AT_artificial, cu);
7436 if (attr && DW_UNSND (attr) != 0)
7437 fnp->is_artificial = 1;
7438
7439 /* Get index in virtual function table if it is a virtual member
7440 function. For older versions of GCC, this is an offset in the
7441 appropriate virtual table, as specified by DW_AT_containing_type.
7442 For everyone else, it is an expression to be evaluated relative
7443 to the object address. */
7444
7445 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
7446 if (attr)
7447 {
7448 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
7449 {
7450 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
7451 {
7452 /* Old-style GCC. */
7453 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
7454 }
7455 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
7456 || (DW_BLOCK (attr)->size > 1
7457 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
7458 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
7459 {
7460 struct dwarf_block blk;
7461 int offset;
7462
7463 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
7464 ? 1 : 2);
7465 blk.size = DW_BLOCK (attr)->size - offset;
7466 blk.data = DW_BLOCK (attr)->data + offset;
7467 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
7468 if ((fnp->voffset % cu->header.addr_size) != 0)
7469 dwarf2_complex_location_expr_complaint ();
7470 else
7471 fnp->voffset /= cu->header.addr_size;
7472 fnp->voffset += 2;
7473 }
7474 else
7475 dwarf2_complex_location_expr_complaint ();
7476
7477 if (!fnp->fcontext)
7478 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
7479 }
7480 else if (attr_form_is_section_offset (attr))
7481 {
7482 dwarf2_complex_location_expr_complaint ();
7483 }
7484 else
7485 {
7486 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
7487 fieldname);
7488 }
7489 }
7490 else
7491 {
7492 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7493 if (attr && DW_UNSND (attr))
7494 {
7495 /* GCC does this, as of 2008-08-25; PR debug/37237. */
7496 complaint (&symfile_complaints,
7497 _("Member function \"%s\" (offset %d) is virtual "
7498 "but the vtable offset is not specified"),
7499 fieldname, die->offset.sect_off);
7500 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7501 TYPE_CPLUS_DYNAMIC (type) = 1;
7502 }
7503 }
7504}
7505
7506/* Create the vector of member function fields, and attach it to the type. */
7507
7508static void
7509dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
7510 struct dwarf2_cu *cu)
7511{
7512 struct fnfieldlist *flp;
7513 int i;
7514
7515 if (cu->language == language_ada)
7516 error (_("unexpected member functions in Ada type"));
7517
7518 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7519 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
7520 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
7521
7522 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
7523 {
7524 struct nextfnfield *nfp = flp->head;
7525 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
7526 int k;
7527
7528 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
7529 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
7530 fn_flp->fn_fields = (struct fn_field *)
7531 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
7532 for (k = flp->length; (k--, nfp); nfp = nfp->next)
7533 fn_flp->fn_fields[k] = nfp->fnfield;
7534 }
7535
7536 TYPE_NFN_FIELDS (type) = fip->nfnfields;
7537}
7538
7539/* Returns non-zero if NAME is the name of a vtable member in CU's
7540 language, zero otherwise. */
7541static int
7542is_vtable_name (const char *name, struct dwarf2_cu *cu)
7543{
7544 static const char vptr[] = "_vptr";
7545 static const char vtable[] = "vtable";
7546
7547 /* Look for the C++ and Java forms of the vtable. */
7548 if ((cu->language == language_java
7549 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
7550 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
7551 && is_cplus_marker (name[sizeof (vptr) - 1])))
7552 return 1;
7553
7554 return 0;
7555}
7556
7557/* GCC outputs unnamed structures that are really pointers to member
7558 functions, with the ABI-specified layout. If TYPE describes
7559 such a structure, smash it into a member function type.
7560
7561 GCC shouldn't do this; it should just output pointer to member DIEs.
7562 This is GCC PR debug/28767. */
7563
7564static void
7565quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
7566{
7567 struct type *pfn_type, *domain_type, *new_type;
7568
7569 /* Check for a structure with no name and two children. */
7570 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
7571 return;
7572
7573 /* Check for __pfn and __delta members. */
7574 if (TYPE_FIELD_NAME (type, 0) == NULL
7575 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
7576 || TYPE_FIELD_NAME (type, 1) == NULL
7577 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
7578 return;
7579
7580 /* Find the type of the method. */
7581 pfn_type = TYPE_FIELD_TYPE (type, 0);
7582 if (pfn_type == NULL
7583 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
7584 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
7585 return;
7586
7587 /* Look for the "this" argument. */
7588 pfn_type = TYPE_TARGET_TYPE (pfn_type);
7589 if (TYPE_NFIELDS (pfn_type) == 0
7590 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
7591 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
7592 return;
7593
7594 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
7595 new_type = alloc_type (objfile);
7596 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
7597 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
7598 TYPE_VARARGS (pfn_type));
7599 smash_to_methodptr_type (type, new_type);
7600}
7601
7602/* Called when we find the DIE that starts a structure or union scope
7603 (definition) to create a type for the structure or union. Fill in
7604 the type's name and general properties; the members will not be
7605 processed until process_structure_type.
7606
7607 NOTE: we need to call these functions regardless of whether or not the
7608 DIE has a DW_AT_name attribute, since it might be an anonymous
7609 structure or union. This gets the type entered into our set of
7610 user defined types.
7611
7612 However, if the structure is incomplete (an opaque struct/union)
7613 then suppress creating a symbol table entry for it since gdb only
7614 wants to find the one with the complete definition. Note that if
7615 it is complete, we just call new_symbol, which does it's own
7616 checking about whether the struct/union is anonymous or not (and
7617 suppresses creating a symbol table entry itself). */
7618
7619static struct type *
7620read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
7621{
7622 struct objfile *objfile = cu->objfile;
7623 struct type *type;
7624 struct attribute *attr;
7625 char *name;
7626
7627 /* If the definition of this type lives in .debug_types, read that type.
7628 Don't follow DW_AT_specification though, that will take us back up
7629 the chain and we want to go down. */
7630 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7631 if (attr)
7632 {
7633 struct dwarf2_cu *type_cu = cu;
7634 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7635
7636 /* We could just recurse on read_structure_type, but we need to call
7637 get_die_type to ensure only one type for this DIE is created.
7638 This is important, for example, because for c++ classes we need
7639 TYPE_NAME set which is only done by new_symbol. Blech. */
7640 type = read_type_die (type_die, type_cu);
7641
7642 /* TYPE_CU may not be the same as CU.
7643 Ensure TYPE is recorded in CU's type_hash table. */
7644 return set_die_type (die, type, cu);
7645 }
7646
7647 type = alloc_type (objfile);
7648 INIT_CPLUS_SPECIFIC (type);
7649
7650 name = dwarf2_name (die, cu);
7651 if (name != NULL)
7652 {
7653 if (cu->language == language_cplus
7654 || cu->language == language_java)
7655 {
7656 char *full_name = (char *) dwarf2_full_name (name, die, cu);
7657
7658 /* dwarf2_full_name might have already finished building the DIE's
7659 type. If so, there is no need to continue. */
7660 if (get_die_type (die, cu) != NULL)
7661 return get_die_type (die, cu);
7662
7663 TYPE_TAG_NAME (type) = full_name;
7664 if (die->tag == DW_TAG_structure_type
7665 || die->tag == DW_TAG_class_type)
7666 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7667 }
7668 else
7669 {
7670 /* The name is already allocated along with this objfile, so
7671 we don't need to duplicate it for the type. */
7672 TYPE_TAG_NAME (type) = (char *) name;
7673 if (die->tag == DW_TAG_class_type)
7674 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7675 }
7676 }
7677
7678 if (die->tag == DW_TAG_structure_type)
7679 {
7680 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7681 }
7682 else if (die->tag == DW_TAG_union_type)
7683 {
7684 TYPE_CODE (type) = TYPE_CODE_UNION;
7685 }
7686 else
7687 {
7688 TYPE_CODE (type) = TYPE_CODE_CLASS;
7689 }
7690
7691 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
7692 TYPE_DECLARED_CLASS (type) = 1;
7693
7694 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7695 if (attr)
7696 {
7697 TYPE_LENGTH (type) = DW_UNSND (attr);
7698 }
7699 else
7700 {
7701 TYPE_LENGTH (type) = 0;
7702 }
7703
7704 TYPE_STUB_SUPPORTED (type) = 1;
7705 if (die_is_declaration (die, cu))
7706 TYPE_STUB (type) = 1;
7707 else if (attr == NULL && die->child == NULL
7708 && producer_is_realview (cu->producer))
7709 /* RealView does not output the required DW_AT_declaration
7710 on incomplete types. */
7711 TYPE_STUB (type) = 1;
7712
7713 /* We need to add the type field to the die immediately so we don't
7714 infinitely recurse when dealing with pointers to the structure
7715 type within the structure itself. */
7716 set_die_type (die, type, cu);
7717
7718 /* set_die_type should be already done. */
7719 set_descriptive_type (type, die, cu);
7720
7721 return type;
7722}
7723
7724/* Finish creating a structure or union type, including filling in
7725 its members and creating a symbol for it. */
7726
7727static void
7728process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
7729{
7730 struct objfile *objfile = cu->objfile;
7731 struct die_info *child_die = die->child;
7732 struct type *type;
7733
7734 type = get_die_type (die, cu);
7735 if (type == NULL)
7736 type = read_structure_type (die, cu);
7737
7738 if (die->child != NULL && ! die_is_declaration (die, cu))
7739 {
7740 struct field_info fi;
7741 struct die_info *child_die;
7742 VEC (symbolp) *template_args = NULL;
7743 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7744
7745 memset (&fi, 0, sizeof (struct field_info));
7746
7747 child_die = die->child;
7748
7749 while (child_die && child_die->tag)
7750 {
7751 if (child_die->tag == DW_TAG_member
7752 || child_die->tag == DW_TAG_variable)
7753 {
7754 /* NOTE: carlton/2002-11-05: A C++ static data member
7755 should be a DW_TAG_member that is a declaration, but
7756 all versions of G++ as of this writing (so through at
7757 least 3.2.1) incorrectly generate DW_TAG_variable
7758 tags for them instead. */
7759 dwarf2_add_field (&fi, child_die, cu);
7760 }
7761 else if (child_die->tag == DW_TAG_subprogram)
7762 {
7763 /* C++ member function. */
7764 dwarf2_add_member_fn (&fi, child_die, type, cu);
7765 }
7766 else if (child_die->tag == DW_TAG_inheritance)
7767 {
7768 /* C++ base class field. */
7769 dwarf2_add_field (&fi, child_die, cu);
7770 }
7771 else if (child_die->tag == DW_TAG_typedef)
7772 dwarf2_add_typedef (&fi, child_die, cu);
7773 else if (child_die->tag == DW_TAG_template_type_param
7774 || child_die->tag == DW_TAG_template_value_param)
7775 {
7776 struct symbol *arg = new_symbol (child_die, NULL, cu);
7777
7778 if (arg != NULL)
7779 VEC_safe_push (symbolp, template_args, arg);
7780 }
7781
7782 child_die = sibling_die (child_die);
7783 }
7784
7785 /* Attach template arguments to type. */
7786 if (! VEC_empty (symbolp, template_args))
7787 {
7788 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7789 TYPE_N_TEMPLATE_ARGUMENTS (type)
7790 = VEC_length (symbolp, template_args);
7791 TYPE_TEMPLATE_ARGUMENTS (type)
7792 = obstack_alloc (&objfile->objfile_obstack,
7793 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7794 * sizeof (struct symbol *)));
7795 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7796 VEC_address (symbolp, template_args),
7797 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7798 * sizeof (struct symbol *)));
7799 VEC_free (symbolp, template_args);
7800 }
7801
7802 /* Attach fields and member functions to the type. */
7803 if (fi.nfields)
7804 dwarf2_attach_fields_to_type (&fi, type, cu);
7805 if (fi.nfnfields)
7806 {
7807 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7808
7809 /* Get the type which refers to the base class (possibly this
7810 class itself) which contains the vtable pointer for the current
7811 class from the DW_AT_containing_type attribute. This use of
7812 DW_AT_containing_type is a GNU extension. */
7813
7814 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7815 {
7816 struct type *t = die_containing_type (die, cu);
7817
7818 TYPE_VPTR_BASETYPE (type) = t;
7819 if (type == t)
7820 {
7821 int i;
7822
7823 /* Our own class provides vtbl ptr. */
7824 for (i = TYPE_NFIELDS (t) - 1;
7825 i >= TYPE_N_BASECLASSES (t);
7826 --i)
7827 {
7828 const char *fieldname = TYPE_FIELD_NAME (t, i);
7829
7830 if (is_vtable_name (fieldname, cu))
7831 {
7832 TYPE_VPTR_FIELDNO (type) = i;
7833 break;
7834 }
7835 }
7836
7837 /* Complain if virtual function table field not found. */
7838 if (i < TYPE_N_BASECLASSES (t))
7839 complaint (&symfile_complaints,
7840 _("virtual function table pointer "
7841 "not found when defining class '%s'"),
7842 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7843 "");
7844 }
7845 else
7846 {
7847 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7848 }
7849 }
7850 else if (cu->producer
7851 && strncmp (cu->producer,
7852 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7853 {
7854 /* The IBM XLC compiler does not provide direct indication
7855 of the containing type, but the vtable pointer is
7856 always named __vfp. */
7857
7858 int i;
7859
7860 for (i = TYPE_NFIELDS (type) - 1;
7861 i >= TYPE_N_BASECLASSES (type);
7862 --i)
7863 {
7864 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7865 {
7866 TYPE_VPTR_FIELDNO (type) = i;
7867 TYPE_VPTR_BASETYPE (type) = type;
7868 break;
7869 }
7870 }
7871 }
7872 }
7873
7874 /* Copy fi.typedef_field_list linked list elements content into the
7875 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7876 if (fi.typedef_field_list)
7877 {
7878 int i = fi.typedef_field_list_count;
7879
7880 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7881 TYPE_TYPEDEF_FIELD_ARRAY (type)
7882 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7883 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7884
7885 /* Reverse the list order to keep the debug info elements order. */
7886 while (--i >= 0)
7887 {
7888 struct typedef_field *dest, *src;
7889
7890 dest = &TYPE_TYPEDEF_FIELD (type, i);
7891 src = &fi.typedef_field_list->field;
7892 fi.typedef_field_list = fi.typedef_field_list->next;
7893 *dest = *src;
7894 }
7895 }
7896
7897 do_cleanups (back_to);
7898
7899 if (HAVE_CPLUS_STRUCT (type))
7900 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
7901 }
7902
7903 quirk_gcc_member_function_pointer (type, objfile);
7904
7905 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7906 snapshots) has been known to create a die giving a declaration
7907 for a class that has, as a child, a die giving a definition for a
7908 nested class. So we have to process our children even if the
7909 current die is a declaration. Normally, of course, a declaration
7910 won't have any children at all. */
7911
7912 while (child_die != NULL && child_die->tag)
7913 {
7914 if (child_die->tag == DW_TAG_member
7915 || child_die->tag == DW_TAG_variable
7916 || child_die->tag == DW_TAG_inheritance
7917 || child_die->tag == DW_TAG_template_value_param
7918 || child_die->tag == DW_TAG_template_type_param)
7919 {
7920 /* Do nothing. */
7921 }
7922 else
7923 process_die (child_die, cu);
7924
7925 child_die = sibling_die (child_die);
7926 }
7927
7928 /* Do not consider external references. According to the DWARF standard,
7929 these DIEs are identified by the fact that they have no byte_size
7930 attribute, and a declaration attribute. */
7931 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7932 || !die_is_declaration (die, cu))
7933 new_symbol (die, type, cu);
7934}
7935
7936/* Given a DW_AT_enumeration_type die, set its type. We do not
7937 complete the type's fields yet, or create any symbols. */
7938
7939static struct type *
7940read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7941{
7942 struct objfile *objfile = cu->objfile;
7943 struct type *type;
7944 struct attribute *attr;
7945 const char *name;
7946
7947 /* If the definition of this type lives in .debug_types, read that type.
7948 Don't follow DW_AT_specification though, that will take us back up
7949 the chain and we want to go down. */
7950 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7951 if (attr)
7952 {
7953 struct dwarf2_cu *type_cu = cu;
7954 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7955
7956 type = read_type_die (type_die, type_cu);
7957
7958 /* TYPE_CU may not be the same as CU.
7959 Ensure TYPE is recorded in CU's type_hash table. */
7960 return set_die_type (die, type, cu);
7961 }
7962
7963 type = alloc_type (objfile);
7964
7965 TYPE_CODE (type) = TYPE_CODE_ENUM;
7966 name = dwarf2_full_name (NULL, die, cu);
7967 if (name != NULL)
7968 TYPE_TAG_NAME (type) = (char *) name;
7969
7970 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7971 if (attr)
7972 {
7973 TYPE_LENGTH (type) = DW_UNSND (attr);
7974 }
7975 else
7976 {
7977 TYPE_LENGTH (type) = 0;
7978 }
7979
7980 /* The enumeration DIE can be incomplete. In Ada, any type can be
7981 declared as private in the package spec, and then defined only
7982 inside the package body. Such types are known as Taft Amendment
7983 Types. When another package uses such a type, an incomplete DIE
7984 may be generated by the compiler. */
7985 if (die_is_declaration (die, cu))
7986 TYPE_STUB (type) = 1;
7987
7988 return set_die_type (die, type, cu);
7989}
7990
7991/* Given a pointer to a die which begins an enumeration, process all
7992 the dies that define the members of the enumeration, and create the
7993 symbol for the enumeration type.
7994
7995 NOTE: We reverse the order of the element list. */
7996
7997static void
7998process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7999{
8000 struct type *this_type;
8001
8002 this_type = get_die_type (die, cu);
8003 if (this_type == NULL)
8004 this_type = read_enumeration_type (die, cu);
8005
8006 if (die->child != NULL)
8007 {
8008 struct die_info *child_die;
8009 struct symbol *sym;
8010 struct field *fields = NULL;
8011 int num_fields = 0;
8012 int unsigned_enum = 1;
8013 char *name;
8014 int flag_enum = 1;
8015 ULONGEST mask = 0;
8016
8017 child_die = die->child;
8018 while (child_die && child_die->tag)
8019 {
8020 if (child_die->tag != DW_TAG_enumerator)
8021 {
8022 process_die (child_die, cu);
8023 }
8024 else
8025 {
8026 name = dwarf2_name (child_die, cu);
8027 if (name)
8028 {
8029 sym = new_symbol (child_die, this_type, cu);
8030 if (SYMBOL_VALUE (sym) < 0)
8031 {
8032 unsigned_enum = 0;
8033 flag_enum = 0;
8034 }
8035 else if ((mask & SYMBOL_VALUE (sym)) != 0)
8036 flag_enum = 0;
8037 else
8038 mask |= SYMBOL_VALUE (sym);
8039
8040 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
8041 {
8042 fields = (struct field *)
8043 xrealloc (fields,
8044 (num_fields + DW_FIELD_ALLOC_CHUNK)
8045 * sizeof (struct field));
8046 }
8047
8048 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
8049 FIELD_TYPE (fields[num_fields]) = NULL;
8050 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
8051 FIELD_BITSIZE (fields[num_fields]) = 0;
8052
8053 num_fields++;
8054 }
8055 }
8056
8057 child_die = sibling_die (child_die);
8058 }
8059
8060 if (num_fields)
8061 {
8062 TYPE_NFIELDS (this_type) = num_fields;
8063 TYPE_FIELDS (this_type) = (struct field *)
8064 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
8065 memcpy (TYPE_FIELDS (this_type), fields,
8066 sizeof (struct field) * num_fields);
8067 xfree (fields);
8068 }
8069 if (unsigned_enum)
8070 TYPE_UNSIGNED (this_type) = 1;
8071 if (flag_enum)
8072 TYPE_FLAG_ENUM (this_type) = 1;
8073 }
8074
8075 /* If we are reading an enum from a .debug_types unit, and the enum
8076 is a declaration, and the enum is not the signatured type in the
8077 unit, then we do not want to add a symbol for it. Adding a
8078 symbol would in some cases obscure the true definition of the
8079 enum, giving users an incomplete type when the definition is
8080 actually available. Note that we do not want to do this for all
8081 enums which are just declarations, because C++0x allows forward
8082 enum declarations. */
8083 if (cu->per_cu->debug_types_section
8084 && die_is_declaration (die, cu))
8085 {
8086 struct signatured_type *type_sig;
8087
8088 type_sig
8089 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
8090 cu->per_cu->debug_types_section,
8091 cu->per_cu->offset);
8092 if (type_sig->per_cu.offset.sect_off + type_sig->type_offset.cu_off
8093 != die->offset.sect_off)
8094 return;
8095 }
8096
8097 new_symbol (die, this_type, cu);
8098}
8099
8100/* Extract all information from a DW_TAG_array_type DIE and put it in
8101 the DIE's type field. For now, this only handles one dimensional
8102 arrays. */
8103
8104static struct type *
8105read_array_type (struct die_info *die, struct dwarf2_cu *cu)
8106{
8107 struct objfile *objfile = cu->objfile;
8108 struct die_info *child_die;
8109 struct type *type;
8110 struct type *element_type, *range_type, *index_type;
8111 struct type **range_types = NULL;
8112 struct attribute *attr;
8113 int ndim = 0;
8114 struct cleanup *back_to;
8115 char *name;
8116
8117 element_type = die_type (die, cu);
8118
8119 /* The die_type call above may have already set the type for this DIE. */
8120 type = get_die_type (die, cu);
8121 if (type)
8122 return type;
8123
8124 /* Irix 6.2 native cc creates array types without children for
8125 arrays with unspecified length. */
8126 if (die->child == NULL)
8127 {
8128 index_type = objfile_type (objfile)->builtin_int;
8129 range_type = create_range_type (NULL, index_type, 0, -1);
8130 type = create_array_type (NULL, element_type, range_type);
8131 return set_die_type (die, type, cu);
8132 }
8133
8134 back_to = make_cleanup (null_cleanup, NULL);
8135 child_die = die->child;
8136 while (child_die && child_die->tag)
8137 {
8138 if (child_die->tag == DW_TAG_subrange_type)
8139 {
8140 struct type *child_type = read_type_die (child_die, cu);
8141
8142 if (child_type != NULL)
8143 {
8144 /* The range type was succesfully read. Save it for the
8145 array type creation. */
8146 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
8147 {
8148 range_types = (struct type **)
8149 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
8150 * sizeof (struct type *));
8151 if (ndim == 0)
8152 make_cleanup (free_current_contents, &range_types);
8153 }
8154 range_types[ndim++] = child_type;
8155 }
8156 }
8157 child_die = sibling_die (child_die);
8158 }
8159
8160 /* Dwarf2 dimensions are output from left to right, create the
8161 necessary array types in backwards order. */
8162
8163 type = element_type;
8164
8165 if (read_array_order (die, cu) == DW_ORD_col_major)
8166 {
8167 int i = 0;
8168
8169 while (i < ndim)
8170 type = create_array_type (NULL, type, range_types[i++]);
8171 }
8172 else
8173 {
8174 while (ndim-- > 0)
8175 type = create_array_type (NULL, type, range_types[ndim]);
8176 }
8177
8178 /* Understand Dwarf2 support for vector types (like they occur on
8179 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
8180 array type. This is not part of the Dwarf2/3 standard yet, but a
8181 custom vendor extension. The main difference between a regular
8182 array and the vector variant is that vectors are passed by value
8183 to functions. */
8184 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
8185 if (attr)
8186 make_vector_type (type);
8187
8188 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
8189 implementation may choose to implement triple vectors using this
8190 attribute. */
8191 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8192 if (attr)
8193 {
8194 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
8195 TYPE_LENGTH (type) = DW_UNSND (attr);
8196 else
8197 complaint (&symfile_complaints,
8198 _("DW_AT_byte_size for array type smaller "
8199 "than the total size of elements"));
8200 }
8201
8202 name = dwarf2_name (die, cu);
8203 if (name)
8204 TYPE_NAME (type) = name;
8205
8206 /* Install the type in the die. */
8207 set_die_type (die, type, cu);
8208
8209 /* set_die_type should be already done. */
8210 set_descriptive_type (type, die, cu);
8211
8212 do_cleanups (back_to);
8213
8214 return type;
8215}
8216
8217static enum dwarf_array_dim_ordering
8218read_array_order (struct die_info *die, struct dwarf2_cu *cu)
8219{
8220 struct attribute *attr;
8221
8222 attr = dwarf2_attr (die, DW_AT_ordering, cu);
8223
8224 if (attr) return DW_SND (attr);
8225
8226 /* GNU F77 is a special case, as at 08/2004 array type info is the
8227 opposite order to the dwarf2 specification, but data is still
8228 laid out as per normal fortran.
8229
8230 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
8231 version checking. */
8232
8233 if (cu->language == language_fortran
8234 && cu->producer && strstr (cu->producer, "GNU F77"))
8235 {
8236 return DW_ORD_row_major;
8237 }
8238
8239 switch (cu->language_defn->la_array_ordering)
8240 {
8241 case array_column_major:
8242 return DW_ORD_col_major;
8243 case array_row_major:
8244 default:
8245 return DW_ORD_row_major;
8246 };
8247}
8248
8249/* Extract all information from a DW_TAG_set_type DIE and put it in
8250 the DIE's type field. */
8251
8252static struct type *
8253read_set_type (struct die_info *die, struct dwarf2_cu *cu)
8254{
8255 struct type *domain_type, *set_type;
8256 struct attribute *attr;
8257
8258 domain_type = die_type (die, cu);
8259
8260 /* The die_type call above may have already set the type for this DIE. */
8261 set_type = get_die_type (die, cu);
8262 if (set_type)
8263 return set_type;
8264
8265 set_type = create_set_type (NULL, domain_type);
8266
8267 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8268 if (attr)
8269 TYPE_LENGTH (set_type) = DW_UNSND (attr);
8270
8271 return set_die_type (die, set_type, cu);
8272}
8273
8274/* First cut: install each common block member as a global variable. */
8275
8276static void
8277read_common_block (struct die_info *die, struct dwarf2_cu *cu)
8278{
8279 struct die_info *child_die;
8280 struct attribute *attr;
8281 struct symbol *sym;
8282 CORE_ADDR base = (CORE_ADDR) 0;
8283
8284 attr = dwarf2_attr (die, DW_AT_location, cu);
8285 if (attr)
8286 {
8287 /* Support the .debug_loc offsets. */
8288 if (attr_form_is_block (attr))
8289 {
8290 base = decode_locdesc (DW_BLOCK (attr), cu);
8291 }
8292 else if (attr_form_is_section_offset (attr))
8293 {
8294 dwarf2_complex_location_expr_complaint ();
8295 }
8296 else
8297 {
8298 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8299 "common block member");
8300 }
8301 }
8302 if (die->child != NULL)
8303 {
8304 child_die = die->child;
8305 while (child_die && child_die->tag)
8306 {
8307 LONGEST offset;
8308
8309 sym = new_symbol (child_die, NULL, cu);
8310 if (sym != NULL
8311 && handle_data_member_location (child_die, cu, &offset))
8312 {
8313 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
8314 add_symbol_to_list (sym, &global_symbols);
8315 }
8316 child_die = sibling_die (child_die);
8317 }
8318 }
8319}
8320
8321/* Create a type for a C++ namespace. */
8322
8323static struct type *
8324read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
8325{
8326 struct objfile *objfile = cu->objfile;
8327 const char *previous_prefix, *name;
8328 int is_anonymous;
8329 struct type *type;
8330
8331 /* For extensions, reuse the type of the original namespace. */
8332 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
8333 {
8334 struct die_info *ext_die;
8335 struct dwarf2_cu *ext_cu = cu;
8336
8337 ext_die = dwarf2_extension (die, &ext_cu);
8338 type = read_type_die (ext_die, ext_cu);
8339
8340 /* EXT_CU may not be the same as CU.
8341 Ensure TYPE is recorded in CU's type_hash table. */
8342 return set_die_type (die, type, cu);
8343 }
8344
8345 name = namespace_name (die, &is_anonymous, cu);
8346
8347 /* Now build the name of the current namespace. */
8348
8349 previous_prefix = determine_prefix (die, cu);
8350 if (previous_prefix[0] != '\0')
8351 name = typename_concat (&objfile->objfile_obstack,
8352 previous_prefix, name, 0, cu);
8353
8354 /* Create the type. */
8355 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
8356 objfile);
8357 TYPE_NAME (type) = (char *) name;
8358 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8359
8360 return set_die_type (die, type, cu);
8361}
8362
8363/* Read a C++ namespace. */
8364
8365static void
8366read_namespace (struct die_info *die, struct dwarf2_cu *cu)
8367{
8368 struct objfile *objfile = cu->objfile;
8369 int is_anonymous;
8370
8371 /* Add a symbol associated to this if we haven't seen the namespace
8372 before. Also, add a using directive if it's an anonymous
8373 namespace. */
8374
8375 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
8376 {
8377 struct type *type;
8378
8379 type = read_type_die (die, cu);
8380 new_symbol (die, type, cu);
8381
8382 namespace_name (die, &is_anonymous, cu);
8383 if (is_anonymous)
8384 {
8385 const char *previous_prefix = determine_prefix (die, cu);
8386
8387 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
8388 NULL, NULL, &objfile->objfile_obstack);
8389 }
8390 }
8391
8392 if (die->child != NULL)
8393 {
8394 struct die_info *child_die = die->child;
8395
8396 while (child_die && child_die->tag)
8397 {
8398 process_die (child_die, cu);
8399 child_die = sibling_die (child_die);
8400 }
8401 }
8402}
8403
8404/* Read a Fortran module as type. This DIE can be only a declaration used for
8405 imported module. Still we need that type as local Fortran "use ... only"
8406 declaration imports depend on the created type in determine_prefix. */
8407
8408static struct type *
8409read_module_type (struct die_info *die, struct dwarf2_cu *cu)
8410{
8411 struct objfile *objfile = cu->objfile;
8412 char *module_name;
8413 struct type *type;
8414
8415 module_name = dwarf2_name (die, cu);
8416 if (!module_name)
8417 complaint (&symfile_complaints,
8418 _("DW_TAG_module has no name, offset 0x%x"),
8419 die->offset.sect_off);
8420 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
8421
8422 /* determine_prefix uses TYPE_TAG_NAME. */
8423 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8424
8425 return set_die_type (die, type, cu);
8426}
8427
8428/* Read a Fortran module. */
8429
8430static void
8431read_module (struct die_info *die, struct dwarf2_cu *cu)
8432{
8433 struct die_info *child_die = die->child;
8434
8435 while (child_die && child_die->tag)
8436 {
8437 process_die (child_die, cu);
8438 child_die = sibling_die (child_die);
8439 }
8440}
8441
8442/* Return the name of the namespace represented by DIE. Set
8443 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
8444 namespace. */
8445
8446static const char *
8447namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
8448{
8449 struct die_info *current_die;
8450 const char *name = NULL;
8451
8452 /* Loop through the extensions until we find a name. */
8453
8454 for (current_die = die;
8455 current_die != NULL;
8456 current_die = dwarf2_extension (die, &cu))
8457 {
8458 name = dwarf2_name (current_die, cu);
8459 if (name != NULL)
8460 break;
8461 }
8462
8463 /* Is it an anonymous namespace? */
8464
8465 *is_anonymous = (name == NULL);
8466 if (*is_anonymous)
8467 name = CP_ANONYMOUS_NAMESPACE_STR;
8468
8469 return name;
8470}
8471
8472/* Extract all information from a DW_TAG_pointer_type DIE and add to
8473 the user defined type vector. */
8474
8475static struct type *
8476read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
8477{
8478 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
8479 struct comp_unit_head *cu_header = &cu->header;
8480 struct type *type;
8481 struct attribute *attr_byte_size;
8482 struct attribute *attr_address_class;
8483 int byte_size, addr_class;
8484 struct type *target_type;
8485
8486 target_type = die_type (die, cu);
8487
8488 /* The die_type call above may have already set the type for this DIE. */
8489 type = get_die_type (die, cu);
8490 if (type)
8491 return type;
8492
8493 type = lookup_pointer_type (target_type);
8494
8495 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8496 if (attr_byte_size)
8497 byte_size = DW_UNSND (attr_byte_size);
8498 else
8499 byte_size = cu_header->addr_size;
8500
8501 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8502 if (attr_address_class)
8503 addr_class = DW_UNSND (attr_address_class);
8504 else
8505 addr_class = DW_ADDR_none;
8506
8507 /* If the pointer size or address class is different than the
8508 default, create a type variant marked as such and set the
8509 length accordingly. */
8510 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
8511 {
8512 if (gdbarch_address_class_type_flags_p (gdbarch))
8513 {
8514 int type_flags;
8515
8516 type_flags = gdbarch_address_class_type_flags
8517 (gdbarch, byte_size, addr_class);
8518 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
8519 == 0);
8520 type = make_type_with_address_space (type, type_flags);
8521 }
8522 else if (TYPE_LENGTH (type) != byte_size)
8523 {
8524 complaint (&symfile_complaints,
8525 _("invalid pointer size %d"), byte_size);
8526 }
8527 else
8528 {
8529 /* Should we also complain about unhandled address classes? */
8530 }
8531 }
8532
8533 TYPE_LENGTH (type) = byte_size;
8534 return set_die_type (die, type, cu);
8535}
8536
8537/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
8538 the user defined type vector. */
8539
8540static struct type *
8541read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
8542{
8543 struct type *type;
8544 struct type *to_type;
8545 struct type *domain;
8546
8547 to_type = die_type (die, cu);
8548 domain = die_containing_type (die, cu);
8549
8550 /* The calls above may have already set the type for this DIE. */
8551 type = get_die_type (die, cu);
8552 if (type)
8553 return type;
8554
8555 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
8556 type = lookup_methodptr_type (to_type);
8557 else
8558 type = lookup_memberptr_type (to_type, domain);
8559
8560 return set_die_type (die, type, cu);
8561}
8562
8563/* Extract all information from a DW_TAG_reference_type DIE and add to
8564 the user defined type vector. */
8565
8566static struct type *
8567read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
8568{
8569 struct comp_unit_head *cu_header = &cu->header;
8570 struct type *type, *target_type;
8571 struct attribute *attr;
8572
8573 target_type = die_type (die, cu);
8574
8575 /* The die_type call above may have already set the type for this DIE. */
8576 type = get_die_type (die, cu);
8577 if (type)
8578 return type;
8579
8580 type = lookup_reference_type (target_type);
8581 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8582 if (attr)
8583 {
8584 TYPE_LENGTH (type) = DW_UNSND (attr);
8585 }
8586 else
8587 {
8588 TYPE_LENGTH (type) = cu_header->addr_size;
8589 }
8590 return set_die_type (die, type, cu);
8591}
8592
8593static struct type *
8594read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
8595{
8596 struct type *base_type, *cv_type;
8597
8598 base_type = die_type (die, cu);
8599
8600 /* The die_type call above may have already set the type for this DIE. */
8601 cv_type = get_die_type (die, cu);
8602 if (cv_type)
8603 return cv_type;
8604
8605 /* In case the const qualifier is applied to an array type, the element type
8606 is so qualified, not the array type (section 6.7.3 of C99). */
8607 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
8608 {
8609 struct type *el_type, *inner_array;
8610
8611 base_type = copy_type (base_type);
8612 inner_array = base_type;
8613
8614 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
8615 {
8616 TYPE_TARGET_TYPE (inner_array) =
8617 copy_type (TYPE_TARGET_TYPE (inner_array));
8618 inner_array = TYPE_TARGET_TYPE (inner_array);
8619 }
8620
8621 el_type = TYPE_TARGET_TYPE (inner_array);
8622 TYPE_TARGET_TYPE (inner_array) =
8623 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
8624
8625 return set_die_type (die, base_type, cu);
8626 }
8627
8628 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
8629 return set_die_type (die, cv_type, cu);
8630}
8631
8632static struct type *
8633read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
8634{
8635 struct type *base_type, *cv_type;
8636
8637 base_type = die_type (die, cu);
8638
8639 /* The die_type call above may have already set the type for this DIE. */
8640 cv_type = get_die_type (die, cu);
8641 if (cv_type)
8642 return cv_type;
8643
8644 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
8645 return set_die_type (die, cv_type, cu);
8646}
8647
8648/* Extract all information from a DW_TAG_string_type DIE and add to
8649 the user defined type vector. It isn't really a user defined type,
8650 but it behaves like one, with other DIE's using an AT_user_def_type
8651 attribute to reference it. */
8652
8653static struct type *
8654read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
8655{
8656 struct objfile *objfile = cu->objfile;
8657 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8658 struct type *type, *range_type, *index_type, *char_type;
8659 struct attribute *attr;
8660 unsigned int length;
8661
8662 attr = dwarf2_attr (die, DW_AT_string_length, cu);
8663 if (attr)
8664 {
8665 length = DW_UNSND (attr);
8666 }
8667 else
8668 {
8669 /* Check for the DW_AT_byte_size attribute. */
8670 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8671 if (attr)
8672 {
8673 length = DW_UNSND (attr);
8674 }
8675 else
8676 {
8677 length = 1;
8678 }
8679 }
8680
8681 index_type = objfile_type (objfile)->builtin_int;
8682 range_type = create_range_type (NULL, index_type, 1, length);
8683 char_type = language_string_char_type (cu->language_defn, gdbarch);
8684 type = create_string_type (NULL, char_type, range_type);
8685
8686 return set_die_type (die, type, cu);
8687}
8688
8689/* Handle DIES due to C code like:
8690
8691 struct foo
8692 {
8693 int (*funcp)(int a, long l);
8694 int b;
8695 };
8696
8697 ('funcp' generates a DW_TAG_subroutine_type DIE). */
8698
8699static struct type *
8700read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
8701{
8702 struct objfile *objfile = cu->objfile;
8703 struct type *type; /* Type that this function returns. */
8704 struct type *ftype; /* Function that returns above type. */
8705 struct attribute *attr;
8706
8707 type = die_type (die, cu);
8708
8709 /* The die_type call above may have already set the type for this DIE. */
8710 ftype = get_die_type (die, cu);
8711 if (ftype)
8712 return ftype;
8713
8714 ftype = lookup_function_type (type);
8715
8716 /* All functions in C++, Pascal and Java have prototypes. */
8717 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
8718 if ((attr && (DW_UNSND (attr) != 0))
8719 || cu->language == language_cplus
8720 || cu->language == language_java
8721 || cu->language == language_pascal)
8722 TYPE_PROTOTYPED (ftype) = 1;
8723 else if (producer_is_realview (cu->producer))
8724 /* RealView does not emit DW_AT_prototyped. We can not
8725 distinguish prototyped and unprototyped functions; default to
8726 prototyped, since that is more common in modern code (and
8727 RealView warns about unprototyped functions). */
8728 TYPE_PROTOTYPED (ftype) = 1;
8729
8730 /* Store the calling convention in the type if it's available in
8731 the subroutine die. Otherwise set the calling convention to
8732 the default value DW_CC_normal. */
8733 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
8734 if (attr)
8735 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
8736 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
8737 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
8738 else
8739 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
8740
8741 /* We need to add the subroutine type to the die immediately so
8742 we don't infinitely recurse when dealing with parameters
8743 declared as the same subroutine type. */
8744 set_die_type (die, ftype, cu);
8745
8746 if (die->child != NULL)
8747 {
8748 struct type *void_type = objfile_type (objfile)->builtin_void;
8749 struct die_info *child_die;
8750 int nparams, iparams;
8751
8752 /* Count the number of parameters.
8753 FIXME: GDB currently ignores vararg functions, but knows about
8754 vararg member functions. */
8755 nparams = 0;
8756 child_die = die->child;
8757 while (child_die && child_die->tag)
8758 {
8759 if (child_die->tag == DW_TAG_formal_parameter)
8760 nparams++;
8761 else if (child_die->tag == DW_TAG_unspecified_parameters)
8762 TYPE_VARARGS (ftype) = 1;
8763 child_die = sibling_die (child_die);
8764 }
8765
8766 /* Allocate storage for parameters and fill them in. */
8767 TYPE_NFIELDS (ftype) = nparams;
8768 TYPE_FIELDS (ftype) = (struct field *)
8769 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
8770
8771 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
8772 even if we error out during the parameters reading below. */
8773 for (iparams = 0; iparams < nparams; iparams++)
8774 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8775
8776 iparams = 0;
8777 child_die = die->child;
8778 while (child_die && child_die->tag)
8779 {
8780 if (child_die->tag == DW_TAG_formal_parameter)
8781 {
8782 struct type *arg_type;
8783
8784 /* DWARF version 2 has no clean way to discern C++
8785 static and non-static member functions. G++ helps
8786 GDB by marking the first parameter for non-static
8787 member functions (which is the this pointer) as
8788 artificial. We pass this information to
8789 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8790
8791 DWARF version 3 added DW_AT_object_pointer, which GCC
8792 4.5 does not yet generate. */
8793 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
8794 if (attr)
8795 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8796 else
8797 {
8798 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8799
8800 /* GCC/43521: In java, the formal parameter
8801 "this" is sometimes not marked with DW_AT_artificial. */
8802 if (cu->language == language_java)
8803 {
8804 const char *name = dwarf2_name (child_die, cu);
8805
8806 if (name && !strcmp (name, "this"))
8807 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8808 }
8809 }
8810 arg_type = die_type (child_die, cu);
8811
8812 /* RealView does not mark THIS as const, which the testsuite
8813 expects. GCC marks THIS as const in method definitions,
8814 but not in the class specifications (GCC PR 43053). */
8815 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8816 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8817 {
8818 int is_this = 0;
8819 struct dwarf2_cu *arg_cu = cu;
8820 const char *name = dwarf2_name (child_die, cu);
8821
8822 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8823 if (attr)
8824 {
8825 /* If the compiler emits this, use it. */
8826 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8827 is_this = 1;
8828 }
8829 else if (name && strcmp (name, "this") == 0)
8830 /* Function definitions will have the argument names. */
8831 is_this = 1;
8832 else if (name == NULL && iparams == 0)
8833 /* Declarations may not have the names, so like
8834 elsewhere in GDB, assume an artificial first
8835 argument is "this". */
8836 is_this = 1;
8837
8838 if (is_this)
8839 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8840 arg_type, 0);
8841 }
8842
8843 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8844 iparams++;
8845 }
8846 child_die = sibling_die (child_die);
8847 }
8848 }
8849
8850 return ftype;
8851}
8852
8853static struct type *
8854read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8855{
8856 struct objfile *objfile = cu->objfile;
8857 const char *name = NULL;
8858 struct type *this_type, *target_type;
8859
8860 name = dwarf2_full_name (NULL, die, cu);
8861 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8862 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8863 TYPE_NAME (this_type) = (char *) name;
8864 set_die_type (die, this_type, cu);
8865 target_type = die_type (die, cu);
8866 if (target_type != this_type)
8867 TYPE_TARGET_TYPE (this_type) = target_type;
8868 else
8869 {
8870 /* Self-referential typedefs are, it seems, not allowed by the DWARF
8871 spec and cause infinite loops in GDB. */
8872 complaint (&symfile_complaints,
8873 _("Self-referential DW_TAG_typedef "
8874 "- DIE at 0x%x [in module %s]"),
8875 die->offset.sect_off, objfile->name);
8876 TYPE_TARGET_TYPE (this_type) = NULL;
8877 }
8878 return this_type;
8879}
8880
8881/* Find a representation of a given base type and install
8882 it in the TYPE field of the die. */
8883
8884static struct type *
8885read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8886{
8887 struct objfile *objfile = cu->objfile;
8888 struct type *type;
8889 struct attribute *attr;
8890 int encoding = 0, size = 0;
8891 char *name;
8892 enum type_code code = TYPE_CODE_INT;
8893 int type_flags = 0;
8894 struct type *target_type = NULL;
8895
8896 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8897 if (attr)
8898 {
8899 encoding = DW_UNSND (attr);
8900 }
8901 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8902 if (attr)
8903 {
8904 size = DW_UNSND (attr);
8905 }
8906 name = dwarf2_name (die, cu);
8907 if (!name)
8908 {
8909 complaint (&symfile_complaints,
8910 _("DW_AT_name missing from DW_TAG_base_type"));
8911 }
8912
8913 switch (encoding)
8914 {
8915 case DW_ATE_address:
8916 /* Turn DW_ATE_address into a void * pointer. */
8917 code = TYPE_CODE_PTR;
8918 type_flags |= TYPE_FLAG_UNSIGNED;
8919 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8920 break;
8921 case DW_ATE_boolean:
8922 code = TYPE_CODE_BOOL;
8923 type_flags |= TYPE_FLAG_UNSIGNED;
8924 break;
8925 case DW_ATE_complex_float:
8926 code = TYPE_CODE_COMPLEX;
8927 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8928 break;
8929 case DW_ATE_decimal_float:
8930 code = TYPE_CODE_DECFLOAT;
8931 break;
8932 case DW_ATE_float:
8933 code = TYPE_CODE_FLT;
8934 break;
8935 case DW_ATE_signed:
8936 break;
8937 case DW_ATE_unsigned:
8938 type_flags |= TYPE_FLAG_UNSIGNED;
8939 if (cu->language == language_fortran
8940 && name
8941 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
8942 code = TYPE_CODE_CHAR;
8943 break;
8944 case DW_ATE_signed_char:
8945 if (cu->language == language_ada || cu->language == language_m2
8946 || cu->language == language_pascal
8947 || cu->language == language_fortran)
8948 code = TYPE_CODE_CHAR;
8949 break;
8950 case DW_ATE_unsigned_char:
8951 if (cu->language == language_ada || cu->language == language_m2
8952 || cu->language == language_pascal
8953 || cu->language == language_fortran)
8954 code = TYPE_CODE_CHAR;
8955 type_flags |= TYPE_FLAG_UNSIGNED;
8956 break;
8957 case DW_ATE_UTF:
8958 /* We just treat this as an integer and then recognize the
8959 type by name elsewhere. */
8960 break;
8961
8962 default:
8963 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8964 dwarf_type_encoding_name (encoding));
8965 break;
8966 }
8967
8968 type = init_type (code, size, type_flags, NULL, objfile);
8969 TYPE_NAME (type) = name;
8970 TYPE_TARGET_TYPE (type) = target_type;
8971
8972 if (name && strcmp (name, "char") == 0)
8973 TYPE_NOSIGN (type) = 1;
8974
8975 return set_die_type (die, type, cu);
8976}
8977
8978/* Read the given DW_AT_subrange DIE. */
8979
8980static struct type *
8981read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8982{
8983 struct type *base_type;
8984 struct type *range_type;
8985 struct attribute *attr;
8986 LONGEST low = 0;
8987 LONGEST high = -1;
8988 char *name;
8989 LONGEST negative_mask;
8990
8991 base_type = die_type (die, cu);
8992 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8993 check_typedef (base_type);
8994
8995 /* The die_type call above may have already set the type for this DIE. */
8996 range_type = get_die_type (die, cu);
8997 if (range_type)
8998 return range_type;
8999
9000 if (cu->language == language_fortran)
9001 {
9002 /* FORTRAN implies a lower bound of 1, if not given. */
9003 low = 1;
9004 }
9005
9006 /* FIXME: For variable sized arrays either of these could be
9007 a variable rather than a constant value. We'll allow it,
9008 but we don't know how to handle it. */
9009 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
9010 if (attr)
9011 low = dwarf2_get_attr_constant_value (attr, 0);
9012
9013 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
9014 if (attr)
9015 {
9016 if (attr_form_is_block (attr) || is_ref_attr (attr))
9017 {
9018 /* GCC encodes arrays with unspecified or dynamic length
9019 with a DW_FORM_block1 attribute or a reference attribute.
9020 FIXME: GDB does not yet know how to handle dynamic
9021 arrays properly, treat them as arrays with unspecified
9022 length for now.
9023
9024 FIXME: jimb/2003-09-22: GDB does not really know
9025 how to handle arrays of unspecified length
9026 either; we just represent them as zero-length
9027 arrays. Choose an appropriate upper bound given
9028 the lower bound we've computed above. */
9029 high = low - 1;
9030 }
9031 else
9032 high = dwarf2_get_attr_constant_value (attr, 1);
9033 }
9034 else
9035 {
9036 attr = dwarf2_attr (die, DW_AT_count, cu);
9037 if (attr)
9038 {
9039 int count = dwarf2_get_attr_constant_value (attr, 1);
9040 high = low + count - 1;
9041 }
9042 else
9043 {
9044 /* Unspecified array length. */
9045 high = low - 1;
9046 }
9047 }
9048
9049 /* Dwarf-2 specifications explicitly allows to create subrange types
9050 without specifying a base type.
9051 In that case, the base type must be set to the type of
9052 the lower bound, upper bound or count, in that order, if any of these
9053 three attributes references an object that has a type.
9054 If no base type is found, the Dwarf-2 specifications say that
9055 a signed integer type of size equal to the size of an address should
9056 be used.
9057 For the following C code: `extern char gdb_int [];'
9058 GCC produces an empty range DIE.
9059 FIXME: muller/2010-05-28: Possible references to object for low bound,
9060 high bound or count are not yet handled by this code. */
9061 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
9062 {
9063 struct objfile *objfile = cu->objfile;
9064 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9065 int addr_size = gdbarch_addr_bit (gdbarch) /8;
9066 struct type *int_type = objfile_type (objfile)->builtin_int;
9067
9068 /* Test "int", "long int", and "long long int" objfile types,
9069 and select the first one having a size above or equal to the
9070 architecture address size. */
9071 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9072 base_type = int_type;
9073 else
9074 {
9075 int_type = objfile_type (objfile)->builtin_long;
9076 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9077 base_type = int_type;
9078 else
9079 {
9080 int_type = objfile_type (objfile)->builtin_long_long;
9081 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9082 base_type = int_type;
9083 }
9084 }
9085 }
9086
9087 negative_mask =
9088 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
9089 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
9090 low |= negative_mask;
9091 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
9092 high |= negative_mask;
9093
9094 range_type = create_range_type (NULL, base_type, low, high);
9095
9096 /* Mark arrays with dynamic length at least as an array of unspecified
9097 length. GDB could check the boundary but before it gets implemented at
9098 least allow accessing the array elements. */
9099 if (attr && attr_form_is_block (attr))
9100 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9101
9102 /* Ada expects an empty array on no boundary attributes. */
9103 if (attr == NULL && cu->language != language_ada)
9104 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9105
9106 name = dwarf2_name (die, cu);
9107 if (name)
9108 TYPE_NAME (range_type) = name;
9109
9110 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9111 if (attr)
9112 TYPE_LENGTH (range_type) = DW_UNSND (attr);
9113
9114 set_die_type (die, range_type, cu);
9115
9116 /* set_die_type should be already done. */
9117 set_descriptive_type (range_type, die, cu);
9118
9119 return range_type;
9120}
9121
9122static struct type *
9123read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
9124{
9125 struct type *type;
9126
9127 /* For now, we only support the C meaning of an unspecified type: void. */
9128
9129 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
9130 TYPE_NAME (type) = dwarf2_name (die, cu);
9131
9132 return set_die_type (die, type, cu);
9133}
9134
9135/* Trivial hash function for die_info: the hash value of a DIE
9136 is its offset in .debug_info for this objfile. */
9137
9138static hashval_t
9139die_hash (const void *item)
9140{
9141 const struct die_info *die = item;
9142
9143 return die->offset.sect_off;
9144}
9145
9146/* Trivial comparison function for die_info structures: two DIEs
9147 are equal if they have the same offset. */
9148
9149static int
9150die_eq (const void *item_lhs, const void *item_rhs)
9151{
9152 const struct die_info *die_lhs = item_lhs;
9153 const struct die_info *die_rhs = item_rhs;
9154
9155 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
9156}
9157
9158/* Read a whole compilation unit into a linked list of dies. */
9159
9160static struct die_info *
9161read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
9162{
9163 struct die_reader_specs reader_specs;
9164 int read_abbrevs = 0;
9165 struct cleanup *back_to = NULL;
9166 struct die_info *die;
9167
9168 if (cu->dwarf2_abbrevs == NULL)
9169 {
9170 dwarf2_read_abbrevs (cu);
9171 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
9172 read_abbrevs = 1;
9173 }
9174
9175 gdb_assert (cu->die_hash == NULL);
9176 cu->die_hash
9177 = htab_create_alloc_ex (cu->header.length / 12,
9178 die_hash,
9179 die_eq,
9180 NULL,
9181 &cu->comp_unit_obstack,
9182 hashtab_obstack_allocate,
9183 dummy_obstack_deallocate);
9184
9185 init_cu_die_reader (&reader_specs, cu);
9186
9187 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
9188
9189 if (read_abbrevs)
9190 do_cleanups (back_to);
9191
9192 return die;
9193}
9194
9195/* Main entry point for reading a DIE and all children.
9196 Read the DIE and dump it if requested. */
9197
9198static struct die_info *
9199read_die_and_children (const struct die_reader_specs *reader,
9200 gdb_byte *info_ptr,
9201 gdb_byte **new_info_ptr,
9202 struct die_info *parent)
9203{
9204 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
9205 new_info_ptr, parent);
9206
9207 if (dwarf2_die_debug)
9208 {
9209 fprintf_unfiltered (gdb_stdlog,
9210 "\nRead die from %s of %s:\n",
9211 (reader->cu->per_cu->debug_types_section
9212 ? ".debug_types"
9213 : ".debug_info"),
9214 reader->abfd->filename);
9215 dump_die (result, dwarf2_die_debug);
9216 }
9217
9218 return result;
9219}
9220
9221/* Read a single die and all its descendents. Set the die's sibling
9222 field to NULL; set other fields in the die correctly, and set all
9223 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
9224 location of the info_ptr after reading all of those dies. PARENT
9225 is the parent of the die in question. */
9226
9227static struct die_info *
9228read_die_and_children_1 (const struct die_reader_specs *reader,
9229 gdb_byte *info_ptr,
9230 gdb_byte **new_info_ptr,
9231 struct die_info *parent)
9232{
9233 struct die_info *die;
9234 gdb_byte *cur_ptr;
9235 int has_children;
9236
9237 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
9238 if (die == NULL)
9239 {
9240 *new_info_ptr = cur_ptr;
9241 return NULL;
9242 }
9243 store_in_ref_table (die, reader->cu);
9244
9245 if (has_children)
9246 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
9247 else
9248 {
9249 die->child = NULL;
9250 *new_info_ptr = cur_ptr;
9251 }
9252
9253 die->sibling = NULL;
9254 die->parent = parent;
9255 return die;
9256}
9257
9258/* Read a die, all of its descendents, and all of its siblings; set
9259 all of the fields of all of the dies correctly. Arguments are as
9260 in read_die_and_children. */
9261
9262static struct die_info *
9263read_die_and_siblings (const struct die_reader_specs *reader,
9264 gdb_byte *info_ptr,
9265 gdb_byte **new_info_ptr,
9266 struct die_info *parent)
9267{
9268 struct die_info *first_die, *last_sibling;
9269 gdb_byte *cur_ptr;
9270
9271 cur_ptr = info_ptr;
9272 first_die = last_sibling = NULL;
9273
9274 while (1)
9275 {
9276 struct die_info *die
9277 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
9278
9279 if (die == NULL)
9280 {
9281 *new_info_ptr = cur_ptr;
9282 return first_die;
9283 }
9284
9285 if (!first_die)
9286 first_die = die;
9287 else
9288 last_sibling->sibling = die;
9289
9290 last_sibling = die;
9291 }
9292}
9293
9294/* Read the die from the .debug_info section buffer. Set DIEP to
9295 point to a newly allocated die with its information, except for its
9296 child, sibling, and parent fields. Set HAS_CHILDREN to tell
9297 whether the die has children or not. */
9298
9299static gdb_byte *
9300read_full_die (const struct die_reader_specs *reader,
9301 struct die_info **diep, gdb_byte *info_ptr,
9302 int *has_children)
9303{
9304 unsigned int abbrev_number, bytes_read, i;
9305 sect_offset offset;
9306 struct abbrev_info *abbrev;
9307 struct die_info *die;
9308 struct dwarf2_cu *cu = reader->cu;
9309 bfd *abfd = reader->abfd;
9310
9311 offset.sect_off = info_ptr - reader->buffer;
9312 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9313 info_ptr += bytes_read;
9314 if (!abbrev_number)
9315 {
9316 *diep = NULL;
9317 *has_children = 0;
9318 return info_ptr;
9319 }
9320
9321 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
9322 if (!abbrev)
9323 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
9324 abbrev_number,
9325 bfd_get_filename (abfd));
9326
9327 die = dwarf_alloc_die (cu, abbrev->num_attrs);
9328 die->offset = offset;
9329 die->tag = abbrev->tag;
9330 die->abbrev = abbrev_number;
9331
9332 die->num_attrs = abbrev->num_attrs;
9333
9334 for (i = 0; i < abbrev->num_attrs; ++i)
9335 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
9336 abfd, info_ptr, cu);
9337
9338 *diep = die;
9339 *has_children = abbrev->has_children;
9340 return info_ptr;
9341}
9342
9343/* In DWARF version 2, the description of the debugging information is
9344 stored in a separate .debug_abbrev section. Before we read any
9345 dies from a section we read in all abbreviations and install them
9346 in a hash table. This function also sets flags in CU describing
9347 the data found in the abbrev table. */
9348
9349static void
9350dwarf2_read_abbrevs (struct dwarf2_cu *cu)
9351{
9352 bfd *abfd = cu->objfile->obfd;
9353 struct comp_unit_head *cu_header = &cu->header;
9354 gdb_byte *abbrev_ptr;
9355 struct abbrev_info *cur_abbrev;
9356 unsigned int abbrev_number, bytes_read, abbrev_name;
9357 unsigned int abbrev_form, hash_number;
9358 struct attr_abbrev *cur_attrs;
9359 unsigned int allocated_attrs;
9360
9361 /* Initialize dwarf2 abbrevs. */
9362 obstack_init (&cu->abbrev_obstack);
9363 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
9364 (ABBREV_HASH_SIZE
9365 * sizeof (struct abbrev_info *)));
9366 memset (cu->dwarf2_abbrevs, 0,
9367 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
9368
9369 dwarf2_read_section (dwarf2_per_objfile->objfile,
9370 &dwarf2_per_objfile->abbrev);
9371 abbrev_ptr = (dwarf2_per_objfile->abbrev.buffer
9372 + cu_header->abbrev_offset.sect_off);
9373 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9374 abbrev_ptr += bytes_read;
9375
9376 allocated_attrs = ATTR_ALLOC_CHUNK;
9377 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
9378
9379 /* Loop until we reach an abbrev number of 0. */
9380 while (abbrev_number)
9381 {
9382 cur_abbrev = dwarf_alloc_abbrev (cu);
9383
9384 /* read in abbrev header */
9385 cur_abbrev->number = abbrev_number;
9386 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9387 abbrev_ptr += bytes_read;
9388 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
9389 abbrev_ptr += 1;
9390
9391 /* now read in declarations */
9392 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9393 abbrev_ptr += bytes_read;
9394 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9395 abbrev_ptr += bytes_read;
9396 while (abbrev_name)
9397 {
9398 if (cur_abbrev->num_attrs == allocated_attrs)
9399 {
9400 allocated_attrs += ATTR_ALLOC_CHUNK;
9401 cur_attrs
9402 = xrealloc (cur_attrs, (allocated_attrs
9403 * sizeof (struct attr_abbrev)));
9404 }
9405
9406 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
9407 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
9408 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9409 abbrev_ptr += bytes_read;
9410 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9411 abbrev_ptr += bytes_read;
9412 }
9413
9414 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
9415 (cur_abbrev->num_attrs
9416 * sizeof (struct attr_abbrev)));
9417 memcpy (cur_abbrev->attrs, cur_attrs,
9418 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
9419
9420 hash_number = abbrev_number % ABBREV_HASH_SIZE;
9421 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
9422 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
9423
9424 /* Get next abbreviation.
9425 Under Irix6 the abbreviations for a compilation unit are not
9426 always properly terminated with an abbrev number of 0.
9427 Exit loop if we encounter an abbreviation which we have
9428 already read (which means we are about to read the abbreviations
9429 for the next compile unit) or if the end of the abbreviation
9430 table is reached. */
9431 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
9432 >= dwarf2_per_objfile->abbrev.size)
9433 break;
9434 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9435 abbrev_ptr += bytes_read;
9436 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
9437 break;
9438 }
9439
9440 xfree (cur_attrs);
9441}
9442
9443/* Release the memory used by the abbrev table for a compilation unit. */
9444
9445static void
9446dwarf2_free_abbrev_table (void *ptr_to_cu)
9447{
9448 struct dwarf2_cu *cu = ptr_to_cu;
9449
9450 obstack_free (&cu->abbrev_obstack, NULL);
9451 cu->dwarf2_abbrevs = NULL;
9452}
9453
9454/* Lookup an abbrev_info structure in the abbrev hash table. */
9455
9456static struct abbrev_info *
9457dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
9458{
9459 unsigned int hash_number;
9460 struct abbrev_info *abbrev;
9461
9462 hash_number = number % ABBREV_HASH_SIZE;
9463 abbrev = cu->dwarf2_abbrevs[hash_number];
9464
9465 while (abbrev)
9466 {
9467 if (abbrev->number == number)
9468 return abbrev;
9469 else
9470 abbrev = abbrev->next;
9471 }
9472 return NULL;
9473}
9474
9475/* Returns nonzero if TAG represents a type that we might generate a partial
9476 symbol for. */
9477
9478static int
9479is_type_tag_for_partial (int tag)
9480{
9481 switch (tag)
9482 {
9483#if 0
9484 /* Some types that would be reasonable to generate partial symbols for,
9485 that we don't at present. */
9486 case DW_TAG_array_type:
9487 case DW_TAG_file_type:
9488 case DW_TAG_ptr_to_member_type:
9489 case DW_TAG_set_type:
9490 case DW_TAG_string_type:
9491 case DW_TAG_subroutine_type:
9492#endif
9493 case DW_TAG_base_type:
9494 case DW_TAG_class_type:
9495 case DW_TAG_interface_type:
9496 case DW_TAG_enumeration_type:
9497 case DW_TAG_structure_type:
9498 case DW_TAG_subrange_type:
9499 case DW_TAG_typedef:
9500 case DW_TAG_union_type:
9501 return 1;
9502 default:
9503 return 0;
9504 }
9505}
9506
9507/* Load all DIEs that are interesting for partial symbols into memory. */
9508
9509static struct partial_die_info *
9510load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
9511 int building_psymtab, struct dwarf2_cu *cu)
9512{
9513 struct objfile *objfile = cu->objfile;
9514 struct partial_die_info *part_die;
9515 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
9516 struct abbrev_info *abbrev;
9517 unsigned int bytes_read;
9518 unsigned int load_all = 0;
9519
9520 int nesting_level = 1;
9521
9522 parent_die = NULL;
9523 last_die = NULL;
9524
9525 gdb_assert (cu->per_cu != NULL);
9526 if (cu->per_cu->load_all_dies)
9527 load_all = 1;
9528
9529 cu->partial_dies
9530 = htab_create_alloc_ex (cu->header.length / 12,
9531 partial_die_hash,
9532 partial_die_eq,
9533 NULL,
9534 &cu->comp_unit_obstack,
9535 hashtab_obstack_allocate,
9536 dummy_obstack_deallocate);
9537
9538 part_die = obstack_alloc (&cu->comp_unit_obstack,
9539 sizeof (struct partial_die_info));
9540
9541 while (1)
9542 {
9543 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
9544
9545 /* A NULL abbrev means the end of a series of children. */
9546 if (abbrev == NULL)
9547 {
9548 if (--nesting_level == 0)
9549 {
9550 /* PART_DIE was probably the last thing allocated on the
9551 comp_unit_obstack, so we could call obstack_free
9552 here. We don't do that because the waste is small,
9553 and will be cleaned up when we're done with this
9554 compilation unit. This way, we're also more robust
9555 against other users of the comp_unit_obstack. */
9556 return first_die;
9557 }
9558 info_ptr += bytes_read;
9559 last_die = parent_die;
9560 parent_die = parent_die->die_parent;
9561 continue;
9562 }
9563
9564 /* Check for template arguments. We never save these; if
9565 they're seen, we just mark the parent, and go on our way. */
9566 if (parent_die != NULL
9567 && cu->language == language_cplus
9568 && (abbrev->tag == DW_TAG_template_type_param
9569 || abbrev->tag == DW_TAG_template_value_param))
9570 {
9571 parent_die->has_template_arguments = 1;
9572
9573 if (!load_all)
9574 {
9575 /* We don't need a partial DIE for the template argument. */
9576 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
9577 cu);
9578 continue;
9579 }
9580 }
9581
9582 /* We only recurse into subprograms looking for template arguments.
9583 Skip their other children. */
9584 if (!load_all
9585 && cu->language == language_cplus
9586 && parent_die != NULL
9587 && parent_die->tag == DW_TAG_subprogram)
9588 {
9589 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9590 continue;
9591 }
9592
9593 /* Check whether this DIE is interesting enough to save. Normally
9594 we would not be interested in members here, but there may be
9595 later variables referencing them via DW_AT_specification (for
9596 static members). */
9597 if (!load_all
9598 && !is_type_tag_for_partial (abbrev->tag)
9599 && abbrev->tag != DW_TAG_constant
9600 && abbrev->tag != DW_TAG_enumerator
9601 && abbrev->tag != DW_TAG_subprogram
9602 && abbrev->tag != DW_TAG_lexical_block
9603 && abbrev->tag != DW_TAG_variable
9604 && abbrev->tag != DW_TAG_namespace
9605 && abbrev->tag != DW_TAG_module
9606 && abbrev->tag != DW_TAG_member)
9607 {
9608 /* Otherwise we skip to the next sibling, if any. */
9609 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9610 continue;
9611 }
9612
9613 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
9614 buffer, info_ptr, cu);
9615
9616 /* This two-pass algorithm for processing partial symbols has a
9617 high cost in cache pressure. Thus, handle some simple cases
9618 here which cover the majority of C partial symbols. DIEs
9619 which neither have specification tags in them, nor could have
9620 specification tags elsewhere pointing at them, can simply be
9621 processed and discarded.
9622
9623 This segment is also optional; scan_partial_symbols and
9624 add_partial_symbol will handle these DIEs if we chain
9625 them in normally. When compilers which do not emit large
9626 quantities of duplicate debug information are more common,
9627 this code can probably be removed. */
9628
9629 /* Any complete simple types at the top level (pretty much all
9630 of them, for a language without namespaces), can be processed
9631 directly. */
9632 if (parent_die == NULL
9633 && part_die->has_specification == 0
9634 && part_die->is_declaration == 0
9635 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
9636 || part_die->tag == DW_TAG_base_type
9637 || part_die->tag == DW_TAG_subrange_type))
9638 {
9639 if (building_psymtab && part_die->name != NULL)
9640 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9641 VAR_DOMAIN, LOC_TYPEDEF,
9642 &objfile->static_psymbols,
9643 0, (CORE_ADDR) 0, cu->language, objfile);
9644 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9645 continue;
9646 }
9647
9648 /* The exception for DW_TAG_typedef with has_children above is
9649 a workaround of GCC PR debug/47510. In the case of this complaint
9650 type_name_no_tag_or_error will error on such types later.
9651
9652 GDB skipped children of DW_TAG_typedef by the shortcut above and then
9653 it could not find the child DIEs referenced later, this is checked
9654 above. In correct DWARF DW_TAG_typedef should have no children. */
9655
9656 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
9657 complaint (&symfile_complaints,
9658 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9659 "- DIE at 0x%x [in module %s]"),
9660 part_die->offset.sect_off, objfile->name);
9661
9662 /* If we're at the second level, and we're an enumerator, and
9663 our parent has no specification (meaning possibly lives in a
9664 namespace elsewhere), then we can add the partial symbol now
9665 instead of queueing it. */
9666 if (part_die->tag == DW_TAG_enumerator
9667 && parent_die != NULL
9668 && parent_die->die_parent == NULL
9669 && parent_die->tag == DW_TAG_enumeration_type
9670 && parent_die->has_specification == 0)
9671 {
9672 if (part_die->name == NULL)
9673 complaint (&symfile_complaints,
9674 _("malformed enumerator DIE ignored"));
9675 else if (building_psymtab)
9676 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9677 VAR_DOMAIN, LOC_CONST,
9678 (cu->language == language_cplus
9679 || cu->language == language_java)
9680 ? &objfile->global_psymbols
9681 : &objfile->static_psymbols,
9682 0, (CORE_ADDR) 0, cu->language, objfile);
9683
9684 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9685 continue;
9686 }
9687
9688 /* We'll save this DIE so link it in. */
9689 part_die->die_parent = parent_die;
9690 part_die->die_sibling = NULL;
9691 part_die->die_child = NULL;
9692
9693 if (last_die && last_die == parent_die)
9694 last_die->die_child = part_die;
9695 else if (last_die)
9696 last_die->die_sibling = part_die;
9697
9698 last_die = part_die;
9699
9700 if (first_die == NULL)
9701 first_die = part_die;
9702
9703 /* Maybe add the DIE to the hash table. Not all DIEs that we
9704 find interesting need to be in the hash table, because we
9705 also have the parent/sibling/child chains; only those that we
9706 might refer to by offset later during partial symbol reading.
9707
9708 For now this means things that might have be the target of a
9709 DW_AT_specification, DW_AT_abstract_origin, or
9710 DW_AT_extension. DW_AT_extension will refer only to
9711 namespaces; DW_AT_abstract_origin refers to functions (and
9712 many things under the function DIE, but we do not recurse
9713 into function DIEs during partial symbol reading) and
9714 possibly variables as well; DW_AT_specification refers to
9715 declarations. Declarations ought to have the DW_AT_declaration
9716 flag. It happens that GCC forgets to put it in sometimes, but
9717 only for functions, not for types.
9718
9719 Adding more things than necessary to the hash table is harmless
9720 except for the performance cost. Adding too few will result in
9721 wasted time in find_partial_die, when we reread the compilation
9722 unit with load_all_dies set. */
9723
9724 if (load_all
9725 || abbrev->tag == DW_TAG_constant
9726 || abbrev->tag == DW_TAG_subprogram
9727 || abbrev->tag == DW_TAG_variable
9728 || abbrev->tag == DW_TAG_namespace
9729 || part_die->is_declaration)
9730 {
9731 void **slot;
9732
9733 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9734 part_die->offset.sect_off, INSERT);
9735 *slot = part_die;
9736 }
9737
9738 part_die = obstack_alloc (&cu->comp_unit_obstack,
9739 sizeof (struct partial_die_info));
9740
9741 /* For some DIEs we want to follow their children (if any). For C
9742 we have no reason to follow the children of structures; for other
9743 languages we have to, so that we can get at method physnames
9744 to infer fully qualified class names, for DW_AT_specification,
9745 and for C++ template arguments. For C++, we also look one level
9746 inside functions to find template arguments (if the name of the
9747 function does not already contain the template arguments).
9748
9749 For Ada, we need to scan the children of subprograms and lexical
9750 blocks as well because Ada allows the definition of nested
9751 entities that could be interesting for the debugger, such as
9752 nested subprograms for instance. */
9753 if (last_die->has_children
9754 && (load_all
9755 || last_die->tag == DW_TAG_namespace
9756 || last_die->tag == DW_TAG_module
9757 || last_die->tag == DW_TAG_enumeration_type
9758 || (cu->language == language_cplus
9759 && last_die->tag == DW_TAG_subprogram
9760 && (last_die->name == NULL
9761 || strchr (last_die->name, '<') == NULL))
9762 || (cu->language != language_c
9763 && (last_die->tag == DW_TAG_class_type
9764 || last_die->tag == DW_TAG_interface_type
9765 || last_die->tag == DW_TAG_structure_type
9766 || last_die->tag == DW_TAG_union_type))
9767 || (cu->language == language_ada
9768 && (last_die->tag == DW_TAG_subprogram
9769 || last_die->tag == DW_TAG_lexical_block))))
9770 {
9771 nesting_level++;
9772 parent_die = last_die;
9773 continue;
9774 }
9775
9776 /* Otherwise we skip to the next sibling, if any. */
9777 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
9778
9779 /* Back to the top, do it again. */
9780 }
9781}
9782
9783/* Read a minimal amount of information into the minimal die structure. */
9784
9785static gdb_byte *
9786read_partial_die (struct partial_die_info *part_die,
9787 struct abbrev_info *abbrev,
9788 unsigned int abbrev_len, bfd *abfd,
9789 gdb_byte *buffer, gdb_byte *info_ptr,
9790 struct dwarf2_cu *cu)
9791{
9792 struct objfile *objfile = cu->objfile;
9793 unsigned int i;
9794 struct attribute attr;
9795 int has_low_pc_attr = 0;
9796 int has_high_pc_attr = 0;
9797
9798 memset (part_die, 0, sizeof (struct partial_die_info));
9799
9800 part_die->offset.sect_off = info_ptr - buffer;
9801
9802 info_ptr += abbrev_len;
9803
9804 if (abbrev == NULL)
9805 return info_ptr;
9806
9807 part_die->tag = abbrev->tag;
9808 part_die->has_children = abbrev->has_children;
9809
9810 for (i = 0; i < abbrev->num_attrs; ++i)
9811 {
9812 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
9813
9814 /* Store the data if it is of an attribute we want to keep in a
9815 partial symbol table. */
9816 switch (attr.name)
9817 {
9818 case DW_AT_name:
9819 switch (part_die->tag)
9820 {
9821 case DW_TAG_compile_unit:
9822 case DW_TAG_type_unit:
9823 /* Compilation units have a DW_AT_name that is a filename, not
9824 a source language identifier. */
9825 case DW_TAG_enumeration_type:
9826 case DW_TAG_enumerator:
9827 /* These tags always have simple identifiers already; no need
9828 to canonicalize them. */
9829 part_die->name = DW_STRING (&attr);
9830 break;
9831 default:
9832 part_die->name
9833 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
9834 &objfile->objfile_obstack);
9835 break;
9836 }
9837 break;
9838 case DW_AT_linkage_name:
9839 case DW_AT_MIPS_linkage_name:
9840 /* Note that both forms of linkage name might appear. We
9841 assume they will be the same, and we only store the last
9842 one we see. */
9843 if (cu->language == language_ada)
9844 part_die->name = DW_STRING (&attr);
9845 part_die->linkage_name = DW_STRING (&attr);
9846 break;
9847 case DW_AT_low_pc:
9848 has_low_pc_attr = 1;
9849 part_die->lowpc = DW_ADDR (&attr);
9850 break;
9851 case DW_AT_high_pc:
9852 has_high_pc_attr = 1;
9853 part_die->highpc = DW_ADDR (&attr);
9854 break;
9855 case DW_AT_location:
9856 /* Support the .debug_loc offsets. */
9857 if (attr_form_is_block (&attr))
9858 {
9859 part_die->locdesc = DW_BLOCK (&attr);
9860 }
9861 else if (attr_form_is_section_offset (&attr))
9862 {
9863 dwarf2_complex_location_expr_complaint ();
9864 }
9865 else
9866 {
9867 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9868 "partial symbol information");
9869 }
9870 break;
9871 case DW_AT_external:
9872 part_die->is_external = DW_UNSND (&attr);
9873 break;
9874 case DW_AT_declaration:
9875 part_die->is_declaration = DW_UNSND (&attr);
9876 break;
9877 case DW_AT_type:
9878 part_die->has_type = 1;
9879 break;
9880 case DW_AT_abstract_origin:
9881 case DW_AT_specification:
9882 case DW_AT_extension:
9883 part_die->has_specification = 1;
9884 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9885 break;
9886 case DW_AT_sibling:
9887 /* Ignore absolute siblings, they might point outside of
9888 the current compile unit. */
9889 if (attr.form == DW_FORM_ref_addr)
9890 complaint (&symfile_complaints,
9891 _("ignoring absolute DW_AT_sibling"));
9892 else
9893 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
9894 break;
9895 case DW_AT_byte_size:
9896 part_die->has_byte_size = 1;
9897 break;
9898 case DW_AT_calling_convention:
9899 /* DWARF doesn't provide a way to identify a program's source-level
9900 entry point. DW_AT_calling_convention attributes are only meant
9901 to describe functions' calling conventions.
9902
9903 However, because it's a necessary piece of information in
9904 Fortran, and because DW_CC_program is the only piece of debugging
9905 information whose definition refers to a 'main program' at all,
9906 several compilers have begun marking Fortran main programs with
9907 DW_CC_program --- even when those functions use the standard
9908 calling conventions.
9909
9910 So until DWARF specifies a way to provide this information and
9911 compilers pick up the new representation, we'll support this
9912 practice. */
9913 if (DW_UNSND (&attr) == DW_CC_program
9914 && cu->language == language_fortran)
9915 {
9916 set_main_name (part_die->name);
9917
9918 /* As this DIE has a static linkage the name would be difficult
9919 to look up later. */
9920 language_of_main = language_fortran;
9921 }
9922 break;
9923 case DW_AT_inline:
9924 if (DW_UNSND (&attr) == DW_INL_inlined
9925 || DW_UNSND (&attr) == DW_INL_declared_inlined)
9926 part_die->may_be_inlined = 1;
9927 break;
9928 default:
9929 break;
9930 }
9931 }
9932
9933 if (has_low_pc_attr && has_high_pc_attr)
9934 {
9935 /* When using the GNU linker, .gnu.linkonce. sections are used to
9936 eliminate duplicate copies of functions and vtables and such.
9937 The linker will arbitrarily choose one and discard the others.
9938 The AT_*_pc values for such functions refer to local labels in
9939 these sections. If the section from that file was discarded, the
9940 labels are not in the output, so the relocs get a value of 0.
9941 If this is a discarded function, mark the pc bounds as invalid,
9942 so that GDB will ignore it. */
9943 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9944 {
9945 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9946
9947 complaint (&symfile_complaints,
9948 _("DW_AT_low_pc %s is zero "
9949 "for DIE at 0x%x [in module %s]"),
9950 paddress (gdbarch, part_die->lowpc),
9951 part_die->offset.sect_off, objfile->name);
9952 }
9953 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
9954 else if (part_die->lowpc >= part_die->highpc)
9955 {
9956 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9957
9958 complaint (&symfile_complaints,
9959 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9960 "for DIE at 0x%x [in module %s]"),
9961 paddress (gdbarch, part_die->lowpc),
9962 paddress (gdbarch, part_die->highpc),
9963 part_die->offset.sect_off, objfile->name);
9964 }
9965 else
9966 part_die->has_pc_info = 1;
9967 }
9968
9969 return info_ptr;
9970}
9971
9972/* Find a cached partial DIE at OFFSET in CU. */
9973
9974static struct partial_die_info *
9975find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
9976{
9977 struct partial_die_info *lookup_die = NULL;
9978 struct partial_die_info part_die;
9979
9980 part_die.offset = offset;
9981 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
9982 offset.sect_off);
9983
9984 return lookup_die;
9985}
9986
9987/* Find a partial DIE at OFFSET, which may or may not be in CU,
9988 except in the case of .debug_types DIEs which do not reference
9989 outside their CU (they do however referencing other types via
9990 DW_FORM_ref_sig8). */
9991
9992static struct partial_die_info *
9993find_partial_die (sect_offset offset, struct dwarf2_cu *cu)
9994{
9995 struct objfile *objfile = cu->objfile;
9996 struct dwarf2_per_cu_data *per_cu = NULL;
9997 struct partial_die_info *pd = NULL;
9998
9999 if (cu->per_cu->debug_types_section)
10000 {
10001 pd = find_partial_die_in_comp_unit (offset, cu);
10002 if (pd != NULL)
10003 return pd;
10004 goto not_found;
10005 }
10006
10007 if (offset_in_cu_p (&cu->header, offset))
10008 {
10009 pd = find_partial_die_in_comp_unit (offset, cu);
10010 if (pd != NULL)
10011 return pd;
10012 }
10013
10014 per_cu = dwarf2_find_containing_comp_unit (offset, objfile);
10015
10016 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
10017 load_partial_comp_unit (per_cu);
10018
10019 per_cu->cu->last_used = 0;
10020 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
10021
10022 if (pd == NULL && per_cu->load_all_dies == 0)
10023 {
10024 struct cleanup *back_to;
10025 struct partial_die_info comp_unit_die;
10026 struct abbrev_info *abbrev;
10027 unsigned int bytes_read;
10028 char *info_ptr;
10029
10030 per_cu->load_all_dies = 1;
10031
10032 /* Re-read the DIEs. */
10033 back_to = make_cleanup (null_cleanup, 0);
10034 if (per_cu->cu->dwarf2_abbrevs == NULL)
10035 {
10036 dwarf2_read_abbrevs (per_cu->cu);
10037 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
10038 }
10039 info_ptr = (dwarf2_per_objfile->info.buffer
10040 + per_cu->cu->header.offset.sect_off
10041 + per_cu->cu->header.first_die_offset.cu_off);
10042 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
10043 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
10044 objfile->obfd,
10045 dwarf2_per_objfile->info.buffer, info_ptr,
10046 per_cu->cu);
10047 if (comp_unit_die.has_children)
10048 load_partial_dies (objfile->obfd,
10049 dwarf2_per_objfile->info.buffer, info_ptr,
10050 0, per_cu->cu);
10051 do_cleanups (back_to);
10052
10053 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
10054 }
10055
10056 not_found:
10057
10058 if (pd == NULL)
10059 internal_error (__FILE__, __LINE__,
10060 _("could not find partial DIE 0x%x "
10061 "in cache [from module %s]\n"),
10062 offset.sect_off, bfd_get_filename (objfile->obfd));
10063 return pd;
10064}
10065
10066/* See if we can figure out if the class lives in a namespace. We do
10067 this by looking for a member function; its demangled name will
10068 contain namespace info, if there is any. */
10069
10070static void
10071guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
10072 struct dwarf2_cu *cu)
10073{
10074 /* NOTE: carlton/2003-10-07: Getting the info this way changes
10075 what template types look like, because the demangler
10076 frequently doesn't give the same name as the debug info. We
10077 could fix this by only using the demangled name to get the
10078 prefix (but see comment in read_structure_type). */
10079
10080 struct partial_die_info *real_pdi;
10081 struct partial_die_info *child_pdi;
10082
10083 /* If this DIE (this DIE's specification, if any) has a parent, then
10084 we should not do this. We'll prepend the parent's fully qualified
10085 name when we create the partial symbol. */
10086
10087 real_pdi = struct_pdi;
10088 while (real_pdi->has_specification)
10089 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
10090
10091 if (real_pdi->die_parent != NULL)
10092 return;
10093
10094 for (child_pdi = struct_pdi->die_child;
10095 child_pdi != NULL;
10096 child_pdi = child_pdi->die_sibling)
10097 {
10098 if (child_pdi->tag == DW_TAG_subprogram
10099 && child_pdi->linkage_name != NULL)
10100 {
10101 char *actual_class_name
10102 = language_class_name_from_physname (cu->language_defn,
10103 child_pdi->linkage_name);
10104 if (actual_class_name != NULL)
10105 {
10106 struct_pdi->name
10107 = obsavestring (actual_class_name,
10108 strlen (actual_class_name),
10109 &cu->objfile->objfile_obstack);
10110 xfree (actual_class_name);
10111 }
10112 break;
10113 }
10114 }
10115}
10116
10117/* Adjust PART_DIE before generating a symbol for it. This function
10118 may set the is_external flag or change the DIE's name. */
10119
10120static void
10121fixup_partial_die (struct partial_die_info *part_die,
10122 struct dwarf2_cu *cu)
10123{
10124 /* Once we've fixed up a die, there's no point in doing so again.
10125 This also avoids a memory leak if we were to call
10126 guess_partial_die_structure_name multiple times. */
10127 if (part_die->fixup_called)
10128 return;
10129
10130 /* If we found a reference attribute and the DIE has no name, try
10131 to find a name in the referred to DIE. */
10132
10133 if (part_die->name == NULL && part_die->has_specification)
10134 {
10135 struct partial_die_info *spec_die;
10136
10137 spec_die = find_partial_die (part_die->spec_offset, cu);
10138
10139 fixup_partial_die (spec_die, cu);
10140
10141 if (spec_die->name)
10142 {
10143 part_die->name = spec_die->name;
10144
10145 /* Copy DW_AT_external attribute if it is set. */
10146 if (spec_die->is_external)
10147 part_die->is_external = spec_die->is_external;
10148 }
10149 }
10150
10151 /* Set default names for some unnamed DIEs. */
10152
10153 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
10154 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
10155
10156 /* If there is no parent die to provide a namespace, and there are
10157 children, see if we can determine the namespace from their linkage
10158 name. */
10159 if (cu->language == language_cplus
10160 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
10161 && part_die->die_parent == NULL
10162 && part_die->has_children
10163 && (part_die->tag == DW_TAG_class_type
10164 || part_die->tag == DW_TAG_structure_type
10165 || part_die->tag == DW_TAG_union_type))
10166 guess_partial_die_structure_name (part_die, cu);
10167
10168 /* GCC might emit a nameless struct or union that has a linkage
10169 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
10170 if (part_die->name == NULL
10171 && (part_die->tag == DW_TAG_class_type
10172 || part_die->tag == DW_TAG_interface_type
10173 || part_die->tag == DW_TAG_structure_type
10174 || part_die->tag == DW_TAG_union_type)
10175 && part_die->linkage_name != NULL)
10176 {
10177 char *demangled;
10178
10179 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
10180 if (demangled)
10181 {
10182 const char *base;
10183
10184 /* Strip any leading namespaces/classes, keep only the base name.
10185 DW_AT_name for named DIEs does not contain the prefixes. */
10186 base = strrchr (demangled, ':');
10187 if (base && base > demangled && base[-1] == ':')
10188 base++;
10189 else
10190 base = demangled;
10191
10192 part_die->name = obsavestring (base, strlen (base),
10193 &cu->objfile->objfile_obstack);
10194 xfree (demangled);
10195 }
10196 }
10197
10198 part_die->fixup_called = 1;
10199}
10200
10201/* Read an attribute value described by an attribute form. */
10202
10203static gdb_byte *
10204read_attribute_value (struct attribute *attr, unsigned form,
10205 bfd *abfd, gdb_byte *info_ptr,
10206 struct dwarf2_cu *cu)
10207{
10208 struct comp_unit_head *cu_header = &cu->header;
10209 unsigned int bytes_read;
10210 struct dwarf_block *blk;
10211
10212 attr->form = form;
10213 switch (form)
10214 {
10215 case DW_FORM_ref_addr:
10216 if (cu->header.version == 2)
10217 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10218 else
10219 DW_ADDR (attr) = read_offset (abfd, info_ptr,
10220 &cu->header, &bytes_read);
10221 info_ptr += bytes_read;
10222 break;
10223 case DW_FORM_addr:
10224 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10225 info_ptr += bytes_read;
10226 break;
10227 case DW_FORM_block2:
10228 blk = dwarf_alloc_block (cu);
10229 blk->size = read_2_bytes (abfd, info_ptr);
10230 info_ptr += 2;
10231 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10232 info_ptr += blk->size;
10233 DW_BLOCK (attr) = blk;
10234 break;
10235 case DW_FORM_block4:
10236 blk = dwarf_alloc_block (cu);
10237 blk->size = read_4_bytes (abfd, info_ptr);
10238 info_ptr += 4;
10239 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10240 info_ptr += blk->size;
10241 DW_BLOCK (attr) = blk;
10242 break;
10243 case DW_FORM_data2:
10244 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
10245 info_ptr += 2;
10246 break;
10247 case DW_FORM_data4:
10248 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
10249 info_ptr += 4;
10250 break;
10251 case DW_FORM_data8:
10252 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
10253 info_ptr += 8;
10254 break;
10255 case DW_FORM_sec_offset:
10256 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
10257 info_ptr += bytes_read;
10258 break;
10259 case DW_FORM_string:
10260 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
10261 DW_STRING_IS_CANONICAL (attr) = 0;
10262 info_ptr += bytes_read;
10263 break;
10264 case DW_FORM_strp:
10265 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
10266 &bytes_read);
10267 DW_STRING_IS_CANONICAL (attr) = 0;
10268 info_ptr += bytes_read;
10269 break;
10270 case DW_FORM_exprloc:
10271 case DW_FORM_block:
10272 blk = dwarf_alloc_block (cu);
10273 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10274 info_ptr += bytes_read;
10275 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10276 info_ptr += blk->size;
10277 DW_BLOCK (attr) = blk;
10278 break;
10279 case DW_FORM_block1:
10280 blk = dwarf_alloc_block (cu);
10281 blk->size = read_1_byte (abfd, info_ptr);
10282 info_ptr += 1;
10283 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10284 info_ptr += blk->size;
10285 DW_BLOCK (attr) = blk;
10286 break;
10287 case DW_FORM_data1:
10288 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10289 info_ptr += 1;
10290 break;
10291 case DW_FORM_flag:
10292 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10293 info_ptr += 1;
10294 break;
10295 case DW_FORM_flag_present:
10296 DW_UNSND (attr) = 1;
10297 break;
10298 case DW_FORM_sdata:
10299 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
10300 info_ptr += bytes_read;
10301 break;
10302 case DW_FORM_udata:
10303 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10304 info_ptr += bytes_read;
10305 break;
10306 case DW_FORM_ref1:
10307 DW_ADDR (attr) = (cu->header.offset.sect_off
10308 + read_1_byte (abfd, info_ptr));
10309 info_ptr += 1;
10310 break;
10311 case DW_FORM_ref2:
10312 DW_ADDR (attr) = (cu->header.offset.sect_off
10313 + read_2_bytes (abfd, info_ptr));
10314 info_ptr += 2;
10315 break;
10316 case DW_FORM_ref4:
10317 DW_ADDR (attr) = (cu->header.offset.sect_off
10318 + read_4_bytes (abfd, info_ptr));
10319 info_ptr += 4;
10320 break;
10321 case DW_FORM_ref8:
10322 DW_ADDR (attr) = (cu->header.offset.sect_off
10323 + read_8_bytes (abfd, info_ptr));
10324 info_ptr += 8;
10325 break;
10326 case DW_FORM_ref_sig8:
10327 /* Convert the signature to something we can record in DW_UNSND
10328 for later lookup.
10329 NOTE: This is NULL if the type wasn't found. */
10330 DW_SIGNATURED_TYPE (attr) =
10331 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
10332 info_ptr += 8;
10333 break;
10334 case DW_FORM_ref_udata:
10335 DW_ADDR (attr) = (cu->header.offset.sect_off
10336 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
10337 info_ptr += bytes_read;
10338 break;
10339 case DW_FORM_indirect:
10340 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10341 info_ptr += bytes_read;
10342 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
10343 break;
10344 default:
10345 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
10346 dwarf_form_name (form),
10347 bfd_get_filename (abfd));
10348 }
10349
10350 /* We have seen instances where the compiler tried to emit a byte
10351 size attribute of -1 which ended up being encoded as an unsigned
10352 0xffffffff. Although 0xffffffff is technically a valid size value,
10353 an object of this size seems pretty unlikely so we can relatively
10354 safely treat these cases as if the size attribute was invalid and
10355 treat them as zero by default. */
10356 if (attr->name == DW_AT_byte_size
10357 && form == DW_FORM_data4
10358 && DW_UNSND (attr) >= 0xffffffff)
10359 {
10360 complaint
10361 (&symfile_complaints,
10362 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
10363 hex_string (DW_UNSND (attr)));
10364 DW_UNSND (attr) = 0;
10365 }
10366
10367 return info_ptr;
10368}
10369
10370/* Read an attribute described by an abbreviated attribute. */
10371
10372static gdb_byte *
10373read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
10374 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
10375{
10376 attr->name = abbrev->name;
10377 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
10378}
10379
10380/* Read dwarf information from a buffer. */
10381
10382static unsigned int
10383read_1_byte (bfd *abfd, gdb_byte *buf)
10384{
10385 return bfd_get_8 (abfd, buf);
10386}
10387
10388static int
10389read_1_signed_byte (bfd *abfd, gdb_byte *buf)
10390{
10391 return bfd_get_signed_8 (abfd, buf);
10392}
10393
10394static unsigned int
10395read_2_bytes (bfd *abfd, gdb_byte *buf)
10396{
10397 return bfd_get_16 (abfd, buf);
10398}
10399
10400static int
10401read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
10402{
10403 return bfd_get_signed_16 (abfd, buf);
10404}
10405
10406static unsigned int
10407read_4_bytes (bfd *abfd, gdb_byte *buf)
10408{
10409 return bfd_get_32 (abfd, buf);
10410}
10411
10412static int
10413read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
10414{
10415 return bfd_get_signed_32 (abfd, buf);
10416}
10417
10418static ULONGEST
10419read_8_bytes (bfd *abfd, gdb_byte *buf)
10420{
10421 return bfd_get_64 (abfd, buf);
10422}
10423
10424static CORE_ADDR
10425read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
10426 unsigned int *bytes_read)
10427{
10428 struct comp_unit_head *cu_header = &cu->header;
10429 CORE_ADDR retval = 0;
10430
10431 if (cu_header->signed_addr_p)
10432 {
10433 switch (cu_header->addr_size)
10434 {
10435 case 2:
10436 retval = bfd_get_signed_16 (abfd, buf);
10437 break;
10438 case 4:
10439 retval = bfd_get_signed_32 (abfd, buf);
10440 break;
10441 case 8:
10442 retval = bfd_get_signed_64 (abfd, buf);
10443 break;
10444 default:
10445 internal_error (__FILE__, __LINE__,
10446 _("read_address: bad switch, signed [in module %s]"),
10447 bfd_get_filename (abfd));
10448 }
10449 }
10450 else
10451 {
10452 switch (cu_header->addr_size)
10453 {
10454 case 2:
10455 retval = bfd_get_16 (abfd, buf);
10456 break;
10457 case 4:
10458 retval = bfd_get_32 (abfd, buf);
10459 break;
10460 case 8:
10461 retval = bfd_get_64 (abfd, buf);
10462 break;
10463 default:
10464 internal_error (__FILE__, __LINE__,
10465 _("read_address: bad switch, "
10466 "unsigned [in module %s]"),
10467 bfd_get_filename (abfd));
10468 }
10469 }
10470
10471 *bytes_read = cu_header->addr_size;
10472 return retval;
10473}
10474
10475/* Read the initial length from a section. The (draft) DWARF 3
10476 specification allows the initial length to take up either 4 bytes
10477 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
10478 bytes describe the length and all offsets will be 8 bytes in length
10479 instead of 4.
10480
10481 An older, non-standard 64-bit format is also handled by this
10482 function. The older format in question stores the initial length
10483 as an 8-byte quantity without an escape value. Lengths greater
10484 than 2^32 aren't very common which means that the initial 4 bytes
10485 is almost always zero. Since a length value of zero doesn't make
10486 sense for the 32-bit format, this initial zero can be considered to
10487 be an escape value which indicates the presence of the older 64-bit
10488 format. As written, the code can't detect (old format) lengths
10489 greater than 4GB. If it becomes necessary to handle lengths
10490 somewhat larger than 4GB, we could allow other small values (such
10491 as the non-sensical values of 1, 2, and 3) to also be used as
10492 escape values indicating the presence of the old format.
10493
10494 The value returned via bytes_read should be used to increment the
10495 relevant pointer after calling read_initial_length().
10496
10497 [ Note: read_initial_length() and read_offset() are based on the
10498 document entitled "DWARF Debugging Information Format", revision
10499 3, draft 8, dated November 19, 2001. This document was obtained
10500 from:
10501
10502 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
10503
10504 This document is only a draft and is subject to change. (So beware.)
10505
10506 Details regarding the older, non-standard 64-bit format were
10507 determined empirically by examining 64-bit ELF files produced by
10508 the SGI toolchain on an IRIX 6.5 machine.
10509
10510 - Kevin, July 16, 2002
10511 ] */
10512
10513static LONGEST
10514read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
10515{
10516 LONGEST length = bfd_get_32 (abfd, buf);
10517
10518 if (length == 0xffffffff)
10519 {
10520 length = bfd_get_64 (abfd, buf + 4);
10521 *bytes_read = 12;
10522 }
10523 else if (length == 0)
10524 {
10525 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
10526 length = bfd_get_64 (abfd, buf);
10527 *bytes_read = 8;
10528 }
10529 else
10530 {
10531 *bytes_read = 4;
10532 }
10533
10534 return length;
10535}
10536
10537/* Cover function for read_initial_length.
10538 Returns the length of the object at BUF, and stores the size of the
10539 initial length in *BYTES_READ and stores the size that offsets will be in
10540 *OFFSET_SIZE.
10541 If the initial length size is not equivalent to that specified in
10542 CU_HEADER then issue a complaint.
10543 This is useful when reading non-comp-unit headers. */
10544
10545static LONGEST
10546read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
10547 const struct comp_unit_head *cu_header,
10548 unsigned int *bytes_read,
10549 unsigned int *offset_size)
10550{
10551 LONGEST length = read_initial_length (abfd, buf, bytes_read);
10552
10553 gdb_assert (cu_header->initial_length_size == 4
10554 || cu_header->initial_length_size == 8
10555 || cu_header->initial_length_size == 12);
10556
10557 if (cu_header->initial_length_size != *bytes_read)
10558 complaint (&symfile_complaints,
10559 _("intermixed 32-bit and 64-bit DWARF sections"));
10560
10561 *offset_size = (*bytes_read == 4) ? 4 : 8;
10562 return length;
10563}
10564
10565/* Read an offset from the data stream. The size of the offset is
10566 given by cu_header->offset_size. */
10567
10568static LONGEST
10569read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
10570 unsigned int *bytes_read)
10571{
10572 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
10573
10574 *bytes_read = cu_header->offset_size;
10575 return offset;
10576}
10577
10578/* Read an offset from the data stream. */
10579
10580static LONGEST
10581read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
10582{
10583 LONGEST retval = 0;
10584
10585 switch (offset_size)
10586 {
10587 case 4:
10588 retval = bfd_get_32 (abfd, buf);
10589 break;
10590 case 8:
10591 retval = bfd_get_64 (abfd, buf);
10592 break;
10593 default:
10594 internal_error (__FILE__, __LINE__,
10595 _("read_offset_1: bad switch [in module %s]"),
10596 bfd_get_filename (abfd));
10597 }
10598
10599 return retval;
10600}
10601
10602static gdb_byte *
10603read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
10604{
10605 /* If the size of a host char is 8 bits, we can return a pointer
10606 to the buffer, otherwise we have to copy the data to a buffer
10607 allocated on the temporary obstack. */
10608 gdb_assert (HOST_CHAR_BIT == 8);
10609 return buf;
10610}
10611
10612static char *
10613read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10614{
10615 /* If the size of a host char is 8 bits, we can return a pointer
10616 to the string, otherwise we have to copy the string to a buffer
10617 allocated on the temporary obstack. */
10618 gdb_assert (HOST_CHAR_BIT == 8);
10619 if (*buf == '\0')
10620 {
10621 *bytes_read_ptr = 1;
10622 return NULL;
10623 }
10624 *bytes_read_ptr = strlen ((char *) buf) + 1;
10625 return (char *) buf;
10626}
10627
10628static char *
10629read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
10630{
10631 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
10632 if (dwarf2_per_objfile->str.buffer == NULL)
10633 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
10634 bfd_get_filename (abfd));
10635 if (str_offset >= dwarf2_per_objfile->str.size)
10636 error (_("DW_FORM_strp pointing outside of "
10637 ".debug_str section [in module %s]"),
10638 bfd_get_filename (abfd));
10639 gdb_assert (HOST_CHAR_BIT == 8);
10640 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
10641 return NULL;
10642 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
10643}
10644
10645static char *
10646read_indirect_string (bfd *abfd, gdb_byte *buf,
10647 const struct comp_unit_head *cu_header,
10648 unsigned int *bytes_read_ptr)
10649{
10650 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
10651
10652 return read_indirect_string_at_offset (abfd, str_offset);
10653}
10654
10655static unsigned long
10656read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10657{
10658 unsigned long result;
10659 unsigned int num_read;
10660 int i, shift;
10661 unsigned char byte;
10662
10663 result = 0;
10664 shift = 0;
10665 num_read = 0;
10666 i = 0;
10667 while (1)
10668 {
10669 byte = bfd_get_8 (abfd, buf);
10670 buf++;
10671 num_read++;
10672 result |= ((unsigned long)(byte & 127) << shift);
10673 if ((byte & 128) == 0)
10674 {
10675 break;
10676 }
10677 shift += 7;
10678 }
10679 *bytes_read_ptr = num_read;
10680 return result;
10681}
10682
10683static long
10684read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10685{
10686 long result;
10687 int i, shift, num_read;
10688 unsigned char byte;
10689
10690 result = 0;
10691 shift = 0;
10692 num_read = 0;
10693 i = 0;
10694 while (1)
10695 {
10696 byte = bfd_get_8 (abfd, buf);
10697 buf++;
10698 num_read++;
10699 result |= ((long)(byte & 127) << shift);
10700 shift += 7;
10701 if ((byte & 128) == 0)
10702 {
10703 break;
10704 }
10705 }
10706 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
10707 result |= -(((long)1) << shift);
10708 *bytes_read_ptr = num_read;
10709 return result;
10710}
10711
10712/* Return a pointer to just past the end of an LEB128 number in BUF. */
10713
10714static gdb_byte *
10715skip_leb128 (bfd *abfd, gdb_byte *buf)
10716{
10717 int byte;
10718
10719 while (1)
10720 {
10721 byte = bfd_get_8 (abfd, buf);
10722 buf++;
10723 if ((byte & 128) == 0)
10724 return buf;
10725 }
10726}
10727
10728static void
10729set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
10730{
10731 switch (lang)
10732 {
10733 case DW_LANG_C89:
10734 case DW_LANG_C99:
10735 case DW_LANG_C:
10736 cu->language = language_c;
10737 break;
10738 case DW_LANG_C_plus_plus:
10739 cu->language = language_cplus;
10740 break;
10741 case DW_LANG_D:
10742 cu->language = language_d;
10743 break;
10744 case DW_LANG_Fortran77:
10745 case DW_LANG_Fortran90:
10746 case DW_LANG_Fortran95:
10747 cu->language = language_fortran;
10748 break;
10749 case DW_LANG_Mips_Assembler:
10750 cu->language = language_asm;
10751 break;
10752 case DW_LANG_Java:
10753 cu->language = language_java;
10754 break;
10755 case DW_LANG_Ada83:
10756 case DW_LANG_Ada95:
10757 cu->language = language_ada;
10758 break;
10759 case DW_LANG_Modula2:
10760 cu->language = language_m2;
10761 break;
10762 case DW_LANG_Pascal83:
10763 cu->language = language_pascal;
10764 break;
10765 case DW_LANG_ObjC:
10766 cu->language = language_objc;
10767 break;
10768 case DW_LANG_Cobol74:
10769 case DW_LANG_Cobol85:
10770 default:
10771 cu->language = language_minimal;
10772 break;
10773 }
10774 cu->language_defn = language_def (cu->language);
10775}
10776
10777/* Return the named attribute or NULL if not there. */
10778
10779static struct attribute *
10780dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
10781{
10782 for (;;)
10783 {
10784 unsigned int i;
10785 struct attribute *spec = NULL;
10786
10787 for (i = 0; i < die->num_attrs; ++i)
10788 {
10789 if (die->attrs[i].name == name)
10790 return &die->attrs[i];
10791 if (die->attrs[i].name == DW_AT_specification
10792 || die->attrs[i].name == DW_AT_abstract_origin)
10793 spec = &die->attrs[i];
10794 }
10795
10796 if (!spec)
10797 break;
10798
10799 die = follow_die_ref (die, spec, &cu);
10800 }
10801
10802 return NULL;
10803}
10804
10805/* Return the named attribute or NULL if not there,
10806 but do not follow DW_AT_specification, etc.
10807 This is for use in contexts where we're reading .debug_types dies.
10808 Following DW_AT_specification, DW_AT_abstract_origin will take us
10809 back up the chain, and we want to go down. */
10810
10811static struct attribute *
10812dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
10813 struct dwarf2_cu *cu)
10814{
10815 unsigned int i;
10816
10817 for (i = 0; i < die->num_attrs; ++i)
10818 if (die->attrs[i].name == name)
10819 return &die->attrs[i];
10820
10821 return NULL;
10822}
10823
10824/* Return non-zero iff the attribute NAME is defined for the given DIE,
10825 and holds a non-zero value. This function should only be used for
10826 DW_FORM_flag or DW_FORM_flag_present attributes. */
10827
10828static int
10829dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
10830{
10831 struct attribute *attr = dwarf2_attr (die, name, cu);
10832
10833 return (attr && DW_UNSND (attr));
10834}
10835
10836static int
10837die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
10838{
10839 /* A DIE is a declaration if it has a DW_AT_declaration attribute
10840 which value is non-zero. However, we have to be careful with
10841 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
10842 (via dwarf2_flag_true_p) follows this attribute. So we may
10843 end up accidently finding a declaration attribute that belongs
10844 to a different DIE referenced by the specification attribute,
10845 even though the given DIE does not have a declaration attribute. */
10846 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
10847 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
10848}
10849
10850/* Return the die giving the specification for DIE, if there is
10851 one. *SPEC_CU is the CU containing DIE on input, and the CU
10852 containing the return value on output. If there is no
10853 specification, but there is an abstract origin, that is
10854 returned. */
10855
10856static struct die_info *
10857die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
10858{
10859 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10860 *spec_cu);
10861
10862 if (spec_attr == NULL)
10863 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10864
10865 if (spec_attr == NULL)
10866 return NULL;
10867 else
10868 return follow_die_ref (die, spec_attr, spec_cu);
10869}
10870
10871/* Free the line_header structure *LH, and any arrays and strings it
10872 refers to.
10873 NOTE: This is also used as a "cleanup" function. */
10874
10875static void
10876free_line_header (struct line_header *lh)
10877{
10878 if (lh->standard_opcode_lengths)
10879 xfree (lh->standard_opcode_lengths);
10880
10881 /* Remember that all the lh->file_names[i].name pointers are
10882 pointers into debug_line_buffer, and don't need to be freed. */
10883 if (lh->file_names)
10884 xfree (lh->file_names);
10885
10886 /* Similarly for the include directory names. */
10887 if (lh->include_dirs)
10888 xfree (lh->include_dirs);
10889
10890 xfree (lh);
10891}
10892
10893/* Add an entry to LH's include directory table. */
10894
10895static void
10896add_include_dir (struct line_header *lh, char *include_dir)
10897{
10898 /* Grow the array if necessary. */
10899 if (lh->include_dirs_size == 0)
10900 {
10901 lh->include_dirs_size = 1; /* for testing */
10902 lh->include_dirs = xmalloc (lh->include_dirs_size
10903 * sizeof (*lh->include_dirs));
10904 }
10905 else if (lh->num_include_dirs >= lh->include_dirs_size)
10906 {
10907 lh->include_dirs_size *= 2;
10908 lh->include_dirs = xrealloc (lh->include_dirs,
10909 (lh->include_dirs_size
10910 * sizeof (*lh->include_dirs)));
10911 }
10912
10913 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10914}
10915
10916/* Add an entry to LH's file name table. */
10917
10918static void
10919add_file_name (struct line_header *lh,
10920 char *name,
10921 unsigned int dir_index,
10922 unsigned int mod_time,
10923 unsigned int length)
10924{
10925 struct file_entry *fe;
10926
10927 /* Grow the array if necessary. */
10928 if (lh->file_names_size == 0)
10929 {
10930 lh->file_names_size = 1; /* for testing */
10931 lh->file_names = xmalloc (lh->file_names_size
10932 * sizeof (*lh->file_names));
10933 }
10934 else if (lh->num_file_names >= lh->file_names_size)
10935 {
10936 lh->file_names_size *= 2;
10937 lh->file_names = xrealloc (lh->file_names,
10938 (lh->file_names_size
10939 * sizeof (*lh->file_names)));
10940 }
10941
10942 fe = &lh->file_names[lh->num_file_names++];
10943 fe->name = name;
10944 fe->dir_index = dir_index;
10945 fe->mod_time = mod_time;
10946 fe->length = length;
10947 fe->included_p = 0;
10948 fe->symtab = NULL;
10949}
10950
10951/* Read the statement program header starting at OFFSET in
10952 .debug_line, according to the endianness of ABFD. Return a pointer
10953 to a struct line_header, allocated using xmalloc.
10954
10955 NOTE: the strings in the include directory and file name tables of
10956 the returned object point into debug_line_buffer, and must not be
10957 freed. */
10958
10959static struct line_header *
10960dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10961 struct dwarf2_cu *cu)
10962{
10963 struct cleanup *back_to;
10964 struct line_header *lh;
10965 gdb_byte *line_ptr;
10966 unsigned int bytes_read, offset_size;
10967 int i;
10968 char *cur_dir, *cur_file;
10969
10970 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10971 if (dwarf2_per_objfile->line.buffer == NULL)
10972 {
10973 complaint (&symfile_complaints, _("missing .debug_line section"));
10974 return 0;
10975 }
10976
10977 /* Make sure that at least there's room for the total_length field.
10978 That could be 12 bytes long, but we're just going to fudge that. */
10979 if (offset + 4 >= dwarf2_per_objfile->line.size)
10980 {
10981 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10982 return 0;
10983 }
10984
10985 lh = xmalloc (sizeof (*lh));
10986 memset (lh, 0, sizeof (*lh));
10987 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10988 (void *) lh);
10989
10990 line_ptr = dwarf2_per_objfile->line.buffer + offset;
10991
10992 /* Read in the header. */
10993 lh->total_length =
10994 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10995 &bytes_read, &offset_size);
10996 line_ptr += bytes_read;
10997 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10998 + dwarf2_per_objfile->line.size))
10999 {
11000 dwarf2_statement_list_fits_in_line_number_section_complaint ();
11001 return 0;
11002 }
11003 lh->statement_program_end = line_ptr + lh->total_length;
11004 lh->version = read_2_bytes (abfd, line_ptr);
11005 line_ptr += 2;
11006 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
11007 line_ptr += offset_size;
11008 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
11009 line_ptr += 1;
11010 if (lh->version >= 4)
11011 {
11012 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
11013 line_ptr += 1;
11014 }
11015 else
11016 lh->maximum_ops_per_instruction = 1;
11017
11018 if (lh->maximum_ops_per_instruction == 0)
11019 {
11020 lh->maximum_ops_per_instruction = 1;
11021 complaint (&symfile_complaints,
11022 _("invalid maximum_ops_per_instruction "
11023 "in `.debug_line' section"));
11024 }
11025
11026 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
11027 line_ptr += 1;
11028 lh->line_base = read_1_signed_byte (abfd, line_ptr);
11029 line_ptr += 1;
11030 lh->line_range = read_1_byte (abfd, line_ptr);
11031 line_ptr += 1;
11032 lh->opcode_base = read_1_byte (abfd, line_ptr);
11033 line_ptr += 1;
11034 lh->standard_opcode_lengths
11035 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
11036
11037 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
11038 for (i = 1; i < lh->opcode_base; ++i)
11039 {
11040 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
11041 line_ptr += 1;
11042 }
11043
11044 /* Read directory table. */
11045 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
11046 {
11047 line_ptr += bytes_read;
11048 add_include_dir (lh, cur_dir);
11049 }
11050 line_ptr += bytes_read;
11051
11052 /* Read file name table. */
11053 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
11054 {
11055 unsigned int dir_index, mod_time, length;
11056
11057 line_ptr += bytes_read;
11058 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11059 line_ptr += bytes_read;
11060 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11061 line_ptr += bytes_read;
11062 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11063 line_ptr += bytes_read;
11064
11065 add_file_name (lh, cur_file, dir_index, mod_time, length);
11066 }
11067 line_ptr += bytes_read;
11068 lh->statement_program_start = line_ptr;
11069
11070 if (line_ptr > (dwarf2_per_objfile->line.buffer
11071 + dwarf2_per_objfile->line.size))
11072 complaint (&symfile_complaints,
11073 _("line number info header doesn't "
11074 "fit in `.debug_line' section"));
11075
11076 discard_cleanups (back_to);
11077 return lh;
11078}
11079
11080/* Subroutine of dwarf_decode_lines to simplify it.
11081 Return the file name of the psymtab for included file FILE_INDEX
11082 in line header LH of PST.
11083 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11084 If space for the result is malloc'd, it will be freed by a cleanup.
11085 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
11086
11087static char *
11088psymtab_include_file_name (const struct line_header *lh, int file_index,
11089 const struct partial_symtab *pst,
11090 const char *comp_dir)
11091{
11092 const struct file_entry fe = lh->file_names [file_index];
11093 char *include_name = fe.name;
11094 char *include_name_to_compare = include_name;
11095 char *dir_name = NULL;
11096 const char *pst_filename;
11097 char *copied_name = NULL;
11098 int file_is_pst;
11099
11100 if (fe.dir_index)
11101 dir_name = lh->include_dirs[fe.dir_index - 1];
11102
11103 if (!IS_ABSOLUTE_PATH (include_name)
11104 && (dir_name != NULL || comp_dir != NULL))
11105 {
11106 /* Avoid creating a duplicate psymtab for PST.
11107 We do this by comparing INCLUDE_NAME and PST_FILENAME.
11108 Before we do the comparison, however, we need to account
11109 for DIR_NAME and COMP_DIR.
11110 First prepend dir_name (if non-NULL). If we still don't
11111 have an absolute path prepend comp_dir (if non-NULL).
11112 However, the directory we record in the include-file's
11113 psymtab does not contain COMP_DIR (to match the
11114 corresponding symtab(s)).
11115
11116 Example:
11117
11118 bash$ cd /tmp
11119 bash$ gcc -g ./hello.c
11120 include_name = "hello.c"
11121 dir_name = "."
11122 DW_AT_comp_dir = comp_dir = "/tmp"
11123 DW_AT_name = "./hello.c" */
11124
11125 if (dir_name != NULL)
11126 {
11127 include_name = concat (dir_name, SLASH_STRING,
11128 include_name, (char *)NULL);
11129 include_name_to_compare = include_name;
11130 make_cleanup (xfree, include_name);
11131 }
11132 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
11133 {
11134 include_name_to_compare = concat (comp_dir, SLASH_STRING,
11135 include_name, (char *)NULL);
11136 }
11137 }
11138
11139 pst_filename = pst->filename;
11140 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
11141 {
11142 copied_name = concat (pst->dirname, SLASH_STRING,
11143 pst_filename, (char *)NULL);
11144 pst_filename = copied_name;
11145 }
11146
11147 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
11148
11149 if (include_name_to_compare != include_name)
11150 xfree (include_name_to_compare);
11151 if (copied_name != NULL)
11152 xfree (copied_name);
11153
11154 if (file_is_pst)
11155 return NULL;
11156 return include_name;
11157}
11158
11159/* Ignore this record_line request. */
11160
11161static void
11162noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
11163{
11164 return;
11165}
11166
11167/* Subroutine of dwarf_decode_lines to simplify it.
11168 Process the line number information in LH. */
11169
11170static void
11171dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
11172 struct dwarf2_cu *cu, struct partial_symtab *pst)
11173{
11174 gdb_byte *line_ptr, *extended_end;
11175 gdb_byte *line_end;
11176 unsigned int bytes_read, extended_len;
11177 unsigned char op_code, extended_op, adj_opcode;
11178 CORE_ADDR baseaddr;
11179 struct objfile *objfile = cu->objfile;
11180 bfd *abfd = objfile->obfd;
11181 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11182 const int decode_for_pst_p = (pst != NULL);
11183 struct subfile *last_subfile = NULL;
11184 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
11185 = record_line;
11186
11187 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11188
11189 line_ptr = lh->statement_program_start;
11190 line_end = lh->statement_program_end;
11191
11192 /* Read the statement sequences until there's nothing left. */
11193 while (line_ptr < line_end)
11194 {
11195 /* state machine registers */
11196 CORE_ADDR address = 0;
11197 unsigned int file = 1;
11198 unsigned int line = 1;
11199 unsigned int column = 0;
11200 int is_stmt = lh->default_is_stmt;
11201 int basic_block = 0;
11202 int end_sequence = 0;
11203 CORE_ADDR addr;
11204 unsigned char op_index = 0;
11205
11206 if (!decode_for_pst_p && lh->num_file_names >= file)
11207 {
11208 /* Start a subfile for the current file of the state machine. */
11209 /* lh->include_dirs and lh->file_names are 0-based, but the
11210 directory and file name numbers in the statement program
11211 are 1-based. */
11212 struct file_entry *fe = &lh->file_names[file - 1];
11213 char *dir = NULL;
11214
11215 if (fe->dir_index)
11216 dir = lh->include_dirs[fe->dir_index - 1];
11217
11218 dwarf2_start_subfile (fe->name, dir, comp_dir);
11219 }
11220
11221 /* Decode the table. */
11222 while (!end_sequence)
11223 {
11224 op_code = read_1_byte (abfd, line_ptr);
11225 line_ptr += 1;
11226 if (line_ptr > line_end)
11227 {
11228 dwarf2_debug_line_missing_end_sequence_complaint ();
11229 break;
11230 }
11231
11232 if (op_code >= lh->opcode_base)
11233 {
11234 /* Special operand. */
11235 adj_opcode = op_code - lh->opcode_base;
11236 address += (((op_index + (adj_opcode / lh->line_range))
11237 / lh->maximum_ops_per_instruction)
11238 * lh->minimum_instruction_length);
11239 op_index = ((op_index + (adj_opcode / lh->line_range))
11240 % lh->maximum_ops_per_instruction);
11241 line += lh->line_base + (adj_opcode % lh->line_range);
11242 if (lh->num_file_names < file || file == 0)
11243 dwarf2_debug_line_missing_file_complaint ();
11244 /* For now we ignore lines not starting on an
11245 instruction boundary. */
11246 else if (op_index == 0)
11247 {
11248 lh->file_names[file - 1].included_p = 1;
11249 if (!decode_for_pst_p && is_stmt)
11250 {
11251 if (last_subfile != current_subfile)
11252 {
11253 addr = gdbarch_addr_bits_remove (gdbarch, address);
11254 if (last_subfile)
11255 (*p_record_line) (last_subfile, 0, addr);
11256 last_subfile = current_subfile;
11257 }
11258 /* Append row to matrix using current values. */
11259 addr = gdbarch_addr_bits_remove (gdbarch, address);
11260 (*p_record_line) (current_subfile, line, addr);
11261 }
11262 }
11263 basic_block = 0;
11264 }
11265 else switch (op_code)
11266 {
11267 case DW_LNS_extended_op:
11268 extended_len = read_unsigned_leb128 (abfd, line_ptr,
11269 &bytes_read);
11270 line_ptr += bytes_read;
11271 extended_end = line_ptr + extended_len;
11272 extended_op = read_1_byte (abfd, line_ptr);
11273 line_ptr += 1;
11274 switch (extended_op)
11275 {
11276 case DW_LNE_end_sequence:
11277 p_record_line = record_line;
11278 end_sequence = 1;
11279 break;
11280 case DW_LNE_set_address:
11281 address = read_address (abfd, line_ptr, cu, &bytes_read);
11282
11283 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
11284 {
11285 /* This line table is for a function which has been
11286 GCd by the linker. Ignore it. PR gdb/12528 */
11287
11288 long line_offset
11289 = line_ptr - dwarf2_per_objfile->line.buffer;
11290
11291 complaint (&symfile_complaints,
11292 _(".debug_line address at offset 0x%lx is 0 "
11293 "[in module %s]"),
11294 line_offset, objfile->name);
11295 p_record_line = noop_record_line;
11296 }
11297
11298 op_index = 0;
11299 line_ptr += bytes_read;
11300 address += baseaddr;
11301 break;
11302 case DW_LNE_define_file:
11303 {
11304 char *cur_file;
11305 unsigned int dir_index, mod_time, length;
11306
11307 cur_file = read_direct_string (abfd, line_ptr,
11308 &bytes_read);
11309 line_ptr += bytes_read;
11310 dir_index =
11311 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11312 line_ptr += bytes_read;
11313 mod_time =
11314 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11315 line_ptr += bytes_read;
11316 length =
11317 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11318 line_ptr += bytes_read;
11319 add_file_name (lh, cur_file, dir_index, mod_time, length);
11320 }
11321 break;
11322 case DW_LNE_set_discriminator:
11323 /* The discriminator is not interesting to the debugger;
11324 just ignore it. */
11325 line_ptr = extended_end;
11326 break;
11327 default:
11328 complaint (&symfile_complaints,
11329 _("mangled .debug_line section"));
11330 return;
11331 }
11332 /* Make sure that we parsed the extended op correctly. If e.g.
11333 we expected a different address size than the producer used,
11334 we may have read the wrong number of bytes. */
11335 if (line_ptr != extended_end)
11336 {
11337 complaint (&symfile_complaints,
11338 _("mangled .debug_line section"));
11339 return;
11340 }
11341 break;
11342 case DW_LNS_copy:
11343 if (lh->num_file_names < file || file == 0)
11344 dwarf2_debug_line_missing_file_complaint ();
11345 else
11346 {
11347 lh->file_names[file - 1].included_p = 1;
11348 if (!decode_for_pst_p && is_stmt)
11349 {
11350 if (last_subfile != current_subfile)
11351 {
11352 addr = gdbarch_addr_bits_remove (gdbarch, address);
11353 if (last_subfile)
11354 (*p_record_line) (last_subfile, 0, addr);
11355 last_subfile = current_subfile;
11356 }
11357 addr = gdbarch_addr_bits_remove (gdbarch, address);
11358 (*p_record_line) (current_subfile, line, addr);
11359 }
11360 }
11361 basic_block = 0;
11362 break;
11363 case DW_LNS_advance_pc:
11364 {
11365 CORE_ADDR adjust
11366 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11367
11368 address += (((op_index + adjust)
11369 / lh->maximum_ops_per_instruction)
11370 * lh->minimum_instruction_length);
11371 op_index = ((op_index + adjust)
11372 % lh->maximum_ops_per_instruction);
11373 line_ptr += bytes_read;
11374 }
11375 break;
11376 case DW_LNS_advance_line:
11377 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
11378 line_ptr += bytes_read;
11379 break;
11380 case DW_LNS_set_file:
11381 {
11382 /* The arrays lh->include_dirs and lh->file_names are
11383 0-based, but the directory and file name numbers in
11384 the statement program are 1-based. */
11385 struct file_entry *fe;
11386 char *dir = NULL;
11387
11388 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11389 line_ptr += bytes_read;
11390 if (lh->num_file_names < file || file == 0)
11391 dwarf2_debug_line_missing_file_complaint ();
11392 else
11393 {
11394 fe = &lh->file_names[file - 1];
11395 if (fe->dir_index)
11396 dir = lh->include_dirs[fe->dir_index - 1];
11397 if (!decode_for_pst_p)
11398 {
11399 last_subfile = current_subfile;
11400 dwarf2_start_subfile (fe->name, dir, comp_dir);
11401 }
11402 }
11403 }
11404 break;
11405 case DW_LNS_set_column:
11406 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11407 line_ptr += bytes_read;
11408 break;
11409 case DW_LNS_negate_stmt:
11410 is_stmt = (!is_stmt);
11411 break;
11412 case DW_LNS_set_basic_block:
11413 basic_block = 1;
11414 break;
11415 /* Add to the address register of the state machine the
11416 address increment value corresponding to special opcode
11417 255. I.e., this value is scaled by the minimum
11418 instruction length since special opcode 255 would have
11419 scaled the increment. */
11420 case DW_LNS_const_add_pc:
11421 {
11422 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
11423
11424 address += (((op_index + adjust)
11425 / lh->maximum_ops_per_instruction)
11426 * lh->minimum_instruction_length);
11427 op_index = ((op_index + adjust)
11428 % lh->maximum_ops_per_instruction);
11429 }
11430 break;
11431 case DW_LNS_fixed_advance_pc:
11432 address += read_2_bytes (abfd, line_ptr);
11433 op_index = 0;
11434 line_ptr += 2;
11435 break;
11436 default:
11437 {
11438 /* Unknown standard opcode, ignore it. */
11439 int i;
11440
11441 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
11442 {
11443 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11444 line_ptr += bytes_read;
11445 }
11446 }
11447 }
11448 }
11449 if (lh->num_file_names < file || file == 0)
11450 dwarf2_debug_line_missing_file_complaint ();
11451 else
11452 {
11453 lh->file_names[file - 1].included_p = 1;
11454 if (!decode_for_pst_p)
11455 {
11456 addr = gdbarch_addr_bits_remove (gdbarch, address);
11457 (*p_record_line) (current_subfile, 0, addr);
11458 }
11459 }
11460 }
11461}
11462
11463/* Decode the Line Number Program (LNP) for the given line_header
11464 structure and CU. The actual information extracted and the type
11465 of structures created from the LNP depends on the value of PST.
11466
11467 1. If PST is NULL, then this procedure uses the data from the program
11468 to create all necessary symbol tables, and their linetables.
11469
11470 2. If PST is not NULL, this procedure reads the program to determine
11471 the list of files included by the unit represented by PST, and
11472 builds all the associated partial symbol tables.
11473
11474 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11475 It is used for relative paths in the line table.
11476 NOTE: When processing partial symtabs (pst != NULL),
11477 comp_dir == pst->dirname.
11478
11479 NOTE: It is important that psymtabs have the same file name (via strcmp)
11480 as the corresponding symtab. Since COMP_DIR is not used in the name of the
11481 symtab we don't use it in the name of the psymtabs we create.
11482 E.g. expand_line_sal requires this when finding psymtabs to expand.
11483 A good testcase for this is mb-inline.exp. */
11484
11485static void
11486dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
11487 struct dwarf2_cu *cu, struct partial_symtab *pst,
11488 int want_line_info)
11489{
11490 struct objfile *objfile = cu->objfile;
11491 const int decode_for_pst_p = (pst != NULL);
11492 struct subfile *first_subfile = current_subfile;
11493
11494 if (want_line_info)
11495 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
11496
11497 if (decode_for_pst_p)
11498 {
11499 int file_index;
11500
11501 /* Now that we're done scanning the Line Header Program, we can
11502 create the psymtab of each included file. */
11503 for (file_index = 0; file_index < lh->num_file_names; file_index++)
11504 if (lh->file_names[file_index].included_p == 1)
11505 {
11506 char *include_name =
11507 psymtab_include_file_name (lh, file_index, pst, comp_dir);
11508 if (include_name != NULL)
11509 dwarf2_create_include_psymtab (include_name, pst, objfile);
11510 }
11511 }
11512 else
11513 {
11514 /* Make sure a symtab is created for every file, even files
11515 which contain only variables (i.e. no code with associated
11516 line numbers). */
11517 int i;
11518
11519 for (i = 0; i < lh->num_file_names; i++)
11520 {
11521 char *dir = NULL;
11522 struct file_entry *fe;
11523
11524 fe = &lh->file_names[i];
11525 if (fe->dir_index)
11526 dir = lh->include_dirs[fe->dir_index - 1];
11527 dwarf2_start_subfile (fe->name, dir, comp_dir);
11528
11529 /* Skip the main file; we don't need it, and it must be
11530 allocated last, so that it will show up before the
11531 non-primary symtabs in the objfile's symtab list. */
11532 if (current_subfile == first_subfile)
11533 continue;
11534
11535 if (current_subfile->symtab == NULL)
11536 current_subfile->symtab = allocate_symtab (current_subfile->name,
11537 objfile);
11538 fe->symtab = current_subfile->symtab;
11539 }
11540 }
11541}
11542
11543/* Start a subfile for DWARF. FILENAME is the name of the file and
11544 DIRNAME the name of the source directory which contains FILENAME
11545 or NULL if not known. COMP_DIR is the compilation directory for the
11546 linetable's compilation unit or NULL if not known.
11547 This routine tries to keep line numbers from identical absolute and
11548 relative file names in a common subfile.
11549
11550 Using the `list' example from the GDB testsuite, which resides in
11551 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
11552 of /srcdir/list0.c yields the following debugging information for list0.c:
11553
11554 DW_AT_name: /srcdir/list0.c
11555 DW_AT_comp_dir: /compdir
11556 files.files[0].name: list0.h
11557 files.files[0].dir: /srcdir
11558 files.files[1].name: list0.c
11559 files.files[1].dir: /srcdir
11560
11561 The line number information for list0.c has to end up in a single
11562 subfile, so that `break /srcdir/list0.c:1' works as expected.
11563 start_subfile will ensure that this happens provided that we pass the
11564 concatenation of files.files[1].dir and files.files[1].name as the
11565 subfile's name. */
11566
11567static void
11568dwarf2_start_subfile (char *filename, const char *dirname,
11569 const char *comp_dir)
11570{
11571 char *fullname;
11572
11573 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
11574 `start_symtab' will always pass the contents of DW_AT_comp_dir as
11575 second argument to start_subfile. To be consistent, we do the
11576 same here. In order not to lose the line information directory,
11577 we concatenate it to the filename when it makes sense.
11578 Note that the Dwarf3 standard says (speaking of filenames in line
11579 information): ``The directory index is ignored for file names
11580 that represent full path names''. Thus ignoring dirname in the
11581 `else' branch below isn't an issue. */
11582
11583 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
11584 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
11585 else
11586 fullname = filename;
11587
11588 start_subfile (fullname, comp_dir);
11589
11590 if (fullname != filename)
11591 xfree (fullname);
11592}
11593
11594static void
11595var_decode_location (struct attribute *attr, struct symbol *sym,
11596 struct dwarf2_cu *cu)
11597{
11598 struct objfile *objfile = cu->objfile;
11599 struct comp_unit_head *cu_header = &cu->header;
11600
11601 /* NOTE drow/2003-01-30: There used to be a comment and some special
11602 code here to turn a symbol with DW_AT_external and a
11603 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
11604 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
11605 with some versions of binutils) where shared libraries could have
11606 relocations against symbols in their debug information - the
11607 minimal symbol would have the right address, but the debug info
11608 would not. It's no longer necessary, because we will explicitly
11609 apply relocations when we read in the debug information now. */
11610
11611 /* A DW_AT_location attribute with no contents indicates that a
11612 variable has been optimized away. */
11613 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
11614 {
11615 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11616 return;
11617 }
11618
11619 /* Handle one degenerate form of location expression specially, to
11620 preserve GDB's previous behavior when section offsets are
11621 specified. If this is just a DW_OP_addr then mark this symbol
11622 as LOC_STATIC. */
11623
11624 if (attr_form_is_block (attr)
11625 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
11626 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
11627 {
11628 unsigned int dummy;
11629
11630 SYMBOL_VALUE_ADDRESS (sym) =
11631 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
11632 SYMBOL_CLASS (sym) = LOC_STATIC;
11633 fixup_symbol_section (sym, objfile);
11634 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
11635 SYMBOL_SECTION (sym));
11636 return;
11637 }
11638
11639 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
11640 expression evaluator, and use LOC_COMPUTED only when necessary
11641 (i.e. when the value of a register or memory location is
11642 referenced, or a thread-local block, etc.). Then again, it might
11643 not be worthwhile. I'm assuming that it isn't unless performance
11644 or memory numbers show me otherwise. */
11645
11646 dwarf2_symbol_mark_computed (attr, sym, cu);
11647 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11648
11649 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
11650 cu->has_loclist = 1;
11651}
11652
11653/* Given a pointer to a DWARF information entry, figure out if we need
11654 to make a symbol table entry for it, and if so, create a new entry
11655 and return a pointer to it.
11656 If TYPE is NULL, determine symbol type from the die, otherwise
11657 used the passed type.
11658 If SPACE is not NULL, use it to hold the new symbol. If it is
11659 NULL, allocate a new symbol on the objfile's obstack. */
11660
11661static struct symbol *
11662new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
11663 struct symbol *space)
11664{
11665 struct objfile *objfile = cu->objfile;
11666 struct symbol *sym = NULL;
11667 char *name;
11668 struct attribute *attr = NULL;
11669 struct attribute *attr2 = NULL;
11670 CORE_ADDR baseaddr;
11671 struct pending **list_to_add = NULL;
11672
11673 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11674
11675 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11676
11677 name = dwarf2_name (die, cu);
11678 if (name)
11679 {
11680 const char *linkagename;
11681 int suppress_add = 0;
11682
11683 if (space)
11684 sym = space;
11685 else
11686 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
11687 OBJSTAT (objfile, n_syms++);
11688
11689 /* Cache this symbol's name and the name's demangled form (if any). */
11690 SYMBOL_SET_LANGUAGE (sym, cu->language);
11691 linkagename = dwarf2_physname (name, die, cu);
11692 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
11693
11694 /* Fortran does not have mangling standard and the mangling does differ
11695 between gfortran, iFort etc. */
11696 if (cu->language == language_fortran
11697 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
11698 symbol_set_demangled_name (&(sym->ginfo),
11699 (char *) dwarf2_full_name (name, die, cu),
11700 NULL);
11701
11702 /* Default assumptions.
11703 Use the passed type or decode it from the die. */
11704 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11705 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11706 if (type != NULL)
11707 SYMBOL_TYPE (sym) = type;
11708 else
11709 SYMBOL_TYPE (sym) = die_type (die, cu);
11710 attr = dwarf2_attr (die,
11711 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
11712 cu);
11713 if (attr)
11714 {
11715 SYMBOL_LINE (sym) = DW_UNSND (attr);
11716 }
11717
11718 attr = dwarf2_attr (die,
11719 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
11720 cu);
11721 if (attr)
11722 {
11723 int file_index = DW_UNSND (attr);
11724
11725 if (cu->line_header == NULL
11726 || file_index > cu->line_header->num_file_names)
11727 complaint (&symfile_complaints,
11728 _("file index out of range"));
11729 else if (file_index > 0)
11730 {
11731 struct file_entry *fe;
11732
11733 fe = &cu->line_header->file_names[file_index - 1];
11734 SYMBOL_SYMTAB (sym) = fe->symtab;
11735 }
11736 }
11737
11738 switch (die->tag)
11739 {
11740 case DW_TAG_label:
11741 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11742 if (attr)
11743 {
11744 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
11745 }
11746 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
11747 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
11748 SYMBOL_CLASS (sym) = LOC_LABEL;
11749 add_symbol_to_list (sym, cu->list_in_scope);
11750 break;
11751 case DW_TAG_subprogram:
11752 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11753 finish_block. */
11754 SYMBOL_CLASS (sym) = LOC_BLOCK;
11755 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11756 if ((attr2 && (DW_UNSND (attr2) != 0))
11757 || cu->language == language_ada)
11758 {
11759 /* Subprograms marked external are stored as a global symbol.
11760 Ada subprograms, whether marked external or not, are always
11761 stored as a global symbol, because we want to be able to
11762 access them globally. For instance, we want to be able
11763 to break on a nested subprogram without having to
11764 specify the context. */
11765 list_to_add = &global_symbols;
11766 }
11767 else
11768 {
11769 list_to_add = cu->list_in_scope;
11770 }
11771 break;
11772 case DW_TAG_inlined_subroutine:
11773 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11774 finish_block. */
11775 SYMBOL_CLASS (sym) = LOC_BLOCK;
11776 SYMBOL_INLINED (sym) = 1;
11777 list_to_add = cu->list_in_scope;
11778 break;
11779 case DW_TAG_template_value_param:
11780 suppress_add = 1;
11781 /* Fall through. */
11782 case DW_TAG_constant:
11783 case DW_TAG_variable:
11784 case DW_TAG_member:
11785 /* Compilation with minimal debug info may result in
11786 variables with missing type entries. Change the
11787 misleading `void' type to something sensible. */
11788 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
11789 SYMBOL_TYPE (sym)
11790 = objfile_type (objfile)->nodebug_data_symbol;
11791
11792 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11793 /* In the case of DW_TAG_member, we should only be called for
11794 static const members. */
11795 if (die->tag == DW_TAG_member)
11796 {
11797 /* dwarf2_add_field uses die_is_declaration,
11798 so we do the same. */
11799 gdb_assert (die_is_declaration (die, cu));
11800 gdb_assert (attr);
11801 }
11802 if (attr)
11803 {
11804 dwarf2_const_value (attr, sym, cu);
11805 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11806 if (!suppress_add)
11807 {
11808 if (attr2 && (DW_UNSND (attr2) != 0))
11809 list_to_add = &global_symbols;
11810 else
11811 list_to_add = cu->list_in_scope;
11812 }
11813 break;
11814 }
11815 attr = dwarf2_attr (die, DW_AT_location, cu);
11816 if (attr)
11817 {
11818 var_decode_location (attr, sym, cu);
11819 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11820 if (SYMBOL_CLASS (sym) == LOC_STATIC
11821 && SYMBOL_VALUE_ADDRESS (sym) == 0
11822 && !dwarf2_per_objfile->has_section_at_zero)
11823 {
11824 /* When a static variable is eliminated by the linker,
11825 the corresponding debug information is not stripped
11826 out, but the variable address is set to null;
11827 do not add such variables into symbol table. */
11828 }
11829 else if (attr2 && (DW_UNSND (attr2) != 0))
11830 {
11831 /* Workaround gfortran PR debug/40040 - it uses
11832 DW_AT_location for variables in -fPIC libraries which may
11833 get overriden by other libraries/executable and get
11834 a different address. Resolve it by the minimal symbol
11835 which may come from inferior's executable using copy
11836 relocation. Make this workaround only for gfortran as for
11837 other compilers GDB cannot guess the minimal symbol
11838 Fortran mangling kind. */
11839 if (cu->language == language_fortran && die->parent
11840 && die->parent->tag == DW_TAG_module
11841 && cu->producer
11842 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
11843 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11844
11845 /* A variable with DW_AT_external is never static,
11846 but it may be block-scoped. */
11847 list_to_add = (cu->list_in_scope == &file_symbols
11848 ? &global_symbols : cu->list_in_scope);
11849 }
11850 else
11851 list_to_add = cu->list_in_scope;
11852 }
11853 else
11854 {
11855 /* We do not know the address of this symbol.
11856 If it is an external symbol and we have type information
11857 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11858 The address of the variable will then be determined from
11859 the minimal symbol table whenever the variable is
11860 referenced. */
11861 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11862 if (attr2 && (DW_UNSND (attr2) != 0)
11863 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
11864 {
11865 /* A variable with DW_AT_external is never static, but it
11866 may be block-scoped. */
11867 list_to_add = (cu->list_in_scope == &file_symbols
11868 ? &global_symbols : cu->list_in_scope);
11869
11870 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11871 }
11872 else if (!die_is_declaration (die, cu))
11873 {
11874 /* Use the default LOC_OPTIMIZED_OUT class. */
11875 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
11876 if (!suppress_add)
11877 list_to_add = cu->list_in_scope;
11878 }
11879 }
11880 break;
11881 case DW_TAG_formal_parameter:
11882 /* If we are inside a function, mark this as an argument. If
11883 not, we might be looking at an argument to an inlined function
11884 when we do not have enough information to show inlined frames;
11885 pretend it's a local variable in that case so that the user can
11886 still see it. */
11887 if (context_stack_depth > 0
11888 && context_stack[context_stack_depth - 1].name != NULL)
11889 SYMBOL_IS_ARGUMENT (sym) = 1;
11890 attr = dwarf2_attr (die, DW_AT_location, cu);
11891 if (attr)
11892 {
11893 var_decode_location (attr, sym, cu);
11894 }
11895 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11896 if (attr)
11897 {
11898 dwarf2_const_value (attr, sym, cu);
11899 }
11900
11901 list_to_add = cu->list_in_scope;
11902 break;
11903 case DW_TAG_unspecified_parameters:
11904 /* From varargs functions; gdb doesn't seem to have any
11905 interest in this information, so just ignore it for now.
11906 (FIXME?) */
11907 break;
11908 case DW_TAG_template_type_param:
11909 suppress_add = 1;
11910 /* Fall through. */
11911 case DW_TAG_class_type:
11912 case DW_TAG_interface_type:
11913 case DW_TAG_structure_type:
11914 case DW_TAG_union_type:
11915 case DW_TAG_set_type:
11916 case DW_TAG_enumeration_type:
11917 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11918 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11919
11920 {
11921 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11922 really ever be static objects: otherwise, if you try
11923 to, say, break of a class's method and you're in a file
11924 which doesn't mention that class, it won't work unless
11925 the check for all static symbols in lookup_symbol_aux
11926 saves you. See the OtherFileClass tests in
11927 gdb.c++/namespace.exp. */
11928
11929 if (!suppress_add)
11930 {
11931 list_to_add = (cu->list_in_scope == &file_symbols
11932 && (cu->language == language_cplus
11933 || cu->language == language_java)
11934 ? &global_symbols : cu->list_in_scope);
11935
11936 /* The semantics of C++ state that "struct foo {
11937 ... }" also defines a typedef for "foo". A Java
11938 class declaration also defines a typedef for the
11939 class. */
11940 if (cu->language == language_cplus
11941 || cu->language == language_java
11942 || cu->language == language_ada)
11943 {
11944 /* The symbol's name is already allocated along
11945 with this objfile, so we don't need to
11946 duplicate it for the type. */
11947 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11948 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11949 }
11950 }
11951 }
11952 break;
11953 case DW_TAG_typedef:
11954 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11955 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11956 list_to_add = cu->list_in_scope;
11957 break;
11958 case DW_TAG_base_type:
11959 case DW_TAG_subrange_type:
11960 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11961 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11962 list_to_add = cu->list_in_scope;
11963 break;
11964 case DW_TAG_enumerator:
11965 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11966 if (attr)
11967 {
11968 dwarf2_const_value (attr, sym, cu);
11969 }
11970 {
11971 /* NOTE: carlton/2003-11-10: See comment above in the
11972 DW_TAG_class_type, etc. block. */
11973
11974 list_to_add = (cu->list_in_scope == &file_symbols
11975 && (cu->language == language_cplus
11976 || cu->language == language_java)
11977 ? &global_symbols : cu->list_in_scope);
11978 }
11979 break;
11980 case DW_TAG_namespace:
11981 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11982 list_to_add = &global_symbols;
11983 break;
11984 default:
11985 /* Not a tag we recognize. Hopefully we aren't processing
11986 trash data, but since we must specifically ignore things
11987 we don't recognize, there is nothing else we should do at
11988 this point. */
11989 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
11990 dwarf_tag_name (die->tag));
11991 break;
11992 }
11993
11994 if (suppress_add)
11995 {
11996 sym->hash_next = objfile->template_symbols;
11997 objfile->template_symbols = sym;
11998 list_to_add = NULL;
11999 }
12000
12001 if (list_to_add != NULL)
12002 add_symbol_to_list (sym, list_to_add);
12003
12004 /* For the benefit of old versions of GCC, check for anonymous
12005 namespaces based on the demangled name. */
12006 if (!processing_has_namespace_info
12007 && cu->language == language_cplus)
12008 cp_scan_for_anonymous_namespaces (sym, objfile);
12009 }
12010 return (sym);
12011}
12012
12013/* A wrapper for new_symbol_full that always allocates a new symbol. */
12014
12015static struct symbol *
12016new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
12017{
12018 return new_symbol_full (die, type, cu, NULL);
12019}
12020
12021/* Given an attr with a DW_FORM_dataN value in host byte order,
12022 zero-extend it as appropriate for the symbol's type. The DWARF
12023 standard (v4) is not entirely clear about the meaning of using
12024 DW_FORM_dataN for a constant with a signed type, where the type is
12025 wider than the data. The conclusion of a discussion on the DWARF
12026 list was that this is unspecified. We choose to always zero-extend
12027 because that is the interpretation long in use by GCC. */
12028
12029static gdb_byte *
12030dwarf2_const_value_data (struct attribute *attr, struct type *type,
12031 const char *name, struct obstack *obstack,
12032 struct dwarf2_cu *cu, long *value, int bits)
12033{
12034 struct objfile *objfile = cu->objfile;
12035 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
12036 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
12037 LONGEST l = DW_UNSND (attr);
12038
12039 if (bits < sizeof (*value) * 8)
12040 {
12041 l &= ((LONGEST) 1 << bits) - 1;
12042 *value = l;
12043 }
12044 else if (bits == sizeof (*value) * 8)
12045 *value = l;
12046 else
12047 {
12048 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
12049 store_unsigned_integer (bytes, bits / 8, byte_order, l);
12050 return bytes;
12051 }
12052
12053 return NULL;
12054}
12055
12056/* Read a constant value from an attribute. Either set *VALUE, or if
12057 the value does not fit in *VALUE, set *BYTES - either already
12058 allocated on the objfile obstack, or newly allocated on OBSTACK,
12059 or, set *BATON, if we translated the constant to a location
12060 expression. */
12061
12062static void
12063dwarf2_const_value_attr (struct attribute *attr, struct type *type,
12064 const char *name, struct obstack *obstack,
12065 struct dwarf2_cu *cu,
12066 long *value, gdb_byte **bytes,
12067 struct dwarf2_locexpr_baton **baton)
12068{
12069 struct objfile *objfile = cu->objfile;
12070 struct comp_unit_head *cu_header = &cu->header;
12071 struct dwarf_block *blk;
12072 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
12073 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
12074
12075 *value = 0;
12076 *bytes = NULL;
12077 *baton = NULL;
12078
12079 switch (attr->form)
12080 {
12081 case DW_FORM_addr:
12082 {
12083 gdb_byte *data;
12084
12085 if (TYPE_LENGTH (type) != cu_header->addr_size)
12086 dwarf2_const_value_length_mismatch_complaint (name,
12087 cu_header->addr_size,
12088 TYPE_LENGTH (type));
12089 /* Symbols of this form are reasonably rare, so we just
12090 piggyback on the existing location code rather than writing
12091 a new implementation of symbol_computed_ops. */
12092 *baton = obstack_alloc (&objfile->objfile_obstack,
12093 sizeof (struct dwarf2_locexpr_baton));
12094 (*baton)->per_cu = cu->per_cu;
12095 gdb_assert ((*baton)->per_cu);
12096
12097 (*baton)->size = 2 + cu_header->addr_size;
12098 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
12099 (*baton)->data = data;
12100
12101 data[0] = DW_OP_addr;
12102 store_unsigned_integer (&data[1], cu_header->addr_size,
12103 byte_order, DW_ADDR (attr));
12104 data[cu_header->addr_size + 1] = DW_OP_stack_value;
12105 }
12106 break;
12107 case DW_FORM_string:
12108 case DW_FORM_strp:
12109 /* DW_STRING is already allocated on the objfile obstack, point
12110 directly to it. */
12111 *bytes = (gdb_byte *) DW_STRING (attr);
12112 break;
12113 case DW_FORM_block1:
12114 case DW_FORM_block2:
12115 case DW_FORM_block4:
12116 case DW_FORM_block:
12117 case DW_FORM_exprloc:
12118 blk = DW_BLOCK (attr);
12119 if (TYPE_LENGTH (type) != blk->size)
12120 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
12121 TYPE_LENGTH (type));
12122 *bytes = blk->data;
12123 break;
12124
12125 /* The DW_AT_const_value attributes are supposed to carry the
12126 symbol's value "represented as it would be on the target
12127 architecture." By the time we get here, it's already been
12128 converted to host endianness, so we just need to sign- or
12129 zero-extend it as appropriate. */
12130 case DW_FORM_data1:
12131 *bytes = dwarf2_const_value_data (attr, type, name,
12132 obstack, cu, value, 8);
12133 break;
12134 case DW_FORM_data2:
12135 *bytes = dwarf2_const_value_data (attr, type, name,
12136 obstack, cu, value, 16);
12137 break;
12138 case DW_FORM_data4:
12139 *bytes = dwarf2_const_value_data (attr, type, name,
12140 obstack, cu, value, 32);
12141 break;
12142 case DW_FORM_data8:
12143 *bytes = dwarf2_const_value_data (attr, type, name,
12144 obstack, cu, value, 64);
12145 break;
12146
12147 case DW_FORM_sdata:
12148 *value = DW_SND (attr);
12149 break;
12150
12151 case DW_FORM_udata:
12152 *value = DW_UNSND (attr);
12153 break;
12154
12155 default:
12156 complaint (&symfile_complaints,
12157 _("unsupported const value attribute form: '%s'"),
12158 dwarf_form_name (attr->form));
12159 *value = 0;
12160 break;
12161 }
12162}
12163
12164
12165/* Copy constant value from an attribute to a symbol. */
12166
12167static void
12168dwarf2_const_value (struct attribute *attr, struct symbol *sym,
12169 struct dwarf2_cu *cu)
12170{
12171 struct objfile *objfile = cu->objfile;
12172 struct comp_unit_head *cu_header = &cu->header;
12173 long value;
12174 gdb_byte *bytes;
12175 struct dwarf2_locexpr_baton *baton;
12176
12177 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
12178 SYMBOL_PRINT_NAME (sym),
12179 &objfile->objfile_obstack, cu,
12180 &value, &bytes, &baton);
12181
12182 if (baton != NULL)
12183 {
12184 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
12185 SYMBOL_LOCATION_BATON (sym) = baton;
12186 SYMBOL_CLASS (sym) = LOC_COMPUTED;
12187 }
12188 else if (bytes != NULL)
12189 {
12190 SYMBOL_VALUE_BYTES (sym) = bytes;
12191 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
12192 }
12193 else
12194 {
12195 SYMBOL_VALUE (sym) = value;
12196 SYMBOL_CLASS (sym) = LOC_CONST;
12197 }
12198}
12199
12200/* Return the type of the die in question using its DW_AT_type attribute. */
12201
12202static struct type *
12203die_type (struct die_info *die, struct dwarf2_cu *cu)
12204{
12205 struct attribute *type_attr;
12206
12207 type_attr = dwarf2_attr (die, DW_AT_type, cu);
12208 if (!type_attr)
12209 {
12210 /* A missing DW_AT_type represents a void type. */
12211 return objfile_type (cu->objfile)->builtin_void;
12212 }
12213
12214 return lookup_die_type (die, type_attr, cu);
12215}
12216
12217/* True iff CU's producer generates GNAT Ada auxiliary information
12218 that allows to find parallel types through that information instead
12219 of having to do expensive parallel lookups by type name. */
12220
12221static int
12222need_gnat_info (struct dwarf2_cu *cu)
12223{
12224 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
12225 of GNAT produces this auxiliary information, without any indication
12226 that it is produced. Part of enhancing the FSF version of GNAT
12227 to produce that information will be to put in place an indicator
12228 that we can use in order to determine whether the descriptive type
12229 info is available or not. One suggestion that has been made is
12230 to use a new attribute, attached to the CU die. For now, assume
12231 that the descriptive type info is not available. */
12232 return 0;
12233}
12234
12235/* Return the auxiliary type of the die in question using its
12236 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
12237 attribute is not present. */
12238
12239static struct type *
12240die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
12241{
12242 struct attribute *type_attr;
12243
12244 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
12245 if (!type_attr)
12246 return NULL;
12247
12248 return lookup_die_type (die, type_attr, cu);
12249}
12250
12251/* If DIE has a descriptive_type attribute, then set the TYPE's
12252 descriptive type accordingly. */
12253
12254static void
12255set_descriptive_type (struct type *type, struct die_info *die,
12256 struct dwarf2_cu *cu)
12257{
12258 struct type *descriptive_type = die_descriptive_type (die, cu);
12259
12260 if (descriptive_type)
12261 {
12262 ALLOCATE_GNAT_AUX_TYPE (type);
12263 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
12264 }
12265}
12266
12267/* Return the containing type of the die in question using its
12268 DW_AT_containing_type attribute. */
12269
12270static struct type *
12271die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
12272{
12273 struct attribute *type_attr;
12274
12275 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
12276 if (!type_attr)
12277 error (_("Dwarf Error: Problem turning containing type into gdb type "
12278 "[in module %s]"), cu->objfile->name);
12279
12280 return lookup_die_type (die, type_attr, cu);
12281}
12282
12283/* Look up the type of DIE in CU using its type attribute ATTR.
12284 If there is no type substitute an error marker. */
12285
12286static struct type *
12287lookup_die_type (struct die_info *die, struct attribute *attr,
12288 struct dwarf2_cu *cu)
12289{
12290 struct objfile *objfile = cu->objfile;
12291 struct type *this_type;
12292
12293 /* First see if we have it cached. */
12294
12295 if (is_ref_attr (attr))
12296 {
12297 sect_offset offset = dwarf2_get_ref_die_offset (attr);
12298
12299 this_type = get_die_type_at_offset (offset, cu->per_cu);
12300 }
12301 else if (attr->form == DW_FORM_ref_sig8)
12302 {
12303 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
12304 struct dwarf2_cu *sig_cu;
12305 sect_offset offset;
12306
12307 /* sig_type will be NULL if the signatured type is missing from
12308 the debug info. */
12309 if (sig_type == NULL)
12310 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
12311 "at 0x%x [in module %s]"),
12312 die->offset.sect_off, objfile->name);
12313
12314 gdb_assert (sig_type->per_cu.debug_types_section);
12315 offset.sect_off = (sig_type->per_cu.offset.sect_off
12316 + sig_type->type_offset.cu_off);
12317 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
12318 }
12319 else
12320 {
12321 dump_die_for_error (die);
12322 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
12323 dwarf_attr_name (attr->name), objfile->name);
12324 }
12325
12326 /* If not cached we need to read it in. */
12327
12328 if (this_type == NULL)
12329 {
12330 struct die_info *type_die;
12331 struct dwarf2_cu *type_cu = cu;
12332
12333 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
12334 /* If the type is cached, we should have found it above. */
12335 gdb_assert (get_die_type (type_die, type_cu) == NULL);
12336 this_type = read_type_die_1 (type_die, type_cu);
12337 }
12338
12339 /* If we still don't have a type use an error marker. */
12340
12341 if (this_type == NULL)
12342 {
12343 char *message, *saved;
12344
12345 /* read_type_die already issued a complaint. */
12346 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
12347 objfile->name,
12348 cu->header.offset.sect_off,
12349 die->offset.sect_off);
12350 saved = obstack_copy0 (&objfile->objfile_obstack,
12351 message, strlen (message));
12352 xfree (message);
12353
12354 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
12355 }
12356
12357 return this_type;
12358}
12359
12360/* Return the type in DIE, CU.
12361 Returns NULL for invalid types.
12362
12363 This first does a lookup in the appropriate type_hash table,
12364 and only reads the die in if necessary.
12365
12366 NOTE: This can be called when reading in partial or full symbols. */
12367
12368static struct type *
12369read_type_die (struct die_info *die, struct dwarf2_cu *cu)
12370{
12371 struct type *this_type;
12372
12373 this_type = get_die_type (die, cu);
12374 if (this_type)
12375 return this_type;
12376
12377 return read_type_die_1 (die, cu);
12378}
12379
12380/* Read the type in DIE, CU.
12381 Returns NULL for invalid types. */
12382
12383static struct type *
12384read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
12385{
12386 struct type *this_type = NULL;
12387
12388 switch (die->tag)
12389 {
12390 case DW_TAG_class_type:
12391 case DW_TAG_interface_type:
12392 case DW_TAG_structure_type:
12393 case DW_TAG_union_type:
12394 this_type = read_structure_type (die, cu);
12395 break;
12396 case DW_TAG_enumeration_type:
12397 this_type = read_enumeration_type (die, cu);
12398 break;
12399 case DW_TAG_subprogram:
12400 case DW_TAG_subroutine_type:
12401 case DW_TAG_inlined_subroutine:
12402 this_type = read_subroutine_type (die, cu);
12403 break;
12404 case DW_TAG_array_type:
12405 this_type = read_array_type (die, cu);
12406 break;
12407 case DW_TAG_set_type:
12408 this_type = read_set_type (die, cu);
12409 break;
12410 case DW_TAG_pointer_type:
12411 this_type = read_tag_pointer_type (die, cu);
12412 break;
12413 case DW_TAG_ptr_to_member_type:
12414 this_type = read_tag_ptr_to_member_type (die, cu);
12415 break;
12416 case DW_TAG_reference_type:
12417 this_type = read_tag_reference_type (die, cu);
12418 break;
12419 case DW_TAG_const_type:
12420 this_type = read_tag_const_type (die, cu);
12421 break;
12422 case DW_TAG_volatile_type:
12423 this_type = read_tag_volatile_type (die, cu);
12424 break;
12425 case DW_TAG_string_type:
12426 this_type = read_tag_string_type (die, cu);
12427 break;
12428 case DW_TAG_typedef:
12429 this_type = read_typedef (die, cu);
12430 break;
12431 case DW_TAG_subrange_type:
12432 this_type = read_subrange_type (die, cu);
12433 break;
12434 case DW_TAG_base_type:
12435 this_type = read_base_type (die, cu);
12436 break;
12437 case DW_TAG_unspecified_type:
12438 this_type = read_unspecified_type (die, cu);
12439 break;
12440 case DW_TAG_namespace:
12441 this_type = read_namespace_type (die, cu);
12442 break;
12443 case DW_TAG_module:
12444 this_type = read_module_type (die, cu);
12445 break;
12446 default:
12447 complaint (&symfile_complaints,
12448 _("unexpected tag in read_type_die: '%s'"),
12449 dwarf_tag_name (die->tag));
12450 break;
12451 }
12452
12453 return this_type;
12454}
12455
12456/* See if we can figure out if the class lives in a namespace. We do
12457 this by looking for a member function; its demangled name will
12458 contain namespace info, if there is any.
12459 Return the computed name or NULL.
12460 Space for the result is allocated on the objfile's obstack.
12461 This is the full-die version of guess_partial_die_structure_name.
12462 In this case we know DIE has no useful parent. */
12463
12464static char *
12465guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
12466{
12467 struct die_info *spec_die;
12468 struct dwarf2_cu *spec_cu;
12469 struct die_info *child;
12470
12471 spec_cu = cu;
12472 spec_die = die_specification (die, &spec_cu);
12473 if (spec_die != NULL)
12474 {
12475 die = spec_die;
12476 cu = spec_cu;
12477 }
12478
12479 for (child = die->child;
12480 child != NULL;
12481 child = child->sibling)
12482 {
12483 if (child->tag == DW_TAG_subprogram)
12484 {
12485 struct attribute *attr;
12486
12487 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
12488 if (attr == NULL)
12489 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
12490 if (attr != NULL)
12491 {
12492 char *actual_name
12493 = language_class_name_from_physname (cu->language_defn,
12494 DW_STRING (attr));
12495 char *name = NULL;
12496
12497 if (actual_name != NULL)
12498 {
12499 char *die_name = dwarf2_name (die, cu);
12500
12501 if (die_name != NULL
12502 && strcmp (die_name, actual_name) != 0)
12503 {
12504 /* Strip off the class name from the full name.
12505 We want the prefix. */
12506 int die_name_len = strlen (die_name);
12507 int actual_name_len = strlen (actual_name);
12508
12509 /* Test for '::' as a sanity check. */
12510 if (actual_name_len > die_name_len + 2
12511 && actual_name[actual_name_len
12512 - die_name_len - 1] == ':')
12513 name =
12514 obsavestring (actual_name,
12515 actual_name_len - die_name_len - 2,
12516 &cu->objfile->objfile_obstack);
12517 }
12518 }
12519 xfree (actual_name);
12520 return name;
12521 }
12522 }
12523 }
12524
12525 return NULL;
12526}
12527
12528/* GCC might emit a nameless typedef that has a linkage name. Determine the
12529 prefix part in such case. See
12530 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12531
12532static char *
12533anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
12534{
12535 struct attribute *attr;
12536 char *base;
12537
12538 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
12539 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
12540 return NULL;
12541
12542 attr = dwarf2_attr (die, DW_AT_name, cu);
12543 if (attr != NULL && DW_STRING (attr) != NULL)
12544 return NULL;
12545
12546 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12547 if (attr == NULL)
12548 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12549 if (attr == NULL || DW_STRING (attr) == NULL)
12550 return NULL;
12551
12552 /* dwarf2_name had to be already called. */
12553 gdb_assert (DW_STRING_IS_CANONICAL (attr));
12554
12555 /* Strip the base name, keep any leading namespaces/classes. */
12556 base = strrchr (DW_STRING (attr), ':');
12557 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
12558 return "";
12559
12560 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
12561 &cu->objfile->objfile_obstack);
12562}
12563
12564/* Return the name of the namespace/class that DIE is defined within,
12565 or "" if we can't tell. The caller should not xfree the result.
12566
12567 For example, if we're within the method foo() in the following
12568 code:
12569
12570 namespace N {
12571 class C {
12572 void foo () {
12573 }
12574 };
12575 }
12576
12577 then determine_prefix on foo's die will return "N::C". */
12578
12579static const char *
12580determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
12581{
12582 struct die_info *parent, *spec_die;
12583 struct dwarf2_cu *spec_cu;
12584 struct type *parent_type;
12585 char *retval;
12586
12587 if (cu->language != language_cplus && cu->language != language_java
12588 && cu->language != language_fortran)
12589 return "";
12590
12591 retval = anonymous_struct_prefix (die, cu);
12592 if (retval)
12593 return retval;
12594
12595 /* We have to be careful in the presence of DW_AT_specification.
12596 For example, with GCC 3.4, given the code
12597
12598 namespace N {
12599 void foo() {
12600 // Definition of N::foo.
12601 }
12602 }
12603
12604 then we'll have a tree of DIEs like this:
12605
12606 1: DW_TAG_compile_unit
12607 2: DW_TAG_namespace // N
12608 3: DW_TAG_subprogram // declaration of N::foo
12609 4: DW_TAG_subprogram // definition of N::foo
12610 DW_AT_specification // refers to die #3
12611
12612 Thus, when processing die #4, we have to pretend that we're in
12613 the context of its DW_AT_specification, namely the contex of die
12614 #3. */
12615 spec_cu = cu;
12616 spec_die = die_specification (die, &spec_cu);
12617 if (spec_die == NULL)
12618 parent = die->parent;
12619 else
12620 {
12621 parent = spec_die->parent;
12622 cu = spec_cu;
12623 }
12624
12625 if (parent == NULL)
12626 return "";
12627 else if (parent->building_fullname)
12628 {
12629 const char *name;
12630 const char *parent_name;
12631
12632 /* It has been seen on RealView 2.2 built binaries,
12633 DW_TAG_template_type_param types actually _defined_ as
12634 children of the parent class:
12635
12636 enum E {};
12637 template class <class Enum> Class{};
12638 Class<enum E> class_e;
12639
12640 1: DW_TAG_class_type (Class)
12641 2: DW_TAG_enumeration_type (E)
12642 3: DW_TAG_enumerator (enum1:0)
12643 3: DW_TAG_enumerator (enum2:1)
12644 ...
12645 2: DW_TAG_template_type_param
12646 DW_AT_type DW_FORM_ref_udata (E)
12647
12648 Besides being broken debug info, it can put GDB into an
12649 infinite loop. Consider:
12650
12651 When we're building the full name for Class<E>, we'll start
12652 at Class, and go look over its template type parameters,
12653 finding E. We'll then try to build the full name of E, and
12654 reach here. We're now trying to build the full name of E,
12655 and look over the parent DIE for containing scope. In the
12656 broken case, if we followed the parent DIE of E, we'd again
12657 find Class, and once again go look at its template type
12658 arguments, etc., etc. Simply don't consider such parent die
12659 as source-level parent of this die (it can't be, the language
12660 doesn't allow it), and break the loop here. */
12661 name = dwarf2_name (die, cu);
12662 parent_name = dwarf2_name (parent, cu);
12663 complaint (&symfile_complaints,
12664 _("template param type '%s' defined within parent '%s'"),
12665 name ? name : "<unknown>",
12666 parent_name ? parent_name : "<unknown>");
12667 return "";
12668 }
12669 else
12670 switch (parent->tag)
12671 {
12672 case DW_TAG_namespace:
12673 parent_type = read_type_die (parent, cu);
12674 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
12675 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
12676 Work around this problem here. */
12677 if (cu->language == language_cplus
12678 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
12679 return "";
12680 /* We give a name to even anonymous namespaces. */
12681 return TYPE_TAG_NAME (parent_type);
12682 case DW_TAG_class_type:
12683 case DW_TAG_interface_type:
12684 case DW_TAG_structure_type:
12685 case DW_TAG_union_type:
12686 case DW_TAG_module:
12687 parent_type = read_type_die (parent, cu);
12688 if (TYPE_TAG_NAME (parent_type) != NULL)
12689 return TYPE_TAG_NAME (parent_type);
12690 else
12691 /* An anonymous structure is only allowed non-static data
12692 members; no typedefs, no member functions, et cetera.
12693 So it does not need a prefix. */
12694 return "";
12695 case DW_TAG_compile_unit:
12696 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
12697 if (cu->language == language_cplus
12698 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
12699 && die->child != NULL
12700 && (die->tag == DW_TAG_class_type
12701 || die->tag == DW_TAG_structure_type
12702 || die->tag == DW_TAG_union_type))
12703 {
12704 char *name = guess_full_die_structure_name (die, cu);
12705 if (name != NULL)
12706 return name;
12707 }
12708 return "";
12709 default:
12710 return determine_prefix (parent, cu);
12711 }
12712}
12713
12714/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
12715 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
12716 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
12717 an obconcat, otherwise allocate storage for the result. The CU argument is
12718 used to determine the language and hence, the appropriate separator. */
12719
12720#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
12721
12722static char *
12723typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
12724 int physname, struct dwarf2_cu *cu)
12725{
12726 const char *lead = "";
12727 const char *sep;
12728
12729 if (suffix == NULL || suffix[0] == '\0'
12730 || prefix == NULL || prefix[0] == '\0')
12731 sep = "";
12732 else if (cu->language == language_java)
12733 sep = ".";
12734 else if (cu->language == language_fortran && physname)
12735 {
12736 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
12737 DW_AT_MIPS_linkage_name is preferred and used instead. */
12738
12739 lead = "__";
12740 sep = "_MOD_";
12741 }
12742 else
12743 sep = "::";
12744
12745 if (prefix == NULL)
12746 prefix = "";
12747 if (suffix == NULL)
12748 suffix = "";
12749
12750 if (obs == NULL)
12751 {
12752 char *retval
12753 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
12754
12755 strcpy (retval, lead);
12756 strcat (retval, prefix);
12757 strcat (retval, sep);
12758 strcat (retval, suffix);
12759 return retval;
12760 }
12761 else
12762 {
12763 /* We have an obstack. */
12764 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
12765 }
12766}
12767
12768/* Return sibling of die, NULL if no sibling. */
12769
12770static struct die_info *
12771sibling_die (struct die_info *die)
12772{
12773 return die->sibling;
12774}
12775
12776/* Get name of a die, return NULL if not found. */
12777
12778static char *
12779dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
12780 struct obstack *obstack)
12781{
12782 if (name && cu->language == language_cplus)
12783 {
12784 char *canon_name = cp_canonicalize_string (name);
12785
12786 if (canon_name != NULL)
12787 {
12788 if (strcmp (canon_name, name) != 0)
12789 name = obsavestring (canon_name, strlen (canon_name),
12790 obstack);
12791 xfree (canon_name);
12792 }
12793 }
12794
12795 return name;
12796}
12797
12798/* Get name of a die, return NULL if not found. */
12799
12800static char *
12801dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
12802{
12803 struct attribute *attr;
12804
12805 attr = dwarf2_attr (die, DW_AT_name, cu);
12806 if ((!attr || !DW_STRING (attr))
12807 && die->tag != DW_TAG_class_type
12808 && die->tag != DW_TAG_interface_type
12809 && die->tag != DW_TAG_structure_type
12810 && die->tag != DW_TAG_union_type)
12811 return NULL;
12812
12813 switch (die->tag)
12814 {
12815 case DW_TAG_compile_unit:
12816 /* Compilation units have a DW_AT_name that is a filename, not
12817 a source language identifier. */
12818 case DW_TAG_enumeration_type:
12819 case DW_TAG_enumerator:
12820 /* These tags always have simple identifiers already; no need
12821 to canonicalize them. */
12822 return DW_STRING (attr);
12823
12824 case DW_TAG_subprogram:
12825 /* Java constructors will all be named "<init>", so return
12826 the class name when we see this special case. */
12827 if (cu->language == language_java
12828 && DW_STRING (attr) != NULL
12829 && strcmp (DW_STRING (attr), "<init>") == 0)
12830 {
12831 struct dwarf2_cu *spec_cu = cu;
12832 struct die_info *spec_die;
12833
12834 /* GCJ will output '<init>' for Java constructor names.
12835 For this special case, return the name of the parent class. */
12836
12837 /* GCJ may output suprogram DIEs with AT_specification set.
12838 If so, use the name of the specified DIE. */
12839 spec_die = die_specification (die, &spec_cu);
12840 if (spec_die != NULL)
12841 return dwarf2_name (spec_die, spec_cu);
12842
12843 do
12844 {
12845 die = die->parent;
12846 if (die->tag == DW_TAG_class_type)
12847 return dwarf2_name (die, cu);
12848 }
12849 while (die->tag != DW_TAG_compile_unit);
12850 }
12851 break;
12852
12853 case DW_TAG_class_type:
12854 case DW_TAG_interface_type:
12855 case DW_TAG_structure_type:
12856 case DW_TAG_union_type:
12857 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
12858 structures or unions. These were of the form "._%d" in GCC 4.1,
12859 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
12860 and GCC 4.4. We work around this problem by ignoring these. */
12861 if (attr && DW_STRING (attr)
12862 && (strncmp (DW_STRING (attr), "._", 2) == 0
12863 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
12864 return NULL;
12865
12866 /* GCC might emit a nameless typedef that has a linkage name. See
12867 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12868 if (!attr || DW_STRING (attr) == NULL)
12869 {
12870 char *demangled = NULL;
12871
12872 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12873 if (attr == NULL)
12874 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12875
12876 if (attr == NULL || DW_STRING (attr) == NULL)
12877 return NULL;
12878
12879 /* Avoid demangling DW_STRING (attr) the second time on a second
12880 call for the same DIE. */
12881 if (!DW_STRING_IS_CANONICAL (attr))
12882 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
12883
12884 if (demangled)
12885 {
12886 char *base;
12887
12888 /* FIXME: we already did this for the partial symbol... */
12889 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
12890 &cu->objfile->objfile_obstack);
12891 DW_STRING_IS_CANONICAL (attr) = 1;
12892 xfree (demangled);
12893
12894 /* Strip any leading namespaces/classes, keep only the base name.
12895 DW_AT_name for named DIEs does not contain the prefixes. */
12896 base = strrchr (DW_STRING (attr), ':');
12897 if (base && base > DW_STRING (attr) && base[-1] == ':')
12898 return &base[1];
12899 else
12900 return DW_STRING (attr);
12901 }
12902 }
12903 break;
12904
12905 default:
12906 break;
12907 }
12908
12909 if (!DW_STRING_IS_CANONICAL (attr))
12910 {
12911 DW_STRING (attr)
12912 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
12913 &cu->objfile->objfile_obstack);
12914 DW_STRING_IS_CANONICAL (attr) = 1;
12915 }
12916 return DW_STRING (attr);
12917}
12918
12919/* Return the die that this die in an extension of, or NULL if there
12920 is none. *EXT_CU is the CU containing DIE on input, and the CU
12921 containing the return value on output. */
12922
12923static struct die_info *
12924dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
12925{
12926 struct attribute *attr;
12927
12928 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
12929 if (attr == NULL)
12930 return NULL;
12931
12932 return follow_die_ref (die, attr, ext_cu);
12933}
12934
12935/* Convert a DIE tag into its string name. */
12936
12937static char *
12938dwarf_tag_name (unsigned tag)
12939{
12940 switch (tag)
12941 {
12942 case DW_TAG_padding:
12943 return "DW_TAG_padding";
12944 case DW_TAG_array_type:
12945 return "DW_TAG_array_type";
12946 case DW_TAG_class_type:
12947 return "DW_TAG_class_type";
12948 case DW_TAG_entry_point:
12949 return "DW_TAG_entry_point";
12950 case DW_TAG_enumeration_type:
12951 return "DW_TAG_enumeration_type";
12952 case DW_TAG_formal_parameter:
12953 return "DW_TAG_formal_parameter";
12954 case DW_TAG_imported_declaration:
12955 return "DW_TAG_imported_declaration";
12956 case DW_TAG_label:
12957 return "DW_TAG_label";
12958 case DW_TAG_lexical_block:
12959 return "DW_TAG_lexical_block";
12960 case DW_TAG_member:
12961 return "DW_TAG_member";
12962 case DW_TAG_pointer_type:
12963 return "DW_TAG_pointer_type";
12964 case DW_TAG_reference_type:
12965 return "DW_TAG_reference_type";
12966 case DW_TAG_compile_unit:
12967 return "DW_TAG_compile_unit";
12968 case DW_TAG_string_type:
12969 return "DW_TAG_string_type";
12970 case DW_TAG_structure_type:
12971 return "DW_TAG_structure_type";
12972 case DW_TAG_subroutine_type:
12973 return "DW_TAG_subroutine_type";
12974 case DW_TAG_typedef:
12975 return "DW_TAG_typedef";
12976 case DW_TAG_union_type:
12977 return "DW_TAG_union_type";
12978 case DW_TAG_unspecified_parameters:
12979 return "DW_TAG_unspecified_parameters";
12980 case DW_TAG_variant:
12981 return "DW_TAG_variant";
12982 case DW_TAG_common_block:
12983 return "DW_TAG_common_block";
12984 case DW_TAG_common_inclusion:
12985 return "DW_TAG_common_inclusion";
12986 case DW_TAG_inheritance:
12987 return "DW_TAG_inheritance";
12988 case DW_TAG_inlined_subroutine:
12989 return "DW_TAG_inlined_subroutine";
12990 case DW_TAG_module:
12991 return "DW_TAG_module";
12992 case DW_TAG_ptr_to_member_type:
12993 return "DW_TAG_ptr_to_member_type";
12994 case DW_TAG_set_type:
12995 return "DW_TAG_set_type";
12996 case DW_TAG_subrange_type:
12997 return "DW_TAG_subrange_type";
12998 case DW_TAG_with_stmt:
12999 return "DW_TAG_with_stmt";
13000 case DW_TAG_access_declaration:
13001 return "DW_TAG_access_declaration";
13002 case DW_TAG_base_type:
13003 return "DW_TAG_base_type";
13004 case DW_TAG_catch_block:
13005 return "DW_TAG_catch_block";
13006 case DW_TAG_const_type:
13007 return "DW_TAG_const_type";
13008 case DW_TAG_constant:
13009 return "DW_TAG_constant";
13010 case DW_TAG_enumerator:
13011 return "DW_TAG_enumerator";
13012 case DW_TAG_file_type:
13013 return "DW_TAG_file_type";
13014 case DW_TAG_friend:
13015 return "DW_TAG_friend";
13016 case DW_TAG_namelist:
13017 return "DW_TAG_namelist";
13018 case DW_TAG_namelist_item:
13019 return "DW_TAG_namelist_item";
13020 case DW_TAG_packed_type:
13021 return "DW_TAG_packed_type";
13022 case DW_TAG_subprogram:
13023 return "DW_TAG_subprogram";
13024 case DW_TAG_template_type_param:
13025 return "DW_TAG_template_type_param";
13026 case DW_TAG_template_value_param:
13027 return "DW_TAG_template_value_param";
13028 case DW_TAG_thrown_type:
13029 return "DW_TAG_thrown_type";
13030 case DW_TAG_try_block:
13031 return "DW_TAG_try_block";
13032 case DW_TAG_variant_part:
13033 return "DW_TAG_variant_part";
13034 case DW_TAG_variable:
13035 return "DW_TAG_variable";
13036 case DW_TAG_volatile_type:
13037 return "DW_TAG_volatile_type";
13038 case DW_TAG_dwarf_procedure:
13039 return "DW_TAG_dwarf_procedure";
13040 case DW_TAG_restrict_type:
13041 return "DW_TAG_restrict_type";
13042 case DW_TAG_interface_type:
13043 return "DW_TAG_interface_type";
13044 case DW_TAG_namespace:
13045 return "DW_TAG_namespace";
13046 case DW_TAG_imported_module:
13047 return "DW_TAG_imported_module";
13048 case DW_TAG_unspecified_type:
13049 return "DW_TAG_unspecified_type";
13050 case DW_TAG_partial_unit:
13051 return "DW_TAG_partial_unit";
13052 case DW_TAG_imported_unit:
13053 return "DW_TAG_imported_unit";
13054 case DW_TAG_condition:
13055 return "DW_TAG_condition";
13056 case DW_TAG_shared_type:
13057 return "DW_TAG_shared_type";
13058 case DW_TAG_type_unit:
13059 return "DW_TAG_type_unit";
13060 case DW_TAG_MIPS_loop:
13061 return "DW_TAG_MIPS_loop";
13062 case DW_TAG_HP_array_descriptor:
13063 return "DW_TAG_HP_array_descriptor";
13064 case DW_TAG_format_label:
13065 return "DW_TAG_format_label";
13066 case DW_TAG_function_template:
13067 return "DW_TAG_function_template";
13068 case DW_TAG_class_template:
13069 return "DW_TAG_class_template";
13070 case DW_TAG_GNU_BINCL:
13071 return "DW_TAG_GNU_BINCL";
13072 case DW_TAG_GNU_EINCL:
13073 return "DW_TAG_GNU_EINCL";
13074 case DW_TAG_upc_shared_type:
13075 return "DW_TAG_upc_shared_type";
13076 case DW_TAG_upc_strict_type:
13077 return "DW_TAG_upc_strict_type";
13078 case DW_TAG_upc_relaxed_type:
13079 return "DW_TAG_upc_relaxed_type";
13080 case DW_TAG_PGI_kanji_type:
13081 return "DW_TAG_PGI_kanji_type";
13082 case DW_TAG_PGI_interface_block:
13083 return "DW_TAG_PGI_interface_block";
13084 case DW_TAG_GNU_call_site:
13085 return "DW_TAG_GNU_call_site";
13086 default:
13087 return "DW_TAG_<unknown>";
13088 }
13089}
13090
13091/* Convert a DWARF attribute code into its string name. */
13092
13093static char *
13094dwarf_attr_name (unsigned attr)
13095{
13096 switch (attr)
13097 {
13098 case DW_AT_sibling:
13099 return "DW_AT_sibling";
13100 case DW_AT_location:
13101 return "DW_AT_location";
13102 case DW_AT_name:
13103 return "DW_AT_name";
13104 case DW_AT_ordering:
13105 return "DW_AT_ordering";
13106 case DW_AT_subscr_data:
13107 return "DW_AT_subscr_data";
13108 case DW_AT_byte_size:
13109 return "DW_AT_byte_size";
13110 case DW_AT_bit_offset:
13111 return "DW_AT_bit_offset";
13112 case DW_AT_bit_size:
13113 return "DW_AT_bit_size";
13114 case DW_AT_element_list:
13115 return "DW_AT_element_list";
13116 case DW_AT_stmt_list:
13117 return "DW_AT_stmt_list";
13118 case DW_AT_low_pc:
13119 return "DW_AT_low_pc";
13120 case DW_AT_high_pc:
13121 return "DW_AT_high_pc";
13122 case DW_AT_language:
13123 return "DW_AT_language";
13124 case DW_AT_member:
13125 return "DW_AT_member";
13126 case DW_AT_discr:
13127 return "DW_AT_discr";
13128 case DW_AT_discr_value:
13129 return "DW_AT_discr_value";
13130 case DW_AT_visibility:
13131 return "DW_AT_visibility";
13132 case DW_AT_import:
13133 return "DW_AT_import";
13134 case DW_AT_string_length:
13135 return "DW_AT_string_length";
13136 case DW_AT_common_reference:
13137 return "DW_AT_common_reference";
13138 case DW_AT_comp_dir:
13139 return "DW_AT_comp_dir";
13140 case DW_AT_const_value:
13141 return "DW_AT_const_value";
13142 case DW_AT_containing_type:
13143 return "DW_AT_containing_type";
13144 case DW_AT_default_value:
13145 return "DW_AT_default_value";
13146 case DW_AT_inline:
13147 return "DW_AT_inline";
13148 case DW_AT_is_optional:
13149 return "DW_AT_is_optional";
13150 case DW_AT_lower_bound:
13151 return "DW_AT_lower_bound";
13152 case DW_AT_producer:
13153 return "DW_AT_producer";
13154 case DW_AT_prototyped:
13155 return "DW_AT_prototyped";
13156 case DW_AT_return_addr:
13157 return "DW_AT_return_addr";
13158 case DW_AT_start_scope:
13159 return "DW_AT_start_scope";
13160 case DW_AT_bit_stride:
13161 return "DW_AT_bit_stride";
13162 case DW_AT_upper_bound:
13163 return "DW_AT_upper_bound";
13164 case DW_AT_abstract_origin:
13165 return "DW_AT_abstract_origin";
13166 case DW_AT_accessibility:
13167 return "DW_AT_accessibility";
13168 case DW_AT_address_class:
13169 return "DW_AT_address_class";
13170 case DW_AT_artificial:
13171 return "DW_AT_artificial";
13172 case DW_AT_base_types:
13173 return "DW_AT_base_types";
13174 case DW_AT_calling_convention:
13175 return "DW_AT_calling_convention";
13176 case DW_AT_count:
13177 return "DW_AT_count";
13178 case DW_AT_data_member_location:
13179 return "DW_AT_data_member_location";
13180 case DW_AT_decl_column:
13181 return "DW_AT_decl_column";
13182 case DW_AT_decl_file:
13183 return "DW_AT_decl_file";
13184 case DW_AT_decl_line:
13185 return "DW_AT_decl_line";
13186 case DW_AT_declaration:
13187 return "DW_AT_declaration";
13188 case DW_AT_discr_list:
13189 return "DW_AT_discr_list";
13190 case DW_AT_encoding:
13191 return "DW_AT_encoding";
13192 case DW_AT_external:
13193 return "DW_AT_external";
13194 case DW_AT_frame_base:
13195 return "DW_AT_frame_base";
13196 case DW_AT_friend:
13197 return "DW_AT_friend";
13198 case DW_AT_identifier_case:
13199 return "DW_AT_identifier_case";
13200 case DW_AT_macro_info:
13201 return "DW_AT_macro_info";
13202 case DW_AT_namelist_items:
13203 return "DW_AT_namelist_items";
13204 case DW_AT_priority:
13205 return "DW_AT_priority";
13206 case DW_AT_segment:
13207 return "DW_AT_segment";
13208 case DW_AT_specification:
13209 return "DW_AT_specification";
13210 case DW_AT_static_link:
13211 return "DW_AT_static_link";
13212 case DW_AT_type:
13213 return "DW_AT_type";
13214 case DW_AT_use_location:
13215 return "DW_AT_use_location";
13216 case DW_AT_variable_parameter:
13217 return "DW_AT_variable_parameter";
13218 case DW_AT_virtuality:
13219 return "DW_AT_virtuality";
13220 case DW_AT_vtable_elem_location:
13221 return "DW_AT_vtable_elem_location";
13222 /* DWARF 3 values. */
13223 case DW_AT_allocated:
13224 return "DW_AT_allocated";
13225 case DW_AT_associated:
13226 return "DW_AT_associated";
13227 case DW_AT_data_location:
13228 return "DW_AT_data_location";
13229 case DW_AT_byte_stride:
13230 return "DW_AT_byte_stride";
13231 case DW_AT_entry_pc:
13232 return "DW_AT_entry_pc";
13233 case DW_AT_use_UTF8:
13234 return "DW_AT_use_UTF8";
13235 case DW_AT_extension:
13236 return "DW_AT_extension";
13237 case DW_AT_ranges:
13238 return "DW_AT_ranges";
13239 case DW_AT_trampoline:
13240 return "DW_AT_trampoline";
13241 case DW_AT_call_column:
13242 return "DW_AT_call_column";
13243 case DW_AT_call_file:
13244 return "DW_AT_call_file";
13245 case DW_AT_call_line:
13246 return "DW_AT_call_line";
13247 case DW_AT_description:
13248 return "DW_AT_description";
13249 case DW_AT_binary_scale:
13250 return "DW_AT_binary_scale";
13251 case DW_AT_decimal_scale:
13252 return "DW_AT_decimal_scale";
13253 case DW_AT_small:
13254 return "DW_AT_small";
13255 case DW_AT_decimal_sign:
13256 return "DW_AT_decimal_sign";
13257 case DW_AT_digit_count:
13258 return "DW_AT_digit_count";
13259 case DW_AT_picture_string:
13260 return "DW_AT_picture_string";
13261 case DW_AT_mutable:
13262 return "DW_AT_mutable";
13263 case DW_AT_threads_scaled:
13264 return "DW_AT_threads_scaled";
13265 case DW_AT_explicit:
13266 return "DW_AT_explicit";
13267 case DW_AT_object_pointer:
13268 return "DW_AT_object_pointer";
13269 case DW_AT_endianity:
13270 return "DW_AT_endianity";
13271 case DW_AT_elemental:
13272 return "DW_AT_elemental";
13273 case DW_AT_pure:
13274 return "DW_AT_pure";
13275 case DW_AT_recursive:
13276 return "DW_AT_recursive";
13277 /* DWARF 4 values. */
13278 case DW_AT_signature:
13279 return "DW_AT_signature";
13280 case DW_AT_linkage_name:
13281 return "DW_AT_linkage_name";
13282 /* SGI/MIPS extensions. */
13283#ifdef MIPS /* collides with DW_AT_HP_block_index */
13284 case DW_AT_MIPS_fde:
13285 return "DW_AT_MIPS_fde";
13286#endif
13287 case DW_AT_MIPS_loop_begin:
13288 return "DW_AT_MIPS_loop_begin";
13289 case DW_AT_MIPS_tail_loop_begin:
13290 return "DW_AT_MIPS_tail_loop_begin";
13291 case DW_AT_MIPS_epilog_begin:
13292 return "DW_AT_MIPS_epilog_begin";
13293 case DW_AT_MIPS_loop_unroll_factor:
13294 return "DW_AT_MIPS_loop_unroll_factor";
13295 case DW_AT_MIPS_software_pipeline_depth:
13296 return "DW_AT_MIPS_software_pipeline_depth";
13297 case DW_AT_MIPS_linkage_name:
13298 return "DW_AT_MIPS_linkage_name";
13299 case DW_AT_MIPS_stride:
13300 return "DW_AT_MIPS_stride";
13301 case DW_AT_MIPS_abstract_name:
13302 return "DW_AT_MIPS_abstract_name";
13303 case DW_AT_MIPS_clone_origin:
13304 return "DW_AT_MIPS_clone_origin";
13305 case DW_AT_MIPS_has_inlines:
13306 return "DW_AT_MIPS_has_inlines";
13307 /* HP extensions. */
13308#ifndef MIPS /* collides with DW_AT_MIPS_fde */
13309 case DW_AT_HP_block_index:
13310 return "DW_AT_HP_block_index";
13311#endif
13312 case DW_AT_HP_unmodifiable:
13313 return "DW_AT_HP_unmodifiable";
13314 case DW_AT_HP_actuals_stmt_list:
13315 return "DW_AT_HP_actuals_stmt_list";
13316 case DW_AT_HP_proc_per_section:
13317 return "DW_AT_HP_proc_per_section";
13318 case DW_AT_HP_raw_data_ptr:
13319 return "DW_AT_HP_raw_data_ptr";
13320 case DW_AT_HP_pass_by_reference:
13321 return "DW_AT_HP_pass_by_reference";
13322 case DW_AT_HP_opt_level:
13323 return "DW_AT_HP_opt_level";
13324 case DW_AT_HP_prof_version_id:
13325 return "DW_AT_HP_prof_version_id";
13326 case DW_AT_HP_opt_flags:
13327 return "DW_AT_HP_opt_flags";
13328 case DW_AT_HP_cold_region_low_pc:
13329 return "DW_AT_HP_cold_region_low_pc";
13330 case DW_AT_HP_cold_region_high_pc:
13331 return "DW_AT_HP_cold_region_high_pc";
13332 case DW_AT_HP_all_variables_modifiable:
13333 return "DW_AT_HP_all_variables_modifiable";
13334 case DW_AT_HP_linkage_name:
13335 return "DW_AT_HP_linkage_name";
13336 case DW_AT_HP_prof_flags:
13337 return "DW_AT_HP_prof_flags";
13338 /* GNU extensions. */
13339 case DW_AT_sf_names:
13340 return "DW_AT_sf_names";
13341 case DW_AT_src_info:
13342 return "DW_AT_src_info";
13343 case DW_AT_mac_info:
13344 return "DW_AT_mac_info";
13345 case DW_AT_src_coords:
13346 return "DW_AT_src_coords";
13347 case DW_AT_body_begin:
13348 return "DW_AT_body_begin";
13349 case DW_AT_body_end:
13350 return "DW_AT_body_end";
13351 case DW_AT_GNU_vector:
13352 return "DW_AT_GNU_vector";
13353 case DW_AT_GNU_odr_signature:
13354 return "DW_AT_GNU_odr_signature";
13355 /* VMS extensions. */
13356 case DW_AT_VMS_rtnbeg_pd_address:
13357 return "DW_AT_VMS_rtnbeg_pd_address";
13358 /* UPC extension. */
13359 case DW_AT_upc_threads_scaled:
13360 return "DW_AT_upc_threads_scaled";
13361 /* PGI (STMicroelectronics) extensions. */
13362 case DW_AT_PGI_lbase:
13363 return "DW_AT_PGI_lbase";
13364 case DW_AT_PGI_soffset:
13365 return "DW_AT_PGI_soffset";
13366 case DW_AT_PGI_lstride:
13367 return "DW_AT_PGI_lstride";
13368 default:
13369 return "DW_AT_<unknown>";
13370 }
13371}
13372
13373/* Convert a DWARF value form code into its string name. */
13374
13375static char *
13376dwarf_form_name (unsigned form)
13377{
13378 switch (form)
13379 {
13380 case DW_FORM_addr:
13381 return "DW_FORM_addr";
13382 case DW_FORM_block2:
13383 return "DW_FORM_block2";
13384 case DW_FORM_block4:
13385 return "DW_FORM_block4";
13386 case DW_FORM_data2:
13387 return "DW_FORM_data2";
13388 case DW_FORM_data4:
13389 return "DW_FORM_data4";
13390 case DW_FORM_data8:
13391 return "DW_FORM_data8";
13392 case DW_FORM_string:
13393 return "DW_FORM_string";
13394 case DW_FORM_block:
13395 return "DW_FORM_block";
13396 case DW_FORM_block1:
13397 return "DW_FORM_block1";
13398 case DW_FORM_data1:
13399 return "DW_FORM_data1";
13400 case DW_FORM_flag:
13401 return "DW_FORM_flag";
13402 case DW_FORM_sdata:
13403 return "DW_FORM_sdata";
13404 case DW_FORM_strp:
13405 return "DW_FORM_strp";
13406 case DW_FORM_udata:
13407 return "DW_FORM_udata";
13408 case DW_FORM_ref_addr:
13409 return "DW_FORM_ref_addr";
13410 case DW_FORM_ref1:
13411 return "DW_FORM_ref1";
13412 case DW_FORM_ref2:
13413 return "DW_FORM_ref2";
13414 case DW_FORM_ref4:
13415 return "DW_FORM_ref4";
13416 case DW_FORM_ref8:
13417 return "DW_FORM_ref8";
13418 case DW_FORM_ref_udata:
13419 return "DW_FORM_ref_udata";
13420 case DW_FORM_indirect:
13421 return "DW_FORM_indirect";
13422 case DW_FORM_sec_offset:
13423 return "DW_FORM_sec_offset";
13424 case DW_FORM_exprloc:
13425 return "DW_FORM_exprloc";
13426 case DW_FORM_flag_present:
13427 return "DW_FORM_flag_present";
13428 case DW_FORM_ref_sig8:
13429 return "DW_FORM_ref_sig8";
13430 default:
13431 return "DW_FORM_<unknown>";
13432 }
13433}
13434
13435/* Convert a DWARF stack opcode into its string name. */
13436
13437const char *
13438dwarf_stack_op_name (unsigned op)
13439{
13440 switch (op)
13441 {
13442 case DW_OP_addr:
13443 return "DW_OP_addr";
13444 case DW_OP_deref:
13445 return "DW_OP_deref";
13446 case DW_OP_const1u:
13447 return "DW_OP_const1u";
13448 case DW_OP_const1s:
13449 return "DW_OP_const1s";
13450 case DW_OP_const2u:
13451 return "DW_OP_const2u";
13452 case DW_OP_const2s:
13453 return "DW_OP_const2s";
13454 case DW_OP_const4u:
13455 return "DW_OP_const4u";
13456 case DW_OP_const4s:
13457 return "DW_OP_const4s";
13458 case DW_OP_const8u:
13459 return "DW_OP_const8u";
13460 case DW_OP_const8s:
13461 return "DW_OP_const8s";
13462 case DW_OP_constu:
13463 return "DW_OP_constu";
13464 case DW_OP_consts:
13465 return "DW_OP_consts";
13466 case DW_OP_dup:
13467 return "DW_OP_dup";
13468 case DW_OP_drop:
13469 return "DW_OP_drop";
13470 case DW_OP_over:
13471 return "DW_OP_over";
13472 case DW_OP_pick:
13473 return "DW_OP_pick";
13474 case DW_OP_swap:
13475 return "DW_OP_swap";
13476 case DW_OP_rot:
13477 return "DW_OP_rot";
13478 case DW_OP_xderef:
13479 return "DW_OP_xderef";
13480 case DW_OP_abs:
13481 return "DW_OP_abs";
13482 case DW_OP_and:
13483 return "DW_OP_and";
13484 case DW_OP_div:
13485 return "DW_OP_div";
13486 case DW_OP_minus:
13487 return "DW_OP_minus";
13488 case DW_OP_mod:
13489 return "DW_OP_mod";
13490 case DW_OP_mul:
13491 return "DW_OP_mul";
13492 case DW_OP_neg:
13493 return "DW_OP_neg";
13494 case DW_OP_not:
13495 return "DW_OP_not";
13496 case DW_OP_or:
13497 return "DW_OP_or";
13498 case DW_OP_plus:
13499 return "DW_OP_plus";
13500 case DW_OP_plus_uconst:
13501 return "DW_OP_plus_uconst";
13502 case DW_OP_shl:
13503 return "DW_OP_shl";
13504 case DW_OP_shr:
13505 return "DW_OP_shr";
13506 case DW_OP_shra:
13507 return "DW_OP_shra";
13508 case DW_OP_xor:
13509 return "DW_OP_xor";
13510 case DW_OP_bra:
13511 return "DW_OP_bra";
13512 case DW_OP_eq:
13513 return "DW_OP_eq";
13514 case DW_OP_ge:
13515 return "DW_OP_ge";
13516 case DW_OP_gt:
13517 return "DW_OP_gt";
13518 case DW_OP_le:
13519 return "DW_OP_le";
13520 case DW_OP_lt:
13521 return "DW_OP_lt";
13522 case DW_OP_ne:
13523 return "DW_OP_ne";
13524 case DW_OP_skip:
13525 return "DW_OP_skip";
13526 case DW_OP_lit0:
13527 return "DW_OP_lit0";
13528 case DW_OP_lit1:
13529 return "DW_OP_lit1";
13530 case DW_OP_lit2:
13531 return "DW_OP_lit2";
13532 case DW_OP_lit3:
13533 return "DW_OP_lit3";
13534 case DW_OP_lit4:
13535 return "DW_OP_lit4";
13536 case DW_OP_lit5:
13537 return "DW_OP_lit5";
13538 case DW_OP_lit6:
13539 return "DW_OP_lit6";
13540 case DW_OP_lit7:
13541 return "DW_OP_lit7";
13542 case DW_OP_lit8:
13543 return "DW_OP_lit8";
13544 case DW_OP_lit9:
13545 return "DW_OP_lit9";
13546 case DW_OP_lit10:
13547 return "DW_OP_lit10";
13548 case DW_OP_lit11:
13549 return "DW_OP_lit11";
13550 case DW_OP_lit12:
13551 return "DW_OP_lit12";
13552 case DW_OP_lit13:
13553 return "DW_OP_lit13";
13554 case DW_OP_lit14:
13555 return "DW_OP_lit14";
13556 case DW_OP_lit15:
13557 return "DW_OP_lit15";
13558 case DW_OP_lit16:
13559 return "DW_OP_lit16";
13560 case DW_OP_lit17:
13561 return "DW_OP_lit17";
13562 case DW_OP_lit18:
13563 return "DW_OP_lit18";
13564 case DW_OP_lit19:
13565 return "DW_OP_lit19";
13566 case DW_OP_lit20:
13567 return "DW_OP_lit20";
13568 case DW_OP_lit21:
13569 return "DW_OP_lit21";
13570 case DW_OP_lit22:
13571 return "DW_OP_lit22";
13572 case DW_OP_lit23:
13573 return "DW_OP_lit23";
13574 case DW_OP_lit24:
13575 return "DW_OP_lit24";
13576 case DW_OP_lit25:
13577 return "DW_OP_lit25";
13578 case DW_OP_lit26:
13579 return "DW_OP_lit26";
13580 case DW_OP_lit27:
13581 return "DW_OP_lit27";
13582 case DW_OP_lit28:
13583 return "DW_OP_lit28";
13584 case DW_OP_lit29:
13585 return "DW_OP_lit29";
13586 case DW_OP_lit30:
13587 return "DW_OP_lit30";
13588 case DW_OP_lit31:
13589 return "DW_OP_lit31";
13590 case DW_OP_reg0:
13591 return "DW_OP_reg0";
13592 case DW_OP_reg1:
13593 return "DW_OP_reg1";
13594 case DW_OP_reg2:
13595 return "DW_OP_reg2";
13596 case DW_OP_reg3:
13597 return "DW_OP_reg3";
13598 case DW_OP_reg4:
13599 return "DW_OP_reg4";
13600 case DW_OP_reg5:
13601 return "DW_OP_reg5";
13602 case DW_OP_reg6:
13603 return "DW_OP_reg6";
13604 case DW_OP_reg7:
13605 return "DW_OP_reg7";
13606 case DW_OP_reg8:
13607 return "DW_OP_reg8";
13608 case DW_OP_reg9:
13609 return "DW_OP_reg9";
13610 case DW_OP_reg10:
13611 return "DW_OP_reg10";
13612 case DW_OP_reg11:
13613 return "DW_OP_reg11";
13614 case DW_OP_reg12:
13615 return "DW_OP_reg12";
13616 case DW_OP_reg13:
13617 return "DW_OP_reg13";
13618 case DW_OP_reg14:
13619 return "DW_OP_reg14";
13620 case DW_OP_reg15:
13621 return "DW_OP_reg15";
13622 case DW_OP_reg16:
13623 return "DW_OP_reg16";
13624 case DW_OP_reg17:
13625 return "DW_OP_reg17";
13626 case DW_OP_reg18:
13627 return "DW_OP_reg18";
13628 case DW_OP_reg19:
13629 return "DW_OP_reg19";
13630 case DW_OP_reg20:
13631 return "DW_OP_reg20";
13632 case DW_OP_reg21:
13633 return "DW_OP_reg21";
13634 case DW_OP_reg22:
13635 return "DW_OP_reg22";
13636 case DW_OP_reg23:
13637 return "DW_OP_reg23";
13638 case DW_OP_reg24:
13639 return "DW_OP_reg24";
13640 case DW_OP_reg25:
13641 return "DW_OP_reg25";
13642 case DW_OP_reg26:
13643 return "DW_OP_reg26";
13644 case DW_OP_reg27:
13645 return "DW_OP_reg27";
13646 case DW_OP_reg28:
13647 return "DW_OP_reg28";
13648 case DW_OP_reg29:
13649 return "DW_OP_reg29";
13650 case DW_OP_reg30:
13651 return "DW_OP_reg30";
13652 case DW_OP_reg31:
13653 return "DW_OP_reg31";
13654 case DW_OP_breg0:
13655 return "DW_OP_breg0";
13656 case DW_OP_breg1:
13657 return "DW_OP_breg1";
13658 case DW_OP_breg2:
13659 return "DW_OP_breg2";
13660 case DW_OP_breg3:
13661 return "DW_OP_breg3";
13662 case DW_OP_breg4:
13663 return "DW_OP_breg4";
13664 case DW_OP_breg5:
13665 return "DW_OP_breg5";
13666 case DW_OP_breg6:
13667 return "DW_OP_breg6";
13668 case DW_OP_breg7:
13669 return "DW_OP_breg7";
13670 case DW_OP_breg8:
13671 return "DW_OP_breg8";
13672 case DW_OP_breg9:
13673 return "DW_OP_breg9";
13674 case DW_OP_breg10:
13675 return "DW_OP_breg10";
13676 case DW_OP_breg11:
13677 return "DW_OP_breg11";
13678 case DW_OP_breg12:
13679 return "DW_OP_breg12";
13680 case DW_OP_breg13:
13681 return "DW_OP_breg13";
13682 case DW_OP_breg14:
13683 return "DW_OP_breg14";
13684 case DW_OP_breg15:
13685 return "DW_OP_breg15";
13686 case DW_OP_breg16:
13687 return "DW_OP_breg16";
13688 case DW_OP_breg17:
13689 return "DW_OP_breg17";
13690 case DW_OP_breg18:
13691 return "DW_OP_breg18";
13692 case DW_OP_breg19:
13693 return "DW_OP_breg19";
13694 case DW_OP_breg20:
13695 return "DW_OP_breg20";
13696 case DW_OP_breg21:
13697 return "DW_OP_breg21";
13698 case DW_OP_breg22:
13699 return "DW_OP_breg22";
13700 case DW_OP_breg23:
13701 return "DW_OP_breg23";
13702 case DW_OP_breg24:
13703 return "DW_OP_breg24";
13704 case DW_OP_breg25:
13705 return "DW_OP_breg25";
13706 case DW_OP_breg26:
13707 return "DW_OP_breg26";
13708 case DW_OP_breg27:
13709 return "DW_OP_breg27";
13710 case DW_OP_breg28:
13711 return "DW_OP_breg28";
13712 case DW_OP_breg29:
13713 return "DW_OP_breg29";
13714 case DW_OP_breg30:
13715 return "DW_OP_breg30";
13716 case DW_OP_breg31:
13717 return "DW_OP_breg31";
13718 case DW_OP_regx:
13719 return "DW_OP_regx";
13720 case DW_OP_fbreg:
13721 return "DW_OP_fbreg";
13722 case DW_OP_bregx:
13723 return "DW_OP_bregx";
13724 case DW_OP_piece:
13725 return "DW_OP_piece";
13726 case DW_OP_deref_size:
13727 return "DW_OP_deref_size";
13728 case DW_OP_xderef_size:
13729 return "DW_OP_xderef_size";
13730 case DW_OP_nop:
13731 return "DW_OP_nop";
13732 /* DWARF 3 extensions. */
13733 case DW_OP_push_object_address:
13734 return "DW_OP_push_object_address";
13735 case DW_OP_call2:
13736 return "DW_OP_call2";
13737 case DW_OP_call4:
13738 return "DW_OP_call4";
13739 case DW_OP_call_ref:
13740 return "DW_OP_call_ref";
13741 case DW_OP_form_tls_address:
13742 return "DW_OP_form_tls_address";
13743 case DW_OP_call_frame_cfa:
13744 return "DW_OP_call_frame_cfa";
13745 case DW_OP_bit_piece:
13746 return "DW_OP_bit_piece";
13747 /* DWARF 4 extensions. */
13748 case DW_OP_implicit_value:
13749 return "DW_OP_implicit_value";
13750 case DW_OP_stack_value:
13751 return "DW_OP_stack_value";
13752 /* GNU extensions. */
13753 case DW_OP_GNU_push_tls_address:
13754 return "DW_OP_GNU_push_tls_address";
13755 case DW_OP_GNU_uninit:
13756 return "DW_OP_GNU_uninit";
13757 case DW_OP_GNU_encoded_addr:
13758 return "DW_OP_GNU_encoded_addr";
13759 case DW_OP_GNU_implicit_pointer:
13760 return "DW_OP_GNU_implicit_pointer";
13761 case DW_OP_GNU_entry_value:
13762 return "DW_OP_GNU_entry_value";
13763 case DW_OP_GNU_const_type:
13764 return "DW_OP_GNU_const_type";
13765 case DW_OP_GNU_regval_type:
13766 return "DW_OP_GNU_regval_type";
13767 case DW_OP_GNU_deref_type:
13768 return "DW_OP_GNU_deref_type";
13769 case DW_OP_GNU_convert:
13770 return "DW_OP_GNU_convert";
13771 case DW_OP_GNU_reinterpret:
13772 return "DW_OP_GNU_reinterpret";
13773 case DW_OP_GNU_parameter_ref:
13774 return "DW_OP_GNU_parameter_ref";
13775 default:
13776 return NULL;
13777 }
13778}
13779
13780static char *
13781dwarf_bool_name (unsigned mybool)
13782{
13783 if (mybool)
13784 return "TRUE";
13785 else
13786 return "FALSE";
13787}
13788
13789/* Convert a DWARF type code into its string name. */
13790
13791static char *
13792dwarf_type_encoding_name (unsigned enc)
13793{
13794 switch (enc)
13795 {
13796 case DW_ATE_void:
13797 return "DW_ATE_void";
13798 case DW_ATE_address:
13799 return "DW_ATE_address";
13800 case DW_ATE_boolean:
13801 return "DW_ATE_boolean";
13802 case DW_ATE_complex_float:
13803 return "DW_ATE_complex_float";
13804 case DW_ATE_float:
13805 return "DW_ATE_float";
13806 case DW_ATE_signed:
13807 return "DW_ATE_signed";
13808 case DW_ATE_signed_char:
13809 return "DW_ATE_signed_char";
13810 case DW_ATE_unsigned:
13811 return "DW_ATE_unsigned";
13812 case DW_ATE_unsigned_char:
13813 return "DW_ATE_unsigned_char";
13814 /* DWARF 3. */
13815 case DW_ATE_imaginary_float:
13816 return "DW_ATE_imaginary_float";
13817 case DW_ATE_packed_decimal:
13818 return "DW_ATE_packed_decimal";
13819 case DW_ATE_numeric_string:
13820 return "DW_ATE_numeric_string";
13821 case DW_ATE_edited:
13822 return "DW_ATE_edited";
13823 case DW_ATE_signed_fixed:
13824 return "DW_ATE_signed_fixed";
13825 case DW_ATE_unsigned_fixed:
13826 return "DW_ATE_unsigned_fixed";
13827 case DW_ATE_decimal_float:
13828 return "DW_ATE_decimal_float";
13829 /* DWARF 4. */
13830 case DW_ATE_UTF:
13831 return "DW_ATE_UTF";
13832 /* HP extensions. */
13833 case DW_ATE_HP_float80:
13834 return "DW_ATE_HP_float80";
13835 case DW_ATE_HP_complex_float80:
13836 return "DW_ATE_HP_complex_float80";
13837 case DW_ATE_HP_float128:
13838 return "DW_ATE_HP_float128";
13839 case DW_ATE_HP_complex_float128:
13840 return "DW_ATE_HP_complex_float128";
13841 case DW_ATE_HP_floathpintel:
13842 return "DW_ATE_HP_floathpintel";
13843 case DW_ATE_HP_imaginary_float80:
13844 return "DW_ATE_HP_imaginary_float80";
13845 case DW_ATE_HP_imaginary_float128:
13846 return "DW_ATE_HP_imaginary_float128";
13847 default:
13848 return "DW_ATE_<unknown>";
13849 }
13850}
13851
13852/* Convert a DWARF call frame info operation to its string name. */
13853
13854#if 0
13855static char *
13856dwarf_cfi_name (unsigned cfi_opc)
13857{
13858 switch (cfi_opc)
13859 {
13860 case DW_CFA_advance_loc:
13861 return "DW_CFA_advance_loc";
13862 case DW_CFA_offset:
13863 return "DW_CFA_offset";
13864 case DW_CFA_restore:
13865 return "DW_CFA_restore";
13866 case DW_CFA_nop:
13867 return "DW_CFA_nop";
13868 case DW_CFA_set_loc:
13869 return "DW_CFA_set_loc";
13870 case DW_CFA_advance_loc1:
13871 return "DW_CFA_advance_loc1";
13872 case DW_CFA_advance_loc2:
13873 return "DW_CFA_advance_loc2";
13874 case DW_CFA_advance_loc4:
13875 return "DW_CFA_advance_loc4";
13876 case DW_CFA_offset_extended:
13877 return "DW_CFA_offset_extended";
13878 case DW_CFA_restore_extended:
13879 return "DW_CFA_restore_extended";
13880 case DW_CFA_undefined:
13881 return "DW_CFA_undefined";
13882 case DW_CFA_same_value:
13883 return "DW_CFA_same_value";
13884 case DW_CFA_register:
13885 return "DW_CFA_register";
13886 case DW_CFA_remember_state:
13887 return "DW_CFA_remember_state";
13888 case DW_CFA_restore_state:
13889 return "DW_CFA_restore_state";
13890 case DW_CFA_def_cfa:
13891 return "DW_CFA_def_cfa";
13892 case DW_CFA_def_cfa_register:
13893 return "DW_CFA_def_cfa_register";
13894 case DW_CFA_def_cfa_offset:
13895 return "DW_CFA_def_cfa_offset";
13896 /* DWARF 3. */
13897 case DW_CFA_def_cfa_expression:
13898 return "DW_CFA_def_cfa_expression";
13899 case DW_CFA_expression:
13900 return "DW_CFA_expression";
13901 case DW_CFA_offset_extended_sf:
13902 return "DW_CFA_offset_extended_sf";
13903 case DW_CFA_def_cfa_sf:
13904 return "DW_CFA_def_cfa_sf";
13905 case DW_CFA_def_cfa_offset_sf:
13906 return "DW_CFA_def_cfa_offset_sf";
13907 case DW_CFA_val_offset:
13908 return "DW_CFA_val_offset";
13909 case DW_CFA_val_offset_sf:
13910 return "DW_CFA_val_offset_sf";
13911 case DW_CFA_val_expression:
13912 return "DW_CFA_val_expression";
13913 /* SGI/MIPS specific. */
13914 case DW_CFA_MIPS_advance_loc8:
13915 return "DW_CFA_MIPS_advance_loc8";
13916 /* GNU extensions. */
13917 case DW_CFA_GNU_window_save:
13918 return "DW_CFA_GNU_window_save";
13919 case DW_CFA_GNU_args_size:
13920 return "DW_CFA_GNU_args_size";
13921 case DW_CFA_GNU_negative_offset_extended:
13922 return "DW_CFA_GNU_negative_offset_extended";
13923 default:
13924 return "DW_CFA_<unknown>";
13925 }
13926}
13927#endif
13928
13929static void
13930dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
13931{
13932 unsigned int i;
13933
13934 print_spaces (indent, f);
13935 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
13936 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
13937
13938 if (die->parent != NULL)
13939 {
13940 print_spaces (indent, f);
13941 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
13942 die->parent->offset.sect_off);
13943 }
13944
13945 print_spaces (indent, f);
13946 fprintf_unfiltered (f, " has children: %s\n",
13947 dwarf_bool_name (die->child != NULL));
13948
13949 print_spaces (indent, f);
13950 fprintf_unfiltered (f, " attributes:\n");
13951
13952 for (i = 0; i < die->num_attrs; ++i)
13953 {
13954 print_spaces (indent, f);
13955 fprintf_unfiltered (f, " %s (%s) ",
13956 dwarf_attr_name (die->attrs[i].name),
13957 dwarf_form_name (die->attrs[i].form));
13958
13959 switch (die->attrs[i].form)
13960 {
13961 case DW_FORM_ref_addr:
13962 case DW_FORM_addr:
13963 fprintf_unfiltered (f, "address: ");
13964 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
13965 break;
13966 case DW_FORM_block2:
13967 case DW_FORM_block4:
13968 case DW_FORM_block:
13969 case DW_FORM_block1:
13970 fprintf_unfiltered (f, "block: size %d",
13971 DW_BLOCK (&die->attrs[i])->size);
13972 break;
13973 case DW_FORM_exprloc:
13974 fprintf_unfiltered (f, "expression: size %u",
13975 DW_BLOCK (&die->attrs[i])->size);
13976 break;
13977 case DW_FORM_ref1:
13978 case DW_FORM_ref2:
13979 case DW_FORM_ref4:
13980 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
13981 (long) (DW_ADDR (&die->attrs[i])));
13982 break;
13983 case DW_FORM_data1:
13984 case DW_FORM_data2:
13985 case DW_FORM_data4:
13986 case DW_FORM_data8:
13987 case DW_FORM_udata:
13988 case DW_FORM_sdata:
13989 fprintf_unfiltered (f, "constant: %s",
13990 pulongest (DW_UNSND (&die->attrs[i])));
13991 break;
13992 case DW_FORM_sec_offset:
13993 fprintf_unfiltered (f, "section offset: %s",
13994 pulongest (DW_UNSND (&die->attrs[i])));
13995 break;
13996 case DW_FORM_ref_sig8:
13997 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13998 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
13999 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
14000 else
14001 fprintf_unfiltered (f, "signatured type, offset: unknown");
14002 break;
14003 case DW_FORM_string:
14004 case DW_FORM_strp:
14005 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
14006 DW_STRING (&die->attrs[i])
14007 ? DW_STRING (&die->attrs[i]) : "",
14008 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
14009 break;
14010 case DW_FORM_flag:
14011 if (DW_UNSND (&die->attrs[i]))
14012 fprintf_unfiltered (f, "flag: TRUE");
14013 else
14014 fprintf_unfiltered (f, "flag: FALSE");
14015 break;
14016 case DW_FORM_flag_present:
14017 fprintf_unfiltered (f, "flag: TRUE");
14018 break;
14019 case DW_FORM_indirect:
14020 /* The reader will have reduced the indirect form to
14021 the "base form" so this form should not occur. */
14022 fprintf_unfiltered (f,
14023 "unexpected attribute form: DW_FORM_indirect");
14024 break;
14025 default:
14026 fprintf_unfiltered (f, "unsupported attribute form: %d.",
14027 die->attrs[i].form);
14028 break;
14029 }
14030 fprintf_unfiltered (f, "\n");
14031 }
14032}
14033
14034static void
14035dump_die_for_error (struct die_info *die)
14036{
14037 dump_die_shallow (gdb_stderr, 0, die);
14038}
14039
14040static void
14041dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
14042{
14043 int indent = level * 4;
14044
14045 gdb_assert (die != NULL);
14046
14047 if (level >= max_level)
14048 return;
14049
14050 dump_die_shallow (f, indent, die);
14051
14052 if (die->child != NULL)
14053 {
14054 print_spaces (indent, f);
14055 fprintf_unfiltered (f, " Children:");
14056 if (level + 1 < max_level)
14057 {
14058 fprintf_unfiltered (f, "\n");
14059 dump_die_1 (f, level + 1, max_level, die->child);
14060 }
14061 else
14062 {
14063 fprintf_unfiltered (f,
14064 " [not printed, max nesting level reached]\n");
14065 }
14066 }
14067
14068 if (die->sibling != NULL && level > 0)
14069 {
14070 dump_die_1 (f, level, max_level, die->sibling);
14071 }
14072}
14073
14074/* This is called from the pdie macro in gdbinit.in.
14075 It's not static so gcc will keep a copy callable from gdb. */
14076
14077void
14078dump_die (struct die_info *die, int max_level)
14079{
14080 dump_die_1 (gdb_stdlog, 0, max_level, die);
14081}
14082
14083static void
14084store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
14085{
14086 void **slot;
14087
14088 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
14089 INSERT);
14090
14091 *slot = die;
14092}
14093
14094/* DW_ADDR is always stored already as sect_offset; despite for the forms
14095 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
14096
14097static int
14098is_ref_attr (struct attribute *attr)
14099{
14100 switch (attr->form)
14101 {
14102 case DW_FORM_ref_addr:
14103 case DW_FORM_ref1:
14104 case DW_FORM_ref2:
14105 case DW_FORM_ref4:
14106 case DW_FORM_ref8:
14107 case DW_FORM_ref_udata:
14108 return 1;
14109 default:
14110 return 0;
14111 }
14112}
14113
14114/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
14115 required kind. */
14116
14117static sect_offset
14118dwarf2_get_ref_die_offset (struct attribute *attr)
14119{
14120 sect_offset retval = { DW_ADDR (attr) };
14121
14122 if (is_ref_attr (attr))
14123 return retval;
14124
14125 retval.sect_off = 0;
14126 complaint (&symfile_complaints,
14127 _("unsupported die ref attribute form: '%s'"),
14128 dwarf_form_name (attr->form));
14129 return retval;
14130}
14131
14132/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
14133 * the value held by the attribute is not constant. */
14134
14135static LONGEST
14136dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
14137{
14138 if (attr->form == DW_FORM_sdata)
14139 return DW_SND (attr);
14140 else if (attr->form == DW_FORM_udata
14141 || attr->form == DW_FORM_data1
14142 || attr->form == DW_FORM_data2
14143 || attr->form == DW_FORM_data4
14144 || attr->form == DW_FORM_data8)
14145 return DW_UNSND (attr);
14146 else
14147 {
14148 complaint (&symfile_complaints,
14149 _("Attribute value is not a constant (%s)"),
14150 dwarf_form_name (attr->form));
14151 return default_value;
14152 }
14153}
14154
14155/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
14156 unit and add it to our queue.
14157 The result is non-zero if PER_CU was queued, otherwise the result is zero
14158 meaning either PER_CU is already queued or it is already loaded. */
14159
14160static int
14161maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
14162 struct dwarf2_per_cu_data *per_cu)
14163{
14164 /* We may arrive here during partial symbol reading, if we need full
14165 DIEs to process an unusual case (e.g. template arguments). Do
14166 not queue PER_CU, just tell our caller to load its DIEs. */
14167 if (dwarf2_per_objfile->reading_partial_symbols)
14168 {
14169 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
14170 return 1;
14171 return 0;
14172 }
14173
14174 /* Mark the dependence relation so that we don't flush PER_CU
14175 too early. */
14176 dwarf2_add_dependence (this_cu, per_cu);
14177
14178 /* If it's already on the queue, we have nothing to do. */
14179 if (per_cu->queued)
14180 return 0;
14181
14182 /* If the compilation unit is already loaded, just mark it as
14183 used. */
14184 if (per_cu->cu != NULL)
14185 {
14186 per_cu->cu->last_used = 0;
14187 return 0;
14188 }
14189
14190 /* Add it to the queue. */
14191 queue_comp_unit (per_cu);
14192
14193 return 1;
14194}
14195
14196/* Follow reference or signature attribute ATTR of SRC_DIE.
14197 On entry *REF_CU is the CU of SRC_DIE.
14198 On exit *REF_CU is the CU of the result. */
14199
14200static struct die_info *
14201follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
14202 struct dwarf2_cu **ref_cu)
14203{
14204 struct die_info *die;
14205
14206 if (is_ref_attr (attr))
14207 die = follow_die_ref (src_die, attr, ref_cu);
14208 else if (attr->form == DW_FORM_ref_sig8)
14209 die = follow_die_sig (src_die, attr, ref_cu);
14210 else
14211 {
14212 dump_die_for_error (src_die);
14213 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
14214 (*ref_cu)->objfile->name);
14215 }
14216
14217 return die;
14218}
14219
14220/* Follow reference OFFSET.
14221 On entry *REF_CU is the CU of the source die referencing OFFSET.
14222 On exit *REF_CU is the CU of the result.
14223 Returns NULL if OFFSET is invalid. */
14224
14225static struct die_info *
14226follow_die_offset (sect_offset offset, struct dwarf2_cu **ref_cu)
14227{
14228 struct die_info temp_die;
14229 struct dwarf2_cu *target_cu, *cu = *ref_cu;
14230
14231 gdb_assert (cu->per_cu != NULL);
14232
14233 target_cu = cu;
14234
14235 if (cu->per_cu->debug_types_section)
14236 {
14237 /* .debug_types CUs cannot reference anything outside their CU.
14238 If they need to, they have to reference a signatured type via
14239 DW_FORM_ref_sig8. */
14240 if (! offset_in_cu_p (&cu->header, offset))
14241 return NULL;
14242 }
14243 else if (! offset_in_cu_p (&cu->header, offset))
14244 {
14245 struct dwarf2_per_cu_data *per_cu;
14246
14247 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
14248
14249 /* If necessary, add it to the queue and load its DIEs. */
14250 if (maybe_queue_comp_unit (cu, per_cu))
14251 load_full_comp_unit (per_cu);
14252
14253 target_cu = per_cu->cu;
14254 }
14255 else if (cu->dies == NULL)
14256 {
14257 /* We're loading full DIEs during partial symbol reading. */
14258 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
14259 load_full_comp_unit (cu->per_cu);
14260 }
14261
14262 *ref_cu = target_cu;
14263 temp_die.offset = offset;
14264 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
14265}
14266
14267/* Follow reference attribute ATTR of SRC_DIE.
14268 On entry *REF_CU is the CU of SRC_DIE.
14269 On exit *REF_CU is the CU of the result. */
14270
14271static struct die_info *
14272follow_die_ref (struct die_info *src_die, struct attribute *attr,
14273 struct dwarf2_cu **ref_cu)
14274{
14275 sect_offset offset = dwarf2_get_ref_die_offset (attr);
14276 struct dwarf2_cu *cu = *ref_cu;
14277 struct die_info *die;
14278
14279 die = follow_die_offset (offset, ref_cu);
14280 if (!die)
14281 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
14282 "at 0x%x [in module %s]"),
14283 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
14284
14285 return die;
14286}
14287
14288/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
14289 Returned value is intended for DW_OP_call*. Returned
14290 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
14291
14292struct dwarf2_locexpr_baton
14293dwarf2_fetch_die_location_block (cu_offset offset_in_cu,
14294 struct dwarf2_per_cu_data *per_cu,
14295 CORE_ADDR (*get_frame_pc) (void *baton),
14296 void *baton)
14297{
14298 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
14299 struct dwarf2_cu *cu;
14300 struct die_info *die;
14301 struct attribute *attr;
14302 struct dwarf2_locexpr_baton retval;
14303
14304 dw2_setup (per_cu->objfile);
14305
14306 if (per_cu->cu == NULL)
14307 load_cu (per_cu);
14308 cu = per_cu->cu;
14309
14310 die = follow_die_offset (offset, &cu);
14311 if (!die)
14312 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
14313 offset.sect_off, per_cu->objfile->name);
14314
14315 attr = dwarf2_attr (die, DW_AT_location, cu);
14316 if (!attr)
14317 {
14318 /* DWARF: "If there is no such attribute, then there is no effect.".
14319 DATA is ignored if SIZE is 0. */
14320
14321 retval.data = NULL;
14322 retval.size = 0;
14323 }
14324 else if (attr_form_is_section_offset (attr))
14325 {
14326 struct dwarf2_loclist_baton loclist_baton;
14327 CORE_ADDR pc = (*get_frame_pc) (baton);
14328 size_t size;
14329
14330 fill_in_loclist_baton (cu, &loclist_baton, attr);
14331
14332 retval.data = dwarf2_find_location_expression (&loclist_baton,
14333 &size, pc);
14334 retval.size = size;
14335 }
14336 else
14337 {
14338 if (!attr_form_is_block (attr))
14339 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
14340 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
14341 offset.sect_off, per_cu->objfile->name);
14342
14343 retval.data = DW_BLOCK (attr)->data;
14344 retval.size = DW_BLOCK (attr)->size;
14345 }
14346 retval.per_cu = cu->per_cu;
14347
14348 age_cached_comp_units ();
14349
14350 return retval;
14351}
14352
14353/* Return the type of the DIE at DIE_OFFSET in the CU named by
14354 PER_CU. */
14355
14356struct type *
14357dwarf2_get_die_type (cu_offset die_offset,
14358 struct dwarf2_per_cu_data *per_cu)
14359{
14360 sect_offset die_offset_sect;
14361
14362 dw2_setup (per_cu->objfile);
14363
14364 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
14365 return get_die_type_at_offset (die_offset_sect, per_cu);
14366}
14367
14368/* Follow the signature attribute ATTR in SRC_DIE.
14369 On entry *REF_CU is the CU of SRC_DIE.
14370 On exit *REF_CU is the CU of the result. */
14371
14372static struct die_info *
14373follow_die_sig (struct die_info *src_die, struct attribute *attr,
14374 struct dwarf2_cu **ref_cu)
14375{
14376 struct objfile *objfile = (*ref_cu)->objfile;
14377 struct die_info temp_die;
14378 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
14379 struct dwarf2_cu *sig_cu;
14380 struct die_info *die;
14381
14382 /* sig_type will be NULL if the signatured type is missing from
14383 the debug info. */
14384 if (sig_type == NULL)
14385 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
14386 "at 0x%x [in module %s]"),
14387 src_die->offset.sect_off, objfile->name);
14388
14389 /* If necessary, add it to the queue and load its DIEs. */
14390
14391 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
14392 read_signatured_type (sig_type);
14393
14394 gdb_assert (sig_type->per_cu.cu != NULL);
14395
14396 sig_cu = sig_type->per_cu.cu;
14397 temp_die.offset.sect_off = (sig_type->per_cu.offset.sect_off
14398 + sig_type->type_offset.cu_off);
14399 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
14400 temp_die.offset.sect_off);
14401 if (die)
14402 {
14403 *ref_cu = sig_cu;
14404 return die;
14405 }
14406
14407 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
14408 "from DIE at 0x%x [in module %s]"),
14409 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
14410}
14411
14412/* Given an offset of a signatured type, return its signatured_type. */
14413
14414static struct signatured_type *
14415lookup_signatured_type_at_offset (struct objfile *objfile,
14416 struct dwarf2_section_info *section,
14417 sect_offset offset)
14418{
14419 gdb_byte *info_ptr = section->buffer + offset.sect_off;
14420 unsigned int length, initial_length_size;
14421 unsigned int sig_offset;
14422 struct signatured_type find_entry, *type_sig;
14423
14424 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
14425 sig_offset = (initial_length_size
14426 + 2 /*version*/
14427 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
14428 + 1 /*address_size*/);
14429 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
14430 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
14431
14432 /* This is only used to lookup previously recorded types.
14433 If we didn't find it, it's our bug. */
14434 gdb_assert (type_sig != NULL);
14435 gdb_assert (offset.sect_off == type_sig->per_cu.offset.sect_off);
14436
14437 return type_sig;
14438}
14439
14440/* Load the DIEs associated with type unit PER_CU into memory. */
14441
14442static void
14443load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
14444{
14445 struct objfile *objfile = per_cu->objfile;
14446 struct dwarf2_section_info *sect = per_cu->debug_types_section;
14447 sect_offset offset = per_cu->offset;
14448 struct signatured_type *type_sig;
14449
14450 dwarf2_read_section (objfile, sect);
14451
14452 /* We have the section offset, but we need the signature to do the
14453 hash table lookup. */
14454 /* FIXME: This is sorta unnecessary, read_signatured_type only uses
14455 the signature to assert we found the right one.
14456 Ok, but it's a lot of work. We should simplify things so any needed
14457 assert doesn't require all this clumsiness. */
14458 type_sig = lookup_signatured_type_at_offset (objfile, sect, offset);
14459
14460 gdb_assert (type_sig->per_cu.cu == NULL);
14461
14462 read_signatured_type (type_sig);
14463
14464 gdb_assert (type_sig->per_cu.cu != NULL);
14465}
14466
14467/* Read in a signatured type and build its CU and DIEs. */
14468
14469static void
14470read_signatured_type (struct signatured_type *type_sig)
14471{
14472 struct objfile *objfile = type_sig->per_cu.objfile;
14473 gdb_byte *types_ptr;
14474 struct die_reader_specs reader_specs;
14475 struct dwarf2_cu *cu;
14476 ULONGEST signature;
14477 struct cleanup *back_to, *free_cu_cleanup;
14478 struct dwarf2_section_info *section = type_sig->per_cu.debug_types_section;
14479
14480 dwarf2_read_section (objfile, section);
14481 types_ptr = section->buffer + type_sig->per_cu.offset.sect_off;
14482
14483 gdb_assert (type_sig->per_cu.cu == NULL);
14484
14485 cu = xmalloc (sizeof (*cu));
14486 init_one_comp_unit (cu, &type_sig->per_cu);
14487
14488 /* If an error occurs while loading, release our storage. */
14489 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
14490
14491 types_ptr = read_and_check_type_unit_head (&cu->header, section, types_ptr,
14492 &signature, NULL);
14493 gdb_assert (signature == type_sig->signature);
14494
14495 cu->die_hash
14496 = htab_create_alloc_ex (cu->header.length / 12,
14497 die_hash,
14498 die_eq,
14499 NULL,
14500 &cu->comp_unit_obstack,
14501 hashtab_obstack_allocate,
14502 dummy_obstack_deallocate);
14503
14504 dwarf2_read_abbrevs (cu);
14505 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
14506
14507 init_cu_die_reader (&reader_specs, cu);
14508
14509 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
14510 NULL /*parent*/);
14511
14512 /* We try not to read any attributes in this function, because not
14513 all CUs needed for references have been loaded yet, and symbol
14514 table processing isn't initialized. But we have to set the CU language,
14515 or we won't be able to build types correctly. */
14516 prepare_one_comp_unit (cu, cu->dies);
14517
14518 do_cleanups (back_to);
14519
14520 /* We've successfully allocated this compilation unit. Let our caller
14521 clean it up when finished with it. */
14522 discard_cleanups (free_cu_cleanup);
14523
14524 /* Link this TU into read_in_chain. */
14525 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
14526 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
14527}
14528
14529/* Decode simple location descriptions.
14530 Given a pointer to a dwarf block that defines a location, compute
14531 the location and return the value.
14532
14533 NOTE drow/2003-11-18: This function is called in two situations
14534 now: for the address of static or global variables (partial symbols
14535 only) and for offsets into structures which are expected to be
14536 (more or less) constant. The partial symbol case should go away,
14537 and only the constant case should remain. That will let this
14538 function complain more accurately. A few special modes are allowed
14539 without complaint for global variables (for instance, global
14540 register values and thread-local values).
14541
14542 A location description containing no operations indicates that the
14543 object is optimized out. The return value is 0 for that case.
14544 FIXME drow/2003-11-16: No callers check for this case any more; soon all
14545 callers will only want a very basic result and this can become a
14546 complaint.
14547
14548 Note that stack[0] is unused except as a default error return. */
14549
14550static CORE_ADDR
14551decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
14552{
14553 struct objfile *objfile = cu->objfile;
14554 int i;
14555 int size = blk->size;
14556 gdb_byte *data = blk->data;
14557 CORE_ADDR stack[64];
14558 int stacki;
14559 unsigned int bytes_read, unsnd;
14560 gdb_byte op;
14561
14562 i = 0;
14563 stacki = 0;
14564 stack[stacki] = 0;
14565 stack[++stacki] = 0;
14566
14567 while (i < size)
14568 {
14569 op = data[i++];
14570 switch (op)
14571 {
14572 case DW_OP_lit0:
14573 case DW_OP_lit1:
14574 case DW_OP_lit2:
14575 case DW_OP_lit3:
14576 case DW_OP_lit4:
14577 case DW_OP_lit5:
14578 case DW_OP_lit6:
14579 case DW_OP_lit7:
14580 case DW_OP_lit8:
14581 case DW_OP_lit9:
14582 case DW_OP_lit10:
14583 case DW_OP_lit11:
14584 case DW_OP_lit12:
14585 case DW_OP_lit13:
14586 case DW_OP_lit14:
14587 case DW_OP_lit15:
14588 case DW_OP_lit16:
14589 case DW_OP_lit17:
14590 case DW_OP_lit18:
14591 case DW_OP_lit19:
14592 case DW_OP_lit20:
14593 case DW_OP_lit21:
14594 case DW_OP_lit22:
14595 case DW_OP_lit23:
14596 case DW_OP_lit24:
14597 case DW_OP_lit25:
14598 case DW_OP_lit26:
14599 case DW_OP_lit27:
14600 case DW_OP_lit28:
14601 case DW_OP_lit29:
14602 case DW_OP_lit30:
14603 case DW_OP_lit31:
14604 stack[++stacki] = op - DW_OP_lit0;
14605 break;
14606
14607 case DW_OP_reg0:
14608 case DW_OP_reg1:
14609 case DW_OP_reg2:
14610 case DW_OP_reg3:
14611 case DW_OP_reg4:
14612 case DW_OP_reg5:
14613 case DW_OP_reg6:
14614 case DW_OP_reg7:
14615 case DW_OP_reg8:
14616 case DW_OP_reg9:
14617 case DW_OP_reg10:
14618 case DW_OP_reg11:
14619 case DW_OP_reg12:
14620 case DW_OP_reg13:
14621 case DW_OP_reg14:
14622 case DW_OP_reg15:
14623 case DW_OP_reg16:
14624 case DW_OP_reg17:
14625 case DW_OP_reg18:
14626 case DW_OP_reg19:
14627 case DW_OP_reg20:
14628 case DW_OP_reg21:
14629 case DW_OP_reg22:
14630 case DW_OP_reg23:
14631 case DW_OP_reg24:
14632 case DW_OP_reg25:
14633 case DW_OP_reg26:
14634 case DW_OP_reg27:
14635 case DW_OP_reg28:
14636 case DW_OP_reg29:
14637 case DW_OP_reg30:
14638 case DW_OP_reg31:
14639 stack[++stacki] = op - DW_OP_reg0;
14640 if (i < size)
14641 dwarf2_complex_location_expr_complaint ();
14642 break;
14643
14644 case DW_OP_regx:
14645 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
14646 i += bytes_read;
14647 stack[++stacki] = unsnd;
14648 if (i < size)
14649 dwarf2_complex_location_expr_complaint ();
14650 break;
14651
14652 case DW_OP_addr:
14653 stack[++stacki] = read_address (objfile->obfd, &data[i],
14654 cu, &bytes_read);
14655 i += bytes_read;
14656 break;
14657
14658 case DW_OP_const1u:
14659 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
14660 i += 1;
14661 break;
14662
14663 case DW_OP_const1s:
14664 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
14665 i += 1;
14666 break;
14667
14668 case DW_OP_const2u:
14669 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
14670 i += 2;
14671 break;
14672
14673 case DW_OP_const2s:
14674 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
14675 i += 2;
14676 break;
14677
14678 case DW_OP_const4u:
14679 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
14680 i += 4;
14681 break;
14682
14683 case DW_OP_const4s:
14684 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
14685 i += 4;
14686 break;
14687
14688 case DW_OP_const8u:
14689 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
14690 i += 8;
14691 break;
14692
14693 case DW_OP_constu:
14694 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
14695 &bytes_read);
14696 i += bytes_read;
14697 break;
14698
14699 case DW_OP_consts:
14700 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
14701 i += bytes_read;
14702 break;
14703
14704 case DW_OP_dup:
14705 stack[stacki + 1] = stack[stacki];
14706 stacki++;
14707 break;
14708
14709 case DW_OP_plus:
14710 stack[stacki - 1] += stack[stacki];
14711 stacki--;
14712 break;
14713
14714 case DW_OP_plus_uconst:
14715 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
14716 &bytes_read);
14717 i += bytes_read;
14718 break;
14719
14720 case DW_OP_minus:
14721 stack[stacki - 1] -= stack[stacki];
14722 stacki--;
14723 break;
14724
14725 case DW_OP_deref:
14726 /* If we're not the last op, then we definitely can't encode
14727 this using GDB's address_class enum. This is valid for partial
14728 global symbols, although the variable's address will be bogus
14729 in the psymtab. */
14730 if (i < size)
14731 dwarf2_complex_location_expr_complaint ();
14732 break;
14733
14734 case DW_OP_GNU_push_tls_address:
14735 /* The top of the stack has the offset from the beginning
14736 of the thread control block at which the variable is located. */
14737 /* Nothing should follow this operator, so the top of stack would
14738 be returned. */
14739 /* This is valid for partial global symbols, but the variable's
14740 address will be bogus in the psymtab. Make it always at least
14741 non-zero to not look as a variable garbage collected by linker
14742 which have DW_OP_addr 0. */
14743 if (i < size)
14744 dwarf2_complex_location_expr_complaint ();
14745 stack[stacki]++;
14746 break;
14747
14748 case DW_OP_GNU_uninit:
14749 break;
14750
14751 default:
14752 {
14753 const char *name = dwarf_stack_op_name (op);
14754
14755 if (name)
14756 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
14757 name);
14758 else
14759 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
14760 op);
14761 }
14762
14763 return (stack[stacki]);
14764 }
14765
14766 /* Enforce maximum stack depth of SIZE-1 to avoid writing
14767 outside of the allocated space. Also enforce minimum>0. */
14768 if (stacki >= ARRAY_SIZE (stack) - 1)
14769 {
14770 complaint (&symfile_complaints,
14771 _("location description stack overflow"));
14772 return 0;
14773 }
14774
14775 if (stacki <= 0)
14776 {
14777 complaint (&symfile_complaints,
14778 _("location description stack underflow"));
14779 return 0;
14780 }
14781 }
14782 return (stack[stacki]);
14783}
14784
14785/* memory allocation interface */
14786
14787static struct dwarf_block *
14788dwarf_alloc_block (struct dwarf2_cu *cu)
14789{
14790 struct dwarf_block *blk;
14791
14792 blk = (struct dwarf_block *)
14793 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
14794 return (blk);
14795}
14796
14797static struct abbrev_info *
14798dwarf_alloc_abbrev (struct dwarf2_cu *cu)
14799{
14800 struct abbrev_info *abbrev;
14801
14802 abbrev = (struct abbrev_info *)
14803 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
14804 memset (abbrev, 0, sizeof (struct abbrev_info));
14805 return (abbrev);
14806}
14807
14808static struct die_info *
14809dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
14810{
14811 struct die_info *die;
14812 size_t size = sizeof (struct die_info);
14813
14814 if (num_attrs > 1)
14815 size += (num_attrs - 1) * sizeof (struct attribute);
14816
14817 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
14818 memset (die, 0, sizeof (struct die_info));
14819 return (die);
14820}
14821
14822\f
14823/* Macro support. */
14824
14825/* Return the full name of file number I in *LH's file name table.
14826 Use COMP_DIR as the name of the current directory of the
14827 compilation. The result is allocated using xmalloc; the caller is
14828 responsible for freeing it. */
14829static char *
14830file_full_name (int file, struct line_header *lh, const char *comp_dir)
14831{
14832 /* Is the file number a valid index into the line header's file name
14833 table? Remember that file numbers start with one, not zero. */
14834 if (1 <= file && file <= lh->num_file_names)
14835 {
14836 struct file_entry *fe = &lh->file_names[file - 1];
14837
14838 if (IS_ABSOLUTE_PATH (fe->name))
14839 return xstrdup (fe->name);
14840 else
14841 {
14842 const char *dir;
14843 int dir_len;
14844 char *full_name;
14845
14846 if (fe->dir_index)
14847 dir = lh->include_dirs[fe->dir_index - 1];
14848 else
14849 dir = comp_dir;
14850
14851 if (dir)
14852 {
14853 dir_len = strlen (dir);
14854 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
14855 strcpy (full_name, dir);
14856 full_name[dir_len] = '/';
14857 strcpy (full_name + dir_len + 1, fe->name);
14858 return full_name;
14859 }
14860 else
14861 return xstrdup (fe->name);
14862 }
14863 }
14864 else
14865 {
14866 /* The compiler produced a bogus file number. We can at least
14867 record the macro definitions made in the file, even if we
14868 won't be able to find the file by name. */
14869 char fake_name[80];
14870
14871 sprintf (fake_name, "<bad macro file number %d>", file);
14872
14873 complaint (&symfile_complaints,
14874 _("bad file number in macro information (%d)"),
14875 file);
14876
14877 return xstrdup (fake_name);
14878 }
14879}
14880
14881
14882static struct macro_source_file *
14883macro_start_file (int file, int line,
14884 struct macro_source_file *current_file,
14885 const char *comp_dir,
14886 struct line_header *lh, struct objfile *objfile)
14887{
14888 /* The full name of this source file. */
14889 char *full_name = file_full_name (file, lh, comp_dir);
14890
14891 /* We don't create a macro table for this compilation unit
14892 at all until we actually get a filename. */
14893 if (! pending_macros)
14894 pending_macros = new_macro_table (&objfile->objfile_obstack,
14895 objfile->macro_cache);
14896
14897 if (! current_file)
14898 /* If we have no current file, then this must be the start_file
14899 directive for the compilation unit's main source file. */
14900 current_file = macro_set_main (pending_macros, full_name);
14901 else
14902 current_file = macro_include (current_file, line, full_name);
14903
14904 xfree (full_name);
14905
14906 return current_file;
14907}
14908
14909
14910/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
14911 followed by a null byte. */
14912static char *
14913copy_string (const char *buf, int len)
14914{
14915 char *s = xmalloc (len + 1);
14916
14917 memcpy (s, buf, len);
14918 s[len] = '\0';
14919 return s;
14920}
14921
14922
14923static const char *
14924consume_improper_spaces (const char *p, const char *body)
14925{
14926 if (*p == ' ')
14927 {
14928 complaint (&symfile_complaints,
14929 _("macro definition contains spaces "
14930 "in formal argument list:\n`%s'"),
14931 body);
14932
14933 while (*p == ' ')
14934 p++;
14935 }
14936
14937 return p;
14938}
14939
14940
14941static void
14942parse_macro_definition (struct macro_source_file *file, int line,
14943 const char *body)
14944{
14945 const char *p;
14946
14947 /* The body string takes one of two forms. For object-like macro
14948 definitions, it should be:
14949
14950 <macro name> " " <definition>
14951
14952 For function-like macro definitions, it should be:
14953
14954 <macro name> "() " <definition>
14955 or
14956 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
14957
14958 Spaces may appear only where explicitly indicated, and in the
14959 <definition>.
14960
14961 The Dwarf 2 spec says that an object-like macro's name is always
14962 followed by a space, but versions of GCC around March 2002 omit
14963 the space when the macro's definition is the empty string.
14964
14965 The Dwarf 2 spec says that there should be no spaces between the
14966 formal arguments in a function-like macro's formal argument list,
14967 but versions of GCC around March 2002 include spaces after the
14968 commas. */
14969
14970
14971 /* Find the extent of the macro name. The macro name is terminated
14972 by either a space or null character (for an object-like macro) or
14973 an opening paren (for a function-like macro). */
14974 for (p = body; *p; p++)
14975 if (*p == ' ' || *p == '(')
14976 break;
14977
14978 if (*p == ' ' || *p == '\0')
14979 {
14980 /* It's an object-like macro. */
14981 int name_len = p - body;
14982 char *name = copy_string (body, name_len);
14983 const char *replacement;
14984
14985 if (*p == ' ')
14986 replacement = body + name_len + 1;
14987 else
14988 {
14989 dwarf2_macro_malformed_definition_complaint (body);
14990 replacement = body + name_len;
14991 }
14992
14993 macro_define_object (file, line, name, replacement);
14994
14995 xfree (name);
14996 }
14997 else if (*p == '(')
14998 {
14999 /* It's a function-like macro. */
15000 char *name = copy_string (body, p - body);
15001 int argc = 0;
15002 int argv_size = 1;
15003 char **argv = xmalloc (argv_size * sizeof (*argv));
15004
15005 p++;
15006
15007 p = consume_improper_spaces (p, body);
15008
15009 /* Parse the formal argument list. */
15010 while (*p && *p != ')')
15011 {
15012 /* Find the extent of the current argument name. */
15013 const char *arg_start = p;
15014
15015 while (*p && *p != ',' && *p != ')' && *p != ' ')
15016 p++;
15017
15018 if (! *p || p == arg_start)
15019 dwarf2_macro_malformed_definition_complaint (body);
15020 else
15021 {
15022 /* Make sure argv has room for the new argument. */
15023 if (argc >= argv_size)
15024 {
15025 argv_size *= 2;
15026 argv = xrealloc (argv, argv_size * sizeof (*argv));
15027 }
15028
15029 argv[argc++] = copy_string (arg_start, p - arg_start);
15030 }
15031
15032 p = consume_improper_spaces (p, body);
15033
15034 /* Consume the comma, if present. */
15035 if (*p == ',')
15036 {
15037 p++;
15038
15039 p = consume_improper_spaces (p, body);
15040 }
15041 }
15042
15043 if (*p == ')')
15044 {
15045 p++;
15046
15047 if (*p == ' ')
15048 /* Perfectly formed definition, no complaints. */
15049 macro_define_function (file, line, name,
15050 argc, (const char **) argv,
15051 p + 1);
15052 else if (*p == '\0')
15053 {
15054 /* Complain, but do define it. */
15055 dwarf2_macro_malformed_definition_complaint (body);
15056 macro_define_function (file, line, name,
15057 argc, (const char **) argv,
15058 p);
15059 }
15060 else
15061 /* Just complain. */
15062 dwarf2_macro_malformed_definition_complaint (body);
15063 }
15064 else
15065 /* Just complain. */
15066 dwarf2_macro_malformed_definition_complaint (body);
15067
15068 xfree (name);
15069 {
15070 int i;
15071
15072 for (i = 0; i < argc; i++)
15073 xfree (argv[i]);
15074 }
15075 xfree (argv);
15076 }
15077 else
15078 dwarf2_macro_malformed_definition_complaint (body);
15079}
15080
15081/* Skip some bytes from BYTES according to the form given in FORM.
15082 Returns the new pointer. */
15083
15084static gdb_byte *
15085skip_form_bytes (bfd *abfd, gdb_byte *bytes,
15086 enum dwarf_form form,
15087 unsigned int offset_size,
15088 struct dwarf2_section_info *section)
15089{
15090 unsigned int bytes_read;
15091
15092 switch (form)
15093 {
15094 case DW_FORM_data1:
15095 case DW_FORM_flag:
15096 ++bytes;
15097 break;
15098
15099 case DW_FORM_data2:
15100 bytes += 2;
15101 break;
15102
15103 case DW_FORM_data4:
15104 bytes += 4;
15105 break;
15106
15107 case DW_FORM_data8:
15108 bytes += 8;
15109 break;
15110
15111 case DW_FORM_string:
15112 read_direct_string (abfd, bytes, &bytes_read);
15113 bytes += bytes_read;
15114 break;
15115
15116 case DW_FORM_sec_offset:
15117 case DW_FORM_strp:
15118 bytes += offset_size;
15119 break;
15120
15121 case DW_FORM_block:
15122 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
15123 bytes += bytes_read;
15124 break;
15125
15126 case DW_FORM_block1:
15127 bytes += 1 + read_1_byte (abfd, bytes);
15128 break;
15129 case DW_FORM_block2:
15130 bytes += 2 + read_2_bytes (abfd, bytes);
15131 break;
15132 case DW_FORM_block4:
15133 bytes += 4 + read_4_bytes (abfd, bytes);
15134 break;
15135
15136 case DW_FORM_sdata:
15137 case DW_FORM_udata:
15138 bytes = skip_leb128 (abfd, bytes);
15139 break;
15140
15141 default:
15142 {
15143 complain:
15144 complaint (&symfile_complaints,
15145 _("invalid form 0x%x in `%s'"),
15146 form,
15147 section->asection->name);
15148 return NULL;
15149 }
15150 }
15151
15152 return bytes;
15153}
15154
15155/* A helper for dwarf_decode_macros that handles skipping an unknown
15156 opcode. Returns an updated pointer to the macro data buffer; or,
15157 on error, issues a complaint and returns NULL. */
15158
15159static gdb_byte *
15160skip_unknown_opcode (unsigned int opcode,
15161 gdb_byte **opcode_definitions,
15162 gdb_byte *mac_ptr,
15163 bfd *abfd,
15164 unsigned int offset_size,
15165 struct dwarf2_section_info *section)
15166{
15167 unsigned int bytes_read, i;
15168 unsigned long arg;
15169 gdb_byte *defn;
15170
15171 if (opcode_definitions[opcode] == NULL)
15172 {
15173 complaint (&symfile_complaints,
15174 _("unrecognized DW_MACFINO opcode 0x%x"),
15175 opcode);
15176 return NULL;
15177 }
15178
15179 defn = opcode_definitions[opcode];
15180 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
15181 defn += bytes_read;
15182
15183 for (i = 0; i < arg; ++i)
15184 {
15185 mac_ptr = skip_form_bytes (abfd, mac_ptr, defn[i], offset_size, section);
15186 if (mac_ptr == NULL)
15187 {
15188 /* skip_form_bytes already issued the complaint. */
15189 return NULL;
15190 }
15191 }
15192
15193 return mac_ptr;
15194}
15195
15196/* A helper function which parses the header of a macro section.
15197 If the macro section is the extended (for now called "GNU") type,
15198 then this updates *OFFSET_SIZE. Returns a pointer to just after
15199 the header, or issues a complaint and returns NULL on error. */
15200
15201static gdb_byte *
15202dwarf_parse_macro_header (gdb_byte **opcode_definitions,
15203 bfd *abfd,
15204 gdb_byte *mac_ptr,
15205 unsigned int *offset_size,
15206 int section_is_gnu)
15207{
15208 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
15209
15210 if (section_is_gnu)
15211 {
15212 unsigned int version, flags;
15213
15214 version = read_2_bytes (abfd, mac_ptr);
15215 if (version != 4)
15216 {
15217 complaint (&symfile_complaints,
15218 _("unrecognized version `%d' in .debug_macro section"),
15219 version);
15220 return NULL;
15221 }
15222 mac_ptr += 2;
15223
15224 flags = read_1_byte (abfd, mac_ptr);
15225 ++mac_ptr;
15226 *offset_size = (flags & 1) ? 8 : 4;
15227
15228 if ((flags & 2) != 0)
15229 /* We don't need the line table offset. */
15230 mac_ptr += *offset_size;
15231
15232 /* Vendor opcode descriptions. */
15233 if ((flags & 4) != 0)
15234 {
15235 unsigned int i, count;
15236
15237 count = read_1_byte (abfd, mac_ptr);
15238 ++mac_ptr;
15239 for (i = 0; i < count; ++i)
15240 {
15241 unsigned int opcode, bytes_read;
15242 unsigned long arg;
15243
15244 opcode = read_1_byte (abfd, mac_ptr);
15245 ++mac_ptr;
15246 opcode_definitions[opcode] = mac_ptr;
15247 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15248 mac_ptr += bytes_read;
15249 mac_ptr += arg;
15250 }
15251 }
15252 }
15253
15254 return mac_ptr;
15255}
15256
15257/* A helper for dwarf_decode_macros that handles the GNU extensions,
15258 including DW_MACRO_GNU_transparent_include. */
15259
15260static void
15261dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
15262 struct macro_source_file *current_file,
15263 struct line_header *lh, char *comp_dir,
15264 struct dwarf2_section_info *section,
15265 int section_is_gnu,
15266 unsigned int offset_size,
15267 struct objfile *objfile,
15268 htab_t include_hash)
15269{
15270 enum dwarf_macro_record_type macinfo_type;
15271 int at_commandline;
15272 gdb_byte *opcode_definitions[256];
15273
15274 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15275 &offset_size, section_is_gnu);
15276 if (mac_ptr == NULL)
15277 {
15278 /* We already issued a complaint. */
15279 return;
15280 }
15281
15282 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
15283 GDB is still reading the definitions from command line. First
15284 DW_MACINFO_start_file will need to be ignored as it was already executed
15285 to create CURRENT_FILE for the main source holding also the command line
15286 definitions. On first met DW_MACINFO_start_file this flag is reset to
15287 normally execute all the remaining DW_MACINFO_start_file macinfos. */
15288
15289 at_commandline = 1;
15290
15291 do
15292 {
15293 /* Do we at least have room for a macinfo type byte? */
15294 if (mac_ptr >= mac_end)
15295 {
15296 dwarf2_macros_too_long_complaint (section);
15297 break;
15298 }
15299
15300 macinfo_type = read_1_byte (abfd, mac_ptr);
15301 mac_ptr++;
15302
15303 /* Note that we rely on the fact that the corresponding GNU and
15304 DWARF constants are the same. */
15305 switch (macinfo_type)
15306 {
15307 /* A zero macinfo type indicates the end of the macro
15308 information. */
15309 case 0:
15310 break;
15311
15312 case DW_MACRO_GNU_define:
15313 case DW_MACRO_GNU_undef:
15314 case DW_MACRO_GNU_define_indirect:
15315 case DW_MACRO_GNU_undef_indirect:
15316 {
15317 unsigned int bytes_read;
15318 int line;
15319 char *body;
15320 int is_define;
15321
15322 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15323 mac_ptr += bytes_read;
15324
15325 if (macinfo_type == DW_MACRO_GNU_define
15326 || macinfo_type == DW_MACRO_GNU_undef)
15327 {
15328 body = read_direct_string (abfd, mac_ptr, &bytes_read);
15329 mac_ptr += bytes_read;
15330 }
15331 else
15332 {
15333 LONGEST str_offset;
15334
15335 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
15336 mac_ptr += offset_size;
15337
15338 body = read_indirect_string_at_offset (abfd, str_offset);
15339 }
15340
15341 is_define = (macinfo_type == DW_MACRO_GNU_define
15342 || macinfo_type == DW_MACRO_GNU_define_indirect);
15343 if (! current_file)
15344 {
15345 /* DWARF violation as no main source is present. */
15346 complaint (&symfile_complaints,
15347 _("debug info with no main source gives macro %s "
15348 "on line %d: %s"),
15349 is_define ? _("definition") : _("undefinition"),
15350 line, body);
15351 break;
15352 }
15353 if ((line == 0 && !at_commandline)
15354 || (line != 0 && at_commandline))
15355 complaint (&symfile_complaints,
15356 _("debug info gives %s macro %s with %s line %d: %s"),
15357 at_commandline ? _("command-line") : _("in-file"),
15358 is_define ? _("definition") : _("undefinition"),
15359 line == 0 ? _("zero") : _("non-zero"), line, body);
15360
15361 if (is_define)
15362 parse_macro_definition (current_file, line, body);
15363 else
15364 {
15365 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
15366 || macinfo_type == DW_MACRO_GNU_undef_indirect);
15367 macro_undef (current_file, line, body);
15368 }
15369 }
15370 break;
15371
15372 case DW_MACRO_GNU_start_file:
15373 {
15374 unsigned int bytes_read;
15375 int line, file;
15376
15377 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15378 mac_ptr += bytes_read;
15379 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15380 mac_ptr += bytes_read;
15381
15382 if ((line == 0 && !at_commandline)
15383 || (line != 0 && at_commandline))
15384 complaint (&symfile_complaints,
15385 _("debug info gives source %d included "
15386 "from %s at %s line %d"),
15387 file, at_commandline ? _("command-line") : _("file"),
15388 line == 0 ? _("zero") : _("non-zero"), line);
15389
15390 if (at_commandline)
15391 {
15392 /* This DW_MACRO_GNU_start_file was executed in the
15393 pass one. */
15394 at_commandline = 0;
15395 }
15396 else
15397 current_file = macro_start_file (file, line,
15398 current_file, comp_dir,
15399 lh, objfile);
15400 }
15401 break;
15402
15403 case DW_MACRO_GNU_end_file:
15404 if (! current_file)
15405 complaint (&symfile_complaints,
15406 _("macro debug info has an unmatched "
15407 "`close_file' directive"));
15408 else
15409 {
15410 current_file = current_file->included_by;
15411 if (! current_file)
15412 {
15413 enum dwarf_macro_record_type next_type;
15414
15415 /* GCC circa March 2002 doesn't produce the zero
15416 type byte marking the end of the compilation
15417 unit. Complain if it's not there, but exit no
15418 matter what. */
15419
15420 /* Do we at least have room for a macinfo type byte? */
15421 if (mac_ptr >= mac_end)
15422 {
15423 dwarf2_macros_too_long_complaint (section);
15424 return;
15425 }
15426
15427 /* We don't increment mac_ptr here, so this is just
15428 a look-ahead. */
15429 next_type = read_1_byte (abfd, mac_ptr);
15430 if (next_type != 0)
15431 complaint (&symfile_complaints,
15432 _("no terminating 0-type entry for "
15433 "macros in `.debug_macinfo' section"));
15434
15435 return;
15436 }
15437 }
15438 break;
15439
15440 case DW_MACRO_GNU_transparent_include:
15441 {
15442 LONGEST offset;
15443 void **slot;
15444
15445 offset = read_offset_1 (abfd, mac_ptr, offset_size);
15446 mac_ptr += offset_size;
15447
15448 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
15449 if (*slot != NULL)
15450 {
15451 /* This has actually happened; see
15452 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
15453 complaint (&symfile_complaints,
15454 _("recursive DW_MACRO_GNU_transparent_include in "
15455 ".debug_macro section"));
15456 }
15457 else
15458 {
15459 *slot = mac_ptr;
15460
15461 dwarf_decode_macro_bytes (abfd,
15462 section->buffer + offset,
15463 mac_end, current_file,
15464 lh, comp_dir,
15465 section, section_is_gnu,
15466 offset_size, objfile, include_hash);
15467
15468 htab_remove_elt (include_hash, mac_ptr);
15469 }
15470 }
15471 break;
15472
15473 case DW_MACINFO_vendor_ext:
15474 if (!section_is_gnu)
15475 {
15476 unsigned int bytes_read;
15477 int constant;
15478
15479 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15480 mac_ptr += bytes_read;
15481 read_direct_string (abfd, mac_ptr, &bytes_read);
15482 mac_ptr += bytes_read;
15483
15484 /* We don't recognize any vendor extensions. */
15485 break;
15486 }
15487 /* FALLTHROUGH */
15488
15489 default:
15490 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15491 mac_ptr, abfd, offset_size,
15492 section);
15493 if (mac_ptr == NULL)
15494 return;
15495 break;
15496 }
15497 } while (macinfo_type != 0);
15498}
15499
15500static void
15501dwarf_decode_macros (struct line_header *lh, unsigned int offset,
15502 char *comp_dir, bfd *abfd,
15503 struct dwarf2_cu *cu,
15504 struct dwarf2_section_info *section,
15505 int section_is_gnu)
15506{
15507 struct objfile *objfile = dwarf2_per_objfile->objfile;
15508 gdb_byte *mac_ptr, *mac_end;
15509 struct macro_source_file *current_file = 0;
15510 enum dwarf_macro_record_type macinfo_type;
15511 unsigned int offset_size = cu->header.offset_size;
15512 gdb_byte *opcode_definitions[256];
15513 struct cleanup *cleanup;
15514 htab_t include_hash;
15515 void **slot;
15516
15517 dwarf2_read_section (objfile, section);
15518 if (section->buffer == NULL)
15519 {
15520 complaint (&symfile_complaints, _("missing %s section"),
15521 section->asection->name);
15522 return;
15523 }
15524
15525 /* First pass: Find the name of the base filename.
15526 This filename is needed in order to process all macros whose definition
15527 (or undefinition) comes from the command line. These macros are defined
15528 before the first DW_MACINFO_start_file entry, and yet still need to be
15529 associated to the base file.
15530
15531 To determine the base file name, we scan the macro definitions until we
15532 reach the first DW_MACINFO_start_file entry. We then initialize
15533 CURRENT_FILE accordingly so that any macro definition found before the
15534 first DW_MACINFO_start_file can still be associated to the base file. */
15535
15536 mac_ptr = section->buffer + offset;
15537 mac_end = section->buffer + section->size;
15538
15539 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15540 &offset_size, section_is_gnu);
15541 if (mac_ptr == NULL)
15542 {
15543 /* We already issued a complaint. */
15544 return;
15545 }
15546
15547 do
15548 {
15549 /* Do we at least have room for a macinfo type byte? */
15550 if (mac_ptr >= mac_end)
15551 {
15552 /* Complaint is printed during the second pass as GDB will probably
15553 stop the first pass earlier upon finding
15554 DW_MACINFO_start_file. */
15555 break;
15556 }
15557
15558 macinfo_type = read_1_byte (abfd, mac_ptr);
15559 mac_ptr++;
15560
15561 /* Note that we rely on the fact that the corresponding GNU and
15562 DWARF constants are the same. */
15563 switch (macinfo_type)
15564 {
15565 /* A zero macinfo type indicates the end of the macro
15566 information. */
15567 case 0:
15568 break;
15569
15570 case DW_MACRO_GNU_define:
15571 case DW_MACRO_GNU_undef:
15572 /* Only skip the data by MAC_PTR. */
15573 {
15574 unsigned int bytes_read;
15575
15576 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15577 mac_ptr += bytes_read;
15578 read_direct_string (abfd, mac_ptr, &bytes_read);
15579 mac_ptr += bytes_read;
15580 }
15581 break;
15582
15583 case DW_MACRO_GNU_start_file:
15584 {
15585 unsigned int bytes_read;
15586 int line, file;
15587
15588 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15589 mac_ptr += bytes_read;
15590 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15591 mac_ptr += bytes_read;
15592
15593 current_file = macro_start_file (file, line, current_file,
15594 comp_dir, lh, objfile);
15595 }
15596 break;
15597
15598 case DW_MACRO_GNU_end_file:
15599 /* No data to skip by MAC_PTR. */
15600 break;
15601
15602 case DW_MACRO_GNU_define_indirect:
15603 case DW_MACRO_GNU_undef_indirect:
15604 {
15605 unsigned int bytes_read;
15606
15607 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15608 mac_ptr += bytes_read;
15609 mac_ptr += offset_size;
15610 }
15611 break;
15612
15613 case DW_MACRO_GNU_transparent_include:
15614 /* Note that, according to the spec, a transparent include
15615 chain cannot call DW_MACRO_GNU_start_file. So, we can just
15616 skip this opcode. */
15617 mac_ptr += offset_size;
15618 break;
15619
15620 case DW_MACINFO_vendor_ext:
15621 /* Only skip the data by MAC_PTR. */
15622 if (!section_is_gnu)
15623 {
15624 unsigned int bytes_read;
15625
15626 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15627 mac_ptr += bytes_read;
15628 read_direct_string (abfd, mac_ptr, &bytes_read);
15629 mac_ptr += bytes_read;
15630 }
15631 /* FALLTHROUGH */
15632
15633 default:
15634 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15635 mac_ptr, abfd, offset_size,
15636 section);
15637 if (mac_ptr == NULL)
15638 return;
15639 break;
15640 }
15641 } while (macinfo_type != 0 && current_file == NULL);
15642
15643 /* Second pass: Process all entries.
15644
15645 Use the AT_COMMAND_LINE flag to determine whether we are still processing
15646 command-line macro definitions/undefinitions. This flag is unset when we
15647 reach the first DW_MACINFO_start_file entry. */
15648
15649 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
15650 NULL, xcalloc, xfree);
15651 cleanup = make_cleanup_htab_delete (include_hash);
15652 mac_ptr = section->buffer + offset;
15653 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
15654 *slot = mac_ptr;
15655 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
15656 current_file, lh, comp_dir, section, section_is_gnu,
15657 offset_size, objfile, include_hash);
15658 do_cleanups (cleanup);
15659}
15660
15661/* Check if the attribute's form is a DW_FORM_block*
15662 if so return true else false. */
15663static int
15664attr_form_is_block (struct attribute *attr)
15665{
15666 return (attr == NULL ? 0 :
15667 attr->form == DW_FORM_block1
15668 || attr->form == DW_FORM_block2
15669 || attr->form == DW_FORM_block4
15670 || attr->form == DW_FORM_block
15671 || attr->form == DW_FORM_exprloc);
15672}
15673
15674/* Return non-zero if ATTR's value is a section offset --- classes
15675 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
15676 You may use DW_UNSND (attr) to retrieve such offsets.
15677
15678 Section 7.5.4, "Attribute Encodings", explains that no attribute
15679 may have a value that belongs to more than one of these classes; it
15680 would be ambiguous if we did, because we use the same forms for all
15681 of them. */
15682static int
15683attr_form_is_section_offset (struct attribute *attr)
15684{
15685 return (attr->form == DW_FORM_data4
15686 || attr->form == DW_FORM_data8
15687 || attr->form == DW_FORM_sec_offset);
15688}
15689
15690
15691/* Return non-zero if ATTR's value falls in the 'constant' class, or
15692 zero otherwise. When this function returns true, you can apply
15693 dwarf2_get_attr_constant_value to it.
15694
15695 However, note that for some attributes you must check
15696 attr_form_is_section_offset before using this test. DW_FORM_data4
15697 and DW_FORM_data8 are members of both the constant class, and of
15698 the classes that contain offsets into other debug sections
15699 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
15700 that, if an attribute's can be either a constant or one of the
15701 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
15702 taken as section offsets, not constants. */
15703static int
15704attr_form_is_constant (struct attribute *attr)
15705{
15706 switch (attr->form)
15707 {
15708 case DW_FORM_sdata:
15709 case DW_FORM_udata:
15710 case DW_FORM_data1:
15711 case DW_FORM_data2:
15712 case DW_FORM_data4:
15713 case DW_FORM_data8:
15714 return 1;
15715 default:
15716 return 0;
15717 }
15718}
15719
15720/* A helper function that fills in a dwarf2_loclist_baton. */
15721
15722static void
15723fill_in_loclist_baton (struct dwarf2_cu *cu,
15724 struct dwarf2_loclist_baton *baton,
15725 struct attribute *attr)
15726{
15727 dwarf2_read_section (dwarf2_per_objfile->objfile,
15728 &dwarf2_per_objfile->loc);
15729
15730 baton->per_cu = cu->per_cu;
15731 gdb_assert (baton->per_cu);
15732 /* We don't know how long the location list is, but make sure we
15733 don't run off the edge of the section. */
15734 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
15735 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
15736 baton->base_address = cu->base_address;
15737}
15738
15739static void
15740dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
15741 struct dwarf2_cu *cu)
15742{
15743 struct objfile *objfile = dwarf2_per_objfile->objfile;
15744
15745 if (attr_form_is_section_offset (attr)
15746 /* ".debug_loc" may not exist at all, or the offset may be outside
15747 the section. If so, fall through to the complaint in the
15748 other branch. */
15749 && DW_UNSND (attr) < dwarf2_section_size (objfile,
15750 &dwarf2_per_objfile->loc))
15751 {
15752 struct dwarf2_loclist_baton *baton;
15753
15754 baton = obstack_alloc (&objfile->objfile_obstack,
15755 sizeof (struct dwarf2_loclist_baton));
15756
15757 fill_in_loclist_baton (cu, baton, attr);
15758
15759 if (cu->base_known == 0)
15760 complaint (&symfile_complaints,
15761 _("Location list used without "
15762 "specifying the CU base address."));
15763
15764 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
15765 SYMBOL_LOCATION_BATON (sym) = baton;
15766 }
15767 else
15768 {
15769 struct dwarf2_locexpr_baton *baton;
15770
15771 baton = obstack_alloc (&objfile->objfile_obstack,
15772 sizeof (struct dwarf2_locexpr_baton));
15773 baton->per_cu = cu->per_cu;
15774 gdb_assert (baton->per_cu);
15775
15776 if (attr_form_is_block (attr))
15777 {
15778 /* Note that we're just copying the block's data pointer
15779 here, not the actual data. We're still pointing into the
15780 info_buffer for SYM's objfile; right now we never release
15781 that buffer, but when we do clean up properly this may
15782 need to change. */
15783 baton->size = DW_BLOCK (attr)->size;
15784 baton->data = DW_BLOCK (attr)->data;
15785 }
15786 else
15787 {
15788 dwarf2_invalid_attrib_class_complaint ("location description",
15789 SYMBOL_NATURAL_NAME (sym));
15790 baton->size = 0;
15791 }
15792
15793 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
15794 SYMBOL_LOCATION_BATON (sym) = baton;
15795 }
15796}
15797
15798/* Return the OBJFILE associated with the compilation unit CU. If CU
15799 came from a separate debuginfo file, then the master objfile is
15800 returned. */
15801
15802struct objfile *
15803dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
15804{
15805 struct objfile *objfile = per_cu->objfile;
15806
15807 /* Return the master objfile, so that we can report and look up the
15808 correct file containing this variable. */
15809 if (objfile->separate_debug_objfile_backlink)
15810 objfile = objfile->separate_debug_objfile_backlink;
15811
15812 return objfile;
15813}
15814
15815/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
15816 (CU_HEADERP is unused in such case) or prepare a temporary copy at
15817 CU_HEADERP first. */
15818
15819static const struct comp_unit_head *
15820per_cu_header_read_in (struct comp_unit_head *cu_headerp,
15821 struct dwarf2_per_cu_data *per_cu)
15822{
15823 struct objfile *objfile;
15824 struct dwarf2_per_objfile *per_objfile;
15825 gdb_byte *info_ptr;
15826
15827 if (per_cu->cu)
15828 return &per_cu->cu->header;
15829
15830 objfile = per_cu->objfile;
15831 per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15832 info_ptr = per_objfile->info.buffer + per_cu->offset.sect_off;
15833
15834 memset (cu_headerp, 0, sizeof (*cu_headerp));
15835 read_comp_unit_head (cu_headerp, info_ptr, objfile->obfd);
15836
15837 return cu_headerp;
15838}
15839
15840/* Return the address size given in the compilation unit header for CU. */
15841
15842int
15843dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
15844{
15845 struct comp_unit_head cu_header_local;
15846 const struct comp_unit_head *cu_headerp;
15847
15848 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15849
15850 return cu_headerp->addr_size;
15851}
15852
15853/* Return the offset size given in the compilation unit header for CU. */
15854
15855int
15856dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
15857{
15858 struct comp_unit_head cu_header_local;
15859 const struct comp_unit_head *cu_headerp;
15860
15861 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15862
15863 return cu_headerp->offset_size;
15864}
15865
15866/* See its dwarf2loc.h declaration. */
15867
15868int
15869dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
15870{
15871 struct comp_unit_head cu_header_local;
15872 const struct comp_unit_head *cu_headerp;
15873
15874 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15875
15876 if (cu_headerp->version == 2)
15877 return cu_headerp->addr_size;
15878 else
15879 return cu_headerp->offset_size;
15880}
15881
15882/* Return the text offset of the CU. The returned offset comes from
15883 this CU's objfile. If this objfile came from a separate debuginfo
15884 file, then the offset may be different from the corresponding
15885 offset in the parent objfile. */
15886
15887CORE_ADDR
15888dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
15889{
15890 struct objfile *objfile = per_cu->objfile;
15891
15892 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15893}
15894
15895/* Locate the .debug_info compilation unit from CU's objfile which contains
15896 the DIE at OFFSET. Raises an error on failure. */
15897
15898static struct dwarf2_per_cu_data *
15899dwarf2_find_containing_comp_unit (sect_offset offset,
15900 struct objfile *objfile)
15901{
15902 struct dwarf2_per_cu_data *this_cu;
15903 int low, high;
15904
15905 low = 0;
15906 high = dwarf2_per_objfile->n_comp_units - 1;
15907 while (high > low)
15908 {
15909 int mid = low + (high - low) / 2;
15910
15911 if (dwarf2_per_objfile->all_comp_units[mid]->offset.sect_off
15912 >= offset.sect_off)
15913 high = mid;
15914 else
15915 low = mid + 1;
15916 }
15917 gdb_assert (low == high);
15918 if (dwarf2_per_objfile->all_comp_units[low]->offset.sect_off
15919 > offset.sect_off)
15920 {
15921 if (low == 0)
15922 error (_("Dwarf Error: could not find partial DIE containing "
15923 "offset 0x%lx [in module %s]"),
15924 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
15925
15926 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
15927 <= offset.sect_off);
15928 return dwarf2_per_objfile->all_comp_units[low-1];
15929 }
15930 else
15931 {
15932 this_cu = dwarf2_per_objfile->all_comp_units[low];
15933 if (low == dwarf2_per_objfile->n_comp_units - 1
15934 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
15935 error (_("invalid dwarf2 offset %u"), offset.sect_off);
15936 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
15937 return this_cu;
15938 }
15939}
15940
15941/* Initialize dwarf2_cu CU, owned by PER_CU. */
15942
15943static void
15944init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
15945{
15946 memset (cu, 0, sizeof (*cu));
15947 per_cu->cu = cu;
15948 cu->per_cu = per_cu;
15949 cu->objfile = per_cu->objfile;
15950 obstack_init (&cu->comp_unit_obstack);
15951}
15952
15953/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
15954
15955static void
15956prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
15957{
15958 struct attribute *attr;
15959
15960 /* Set the language we're debugging. */
15961 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
15962 if (attr)
15963 set_cu_language (DW_UNSND (attr), cu);
15964 else
15965 {
15966 cu->language = language_minimal;
15967 cu->language_defn = language_def (cu->language);
15968 }
15969}
15970
15971/* Release one cached compilation unit, CU. We unlink it from the tree
15972 of compilation units, but we don't remove it from the read_in_chain;
15973 the caller is responsible for that.
15974 NOTE: DATA is a void * because this function is also used as a
15975 cleanup routine. */
15976
15977static void
15978free_heap_comp_unit (void *data)
15979{
15980 struct dwarf2_cu *cu = data;
15981
15982 gdb_assert (cu->per_cu != NULL);
15983 cu->per_cu->cu = NULL;
15984 cu->per_cu = NULL;
15985
15986 obstack_free (&cu->comp_unit_obstack, NULL);
15987
15988 xfree (cu);
15989}
15990
15991/* This cleanup function is passed the address of a dwarf2_cu on the stack
15992 when we're finished with it. We can't free the pointer itself, but be
15993 sure to unlink it from the cache. Also release any associated storage
15994 and perform cache maintenance.
15995
15996 Only used during partial symbol parsing. */
15997
15998static void
15999free_stack_comp_unit (void *data)
16000{
16001 struct dwarf2_cu *cu = data;
16002
16003 gdb_assert (cu->per_cu != NULL);
16004 cu->per_cu->cu = NULL;
16005 cu->per_cu = NULL;
16006
16007 obstack_free (&cu->comp_unit_obstack, NULL);
16008 cu->partial_dies = NULL;
16009
16010 /* The previous code only did this if per_cu != NULL.
16011 But that would always succeed, so now we just unconditionally do
16012 the aging. This seems like the wrong place to do such aging,
16013 but cleaning that up is left for later. */
16014 age_cached_comp_units ();
16015}
16016
16017/* Free all cached compilation units. */
16018
16019static void
16020free_cached_comp_units (void *data)
16021{
16022 struct dwarf2_per_cu_data *per_cu, **last_chain;
16023
16024 per_cu = dwarf2_per_objfile->read_in_chain;
16025 last_chain = &dwarf2_per_objfile->read_in_chain;
16026 while (per_cu != NULL)
16027 {
16028 struct dwarf2_per_cu_data *next_cu;
16029
16030 next_cu = per_cu->cu->read_in_chain;
16031
16032 free_heap_comp_unit (per_cu->cu);
16033 *last_chain = next_cu;
16034
16035 per_cu = next_cu;
16036 }
16037}
16038
16039/* Increase the age counter on each cached compilation unit, and free
16040 any that are too old. */
16041
16042static void
16043age_cached_comp_units (void)
16044{
16045 struct dwarf2_per_cu_data *per_cu, **last_chain;
16046
16047 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
16048 per_cu = dwarf2_per_objfile->read_in_chain;
16049 while (per_cu != NULL)
16050 {
16051 per_cu->cu->last_used ++;
16052 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
16053 dwarf2_mark (per_cu->cu);
16054 per_cu = per_cu->cu->read_in_chain;
16055 }
16056
16057 per_cu = dwarf2_per_objfile->read_in_chain;
16058 last_chain = &dwarf2_per_objfile->read_in_chain;
16059 while (per_cu != NULL)
16060 {
16061 struct dwarf2_per_cu_data *next_cu;
16062
16063 next_cu = per_cu->cu->read_in_chain;
16064
16065 if (!per_cu->cu->mark)
16066 {
16067 free_heap_comp_unit (per_cu->cu);
16068 *last_chain = next_cu;
16069 }
16070 else
16071 last_chain = &per_cu->cu->read_in_chain;
16072
16073 per_cu = next_cu;
16074 }
16075}
16076
16077/* Remove a single compilation unit from the cache. */
16078
16079static void
16080free_one_cached_comp_unit (void *target_cu)
16081{
16082 struct dwarf2_per_cu_data *per_cu, **last_chain;
16083
16084 per_cu = dwarf2_per_objfile->read_in_chain;
16085 last_chain = &dwarf2_per_objfile->read_in_chain;
16086 while (per_cu != NULL)
16087 {
16088 struct dwarf2_per_cu_data *next_cu;
16089
16090 next_cu = per_cu->cu->read_in_chain;
16091
16092 if (per_cu->cu == target_cu)
16093 {
16094 free_heap_comp_unit (per_cu->cu);
16095 *last_chain = next_cu;
16096 break;
16097 }
16098 else
16099 last_chain = &per_cu->cu->read_in_chain;
16100
16101 per_cu = next_cu;
16102 }
16103}
16104
16105/* Release all extra memory associated with OBJFILE. */
16106
16107void
16108dwarf2_free_objfile (struct objfile *objfile)
16109{
16110 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
16111
16112 if (dwarf2_per_objfile == NULL)
16113 return;
16114
16115 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
16116 free_cached_comp_units (NULL);
16117
16118 if (dwarf2_per_objfile->quick_file_names_table)
16119 htab_delete (dwarf2_per_objfile->quick_file_names_table);
16120
16121 /* Everything else should be on the objfile obstack. */
16122}
16123
16124/* A pair of DIE offset and GDB type pointer. We store these
16125 in a hash table separate from the DIEs, and preserve them
16126 when the DIEs are flushed out of cache. */
16127
16128struct dwarf2_offset_and_type
16129{
16130 sect_offset offset;
16131 struct type *type;
16132};
16133
16134/* Hash function for a dwarf2_offset_and_type. */
16135
16136static hashval_t
16137offset_and_type_hash (const void *item)
16138{
16139 const struct dwarf2_offset_and_type *ofs = item;
16140
16141 return ofs->offset.sect_off;
16142}
16143
16144/* Equality function for a dwarf2_offset_and_type. */
16145
16146static int
16147offset_and_type_eq (const void *item_lhs, const void *item_rhs)
16148{
16149 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
16150 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
16151
16152 return ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off;
16153}
16154
16155/* Set the type associated with DIE to TYPE. Save it in CU's hash
16156 table if necessary. For convenience, return TYPE.
16157
16158 The DIEs reading must have careful ordering to:
16159 * Not cause infite loops trying to read in DIEs as a prerequisite for
16160 reading current DIE.
16161 * Not trying to dereference contents of still incompletely read in types
16162 while reading in other DIEs.
16163 * Enable referencing still incompletely read in types just by a pointer to
16164 the type without accessing its fields.
16165
16166 Therefore caller should follow these rules:
16167 * Try to fetch any prerequisite types we may need to build this DIE type
16168 before building the type and calling set_die_type.
16169 * After building type call set_die_type for current DIE as soon as
16170 possible before fetching more types to complete the current type.
16171 * Make the type as complete as possible before fetching more types. */
16172
16173static struct type *
16174set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16175{
16176 struct dwarf2_offset_and_type **slot, ofs;
16177 struct objfile *objfile = cu->objfile;
16178 htab_t *type_hash_ptr;
16179
16180 /* For Ada types, make sure that the gnat-specific data is always
16181 initialized (if not already set). There are a few types where
16182 we should not be doing so, because the type-specific area is
16183 already used to hold some other piece of info (eg: TYPE_CODE_FLT
16184 where the type-specific area is used to store the floatformat).
16185 But this is not a problem, because the gnat-specific information
16186 is actually not needed for these types. */
16187 if (need_gnat_info (cu)
16188 && TYPE_CODE (type) != TYPE_CODE_FUNC
16189 && TYPE_CODE (type) != TYPE_CODE_FLT
16190 && !HAVE_GNAT_AUX_INFO (type))
16191 INIT_GNAT_SPECIFIC (type);
16192
16193 if (cu->per_cu->debug_types_section)
16194 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
16195 else
16196 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
16197
16198 if (*type_hash_ptr == NULL)
16199 {
16200 *type_hash_ptr
16201 = htab_create_alloc_ex (127,
16202 offset_and_type_hash,
16203 offset_and_type_eq,
16204 NULL,
16205 &objfile->objfile_obstack,
16206 hashtab_obstack_allocate,
16207 dummy_obstack_deallocate);
16208 }
16209
16210 ofs.offset = die->offset;
16211 ofs.type = type;
16212 slot = (struct dwarf2_offset_and_type **)
16213 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset.sect_off,
16214 INSERT);
16215 if (*slot)
16216 complaint (&symfile_complaints,
16217 _("A problem internal to GDB: DIE 0x%x has type already set"),
16218 die->offset.sect_off);
16219 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
16220 **slot = ofs;
16221 return type;
16222}
16223
16224/* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
16225 table, or return NULL if the die does not have a saved type. */
16226
16227static struct type *
16228get_die_type_at_offset (sect_offset offset,
16229 struct dwarf2_per_cu_data *per_cu)
16230{
16231 struct dwarf2_offset_and_type *slot, ofs;
16232 htab_t type_hash;
16233
16234 if (per_cu->debug_types_section)
16235 type_hash = dwarf2_per_objfile->debug_types_type_hash;
16236 else
16237 type_hash = dwarf2_per_objfile->debug_info_type_hash;
16238 if (type_hash == NULL)
16239 return NULL;
16240
16241 ofs.offset = offset;
16242 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset.sect_off);
16243 if (slot)
16244 return slot->type;
16245 else
16246 return NULL;
16247}
16248
16249/* Look up the type for DIE in the appropriate type_hash table,
16250 or return NULL if DIE does not have a saved type. */
16251
16252static struct type *
16253get_die_type (struct die_info *die, struct dwarf2_cu *cu)
16254{
16255 return get_die_type_at_offset (die->offset, cu->per_cu);
16256}
16257
16258/* Add a dependence relationship from CU to REF_PER_CU. */
16259
16260static void
16261dwarf2_add_dependence (struct dwarf2_cu *cu,
16262 struct dwarf2_per_cu_data *ref_per_cu)
16263{
16264 void **slot;
16265
16266 if (cu->dependencies == NULL)
16267 cu->dependencies
16268 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
16269 NULL, &cu->comp_unit_obstack,
16270 hashtab_obstack_allocate,
16271 dummy_obstack_deallocate);
16272
16273 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
16274 if (*slot == NULL)
16275 *slot = ref_per_cu;
16276}
16277
16278/* Subroutine of dwarf2_mark to pass to htab_traverse.
16279 Set the mark field in every compilation unit in the
16280 cache that we must keep because we are keeping CU. */
16281
16282static int
16283dwarf2_mark_helper (void **slot, void *data)
16284{
16285 struct dwarf2_per_cu_data *per_cu;
16286
16287 per_cu = (struct dwarf2_per_cu_data *) *slot;
16288
16289 /* cu->dependencies references may not yet have been ever read if QUIT aborts
16290 reading of the chain. As such dependencies remain valid it is not much
16291 useful to track and undo them during QUIT cleanups. */
16292 if (per_cu->cu == NULL)
16293 return 1;
16294
16295 if (per_cu->cu->mark)
16296 return 1;
16297 per_cu->cu->mark = 1;
16298
16299 if (per_cu->cu->dependencies != NULL)
16300 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
16301
16302 return 1;
16303}
16304
16305/* Set the mark field in CU and in every other compilation unit in the
16306 cache that we must keep because we are keeping CU. */
16307
16308static void
16309dwarf2_mark (struct dwarf2_cu *cu)
16310{
16311 if (cu->mark)
16312 return;
16313 cu->mark = 1;
16314 if (cu->dependencies != NULL)
16315 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
16316}
16317
16318static void
16319dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
16320{
16321 while (per_cu)
16322 {
16323 per_cu->cu->mark = 0;
16324 per_cu = per_cu->cu->read_in_chain;
16325 }
16326}
16327
16328/* Trivial hash function for partial_die_info: the hash value of a DIE
16329 is its offset in .debug_info for this objfile. */
16330
16331static hashval_t
16332partial_die_hash (const void *item)
16333{
16334 const struct partial_die_info *part_die = item;
16335
16336 return part_die->offset.sect_off;
16337}
16338
16339/* Trivial comparison function for partial_die_info structures: two DIEs
16340 are equal if they have the same offset. */
16341
16342static int
16343partial_die_eq (const void *item_lhs, const void *item_rhs)
16344{
16345 const struct partial_die_info *part_die_lhs = item_lhs;
16346 const struct partial_die_info *part_die_rhs = item_rhs;
16347
16348 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
16349}
16350
16351static struct cmd_list_element *set_dwarf2_cmdlist;
16352static struct cmd_list_element *show_dwarf2_cmdlist;
16353
16354static void
16355set_dwarf2_cmd (char *args, int from_tty)
16356{
16357 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
16358}
16359
16360static void
16361show_dwarf2_cmd (char *args, int from_tty)
16362{
16363 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
16364}
16365
16366/* If section described by INFO was mmapped, munmap it now. */
16367
16368static void
16369munmap_section_buffer (struct dwarf2_section_info *info)
16370{
16371 if (info->map_addr != NULL)
16372 {
16373#ifdef HAVE_MMAP
16374 int res;
16375
16376 res = munmap (info->map_addr, info->map_len);
16377 gdb_assert (res == 0);
16378#else
16379 /* Without HAVE_MMAP, we should never be here to begin with. */
16380 gdb_assert_not_reached ("no mmap support");
16381#endif
16382 }
16383}
16384
16385/* munmap debug sections for OBJFILE, if necessary. */
16386
16387static void
16388dwarf2_per_objfile_free (struct objfile *objfile, void *d)
16389{
16390 struct dwarf2_per_objfile *data = d;
16391 int ix;
16392 struct dwarf2_section_info *section;
16393
16394 /* This is sorted according to the order they're defined in to make it easier
16395 to keep in sync. */
16396 munmap_section_buffer (&data->info);
16397 munmap_section_buffer (&data->abbrev);
16398 munmap_section_buffer (&data->line);
16399 munmap_section_buffer (&data->loc);
16400 munmap_section_buffer (&data->macinfo);
16401 munmap_section_buffer (&data->macro);
16402 munmap_section_buffer (&data->str);
16403 munmap_section_buffer (&data->ranges);
16404 munmap_section_buffer (&data->frame);
16405 munmap_section_buffer (&data->eh_frame);
16406 munmap_section_buffer (&data->gdb_index);
16407
16408 for (ix = 0;
16409 VEC_iterate (dwarf2_section_info_def, data->types, ix, section);
16410 ++ix)
16411 munmap_section_buffer (section);
16412
16413 VEC_free (dwarf2_section_info_def, data->types);
16414}
16415
16416\f
16417/* The "save gdb-index" command. */
16418
16419/* The contents of the hash table we create when building the string
16420 table. */
16421struct strtab_entry
16422{
16423 offset_type offset;
16424 const char *str;
16425};
16426
16427/* Hash function for a strtab_entry.
16428
16429 Function is used only during write_hash_table so no index format backward
16430 compatibility is needed. */
16431
16432static hashval_t
16433hash_strtab_entry (const void *e)
16434{
16435 const struct strtab_entry *entry = e;
16436 return mapped_index_string_hash (INT_MAX, entry->str);
16437}
16438
16439/* Equality function for a strtab_entry. */
16440
16441static int
16442eq_strtab_entry (const void *a, const void *b)
16443{
16444 const struct strtab_entry *ea = a;
16445 const struct strtab_entry *eb = b;
16446 return !strcmp (ea->str, eb->str);
16447}
16448
16449/* Create a strtab_entry hash table. */
16450
16451static htab_t
16452create_strtab (void)
16453{
16454 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
16455 xfree, xcalloc, xfree);
16456}
16457
16458/* Add a string to the constant pool. Return the string's offset in
16459 host order. */
16460
16461static offset_type
16462add_string (htab_t table, struct obstack *cpool, const char *str)
16463{
16464 void **slot;
16465 struct strtab_entry entry;
16466 struct strtab_entry *result;
16467
16468 entry.str = str;
16469 slot = htab_find_slot (table, &entry, INSERT);
16470 if (*slot)
16471 result = *slot;
16472 else
16473 {
16474 result = XNEW (struct strtab_entry);
16475 result->offset = obstack_object_size (cpool);
16476 result->str = str;
16477 obstack_grow_str0 (cpool, str);
16478 *slot = result;
16479 }
16480 return result->offset;
16481}
16482
16483/* An entry in the symbol table. */
16484struct symtab_index_entry
16485{
16486 /* The name of the symbol. */
16487 const char *name;
16488 /* The offset of the name in the constant pool. */
16489 offset_type index_offset;
16490 /* A sorted vector of the indices of all the CUs that hold an object
16491 of this name. */
16492 VEC (offset_type) *cu_indices;
16493};
16494
16495/* The symbol table. This is a power-of-2-sized hash table. */
16496struct mapped_symtab
16497{
16498 offset_type n_elements;
16499 offset_type size;
16500 struct symtab_index_entry **data;
16501};
16502
16503/* Hash function for a symtab_index_entry. */
16504
16505static hashval_t
16506hash_symtab_entry (const void *e)
16507{
16508 const struct symtab_index_entry *entry = e;
16509 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
16510 sizeof (offset_type) * VEC_length (offset_type,
16511 entry->cu_indices),
16512 0);
16513}
16514
16515/* Equality function for a symtab_index_entry. */
16516
16517static int
16518eq_symtab_entry (const void *a, const void *b)
16519{
16520 const struct symtab_index_entry *ea = a;
16521 const struct symtab_index_entry *eb = b;
16522 int len = VEC_length (offset_type, ea->cu_indices);
16523 if (len != VEC_length (offset_type, eb->cu_indices))
16524 return 0;
16525 return !memcmp (VEC_address (offset_type, ea->cu_indices),
16526 VEC_address (offset_type, eb->cu_indices),
16527 sizeof (offset_type) * len);
16528}
16529
16530/* Destroy a symtab_index_entry. */
16531
16532static void
16533delete_symtab_entry (void *p)
16534{
16535 struct symtab_index_entry *entry = p;
16536 VEC_free (offset_type, entry->cu_indices);
16537 xfree (entry);
16538}
16539
16540/* Create a hash table holding symtab_index_entry objects. */
16541
16542static htab_t
16543create_symbol_hash_table (void)
16544{
16545 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
16546 delete_symtab_entry, xcalloc, xfree);
16547}
16548
16549/* Create a new mapped symtab object. */
16550
16551static struct mapped_symtab *
16552create_mapped_symtab (void)
16553{
16554 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
16555 symtab->n_elements = 0;
16556 symtab->size = 1024;
16557 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16558 return symtab;
16559}
16560
16561/* Destroy a mapped_symtab. */
16562
16563static void
16564cleanup_mapped_symtab (void *p)
16565{
16566 struct mapped_symtab *symtab = p;
16567 /* The contents of the array are freed when the other hash table is
16568 destroyed. */
16569 xfree (symtab->data);
16570 xfree (symtab);
16571}
16572
16573/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
16574 the slot.
16575
16576 Function is used only during write_hash_table so no index format backward
16577 compatibility is needed. */
16578
16579static struct symtab_index_entry **
16580find_slot (struct mapped_symtab *symtab, const char *name)
16581{
16582 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
16583
16584 index = hash & (symtab->size - 1);
16585 step = ((hash * 17) & (symtab->size - 1)) | 1;
16586
16587 for (;;)
16588 {
16589 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
16590 return &symtab->data[index];
16591 index = (index + step) & (symtab->size - 1);
16592 }
16593}
16594
16595/* Expand SYMTAB's hash table. */
16596
16597static void
16598hash_expand (struct mapped_symtab *symtab)
16599{
16600 offset_type old_size = symtab->size;
16601 offset_type i;
16602 struct symtab_index_entry **old_entries = symtab->data;
16603
16604 symtab->size *= 2;
16605 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16606
16607 for (i = 0; i < old_size; ++i)
16608 {
16609 if (old_entries[i])
16610 {
16611 struct symtab_index_entry **slot = find_slot (symtab,
16612 old_entries[i]->name);
16613 *slot = old_entries[i];
16614 }
16615 }
16616
16617 xfree (old_entries);
16618}
16619
16620/* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
16621 is the index of the CU in which the symbol appears. */
16622
16623static void
16624add_index_entry (struct mapped_symtab *symtab, const char *name,
16625 offset_type cu_index)
16626{
16627 struct symtab_index_entry **slot;
16628
16629 ++symtab->n_elements;
16630 if (4 * symtab->n_elements / 3 >= symtab->size)
16631 hash_expand (symtab);
16632
16633 slot = find_slot (symtab, name);
16634 if (!*slot)
16635 {
16636 *slot = XNEW (struct symtab_index_entry);
16637 (*slot)->name = name;
16638 (*slot)->cu_indices = NULL;
16639 }
16640 /* Don't push an index twice. Due to how we add entries we only
16641 have to check the last one. */
16642 if (VEC_empty (offset_type, (*slot)->cu_indices)
16643 || VEC_last (offset_type, (*slot)->cu_indices) != cu_index)
16644 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
16645}
16646
16647/* Add a vector of indices to the constant pool. */
16648
16649static offset_type
16650add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
16651 struct symtab_index_entry *entry)
16652{
16653 void **slot;
16654
16655 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
16656 if (!*slot)
16657 {
16658 offset_type len = VEC_length (offset_type, entry->cu_indices);
16659 offset_type val = MAYBE_SWAP (len);
16660 offset_type iter;
16661 int i;
16662
16663 *slot = entry;
16664 entry->index_offset = obstack_object_size (cpool);
16665
16666 obstack_grow (cpool, &val, sizeof (val));
16667 for (i = 0;
16668 VEC_iterate (offset_type, entry->cu_indices, i, iter);
16669 ++i)
16670 {
16671 val = MAYBE_SWAP (iter);
16672 obstack_grow (cpool, &val, sizeof (val));
16673 }
16674 }
16675 else
16676 {
16677 struct symtab_index_entry *old_entry = *slot;
16678 entry->index_offset = old_entry->index_offset;
16679 entry = old_entry;
16680 }
16681 return entry->index_offset;
16682}
16683
16684/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
16685 constant pool entries going into the obstack CPOOL. */
16686
16687static void
16688write_hash_table (struct mapped_symtab *symtab,
16689 struct obstack *output, struct obstack *cpool)
16690{
16691 offset_type i;
16692 htab_t symbol_hash_table;
16693 htab_t str_table;
16694
16695 symbol_hash_table = create_symbol_hash_table ();
16696 str_table = create_strtab ();
16697
16698 /* We add all the index vectors to the constant pool first, to
16699 ensure alignment is ok. */
16700 for (i = 0; i < symtab->size; ++i)
16701 {
16702 if (symtab->data[i])
16703 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
16704 }
16705
16706 /* Now write out the hash table. */
16707 for (i = 0; i < symtab->size; ++i)
16708 {
16709 offset_type str_off, vec_off;
16710
16711 if (symtab->data[i])
16712 {
16713 str_off = add_string (str_table, cpool, symtab->data[i]->name);
16714 vec_off = symtab->data[i]->index_offset;
16715 }
16716 else
16717 {
16718 /* While 0 is a valid constant pool index, it is not valid
16719 to have 0 for both offsets. */
16720 str_off = 0;
16721 vec_off = 0;
16722 }
16723
16724 str_off = MAYBE_SWAP (str_off);
16725 vec_off = MAYBE_SWAP (vec_off);
16726
16727 obstack_grow (output, &str_off, sizeof (str_off));
16728 obstack_grow (output, &vec_off, sizeof (vec_off));
16729 }
16730
16731 htab_delete (str_table);
16732 htab_delete (symbol_hash_table);
16733}
16734
16735/* Struct to map psymtab to CU index in the index file. */
16736struct psymtab_cu_index_map
16737{
16738 struct partial_symtab *psymtab;
16739 unsigned int cu_index;
16740};
16741
16742static hashval_t
16743hash_psymtab_cu_index (const void *item)
16744{
16745 const struct psymtab_cu_index_map *map = item;
16746
16747 return htab_hash_pointer (map->psymtab);
16748}
16749
16750static int
16751eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
16752{
16753 const struct psymtab_cu_index_map *lhs = item_lhs;
16754 const struct psymtab_cu_index_map *rhs = item_rhs;
16755
16756 return lhs->psymtab == rhs->psymtab;
16757}
16758
16759/* Helper struct for building the address table. */
16760struct addrmap_index_data
16761{
16762 struct objfile *objfile;
16763 struct obstack *addr_obstack;
16764 htab_t cu_index_htab;
16765
16766 /* Non-zero if the previous_* fields are valid.
16767 We can't write an entry until we see the next entry (since it is only then
16768 that we know the end of the entry). */
16769 int previous_valid;
16770 /* Index of the CU in the table of all CUs in the index file. */
16771 unsigned int previous_cu_index;
16772 /* Start address of the CU. */
16773 CORE_ADDR previous_cu_start;
16774};
16775
16776/* Write an address entry to OBSTACK. */
16777
16778static void
16779add_address_entry (struct objfile *objfile, struct obstack *obstack,
16780 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
16781{
16782 offset_type cu_index_to_write;
16783 char addr[8];
16784 CORE_ADDR baseaddr;
16785
16786 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16787
16788 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
16789 obstack_grow (obstack, addr, 8);
16790 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
16791 obstack_grow (obstack, addr, 8);
16792 cu_index_to_write = MAYBE_SWAP (cu_index);
16793 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
16794}
16795
16796/* Worker function for traversing an addrmap to build the address table. */
16797
16798static int
16799add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
16800{
16801 struct addrmap_index_data *data = datap;
16802 struct partial_symtab *pst = obj;
16803 offset_type cu_index;
16804 void **slot;
16805
16806 if (data->previous_valid)
16807 add_address_entry (data->objfile, data->addr_obstack,
16808 data->previous_cu_start, start_addr,
16809 data->previous_cu_index);
16810
16811 data->previous_cu_start = start_addr;
16812 if (pst != NULL)
16813 {
16814 struct psymtab_cu_index_map find_map, *map;
16815 find_map.psymtab = pst;
16816 map = htab_find (data->cu_index_htab, &find_map);
16817 gdb_assert (map != NULL);
16818 data->previous_cu_index = map->cu_index;
16819 data->previous_valid = 1;
16820 }
16821 else
16822 data->previous_valid = 0;
16823
16824 return 0;
16825}
16826
16827/* Write OBJFILE's address map to OBSTACK.
16828 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
16829 in the index file. */
16830
16831static void
16832write_address_map (struct objfile *objfile, struct obstack *obstack,
16833 htab_t cu_index_htab)
16834{
16835 struct addrmap_index_data addrmap_index_data;
16836
16837 /* When writing the address table, we have to cope with the fact that
16838 the addrmap iterator only provides the start of a region; we have to
16839 wait until the next invocation to get the start of the next region. */
16840
16841 addrmap_index_data.objfile = objfile;
16842 addrmap_index_data.addr_obstack = obstack;
16843 addrmap_index_data.cu_index_htab = cu_index_htab;
16844 addrmap_index_data.previous_valid = 0;
16845
16846 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
16847 &addrmap_index_data);
16848
16849 /* It's highly unlikely the last entry (end address = 0xff...ff)
16850 is valid, but we should still handle it.
16851 The end address is recorded as the start of the next region, but that
16852 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
16853 anyway. */
16854 if (addrmap_index_data.previous_valid)
16855 add_address_entry (objfile, obstack,
16856 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
16857 addrmap_index_data.previous_cu_index);
16858}
16859
16860/* Add a list of partial symbols to SYMTAB. */
16861
16862static void
16863write_psymbols (struct mapped_symtab *symtab,
16864 htab_t psyms_seen,
16865 struct partial_symbol **psymp,
16866 int count,
16867 offset_type cu_index,
16868 int is_static)
16869{
16870 for (; count-- > 0; ++psymp)
16871 {
16872 void **slot, *lookup;
16873
16874 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
16875 error (_("Ada is not currently supported by the index"));
16876
16877 /* We only want to add a given psymbol once. However, we also
16878 want to account for whether it is global or static. So, we
16879 may add it twice, using slightly different values. */
16880 if (is_static)
16881 {
16882 uintptr_t val = 1 | (uintptr_t) *psymp;
16883
16884 lookup = (void *) val;
16885 }
16886 else
16887 lookup = *psymp;
16888
16889 /* Only add a given psymbol once. */
16890 slot = htab_find_slot (psyms_seen, lookup, INSERT);
16891 if (!*slot)
16892 {
16893 *slot = lookup;
16894 add_index_entry (symtab, SYMBOL_SEARCH_NAME (*psymp), cu_index);
16895 }
16896 }
16897}
16898
16899/* Write the contents of an ("unfinished") obstack to FILE. Throw an
16900 exception if there is an error. */
16901
16902static void
16903write_obstack (FILE *file, struct obstack *obstack)
16904{
16905 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
16906 file)
16907 != obstack_object_size (obstack))
16908 error (_("couldn't data write to file"));
16909}
16910
16911/* Unlink a file if the argument is not NULL. */
16912
16913static void
16914unlink_if_set (void *p)
16915{
16916 char **filename = p;
16917 if (*filename)
16918 unlink (*filename);
16919}
16920
16921/* A helper struct used when iterating over debug_types. */
16922struct signatured_type_index_data
16923{
16924 struct objfile *objfile;
16925 struct mapped_symtab *symtab;
16926 struct obstack *types_list;
16927 htab_t psyms_seen;
16928 int cu_index;
16929};
16930
16931/* A helper function that writes a single signatured_type to an
16932 obstack. */
16933
16934static int
16935write_one_signatured_type (void **slot, void *d)
16936{
16937 struct signatured_type_index_data *info = d;
16938 struct signatured_type *entry = (struct signatured_type *) *slot;
16939 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
16940 struct partial_symtab *psymtab = per_cu->v.psymtab;
16941 gdb_byte val[8];
16942
16943 write_psymbols (info->symtab,
16944 info->psyms_seen,
16945 info->objfile->global_psymbols.list
16946 + psymtab->globals_offset,
16947 psymtab->n_global_syms, info->cu_index,
16948 0);
16949 write_psymbols (info->symtab,
16950 info->psyms_seen,
16951 info->objfile->static_psymbols.list
16952 + psymtab->statics_offset,
16953 psymtab->n_static_syms, info->cu_index,
16954 1);
16955
16956 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
16957 entry->per_cu.offset.sect_off);
16958 obstack_grow (info->types_list, val, 8);
16959 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset.cu_off);
16960 obstack_grow (info->types_list, val, 8);
16961 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
16962 obstack_grow (info->types_list, val, 8);
16963
16964 ++info->cu_index;
16965
16966 return 1;
16967}
16968
16969/* Create an index file for OBJFILE in the directory DIR. */
16970
16971static void
16972write_psymtabs_to_index (struct objfile *objfile, const char *dir)
16973{
16974 struct cleanup *cleanup;
16975 char *filename, *cleanup_filename;
16976 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
16977 struct obstack cu_list, types_cu_list;
16978 int i;
16979 FILE *out_file;
16980 struct mapped_symtab *symtab;
16981 offset_type val, size_of_contents, total_len;
16982 struct stat st;
16983 char buf[8];
16984 htab_t psyms_seen;
16985 htab_t cu_index_htab;
16986 struct psymtab_cu_index_map *psymtab_cu_index_map;
16987
16988 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
16989 return;
16990
16991 if (dwarf2_per_objfile->using_index)
16992 error (_("Cannot use an index to create the index"));
16993
16994 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
16995 error (_("Cannot make an index when the file has multiple .debug_types sections"));
16996
16997 if (stat (objfile->name, &st) < 0)
16998 perror_with_name (objfile->name);
16999
17000 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
17001 INDEX_SUFFIX, (char *) NULL);
17002 cleanup = make_cleanup (xfree, filename);
17003
17004 out_file = fopen (filename, "wb");
17005 if (!out_file)
17006 error (_("Can't open `%s' for writing"), filename);
17007
17008 cleanup_filename = filename;
17009 make_cleanup (unlink_if_set, &cleanup_filename);
17010
17011 symtab = create_mapped_symtab ();
17012 make_cleanup (cleanup_mapped_symtab, symtab);
17013
17014 obstack_init (&addr_obstack);
17015 make_cleanup_obstack_free (&addr_obstack);
17016
17017 obstack_init (&cu_list);
17018 make_cleanup_obstack_free (&cu_list);
17019
17020 obstack_init (&types_cu_list);
17021 make_cleanup_obstack_free (&types_cu_list);
17022
17023 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
17024 NULL, xcalloc, xfree);
17025 make_cleanup_htab_delete (psyms_seen);
17026
17027 /* While we're scanning CU's create a table that maps a psymtab pointer
17028 (which is what addrmap records) to its index (which is what is recorded
17029 in the index file). This will later be needed to write the address
17030 table. */
17031 cu_index_htab = htab_create_alloc (100,
17032 hash_psymtab_cu_index,
17033 eq_psymtab_cu_index,
17034 NULL, xcalloc, xfree);
17035 make_cleanup_htab_delete (cu_index_htab);
17036 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
17037 xmalloc (sizeof (struct psymtab_cu_index_map)
17038 * dwarf2_per_objfile->n_comp_units);
17039 make_cleanup (xfree, psymtab_cu_index_map);
17040
17041 /* The CU list is already sorted, so we don't need to do additional
17042 work here. Also, the debug_types entries do not appear in
17043 all_comp_units, but only in their own hash table. */
17044 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
17045 {
17046 struct dwarf2_per_cu_data *per_cu
17047 = dwarf2_per_objfile->all_comp_units[i];
17048 struct partial_symtab *psymtab = per_cu->v.psymtab;
17049 gdb_byte val[8];
17050 struct psymtab_cu_index_map *map;
17051 void **slot;
17052
17053 write_psymbols (symtab,
17054 psyms_seen,
17055 objfile->global_psymbols.list + psymtab->globals_offset,
17056 psymtab->n_global_syms, i,
17057 0);
17058 write_psymbols (symtab,
17059 psyms_seen,
17060 objfile->static_psymbols.list + psymtab->statics_offset,
17061 psymtab->n_static_syms, i,
17062 1);
17063
17064 map = &psymtab_cu_index_map[i];
17065 map->psymtab = psymtab;
17066 map->cu_index = i;
17067 slot = htab_find_slot (cu_index_htab, map, INSERT);
17068 gdb_assert (slot != NULL);
17069 gdb_assert (*slot == NULL);
17070 *slot = map;
17071
17072 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
17073 per_cu->offset.sect_off);
17074 obstack_grow (&cu_list, val, 8);
17075 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
17076 obstack_grow (&cu_list, val, 8);
17077 }
17078
17079 /* Dump the address map. */
17080 write_address_map (objfile, &addr_obstack, cu_index_htab);
17081
17082 /* Write out the .debug_type entries, if any. */
17083 if (dwarf2_per_objfile->signatured_types)
17084 {
17085 struct signatured_type_index_data sig_data;
17086
17087 sig_data.objfile = objfile;
17088 sig_data.symtab = symtab;
17089 sig_data.types_list = &types_cu_list;
17090 sig_data.psyms_seen = psyms_seen;
17091 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
17092 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
17093 write_one_signatured_type, &sig_data);
17094 }
17095
17096 obstack_init (&constant_pool);
17097 make_cleanup_obstack_free (&constant_pool);
17098 obstack_init (&symtab_obstack);
17099 make_cleanup_obstack_free (&symtab_obstack);
17100 write_hash_table (symtab, &symtab_obstack, &constant_pool);
17101
17102 obstack_init (&contents);
17103 make_cleanup_obstack_free (&contents);
17104 size_of_contents = 6 * sizeof (offset_type);
17105 total_len = size_of_contents;
17106
17107 /* The version number. */
17108 val = MAYBE_SWAP (6);
17109 obstack_grow (&contents, &val, sizeof (val));
17110
17111 /* The offset of the CU list from the start of the file. */
17112 val = MAYBE_SWAP (total_len);
17113 obstack_grow (&contents, &val, sizeof (val));
17114 total_len += obstack_object_size (&cu_list);
17115
17116 /* The offset of the types CU list from the start of the file. */
17117 val = MAYBE_SWAP (total_len);
17118 obstack_grow (&contents, &val, sizeof (val));
17119 total_len += obstack_object_size (&types_cu_list);
17120
17121 /* The offset of the address table from the start of the file. */
17122 val = MAYBE_SWAP (total_len);
17123 obstack_grow (&contents, &val, sizeof (val));
17124 total_len += obstack_object_size (&addr_obstack);
17125
17126 /* The offset of the symbol table from the start of the file. */
17127 val = MAYBE_SWAP (total_len);
17128 obstack_grow (&contents, &val, sizeof (val));
17129 total_len += obstack_object_size (&symtab_obstack);
17130
17131 /* The offset of the constant pool from the start of the file. */
17132 val = MAYBE_SWAP (total_len);
17133 obstack_grow (&contents, &val, sizeof (val));
17134 total_len += obstack_object_size (&constant_pool);
17135
17136 gdb_assert (obstack_object_size (&contents) == size_of_contents);
17137
17138 write_obstack (out_file, &contents);
17139 write_obstack (out_file, &cu_list);
17140 write_obstack (out_file, &types_cu_list);
17141 write_obstack (out_file, &addr_obstack);
17142 write_obstack (out_file, &symtab_obstack);
17143 write_obstack (out_file, &constant_pool);
17144
17145 fclose (out_file);
17146
17147 /* We want to keep the file, so we set cleanup_filename to NULL
17148 here. See unlink_if_set. */
17149 cleanup_filename = NULL;
17150
17151 do_cleanups (cleanup);
17152}
17153
17154/* Implementation of the `save gdb-index' command.
17155
17156 Note that the file format used by this command is documented in the
17157 GDB manual. Any changes here must be documented there. */
17158
17159static void
17160save_gdb_index_command (char *arg, int from_tty)
17161{
17162 struct objfile *objfile;
17163
17164 if (!arg || !*arg)
17165 error (_("usage: save gdb-index DIRECTORY"));
17166
17167 ALL_OBJFILES (objfile)
17168 {
17169 struct stat st;
17170
17171 /* If the objfile does not correspond to an actual file, skip it. */
17172 if (stat (objfile->name, &st) < 0)
17173 continue;
17174
17175 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
17176 if (dwarf2_per_objfile)
17177 {
17178 volatile struct gdb_exception except;
17179
17180 TRY_CATCH (except, RETURN_MASK_ERROR)
17181 {
17182 write_psymtabs_to_index (objfile, arg);
17183 }
17184 if (except.reason < 0)
17185 exception_fprintf (gdb_stderr, except,
17186 _("Error while writing index for `%s': "),
17187 objfile->name);
17188 }
17189 }
17190}
17191
17192\f
17193
17194int dwarf2_always_disassemble;
17195
17196static void
17197show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
17198 struct cmd_list_element *c, const char *value)
17199{
17200 fprintf_filtered (file,
17201 _("Whether to always disassemble "
17202 "DWARF expressions is %s.\n"),
17203 value);
17204}
17205
17206static void
17207show_check_physname (struct ui_file *file, int from_tty,
17208 struct cmd_list_element *c, const char *value)
17209{
17210 fprintf_filtered (file,
17211 _("Whether to check \"physname\" is %s.\n"),
17212 value);
17213}
17214
17215void _initialize_dwarf2_read (void);
17216
17217void
17218_initialize_dwarf2_read (void)
17219{
17220 struct cmd_list_element *c;
17221
17222 dwarf2_objfile_data_key
17223 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
17224
17225 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
17226Set DWARF 2 specific variables.\n\
17227Configure DWARF 2 variables such as the cache size"),
17228 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
17229 0/*allow-unknown*/, &maintenance_set_cmdlist);
17230
17231 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
17232Show DWARF 2 specific variables\n\
17233Show DWARF 2 variables such as the cache size"),
17234 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
17235 0/*allow-unknown*/, &maintenance_show_cmdlist);
17236
17237 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
17238 &dwarf2_max_cache_age, _("\
17239Set the upper bound on the age of cached dwarf2 compilation units."), _("\
17240Show the upper bound on the age of cached dwarf2 compilation units."), _("\
17241A higher limit means that cached compilation units will be stored\n\
17242in memory longer, and more total memory will be used. Zero disables\n\
17243caching, which can slow down startup."),
17244 NULL,
17245 show_dwarf2_max_cache_age,
17246 &set_dwarf2_cmdlist,
17247 &show_dwarf2_cmdlist);
17248
17249 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
17250 &dwarf2_always_disassemble, _("\
17251Set whether `info address' always disassembles DWARF expressions."), _("\
17252Show whether `info address' always disassembles DWARF expressions."), _("\
17253When enabled, DWARF expressions are always printed in an assembly-like\n\
17254syntax. When disabled, expressions will be printed in a more\n\
17255conversational style, when possible."),
17256 NULL,
17257 show_dwarf2_always_disassemble,
17258 &set_dwarf2_cmdlist,
17259 &show_dwarf2_cmdlist);
17260
17261 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
17262Set debugging of the dwarf2 DIE reader."), _("\
17263Show debugging of the dwarf2 DIE reader."), _("\
17264When enabled (non-zero), DIEs are dumped after they are read in.\n\
17265The value is the maximum depth to print."),
17266 NULL,
17267 NULL,
17268 &setdebuglist, &showdebuglist);
17269
17270 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
17271Set cross-checking of \"physname\" code against demangler."), _("\
17272Show cross-checking of \"physname\" code against demangler."), _("\
17273When enabled, GDB's internal \"physname\" code is checked against\n\
17274the demangler."),
17275 NULL, show_check_physname,
17276 &setdebuglist, &showdebuglist);
17277
17278 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
17279 _("\
17280Save a gdb-index file.\n\
17281Usage: save gdb-index DIRECTORY"),
17282 &save_cmdlist);
17283 set_cmd_completer (c, filename_completer);
17284}
This page took 0.091461 seconds and 4 git commands to generate.