Don't print symbol declaration's line number in rbreak output
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
... / ...
CommitLineData
1/* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31#include "defs.h"
32#include "dwarf2read.h"
33#include "dwarf-index-common.h"
34#include "bfd.h"
35#include "elf-bfd.h"
36#include "symtab.h"
37#include "gdbtypes.h"
38#include "objfiles.h"
39#include "dwarf2.h"
40#include "buildsym.h"
41#include "demangle.h"
42#include "gdb-demangle.h"
43#include "expression.h"
44#include "filenames.h" /* for DOSish file names */
45#include "macrotab.h"
46#include "language.h"
47#include "complaints.h"
48#include "bcache.h"
49#include "dwarf2expr.h"
50#include "dwarf2loc.h"
51#include "cp-support.h"
52#include "hashtab.h"
53#include "command.h"
54#include "gdbcmd.h"
55#include "block.h"
56#include "addrmap.h"
57#include "typeprint.h"
58#include "psympriv.h"
59#include <sys/stat.h>
60#include "completer.h"
61#include "vec.h"
62#include "c-lang.h"
63#include "go-lang.h"
64#include "valprint.h"
65#include "gdbcore.h" /* for gnutarget */
66#include "gdb/gdb-index.h"
67#include <ctype.h>
68#include "gdb_bfd.h"
69#include "f-lang.h"
70#include "source.h"
71#include "filestuff.h"
72#include "build-id.h"
73#include "namespace.h"
74#include "common/gdb_unlinker.h"
75#include "common/function-view.h"
76#include "common/gdb_optional.h"
77#include "common/underlying.h"
78#include "common/byte-vector.h"
79#include "common/hash_enum.h"
80#include "filename-seen-cache.h"
81#include "producer.h"
82#include <fcntl.h>
83#include <sys/types.h>
84#include <algorithm>
85#include <unordered_set>
86#include <unordered_map>
87#include "selftest.h"
88#include <cmath>
89#include <set>
90#include <forward_list>
91#include "rust-lang.h"
92#include "common/pathstuff.h"
93
94/* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97static unsigned int dwarf_read_debug = 0;
98
99/* When non-zero, dump DIEs after they are read in. */
100static unsigned int dwarf_die_debug = 0;
101
102/* When non-zero, dump line number entries as they are read in. */
103static unsigned int dwarf_line_debug = 0;
104
105/* When non-zero, cross-check physname against demangler. */
106static int check_physname = 0;
107
108/* When non-zero, do not reject deprecated .gdb_index sections. */
109static int use_deprecated_index_sections = 0;
110
111static const struct objfile_data *dwarf2_objfile_data_key;
112
113/* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115static int dwarf2_locexpr_index;
116static int dwarf2_loclist_index;
117static int dwarf2_locexpr_block_index;
118static int dwarf2_loclist_block_index;
119
120/* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133struct name_component
134{
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143};
144
145/* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148struct mapped_index_base
149{
150 /* The name_component table (a sorted vector). See name_component's
151 description above. */
152 std::vector<name_component> name_components;
153
154 /* How NAME_COMPONENTS is sorted. */
155 enum case_sensitivity name_components_casing;
156
157 /* Return the number of names in the symbol table. */
158 virtual size_t symbol_name_count () const = 0;
159
160 /* Get the name of the symbol at IDX in the symbol table. */
161 virtual const char *symbol_name_at (offset_type idx) const = 0;
162
163 /* Return whether the name at IDX in the symbol table should be
164 ignored. */
165 virtual bool symbol_name_slot_invalid (offset_type idx) const
166 {
167 return false;
168 }
169
170 /* Build the symbol name component sorted vector, if we haven't
171 yet. */
172 void build_name_components ();
173
174 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
175 possible matches for LN_NO_PARAMS in the name component
176 vector. */
177 std::pair<std::vector<name_component>::const_iterator,
178 std::vector<name_component>::const_iterator>
179 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
180
181 /* Prevent deleting/destroying via a base class pointer. */
182protected:
183 ~mapped_index_base() = default;
184};
185
186/* A description of the mapped index. The file format is described in
187 a comment by the code that writes the index. */
188struct mapped_index final : public mapped_index_base
189{
190 /* A slot/bucket in the symbol table hash. */
191 struct symbol_table_slot
192 {
193 const offset_type name;
194 const offset_type vec;
195 };
196
197 /* Index data format version. */
198 int version;
199
200 /* The total length of the buffer. */
201 off_t total_size;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225};
226
227/* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229struct mapped_debug_names final : public mapped_index_base
230{
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277};
278
279/* See dwarf2read.h. */
280
281dwarf2_per_objfile *
282get_dwarf2_per_objfile (struct objfile *objfile)
283{
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286}
287
288/* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290void
291set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293{
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296}
297
298/* Default names of the debugging sections. */
299
300/* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303static const struct dwarf2_debug_sections dwarf2_elf_names =
304{
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324};
325
326/* List of DWO/DWP sections. */
327
328static const struct dwop_section_names
329{
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342}
343dwop_section_names =
344{
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357};
358
359/* local data types */
360
361/* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363struct comp_unit_head
364{
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393};
394
395/* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397struct delayed_method_info
398{
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413};
414
415/* Internal state when decoding a particular compilation unit. */
416struct dwarf2_cu
417{
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
448
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
456
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
462
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
467 int last_used = 0;
468
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
472
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
480
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
489
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
493
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
496
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
506 struct dwo_unit *dwo_unit = nullptr;
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
512
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
524
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
541
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
558};
559
560/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563struct stmt_list_hash
564{
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
570};
571
572/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575struct type_unit_group
576{
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
584
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
589
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
594
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611};
612
613/* These sections are what may appear in a (real or virtual) DWO file. */
614
615struct dwo_sections
616{
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
628};
629
630/* CUs/TUs in DWP/DWO files. */
631
632struct dwo_unit
633{
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
644
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651};
652
653/* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657enum dwp_v2_section_ids
658{
659 DW_SECT_MIN = 1
660};
661
662/* Data for one DWO file.
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
672
673struct dwo_file
674{
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
683
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
687
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
692
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702};
703
704/* These sections are what may appear in a DWP file. */
705
706struct dwp_sections
707{
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
729};
730
731/* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
733
734struct virtual_v1_dwo_sections
735{
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
745};
746
747/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752struct virtual_v2_dwo_sections
753{
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776};
777
778/* Contents of DWP hash tables. */
779
780struct dwp_hash_table
781{
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795#define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
807};
808
809/* Data for one DWP file. */
810
811struct dwp_file
812{
813 /* Name of the file. */
814 const char *name;
815
816 /* File format version. */
817 int version;
818
819 /* The bfd. */
820 bfd *dbfd;
821
822 /* Section info for this file. */
823 struct dwp_sections sections;
824
825 /* Table of CUs in the file. */
826 const struct dwp_hash_table *cus;
827
828 /* Table of TUs in the file. */
829 const struct dwp_hash_table *tus;
830
831 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
832 htab_t loaded_cus;
833 htab_t loaded_tus;
834
835 /* Table to map ELF section numbers to their sections.
836 This is only needed for the DWP V1 file format. */
837 unsigned int num_sections;
838 asection **elf_sections;
839};
840
841/* This represents a '.dwz' file. */
842
843struct dwz_file
844{
845 /* A dwz file can only contain a few sections. */
846 struct dwarf2_section_info abbrev;
847 struct dwarf2_section_info info;
848 struct dwarf2_section_info str;
849 struct dwarf2_section_info line;
850 struct dwarf2_section_info macro;
851 struct dwarf2_section_info gdb_index;
852 struct dwarf2_section_info debug_names;
853
854 /* The dwz's BFD. */
855 bfd *dwz_bfd;
856};
857
858/* Struct used to pass misc. parameters to read_die_and_children, et
859 al. which are used for both .debug_info and .debug_types dies.
860 All parameters here are unchanging for the life of the call. This
861 struct exists to abstract away the constant parameters of die reading. */
862
863struct die_reader_specs
864{
865 /* The bfd of die_section. */
866 bfd* abfd;
867
868 /* The CU of the DIE we are parsing. */
869 struct dwarf2_cu *cu;
870
871 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
872 struct dwo_file *dwo_file;
873
874 /* The section the die comes from.
875 This is either .debug_info or .debug_types, or the .dwo variants. */
876 struct dwarf2_section_info *die_section;
877
878 /* die_section->buffer. */
879 const gdb_byte *buffer;
880
881 /* The end of the buffer. */
882 const gdb_byte *buffer_end;
883
884 /* The value of the DW_AT_comp_dir attribute. */
885 const char *comp_dir;
886
887 /* The abbreviation table to use when reading the DIEs. */
888 struct abbrev_table *abbrev_table;
889};
890
891/* Type of function passed to init_cutu_and_read_dies, et.al. */
892typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
893 const gdb_byte *info_ptr,
894 struct die_info *comp_unit_die,
895 int has_children,
896 void *data);
897
898/* A 1-based directory index. This is a strong typedef to prevent
899 accidentally using a directory index as a 0-based index into an
900 array/vector. */
901enum class dir_index : unsigned int {};
902
903/* Likewise, a 1-based file name index. */
904enum class file_name_index : unsigned int {};
905
906struct file_entry
907{
908 file_entry () = default;
909
910 file_entry (const char *name_, dir_index d_index_,
911 unsigned int mod_time_, unsigned int length_)
912 : name (name_),
913 d_index (d_index_),
914 mod_time (mod_time_),
915 length (length_)
916 {}
917
918 /* Return the include directory at D_INDEX stored in LH. Returns
919 NULL if D_INDEX is out of bounds. */
920 const char *include_dir (const line_header *lh) const;
921
922 /* The file name. Note this is an observing pointer. The memory is
923 owned by debug_line_buffer. */
924 const char *name {};
925
926 /* The directory index (1-based). */
927 dir_index d_index {};
928
929 unsigned int mod_time {};
930
931 unsigned int length {};
932
933 /* True if referenced by the Line Number Program. */
934 bool included_p {};
935
936 /* The associated symbol table, if any. */
937 struct symtab *symtab {};
938};
939
940/* The line number information for a compilation unit (found in the
941 .debug_line section) begins with a "statement program header",
942 which contains the following information. */
943struct line_header
944{
945 line_header ()
946 : offset_in_dwz {}
947 {}
948
949 /* Add an entry to the include directory table. */
950 void add_include_dir (const char *include_dir);
951
952 /* Add an entry to the file name table. */
953 void add_file_name (const char *name, dir_index d_index,
954 unsigned int mod_time, unsigned int length);
955
956 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
957 is out of bounds. */
958 const char *include_dir_at (dir_index index) const
959 {
960 /* Convert directory index number (1-based) to vector index
961 (0-based). */
962 size_t vec_index = to_underlying (index) - 1;
963
964 if (vec_index >= include_dirs.size ())
965 return NULL;
966 return include_dirs[vec_index];
967 }
968
969 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
970 is out of bounds. */
971 file_entry *file_name_at (file_name_index index)
972 {
973 /* Convert file name index number (1-based) to vector index
974 (0-based). */
975 size_t vec_index = to_underlying (index) - 1;
976
977 if (vec_index >= file_names.size ())
978 return NULL;
979 return &file_names[vec_index];
980 }
981
982 /* Const version of the above. */
983 const file_entry *file_name_at (unsigned int index) const
984 {
985 if (index >= file_names.size ())
986 return NULL;
987 return &file_names[index];
988 }
989
990 /* Offset of line number information in .debug_line section. */
991 sect_offset sect_off {};
992
993 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
994 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
995
996 unsigned int total_length {};
997 unsigned short version {};
998 unsigned int header_length {};
999 unsigned char minimum_instruction_length {};
1000 unsigned char maximum_ops_per_instruction {};
1001 unsigned char default_is_stmt {};
1002 int line_base {};
1003 unsigned char line_range {};
1004 unsigned char opcode_base {};
1005
1006 /* standard_opcode_lengths[i] is the number of operands for the
1007 standard opcode whose value is i. This means that
1008 standard_opcode_lengths[0] is unused, and the last meaningful
1009 element is standard_opcode_lengths[opcode_base - 1]. */
1010 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1011
1012 /* The include_directories table. Note these are observing
1013 pointers. The memory is owned by debug_line_buffer. */
1014 std::vector<const char *> include_dirs;
1015
1016 /* The file_names table. */
1017 std::vector<file_entry> file_names;
1018
1019 /* The start and end of the statement program following this
1020 header. These point into dwarf2_per_objfile->line_buffer. */
1021 const gdb_byte *statement_program_start {}, *statement_program_end {};
1022};
1023
1024typedef std::unique_ptr<line_header> line_header_up;
1025
1026const char *
1027file_entry::include_dir (const line_header *lh) const
1028{
1029 return lh->include_dir_at (d_index);
1030}
1031
1032/* When we construct a partial symbol table entry we only
1033 need this much information. */
1034struct partial_die_info : public allocate_on_obstack
1035 {
1036 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1037
1038 /* Disable assign but still keep copy ctor, which is needed
1039 load_partial_dies. */
1040 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1041
1042 /* Adjust the partial die before generating a symbol for it. This
1043 function may set the is_external flag or change the DIE's
1044 name. */
1045 void fixup (struct dwarf2_cu *cu);
1046
1047 /* Read a minimal amount of information into the minimal die
1048 structure. */
1049 const gdb_byte *read (const struct die_reader_specs *reader,
1050 const struct abbrev_info &abbrev,
1051 const gdb_byte *info_ptr);
1052
1053 /* Offset of this DIE. */
1054 const sect_offset sect_off;
1055
1056 /* DWARF-2 tag for this DIE. */
1057 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1058
1059 /* Assorted flags describing the data found in this DIE. */
1060 const unsigned int has_children : 1;
1061
1062 unsigned int is_external : 1;
1063 unsigned int is_declaration : 1;
1064 unsigned int has_type : 1;
1065 unsigned int has_specification : 1;
1066 unsigned int has_pc_info : 1;
1067 unsigned int may_be_inlined : 1;
1068
1069 /* This DIE has been marked DW_AT_main_subprogram. */
1070 unsigned int main_subprogram : 1;
1071
1072 /* Flag set if the SCOPE field of this structure has been
1073 computed. */
1074 unsigned int scope_set : 1;
1075
1076 /* Flag set if the DIE has a byte_size attribute. */
1077 unsigned int has_byte_size : 1;
1078
1079 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1080 unsigned int has_const_value : 1;
1081
1082 /* Flag set if any of the DIE's children are template arguments. */
1083 unsigned int has_template_arguments : 1;
1084
1085 /* Flag set if fixup has been called on this die. */
1086 unsigned int fixup_called : 1;
1087
1088 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1089 unsigned int is_dwz : 1;
1090
1091 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1092 unsigned int spec_is_dwz : 1;
1093
1094 /* The name of this DIE. Normally the value of DW_AT_name, but
1095 sometimes a default name for unnamed DIEs. */
1096 const char *name = nullptr;
1097
1098 /* The linkage name, if present. */
1099 const char *linkage_name = nullptr;
1100
1101 /* The scope to prepend to our children. This is generally
1102 allocated on the comp_unit_obstack, so will disappear
1103 when this compilation unit leaves the cache. */
1104 const char *scope = nullptr;
1105
1106 /* Some data associated with the partial DIE. The tag determines
1107 which field is live. */
1108 union
1109 {
1110 /* The location description associated with this DIE, if any. */
1111 struct dwarf_block *locdesc;
1112 /* The offset of an import, for DW_TAG_imported_unit. */
1113 sect_offset sect_off;
1114 } d {};
1115
1116 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1117 CORE_ADDR lowpc = 0;
1118 CORE_ADDR highpc = 0;
1119
1120 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1121 DW_AT_sibling, if any. */
1122 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1123 could return DW_AT_sibling values to its caller load_partial_dies. */
1124 const gdb_byte *sibling = nullptr;
1125
1126 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1127 DW_AT_specification (or DW_AT_abstract_origin or
1128 DW_AT_extension). */
1129 sect_offset spec_offset {};
1130
1131 /* Pointers to this DIE's parent, first child, and next sibling,
1132 if any. */
1133 struct partial_die_info *die_parent = nullptr;
1134 struct partial_die_info *die_child = nullptr;
1135 struct partial_die_info *die_sibling = nullptr;
1136
1137 friend struct partial_die_info *
1138 dwarf2_cu::find_partial_die (sect_offset sect_off);
1139
1140 private:
1141 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1142 partial_die_info (sect_offset sect_off)
1143 : partial_die_info (sect_off, DW_TAG_padding, 0)
1144 {
1145 }
1146
1147 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1148 int has_children_)
1149 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1150 {
1151 is_external = 0;
1152 is_declaration = 0;
1153 has_type = 0;
1154 has_specification = 0;
1155 has_pc_info = 0;
1156 may_be_inlined = 0;
1157 main_subprogram = 0;
1158 scope_set = 0;
1159 has_byte_size = 0;
1160 has_const_value = 0;
1161 has_template_arguments = 0;
1162 fixup_called = 0;
1163 is_dwz = 0;
1164 spec_is_dwz = 0;
1165 }
1166 };
1167
1168/* This data structure holds the information of an abbrev. */
1169struct abbrev_info
1170 {
1171 unsigned int number; /* number identifying abbrev */
1172 enum dwarf_tag tag; /* dwarf tag */
1173 unsigned short has_children; /* boolean */
1174 unsigned short num_attrs; /* number of attributes */
1175 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1176 struct abbrev_info *next; /* next in chain */
1177 };
1178
1179struct attr_abbrev
1180 {
1181 ENUM_BITFIELD(dwarf_attribute) name : 16;
1182 ENUM_BITFIELD(dwarf_form) form : 16;
1183
1184 /* It is valid only if FORM is DW_FORM_implicit_const. */
1185 LONGEST implicit_const;
1186 };
1187
1188/* Size of abbrev_table.abbrev_hash_table. */
1189#define ABBREV_HASH_SIZE 121
1190
1191/* Top level data structure to contain an abbreviation table. */
1192
1193struct abbrev_table
1194{
1195 explicit abbrev_table (sect_offset off)
1196 : sect_off (off)
1197 {
1198 m_abbrevs =
1199 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1200 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1201 }
1202
1203 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1204
1205 /* Allocate space for a struct abbrev_info object in
1206 ABBREV_TABLE. */
1207 struct abbrev_info *alloc_abbrev ();
1208
1209 /* Add an abbreviation to the table. */
1210 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1211
1212 /* Look up an abbrev in the table.
1213 Returns NULL if the abbrev is not found. */
1214
1215 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1216
1217
1218 /* Where the abbrev table came from.
1219 This is used as a sanity check when the table is used. */
1220 const sect_offset sect_off;
1221
1222 /* Storage for the abbrev table. */
1223 auto_obstack abbrev_obstack;
1224
1225private:
1226
1227 /* Hash table of abbrevs.
1228 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1229 It could be statically allocated, but the previous code didn't so we
1230 don't either. */
1231 struct abbrev_info **m_abbrevs;
1232};
1233
1234typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1235
1236/* Attributes have a name and a value. */
1237struct attribute
1238 {
1239 ENUM_BITFIELD(dwarf_attribute) name : 16;
1240 ENUM_BITFIELD(dwarf_form) form : 15;
1241
1242 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1243 field should be in u.str (existing only for DW_STRING) but it is kept
1244 here for better struct attribute alignment. */
1245 unsigned int string_is_canonical : 1;
1246
1247 union
1248 {
1249 const char *str;
1250 struct dwarf_block *blk;
1251 ULONGEST unsnd;
1252 LONGEST snd;
1253 CORE_ADDR addr;
1254 ULONGEST signature;
1255 }
1256 u;
1257 };
1258
1259/* This data structure holds a complete die structure. */
1260struct die_info
1261 {
1262 /* DWARF-2 tag for this DIE. */
1263 ENUM_BITFIELD(dwarf_tag) tag : 16;
1264
1265 /* Number of attributes */
1266 unsigned char num_attrs;
1267
1268 /* True if we're presently building the full type name for the
1269 type derived from this DIE. */
1270 unsigned char building_fullname : 1;
1271
1272 /* True if this die is in process. PR 16581. */
1273 unsigned char in_process : 1;
1274
1275 /* Abbrev number */
1276 unsigned int abbrev;
1277
1278 /* Offset in .debug_info or .debug_types section. */
1279 sect_offset sect_off;
1280
1281 /* The dies in a compilation unit form an n-ary tree. PARENT
1282 points to this die's parent; CHILD points to the first child of
1283 this node; and all the children of a given node are chained
1284 together via their SIBLING fields. */
1285 struct die_info *child; /* Its first child, if any. */
1286 struct die_info *sibling; /* Its next sibling, if any. */
1287 struct die_info *parent; /* Its parent, if any. */
1288
1289 /* An array of attributes, with NUM_ATTRS elements. There may be
1290 zero, but it's not common and zero-sized arrays are not
1291 sufficiently portable C. */
1292 struct attribute attrs[1];
1293 };
1294
1295/* Get at parts of an attribute structure. */
1296
1297#define DW_STRING(attr) ((attr)->u.str)
1298#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1299#define DW_UNSND(attr) ((attr)->u.unsnd)
1300#define DW_BLOCK(attr) ((attr)->u.blk)
1301#define DW_SND(attr) ((attr)->u.snd)
1302#define DW_ADDR(attr) ((attr)->u.addr)
1303#define DW_SIGNATURE(attr) ((attr)->u.signature)
1304
1305/* Blocks are a bunch of untyped bytes. */
1306struct dwarf_block
1307 {
1308 size_t size;
1309
1310 /* Valid only if SIZE is not zero. */
1311 const gdb_byte *data;
1312 };
1313
1314#ifndef ATTR_ALLOC_CHUNK
1315#define ATTR_ALLOC_CHUNK 4
1316#endif
1317
1318/* Allocate fields for structs, unions and enums in this size. */
1319#ifndef DW_FIELD_ALLOC_CHUNK
1320#define DW_FIELD_ALLOC_CHUNK 4
1321#endif
1322
1323/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1324 but this would require a corresponding change in unpack_field_as_long
1325 and friends. */
1326static int bits_per_byte = 8;
1327
1328/* When reading a variant or variant part, we track a bit more
1329 information about the field, and store it in an object of this
1330 type. */
1331
1332struct variant_field
1333{
1334 /* If we see a DW_TAG_variant, then this will be the discriminant
1335 value. */
1336 ULONGEST discriminant_value;
1337 /* If we see a DW_TAG_variant, then this will be set if this is the
1338 default branch. */
1339 bool default_branch;
1340 /* While reading a DW_TAG_variant_part, this will be set if this
1341 field is the discriminant. */
1342 bool is_discriminant;
1343};
1344
1345struct nextfield
1346{
1347 int accessibility = 0;
1348 int virtuality = 0;
1349 /* Extra information to describe a variant or variant part. */
1350 struct variant_field variant {};
1351 struct field field {};
1352};
1353
1354struct fnfieldlist
1355{
1356 const char *name = nullptr;
1357 std::vector<struct fn_field> fnfields;
1358};
1359
1360/* The routines that read and process dies for a C struct or C++ class
1361 pass lists of data member fields and lists of member function fields
1362 in an instance of a field_info structure, as defined below. */
1363struct field_info
1364 {
1365 /* List of data member and baseclasses fields. */
1366 std::vector<struct nextfield> fields;
1367 std::vector<struct nextfield> baseclasses;
1368
1369 /* Number of fields (including baseclasses). */
1370 int nfields = 0;
1371
1372 /* Set if the accesibility of one of the fields is not public. */
1373 int non_public_fields = 0;
1374
1375 /* Member function fieldlist array, contains name of possibly overloaded
1376 member function, number of overloaded member functions and a pointer
1377 to the head of the member function field chain. */
1378 std::vector<struct fnfieldlist> fnfieldlists;
1379
1380 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1381 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1382 std::vector<struct decl_field> typedef_field_list;
1383
1384 /* Nested types defined by this class and the number of elements in this
1385 list. */
1386 std::vector<struct decl_field> nested_types_list;
1387 };
1388
1389/* One item on the queue of compilation units to read in full symbols
1390 for. */
1391struct dwarf2_queue_item
1392{
1393 struct dwarf2_per_cu_data *per_cu;
1394 enum language pretend_language;
1395 struct dwarf2_queue_item *next;
1396};
1397
1398/* The current queue. */
1399static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1400
1401/* Loaded secondary compilation units are kept in memory until they
1402 have not been referenced for the processing of this many
1403 compilation units. Set this to zero to disable caching. Cache
1404 sizes of up to at least twenty will improve startup time for
1405 typical inter-CU-reference binaries, at an obvious memory cost. */
1406static int dwarf_max_cache_age = 5;
1407static void
1408show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1409 struct cmd_list_element *c, const char *value)
1410{
1411 fprintf_filtered (file, _("The upper bound on the age of cached "
1412 "DWARF compilation units is %s.\n"),
1413 value);
1414}
1415\f
1416/* local function prototypes */
1417
1418static const char *get_section_name (const struct dwarf2_section_info *);
1419
1420static const char *get_section_file_name (const struct dwarf2_section_info *);
1421
1422static void dwarf2_find_base_address (struct die_info *die,
1423 struct dwarf2_cu *cu);
1424
1425static struct partial_symtab *create_partial_symtab
1426 (struct dwarf2_per_cu_data *per_cu, const char *name);
1427
1428static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1429 const gdb_byte *info_ptr,
1430 struct die_info *type_unit_die,
1431 int has_children, void *data);
1432
1433static void dwarf2_build_psymtabs_hard
1434 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1435
1436static void scan_partial_symbols (struct partial_die_info *,
1437 CORE_ADDR *, CORE_ADDR *,
1438 int, struct dwarf2_cu *);
1439
1440static void add_partial_symbol (struct partial_die_info *,
1441 struct dwarf2_cu *);
1442
1443static void add_partial_namespace (struct partial_die_info *pdi,
1444 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1445 int set_addrmap, struct dwarf2_cu *cu);
1446
1447static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1448 CORE_ADDR *highpc, int set_addrmap,
1449 struct dwarf2_cu *cu);
1450
1451static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1452 struct dwarf2_cu *cu);
1453
1454static void add_partial_subprogram (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int need_pc, struct dwarf2_cu *cu);
1457
1458static void dwarf2_read_symtab (struct partial_symtab *,
1459 struct objfile *);
1460
1461static void psymtab_to_symtab_1 (struct partial_symtab *);
1462
1463static abbrev_table_up abbrev_table_read_table
1464 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1465 sect_offset);
1466
1467static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1468
1469static struct partial_die_info *load_partial_dies
1470 (const struct die_reader_specs *, const gdb_byte *, int);
1471
1472static struct partial_die_info *find_partial_die (sect_offset, int,
1473 struct dwarf2_cu *);
1474
1475static const gdb_byte *read_attribute (const struct die_reader_specs *,
1476 struct attribute *, struct attr_abbrev *,
1477 const gdb_byte *);
1478
1479static unsigned int read_1_byte (bfd *, const gdb_byte *);
1480
1481static int read_1_signed_byte (bfd *, const gdb_byte *);
1482
1483static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1484
1485static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1486
1487static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1488
1489static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1490 unsigned int *);
1491
1492static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1493
1494static LONGEST read_checked_initial_length_and_offset
1495 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1496 unsigned int *, unsigned int *);
1497
1498static LONGEST read_offset (bfd *, const gdb_byte *,
1499 const struct comp_unit_head *,
1500 unsigned int *);
1501
1502static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1503
1504static sect_offset read_abbrev_offset
1505 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1506 struct dwarf2_section_info *, sect_offset);
1507
1508static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1509
1510static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1511
1512static const char *read_indirect_string
1513 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1514 const struct comp_unit_head *, unsigned int *);
1515
1516static const char *read_indirect_line_string
1517 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1518 const struct comp_unit_head *, unsigned int *);
1519
1520static const char *read_indirect_string_at_offset
1521 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1522 LONGEST str_offset);
1523
1524static const char *read_indirect_string_from_dwz
1525 (struct objfile *objfile, struct dwz_file *, LONGEST);
1526
1527static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1528
1529static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1530 const gdb_byte *,
1531 unsigned int *);
1532
1533static const char *read_str_index (const struct die_reader_specs *reader,
1534 ULONGEST str_index);
1535
1536static void set_cu_language (unsigned int, struct dwarf2_cu *);
1537
1538static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1539 struct dwarf2_cu *);
1540
1541static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1542 unsigned int);
1543
1544static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1545 struct dwarf2_cu *cu);
1546
1547static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1548 struct dwarf2_cu *cu);
1549
1550static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1551
1552static struct die_info *die_specification (struct die_info *die,
1553 struct dwarf2_cu **);
1554
1555static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1556 struct dwarf2_cu *cu);
1557
1558static void dwarf_decode_lines (struct line_header *, const char *,
1559 struct dwarf2_cu *, struct partial_symtab *,
1560 CORE_ADDR, int decode_mapping);
1561
1562static void dwarf2_start_subfile (const char *, const char *);
1563
1564static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1565 const char *, const char *,
1566 CORE_ADDR);
1567
1568static struct symbol *new_symbol (struct die_info *, struct type *,
1569 struct dwarf2_cu *, struct symbol * = NULL);
1570
1571static void dwarf2_const_value (const struct attribute *, struct symbol *,
1572 struct dwarf2_cu *);
1573
1574static void dwarf2_const_value_attr (const struct attribute *attr,
1575 struct type *type,
1576 const char *name,
1577 struct obstack *obstack,
1578 struct dwarf2_cu *cu, LONGEST *value,
1579 const gdb_byte **bytes,
1580 struct dwarf2_locexpr_baton **baton);
1581
1582static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1583
1584static int need_gnat_info (struct dwarf2_cu *);
1585
1586static struct type *die_descriptive_type (struct die_info *,
1587 struct dwarf2_cu *);
1588
1589static void set_descriptive_type (struct type *, struct die_info *,
1590 struct dwarf2_cu *);
1591
1592static struct type *die_containing_type (struct die_info *,
1593 struct dwarf2_cu *);
1594
1595static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1596 struct dwarf2_cu *);
1597
1598static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1599
1600static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1601
1602static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1603
1604static char *typename_concat (struct obstack *obs, const char *prefix,
1605 const char *suffix, int physname,
1606 struct dwarf2_cu *cu);
1607
1608static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1609
1610static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1611
1612static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1613
1614static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1615
1616static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1617
1618static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1619
1620static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1621 struct dwarf2_cu *, struct partial_symtab *);
1622
1623/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1624 values. Keep the items ordered with increasing constraints compliance. */
1625enum pc_bounds_kind
1626{
1627 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1628 PC_BOUNDS_NOT_PRESENT,
1629
1630 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1631 were present but they do not form a valid range of PC addresses. */
1632 PC_BOUNDS_INVALID,
1633
1634 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1635 PC_BOUNDS_RANGES,
1636
1637 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1638 PC_BOUNDS_HIGH_LOW,
1639};
1640
1641static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1642 CORE_ADDR *, CORE_ADDR *,
1643 struct dwarf2_cu *,
1644 struct partial_symtab *);
1645
1646static void get_scope_pc_bounds (struct die_info *,
1647 CORE_ADDR *, CORE_ADDR *,
1648 struct dwarf2_cu *);
1649
1650static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1651 CORE_ADDR, struct dwarf2_cu *);
1652
1653static void dwarf2_add_field (struct field_info *, struct die_info *,
1654 struct dwarf2_cu *);
1655
1656static void dwarf2_attach_fields_to_type (struct field_info *,
1657 struct type *, struct dwarf2_cu *);
1658
1659static void dwarf2_add_member_fn (struct field_info *,
1660 struct die_info *, struct type *,
1661 struct dwarf2_cu *);
1662
1663static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1664 struct type *,
1665 struct dwarf2_cu *);
1666
1667static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1668
1669static void read_common_block (struct die_info *, struct dwarf2_cu *);
1670
1671static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1672
1673static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1674
1675static struct using_direct **using_directives (enum language);
1676
1677static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1678
1679static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1680
1681static struct type *read_module_type (struct die_info *die,
1682 struct dwarf2_cu *cu);
1683
1684static const char *namespace_name (struct die_info *die,
1685 int *is_anonymous, struct dwarf2_cu *);
1686
1687static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1688
1689static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1690
1691static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1692 struct dwarf2_cu *);
1693
1694static struct die_info *read_die_and_siblings_1
1695 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1696 struct die_info *);
1697
1698static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1699 const gdb_byte *info_ptr,
1700 const gdb_byte **new_info_ptr,
1701 struct die_info *parent);
1702
1703static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1704 struct die_info **, const gdb_byte *,
1705 int *, int);
1706
1707static const gdb_byte *read_full_die (const struct die_reader_specs *,
1708 struct die_info **, const gdb_byte *,
1709 int *);
1710
1711static void process_die (struct die_info *, struct dwarf2_cu *);
1712
1713static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1714 struct obstack *);
1715
1716static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1717
1718static const char *dwarf2_full_name (const char *name,
1719 struct die_info *die,
1720 struct dwarf2_cu *cu);
1721
1722static const char *dwarf2_physname (const char *name, struct die_info *die,
1723 struct dwarf2_cu *cu);
1724
1725static struct die_info *dwarf2_extension (struct die_info *die,
1726 struct dwarf2_cu **);
1727
1728static const char *dwarf_tag_name (unsigned int);
1729
1730static const char *dwarf_attr_name (unsigned int);
1731
1732static const char *dwarf_form_name (unsigned int);
1733
1734static const char *dwarf_bool_name (unsigned int);
1735
1736static const char *dwarf_type_encoding_name (unsigned int);
1737
1738static struct die_info *sibling_die (struct die_info *);
1739
1740static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1741
1742static void dump_die_for_error (struct die_info *);
1743
1744static void dump_die_1 (struct ui_file *, int level, int max_level,
1745 struct die_info *);
1746
1747/*static*/ void dump_die (struct die_info *, int max_level);
1748
1749static void store_in_ref_table (struct die_info *,
1750 struct dwarf2_cu *);
1751
1752static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1753
1754static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1755
1756static struct die_info *follow_die_ref_or_sig (struct die_info *,
1757 const struct attribute *,
1758 struct dwarf2_cu **);
1759
1760static struct die_info *follow_die_ref (struct die_info *,
1761 const struct attribute *,
1762 struct dwarf2_cu **);
1763
1764static struct die_info *follow_die_sig (struct die_info *,
1765 const struct attribute *,
1766 struct dwarf2_cu **);
1767
1768static struct type *get_signatured_type (struct die_info *, ULONGEST,
1769 struct dwarf2_cu *);
1770
1771static struct type *get_DW_AT_signature_type (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu *);
1774
1775static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1776
1777static void read_signatured_type (struct signatured_type *);
1778
1779static int attr_to_dynamic_prop (const struct attribute *attr,
1780 struct die_info *die, struct dwarf2_cu *cu,
1781 struct dynamic_prop *prop);
1782
1783/* memory allocation interface */
1784
1785static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1786
1787static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1788
1789static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1790
1791static int attr_form_is_block (const struct attribute *);
1792
1793static int attr_form_is_section_offset (const struct attribute *);
1794
1795static int attr_form_is_constant (const struct attribute *);
1796
1797static int attr_form_is_ref (const struct attribute *);
1798
1799static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1800 struct dwarf2_loclist_baton *baton,
1801 const struct attribute *attr);
1802
1803static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1804 struct symbol *sym,
1805 struct dwarf2_cu *cu,
1806 int is_block);
1807
1808static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1809 const gdb_byte *info_ptr,
1810 struct abbrev_info *abbrev);
1811
1812static hashval_t partial_die_hash (const void *item);
1813
1814static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1815
1816static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1817 (sect_offset sect_off, unsigned int offset_in_dwz,
1818 struct dwarf2_per_objfile *dwarf2_per_objfile);
1819
1820static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1821 struct die_info *comp_unit_die,
1822 enum language pretend_language);
1823
1824static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1825
1826static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1827
1828static struct type *set_die_type (struct die_info *, struct type *,
1829 struct dwarf2_cu *);
1830
1831static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1832
1833static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1834
1835static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
1838static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1839 enum language);
1840
1841static void process_full_type_unit (struct dwarf2_per_cu_data *,
1842 enum language);
1843
1844static void dwarf2_add_dependence (struct dwarf2_cu *,
1845 struct dwarf2_per_cu_data *);
1846
1847static void dwarf2_mark (struct dwarf2_cu *);
1848
1849static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1850
1851static struct type *get_die_type_at_offset (sect_offset,
1852 struct dwarf2_per_cu_data *);
1853
1854static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1855
1856static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1857 enum language pretend_language);
1858
1859static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1860
1861/* Class, the destructor of which frees all allocated queue entries. This
1862 will only have work to do if an error was thrown while processing the
1863 dwarf. If no error was thrown then the queue entries should have all
1864 been processed, and freed, as we went along. */
1865
1866class dwarf2_queue_guard
1867{
1868public:
1869 dwarf2_queue_guard () = default;
1870
1871 /* Free any entries remaining on the queue. There should only be
1872 entries left if we hit an error while processing the dwarf. */
1873 ~dwarf2_queue_guard ()
1874 {
1875 struct dwarf2_queue_item *item, *last;
1876
1877 item = dwarf2_queue;
1878 while (item)
1879 {
1880 /* Anything still marked queued is likely to be in an
1881 inconsistent state, so discard it. */
1882 if (item->per_cu->queued)
1883 {
1884 if (item->per_cu->cu != NULL)
1885 free_one_cached_comp_unit (item->per_cu);
1886 item->per_cu->queued = 0;
1887 }
1888
1889 last = item;
1890 item = item->next;
1891 xfree (last);
1892 }
1893
1894 dwarf2_queue = dwarf2_queue_tail = NULL;
1895 }
1896};
1897
1898/* The return type of find_file_and_directory. Note, the enclosed
1899 string pointers are only valid while this object is valid. */
1900
1901struct file_and_directory
1902{
1903 /* The filename. This is never NULL. */
1904 const char *name;
1905
1906 /* The compilation directory. NULL if not known. If we needed to
1907 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1908 points directly to the DW_AT_comp_dir string attribute owned by
1909 the obstack that owns the DIE. */
1910 const char *comp_dir;
1911
1912 /* If we needed to build a new string for comp_dir, this is what
1913 owns the storage. */
1914 std::string comp_dir_storage;
1915};
1916
1917static file_and_directory find_file_and_directory (struct die_info *die,
1918 struct dwarf2_cu *cu);
1919
1920static char *file_full_name (int file, struct line_header *lh,
1921 const char *comp_dir);
1922
1923/* Expected enum dwarf_unit_type for read_comp_unit_head. */
1924enum class rcuh_kind { COMPILE, TYPE };
1925
1926static const gdb_byte *read_and_check_comp_unit_head
1927 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1928 struct comp_unit_head *header,
1929 struct dwarf2_section_info *section,
1930 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1931 rcuh_kind section_kind);
1932
1933static void init_cutu_and_read_dies
1934 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1935 int use_existing_cu, int keep,
1936 die_reader_func_ftype *die_reader_func, void *data);
1937
1938static void init_cutu_and_read_dies_simple
1939 (struct dwarf2_per_cu_data *this_cu,
1940 die_reader_func_ftype *die_reader_func, void *data);
1941
1942static htab_t allocate_signatured_type_table (struct objfile *objfile);
1943
1944static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1945
1946static struct dwo_unit *lookup_dwo_unit_in_dwp
1947 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1948 struct dwp_file *dwp_file, const char *comp_dir,
1949 ULONGEST signature, int is_debug_types);
1950
1951static struct dwp_file *get_dwp_file
1952 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1953
1954static struct dwo_unit *lookup_dwo_comp_unit
1955 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1956
1957static struct dwo_unit *lookup_dwo_type_unit
1958 (struct signatured_type *, const char *, const char *);
1959
1960static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1961
1962static void free_dwo_file (struct dwo_file *);
1963
1964/* A unique_ptr helper to free a dwo_file. */
1965
1966struct dwo_file_deleter
1967{
1968 void operator() (struct dwo_file *df) const
1969 {
1970 free_dwo_file (df);
1971 }
1972};
1973
1974/* A unique pointer to a dwo_file. */
1975
1976typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1977
1978static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1979
1980static void check_producer (struct dwarf2_cu *cu);
1981
1982static void free_line_header_voidp (void *arg);
1983\f
1984/* Various complaints about symbol reading that don't abort the process. */
1985
1986static void
1987dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1988{
1989 complaint (&symfile_complaints,
1990 _("statement list doesn't fit in .debug_line section"));
1991}
1992
1993static void
1994dwarf2_debug_line_missing_file_complaint (void)
1995{
1996 complaint (&symfile_complaints,
1997 _(".debug_line section has line data without a file"));
1998}
1999
2000static void
2001dwarf2_debug_line_missing_end_sequence_complaint (void)
2002{
2003 complaint (&symfile_complaints,
2004 _(".debug_line section has line "
2005 "program sequence without an end"));
2006}
2007
2008static void
2009dwarf2_complex_location_expr_complaint (void)
2010{
2011 complaint (&symfile_complaints, _("location expression too complex"));
2012}
2013
2014static void
2015dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2016 int arg3)
2017{
2018 complaint (&symfile_complaints,
2019 _("const value length mismatch for '%s', got %d, expected %d"),
2020 arg1, arg2, arg3);
2021}
2022
2023static void
2024dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2025{
2026 complaint (&symfile_complaints,
2027 _("debug info runs off end of %s section"
2028 " [in module %s]"),
2029 get_section_name (section),
2030 get_section_file_name (section));
2031}
2032
2033static void
2034dwarf2_macro_malformed_definition_complaint (const char *arg1)
2035{
2036 complaint (&symfile_complaints,
2037 _("macro debug info contains a "
2038 "malformed macro definition:\n`%s'"),
2039 arg1);
2040}
2041
2042static void
2043dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2044{
2045 complaint (&symfile_complaints,
2046 _("invalid attribute class or form for '%s' in '%s'"),
2047 arg1, arg2);
2048}
2049
2050/* Hash function for line_header_hash. */
2051
2052static hashval_t
2053line_header_hash (const struct line_header *ofs)
2054{
2055 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2056}
2057
2058/* Hash function for htab_create_alloc_ex for line_header_hash. */
2059
2060static hashval_t
2061line_header_hash_voidp (const void *item)
2062{
2063 const struct line_header *ofs = (const struct line_header *) item;
2064
2065 return line_header_hash (ofs);
2066}
2067
2068/* Equality function for line_header_hash. */
2069
2070static int
2071line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2072{
2073 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2074 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2075
2076 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2077 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2078}
2079
2080\f
2081
2082/* Read the given attribute value as an address, taking the attribute's
2083 form into account. */
2084
2085static CORE_ADDR
2086attr_value_as_address (struct attribute *attr)
2087{
2088 CORE_ADDR addr;
2089
2090 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2091 {
2092 /* Aside from a few clearly defined exceptions, attributes that
2093 contain an address must always be in DW_FORM_addr form.
2094 Unfortunately, some compilers happen to be violating this
2095 requirement by encoding addresses using other forms, such
2096 as DW_FORM_data4 for example. For those broken compilers,
2097 we try to do our best, without any guarantee of success,
2098 to interpret the address correctly. It would also be nice
2099 to generate a complaint, but that would require us to maintain
2100 a list of legitimate cases where a non-address form is allowed,
2101 as well as update callers to pass in at least the CU's DWARF
2102 version. This is more overhead than what we're willing to
2103 expand for a pretty rare case. */
2104 addr = DW_UNSND (attr);
2105 }
2106 else
2107 addr = DW_ADDR (attr);
2108
2109 return addr;
2110}
2111
2112/* See declaration. */
2113
2114dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2115 const dwarf2_debug_sections *names)
2116 : objfile (objfile_)
2117{
2118 if (names == NULL)
2119 names = &dwarf2_elf_names;
2120
2121 bfd *obfd = objfile->obfd;
2122
2123 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2124 locate_sections (obfd, sec, *names);
2125}
2126
2127static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2128
2129dwarf2_per_objfile::~dwarf2_per_objfile ()
2130{
2131 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2132 free_cached_comp_units ();
2133
2134 if (quick_file_names_table)
2135 htab_delete (quick_file_names_table);
2136
2137 if (line_header_hash)
2138 htab_delete (line_header_hash);
2139
2140 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2141 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2142
2143 for (signatured_type *sig_type : all_type_units)
2144 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2145
2146 VEC_free (dwarf2_section_info_def, types);
2147
2148 if (dwo_files != NULL)
2149 free_dwo_files (dwo_files, objfile);
2150 if (dwp_file != NULL)
2151 gdb_bfd_unref (dwp_file->dbfd);
2152
2153 if (dwz_file != NULL && dwz_file->dwz_bfd)
2154 gdb_bfd_unref (dwz_file->dwz_bfd);
2155
2156 if (index_table != NULL)
2157 index_table->~mapped_index ();
2158
2159 /* Everything else should be on the objfile obstack. */
2160}
2161
2162/* See declaration. */
2163
2164void
2165dwarf2_per_objfile::free_cached_comp_units ()
2166{
2167 dwarf2_per_cu_data *per_cu = read_in_chain;
2168 dwarf2_per_cu_data **last_chain = &read_in_chain;
2169 while (per_cu != NULL)
2170 {
2171 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2172
2173 delete per_cu->cu;
2174 *last_chain = next_cu;
2175 per_cu = next_cu;
2176 }
2177}
2178
2179/* A helper class that calls free_cached_comp_units on
2180 destruction. */
2181
2182class free_cached_comp_units
2183{
2184public:
2185
2186 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2187 : m_per_objfile (per_objfile)
2188 {
2189 }
2190
2191 ~free_cached_comp_units ()
2192 {
2193 m_per_objfile->free_cached_comp_units ();
2194 }
2195
2196 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2197
2198private:
2199
2200 dwarf2_per_objfile *m_per_objfile;
2201};
2202
2203/* Try to locate the sections we need for DWARF 2 debugging
2204 information and return true if we have enough to do something.
2205 NAMES points to the dwarf2 section names, or is NULL if the standard
2206 ELF names are used. */
2207
2208int
2209dwarf2_has_info (struct objfile *objfile,
2210 const struct dwarf2_debug_sections *names)
2211{
2212 if (objfile->flags & OBJF_READNEVER)
2213 return 0;
2214
2215 struct dwarf2_per_objfile *dwarf2_per_objfile
2216 = get_dwarf2_per_objfile (objfile);
2217
2218 if (dwarf2_per_objfile == NULL)
2219 {
2220 /* Initialize per-objfile state. */
2221 dwarf2_per_objfile
2222 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2223 names);
2224 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2225 }
2226 return (!dwarf2_per_objfile->info.is_virtual
2227 && dwarf2_per_objfile->info.s.section != NULL
2228 && !dwarf2_per_objfile->abbrev.is_virtual
2229 && dwarf2_per_objfile->abbrev.s.section != NULL);
2230}
2231
2232/* Return the containing section of virtual section SECTION. */
2233
2234static struct dwarf2_section_info *
2235get_containing_section (const struct dwarf2_section_info *section)
2236{
2237 gdb_assert (section->is_virtual);
2238 return section->s.containing_section;
2239}
2240
2241/* Return the bfd owner of SECTION. */
2242
2243static struct bfd *
2244get_section_bfd_owner (const struct dwarf2_section_info *section)
2245{
2246 if (section->is_virtual)
2247 {
2248 section = get_containing_section (section);
2249 gdb_assert (!section->is_virtual);
2250 }
2251 return section->s.section->owner;
2252}
2253
2254/* Return the bfd section of SECTION.
2255 Returns NULL if the section is not present. */
2256
2257static asection *
2258get_section_bfd_section (const struct dwarf2_section_info *section)
2259{
2260 if (section->is_virtual)
2261 {
2262 section = get_containing_section (section);
2263 gdb_assert (!section->is_virtual);
2264 }
2265 return section->s.section;
2266}
2267
2268/* Return the name of SECTION. */
2269
2270static const char *
2271get_section_name (const struct dwarf2_section_info *section)
2272{
2273 asection *sectp = get_section_bfd_section (section);
2274
2275 gdb_assert (sectp != NULL);
2276 return bfd_section_name (get_section_bfd_owner (section), sectp);
2277}
2278
2279/* Return the name of the file SECTION is in. */
2280
2281static const char *
2282get_section_file_name (const struct dwarf2_section_info *section)
2283{
2284 bfd *abfd = get_section_bfd_owner (section);
2285
2286 return bfd_get_filename (abfd);
2287}
2288
2289/* Return the id of SECTION.
2290 Returns 0 if SECTION doesn't exist. */
2291
2292static int
2293get_section_id (const struct dwarf2_section_info *section)
2294{
2295 asection *sectp = get_section_bfd_section (section);
2296
2297 if (sectp == NULL)
2298 return 0;
2299 return sectp->id;
2300}
2301
2302/* Return the flags of SECTION.
2303 SECTION (or containing section if this is a virtual section) must exist. */
2304
2305static int
2306get_section_flags (const struct dwarf2_section_info *section)
2307{
2308 asection *sectp = get_section_bfd_section (section);
2309
2310 gdb_assert (sectp != NULL);
2311 return bfd_get_section_flags (sectp->owner, sectp);
2312}
2313
2314/* When loading sections, we look either for uncompressed section or for
2315 compressed section names. */
2316
2317static int
2318section_is_p (const char *section_name,
2319 const struct dwarf2_section_names *names)
2320{
2321 if (names->normal != NULL
2322 && strcmp (section_name, names->normal) == 0)
2323 return 1;
2324 if (names->compressed != NULL
2325 && strcmp (section_name, names->compressed) == 0)
2326 return 1;
2327 return 0;
2328}
2329
2330/* See declaration. */
2331
2332void
2333dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2334 const dwarf2_debug_sections &names)
2335{
2336 flagword aflag = bfd_get_section_flags (abfd, sectp);
2337
2338 if ((aflag & SEC_HAS_CONTENTS) == 0)
2339 {
2340 }
2341 else if (section_is_p (sectp->name, &names.info))
2342 {
2343 this->info.s.section = sectp;
2344 this->info.size = bfd_get_section_size (sectp);
2345 }
2346 else if (section_is_p (sectp->name, &names.abbrev))
2347 {
2348 this->abbrev.s.section = sectp;
2349 this->abbrev.size = bfd_get_section_size (sectp);
2350 }
2351 else if (section_is_p (sectp->name, &names.line))
2352 {
2353 this->line.s.section = sectp;
2354 this->line.size = bfd_get_section_size (sectp);
2355 }
2356 else if (section_is_p (sectp->name, &names.loc))
2357 {
2358 this->loc.s.section = sectp;
2359 this->loc.size = bfd_get_section_size (sectp);
2360 }
2361 else if (section_is_p (sectp->name, &names.loclists))
2362 {
2363 this->loclists.s.section = sectp;
2364 this->loclists.size = bfd_get_section_size (sectp);
2365 }
2366 else if (section_is_p (sectp->name, &names.macinfo))
2367 {
2368 this->macinfo.s.section = sectp;
2369 this->macinfo.size = bfd_get_section_size (sectp);
2370 }
2371 else if (section_is_p (sectp->name, &names.macro))
2372 {
2373 this->macro.s.section = sectp;
2374 this->macro.size = bfd_get_section_size (sectp);
2375 }
2376 else if (section_is_p (sectp->name, &names.str))
2377 {
2378 this->str.s.section = sectp;
2379 this->str.size = bfd_get_section_size (sectp);
2380 }
2381 else if (section_is_p (sectp->name, &names.line_str))
2382 {
2383 this->line_str.s.section = sectp;
2384 this->line_str.size = bfd_get_section_size (sectp);
2385 }
2386 else if (section_is_p (sectp->name, &names.addr))
2387 {
2388 this->addr.s.section = sectp;
2389 this->addr.size = bfd_get_section_size (sectp);
2390 }
2391 else if (section_is_p (sectp->name, &names.frame))
2392 {
2393 this->frame.s.section = sectp;
2394 this->frame.size = bfd_get_section_size (sectp);
2395 }
2396 else if (section_is_p (sectp->name, &names.eh_frame))
2397 {
2398 this->eh_frame.s.section = sectp;
2399 this->eh_frame.size = bfd_get_section_size (sectp);
2400 }
2401 else if (section_is_p (sectp->name, &names.ranges))
2402 {
2403 this->ranges.s.section = sectp;
2404 this->ranges.size = bfd_get_section_size (sectp);
2405 }
2406 else if (section_is_p (sectp->name, &names.rnglists))
2407 {
2408 this->rnglists.s.section = sectp;
2409 this->rnglists.size = bfd_get_section_size (sectp);
2410 }
2411 else if (section_is_p (sectp->name, &names.types))
2412 {
2413 struct dwarf2_section_info type_section;
2414
2415 memset (&type_section, 0, sizeof (type_section));
2416 type_section.s.section = sectp;
2417 type_section.size = bfd_get_section_size (sectp);
2418
2419 VEC_safe_push (dwarf2_section_info_def, this->types,
2420 &type_section);
2421 }
2422 else if (section_is_p (sectp->name, &names.gdb_index))
2423 {
2424 this->gdb_index.s.section = sectp;
2425 this->gdb_index.size = bfd_get_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &names.debug_names))
2428 {
2429 this->debug_names.s.section = sectp;
2430 this->debug_names.size = bfd_get_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &names.debug_aranges))
2433 {
2434 this->debug_aranges.s.section = sectp;
2435 this->debug_aranges.size = bfd_get_section_size (sectp);
2436 }
2437
2438 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2439 && bfd_section_vma (abfd, sectp) == 0)
2440 this->has_section_at_zero = true;
2441}
2442
2443/* A helper function that decides whether a section is empty,
2444 or not present. */
2445
2446static int
2447dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2448{
2449 if (section->is_virtual)
2450 return section->size == 0;
2451 return section->s.section == NULL || section->size == 0;
2452}
2453
2454/* See dwarf2read.h. */
2455
2456void
2457dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2458{
2459 asection *sectp;
2460 bfd *abfd;
2461 gdb_byte *buf, *retbuf;
2462
2463 if (info->readin)
2464 return;
2465 info->buffer = NULL;
2466 info->readin = 1;
2467
2468 if (dwarf2_section_empty_p (info))
2469 return;
2470
2471 sectp = get_section_bfd_section (info);
2472
2473 /* If this is a virtual section we need to read in the real one first. */
2474 if (info->is_virtual)
2475 {
2476 struct dwarf2_section_info *containing_section =
2477 get_containing_section (info);
2478
2479 gdb_assert (sectp != NULL);
2480 if ((sectp->flags & SEC_RELOC) != 0)
2481 {
2482 error (_("Dwarf Error: DWP format V2 with relocations is not"
2483 " supported in section %s [in module %s]"),
2484 get_section_name (info), get_section_file_name (info));
2485 }
2486 dwarf2_read_section (objfile, containing_section);
2487 /* Other code should have already caught virtual sections that don't
2488 fit. */
2489 gdb_assert (info->virtual_offset + info->size
2490 <= containing_section->size);
2491 /* If the real section is empty or there was a problem reading the
2492 section we shouldn't get here. */
2493 gdb_assert (containing_section->buffer != NULL);
2494 info->buffer = containing_section->buffer + info->virtual_offset;
2495 return;
2496 }
2497
2498 /* If the section has relocations, we must read it ourselves.
2499 Otherwise we attach it to the BFD. */
2500 if ((sectp->flags & SEC_RELOC) == 0)
2501 {
2502 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2503 return;
2504 }
2505
2506 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2507 info->buffer = buf;
2508
2509 /* When debugging .o files, we may need to apply relocations; see
2510 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2511 We never compress sections in .o files, so we only need to
2512 try this when the section is not compressed. */
2513 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2514 if (retbuf != NULL)
2515 {
2516 info->buffer = retbuf;
2517 return;
2518 }
2519
2520 abfd = get_section_bfd_owner (info);
2521 gdb_assert (abfd != NULL);
2522
2523 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2524 || bfd_bread (buf, info->size, abfd) != info->size)
2525 {
2526 error (_("Dwarf Error: Can't read DWARF data"
2527 " in section %s [in module %s]"),
2528 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2529 }
2530}
2531
2532/* A helper function that returns the size of a section in a safe way.
2533 If you are positive that the section has been read before using the
2534 size, then it is safe to refer to the dwarf2_section_info object's
2535 "size" field directly. In other cases, you must call this
2536 function, because for compressed sections the size field is not set
2537 correctly until the section has been read. */
2538
2539static bfd_size_type
2540dwarf2_section_size (struct objfile *objfile,
2541 struct dwarf2_section_info *info)
2542{
2543 if (!info->readin)
2544 dwarf2_read_section (objfile, info);
2545 return info->size;
2546}
2547
2548/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2549 SECTION_NAME. */
2550
2551void
2552dwarf2_get_section_info (struct objfile *objfile,
2553 enum dwarf2_section_enum sect,
2554 asection **sectp, const gdb_byte **bufp,
2555 bfd_size_type *sizep)
2556{
2557 struct dwarf2_per_objfile *data
2558 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2559 dwarf2_objfile_data_key);
2560 struct dwarf2_section_info *info;
2561
2562 /* We may see an objfile without any DWARF, in which case we just
2563 return nothing. */
2564 if (data == NULL)
2565 {
2566 *sectp = NULL;
2567 *bufp = NULL;
2568 *sizep = 0;
2569 return;
2570 }
2571 switch (sect)
2572 {
2573 case DWARF2_DEBUG_FRAME:
2574 info = &data->frame;
2575 break;
2576 case DWARF2_EH_FRAME:
2577 info = &data->eh_frame;
2578 break;
2579 default:
2580 gdb_assert_not_reached ("unexpected section");
2581 }
2582
2583 dwarf2_read_section (objfile, info);
2584
2585 *sectp = get_section_bfd_section (info);
2586 *bufp = info->buffer;
2587 *sizep = info->size;
2588}
2589
2590/* A helper function to find the sections for a .dwz file. */
2591
2592static void
2593locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2594{
2595 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2596
2597 /* Note that we only support the standard ELF names, because .dwz
2598 is ELF-only (at the time of writing). */
2599 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2600 {
2601 dwz_file->abbrev.s.section = sectp;
2602 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2603 }
2604 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2605 {
2606 dwz_file->info.s.section = sectp;
2607 dwz_file->info.size = bfd_get_section_size (sectp);
2608 }
2609 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2610 {
2611 dwz_file->str.s.section = sectp;
2612 dwz_file->str.size = bfd_get_section_size (sectp);
2613 }
2614 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2615 {
2616 dwz_file->line.s.section = sectp;
2617 dwz_file->line.size = bfd_get_section_size (sectp);
2618 }
2619 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2620 {
2621 dwz_file->macro.s.section = sectp;
2622 dwz_file->macro.size = bfd_get_section_size (sectp);
2623 }
2624 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2625 {
2626 dwz_file->gdb_index.s.section = sectp;
2627 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2628 }
2629 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2630 {
2631 dwz_file->debug_names.s.section = sectp;
2632 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2633 }
2634}
2635
2636/* Open the separate '.dwz' debug file, if needed. Return NULL if
2637 there is no .gnu_debugaltlink section in the file. Error if there
2638 is such a section but the file cannot be found. */
2639
2640static struct dwz_file *
2641dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2642{
2643 const char *filename;
2644 struct dwz_file *result;
2645 bfd_size_type buildid_len_arg;
2646 size_t buildid_len;
2647 bfd_byte *buildid;
2648
2649 if (dwarf2_per_objfile->dwz_file != NULL)
2650 return dwarf2_per_objfile->dwz_file;
2651
2652 bfd_set_error (bfd_error_no_error);
2653 gdb::unique_xmalloc_ptr<char> data
2654 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2655 &buildid_len_arg, &buildid));
2656 if (data == NULL)
2657 {
2658 if (bfd_get_error () == bfd_error_no_error)
2659 return NULL;
2660 error (_("could not read '.gnu_debugaltlink' section: %s"),
2661 bfd_errmsg (bfd_get_error ()));
2662 }
2663
2664 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2665
2666 buildid_len = (size_t) buildid_len_arg;
2667
2668 filename = data.get ();
2669
2670 std::string abs_storage;
2671 if (!IS_ABSOLUTE_PATH (filename))
2672 {
2673 gdb::unique_xmalloc_ptr<char> abs
2674 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2675
2676 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2677 filename = abs_storage.c_str ();
2678 }
2679
2680 /* First try the file name given in the section. If that doesn't
2681 work, try to use the build-id instead. */
2682 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2683 if (dwz_bfd != NULL)
2684 {
2685 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2686 dwz_bfd.release ();
2687 }
2688
2689 if (dwz_bfd == NULL)
2690 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2691
2692 if (dwz_bfd == NULL)
2693 error (_("could not find '.gnu_debugaltlink' file for %s"),
2694 objfile_name (dwarf2_per_objfile->objfile));
2695
2696 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2697 struct dwz_file);
2698 result->dwz_bfd = dwz_bfd.release ();
2699
2700 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2701
2702 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2703 dwarf2_per_objfile->dwz_file = result;
2704 return result;
2705}
2706\f
2707/* DWARF quick_symbols_functions support. */
2708
2709/* TUs can share .debug_line entries, and there can be a lot more TUs than
2710 unique line tables, so we maintain a separate table of all .debug_line
2711 derived entries to support the sharing.
2712 All the quick functions need is the list of file names. We discard the
2713 line_header when we're done and don't need to record it here. */
2714struct quick_file_names
2715{
2716 /* The data used to construct the hash key. */
2717 struct stmt_list_hash hash;
2718
2719 /* The number of entries in file_names, real_names. */
2720 unsigned int num_file_names;
2721
2722 /* The file names from the line table, after being run through
2723 file_full_name. */
2724 const char **file_names;
2725
2726 /* The file names from the line table after being run through
2727 gdb_realpath. These are computed lazily. */
2728 const char **real_names;
2729};
2730
2731/* When using the index (and thus not using psymtabs), each CU has an
2732 object of this type. This is used to hold information needed by
2733 the various "quick" methods. */
2734struct dwarf2_per_cu_quick_data
2735{
2736 /* The file table. This can be NULL if there was no file table
2737 or it's currently not read in.
2738 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2739 struct quick_file_names *file_names;
2740
2741 /* The corresponding symbol table. This is NULL if symbols for this
2742 CU have not yet been read. */
2743 struct compunit_symtab *compunit_symtab;
2744
2745 /* A temporary mark bit used when iterating over all CUs in
2746 expand_symtabs_matching. */
2747 unsigned int mark : 1;
2748
2749 /* True if we've tried to read the file table and found there isn't one.
2750 There will be no point in trying to read it again next time. */
2751 unsigned int no_file_data : 1;
2752};
2753
2754/* Utility hash function for a stmt_list_hash. */
2755
2756static hashval_t
2757hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2758{
2759 hashval_t v = 0;
2760
2761 if (stmt_list_hash->dwo_unit != NULL)
2762 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2763 v += to_underlying (stmt_list_hash->line_sect_off);
2764 return v;
2765}
2766
2767/* Utility equality function for a stmt_list_hash. */
2768
2769static int
2770eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2771 const struct stmt_list_hash *rhs)
2772{
2773 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2774 return 0;
2775 if (lhs->dwo_unit != NULL
2776 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2777 return 0;
2778
2779 return lhs->line_sect_off == rhs->line_sect_off;
2780}
2781
2782/* Hash function for a quick_file_names. */
2783
2784static hashval_t
2785hash_file_name_entry (const void *e)
2786{
2787 const struct quick_file_names *file_data
2788 = (const struct quick_file_names *) e;
2789
2790 return hash_stmt_list_entry (&file_data->hash);
2791}
2792
2793/* Equality function for a quick_file_names. */
2794
2795static int
2796eq_file_name_entry (const void *a, const void *b)
2797{
2798 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2799 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2800
2801 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2802}
2803
2804/* Delete function for a quick_file_names. */
2805
2806static void
2807delete_file_name_entry (void *e)
2808{
2809 struct quick_file_names *file_data = (struct quick_file_names *) e;
2810 int i;
2811
2812 for (i = 0; i < file_data->num_file_names; ++i)
2813 {
2814 xfree ((void*) file_data->file_names[i]);
2815 if (file_data->real_names)
2816 xfree ((void*) file_data->real_names[i]);
2817 }
2818
2819 /* The space for the struct itself lives on objfile_obstack,
2820 so we don't free it here. */
2821}
2822
2823/* Create a quick_file_names hash table. */
2824
2825static htab_t
2826create_quick_file_names_table (unsigned int nr_initial_entries)
2827{
2828 return htab_create_alloc (nr_initial_entries,
2829 hash_file_name_entry, eq_file_name_entry,
2830 delete_file_name_entry, xcalloc, xfree);
2831}
2832
2833/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2834 have to be created afterwards. You should call age_cached_comp_units after
2835 processing PER_CU->CU. dw2_setup must have been already called. */
2836
2837static void
2838load_cu (struct dwarf2_per_cu_data *per_cu)
2839{
2840 if (per_cu->is_debug_types)
2841 load_full_type_unit (per_cu);
2842 else
2843 load_full_comp_unit (per_cu, language_minimal);
2844
2845 if (per_cu->cu == NULL)
2846 return; /* Dummy CU. */
2847
2848 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2849}
2850
2851/* Read in the symbols for PER_CU. */
2852
2853static void
2854dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2855{
2856 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2857
2858 /* Skip type_unit_groups, reading the type units they contain
2859 is handled elsewhere. */
2860 if (IS_TYPE_UNIT_GROUP (per_cu))
2861 return;
2862
2863 /* The destructor of dwarf2_queue_guard frees any entries left on
2864 the queue. After this point we're guaranteed to leave this function
2865 with the dwarf queue empty. */
2866 dwarf2_queue_guard q_guard;
2867
2868 if (dwarf2_per_objfile->using_index
2869 ? per_cu->v.quick->compunit_symtab == NULL
2870 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2871 {
2872 queue_comp_unit (per_cu, language_minimal);
2873 load_cu (per_cu);
2874
2875 /* If we just loaded a CU from a DWO, and we're working with an index
2876 that may badly handle TUs, load all the TUs in that DWO as well.
2877 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2878 if (!per_cu->is_debug_types
2879 && per_cu->cu != NULL
2880 && per_cu->cu->dwo_unit != NULL
2881 && dwarf2_per_objfile->index_table != NULL
2882 && dwarf2_per_objfile->index_table->version <= 7
2883 /* DWP files aren't supported yet. */
2884 && get_dwp_file (dwarf2_per_objfile) == NULL)
2885 queue_and_load_all_dwo_tus (per_cu);
2886 }
2887
2888 process_queue (dwarf2_per_objfile);
2889
2890 /* Age the cache, releasing compilation units that have not
2891 been used recently. */
2892 age_cached_comp_units (dwarf2_per_objfile);
2893}
2894
2895/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2896 the objfile from which this CU came. Returns the resulting symbol
2897 table. */
2898
2899static struct compunit_symtab *
2900dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2901{
2902 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2903
2904 gdb_assert (dwarf2_per_objfile->using_index);
2905 if (!per_cu->v.quick->compunit_symtab)
2906 {
2907 free_cached_comp_units freer (dwarf2_per_objfile);
2908 scoped_restore decrementer = increment_reading_symtab ();
2909 dw2_do_instantiate_symtab (per_cu);
2910 process_cu_includes (dwarf2_per_objfile);
2911 }
2912
2913 return per_cu->v.quick->compunit_symtab;
2914}
2915
2916/* See declaration. */
2917
2918dwarf2_per_cu_data *
2919dwarf2_per_objfile::get_cutu (int index)
2920{
2921 if (index >= this->all_comp_units.size ())
2922 {
2923 index -= this->all_comp_units.size ();
2924 gdb_assert (index < this->all_type_units.size ());
2925 return &this->all_type_units[index]->per_cu;
2926 }
2927
2928 return this->all_comp_units[index];
2929}
2930
2931/* See declaration. */
2932
2933dwarf2_per_cu_data *
2934dwarf2_per_objfile::get_cu (int index)
2935{
2936 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2937
2938 return this->all_comp_units[index];
2939}
2940
2941/* See declaration. */
2942
2943signatured_type *
2944dwarf2_per_objfile::get_tu (int index)
2945{
2946 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2947
2948 return this->all_type_units[index];
2949}
2950
2951/* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2952 objfile_obstack, and constructed with the specified field
2953 values. */
2954
2955static dwarf2_per_cu_data *
2956create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2957 struct dwarf2_section_info *section,
2958 int is_dwz,
2959 sect_offset sect_off, ULONGEST length)
2960{
2961 struct objfile *objfile = dwarf2_per_objfile->objfile;
2962 dwarf2_per_cu_data *the_cu
2963 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2964 struct dwarf2_per_cu_data);
2965 the_cu->sect_off = sect_off;
2966 the_cu->length = length;
2967 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2968 the_cu->section = section;
2969 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2970 struct dwarf2_per_cu_quick_data);
2971 the_cu->is_dwz = is_dwz;
2972 return the_cu;
2973}
2974
2975/* A helper for create_cus_from_index that handles a given list of
2976 CUs. */
2977
2978static void
2979create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2980 const gdb_byte *cu_list, offset_type n_elements,
2981 struct dwarf2_section_info *section,
2982 int is_dwz)
2983{
2984 for (offset_type i = 0; i < n_elements; i += 2)
2985 {
2986 gdb_static_assert (sizeof (ULONGEST) >= 8);
2987
2988 sect_offset sect_off
2989 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2990 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2991 cu_list += 2 * 8;
2992
2993 dwarf2_per_cu_data *per_cu
2994 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2995 sect_off, length);
2996 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2997 }
2998}
2999
3000/* Read the CU list from the mapped index, and use it to create all
3001 the CU objects for this objfile. */
3002
3003static void
3004create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3005 const gdb_byte *cu_list, offset_type cu_list_elements,
3006 const gdb_byte *dwz_list, offset_type dwz_elements)
3007{
3008 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3009 dwarf2_per_objfile->all_comp_units.reserve
3010 ((cu_list_elements + dwz_elements) / 2);
3011
3012 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3013 &dwarf2_per_objfile->info, 0);
3014
3015 if (dwz_elements == 0)
3016 return;
3017
3018 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3019 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3020 &dwz->info, 1);
3021}
3022
3023/* Create the signatured type hash table from the index. */
3024
3025static void
3026create_signatured_type_table_from_index
3027 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3028 struct dwarf2_section_info *section,
3029 const gdb_byte *bytes,
3030 offset_type elements)
3031{
3032 struct objfile *objfile = dwarf2_per_objfile->objfile;
3033
3034 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3035 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3036
3037 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3038
3039 for (offset_type i = 0; i < elements; i += 3)
3040 {
3041 struct signatured_type *sig_type;
3042 ULONGEST signature;
3043 void **slot;
3044 cu_offset type_offset_in_tu;
3045
3046 gdb_static_assert (sizeof (ULONGEST) >= 8);
3047 sect_offset sect_off
3048 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3049 type_offset_in_tu
3050 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3051 BFD_ENDIAN_LITTLE);
3052 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3053 bytes += 3 * 8;
3054
3055 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3056 struct signatured_type);
3057 sig_type->signature = signature;
3058 sig_type->type_offset_in_tu = type_offset_in_tu;
3059 sig_type->per_cu.is_debug_types = 1;
3060 sig_type->per_cu.section = section;
3061 sig_type->per_cu.sect_off = sect_off;
3062 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3063 sig_type->per_cu.v.quick
3064 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3065 struct dwarf2_per_cu_quick_data);
3066
3067 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3068 *slot = sig_type;
3069
3070 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3071 }
3072
3073 dwarf2_per_objfile->signatured_types = sig_types_hash;
3074}
3075
3076/* Create the signatured type hash table from .debug_names. */
3077
3078static void
3079create_signatured_type_table_from_debug_names
3080 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3081 const mapped_debug_names &map,
3082 struct dwarf2_section_info *section,
3083 struct dwarf2_section_info *abbrev_section)
3084{
3085 struct objfile *objfile = dwarf2_per_objfile->objfile;
3086
3087 dwarf2_read_section (objfile, section);
3088 dwarf2_read_section (objfile, abbrev_section);
3089
3090 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3091 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3092
3093 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3094
3095 for (uint32_t i = 0; i < map.tu_count; ++i)
3096 {
3097 struct signatured_type *sig_type;
3098 void **slot;
3099
3100 sect_offset sect_off
3101 = (sect_offset) (extract_unsigned_integer
3102 (map.tu_table_reordered + i * map.offset_size,
3103 map.offset_size,
3104 map.dwarf5_byte_order));
3105
3106 comp_unit_head cu_header;
3107 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3108 abbrev_section,
3109 section->buffer + to_underlying (sect_off),
3110 rcuh_kind::TYPE);
3111
3112 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3113 struct signatured_type);
3114 sig_type->signature = cu_header.signature;
3115 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3116 sig_type->per_cu.is_debug_types = 1;
3117 sig_type->per_cu.section = section;
3118 sig_type->per_cu.sect_off = sect_off;
3119 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3120 sig_type->per_cu.v.quick
3121 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3122 struct dwarf2_per_cu_quick_data);
3123
3124 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3125 *slot = sig_type;
3126
3127 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3128 }
3129
3130 dwarf2_per_objfile->signatured_types = sig_types_hash;
3131}
3132
3133/* Read the address map data from the mapped index, and use it to
3134 populate the objfile's psymtabs_addrmap. */
3135
3136static void
3137create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3138 struct mapped_index *index)
3139{
3140 struct objfile *objfile = dwarf2_per_objfile->objfile;
3141 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3142 const gdb_byte *iter, *end;
3143 struct addrmap *mutable_map;
3144 CORE_ADDR baseaddr;
3145
3146 auto_obstack temp_obstack;
3147
3148 mutable_map = addrmap_create_mutable (&temp_obstack);
3149
3150 iter = index->address_table.data ();
3151 end = iter + index->address_table.size ();
3152
3153 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3154
3155 while (iter < end)
3156 {
3157 ULONGEST hi, lo, cu_index;
3158 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3159 iter += 8;
3160 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3161 iter += 8;
3162 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3163 iter += 4;
3164
3165 if (lo > hi)
3166 {
3167 complaint (&symfile_complaints,
3168 _(".gdb_index address table has invalid range (%s - %s)"),
3169 hex_string (lo), hex_string (hi));
3170 continue;
3171 }
3172
3173 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3174 {
3175 complaint (&symfile_complaints,
3176 _(".gdb_index address table has invalid CU number %u"),
3177 (unsigned) cu_index);
3178 continue;
3179 }
3180
3181 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3182 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3183 addrmap_set_empty (mutable_map, lo, hi - 1,
3184 dwarf2_per_objfile->get_cu (cu_index));
3185 }
3186
3187 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3188 &objfile->objfile_obstack);
3189}
3190
3191/* Read the address map data from DWARF-5 .debug_aranges, and use it to
3192 populate the objfile's psymtabs_addrmap. */
3193
3194static void
3195create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3196 struct dwarf2_section_info *section)
3197{
3198 struct objfile *objfile = dwarf2_per_objfile->objfile;
3199 bfd *abfd = objfile->obfd;
3200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3201 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3202 SECT_OFF_TEXT (objfile));
3203
3204 auto_obstack temp_obstack;
3205 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3206
3207 std::unordered_map<sect_offset,
3208 dwarf2_per_cu_data *,
3209 gdb::hash_enum<sect_offset>>
3210 debug_info_offset_to_per_cu;
3211 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3212 {
3213 const auto insertpair
3214 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3215 if (!insertpair.second)
3216 {
3217 warning (_("Section .debug_aranges in %s has duplicate "
3218 "debug_info_offset %s, ignoring .debug_aranges."),
3219 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3220 return;
3221 }
3222 }
3223
3224 dwarf2_read_section (objfile, section);
3225
3226 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3227
3228 const gdb_byte *addr = section->buffer;
3229
3230 while (addr < section->buffer + section->size)
3231 {
3232 const gdb_byte *const entry_addr = addr;
3233 unsigned int bytes_read;
3234
3235 const LONGEST entry_length = read_initial_length (abfd, addr,
3236 &bytes_read);
3237 addr += bytes_read;
3238
3239 const gdb_byte *const entry_end = addr + entry_length;
3240 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3241 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3242 if (addr + entry_length > section->buffer + section->size)
3243 {
3244 warning (_("Section .debug_aranges in %s entry at offset %zu "
3245 "length %s exceeds section length %s, "
3246 "ignoring .debug_aranges."),
3247 objfile_name (objfile), entry_addr - section->buffer,
3248 plongest (bytes_read + entry_length),
3249 pulongest (section->size));
3250 return;
3251 }
3252
3253 /* The version number. */
3254 const uint16_t version = read_2_bytes (abfd, addr);
3255 addr += 2;
3256 if (version != 2)
3257 {
3258 warning (_("Section .debug_aranges in %s entry at offset %zu "
3259 "has unsupported version %d, ignoring .debug_aranges."),
3260 objfile_name (objfile), entry_addr - section->buffer,
3261 version);
3262 return;
3263 }
3264
3265 const uint64_t debug_info_offset
3266 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3267 addr += offset_size;
3268 const auto per_cu_it
3269 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3270 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3271 {
3272 warning (_("Section .debug_aranges in %s entry at offset %zu "
3273 "debug_info_offset %s does not exists, "
3274 "ignoring .debug_aranges."),
3275 objfile_name (objfile), entry_addr - section->buffer,
3276 pulongest (debug_info_offset));
3277 return;
3278 }
3279 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3280
3281 const uint8_t address_size = *addr++;
3282 if (address_size < 1 || address_size > 8)
3283 {
3284 warning (_("Section .debug_aranges in %s entry at offset %zu "
3285 "address_size %u is invalid, ignoring .debug_aranges."),
3286 objfile_name (objfile), entry_addr - section->buffer,
3287 address_size);
3288 return;
3289 }
3290
3291 const uint8_t segment_selector_size = *addr++;
3292 if (segment_selector_size != 0)
3293 {
3294 warning (_("Section .debug_aranges in %s entry at offset %zu "
3295 "segment_selector_size %u is not supported, "
3296 "ignoring .debug_aranges."),
3297 objfile_name (objfile), entry_addr - section->buffer,
3298 segment_selector_size);
3299 return;
3300 }
3301
3302 /* Must pad to an alignment boundary that is twice the address
3303 size. It is undocumented by the DWARF standard but GCC does
3304 use it. */
3305 for (size_t padding = ((-(addr - section->buffer))
3306 & (2 * address_size - 1));
3307 padding > 0; padding--)
3308 if (*addr++ != 0)
3309 {
3310 warning (_("Section .debug_aranges in %s entry at offset %zu "
3311 "padding is not zero, ignoring .debug_aranges."),
3312 objfile_name (objfile), entry_addr - section->buffer);
3313 return;
3314 }
3315
3316 for (;;)
3317 {
3318 if (addr + 2 * address_size > entry_end)
3319 {
3320 warning (_("Section .debug_aranges in %s entry at offset %zu "
3321 "address list is not properly terminated, "
3322 "ignoring .debug_aranges."),
3323 objfile_name (objfile), entry_addr - section->buffer);
3324 return;
3325 }
3326 ULONGEST start = extract_unsigned_integer (addr, address_size,
3327 dwarf5_byte_order);
3328 addr += address_size;
3329 ULONGEST length = extract_unsigned_integer (addr, address_size,
3330 dwarf5_byte_order);
3331 addr += address_size;
3332 if (start == 0 && length == 0)
3333 break;
3334 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3335 {
3336 /* Symbol was eliminated due to a COMDAT group. */
3337 continue;
3338 }
3339 ULONGEST end = start + length;
3340 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3341 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3342 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3343 }
3344 }
3345
3346 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3347 &objfile->objfile_obstack);
3348}
3349
3350/* Find a slot in the mapped index INDEX for the object named NAME.
3351 If NAME is found, set *VEC_OUT to point to the CU vector in the
3352 constant pool and return true. If NAME cannot be found, return
3353 false. */
3354
3355static bool
3356find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3357 offset_type **vec_out)
3358{
3359 offset_type hash;
3360 offset_type slot, step;
3361 int (*cmp) (const char *, const char *);
3362
3363 gdb::unique_xmalloc_ptr<char> without_params;
3364 if (current_language->la_language == language_cplus
3365 || current_language->la_language == language_fortran
3366 || current_language->la_language == language_d)
3367 {
3368 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3369 not contain any. */
3370
3371 if (strchr (name, '(') != NULL)
3372 {
3373 without_params = cp_remove_params (name);
3374
3375 if (without_params != NULL)
3376 name = without_params.get ();
3377 }
3378 }
3379
3380 /* Index version 4 did not support case insensitive searches. But the
3381 indices for case insensitive languages are built in lowercase, therefore
3382 simulate our NAME being searched is also lowercased. */
3383 hash = mapped_index_string_hash ((index->version == 4
3384 && case_sensitivity == case_sensitive_off
3385 ? 5 : index->version),
3386 name);
3387
3388 slot = hash & (index->symbol_table.size () - 1);
3389 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3390 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3391
3392 for (;;)
3393 {
3394 const char *str;
3395
3396 const auto &bucket = index->symbol_table[slot];
3397 if (bucket.name == 0 && bucket.vec == 0)
3398 return false;
3399
3400 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3401 if (!cmp (name, str))
3402 {
3403 *vec_out = (offset_type *) (index->constant_pool
3404 + MAYBE_SWAP (bucket.vec));
3405 return true;
3406 }
3407
3408 slot = (slot + step) & (index->symbol_table.size () - 1);
3409 }
3410}
3411
3412/* A helper function that reads the .gdb_index from SECTION and fills
3413 in MAP. FILENAME is the name of the file containing the section;
3414 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3415 ok to use deprecated sections.
3416
3417 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3418 out parameters that are filled in with information about the CU and
3419 TU lists in the section.
3420
3421 Returns 1 if all went well, 0 otherwise. */
3422
3423static int
3424read_index_from_section (struct objfile *objfile,
3425 const char *filename,
3426 int deprecated_ok,
3427 struct dwarf2_section_info *section,
3428 struct mapped_index *map,
3429 const gdb_byte **cu_list,
3430 offset_type *cu_list_elements,
3431 const gdb_byte **types_list,
3432 offset_type *types_list_elements)
3433{
3434 const gdb_byte *addr;
3435 offset_type version;
3436 offset_type *metadata;
3437 int i;
3438
3439 if (dwarf2_section_empty_p (section))
3440 return 0;
3441
3442 /* Older elfutils strip versions could keep the section in the main
3443 executable while splitting it for the separate debug info file. */
3444 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3445 return 0;
3446
3447 dwarf2_read_section (objfile, section);
3448
3449 addr = section->buffer;
3450 /* Version check. */
3451 version = MAYBE_SWAP (*(offset_type *) addr);
3452 /* Versions earlier than 3 emitted every copy of a psymbol. This
3453 causes the index to behave very poorly for certain requests. Version 3
3454 contained incomplete addrmap. So, it seems better to just ignore such
3455 indices. */
3456 if (version < 4)
3457 {
3458 static int warning_printed = 0;
3459 if (!warning_printed)
3460 {
3461 warning (_("Skipping obsolete .gdb_index section in %s."),
3462 filename);
3463 warning_printed = 1;
3464 }
3465 return 0;
3466 }
3467 /* Index version 4 uses a different hash function than index version
3468 5 and later.
3469
3470 Versions earlier than 6 did not emit psymbols for inlined
3471 functions. Using these files will cause GDB not to be able to
3472 set breakpoints on inlined functions by name, so we ignore these
3473 indices unless the user has done
3474 "set use-deprecated-index-sections on". */
3475 if (version < 6 && !deprecated_ok)
3476 {
3477 static int warning_printed = 0;
3478 if (!warning_printed)
3479 {
3480 warning (_("\
3481Skipping deprecated .gdb_index section in %s.\n\
3482Do \"set use-deprecated-index-sections on\" before the file is read\n\
3483to use the section anyway."),
3484 filename);
3485 warning_printed = 1;
3486 }
3487 return 0;
3488 }
3489 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3490 of the TU (for symbols coming from TUs),
3491 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3492 Plus gold-generated indices can have duplicate entries for global symbols,
3493 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3494 These are just performance bugs, and we can't distinguish gdb-generated
3495 indices from gold-generated ones, so issue no warning here. */
3496
3497 /* Indexes with higher version than the one supported by GDB may be no
3498 longer backward compatible. */
3499 if (version > 8)
3500 return 0;
3501
3502 map->version = version;
3503 map->total_size = section->size;
3504
3505 metadata = (offset_type *) (addr + sizeof (offset_type));
3506
3507 i = 0;
3508 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3509 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3510 / 8);
3511 ++i;
3512
3513 *types_list = addr + MAYBE_SWAP (metadata[i]);
3514 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3515 - MAYBE_SWAP (metadata[i]))
3516 / 8);
3517 ++i;
3518
3519 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3520 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3521 map->address_table
3522 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3523 ++i;
3524
3525 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3526 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3527 map->symbol_table
3528 = gdb::array_view<mapped_index::symbol_table_slot>
3529 ((mapped_index::symbol_table_slot *) symbol_table,
3530 (mapped_index::symbol_table_slot *) symbol_table_end);
3531
3532 ++i;
3533 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3534
3535 return 1;
3536}
3537
3538/* Read .gdb_index. If everything went ok, initialize the "quick"
3539 elements of all the CUs and return 1. Otherwise, return 0. */
3540
3541static int
3542dwarf2_read_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3543{
3544 struct mapped_index local_map, *map;
3545 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3546 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3547 struct dwz_file *dwz;
3548 struct objfile *objfile = dwarf2_per_objfile->objfile;
3549
3550 if (!read_index_from_section (objfile, objfile_name (objfile),
3551 use_deprecated_index_sections,
3552 &dwarf2_per_objfile->gdb_index, &local_map,
3553 &cu_list, &cu_list_elements,
3554 &types_list, &types_list_elements))
3555 return 0;
3556
3557 /* Don't use the index if it's empty. */
3558 if (local_map.symbol_table.empty ())
3559 return 0;
3560
3561 /* If there is a .dwz file, read it so we can get its CU list as
3562 well. */
3563 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3564 if (dwz != NULL)
3565 {
3566 struct mapped_index dwz_map;
3567 const gdb_byte *dwz_types_ignore;
3568 offset_type dwz_types_elements_ignore;
3569
3570 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3571 1,
3572 &dwz->gdb_index, &dwz_map,
3573 &dwz_list, &dwz_list_elements,
3574 &dwz_types_ignore,
3575 &dwz_types_elements_ignore))
3576 {
3577 warning (_("could not read '.gdb_index' section from %s; skipping"),
3578 bfd_get_filename (dwz->dwz_bfd));
3579 return 0;
3580 }
3581 }
3582
3583 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3584 dwz_list, dwz_list_elements);
3585
3586 if (types_list_elements)
3587 {
3588 struct dwarf2_section_info *section;
3589
3590 /* We can only handle a single .debug_types when we have an
3591 index. */
3592 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3593 return 0;
3594
3595 section = VEC_index (dwarf2_section_info_def,
3596 dwarf2_per_objfile->types, 0);
3597
3598 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3599 types_list, types_list_elements);
3600 }
3601
3602 create_addrmap_from_index (dwarf2_per_objfile, &local_map);
3603
3604 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3605 map = new (map) mapped_index ();
3606 *map = local_map;
3607
3608 dwarf2_per_objfile->index_table = map;
3609 dwarf2_per_objfile->using_index = 1;
3610 dwarf2_per_objfile->quick_file_names_table =
3611 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3612
3613 return 1;
3614}
3615
3616/* die_reader_func for dw2_get_file_names. */
3617
3618static void
3619dw2_get_file_names_reader (const struct die_reader_specs *reader,
3620 const gdb_byte *info_ptr,
3621 struct die_info *comp_unit_die,
3622 int has_children,
3623 void *data)
3624{
3625 struct dwarf2_cu *cu = reader->cu;
3626 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3627 struct dwarf2_per_objfile *dwarf2_per_objfile
3628 = cu->per_cu->dwarf2_per_objfile;
3629 struct objfile *objfile = dwarf2_per_objfile->objfile;
3630 struct dwarf2_per_cu_data *lh_cu;
3631 struct attribute *attr;
3632 int i;
3633 void **slot;
3634 struct quick_file_names *qfn;
3635
3636 gdb_assert (! this_cu->is_debug_types);
3637
3638 /* Our callers never want to match partial units -- instead they
3639 will match the enclosing full CU. */
3640 if (comp_unit_die->tag == DW_TAG_partial_unit)
3641 {
3642 this_cu->v.quick->no_file_data = 1;
3643 return;
3644 }
3645
3646 lh_cu = this_cu;
3647 slot = NULL;
3648
3649 line_header_up lh;
3650 sect_offset line_offset {};
3651
3652 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3653 if (attr)
3654 {
3655 struct quick_file_names find_entry;
3656
3657 line_offset = (sect_offset) DW_UNSND (attr);
3658
3659 /* We may have already read in this line header (TU line header sharing).
3660 If we have we're done. */
3661 find_entry.hash.dwo_unit = cu->dwo_unit;
3662 find_entry.hash.line_sect_off = line_offset;
3663 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3664 &find_entry, INSERT);
3665 if (*slot != NULL)
3666 {
3667 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3668 return;
3669 }
3670
3671 lh = dwarf_decode_line_header (line_offset, cu);
3672 }
3673 if (lh == NULL)
3674 {
3675 lh_cu->v.quick->no_file_data = 1;
3676 return;
3677 }
3678
3679 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3680 qfn->hash.dwo_unit = cu->dwo_unit;
3681 qfn->hash.line_sect_off = line_offset;
3682 gdb_assert (slot != NULL);
3683 *slot = qfn;
3684
3685 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3686
3687 qfn->num_file_names = lh->file_names.size ();
3688 qfn->file_names =
3689 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3690 for (i = 0; i < lh->file_names.size (); ++i)
3691 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3692 qfn->real_names = NULL;
3693
3694 lh_cu->v.quick->file_names = qfn;
3695}
3696
3697/* A helper for the "quick" functions which attempts to read the line
3698 table for THIS_CU. */
3699
3700static struct quick_file_names *
3701dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3702{
3703 /* This should never be called for TUs. */
3704 gdb_assert (! this_cu->is_debug_types);
3705 /* Nor type unit groups. */
3706 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3707
3708 if (this_cu->v.quick->file_names != NULL)
3709 return this_cu->v.quick->file_names;
3710 /* If we know there is no line data, no point in looking again. */
3711 if (this_cu->v.quick->no_file_data)
3712 return NULL;
3713
3714 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3715
3716 if (this_cu->v.quick->no_file_data)
3717 return NULL;
3718 return this_cu->v.quick->file_names;
3719}
3720
3721/* A helper for the "quick" functions which computes and caches the
3722 real path for a given file name from the line table. */
3723
3724static const char *
3725dw2_get_real_path (struct objfile *objfile,
3726 struct quick_file_names *qfn, int index)
3727{
3728 if (qfn->real_names == NULL)
3729 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3730 qfn->num_file_names, const char *);
3731
3732 if (qfn->real_names[index] == NULL)
3733 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3734
3735 return qfn->real_names[index];
3736}
3737
3738static struct symtab *
3739dw2_find_last_source_symtab (struct objfile *objfile)
3740{
3741 struct dwarf2_per_objfile *dwarf2_per_objfile
3742 = get_dwarf2_per_objfile (objfile);
3743 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3744 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu);
3745
3746 if (cust == NULL)
3747 return NULL;
3748
3749 return compunit_primary_filetab (cust);
3750}
3751
3752/* Traversal function for dw2_forget_cached_source_info. */
3753
3754static int
3755dw2_free_cached_file_names (void **slot, void *info)
3756{
3757 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3758
3759 if (file_data->real_names)
3760 {
3761 int i;
3762
3763 for (i = 0; i < file_data->num_file_names; ++i)
3764 {
3765 xfree ((void*) file_data->real_names[i]);
3766 file_data->real_names[i] = NULL;
3767 }
3768 }
3769
3770 return 1;
3771}
3772
3773static void
3774dw2_forget_cached_source_info (struct objfile *objfile)
3775{
3776 struct dwarf2_per_objfile *dwarf2_per_objfile
3777 = get_dwarf2_per_objfile (objfile);
3778
3779 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3780 dw2_free_cached_file_names, NULL);
3781}
3782
3783/* Helper function for dw2_map_symtabs_matching_filename that expands
3784 the symtabs and calls the iterator. */
3785
3786static int
3787dw2_map_expand_apply (struct objfile *objfile,
3788 struct dwarf2_per_cu_data *per_cu,
3789 const char *name, const char *real_path,
3790 gdb::function_view<bool (symtab *)> callback)
3791{
3792 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3793
3794 /* Don't visit already-expanded CUs. */
3795 if (per_cu->v.quick->compunit_symtab)
3796 return 0;
3797
3798 /* This may expand more than one symtab, and we want to iterate over
3799 all of them. */
3800 dw2_instantiate_symtab (per_cu);
3801
3802 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3803 last_made, callback);
3804}
3805
3806/* Implementation of the map_symtabs_matching_filename method. */
3807
3808static bool
3809dw2_map_symtabs_matching_filename
3810 (struct objfile *objfile, const char *name, const char *real_path,
3811 gdb::function_view<bool (symtab *)> callback)
3812{
3813 const char *name_basename = lbasename (name);
3814 struct dwarf2_per_objfile *dwarf2_per_objfile
3815 = get_dwarf2_per_objfile (objfile);
3816
3817 /* The rule is CUs specify all the files, including those used by
3818 any TU, so there's no need to scan TUs here. */
3819
3820 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3821 {
3822 /* We only need to look at symtabs not already expanded. */
3823 if (per_cu->v.quick->compunit_symtab)
3824 continue;
3825
3826 quick_file_names *file_data = dw2_get_file_names (per_cu);
3827 if (file_data == NULL)
3828 continue;
3829
3830 for (int j = 0; j < file_data->num_file_names; ++j)
3831 {
3832 const char *this_name = file_data->file_names[j];
3833 const char *this_real_name;
3834
3835 if (compare_filenames_for_search (this_name, name))
3836 {
3837 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3838 callback))
3839 return true;
3840 continue;
3841 }
3842
3843 /* Before we invoke realpath, which can get expensive when many
3844 files are involved, do a quick comparison of the basenames. */
3845 if (! basenames_may_differ
3846 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3847 continue;
3848
3849 this_real_name = dw2_get_real_path (objfile, file_data, j);
3850 if (compare_filenames_for_search (this_real_name, name))
3851 {
3852 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3853 callback))
3854 return true;
3855 continue;
3856 }
3857
3858 if (real_path != NULL)
3859 {
3860 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3861 gdb_assert (IS_ABSOLUTE_PATH (name));
3862 if (this_real_name != NULL
3863 && FILENAME_CMP (real_path, this_real_name) == 0)
3864 {
3865 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3866 callback))
3867 return true;
3868 continue;
3869 }
3870 }
3871 }
3872 }
3873
3874 return false;
3875}
3876
3877/* Struct used to manage iterating over all CUs looking for a symbol. */
3878
3879struct dw2_symtab_iterator
3880{
3881 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3882 struct dwarf2_per_objfile *dwarf2_per_objfile;
3883 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3884 int want_specific_block;
3885 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3886 Unused if !WANT_SPECIFIC_BLOCK. */
3887 int block_index;
3888 /* The kind of symbol we're looking for. */
3889 domain_enum domain;
3890 /* The list of CUs from the index entry of the symbol,
3891 or NULL if not found. */
3892 offset_type *vec;
3893 /* The next element in VEC to look at. */
3894 int next;
3895 /* The number of elements in VEC, or zero if there is no match. */
3896 int length;
3897 /* Have we seen a global version of the symbol?
3898 If so we can ignore all further global instances.
3899 This is to work around gold/15646, inefficient gold-generated
3900 indices. */
3901 int global_seen;
3902};
3903
3904/* Initialize the index symtab iterator ITER.
3905 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3906 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3907
3908static void
3909dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3910 struct dwarf2_per_objfile *dwarf2_per_objfile,
3911 int want_specific_block,
3912 int block_index,
3913 domain_enum domain,
3914 const char *name)
3915{
3916 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3917 iter->want_specific_block = want_specific_block;
3918 iter->block_index = block_index;
3919 iter->domain = domain;
3920 iter->next = 0;
3921 iter->global_seen = 0;
3922
3923 mapped_index *index = dwarf2_per_objfile->index_table;
3924
3925 /* index is NULL if OBJF_READNOW. */
3926 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3927 iter->length = MAYBE_SWAP (*iter->vec);
3928 else
3929 {
3930 iter->vec = NULL;
3931 iter->length = 0;
3932 }
3933}
3934
3935/* Return the next matching CU or NULL if there are no more. */
3936
3937static struct dwarf2_per_cu_data *
3938dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3939{
3940 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3941
3942 for ( ; iter->next < iter->length; ++iter->next)
3943 {
3944 offset_type cu_index_and_attrs =
3945 MAYBE_SWAP (iter->vec[iter->next + 1]);
3946 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3947 int want_static = iter->block_index != GLOBAL_BLOCK;
3948 /* This value is only valid for index versions >= 7. */
3949 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3950 gdb_index_symbol_kind symbol_kind =
3951 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3952 /* Only check the symbol attributes if they're present.
3953 Indices prior to version 7 don't record them,
3954 and indices >= 7 may elide them for certain symbols
3955 (gold does this). */
3956 int attrs_valid =
3957 (dwarf2_per_objfile->index_table->version >= 7
3958 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3959
3960 /* Don't crash on bad data. */
3961 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3962 + dwarf2_per_objfile->all_type_units.size ()))
3963 {
3964 complaint (&symfile_complaints,
3965 _(".gdb_index entry has bad CU index"
3966 " [in module %s]"),
3967 objfile_name (dwarf2_per_objfile->objfile));
3968 continue;
3969 }
3970
3971 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3972
3973 /* Skip if already read in. */
3974 if (per_cu->v.quick->compunit_symtab)
3975 continue;
3976
3977 /* Check static vs global. */
3978 if (attrs_valid)
3979 {
3980 if (iter->want_specific_block
3981 && want_static != is_static)
3982 continue;
3983 /* Work around gold/15646. */
3984 if (!is_static && iter->global_seen)
3985 continue;
3986 if (!is_static)
3987 iter->global_seen = 1;
3988 }
3989
3990 /* Only check the symbol's kind if it has one. */
3991 if (attrs_valid)
3992 {
3993 switch (iter->domain)
3994 {
3995 case VAR_DOMAIN:
3996 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3997 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3998 /* Some types are also in VAR_DOMAIN. */
3999 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4000 continue;
4001 break;
4002 case STRUCT_DOMAIN:
4003 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4004 continue;
4005 break;
4006 case LABEL_DOMAIN:
4007 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4008 continue;
4009 break;
4010 default:
4011 break;
4012 }
4013 }
4014
4015 ++iter->next;
4016 return per_cu;
4017 }
4018
4019 return NULL;
4020}
4021
4022static struct compunit_symtab *
4023dw2_lookup_symbol (struct objfile *objfile, int block_index,
4024 const char *name, domain_enum domain)
4025{
4026 struct compunit_symtab *stab_best = NULL;
4027 struct dwarf2_per_objfile *dwarf2_per_objfile
4028 = get_dwarf2_per_objfile (objfile);
4029
4030 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4031
4032 struct dw2_symtab_iterator iter;
4033 struct dwarf2_per_cu_data *per_cu;
4034
4035 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4036
4037 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4038 {
4039 struct symbol *sym, *with_opaque = NULL;
4040 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
4041 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4042 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4043
4044 sym = block_find_symbol (block, name, domain,
4045 block_find_non_opaque_type_preferred,
4046 &with_opaque);
4047
4048 /* Some caution must be observed with overloaded functions
4049 and methods, since the index will not contain any overload
4050 information (but NAME might contain it). */
4051
4052 if (sym != NULL
4053 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4054 return stab;
4055 if (with_opaque != NULL
4056 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4057 stab_best = stab;
4058
4059 /* Keep looking through other CUs. */
4060 }
4061
4062 return stab_best;
4063}
4064
4065static void
4066dw2_print_stats (struct objfile *objfile)
4067{
4068 struct dwarf2_per_objfile *dwarf2_per_objfile
4069 = get_dwarf2_per_objfile (objfile);
4070 int total = (dwarf2_per_objfile->all_comp_units.size ()
4071 + dwarf2_per_objfile->all_type_units.size ());
4072 int count = 0;
4073
4074 for (int i = 0; i < total; ++i)
4075 {
4076 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4077
4078 if (!per_cu->v.quick->compunit_symtab)
4079 ++count;
4080 }
4081 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4082 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4083}
4084
4085/* This dumps minimal information about the index.
4086 It is called via "mt print objfiles".
4087 One use is to verify .gdb_index has been loaded by the
4088 gdb.dwarf2/gdb-index.exp testcase. */
4089
4090static void
4091dw2_dump (struct objfile *objfile)
4092{
4093 struct dwarf2_per_objfile *dwarf2_per_objfile
4094 = get_dwarf2_per_objfile (objfile);
4095
4096 gdb_assert (dwarf2_per_objfile->using_index);
4097 printf_filtered (".gdb_index:");
4098 if (dwarf2_per_objfile->index_table != NULL)
4099 {
4100 printf_filtered (" version %d\n",
4101 dwarf2_per_objfile->index_table->version);
4102 }
4103 else
4104 printf_filtered (" faked for \"readnow\"\n");
4105 printf_filtered ("\n");
4106}
4107
4108static void
4109dw2_relocate (struct objfile *objfile,
4110 const struct section_offsets *new_offsets,
4111 const struct section_offsets *delta)
4112{
4113 /* There's nothing to relocate here. */
4114}
4115
4116static void
4117dw2_expand_symtabs_for_function (struct objfile *objfile,
4118 const char *func_name)
4119{
4120 struct dwarf2_per_objfile *dwarf2_per_objfile
4121 = get_dwarf2_per_objfile (objfile);
4122
4123 struct dw2_symtab_iterator iter;
4124 struct dwarf2_per_cu_data *per_cu;
4125
4126 /* Note: It doesn't matter what we pass for block_index here. */
4127 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4128 func_name);
4129
4130 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4131 dw2_instantiate_symtab (per_cu);
4132
4133}
4134
4135static void
4136dw2_expand_all_symtabs (struct objfile *objfile)
4137{
4138 struct dwarf2_per_objfile *dwarf2_per_objfile
4139 = get_dwarf2_per_objfile (objfile);
4140 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4141 + dwarf2_per_objfile->all_type_units.size ());
4142
4143 for (int i = 0; i < total_units; ++i)
4144 {
4145 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4146
4147 dw2_instantiate_symtab (per_cu);
4148 }
4149}
4150
4151static void
4152dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4153 const char *fullname)
4154{
4155 struct dwarf2_per_objfile *dwarf2_per_objfile
4156 = get_dwarf2_per_objfile (objfile);
4157
4158 /* We don't need to consider type units here.
4159 This is only called for examining code, e.g. expand_line_sal.
4160 There can be an order of magnitude (or more) more type units
4161 than comp units, and we avoid them if we can. */
4162
4163 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4164 {
4165 /* We only need to look at symtabs not already expanded. */
4166 if (per_cu->v.quick->compunit_symtab)
4167 continue;
4168
4169 quick_file_names *file_data = dw2_get_file_names (per_cu);
4170 if (file_data == NULL)
4171 continue;
4172
4173 for (int j = 0; j < file_data->num_file_names; ++j)
4174 {
4175 const char *this_fullname = file_data->file_names[j];
4176
4177 if (filename_cmp (this_fullname, fullname) == 0)
4178 {
4179 dw2_instantiate_symtab (per_cu);
4180 break;
4181 }
4182 }
4183 }
4184}
4185
4186static void
4187dw2_map_matching_symbols (struct objfile *objfile,
4188 const char * name, domain_enum domain,
4189 int global,
4190 int (*callback) (struct block *,
4191 struct symbol *, void *),
4192 void *data, symbol_name_match_type match,
4193 symbol_compare_ftype *ordered_compare)
4194{
4195 /* Currently unimplemented; used for Ada. The function can be called if the
4196 current language is Ada for a non-Ada objfile using GNU index. As Ada
4197 does not look for non-Ada symbols this function should just return. */
4198}
4199
4200/* Symbol name matcher for .gdb_index names.
4201
4202 Symbol names in .gdb_index have a few particularities:
4203
4204 - There's no indication of which is the language of each symbol.
4205
4206 Since each language has its own symbol name matching algorithm,
4207 and we don't know which language is the right one, we must match
4208 each symbol against all languages. This would be a potential
4209 performance problem if it were not mitigated by the
4210 mapped_index::name_components lookup table, which significantly
4211 reduces the number of times we need to call into this matcher,
4212 making it a non-issue.
4213
4214 - Symbol names in the index have no overload (parameter)
4215 information. I.e., in C++, "foo(int)" and "foo(long)" both
4216 appear as "foo" in the index, for example.
4217
4218 This means that the lookup names passed to the symbol name
4219 matcher functions must have no parameter information either
4220 because (e.g.) symbol search name "foo" does not match
4221 lookup-name "foo(int)" [while swapping search name for lookup
4222 name would match].
4223*/
4224class gdb_index_symbol_name_matcher
4225{
4226public:
4227 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4228 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4229
4230 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4231 Returns true if any matcher matches. */
4232 bool matches (const char *symbol_name);
4233
4234private:
4235 /* A reference to the lookup name we're matching against. */
4236 const lookup_name_info &m_lookup_name;
4237
4238 /* A vector holding all the different symbol name matchers, for all
4239 languages. */
4240 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4241};
4242
4243gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4244 (const lookup_name_info &lookup_name)
4245 : m_lookup_name (lookup_name)
4246{
4247 /* Prepare the vector of comparison functions upfront, to avoid
4248 doing the same work for each symbol. Care is taken to avoid
4249 matching with the same matcher more than once if/when multiple
4250 languages use the same matcher function. */
4251 auto &matchers = m_symbol_name_matcher_funcs;
4252 matchers.reserve (nr_languages);
4253
4254 matchers.push_back (default_symbol_name_matcher);
4255
4256 for (int i = 0; i < nr_languages; i++)
4257 {
4258 const language_defn *lang = language_def ((enum language) i);
4259 symbol_name_matcher_ftype *name_matcher
4260 = get_symbol_name_matcher (lang, m_lookup_name);
4261
4262 /* Don't insert the same comparison routine more than once.
4263 Note that we do this linear walk instead of a seemingly
4264 cheaper sorted insert, or use a std::set or something like
4265 that, because relative order of function addresses is not
4266 stable. This is not a problem in practice because the number
4267 of supported languages is low, and the cost here is tiny
4268 compared to the number of searches we'll do afterwards using
4269 this object. */
4270 if (name_matcher != default_symbol_name_matcher
4271 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4272 == matchers.end ()))
4273 matchers.push_back (name_matcher);
4274 }
4275}
4276
4277bool
4278gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4279{
4280 for (auto matches_name : m_symbol_name_matcher_funcs)
4281 if (matches_name (symbol_name, m_lookup_name, NULL))
4282 return true;
4283
4284 return false;
4285}
4286
4287/* Starting from a search name, return the string that finds the upper
4288 bound of all strings that start with SEARCH_NAME in a sorted name
4289 list. Returns the empty string to indicate that the upper bound is
4290 the end of the list. */
4291
4292static std::string
4293make_sort_after_prefix_name (const char *search_name)
4294{
4295 /* When looking to complete "func", we find the upper bound of all
4296 symbols that start with "func" by looking for where we'd insert
4297 the closest string that would follow "func" in lexicographical
4298 order. Usually, that's "func"-with-last-character-incremented,
4299 i.e. "fund". Mind non-ASCII characters, though. Usually those
4300 will be UTF-8 multi-byte sequences, but we can't be certain.
4301 Especially mind the 0xff character, which is a valid character in
4302 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4303 rule out compilers allowing it in identifiers. Note that
4304 conveniently, strcmp/strcasecmp are specified to compare
4305 characters interpreted as unsigned char. So what we do is treat
4306 the whole string as a base 256 number composed of a sequence of
4307 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4308 to 0, and carries 1 to the following more-significant position.
4309 If the very first character in SEARCH_NAME ends up incremented
4310 and carries/overflows, then the upper bound is the end of the
4311 list. The string after the empty string is also the empty
4312 string.
4313
4314 Some examples of this operation:
4315
4316 SEARCH_NAME => "+1" RESULT
4317
4318 "abc" => "abd"
4319 "ab\xff" => "ac"
4320 "\xff" "a" "\xff" => "\xff" "b"
4321 "\xff" => ""
4322 "\xff\xff" => ""
4323 "" => ""
4324
4325 Then, with these symbols for example:
4326
4327 func
4328 func1
4329 fund
4330
4331 completing "func" looks for symbols between "func" and
4332 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4333 which finds "func" and "func1", but not "fund".
4334
4335 And with:
4336
4337 funcÿ (Latin1 'ÿ' [0xff])
4338 funcÿ1
4339 fund
4340
4341 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4342 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4343
4344 And with:
4345
4346 ÿÿ (Latin1 'ÿ' [0xff])
4347 ÿÿ1
4348
4349 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4350 the end of the list.
4351 */
4352 std::string after = search_name;
4353 while (!after.empty () && (unsigned char) after.back () == 0xff)
4354 after.pop_back ();
4355 if (!after.empty ())
4356 after.back () = (unsigned char) after.back () + 1;
4357 return after;
4358}
4359
4360/* See declaration. */
4361
4362std::pair<std::vector<name_component>::const_iterator,
4363 std::vector<name_component>::const_iterator>
4364mapped_index_base::find_name_components_bounds
4365 (const lookup_name_info &lookup_name_without_params) const
4366{
4367 auto *name_cmp
4368 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4369
4370 const char *cplus
4371 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4372
4373 /* Comparison function object for lower_bound that matches against a
4374 given symbol name. */
4375 auto lookup_compare_lower = [&] (const name_component &elem,
4376 const char *name)
4377 {
4378 const char *elem_qualified = this->symbol_name_at (elem.idx);
4379 const char *elem_name = elem_qualified + elem.name_offset;
4380 return name_cmp (elem_name, name) < 0;
4381 };
4382
4383 /* Comparison function object for upper_bound that matches against a
4384 given symbol name. */
4385 auto lookup_compare_upper = [&] (const char *name,
4386 const name_component &elem)
4387 {
4388 const char *elem_qualified = this->symbol_name_at (elem.idx);
4389 const char *elem_name = elem_qualified + elem.name_offset;
4390 return name_cmp (name, elem_name) < 0;
4391 };
4392
4393 auto begin = this->name_components.begin ();
4394 auto end = this->name_components.end ();
4395
4396 /* Find the lower bound. */
4397 auto lower = [&] ()
4398 {
4399 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4400 return begin;
4401 else
4402 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4403 } ();
4404
4405 /* Find the upper bound. */
4406 auto upper = [&] ()
4407 {
4408 if (lookup_name_without_params.completion_mode ())
4409 {
4410 /* In completion mode, we want UPPER to point past all
4411 symbols names that have the same prefix. I.e., with
4412 these symbols, and completing "func":
4413
4414 function << lower bound
4415 function1
4416 other_function << upper bound
4417
4418 We find the upper bound by looking for the insertion
4419 point of "func"-with-last-character-incremented,
4420 i.e. "fund". */
4421 std::string after = make_sort_after_prefix_name (cplus);
4422 if (after.empty ())
4423 return end;
4424 return std::lower_bound (lower, end, after.c_str (),
4425 lookup_compare_lower);
4426 }
4427 else
4428 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4429 } ();
4430
4431 return {lower, upper};
4432}
4433
4434/* See declaration. */
4435
4436void
4437mapped_index_base::build_name_components ()
4438{
4439 if (!this->name_components.empty ())
4440 return;
4441
4442 this->name_components_casing = case_sensitivity;
4443 auto *name_cmp
4444 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4445
4446 /* The code below only knows how to break apart components of C++
4447 symbol names (and other languages that use '::' as
4448 namespace/module separator). If we add support for wild matching
4449 to some language that uses some other operator (E.g., Ada, Go and
4450 D use '.'), then we'll need to try splitting the symbol name
4451 according to that language too. Note that Ada does support wild
4452 matching, but doesn't currently support .gdb_index. */
4453 auto count = this->symbol_name_count ();
4454 for (offset_type idx = 0; idx < count; idx++)
4455 {
4456 if (this->symbol_name_slot_invalid (idx))
4457 continue;
4458
4459 const char *name = this->symbol_name_at (idx);
4460
4461 /* Add each name component to the name component table. */
4462 unsigned int previous_len = 0;
4463 for (unsigned int current_len = cp_find_first_component (name);
4464 name[current_len] != '\0';
4465 current_len += cp_find_first_component (name + current_len))
4466 {
4467 gdb_assert (name[current_len] == ':');
4468 this->name_components.push_back ({previous_len, idx});
4469 /* Skip the '::'. */
4470 current_len += 2;
4471 previous_len = current_len;
4472 }
4473 this->name_components.push_back ({previous_len, idx});
4474 }
4475
4476 /* Sort name_components elements by name. */
4477 auto name_comp_compare = [&] (const name_component &left,
4478 const name_component &right)
4479 {
4480 const char *left_qualified = this->symbol_name_at (left.idx);
4481 const char *right_qualified = this->symbol_name_at (right.idx);
4482
4483 const char *left_name = left_qualified + left.name_offset;
4484 const char *right_name = right_qualified + right.name_offset;
4485
4486 return name_cmp (left_name, right_name) < 0;
4487 };
4488
4489 std::sort (this->name_components.begin (),
4490 this->name_components.end (),
4491 name_comp_compare);
4492}
4493
4494/* Helper for dw2_expand_symtabs_matching that works with a
4495 mapped_index_base instead of the containing objfile. This is split
4496 to a separate function in order to be able to unit test the
4497 name_components matching using a mock mapped_index_base. For each
4498 symbol name that matches, calls MATCH_CALLBACK, passing it the
4499 symbol's index in the mapped_index_base symbol table. */
4500
4501static void
4502dw2_expand_symtabs_matching_symbol
4503 (mapped_index_base &index,
4504 const lookup_name_info &lookup_name_in,
4505 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4506 enum search_domain kind,
4507 gdb::function_view<void (offset_type)> match_callback)
4508{
4509 lookup_name_info lookup_name_without_params
4510 = lookup_name_in.make_ignore_params ();
4511 gdb_index_symbol_name_matcher lookup_name_matcher
4512 (lookup_name_without_params);
4513
4514 /* Build the symbol name component sorted vector, if we haven't
4515 yet. */
4516 index.build_name_components ();
4517
4518 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4519
4520 /* Now for each symbol name in range, check to see if we have a name
4521 match, and if so, call the MATCH_CALLBACK callback. */
4522
4523 /* The same symbol may appear more than once in the range though.
4524 E.g., if we're looking for symbols that complete "w", and we have
4525 a symbol named "w1::w2", we'll find the two name components for
4526 that same symbol in the range. To be sure we only call the
4527 callback once per symbol, we first collect the symbol name
4528 indexes that matched in a temporary vector and ignore
4529 duplicates. */
4530 std::vector<offset_type> matches;
4531 matches.reserve (std::distance (bounds.first, bounds.second));
4532
4533 for (; bounds.first != bounds.second; ++bounds.first)
4534 {
4535 const char *qualified = index.symbol_name_at (bounds.first->idx);
4536
4537 if (!lookup_name_matcher.matches (qualified)
4538 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4539 continue;
4540
4541 matches.push_back (bounds.first->idx);
4542 }
4543
4544 std::sort (matches.begin (), matches.end ());
4545
4546 /* Finally call the callback, once per match. */
4547 ULONGEST prev = -1;
4548 for (offset_type idx : matches)
4549 {
4550 if (prev != idx)
4551 {
4552 match_callback (idx);
4553 prev = idx;
4554 }
4555 }
4556
4557 /* Above we use a type wider than idx's for 'prev', since 0 and
4558 (offset_type)-1 are both possible values. */
4559 static_assert (sizeof (prev) > sizeof (offset_type), "");
4560}
4561
4562#if GDB_SELF_TEST
4563
4564namespace selftests { namespace dw2_expand_symtabs_matching {
4565
4566/* A mock .gdb_index/.debug_names-like name index table, enough to
4567 exercise dw2_expand_symtabs_matching_symbol, which works with the
4568 mapped_index_base interface. Builds an index from the symbol list
4569 passed as parameter to the constructor. */
4570class mock_mapped_index : public mapped_index_base
4571{
4572public:
4573 mock_mapped_index (gdb::array_view<const char *> symbols)
4574 : m_symbol_table (symbols)
4575 {}
4576
4577 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4578
4579 /* Return the number of names in the symbol table. */
4580 virtual size_t symbol_name_count () const
4581 {
4582 return m_symbol_table.size ();
4583 }
4584
4585 /* Get the name of the symbol at IDX in the symbol table. */
4586 virtual const char *symbol_name_at (offset_type idx) const
4587 {
4588 return m_symbol_table[idx];
4589 }
4590
4591private:
4592 gdb::array_view<const char *> m_symbol_table;
4593};
4594
4595/* Convenience function that converts a NULL pointer to a "<null>"
4596 string, to pass to print routines. */
4597
4598static const char *
4599string_or_null (const char *str)
4600{
4601 return str != NULL ? str : "<null>";
4602}
4603
4604/* Check if a lookup_name_info built from
4605 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4606 index. EXPECTED_LIST is the list of expected matches, in expected
4607 matching order. If no match expected, then an empty list is
4608 specified. Returns true on success. On failure prints a warning
4609 indicating the file:line that failed, and returns false. */
4610
4611static bool
4612check_match (const char *file, int line,
4613 mock_mapped_index &mock_index,
4614 const char *name, symbol_name_match_type match_type,
4615 bool completion_mode,
4616 std::initializer_list<const char *> expected_list)
4617{
4618 lookup_name_info lookup_name (name, match_type, completion_mode);
4619
4620 bool matched = true;
4621
4622 auto mismatch = [&] (const char *expected_str,
4623 const char *got)
4624 {
4625 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4626 "expected=\"%s\", got=\"%s\"\n"),
4627 file, line,
4628 (match_type == symbol_name_match_type::FULL
4629 ? "FULL" : "WILD"),
4630 name, string_or_null (expected_str), string_or_null (got));
4631 matched = false;
4632 };
4633
4634 auto expected_it = expected_list.begin ();
4635 auto expected_end = expected_list.end ();
4636
4637 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4638 NULL, ALL_DOMAIN,
4639 [&] (offset_type idx)
4640 {
4641 const char *matched_name = mock_index.symbol_name_at (idx);
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644
4645 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4646 mismatch (expected_str, matched_name);
4647 });
4648
4649 const char *expected_str
4650 = expected_it == expected_end ? NULL : *expected_it++;
4651 if (expected_str != NULL)
4652 mismatch (expected_str, NULL);
4653
4654 return matched;
4655}
4656
4657/* The symbols added to the mock mapped_index for testing (in
4658 canonical form). */
4659static const char *test_symbols[] = {
4660 "function",
4661 "std::bar",
4662 "std::zfunction",
4663 "std::zfunction2",
4664 "w1::w2",
4665 "ns::foo<char*>",
4666 "ns::foo<int>",
4667 "ns::foo<long>",
4668 "ns2::tmpl<int>::foo2",
4669 "(anonymous namespace)::A::B::C",
4670
4671 /* These are used to check that the increment-last-char in the
4672 matching algorithm for completion doesn't match "t1_fund" when
4673 completing "t1_func". */
4674 "t1_func",
4675 "t1_func1",
4676 "t1_fund",
4677 "t1_fund1",
4678
4679 /* A UTF-8 name with multi-byte sequences to make sure that
4680 cp-name-parser understands this as a single identifier ("função"
4681 is "function" in PT). */
4682 u8"u8função",
4683
4684 /* \377 (0xff) is Latin1 'ÿ'. */
4685 "yfunc\377",
4686
4687 /* \377 (0xff) is Latin1 'ÿ'. */
4688 "\377",
4689 "\377\377123",
4690
4691 /* A name with all sorts of complications. Starts with "z" to make
4692 it easier for the completion tests below. */
4693#define Z_SYM_NAME \
4694 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4695 "::tuple<(anonymous namespace)::ui*, " \
4696 "std::default_delete<(anonymous namespace)::ui>, void>"
4697
4698 Z_SYM_NAME
4699};
4700
4701/* Returns true if the mapped_index_base::find_name_component_bounds
4702 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4703 in completion mode. */
4704
4705static bool
4706check_find_bounds_finds (mapped_index_base &index,
4707 const char *search_name,
4708 gdb::array_view<const char *> expected_syms)
4709{
4710 lookup_name_info lookup_name (search_name,
4711 symbol_name_match_type::FULL, true);
4712
4713 auto bounds = index.find_name_components_bounds (lookup_name);
4714
4715 size_t distance = std::distance (bounds.first, bounds.second);
4716 if (distance != expected_syms.size ())
4717 return false;
4718
4719 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4720 {
4721 auto nc_elem = bounds.first + exp_elem;
4722 const char *qualified = index.symbol_name_at (nc_elem->idx);
4723 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4724 return false;
4725 }
4726
4727 return true;
4728}
4729
4730/* Test the lower-level mapped_index::find_name_component_bounds
4731 method. */
4732
4733static void
4734test_mapped_index_find_name_component_bounds ()
4735{
4736 mock_mapped_index mock_index (test_symbols);
4737
4738 mock_index.build_name_components ();
4739
4740 /* Test the lower-level mapped_index::find_name_component_bounds
4741 method in completion mode. */
4742 {
4743 static const char *expected_syms[] = {
4744 "t1_func",
4745 "t1_func1",
4746 };
4747
4748 SELF_CHECK (check_find_bounds_finds (mock_index,
4749 "t1_func", expected_syms));
4750 }
4751
4752 /* Check that the increment-last-char in the name matching algorithm
4753 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4754 {
4755 static const char *expected_syms1[] = {
4756 "\377",
4757 "\377\377123",
4758 };
4759 SELF_CHECK (check_find_bounds_finds (mock_index,
4760 "\377", expected_syms1));
4761
4762 static const char *expected_syms2[] = {
4763 "\377\377123",
4764 };
4765 SELF_CHECK (check_find_bounds_finds (mock_index,
4766 "\377\377", expected_syms2));
4767 }
4768}
4769
4770/* Test dw2_expand_symtabs_matching_symbol. */
4771
4772static void
4773test_dw2_expand_symtabs_matching_symbol ()
4774{
4775 mock_mapped_index mock_index (test_symbols);
4776
4777 /* We let all tests run until the end even if some fails, for debug
4778 convenience. */
4779 bool any_mismatch = false;
4780
4781 /* Create the expected symbols list (an initializer_list). Needed
4782 because lists have commas, and we need to pass them to CHECK,
4783 which is a macro. */
4784#define EXPECT(...) { __VA_ARGS__ }
4785
4786 /* Wrapper for check_match that passes down the current
4787 __FILE__/__LINE__. */
4788#define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4789 any_mismatch |= !check_match (__FILE__, __LINE__, \
4790 mock_index, \
4791 NAME, MATCH_TYPE, COMPLETION_MODE, \
4792 EXPECTED_LIST)
4793
4794 /* Identity checks. */
4795 for (const char *sym : test_symbols)
4796 {
4797 /* Should be able to match all existing symbols. */
4798 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4799 EXPECT (sym));
4800
4801 /* Should be able to match all existing symbols with
4802 parameters. */
4803 std::string with_params = std::string (sym) + "(int)";
4804 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4805 EXPECT (sym));
4806
4807 /* Should be able to match all existing symbols with
4808 parameters and qualifiers. */
4809 with_params = std::string (sym) + " ( int ) const";
4810 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4811 EXPECT (sym));
4812
4813 /* This should really find sym, but cp-name-parser.y doesn't
4814 know about lvalue/rvalue qualifiers yet. */
4815 with_params = std::string (sym) + " ( int ) &&";
4816 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4817 {});
4818 }
4819
4820 /* Check that the name matching algorithm for completion doesn't get
4821 confused with Latin1 'ÿ' / 0xff. */
4822 {
4823 static const char str[] = "\377";
4824 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4825 EXPECT ("\377", "\377\377123"));
4826 }
4827
4828 /* Check that the increment-last-char in the matching algorithm for
4829 completion doesn't match "t1_fund" when completing "t1_func". */
4830 {
4831 static const char str[] = "t1_func";
4832 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4833 EXPECT ("t1_func", "t1_func1"));
4834 }
4835
4836 /* Check that completion mode works at each prefix of the expected
4837 symbol name. */
4838 {
4839 static const char str[] = "function(int)";
4840 size_t len = strlen (str);
4841 std::string lookup;
4842
4843 for (size_t i = 1; i < len; i++)
4844 {
4845 lookup.assign (str, i);
4846 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4847 EXPECT ("function"));
4848 }
4849 }
4850
4851 /* While "w" is a prefix of both components, the match function
4852 should still only be called once. */
4853 {
4854 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4855 EXPECT ("w1::w2"));
4856 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4857 EXPECT ("w1::w2"));
4858 }
4859
4860 /* Same, with a "complicated" symbol. */
4861 {
4862 static const char str[] = Z_SYM_NAME;
4863 size_t len = strlen (str);
4864 std::string lookup;
4865
4866 for (size_t i = 1; i < len; i++)
4867 {
4868 lookup.assign (str, i);
4869 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4870 EXPECT (Z_SYM_NAME));
4871 }
4872 }
4873
4874 /* In FULL mode, an incomplete symbol doesn't match. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4877 {});
4878 }
4879
4880 /* A complete symbol with parameters matches any overload, since the
4881 index has no overload info. */
4882 {
4883 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4884 EXPECT ("std::zfunction", "std::zfunction2"));
4885 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4886 EXPECT ("std::zfunction", "std::zfunction2"));
4887 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4888 EXPECT ("std::zfunction", "std::zfunction2"));
4889 }
4890
4891 /* Check that whitespace is ignored appropriately. A symbol with a
4892 template argument list. */
4893 {
4894 static const char expected[] = "ns::foo<int>";
4895 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4896 EXPECT (expected));
4897 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4898 EXPECT (expected));
4899 }
4900
4901 /* Check that whitespace is ignored appropriately. A symbol with a
4902 template argument list that includes a pointer. */
4903 {
4904 static const char expected[] = "ns::foo<char*>";
4905 /* Try both completion and non-completion modes. */
4906 static const bool completion_mode[2] = {false, true};
4907 for (size_t i = 0; i < 2; i++)
4908 {
4909 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4910 completion_mode[i], EXPECT (expected));
4911 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4912 completion_mode[i], EXPECT (expected));
4913
4914 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4915 completion_mode[i], EXPECT (expected));
4916 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4917 completion_mode[i], EXPECT (expected));
4918 }
4919 }
4920
4921 {
4922 /* Check method qualifiers are ignored. */
4923 static const char expected[] = "ns::foo<char*>";
4924 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4925 symbol_name_match_type::FULL, true, EXPECT (expected));
4926 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4927 symbol_name_match_type::FULL, true, EXPECT (expected));
4928 CHECK_MATCH ("foo < char * > ( int ) const",
4929 symbol_name_match_type::WILD, true, EXPECT (expected));
4930 CHECK_MATCH ("foo < char * > ( int ) &&",
4931 symbol_name_match_type::WILD, true, EXPECT (expected));
4932 }
4933
4934 /* Test lookup names that don't match anything. */
4935 {
4936 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4937 {});
4938
4939 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4940 {});
4941 }
4942
4943 /* Some wild matching tests, exercising "(anonymous namespace)",
4944 which should not be confused with a parameter list. */
4945 {
4946 static const char *syms[] = {
4947 "A::B::C",
4948 "B::C",
4949 "C",
4950 "A :: B :: C ( int )",
4951 "B :: C ( int )",
4952 "C ( int )",
4953 };
4954
4955 for (const char *s : syms)
4956 {
4957 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4958 EXPECT ("(anonymous namespace)::A::B::C"));
4959 }
4960 }
4961
4962 {
4963 static const char expected[] = "ns2::tmpl<int>::foo2";
4964 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4965 EXPECT (expected));
4966 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4967 EXPECT (expected));
4968 }
4969
4970 SELF_CHECK (!any_mismatch);
4971
4972#undef EXPECT
4973#undef CHECK_MATCH
4974}
4975
4976static void
4977run_test ()
4978{
4979 test_mapped_index_find_name_component_bounds ();
4980 test_dw2_expand_symtabs_matching_symbol ();
4981}
4982
4983}} // namespace selftests::dw2_expand_symtabs_matching
4984
4985#endif /* GDB_SELF_TEST */
4986
4987/* If FILE_MATCHER is NULL or if PER_CU has
4988 dwarf2_per_cu_quick_data::MARK set (see
4989 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4990 EXPANSION_NOTIFY on it. */
4991
4992static void
4993dw2_expand_symtabs_matching_one
4994 (struct dwarf2_per_cu_data *per_cu,
4995 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4996 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4997{
4998 if (file_matcher == NULL || per_cu->v.quick->mark)
4999 {
5000 bool symtab_was_null
5001 = (per_cu->v.quick->compunit_symtab == NULL);
5002
5003 dw2_instantiate_symtab (per_cu);
5004
5005 if (expansion_notify != NULL
5006 && symtab_was_null
5007 && per_cu->v.quick->compunit_symtab != NULL)
5008 expansion_notify (per_cu->v.quick->compunit_symtab);
5009 }
5010}
5011
5012/* Helper for dw2_expand_matching symtabs. Called on each symbol
5013 matched, to expand corresponding CUs that were marked. IDX is the
5014 index of the symbol name that matched. */
5015
5016static void
5017dw2_expand_marked_cus
5018 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5019 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5020 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5021 search_domain kind)
5022{
5023 offset_type *vec, vec_len, vec_idx;
5024 bool global_seen = false;
5025 mapped_index &index = *dwarf2_per_objfile->index_table;
5026
5027 vec = (offset_type *) (index.constant_pool
5028 + MAYBE_SWAP (index.symbol_table[idx].vec));
5029 vec_len = MAYBE_SWAP (vec[0]);
5030 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5031 {
5032 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5033 /* This value is only valid for index versions >= 7. */
5034 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5035 gdb_index_symbol_kind symbol_kind =
5036 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5037 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5038 /* Only check the symbol attributes if they're present.
5039 Indices prior to version 7 don't record them,
5040 and indices >= 7 may elide them for certain symbols
5041 (gold does this). */
5042 int attrs_valid =
5043 (index.version >= 7
5044 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5045
5046 /* Work around gold/15646. */
5047 if (attrs_valid)
5048 {
5049 if (!is_static && global_seen)
5050 continue;
5051 if (!is_static)
5052 global_seen = true;
5053 }
5054
5055 /* Only check the symbol's kind if it has one. */
5056 if (attrs_valid)
5057 {
5058 switch (kind)
5059 {
5060 case VARIABLES_DOMAIN:
5061 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5062 continue;
5063 break;
5064 case FUNCTIONS_DOMAIN:
5065 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5066 continue;
5067 break;
5068 case TYPES_DOMAIN:
5069 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5070 continue;
5071 break;
5072 default:
5073 break;
5074 }
5075 }
5076
5077 /* Don't crash on bad data. */
5078 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5079 + dwarf2_per_objfile->all_type_units.size ()))
5080 {
5081 complaint (&symfile_complaints,
5082 _(".gdb_index entry has bad CU index"
5083 " [in module %s]"),
5084 objfile_name (dwarf2_per_objfile->objfile));
5085 continue;
5086 }
5087
5088 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5089 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5090 expansion_notify);
5091 }
5092}
5093
5094/* If FILE_MATCHER is non-NULL, set all the
5095 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5096 that match FILE_MATCHER. */
5097
5098static void
5099dw_expand_symtabs_matching_file_matcher
5100 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5101 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5102{
5103 if (file_matcher == NULL)
5104 return;
5105
5106 objfile *const objfile = dwarf2_per_objfile->objfile;
5107
5108 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5109 htab_eq_pointer,
5110 NULL, xcalloc, xfree));
5111 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5112 htab_eq_pointer,
5113 NULL, xcalloc, xfree));
5114
5115 /* The rule is CUs specify all the files, including those used by
5116 any TU, so there's no need to scan TUs here. */
5117
5118 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5119 {
5120 QUIT;
5121
5122 per_cu->v.quick->mark = 0;
5123
5124 /* We only need to look at symtabs not already expanded. */
5125 if (per_cu->v.quick->compunit_symtab)
5126 continue;
5127
5128 quick_file_names *file_data = dw2_get_file_names (per_cu);
5129 if (file_data == NULL)
5130 continue;
5131
5132 if (htab_find (visited_not_found.get (), file_data) != NULL)
5133 continue;
5134 else if (htab_find (visited_found.get (), file_data) != NULL)
5135 {
5136 per_cu->v.quick->mark = 1;
5137 continue;
5138 }
5139
5140 for (int j = 0; j < file_data->num_file_names; ++j)
5141 {
5142 const char *this_real_name;
5143
5144 if (file_matcher (file_data->file_names[j], false))
5145 {
5146 per_cu->v.quick->mark = 1;
5147 break;
5148 }
5149
5150 /* Before we invoke realpath, which can get expensive when many
5151 files are involved, do a quick comparison of the basenames. */
5152 if (!basenames_may_differ
5153 && !file_matcher (lbasename (file_data->file_names[j]),
5154 true))
5155 continue;
5156
5157 this_real_name = dw2_get_real_path (objfile, file_data, j);
5158 if (file_matcher (this_real_name, false))
5159 {
5160 per_cu->v.quick->mark = 1;
5161 break;
5162 }
5163 }
5164
5165 void **slot = htab_find_slot (per_cu->v.quick->mark
5166 ? visited_found.get ()
5167 : visited_not_found.get (),
5168 file_data, INSERT);
5169 *slot = file_data;
5170 }
5171}
5172
5173static void
5174dw2_expand_symtabs_matching
5175 (struct objfile *objfile,
5176 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5177 const lookup_name_info &lookup_name,
5178 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5179 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5180 enum search_domain kind)
5181{
5182 struct dwarf2_per_objfile *dwarf2_per_objfile
5183 = get_dwarf2_per_objfile (objfile);
5184
5185 /* index_table is NULL if OBJF_READNOW. */
5186 if (!dwarf2_per_objfile->index_table)
5187 return;
5188
5189 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5190
5191 mapped_index &index = *dwarf2_per_objfile->index_table;
5192
5193 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5194 symbol_matcher,
5195 kind, [&] (offset_type idx)
5196 {
5197 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5198 expansion_notify, kind);
5199 });
5200}
5201
5202/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5203 symtab. */
5204
5205static struct compunit_symtab *
5206recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5207 CORE_ADDR pc)
5208{
5209 int i;
5210
5211 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5212 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5213 return cust;
5214
5215 if (cust->includes == NULL)
5216 return NULL;
5217
5218 for (i = 0; cust->includes[i]; ++i)
5219 {
5220 struct compunit_symtab *s = cust->includes[i];
5221
5222 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5223 if (s != NULL)
5224 return s;
5225 }
5226
5227 return NULL;
5228}
5229
5230static struct compunit_symtab *
5231dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5232 struct bound_minimal_symbol msymbol,
5233 CORE_ADDR pc,
5234 struct obj_section *section,
5235 int warn_if_readin)
5236{
5237 struct dwarf2_per_cu_data *data;
5238 struct compunit_symtab *result;
5239
5240 if (!objfile->psymtabs_addrmap)
5241 return NULL;
5242
5243 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5244 pc);
5245 if (!data)
5246 return NULL;
5247
5248 if (warn_if_readin && data->v.quick->compunit_symtab)
5249 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5250 paddress (get_objfile_arch (objfile), pc));
5251
5252 result
5253 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5254 pc);
5255 gdb_assert (result != NULL);
5256 return result;
5257}
5258
5259static void
5260dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5261 void *data, int need_fullname)
5262{
5263 struct dwarf2_per_objfile *dwarf2_per_objfile
5264 = get_dwarf2_per_objfile (objfile);
5265
5266 if (!dwarf2_per_objfile->filenames_cache)
5267 {
5268 dwarf2_per_objfile->filenames_cache.emplace ();
5269
5270 htab_up visited (htab_create_alloc (10,
5271 htab_hash_pointer, htab_eq_pointer,
5272 NULL, xcalloc, xfree));
5273
5274 /* The rule is CUs specify all the files, including those used
5275 by any TU, so there's no need to scan TUs here. We can
5276 ignore file names coming from already-expanded CUs. */
5277
5278 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5279 {
5280 if (per_cu->v.quick->compunit_symtab)
5281 {
5282 void **slot = htab_find_slot (visited.get (),
5283 per_cu->v.quick->file_names,
5284 INSERT);
5285
5286 *slot = per_cu->v.quick->file_names;
5287 }
5288 }
5289
5290 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5291 {
5292 /* We only need to look at symtabs not already expanded. */
5293 if (per_cu->v.quick->compunit_symtab)
5294 continue;
5295
5296 quick_file_names *file_data = dw2_get_file_names (per_cu);
5297 if (file_data == NULL)
5298 continue;
5299
5300 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5301 if (*slot)
5302 {
5303 /* Already visited. */
5304 continue;
5305 }
5306 *slot = file_data;
5307
5308 for (int j = 0; j < file_data->num_file_names; ++j)
5309 {
5310 const char *filename = file_data->file_names[j];
5311 dwarf2_per_objfile->filenames_cache->seen (filename);
5312 }
5313 }
5314 }
5315
5316 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5317 {
5318 gdb::unique_xmalloc_ptr<char> this_real_name;
5319
5320 if (need_fullname)
5321 this_real_name = gdb_realpath (filename);
5322 (*fun) (filename, this_real_name.get (), data);
5323 });
5324}
5325
5326static int
5327dw2_has_symbols (struct objfile *objfile)
5328{
5329 return 1;
5330}
5331
5332const struct quick_symbol_functions dwarf2_gdb_index_functions =
5333{
5334 dw2_has_symbols,
5335 dw2_find_last_source_symtab,
5336 dw2_forget_cached_source_info,
5337 dw2_map_symtabs_matching_filename,
5338 dw2_lookup_symbol,
5339 dw2_print_stats,
5340 dw2_dump,
5341 dw2_relocate,
5342 dw2_expand_symtabs_for_function,
5343 dw2_expand_all_symtabs,
5344 dw2_expand_symtabs_with_fullname,
5345 dw2_map_matching_symbols,
5346 dw2_expand_symtabs_matching,
5347 dw2_find_pc_sect_compunit_symtab,
5348 NULL,
5349 dw2_map_symbol_filenames
5350};
5351
5352/* DWARF-5 debug_names reader. */
5353
5354/* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5355static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5356
5357/* A helper function that reads the .debug_names section in SECTION
5358 and fills in MAP. FILENAME is the name of the file containing the
5359 section; it is used for error reporting.
5360
5361 Returns true if all went well, false otherwise. */
5362
5363static bool
5364read_debug_names_from_section (struct objfile *objfile,
5365 const char *filename,
5366 struct dwarf2_section_info *section,
5367 mapped_debug_names &map)
5368{
5369 if (dwarf2_section_empty_p (section))
5370 return false;
5371
5372 /* Older elfutils strip versions could keep the section in the main
5373 executable while splitting it for the separate debug info file. */
5374 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5375 return false;
5376
5377 dwarf2_read_section (objfile, section);
5378
5379 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5380
5381 const gdb_byte *addr = section->buffer;
5382
5383 bfd *const abfd = get_section_bfd_owner (section);
5384
5385 unsigned int bytes_read;
5386 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5387 addr += bytes_read;
5388
5389 map.dwarf5_is_dwarf64 = bytes_read != 4;
5390 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5391 if (bytes_read + length != section->size)
5392 {
5393 /* There may be multiple per-CU indices. */
5394 warning (_("Section .debug_names in %s length %s does not match "
5395 "section length %s, ignoring .debug_names."),
5396 filename, plongest (bytes_read + length),
5397 pulongest (section->size));
5398 return false;
5399 }
5400
5401 /* The version number. */
5402 uint16_t version = read_2_bytes (abfd, addr);
5403 addr += 2;
5404 if (version != 5)
5405 {
5406 warning (_("Section .debug_names in %s has unsupported version %d, "
5407 "ignoring .debug_names."),
5408 filename, version);
5409 return false;
5410 }
5411
5412 /* Padding. */
5413 uint16_t padding = read_2_bytes (abfd, addr);
5414 addr += 2;
5415 if (padding != 0)
5416 {
5417 warning (_("Section .debug_names in %s has unsupported padding %d, "
5418 "ignoring .debug_names."),
5419 filename, padding);
5420 return false;
5421 }
5422
5423 /* comp_unit_count - The number of CUs in the CU list. */
5424 map.cu_count = read_4_bytes (abfd, addr);
5425 addr += 4;
5426
5427 /* local_type_unit_count - The number of TUs in the local TU
5428 list. */
5429 map.tu_count = read_4_bytes (abfd, addr);
5430 addr += 4;
5431
5432 /* foreign_type_unit_count - The number of TUs in the foreign TU
5433 list. */
5434 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5435 addr += 4;
5436 if (foreign_tu_count != 0)
5437 {
5438 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5439 "ignoring .debug_names."),
5440 filename, static_cast<unsigned long> (foreign_tu_count));
5441 return false;
5442 }
5443
5444 /* bucket_count - The number of hash buckets in the hash lookup
5445 table. */
5446 map.bucket_count = read_4_bytes (abfd, addr);
5447 addr += 4;
5448
5449 /* name_count - The number of unique names in the index. */
5450 map.name_count = read_4_bytes (abfd, addr);
5451 addr += 4;
5452
5453 /* abbrev_table_size - The size in bytes of the abbreviations
5454 table. */
5455 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5456 addr += 4;
5457
5458 /* augmentation_string_size - The size in bytes of the augmentation
5459 string. This value is rounded up to a multiple of 4. */
5460 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5461 addr += 4;
5462 map.augmentation_is_gdb = ((augmentation_string_size
5463 == sizeof (dwarf5_augmentation))
5464 && memcmp (addr, dwarf5_augmentation,
5465 sizeof (dwarf5_augmentation)) == 0);
5466 augmentation_string_size += (-augmentation_string_size) & 3;
5467 addr += augmentation_string_size;
5468
5469 /* List of CUs */
5470 map.cu_table_reordered = addr;
5471 addr += map.cu_count * map.offset_size;
5472
5473 /* List of Local TUs */
5474 map.tu_table_reordered = addr;
5475 addr += map.tu_count * map.offset_size;
5476
5477 /* Hash Lookup Table */
5478 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5479 addr += map.bucket_count * 4;
5480 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5481 addr += map.name_count * 4;
5482
5483 /* Name Table */
5484 map.name_table_string_offs_reordered = addr;
5485 addr += map.name_count * map.offset_size;
5486 map.name_table_entry_offs_reordered = addr;
5487 addr += map.name_count * map.offset_size;
5488
5489 const gdb_byte *abbrev_table_start = addr;
5490 for (;;)
5491 {
5492 unsigned int bytes_read;
5493 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5494 addr += bytes_read;
5495 if (index_num == 0)
5496 break;
5497
5498 const auto insertpair
5499 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5500 if (!insertpair.second)
5501 {
5502 warning (_("Section .debug_names in %s has duplicate index %s, "
5503 "ignoring .debug_names."),
5504 filename, pulongest (index_num));
5505 return false;
5506 }
5507 mapped_debug_names::index_val &indexval = insertpair.first->second;
5508 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5509 addr += bytes_read;
5510
5511 for (;;)
5512 {
5513 mapped_debug_names::index_val::attr attr;
5514 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5515 addr += bytes_read;
5516 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5517 addr += bytes_read;
5518 if (attr.form == DW_FORM_implicit_const)
5519 {
5520 attr.implicit_const = read_signed_leb128 (abfd, addr,
5521 &bytes_read);
5522 addr += bytes_read;
5523 }
5524 if (attr.dw_idx == 0 && attr.form == 0)
5525 break;
5526 indexval.attr_vec.push_back (std::move (attr));
5527 }
5528 }
5529 if (addr != abbrev_table_start + abbrev_table_size)
5530 {
5531 warning (_("Section .debug_names in %s has abbreviation_table "
5532 "of size %zu vs. written as %u, ignoring .debug_names."),
5533 filename, addr - abbrev_table_start, abbrev_table_size);
5534 return false;
5535 }
5536 map.entry_pool = addr;
5537
5538 return true;
5539}
5540
5541/* A helper for create_cus_from_debug_names that handles the MAP's CU
5542 list. */
5543
5544static void
5545create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5546 const mapped_debug_names &map,
5547 dwarf2_section_info &section,
5548 bool is_dwz)
5549{
5550 sect_offset sect_off_prev;
5551 for (uint32_t i = 0; i <= map.cu_count; ++i)
5552 {
5553 sect_offset sect_off_next;
5554 if (i < map.cu_count)
5555 {
5556 sect_off_next
5557 = (sect_offset) (extract_unsigned_integer
5558 (map.cu_table_reordered + i * map.offset_size,
5559 map.offset_size,
5560 map.dwarf5_byte_order));
5561 }
5562 else
5563 sect_off_next = (sect_offset) section.size;
5564 if (i >= 1)
5565 {
5566 const ULONGEST length = sect_off_next - sect_off_prev;
5567 dwarf2_per_cu_data *per_cu
5568 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5569 sect_off_prev, length);
5570 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5571 }
5572 sect_off_prev = sect_off_next;
5573 }
5574}
5575
5576/* Read the CU list from the mapped index, and use it to create all
5577 the CU objects for this dwarf2_per_objfile. */
5578
5579static void
5580create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5581 const mapped_debug_names &map,
5582 const mapped_debug_names &dwz_map)
5583{
5584 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5585 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5586
5587 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5588 dwarf2_per_objfile->info,
5589 false /* is_dwz */);
5590
5591 if (dwz_map.cu_count == 0)
5592 return;
5593
5594 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5595 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5596 true /* is_dwz */);
5597}
5598
5599/* Read .debug_names. If everything went ok, initialize the "quick"
5600 elements of all the CUs and return true. Otherwise, return false. */
5601
5602static bool
5603dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5604{
5605 mapped_debug_names local_map (dwarf2_per_objfile);
5606 mapped_debug_names dwz_map (dwarf2_per_objfile);
5607 struct objfile *objfile = dwarf2_per_objfile->objfile;
5608
5609 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5610 &dwarf2_per_objfile->debug_names,
5611 local_map))
5612 return false;
5613
5614 /* Don't use the index if it's empty. */
5615 if (local_map.name_count == 0)
5616 return false;
5617
5618 /* If there is a .dwz file, read it so we can get its CU list as
5619 well. */
5620 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5621 if (dwz != NULL)
5622 {
5623 if (!read_debug_names_from_section (objfile,
5624 bfd_get_filename (dwz->dwz_bfd),
5625 &dwz->debug_names, dwz_map))
5626 {
5627 warning (_("could not read '.debug_names' section from %s; skipping"),
5628 bfd_get_filename (dwz->dwz_bfd));
5629 return false;
5630 }
5631 }
5632
5633 create_cus_from_debug_names (dwarf2_per_objfile, local_map, dwz_map);
5634
5635 if (local_map.tu_count != 0)
5636 {
5637 /* We can only handle a single .debug_types when we have an
5638 index. */
5639 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5640 return false;
5641
5642 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5643 dwarf2_per_objfile->types, 0);
5644
5645 create_signatured_type_table_from_debug_names
5646 (dwarf2_per_objfile, local_map, section, &dwarf2_per_objfile->abbrev);
5647 }
5648
5649 create_addrmap_from_aranges (dwarf2_per_objfile,
5650 &dwarf2_per_objfile->debug_aranges);
5651
5652 dwarf2_per_objfile->debug_names_table.reset
5653 (new mapped_debug_names (dwarf2_per_objfile));
5654 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
5655 dwarf2_per_objfile->using_index = 1;
5656 dwarf2_per_objfile->quick_file_names_table =
5657 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5658
5659 return true;
5660}
5661
5662/* Type used to manage iterating over all CUs looking for a symbol for
5663 .debug_names. */
5664
5665class dw2_debug_names_iterator
5666{
5667public:
5668 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5669 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5670 dw2_debug_names_iterator (const mapped_debug_names &map,
5671 bool want_specific_block,
5672 block_enum block_index, domain_enum domain,
5673 const char *name)
5674 : m_map (map), m_want_specific_block (want_specific_block),
5675 m_block_index (block_index), m_domain (domain),
5676 m_addr (find_vec_in_debug_names (map, name))
5677 {}
5678
5679 dw2_debug_names_iterator (const mapped_debug_names &map,
5680 search_domain search, uint32_t namei)
5681 : m_map (map),
5682 m_search (search),
5683 m_addr (find_vec_in_debug_names (map, namei))
5684 {}
5685
5686 /* Return the next matching CU or NULL if there are no more. */
5687 dwarf2_per_cu_data *next ();
5688
5689private:
5690 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5691 const char *name);
5692 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5693 uint32_t namei);
5694
5695 /* The internalized form of .debug_names. */
5696 const mapped_debug_names &m_map;
5697
5698 /* If true, only look for symbols that match BLOCK_INDEX. */
5699 const bool m_want_specific_block = false;
5700
5701 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5702 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5703 value. */
5704 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5705
5706 /* The kind of symbol we're looking for. */
5707 const domain_enum m_domain = UNDEF_DOMAIN;
5708 const search_domain m_search = ALL_DOMAIN;
5709
5710 /* The list of CUs from the index entry of the symbol, or NULL if
5711 not found. */
5712 const gdb_byte *m_addr;
5713};
5714
5715const char *
5716mapped_debug_names::namei_to_name (uint32_t namei) const
5717{
5718 const ULONGEST namei_string_offs
5719 = extract_unsigned_integer ((name_table_string_offs_reordered
5720 + namei * offset_size),
5721 offset_size,
5722 dwarf5_byte_order);
5723 return read_indirect_string_at_offset
5724 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5725}
5726
5727/* Find a slot in .debug_names for the object named NAME. If NAME is
5728 found, return pointer to its pool data. If NAME cannot be found,
5729 return NULL. */
5730
5731const gdb_byte *
5732dw2_debug_names_iterator::find_vec_in_debug_names
5733 (const mapped_debug_names &map, const char *name)
5734{
5735 int (*cmp) (const char *, const char *);
5736
5737 if (current_language->la_language == language_cplus
5738 || current_language->la_language == language_fortran
5739 || current_language->la_language == language_d)
5740 {
5741 /* NAME is already canonical. Drop any qualifiers as
5742 .debug_names does not contain any. */
5743
5744 if (strchr (name, '(') != NULL)
5745 {
5746 gdb::unique_xmalloc_ptr<char> without_params
5747 = cp_remove_params (name);
5748
5749 if (without_params != NULL)
5750 {
5751 name = without_params.get();
5752 }
5753 }
5754 }
5755
5756 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5757
5758 const uint32_t full_hash = dwarf5_djb_hash (name);
5759 uint32_t namei
5760 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5761 (map.bucket_table_reordered
5762 + (full_hash % map.bucket_count)), 4,
5763 map.dwarf5_byte_order);
5764 if (namei == 0)
5765 return NULL;
5766 --namei;
5767 if (namei >= map.name_count)
5768 {
5769 complaint (&symfile_complaints,
5770 _("Wrong .debug_names with name index %u but name_count=%u "
5771 "[in module %s]"),
5772 namei, map.name_count,
5773 objfile_name (map.dwarf2_per_objfile->objfile));
5774 return NULL;
5775 }
5776
5777 for (;;)
5778 {
5779 const uint32_t namei_full_hash
5780 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5781 (map.hash_table_reordered + namei), 4,
5782 map.dwarf5_byte_order);
5783 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5784 return NULL;
5785
5786 if (full_hash == namei_full_hash)
5787 {
5788 const char *const namei_string = map.namei_to_name (namei);
5789
5790#if 0 /* An expensive sanity check. */
5791 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5792 {
5793 complaint (&symfile_complaints,
5794 _("Wrong .debug_names hash for string at index %u "
5795 "[in module %s]"),
5796 namei, objfile_name (dwarf2_per_objfile->objfile));
5797 return NULL;
5798 }
5799#endif
5800
5801 if (cmp (namei_string, name) == 0)
5802 {
5803 const ULONGEST namei_entry_offs
5804 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5805 + namei * map.offset_size),
5806 map.offset_size, map.dwarf5_byte_order);
5807 return map.entry_pool + namei_entry_offs;
5808 }
5809 }
5810
5811 ++namei;
5812 if (namei >= map.name_count)
5813 return NULL;
5814 }
5815}
5816
5817const gdb_byte *
5818dw2_debug_names_iterator::find_vec_in_debug_names
5819 (const mapped_debug_names &map, uint32_t namei)
5820{
5821 if (namei >= map.name_count)
5822 {
5823 complaint (&symfile_complaints,
5824 _("Wrong .debug_names with name index %u but name_count=%u "
5825 "[in module %s]"),
5826 namei, map.name_count,
5827 objfile_name (map.dwarf2_per_objfile->objfile));
5828 return NULL;
5829 }
5830
5831 const ULONGEST namei_entry_offs
5832 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5833 + namei * map.offset_size),
5834 map.offset_size, map.dwarf5_byte_order);
5835 return map.entry_pool + namei_entry_offs;
5836}
5837
5838/* See dw2_debug_names_iterator. */
5839
5840dwarf2_per_cu_data *
5841dw2_debug_names_iterator::next ()
5842{
5843 if (m_addr == NULL)
5844 return NULL;
5845
5846 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5847 struct objfile *objfile = dwarf2_per_objfile->objfile;
5848 bfd *const abfd = objfile->obfd;
5849
5850 again:
5851
5852 unsigned int bytes_read;
5853 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5854 m_addr += bytes_read;
5855 if (abbrev == 0)
5856 return NULL;
5857
5858 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5859 if (indexval_it == m_map.abbrev_map.cend ())
5860 {
5861 complaint (&symfile_complaints,
5862 _("Wrong .debug_names undefined abbrev code %s "
5863 "[in module %s]"),
5864 pulongest (abbrev), objfile_name (objfile));
5865 return NULL;
5866 }
5867 const mapped_debug_names::index_val &indexval = indexval_it->second;
5868 bool have_is_static = false;
5869 bool is_static;
5870 dwarf2_per_cu_data *per_cu = NULL;
5871 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5872 {
5873 ULONGEST ull;
5874 switch (attr.form)
5875 {
5876 case DW_FORM_implicit_const:
5877 ull = attr.implicit_const;
5878 break;
5879 case DW_FORM_flag_present:
5880 ull = 1;
5881 break;
5882 case DW_FORM_udata:
5883 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5884 m_addr += bytes_read;
5885 break;
5886 default:
5887 complaint (&symfile_complaints,
5888 _("Unsupported .debug_names form %s [in module %s]"),
5889 dwarf_form_name (attr.form),
5890 objfile_name (objfile));
5891 return NULL;
5892 }
5893 switch (attr.dw_idx)
5894 {
5895 case DW_IDX_compile_unit:
5896 /* Don't crash on bad data. */
5897 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5898 {
5899 complaint (&symfile_complaints,
5900 _(".debug_names entry has bad CU index %s"
5901 " [in module %s]"),
5902 pulongest (ull),
5903 objfile_name (dwarf2_per_objfile->objfile));
5904 continue;
5905 }
5906 per_cu = dwarf2_per_objfile->get_cutu (ull);
5907 break;
5908 case DW_IDX_type_unit:
5909 /* Don't crash on bad data. */
5910 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5911 {
5912 complaint (&symfile_complaints,
5913 _(".debug_names entry has bad TU index %s"
5914 " [in module %s]"),
5915 pulongest (ull),
5916 objfile_name (dwarf2_per_objfile->objfile));
5917 continue;
5918 }
5919 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5920 break;
5921 case DW_IDX_GNU_internal:
5922 if (!m_map.augmentation_is_gdb)
5923 break;
5924 have_is_static = true;
5925 is_static = true;
5926 break;
5927 case DW_IDX_GNU_external:
5928 if (!m_map.augmentation_is_gdb)
5929 break;
5930 have_is_static = true;
5931 is_static = false;
5932 break;
5933 }
5934 }
5935
5936 /* Skip if already read in. */
5937 if (per_cu->v.quick->compunit_symtab)
5938 goto again;
5939
5940 /* Check static vs global. */
5941 if (have_is_static)
5942 {
5943 const bool want_static = m_block_index != GLOBAL_BLOCK;
5944 if (m_want_specific_block && want_static != is_static)
5945 goto again;
5946 }
5947
5948 /* Match dw2_symtab_iter_next, symbol_kind
5949 and debug_names::psymbol_tag. */
5950 switch (m_domain)
5951 {
5952 case VAR_DOMAIN:
5953 switch (indexval.dwarf_tag)
5954 {
5955 case DW_TAG_variable:
5956 case DW_TAG_subprogram:
5957 /* Some types are also in VAR_DOMAIN. */
5958 case DW_TAG_typedef:
5959 case DW_TAG_structure_type:
5960 break;
5961 default:
5962 goto again;
5963 }
5964 break;
5965 case STRUCT_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case DW_TAG_typedef:
5969 case DW_TAG_structure_type:
5970 break;
5971 default:
5972 goto again;
5973 }
5974 break;
5975 case LABEL_DOMAIN:
5976 switch (indexval.dwarf_tag)
5977 {
5978 case 0:
5979 case DW_TAG_variable:
5980 break;
5981 default:
5982 goto again;
5983 }
5984 break;
5985 default:
5986 break;
5987 }
5988
5989 /* Match dw2_expand_symtabs_matching, symbol_kind and
5990 debug_names::psymbol_tag. */
5991 switch (m_search)
5992 {
5993 case VARIABLES_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_variable:
5997 break;
5998 default:
5999 goto again;
6000 }
6001 break;
6002 case FUNCTIONS_DOMAIN:
6003 switch (indexval.dwarf_tag)
6004 {
6005 case DW_TAG_subprogram:
6006 break;
6007 default:
6008 goto again;
6009 }
6010 break;
6011 case TYPES_DOMAIN:
6012 switch (indexval.dwarf_tag)
6013 {
6014 case DW_TAG_typedef:
6015 case DW_TAG_structure_type:
6016 break;
6017 default:
6018 goto again;
6019 }
6020 break;
6021 default:
6022 break;
6023 }
6024
6025 return per_cu;
6026}
6027
6028static struct compunit_symtab *
6029dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6030 const char *name, domain_enum domain)
6031{
6032 const block_enum block_index = static_cast<block_enum> (block_index_int);
6033 struct dwarf2_per_objfile *dwarf2_per_objfile
6034 = get_dwarf2_per_objfile (objfile);
6035
6036 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6037 if (!mapp)
6038 {
6039 /* index is NULL if OBJF_READNOW. */
6040 return NULL;
6041 }
6042 const auto &map = *mapp;
6043
6044 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6045 block_index, domain, name);
6046
6047 struct compunit_symtab *stab_best = NULL;
6048 struct dwarf2_per_cu_data *per_cu;
6049 while ((per_cu = iter.next ()) != NULL)
6050 {
6051 struct symbol *sym, *with_opaque = NULL;
6052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
6053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6055
6056 sym = block_find_symbol (block, name, domain,
6057 block_find_non_opaque_type_preferred,
6058 &with_opaque);
6059
6060 /* Some caution must be observed with overloaded functions and
6061 methods, since the index will not contain any overload
6062 information (but NAME might contain it). */
6063
6064 if (sym != NULL
6065 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6066 return stab;
6067 if (with_opaque != NULL
6068 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6069 stab_best = stab;
6070
6071 /* Keep looking through other CUs. */
6072 }
6073
6074 return stab_best;
6075}
6076
6077/* This dumps minimal information about .debug_names. It is called
6078 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6079 uses this to verify that .debug_names has been loaded. */
6080
6081static void
6082dw2_debug_names_dump (struct objfile *objfile)
6083{
6084 struct dwarf2_per_objfile *dwarf2_per_objfile
6085 = get_dwarf2_per_objfile (objfile);
6086
6087 gdb_assert (dwarf2_per_objfile->using_index);
6088 printf_filtered (".debug_names:");
6089 if (dwarf2_per_objfile->debug_names_table)
6090 printf_filtered (" exists\n");
6091 else
6092 printf_filtered (" faked for \"readnow\"\n");
6093 printf_filtered ("\n");
6094}
6095
6096static void
6097dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6098 const char *func_name)
6099{
6100 struct dwarf2_per_objfile *dwarf2_per_objfile
6101 = get_dwarf2_per_objfile (objfile);
6102
6103 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6104 if (dwarf2_per_objfile->debug_names_table)
6105 {
6106 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6107
6108 /* Note: It doesn't matter what we pass for block_index here. */
6109 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6110 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6111
6112 struct dwarf2_per_cu_data *per_cu;
6113 while ((per_cu = iter.next ()) != NULL)
6114 dw2_instantiate_symtab (per_cu);
6115 }
6116}
6117
6118static void
6119dw2_debug_names_expand_symtabs_matching
6120 (struct objfile *objfile,
6121 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6122 const lookup_name_info &lookup_name,
6123 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6124 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6125 enum search_domain kind)
6126{
6127 struct dwarf2_per_objfile *dwarf2_per_objfile
6128 = get_dwarf2_per_objfile (objfile);
6129
6130 /* debug_names_table is NULL if OBJF_READNOW. */
6131 if (!dwarf2_per_objfile->debug_names_table)
6132 return;
6133
6134 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6135
6136 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6137
6138 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6139 symbol_matcher,
6140 kind, [&] (offset_type namei)
6141 {
6142 /* The name was matched, now expand corresponding CUs that were
6143 marked. */
6144 dw2_debug_names_iterator iter (map, kind, namei);
6145
6146 struct dwarf2_per_cu_data *per_cu;
6147 while ((per_cu = iter.next ()) != NULL)
6148 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6149 expansion_notify);
6150 });
6151}
6152
6153const struct quick_symbol_functions dwarf2_debug_names_functions =
6154{
6155 dw2_has_symbols,
6156 dw2_find_last_source_symtab,
6157 dw2_forget_cached_source_info,
6158 dw2_map_symtabs_matching_filename,
6159 dw2_debug_names_lookup_symbol,
6160 dw2_print_stats,
6161 dw2_debug_names_dump,
6162 dw2_relocate,
6163 dw2_debug_names_expand_symtabs_for_function,
6164 dw2_expand_all_symtabs,
6165 dw2_expand_symtabs_with_fullname,
6166 dw2_map_matching_symbols,
6167 dw2_debug_names_expand_symtabs_matching,
6168 dw2_find_pc_sect_compunit_symtab,
6169 NULL,
6170 dw2_map_symbol_filenames
6171};
6172
6173/* See symfile.h. */
6174
6175bool
6176dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6177{
6178 struct dwarf2_per_objfile *dwarf2_per_objfile
6179 = get_dwarf2_per_objfile (objfile);
6180
6181 /* If we're about to read full symbols, don't bother with the
6182 indices. In this case we also don't care if some other debug
6183 format is making psymtabs, because they are all about to be
6184 expanded anyway. */
6185 if ((objfile->flags & OBJF_READNOW))
6186 {
6187 dwarf2_per_objfile->using_index = 1;
6188 create_all_comp_units (dwarf2_per_objfile);
6189 create_all_type_units (dwarf2_per_objfile);
6190 dwarf2_per_objfile->quick_file_names_table
6191 = create_quick_file_names_table
6192 (dwarf2_per_objfile->all_comp_units.size ());
6193
6194 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6195 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6196 {
6197 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6198
6199 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6200 struct dwarf2_per_cu_quick_data);
6201 }
6202
6203 /* Return 1 so that gdb sees the "quick" functions. However,
6204 these functions will be no-ops because we will have expanded
6205 all symtabs. */
6206 *index_kind = dw_index_kind::GDB_INDEX;
6207 return true;
6208 }
6209
6210 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6211 {
6212 *index_kind = dw_index_kind::DEBUG_NAMES;
6213 return true;
6214 }
6215
6216 if (dwarf2_read_index (dwarf2_per_objfile))
6217 {
6218 *index_kind = dw_index_kind::GDB_INDEX;
6219 return true;
6220 }
6221
6222 return false;
6223}
6224
6225\f
6226
6227/* Build a partial symbol table. */
6228
6229void
6230dwarf2_build_psymtabs (struct objfile *objfile)
6231{
6232 struct dwarf2_per_objfile *dwarf2_per_objfile
6233 = get_dwarf2_per_objfile (objfile);
6234
6235 if (objfile->global_psymbols.capacity () == 0
6236 && objfile->static_psymbols.capacity () == 0)
6237 init_psymbol_list (objfile, 1024);
6238
6239 TRY
6240 {
6241 /* This isn't really ideal: all the data we allocate on the
6242 objfile's obstack is still uselessly kept around. However,
6243 freeing it seems unsafe. */
6244 psymtab_discarder psymtabs (objfile);
6245 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6246 psymtabs.keep ();
6247 }
6248 CATCH (except, RETURN_MASK_ERROR)
6249 {
6250 exception_print (gdb_stderr, except);
6251 }
6252 END_CATCH
6253}
6254
6255/* Return the total length of the CU described by HEADER. */
6256
6257static unsigned int
6258get_cu_length (const struct comp_unit_head *header)
6259{
6260 return header->initial_length_size + header->length;
6261}
6262
6263/* Return TRUE if SECT_OFF is within CU_HEADER. */
6264
6265static inline bool
6266offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6267{
6268 sect_offset bottom = cu_header->sect_off;
6269 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6270
6271 return sect_off >= bottom && sect_off < top;
6272}
6273
6274/* Find the base address of the compilation unit for range lists and
6275 location lists. It will normally be specified by DW_AT_low_pc.
6276 In DWARF-3 draft 4, the base address could be overridden by
6277 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6278 compilation units with discontinuous ranges. */
6279
6280static void
6281dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6282{
6283 struct attribute *attr;
6284
6285 cu->base_known = 0;
6286 cu->base_address = 0;
6287
6288 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6289 if (attr)
6290 {
6291 cu->base_address = attr_value_as_address (attr);
6292 cu->base_known = 1;
6293 }
6294 else
6295 {
6296 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6297 if (attr)
6298 {
6299 cu->base_address = attr_value_as_address (attr);
6300 cu->base_known = 1;
6301 }
6302 }
6303}
6304
6305/* Read in the comp unit header information from the debug_info at info_ptr.
6306 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6307 NOTE: This leaves members offset, first_die_offset to be filled in
6308 by the caller. */
6309
6310static const gdb_byte *
6311read_comp_unit_head (struct comp_unit_head *cu_header,
6312 const gdb_byte *info_ptr,
6313 struct dwarf2_section_info *section,
6314 rcuh_kind section_kind)
6315{
6316 int signed_addr;
6317 unsigned int bytes_read;
6318 const char *filename = get_section_file_name (section);
6319 bfd *abfd = get_section_bfd_owner (section);
6320
6321 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6322 cu_header->initial_length_size = bytes_read;
6323 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6324 info_ptr += bytes_read;
6325 cu_header->version = read_2_bytes (abfd, info_ptr);
6326 info_ptr += 2;
6327 if (cu_header->version < 5)
6328 switch (section_kind)
6329 {
6330 case rcuh_kind::COMPILE:
6331 cu_header->unit_type = DW_UT_compile;
6332 break;
6333 case rcuh_kind::TYPE:
6334 cu_header->unit_type = DW_UT_type;
6335 break;
6336 default:
6337 internal_error (__FILE__, __LINE__,
6338 _("read_comp_unit_head: invalid section_kind"));
6339 }
6340 else
6341 {
6342 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6343 (read_1_byte (abfd, info_ptr));
6344 info_ptr += 1;
6345 switch (cu_header->unit_type)
6346 {
6347 case DW_UT_compile:
6348 if (section_kind != rcuh_kind::COMPILE)
6349 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6350 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6351 filename);
6352 break;
6353 case DW_UT_type:
6354 section_kind = rcuh_kind::TYPE;
6355 break;
6356 default:
6357 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6358 "(is %d, should be %d or %d) [in module %s]"),
6359 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6360 }
6361
6362 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6363 info_ptr += 1;
6364 }
6365 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6366 cu_header,
6367 &bytes_read);
6368 info_ptr += bytes_read;
6369 if (cu_header->version < 5)
6370 {
6371 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6372 info_ptr += 1;
6373 }
6374 signed_addr = bfd_get_sign_extend_vma (abfd);
6375 if (signed_addr < 0)
6376 internal_error (__FILE__, __LINE__,
6377 _("read_comp_unit_head: dwarf from non elf file"));
6378 cu_header->signed_addr_p = signed_addr;
6379
6380 if (section_kind == rcuh_kind::TYPE)
6381 {
6382 LONGEST type_offset;
6383
6384 cu_header->signature = read_8_bytes (abfd, info_ptr);
6385 info_ptr += 8;
6386
6387 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6388 info_ptr += bytes_read;
6389 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6390 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6391 error (_("Dwarf Error: Too big type_offset in compilation unit "
6392 "header (is %s) [in module %s]"), plongest (type_offset),
6393 filename);
6394 }
6395
6396 return info_ptr;
6397}
6398
6399/* Helper function that returns the proper abbrev section for
6400 THIS_CU. */
6401
6402static struct dwarf2_section_info *
6403get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6404{
6405 struct dwarf2_section_info *abbrev;
6406 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6407
6408 if (this_cu->is_dwz)
6409 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6410 else
6411 abbrev = &dwarf2_per_objfile->abbrev;
6412
6413 return abbrev;
6414}
6415
6416/* Subroutine of read_and_check_comp_unit_head and
6417 read_and_check_type_unit_head to simplify them.
6418 Perform various error checking on the header. */
6419
6420static void
6421error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6422 struct comp_unit_head *header,
6423 struct dwarf2_section_info *section,
6424 struct dwarf2_section_info *abbrev_section)
6425{
6426 const char *filename = get_section_file_name (section);
6427
6428 if (header->version < 2 || header->version > 5)
6429 error (_("Dwarf Error: wrong version in compilation unit header "
6430 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6431 filename);
6432
6433 if (to_underlying (header->abbrev_sect_off)
6434 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6435 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6436 "(offset %s + 6) [in module %s]"),
6437 sect_offset_str (header->abbrev_sect_off),
6438 sect_offset_str (header->sect_off),
6439 filename);
6440
6441 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6442 avoid potential 32-bit overflow. */
6443 if (((ULONGEST) header->sect_off + get_cu_length (header))
6444 > section->size)
6445 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6446 "(offset %s + 0) [in module %s]"),
6447 header->length, sect_offset_str (header->sect_off),
6448 filename);
6449}
6450
6451/* Read in a CU/TU header and perform some basic error checking.
6452 The contents of the header are stored in HEADER.
6453 The result is a pointer to the start of the first DIE. */
6454
6455static const gdb_byte *
6456read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6457 struct comp_unit_head *header,
6458 struct dwarf2_section_info *section,
6459 struct dwarf2_section_info *abbrev_section,
6460 const gdb_byte *info_ptr,
6461 rcuh_kind section_kind)
6462{
6463 const gdb_byte *beg_of_comp_unit = info_ptr;
6464
6465 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6466
6467 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6468
6469 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6470
6471 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6472 abbrev_section);
6473
6474 return info_ptr;
6475}
6476
6477/* Fetch the abbreviation table offset from a comp or type unit header. */
6478
6479static sect_offset
6480read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6481 struct dwarf2_section_info *section,
6482 sect_offset sect_off)
6483{
6484 bfd *abfd = get_section_bfd_owner (section);
6485 const gdb_byte *info_ptr;
6486 unsigned int initial_length_size, offset_size;
6487 uint16_t version;
6488
6489 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6490 info_ptr = section->buffer + to_underlying (sect_off);
6491 read_initial_length (abfd, info_ptr, &initial_length_size);
6492 offset_size = initial_length_size == 4 ? 4 : 8;
6493 info_ptr += initial_length_size;
6494
6495 version = read_2_bytes (abfd, info_ptr);
6496 info_ptr += 2;
6497 if (version >= 5)
6498 {
6499 /* Skip unit type and address size. */
6500 info_ptr += 2;
6501 }
6502
6503 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6504}
6505
6506/* Allocate a new partial symtab for file named NAME and mark this new
6507 partial symtab as being an include of PST. */
6508
6509static void
6510dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6511 struct objfile *objfile)
6512{
6513 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6514
6515 if (!IS_ABSOLUTE_PATH (subpst->filename))
6516 {
6517 /* It shares objfile->objfile_obstack. */
6518 subpst->dirname = pst->dirname;
6519 }
6520
6521 subpst->textlow = 0;
6522 subpst->texthigh = 0;
6523
6524 subpst->dependencies
6525 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6526 subpst->dependencies[0] = pst;
6527 subpst->number_of_dependencies = 1;
6528
6529 subpst->globals_offset = 0;
6530 subpst->n_global_syms = 0;
6531 subpst->statics_offset = 0;
6532 subpst->n_static_syms = 0;
6533 subpst->compunit_symtab = NULL;
6534 subpst->read_symtab = pst->read_symtab;
6535 subpst->readin = 0;
6536
6537 /* No private part is necessary for include psymtabs. This property
6538 can be used to differentiate between such include psymtabs and
6539 the regular ones. */
6540 subpst->read_symtab_private = NULL;
6541}
6542
6543/* Read the Line Number Program data and extract the list of files
6544 included by the source file represented by PST. Build an include
6545 partial symtab for each of these included files. */
6546
6547static void
6548dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6549 struct die_info *die,
6550 struct partial_symtab *pst)
6551{
6552 line_header_up lh;
6553 struct attribute *attr;
6554
6555 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6556 if (attr)
6557 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6558 if (lh == NULL)
6559 return; /* No linetable, so no includes. */
6560
6561 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6562 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6563}
6564
6565static hashval_t
6566hash_signatured_type (const void *item)
6567{
6568 const struct signatured_type *sig_type
6569 = (const struct signatured_type *) item;
6570
6571 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6572 return sig_type->signature;
6573}
6574
6575static int
6576eq_signatured_type (const void *item_lhs, const void *item_rhs)
6577{
6578 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6579 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6580
6581 return lhs->signature == rhs->signature;
6582}
6583
6584/* Allocate a hash table for signatured types. */
6585
6586static htab_t
6587allocate_signatured_type_table (struct objfile *objfile)
6588{
6589 return htab_create_alloc_ex (41,
6590 hash_signatured_type,
6591 eq_signatured_type,
6592 NULL,
6593 &objfile->objfile_obstack,
6594 hashtab_obstack_allocate,
6595 dummy_obstack_deallocate);
6596}
6597
6598/* A helper function to add a signatured type CU to a table. */
6599
6600static int
6601add_signatured_type_cu_to_table (void **slot, void *datum)
6602{
6603 struct signatured_type *sigt = (struct signatured_type *) *slot;
6604 std::vector<signatured_type *> *all_type_units
6605 = (std::vector<signatured_type *> *) datum;
6606
6607 all_type_units->push_back (sigt);
6608
6609 return 1;
6610}
6611
6612/* A helper for create_debug_types_hash_table. Read types from SECTION
6613 and fill them into TYPES_HTAB. It will process only type units,
6614 therefore DW_UT_type. */
6615
6616static void
6617create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6618 struct dwo_file *dwo_file,
6619 dwarf2_section_info *section, htab_t &types_htab,
6620 rcuh_kind section_kind)
6621{
6622 struct objfile *objfile = dwarf2_per_objfile->objfile;
6623 struct dwarf2_section_info *abbrev_section;
6624 bfd *abfd;
6625 const gdb_byte *info_ptr, *end_ptr;
6626
6627 abbrev_section = (dwo_file != NULL
6628 ? &dwo_file->sections.abbrev
6629 : &dwarf2_per_objfile->abbrev);
6630
6631 if (dwarf_read_debug)
6632 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6633 get_section_name (section),
6634 get_section_file_name (abbrev_section));
6635
6636 dwarf2_read_section (objfile, section);
6637 info_ptr = section->buffer;
6638
6639 if (info_ptr == NULL)
6640 return;
6641
6642 /* We can't set abfd until now because the section may be empty or
6643 not present, in which case the bfd is unknown. */
6644 abfd = get_section_bfd_owner (section);
6645
6646 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6647 because we don't need to read any dies: the signature is in the
6648 header. */
6649
6650 end_ptr = info_ptr + section->size;
6651 while (info_ptr < end_ptr)
6652 {
6653 struct signatured_type *sig_type;
6654 struct dwo_unit *dwo_tu;
6655 void **slot;
6656 const gdb_byte *ptr = info_ptr;
6657 struct comp_unit_head header;
6658 unsigned int length;
6659
6660 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6661
6662 /* Initialize it due to a false compiler warning. */
6663 header.signature = -1;
6664 header.type_cu_offset_in_tu = (cu_offset) -1;
6665
6666 /* We need to read the type's signature in order to build the hash
6667 table, but we don't need anything else just yet. */
6668
6669 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6670 abbrev_section, ptr, section_kind);
6671
6672 length = get_cu_length (&header);
6673
6674 /* Skip dummy type units. */
6675 if (ptr >= info_ptr + length
6676 || peek_abbrev_code (abfd, ptr) == 0
6677 || header.unit_type != DW_UT_type)
6678 {
6679 info_ptr += length;
6680 continue;
6681 }
6682
6683 if (types_htab == NULL)
6684 {
6685 if (dwo_file)
6686 types_htab = allocate_dwo_unit_table (objfile);
6687 else
6688 types_htab = allocate_signatured_type_table (objfile);
6689 }
6690
6691 if (dwo_file)
6692 {
6693 sig_type = NULL;
6694 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6695 struct dwo_unit);
6696 dwo_tu->dwo_file = dwo_file;
6697 dwo_tu->signature = header.signature;
6698 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6699 dwo_tu->section = section;
6700 dwo_tu->sect_off = sect_off;
6701 dwo_tu->length = length;
6702 }
6703 else
6704 {
6705 /* N.B.: type_offset is not usable if this type uses a DWO file.
6706 The real type_offset is in the DWO file. */
6707 dwo_tu = NULL;
6708 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6709 struct signatured_type);
6710 sig_type->signature = header.signature;
6711 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6712 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6713 sig_type->per_cu.is_debug_types = 1;
6714 sig_type->per_cu.section = section;
6715 sig_type->per_cu.sect_off = sect_off;
6716 sig_type->per_cu.length = length;
6717 }
6718
6719 slot = htab_find_slot (types_htab,
6720 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6721 INSERT);
6722 gdb_assert (slot != NULL);
6723 if (*slot != NULL)
6724 {
6725 sect_offset dup_sect_off;
6726
6727 if (dwo_file)
6728 {
6729 const struct dwo_unit *dup_tu
6730 = (const struct dwo_unit *) *slot;
6731
6732 dup_sect_off = dup_tu->sect_off;
6733 }
6734 else
6735 {
6736 const struct signatured_type *dup_tu
6737 = (const struct signatured_type *) *slot;
6738
6739 dup_sect_off = dup_tu->per_cu.sect_off;
6740 }
6741
6742 complaint (&symfile_complaints,
6743 _("debug type entry at offset %s is duplicate to"
6744 " the entry at offset %s, signature %s"),
6745 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6746 hex_string (header.signature));
6747 }
6748 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6749
6750 if (dwarf_read_debug > 1)
6751 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6752 sect_offset_str (sect_off),
6753 hex_string (header.signature));
6754
6755 info_ptr += length;
6756 }
6757}
6758
6759/* Create the hash table of all entries in the .debug_types
6760 (or .debug_types.dwo) section(s).
6761 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6762 otherwise it is NULL.
6763
6764 The result is a pointer to the hash table or NULL if there are no types.
6765
6766 Note: This function processes DWO files only, not DWP files. */
6767
6768static void
6769create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6770 struct dwo_file *dwo_file,
6771 VEC (dwarf2_section_info_def) *types,
6772 htab_t &types_htab)
6773{
6774 int ix;
6775 struct dwarf2_section_info *section;
6776
6777 if (VEC_empty (dwarf2_section_info_def, types))
6778 return;
6779
6780 for (ix = 0;
6781 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6782 ++ix)
6783 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6784 types_htab, rcuh_kind::TYPE);
6785}
6786
6787/* Create the hash table of all entries in the .debug_types section,
6788 and initialize all_type_units.
6789 The result is zero if there is an error (e.g. missing .debug_types section),
6790 otherwise non-zero. */
6791
6792static int
6793create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6794{
6795 htab_t types_htab = NULL;
6796
6797 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6798 &dwarf2_per_objfile->info, types_htab,
6799 rcuh_kind::COMPILE);
6800 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6801 dwarf2_per_objfile->types, types_htab);
6802 if (types_htab == NULL)
6803 {
6804 dwarf2_per_objfile->signatured_types = NULL;
6805 return 0;
6806 }
6807
6808 dwarf2_per_objfile->signatured_types = types_htab;
6809
6810 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6811 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6812
6813 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6814 &dwarf2_per_objfile->all_type_units);
6815
6816 return 1;
6817}
6818
6819/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6820 If SLOT is non-NULL, it is the entry to use in the hash table.
6821 Otherwise we find one. */
6822
6823static struct signatured_type *
6824add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6825 void **slot)
6826{
6827 struct objfile *objfile = dwarf2_per_objfile->objfile;
6828
6829 if (dwarf2_per_objfile->all_type_units.size ()
6830 == dwarf2_per_objfile->all_type_units.capacity ())
6831 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6832
6833 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6834 struct signatured_type);
6835
6836 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6837 sig_type->signature = sig;
6838 sig_type->per_cu.is_debug_types = 1;
6839 if (dwarf2_per_objfile->using_index)
6840 {
6841 sig_type->per_cu.v.quick =
6842 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6843 struct dwarf2_per_cu_quick_data);
6844 }
6845
6846 if (slot == NULL)
6847 {
6848 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6849 sig_type, INSERT);
6850 }
6851 gdb_assert (*slot == NULL);
6852 *slot = sig_type;
6853 /* The rest of sig_type must be filled in by the caller. */
6854 return sig_type;
6855}
6856
6857/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6858 Fill in SIG_ENTRY with DWO_ENTRY. */
6859
6860static void
6861fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6862 struct signatured_type *sig_entry,
6863 struct dwo_unit *dwo_entry)
6864{
6865 /* Make sure we're not clobbering something we don't expect to. */
6866 gdb_assert (! sig_entry->per_cu.queued);
6867 gdb_assert (sig_entry->per_cu.cu == NULL);
6868 if (dwarf2_per_objfile->using_index)
6869 {
6870 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6871 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6872 }
6873 else
6874 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6875 gdb_assert (sig_entry->signature == dwo_entry->signature);
6876 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6877 gdb_assert (sig_entry->type_unit_group == NULL);
6878 gdb_assert (sig_entry->dwo_unit == NULL);
6879
6880 sig_entry->per_cu.section = dwo_entry->section;
6881 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6882 sig_entry->per_cu.length = dwo_entry->length;
6883 sig_entry->per_cu.reading_dwo_directly = 1;
6884 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6885 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6886 sig_entry->dwo_unit = dwo_entry;
6887}
6888
6889/* Subroutine of lookup_signatured_type.
6890 If we haven't read the TU yet, create the signatured_type data structure
6891 for a TU to be read in directly from a DWO file, bypassing the stub.
6892 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6893 using .gdb_index, then when reading a CU we want to stay in the DWO file
6894 containing that CU. Otherwise we could end up reading several other DWO
6895 files (due to comdat folding) to process the transitive closure of all the
6896 mentioned TUs, and that can be slow. The current DWO file will have every
6897 type signature that it needs.
6898 We only do this for .gdb_index because in the psymtab case we already have
6899 to read all the DWOs to build the type unit groups. */
6900
6901static struct signatured_type *
6902lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6903{
6904 struct dwarf2_per_objfile *dwarf2_per_objfile
6905 = cu->per_cu->dwarf2_per_objfile;
6906 struct objfile *objfile = dwarf2_per_objfile->objfile;
6907 struct dwo_file *dwo_file;
6908 struct dwo_unit find_dwo_entry, *dwo_entry;
6909 struct signatured_type find_sig_entry, *sig_entry;
6910 void **slot;
6911
6912 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6913
6914 /* If TU skeletons have been removed then we may not have read in any
6915 TUs yet. */
6916 if (dwarf2_per_objfile->signatured_types == NULL)
6917 {
6918 dwarf2_per_objfile->signatured_types
6919 = allocate_signatured_type_table (objfile);
6920 }
6921
6922 /* We only ever need to read in one copy of a signatured type.
6923 Use the global signatured_types array to do our own comdat-folding
6924 of types. If this is the first time we're reading this TU, and
6925 the TU has an entry in .gdb_index, replace the recorded data from
6926 .gdb_index with this TU. */
6927
6928 find_sig_entry.signature = sig;
6929 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6930 &find_sig_entry, INSERT);
6931 sig_entry = (struct signatured_type *) *slot;
6932
6933 /* We can get here with the TU already read, *or* in the process of being
6934 read. Don't reassign the global entry to point to this DWO if that's
6935 the case. Also note that if the TU is already being read, it may not
6936 have come from a DWO, the program may be a mix of Fission-compiled
6937 code and non-Fission-compiled code. */
6938
6939 /* Have we already tried to read this TU?
6940 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6941 needn't exist in the global table yet). */
6942 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6943 return sig_entry;
6944
6945 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6946 dwo_unit of the TU itself. */
6947 dwo_file = cu->dwo_unit->dwo_file;
6948
6949 /* Ok, this is the first time we're reading this TU. */
6950 if (dwo_file->tus == NULL)
6951 return NULL;
6952 find_dwo_entry.signature = sig;
6953 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6954 if (dwo_entry == NULL)
6955 return NULL;
6956
6957 /* If the global table doesn't have an entry for this TU, add one. */
6958 if (sig_entry == NULL)
6959 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6960
6961 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6962 sig_entry->per_cu.tu_read = 1;
6963 return sig_entry;
6964}
6965
6966/* Subroutine of lookup_signatured_type.
6967 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6968 then try the DWP file. If the TU stub (skeleton) has been removed then
6969 it won't be in .gdb_index. */
6970
6971static struct signatured_type *
6972lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6973{
6974 struct dwarf2_per_objfile *dwarf2_per_objfile
6975 = cu->per_cu->dwarf2_per_objfile;
6976 struct objfile *objfile = dwarf2_per_objfile->objfile;
6977 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6978 struct dwo_unit *dwo_entry;
6979 struct signatured_type find_sig_entry, *sig_entry;
6980 void **slot;
6981
6982 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6983 gdb_assert (dwp_file != NULL);
6984
6985 /* If TU skeletons have been removed then we may not have read in any
6986 TUs yet. */
6987 if (dwarf2_per_objfile->signatured_types == NULL)
6988 {
6989 dwarf2_per_objfile->signatured_types
6990 = allocate_signatured_type_table (objfile);
6991 }
6992
6993 find_sig_entry.signature = sig;
6994 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6995 &find_sig_entry, INSERT);
6996 sig_entry = (struct signatured_type *) *slot;
6997
6998 /* Have we already tried to read this TU?
6999 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7000 needn't exist in the global table yet). */
7001 if (sig_entry != NULL)
7002 return sig_entry;
7003
7004 if (dwp_file->tus == NULL)
7005 return NULL;
7006 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7007 sig, 1 /* is_debug_types */);
7008 if (dwo_entry == NULL)
7009 return NULL;
7010
7011 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7012 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7013
7014 return sig_entry;
7015}
7016
7017/* Lookup a signature based type for DW_FORM_ref_sig8.
7018 Returns NULL if signature SIG is not present in the table.
7019 It is up to the caller to complain about this. */
7020
7021static struct signatured_type *
7022lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7023{
7024 struct dwarf2_per_objfile *dwarf2_per_objfile
7025 = cu->per_cu->dwarf2_per_objfile;
7026
7027 if (cu->dwo_unit
7028 && dwarf2_per_objfile->using_index)
7029 {
7030 /* We're in a DWO/DWP file, and we're using .gdb_index.
7031 These cases require special processing. */
7032 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7033 return lookup_dwo_signatured_type (cu, sig);
7034 else
7035 return lookup_dwp_signatured_type (cu, sig);
7036 }
7037 else
7038 {
7039 struct signatured_type find_entry, *entry;
7040
7041 if (dwarf2_per_objfile->signatured_types == NULL)
7042 return NULL;
7043 find_entry.signature = sig;
7044 entry = ((struct signatured_type *)
7045 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7046 return entry;
7047 }
7048}
7049\f
7050/* Low level DIE reading support. */
7051
7052/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7053
7054static void
7055init_cu_die_reader (struct die_reader_specs *reader,
7056 struct dwarf2_cu *cu,
7057 struct dwarf2_section_info *section,
7058 struct dwo_file *dwo_file,
7059 struct abbrev_table *abbrev_table)
7060{
7061 gdb_assert (section->readin && section->buffer != NULL);
7062 reader->abfd = get_section_bfd_owner (section);
7063 reader->cu = cu;
7064 reader->dwo_file = dwo_file;
7065 reader->die_section = section;
7066 reader->buffer = section->buffer;
7067 reader->buffer_end = section->buffer + section->size;
7068 reader->comp_dir = NULL;
7069 reader->abbrev_table = abbrev_table;
7070}
7071
7072/* Subroutine of init_cutu_and_read_dies to simplify it.
7073 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7074 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7075 already.
7076
7077 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7078 from it to the DIE in the DWO. If NULL we are skipping the stub.
7079 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7080 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7081 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7082 STUB_COMP_DIR may be non-NULL.
7083 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7084 are filled in with the info of the DIE from the DWO file.
7085 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7086 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7087 kept around for at least as long as *RESULT_READER.
7088
7089 The result is non-zero if a valid (non-dummy) DIE was found. */
7090
7091static int
7092read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7093 struct dwo_unit *dwo_unit,
7094 struct die_info *stub_comp_unit_die,
7095 const char *stub_comp_dir,
7096 struct die_reader_specs *result_reader,
7097 const gdb_byte **result_info_ptr,
7098 struct die_info **result_comp_unit_die,
7099 int *result_has_children,
7100 abbrev_table_up *result_dwo_abbrev_table)
7101{
7102 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7103 struct objfile *objfile = dwarf2_per_objfile->objfile;
7104 struct dwarf2_cu *cu = this_cu->cu;
7105 bfd *abfd;
7106 const gdb_byte *begin_info_ptr, *info_ptr;
7107 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7108 int i,num_extra_attrs;
7109 struct dwarf2_section_info *dwo_abbrev_section;
7110 struct attribute *attr;
7111 struct die_info *comp_unit_die;
7112
7113 /* At most one of these may be provided. */
7114 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7115
7116 /* These attributes aren't processed until later:
7117 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7118 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7119 referenced later. However, these attributes are found in the stub
7120 which we won't have later. In order to not impose this complication
7121 on the rest of the code, we read them here and copy them to the
7122 DWO CU/TU die. */
7123
7124 stmt_list = NULL;
7125 low_pc = NULL;
7126 high_pc = NULL;
7127 ranges = NULL;
7128 comp_dir = NULL;
7129
7130 if (stub_comp_unit_die != NULL)
7131 {
7132 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7133 DWO file. */
7134 if (! this_cu->is_debug_types)
7135 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7136 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7137 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7138 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7139 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7140
7141 /* There should be a DW_AT_addr_base attribute here (if needed).
7142 We need the value before we can process DW_FORM_GNU_addr_index. */
7143 cu->addr_base = 0;
7144 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7145 if (attr)
7146 cu->addr_base = DW_UNSND (attr);
7147
7148 /* There should be a DW_AT_ranges_base attribute here (if needed).
7149 We need the value before we can process DW_AT_ranges. */
7150 cu->ranges_base = 0;
7151 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7152 if (attr)
7153 cu->ranges_base = DW_UNSND (attr);
7154 }
7155 else if (stub_comp_dir != NULL)
7156 {
7157 /* Reconstruct the comp_dir attribute to simplify the code below. */
7158 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7159 comp_dir->name = DW_AT_comp_dir;
7160 comp_dir->form = DW_FORM_string;
7161 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7162 DW_STRING (comp_dir) = stub_comp_dir;
7163 }
7164
7165 /* Set up for reading the DWO CU/TU. */
7166 cu->dwo_unit = dwo_unit;
7167 dwarf2_section_info *section = dwo_unit->section;
7168 dwarf2_read_section (objfile, section);
7169 abfd = get_section_bfd_owner (section);
7170 begin_info_ptr = info_ptr = (section->buffer
7171 + to_underlying (dwo_unit->sect_off));
7172 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7173
7174 if (this_cu->is_debug_types)
7175 {
7176 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7177
7178 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7179 &cu->header, section,
7180 dwo_abbrev_section,
7181 info_ptr, rcuh_kind::TYPE);
7182 /* This is not an assert because it can be caused by bad debug info. */
7183 if (sig_type->signature != cu->header.signature)
7184 {
7185 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7186 " TU at offset %s [in module %s]"),
7187 hex_string (sig_type->signature),
7188 hex_string (cu->header.signature),
7189 sect_offset_str (dwo_unit->sect_off),
7190 bfd_get_filename (abfd));
7191 }
7192 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7193 /* For DWOs coming from DWP files, we don't know the CU length
7194 nor the type's offset in the TU until now. */
7195 dwo_unit->length = get_cu_length (&cu->header);
7196 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7197
7198 /* Establish the type offset that can be used to lookup the type.
7199 For DWO files, we don't know it until now. */
7200 sig_type->type_offset_in_section
7201 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7202 }
7203 else
7204 {
7205 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7206 &cu->header, section,
7207 dwo_abbrev_section,
7208 info_ptr, rcuh_kind::COMPILE);
7209 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7210 /* For DWOs coming from DWP files, we don't know the CU length
7211 until now. */
7212 dwo_unit->length = get_cu_length (&cu->header);
7213 }
7214
7215 *result_dwo_abbrev_table
7216 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7217 cu->header.abbrev_sect_off);
7218 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7219 result_dwo_abbrev_table->get ());
7220
7221 /* Read in the die, but leave space to copy over the attributes
7222 from the stub. This has the benefit of simplifying the rest of
7223 the code - all the work to maintain the illusion of a single
7224 DW_TAG_{compile,type}_unit DIE is done here. */
7225 num_extra_attrs = ((stmt_list != NULL)
7226 + (low_pc != NULL)
7227 + (high_pc != NULL)
7228 + (ranges != NULL)
7229 + (comp_dir != NULL));
7230 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7231 result_has_children, num_extra_attrs);
7232
7233 /* Copy over the attributes from the stub to the DIE we just read in. */
7234 comp_unit_die = *result_comp_unit_die;
7235 i = comp_unit_die->num_attrs;
7236 if (stmt_list != NULL)
7237 comp_unit_die->attrs[i++] = *stmt_list;
7238 if (low_pc != NULL)
7239 comp_unit_die->attrs[i++] = *low_pc;
7240 if (high_pc != NULL)
7241 comp_unit_die->attrs[i++] = *high_pc;
7242 if (ranges != NULL)
7243 comp_unit_die->attrs[i++] = *ranges;
7244 if (comp_dir != NULL)
7245 comp_unit_die->attrs[i++] = *comp_dir;
7246 comp_unit_die->num_attrs += num_extra_attrs;
7247
7248 if (dwarf_die_debug)
7249 {
7250 fprintf_unfiltered (gdb_stdlog,
7251 "Read die from %s@0x%x of %s:\n",
7252 get_section_name (section),
7253 (unsigned) (begin_info_ptr - section->buffer),
7254 bfd_get_filename (abfd));
7255 dump_die (comp_unit_die, dwarf_die_debug);
7256 }
7257
7258 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7259 TUs by skipping the stub and going directly to the entry in the DWO file.
7260 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7261 to get it via circuitous means. Blech. */
7262 if (comp_dir != NULL)
7263 result_reader->comp_dir = DW_STRING (comp_dir);
7264
7265 /* Skip dummy compilation units. */
7266 if (info_ptr >= begin_info_ptr + dwo_unit->length
7267 || peek_abbrev_code (abfd, info_ptr) == 0)
7268 return 0;
7269
7270 *result_info_ptr = info_ptr;
7271 return 1;
7272}
7273
7274/* Subroutine of init_cutu_and_read_dies to simplify it.
7275 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7276 Returns NULL if the specified DWO unit cannot be found. */
7277
7278static struct dwo_unit *
7279lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7280 struct die_info *comp_unit_die)
7281{
7282 struct dwarf2_cu *cu = this_cu->cu;
7283 ULONGEST signature;
7284 struct dwo_unit *dwo_unit;
7285 const char *comp_dir, *dwo_name;
7286
7287 gdb_assert (cu != NULL);
7288
7289 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7290 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7291 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7292
7293 if (this_cu->is_debug_types)
7294 {
7295 struct signatured_type *sig_type;
7296
7297 /* Since this_cu is the first member of struct signatured_type,
7298 we can go from a pointer to one to a pointer to the other. */
7299 sig_type = (struct signatured_type *) this_cu;
7300 signature = sig_type->signature;
7301 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7302 }
7303 else
7304 {
7305 struct attribute *attr;
7306
7307 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7308 if (! attr)
7309 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7310 " [in module %s]"),
7311 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7312 signature = DW_UNSND (attr);
7313 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7314 signature);
7315 }
7316
7317 return dwo_unit;
7318}
7319
7320/* Subroutine of init_cutu_and_read_dies to simplify it.
7321 See it for a description of the parameters.
7322 Read a TU directly from a DWO file, bypassing the stub. */
7323
7324static void
7325init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7326 int use_existing_cu, int keep,
7327 die_reader_func_ftype *die_reader_func,
7328 void *data)
7329{
7330 std::unique_ptr<dwarf2_cu> new_cu;
7331 struct signatured_type *sig_type;
7332 struct die_reader_specs reader;
7333 const gdb_byte *info_ptr;
7334 struct die_info *comp_unit_die;
7335 int has_children;
7336 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7337
7338 /* Verify we can do the following downcast, and that we have the
7339 data we need. */
7340 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7341 sig_type = (struct signatured_type *) this_cu;
7342 gdb_assert (sig_type->dwo_unit != NULL);
7343
7344 if (use_existing_cu && this_cu->cu != NULL)
7345 {
7346 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7347 /* There's no need to do the rereading_dwo_cu handling that
7348 init_cutu_and_read_dies does since we don't read the stub. */
7349 }
7350 else
7351 {
7352 /* If !use_existing_cu, this_cu->cu must be NULL. */
7353 gdb_assert (this_cu->cu == NULL);
7354 new_cu.reset (new dwarf2_cu (this_cu));
7355 }
7356
7357 /* A future optimization, if needed, would be to use an existing
7358 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7359 could share abbrev tables. */
7360
7361 /* The abbreviation table used by READER, this must live at least as long as
7362 READER. */
7363 abbrev_table_up dwo_abbrev_table;
7364
7365 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7366 NULL /* stub_comp_unit_die */,
7367 sig_type->dwo_unit->dwo_file->comp_dir,
7368 &reader, &info_ptr,
7369 &comp_unit_die, &has_children,
7370 &dwo_abbrev_table) == 0)
7371 {
7372 /* Dummy die. */
7373 return;
7374 }
7375
7376 /* All the "real" work is done here. */
7377 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7378
7379 /* This duplicates the code in init_cutu_and_read_dies,
7380 but the alternative is making the latter more complex.
7381 This function is only for the special case of using DWO files directly:
7382 no point in overly complicating the general case just to handle this. */
7383 if (new_cu != NULL && keep)
7384 {
7385 /* Link this CU into read_in_chain. */
7386 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7387 dwarf2_per_objfile->read_in_chain = this_cu;
7388 /* The chain owns it now. */
7389 new_cu.release ();
7390 }
7391}
7392
7393/* Initialize a CU (or TU) and read its DIEs.
7394 If the CU defers to a DWO file, read the DWO file as well.
7395
7396 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7397 Otherwise the table specified in the comp unit header is read in and used.
7398 This is an optimization for when we already have the abbrev table.
7399
7400 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7401 Otherwise, a new CU is allocated with xmalloc.
7402
7403 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7404 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7405
7406 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7407 linker) then DIE_READER_FUNC will not get called. */
7408
7409static void
7410init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7411 struct abbrev_table *abbrev_table,
7412 int use_existing_cu, int keep,
7413 die_reader_func_ftype *die_reader_func,
7414 void *data)
7415{
7416 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7417 struct objfile *objfile = dwarf2_per_objfile->objfile;
7418 struct dwarf2_section_info *section = this_cu->section;
7419 bfd *abfd = get_section_bfd_owner (section);
7420 struct dwarf2_cu *cu;
7421 const gdb_byte *begin_info_ptr, *info_ptr;
7422 struct die_reader_specs reader;
7423 struct die_info *comp_unit_die;
7424 int has_children;
7425 struct attribute *attr;
7426 struct signatured_type *sig_type = NULL;
7427 struct dwarf2_section_info *abbrev_section;
7428 /* Non-zero if CU currently points to a DWO file and we need to
7429 reread it. When this happens we need to reread the skeleton die
7430 before we can reread the DWO file (this only applies to CUs, not TUs). */
7431 int rereading_dwo_cu = 0;
7432
7433 if (dwarf_die_debug)
7434 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7435 this_cu->is_debug_types ? "type" : "comp",
7436 sect_offset_str (this_cu->sect_off));
7437
7438 if (use_existing_cu)
7439 gdb_assert (keep);
7440
7441 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7442 file (instead of going through the stub), short-circuit all of this. */
7443 if (this_cu->reading_dwo_directly)
7444 {
7445 /* Narrow down the scope of possibilities to have to understand. */
7446 gdb_assert (this_cu->is_debug_types);
7447 gdb_assert (abbrev_table == NULL);
7448 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7449 die_reader_func, data);
7450 return;
7451 }
7452
7453 /* This is cheap if the section is already read in. */
7454 dwarf2_read_section (objfile, section);
7455
7456 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7457
7458 abbrev_section = get_abbrev_section_for_cu (this_cu);
7459
7460 std::unique_ptr<dwarf2_cu> new_cu;
7461 if (use_existing_cu && this_cu->cu != NULL)
7462 {
7463 cu = this_cu->cu;
7464 /* If this CU is from a DWO file we need to start over, we need to
7465 refetch the attributes from the skeleton CU.
7466 This could be optimized by retrieving those attributes from when we
7467 were here the first time: the previous comp_unit_die was stored in
7468 comp_unit_obstack. But there's no data yet that we need this
7469 optimization. */
7470 if (cu->dwo_unit != NULL)
7471 rereading_dwo_cu = 1;
7472 }
7473 else
7474 {
7475 /* If !use_existing_cu, this_cu->cu must be NULL. */
7476 gdb_assert (this_cu->cu == NULL);
7477 new_cu.reset (new dwarf2_cu (this_cu));
7478 cu = new_cu.get ();
7479 }
7480
7481 /* Get the header. */
7482 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7483 {
7484 /* We already have the header, there's no need to read it in again. */
7485 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7486 }
7487 else
7488 {
7489 if (this_cu->is_debug_types)
7490 {
7491 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7492 &cu->header, section,
7493 abbrev_section, info_ptr,
7494 rcuh_kind::TYPE);
7495
7496 /* Since per_cu is the first member of struct signatured_type,
7497 we can go from a pointer to one to a pointer to the other. */
7498 sig_type = (struct signatured_type *) this_cu;
7499 gdb_assert (sig_type->signature == cu->header.signature);
7500 gdb_assert (sig_type->type_offset_in_tu
7501 == cu->header.type_cu_offset_in_tu);
7502 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7503
7504 /* LENGTH has not been set yet for type units if we're
7505 using .gdb_index. */
7506 this_cu->length = get_cu_length (&cu->header);
7507
7508 /* Establish the type offset that can be used to lookup the type. */
7509 sig_type->type_offset_in_section =
7510 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7511
7512 this_cu->dwarf_version = cu->header.version;
7513 }
7514 else
7515 {
7516 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7517 &cu->header, section,
7518 abbrev_section,
7519 info_ptr,
7520 rcuh_kind::COMPILE);
7521
7522 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7523 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7524 this_cu->dwarf_version = cu->header.version;
7525 }
7526 }
7527
7528 /* Skip dummy compilation units. */
7529 if (info_ptr >= begin_info_ptr + this_cu->length
7530 || peek_abbrev_code (abfd, info_ptr) == 0)
7531 return;
7532
7533 /* If we don't have them yet, read the abbrevs for this compilation unit.
7534 And if we need to read them now, make sure they're freed when we're
7535 done (own the table through ABBREV_TABLE_HOLDER). */
7536 abbrev_table_up abbrev_table_holder;
7537 if (abbrev_table != NULL)
7538 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7539 else
7540 {
7541 abbrev_table_holder
7542 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7543 cu->header.abbrev_sect_off);
7544 abbrev_table = abbrev_table_holder.get ();
7545 }
7546
7547 /* Read the top level CU/TU die. */
7548 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7549 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7550
7551 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7552 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7553 table from the DWO file and pass the ownership over to us. It will be
7554 referenced from READER, so we must make sure to free it after we're done
7555 with READER.
7556
7557 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7558 DWO CU, that this test will fail (the attribute will not be present). */
7559 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7560 abbrev_table_up dwo_abbrev_table;
7561 if (attr)
7562 {
7563 struct dwo_unit *dwo_unit;
7564 struct die_info *dwo_comp_unit_die;
7565
7566 if (has_children)
7567 {
7568 complaint (&symfile_complaints,
7569 _("compilation unit with DW_AT_GNU_dwo_name"
7570 " has children (offset %s) [in module %s]"),
7571 sect_offset_str (this_cu->sect_off),
7572 bfd_get_filename (abfd));
7573 }
7574 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7575 if (dwo_unit != NULL)
7576 {
7577 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7578 comp_unit_die, NULL,
7579 &reader, &info_ptr,
7580 &dwo_comp_unit_die, &has_children,
7581 &dwo_abbrev_table) == 0)
7582 {
7583 /* Dummy die. */
7584 return;
7585 }
7586 comp_unit_die = dwo_comp_unit_die;
7587 }
7588 else
7589 {
7590 /* Yikes, we couldn't find the rest of the DIE, we only have
7591 the stub. A complaint has already been logged. There's
7592 not much more we can do except pass on the stub DIE to
7593 die_reader_func. We don't want to throw an error on bad
7594 debug info. */
7595 }
7596 }
7597
7598 /* All of the above is setup for this call. Yikes. */
7599 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7600
7601 /* Done, clean up. */
7602 if (new_cu != NULL && keep)
7603 {
7604 /* Link this CU into read_in_chain. */
7605 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7606 dwarf2_per_objfile->read_in_chain = this_cu;
7607 /* The chain owns it now. */
7608 new_cu.release ();
7609 }
7610}
7611
7612/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7613 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7614 to have already done the lookup to find the DWO file).
7615
7616 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7617 THIS_CU->is_debug_types, but nothing else.
7618
7619 We fill in THIS_CU->length.
7620
7621 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7622 linker) then DIE_READER_FUNC will not get called.
7623
7624 THIS_CU->cu is always freed when done.
7625 This is done in order to not leave THIS_CU->cu in a state where we have
7626 to care whether it refers to the "main" CU or the DWO CU. */
7627
7628static void
7629init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7630 struct dwo_file *dwo_file,
7631 die_reader_func_ftype *die_reader_func,
7632 void *data)
7633{
7634 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7635 struct objfile *objfile = dwarf2_per_objfile->objfile;
7636 struct dwarf2_section_info *section = this_cu->section;
7637 bfd *abfd = get_section_bfd_owner (section);
7638 struct dwarf2_section_info *abbrev_section;
7639 const gdb_byte *begin_info_ptr, *info_ptr;
7640 struct die_reader_specs reader;
7641 struct die_info *comp_unit_die;
7642 int has_children;
7643
7644 if (dwarf_die_debug)
7645 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7646 this_cu->is_debug_types ? "type" : "comp",
7647 sect_offset_str (this_cu->sect_off));
7648
7649 gdb_assert (this_cu->cu == NULL);
7650
7651 abbrev_section = (dwo_file != NULL
7652 ? &dwo_file->sections.abbrev
7653 : get_abbrev_section_for_cu (this_cu));
7654
7655 /* This is cheap if the section is already read in. */
7656 dwarf2_read_section (objfile, section);
7657
7658 struct dwarf2_cu cu (this_cu);
7659
7660 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7661 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7662 &cu.header, section,
7663 abbrev_section, info_ptr,
7664 (this_cu->is_debug_types
7665 ? rcuh_kind::TYPE
7666 : rcuh_kind::COMPILE));
7667
7668 this_cu->length = get_cu_length (&cu.header);
7669
7670 /* Skip dummy compilation units. */
7671 if (info_ptr >= begin_info_ptr + this_cu->length
7672 || peek_abbrev_code (abfd, info_ptr) == 0)
7673 return;
7674
7675 abbrev_table_up abbrev_table
7676 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7677 cu.header.abbrev_sect_off);
7678
7679 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7680 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7681
7682 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7683}
7684
7685/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7686 does not lookup the specified DWO file.
7687 This cannot be used to read DWO files.
7688
7689 THIS_CU->cu is always freed when done.
7690 This is done in order to not leave THIS_CU->cu in a state where we have
7691 to care whether it refers to the "main" CU or the DWO CU.
7692 We can revisit this if the data shows there's a performance issue. */
7693
7694static void
7695init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7696 die_reader_func_ftype *die_reader_func,
7697 void *data)
7698{
7699 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7700}
7701\f
7702/* Type Unit Groups.
7703
7704 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7705 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7706 so that all types coming from the same compilation (.o file) are grouped
7707 together. A future step could be to put the types in the same symtab as
7708 the CU the types ultimately came from. */
7709
7710static hashval_t
7711hash_type_unit_group (const void *item)
7712{
7713 const struct type_unit_group *tu_group
7714 = (const struct type_unit_group *) item;
7715
7716 return hash_stmt_list_entry (&tu_group->hash);
7717}
7718
7719static int
7720eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7721{
7722 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7723 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7724
7725 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7726}
7727
7728/* Allocate a hash table for type unit groups. */
7729
7730static htab_t
7731allocate_type_unit_groups_table (struct objfile *objfile)
7732{
7733 return htab_create_alloc_ex (3,
7734 hash_type_unit_group,
7735 eq_type_unit_group,
7736 NULL,
7737 &objfile->objfile_obstack,
7738 hashtab_obstack_allocate,
7739 dummy_obstack_deallocate);
7740}
7741
7742/* Type units that don't have DW_AT_stmt_list are grouped into their own
7743 partial symtabs. We combine several TUs per psymtab to not let the size
7744 of any one psymtab grow too big. */
7745#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7746#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7747
7748/* Helper routine for get_type_unit_group.
7749 Create the type_unit_group object used to hold one or more TUs. */
7750
7751static struct type_unit_group *
7752create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7753{
7754 struct dwarf2_per_objfile *dwarf2_per_objfile
7755 = cu->per_cu->dwarf2_per_objfile;
7756 struct objfile *objfile = dwarf2_per_objfile->objfile;
7757 struct dwarf2_per_cu_data *per_cu;
7758 struct type_unit_group *tu_group;
7759
7760 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7761 struct type_unit_group);
7762 per_cu = &tu_group->per_cu;
7763 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7764
7765 if (dwarf2_per_objfile->using_index)
7766 {
7767 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7768 struct dwarf2_per_cu_quick_data);
7769 }
7770 else
7771 {
7772 unsigned int line_offset = to_underlying (line_offset_struct);
7773 struct partial_symtab *pst;
7774 char *name;
7775
7776 /* Give the symtab a useful name for debug purposes. */
7777 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7778 name = xstrprintf ("<type_units_%d>",
7779 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7780 else
7781 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7782
7783 pst = create_partial_symtab (per_cu, name);
7784 pst->anonymous = 1;
7785
7786 xfree (name);
7787 }
7788
7789 tu_group->hash.dwo_unit = cu->dwo_unit;
7790 tu_group->hash.line_sect_off = line_offset_struct;
7791
7792 return tu_group;
7793}
7794
7795/* Look up the type_unit_group for type unit CU, and create it if necessary.
7796 STMT_LIST is a DW_AT_stmt_list attribute. */
7797
7798static struct type_unit_group *
7799get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7800{
7801 struct dwarf2_per_objfile *dwarf2_per_objfile
7802 = cu->per_cu->dwarf2_per_objfile;
7803 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7804 struct type_unit_group *tu_group;
7805 void **slot;
7806 unsigned int line_offset;
7807 struct type_unit_group type_unit_group_for_lookup;
7808
7809 if (dwarf2_per_objfile->type_unit_groups == NULL)
7810 {
7811 dwarf2_per_objfile->type_unit_groups =
7812 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7813 }
7814
7815 /* Do we need to create a new group, or can we use an existing one? */
7816
7817 if (stmt_list)
7818 {
7819 line_offset = DW_UNSND (stmt_list);
7820 ++tu_stats->nr_symtab_sharers;
7821 }
7822 else
7823 {
7824 /* Ugh, no stmt_list. Rare, but we have to handle it.
7825 We can do various things here like create one group per TU or
7826 spread them over multiple groups to split up the expansion work.
7827 To avoid worst case scenarios (too many groups or too large groups)
7828 we, umm, group them in bunches. */
7829 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7830 | (tu_stats->nr_stmt_less_type_units
7831 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7832 ++tu_stats->nr_stmt_less_type_units;
7833 }
7834
7835 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7836 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7837 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7838 &type_unit_group_for_lookup, INSERT);
7839 if (*slot != NULL)
7840 {
7841 tu_group = (struct type_unit_group *) *slot;
7842 gdb_assert (tu_group != NULL);
7843 }
7844 else
7845 {
7846 sect_offset line_offset_struct = (sect_offset) line_offset;
7847 tu_group = create_type_unit_group (cu, line_offset_struct);
7848 *slot = tu_group;
7849 ++tu_stats->nr_symtabs;
7850 }
7851
7852 return tu_group;
7853}
7854\f
7855/* Partial symbol tables. */
7856
7857/* Create a psymtab named NAME and assign it to PER_CU.
7858
7859 The caller must fill in the following details:
7860 dirname, textlow, texthigh. */
7861
7862static struct partial_symtab *
7863create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7864{
7865 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7866 struct partial_symtab *pst;
7867
7868 pst = start_psymtab_common (objfile, name, 0,
7869 objfile->global_psymbols,
7870 objfile->static_psymbols);
7871
7872 pst->psymtabs_addrmap_supported = 1;
7873
7874 /* This is the glue that links PST into GDB's symbol API. */
7875 pst->read_symtab_private = per_cu;
7876 pst->read_symtab = dwarf2_read_symtab;
7877 per_cu->v.psymtab = pst;
7878
7879 return pst;
7880}
7881
7882/* The DATA object passed to process_psymtab_comp_unit_reader has this
7883 type. */
7884
7885struct process_psymtab_comp_unit_data
7886{
7887 /* True if we are reading a DW_TAG_partial_unit. */
7888
7889 int want_partial_unit;
7890
7891 /* The "pretend" language that is used if the CU doesn't declare a
7892 language. */
7893
7894 enum language pretend_language;
7895};
7896
7897/* die_reader_func for process_psymtab_comp_unit. */
7898
7899static void
7900process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7901 const gdb_byte *info_ptr,
7902 struct die_info *comp_unit_die,
7903 int has_children,
7904 void *data)
7905{
7906 struct dwarf2_cu *cu = reader->cu;
7907 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7908 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7909 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7910 CORE_ADDR baseaddr;
7911 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7912 struct partial_symtab *pst;
7913 enum pc_bounds_kind cu_bounds_kind;
7914 const char *filename;
7915 struct process_psymtab_comp_unit_data *info
7916 = (struct process_psymtab_comp_unit_data *) data;
7917
7918 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7919 return;
7920
7921 gdb_assert (! per_cu->is_debug_types);
7922
7923 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7924
7925 cu->list_in_scope = &file_symbols;
7926
7927 /* Allocate a new partial symbol table structure. */
7928 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7929 if (filename == NULL)
7930 filename = "";
7931
7932 pst = create_partial_symtab (per_cu, filename);
7933
7934 /* This must be done before calling dwarf2_build_include_psymtabs. */
7935 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7936
7937 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7938
7939 dwarf2_find_base_address (comp_unit_die, cu);
7940
7941 /* Possibly set the default values of LOWPC and HIGHPC from
7942 `DW_AT_ranges'. */
7943 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7944 &best_highpc, cu, pst);
7945 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7946 /* Store the contiguous range if it is not empty; it can be empty for
7947 CUs with no code. */
7948 addrmap_set_empty (objfile->psymtabs_addrmap,
7949 gdbarch_adjust_dwarf2_addr (gdbarch,
7950 best_lowpc + baseaddr),
7951 gdbarch_adjust_dwarf2_addr (gdbarch,
7952 best_highpc + baseaddr) - 1,
7953 pst);
7954
7955 /* Check if comp unit has_children.
7956 If so, read the rest of the partial symbols from this comp unit.
7957 If not, there's no more debug_info for this comp unit. */
7958 if (has_children)
7959 {
7960 struct partial_die_info *first_die;
7961 CORE_ADDR lowpc, highpc;
7962
7963 lowpc = ((CORE_ADDR) -1);
7964 highpc = ((CORE_ADDR) 0);
7965
7966 first_die = load_partial_dies (reader, info_ptr, 1);
7967
7968 scan_partial_symbols (first_die, &lowpc, &highpc,
7969 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7970
7971 /* If we didn't find a lowpc, set it to highpc to avoid
7972 complaints from `maint check'. */
7973 if (lowpc == ((CORE_ADDR) -1))
7974 lowpc = highpc;
7975
7976 /* If the compilation unit didn't have an explicit address range,
7977 then use the information extracted from its child dies. */
7978 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7979 {
7980 best_lowpc = lowpc;
7981 best_highpc = highpc;
7982 }
7983 }
7984 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7985 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7986
7987 end_psymtab_common (objfile, pst);
7988
7989 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7990 {
7991 int i;
7992 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7993 struct dwarf2_per_cu_data *iter;
7994
7995 /* Fill in 'dependencies' here; we fill in 'users' in a
7996 post-pass. */
7997 pst->number_of_dependencies = len;
7998 pst->dependencies =
7999 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8000 for (i = 0;
8001 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8002 i, iter);
8003 ++i)
8004 pst->dependencies[i] = iter->v.psymtab;
8005
8006 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8007 }
8008
8009 /* Get the list of files included in the current compilation unit,
8010 and build a psymtab for each of them. */
8011 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8012
8013 if (dwarf_read_debug)
8014 {
8015 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8016
8017 fprintf_unfiltered (gdb_stdlog,
8018 "Psymtab for %s unit @%s: %s - %s"
8019 ", %d global, %d static syms\n",
8020 per_cu->is_debug_types ? "type" : "comp",
8021 sect_offset_str (per_cu->sect_off),
8022 paddress (gdbarch, pst->textlow),
8023 paddress (gdbarch, pst->texthigh),
8024 pst->n_global_syms, pst->n_static_syms);
8025 }
8026}
8027
8028/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8029 Process compilation unit THIS_CU for a psymtab. */
8030
8031static void
8032process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8033 int want_partial_unit,
8034 enum language pretend_language)
8035{
8036 /* If this compilation unit was already read in, free the
8037 cached copy in order to read it in again. This is
8038 necessary because we skipped some symbols when we first
8039 read in the compilation unit (see load_partial_dies).
8040 This problem could be avoided, but the benefit is unclear. */
8041 if (this_cu->cu != NULL)
8042 free_one_cached_comp_unit (this_cu);
8043
8044 if (this_cu->is_debug_types)
8045 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
8046 NULL);
8047 else
8048 {
8049 process_psymtab_comp_unit_data info;
8050 info.want_partial_unit = want_partial_unit;
8051 info.pretend_language = pretend_language;
8052 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
8053 process_psymtab_comp_unit_reader, &info);
8054 }
8055
8056 /* Age out any secondary CUs. */
8057 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8058}
8059
8060/* Reader function for build_type_psymtabs. */
8061
8062static void
8063build_type_psymtabs_reader (const struct die_reader_specs *reader,
8064 const gdb_byte *info_ptr,
8065 struct die_info *type_unit_die,
8066 int has_children,
8067 void *data)
8068{
8069 struct dwarf2_per_objfile *dwarf2_per_objfile
8070 = reader->cu->per_cu->dwarf2_per_objfile;
8071 struct objfile *objfile = dwarf2_per_objfile->objfile;
8072 struct dwarf2_cu *cu = reader->cu;
8073 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8074 struct signatured_type *sig_type;
8075 struct type_unit_group *tu_group;
8076 struct attribute *attr;
8077 struct partial_die_info *first_die;
8078 CORE_ADDR lowpc, highpc;
8079 struct partial_symtab *pst;
8080
8081 gdb_assert (data == NULL);
8082 gdb_assert (per_cu->is_debug_types);
8083 sig_type = (struct signatured_type *) per_cu;
8084
8085 if (! has_children)
8086 return;
8087
8088 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8089 tu_group = get_type_unit_group (cu, attr);
8090
8091 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8092
8093 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8094 cu->list_in_scope = &file_symbols;
8095 pst = create_partial_symtab (per_cu, "");
8096 pst->anonymous = 1;
8097
8098 first_die = load_partial_dies (reader, info_ptr, 1);
8099
8100 lowpc = (CORE_ADDR) -1;
8101 highpc = (CORE_ADDR) 0;
8102 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8103
8104 end_psymtab_common (objfile, pst);
8105}
8106
8107/* Struct used to sort TUs by their abbreviation table offset. */
8108
8109struct tu_abbrev_offset
8110{
8111 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8112 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8113 {}
8114
8115 signatured_type *sig_type;
8116 sect_offset abbrev_offset;
8117};
8118
8119/* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8120
8121static bool
8122sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8123 const struct tu_abbrev_offset &b)
8124{
8125 return a.abbrev_offset < b.abbrev_offset;
8126}
8127
8128/* Efficiently read all the type units.
8129 This does the bulk of the work for build_type_psymtabs.
8130
8131 The efficiency is because we sort TUs by the abbrev table they use and
8132 only read each abbrev table once. In one program there are 200K TUs
8133 sharing 8K abbrev tables.
8134
8135 The main purpose of this function is to support building the
8136 dwarf2_per_objfile->type_unit_groups table.
8137 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8138 can collapse the search space by grouping them by stmt_list.
8139 The savings can be significant, in the same program from above the 200K TUs
8140 share 8K stmt_list tables.
8141
8142 FUNC is expected to call get_type_unit_group, which will create the
8143 struct type_unit_group if necessary and add it to
8144 dwarf2_per_objfile->type_unit_groups. */
8145
8146static void
8147build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8148{
8149 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8150 abbrev_table_up abbrev_table;
8151 sect_offset abbrev_offset;
8152
8153 /* It's up to the caller to not call us multiple times. */
8154 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8155
8156 if (dwarf2_per_objfile->all_type_units.empty ())
8157 return;
8158
8159 /* TUs typically share abbrev tables, and there can be way more TUs than
8160 abbrev tables. Sort by abbrev table to reduce the number of times we
8161 read each abbrev table in.
8162 Alternatives are to punt or to maintain a cache of abbrev tables.
8163 This is simpler and efficient enough for now.
8164
8165 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8166 symtab to use). Typically TUs with the same abbrev offset have the same
8167 stmt_list value too so in practice this should work well.
8168
8169 The basic algorithm here is:
8170
8171 sort TUs by abbrev table
8172 for each TU with same abbrev table:
8173 read abbrev table if first user
8174 read TU top level DIE
8175 [IWBN if DWO skeletons had DW_AT_stmt_list]
8176 call FUNC */
8177
8178 if (dwarf_read_debug)
8179 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8180
8181 /* Sort in a separate table to maintain the order of all_type_units
8182 for .gdb_index: TU indices directly index all_type_units. */
8183 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8184 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8185
8186 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8187 sorted_by_abbrev.emplace_back
8188 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8189 sig_type->per_cu.section,
8190 sig_type->per_cu.sect_off));
8191
8192 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8193 sort_tu_by_abbrev_offset);
8194
8195 abbrev_offset = (sect_offset) ~(unsigned) 0;
8196
8197 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8198 {
8199 /* Switch to the next abbrev table if necessary. */
8200 if (abbrev_table == NULL
8201 || tu.abbrev_offset != abbrev_offset)
8202 {
8203 abbrev_offset = tu.abbrev_offset;
8204 abbrev_table =
8205 abbrev_table_read_table (dwarf2_per_objfile,
8206 &dwarf2_per_objfile->abbrev,
8207 abbrev_offset);
8208 ++tu_stats->nr_uniq_abbrev_tables;
8209 }
8210
8211 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8212 0, 0, build_type_psymtabs_reader, NULL);
8213 }
8214}
8215
8216/* Print collected type unit statistics. */
8217
8218static void
8219print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8220{
8221 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8222
8223 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8224 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8225 dwarf2_per_objfile->all_type_units.size ());
8226 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8227 tu_stats->nr_uniq_abbrev_tables);
8228 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8229 tu_stats->nr_symtabs);
8230 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8231 tu_stats->nr_symtab_sharers);
8232 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8233 tu_stats->nr_stmt_less_type_units);
8234 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8235 tu_stats->nr_all_type_units_reallocs);
8236}
8237
8238/* Traversal function for build_type_psymtabs. */
8239
8240static int
8241build_type_psymtab_dependencies (void **slot, void *info)
8242{
8243 struct dwarf2_per_objfile *dwarf2_per_objfile
8244 = (struct dwarf2_per_objfile *) info;
8245 struct objfile *objfile = dwarf2_per_objfile->objfile;
8246 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8247 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8248 struct partial_symtab *pst = per_cu->v.psymtab;
8249 int len = VEC_length (sig_type_ptr, tu_group->tus);
8250 struct signatured_type *iter;
8251 int i;
8252
8253 gdb_assert (len > 0);
8254 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8255
8256 pst->number_of_dependencies = len;
8257 pst->dependencies =
8258 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8259 for (i = 0;
8260 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8261 ++i)
8262 {
8263 gdb_assert (iter->per_cu.is_debug_types);
8264 pst->dependencies[i] = iter->per_cu.v.psymtab;
8265 iter->type_unit_group = tu_group;
8266 }
8267
8268 VEC_free (sig_type_ptr, tu_group->tus);
8269
8270 return 1;
8271}
8272
8273/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8274 Build partial symbol tables for the .debug_types comp-units. */
8275
8276static void
8277build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8278{
8279 if (! create_all_type_units (dwarf2_per_objfile))
8280 return;
8281
8282 build_type_psymtabs_1 (dwarf2_per_objfile);
8283}
8284
8285/* Traversal function for process_skeletonless_type_unit.
8286 Read a TU in a DWO file and build partial symbols for it. */
8287
8288static int
8289process_skeletonless_type_unit (void **slot, void *info)
8290{
8291 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8292 struct dwarf2_per_objfile *dwarf2_per_objfile
8293 = (struct dwarf2_per_objfile *) info;
8294 struct signatured_type find_entry, *entry;
8295
8296 /* If this TU doesn't exist in the global table, add it and read it in. */
8297
8298 if (dwarf2_per_objfile->signatured_types == NULL)
8299 {
8300 dwarf2_per_objfile->signatured_types
8301 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8302 }
8303
8304 find_entry.signature = dwo_unit->signature;
8305 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8306 INSERT);
8307 /* If we've already seen this type there's nothing to do. What's happening
8308 is we're doing our own version of comdat-folding here. */
8309 if (*slot != NULL)
8310 return 1;
8311
8312 /* This does the job that create_all_type_units would have done for
8313 this TU. */
8314 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8315 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8316 *slot = entry;
8317
8318 /* This does the job that build_type_psymtabs_1 would have done. */
8319 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
8320 build_type_psymtabs_reader, NULL);
8321
8322 return 1;
8323}
8324
8325/* Traversal function for process_skeletonless_type_units. */
8326
8327static int
8328process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8329{
8330 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8331
8332 if (dwo_file->tus != NULL)
8333 {
8334 htab_traverse_noresize (dwo_file->tus,
8335 process_skeletonless_type_unit, info);
8336 }
8337
8338 return 1;
8339}
8340
8341/* Scan all TUs of DWO files, verifying we've processed them.
8342 This is needed in case a TU was emitted without its skeleton.
8343 Note: This can't be done until we know what all the DWO files are. */
8344
8345static void
8346process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8347{
8348 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8349 if (get_dwp_file (dwarf2_per_objfile) == NULL
8350 && dwarf2_per_objfile->dwo_files != NULL)
8351 {
8352 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8353 process_dwo_file_for_skeletonless_type_units,
8354 dwarf2_per_objfile);
8355 }
8356}
8357
8358/* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8359
8360static void
8361set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8362{
8363 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8364 {
8365 struct partial_symtab *pst = per_cu->v.psymtab;
8366
8367 if (pst == NULL)
8368 continue;
8369
8370 for (int j = 0; j < pst->number_of_dependencies; ++j)
8371 {
8372 /* Set the 'user' field only if it is not already set. */
8373 if (pst->dependencies[j]->user == NULL)
8374 pst->dependencies[j]->user = pst;
8375 }
8376 }
8377}
8378
8379/* Build the partial symbol table by doing a quick pass through the
8380 .debug_info and .debug_abbrev sections. */
8381
8382static void
8383dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8384{
8385 struct objfile *objfile = dwarf2_per_objfile->objfile;
8386
8387 if (dwarf_read_debug)
8388 {
8389 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8390 objfile_name (objfile));
8391 }
8392
8393 dwarf2_per_objfile->reading_partial_symbols = 1;
8394
8395 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8396
8397 /* Any cached compilation units will be linked by the per-objfile
8398 read_in_chain. Make sure to free them when we're done. */
8399 free_cached_comp_units freer (dwarf2_per_objfile);
8400
8401 build_type_psymtabs (dwarf2_per_objfile);
8402
8403 create_all_comp_units (dwarf2_per_objfile);
8404
8405 /* Create a temporary address map on a temporary obstack. We later
8406 copy this to the final obstack. */
8407 auto_obstack temp_obstack;
8408
8409 scoped_restore save_psymtabs_addrmap
8410 = make_scoped_restore (&objfile->psymtabs_addrmap,
8411 addrmap_create_mutable (&temp_obstack));
8412
8413 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8414 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8415
8416 /* This has to wait until we read the CUs, we need the list of DWOs. */
8417 process_skeletonless_type_units (dwarf2_per_objfile);
8418
8419 /* Now that all TUs have been processed we can fill in the dependencies. */
8420 if (dwarf2_per_objfile->type_unit_groups != NULL)
8421 {
8422 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8423 build_type_psymtab_dependencies, dwarf2_per_objfile);
8424 }
8425
8426 if (dwarf_read_debug)
8427 print_tu_stats (dwarf2_per_objfile);
8428
8429 set_partial_user (dwarf2_per_objfile);
8430
8431 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8432 &objfile->objfile_obstack);
8433 /* At this point we want to keep the address map. */
8434 save_psymtabs_addrmap.release ();
8435
8436 if (dwarf_read_debug)
8437 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8438 objfile_name (objfile));
8439}
8440
8441/* die_reader_func for load_partial_comp_unit. */
8442
8443static void
8444load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8445 const gdb_byte *info_ptr,
8446 struct die_info *comp_unit_die,
8447 int has_children,
8448 void *data)
8449{
8450 struct dwarf2_cu *cu = reader->cu;
8451
8452 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8453
8454 /* Check if comp unit has_children.
8455 If so, read the rest of the partial symbols from this comp unit.
8456 If not, there's no more debug_info for this comp unit. */
8457 if (has_children)
8458 load_partial_dies (reader, info_ptr, 0);
8459}
8460
8461/* Load the partial DIEs for a secondary CU into memory.
8462 This is also used when rereading a primary CU with load_all_dies. */
8463
8464static void
8465load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8466{
8467 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8468 load_partial_comp_unit_reader, NULL);
8469}
8470
8471static void
8472read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8473 struct dwarf2_section_info *section,
8474 struct dwarf2_section_info *abbrev_section,
8475 unsigned int is_dwz)
8476{
8477 const gdb_byte *info_ptr;
8478 struct objfile *objfile = dwarf2_per_objfile->objfile;
8479
8480 if (dwarf_read_debug)
8481 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8482 get_section_name (section),
8483 get_section_file_name (section));
8484
8485 dwarf2_read_section (objfile, section);
8486
8487 info_ptr = section->buffer;
8488
8489 while (info_ptr < section->buffer + section->size)
8490 {
8491 struct dwarf2_per_cu_data *this_cu;
8492
8493 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8494
8495 comp_unit_head cu_header;
8496 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8497 abbrev_section, info_ptr,
8498 rcuh_kind::COMPILE);
8499
8500 /* Save the compilation unit for later lookup. */
8501 if (cu_header.unit_type != DW_UT_type)
8502 {
8503 this_cu = XOBNEW (&objfile->objfile_obstack,
8504 struct dwarf2_per_cu_data);
8505 memset (this_cu, 0, sizeof (*this_cu));
8506 }
8507 else
8508 {
8509 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8510 struct signatured_type);
8511 memset (sig_type, 0, sizeof (*sig_type));
8512 sig_type->signature = cu_header.signature;
8513 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8514 this_cu = &sig_type->per_cu;
8515 }
8516 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8517 this_cu->sect_off = sect_off;
8518 this_cu->length = cu_header.length + cu_header.initial_length_size;
8519 this_cu->is_dwz = is_dwz;
8520 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8521 this_cu->section = section;
8522
8523 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8524
8525 info_ptr = info_ptr + this_cu->length;
8526 }
8527}
8528
8529/* Create a list of all compilation units in OBJFILE.
8530 This is only done for -readnow and building partial symtabs. */
8531
8532static void
8533create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8534{
8535 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8536 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8537 &dwarf2_per_objfile->abbrev, 0);
8538
8539 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8540 if (dwz != NULL)
8541 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8542 1);
8543}
8544
8545/* Process all loaded DIEs for compilation unit CU, starting at
8546 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8547 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8548 DW_AT_ranges). See the comments of add_partial_subprogram on how
8549 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8550
8551static void
8552scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8553 CORE_ADDR *highpc, int set_addrmap,
8554 struct dwarf2_cu *cu)
8555{
8556 struct partial_die_info *pdi;
8557
8558 /* Now, march along the PDI's, descending into ones which have
8559 interesting children but skipping the children of the other ones,
8560 until we reach the end of the compilation unit. */
8561
8562 pdi = first_die;
8563
8564 while (pdi != NULL)
8565 {
8566 pdi->fixup (cu);
8567
8568 /* Anonymous namespaces or modules have no name but have interesting
8569 children, so we need to look at them. Ditto for anonymous
8570 enums. */
8571
8572 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8573 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8574 || pdi->tag == DW_TAG_imported_unit
8575 || pdi->tag == DW_TAG_inlined_subroutine)
8576 {
8577 switch (pdi->tag)
8578 {
8579 case DW_TAG_subprogram:
8580 case DW_TAG_inlined_subroutine:
8581 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8582 break;
8583 case DW_TAG_constant:
8584 case DW_TAG_variable:
8585 case DW_TAG_typedef:
8586 case DW_TAG_union_type:
8587 if (!pdi->is_declaration)
8588 {
8589 add_partial_symbol (pdi, cu);
8590 }
8591 break;
8592 case DW_TAG_class_type:
8593 case DW_TAG_interface_type:
8594 case DW_TAG_structure_type:
8595 if (!pdi->is_declaration)
8596 {
8597 add_partial_symbol (pdi, cu);
8598 }
8599 if ((cu->language == language_rust
8600 || cu->language == language_cplus) && pdi->has_children)
8601 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8602 set_addrmap, cu);
8603 break;
8604 case DW_TAG_enumeration_type:
8605 if (!pdi->is_declaration)
8606 add_partial_enumeration (pdi, cu);
8607 break;
8608 case DW_TAG_base_type:
8609 case DW_TAG_subrange_type:
8610 /* File scope base type definitions are added to the partial
8611 symbol table. */
8612 add_partial_symbol (pdi, cu);
8613 break;
8614 case DW_TAG_namespace:
8615 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8616 break;
8617 case DW_TAG_module:
8618 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8619 break;
8620 case DW_TAG_imported_unit:
8621 {
8622 struct dwarf2_per_cu_data *per_cu;
8623
8624 /* For now we don't handle imported units in type units. */
8625 if (cu->per_cu->is_debug_types)
8626 {
8627 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8628 " supported in type units [in module %s]"),
8629 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8630 }
8631
8632 per_cu = dwarf2_find_containing_comp_unit
8633 (pdi->d.sect_off, pdi->is_dwz,
8634 cu->per_cu->dwarf2_per_objfile);
8635
8636 /* Go read the partial unit, if needed. */
8637 if (per_cu->v.psymtab == NULL)
8638 process_psymtab_comp_unit (per_cu, 1, cu->language);
8639
8640 VEC_safe_push (dwarf2_per_cu_ptr,
8641 cu->per_cu->imported_symtabs, per_cu);
8642 }
8643 break;
8644 case DW_TAG_imported_declaration:
8645 add_partial_symbol (pdi, cu);
8646 break;
8647 default:
8648 break;
8649 }
8650 }
8651
8652 /* If the die has a sibling, skip to the sibling. */
8653
8654 pdi = pdi->die_sibling;
8655 }
8656}
8657
8658/* Functions used to compute the fully scoped name of a partial DIE.
8659
8660 Normally, this is simple. For C++, the parent DIE's fully scoped
8661 name is concatenated with "::" and the partial DIE's name.
8662 Enumerators are an exception; they use the scope of their parent
8663 enumeration type, i.e. the name of the enumeration type is not
8664 prepended to the enumerator.
8665
8666 There are two complexities. One is DW_AT_specification; in this
8667 case "parent" means the parent of the target of the specification,
8668 instead of the direct parent of the DIE. The other is compilers
8669 which do not emit DW_TAG_namespace; in this case we try to guess
8670 the fully qualified name of structure types from their members'
8671 linkage names. This must be done using the DIE's children rather
8672 than the children of any DW_AT_specification target. We only need
8673 to do this for structures at the top level, i.e. if the target of
8674 any DW_AT_specification (if any; otherwise the DIE itself) does not
8675 have a parent. */
8676
8677/* Compute the scope prefix associated with PDI's parent, in
8678 compilation unit CU. The result will be allocated on CU's
8679 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8680 field. NULL is returned if no prefix is necessary. */
8681static const char *
8682partial_die_parent_scope (struct partial_die_info *pdi,
8683 struct dwarf2_cu *cu)
8684{
8685 const char *grandparent_scope;
8686 struct partial_die_info *parent, *real_pdi;
8687
8688 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8689 then this means the parent of the specification DIE. */
8690
8691 real_pdi = pdi;
8692 while (real_pdi->has_specification)
8693 real_pdi = find_partial_die (real_pdi->spec_offset,
8694 real_pdi->spec_is_dwz, cu);
8695
8696 parent = real_pdi->die_parent;
8697 if (parent == NULL)
8698 return NULL;
8699
8700 if (parent->scope_set)
8701 return parent->scope;
8702
8703 parent->fixup (cu);
8704
8705 grandparent_scope = partial_die_parent_scope (parent, cu);
8706
8707 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8708 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8709 Work around this problem here. */
8710 if (cu->language == language_cplus
8711 && parent->tag == DW_TAG_namespace
8712 && strcmp (parent->name, "::") == 0
8713 && grandparent_scope == NULL)
8714 {
8715 parent->scope = NULL;
8716 parent->scope_set = 1;
8717 return NULL;
8718 }
8719
8720 if (pdi->tag == DW_TAG_enumerator)
8721 /* Enumerators should not get the name of the enumeration as a prefix. */
8722 parent->scope = grandparent_scope;
8723 else if (parent->tag == DW_TAG_namespace
8724 || parent->tag == DW_TAG_module
8725 || parent->tag == DW_TAG_structure_type
8726 || parent->tag == DW_TAG_class_type
8727 || parent->tag == DW_TAG_interface_type
8728 || parent->tag == DW_TAG_union_type
8729 || parent->tag == DW_TAG_enumeration_type)
8730 {
8731 if (grandparent_scope == NULL)
8732 parent->scope = parent->name;
8733 else
8734 parent->scope = typename_concat (&cu->comp_unit_obstack,
8735 grandparent_scope,
8736 parent->name, 0, cu);
8737 }
8738 else
8739 {
8740 /* FIXME drow/2004-04-01: What should we be doing with
8741 function-local names? For partial symbols, we should probably be
8742 ignoring them. */
8743 complaint (&symfile_complaints,
8744 _("unhandled containing DIE tag %d for DIE at %s"),
8745 parent->tag, sect_offset_str (pdi->sect_off));
8746 parent->scope = grandparent_scope;
8747 }
8748
8749 parent->scope_set = 1;
8750 return parent->scope;
8751}
8752
8753/* Return the fully scoped name associated with PDI, from compilation unit
8754 CU. The result will be allocated with malloc. */
8755
8756static char *
8757partial_die_full_name (struct partial_die_info *pdi,
8758 struct dwarf2_cu *cu)
8759{
8760 const char *parent_scope;
8761
8762 /* If this is a template instantiation, we can not work out the
8763 template arguments from partial DIEs. So, unfortunately, we have
8764 to go through the full DIEs. At least any work we do building
8765 types here will be reused if full symbols are loaded later. */
8766 if (pdi->has_template_arguments)
8767 {
8768 pdi->fixup (cu);
8769
8770 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8771 {
8772 struct die_info *die;
8773 struct attribute attr;
8774 struct dwarf2_cu *ref_cu = cu;
8775
8776 /* DW_FORM_ref_addr is using section offset. */
8777 attr.name = (enum dwarf_attribute) 0;
8778 attr.form = DW_FORM_ref_addr;
8779 attr.u.unsnd = to_underlying (pdi->sect_off);
8780 die = follow_die_ref (NULL, &attr, &ref_cu);
8781
8782 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8783 }
8784 }
8785
8786 parent_scope = partial_die_parent_scope (pdi, cu);
8787 if (parent_scope == NULL)
8788 return NULL;
8789 else
8790 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8791}
8792
8793static void
8794add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8795{
8796 struct dwarf2_per_objfile *dwarf2_per_objfile
8797 = cu->per_cu->dwarf2_per_objfile;
8798 struct objfile *objfile = dwarf2_per_objfile->objfile;
8799 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8800 CORE_ADDR addr = 0;
8801 const char *actual_name = NULL;
8802 CORE_ADDR baseaddr;
8803 char *built_actual_name;
8804
8805 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8806
8807 built_actual_name = partial_die_full_name (pdi, cu);
8808 if (built_actual_name != NULL)
8809 actual_name = built_actual_name;
8810
8811 if (actual_name == NULL)
8812 actual_name = pdi->name;
8813
8814 switch (pdi->tag)
8815 {
8816 case DW_TAG_inlined_subroutine:
8817 case DW_TAG_subprogram:
8818 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8819 if (pdi->is_external || cu->language == language_ada)
8820 {
8821 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8822 of the global scope. But in Ada, we want to be able to access
8823 nested procedures globally. So all Ada subprograms are stored
8824 in the global scope. */
8825 add_psymbol_to_list (actual_name, strlen (actual_name),
8826 built_actual_name != NULL,
8827 VAR_DOMAIN, LOC_BLOCK,
8828 &objfile->global_psymbols,
8829 addr, cu->language, objfile);
8830 }
8831 else
8832 {
8833 add_psymbol_to_list (actual_name, strlen (actual_name),
8834 built_actual_name != NULL,
8835 VAR_DOMAIN, LOC_BLOCK,
8836 &objfile->static_psymbols,
8837 addr, cu->language, objfile);
8838 }
8839
8840 if (pdi->main_subprogram && actual_name != NULL)
8841 set_objfile_main_name (objfile, actual_name, cu->language);
8842 break;
8843 case DW_TAG_constant:
8844 {
8845 std::vector<partial_symbol *> *list;
8846
8847 if (pdi->is_external)
8848 list = &objfile->global_psymbols;
8849 else
8850 list = &objfile->static_psymbols;
8851 add_psymbol_to_list (actual_name, strlen (actual_name),
8852 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8853 list, 0, cu->language, objfile);
8854 }
8855 break;
8856 case DW_TAG_variable:
8857 if (pdi->d.locdesc)
8858 addr = decode_locdesc (pdi->d.locdesc, cu);
8859
8860 if (pdi->d.locdesc
8861 && addr == 0
8862 && !dwarf2_per_objfile->has_section_at_zero)
8863 {
8864 /* A global or static variable may also have been stripped
8865 out by the linker if unused, in which case its address
8866 will be nullified; do not add such variables into partial
8867 symbol table then. */
8868 }
8869 else if (pdi->is_external)
8870 {
8871 /* Global Variable.
8872 Don't enter into the minimal symbol tables as there is
8873 a minimal symbol table entry from the ELF symbols already.
8874 Enter into partial symbol table if it has a location
8875 descriptor or a type.
8876 If the location descriptor is missing, new_symbol will create
8877 a LOC_UNRESOLVED symbol, the address of the variable will then
8878 be determined from the minimal symbol table whenever the variable
8879 is referenced.
8880 The address for the partial symbol table entry is not
8881 used by GDB, but it comes in handy for debugging partial symbol
8882 table building. */
8883
8884 if (pdi->d.locdesc || pdi->has_type)
8885 add_psymbol_to_list (actual_name, strlen (actual_name),
8886 built_actual_name != NULL,
8887 VAR_DOMAIN, LOC_STATIC,
8888 &objfile->global_psymbols,
8889 addr + baseaddr,
8890 cu->language, objfile);
8891 }
8892 else
8893 {
8894 int has_loc = pdi->d.locdesc != NULL;
8895
8896 /* Static Variable. Skip symbols whose value we cannot know (those
8897 without location descriptors or constant values). */
8898 if (!has_loc && !pdi->has_const_value)
8899 {
8900 xfree (built_actual_name);
8901 return;
8902 }
8903
8904 add_psymbol_to_list (actual_name, strlen (actual_name),
8905 built_actual_name != NULL,
8906 VAR_DOMAIN, LOC_STATIC,
8907 &objfile->static_psymbols,
8908 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8909 cu->language, objfile);
8910 }
8911 break;
8912 case DW_TAG_typedef:
8913 case DW_TAG_base_type:
8914 case DW_TAG_subrange_type:
8915 add_psymbol_to_list (actual_name, strlen (actual_name),
8916 built_actual_name != NULL,
8917 VAR_DOMAIN, LOC_TYPEDEF,
8918 &objfile->static_psymbols,
8919 0, cu->language, objfile);
8920 break;
8921 case DW_TAG_imported_declaration:
8922 case DW_TAG_namespace:
8923 add_psymbol_to_list (actual_name, strlen (actual_name),
8924 built_actual_name != NULL,
8925 VAR_DOMAIN, LOC_TYPEDEF,
8926 &objfile->global_psymbols,
8927 0, cu->language, objfile);
8928 break;
8929 case DW_TAG_module:
8930 add_psymbol_to_list (actual_name, strlen (actual_name),
8931 built_actual_name != NULL,
8932 MODULE_DOMAIN, LOC_TYPEDEF,
8933 &objfile->global_psymbols,
8934 0, cu->language, objfile);
8935 break;
8936 case DW_TAG_class_type:
8937 case DW_TAG_interface_type:
8938 case DW_TAG_structure_type:
8939 case DW_TAG_union_type:
8940 case DW_TAG_enumeration_type:
8941 /* Skip external references. The DWARF standard says in the section
8942 about "Structure, Union, and Class Type Entries": "An incomplete
8943 structure, union or class type is represented by a structure,
8944 union or class entry that does not have a byte size attribute
8945 and that has a DW_AT_declaration attribute." */
8946 if (!pdi->has_byte_size && pdi->is_declaration)
8947 {
8948 xfree (built_actual_name);
8949 return;
8950 }
8951
8952 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8953 static vs. global. */
8954 add_psymbol_to_list (actual_name, strlen (actual_name),
8955 built_actual_name != NULL,
8956 STRUCT_DOMAIN, LOC_TYPEDEF,
8957 cu->language == language_cplus
8958 ? &objfile->global_psymbols
8959 : &objfile->static_psymbols,
8960 0, cu->language, objfile);
8961
8962 break;
8963 case DW_TAG_enumerator:
8964 add_psymbol_to_list (actual_name, strlen (actual_name),
8965 built_actual_name != NULL,
8966 VAR_DOMAIN, LOC_CONST,
8967 cu->language == language_cplus
8968 ? &objfile->global_psymbols
8969 : &objfile->static_psymbols,
8970 0, cu->language, objfile);
8971 break;
8972 default:
8973 break;
8974 }
8975
8976 xfree (built_actual_name);
8977}
8978
8979/* Read a partial die corresponding to a namespace; also, add a symbol
8980 corresponding to that namespace to the symbol table. NAMESPACE is
8981 the name of the enclosing namespace. */
8982
8983static void
8984add_partial_namespace (struct partial_die_info *pdi,
8985 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8986 int set_addrmap, struct dwarf2_cu *cu)
8987{
8988 /* Add a symbol for the namespace. */
8989
8990 add_partial_symbol (pdi, cu);
8991
8992 /* Now scan partial symbols in that namespace. */
8993
8994 if (pdi->has_children)
8995 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8996}
8997
8998/* Read a partial die corresponding to a Fortran module. */
8999
9000static void
9001add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9002 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9003{
9004 /* Add a symbol for the namespace. */
9005
9006 add_partial_symbol (pdi, cu);
9007
9008 /* Now scan partial symbols in that module. */
9009
9010 if (pdi->has_children)
9011 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9012}
9013
9014/* Read a partial die corresponding to a subprogram or an inlined
9015 subprogram and create a partial symbol for that subprogram.
9016 When the CU language allows it, this routine also defines a partial
9017 symbol for each nested subprogram that this subprogram contains.
9018 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9019 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9020
9021 PDI may also be a lexical block, in which case we simply search
9022 recursively for subprograms defined inside that lexical block.
9023 Again, this is only performed when the CU language allows this
9024 type of definitions. */
9025
9026static void
9027add_partial_subprogram (struct partial_die_info *pdi,
9028 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9029 int set_addrmap, struct dwarf2_cu *cu)
9030{
9031 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9032 {
9033 if (pdi->has_pc_info)
9034 {
9035 if (pdi->lowpc < *lowpc)
9036 *lowpc = pdi->lowpc;
9037 if (pdi->highpc > *highpc)
9038 *highpc = pdi->highpc;
9039 if (set_addrmap)
9040 {
9041 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9043 CORE_ADDR baseaddr;
9044 CORE_ADDR highpc;
9045 CORE_ADDR lowpc;
9046
9047 baseaddr = ANOFFSET (objfile->section_offsets,
9048 SECT_OFF_TEXT (objfile));
9049 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9050 pdi->lowpc + baseaddr);
9051 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9052 pdi->highpc + baseaddr);
9053 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9054 cu->per_cu->v.psymtab);
9055 }
9056 }
9057
9058 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9059 {
9060 if (!pdi->is_declaration)
9061 /* Ignore subprogram DIEs that do not have a name, they are
9062 illegal. Do not emit a complaint at this point, we will
9063 do so when we convert this psymtab into a symtab. */
9064 if (pdi->name)
9065 add_partial_symbol (pdi, cu);
9066 }
9067 }
9068
9069 if (! pdi->has_children)
9070 return;
9071
9072 if (cu->language == language_ada)
9073 {
9074 pdi = pdi->die_child;
9075 while (pdi != NULL)
9076 {
9077 pdi->fixup (cu);
9078 if (pdi->tag == DW_TAG_subprogram
9079 || pdi->tag == DW_TAG_inlined_subroutine
9080 || pdi->tag == DW_TAG_lexical_block)
9081 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9082 pdi = pdi->die_sibling;
9083 }
9084 }
9085}
9086
9087/* Read a partial die corresponding to an enumeration type. */
9088
9089static void
9090add_partial_enumeration (struct partial_die_info *enum_pdi,
9091 struct dwarf2_cu *cu)
9092{
9093 struct partial_die_info *pdi;
9094
9095 if (enum_pdi->name != NULL)
9096 add_partial_symbol (enum_pdi, cu);
9097
9098 pdi = enum_pdi->die_child;
9099 while (pdi)
9100 {
9101 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9102 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9103 else
9104 add_partial_symbol (pdi, cu);
9105 pdi = pdi->die_sibling;
9106 }
9107}
9108
9109/* Return the initial uleb128 in the die at INFO_PTR. */
9110
9111static unsigned int
9112peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9113{
9114 unsigned int bytes_read;
9115
9116 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9117}
9118
9119/* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9120 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9121
9122 Return the corresponding abbrev, or NULL if the number is zero (indicating
9123 an empty DIE). In either case *BYTES_READ will be set to the length of
9124 the initial number. */
9125
9126static struct abbrev_info *
9127peek_die_abbrev (const die_reader_specs &reader,
9128 const gdb_byte *info_ptr, unsigned int *bytes_read)
9129{
9130 dwarf2_cu *cu = reader.cu;
9131 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9132 unsigned int abbrev_number
9133 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9134
9135 if (abbrev_number == 0)
9136 return NULL;
9137
9138 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9139 if (!abbrev)
9140 {
9141 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9142 " at offset %s [in module %s]"),
9143 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9144 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9145 }
9146
9147 return abbrev;
9148}
9149
9150/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9151 Returns a pointer to the end of a series of DIEs, terminated by an empty
9152 DIE. Any children of the skipped DIEs will also be skipped. */
9153
9154static const gdb_byte *
9155skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9156{
9157 while (1)
9158 {
9159 unsigned int bytes_read;
9160 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9161
9162 if (abbrev == NULL)
9163 return info_ptr + bytes_read;
9164 else
9165 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9166 }
9167}
9168
9169/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9170 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9171 abbrev corresponding to that skipped uleb128 should be passed in
9172 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9173 children. */
9174
9175static const gdb_byte *
9176skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9177 struct abbrev_info *abbrev)
9178{
9179 unsigned int bytes_read;
9180 struct attribute attr;
9181 bfd *abfd = reader->abfd;
9182 struct dwarf2_cu *cu = reader->cu;
9183 const gdb_byte *buffer = reader->buffer;
9184 const gdb_byte *buffer_end = reader->buffer_end;
9185 unsigned int form, i;
9186
9187 for (i = 0; i < abbrev->num_attrs; i++)
9188 {
9189 /* The only abbrev we care about is DW_AT_sibling. */
9190 if (abbrev->attrs[i].name == DW_AT_sibling)
9191 {
9192 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9193 if (attr.form == DW_FORM_ref_addr)
9194 complaint (&symfile_complaints,
9195 _("ignoring absolute DW_AT_sibling"));
9196 else
9197 {
9198 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9199 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9200
9201 if (sibling_ptr < info_ptr)
9202 complaint (&symfile_complaints,
9203 _("DW_AT_sibling points backwards"));
9204 else if (sibling_ptr > reader->buffer_end)
9205 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9206 else
9207 return sibling_ptr;
9208 }
9209 }
9210
9211 /* If it isn't DW_AT_sibling, skip this attribute. */
9212 form = abbrev->attrs[i].form;
9213 skip_attribute:
9214 switch (form)
9215 {
9216 case DW_FORM_ref_addr:
9217 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9218 and later it is offset sized. */
9219 if (cu->header.version == 2)
9220 info_ptr += cu->header.addr_size;
9221 else
9222 info_ptr += cu->header.offset_size;
9223 break;
9224 case DW_FORM_GNU_ref_alt:
9225 info_ptr += cu->header.offset_size;
9226 break;
9227 case DW_FORM_addr:
9228 info_ptr += cu->header.addr_size;
9229 break;
9230 case DW_FORM_data1:
9231 case DW_FORM_ref1:
9232 case DW_FORM_flag:
9233 info_ptr += 1;
9234 break;
9235 case DW_FORM_flag_present:
9236 case DW_FORM_implicit_const:
9237 break;
9238 case DW_FORM_data2:
9239 case DW_FORM_ref2:
9240 info_ptr += 2;
9241 break;
9242 case DW_FORM_data4:
9243 case DW_FORM_ref4:
9244 info_ptr += 4;
9245 break;
9246 case DW_FORM_data8:
9247 case DW_FORM_ref8:
9248 case DW_FORM_ref_sig8:
9249 info_ptr += 8;
9250 break;
9251 case DW_FORM_data16:
9252 info_ptr += 16;
9253 break;
9254 case DW_FORM_string:
9255 read_direct_string (abfd, info_ptr, &bytes_read);
9256 info_ptr += bytes_read;
9257 break;
9258 case DW_FORM_sec_offset:
9259 case DW_FORM_strp:
9260 case DW_FORM_GNU_strp_alt:
9261 info_ptr += cu->header.offset_size;
9262 break;
9263 case DW_FORM_exprloc:
9264 case DW_FORM_block:
9265 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9266 info_ptr += bytes_read;
9267 break;
9268 case DW_FORM_block1:
9269 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9270 break;
9271 case DW_FORM_block2:
9272 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9273 break;
9274 case DW_FORM_block4:
9275 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9276 break;
9277 case DW_FORM_sdata:
9278 case DW_FORM_udata:
9279 case DW_FORM_ref_udata:
9280 case DW_FORM_GNU_addr_index:
9281 case DW_FORM_GNU_str_index:
9282 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9283 break;
9284 case DW_FORM_indirect:
9285 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9286 info_ptr += bytes_read;
9287 /* We need to continue parsing from here, so just go back to
9288 the top. */
9289 goto skip_attribute;
9290
9291 default:
9292 error (_("Dwarf Error: Cannot handle %s "
9293 "in DWARF reader [in module %s]"),
9294 dwarf_form_name (form),
9295 bfd_get_filename (abfd));
9296 }
9297 }
9298
9299 if (abbrev->has_children)
9300 return skip_children (reader, info_ptr);
9301 else
9302 return info_ptr;
9303}
9304
9305/* Locate ORIG_PDI's sibling.
9306 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9307
9308static const gdb_byte *
9309locate_pdi_sibling (const struct die_reader_specs *reader,
9310 struct partial_die_info *orig_pdi,
9311 const gdb_byte *info_ptr)
9312{
9313 /* Do we know the sibling already? */
9314
9315 if (orig_pdi->sibling)
9316 return orig_pdi->sibling;
9317
9318 /* Are there any children to deal with? */
9319
9320 if (!orig_pdi->has_children)
9321 return info_ptr;
9322
9323 /* Skip the children the long way. */
9324
9325 return skip_children (reader, info_ptr);
9326}
9327
9328/* Expand this partial symbol table into a full symbol table. SELF is
9329 not NULL. */
9330
9331static void
9332dwarf2_read_symtab (struct partial_symtab *self,
9333 struct objfile *objfile)
9334{
9335 struct dwarf2_per_objfile *dwarf2_per_objfile
9336 = get_dwarf2_per_objfile (objfile);
9337
9338 if (self->readin)
9339 {
9340 warning (_("bug: psymtab for %s is already read in."),
9341 self->filename);
9342 }
9343 else
9344 {
9345 if (info_verbose)
9346 {
9347 printf_filtered (_("Reading in symbols for %s..."),
9348 self->filename);
9349 gdb_flush (gdb_stdout);
9350 }
9351
9352 /* If this psymtab is constructed from a debug-only objfile, the
9353 has_section_at_zero flag will not necessarily be correct. We
9354 can get the correct value for this flag by looking at the data
9355 associated with the (presumably stripped) associated objfile. */
9356 if (objfile->separate_debug_objfile_backlink)
9357 {
9358 struct dwarf2_per_objfile *dpo_backlink
9359 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9360
9361 dwarf2_per_objfile->has_section_at_zero
9362 = dpo_backlink->has_section_at_zero;
9363 }
9364
9365 dwarf2_per_objfile->reading_partial_symbols = 0;
9366
9367 psymtab_to_symtab_1 (self);
9368
9369 /* Finish up the debug error message. */
9370 if (info_verbose)
9371 printf_filtered (_("done.\n"));
9372 }
9373
9374 process_cu_includes (dwarf2_per_objfile);
9375}
9376\f
9377/* Reading in full CUs. */
9378
9379/* Add PER_CU to the queue. */
9380
9381static void
9382queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9383 enum language pretend_language)
9384{
9385 struct dwarf2_queue_item *item;
9386
9387 per_cu->queued = 1;
9388 item = XNEW (struct dwarf2_queue_item);
9389 item->per_cu = per_cu;
9390 item->pretend_language = pretend_language;
9391 item->next = NULL;
9392
9393 if (dwarf2_queue == NULL)
9394 dwarf2_queue = item;
9395 else
9396 dwarf2_queue_tail->next = item;
9397
9398 dwarf2_queue_tail = item;
9399}
9400
9401/* If PER_CU is not yet queued, add it to the queue.
9402 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9403 dependency.
9404 The result is non-zero if PER_CU was queued, otherwise the result is zero
9405 meaning either PER_CU is already queued or it is already loaded.
9406
9407 N.B. There is an invariant here that if a CU is queued then it is loaded.
9408 The caller is required to load PER_CU if we return non-zero. */
9409
9410static int
9411maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9412 struct dwarf2_per_cu_data *per_cu,
9413 enum language pretend_language)
9414{
9415 /* We may arrive here during partial symbol reading, if we need full
9416 DIEs to process an unusual case (e.g. template arguments). Do
9417 not queue PER_CU, just tell our caller to load its DIEs. */
9418 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9419 {
9420 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9421 return 1;
9422 return 0;
9423 }
9424
9425 /* Mark the dependence relation so that we don't flush PER_CU
9426 too early. */
9427 if (dependent_cu != NULL)
9428 dwarf2_add_dependence (dependent_cu, per_cu);
9429
9430 /* If it's already on the queue, we have nothing to do. */
9431 if (per_cu->queued)
9432 return 0;
9433
9434 /* If the compilation unit is already loaded, just mark it as
9435 used. */
9436 if (per_cu->cu != NULL)
9437 {
9438 per_cu->cu->last_used = 0;
9439 return 0;
9440 }
9441
9442 /* Add it to the queue. */
9443 queue_comp_unit (per_cu, pretend_language);
9444
9445 return 1;
9446}
9447
9448/* Process the queue. */
9449
9450static void
9451process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9452{
9453 struct dwarf2_queue_item *item, *next_item;
9454
9455 if (dwarf_read_debug)
9456 {
9457 fprintf_unfiltered (gdb_stdlog,
9458 "Expanding one or more symtabs of objfile %s ...\n",
9459 objfile_name (dwarf2_per_objfile->objfile));
9460 }
9461
9462 /* The queue starts out with one item, but following a DIE reference
9463 may load a new CU, adding it to the end of the queue. */
9464 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9465 {
9466 if ((dwarf2_per_objfile->using_index
9467 ? !item->per_cu->v.quick->compunit_symtab
9468 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9469 /* Skip dummy CUs. */
9470 && item->per_cu->cu != NULL)
9471 {
9472 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9473 unsigned int debug_print_threshold;
9474 char buf[100];
9475
9476 if (per_cu->is_debug_types)
9477 {
9478 struct signatured_type *sig_type =
9479 (struct signatured_type *) per_cu;
9480
9481 sprintf (buf, "TU %s at offset %s",
9482 hex_string (sig_type->signature),
9483 sect_offset_str (per_cu->sect_off));
9484 /* There can be 100s of TUs.
9485 Only print them in verbose mode. */
9486 debug_print_threshold = 2;
9487 }
9488 else
9489 {
9490 sprintf (buf, "CU at offset %s",
9491 sect_offset_str (per_cu->sect_off));
9492 debug_print_threshold = 1;
9493 }
9494
9495 if (dwarf_read_debug >= debug_print_threshold)
9496 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9497
9498 if (per_cu->is_debug_types)
9499 process_full_type_unit (per_cu, item->pretend_language);
9500 else
9501 process_full_comp_unit (per_cu, item->pretend_language);
9502
9503 if (dwarf_read_debug >= debug_print_threshold)
9504 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9505 }
9506
9507 item->per_cu->queued = 0;
9508 next_item = item->next;
9509 xfree (item);
9510 }
9511
9512 dwarf2_queue_tail = NULL;
9513
9514 if (dwarf_read_debug)
9515 {
9516 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9517 objfile_name (dwarf2_per_objfile->objfile));
9518 }
9519}
9520
9521/* Read in full symbols for PST, and anything it depends on. */
9522
9523static void
9524psymtab_to_symtab_1 (struct partial_symtab *pst)
9525{
9526 struct dwarf2_per_cu_data *per_cu;
9527 int i;
9528
9529 if (pst->readin)
9530 return;
9531
9532 for (i = 0; i < pst->number_of_dependencies; i++)
9533 if (!pst->dependencies[i]->readin
9534 && pst->dependencies[i]->user == NULL)
9535 {
9536 /* Inform about additional files that need to be read in. */
9537 if (info_verbose)
9538 {
9539 /* FIXME: i18n: Need to make this a single string. */
9540 fputs_filtered (" ", gdb_stdout);
9541 wrap_here ("");
9542 fputs_filtered ("and ", gdb_stdout);
9543 wrap_here ("");
9544 printf_filtered ("%s...", pst->dependencies[i]->filename);
9545 wrap_here (""); /* Flush output. */
9546 gdb_flush (gdb_stdout);
9547 }
9548 psymtab_to_symtab_1 (pst->dependencies[i]);
9549 }
9550
9551 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9552
9553 if (per_cu == NULL)
9554 {
9555 /* It's an include file, no symbols to read for it.
9556 Everything is in the parent symtab. */
9557 pst->readin = 1;
9558 return;
9559 }
9560
9561 dw2_do_instantiate_symtab (per_cu);
9562}
9563
9564/* Trivial hash function for die_info: the hash value of a DIE
9565 is its offset in .debug_info for this objfile. */
9566
9567static hashval_t
9568die_hash (const void *item)
9569{
9570 const struct die_info *die = (const struct die_info *) item;
9571
9572 return to_underlying (die->sect_off);
9573}
9574
9575/* Trivial comparison function for die_info structures: two DIEs
9576 are equal if they have the same offset. */
9577
9578static int
9579die_eq (const void *item_lhs, const void *item_rhs)
9580{
9581 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9582 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9583
9584 return die_lhs->sect_off == die_rhs->sect_off;
9585}
9586
9587/* die_reader_func for load_full_comp_unit.
9588 This is identical to read_signatured_type_reader,
9589 but is kept separate for now. */
9590
9591static void
9592load_full_comp_unit_reader (const struct die_reader_specs *reader,
9593 const gdb_byte *info_ptr,
9594 struct die_info *comp_unit_die,
9595 int has_children,
9596 void *data)
9597{
9598 struct dwarf2_cu *cu = reader->cu;
9599 enum language *language_ptr = (enum language *) data;
9600
9601 gdb_assert (cu->die_hash == NULL);
9602 cu->die_hash =
9603 htab_create_alloc_ex (cu->header.length / 12,
9604 die_hash,
9605 die_eq,
9606 NULL,
9607 &cu->comp_unit_obstack,
9608 hashtab_obstack_allocate,
9609 dummy_obstack_deallocate);
9610
9611 if (has_children)
9612 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9613 &info_ptr, comp_unit_die);
9614 cu->dies = comp_unit_die;
9615 /* comp_unit_die is not stored in die_hash, no need. */
9616
9617 /* We try not to read any attributes in this function, because not
9618 all CUs needed for references have been loaded yet, and symbol
9619 table processing isn't initialized. But we have to set the CU language,
9620 or we won't be able to build types correctly.
9621 Similarly, if we do not read the producer, we can not apply
9622 producer-specific interpretation. */
9623 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9624}
9625
9626/* Load the DIEs associated with PER_CU into memory. */
9627
9628static void
9629load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9630 enum language pretend_language)
9631{
9632 gdb_assert (! this_cu->is_debug_types);
9633
9634 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
9635 load_full_comp_unit_reader, &pretend_language);
9636}
9637
9638/* Add a DIE to the delayed physname list. */
9639
9640static void
9641add_to_method_list (struct type *type, int fnfield_index, int index,
9642 const char *name, struct die_info *die,
9643 struct dwarf2_cu *cu)
9644{
9645 struct delayed_method_info mi;
9646 mi.type = type;
9647 mi.fnfield_index = fnfield_index;
9648 mi.index = index;
9649 mi.name = name;
9650 mi.die = die;
9651 cu->method_list.push_back (mi);
9652}
9653
9654/* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9655 "const" / "volatile". If so, decrements LEN by the length of the
9656 modifier and return true. Otherwise return false. */
9657
9658template<size_t N>
9659static bool
9660check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9661{
9662 size_t mod_len = sizeof (mod) - 1;
9663 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9664 {
9665 len -= mod_len;
9666 return true;
9667 }
9668 return false;
9669}
9670
9671/* Compute the physnames of any methods on the CU's method list.
9672
9673 The computation of method physnames is delayed in order to avoid the
9674 (bad) condition that one of the method's formal parameters is of an as yet
9675 incomplete type. */
9676
9677static void
9678compute_delayed_physnames (struct dwarf2_cu *cu)
9679{
9680 /* Only C++ delays computing physnames. */
9681 if (cu->method_list.empty ())
9682 return;
9683 gdb_assert (cu->language == language_cplus);
9684
9685 for (struct delayed_method_info &mi : cu->method_list)
9686 {
9687 const char *physname;
9688 struct fn_fieldlist *fn_flp
9689 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9690 physname = dwarf2_physname (mi.name, mi.die, cu);
9691 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9692 = physname ? physname : "";
9693
9694 /* Since there's no tag to indicate whether a method is a
9695 const/volatile overload, extract that information out of the
9696 demangled name. */
9697 if (physname != NULL)
9698 {
9699 size_t len = strlen (physname);
9700
9701 while (1)
9702 {
9703 if (physname[len] == ')') /* shortcut */
9704 break;
9705 else if (check_modifier (physname, len, " const"))
9706 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9707 else if (check_modifier (physname, len, " volatile"))
9708 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9709 else
9710 break;
9711 }
9712 }
9713 }
9714
9715 /* The list is no longer needed. */
9716 cu->method_list.clear ();
9717}
9718
9719/* Go objects should be embedded in a DW_TAG_module DIE,
9720 and it's not clear if/how imported objects will appear.
9721 To keep Go support simple until that's worked out,
9722 go back through what we've read and create something usable.
9723 We could do this while processing each DIE, and feels kinda cleaner,
9724 but that way is more invasive.
9725 This is to, for example, allow the user to type "p var" or "b main"
9726 without having to specify the package name, and allow lookups
9727 of module.object to work in contexts that use the expression
9728 parser. */
9729
9730static void
9731fixup_go_packaging (struct dwarf2_cu *cu)
9732{
9733 char *package_name = NULL;
9734 struct pending *list;
9735 int i;
9736
9737 for (list = global_symbols; list != NULL; list = list->next)
9738 {
9739 for (i = 0; i < list->nsyms; ++i)
9740 {
9741 struct symbol *sym = list->symbol[i];
9742
9743 if (SYMBOL_LANGUAGE (sym) == language_go
9744 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9745 {
9746 char *this_package_name = go_symbol_package_name (sym);
9747
9748 if (this_package_name == NULL)
9749 continue;
9750 if (package_name == NULL)
9751 package_name = this_package_name;
9752 else
9753 {
9754 struct objfile *objfile
9755 = cu->per_cu->dwarf2_per_objfile->objfile;
9756 if (strcmp (package_name, this_package_name) != 0)
9757 complaint (&symfile_complaints,
9758 _("Symtab %s has objects from two different Go packages: %s and %s"),
9759 (symbol_symtab (sym) != NULL
9760 ? symtab_to_filename_for_display
9761 (symbol_symtab (sym))
9762 : objfile_name (objfile)),
9763 this_package_name, package_name);
9764 xfree (this_package_name);
9765 }
9766 }
9767 }
9768 }
9769
9770 if (package_name != NULL)
9771 {
9772 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9773 const char *saved_package_name
9774 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9775 package_name,
9776 strlen (package_name));
9777 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9778 saved_package_name);
9779 struct symbol *sym;
9780
9781 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9782
9783 sym = allocate_symbol (objfile);
9784 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9785 SYMBOL_SET_NAMES (sym, saved_package_name,
9786 strlen (saved_package_name), 0, objfile);
9787 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9788 e.g., "main" finds the "main" module and not C's main(). */
9789 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9790 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9791 SYMBOL_TYPE (sym) = type;
9792
9793 add_symbol_to_list (sym, &global_symbols);
9794
9795 xfree (package_name);
9796 }
9797}
9798
9799/* Allocate a fully-qualified name consisting of the two parts on the
9800 obstack. */
9801
9802static const char *
9803rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9804{
9805 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9806}
9807
9808/* A helper that allocates a struct discriminant_info to attach to a
9809 union type. */
9810
9811static struct discriminant_info *
9812alloc_discriminant_info (struct type *type, int discriminant_index,
9813 int default_index)
9814{
9815 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9816 gdb_assert (discriminant_index == -1
9817 || (discriminant_index >= 0
9818 && discriminant_index < TYPE_NFIELDS (type)));
9819 gdb_assert (default_index == -1
9820 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9821
9822 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9823
9824 struct discriminant_info *disc
9825 = ((struct discriminant_info *)
9826 TYPE_ZALLOC (type,
9827 offsetof (struct discriminant_info, discriminants)
9828 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9829 disc->default_index = default_index;
9830 disc->discriminant_index = discriminant_index;
9831
9832 struct dynamic_prop prop;
9833 prop.kind = PROP_UNDEFINED;
9834 prop.data.baton = disc;
9835
9836 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9837
9838 return disc;
9839}
9840
9841/* Some versions of rustc emitted enums in an unusual way.
9842
9843 Ordinary enums were emitted as unions. The first element of each
9844 structure in the union was named "RUST$ENUM$DISR". This element
9845 held the discriminant.
9846
9847 These versions of Rust also implemented the "non-zero"
9848 optimization. When the enum had two values, and one is empty and
9849 the other holds a pointer that cannot be zero, the pointer is used
9850 as the discriminant, with a zero value meaning the empty variant.
9851 Here, the union's first member is of the form
9852 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9853 where the fieldnos are the indices of the fields that should be
9854 traversed in order to find the field (which may be several fields deep)
9855 and the variantname is the name of the variant of the case when the
9856 field is zero.
9857
9858 This function recognizes whether TYPE is of one of these forms,
9859 and, if so, smashes it to be a variant type. */
9860
9861static void
9862quirk_rust_enum (struct type *type, struct objfile *objfile)
9863{
9864 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9865
9866 /* We don't need to deal with empty enums. */
9867 if (TYPE_NFIELDS (type) == 0)
9868 return;
9869
9870#define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9871 if (TYPE_NFIELDS (type) == 1
9872 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9873 {
9874 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9875
9876 /* Decode the field name to find the offset of the
9877 discriminant. */
9878 ULONGEST bit_offset = 0;
9879 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9880 while (name[0] >= '0' && name[0] <= '9')
9881 {
9882 char *tail;
9883 unsigned long index = strtoul (name, &tail, 10);
9884 name = tail;
9885 if (*name != '$'
9886 || index >= TYPE_NFIELDS (field_type)
9887 || (TYPE_FIELD_LOC_KIND (field_type, index)
9888 != FIELD_LOC_KIND_BITPOS))
9889 {
9890 complaint (&symfile_complaints,
9891 _("Could not parse Rust enum encoding string \"%s\""
9892 "[in module %s]"),
9893 TYPE_FIELD_NAME (type, 0),
9894 objfile_name (objfile));
9895 return;
9896 }
9897 ++name;
9898
9899 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9900 field_type = TYPE_FIELD_TYPE (field_type, index);
9901 }
9902
9903 /* Make a union to hold the variants. */
9904 struct type *union_type = alloc_type (objfile);
9905 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9906 TYPE_NFIELDS (union_type) = 3;
9907 TYPE_FIELDS (union_type)
9908 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9909 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9910
9911 /* Put the discriminant must at index 0. */
9912 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9913 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9914 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9915 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9916
9917 /* The order of fields doesn't really matter, so put the real
9918 field at index 1 and the data-less field at index 2. */
9919 struct discriminant_info *disc
9920 = alloc_discriminant_info (union_type, 0, 1);
9921 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9922 TYPE_FIELD_NAME (union_type, 1)
9923 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9924 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9925 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9926 TYPE_FIELD_NAME (union_type, 1));
9927
9928 const char *dataless_name
9929 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9930 name);
9931 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9932 dataless_name);
9933 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9934 /* NAME points into the original discriminant name, which
9935 already has the correct lifetime. */
9936 TYPE_FIELD_NAME (union_type, 2) = name;
9937 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9938 disc->discriminants[2] = 0;
9939
9940 /* Smash this type to be a structure type. We have to do this
9941 because the type has already been recorded. */
9942 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9943 TYPE_NFIELDS (type) = 1;
9944 TYPE_FIELDS (type)
9945 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9946
9947 /* Install the variant part. */
9948 TYPE_FIELD_TYPE (type, 0) = union_type;
9949 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9950 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9951 }
9952 else if (TYPE_NFIELDS (type) == 1)
9953 {
9954 /* We assume that a union with a single field is a univariant
9955 enum. */
9956 /* Smash this type to be a structure type. We have to do this
9957 because the type has already been recorded. */
9958 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9959
9960 /* Make a union to hold the variants. */
9961 struct type *union_type = alloc_type (objfile);
9962 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9963 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9964 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9965 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9966
9967 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9968 const char *variant_name
9969 = rust_last_path_segment (TYPE_NAME (field_type));
9970 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9971 TYPE_NAME (field_type)
9972 = rust_fully_qualify (&objfile->objfile_obstack,
9973 TYPE_NAME (type), variant_name);
9974
9975 /* Install the union in the outer struct type. */
9976 TYPE_NFIELDS (type) = 1;
9977 TYPE_FIELDS (type)
9978 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9979 TYPE_FIELD_TYPE (type, 0) = union_type;
9980 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9981 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9982
9983 alloc_discriminant_info (union_type, -1, 0);
9984 }
9985 else
9986 {
9987 struct type *disr_type = nullptr;
9988 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9989 {
9990 disr_type = TYPE_FIELD_TYPE (type, i);
9991
9992 if (TYPE_NFIELDS (disr_type) == 0)
9993 {
9994 /* Could be data-less variant, so keep going. */
9995 }
9996 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9997 "RUST$ENUM$DISR") != 0)
9998 {
9999 /* Not a Rust enum. */
10000 return;
10001 }
10002 else
10003 {
10004 /* Found one. */
10005 break;
10006 }
10007 }
10008
10009 /* If we got here without a discriminant, then it's probably
10010 just a union. */
10011 if (disr_type == nullptr)
10012 return;
10013
10014 /* Smash this type to be a structure type. We have to do this
10015 because the type has already been recorded. */
10016 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10017
10018 /* Make a union to hold the variants. */
10019 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10020 struct type *union_type = alloc_type (objfile);
10021 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10022 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10023 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10024 TYPE_FIELDS (union_type)
10025 = (struct field *) TYPE_ZALLOC (union_type,
10026 (TYPE_NFIELDS (union_type)
10027 * sizeof (struct field)));
10028
10029 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10030 TYPE_NFIELDS (type) * sizeof (struct field));
10031
10032 /* Install the discriminant at index 0 in the union. */
10033 TYPE_FIELD (union_type, 0) = *disr_field;
10034 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10035 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10036
10037 /* Install the union in the outer struct type. */
10038 TYPE_FIELD_TYPE (type, 0) = union_type;
10039 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10040 TYPE_NFIELDS (type) = 1;
10041
10042 /* Set the size and offset of the union type. */
10043 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10044
10045 /* We need a way to find the correct discriminant given a
10046 variant name. For convenience we build a map here. */
10047 struct type *enum_type = FIELD_TYPE (*disr_field);
10048 std::unordered_map<std::string, ULONGEST> discriminant_map;
10049 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10050 {
10051 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10052 {
10053 const char *name
10054 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10055 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10056 }
10057 }
10058
10059 int n_fields = TYPE_NFIELDS (union_type);
10060 struct discriminant_info *disc
10061 = alloc_discriminant_info (union_type, 0, -1);
10062 /* Skip the discriminant here. */
10063 for (int i = 1; i < n_fields; ++i)
10064 {
10065 /* Find the final word in the name of this variant's type.
10066 That name can be used to look up the correct
10067 discriminant. */
10068 const char *variant_name
10069 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10070 i)));
10071
10072 auto iter = discriminant_map.find (variant_name);
10073 if (iter != discriminant_map.end ())
10074 disc->discriminants[i] = iter->second;
10075
10076 /* Remove the discriminant field. */
10077 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10078 --TYPE_NFIELDS (sub_type);
10079 ++TYPE_FIELDS (sub_type);
10080 TYPE_FIELD_NAME (union_type, i) = variant_name;
10081 TYPE_NAME (sub_type)
10082 = rust_fully_qualify (&objfile->objfile_obstack,
10083 TYPE_NAME (type), variant_name);
10084 }
10085 }
10086}
10087
10088/* Rewrite some Rust unions to be structures with variants parts. */
10089
10090static void
10091rust_union_quirks (struct dwarf2_cu *cu)
10092{
10093 gdb_assert (cu->language == language_rust);
10094 for (struct type *type : cu->rust_unions)
10095 quirk_rust_enum (type, cu->per_cu->dwarf2_per_objfile->objfile);
10096}
10097
10098/* Return the symtab for PER_CU. This works properly regardless of
10099 whether we're using the index or psymtabs. */
10100
10101static struct compunit_symtab *
10102get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10103{
10104 return (per_cu->dwarf2_per_objfile->using_index
10105 ? per_cu->v.quick->compunit_symtab
10106 : per_cu->v.psymtab->compunit_symtab);
10107}
10108
10109/* A helper function for computing the list of all symbol tables
10110 included by PER_CU. */
10111
10112static void
10113recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10114 htab_t all_children, htab_t all_type_symtabs,
10115 struct dwarf2_per_cu_data *per_cu,
10116 struct compunit_symtab *immediate_parent)
10117{
10118 void **slot;
10119 int ix;
10120 struct compunit_symtab *cust;
10121 struct dwarf2_per_cu_data *iter;
10122
10123 slot = htab_find_slot (all_children, per_cu, INSERT);
10124 if (*slot != NULL)
10125 {
10126 /* This inclusion and its children have been processed. */
10127 return;
10128 }
10129
10130 *slot = per_cu;
10131 /* Only add a CU if it has a symbol table. */
10132 cust = get_compunit_symtab (per_cu);
10133 if (cust != NULL)
10134 {
10135 /* If this is a type unit only add its symbol table if we haven't
10136 seen it yet (type unit per_cu's can share symtabs). */
10137 if (per_cu->is_debug_types)
10138 {
10139 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10140 if (*slot == NULL)
10141 {
10142 *slot = cust;
10143 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10144 if (cust->user == NULL)
10145 cust->user = immediate_parent;
10146 }
10147 }
10148 else
10149 {
10150 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10151 if (cust->user == NULL)
10152 cust->user = immediate_parent;
10153 }
10154 }
10155
10156 for (ix = 0;
10157 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10158 ++ix)
10159 {
10160 recursively_compute_inclusions (result, all_children,
10161 all_type_symtabs, iter, cust);
10162 }
10163}
10164
10165/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10166 PER_CU. */
10167
10168static void
10169compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10170{
10171 gdb_assert (! per_cu->is_debug_types);
10172
10173 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10174 {
10175 int ix, len;
10176 struct dwarf2_per_cu_data *per_cu_iter;
10177 struct compunit_symtab *compunit_symtab_iter;
10178 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10179 htab_t all_children, all_type_symtabs;
10180 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10181
10182 /* If we don't have a symtab, we can just skip this case. */
10183 if (cust == NULL)
10184 return;
10185
10186 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10187 NULL, xcalloc, xfree);
10188 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10189 NULL, xcalloc, xfree);
10190
10191 for (ix = 0;
10192 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10193 ix, per_cu_iter);
10194 ++ix)
10195 {
10196 recursively_compute_inclusions (&result_symtabs, all_children,
10197 all_type_symtabs, per_cu_iter,
10198 cust);
10199 }
10200
10201 /* Now we have a transitive closure of all the included symtabs. */
10202 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10203 cust->includes
10204 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10205 struct compunit_symtab *, len + 1);
10206 for (ix = 0;
10207 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10208 compunit_symtab_iter);
10209 ++ix)
10210 cust->includes[ix] = compunit_symtab_iter;
10211 cust->includes[len] = NULL;
10212
10213 VEC_free (compunit_symtab_ptr, result_symtabs);
10214 htab_delete (all_children);
10215 htab_delete (all_type_symtabs);
10216 }
10217}
10218
10219/* Compute the 'includes' field for the symtabs of all the CUs we just
10220 read. */
10221
10222static void
10223process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10224{
10225 int ix;
10226 struct dwarf2_per_cu_data *iter;
10227
10228 for (ix = 0;
10229 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10230 ix, iter);
10231 ++ix)
10232 {
10233 if (! iter->is_debug_types)
10234 compute_compunit_symtab_includes (iter);
10235 }
10236
10237 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10238}
10239
10240/* Generate full symbol information for PER_CU, whose DIEs have
10241 already been loaded into memory. */
10242
10243static void
10244process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10245 enum language pretend_language)
10246{
10247 struct dwarf2_cu *cu = per_cu->cu;
10248 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10249 struct objfile *objfile = dwarf2_per_objfile->objfile;
10250 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10251 CORE_ADDR lowpc, highpc;
10252 struct compunit_symtab *cust;
10253 CORE_ADDR baseaddr;
10254 struct block *static_block;
10255 CORE_ADDR addr;
10256
10257 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10258
10259 buildsym_init ();
10260 scoped_free_pendings free_pending;
10261
10262 /* Clear the list here in case something was left over. */
10263 cu->method_list.clear ();
10264
10265 cu->list_in_scope = &file_symbols;
10266
10267 cu->language = pretend_language;
10268 cu->language_defn = language_def (cu->language);
10269
10270 /* Do line number decoding in read_file_scope () */
10271 process_die (cu->dies, cu);
10272
10273 /* For now fudge the Go package. */
10274 if (cu->language == language_go)
10275 fixup_go_packaging (cu);
10276
10277 /* Now that we have processed all the DIEs in the CU, all the types
10278 should be complete, and it should now be safe to compute all of the
10279 physnames. */
10280 compute_delayed_physnames (cu);
10281
10282 if (cu->language == language_rust)
10283 rust_union_quirks (cu);
10284
10285 /* Some compilers don't define a DW_AT_high_pc attribute for the
10286 compilation unit. If the DW_AT_high_pc is missing, synthesize
10287 it, by scanning the DIE's below the compilation unit. */
10288 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10289
10290 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10291 static_block = end_symtab_get_static_block (addr, 0, 1);
10292
10293 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10294 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10295 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10296 addrmap to help ensure it has an accurate map of pc values belonging to
10297 this comp unit. */
10298 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10299
10300 cust = end_symtab_from_static_block (static_block,
10301 SECT_OFF_TEXT (objfile), 0);
10302
10303 if (cust != NULL)
10304 {
10305 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10306
10307 /* Set symtab language to language from DW_AT_language. If the
10308 compilation is from a C file generated by language preprocessors, do
10309 not set the language if it was already deduced by start_subfile. */
10310 if (!(cu->language == language_c
10311 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10312 COMPUNIT_FILETABS (cust)->language = cu->language;
10313
10314 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10315 produce DW_AT_location with location lists but it can be possibly
10316 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10317 there were bugs in prologue debug info, fixed later in GCC-4.5
10318 by "unwind info for epilogues" patch (which is not directly related).
10319
10320 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10321 needed, it would be wrong due to missing DW_AT_producer there.
10322
10323 Still one can confuse GDB by using non-standard GCC compilation
10324 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10325 */
10326 if (cu->has_loclist && gcc_4_minor >= 5)
10327 cust->locations_valid = 1;
10328
10329 if (gcc_4_minor >= 5)
10330 cust->epilogue_unwind_valid = 1;
10331
10332 cust->call_site_htab = cu->call_site_htab;
10333 }
10334
10335 if (dwarf2_per_objfile->using_index)
10336 per_cu->v.quick->compunit_symtab = cust;
10337 else
10338 {
10339 struct partial_symtab *pst = per_cu->v.psymtab;
10340 pst->compunit_symtab = cust;
10341 pst->readin = 1;
10342 }
10343
10344 /* Push it for inclusion processing later. */
10345 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10346}
10347
10348/* Generate full symbol information for type unit PER_CU, whose DIEs have
10349 already been loaded into memory. */
10350
10351static void
10352process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10353 enum language pretend_language)
10354{
10355 struct dwarf2_cu *cu = per_cu->cu;
10356 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10357 struct objfile *objfile = dwarf2_per_objfile->objfile;
10358 struct compunit_symtab *cust;
10359 struct signatured_type *sig_type;
10360
10361 gdb_assert (per_cu->is_debug_types);
10362 sig_type = (struct signatured_type *) per_cu;
10363
10364 buildsym_init ();
10365 scoped_free_pendings free_pending;
10366
10367 /* Clear the list here in case something was left over. */
10368 cu->method_list.clear ();
10369
10370 cu->list_in_scope = &file_symbols;
10371
10372 cu->language = pretend_language;
10373 cu->language_defn = language_def (cu->language);
10374
10375 /* The symbol tables are set up in read_type_unit_scope. */
10376 process_die (cu->dies, cu);
10377
10378 /* For now fudge the Go package. */
10379 if (cu->language == language_go)
10380 fixup_go_packaging (cu);
10381
10382 /* Now that we have processed all the DIEs in the CU, all the types
10383 should be complete, and it should now be safe to compute all of the
10384 physnames. */
10385 compute_delayed_physnames (cu);
10386
10387 if (cu->language == language_rust)
10388 rust_union_quirks (cu);
10389
10390 /* TUs share symbol tables.
10391 If this is the first TU to use this symtab, complete the construction
10392 of it with end_expandable_symtab. Otherwise, complete the addition of
10393 this TU's symbols to the existing symtab. */
10394 if (sig_type->type_unit_group->compunit_symtab == NULL)
10395 {
10396 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10397 sig_type->type_unit_group->compunit_symtab = cust;
10398
10399 if (cust != NULL)
10400 {
10401 /* Set symtab language to language from DW_AT_language. If the
10402 compilation is from a C file generated by language preprocessors,
10403 do not set the language if it was already deduced by
10404 start_subfile. */
10405 if (!(cu->language == language_c
10406 && COMPUNIT_FILETABS (cust)->language != language_c))
10407 COMPUNIT_FILETABS (cust)->language = cu->language;
10408 }
10409 }
10410 else
10411 {
10412 augment_type_symtab ();
10413 cust = sig_type->type_unit_group->compunit_symtab;
10414 }
10415
10416 if (dwarf2_per_objfile->using_index)
10417 per_cu->v.quick->compunit_symtab = cust;
10418 else
10419 {
10420 struct partial_symtab *pst = per_cu->v.psymtab;
10421 pst->compunit_symtab = cust;
10422 pst->readin = 1;
10423 }
10424}
10425
10426/* Process an imported unit DIE. */
10427
10428static void
10429process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10430{
10431 struct attribute *attr;
10432
10433 /* For now we don't handle imported units in type units. */
10434 if (cu->per_cu->is_debug_types)
10435 {
10436 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10437 " supported in type units [in module %s]"),
10438 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10439 }
10440
10441 attr = dwarf2_attr (die, DW_AT_import, cu);
10442 if (attr != NULL)
10443 {
10444 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10445 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10446 dwarf2_per_cu_data *per_cu
10447 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10448 cu->per_cu->dwarf2_per_objfile);
10449
10450 /* If necessary, add it to the queue and load its DIEs. */
10451 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10452 load_full_comp_unit (per_cu, cu->language);
10453
10454 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10455 per_cu);
10456 }
10457}
10458
10459/* RAII object that represents a process_die scope: i.e.,
10460 starts/finishes processing a DIE. */
10461class process_die_scope
10462{
10463public:
10464 process_die_scope (die_info *die, dwarf2_cu *cu)
10465 : m_die (die), m_cu (cu)
10466 {
10467 /* We should only be processing DIEs not already in process. */
10468 gdb_assert (!m_die->in_process);
10469 m_die->in_process = true;
10470 }
10471
10472 ~process_die_scope ()
10473 {
10474 m_die->in_process = false;
10475
10476 /* If we're done processing the DIE for the CU that owns the line
10477 header, we don't need the line header anymore. */
10478 if (m_cu->line_header_die_owner == m_die)
10479 {
10480 delete m_cu->line_header;
10481 m_cu->line_header = NULL;
10482 m_cu->line_header_die_owner = NULL;
10483 }
10484 }
10485
10486private:
10487 die_info *m_die;
10488 dwarf2_cu *m_cu;
10489};
10490
10491/* Process a die and its children. */
10492
10493static void
10494process_die (struct die_info *die, struct dwarf2_cu *cu)
10495{
10496 process_die_scope scope (die, cu);
10497
10498 switch (die->tag)
10499 {
10500 case DW_TAG_padding:
10501 break;
10502 case DW_TAG_compile_unit:
10503 case DW_TAG_partial_unit:
10504 read_file_scope (die, cu);
10505 break;
10506 case DW_TAG_type_unit:
10507 read_type_unit_scope (die, cu);
10508 break;
10509 case DW_TAG_subprogram:
10510 case DW_TAG_inlined_subroutine:
10511 read_func_scope (die, cu);
10512 break;
10513 case DW_TAG_lexical_block:
10514 case DW_TAG_try_block:
10515 case DW_TAG_catch_block:
10516 read_lexical_block_scope (die, cu);
10517 break;
10518 case DW_TAG_call_site:
10519 case DW_TAG_GNU_call_site:
10520 read_call_site_scope (die, cu);
10521 break;
10522 case DW_TAG_class_type:
10523 case DW_TAG_interface_type:
10524 case DW_TAG_structure_type:
10525 case DW_TAG_union_type:
10526 process_structure_scope (die, cu);
10527 break;
10528 case DW_TAG_enumeration_type:
10529 process_enumeration_scope (die, cu);
10530 break;
10531
10532 /* These dies have a type, but processing them does not create
10533 a symbol or recurse to process the children. Therefore we can
10534 read them on-demand through read_type_die. */
10535 case DW_TAG_subroutine_type:
10536 case DW_TAG_set_type:
10537 case DW_TAG_array_type:
10538 case DW_TAG_pointer_type:
10539 case DW_TAG_ptr_to_member_type:
10540 case DW_TAG_reference_type:
10541 case DW_TAG_rvalue_reference_type:
10542 case DW_TAG_string_type:
10543 break;
10544
10545 case DW_TAG_base_type:
10546 case DW_TAG_subrange_type:
10547 case DW_TAG_typedef:
10548 /* Add a typedef symbol for the type definition, if it has a
10549 DW_AT_name. */
10550 new_symbol (die, read_type_die (die, cu), cu);
10551 break;
10552 case DW_TAG_common_block:
10553 read_common_block (die, cu);
10554 break;
10555 case DW_TAG_common_inclusion:
10556 break;
10557 case DW_TAG_namespace:
10558 cu->processing_has_namespace_info = 1;
10559 read_namespace (die, cu);
10560 break;
10561 case DW_TAG_module:
10562 cu->processing_has_namespace_info = 1;
10563 read_module (die, cu);
10564 break;
10565 case DW_TAG_imported_declaration:
10566 cu->processing_has_namespace_info = 1;
10567 if (read_namespace_alias (die, cu))
10568 break;
10569 /* The declaration is not a global namespace alias: fall through. */
10570 case DW_TAG_imported_module:
10571 cu->processing_has_namespace_info = 1;
10572 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10573 || cu->language != language_fortran))
10574 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
10575 dwarf_tag_name (die->tag));
10576 read_import_statement (die, cu);
10577 break;
10578
10579 case DW_TAG_imported_unit:
10580 process_imported_unit_die (die, cu);
10581 break;
10582
10583 case DW_TAG_variable:
10584 read_variable (die, cu);
10585 break;
10586
10587 default:
10588 new_symbol (die, NULL, cu);
10589 break;
10590 }
10591}
10592\f
10593/* DWARF name computation. */
10594
10595/* A helper function for dwarf2_compute_name which determines whether DIE
10596 needs to have the name of the scope prepended to the name listed in the
10597 die. */
10598
10599static int
10600die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10601{
10602 struct attribute *attr;
10603
10604 switch (die->tag)
10605 {
10606 case DW_TAG_namespace:
10607 case DW_TAG_typedef:
10608 case DW_TAG_class_type:
10609 case DW_TAG_interface_type:
10610 case DW_TAG_structure_type:
10611 case DW_TAG_union_type:
10612 case DW_TAG_enumeration_type:
10613 case DW_TAG_enumerator:
10614 case DW_TAG_subprogram:
10615 case DW_TAG_inlined_subroutine:
10616 case DW_TAG_member:
10617 case DW_TAG_imported_declaration:
10618 return 1;
10619
10620 case DW_TAG_variable:
10621 case DW_TAG_constant:
10622 /* We only need to prefix "globally" visible variables. These include
10623 any variable marked with DW_AT_external or any variable that
10624 lives in a namespace. [Variables in anonymous namespaces
10625 require prefixing, but they are not DW_AT_external.] */
10626
10627 if (dwarf2_attr (die, DW_AT_specification, cu))
10628 {
10629 struct dwarf2_cu *spec_cu = cu;
10630
10631 return die_needs_namespace (die_specification (die, &spec_cu),
10632 spec_cu);
10633 }
10634
10635 attr = dwarf2_attr (die, DW_AT_external, cu);
10636 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10637 && die->parent->tag != DW_TAG_module)
10638 return 0;
10639 /* A variable in a lexical block of some kind does not need a
10640 namespace, even though in C++ such variables may be external
10641 and have a mangled name. */
10642 if (die->parent->tag == DW_TAG_lexical_block
10643 || die->parent->tag == DW_TAG_try_block
10644 || die->parent->tag == DW_TAG_catch_block
10645 || die->parent->tag == DW_TAG_subprogram)
10646 return 0;
10647 return 1;
10648
10649 default:
10650 return 0;
10651 }
10652}
10653
10654/* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10655 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10656 defined for the given DIE. */
10657
10658static struct attribute *
10659dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10660{
10661 struct attribute *attr;
10662
10663 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10664 if (attr == NULL)
10665 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10666
10667 return attr;
10668}
10669
10670/* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10671 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10672 defined for the given DIE. */
10673
10674static const char *
10675dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10676{
10677 const char *linkage_name;
10678
10679 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10680 if (linkage_name == NULL)
10681 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10682
10683 return linkage_name;
10684}
10685
10686/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10687 compute the physname for the object, which include a method's:
10688 - formal parameters (C++),
10689 - receiver type (Go),
10690
10691 The term "physname" is a bit confusing.
10692 For C++, for example, it is the demangled name.
10693 For Go, for example, it's the mangled name.
10694
10695 For Ada, return the DIE's linkage name rather than the fully qualified
10696 name. PHYSNAME is ignored..
10697
10698 The result is allocated on the objfile_obstack and canonicalized. */
10699
10700static const char *
10701dwarf2_compute_name (const char *name,
10702 struct die_info *die, struct dwarf2_cu *cu,
10703 int physname)
10704{
10705 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10706
10707 if (name == NULL)
10708 name = dwarf2_name (die, cu);
10709
10710 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10711 but otherwise compute it by typename_concat inside GDB.
10712 FIXME: Actually this is not really true, or at least not always true.
10713 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10714 Fortran names because there is no mangling standard. So new_symbol
10715 will set the demangled name to the result of dwarf2_full_name, and it is
10716 the demangled name that GDB uses if it exists. */
10717 if (cu->language == language_ada
10718 || (cu->language == language_fortran && physname))
10719 {
10720 /* For Ada unit, we prefer the linkage name over the name, as
10721 the former contains the exported name, which the user expects
10722 to be able to reference. Ideally, we want the user to be able
10723 to reference this entity using either natural or linkage name,
10724 but we haven't started looking at this enhancement yet. */
10725 const char *linkage_name = dw2_linkage_name (die, cu);
10726
10727 if (linkage_name != NULL)
10728 return linkage_name;
10729 }
10730
10731 /* These are the only languages we know how to qualify names in. */
10732 if (name != NULL
10733 && (cu->language == language_cplus
10734 || cu->language == language_fortran || cu->language == language_d
10735 || cu->language == language_rust))
10736 {
10737 if (die_needs_namespace (die, cu))
10738 {
10739 const char *prefix;
10740 const char *canonical_name = NULL;
10741
10742 string_file buf;
10743
10744 prefix = determine_prefix (die, cu);
10745 if (*prefix != '\0')
10746 {
10747 char *prefixed_name = typename_concat (NULL, prefix, name,
10748 physname, cu);
10749
10750 buf.puts (prefixed_name);
10751 xfree (prefixed_name);
10752 }
10753 else
10754 buf.puts (name);
10755
10756 /* Template parameters may be specified in the DIE's DW_AT_name, or
10757 as children with DW_TAG_template_type_param or
10758 DW_TAG_value_type_param. If the latter, add them to the name
10759 here. If the name already has template parameters, then
10760 skip this step; some versions of GCC emit both, and
10761 it is more efficient to use the pre-computed name.
10762
10763 Something to keep in mind about this process: it is very
10764 unlikely, or in some cases downright impossible, to produce
10765 something that will match the mangled name of a function.
10766 If the definition of the function has the same debug info,
10767 we should be able to match up with it anyway. But fallbacks
10768 using the minimal symbol, for instance to find a method
10769 implemented in a stripped copy of libstdc++, will not work.
10770 If we do not have debug info for the definition, we will have to
10771 match them up some other way.
10772
10773 When we do name matching there is a related problem with function
10774 templates; two instantiated function templates are allowed to
10775 differ only by their return types, which we do not add here. */
10776
10777 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10778 {
10779 struct attribute *attr;
10780 struct die_info *child;
10781 int first = 1;
10782
10783 die->building_fullname = 1;
10784
10785 for (child = die->child; child != NULL; child = child->sibling)
10786 {
10787 struct type *type;
10788 LONGEST value;
10789 const gdb_byte *bytes;
10790 struct dwarf2_locexpr_baton *baton;
10791 struct value *v;
10792
10793 if (child->tag != DW_TAG_template_type_param
10794 && child->tag != DW_TAG_template_value_param)
10795 continue;
10796
10797 if (first)
10798 {
10799 buf.puts ("<");
10800 first = 0;
10801 }
10802 else
10803 buf.puts (", ");
10804
10805 attr = dwarf2_attr (child, DW_AT_type, cu);
10806 if (attr == NULL)
10807 {
10808 complaint (&symfile_complaints,
10809 _("template parameter missing DW_AT_type"));
10810 buf.puts ("UNKNOWN_TYPE");
10811 continue;
10812 }
10813 type = die_type (child, cu);
10814
10815 if (child->tag == DW_TAG_template_type_param)
10816 {
10817 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
10818 continue;
10819 }
10820
10821 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10822 if (attr == NULL)
10823 {
10824 complaint (&symfile_complaints,
10825 _("template parameter missing "
10826 "DW_AT_const_value"));
10827 buf.puts ("UNKNOWN_VALUE");
10828 continue;
10829 }
10830
10831 dwarf2_const_value_attr (attr, type, name,
10832 &cu->comp_unit_obstack, cu,
10833 &value, &bytes, &baton);
10834
10835 if (TYPE_NOSIGN (type))
10836 /* GDB prints characters as NUMBER 'CHAR'. If that's
10837 changed, this can use value_print instead. */
10838 c_printchar (value, type, &buf);
10839 else
10840 {
10841 struct value_print_options opts;
10842
10843 if (baton != NULL)
10844 v = dwarf2_evaluate_loc_desc (type, NULL,
10845 baton->data,
10846 baton->size,
10847 baton->per_cu);
10848 else if (bytes != NULL)
10849 {
10850 v = allocate_value (type);
10851 memcpy (value_contents_writeable (v), bytes,
10852 TYPE_LENGTH (type));
10853 }
10854 else
10855 v = value_from_longest (type, value);
10856
10857 /* Specify decimal so that we do not depend on
10858 the radix. */
10859 get_formatted_print_options (&opts, 'd');
10860 opts.raw = 1;
10861 value_print (v, &buf, &opts);
10862 release_value (v);
10863 }
10864 }
10865
10866 die->building_fullname = 0;
10867
10868 if (!first)
10869 {
10870 /* Close the argument list, with a space if necessary
10871 (nested templates). */
10872 if (!buf.empty () && buf.string ().back () == '>')
10873 buf.puts (" >");
10874 else
10875 buf.puts (">");
10876 }
10877 }
10878
10879 /* For C++ methods, append formal parameter type
10880 information, if PHYSNAME. */
10881
10882 if (physname && die->tag == DW_TAG_subprogram
10883 && cu->language == language_cplus)
10884 {
10885 struct type *type = read_type_die (die, cu);
10886
10887 c_type_print_args (type, &buf, 1, cu->language,
10888 &type_print_raw_options);
10889
10890 if (cu->language == language_cplus)
10891 {
10892 /* Assume that an artificial first parameter is
10893 "this", but do not crash if it is not. RealView
10894 marks unnamed (and thus unused) parameters as
10895 artificial; there is no way to differentiate
10896 the two cases. */
10897 if (TYPE_NFIELDS (type) > 0
10898 && TYPE_FIELD_ARTIFICIAL (type, 0)
10899 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10900 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10901 0))))
10902 buf.puts (" const");
10903 }
10904 }
10905
10906 const std::string &intermediate_name = buf.string ();
10907
10908 if (cu->language == language_cplus)
10909 canonical_name
10910 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10911 &objfile->per_bfd->storage_obstack);
10912
10913 /* If we only computed INTERMEDIATE_NAME, or if
10914 INTERMEDIATE_NAME is already canonical, then we need to
10915 copy it to the appropriate obstack. */
10916 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10917 name = ((const char *)
10918 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10919 intermediate_name.c_str (),
10920 intermediate_name.length ()));
10921 else
10922 name = canonical_name;
10923 }
10924 }
10925
10926 return name;
10927}
10928
10929/* Return the fully qualified name of DIE, based on its DW_AT_name.
10930 If scope qualifiers are appropriate they will be added. The result
10931 will be allocated on the storage_obstack, or NULL if the DIE does
10932 not have a name. NAME may either be from a previous call to
10933 dwarf2_name or NULL.
10934
10935 The output string will be canonicalized (if C++). */
10936
10937static const char *
10938dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10939{
10940 return dwarf2_compute_name (name, die, cu, 0);
10941}
10942
10943/* Construct a physname for the given DIE in CU. NAME may either be
10944 from a previous call to dwarf2_name or NULL. The result will be
10945 allocated on the objfile_objstack or NULL if the DIE does not have a
10946 name.
10947
10948 The output string will be canonicalized (if C++). */
10949
10950static const char *
10951dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10952{
10953 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10954 const char *retval, *mangled = NULL, *canon = NULL;
10955 int need_copy = 1;
10956
10957 /* In this case dwarf2_compute_name is just a shortcut not building anything
10958 on its own. */
10959 if (!die_needs_namespace (die, cu))
10960 return dwarf2_compute_name (name, die, cu, 1);
10961
10962 mangled = dw2_linkage_name (die, cu);
10963
10964 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10965 See https://github.com/rust-lang/rust/issues/32925. */
10966 if (cu->language == language_rust && mangled != NULL
10967 && strchr (mangled, '{') != NULL)
10968 mangled = NULL;
10969
10970 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10971 has computed. */
10972 gdb::unique_xmalloc_ptr<char> demangled;
10973 if (mangled != NULL)
10974 {
10975
10976 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10977 {
10978 /* Do nothing (do not demangle the symbol name). */
10979 }
10980 else if (cu->language == language_go)
10981 {
10982 /* This is a lie, but we already lie to the caller new_symbol.
10983 new_symbol assumes we return the mangled name.
10984 This just undoes that lie until things are cleaned up. */
10985 }
10986 else
10987 {
10988 /* Use DMGL_RET_DROP for C++ template functions to suppress
10989 their return type. It is easier for GDB users to search
10990 for such functions as `name(params)' than `long name(params)'.
10991 In such case the minimal symbol names do not match the full
10992 symbol names but for template functions there is never a need
10993 to look up their definition from their declaration so
10994 the only disadvantage remains the minimal symbol variant
10995 `long name(params)' does not have the proper inferior type. */
10996 demangled.reset (gdb_demangle (mangled,
10997 (DMGL_PARAMS | DMGL_ANSI
10998 | DMGL_RET_DROP)));
10999 }
11000 if (demangled)
11001 canon = demangled.get ();
11002 else
11003 {
11004 canon = mangled;
11005 need_copy = 0;
11006 }
11007 }
11008
11009 if (canon == NULL || check_physname)
11010 {
11011 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11012
11013 if (canon != NULL && strcmp (physname, canon) != 0)
11014 {
11015 /* It may not mean a bug in GDB. The compiler could also
11016 compute DW_AT_linkage_name incorrectly. But in such case
11017 GDB would need to be bug-to-bug compatible. */
11018
11019 complaint (&symfile_complaints,
11020 _("Computed physname <%s> does not match demangled <%s> "
11021 "(from linkage <%s>) - DIE at %s [in module %s]"),
11022 physname, canon, mangled, sect_offset_str (die->sect_off),
11023 objfile_name (objfile));
11024
11025 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11026 is available here - over computed PHYSNAME. It is safer
11027 against both buggy GDB and buggy compilers. */
11028
11029 retval = canon;
11030 }
11031 else
11032 {
11033 retval = physname;
11034 need_copy = 0;
11035 }
11036 }
11037 else
11038 retval = canon;
11039
11040 if (need_copy)
11041 retval = ((const char *)
11042 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11043 retval, strlen (retval)));
11044
11045 return retval;
11046}
11047
11048/* Inspect DIE in CU for a namespace alias. If one exists, record
11049 a new symbol for it.
11050
11051 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11052
11053static int
11054read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11055{
11056 struct attribute *attr;
11057
11058 /* If the die does not have a name, this is not a namespace
11059 alias. */
11060 attr = dwarf2_attr (die, DW_AT_name, cu);
11061 if (attr != NULL)
11062 {
11063 int num;
11064 struct die_info *d = die;
11065 struct dwarf2_cu *imported_cu = cu;
11066
11067 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11068 keep inspecting DIEs until we hit the underlying import. */
11069#define MAX_NESTED_IMPORTED_DECLARATIONS 100
11070 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11071 {
11072 attr = dwarf2_attr (d, DW_AT_import, cu);
11073 if (attr == NULL)
11074 break;
11075
11076 d = follow_die_ref (d, attr, &imported_cu);
11077 if (d->tag != DW_TAG_imported_declaration)
11078 break;
11079 }
11080
11081 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11082 {
11083 complaint (&symfile_complaints,
11084 _("DIE at %s has too many recursively imported "
11085 "declarations"), sect_offset_str (d->sect_off));
11086 return 0;
11087 }
11088
11089 if (attr != NULL)
11090 {
11091 struct type *type;
11092 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11093
11094 type = get_die_type_at_offset (sect_off, cu->per_cu);
11095 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11096 {
11097 /* This declaration is a global namespace alias. Add
11098 a symbol for it whose type is the aliased namespace. */
11099 new_symbol (die, type, cu);
11100 return 1;
11101 }
11102 }
11103 }
11104
11105 return 0;
11106}
11107
11108/* Return the using directives repository (global or local?) to use in the
11109 current context for LANGUAGE.
11110
11111 For Ada, imported declarations can materialize renamings, which *may* be
11112 global. However it is impossible (for now?) in DWARF to distinguish
11113 "external" imported declarations and "static" ones. As all imported
11114 declarations seem to be static in all other languages, make them all CU-wide
11115 global only in Ada. */
11116
11117static struct using_direct **
11118using_directives (enum language language)
11119{
11120 if (language == language_ada && context_stack_depth == 0)
11121 return &global_using_directives;
11122 else
11123 return &local_using_directives;
11124}
11125
11126/* Read the import statement specified by the given die and record it. */
11127
11128static void
11129read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11130{
11131 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11132 struct attribute *import_attr;
11133 struct die_info *imported_die, *child_die;
11134 struct dwarf2_cu *imported_cu;
11135 const char *imported_name;
11136 const char *imported_name_prefix;
11137 const char *canonical_name;
11138 const char *import_alias;
11139 const char *imported_declaration = NULL;
11140 const char *import_prefix;
11141 std::vector<const char *> excludes;
11142
11143 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11144 if (import_attr == NULL)
11145 {
11146 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11147 dwarf_tag_name (die->tag));
11148 return;
11149 }
11150
11151 imported_cu = cu;
11152 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11153 imported_name = dwarf2_name (imported_die, imported_cu);
11154 if (imported_name == NULL)
11155 {
11156 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11157
11158 The import in the following code:
11159 namespace A
11160 {
11161 typedef int B;
11162 }
11163
11164 int main ()
11165 {
11166 using A::B;
11167 B b;
11168 return b;
11169 }
11170
11171 ...
11172 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11173 <52> DW_AT_decl_file : 1
11174 <53> DW_AT_decl_line : 6
11175 <54> DW_AT_import : <0x75>
11176 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11177 <59> DW_AT_name : B
11178 <5b> DW_AT_decl_file : 1
11179 <5c> DW_AT_decl_line : 2
11180 <5d> DW_AT_type : <0x6e>
11181 ...
11182 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11183 <76> DW_AT_byte_size : 4
11184 <77> DW_AT_encoding : 5 (signed)
11185
11186 imports the wrong die ( 0x75 instead of 0x58 ).
11187 This case will be ignored until the gcc bug is fixed. */
11188 return;
11189 }
11190
11191 /* Figure out the local name after import. */
11192 import_alias = dwarf2_name (die, cu);
11193
11194 /* Figure out where the statement is being imported to. */
11195 import_prefix = determine_prefix (die, cu);
11196
11197 /* Figure out what the scope of the imported die is and prepend it
11198 to the name of the imported die. */
11199 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11200
11201 if (imported_die->tag != DW_TAG_namespace
11202 && imported_die->tag != DW_TAG_module)
11203 {
11204 imported_declaration = imported_name;
11205 canonical_name = imported_name_prefix;
11206 }
11207 else if (strlen (imported_name_prefix) > 0)
11208 canonical_name = obconcat (&objfile->objfile_obstack,
11209 imported_name_prefix,
11210 (cu->language == language_d ? "." : "::"),
11211 imported_name, (char *) NULL);
11212 else
11213 canonical_name = imported_name;
11214
11215 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11216 for (child_die = die->child; child_die && child_die->tag;
11217 child_die = sibling_die (child_die))
11218 {
11219 /* DWARF-4: A Fortran use statement with a “rename list” may be
11220 represented by an imported module entry with an import attribute
11221 referring to the module and owned entries corresponding to those
11222 entities that are renamed as part of being imported. */
11223
11224 if (child_die->tag != DW_TAG_imported_declaration)
11225 {
11226 complaint (&symfile_complaints,
11227 _("child DW_TAG_imported_declaration expected "
11228 "- DIE at %s [in module %s]"),
11229 sect_offset_str (child_die->sect_off),
11230 objfile_name (objfile));
11231 continue;
11232 }
11233
11234 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11235 if (import_attr == NULL)
11236 {
11237 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11238 dwarf_tag_name (child_die->tag));
11239 continue;
11240 }
11241
11242 imported_cu = cu;
11243 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11244 &imported_cu);
11245 imported_name = dwarf2_name (imported_die, imported_cu);
11246 if (imported_name == NULL)
11247 {
11248 complaint (&symfile_complaints,
11249 _("child DW_TAG_imported_declaration has unknown "
11250 "imported name - DIE at %s [in module %s]"),
11251 sect_offset_str (child_die->sect_off),
11252 objfile_name (objfile));
11253 continue;
11254 }
11255
11256 excludes.push_back (imported_name);
11257
11258 process_die (child_die, cu);
11259 }
11260
11261 add_using_directive (using_directives (cu->language),
11262 import_prefix,
11263 canonical_name,
11264 import_alias,
11265 imported_declaration,
11266 excludes,
11267 0,
11268 &objfile->objfile_obstack);
11269}
11270
11271/* ICC<14 does not output the required DW_AT_declaration on incomplete
11272 types, but gives them a size of zero. Starting with version 14,
11273 ICC is compatible with GCC. */
11274
11275static int
11276producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11277{
11278 if (!cu->checked_producer)
11279 check_producer (cu);
11280
11281 return cu->producer_is_icc_lt_14;
11282}
11283
11284/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11285 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11286 this, it was first present in GCC release 4.3.0. */
11287
11288static int
11289producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11290{
11291 if (!cu->checked_producer)
11292 check_producer (cu);
11293
11294 return cu->producer_is_gcc_lt_4_3;
11295}
11296
11297static file_and_directory
11298find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11299{
11300 file_and_directory res;
11301
11302 /* Find the filename. Do not use dwarf2_name here, since the filename
11303 is not a source language identifier. */
11304 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11305 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11306
11307 if (res.comp_dir == NULL
11308 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11309 && IS_ABSOLUTE_PATH (res.name))
11310 {
11311 res.comp_dir_storage = ldirname (res.name);
11312 if (!res.comp_dir_storage.empty ())
11313 res.comp_dir = res.comp_dir_storage.c_str ();
11314 }
11315 if (res.comp_dir != NULL)
11316 {
11317 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11318 directory, get rid of it. */
11319 const char *cp = strchr (res.comp_dir, ':');
11320
11321 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11322 res.comp_dir = cp + 1;
11323 }
11324
11325 if (res.name == NULL)
11326 res.name = "<unknown>";
11327
11328 return res;
11329}
11330
11331/* Handle DW_AT_stmt_list for a compilation unit.
11332 DIE is the DW_TAG_compile_unit die for CU.
11333 COMP_DIR is the compilation directory. LOWPC is passed to
11334 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11335
11336static void
11337handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11338 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11339{
11340 struct dwarf2_per_objfile *dwarf2_per_objfile
11341 = cu->per_cu->dwarf2_per_objfile;
11342 struct objfile *objfile = dwarf2_per_objfile->objfile;
11343 struct attribute *attr;
11344 struct line_header line_header_local;
11345 hashval_t line_header_local_hash;
11346 void **slot;
11347 int decode_mapping;
11348
11349 gdb_assert (! cu->per_cu->is_debug_types);
11350
11351 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11352 if (attr == NULL)
11353 return;
11354
11355 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11356
11357 /* The line header hash table is only created if needed (it exists to
11358 prevent redundant reading of the line table for partial_units).
11359 If we're given a partial_unit, we'll need it. If we're given a
11360 compile_unit, then use the line header hash table if it's already
11361 created, but don't create one just yet. */
11362
11363 if (dwarf2_per_objfile->line_header_hash == NULL
11364 && die->tag == DW_TAG_partial_unit)
11365 {
11366 dwarf2_per_objfile->line_header_hash
11367 = htab_create_alloc_ex (127, line_header_hash_voidp,
11368 line_header_eq_voidp,
11369 free_line_header_voidp,
11370 &objfile->objfile_obstack,
11371 hashtab_obstack_allocate,
11372 dummy_obstack_deallocate);
11373 }
11374
11375 line_header_local.sect_off = line_offset;
11376 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11377 line_header_local_hash = line_header_hash (&line_header_local);
11378 if (dwarf2_per_objfile->line_header_hash != NULL)
11379 {
11380 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11381 &line_header_local,
11382 line_header_local_hash, NO_INSERT);
11383
11384 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11385 is not present in *SLOT (since if there is something in *SLOT then
11386 it will be for a partial_unit). */
11387 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11388 {
11389 gdb_assert (*slot != NULL);
11390 cu->line_header = (struct line_header *) *slot;
11391 return;
11392 }
11393 }
11394
11395 /* dwarf_decode_line_header does not yet provide sufficient information.
11396 We always have to call also dwarf_decode_lines for it. */
11397 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11398 if (lh == NULL)
11399 return;
11400
11401 cu->line_header = lh.release ();
11402 cu->line_header_die_owner = die;
11403
11404 if (dwarf2_per_objfile->line_header_hash == NULL)
11405 slot = NULL;
11406 else
11407 {
11408 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11409 &line_header_local,
11410 line_header_local_hash, INSERT);
11411 gdb_assert (slot != NULL);
11412 }
11413 if (slot != NULL && *slot == NULL)
11414 {
11415 /* This newly decoded line number information unit will be owned
11416 by line_header_hash hash table. */
11417 *slot = cu->line_header;
11418 cu->line_header_die_owner = NULL;
11419 }
11420 else
11421 {
11422 /* We cannot free any current entry in (*slot) as that struct line_header
11423 may be already used by multiple CUs. Create only temporary decoded
11424 line_header for this CU - it may happen at most once for each line
11425 number information unit. And if we're not using line_header_hash
11426 then this is what we want as well. */
11427 gdb_assert (die->tag != DW_TAG_partial_unit);
11428 }
11429 decode_mapping = (die->tag != DW_TAG_partial_unit);
11430 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11431 decode_mapping);
11432
11433}
11434
11435/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11436
11437static void
11438read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11439{
11440 struct dwarf2_per_objfile *dwarf2_per_objfile
11441 = cu->per_cu->dwarf2_per_objfile;
11442 struct objfile *objfile = dwarf2_per_objfile->objfile;
11443 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11444 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11445 CORE_ADDR highpc = ((CORE_ADDR) 0);
11446 struct attribute *attr;
11447 struct die_info *child_die;
11448 CORE_ADDR baseaddr;
11449
11450 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11451
11452 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11453
11454 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11455 from finish_block. */
11456 if (lowpc == ((CORE_ADDR) -1))
11457 lowpc = highpc;
11458 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11459
11460 file_and_directory fnd = find_file_and_directory (die, cu);
11461
11462 prepare_one_comp_unit (cu, die, cu->language);
11463
11464 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11465 standardised yet. As a workaround for the language detection we fall
11466 back to the DW_AT_producer string. */
11467 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11468 cu->language = language_opencl;
11469
11470 /* Similar hack for Go. */
11471 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11472 set_cu_language (DW_LANG_Go, cu);
11473
11474 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11475
11476 /* Decode line number information if present. We do this before
11477 processing child DIEs, so that the line header table is available
11478 for DW_AT_decl_file. */
11479 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11480
11481 /* Process all dies in compilation unit. */
11482 if (die->child != NULL)
11483 {
11484 child_die = die->child;
11485 while (child_die && child_die->tag)
11486 {
11487 process_die (child_die, cu);
11488 child_die = sibling_die (child_die);
11489 }
11490 }
11491
11492 /* Decode macro information, if present. Dwarf 2 macro information
11493 refers to information in the line number info statement program
11494 header, so we can only read it if we've read the header
11495 successfully. */
11496 attr = dwarf2_attr (die, DW_AT_macros, cu);
11497 if (attr == NULL)
11498 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11499 if (attr && cu->line_header)
11500 {
11501 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11502 complaint (&symfile_complaints,
11503 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11504
11505 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11506 }
11507 else
11508 {
11509 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11510 if (attr && cu->line_header)
11511 {
11512 unsigned int macro_offset = DW_UNSND (attr);
11513
11514 dwarf_decode_macros (cu, macro_offset, 0);
11515 }
11516 }
11517}
11518
11519/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11520 Create the set of symtabs used by this TU, or if this TU is sharing
11521 symtabs with another TU and the symtabs have already been created
11522 then restore those symtabs in the line header.
11523 We don't need the pc/line-number mapping for type units. */
11524
11525static void
11526setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11527{
11528 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11529 struct type_unit_group *tu_group;
11530 int first_time;
11531 struct attribute *attr;
11532 unsigned int i;
11533 struct signatured_type *sig_type;
11534
11535 gdb_assert (per_cu->is_debug_types);
11536 sig_type = (struct signatured_type *) per_cu;
11537
11538 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11539
11540 /* If we're using .gdb_index (includes -readnow) then
11541 per_cu->type_unit_group may not have been set up yet. */
11542 if (sig_type->type_unit_group == NULL)
11543 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11544 tu_group = sig_type->type_unit_group;
11545
11546 /* If we've already processed this stmt_list there's no real need to
11547 do it again, we could fake it and just recreate the part we need
11548 (file name,index -> symtab mapping). If data shows this optimization
11549 is useful we can do it then. */
11550 first_time = tu_group->compunit_symtab == NULL;
11551
11552 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11553 debug info. */
11554 line_header_up lh;
11555 if (attr != NULL)
11556 {
11557 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11558 lh = dwarf_decode_line_header (line_offset, cu);
11559 }
11560 if (lh == NULL)
11561 {
11562 if (first_time)
11563 dwarf2_start_symtab (cu, "", NULL, 0);
11564 else
11565 {
11566 gdb_assert (tu_group->symtabs == NULL);
11567 restart_symtab (tu_group->compunit_symtab, "", 0);
11568 }
11569 return;
11570 }
11571
11572 cu->line_header = lh.release ();
11573 cu->line_header_die_owner = die;
11574
11575 if (first_time)
11576 {
11577 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11578
11579 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11580 still initializing it, and our caller (a few levels up)
11581 process_full_type_unit still needs to know if this is the first
11582 time. */
11583
11584 tu_group->num_symtabs = cu->line_header->file_names.size ();
11585 tu_group->symtabs = XNEWVEC (struct symtab *,
11586 cu->line_header->file_names.size ());
11587
11588 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11589 {
11590 file_entry &fe = cu->line_header->file_names[i];
11591
11592 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11593
11594 if (current_subfile->symtab == NULL)
11595 {
11596 /* NOTE: start_subfile will recognize when it's been
11597 passed a file it has already seen. So we can't
11598 assume there's a simple mapping from
11599 cu->line_header->file_names to subfiles, plus
11600 cu->line_header->file_names may contain dups. */
11601 current_subfile->symtab
11602 = allocate_symtab (cust, current_subfile->name);
11603 }
11604
11605 fe.symtab = current_subfile->symtab;
11606 tu_group->symtabs[i] = fe.symtab;
11607 }
11608 }
11609 else
11610 {
11611 restart_symtab (tu_group->compunit_symtab, "", 0);
11612
11613 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11614 {
11615 file_entry &fe = cu->line_header->file_names[i];
11616
11617 fe.symtab = tu_group->symtabs[i];
11618 }
11619 }
11620
11621 /* The main symtab is allocated last. Type units don't have DW_AT_name
11622 so they don't have a "real" (so to speak) symtab anyway.
11623 There is later code that will assign the main symtab to all symbols
11624 that don't have one. We need to handle the case of a symbol with a
11625 missing symtab (DW_AT_decl_file) anyway. */
11626}
11627
11628/* Process DW_TAG_type_unit.
11629 For TUs we want to skip the first top level sibling if it's not the
11630 actual type being defined by this TU. In this case the first top
11631 level sibling is there to provide context only. */
11632
11633static void
11634read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11635{
11636 struct die_info *child_die;
11637
11638 prepare_one_comp_unit (cu, die, language_minimal);
11639
11640 /* Initialize (or reinitialize) the machinery for building symtabs.
11641 We do this before processing child DIEs, so that the line header table
11642 is available for DW_AT_decl_file. */
11643 setup_type_unit_groups (die, cu);
11644
11645 if (die->child != NULL)
11646 {
11647 child_die = die->child;
11648 while (child_die && child_die->tag)
11649 {
11650 process_die (child_die, cu);
11651 child_die = sibling_die (child_die);
11652 }
11653 }
11654}
11655\f
11656/* DWO/DWP files.
11657
11658 http://gcc.gnu.org/wiki/DebugFission
11659 http://gcc.gnu.org/wiki/DebugFissionDWP
11660
11661 To simplify handling of both DWO files ("object" files with the DWARF info)
11662 and DWP files (a file with the DWOs packaged up into one file), we treat
11663 DWP files as having a collection of virtual DWO files. */
11664
11665static hashval_t
11666hash_dwo_file (const void *item)
11667{
11668 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11669 hashval_t hash;
11670
11671 hash = htab_hash_string (dwo_file->dwo_name);
11672 if (dwo_file->comp_dir != NULL)
11673 hash += htab_hash_string (dwo_file->comp_dir);
11674 return hash;
11675}
11676
11677static int
11678eq_dwo_file (const void *item_lhs, const void *item_rhs)
11679{
11680 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11681 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11682
11683 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11684 return 0;
11685 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11686 return lhs->comp_dir == rhs->comp_dir;
11687 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11688}
11689
11690/* Allocate a hash table for DWO files. */
11691
11692static htab_t
11693allocate_dwo_file_hash_table (struct objfile *objfile)
11694{
11695 return htab_create_alloc_ex (41,
11696 hash_dwo_file,
11697 eq_dwo_file,
11698 NULL,
11699 &objfile->objfile_obstack,
11700 hashtab_obstack_allocate,
11701 dummy_obstack_deallocate);
11702}
11703
11704/* Lookup DWO file DWO_NAME. */
11705
11706static void **
11707lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11708 const char *dwo_name,
11709 const char *comp_dir)
11710{
11711 struct dwo_file find_entry;
11712 void **slot;
11713
11714 if (dwarf2_per_objfile->dwo_files == NULL)
11715 dwarf2_per_objfile->dwo_files
11716 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11717
11718 memset (&find_entry, 0, sizeof (find_entry));
11719 find_entry.dwo_name = dwo_name;
11720 find_entry.comp_dir = comp_dir;
11721 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11722
11723 return slot;
11724}
11725
11726static hashval_t
11727hash_dwo_unit (const void *item)
11728{
11729 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11730
11731 /* This drops the top 32 bits of the id, but is ok for a hash. */
11732 return dwo_unit->signature;
11733}
11734
11735static int
11736eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11737{
11738 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11739 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11740
11741 /* The signature is assumed to be unique within the DWO file.
11742 So while object file CU dwo_id's always have the value zero,
11743 that's OK, assuming each object file DWO file has only one CU,
11744 and that's the rule for now. */
11745 return lhs->signature == rhs->signature;
11746}
11747
11748/* Allocate a hash table for DWO CUs,TUs.
11749 There is one of these tables for each of CUs,TUs for each DWO file. */
11750
11751static htab_t
11752allocate_dwo_unit_table (struct objfile *objfile)
11753{
11754 /* Start out with a pretty small number.
11755 Generally DWO files contain only one CU and maybe some TUs. */
11756 return htab_create_alloc_ex (3,
11757 hash_dwo_unit,
11758 eq_dwo_unit,
11759 NULL,
11760 &objfile->objfile_obstack,
11761 hashtab_obstack_allocate,
11762 dummy_obstack_deallocate);
11763}
11764
11765/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11766
11767struct create_dwo_cu_data
11768{
11769 struct dwo_file *dwo_file;
11770 struct dwo_unit dwo_unit;
11771};
11772
11773/* die_reader_func for create_dwo_cu. */
11774
11775static void
11776create_dwo_cu_reader (const struct die_reader_specs *reader,
11777 const gdb_byte *info_ptr,
11778 struct die_info *comp_unit_die,
11779 int has_children,
11780 void *datap)
11781{
11782 struct dwarf2_cu *cu = reader->cu;
11783 sect_offset sect_off = cu->per_cu->sect_off;
11784 struct dwarf2_section_info *section = cu->per_cu->section;
11785 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11786 struct dwo_file *dwo_file = data->dwo_file;
11787 struct dwo_unit *dwo_unit = &data->dwo_unit;
11788 struct attribute *attr;
11789
11790 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11791 if (attr == NULL)
11792 {
11793 complaint (&symfile_complaints,
11794 _("Dwarf Error: debug entry at offset %s is missing"
11795 " its dwo_id [in module %s]"),
11796 sect_offset_str (sect_off), dwo_file->dwo_name);
11797 return;
11798 }
11799
11800 dwo_unit->dwo_file = dwo_file;
11801 dwo_unit->signature = DW_UNSND (attr);
11802 dwo_unit->section = section;
11803 dwo_unit->sect_off = sect_off;
11804 dwo_unit->length = cu->per_cu->length;
11805
11806 if (dwarf_read_debug)
11807 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11808 sect_offset_str (sect_off),
11809 hex_string (dwo_unit->signature));
11810}
11811
11812/* Create the dwo_units for the CUs in a DWO_FILE.
11813 Note: This function processes DWO files only, not DWP files. */
11814
11815static void
11816create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11817 struct dwo_file &dwo_file, dwarf2_section_info &section,
11818 htab_t &cus_htab)
11819{
11820 struct objfile *objfile = dwarf2_per_objfile->objfile;
11821 const gdb_byte *info_ptr, *end_ptr;
11822
11823 dwarf2_read_section (objfile, &section);
11824 info_ptr = section.buffer;
11825
11826 if (info_ptr == NULL)
11827 return;
11828
11829 if (dwarf_read_debug)
11830 {
11831 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11832 get_section_name (&section),
11833 get_section_file_name (&section));
11834 }
11835
11836 end_ptr = info_ptr + section.size;
11837 while (info_ptr < end_ptr)
11838 {
11839 struct dwarf2_per_cu_data per_cu;
11840 struct create_dwo_cu_data create_dwo_cu_data;
11841 struct dwo_unit *dwo_unit;
11842 void **slot;
11843 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11844
11845 memset (&create_dwo_cu_data.dwo_unit, 0,
11846 sizeof (create_dwo_cu_data.dwo_unit));
11847 memset (&per_cu, 0, sizeof (per_cu));
11848 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11849 per_cu.is_debug_types = 0;
11850 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11851 per_cu.section = &section;
11852 create_dwo_cu_data.dwo_file = &dwo_file;
11853
11854 init_cutu_and_read_dies_no_follow (
11855 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11856 info_ptr += per_cu.length;
11857
11858 // If the unit could not be parsed, skip it.
11859 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11860 continue;
11861
11862 if (cus_htab == NULL)
11863 cus_htab = allocate_dwo_unit_table (objfile);
11864
11865 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11866 *dwo_unit = create_dwo_cu_data.dwo_unit;
11867 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11868 gdb_assert (slot != NULL);
11869 if (*slot != NULL)
11870 {
11871 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11872 sect_offset dup_sect_off = dup_cu->sect_off;
11873
11874 complaint (&symfile_complaints,
11875 _("debug cu entry at offset %s is duplicate to"
11876 " the entry at offset %s, signature %s"),
11877 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11878 hex_string (dwo_unit->signature));
11879 }
11880 *slot = (void *)dwo_unit;
11881 }
11882}
11883
11884/* DWP file .debug_{cu,tu}_index section format:
11885 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11886
11887 DWP Version 1:
11888
11889 Both index sections have the same format, and serve to map a 64-bit
11890 signature to a set of section numbers. Each section begins with a header,
11891 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11892 indexes, and a pool of 32-bit section numbers. The index sections will be
11893 aligned at 8-byte boundaries in the file.
11894
11895 The index section header consists of:
11896
11897 V, 32 bit version number
11898 -, 32 bits unused
11899 N, 32 bit number of compilation units or type units in the index
11900 M, 32 bit number of slots in the hash table
11901
11902 Numbers are recorded using the byte order of the application binary.
11903
11904 The hash table begins at offset 16 in the section, and consists of an array
11905 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11906 order of the application binary). Unused slots in the hash table are 0.
11907 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11908
11909 The parallel table begins immediately after the hash table
11910 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11911 array of 32-bit indexes (using the byte order of the application binary),
11912 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11913 table contains a 32-bit index into the pool of section numbers. For unused
11914 hash table slots, the corresponding entry in the parallel table will be 0.
11915
11916 The pool of section numbers begins immediately following the hash table
11917 (at offset 16 + 12 * M from the beginning of the section). The pool of
11918 section numbers consists of an array of 32-bit words (using the byte order
11919 of the application binary). Each item in the array is indexed starting
11920 from 0. The hash table entry provides the index of the first section
11921 number in the set. Additional section numbers in the set follow, and the
11922 set is terminated by a 0 entry (section number 0 is not used in ELF).
11923
11924 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11925 section must be the first entry in the set, and the .debug_abbrev.dwo must
11926 be the second entry. Other members of the set may follow in any order.
11927
11928 ---
11929
11930 DWP Version 2:
11931
11932 DWP Version 2 combines all the .debug_info, etc. sections into one,
11933 and the entries in the index tables are now offsets into these sections.
11934 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11935 section.
11936
11937 Index Section Contents:
11938 Header
11939 Hash Table of Signatures dwp_hash_table.hash_table
11940 Parallel Table of Indices dwp_hash_table.unit_table
11941 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11942 Table of Section Sizes dwp_hash_table.v2.sizes
11943
11944 The index section header consists of:
11945
11946 V, 32 bit version number
11947 L, 32 bit number of columns in the table of section offsets
11948 N, 32 bit number of compilation units or type units in the index
11949 M, 32 bit number of slots in the hash table
11950
11951 Numbers are recorded using the byte order of the application binary.
11952
11953 The hash table has the same format as version 1.
11954 The parallel table of indices has the same format as version 1,
11955 except that the entries are origin-1 indices into the table of sections
11956 offsets and the table of section sizes.
11957
11958 The table of offsets begins immediately following the parallel table
11959 (at offset 16 + 12 * M from the beginning of the section). The table is
11960 a two-dimensional array of 32-bit words (using the byte order of the
11961 application binary), with L columns and N+1 rows, in row-major order.
11962 Each row in the array is indexed starting from 0. The first row provides
11963 a key to the remaining rows: each column in this row provides an identifier
11964 for a debug section, and the offsets in the same column of subsequent rows
11965 refer to that section. The section identifiers are:
11966
11967 DW_SECT_INFO 1 .debug_info.dwo
11968 DW_SECT_TYPES 2 .debug_types.dwo
11969 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11970 DW_SECT_LINE 4 .debug_line.dwo
11971 DW_SECT_LOC 5 .debug_loc.dwo
11972 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11973 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11974 DW_SECT_MACRO 8 .debug_macro.dwo
11975
11976 The offsets provided by the CU and TU index sections are the base offsets
11977 for the contributions made by each CU or TU to the corresponding section
11978 in the package file. Each CU and TU header contains an abbrev_offset
11979 field, used to find the abbreviations table for that CU or TU within the
11980 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11981 be interpreted as relative to the base offset given in the index section.
11982 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11983 should be interpreted as relative to the base offset for .debug_line.dwo,
11984 and offsets into other debug sections obtained from DWARF attributes should
11985 also be interpreted as relative to the corresponding base offset.
11986
11987 The table of sizes begins immediately following the table of offsets.
11988 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11989 with L columns and N rows, in row-major order. Each row in the array is
11990 indexed starting from 1 (row 0 is shared by the two tables).
11991
11992 ---
11993
11994 Hash table lookup is handled the same in version 1 and 2:
11995
11996 We assume that N and M will not exceed 2^32 - 1.
11997 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11998
11999 Given a 64-bit compilation unit signature or a type signature S, an entry
12000 in the hash table is located as follows:
12001
12002 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12003 the low-order k bits all set to 1.
12004
12005 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12006
12007 3) If the hash table entry at index H matches the signature, use that
12008 entry. If the hash table entry at index H is unused (all zeroes),
12009 terminate the search: the signature is not present in the table.
12010
12011 4) Let H = (H + H') modulo M. Repeat at Step 3.
12012
12013 Because M > N and H' and M are relatively prime, the search is guaranteed
12014 to stop at an unused slot or find the match. */
12015
12016/* Create a hash table to map DWO IDs to their CU/TU entry in
12017 .debug_{info,types}.dwo in DWP_FILE.
12018 Returns NULL if there isn't one.
12019 Note: This function processes DWP files only, not DWO files. */
12020
12021static struct dwp_hash_table *
12022create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12023 struct dwp_file *dwp_file, int is_debug_types)
12024{
12025 struct objfile *objfile = dwarf2_per_objfile->objfile;
12026 bfd *dbfd = dwp_file->dbfd;
12027 const gdb_byte *index_ptr, *index_end;
12028 struct dwarf2_section_info *index;
12029 uint32_t version, nr_columns, nr_units, nr_slots;
12030 struct dwp_hash_table *htab;
12031
12032 if (is_debug_types)
12033 index = &dwp_file->sections.tu_index;
12034 else
12035 index = &dwp_file->sections.cu_index;
12036
12037 if (dwarf2_section_empty_p (index))
12038 return NULL;
12039 dwarf2_read_section (objfile, index);
12040
12041 index_ptr = index->buffer;
12042 index_end = index_ptr + index->size;
12043
12044 version = read_4_bytes (dbfd, index_ptr);
12045 index_ptr += 4;
12046 if (version == 2)
12047 nr_columns = read_4_bytes (dbfd, index_ptr);
12048 else
12049 nr_columns = 0;
12050 index_ptr += 4;
12051 nr_units = read_4_bytes (dbfd, index_ptr);
12052 index_ptr += 4;
12053 nr_slots = read_4_bytes (dbfd, index_ptr);
12054 index_ptr += 4;
12055
12056 if (version != 1 && version != 2)
12057 {
12058 error (_("Dwarf Error: unsupported DWP file version (%s)"
12059 " [in module %s]"),
12060 pulongest (version), dwp_file->name);
12061 }
12062 if (nr_slots != (nr_slots & -nr_slots))
12063 {
12064 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12065 " is not power of 2 [in module %s]"),
12066 pulongest (nr_slots), dwp_file->name);
12067 }
12068
12069 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12070 htab->version = version;
12071 htab->nr_columns = nr_columns;
12072 htab->nr_units = nr_units;
12073 htab->nr_slots = nr_slots;
12074 htab->hash_table = index_ptr;
12075 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12076
12077 /* Exit early if the table is empty. */
12078 if (nr_slots == 0 || nr_units == 0
12079 || (version == 2 && nr_columns == 0))
12080 {
12081 /* All must be zero. */
12082 if (nr_slots != 0 || nr_units != 0
12083 || (version == 2 && nr_columns != 0))
12084 {
12085 complaint (&symfile_complaints,
12086 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12087 " all zero [in modules %s]"),
12088 dwp_file->name);
12089 }
12090 return htab;
12091 }
12092
12093 if (version == 1)
12094 {
12095 htab->section_pool.v1.indices =
12096 htab->unit_table + sizeof (uint32_t) * nr_slots;
12097 /* It's harder to decide whether the section is too small in v1.
12098 V1 is deprecated anyway so we punt. */
12099 }
12100 else
12101 {
12102 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12103 int *ids = htab->section_pool.v2.section_ids;
12104 /* Reverse map for error checking. */
12105 int ids_seen[DW_SECT_MAX + 1];
12106 int i;
12107
12108 if (nr_columns < 2)
12109 {
12110 error (_("Dwarf Error: bad DWP hash table, too few columns"
12111 " in section table [in module %s]"),
12112 dwp_file->name);
12113 }
12114 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12115 {
12116 error (_("Dwarf Error: bad DWP hash table, too many columns"
12117 " in section table [in module %s]"),
12118 dwp_file->name);
12119 }
12120 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12121 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12122 for (i = 0; i < nr_columns; ++i)
12123 {
12124 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12125
12126 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12127 {
12128 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12129 " in section table [in module %s]"),
12130 id, dwp_file->name);
12131 }
12132 if (ids_seen[id] != -1)
12133 {
12134 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12135 " id %d in section table [in module %s]"),
12136 id, dwp_file->name);
12137 }
12138 ids_seen[id] = i;
12139 ids[i] = id;
12140 }
12141 /* Must have exactly one info or types section. */
12142 if (((ids_seen[DW_SECT_INFO] != -1)
12143 + (ids_seen[DW_SECT_TYPES] != -1))
12144 != 1)
12145 {
12146 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12147 " DWO info/types section [in module %s]"),
12148 dwp_file->name);
12149 }
12150 /* Must have an abbrev section. */
12151 if (ids_seen[DW_SECT_ABBREV] == -1)
12152 {
12153 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12154 " section [in module %s]"),
12155 dwp_file->name);
12156 }
12157 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12158 htab->section_pool.v2.sizes =
12159 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12160 * nr_units * nr_columns);
12161 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12162 * nr_units * nr_columns))
12163 > index_end)
12164 {
12165 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12166 " [in module %s]"),
12167 dwp_file->name);
12168 }
12169 }
12170
12171 return htab;
12172}
12173
12174/* Update SECTIONS with the data from SECTP.
12175
12176 This function is like the other "locate" section routines that are
12177 passed to bfd_map_over_sections, but in this context the sections to
12178 read comes from the DWP V1 hash table, not the full ELF section table.
12179
12180 The result is non-zero for success, or zero if an error was found. */
12181
12182static int
12183locate_v1_virtual_dwo_sections (asection *sectp,
12184 struct virtual_v1_dwo_sections *sections)
12185{
12186 const struct dwop_section_names *names = &dwop_section_names;
12187
12188 if (section_is_p (sectp->name, &names->abbrev_dwo))
12189 {
12190 /* There can be only one. */
12191 if (sections->abbrev.s.section != NULL)
12192 return 0;
12193 sections->abbrev.s.section = sectp;
12194 sections->abbrev.size = bfd_get_section_size (sectp);
12195 }
12196 else if (section_is_p (sectp->name, &names->info_dwo)
12197 || section_is_p (sectp->name, &names->types_dwo))
12198 {
12199 /* There can be only one. */
12200 if (sections->info_or_types.s.section != NULL)
12201 return 0;
12202 sections->info_or_types.s.section = sectp;
12203 sections->info_or_types.size = bfd_get_section_size (sectp);
12204 }
12205 else if (section_is_p (sectp->name, &names->line_dwo))
12206 {
12207 /* There can be only one. */
12208 if (sections->line.s.section != NULL)
12209 return 0;
12210 sections->line.s.section = sectp;
12211 sections->line.size = bfd_get_section_size (sectp);
12212 }
12213 else if (section_is_p (sectp->name, &names->loc_dwo))
12214 {
12215 /* There can be only one. */
12216 if (sections->loc.s.section != NULL)
12217 return 0;
12218 sections->loc.s.section = sectp;
12219 sections->loc.size = bfd_get_section_size (sectp);
12220 }
12221 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12222 {
12223 /* There can be only one. */
12224 if (sections->macinfo.s.section != NULL)
12225 return 0;
12226 sections->macinfo.s.section = sectp;
12227 sections->macinfo.size = bfd_get_section_size (sectp);
12228 }
12229 else if (section_is_p (sectp->name, &names->macro_dwo))
12230 {
12231 /* There can be only one. */
12232 if (sections->macro.s.section != NULL)
12233 return 0;
12234 sections->macro.s.section = sectp;
12235 sections->macro.size = bfd_get_section_size (sectp);
12236 }
12237 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12238 {
12239 /* There can be only one. */
12240 if (sections->str_offsets.s.section != NULL)
12241 return 0;
12242 sections->str_offsets.s.section = sectp;
12243 sections->str_offsets.size = bfd_get_section_size (sectp);
12244 }
12245 else
12246 {
12247 /* No other kind of section is valid. */
12248 return 0;
12249 }
12250
12251 return 1;
12252}
12253
12254/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12255 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12256 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12257 This is for DWP version 1 files. */
12258
12259static struct dwo_unit *
12260create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12261 struct dwp_file *dwp_file,
12262 uint32_t unit_index,
12263 const char *comp_dir,
12264 ULONGEST signature, int is_debug_types)
12265{
12266 struct objfile *objfile = dwarf2_per_objfile->objfile;
12267 const struct dwp_hash_table *dwp_htab =
12268 is_debug_types ? dwp_file->tus : dwp_file->cus;
12269 bfd *dbfd = dwp_file->dbfd;
12270 const char *kind = is_debug_types ? "TU" : "CU";
12271 struct dwo_file *dwo_file;
12272 struct dwo_unit *dwo_unit;
12273 struct virtual_v1_dwo_sections sections;
12274 void **dwo_file_slot;
12275 int i;
12276
12277 gdb_assert (dwp_file->version == 1);
12278
12279 if (dwarf_read_debug)
12280 {
12281 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12282 kind,
12283 pulongest (unit_index), hex_string (signature),
12284 dwp_file->name);
12285 }
12286
12287 /* Fetch the sections of this DWO unit.
12288 Put a limit on the number of sections we look for so that bad data
12289 doesn't cause us to loop forever. */
12290
12291#define MAX_NR_V1_DWO_SECTIONS \
12292 (1 /* .debug_info or .debug_types */ \
12293 + 1 /* .debug_abbrev */ \
12294 + 1 /* .debug_line */ \
12295 + 1 /* .debug_loc */ \
12296 + 1 /* .debug_str_offsets */ \
12297 + 1 /* .debug_macro or .debug_macinfo */ \
12298 + 1 /* trailing zero */)
12299
12300 memset (&sections, 0, sizeof (sections));
12301
12302 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12303 {
12304 asection *sectp;
12305 uint32_t section_nr =
12306 read_4_bytes (dbfd,
12307 dwp_htab->section_pool.v1.indices
12308 + (unit_index + i) * sizeof (uint32_t));
12309
12310 if (section_nr == 0)
12311 break;
12312 if (section_nr >= dwp_file->num_sections)
12313 {
12314 error (_("Dwarf Error: bad DWP hash table, section number too large"
12315 " [in module %s]"),
12316 dwp_file->name);
12317 }
12318
12319 sectp = dwp_file->elf_sections[section_nr];
12320 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12321 {
12322 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12323 " [in module %s]"),
12324 dwp_file->name);
12325 }
12326 }
12327
12328 if (i < 2
12329 || dwarf2_section_empty_p (&sections.info_or_types)
12330 || dwarf2_section_empty_p (&sections.abbrev))
12331 {
12332 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12333 " [in module %s]"),
12334 dwp_file->name);
12335 }
12336 if (i == MAX_NR_V1_DWO_SECTIONS)
12337 {
12338 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12339 " [in module %s]"),
12340 dwp_file->name);
12341 }
12342
12343 /* It's easier for the rest of the code if we fake a struct dwo_file and
12344 have dwo_unit "live" in that. At least for now.
12345
12346 The DWP file can be made up of a random collection of CUs and TUs.
12347 However, for each CU + set of TUs that came from the same original DWO
12348 file, we can combine them back into a virtual DWO file to save space
12349 (fewer struct dwo_file objects to allocate). Remember that for really
12350 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12351
12352 std::string virtual_dwo_name =
12353 string_printf ("virtual-dwo/%d-%d-%d-%d",
12354 get_section_id (&sections.abbrev),
12355 get_section_id (&sections.line),
12356 get_section_id (&sections.loc),
12357 get_section_id (&sections.str_offsets));
12358 /* Can we use an existing virtual DWO file? */
12359 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12360 virtual_dwo_name.c_str (),
12361 comp_dir);
12362 /* Create one if necessary. */
12363 if (*dwo_file_slot == NULL)
12364 {
12365 if (dwarf_read_debug)
12366 {
12367 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12368 virtual_dwo_name.c_str ());
12369 }
12370 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12371 dwo_file->dwo_name
12372 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12373 virtual_dwo_name.c_str (),
12374 virtual_dwo_name.size ());
12375 dwo_file->comp_dir = comp_dir;
12376 dwo_file->sections.abbrev = sections.abbrev;
12377 dwo_file->sections.line = sections.line;
12378 dwo_file->sections.loc = sections.loc;
12379 dwo_file->sections.macinfo = sections.macinfo;
12380 dwo_file->sections.macro = sections.macro;
12381 dwo_file->sections.str_offsets = sections.str_offsets;
12382 /* The "str" section is global to the entire DWP file. */
12383 dwo_file->sections.str = dwp_file->sections.str;
12384 /* The info or types section is assigned below to dwo_unit,
12385 there's no need to record it in dwo_file.
12386 Also, we can't simply record type sections in dwo_file because
12387 we record a pointer into the vector in dwo_unit. As we collect more
12388 types we'll grow the vector and eventually have to reallocate space
12389 for it, invalidating all copies of pointers into the previous
12390 contents. */
12391 *dwo_file_slot = dwo_file;
12392 }
12393 else
12394 {
12395 if (dwarf_read_debug)
12396 {
12397 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12398 virtual_dwo_name.c_str ());
12399 }
12400 dwo_file = (struct dwo_file *) *dwo_file_slot;
12401 }
12402
12403 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12404 dwo_unit->dwo_file = dwo_file;
12405 dwo_unit->signature = signature;
12406 dwo_unit->section =
12407 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12408 *dwo_unit->section = sections.info_or_types;
12409 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12410
12411 return dwo_unit;
12412}
12413
12414/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12415 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12416 piece within that section used by a TU/CU, return a virtual section
12417 of just that piece. */
12418
12419static struct dwarf2_section_info
12420create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12421 struct dwarf2_section_info *section,
12422 bfd_size_type offset, bfd_size_type size)
12423{
12424 struct dwarf2_section_info result;
12425 asection *sectp;
12426
12427 gdb_assert (section != NULL);
12428 gdb_assert (!section->is_virtual);
12429
12430 memset (&result, 0, sizeof (result));
12431 result.s.containing_section = section;
12432 result.is_virtual = 1;
12433
12434 if (size == 0)
12435 return result;
12436
12437 sectp = get_section_bfd_section (section);
12438
12439 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12440 bounds of the real section. This is a pretty-rare event, so just
12441 flag an error (easier) instead of a warning and trying to cope. */
12442 if (sectp == NULL
12443 || offset + size > bfd_get_section_size (sectp))
12444 {
12445 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12446 " in section %s [in module %s]"),
12447 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12448 objfile_name (dwarf2_per_objfile->objfile));
12449 }
12450
12451 result.virtual_offset = offset;
12452 result.size = size;
12453 return result;
12454}
12455
12456/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12457 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12458 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12459 This is for DWP version 2 files. */
12460
12461static struct dwo_unit *
12462create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12463 struct dwp_file *dwp_file,
12464 uint32_t unit_index,
12465 const char *comp_dir,
12466 ULONGEST signature, int is_debug_types)
12467{
12468 struct objfile *objfile = dwarf2_per_objfile->objfile;
12469 const struct dwp_hash_table *dwp_htab =
12470 is_debug_types ? dwp_file->tus : dwp_file->cus;
12471 bfd *dbfd = dwp_file->dbfd;
12472 const char *kind = is_debug_types ? "TU" : "CU";
12473 struct dwo_file *dwo_file;
12474 struct dwo_unit *dwo_unit;
12475 struct virtual_v2_dwo_sections sections;
12476 void **dwo_file_slot;
12477 int i;
12478
12479 gdb_assert (dwp_file->version == 2);
12480
12481 if (dwarf_read_debug)
12482 {
12483 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12484 kind,
12485 pulongest (unit_index), hex_string (signature),
12486 dwp_file->name);
12487 }
12488
12489 /* Fetch the section offsets of this DWO unit. */
12490
12491 memset (&sections, 0, sizeof (sections));
12492
12493 for (i = 0; i < dwp_htab->nr_columns; ++i)
12494 {
12495 uint32_t offset = read_4_bytes (dbfd,
12496 dwp_htab->section_pool.v2.offsets
12497 + (((unit_index - 1) * dwp_htab->nr_columns
12498 + i)
12499 * sizeof (uint32_t)));
12500 uint32_t size = read_4_bytes (dbfd,
12501 dwp_htab->section_pool.v2.sizes
12502 + (((unit_index - 1) * dwp_htab->nr_columns
12503 + i)
12504 * sizeof (uint32_t)));
12505
12506 switch (dwp_htab->section_pool.v2.section_ids[i])
12507 {
12508 case DW_SECT_INFO:
12509 case DW_SECT_TYPES:
12510 sections.info_or_types_offset = offset;
12511 sections.info_or_types_size = size;
12512 break;
12513 case DW_SECT_ABBREV:
12514 sections.abbrev_offset = offset;
12515 sections.abbrev_size = size;
12516 break;
12517 case DW_SECT_LINE:
12518 sections.line_offset = offset;
12519 sections.line_size = size;
12520 break;
12521 case DW_SECT_LOC:
12522 sections.loc_offset = offset;
12523 sections.loc_size = size;
12524 break;
12525 case DW_SECT_STR_OFFSETS:
12526 sections.str_offsets_offset = offset;
12527 sections.str_offsets_size = size;
12528 break;
12529 case DW_SECT_MACINFO:
12530 sections.macinfo_offset = offset;
12531 sections.macinfo_size = size;
12532 break;
12533 case DW_SECT_MACRO:
12534 sections.macro_offset = offset;
12535 sections.macro_size = size;
12536 break;
12537 }
12538 }
12539
12540 /* It's easier for the rest of the code if we fake a struct dwo_file and
12541 have dwo_unit "live" in that. At least for now.
12542
12543 The DWP file can be made up of a random collection of CUs and TUs.
12544 However, for each CU + set of TUs that came from the same original DWO
12545 file, we can combine them back into a virtual DWO file to save space
12546 (fewer struct dwo_file objects to allocate). Remember that for really
12547 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12548
12549 std::string virtual_dwo_name =
12550 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12551 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12552 (long) (sections.line_size ? sections.line_offset : 0),
12553 (long) (sections.loc_size ? sections.loc_offset : 0),
12554 (long) (sections.str_offsets_size
12555 ? sections.str_offsets_offset : 0));
12556 /* Can we use an existing virtual DWO file? */
12557 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12558 virtual_dwo_name.c_str (),
12559 comp_dir);
12560 /* Create one if necessary. */
12561 if (*dwo_file_slot == NULL)
12562 {
12563 if (dwarf_read_debug)
12564 {
12565 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12566 virtual_dwo_name.c_str ());
12567 }
12568 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12569 dwo_file->dwo_name
12570 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12571 virtual_dwo_name.c_str (),
12572 virtual_dwo_name.size ());
12573 dwo_file->comp_dir = comp_dir;
12574 dwo_file->sections.abbrev =
12575 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12576 sections.abbrev_offset, sections.abbrev_size);
12577 dwo_file->sections.line =
12578 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12579 sections.line_offset, sections.line_size);
12580 dwo_file->sections.loc =
12581 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12582 sections.loc_offset, sections.loc_size);
12583 dwo_file->sections.macinfo =
12584 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12585 sections.macinfo_offset, sections.macinfo_size);
12586 dwo_file->sections.macro =
12587 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12588 sections.macro_offset, sections.macro_size);
12589 dwo_file->sections.str_offsets =
12590 create_dwp_v2_section (dwarf2_per_objfile,
12591 &dwp_file->sections.str_offsets,
12592 sections.str_offsets_offset,
12593 sections.str_offsets_size);
12594 /* The "str" section is global to the entire DWP file. */
12595 dwo_file->sections.str = dwp_file->sections.str;
12596 /* The info or types section is assigned below to dwo_unit,
12597 there's no need to record it in dwo_file.
12598 Also, we can't simply record type sections in dwo_file because
12599 we record a pointer into the vector in dwo_unit. As we collect more
12600 types we'll grow the vector and eventually have to reallocate space
12601 for it, invalidating all copies of pointers into the previous
12602 contents. */
12603 *dwo_file_slot = dwo_file;
12604 }
12605 else
12606 {
12607 if (dwarf_read_debug)
12608 {
12609 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12610 virtual_dwo_name.c_str ());
12611 }
12612 dwo_file = (struct dwo_file *) *dwo_file_slot;
12613 }
12614
12615 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12616 dwo_unit->dwo_file = dwo_file;
12617 dwo_unit->signature = signature;
12618 dwo_unit->section =
12619 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12620 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12621 is_debug_types
12622 ? &dwp_file->sections.types
12623 : &dwp_file->sections.info,
12624 sections.info_or_types_offset,
12625 sections.info_or_types_size);
12626 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12627
12628 return dwo_unit;
12629}
12630
12631/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12632 Returns NULL if the signature isn't found. */
12633
12634static struct dwo_unit *
12635lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12636 struct dwp_file *dwp_file, const char *comp_dir,
12637 ULONGEST signature, int is_debug_types)
12638{
12639 const struct dwp_hash_table *dwp_htab =
12640 is_debug_types ? dwp_file->tus : dwp_file->cus;
12641 bfd *dbfd = dwp_file->dbfd;
12642 uint32_t mask = dwp_htab->nr_slots - 1;
12643 uint32_t hash = signature & mask;
12644 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12645 unsigned int i;
12646 void **slot;
12647 struct dwo_unit find_dwo_cu;
12648
12649 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12650 find_dwo_cu.signature = signature;
12651 slot = htab_find_slot (is_debug_types
12652 ? dwp_file->loaded_tus
12653 : dwp_file->loaded_cus,
12654 &find_dwo_cu, INSERT);
12655
12656 if (*slot != NULL)
12657 return (struct dwo_unit *) *slot;
12658
12659 /* Use a for loop so that we don't loop forever on bad debug info. */
12660 for (i = 0; i < dwp_htab->nr_slots; ++i)
12661 {
12662 ULONGEST signature_in_table;
12663
12664 signature_in_table =
12665 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12666 if (signature_in_table == signature)
12667 {
12668 uint32_t unit_index =
12669 read_4_bytes (dbfd,
12670 dwp_htab->unit_table + hash * sizeof (uint32_t));
12671
12672 if (dwp_file->version == 1)
12673 {
12674 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12675 dwp_file, unit_index,
12676 comp_dir, signature,
12677 is_debug_types);
12678 }
12679 else
12680 {
12681 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12682 dwp_file, unit_index,
12683 comp_dir, signature,
12684 is_debug_types);
12685 }
12686 return (struct dwo_unit *) *slot;
12687 }
12688 if (signature_in_table == 0)
12689 return NULL;
12690 hash = (hash + hash2) & mask;
12691 }
12692
12693 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12694 " [in module %s]"),
12695 dwp_file->name);
12696}
12697
12698/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12699 Open the file specified by FILE_NAME and hand it off to BFD for
12700 preliminary analysis. Return a newly initialized bfd *, which
12701 includes a canonicalized copy of FILE_NAME.
12702 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12703 SEARCH_CWD is true if the current directory is to be searched.
12704 It will be searched before debug-file-directory.
12705 If successful, the file is added to the bfd include table of the
12706 objfile's bfd (see gdb_bfd_record_inclusion).
12707 If unable to find/open the file, return NULL.
12708 NOTE: This function is derived from symfile_bfd_open. */
12709
12710static gdb_bfd_ref_ptr
12711try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12712 const char *file_name, int is_dwp, int search_cwd)
12713{
12714 int desc;
12715 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12716 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12717 to debug_file_directory. */
12718 const char *search_path;
12719 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12720
12721 gdb::unique_xmalloc_ptr<char> search_path_holder;
12722 if (search_cwd)
12723 {
12724 if (*debug_file_directory != '\0')
12725 {
12726 search_path_holder.reset (concat (".", dirname_separator_string,
12727 debug_file_directory,
12728 (char *) NULL));
12729 search_path = search_path_holder.get ();
12730 }
12731 else
12732 search_path = ".";
12733 }
12734 else
12735 search_path = debug_file_directory;
12736
12737 openp_flags flags = OPF_RETURN_REALPATH;
12738 if (is_dwp)
12739 flags |= OPF_SEARCH_IN_PATH;
12740
12741 gdb::unique_xmalloc_ptr<char> absolute_name;
12742 desc = openp (search_path, flags, file_name,
12743 O_RDONLY | O_BINARY, &absolute_name);
12744 if (desc < 0)
12745 return NULL;
12746
12747 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12748 gnutarget, desc));
12749 if (sym_bfd == NULL)
12750 return NULL;
12751 bfd_set_cacheable (sym_bfd.get (), 1);
12752
12753 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12754 return NULL;
12755
12756 /* Success. Record the bfd as having been included by the objfile's bfd.
12757 This is important because things like demangled_names_hash lives in the
12758 objfile's per_bfd space and may have references to things like symbol
12759 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12760 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12761
12762 return sym_bfd;
12763}
12764
12765/* Try to open DWO file FILE_NAME.
12766 COMP_DIR is the DW_AT_comp_dir attribute.
12767 The result is the bfd handle of the file.
12768 If there is a problem finding or opening the file, return NULL.
12769 Upon success, the canonicalized path of the file is stored in the bfd,
12770 same as symfile_bfd_open. */
12771
12772static gdb_bfd_ref_ptr
12773open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12774 const char *file_name, const char *comp_dir)
12775{
12776 if (IS_ABSOLUTE_PATH (file_name))
12777 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12778 0 /*is_dwp*/, 0 /*search_cwd*/);
12779
12780 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12781
12782 if (comp_dir != NULL)
12783 {
12784 char *path_to_try = concat (comp_dir, SLASH_STRING,
12785 file_name, (char *) NULL);
12786
12787 /* NOTE: If comp_dir is a relative path, this will also try the
12788 search path, which seems useful. */
12789 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12790 path_to_try,
12791 0 /*is_dwp*/,
12792 1 /*search_cwd*/));
12793 xfree (path_to_try);
12794 if (abfd != NULL)
12795 return abfd;
12796 }
12797
12798 /* That didn't work, try debug-file-directory, which, despite its name,
12799 is a list of paths. */
12800
12801 if (*debug_file_directory == '\0')
12802 return NULL;
12803
12804 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12805 0 /*is_dwp*/, 1 /*search_cwd*/);
12806}
12807
12808/* This function is mapped across the sections and remembers the offset and
12809 size of each of the DWO debugging sections we are interested in. */
12810
12811static void
12812dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12813{
12814 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12815 const struct dwop_section_names *names = &dwop_section_names;
12816
12817 if (section_is_p (sectp->name, &names->abbrev_dwo))
12818 {
12819 dwo_sections->abbrev.s.section = sectp;
12820 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12821 }
12822 else if (section_is_p (sectp->name, &names->info_dwo))
12823 {
12824 dwo_sections->info.s.section = sectp;
12825 dwo_sections->info.size = bfd_get_section_size (sectp);
12826 }
12827 else if (section_is_p (sectp->name, &names->line_dwo))
12828 {
12829 dwo_sections->line.s.section = sectp;
12830 dwo_sections->line.size = bfd_get_section_size (sectp);
12831 }
12832 else if (section_is_p (sectp->name, &names->loc_dwo))
12833 {
12834 dwo_sections->loc.s.section = sectp;
12835 dwo_sections->loc.size = bfd_get_section_size (sectp);
12836 }
12837 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12838 {
12839 dwo_sections->macinfo.s.section = sectp;
12840 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12841 }
12842 else if (section_is_p (sectp->name, &names->macro_dwo))
12843 {
12844 dwo_sections->macro.s.section = sectp;
12845 dwo_sections->macro.size = bfd_get_section_size (sectp);
12846 }
12847 else if (section_is_p (sectp->name, &names->str_dwo))
12848 {
12849 dwo_sections->str.s.section = sectp;
12850 dwo_sections->str.size = bfd_get_section_size (sectp);
12851 }
12852 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12853 {
12854 dwo_sections->str_offsets.s.section = sectp;
12855 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12856 }
12857 else if (section_is_p (sectp->name, &names->types_dwo))
12858 {
12859 struct dwarf2_section_info type_section;
12860
12861 memset (&type_section, 0, sizeof (type_section));
12862 type_section.s.section = sectp;
12863 type_section.size = bfd_get_section_size (sectp);
12864 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12865 &type_section);
12866 }
12867}
12868
12869/* Initialize the use of the DWO file specified by DWO_NAME and referenced
12870 by PER_CU. This is for the non-DWP case.
12871 The result is NULL if DWO_NAME can't be found. */
12872
12873static struct dwo_file *
12874open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12875 const char *dwo_name, const char *comp_dir)
12876{
12877 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12878 struct objfile *objfile = dwarf2_per_objfile->objfile;
12879
12880 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12881 if (dbfd == NULL)
12882 {
12883 if (dwarf_read_debug)
12884 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12885 return NULL;
12886 }
12887
12888 /* We use a unique pointer here, despite the obstack allocation,
12889 because a dwo_file needs some cleanup if it is abandoned. */
12890 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12891 struct dwo_file));
12892 dwo_file->dwo_name = dwo_name;
12893 dwo_file->comp_dir = comp_dir;
12894 dwo_file->dbfd = dbfd.release ();
12895
12896 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12897 &dwo_file->sections);
12898
12899 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12900 dwo_file->cus);
12901
12902 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12903 dwo_file->sections.types, dwo_file->tus);
12904
12905 if (dwarf_read_debug)
12906 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12907
12908 return dwo_file.release ();
12909}
12910
12911/* This function is mapped across the sections and remembers the offset and
12912 size of each of the DWP debugging sections common to version 1 and 2 that
12913 we are interested in. */
12914
12915static void
12916dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12917 void *dwp_file_ptr)
12918{
12919 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12920 const struct dwop_section_names *names = &dwop_section_names;
12921 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12922
12923 /* Record the ELF section number for later lookup: this is what the
12924 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12925 gdb_assert (elf_section_nr < dwp_file->num_sections);
12926 dwp_file->elf_sections[elf_section_nr] = sectp;
12927
12928 /* Look for specific sections that we need. */
12929 if (section_is_p (sectp->name, &names->str_dwo))
12930 {
12931 dwp_file->sections.str.s.section = sectp;
12932 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12933 }
12934 else if (section_is_p (sectp->name, &names->cu_index))
12935 {
12936 dwp_file->sections.cu_index.s.section = sectp;
12937 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12938 }
12939 else if (section_is_p (sectp->name, &names->tu_index))
12940 {
12941 dwp_file->sections.tu_index.s.section = sectp;
12942 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12943 }
12944}
12945
12946/* This function is mapped across the sections and remembers the offset and
12947 size of each of the DWP version 2 debugging sections that we are interested
12948 in. This is split into a separate function because we don't know if we
12949 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12950
12951static void
12952dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12953{
12954 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12955 const struct dwop_section_names *names = &dwop_section_names;
12956 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12957
12958 /* Record the ELF section number for later lookup: this is what the
12959 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12960 gdb_assert (elf_section_nr < dwp_file->num_sections);
12961 dwp_file->elf_sections[elf_section_nr] = sectp;
12962
12963 /* Look for specific sections that we need. */
12964 if (section_is_p (sectp->name, &names->abbrev_dwo))
12965 {
12966 dwp_file->sections.abbrev.s.section = sectp;
12967 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12968 }
12969 else if (section_is_p (sectp->name, &names->info_dwo))
12970 {
12971 dwp_file->sections.info.s.section = sectp;
12972 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12973 }
12974 else if (section_is_p (sectp->name, &names->line_dwo))
12975 {
12976 dwp_file->sections.line.s.section = sectp;
12977 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12978 }
12979 else if (section_is_p (sectp->name, &names->loc_dwo))
12980 {
12981 dwp_file->sections.loc.s.section = sectp;
12982 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12983 }
12984 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12985 {
12986 dwp_file->sections.macinfo.s.section = sectp;
12987 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
12988 }
12989 else if (section_is_p (sectp->name, &names->macro_dwo))
12990 {
12991 dwp_file->sections.macro.s.section = sectp;
12992 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
12993 }
12994 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12995 {
12996 dwp_file->sections.str_offsets.s.section = sectp;
12997 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
12998 }
12999 else if (section_is_p (sectp->name, &names->types_dwo))
13000 {
13001 dwp_file->sections.types.s.section = sectp;
13002 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13003 }
13004}
13005
13006/* Hash function for dwp_file loaded CUs/TUs. */
13007
13008static hashval_t
13009hash_dwp_loaded_cutus (const void *item)
13010{
13011 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13012
13013 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13014 return dwo_unit->signature;
13015}
13016
13017/* Equality function for dwp_file loaded CUs/TUs. */
13018
13019static int
13020eq_dwp_loaded_cutus (const void *a, const void *b)
13021{
13022 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13023 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13024
13025 return dua->signature == dub->signature;
13026}
13027
13028/* Allocate a hash table for dwp_file loaded CUs/TUs. */
13029
13030static htab_t
13031allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13032{
13033 return htab_create_alloc_ex (3,
13034 hash_dwp_loaded_cutus,
13035 eq_dwp_loaded_cutus,
13036 NULL,
13037 &objfile->objfile_obstack,
13038 hashtab_obstack_allocate,
13039 dummy_obstack_deallocate);
13040}
13041
13042/* Try to open DWP file FILE_NAME.
13043 The result is the bfd handle of the file.
13044 If there is a problem finding or opening the file, return NULL.
13045 Upon success, the canonicalized path of the file is stored in the bfd,
13046 same as symfile_bfd_open. */
13047
13048static gdb_bfd_ref_ptr
13049open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13050 const char *file_name)
13051{
13052 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13053 1 /*is_dwp*/,
13054 1 /*search_cwd*/));
13055 if (abfd != NULL)
13056 return abfd;
13057
13058 /* Work around upstream bug 15652.
13059 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13060 [Whether that's a "bug" is debatable, but it is getting in our way.]
13061 We have no real idea where the dwp file is, because gdb's realpath-ing
13062 of the executable's path may have discarded the needed info.
13063 [IWBN if the dwp file name was recorded in the executable, akin to
13064 .gnu_debuglink, but that doesn't exist yet.]
13065 Strip the directory from FILE_NAME and search again. */
13066 if (*debug_file_directory != '\0')
13067 {
13068 /* Don't implicitly search the current directory here.
13069 If the user wants to search "." to handle this case,
13070 it must be added to debug-file-directory. */
13071 return try_open_dwop_file (dwarf2_per_objfile,
13072 lbasename (file_name), 1 /*is_dwp*/,
13073 0 /*search_cwd*/);
13074 }
13075
13076 return NULL;
13077}
13078
13079/* Initialize the use of the DWP file for the current objfile.
13080 By convention the name of the DWP file is ${objfile}.dwp.
13081 The result is NULL if it can't be found. */
13082
13083static struct dwp_file *
13084open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13085{
13086 struct objfile *objfile = dwarf2_per_objfile->objfile;
13087 struct dwp_file *dwp_file;
13088
13089 /* Try to find first .dwp for the binary file before any symbolic links
13090 resolving. */
13091
13092 /* If the objfile is a debug file, find the name of the real binary
13093 file and get the name of dwp file from there. */
13094 std::string dwp_name;
13095 if (objfile->separate_debug_objfile_backlink != NULL)
13096 {
13097 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13098 const char *backlink_basename = lbasename (backlink->original_name);
13099
13100 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13101 }
13102 else
13103 dwp_name = objfile->original_name;
13104
13105 dwp_name += ".dwp";
13106
13107 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13108 if (dbfd == NULL
13109 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13110 {
13111 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13112 dwp_name = objfile_name (objfile);
13113 dwp_name += ".dwp";
13114 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13115 }
13116
13117 if (dbfd == NULL)
13118 {
13119 if (dwarf_read_debug)
13120 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13121 return NULL;
13122 }
13123 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13124 dwp_file->name = bfd_get_filename (dbfd.get ());
13125 dwp_file->dbfd = dbfd.release ();
13126
13127 /* +1: section 0 is unused */
13128 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13129 dwp_file->elf_sections =
13130 OBSTACK_CALLOC (&objfile->objfile_obstack,
13131 dwp_file->num_sections, asection *);
13132
13133 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13134 dwp_file);
13135
13136 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 0);
13137
13138 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 1);
13139
13140 /* The DWP file version is stored in the hash table. Oh well. */
13141 if (dwp_file->cus && dwp_file->tus
13142 && dwp_file->cus->version != dwp_file->tus->version)
13143 {
13144 /* Technically speaking, we should try to limp along, but this is
13145 pretty bizarre. We use pulongest here because that's the established
13146 portability solution (e.g, we cannot use %u for uint32_t). */
13147 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13148 " TU version %s [in DWP file %s]"),
13149 pulongest (dwp_file->cus->version),
13150 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13151 }
13152
13153 if (dwp_file->cus)
13154 dwp_file->version = dwp_file->cus->version;
13155 else if (dwp_file->tus)
13156 dwp_file->version = dwp_file->tus->version;
13157 else
13158 dwp_file->version = 2;
13159
13160 if (dwp_file->version == 2)
13161 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13162 dwp_file);
13163
13164 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13165 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13166
13167 if (dwarf_read_debug)
13168 {
13169 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13170 fprintf_unfiltered (gdb_stdlog,
13171 " %s CUs, %s TUs\n",
13172 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13173 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13174 }
13175
13176 return dwp_file;
13177}
13178
13179/* Wrapper around open_and_init_dwp_file, only open it once. */
13180
13181static struct dwp_file *
13182get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13183{
13184 if (! dwarf2_per_objfile->dwp_checked)
13185 {
13186 dwarf2_per_objfile->dwp_file
13187 = open_and_init_dwp_file (dwarf2_per_objfile);
13188 dwarf2_per_objfile->dwp_checked = 1;
13189 }
13190 return dwarf2_per_objfile->dwp_file;
13191}
13192
13193/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13194 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13195 or in the DWP file for the objfile, referenced by THIS_UNIT.
13196 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13197 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13198
13199 This is called, for example, when wanting to read a variable with a
13200 complex location. Therefore we don't want to do file i/o for every call.
13201 Therefore we don't want to look for a DWO file on every call.
13202 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13203 then we check if we've already seen DWO_NAME, and only THEN do we check
13204 for a DWO file.
13205
13206 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13207 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13208
13209static struct dwo_unit *
13210lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13211 const char *dwo_name, const char *comp_dir,
13212 ULONGEST signature, int is_debug_types)
13213{
13214 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13215 struct objfile *objfile = dwarf2_per_objfile->objfile;
13216 const char *kind = is_debug_types ? "TU" : "CU";
13217 void **dwo_file_slot;
13218 struct dwo_file *dwo_file;
13219 struct dwp_file *dwp_file;
13220
13221 /* First see if there's a DWP file.
13222 If we have a DWP file but didn't find the DWO inside it, don't
13223 look for the original DWO file. It makes gdb behave differently
13224 depending on whether one is debugging in the build tree. */
13225
13226 dwp_file = get_dwp_file (dwarf2_per_objfile);
13227 if (dwp_file != NULL)
13228 {
13229 const struct dwp_hash_table *dwp_htab =
13230 is_debug_types ? dwp_file->tus : dwp_file->cus;
13231
13232 if (dwp_htab != NULL)
13233 {
13234 struct dwo_unit *dwo_cutu =
13235 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13236 signature, is_debug_types);
13237
13238 if (dwo_cutu != NULL)
13239 {
13240 if (dwarf_read_debug)
13241 {
13242 fprintf_unfiltered (gdb_stdlog,
13243 "Virtual DWO %s %s found: @%s\n",
13244 kind, hex_string (signature),
13245 host_address_to_string (dwo_cutu));
13246 }
13247 return dwo_cutu;
13248 }
13249 }
13250 }
13251 else
13252 {
13253 /* No DWP file, look for the DWO file. */
13254
13255 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13256 dwo_name, comp_dir);
13257 if (*dwo_file_slot == NULL)
13258 {
13259 /* Read in the file and build a table of the CUs/TUs it contains. */
13260 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13261 }
13262 /* NOTE: This will be NULL if unable to open the file. */
13263 dwo_file = (struct dwo_file *) *dwo_file_slot;
13264
13265 if (dwo_file != NULL)
13266 {
13267 struct dwo_unit *dwo_cutu = NULL;
13268
13269 if (is_debug_types && dwo_file->tus)
13270 {
13271 struct dwo_unit find_dwo_cutu;
13272
13273 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13274 find_dwo_cutu.signature = signature;
13275 dwo_cutu
13276 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13277 }
13278 else if (!is_debug_types && dwo_file->cus)
13279 {
13280 struct dwo_unit find_dwo_cutu;
13281
13282 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13283 find_dwo_cutu.signature = signature;
13284 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13285 &find_dwo_cutu);
13286 }
13287
13288 if (dwo_cutu != NULL)
13289 {
13290 if (dwarf_read_debug)
13291 {
13292 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13293 kind, dwo_name, hex_string (signature),
13294 host_address_to_string (dwo_cutu));
13295 }
13296 return dwo_cutu;
13297 }
13298 }
13299 }
13300
13301 /* We didn't find it. This could mean a dwo_id mismatch, or
13302 someone deleted the DWO/DWP file, or the search path isn't set up
13303 correctly to find the file. */
13304
13305 if (dwarf_read_debug)
13306 {
13307 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13308 kind, dwo_name, hex_string (signature));
13309 }
13310
13311 /* This is a warning and not a complaint because it can be caused by
13312 pilot error (e.g., user accidentally deleting the DWO). */
13313 {
13314 /* Print the name of the DWP file if we looked there, helps the user
13315 better diagnose the problem. */
13316 std::string dwp_text;
13317
13318 if (dwp_file != NULL)
13319 dwp_text = string_printf (" [in DWP file %s]",
13320 lbasename (dwp_file->name));
13321
13322 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13323 " [in module %s]"),
13324 kind, dwo_name, hex_string (signature),
13325 dwp_text.c_str (),
13326 this_unit->is_debug_types ? "TU" : "CU",
13327 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13328 }
13329 return NULL;
13330}
13331
13332/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13333 See lookup_dwo_cutu_unit for details. */
13334
13335static struct dwo_unit *
13336lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13337 const char *dwo_name, const char *comp_dir,
13338 ULONGEST signature)
13339{
13340 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13341}
13342
13343/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13344 See lookup_dwo_cutu_unit for details. */
13345
13346static struct dwo_unit *
13347lookup_dwo_type_unit (struct signatured_type *this_tu,
13348 const char *dwo_name, const char *comp_dir)
13349{
13350 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13351}
13352
13353/* Traversal function for queue_and_load_all_dwo_tus. */
13354
13355static int
13356queue_and_load_dwo_tu (void **slot, void *info)
13357{
13358 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13359 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13360 ULONGEST signature = dwo_unit->signature;
13361 struct signatured_type *sig_type =
13362 lookup_dwo_signatured_type (per_cu->cu, signature);
13363
13364 if (sig_type != NULL)
13365 {
13366 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13367
13368 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13369 a real dependency of PER_CU on SIG_TYPE. That is detected later
13370 while processing PER_CU. */
13371 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13372 load_full_type_unit (sig_cu);
13373 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13374 }
13375
13376 return 1;
13377}
13378
13379/* Queue all TUs contained in the DWO of PER_CU to be read in.
13380 The DWO may have the only definition of the type, though it may not be
13381 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13382 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13383
13384static void
13385queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13386{
13387 struct dwo_unit *dwo_unit;
13388 struct dwo_file *dwo_file;
13389
13390 gdb_assert (!per_cu->is_debug_types);
13391 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13392 gdb_assert (per_cu->cu != NULL);
13393
13394 dwo_unit = per_cu->cu->dwo_unit;
13395 gdb_assert (dwo_unit != NULL);
13396
13397 dwo_file = dwo_unit->dwo_file;
13398 if (dwo_file->tus != NULL)
13399 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13400}
13401
13402/* Free all resources associated with DWO_FILE.
13403 Close the DWO file and munmap the sections. */
13404
13405static void
13406free_dwo_file (struct dwo_file *dwo_file)
13407{
13408 /* Note: dbfd is NULL for virtual DWO files. */
13409 gdb_bfd_unref (dwo_file->dbfd);
13410
13411 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13412}
13413
13414/* Traversal function for free_dwo_files. */
13415
13416static int
13417free_dwo_file_from_slot (void **slot, void *info)
13418{
13419 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13420
13421 free_dwo_file (dwo_file);
13422
13423 return 1;
13424}
13425
13426/* Free all resources associated with DWO_FILES. */
13427
13428static void
13429free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13430{
13431 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13432}
13433\f
13434/* Read in various DIEs. */
13435
13436/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13437 Inherit only the children of the DW_AT_abstract_origin DIE not being
13438 already referenced by DW_AT_abstract_origin from the children of the
13439 current DIE. */
13440
13441static void
13442inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13443{
13444 struct die_info *child_die;
13445 sect_offset *offsetp;
13446 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13447 struct die_info *origin_die;
13448 /* Iterator of the ORIGIN_DIE children. */
13449 struct die_info *origin_child_die;
13450 struct attribute *attr;
13451 struct dwarf2_cu *origin_cu;
13452 struct pending **origin_previous_list_in_scope;
13453
13454 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13455 if (!attr)
13456 return;
13457
13458 /* Note that following die references may follow to a die in a
13459 different cu. */
13460
13461 origin_cu = cu;
13462 origin_die = follow_die_ref (die, attr, &origin_cu);
13463
13464 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13465 symbols in. */
13466 origin_previous_list_in_scope = origin_cu->list_in_scope;
13467 origin_cu->list_in_scope = cu->list_in_scope;
13468
13469 if (die->tag != origin_die->tag
13470 && !(die->tag == DW_TAG_inlined_subroutine
13471 && origin_die->tag == DW_TAG_subprogram))
13472 complaint (&symfile_complaints,
13473 _("DIE %s and its abstract origin %s have different tags"),
13474 sect_offset_str (die->sect_off),
13475 sect_offset_str (origin_die->sect_off));
13476
13477 std::vector<sect_offset> offsets;
13478
13479 for (child_die = die->child;
13480 child_die && child_die->tag;
13481 child_die = sibling_die (child_die))
13482 {
13483 struct die_info *child_origin_die;
13484 struct dwarf2_cu *child_origin_cu;
13485
13486 /* We are trying to process concrete instance entries:
13487 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13488 it's not relevant to our analysis here. i.e. detecting DIEs that are
13489 present in the abstract instance but not referenced in the concrete
13490 one. */
13491 if (child_die->tag == DW_TAG_call_site
13492 || child_die->tag == DW_TAG_GNU_call_site)
13493 continue;
13494
13495 /* For each CHILD_DIE, find the corresponding child of
13496 ORIGIN_DIE. If there is more than one layer of
13497 DW_AT_abstract_origin, follow them all; there shouldn't be,
13498 but GCC versions at least through 4.4 generate this (GCC PR
13499 40573). */
13500 child_origin_die = child_die;
13501 child_origin_cu = cu;
13502 while (1)
13503 {
13504 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13505 child_origin_cu);
13506 if (attr == NULL)
13507 break;
13508 child_origin_die = follow_die_ref (child_origin_die, attr,
13509 &child_origin_cu);
13510 }
13511
13512 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13513 counterpart may exist. */
13514 if (child_origin_die != child_die)
13515 {
13516 if (child_die->tag != child_origin_die->tag
13517 && !(child_die->tag == DW_TAG_inlined_subroutine
13518 && child_origin_die->tag == DW_TAG_subprogram))
13519 complaint (&symfile_complaints,
13520 _("Child DIE %s and its abstract origin %s have "
13521 "different tags"),
13522 sect_offset_str (child_die->sect_off),
13523 sect_offset_str (child_origin_die->sect_off));
13524 if (child_origin_die->parent != origin_die)
13525 complaint (&symfile_complaints,
13526 _("Child DIE %s and its abstract origin %s have "
13527 "different parents"),
13528 sect_offset_str (child_die->sect_off),
13529 sect_offset_str (child_origin_die->sect_off));
13530 else
13531 offsets.push_back (child_origin_die->sect_off);
13532 }
13533 }
13534 std::sort (offsets.begin (), offsets.end ());
13535 sect_offset *offsets_end = offsets.data () + offsets.size ();
13536 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13537 if (offsetp[-1] == *offsetp)
13538 complaint (&symfile_complaints,
13539 _("Multiple children of DIE %s refer "
13540 "to DIE %s as their abstract origin"),
13541 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13542
13543 offsetp = offsets.data ();
13544 origin_child_die = origin_die->child;
13545 while (origin_child_die && origin_child_die->tag)
13546 {
13547 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13548 while (offsetp < offsets_end
13549 && *offsetp < origin_child_die->sect_off)
13550 offsetp++;
13551 if (offsetp >= offsets_end
13552 || *offsetp > origin_child_die->sect_off)
13553 {
13554 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13555 Check whether we're already processing ORIGIN_CHILD_DIE.
13556 This can happen with mutually referenced abstract_origins.
13557 PR 16581. */
13558 if (!origin_child_die->in_process)
13559 process_die (origin_child_die, origin_cu);
13560 }
13561 origin_child_die = sibling_die (origin_child_die);
13562 }
13563 origin_cu->list_in_scope = origin_previous_list_in_scope;
13564}
13565
13566static void
13567read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13568{
13569 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13570 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13571 struct context_stack *newobj;
13572 CORE_ADDR lowpc;
13573 CORE_ADDR highpc;
13574 struct die_info *child_die;
13575 struct attribute *attr, *call_line, *call_file;
13576 const char *name;
13577 CORE_ADDR baseaddr;
13578 struct block *block;
13579 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13580 std::vector<struct symbol *> template_args;
13581 struct template_symbol *templ_func = NULL;
13582
13583 if (inlined_func)
13584 {
13585 /* If we do not have call site information, we can't show the
13586 caller of this inlined function. That's too confusing, so
13587 only use the scope for local variables. */
13588 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13589 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13590 if (call_line == NULL || call_file == NULL)
13591 {
13592 read_lexical_block_scope (die, cu);
13593 return;
13594 }
13595 }
13596
13597 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13598
13599 name = dwarf2_name (die, cu);
13600
13601 /* Ignore functions with missing or empty names. These are actually
13602 illegal according to the DWARF standard. */
13603 if (name == NULL)
13604 {
13605 complaint (&symfile_complaints,
13606 _("missing name for subprogram DIE at %s"),
13607 sect_offset_str (die->sect_off));
13608 return;
13609 }
13610
13611 /* Ignore functions with missing or invalid low and high pc attributes. */
13612 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13613 <= PC_BOUNDS_INVALID)
13614 {
13615 attr = dwarf2_attr (die, DW_AT_external, cu);
13616 if (!attr || !DW_UNSND (attr))
13617 complaint (&symfile_complaints,
13618 _("cannot get low and high bounds "
13619 "for subprogram DIE at %s"),
13620 sect_offset_str (die->sect_off));
13621 return;
13622 }
13623
13624 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13625 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13626
13627 /* If we have any template arguments, then we must allocate a
13628 different sort of symbol. */
13629 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13630 {
13631 if (child_die->tag == DW_TAG_template_type_param
13632 || child_die->tag == DW_TAG_template_value_param)
13633 {
13634 templ_func = allocate_template_symbol (objfile);
13635 templ_func->subclass = SYMBOL_TEMPLATE;
13636 break;
13637 }
13638 }
13639
13640 newobj = push_context (0, lowpc);
13641 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13642 (struct symbol *) templ_func);
13643
13644 /* If there is a location expression for DW_AT_frame_base, record
13645 it. */
13646 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13647 if (attr)
13648 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13649
13650 /* If there is a location for the static link, record it. */
13651 newobj->static_link = NULL;
13652 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13653 if (attr)
13654 {
13655 newobj->static_link
13656 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13657 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13658 }
13659
13660 cu->list_in_scope = &local_symbols;
13661
13662 if (die->child != NULL)
13663 {
13664 child_die = die->child;
13665 while (child_die && child_die->tag)
13666 {
13667 if (child_die->tag == DW_TAG_template_type_param
13668 || child_die->tag == DW_TAG_template_value_param)
13669 {
13670 struct symbol *arg = new_symbol (child_die, NULL, cu);
13671
13672 if (arg != NULL)
13673 template_args.push_back (arg);
13674 }
13675 else
13676 process_die (child_die, cu);
13677 child_die = sibling_die (child_die);
13678 }
13679 }
13680
13681 inherit_abstract_dies (die, cu);
13682
13683 /* If we have a DW_AT_specification, we might need to import using
13684 directives from the context of the specification DIE. See the
13685 comment in determine_prefix. */
13686 if (cu->language == language_cplus
13687 && dwarf2_attr (die, DW_AT_specification, cu))
13688 {
13689 struct dwarf2_cu *spec_cu = cu;
13690 struct die_info *spec_die = die_specification (die, &spec_cu);
13691
13692 while (spec_die)
13693 {
13694 child_die = spec_die->child;
13695 while (child_die && child_die->tag)
13696 {
13697 if (child_die->tag == DW_TAG_imported_module)
13698 process_die (child_die, spec_cu);
13699 child_die = sibling_die (child_die);
13700 }
13701
13702 /* In some cases, GCC generates specification DIEs that
13703 themselves contain DW_AT_specification attributes. */
13704 spec_die = die_specification (spec_die, &spec_cu);
13705 }
13706 }
13707
13708 newobj = pop_context ();
13709 /* Make a block for the local symbols within. */
13710 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13711 newobj->static_link, lowpc, highpc);
13712
13713 /* For C++, set the block's scope. */
13714 if ((cu->language == language_cplus
13715 || cu->language == language_fortran
13716 || cu->language == language_d
13717 || cu->language == language_rust)
13718 && cu->processing_has_namespace_info)
13719 block_set_scope (block, determine_prefix (die, cu),
13720 &objfile->objfile_obstack);
13721
13722 /* If we have address ranges, record them. */
13723 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13724
13725 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13726
13727 /* Attach template arguments to function. */
13728 if (!template_args.empty ())
13729 {
13730 gdb_assert (templ_func != NULL);
13731
13732 templ_func->n_template_arguments = template_args.size ();
13733 templ_func->template_arguments
13734 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13735 templ_func->n_template_arguments);
13736 memcpy (templ_func->template_arguments,
13737 template_args.data (),
13738 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13739 }
13740
13741 /* In C++, we can have functions nested inside functions (e.g., when
13742 a function declares a class that has methods). This means that
13743 when we finish processing a function scope, we may need to go
13744 back to building a containing block's symbol lists. */
13745 local_symbols = newobj->locals;
13746 local_using_directives = newobj->local_using_directives;
13747
13748 /* If we've finished processing a top-level function, subsequent
13749 symbols go in the file symbol list. */
13750 if (outermost_context_p ())
13751 cu->list_in_scope = &file_symbols;
13752}
13753
13754/* Process all the DIES contained within a lexical block scope. Start
13755 a new scope, process the dies, and then close the scope. */
13756
13757static void
13758read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13759{
13760 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13761 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13762 struct context_stack *newobj;
13763 CORE_ADDR lowpc, highpc;
13764 struct die_info *child_die;
13765 CORE_ADDR baseaddr;
13766
13767 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13768
13769 /* Ignore blocks with missing or invalid low and high pc attributes. */
13770 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13771 as multiple lexical blocks? Handling children in a sane way would
13772 be nasty. Might be easier to properly extend generic blocks to
13773 describe ranges. */
13774 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13775 {
13776 case PC_BOUNDS_NOT_PRESENT:
13777 /* DW_TAG_lexical_block has no attributes, process its children as if
13778 there was no wrapping by that DW_TAG_lexical_block.
13779 GCC does no longer produces such DWARF since GCC r224161. */
13780 for (child_die = die->child;
13781 child_die != NULL && child_die->tag;
13782 child_die = sibling_die (child_die))
13783 process_die (child_die, cu);
13784 return;
13785 case PC_BOUNDS_INVALID:
13786 return;
13787 }
13788 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13789 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13790
13791 push_context (0, lowpc);
13792 if (die->child != NULL)
13793 {
13794 child_die = die->child;
13795 while (child_die && child_die->tag)
13796 {
13797 process_die (child_die, cu);
13798 child_die = sibling_die (child_die);
13799 }
13800 }
13801 inherit_abstract_dies (die, cu);
13802 newobj = pop_context ();
13803
13804 if (local_symbols != NULL || local_using_directives != NULL)
13805 {
13806 struct block *block
13807 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13808 newobj->start_addr, highpc);
13809
13810 /* Note that recording ranges after traversing children, as we
13811 do here, means that recording a parent's ranges entails
13812 walking across all its children's ranges as they appear in
13813 the address map, which is quadratic behavior.
13814
13815 It would be nicer to record the parent's ranges before
13816 traversing its children, simply overriding whatever you find
13817 there. But since we don't even decide whether to create a
13818 block until after we've traversed its children, that's hard
13819 to do. */
13820 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13821 }
13822 local_symbols = newobj->locals;
13823 local_using_directives = newobj->local_using_directives;
13824}
13825
13826/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13827
13828static void
13829read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13830{
13831 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13832 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13833 CORE_ADDR pc, baseaddr;
13834 struct attribute *attr;
13835 struct call_site *call_site, call_site_local;
13836 void **slot;
13837 int nparams;
13838 struct die_info *child_die;
13839
13840 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13841
13842 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13843 if (attr == NULL)
13844 {
13845 /* This was a pre-DWARF-5 GNU extension alias
13846 for DW_AT_call_return_pc. */
13847 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13848 }
13849 if (!attr)
13850 {
13851 complaint (&symfile_complaints,
13852 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
13853 "DIE %s [in module %s]"),
13854 sect_offset_str (die->sect_off), objfile_name (objfile));
13855 return;
13856 }
13857 pc = attr_value_as_address (attr) + baseaddr;
13858 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13859
13860 if (cu->call_site_htab == NULL)
13861 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13862 NULL, &objfile->objfile_obstack,
13863 hashtab_obstack_allocate, NULL);
13864 call_site_local.pc = pc;
13865 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13866 if (*slot != NULL)
13867 {
13868 complaint (&symfile_complaints,
13869 _("Duplicate PC %s for DW_TAG_call_site "
13870 "DIE %s [in module %s]"),
13871 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13872 objfile_name (objfile));
13873 return;
13874 }
13875
13876 /* Count parameters at the caller. */
13877
13878 nparams = 0;
13879 for (child_die = die->child; child_die && child_die->tag;
13880 child_die = sibling_die (child_die))
13881 {
13882 if (child_die->tag != DW_TAG_call_site_parameter
13883 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13884 {
13885 complaint (&symfile_complaints,
13886 _("Tag %d is not DW_TAG_call_site_parameter in "
13887 "DW_TAG_call_site child DIE %s [in module %s]"),
13888 child_die->tag, sect_offset_str (child_die->sect_off),
13889 objfile_name (objfile));
13890 continue;
13891 }
13892
13893 nparams++;
13894 }
13895
13896 call_site
13897 = ((struct call_site *)
13898 obstack_alloc (&objfile->objfile_obstack,
13899 sizeof (*call_site)
13900 + (sizeof (*call_site->parameter) * (nparams - 1))));
13901 *slot = call_site;
13902 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13903 call_site->pc = pc;
13904
13905 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13906 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13907 {
13908 struct die_info *func_die;
13909
13910 /* Skip also over DW_TAG_inlined_subroutine. */
13911 for (func_die = die->parent;
13912 func_die && func_die->tag != DW_TAG_subprogram
13913 && func_die->tag != DW_TAG_subroutine_type;
13914 func_die = func_die->parent);
13915
13916 /* DW_AT_call_all_calls is a superset
13917 of DW_AT_call_all_tail_calls. */
13918 if (func_die
13919 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13920 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13921 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13922 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13923 {
13924 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13925 not complete. But keep CALL_SITE for look ups via call_site_htab,
13926 both the initial caller containing the real return address PC and
13927 the final callee containing the current PC of a chain of tail
13928 calls do not need to have the tail call list complete. But any
13929 function candidate for a virtual tail call frame searched via
13930 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13931 determined unambiguously. */
13932 }
13933 else
13934 {
13935 struct type *func_type = NULL;
13936
13937 if (func_die)
13938 func_type = get_die_type (func_die, cu);
13939 if (func_type != NULL)
13940 {
13941 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13942
13943 /* Enlist this call site to the function. */
13944 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13945 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13946 }
13947 else
13948 complaint (&symfile_complaints,
13949 _("Cannot find function owning DW_TAG_call_site "
13950 "DIE %s [in module %s]"),
13951 sect_offset_str (die->sect_off), objfile_name (objfile));
13952 }
13953 }
13954
13955 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13956 if (attr == NULL)
13957 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13958 if (attr == NULL)
13959 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13960 if (attr == NULL)
13961 {
13962 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13963 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13964 }
13965 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13966 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13967 /* Keep NULL DWARF_BLOCK. */;
13968 else if (attr_form_is_block (attr))
13969 {
13970 struct dwarf2_locexpr_baton *dlbaton;
13971
13972 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13973 dlbaton->data = DW_BLOCK (attr)->data;
13974 dlbaton->size = DW_BLOCK (attr)->size;
13975 dlbaton->per_cu = cu->per_cu;
13976
13977 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13978 }
13979 else if (attr_form_is_ref (attr))
13980 {
13981 struct dwarf2_cu *target_cu = cu;
13982 struct die_info *target_die;
13983
13984 target_die = follow_die_ref (die, attr, &target_cu);
13985 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13986 if (die_is_declaration (target_die, target_cu))
13987 {
13988 const char *target_physname;
13989
13990 /* Prefer the mangled name; otherwise compute the demangled one. */
13991 target_physname = dw2_linkage_name (target_die, target_cu);
13992 if (target_physname == NULL)
13993 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13994 if (target_physname == NULL)
13995 complaint (&symfile_complaints,
13996 _("DW_AT_call_target target DIE has invalid "
13997 "physname, for referencing DIE %s [in module %s]"),
13998 sect_offset_str (die->sect_off), objfile_name (objfile));
13999 else
14000 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14001 }
14002 else
14003 {
14004 CORE_ADDR lowpc;
14005
14006 /* DW_AT_entry_pc should be preferred. */
14007 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14008 <= PC_BOUNDS_INVALID)
14009 complaint (&symfile_complaints,
14010 _("DW_AT_call_target target DIE has invalid "
14011 "low pc, for referencing DIE %s [in module %s]"),
14012 sect_offset_str (die->sect_off), objfile_name (objfile));
14013 else
14014 {
14015 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14016 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14017 }
14018 }
14019 }
14020 else
14021 complaint (&symfile_complaints,
14022 _("DW_TAG_call_site DW_AT_call_target is neither "
14023 "block nor reference, for DIE %s [in module %s]"),
14024 sect_offset_str (die->sect_off), objfile_name (objfile));
14025
14026 call_site->per_cu = cu->per_cu;
14027
14028 for (child_die = die->child;
14029 child_die && child_die->tag;
14030 child_die = sibling_die (child_die))
14031 {
14032 struct call_site_parameter *parameter;
14033 struct attribute *loc, *origin;
14034
14035 if (child_die->tag != DW_TAG_call_site_parameter
14036 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14037 {
14038 /* Already printed the complaint above. */
14039 continue;
14040 }
14041
14042 gdb_assert (call_site->parameter_count < nparams);
14043 parameter = &call_site->parameter[call_site->parameter_count];
14044
14045 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14046 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14047 register is contained in DW_AT_call_value. */
14048
14049 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14050 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14051 if (origin == NULL)
14052 {
14053 /* This was a pre-DWARF-5 GNU extension alias
14054 for DW_AT_call_parameter. */
14055 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14056 }
14057 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14058 {
14059 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14060
14061 sect_offset sect_off
14062 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14063 if (!offset_in_cu_p (&cu->header, sect_off))
14064 {
14065 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14066 binding can be done only inside one CU. Such referenced DIE
14067 therefore cannot be even moved to DW_TAG_partial_unit. */
14068 complaint (&symfile_complaints,
14069 _("DW_AT_call_parameter offset is not in CU for "
14070 "DW_TAG_call_site child DIE %s [in module %s]"),
14071 sect_offset_str (child_die->sect_off),
14072 objfile_name (objfile));
14073 continue;
14074 }
14075 parameter->u.param_cu_off
14076 = (cu_offset) (sect_off - cu->header.sect_off);
14077 }
14078 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14079 {
14080 complaint (&symfile_complaints,
14081 _("No DW_FORM_block* DW_AT_location for "
14082 "DW_TAG_call_site child DIE %s [in module %s]"),
14083 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14084 continue;
14085 }
14086 else
14087 {
14088 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14089 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14090 if (parameter->u.dwarf_reg != -1)
14091 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14092 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14093 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14094 &parameter->u.fb_offset))
14095 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14096 else
14097 {
14098 complaint (&symfile_complaints,
14099 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14100 "for DW_FORM_block* DW_AT_location is supported for "
14101 "DW_TAG_call_site child DIE %s "
14102 "[in module %s]"),
14103 sect_offset_str (child_die->sect_off),
14104 objfile_name (objfile));
14105 continue;
14106 }
14107 }
14108
14109 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14110 if (attr == NULL)
14111 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14112 if (!attr_form_is_block (attr))
14113 {
14114 complaint (&symfile_complaints,
14115 _("No DW_FORM_block* DW_AT_call_value for "
14116 "DW_TAG_call_site child DIE %s [in module %s]"),
14117 sect_offset_str (child_die->sect_off),
14118 objfile_name (objfile));
14119 continue;
14120 }
14121 parameter->value = DW_BLOCK (attr)->data;
14122 parameter->value_size = DW_BLOCK (attr)->size;
14123
14124 /* Parameters are not pre-cleared by memset above. */
14125 parameter->data_value = NULL;
14126 parameter->data_value_size = 0;
14127 call_site->parameter_count++;
14128
14129 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14130 if (attr == NULL)
14131 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14132 if (attr)
14133 {
14134 if (!attr_form_is_block (attr))
14135 complaint (&symfile_complaints,
14136 _("No DW_FORM_block* DW_AT_call_data_value for "
14137 "DW_TAG_call_site child DIE %s [in module %s]"),
14138 sect_offset_str (child_die->sect_off),
14139 objfile_name (objfile));
14140 else
14141 {
14142 parameter->data_value = DW_BLOCK (attr)->data;
14143 parameter->data_value_size = DW_BLOCK (attr)->size;
14144 }
14145 }
14146 }
14147}
14148
14149/* Helper function for read_variable. If DIE represents a virtual
14150 table, then return the type of the concrete object that is
14151 associated with the virtual table. Otherwise, return NULL. */
14152
14153static struct type *
14154rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14155{
14156 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14157 if (attr == NULL)
14158 return NULL;
14159
14160 /* Find the type DIE. */
14161 struct die_info *type_die = NULL;
14162 struct dwarf2_cu *type_cu = cu;
14163
14164 if (attr_form_is_ref (attr))
14165 type_die = follow_die_ref (die, attr, &type_cu);
14166 if (type_die == NULL)
14167 return NULL;
14168
14169 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14170 return NULL;
14171 return die_containing_type (type_die, type_cu);
14172}
14173
14174/* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14175
14176static void
14177read_variable (struct die_info *die, struct dwarf2_cu *cu)
14178{
14179 struct rust_vtable_symbol *storage = NULL;
14180
14181 if (cu->language == language_rust)
14182 {
14183 struct type *containing_type = rust_containing_type (die, cu);
14184
14185 if (containing_type != NULL)
14186 {
14187 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14188
14189 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14190 struct rust_vtable_symbol);
14191 initialize_objfile_symbol (storage);
14192 storage->concrete_type = containing_type;
14193 storage->subclass = SYMBOL_RUST_VTABLE;
14194 }
14195 }
14196
14197 new_symbol (die, NULL, cu, storage);
14198}
14199
14200/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14201 reading .debug_rnglists.
14202 Callback's type should be:
14203 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14204 Return true if the attributes are present and valid, otherwise,
14205 return false. */
14206
14207template <typename Callback>
14208static bool
14209dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14210 Callback &&callback)
14211{
14212 struct dwarf2_per_objfile *dwarf2_per_objfile
14213 = cu->per_cu->dwarf2_per_objfile;
14214 struct objfile *objfile = dwarf2_per_objfile->objfile;
14215 bfd *obfd = objfile->obfd;
14216 /* Base address selection entry. */
14217 CORE_ADDR base;
14218 int found_base;
14219 const gdb_byte *buffer;
14220 CORE_ADDR baseaddr;
14221 bool overflow = false;
14222
14223 found_base = cu->base_known;
14224 base = cu->base_address;
14225
14226 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14227 if (offset >= dwarf2_per_objfile->rnglists.size)
14228 {
14229 complaint (&symfile_complaints,
14230 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14231 offset);
14232 return false;
14233 }
14234 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14235
14236 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14237
14238 while (1)
14239 {
14240 /* Initialize it due to a false compiler warning. */
14241 CORE_ADDR range_beginning = 0, range_end = 0;
14242 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14243 + dwarf2_per_objfile->rnglists.size);
14244 unsigned int bytes_read;
14245
14246 if (buffer == buf_end)
14247 {
14248 overflow = true;
14249 break;
14250 }
14251 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14252 switch (rlet)
14253 {
14254 case DW_RLE_end_of_list:
14255 break;
14256 case DW_RLE_base_address:
14257 if (buffer + cu->header.addr_size > buf_end)
14258 {
14259 overflow = true;
14260 break;
14261 }
14262 base = read_address (obfd, buffer, cu, &bytes_read);
14263 found_base = 1;
14264 buffer += bytes_read;
14265 break;
14266 case DW_RLE_start_length:
14267 if (buffer + cu->header.addr_size > buf_end)
14268 {
14269 overflow = true;
14270 break;
14271 }
14272 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14273 buffer += bytes_read;
14274 range_end = (range_beginning
14275 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14276 buffer += bytes_read;
14277 if (buffer > buf_end)
14278 {
14279 overflow = true;
14280 break;
14281 }
14282 break;
14283 case DW_RLE_offset_pair:
14284 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14285 buffer += bytes_read;
14286 if (buffer > buf_end)
14287 {
14288 overflow = true;
14289 break;
14290 }
14291 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14292 buffer += bytes_read;
14293 if (buffer > buf_end)
14294 {
14295 overflow = true;
14296 break;
14297 }
14298 break;
14299 case DW_RLE_start_end:
14300 if (buffer + 2 * cu->header.addr_size > buf_end)
14301 {
14302 overflow = true;
14303 break;
14304 }
14305 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14306 buffer += bytes_read;
14307 range_end = read_address (obfd, buffer, cu, &bytes_read);
14308 buffer += bytes_read;
14309 break;
14310 default:
14311 complaint (&symfile_complaints,
14312 _("Invalid .debug_rnglists data (no base address)"));
14313 return false;
14314 }
14315 if (rlet == DW_RLE_end_of_list || overflow)
14316 break;
14317 if (rlet == DW_RLE_base_address)
14318 continue;
14319
14320 if (!found_base)
14321 {
14322 /* We have no valid base address for the ranges
14323 data. */
14324 complaint (&symfile_complaints,
14325 _("Invalid .debug_rnglists data (no base address)"));
14326 return false;
14327 }
14328
14329 if (range_beginning > range_end)
14330 {
14331 /* Inverted range entries are invalid. */
14332 complaint (&symfile_complaints,
14333 _("Invalid .debug_rnglists data (inverted range)"));
14334 return false;
14335 }
14336
14337 /* Empty range entries have no effect. */
14338 if (range_beginning == range_end)
14339 continue;
14340
14341 range_beginning += base;
14342 range_end += base;
14343
14344 /* A not-uncommon case of bad debug info.
14345 Don't pollute the addrmap with bad data. */
14346 if (range_beginning + baseaddr == 0
14347 && !dwarf2_per_objfile->has_section_at_zero)
14348 {
14349 complaint (&symfile_complaints,
14350 _(".debug_rnglists entry has start address of zero"
14351 " [in module %s]"), objfile_name (objfile));
14352 continue;
14353 }
14354
14355 callback (range_beginning, range_end);
14356 }
14357
14358 if (overflow)
14359 {
14360 complaint (&symfile_complaints,
14361 _("Offset %d is not terminated "
14362 "for DW_AT_ranges attribute"),
14363 offset);
14364 return false;
14365 }
14366
14367 return true;
14368}
14369
14370/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14371 Callback's type should be:
14372 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14373 Return 1 if the attributes are present and valid, otherwise, return 0. */
14374
14375template <typename Callback>
14376static int
14377dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14378 Callback &&callback)
14379{
14380 struct dwarf2_per_objfile *dwarf2_per_objfile
14381 = cu->per_cu->dwarf2_per_objfile;
14382 struct objfile *objfile = dwarf2_per_objfile->objfile;
14383 struct comp_unit_head *cu_header = &cu->header;
14384 bfd *obfd = objfile->obfd;
14385 unsigned int addr_size = cu_header->addr_size;
14386 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14387 /* Base address selection entry. */
14388 CORE_ADDR base;
14389 int found_base;
14390 unsigned int dummy;
14391 const gdb_byte *buffer;
14392 CORE_ADDR baseaddr;
14393
14394 if (cu_header->version >= 5)
14395 return dwarf2_rnglists_process (offset, cu, callback);
14396
14397 found_base = cu->base_known;
14398 base = cu->base_address;
14399
14400 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14401 if (offset >= dwarf2_per_objfile->ranges.size)
14402 {
14403 complaint (&symfile_complaints,
14404 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14405 offset);
14406 return 0;
14407 }
14408 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14409
14410 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14411
14412 while (1)
14413 {
14414 CORE_ADDR range_beginning, range_end;
14415
14416 range_beginning = read_address (obfd, buffer, cu, &dummy);
14417 buffer += addr_size;
14418 range_end = read_address (obfd, buffer, cu, &dummy);
14419 buffer += addr_size;
14420 offset += 2 * addr_size;
14421
14422 /* An end of list marker is a pair of zero addresses. */
14423 if (range_beginning == 0 && range_end == 0)
14424 /* Found the end of list entry. */
14425 break;
14426
14427 /* Each base address selection entry is a pair of 2 values.
14428 The first is the largest possible address, the second is
14429 the base address. Check for a base address here. */
14430 if ((range_beginning & mask) == mask)
14431 {
14432 /* If we found the largest possible address, then we already
14433 have the base address in range_end. */
14434 base = range_end;
14435 found_base = 1;
14436 continue;
14437 }
14438
14439 if (!found_base)
14440 {
14441 /* We have no valid base address for the ranges
14442 data. */
14443 complaint (&symfile_complaints,
14444 _("Invalid .debug_ranges data (no base address)"));
14445 return 0;
14446 }
14447
14448 if (range_beginning > range_end)
14449 {
14450 /* Inverted range entries are invalid. */
14451 complaint (&symfile_complaints,
14452 _("Invalid .debug_ranges data (inverted range)"));
14453 return 0;
14454 }
14455
14456 /* Empty range entries have no effect. */
14457 if (range_beginning == range_end)
14458 continue;
14459
14460 range_beginning += base;
14461 range_end += base;
14462
14463 /* A not-uncommon case of bad debug info.
14464 Don't pollute the addrmap with bad data. */
14465 if (range_beginning + baseaddr == 0
14466 && !dwarf2_per_objfile->has_section_at_zero)
14467 {
14468 complaint (&symfile_complaints,
14469 _(".debug_ranges entry has start address of zero"
14470 " [in module %s]"), objfile_name (objfile));
14471 continue;
14472 }
14473
14474 callback (range_beginning, range_end);
14475 }
14476
14477 return 1;
14478}
14479
14480/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14481 Return 1 if the attributes are present and valid, otherwise, return 0.
14482 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14483
14484static int
14485dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14486 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14487 struct partial_symtab *ranges_pst)
14488{
14489 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14490 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14491 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14492 SECT_OFF_TEXT (objfile));
14493 int low_set = 0;
14494 CORE_ADDR low = 0;
14495 CORE_ADDR high = 0;
14496 int retval;
14497
14498 retval = dwarf2_ranges_process (offset, cu,
14499 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14500 {
14501 if (ranges_pst != NULL)
14502 {
14503 CORE_ADDR lowpc;
14504 CORE_ADDR highpc;
14505
14506 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14507 range_beginning + baseaddr);
14508 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14509 range_end + baseaddr);
14510 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14511 ranges_pst);
14512 }
14513
14514 /* FIXME: This is recording everything as a low-high
14515 segment of consecutive addresses. We should have a
14516 data structure for discontiguous block ranges
14517 instead. */
14518 if (! low_set)
14519 {
14520 low = range_beginning;
14521 high = range_end;
14522 low_set = 1;
14523 }
14524 else
14525 {
14526 if (range_beginning < low)
14527 low = range_beginning;
14528 if (range_end > high)
14529 high = range_end;
14530 }
14531 });
14532 if (!retval)
14533 return 0;
14534
14535 if (! low_set)
14536 /* If the first entry is an end-of-list marker, the range
14537 describes an empty scope, i.e. no instructions. */
14538 return 0;
14539
14540 if (low_return)
14541 *low_return = low;
14542 if (high_return)
14543 *high_return = high;
14544 return 1;
14545}
14546
14547/* Get low and high pc attributes from a die. See enum pc_bounds_kind
14548 definition for the return value. *LOWPC and *HIGHPC are set iff
14549 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14550
14551static enum pc_bounds_kind
14552dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14553 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14554 struct partial_symtab *pst)
14555{
14556 struct dwarf2_per_objfile *dwarf2_per_objfile
14557 = cu->per_cu->dwarf2_per_objfile;
14558 struct attribute *attr;
14559 struct attribute *attr_high;
14560 CORE_ADDR low = 0;
14561 CORE_ADDR high = 0;
14562 enum pc_bounds_kind ret;
14563
14564 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14565 if (attr_high)
14566 {
14567 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14568 if (attr)
14569 {
14570 low = attr_value_as_address (attr);
14571 high = attr_value_as_address (attr_high);
14572 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14573 high += low;
14574 }
14575 else
14576 /* Found high w/o low attribute. */
14577 return PC_BOUNDS_INVALID;
14578
14579 /* Found consecutive range of addresses. */
14580 ret = PC_BOUNDS_HIGH_LOW;
14581 }
14582 else
14583 {
14584 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14585 if (attr != NULL)
14586 {
14587 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14588 We take advantage of the fact that DW_AT_ranges does not appear
14589 in DW_TAG_compile_unit of DWO files. */
14590 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14591 unsigned int ranges_offset = (DW_UNSND (attr)
14592 + (need_ranges_base
14593 ? cu->ranges_base
14594 : 0));
14595
14596 /* Value of the DW_AT_ranges attribute is the offset in the
14597 .debug_ranges section. */
14598 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14599 return PC_BOUNDS_INVALID;
14600 /* Found discontinuous range of addresses. */
14601 ret = PC_BOUNDS_RANGES;
14602 }
14603 else
14604 return PC_BOUNDS_NOT_PRESENT;
14605 }
14606
14607 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14608 if (high <= low)
14609 return PC_BOUNDS_INVALID;
14610
14611 /* When using the GNU linker, .gnu.linkonce. sections are used to
14612 eliminate duplicate copies of functions and vtables and such.
14613 The linker will arbitrarily choose one and discard the others.
14614 The AT_*_pc values for such functions refer to local labels in
14615 these sections. If the section from that file was discarded, the
14616 labels are not in the output, so the relocs get a value of 0.
14617 If this is a discarded function, mark the pc bounds as invalid,
14618 so that GDB will ignore it. */
14619 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14620 return PC_BOUNDS_INVALID;
14621
14622 *lowpc = low;
14623 if (highpc)
14624 *highpc = high;
14625 return ret;
14626}
14627
14628/* Assuming that DIE represents a subprogram DIE or a lexical block, get
14629 its low and high PC addresses. Do nothing if these addresses could not
14630 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14631 and HIGHPC to the high address if greater than HIGHPC. */
14632
14633static void
14634dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14635 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14636 struct dwarf2_cu *cu)
14637{
14638 CORE_ADDR low, high;
14639 struct die_info *child = die->child;
14640
14641 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14642 {
14643 *lowpc = std::min (*lowpc, low);
14644 *highpc = std::max (*highpc, high);
14645 }
14646
14647 /* If the language does not allow nested subprograms (either inside
14648 subprograms or lexical blocks), we're done. */
14649 if (cu->language != language_ada)
14650 return;
14651
14652 /* Check all the children of the given DIE. If it contains nested
14653 subprograms, then check their pc bounds. Likewise, we need to
14654 check lexical blocks as well, as they may also contain subprogram
14655 definitions. */
14656 while (child && child->tag)
14657 {
14658 if (child->tag == DW_TAG_subprogram
14659 || child->tag == DW_TAG_lexical_block)
14660 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14661 child = sibling_die (child);
14662 }
14663}
14664
14665/* Get the low and high pc's represented by the scope DIE, and store
14666 them in *LOWPC and *HIGHPC. If the correct values can't be
14667 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14668
14669static void
14670get_scope_pc_bounds (struct die_info *die,
14671 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14672 struct dwarf2_cu *cu)
14673{
14674 CORE_ADDR best_low = (CORE_ADDR) -1;
14675 CORE_ADDR best_high = (CORE_ADDR) 0;
14676 CORE_ADDR current_low, current_high;
14677
14678 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14679 >= PC_BOUNDS_RANGES)
14680 {
14681 best_low = current_low;
14682 best_high = current_high;
14683 }
14684 else
14685 {
14686 struct die_info *child = die->child;
14687
14688 while (child && child->tag)
14689 {
14690 switch (child->tag) {
14691 case DW_TAG_subprogram:
14692 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14693 break;
14694 case DW_TAG_namespace:
14695 case DW_TAG_module:
14696 /* FIXME: carlton/2004-01-16: Should we do this for
14697 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14698 that current GCC's always emit the DIEs corresponding
14699 to definitions of methods of classes as children of a
14700 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14701 the DIEs giving the declarations, which could be
14702 anywhere). But I don't see any reason why the
14703 standards says that they have to be there. */
14704 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14705
14706 if (current_low != ((CORE_ADDR) -1))
14707 {
14708 best_low = std::min (best_low, current_low);
14709 best_high = std::max (best_high, current_high);
14710 }
14711 break;
14712 default:
14713 /* Ignore. */
14714 break;
14715 }
14716
14717 child = sibling_die (child);
14718 }
14719 }
14720
14721 *lowpc = best_low;
14722 *highpc = best_high;
14723}
14724
14725/* Record the address ranges for BLOCK, offset by BASEADDR, as given
14726 in DIE. */
14727
14728static void
14729dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14730 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14731{
14732 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14733 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14734 struct attribute *attr;
14735 struct attribute *attr_high;
14736
14737 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14738 if (attr_high)
14739 {
14740 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14741 if (attr)
14742 {
14743 CORE_ADDR low = attr_value_as_address (attr);
14744 CORE_ADDR high = attr_value_as_address (attr_high);
14745
14746 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14747 high += low;
14748
14749 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14750 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14751 record_block_range (block, low, high - 1);
14752 }
14753 }
14754
14755 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14756 if (attr)
14757 {
14758 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14759 We take advantage of the fact that DW_AT_ranges does not appear
14760 in DW_TAG_compile_unit of DWO files. */
14761 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14762
14763 /* The value of the DW_AT_ranges attribute is the offset of the
14764 address range list in the .debug_ranges section. */
14765 unsigned long offset = (DW_UNSND (attr)
14766 + (need_ranges_base ? cu->ranges_base : 0));
14767
14768 dwarf2_ranges_process (offset, cu,
14769 [&] (CORE_ADDR start, CORE_ADDR end)
14770 {
14771 start += baseaddr;
14772 end += baseaddr;
14773 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14774 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14775 record_block_range (block, start, end - 1);
14776 });
14777 }
14778}
14779
14780/* Check whether the producer field indicates either of GCC < 4.6, or the
14781 Intel C/C++ compiler, and cache the result in CU. */
14782
14783static void
14784check_producer (struct dwarf2_cu *cu)
14785{
14786 int major, minor;
14787
14788 if (cu->producer == NULL)
14789 {
14790 /* For unknown compilers expect their behavior is DWARF version
14791 compliant.
14792
14793 GCC started to support .debug_types sections by -gdwarf-4 since
14794 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14795 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14796 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14797 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14798 }
14799 else if (producer_is_gcc (cu->producer, &major, &minor))
14800 {
14801 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14802 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14803 }
14804 else if (producer_is_icc (cu->producer, &major, &minor))
14805 cu->producer_is_icc_lt_14 = major < 14;
14806 else
14807 {
14808 /* For other non-GCC compilers, expect their behavior is DWARF version
14809 compliant. */
14810 }
14811
14812 cu->checked_producer = 1;
14813}
14814
14815/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14816 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14817 during 4.6.0 experimental. */
14818
14819static int
14820producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14821{
14822 if (!cu->checked_producer)
14823 check_producer (cu);
14824
14825 return cu->producer_is_gxx_lt_4_6;
14826}
14827
14828/* Return the default accessibility type if it is not overriden by
14829 DW_AT_accessibility. */
14830
14831static enum dwarf_access_attribute
14832dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14833{
14834 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14835 {
14836 /* The default DWARF 2 accessibility for members is public, the default
14837 accessibility for inheritance is private. */
14838
14839 if (die->tag != DW_TAG_inheritance)
14840 return DW_ACCESS_public;
14841 else
14842 return DW_ACCESS_private;
14843 }
14844 else
14845 {
14846 /* DWARF 3+ defines the default accessibility a different way. The same
14847 rules apply now for DW_TAG_inheritance as for the members and it only
14848 depends on the container kind. */
14849
14850 if (die->parent->tag == DW_TAG_class_type)
14851 return DW_ACCESS_private;
14852 else
14853 return DW_ACCESS_public;
14854 }
14855}
14856
14857/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14858 offset. If the attribute was not found return 0, otherwise return
14859 1. If it was found but could not properly be handled, set *OFFSET
14860 to 0. */
14861
14862static int
14863handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14864 LONGEST *offset)
14865{
14866 struct attribute *attr;
14867
14868 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14869 if (attr != NULL)
14870 {
14871 *offset = 0;
14872
14873 /* Note that we do not check for a section offset first here.
14874 This is because DW_AT_data_member_location is new in DWARF 4,
14875 so if we see it, we can assume that a constant form is really
14876 a constant and not a section offset. */
14877 if (attr_form_is_constant (attr))
14878 *offset = dwarf2_get_attr_constant_value (attr, 0);
14879 else if (attr_form_is_section_offset (attr))
14880 dwarf2_complex_location_expr_complaint ();
14881 else if (attr_form_is_block (attr))
14882 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14883 else
14884 dwarf2_complex_location_expr_complaint ();
14885
14886 return 1;
14887 }
14888
14889 return 0;
14890}
14891
14892/* Add an aggregate field to the field list. */
14893
14894static void
14895dwarf2_add_field (struct field_info *fip, struct die_info *die,
14896 struct dwarf2_cu *cu)
14897{
14898 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14900 struct nextfield *new_field;
14901 struct attribute *attr;
14902 struct field *fp;
14903 const char *fieldname = "";
14904
14905 if (die->tag == DW_TAG_inheritance)
14906 {
14907 fip->baseclasses.emplace_back ();
14908 new_field = &fip->baseclasses.back ();
14909 }
14910 else
14911 {
14912 fip->fields.emplace_back ();
14913 new_field = &fip->fields.back ();
14914 }
14915
14916 fip->nfields++;
14917
14918 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14919 if (attr)
14920 new_field->accessibility = DW_UNSND (attr);
14921 else
14922 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14923 if (new_field->accessibility != DW_ACCESS_public)
14924 fip->non_public_fields = 1;
14925
14926 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14927 if (attr)
14928 new_field->virtuality = DW_UNSND (attr);
14929 else
14930 new_field->virtuality = DW_VIRTUALITY_none;
14931
14932 fp = &new_field->field;
14933
14934 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14935 {
14936 LONGEST offset;
14937
14938 /* Data member other than a C++ static data member. */
14939
14940 /* Get type of field. */
14941 fp->type = die_type (die, cu);
14942
14943 SET_FIELD_BITPOS (*fp, 0);
14944
14945 /* Get bit size of field (zero if none). */
14946 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14947 if (attr)
14948 {
14949 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14950 }
14951 else
14952 {
14953 FIELD_BITSIZE (*fp) = 0;
14954 }
14955
14956 /* Get bit offset of field. */
14957 if (handle_data_member_location (die, cu, &offset))
14958 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14959 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14960 if (attr)
14961 {
14962 if (gdbarch_bits_big_endian (gdbarch))
14963 {
14964 /* For big endian bits, the DW_AT_bit_offset gives the
14965 additional bit offset from the MSB of the containing
14966 anonymous object to the MSB of the field. We don't
14967 have to do anything special since we don't need to
14968 know the size of the anonymous object. */
14969 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14970 }
14971 else
14972 {
14973 /* For little endian bits, compute the bit offset to the
14974 MSB of the anonymous object, subtract off the number of
14975 bits from the MSB of the field to the MSB of the
14976 object, and then subtract off the number of bits of
14977 the field itself. The result is the bit offset of
14978 the LSB of the field. */
14979 int anonymous_size;
14980 int bit_offset = DW_UNSND (attr);
14981
14982 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14983 if (attr)
14984 {
14985 /* The size of the anonymous object containing
14986 the bit field is explicit, so use the
14987 indicated size (in bytes). */
14988 anonymous_size = DW_UNSND (attr);
14989 }
14990 else
14991 {
14992 /* The size of the anonymous object containing
14993 the bit field must be inferred from the type
14994 attribute of the data member containing the
14995 bit field. */
14996 anonymous_size = TYPE_LENGTH (fp->type);
14997 }
14998 SET_FIELD_BITPOS (*fp,
14999 (FIELD_BITPOS (*fp)
15000 + anonymous_size * bits_per_byte
15001 - bit_offset - FIELD_BITSIZE (*fp)));
15002 }
15003 }
15004 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15005 if (attr != NULL)
15006 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15007 + dwarf2_get_attr_constant_value (attr, 0)));
15008
15009 /* Get name of field. */
15010 fieldname = dwarf2_name (die, cu);
15011 if (fieldname == NULL)
15012 fieldname = "";
15013
15014 /* The name is already allocated along with this objfile, so we don't
15015 need to duplicate it for the type. */
15016 fp->name = fieldname;
15017
15018 /* Change accessibility for artificial fields (e.g. virtual table
15019 pointer or virtual base class pointer) to private. */
15020 if (dwarf2_attr (die, DW_AT_artificial, cu))
15021 {
15022 FIELD_ARTIFICIAL (*fp) = 1;
15023 new_field->accessibility = DW_ACCESS_private;
15024 fip->non_public_fields = 1;
15025 }
15026 }
15027 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15028 {
15029 /* C++ static member. */
15030
15031 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15032 is a declaration, but all versions of G++ as of this writing
15033 (so through at least 3.2.1) incorrectly generate
15034 DW_TAG_variable tags. */
15035
15036 const char *physname;
15037
15038 /* Get name of field. */
15039 fieldname = dwarf2_name (die, cu);
15040 if (fieldname == NULL)
15041 return;
15042
15043 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15044 if (attr
15045 /* Only create a symbol if this is an external value.
15046 new_symbol checks this and puts the value in the global symbol
15047 table, which we want. If it is not external, new_symbol
15048 will try to put the value in cu->list_in_scope which is wrong. */
15049 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15050 {
15051 /* A static const member, not much different than an enum as far as
15052 we're concerned, except that we can support more types. */
15053 new_symbol (die, NULL, cu);
15054 }
15055
15056 /* Get physical name. */
15057 physname = dwarf2_physname (fieldname, die, cu);
15058
15059 /* The name is already allocated along with this objfile, so we don't
15060 need to duplicate it for the type. */
15061 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15062 FIELD_TYPE (*fp) = die_type (die, cu);
15063 FIELD_NAME (*fp) = fieldname;
15064 }
15065 else if (die->tag == DW_TAG_inheritance)
15066 {
15067 LONGEST offset;
15068
15069 /* C++ base class field. */
15070 if (handle_data_member_location (die, cu, &offset))
15071 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15072 FIELD_BITSIZE (*fp) = 0;
15073 FIELD_TYPE (*fp) = die_type (die, cu);
15074 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15075 }
15076 else if (die->tag == DW_TAG_variant_part)
15077 {
15078 /* process_structure_scope will treat this DIE as a union. */
15079 process_structure_scope (die, cu);
15080
15081 /* The variant part is relative to the start of the enclosing
15082 structure. */
15083 SET_FIELD_BITPOS (*fp, 0);
15084 fp->type = get_die_type (die, cu);
15085 fp->artificial = 1;
15086 fp->name = "<<variant>>";
15087 }
15088 else
15089 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15090}
15091
15092/* Can the type given by DIE define another type? */
15093
15094static bool
15095type_can_define_types (const struct die_info *die)
15096{
15097 switch (die->tag)
15098 {
15099 case DW_TAG_typedef:
15100 case DW_TAG_class_type:
15101 case DW_TAG_structure_type:
15102 case DW_TAG_union_type:
15103 case DW_TAG_enumeration_type:
15104 return true;
15105
15106 default:
15107 return false;
15108 }
15109}
15110
15111/* Add a type definition defined in the scope of the FIP's class. */
15112
15113static void
15114dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15115 struct dwarf2_cu *cu)
15116{
15117 struct decl_field fp;
15118 memset (&fp, 0, sizeof (fp));
15119
15120 gdb_assert (type_can_define_types (die));
15121
15122 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15123 fp.name = dwarf2_name (die, cu);
15124 fp.type = read_type_die (die, cu);
15125
15126 /* Save accessibility. */
15127 enum dwarf_access_attribute accessibility;
15128 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15129 if (attr != NULL)
15130 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15131 else
15132 accessibility = dwarf2_default_access_attribute (die, cu);
15133 switch (accessibility)
15134 {
15135 case DW_ACCESS_public:
15136 /* The assumed value if neither private nor protected. */
15137 break;
15138 case DW_ACCESS_private:
15139 fp.is_private = 1;
15140 break;
15141 case DW_ACCESS_protected:
15142 fp.is_protected = 1;
15143 break;
15144 default:
15145 complaint (&symfile_complaints,
15146 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15147 }
15148
15149 if (die->tag == DW_TAG_typedef)
15150 fip->typedef_field_list.push_back (fp);
15151 else
15152 fip->nested_types_list.push_back (fp);
15153}
15154
15155/* Create the vector of fields, and attach it to the type. */
15156
15157static void
15158dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15159 struct dwarf2_cu *cu)
15160{
15161 int nfields = fip->nfields;
15162
15163 /* Record the field count, allocate space for the array of fields,
15164 and create blank accessibility bitfields if necessary. */
15165 TYPE_NFIELDS (type) = nfields;
15166 TYPE_FIELDS (type) = (struct field *)
15167 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15168
15169 if (fip->non_public_fields && cu->language != language_ada)
15170 {
15171 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15172
15173 TYPE_FIELD_PRIVATE_BITS (type) =
15174 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15175 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15176
15177 TYPE_FIELD_PROTECTED_BITS (type) =
15178 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15179 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15180
15181 TYPE_FIELD_IGNORE_BITS (type) =
15182 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15183 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15184 }
15185
15186 /* If the type has baseclasses, allocate and clear a bit vector for
15187 TYPE_FIELD_VIRTUAL_BITS. */
15188 if (!fip->baseclasses.empty () && cu->language != language_ada)
15189 {
15190 int num_bytes = B_BYTES (fip->baseclasses.size ());
15191 unsigned char *pointer;
15192
15193 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15194 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15195 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15196 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15197 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15198 }
15199
15200 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15201 {
15202 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15203
15204 for (int index = 0; index < nfields; ++index)
15205 {
15206 struct nextfield &field = fip->fields[index];
15207
15208 if (field.variant.is_discriminant)
15209 di->discriminant_index = index;
15210 else if (field.variant.default_branch)
15211 di->default_index = index;
15212 else
15213 di->discriminants[index] = field.variant.discriminant_value;
15214 }
15215 }
15216
15217 /* Copy the saved-up fields into the field vector. */
15218 for (int i = 0; i < nfields; ++i)
15219 {
15220 struct nextfield &field
15221 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15222 : fip->fields[i - fip->baseclasses.size ()]);
15223
15224 TYPE_FIELD (type, i) = field.field;
15225 switch (field.accessibility)
15226 {
15227 case DW_ACCESS_private:
15228 if (cu->language != language_ada)
15229 SET_TYPE_FIELD_PRIVATE (type, i);
15230 break;
15231
15232 case DW_ACCESS_protected:
15233 if (cu->language != language_ada)
15234 SET_TYPE_FIELD_PROTECTED (type, i);
15235 break;
15236
15237 case DW_ACCESS_public:
15238 break;
15239
15240 default:
15241 /* Unknown accessibility. Complain and treat it as public. */
15242 {
15243 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15244 field.accessibility);
15245 }
15246 break;
15247 }
15248 if (i < fip->baseclasses.size ())
15249 {
15250 switch (field.virtuality)
15251 {
15252 case DW_VIRTUALITY_virtual:
15253 case DW_VIRTUALITY_pure_virtual:
15254 if (cu->language == language_ada)
15255 error (_("unexpected virtuality in component of Ada type"));
15256 SET_TYPE_FIELD_VIRTUAL (type, i);
15257 break;
15258 }
15259 }
15260 }
15261}
15262
15263/* Return true if this member function is a constructor, false
15264 otherwise. */
15265
15266static int
15267dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15268{
15269 const char *fieldname;
15270 const char *type_name;
15271 int len;
15272
15273 if (die->parent == NULL)
15274 return 0;
15275
15276 if (die->parent->tag != DW_TAG_structure_type
15277 && die->parent->tag != DW_TAG_union_type
15278 && die->parent->tag != DW_TAG_class_type)
15279 return 0;
15280
15281 fieldname = dwarf2_name (die, cu);
15282 type_name = dwarf2_name (die->parent, cu);
15283 if (fieldname == NULL || type_name == NULL)
15284 return 0;
15285
15286 len = strlen (fieldname);
15287 return (strncmp (fieldname, type_name, len) == 0
15288 && (type_name[len] == '\0' || type_name[len] == '<'));
15289}
15290
15291/* Add a member function to the proper fieldlist. */
15292
15293static void
15294dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15295 struct type *type, struct dwarf2_cu *cu)
15296{
15297 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15298 struct attribute *attr;
15299 int i;
15300 struct fnfieldlist *flp = nullptr;
15301 struct fn_field *fnp;
15302 const char *fieldname;
15303 struct type *this_type;
15304 enum dwarf_access_attribute accessibility;
15305
15306 if (cu->language == language_ada)
15307 error (_("unexpected member function in Ada type"));
15308
15309 /* Get name of member function. */
15310 fieldname = dwarf2_name (die, cu);
15311 if (fieldname == NULL)
15312 return;
15313
15314 /* Look up member function name in fieldlist. */
15315 for (i = 0; i < fip->fnfieldlists.size (); i++)
15316 {
15317 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15318 {
15319 flp = &fip->fnfieldlists[i];
15320 break;
15321 }
15322 }
15323
15324 /* Create a new fnfieldlist if necessary. */
15325 if (flp == nullptr)
15326 {
15327 fip->fnfieldlists.emplace_back ();
15328 flp = &fip->fnfieldlists.back ();
15329 flp->name = fieldname;
15330 i = fip->fnfieldlists.size () - 1;
15331 }
15332
15333 /* Create a new member function field and add it to the vector of
15334 fnfieldlists. */
15335 flp->fnfields.emplace_back ();
15336 fnp = &flp->fnfields.back ();
15337
15338 /* Delay processing of the physname until later. */
15339 if (cu->language == language_cplus)
15340 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15341 die, cu);
15342 else
15343 {
15344 const char *physname = dwarf2_physname (fieldname, die, cu);
15345 fnp->physname = physname ? physname : "";
15346 }
15347
15348 fnp->type = alloc_type (objfile);
15349 this_type = read_type_die (die, cu);
15350 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15351 {
15352 int nparams = TYPE_NFIELDS (this_type);
15353
15354 /* TYPE is the domain of this method, and THIS_TYPE is the type
15355 of the method itself (TYPE_CODE_METHOD). */
15356 smash_to_method_type (fnp->type, type,
15357 TYPE_TARGET_TYPE (this_type),
15358 TYPE_FIELDS (this_type),
15359 TYPE_NFIELDS (this_type),
15360 TYPE_VARARGS (this_type));
15361
15362 /* Handle static member functions.
15363 Dwarf2 has no clean way to discern C++ static and non-static
15364 member functions. G++ helps GDB by marking the first
15365 parameter for non-static member functions (which is the this
15366 pointer) as artificial. We obtain this information from
15367 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15368 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15369 fnp->voffset = VOFFSET_STATIC;
15370 }
15371 else
15372 complaint (&symfile_complaints, _("member function type missing for '%s'"),
15373 dwarf2_full_name (fieldname, die, cu));
15374
15375 /* Get fcontext from DW_AT_containing_type if present. */
15376 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15377 fnp->fcontext = die_containing_type (die, cu);
15378
15379 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15380 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15381
15382 /* Get accessibility. */
15383 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15384 if (attr)
15385 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15386 else
15387 accessibility = dwarf2_default_access_attribute (die, cu);
15388 switch (accessibility)
15389 {
15390 case DW_ACCESS_private:
15391 fnp->is_private = 1;
15392 break;
15393 case DW_ACCESS_protected:
15394 fnp->is_protected = 1;
15395 break;
15396 }
15397
15398 /* Check for artificial methods. */
15399 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15400 if (attr && DW_UNSND (attr) != 0)
15401 fnp->is_artificial = 1;
15402
15403 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15404
15405 /* Get index in virtual function table if it is a virtual member
15406 function. For older versions of GCC, this is an offset in the
15407 appropriate virtual table, as specified by DW_AT_containing_type.
15408 For everyone else, it is an expression to be evaluated relative
15409 to the object address. */
15410
15411 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15412 if (attr)
15413 {
15414 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15415 {
15416 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15417 {
15418 /* Old-style GCC. */
15419 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15420 }
15421 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15422 || (DW_BLOCK (attr)->size > 1
15423 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15424 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15425 {
15426 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15427 if ((fnp->voffset % cu->header.addr_size) != 0)
15428 dwarf2_complex_location_expr_complaint ();
15429 else
15430 fnp->voffset /= cu->header.addr_size;
15431 fnp->voffset += 2;
15432 }
15433 else
15434 dwarf2_complex_location_expr_complaint ();
15435
15436 if (!fnp->fcontext)
15437 {
15438 /* If there is no `this' field and no DW_AT_containing_type,
15439 we cannot actually find a base class context for the
15440 vtable! */
15441 if (TYPE_NFIELDS (this_type) == 0
15442 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15443 {
15444 complaint (&symfile_complaints,
15445 _("cannot determine context for virtual member "
15446 "function \"%s\" (offset %s)"),
15447 fieldname, sect_offset_str (die->sect_off));
15448 }
15449 else
15450 {
15451 fnp->fcontext
15452 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15453 }
15454 }
15455 }
15456 else if (attr_form_is_section_offset (attr))
15457 {
15458 dwarf2_complex_location_expr_complaint ();
15459 }
15460 else
15461 {
15462 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15463 fieldname);
15464 }
15465 }
15466 else
15467 {
15468 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15469 if (attr && DW_UNSND (attr))
15470 {
15471 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15472 complaint (&symfile_complaints,
15473 _("Member function \"%s\" (offset %s) is virtual "
15474 "but the vtable offset is not specified"),
15475 fieldname, sect_offset_str (die->sect_off));
15476 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15477 TYPE_CPLUS_DYNAMIC (type) = 1;
15478 }
15479 }
15480}
15481
15482/* Create the vector of member function fields, and attach it to the type. */
15483
15484static void
15485dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15486 struct dwarf2_cu *cu)
15487{
15488 if (cu->language == language_ada)
15489 error (_("unexpected member functions in Ada type"));
15490
15491 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15492 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15493 TYPE_ALLOC (type,
15494 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15495
15496 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15497 {
15498 struct fnfieldlist &nf = fip->fnfieldlists[i];
15499 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15500
15501 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15502 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15503 fn_flp->fn_fields = (struct fn_field *)
15504 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15505
15506 for (int k = 0; k < nf.fnfields.size (); ++k)
15507 fn_flp->fn_fields[k] = nf.fnfields[k];
15508 }
15509
15510 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15511}
15512
15513/* Returns non-zero if NAME is the name of a vtable member in CU's
15514 language, zero otherwise. */
15515static int
15516is_vtable_name (const char *name, struct dwarf2_cu *cu)
15517{
15518 static const char vptr[] = "_vptr";
15519
15520 /* Look for the C++ form of the vtable. */
15521 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15522 return 1;
15523
15524 return 0;
15525}
15526
15527/* GCC outputs unnamed structures that are really pointers to member
15528 functions, with the ABI-specified layout. If TYPE describes
15529 such a structure, smash it into a member function type.
15530
15531 GCC shouldn't do this; it should just output pointer to member DIEs.
15532 This is GCC PR debug/28767. */
15533
15534static void
15535quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15536{
15537 struct type *pfn_type, *self_type, *new_type;
15538
15539 /* Check for a structure with no name and two children. */
15540 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15541 return;
15542
15543 /* Check for __pfn and __delta members. */
15544 if (TYPE_FIELD_NAME (type, 0) == NULL
15545 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15546 || TYPE_FIELD_NAME (type, 1) == NULL
15547 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15548 return;
15549
15550 /* Find the type of the method. */
15551 pfn_type = TYPE_FIELD_TYPE (type, 0);
15552 if (pfn_type == NULL
15553 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15554 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15555 return;
15556
15557 /* Look for the "this" argument. */
15558 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15559 if (TYPE_NFIELDS (pfn_type) == 0
15560 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15561 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15562 return;
15563
15564 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15565 new_type = alloc_type (objfile);
15566 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15567 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15568 TYPE_VARARGS (pfn_type));
15569 smash_to_methodptr_type (type, new_type);
15570}
15571
15572
15573/* Called when we find the DIE that starts a structure or union scope
15574 (definition) to create a type for the structure or union. Fill in
15575 the type's name and general properties; the members will not be
15576 processed until process_structure_scope. A symbol table entry for
15577 the type will also not be done until process_structure_scope (assuming
15578 the type has a name).
15579
15580 NOTE: we need to call these functions regardless of whether or not the
15581 DIE has a DW_AT_name attribute, since it might be an anonymous
15582 structure or union. This gets the type entered into our set of
15583 user defined types. */
15584
15585static struct type *
15586read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15587{
15588 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15589 struct type *type;
15590 struct attribute *attr;
15591 const char *name;
15592
15593 /* If the definition of this type lives in .debug_types, read that type.
15594 Don't follow DW_AT_specification though, that will take us back up
15595 the chain and we want to go down. */
15596 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15597 if (attr)
15598 {
15599 type = get_DW_AT_signature_type (die, attr, cu);
15600
15601 /* The type's CU may not be the same as CU.
15602 Ensure TYPE is recorded with CU in die_type_hash. */
15603 return set_die_type (die, type, cu);
15604 }
15605
15606 type = alloc_type (objfile);
15607 INIT_CPLUS_SPECIFIC (type);
15608
15609 name = dwarf2_name (die, cu);
15610 if (name != NULL)
15611 {
15612 if (cu->language == language_cplus
15613 || cu->language == language_d
15614 || cu->language == language_rust)
15615 {
15616 const char *full_name = dwarf2_full_name (name, die, cu);
15617
15618 /* dwarf2_full_name might have already finished building the DIE's
15619 type. If so, there is no need to continue. */
15620 if (get_die_type (die, cu) != NULL)
15621 return get_die_type (die, cu);
15622
15623 TYPE_TAG_NAME (type) = full_name;
15624 if (die->tag == DW_TAG_structure_type
15625 || die->tag == DW_TAG_class_type)
15626 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15627 }
15628 else
15629 {
15630 /* The name is already allocated along with this objfile, so
15631 we don't need to duplicate it for the type. */
15632 TYPE_TAG_NAME (type) = name;
15633 if (die->tag == DW_TAG_class_type)
15634 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15635 }
15636 }
15637
15638 if (die->tag == DW_TAG_structure_type)
15639 {
15640 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15641 }
15642 else if (die->tag == DW_TAG_union_type)
15643 {
15644 TYPE_CODE (type) = TYPE_CODE_UNION;
15645 }
15646 else if (die->tag == DW_TAG_variant_part)
15647 {
15648 TYPE_CODE (type) = TYPE_CODE_UNION;
15649 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15650 }
15651 else
15652 {
15653 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15654 }
15655
15656 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15657 TYPE_DECLARED_CLASS (type) = 1;
15658
15659 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15660 if (attr)
15661 {
15662 if (attr_form_is_constant (attr))
15663 TYPE_LENGTH (type) = DW_UNSND (attr);
15664 else
15665 {
15666 /* For the moment, dynamic type sizes are not supported
15667 by GDB's struct type. The actual size is determined
15668 on-demand when resolving the type of a given object,
15669 so set the type's length to zero for now. Otherwise,
15670 we record an expression as the length, and that expression
15671 could lead to a very large value, which could eventually
15672 lead to us trying to allocate that much memory when creating
15673 a value of that type. */
15674 TYPE_LENGTH (type) = 0;
15675 }
15676 }
15677 else
15678 {
15679 TYPE_LENGTH (type) = 0;
15680 }
15681
15682 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15683 {
15684 /* ICC<14 does not output the required DW_AT_declaration on
15685 incomplete types, but gives them a size of zero. */
15686 TYPE_STUB (type) = 1;
15687 }
15688 else
15689 TYPE_STUB_SUPPORTED (type) = 1;
15690
15691 if (die_is_declaration (die, cu))
15692 TYPE_STUB (type) = 1;
15693 else if (attr == NULL && die->child == NULL
15694 && producer_is_realview (cu->producer))
15695 /* RealView does not output the required DW_AT_declaration
15696 on incomplete types. */
15697 TYPE_STUB (type) = 1;
15698
15699 /* We need to add the type field to the die immediately so we don't
15700 infinitely recurse when dealing with pointers to the structure
15701 type within the structure itself. */
15702 set_die_type (die, type, cu);
15703
15704 /* set_die_type should be already done. */
15705 set_descriptive_type (type, die, cu);
15706
15707 return type;
15708}
15709
15710/* A helper for process_structure_scope that handles a single member
15711 DIE. */
15712
15713static void
15714handle_struct_member_die (struct die_info *child_die, struct type *type,
15715 struct field_info *fi,
15716 std::vector<struct symbol *> *template_args,
15717 struct dwarf2_cu *cu)
15718{
15719 if (child_die->tag == DW_TAG_member
15720 || child_die->tag == DW_TAG_variable
15721 || child_die->tag == DW_TAG_variant_part)
15722 {
15723 /* NOTE: carlton/2002-11-05: A C++ static data member
15724 should be a DW_TAG_member that is a declaration, but
15725 all versions of G++ as of this writing (so through at
15726 least 3.2.1) incorrectly generate DW_TAG_variable
15727 tags for them instead. */
15728 dwarf2_add_field (fi, child_die, cu);
15729 }
15730 else if (child_die->tag == DW_TAG_subprogram)
15731 {
15732 /* Rust doesn't have member functions in the C++ sense.
15733 However, it does emit ordinary functions as children
15734 of a struct DIE. */
15735 if (cu->language == language_rust)
15736 read_func_scope (child_die, cu);
15737 else
15738 {
15739 /* C++ member function. */
15740 dwarf2_add_member_fn (fi, child_die, type, cu);
15741 }
15742 }
15743 else if (child_die->tag == DW_TAG_inheritance)
15744 {
15745 /* C++ base class field. */
15746 dwarf2_add_field (fi, child_die, cu);
15747 }
15748 else if (type_can_define_types (child_die))
15749 dwarf2_add_type_defn (fi, child_die, cu);
15750 else if (child_die->tag == DW_TAG_template_type_param
15751 || child_die->tag == DW_TAG_template_value_param)
15752 {
15753 struct symbol *arg = new_symbol (child_die, NULL, cu);
15754
15755 if (arg != NULL)
15756 template_args->push_back (arg);
15757 }
15758 else if (child_die->tag == DW_TAG_variant)
15759 {
15760 /* In a variant we want to get the discriminant and also add a
15761 field for our sole member child. */
15762 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15763
15764 for (struct die_info *variant_child = child_die->child;
15765 variant_child != NULL;
15766 variant_child = sibling_die (variant_child))
15767 {
15768 if (variant_child->tag == DW_TAG_member)
15769 {
15770 handle_struct_member_die (variant_child, type, fi,
15771 template_args, cu);
15772 /* Only handle the one. */
15773 break;
15774 }
15775 }
15776
15777 /* We don't handle this but we might as well report it if we see
15778 it. */
15779 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15780 complaint (&symfile_complaints,
15781 _("DW_AT_discr_list is not supported yet"
15782 " - DIE at %s [in module %s]"),
15783 sect_offset_str (child_die->sect_off),
15784 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15785
15786 /* The first field was just added, so we can stash the
15787 discriminant there. */
15788 gdb_assert (!fi->fields.empty ());
15789 if (discr == NULL)
15790 fi->fields.back ().variant.default_branch = true;
15791 else
15792 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15793 }
15794}
15795
15796/* Finish creating a structure or union type, including filling in
15797 its members and creating a symbol for it. */
15798
15799static void
15800process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15801{
15802 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15803 struct die_info *child_die;
15804 struct type *type;
15805
15806 type = get_die_type (die, cu);
15807 if (type == NULL)
15808 type = read_structure_type (die, cu);
15809
15810 /* When reading a DW_TAG_variant_part, we need to notice when we
15811 read the discriminant member, so we can record it later in the
15812 discriminant_info. */
15813 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15814 sect_offset discr_offset;
15815
15816 if (is_variant_part)
15817 {
15818 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15819 if (discr == NULL)
15820 {
15821 /* Maybe it's a univariant form, an extension we support.
15822 In this case arrange not to check the offset. */
15823 is_variant_part = false;
15824 }
15825 else if (attr_form_is_ref (discr))
15826 {
15827 struct dwarf2_cu *target_cu = cu;
15828 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15829
15830 discr_offset = target_die->sect_off;
15831 }
15832 else
15833 {
15834 complaint (&symfile_complaints,
15835 _("DW_AT_discr does not have DIE reference form"
15836 " - DIE at %s [in module %s]"),
15837 sect_offset_str (die->sect_off),
15838 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15839 is_variant_part = false;
15840 }
15841 }
15842
15843 if (die->child != NULL && ! die_is_declaration (die, cu))
15844 {
15845 struct field_info fi;
15846 std::vector<struct symbol *> template_args;
15847
15848 child_die = die->child;
15849
15850 while (child_die && child_die->tag)
15851 {
15852 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15853
15854 if (is_variant_part && discr_offset == child_die->sect_off)
15855 fi.fields.back ().variant.is_discriminant = true;
15856
15857 child_die = sibling_die (child_die);
15858 }
15859
15860 /* Attach template arguments to type. */
15861 if (!template_args.empty ())
15862 {
15863 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15864 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15865 TYPE_TEMPLATE_ARGUMENTS (type)
15866 = XOBNEWVEC (&objfile->objfile_obstack,
15867 struct symbol *,
15868 TYPE_N_TEMPLATE_ARGUMENTS (type));
15869 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15870 template_args.data (),
15871 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15872 * sizeof (struct symbol *)));
15873 }
15874
15875 /* Attach fields and member functions to the type. */
15876 if (fi.nfields)
15877 dwarf2_attach_fields_to_type (&fi, type, cu);
15878 if (!fi.fnfieldlists.empty ())
15879 {
15880 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15881
15882 /* Get the type which refers to the base class (possibly this
15883 class itself) which contains the vtable pointer for the current
15884 class from the DW_AT_containing_type attribute. This use of
15885 DW_AT_containing_type is a GNU extension. */
15886
15887 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15888 {
15889 struct type *t = die_containing_type (die, cu);
15890
15891 set_type_vptr_basetype (type, t);
15892 if (type == t)
15893 {
15894 int i;
15895
15896 /* Our own class provides vtbl ptr. */
15897 for (i = TYPE_NFIELDS (t) - 1;
15898 i >= TYPE_N_BASECLASSES (t);
15899 --i)
15900 {
15901 const char *fieldname = TYPE_FIELD_NAME (t, i);
15902
15903 if (is_vtable_name (fieldname, cu))
15904 {
15905 set_type_vptr_fieldno (type, i);
15906 break;
15907 }
15908 }
15909
15910 /* Complain if virtual function table field not found. */
15911 if (i < TYPE_N_BASECLASSES (t))
15912 complaint (&symfile_complaints,
15913 _("virtual function table pointer "
15914 "not found when defining class '%s'"),
15915 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
15916 "");
15917 }
15918 else
15919 {
15920 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15921 }
15922 }
15923 else if (cu->producer
15924 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15925 {
15926 /* The IBM XLC compiler does not provide direct indication
15927 of the containing type, but the vtable pointer is
15928 always named __vfp. */
15929
15930 int i;
15931
15932 for (i = TYPE_NFIELDS (type) - 1;
15933 i >= TYPE_N_BASECLASSES (type);
15934 --i)
15935 {
15936 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15937 {
15938 set_type_vptr_fieldno (type, i);
15939 set_type_vptr_basetype (type, type);
15940 break;
15941 }
15942 }
15943 }
15944 }
15945
15946 /* Copy fi.typedef_field_list linked list elements content into the
15947 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15948 if (!fi.typedef_field_list.empty ())
15949 {
15950 int count = fi.typedef_field_list.size ();
15951
15952 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15953 TYPE_TYPEDEF_FIELD_ARRAY (type)
15954 = ((struct decl_field *)
15955 TYPE_ALLOC (type,
15956 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15957 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15958
15959 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15960 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15961 }
15962
15963 /* Copy fi.nested_types_list linked list elements content into the
15964 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15965 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15966 {
15967 int count = fi.nested_types_list.size ();
15968
15969 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15970 TYPE_NESTED_TYPES_ARRAY (type)
15971 = ((struct decl_field *)
15972 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15973 TYPE_NESTED_TYPES_COUNT (type) = count;
15974
15975 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15976 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15977 }
15978 }
15979
15980 quirk_gcc_member_function_pointer (type, objfile);
15981 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15982 cu->rust_unions.push_back (type);
15983
15984 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15985 snapshots) has been known to create a die giving a declaration
15986 for a class that has, as a child, a die giving a definition for a
15987 nested class. So we have to process our children even if the
15988 current die is a declaration. Normally, of course, a declaration
15989 won't have any children at all. */
15990
15991 child_die = die->child;
15992
15993 while (child_die != NULL && child_die->tag)
15994 {
15995 if (child_die->tag == DW_TAG_member
15996 || child_die->tag == DW_TAG_variable
15997 || child_die->tag == DW_TAG_inheritance
15998 || child_die->tag == DW_TAG_template_value_param
15999 || child_die->tag == DW_TAG_template_type_param)
16000 {
16001 /* Do nothing. */
16002 }
16003 else
16004 process_die (child_die, cu);
16005
16006 child_die = sibling_die (child_die);
16007 }
16008
16009 /* Do not consider external references. According to the DWARF standard,
16010 these DIEs are identified by the fact that they have no byte_size
16011 attribute, and a declaration attribute. */
16012 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16013 || !die_is_declaration (die, cu))
16014 new_symbol (die, type, cu);
16015}
16016
16017/* Assuming DIE is an enumeration type, and TYPE is its associated type,
16018 update TYPE using some information only available in DIE's children. */
16019
16020static void
16021update_enumeration_type_from_children (struct die_info *die,
16022 struct type *type,
16023 struct dwarf2_cu *cu)
16024{
16025 struct die_info *child_die;
16026 int unsigned_enum = 1;
16027 int flag_enum = 1;
16028 ULONGEST mask = 0;
16029
16030 auto_obstack obstack;
16031
16032 for (child_die = die->child;
16033 child_die != NULL && child_die->tag;
16034 child_die = sibling_die (child_die))
16035 {
16036 struct attribute *attr;
16037 LONGEST value;
16038 const gdb_byte *bytes;
16039 struct dwarf2_locexpr_baton *baton;
16040 const char *name;
16041
16042 if (child_die->tag != DW_TAG_enumerator)
16043 continue;
16044
16045 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16046 if (attr == NULL)
16047 continue;
16048
16049 name = dwarf2_name (child_die, cu);
16050 if (name == NULL)
16051 name = "<anonymous enumerator>";
16052
16053 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16054 &value, &bytes, &baton);
16055 if (value < 0)
16056 {
16057 unsigned_enum = 0;
16058 flag_enum = 0;
16059 }
16060 else if ((mask & value) != 0)
16061 flag_enum = 0;
16062 else
16063 mask |= value;
16064
16065 /* If we already know that the enum type is neither unsigned, nor
16066 a flag type, no need to look at the rest of the enumerates. */
16067 if (!unsigned_enum && !flag_enum)
16068 break;
16069 }
16070
16071 if (unsigned_enum)
16072 TYPE_UNSIGNED (type) = 1;
16073 if (flag_enum)
16074 TYPE_FLAG_ENUM (type) = 1;
16075}
16076
16077/* Given a DW_AT_enumeration_type die, set its type. We do not
16078 complete the type's fields yet, or create any symbols. */
16079
16080static struct type *
16081read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16082{
16083 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16084 struct type *type;
16085 struct attribute *attr;
16086 const char *name;
16087
16088 /* If the definition of this type lives in .debug_types, read that type.
16089 Don't follow DW_AT_specification though, that will take us back up
16090 the chain and we want to go down. */
16091 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16092 if (attr)
16093 {
16094 type = get_DW_AT_signature_type (die, attr, cu);
16095
16096 /* The type's CU may not be the same as CU.
16097 Ensure TYPE is recorded with CU in die_type_hash. */
16098 return set_die_type (die, type, cu);
16099 }
16100
16101 type = alloc_type (objfile);
16102
16103 TYPE_CODE (type) = TYPE_CODE_ENUM;
16104 name = dwarf2_full_name (NULL, die, cu);
16105 if (name != NULL)
16106 TYPE_TAG_NAME (type) = name;
16107
16108 attr = dwarf2_attr (die, DW_AT_type, cu);
16109 if (attr != NULL)
16110 {
16111 struct type *underlying_type = die_type (die, cu);
16112
16113 TYPE_TARGET_TYPE (type) = underlying_type;
16114 }
16115
16116 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16117 if (attr)
16118 {
16119 TYPE_LENGTH (type) = DW_UNSND (attr);
16120 }
16121 else
16122 {
16123 TYPE_LENGTH (type) = 0;
16124 }
16125
16126 /* The enumeration DIE can be incomplete. In Ada, any type can be
16127 declared as private in the package spec, and then defined only
16128 inside the package body. Such types are known as Taft Amendment
16129 Types. When another package uses such a type, an incomplete DIE
16130 may be generated by the compiler. */
16131 if (die_is_declaration (die, cu))
16132 TYPE_STUB (type) = 1;
16133
16134 /* Finish the creation of this type by using the enum's children.
16135 We must call this even when the underlying type has been provided
16136 so that we can determine if we're looking at a "flag" enum. */
16137 update_enumeration_type_from_children (die, type, cu);
16138
16139 /* If this type has an underlying type that is not a stub, then we
16140 may use its attributes. We always use the "unsigned" attribute
16141 in this situation, because ordinarily we guess whether the type
16142 is unsigned -- but the guess can be wrong and the underlying type
16143 can tell us the reality. However, we defer to a local size
16144 attribute if one exists, because this lets the compiler override
16145 the underlying type if needed. */
16146 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16147 {
16148 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16149 if (TYPE_LENGTH (type) == 0)
16150 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16151 }
16152
16153 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16154
16155 return set_die_type (die, type, cu);
16156}
16157
16158/* Given a pointer to a die which begins an enumeration, process all
16159 the dies that define the members of the enumeration, and create the
16160 symbol for the enumeration type.
16161
16162 NOTE: We reverse the order of the element list. */
16163
16164static void
16165process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16166{
16167 struct type *this_type;
16168
16169 this_type = get_die_type (die, cu);
16170 if (this_type == NULL)
16171 this_type = read_enumeration_type (die, cu);
16172
16173 if (die->child != NULL)
16174 {
16175 struct die_info *child_die;
16176 struct symbol *sym;
16177 struct field *fields = NULL;
16178 int num_fields = 0;
16179 const char *name;
16180
16181 child_die = die->child;
16182 while (child_die && child_die->tag)
16183 {
16184 if (child_die->tag != DW_TAG_enumerator)
16185 {
16186 process_die (child_die, cu);
16187 }
16188 else
16189 {
16190 name = dwarf2_name (child_die, cu);
16191 if (name)
16192 {
16193 sym = new_symbol (child_die, this_type, cu);
16194
16195 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16196 {
16197 fields = (struct field *)
16198 xrealloc (fields,
16199 (num_fields + DW_FIELD_ALLOC_CHUNK)
16200 * sizeof (struct field));
16201 }
16202
16203 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16204 FIELD_TYPE (fields[num_fields]) = NULL;
16205 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16206 FIELD_BITSIZE (fields[num_fields]) = 0;
16207
16208 num_fields++;
16209 }
16210 }
16211
16212 child_die = sibling_die (child_die);
16213 }
16214
16215 if (num_fields)
16216 {
16217 TYPE_NFIELDS (this_type) = num_fields;
16218 TYPE_FIELDS (this_type) = (struct field *)
16219 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16220 memcpy (TYPE_FIELDS (this_type), fields,
16221 sizeof (struct field) * num_fields);
16222 xfree (fields);
16223 }
16224 }
16225
16226 /* If we are reading an enum from a .debug_types unit, and the enum
16227 is a declaration, and the enum is not the signatured type in the
16228 unit, then we do not want to add a symbol for it. Adding a
16229 symbol would in some cases obscure the true definition of the
16230 enum, giving users an incomplete type when the definition is
16231 actually available. Note that we do not want to do this for all
16232 enums which are just declarations, because C++0x allows forward
16233 enum declarations. */
16234 if (cu->per_cu->is_debug_types
16235 && die_is_declaration (die, cu))
16236 {
16237 struct signatured_type *sig_type;
16238
16239 sig_type = (struct signatured_type *) cu->per_cu;
16240 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16241 if (sig_type->type_offset_in_section != die->sect_off)
16242 return;
16243 }
16244
16245 new_symbol (die, this_type, cu);
16246}
16247
16248/* Extract all information from a DW_TAG_array_type DIE and put it in
16249 the DIE's type field. For now, this only handles one dimensional
16250 arrays. */
16251
16252static struct type *
16253read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16254{
16255 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16256 struct die_info *child_die;
16257 struct type *type;
16258 struct type *element_type, *range_type, *index_type;
16259 struct attribute *attr;
16260 const char *name;
16261 struct dynamic_prop *byte_stride_prop = NULL;
16262 unsigned int bit_stride = 0;
16263
16264 element_type = die_type (die, cu);
16265
16266 /* The die_type call above may have already set the type for this DIE. */
16267 type = get_die_type (die, cu);
16268 if (type)
16269 return type;
16270
16271 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16272 if (attr != NULL)
16273 {
16274 int stride_ok;
16275
16276 byte_stride_prop
16277 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16278 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16279 if (!stride_ok)
16280 {
16281 complaint (&symfile_complaints,
16282 _("unable to read array DW_AT_byte_stride "
16283 " - DIE at %s [in module %s]"),
16284 sect_offset_str (die->sect_off),
16285 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16286 /* Ignore this attribute. We will likely not be able to print
16287 arrays of this type correctly, but there is little we can do
16288 to help if we cannot read the attribute's value. */
16289 byte_stride_prop = NULL;
16290 }
16291 }
16292
16293 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16294 if (attr != NULL)
16295 bit_stride = DW_UNSND (attr);
16296
16297 /* Irix 6.2 native cc creates array types without children for
16298 arrays with unspecified length. */
16299 if (die->child == NULL)
16300 {
16301 index_type = objfile_type (objfile)->builtin_int;
16302 range_type = create_static_range_type (NULL, index_type, 0, -1);
16303 type = create_array_type_with_stride (NULL, element_type, range_type,
16304 byte_stride_prop, bit_stride);
16305 return set_die_type (die, type, cu);
16306 }
16307
16308 std::vector<struct type *> range_types;
16309 child_die = die->child;
16310 while (child_die && child_die->tag)
16311 {
16312 if (child_die->tag == DW_TAG_subrange_type)
16313 {
16314 struct type *child_type = read_type_die (child_die, cu);
16315
16316 if (child_type != NULL)
16317 {
16318 /* The range type was succesfully read. Save it for the
16319 array type creation. */
16320 range_types.push_back (child_type);
16321 }
16322 }
16323 child_die = sibling_die (child_die);
16324 }
16325
16326 /* Dwarf2 dimensions are output from left to right, create the
16327 necessary array types in backwards order. */
16328
16329 type = element_type;
16330
16331 if (read_array_order (die, cu) == DW_ORD_col_major)
16332 {
16333 int i = 0;
16334
16335 while (i < range_types.size ())
16336 type = create_array_type_with_stride (NULL, type, range_types[i++],
16337 byte_stride_prop, bit_stride);
16338 }
16339 else
16340 {
16341 size_t ndim = range_types.size ();
16342 while (ndim-- > 0)
16343 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16344 byte_stride_prop, bit_stride);
16345 }
16346
16347 /* Understand Dwarf2 support for vector types (like they occur on
16348 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16349 array type. This is not part of the Dwarf2/3 standard yet, but a
16350 custom vendor extension. The main difference between a regular
16351 array and the vector variant is that vectors are passed by value
16352 to functions. */
16353 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16354 if (attr)
16355 make_vector_type (type);
16356
16357 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16358 implementation may choose to implement triple vectors using this
16359 attribute. */
16360 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16361 if (attr)
16362 {
16363 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16364 TYPE_LENGTH (type) = DW_UNSND (attr);
16365 else
16366 complaint (&symfile_complaints,
16367 _("DW_AT_byte_size for array type smaller "
16368 "than the total size of elements"));
16369 }
16370
16371 name = dwarf2_name (die, cu);
16372 if (name)
16373 TYPE_NAME (type) = name;
16374
16375 /* Install the type in the die. */
16376 set_die_type (die, type, cu);
16377
16378 /* set_die_type should be already done. */
16379 set_descriptive_type (type, die, cu);
16380
16381 return type;
16382}
16383
16384static enum dwarf_array_dim_ordering
16385read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16386{
16387 struct attribute *attr;
16388
16389 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16390
16391 if (attr)
16392 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16393
16394 /* GNU F77 is a special case, as at 08/2004 array type info is the
16395 opposite order to the dwarf2 specification, but data is still
16396 laid out as per normal fortran.
16397
16398 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16399 version checking. */
16400
16401 if (cu->language == language_fortran
16402 && cu->producer && strstr (cu->producer, "GNU F77"))
16403 {
16404 return DW_ORD_row_major;
16405 }
16406
16407 switch (cu->language_defn->la_array_ordering)
16408 {
16409 case array_column_major:
16410 return DW_ORD_col_major;
16411 case array_row_major:
16412 default:
16413 return DW_ORD_row_major;
16414 };
16415}
16416
16417/* Extract all information from a DW_TAG_set_type DIE and put it in
16418 the DIE's type field. */
16419
16420static struct type *
16421read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16422{
16423 struct type *domain_type, *set_type;
16424 struct attribute *attr;
16425
16426 domain_type = die_type (die, cu);
16427
16428 /* The die_type call above may have already set the type for this DIE. */
16429 set_type = get_die_type (die, cu);
16430 if (set_type)
16431 return set_type;
16432
16433 set_type = create_set_type (NULL, domain_type);
16434
16435 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16436 if (attr)
16437 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16438
16439 return set_die_type (die, set_type, cu);
16440}
16441
16442/* A helper for read_common_block that creates a locexpr baton.
16443 SYM is the symbol which we are marking as computed.
16444 COMMON_DIE is the DIE for the common block.
16445 COMMON_LOC is the location expression attribute for the common
16446 block itself.
16447 MEMBER_LOC is the location expression attribute for the particular
16448 member of the common block that we are processing.
16449 CU is the CU from which the above come. */
16450
16451static void
16452mark_common_block_symbol_computed (struct symbol *sym,
16453 struct die_info *common_die,
16454 struct attribute *common_loc,
16455 struct attribute *member_loc,
16456 struct dwarf2_cu *cu)
16457{
16458 struct dwarf2_per_objfile *dwarf2_per_objfile
16459 = cu->per_cu->dwarf2_per_objfile;
16460 struct objfile *objfile = dwarf2_per_objfile->objfile;
16461 struct dwarf2_locexpr_baton *baton;
16462 gdb_byte *ptr;
16463 unsigned int cu_off;
16464 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16465 LONGEST offset = 0;
16466
16467 gdb_assert (common_loc && member_loc);
16468 gdb_assert (attr_form_is_block (common_loc));
16469 gdb_assert (attr_form_is_block (member_loc)
16470 || attr_form_is_constant (member_loc));
16471
16472 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16473 baton->per_cu = cu->per_cu;
16474 gdb_assert (baton->per_cu);
16475
16476 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16477
16478 if (attr_form_is_constant (member_loc))
16479 {
16480 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16481 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16482 }
16483 else
16484 baton->size += DW_BLOCK (member_loc)->size;
16485
16486 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16487 baton->data = ptr;
16488
16489 *ptr++ = DW_OP_call4;
16490 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16491 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16492 ptr += 4;
16493
16494 if (attr_form_is_constant (member_loc))
16495 {
16496 *ptr++ = DW_OP_addr;
16497 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16498 ptr += cu->header.addr_size;
16499 }
16500 else
16501 {
16502 /* We have to copy the data here, because DW_OP_call4 will only
16503 use a DW_AT_location attribute. */
16504 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16505 ptr += DW_BLOCK (member_loc)->size;
16506 }
16507
16508 *ptr++ = DW_OP_plus;
16509 gdb_assert (ptr - baton->data == baton->size);
16510
16511 SYMBOL_LOCATION_BATON (sym) = baton;
16512 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16513}
16514
16515/* Create appropriate locally-scoped variables for all the
16516 DW_TAG_common_block entries. Also create a struct common_block
16517 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16518 is used to sepate the common blocks name namespace from regular
16519 variable names. */
16520
16521static void
16522read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16523{
16524 struct attribute *attr;
16525
16526 attr = dwarf2_attr (die, DW_AT_location, cu);
16527 if (attr)
16528 {
16529 /* Support the .debug_loc offsets. */
16530 if (attr_form_is_block (attr))
16531 {
16532 /* Ok. */
16533 }
16534 else if (attr_form_is_section_offset (attr))
16535 {
16536 dwarf2_complex_location_expr_complaint ();
16537 attr = NULL;
16538 }
16539 else
16540 {
16541 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16542 "common block member");
16543 attr = NULL;
16544 }
16545 }
16546
16547 if (die->child != NULL)
16548 {
16549 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16550 struct die_info *child_die;
16551 size_t n_entries = 0, size;
16552 struct common_block *common_block;
16553 struct symbol *sym;
16554
16555 for (child_die = die->child;
16556 child_die && child_die->tag;
16557 child_die = sibling_die (child_die))
16558 ++n_entries;
16559
16560 size = (sizeof (struct common_block)
16561 + (n_entries - 1) * sizeof (struct symbol *));
16562 common_block
16563 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16564 size);
16565 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16566 common_block->n_entries = 0;
16567
16568 for (child_die = die->child;
16569 child_die && child_die->tag;
16570 child_die = sibling_die (child_die))
16571 {
16572 /* Create the symbol in the DW_TAG_common_block block in the current
16573 symbol scope. */
16574 sym = new_symbol (child_die, NULL, cu);
16575 if (sym != NULL)
16576 {
16577 struct attribute *member_loc;
16578
16579 common_block->contents[common_block->n_entries++] = sym;
16580
16581 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16582 cu);
16583 if (member_loc)
16584 {
16585 /* GDB has handled this for a long time, but it is
16586 not specified by DWARF. It seems to have been
16587 emitted by gfortran at least as recently as:
16588 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16589 complaint (&symfile_complaints,
16590 _("Variable in common block has "
16591 "DW_AT_data_member_location "
16592 "- DIE at %s [in module %s]"),
16593 sect_offset_str (child_die->sect_off),
16594 objfile_name (objfile));
16595
16596 if (attr_form_is_section_offset (member_loc))
16597 dwarf2_complex_location_expr_complaint ();
16598 else if (attr_form_is_constant (member_loc)
16599 || attr_form_is_block (member_loc))
16600 {
16601 if (attr)
16602 mark_common_block_symbol_computed (sym, die, attr,
16603 member_loc, cu);
16604 }
16605 else
16606 dwarf2_complex_location_expr_complaint ();
16607 }
16608 }
16609 }
16610
16611 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16612 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16613 }
16614}
16615
16616/* Create a type for a C++ namespace. */
16617
16618static struct type *
16619read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16620{
16621 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16622 const char *previous_prefix, *name;
16623 int is_anonymous;
16624 struct type *type;
16625
16626 /* For extensions, reuse the type of the original namespace. */
16627 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16628 {
16629 struct die_info *ext_die;
16630 struct dwarf2_cu *ext_cu = cu;
16631
16632 ext_die = dwarf2_extension (die, &ext_cu);
16633 type = read_type_die (ext_die, ext_cu);
16634
16635 /* EXT_CU may not be the same as CU.
16636 Ensure TYPE is recorded with CU in die_type_hash. */
16637 return set_die_type (die, type, cu);
16638 }
16639
16640 name = namespace_name (die, &is_anonymous, cu);
16641
16642 /* Now build the name of the current namespace. */
16643
16644 previous_prefix = determine_prefix (die, cu);
16645 if (previous_prefix[0] != '\0')
16646 name = typename_concat (&objfile->objfile_obstack,
16647 previous_prefix, name, 0, cu);
16648
16649 /* Create the type. */
16650 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16651 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16652
16653 return set_die_type (die, type, cu);
16654}
16655
16656/* Read a namespace scope. */
16657
16658static void
16659read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16660{
16661 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16662 int is_anonymous;
16663
16664 /* Add a symbol associated to this if we haven't seen the namespace
16665 before. Also, add a using directive if it's an anonymous
16666 namespace. */
16667
16668 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16669 {
16670 struct type *type;
16671
16672 type = read_type_die (die, cu);
16673 new_symbol (die, type, cu);
16674
16675 namespace_name (die, &is_anonymous, cu);
16676 if (is_anonymous)
16677 {
16678 const char *previous_prefix = determine_prefix (die, cu);
16679
16680 std::vector<const char *> excludes;
16681 add_using_directive (using_directives (cu->language),
16682 previous_prefix, TYPE_NAME (type), NULL,
16683 NULL, excludes, 0, &objfile->objfile_obstack);
16684 }
16685 }
16686
16687 if (die->child != NULL)
16688 {
16689 struct die_info *child_die = die->child;
16690
16691 while (child_die && child_die->tag)
16692 {
16693 process_die (child_die, cu);
16694 child_die = sibling_die (child_die);
16695 }
16696 }
16697}
16698
16699/* Read a Fortran module as type. This DIE can be only a declaration used for
16700 imported module. Still we need that type as local Fortran "use ... only"
16701 declaration imports depend on the created type in determine_prefix. */
16702
16703static struct type *
16704read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16705{
16706 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16707 const char *module_name;
16708 struct type *type;
16709
16710 module_name = dwarf2_name (die, cu);
16711 if (!module_name)
16712 complaint (&symfile_complaints,
16713 _("DW_TAG_module has no name, offset %s"),
16714 sect_offset_str (die->sect_off));
16715 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16716
16717 /* determine_prefix uses TYPE_TAG_NAME. */
16718 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16719
16720 return set_die_type (die, type, cu);
16721}
16722
16723/* Read a Fortran module. */
16724
16725static void
16726read_module (struct die_info *die, struct dwarf2_cu *cu)
16727{
16728 struct die_info *child_die = die->child;
16729 struct type *type;
16730
16731 type = read_type_die (die, cu);
16732 new_symbol (die, type, cu);
16733
16734 while (child_die && child_die->tag)
16735 {
16736 process_die (child_die, cu);
16737 child_die = sibling_die (child_die);
16738 }
16739}
16740
16741/* Return the name of the namespace represented by DIE. Set
16742 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16743 namespace. */
16744
16745static const char *
16746namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16747{
16748 struct die_info *current_die;
16749 const char *name = NULL;
16750
16751 /* Loop through the extensions until we find a name. */
16752
16753 for (current_die = die;
16754 current_die != NULL;
16755 current_die = dwarf2_extension (die, &cu))
16756 {
16757 /* We don't use dwarf2_name here so that we can detect the absence
16758 of a name -> anonymous namespace. */
16759 name = dwarf2_string_attr (die, DW_AT_name, cu);
16760
16761 if (name != NULL)
16762 break;
16763 }
16764
16765 /* Is it an anonymous namespace? */
16766
16767 *is_anonymous = (name == NULL);
16768 if (*is_anonymous)
16769 name = CP_ANONYMOUS_NAMESPACE_STR;
16770
16771 return name;
16772}
16773
16774/* Extract all information from a DW_TAG_pointer_type DIE and add to
16775 the user defined type vector. */
16776
16777static struct type *
16778read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16779{
16780 struct gdbarch *gdbarch
16781 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16782 struct comp_unit_head *cu_header = &cu->header;
16783 struct type *type;
16784 struct attribute *attr_byte_size;
16785 struct attribute *attr_address_class;
16786 int byte_size, addr_class;
16787 struct type *target_type;
16788
16789 target_type = die_type (die, cu);
16790
16791 /* The die_type call above may have already set the type for this DIE. */
16792 type = get_die_type (die, cu);
16793 if (type)
16794 return type;
16795
16796 type = lookup_pointer_type (target_type);
16797
16798 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16799 if (attr_byte_size)
16800 byte_size = DW_UNSND (attr_byte_size);
16801 else
16802 byte_size = cu_header->addr_size;
16803
16804 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16805 if (attr_address_class)
16806 addr_class = DW_UNSND (attr_address_class);
16807 else
16808 addr_class = DW_ADDR_none;
16809
16810 /* If the pointer size or address class is different than the
16811 default, create a type variant marked as such and set the
16812 length accordingly. */
16813 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
16814 {
16815 if (gdbarch_address_class_type_flags_p (gdbarch))
16816 {
16817 int type_flags;
16818
16819 type_flags = gdbarch_address_class_type_flags
16820 (gdbarch, byte_size, addr_class);
16821 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16822 == 0);
16823 type = make_type_with_address_space (type, type_flags);
16824 }
16825 else if (TYPE_LENGTH (type) != byte_size)
16826 {
16827 complaint (&symfile_complaints,
16828 _("invalid pointer size %d"), byte_size);
16829 }
16830 else
16831 {
16832 /* Should we also complain about unhandled address classes? */
16833 }
16834 }
16835
16836 TYPE_LENGTH (type) = byte_size;
16837 return set_die_type (die, type, cu);
16838}
16839
16840/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16841 the user defined type vector. */
16842
16843static struct type *
16844read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16845{
16846 struct type *type;
16847 struct type *to_type;
16848 struct type *domain;
16849
16850 to_type = die_type (die, cu);
16851 domain = die_containing_type (die, cu);
16852
16853 /* The calls above may have already set the type for this DIE. */
16854 type = get_die_type (die, cu);
16855 if (type)
16856 return type;
16857
16858 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16859 type = lookup_methodptr_type (to_type);
16860 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16861 {
16862 struct type *new_type
16863 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16864
16865 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16866 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16867 TYPE_VARARGS (to_type));
16868 type = lookup_methodptr_type (new_type);
16869 }
16870 else
16871 type = lookup_memberptr_type (to_type, domain);
16872
16873 return set_die_type (die, type, cu);
16874}
16875
16876/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16877 the user defined type vector. */
16878
16879static struct type *
16880read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16881 enum type_code refcode)
16882{
16883 struct comp_unit_head *cu_header = &cu->header;
16884 struct type *type, *target_type;
16885 struct attribute *attr;
16886
16887 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16888
16889 target_type = die_type (die, cu);
16890
16891 /* The die_type call above may have already set the type for this DIE. */
16892 type = get_die_type (die, cu);
16893 if (type)
16894 return type;
16895
16896 type = lookup_reference_type (target_type, refcode);
16897 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16898 if (attr)
16899 {
16900 TYPE_LENGTH (type) = DW_UNSND (attr);
16901 }
16902 else
16903 {
16904 TYPE_LENGTH (type) = cu_header->addr_size;
16905 }
16906 return set_die_type (die, type, cu);
16907}
16908
16909/* Add the given cv-qualifiers to the element type of the array. GCC
16910 outputs DWARF type qualifiers that apply to an array, not the
16911 element type. But GDB relies on the array element type to carry
16912 the cv-qualifiers. This mimics section 6.7.3 of the C99
16913 specification. */
16914
16915static struct type *
16916add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16917 struct type *base_type, int cnst, int voltl)
16918{
16919 struct type *el_type, *inner_array;
16920
16921 base_type = copy_type (base_type);
16922 inner_array = base_type;
16923
16924 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16925 {
16926 TYPE_TARGET_TYPE (inner_array) =
16927 copy_type (TYPE_TARGET_TYPE (inner_array));
16928 inner_array = TYPE_TARGET_TYPE (inner_array);
16929 }
16930
16931 el_type = TYPE_TARGET_TYPE (inner_array);
16932 cnst |= TYPE_CONST (el_type);
16933 voltl |= TYPE_VOLATILE (el_type);
16934 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16935
16936 return set_die_type (die, base_type, cu);
16937}
16938
16939static struct type *
16940read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16941{
16942 struct type *base_type, *cv_type;
16943
16944 base_type = die_type (die, cu);
16945
16946 /* The die_type call above may have already set the type for this DIE. */
16947 cv_type = get_die_type (die, cu);
16948 if (cv_type)
16949 return cv_type;
16950
16951 /* In case the const qualifier is applied to an array type, the element type
16952 is so qualified, not the array type (section 6.7.3 of C99). */
16953 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16954 return add_array_cv_type (die, cu, base_type, 1, 0);
16955
16956 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16957 return set_die_type (die, cv_type, cu);
16958}
16959
16960static struct type *
16961read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16962{
16963 struct type *base_type, *cv_type;
16964
16965 base_type = die_type (die, cu);
16966
16967 /* The die_type call above may have already set the type for this DIE. */
16968 cv_type = get_die_type (die, cu);
16969 if (cv_type)
16970 return cv_type;
16971
16972 /* In case the volatile qualifier is applied to an array type, the
16973 element type is so qualified, not the array type (section 6.7.3
16974 of C99). */
16975 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16976 return add_array_cv_type (die, cu, base_type, 0, 1);
16977
16978 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16979 return set_die_type (die, cv_type, cu);
16980}
16981
16982/* Handle DW_TAG_restrict_type. */
16983
16984static struct type *
16985read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16986{
16987 struct type *base_type, *cv_type;
16988
16989 base_type = die_type (die, cu);
16990
16991 /* The die_type call above may have already set the type for this DIE. */
16992 cv_type = get_die_type (die, cu);
16993 if (cv_type)
16994 return cv_type;
16995
16996 cv_type = make_restrict_type (base_type);
16997 return set_die_type (die, cv_type, cu);
16998}
16999
17000/* Handle DW_TAG_atomic_type. */
17001
17002static struct type *
17003read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17004{
17005 struct type *base_type, *cv_type;
17006
17007 base_type = die_type (die, cu);
17008
17009 /* The die_type call above may have already set the type for this DIE. */
17010 cv_type = get_die_type (die, cu);
17011 if (cv_type)
17012 return cv_type;
17013
17014 cv_type = make_atomic_type (base_type);
17015 return set_die_type (die, cv_type, cu);
17016}
17017
17018/* Extract all information from a DW_TAG_string_type DIE and add to
17019 the user defined type vector. It isn't really a user defined type,
17020 but it behaves like one, with other DIE's using an AT_user_def_type
17021 attribute to reference it. */
17022
17023static struct type *
17024read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17025{
17026 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17027 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17028 struct type *type, *range_type, *index_type, *char_type;
17029 struct attribute *attr;
17030 unsigned int length;
17031
17032 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17033 if (attr)
17034 {
17035 length = DW_UNSND (attr);
17036 }
17037 else
17038 {
17039 /* Check for the DW_AT_byte_size attribute. */
17040 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17041 if (attr)
17042 {
17043 length = DW_UNSND (attr);
17044 }
17045 else
17046 {
17047 length = 1;
17048 }
17049 }
17050
17051 index_type = objfile_type (objfile)->builtin_int;
17052 range_type = create_static_range_type (NULL, index_type, 1, length);
17053 char_type = language_string_char_type (cu->language_defn, gdbarch);
17054 type = create_string_type (NULL, char_type, range_type);
17055
17056 return set_die_type (die, type, cu);
17057}
17058
17059/* Assuming that DIE corresponds to a function, returns nonzero
17060 if the function is prototyped. */
17061
17062static int
17063prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17064{
17065 struct attribute *attr;
17066
17067 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17068 if (attr && (DW_UNSND (attr) != 0))
17069 return 1;
17070
17071 /* The DWARF standard implies that the DW_AT_prototyped attribute
17072 is only meaninful for C, but the concept also extends to other
17073 languages that allow unprototyped functions (Eg: Objective C).
17074 For all other languages, assume that functions are always
17075 prototyped. */
17076 if (cu->language != language_c
17077 && cu->language != language_objc
17078 && cu->language != language_opencl)
17079 return 1;
17080
17081 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17082 prototyped and unprototyped functions; default to prototyped,
17083 since that is more common in modern code (and RealView warns
17084 about unprototyped functions). */
17085 if (producer_is_realview (cu->producer))
17086 return 1;
17087
17088 return 0;
17089}
17090
17091/* Handle DIES due to C code like:
17092
17093 struct foo
17094 {
17095 int (*funcp)(int a, long l);
17096 int b;
17097 };
17098
17099 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17100
17101static struct type *
17102read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17103{
17104 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17105 struct type *type; /* Type that this function returns. */
17106 struct type *ftype; /* Function that returns above type. */
17107 struct attribute *attr;
17108
17109 type = die_type (die, cu);
17110
17111 /* The die_type call above may have already set the type for this DIE. */
17112 ftype = get_die_type (die, cu);
17113 if (ftype)
17114 return ftype;
17115
17116 ftype = lookup_function_type (type);
17117
17118 if (prototyped_function_p (die, cu))
17119 TYPE_PROTOTYPED (ftype) = 1;
17120
17121 /* Store the calling convention in the type if it's available in
17122 the subroutine die. Otherwise set the calling convention to
17123 the default value DW_CC_normal. */
17124 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17125 if (attr)
17126 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17127 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17128 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17129 else
17130 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17131
17132 /* Record whether the function returns normally to its caller or not
17133 if the DWARF producer set that information. */
17134 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17135 if (attr && (DW_UNSND (attr) != 0))
17136 TYPE_NO_RETURN (ftype) = 1;
17137
17138 /* We need to add the subroutine type to the die immediately so
17139 we don't infinitely recurse when dealing with parameters
17140 declared as the same subroutine type. */
17141 set_die_type (die, ftype, cu);
17142
17143 if (die->child != NULL)
17144 {
17145 struct type *void_type = objfile_type (objfile)->builtin_void;
17146 struct die_info *child_die;
17147 int nparams, iparams;
17148
17149 /* Count the number of parameters.
17150 FIXME: GDB currently ignores vararg functions, but knows about
17151 vararg member functions. */
17152 nparams = 0;
17153 child_die = die->child;
17154 while (child_die && child_die->tag)
17155 {
17156 if (child_die->tag == DW_TAG_formal_parameter)
17157 nparams++;
17158 else if (child_die->tag == DW_TAG_unspecified_parameters)
17159 TYPE_VARARGS (ftype) = 1;
17160 child_die = sibling_die (child_die);
17161 }
17162
17163 /* Allocate storage for parameters and fill them in. */
17164 TYPE_NFIELDS (ftype) = nparams;
17165 TYPE_FIELDS (ftype) = (struct field *)
17166 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17167
17168 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17169 even if we error out during the parameters reading below. */
17170 for (iparams = 0; iparams < nparams; iparams++)
17171 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17172
17173 iparams = 0;
17174 child_die = die->child;
17175 while (child_die && child_die->tag)
17176 {
17177 if (child_die->tag == DW_TAG_formal_parameter)
17178 {
17179 struct type *arg_type;
17180
17181 /* DWARF version 2 has no clean way to discern C++
17182 static and non-static member functions. G++ helps
17183 GDB by marking the first parameter for non-static
17184 member functions (which is the this pointer) as
17185 artificial. We pass this information to
17186 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17187
17188 DWARF version 3 added DW_AT_object_pointer, which GCC
17189 4.5 does not yet generate. */
17190 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17191 if (attr)
17192 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17193 else
17194 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17195 arg_type = die_type (child_die, cu);
17196
17197 /* RealView does not mark THIS as const, which the testsuite
17198 expects. GCC marks THIS as const in method definitions,
17199 but not in the class specifications (GCC PR 43053). */
17200 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17201 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17202 {
17203 int is_this = 0;
17204 struct dwarf2_cu *arg_cu = cu;
17205 const char *name = dwarf2_name (child_die, cu);
17206
17207 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17208 if (attr)
17209 {
17210 /* If the compiler emits this, use it. */
17211 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17212 is_this = 1;
17213 }
17214 else if (name && strcmp (name, "this") == 0)
17215 /* Function definitions will have the argument names. */
17216 is_this = 1;
17217 else if (name == NULL && iparams == 0)
17218 /* Declarations may not have the names, so like
17219 elsewhere in GDB, assume an artificial first
17220 argument is "this". */
17221 is_this = 1;
17222
17223 if (is_this)
17224 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17225 arg_type, 0);
17226 }
17227
17228 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17229 iparams++;
17230 }
17231 child_die = sibling_die (child_die);
17232 }
17233 }
17234
17235 return ftype;
17236}
17237
17238static struct type *
17239read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17240{
17241 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17242 const char *name = NULL;
17243 struct type *this_type, *target_type;
17244
17245 name = dwarf2_full_name (NULL, die, cu);
17246 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17247 TYPE_TARGET_STUB (this_type) = 1;
17248 set_die_type (die, this_type, cu);
17249 target_type = die_type (die, cu);
17250 if (target_type != this_type)
17251 TYPE_TARGET_TYPE (this_type) = target_type;
17252 else
17253 {
17254 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17255 spec and cause infinite loops in GDB. */
17256 complaint (&symfile_complaints,
17257 _("Self-referential DW_TAG_typedef "
17258 "- DIE at %s [in module %s]"),
17259 sect_offset_str (die->sect_off), objfile_name (objfile));
17260 TYPE_TARGET_TYPE (this_type) = NULL;
17261 }
17262 return this_type;
17263}
17264
17265/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17266 (which may be different from NAME) to the architecture back-end to allow
17267 it to guess the correct format if necessary. */
17268
17269static struct type *
17270dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17271 const char *name_hint)
17272{
17273 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17274 const struct floatformat **format;
17275 struct type *type;
17276
17277 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17278 if (format)
17279 type = init_float_type (objfile, bits, name, format);
17280 else
17281 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17282
17283 return type;
17284}
17285
17286/* Find a representation of a given base type and install
17287 it in the TYPE field of the die. */
17288
17289static struct type *
17290read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17291{
17292 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17293 struct type *type;
17294 struct attribute *attr;
17295 int encoding = 0, bits = 0;
17296 const char *name;
17297
17298 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17299 if (attr)
17300 {
17301 encoding = DW_UNSND (attr);
17302 }
17303 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17304 if (attr)
17305 {
17306 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17307 }
17308 name = dwarf2_name (die, cu);
17309 if (!name)
17310 {
17311 complaint (&symfile_complaints,
17312 _("DW_AT_name missing from DW_TAG_base_type"));
17313 }
17314
17315 switch (encoding)
17316 {
17317 case DW_ATE_address:
17318 /* Turn DW_ATE_address into a void * pointer. */
17319 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17320 type = init_pointer_type (objfile, bits, name, type);
17321 break;
17322 case DW_ATE_boolean:
17323 type = init_boolean_type (objfile, bits, 1, name);
17324 break;
17325 case DW_ATE_complex_float:
17326 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17327 type = init_complex_type (objfile, name, type);
17328 break;
17329 case DW_ATE_decimal_float:
17330 type = init_decfloat_type (objfile, bits, name);
17331 break;
17332 case DW_ATE_float:
17333 type = dwarf2_init_float_type (objfile, bits, name, name);
17334 break;
17335 case DW_ATE_signed:
17336 type = init_integer_type (objfile, bits, 0, name);
17337 break;
17338 case DW_ATE_unsigned:
17339 if (cu->language == language_fortran
17340 && name
17341 && startswith (name, "character("))
17342 type = init_character_type (objfile, bits, 1, name);
17343 else
17344 type = init_integer_type (objfile, bits, 1, name);
17345 break;
17346 case DW_ATE_signed_char:
17347 if (cu->language == language_ada || cu->language == language_m2
17348 || cu->language == language_pascal
17349 || cu->language == language_fortran)
17350 type = init_character_type (objfile, bits, 0, name);
17351 else
17352 type = init_integer_type (objfile, bits, 0, name);
17353 break;
17354 case DW_ATE_unsigned_char:
17355 if (cu->language == language_ada || cu->language == language_m2
17356 || cu->language == language_pascal
17357 || cu->language == language_fortran
17358 || cu->language == language_rust)
17359 type = init_character_type (objfile, bits, 1, name);
17360 else
17361 type = init_integer_type (objfile, bits, 1, name);
17362 break;
17363 case DW_ATE_UTF:
17364 {
17365 gdbarch *arch = get_objfile_arch (objfile);
17366
17367 if (bits == 16)
17368 type = builtin_type (arch)->builtin_char16;
17369 else if (bits == 32)
17370 type = builtin_type (arch)->builtin_char32;
17371 else
17372 {
17373 complaint (&symfile_complaints,
17374 _("unsupported DW_ATE_UTF bit size: '%d'"),
17375 bits);
17376 type = init_integer_type (objfile, bits, 1, name);
17377 }
17378 return set_die_type (die, type, cu);
17379 }
17380 break;
17381
17382 default:
17383 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
17384 dwarf_type_encoding_name (encoding));
17385 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17386 break;
17387 }
17388
17389 if (name && strcmp (name, "char") == 0)
17390 TYPE_NOSIGN (type) = 1;
17391
17392 return set_die_type (die, type, cu);
17393}
17394
17395/* Parse dwarf attribute if it's a block, reference or constant and put the
17396 resulting value of the attribute into struct bound_prop.
17397 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17398
17399static int
17400attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17401 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17402{
17403 struct dwarf2_property_baton *baton;
17404 struct obstack *obstack
17405 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17406
17407 if (attr == NULL || prop == NULL)
17408 return 0;
17409
17410 if (attr_form_is_block (attr))
17411 {
17412 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17413 baton->referenced_type = NULL;
17414 baton->locexpr.per_cu = cu->per_cu;
17415 baton->locexpr.size = DW_BLOCK (attr)->size;
17416 baton->locexpr.data = DW_BLOCK (attr)->data;
17417 prop->data.baton = baton;
17418 prop->kind = PROP_LOCEXPR;
17419 gdb_assert (prop->data.baton != NULL);
17420 }
17421 else if (attr_form_is_ref (attr))
17422 {
17423 struct dwarf2_cu *target_cu = cu;
17424 struct die_info *target_die;
17425 struct attribute *target_attr;
17426
17427 target_die = follow_die_ref (die, attr, &target_cu);
17428 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17429 if (target_attr == NULL)
17430 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17431 target_cu);
17432 if (target_attr == NULL)
17433 return 0;
17434
17435 switch (target_attr->name)
17436 {
17437 case DW_AT_location:
17438 if (attr_form_is_section_offset (target_attr))
17439 {
17440 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17441 baton->referenced_type = die_type (target_die, target_cu);
17442 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17443 prop->data.baton = baton;
17444 prop->kind = PROP_LOCLIST;
17445 gdb_assert (prop->data.baton != NULL);
17446 }
17447 else if (attr_form_is_block (target_attr))
17448 {
17449 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17450 baton->referenced_type = die_type (target_die, target_cu);
17451 baton->locexpr.per_cu = cu->per_cu;
17452 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17453 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17454 prop->data.baton = baton;
17455 prop->kind = PROP_LOCEXPR;
17456 gdb_assert (prop->data.baton != NULL);
17457 }
17458 else
17459 {
17460 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17461 "dynamic property");
17462 return 0;
17463 }
17464 break;
17465 case DW_AT_data_member_location:
17466 {
17467 LONGEST offset;
17468
17469 if (!handle_data_member_location (target_die, target_cu,
17470 &offset))
17471 return 0;
17472
17473 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17474 baton->referenced_type = read_type_die (target_die->parent,
17475 target_cu);
17476 baton->offset_info.offset = offset;
17477 baton->offset_info.type = die_type (target_die, target_cu);
17478 prop->data.baton = baton;
17479 prop->kind = PROP_ADDR_OFFSET;
17480 break;
17481 }
17482 }
17483 }
17484 else if (attr_form_is_constant (attr))
17485 {
17486 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17487 prop->kind = PROP_CONST;
17488 }
17489 else
17490 {
17491 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17492 dwarf2_name (die, cu));
17493 return 0;
17494 }
17495
17496 return 1;
17497}
17498
17499/* Read the given DW_AT_subrange DIE. */
17500
17501static struct type *
17502read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17503{
17504 struct type *base_type, *orig_base_type;
17505 struct type *range_type;
17506 struct attribute *attr;
17507 struct dynamic_prop low, high;
17508 int low_default_is_valid;
17509 int high_bound_is_count = 0;
17510 const char *name;
17511 LONGEST negative_mask;
17512
17513 orig_base_type = die_type (die, cu);
17514 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17515 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17516 creating the range type, but we use the result of check_typedef
17517 when examining properties of the type. */
17518 base_type = check_typedef (orig_base_type);
17519
17520 /* The die_type call above may have already set the type for this DIE. */
17521 range_type = get_die_type (die, cu);
17522 if (range_type)
17523 return range_type;
17524
17525 low.kind = PROP_CONST;
17526 high.kind = PROP_CONST;
17527 high.data.const_val = 0;
17528
17529 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17530 omitting DW_AT_lower_bound. */
17531 switch (cu->language)
17532 {
17533 case language_c:
17534 case language_cplus:
17535 low.data.const_val = 0;
17536 low_default_is_valid = 1;
17537 break;
17538 case language_fortran:
17539 low.data.const_val = 1;
17540 low_default_is_valid = 1;
17541 break;
17542 case language_d:
17543 case language_objc:
17544 case language_rust:
17545 low.data.const_val = 0;
17546 low_default_is_valid = (cu->header.version >= 4);
17547 break;
17548 case language_ada:
17549 case language_m2:
17550 case language_pascal:
17551 low.data.const_val = 1;
17552 low_default_is_valid = (cu->header.version >= 4);
17553 break;
17554 default:
17555 low.data.const_val = 0;
17556 low_default_is_valid = 0;
17557 break;
17558 }
17559
17560 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17561 if (attr)
17562 attr_to_dynamic_prop (attr, die, cu, &low);
17563 else if (!low_default_is_valid)
17564 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
17565 "- DIE at %s [in module %s]"),
17566 sect_offset_str (die->sect_off),
17567 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17568
17569 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17570 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17571 {
17572 attr = dwarf2_attr (die, DW_AT_count, cu);
17573 if (attr_to_dynamic_prop (attr, die, cu, &high))
17574 {
17575 /* If bounds are constant do the final calculation here. */
17576 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17577 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17578 else
17579 high_bound_is_count = 1;
17580 }
17581 }
17582
17583 /* Dwarf-2 specifications explicitly allows to create subrange types
17584 without specifying a base type.
17585 In that case, the base type must be set to the type of
17586 the lower bound, upper bound or count, in that order, if any of these
17587 three attributes references an object that has a type.
17588 If no base type is found, the Dwarf-2 specifications say that
17589 a signed integer type of size equal to the size of an address should
17590 be used.
17591 For the following C code: `extern char gdb_int [];'
17592 GCC produces an empty range DIE.
17593 FIXME: muller/2010-05-28: Possible references to object for low bound,
17594 high bound or count are not yet handled by this code. */
17595 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17596 {
17597 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17598 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17599 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17600 struct type *int_type = objfile_type (objfile)->builtin_int;
17601
17602 /* Test "int", "long int", and "long long int" objfile types,
17603 and select the first one having a size above or equal to the
17604 architecture address size. */
17605 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17606 base_type = int_type;
17607 else
17608 {
17609 int_type = objfile_type (objfile)->builtin_long;
17610 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17611 base_type = int_type;
17612 else
17613 {
17614 int_type = objfile_type (objfile)->builtin_long_long;
17615 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17616 base_type = int_type;
17617 }
17618 }
17619 }
17620
17621 /* Normally, the DWARF producers are expected to use a signed
17622 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17623 But this is unfortunately not always the case, as witnessed
17624 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17625 is used instead. To work around that ambiguity, we treat
17626 the bounds as signed, and thus sign-extend their values, when
17627 the base type is signed. */
17628 negative_mask =
17629 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17630 if (low.kind == PROP_CONST
17631 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17632 low.data.const_val |= negative_mask;
17633 if (high.kind == PROP_CONST
17634 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17635 high.data.const_val |= negative_mask;
17636
17637 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17638
17639 if (high_bound_is_count)
17640 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17641
17642 /* Ada expects an empty array on no boundary attributes. */
17643 if (attr == NULL && cu->language != language_ada)
17644 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17645
17646 name = dwarf2_name (die, cu);
17647 if (name)
17648 TYPE_NAME (range_type) = name;
17649
17650 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17651 if (attr)
17652 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17653
17654 set_die_type (die, range_type, cu);
17655
17656 /* set_die_type should be already done. */
17657 set_descriptive_type (range_type, die, cu);
17658
17659 return range_type;
17660}
17661
17662static struct type *
17663read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17664{
17665 struct type *type;
17666
17667 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17668 NULL);
17669 TYPE_NAME (type) = dwarf2_name (die, cu);
17670
17671 /* In Ada, an unspecified type is typically used when the description
17672 of the type is defered to a different unit. When encountering
17673 such a type, we treat it as a stub, and try to resolve it later on,
17674 when needed. */
17675 if (cu->language == language_ada)
17676 TYPE_STUB (type) = 1;
17677
17678 return set_die_type (die, type, cu);
17679}
17680
17681/* Read a single die and all its descendents. Set the die's sibling
17682 field to NULL; set other fields in the die correctly, and set all
17683 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17684 location of the info_ptr after reading all of those dies. PARENT
17685 is the parent of the die in question. */
17686
17687static struct die_info *
17688read_die_and_children (const struct die_reader_specs *reader,
17689 const gdb_byte *info_ptr,
17690 const gdb_byte **new_info_ptr,
17691 struct die_info *parent)
17692{
17693 struct die_info *die;
17694 const gdb_byte *cur_ptr;
17695 int has_children;
17696
17697 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17698 if (die == NULL)
17699 {
17700 *new_info_ptr = cur_ptr;
17701 return NULL;
17702 }
17703 store_in_ref_table (die, reader->cu);
17704
17705 if (has_children)
17706 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17707 else
17708 {
17709 die->child = NULL;
17710 *new_info_ptr = cur_ptr;
17711 }
17712
17713 die->sibling = NULL;
17714 die->parent = parent;
17715 return die;
17716}
17717
17718/* Read a die, all of its descendents, and all of its siblings; set
17719 all of the fields of all of the dies correctly. Arguments are as
17720 in read_die_and_children. */
17721
17722static struct die_info *
17723read_die_and_siblings_1 (const struct die_reader_specs *reader,
17724 const gdb_byte *info_ptr,
17725 const gdb_byte **new_info_ptr,
17726 struct die_info *parent)
17727{
17728 struct die_info *first_die, *last_sibling;
17729 const gdb_byte *cur_ptr;
17730
17731 cur_ptr = info_ptr;
17732 first_die = last_sibling = NULL;
17733
17734 while (1)
17735 {
17736 struct die_info *die
17737 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17738
17739 if (die == NULL)
17740 {
17741 *new_info_ptr = cur_ptr;
17742 return first_die;
17743 }
17744
17745 if (!first_die)
17746 first_die = die;
17747 else
17748 last_sibling->sibling = die;
17749
17750 last_sibling = die;
17751 }
17752}
17753
17754/* Read a die, all of its descendents, and all of its siblings; set
17755 all of the fields of all of the dies correctly. Arguments are as
17756 in read_die_and_children.
17757 This the main entry point for reading a DIE and all its children. */
17758
17759static struct die_info *
17760read_die_and_siblings (const struct die_reader_specs *reader,
17761 const gdb_byte *info_ptr,
17762 const gdb_byte **new_info_ptr,
17763 struct die_info *parent)
17764{
17765 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17766 new_info_ptr, parent);
17767
17768 if (dwarf_die_debug)
17769 {
17770 fprintf_unfiltered (gdb_stdlog,
17771 "Read die from %s@0x%x of %s:\n",
17772 get_section_name (reader->die_section),
17773 (unsigned) (info_ptr - reader->die_section->buffer),
17774 bfd_get_filename (reader->abfd));
17775 dump_die (die, dwarf_die_debug);
17776 }
17777
17778 return die;
17779}
17780
17781/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17782 attributes.
17783 The caller is responsible for filling in the extra attributes
17784 and updating (*DIEP)->num_attrs.
17785 Set DIEP to point to a newly allocated die with its information,
17786 except for its child, sibling, and parent fields.
17787 Set HAS_CHILDREN to tell whether the die has children or not. */
17788
17789static const gdb_byte *
17790read_full_die_1 (const struct die_reader_specs *reader,
17791 struct die_info **diep, const gdb_byte *info_ptr,
17792 int *has_children, int num_extra_attrs)
17793{
17794 unsigned int abbrev_number, bytes_read, i;
17795 struct abbrev_info *abbrev;
17796 struct die_info *die;
17797 struct dwarf2_cu *cu = reader->cu;
17798 bfd *abfd = reader->abfd;
17799
17800 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17801 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17802 info_ptr += bytes_read;
17803 if (!abbrev_number)
17804 {
17805 *diep = NULL;
17806 *has_children = 0;
17807 return info_ptr;
17808 }
17809
17810 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17811 if (!abbrev)
17812 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17813 abbrev_number,
17814 bfd_get_filename (abfd));
17815
17816 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17817 die->sect_off = sect_off;
17818 die->tag = abbrev->tag;
17819 die->abbrev = abbrev_number;
17820
17821 /* Make the result usable.
17822 The caller needs to update num_attrs after adding the extra
17823 attributes. */
17824 die->num_attrs = abbrev->num_attrs;
17825
17826 for (i = 0; i < abbrev->num_attrs; ++i)
17827 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17828 info_ptr);
17829
17830 *diep = die;
17831 *has_children = abbrev->has_children;
17832 return info_ptr;
17833}
17834
17835/* Read a die and all its attributes.
17836 Set DIEP to point to a newly allocated die with its information,
17837 except for its child, sibling, and parent fields.
17838 Set HAS_CHILDREN to tell whether the die has children or not. */
17839
17840static const gdb_byte *
17841read_full_die (const struct die_reader_specs *reader,
17842 struct die_info **diep, const gdb_byte *info_ptr,
17843 int *has_children)
17844{
17845 const gdb_byte *result;
17846
17847 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17848
17849 if (dwarf_die_debug)
17850 {
17851 fprintf_unfiltered (gdb_stdlog,
17852 "Read die from %s@0x%x of %s:\n",
17853 get_section_name (reader->die_section),
17854 (unsigned) (info_ptr - reader->die_section->buffer),
17855 bfd_get_filename (reader->abfd));
17856 dump_die (*diep, dwarf_die_debug);
17857 }
17858
17859 return result;
17860}
17861\f
17862/* Abbreviation tables.
17863
17864 In DWARF version 2, the description of the debugging information is
17865 stored in a separate .debug_abbrev section. Before we read any
17866 dies from a section we read in all abbreviations and install them
17867 in a hash table. */
17868
17869/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17870
17871struct abbrev_info *
17872abbrev_table::alloc_abbrev ()
17873{
17874 struct abbrev_info *abbrev;
17875
17876 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
17877 memset (abbrev, 0, sizeof (struct abbrev_info));
17878
17879 return abbrev;
17880}
17881
17882/* Add an abbreviation to the table. */
17883
17884void
17885abbrev_table::add_abbrev (unsigned int abbrev_number,
17886 struct abbrev_info *abbrev)
17887{
17888 unsigned int hash_number;
17889
17890 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17891 abbrev->next = m_abbrevs[hash_number];
17892 m_abbrevs[hash_number] = abbrev;
17893}
17894
17895/* Look up an abbrev in the table.
17896 Returns NULL if the abbrev is not found. */
17897
17898struct abbrev_info *
17899abbrev_table::lookup_abbrev (unsigned int abbrev_number)
17900{
17901 unsigned int hash_number;
17902 struct abbrev_info *abbrev;
17903
17904 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17905 abbrev = m_abbrevs[hash_number];
17906
17907 while (abbrev)
17908 {
17909 if (abbrev->number == abbrev_number)
17910 return abbrev;
17911 abbrev = abbrev->next;
17912 }
17913 return NULL;
17914}
17915
17916/* Read in an abbrev table. */
17917
17918static abbrev_table_up
17919abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
17920 struct dwarf2_section_info *section,
17921 sect_offset sect_off)
17922{
17923 struct objfile *objfile = dwarf2_per_objfile->objfile;
17924 bfd *abfd = get_section_bfd_owner (section);
17925 const gdb_byte *abbrev_ptr;
17926 struct abbrev_info *cur_abbrev;
17927 unsigned int abbrev_number, bytes_read, abbrev_name;
17928 unsigned int abbrev_form;
17929 struct attr_abbrev *cur_attrs;
17930 unsigned int allocated_attrs;
17931
17932 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
17933
17934 dwarf2_read_section (objfile, section);
17935 abbrev_ptr = section->buffer + to_underlying (sect_off);
17936 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17937 abbrev_ptr += bytes_read;
17938
17939 allocated_attrs = ATTR_ALLOC_CHUNK;
17940 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
17941
17942 /* Loop until we reach an abbrev number of 0. */
17943 while (abbrev_number)
17944 {
17945 cur_abbrev = abbrev_table->alloc_abbrev ();
17946
17947 /* read in abbrev header */
17948 cur_abbrev->number = abbrev_number;
17949 cur_abbrev->tag
17950 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17951 abbrev_ptr += bytes_read;
17952 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
17953 abbrev_ptr += 1;
17954
17955 /* now read in declarations */
17956 for (;;)
17957 {
17958 LONGEST implicit_const;
17959
17960 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17961 abbrev_ptr += bytes_read;
17962 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17963 abbrev_ptr += bytes_read;
17964 if (abbrev_form == DW_FORM_implicit_const)
17965 {
17966 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
17967 &bytes_read);
17968 abbrev_ptr += bytes_read;
17969 }
17970 else
17971 {
17972 /* Initialize it due to a false compiler warning. */
17973 implicit_const = -1;
17974 }
17975
17976 if (abbrev_name == 0)
17977 break;
17978
17979 if (cur_abbrev->num_attrs == allocated_attrs)
17980 {
17981 allocated_attrs += ATTR_ALLOC_CHUNK;
17982 cur_attrs
17983 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
17984 }
17985
17986 cur_attrs[cur_abbrev->num_attrs].name
17987 = (enum dwarf_attribute) abbrev_name;
17988 cur_attrs[cur_abbrev->num_attrs].form
17989 = (enum dwarf_form) abbrev_form;
17990 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
17991 ++cur_abbrev->num_attrs;
17992 }
17993
17994 cur_abbrev->attrs =
17995 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
17996 cur_abbrev->num_attrs);
17997 memcpy (cur_abbrev->attrs, cur_attrs,
17998 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
17999
18000 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18001
18002 /* Get next abbreviation.
18003 Under Irix6 the abbreviations for a compilation unit are not
18004 always properly terminated with an abbrev number of 0.
18005 Exit loop if we encounter an abbreviation which we have
18006 already read (which means we are about to read the abbreviations
18007 for the next compile unit) or if the end of the abbreviation
18008 table is reached. */
18009 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18010 break;
18011 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18012 abbrev_ptr += bytes_read;
18013 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18014 break;
18015 }
18016
18017 xfree (cur_attrs);
18018 return abbrev_table;
18019}
18020
18021/* Returns nonzero if TAG represents a type that we might generate a partial
18022 symbol for. */
18023
18024static int
18025is_type_tag_for_partial (int tag)
18026{
18027 switch (tag)
18028 {
18029#if 0
18030 /* Some types that would be reasonable to generate partial symbols for,
18031 that we don't at present. */
18032 case DW_TAG_array_type:
18033 case DW_TAG_file_type:
18034 case DW_TAG_ptr_to_member_type:
18035 case DW_TAG_set_type:
18036 case DW_TAG_string_type:
18037 case DW_TAG_subroutine_type:
18038#endif
18039 case DW_TAG_base_type:
18040 case DW_TAG_class_type:
18041 case DW_TAG_interface_type:
18042 case DW_TAG_enumeration_type:
18043 case DW_TAG_structure_type:
18044 case DW_TAG_subrange_type:
18045 case DW_TAG_typedef:
18046 case DW_TAG_union_type:
18047 return 1;
18048 default:
18049 return 0;
18050 }
18051}
18052
18053/* Load all DIEs that are interesting for partial symbols into memory. */
18054
18055static struct partial_die_info *
18056load_partial_dies (const struct die_reader_specs *reader,
18057 const gdb_byte *info_ptr, int building_psymtab)
18058{
18059 struct dwarf2_cu *cu = reader->cu;
18060 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18061 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18062 unsigned int bytes_read;
18063 unsigned int load_all = 0;
18064 int nesting_level = 1;
18065
18066 parent_die = NULL;
18067 last_die = NULL;
18068
18069 gdb_assert (cu->per_cu != NULL);
18070 if (cu->per_cu->load_all_dies)
18071 load_all = 1;
18072
18073 cu->partial_dies
18074 = htab_create_alloc_ex (cu->header.length / 12,
18075 partial_die_hash,
18076 partial_die_eq,
18077 NULL,
18078 &cu->comp_unit_obstack,
18079 hashtab_obstack_allocate,
18080 dummy_obstack_deallocate);
18081
18082 while (1)
18083 {
18084 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18085
18086 /* A NULL abbrev means the end of a series of children. */
18087 if (abbrev == NULL)
18088 {
18089 if (--nesting_level == 0)
18090 return first_die;
18091
18092 info_ptr += bytes_read;
18093 last_die = parent_die;
18094 parent_die = parent_die->die_parent;
18095 continue;
18096 }
18097
18098 /* Check for template arguments. We never save these; if
18099 they're seen, we just mark the parent, and go on our way. */
18100 if (parent_die != NULL
18101 && cu->language == language_cplus
18102 && (abbrev->tag == DW_TAG_template_type_param
18103 || abbrev->tag == DW_TAG_template_value_param))
18104 {
18105 parent_die->has_template_arguments = 1;
18106
18107 if (!load_all)
18108 {
18109 /* We don't need a partial DIE for the template argument. */
18110 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18111 continue;
18112 }
18113 }
18114
18115 /* We only recurse into c++ subprograms looking for template arguments.
18116 Skip their other children. */
18117 if (!load_all
18118 && cu->language == language_cplus
18119 && parent_die != NULL
18120 && parent_die->tag == DW_TAG_subprogram)
18121 {
18122 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18123 continue;
18124 }
18125
18126 /* Check whether this DIE is interesting enough to save. Normally
18127 we would not be interested in members here, but there may be
18128 later variables referencing them via DW_AT_specification (for
18129 static members). */
18130 if (!load_all
18131 && !is_type_tag_for_partial (abbrev->tag)
18132 && abbrev->tag != DW_TAG_constant
18133 && abbrev->tag != DW_TAG_enumerator
18134 && abbrev->tag != DW_TAG_subprogram
18135 && abbrev->tag != DW_TAG_inlined_subroutine
18136 && abbrev->tag != DW_TAG_lexical_block
18137 && abbrev->tag != DW_TAG_variable
18138 && abbrev->tag != DW_TAG_namespace
18139 && abbrev->tag != DW_TAG_module
18140 && abbrev->tag != DW_TAG_member
18141 && abbrev->tag != DW_TAG_imported_unit
18142 && abbrev->tag != DW_TAG_imported_declaration)
18143 {
18144 /* Otherwise we skip to the next sibling, if any. */
18145 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18146 continue;
18147 }
18148
18149 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18150 abbrev);
18151
18152 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18153
18154 /* This two-pass algorithm for processing partial symbols has a
18155 high cost in cache pressure. Thus, handle some simple cases
18156 here which cover the majority of C partial symbols. DIEs
18157 which neither have specification tags in them, nor could have
18158 specification tags elsewhere pointing at them, can simply be
18159 processed and discarded.
18160
18161 This segment is also optional; scan_partial_symbols and
18162 add_partial_symbol will handle these DIEs if we chain
18163 them in normally. When compilers which do not emit large
18164 quantities of duplicate debug information are more common,
18165 this code can probably be removed. */
18166
18167 /* Any complete simple types at the top level (pretty much all
18168 of them, for a language without namespaces), can be processed
18169 directly. */
18170 if (parent_die == NULL
18171 && pdi.has_specification == 0
18172 && pdi.is_declaration == 0
18173 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18174 || pdi.tag == DW_TAG_base_type
18175 || pdi.tag == DW_TAG_subrange_type))
18176 {
18177 if (building_psymtab && pdi.name != NULL)
18178 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18179 VAR_DOMAIN, LOC_TYPEDEF,
18180 &objfile->static_psymbols,
18181 0, cu->language, objfile);
18182 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18183 continue;
18184 }
18185
18186 /* The exception for DW_TAG_typedef with has_children above is
18187 a workaround of GCC PR debug/47510. In the case of this complaint
18188 type_name_no_tag_or_error will error on such types later.
18189
18190 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18191 it could not find the child DIEs referenced later, this is checked
18192 above. In correct DWARF DW_TAG_typedef should have no children. */
18193
18194 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18195 complaint (&symfile_complaints,
18196 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18197 "- DIE at %s [in module %s]"),
18198 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18199
18200 /* If we're at the second level, and we're an enumerator, and
18201 our parent has no specification (meaning possibly lives in a
18202 namespace elsewhere), then we can add the partial symbol now
18203 instead of queueing it. */
18204 if (pdi.tag == DW_TAG_enumerator
18205 && parent_die != NULL
18206 && parent_die->die_parent == NULL
18207 && parent_die->tag == DW_TAG_enumeration_type
18208 && parent_die->has_specification == 0)
18209 {
18210 if (pdi.name == NULL)
18211 complaint (&symfile_complaints,
18212 _("malformed enumerator DIE ignored"));
18213 else if (building_psymtab)
18214 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18215 VAR_DOMAIN, LOC_CONST,
18216 cu->language == language_cplus
18217 ? &objfile->global_psymbols
18218 : &objfile->static_psymbols,
18219 0, cu->language, objfile);
18220
18221 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18222 continue;
18223 }
18224
18225 struct partial_die_info *part_die
18226 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18227
18228 /* We'll save this DIE so link it in. */
18229 part_die->die_parent = parent_die;
18230 part_die->die_sibling = NULL;
18231 part_die->die_child = NULL;
18232
18233 if (last_die && last_die == parent_die)
18234 last_die->die_child = part_die;
18235 else if (last_die)
18236 last_die->die_sibling = part_die;
18237
18238 last_die = part_die;
18239
18240 if (first_die == NULL)
18241 first_die = part_die;
18242
18243 /* Maybe add the DIE to the hash table. Not all DIEs that we
18244 find interesting need to be in the hash table, because we
18245 also have the parent/sibling/child chains; only those that we
18246 might refer to by offset later during partial symbol reading.
18247
18248 For now this means things that might have be the target of a
18249 DW_AT_specification, DW_AT_abstract_origin, or
18250 DW_AT_extension. DW_AT_extension will refer only to
18251 namespaces; DW_AT_abstract_origin refers to functions (and
18252 many things under the function DIE, but we do not recurse
18253 into function DIEs during partial symbol reading) and
18254 possibly variables as well; DW_AT_specification refers to
18255 declarations. Declarations ought to have the DW_AT_declaration
18256 flag. It happens that GCC forgets to put it in sometimes, but
18257 only for functions, not for types.
18258
18259 Adding more things than necessary to the hash table is harmless
18260 except for the performance cost. Adding too few will result in
18261 wasted time in find_partial_die, when we reread the compilation
18262 unit with load_all_dies set. */
18263
18264 if (load_all
18265 || abbrev->tag == DW_TAG_constant
18266 || abbrev->tag == DW_TAG_subprogram
18267 || abbrev->tag == DW_TAG_variable
18268 || abbrev->tag == DW_TAG_namespace
18269 || part_die->is_declaration)
18270 {
18271 void **slot;
18272
18273 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18274 to_underlying (part_die->sect_off),
18275 INSERT);
18276 *slot = part_die;
18277 }
18278
18279 /* For some DIEs we want to follow their children (if any). For C
18280 we have no reason to follow the children of structures; for other
18281 languages we have to, so that we can get at method physnames
18282 to infer fully qualified class names, for DW_AT_specification,
18283 and for C++ template arguments. For C++, we also look one level
18284 inside functions to find template arguments (if the name of the
18285 function does not already contain the template arguments).
18286
18287 For Ada, we need to scan the children of subprograms and lexical
18288 blocks as well because Ada allows the definition of nested
18289 entities that could be interesting for the debugger, such as
18290 nested subprograms for instance. */
18291 if (last_die->has_children
18292 && (load_all
18293 || last_die->tag == DW_TAG_namespace
18294 || last_die->tag == DW_TAG_module
18295 || last_die->tag == DW_TAG_enumeration_type
18296 || (cu->language == language_cplus
18297 && last_die->tag == DW_TAG_subprogram
18298 && (last_die->name == NULL
18299 || strchr (last_die->name, '<') == NULL))
18300 || (cu->language != language_c
18301 && (last_die->tag == DW_TAG_class_type
18302 || last_die->tag == DW_TAG_interface_type
18303 || last_die->tag == DW_TAG_structure_type
18304 || last_die->tag == DW_TAG_union_type))
18305 || (cu->language == language_ada
18306 && (last_die->tag == DW_TAG_subprogram
18307 || last_die->tag == DW_TAG_lexical_block))))
18308 {
18309 nesting_level++;
18310 parent_die = last_die;
18311 continue;
18312 }
18313
18314 /* Otherwise we skip to the next sibling, if any. */
18315 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18316
18317 /* Back to the top, do it again. */
18318 }
18319}
18320
18321partial_die_info::partial_die_info (sect_offset sect_off_,
18322 struct abbrev_info *abbrev)
18323 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18324{
18325}
18326
18327/* Read a minimal amount of information into the minimal die structure.
18328 INFO_PTR should point just after the initial uleb128 of a DIE. */
18329
18330const gdb_byte *
18331partial_die_info::read (const struct die_reader_specs *reader,
18332 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18333{
18334 struct dwarf2_cu *cu = reader->cu;
18335 struct dwarf2_per_objfile *dwarf2_per_objfile
18336 = cu->per_cu->dwarf2_per_objfile;
18337 unsigned int i;
18338 int has_low_pc_attr = 0;
18339 int has_high_pc_attr = 0;
18340 int high_pc_relative = 0;
18341
18342 for (i = 0; i < abbrev.num_attrs; ++i)
18343 {
18344 struct attribute attr;
18345
18346 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18347
18348 /* Store the data if it is of an attribute we want to keep in a
18349 partial symbol table. */
18350 switch (attr.name)
18351 {
18352 case DW_AT_name:
18353 switch (tag)
18354 {
18355 case DW_TAG_compile_unit:
18356 case DW_TAG_partial_unit:
18357 case DW_TAG_type_unit:
18358 /* Compilation units have a DW_AT_name that is a filename, not
18359 a source language identifier. */
18360 case DW_TAG_enumeration_type:
18361 case DW_TAG_enumerator:
18362 /* These tags always have simple identifiers already; no need
18363 to canonicalize them. */
18364 name = DW_STRING (&attr);
18365 break;
18366 default:
18367 {
18368 struct objfile *objfile = dwarf2_per_objfile->objfile;
18369
18370 name
18371 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18372 &objfile->per_bfd->storage_obstack);
18373 }
18374 break;
18375 }
18376 break;
18377 case DW_AT_linkage_name:
18378 case DW_AT_MIPS_linkage_name:
18379 /* Note that both forms of linkage name might appear. We
18380 assume they will be the same, and we only store the last
18381 one we see. */
18382 if (cu->language == language_ada)
18383 name = DW_STRING (&attr);
18384 linkage_name = DW_STRING (&attr);
18385 break;
18386 case DW_AT_low_pc:
18387 has_low_pc_attr = 1;
18388 lowpc = attr_value_as_address (&attr);
18389 break;
18390 case DW_AT_high_pc:
18391 has_high_pc_attr = 1;
18392 highpc = attr_value_as_address (&attr);
18393 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18394 high_pc_relative = 1;
18395 break;
18396 case DW_AT_location:
18397 /* Support the .debug_loc offsets. */
18398 if (attr_form_is_block (&attr))
18399 {
18400 d.locdesc = DW_BLOCK (&attr);
18401 }
18402 else if (attr_form_is_section_offset (&attr))
18403 {
18404 dwarf2_complex_location_expr_complaint ();
18405 }
18406 else
18407 {
18408 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18409 "partial symbol information");
18410 }
18411 break;
18412 case DW_AT_external:
18413 is_external = DW_UNSND (&attr);
18414 break;
18415 case DW_AT_declaration:
18416 is_declaration = DW_UNSND (&attr);
18417 break;
18418 case DW_AT_type:
18419 has_type = 1;
18420 break;
18421 case DW_AT_abstract_origin:
18422 case DW_AT_specification:
18423 case DW_AT_extension:
18424 has_specification = 1;
18425 spec_offset = dwarf2_get_ref_die_offset (&attr);
18426 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18427 || cu->per_cu->is_dwz);
18428 break;
18429 case DW_AT_sibling:
18430 /* Ignore absolute siblings, they might point outside of
18431 the current compile unit. */
18432 if (attr.form == DW_FORM_ref_addr)
18433 complaint (&symfile_complaints,
18434 _("ignoring absolute DW_AT_sibling"));
18435 else
18436 {
18437 const gdb_byte *buffer = reader->buffer;
18438 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18439 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18440
18441 if (sibling_ptr < info_ptr)
18442 complaint (&symfile_complaints,
18443 _("DW_AT_sibling points backwards"));
18444 else if (sibling_ptr > reader->buffer_end)
18445 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18446 else
18447 sibling = sibling_ptr;
18448 }
18449 break;
18450 case DW_AT_byte_size:
18451 has_byte_size = 1;
18452 break;
18453 case DW_AT_const_value:
18454 has_const_value = 1;
18455 break;
18456 case DW_AT_calling_convention:
18457 /* DWARF doesn't provide a way to identify a program's source-level
18458 entry point. DW_AT_calling_convention attributes are only meant
18459 to describe functions' calling conventions.
18460
18461 However, because it's a necessary piece of information in
18462 Fortran, and before DWARF 4 DW_CC_program was the only
18463 piece of debugging information whose definition refers to
18464 a 'main program' at all, several compilers marked Fortran
18465 main programs with DW_CC_program --- even when those
18466 functions use the standard calling conventions.
18467
18468 Although DWARF now specifies a way to provide this
18469 information, we support this practice for backward
18470 compatibility. */
18471 if (DW_UNSND (&attr) == DW_CC_program
18472 && cu->language == language_fortran)
18473 main_subprogram = 1;
18474 break;
18475 case DW_AT_inline:
18476 if (DW_UNSND (&attr) == DW_INL_inlined
18477 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18478 may_be_inlined = 1;
18479 break;
18480
18481 case DW_AT_import:
18482 if (tag == DW_TAG_imported_unit)
18483 {
18484 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18485 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18486 || cu->per_cu->is_dwz);
18487 }
18488 break;
18489
18490 case DW_AT_main_subprogram:
18491 main_subprogram = DW_UNSND (&attr);
18492 break;
18493
18494 default:
18495 break;
18496 }
18497 }
18498
18499 if (high_pc_relative)
18500 highpc += lowpc;
18501
18502 if (has_low_pc_attr && has_high_pc_attr)
18503 {
18504 /* When using the GNU linker, .gnu.linkonce. sections are used to
18505 eliminate duplicate copies of functions and vtables and such.
18506 The linker will arbitrarily choose one and discard the others.
18507 The AT_*_pc values for such functions refer to local labels in
18508 these sections. If the section from that file was discarded, the
18509 labels are not in the output, so the relocs get a value of 0.
18510 If this is a discarded function, mark the pc bounds as invalid,
18511 so that GDB will ignore it. */
18512 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18513 {
18514 struct objfile *objfile = dwarf2_per_objfile->objfile;
18515 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18516
18517 complaint (&symfile_complaints,
18518 _("DW_AT_low_pc %s is zero "
18519 "for DIE at %s [in module %s]"),
18520 paddress (gdbarch, lowpc),
18521 sect_offset_str (sect_off),
18522 objfile_name (objfile));
18523 }
18524 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18525 else if (lowpc >= highpc)
18526 {
18527 struct objfile *objfile = dwarf2_per_objfile->objfile;
18528 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18529
18530 complaint (&symfile_complaints,
18531 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18532 "for DIE at %s [in module %s]"),
18533 paddress (gdbarch, lowpc),
18534 paddress (gdbarch, highpc),
18535 sect_offset_str (sect_off),
18536 objfile_name (objfile));
18537 }
18538 else
18539 has_pc_info = 1;
18540 }
18541
18542 return info_ptr;
18543}
18544
18545/* Find a cached partial DIE at OFFSET in CU. */
18546
18547struct partial_die_info *
18548dwarf2_cu::find_partial_die (sect_offset sect_off)
18549{
18550 struct partial_die_info *lookup_die = NULL;
18551 struct partial_die_info part_die (sect_off);
18552
18553 lookup_die = ((struct partial_die_info *)
18554 htab_find_with_hash (partial_dies, &part_die,
18555 to_underlying (sect_off)));
18556
18557 return lookup_die;
18558}
18559
18560/* Find a partial DIE at OFFSET, which may or may not be in CU,
18561 except in the case of .debug_types DIEs which do not reference
18562 outside their CU (they do however referencing other types via
18563 DW_FORM_ref_sig8). */
18564
18565static struct partial_die_info *
18566find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18567{
18568 struct dwarf2_per_objfile *dwarf2_per_objfile
18569 = cu->per_cu->dwarf2_per_objfile;
18570 struct objfile *objfile = dwarf2_per_objfile->objfile;
18571 struct dwarf2_per_cu_data *per_cu = NULL;
18572 struct partial_die_info *pd = NULL;
18573
18574 if (offset_in_dwz == cu->per_cu->is_dwz
18575 && offset_in_cu_p (&cu->header, sect_off))
18576 {
18577 pd = cu->find_partial_die (sect_off);
18578 if (pd != NULL)
18579 return pd;
18580 /* We missed recording what we needed.
18581 Load all dies and try again. */
18582 per_cu = cu->per_cu;
18583 }
18584 else
18585 {
18586 /* TUs don't reference other CUs/TUs (except via type signatures). */
18587 if (cu->per_cu->is_debug_types)
18588 {
18589 error (_("Dwarf Error: Type Unit at offset %s contains"
18590 " external reference to offset %s [in module %s].\n"),
18591 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18592 bfd_get_filename (objfile->obfd));
18593 }
18594 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18595 dwarf2_per_objfile);
18596
18597 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18598 load_partial_comp_unit (per_cu);
18599
18600 per_cu->cu->last_used = 0;
18601 pd = per_cu->cu->find_partial_die (sect_off);
18602 }
18603
18604 /* If we didn't find it, and not all dies have been loaded,
18605 load them all and try again. */
18606
18607 if (pd == NULL && per_cu->load_all_dies == 0)
18608 {
18609 per_cu->load_all_dies = 1;
18610
18611 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18612 THIS_CU->cu may already be in use. So we can't just free it and
18613 replace its DIEs with the ones we read in. Instead, we leave those
18614 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18615 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18616 set. */
18617 load_partial_comp_unit (per_cu);
18618
18619 pd = per_cu->cu->find_partial_die (sect_off);
18620 }
18621
18622 if (pd == NULL)
18623 internal_error (__FILE__, __LINE__,
18624 _("could not find partial DIE %s "
18625 "in cache [from module %s]\n"),
18626 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18627 return pd;
18628}
18629
18630/* See if we can figure out if the class lives in a namespace. We do
18631 this by looking for a member function; its demangled name will
18632 contain namespace info, if there is any. */
18633
18634static void
18635guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18636 struct dwarf2_cu *cu)
18637{
18638 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18639 what template types look like, because the demangler
18640 frequently doesn't give the same name as the debug info. We
18641 could fix this by only using the demangled name to get the
18642 prefix (but see comment in read_structure_type). */
18643
18644 struct partial_die_info *real_pdi;
18645 struct partial_die_info *child_pdi;
18646
18647 /* If this DIE (this DIE's specification, if any) has a parent, then
18648 we should not do this. We'll prepend the parent's fully qualified
18649 name when we create the partial symbol. */
18650
18651 real_pdi = struct_pdi;
18652 while (real_pdi->has_specification)
18653 real_pdi = find_partial_die (real_pdi->spec_offset,
18654 real_pdi->spec_is_dwz, cu);
18655
18656 if (real_pdi->die_parent != NULL)
18657 return;
18658
18659 for (child_pdi = struct_pdi->die_child;
18660 child_pdi != NULL;
18661 child_pdi = child_pdi->die_sibling)
18662 {
18663 if (child_pdi->tag == DW_TAG_subprogram
18664 && child_pdi->linkage_name != NULL)
18665 {
18666 char *actual_class_name
18667 = language_class_name_from_physname (cu->language_defn,
18668 child_pdi->linkage_name);
18669 if (actual_class_name != NULL)
18670 {
18671 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18672 struct_pdi->name
18673 = ((const char *)
18674 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18675 actual_class_name,
18676 strlen (actual_class_name)));
18677 xfree (actual_class_name);
18678 }
18679 break;
18680 }
18681 }
18682}
18683
18684void
18685partial_die_info::fixup (struct dwarf2_cu *cu)
18686{
18687 /* Once we've fixed up a die, there's no point in doing so again.
18688 This also avoids a memory leak if we were to call
18689 guess_partial_die_structure_name multiple times. */
18690 if (fixup_called)
18691 return;
18692
18693 /* If we found a reference attribute and the DIE has no name, try
18694 to find a name in the referred to DIE. */
18695
18696 if (name == NULL && has_specification)
18697 {
18698 struct partial_die_info *spec_die;
18699
18700 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18701
18702 spec_die->fixup (cu);
18703
18704 if (spec_die->name)
18705 {
18706 name = spec_die->name;
18707
18708 /* Copy DW_AT_external attribute if it is set. */
18709 if (spec_die->is_external)
18710 is_external = spec_die->is_external;
18711 }
18712 }
18713
18714 /* Set default names for some unnamed DIEs. */
18715
18716 if (name == NULL && tag == DW_TAG_namespace)
18717 name = CP_ANONYMOUS_NAMESPACE_STR;
18718
18719 /* If there is no parent die to provide a namespace, and there are
18720 children, see if we can determine the namespace from their linkage
18721 name. */
18722 if (cu->language == language_cplus
18723 && !VEC_empty (dwarf2_section_info_def,
18724 cu->per_cu->dwarf2_per_objfile->types)
18725 && die_parent == NULL
18726 && has_children
18727 && (tag == DW_TAG_class_type
18728 || tag == DW_TAG_structure_type
18729 || tag == DW_TAG_union_type))
18730 guess_partial_die_structure_name (this, cu);
18731
18732 /* GCC might emit a nameless struct or union that has a linkage
18733 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18734 if (name == NULL
18735 && (tag == DW_TAG_class_type
18736 || tag == DW_TAG_interface_type
18737 || tag == DW_TAG_structure_type
18738 || tag == DW_TAG_union_type)
18739 && linkage_name != NULL)
18740 {
18741 char *demangled;
18742
18743 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18744 if (demangled)
18745 {
18746 const char *base;
18747
18748 /* Strip any leading namespaces/classes, keep only the base name.
18749 DW_AT_name for named DIEs does not contain the prefixes. */
18750 base = strrchr (demangled, ':');
18751 if (base && base > demangled && base[-1] == ':')
18752 base++;
18753 else
18754 base = demangled;
18755
18756 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18757 name
18758 = ((const char *)
18759 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18760 base, strlen (base)));
18761 xfree (demangled);
18762 }
18763 }
18764
18765 fixup_called = 1;
18766}
18767
18768/* Read an attribute value described by an attribute form. */
18769
18770static const gdb_byte *
18771read_attribute_value (const struct die_reader_specs *reader,
18772 struct attribute *attr, unsigned form,
18773 LONGEST implicit_const, const gdb_byte *info_ptr)
18774{
18775 struct dwarf2_cu *cu = reader->cu;
18776 struct dwarf2_per_objfile *dwarf2_per_objfile
18777 = cu->per_cu->dwarf2_per_objfile;
18778 struct objfile *objfile = dwarf2_per_objfile->objfile;
18779 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18780 bfd *abfd = reader->abfd;
18781 struct comp_unit_head *cu_header = &cu->header;
18782 unsigned int bytes_read;
18783 struct dwarf_block *blk;
18784
18785 attr->form = (enum dwarf_form) form;
18786 switch (form)
18787 {
18788 case DW_FORM_ref_addr:
18789 if (cu->header.version == 2)
18790 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18791 else
18792 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18793 &cu->header, &bytes_read);
18794 info_ptr += bytes_read;
18795 break;
18796 case DW_FORM_GNU_ref_alt:
18797 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18798 info_ptr += bytes_read;
18799 break;
18800 case DW_FORM_addr:
18801 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18802 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18803 info_ptr += bytes_read;
18804 break;
18805 case DW_FORM_block2:
18806 blk = dwarf_alloc_block (cu);
18807 blk->size = read_2_bytes (abfd, info_ptr);
18808 info_ptr += 2;
18809 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18810 info_ptr += blk->size;
18811 DW_BLOCK (attr) = blk;
18812 break;
18813 case DW_FORM_block4:
18814 blk = dwarf_alloc_block (cu);
18815 blk->size = read_4_bytes (abfd, info_ptr);
18816 info_ptr += 4;
18817 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18818 info_ptr += blk->size;
18819 DW_BLOCK (attr) = blk;
18820 break;
18821 case DW_FORM_data2:
18822 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18823 info_ptr += 2;
18824 break;
18825 case DW_FORM_data4:
18826 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18827 info_ptr += 4;
18828 break;
18829 case DW_FORM_data8:
18830 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18831 info_ptr += 8;
18832 break;
18833 case DW_FORM_data16:
18834 blk = dwarf_alloc_block (cu);
18835 blk->size = 16;
18836 blk->data = read_n_bytes (abfd, info_ptr, 16);
18837 info_ptr += 16;
18838 DW_BLOCK (attr) = blk;
18839 break;
18840 case DW_FORM_sec_offset:
18841 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18842 info_ptr += bytes_read;
18843 break;
18844 case DW_FORM_string:
18845 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18846 DW_STRING_IS_CANONICAL (attr) = 0;
18847 info_ptr += bytes_read;
18848 break;
18849 case DW_FORM_strp:
18850 if (!cu->per_cu->is_dwz)
18851 {
18852 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18853 abfd, info_ptr, cu_header,
18854 &bytes_read);
18855 DW_STRING_IS_CANONICAL (attr) = 0;
18856 info_ptr += bytes_read;
18857 break;
18858 }
18859 /* FALLTHROUGH */
18860 case DW_FORM_line_strp:
18861 if (!cu->per_cu->is_dwz)
18862 {
18863 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18864 abfd, info_ptr,
18865 cu_header, &bytes_read);
18866 DW_STRING_IS_CANONICAL (attr) = 0;
18867 info_ptr += bytes_read;
18868 break;
18869 }
18870 /* FALLTHROUGH */
18871 case DW_FORM_GNU_strp_alt:
18872 {
18873 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18874 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18875 &bytes_read);
18876
18877 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18878 dwz, str_offset);
18879 DW_STRING_IS_CANONICAL (attr) = 0;
18880 info_ptr += bytes_read;
18881 }
18882 break;
18883 case DW_FORM_exprloc:
18884 case DW_FORM_block:
18885 blk = dwarf_alloc_block (cu);
18886 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18887 info_ptr += bytes_read;
18888 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18889 info_ptr += blk->size;
18890 DW_BLOCK (attr) = blk;
18891 break;
18892 case DW_FORM_block1:
18893 blk = dwarf_alloc_block (cu);
18894 blk->size = read_1_byte (abfd, info_ptr);
18895 info_ptr += 1;
18896 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18897 info_ptr += blk->size;
18898 DW_BLOCK (attr) = blk;
18899 break;
18900 case DW_FORM_data1:
18901 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18902 info_ptr += 1;
18903 break;
18904 case DW_FORM_flag:
18905 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18906 info_ptr += 1;
18907 break;
18908 case DW_FORM_flag_present:
18909 DW_UNSND (attr) = 1;
18910 break;
18911 case DW_FORM_sdata:
18912 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18913 info_ptr += bytes_read;
18914 break;
18915 case DW_FORM_udata:
18916 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18917 info_ptr += bytes_read;
18918 break;
18919 case DW_FORM_ref1:
18920 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18921 + read_1_byte (abfd, info_ptr));
18922 info_ptr += 1;
18923 break;
18924 case DW_FORM_ref2:
18925 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18926 + read_2_bytes (abfd, info_ptr));
18927 info_ptr += 2;
18928 break;
18929 case DW_FORM_ref4:
18930 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18931 + read_4_bytes (abfd, info_ptr));
18932 info_ptr += 4;
18933 break;
18934 case DW_FORM_ref8:
18935 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18936 + read_8_bytes (abfd, info_ptr));
18937 info_ptr += 8;
18938 break;
18939 case DW_FORM_ref_sig8:
18940 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18941 info_ptr += 8;
18942 break;
18943 case DW_FORM_ref_udata:
18944 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18945 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18946 info_ptr += bytes_read;
18947 break;
18948 case DW_FORM_indirect:
18949 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18950 info_ptr += bytes_read;
18951 if (form == DW_FORM_implicit_const)
18952 {
18953 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18954 info_ptr += bytes_read;
18955 }
18956 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18957 info_ptr);
18958 break;
18959 case DW_FORM_implicit_const:
18960 DW_SND (attr) = implicit_const;
18961 break;
18962 case DW_FORM_GNU_addr_index:
18963 if (reader->dwo_file == NULL)
18964 {
18965 /* For now flag a hard error.
18966 Later we can turn this into a complaint. */
18967 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
18968 dwarf_form_name (form),
18969 bfd_get_filename (abfd));
18970 }
18971 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
18972 info_ptr += bytes_read;
18973 break;
18974 case DW_FORM_GNU_str_index:
18975 if (reader->dwo_file == NULL)
18976 {
18977 /* For now flag a hard error.
18978 Later we can turn this into a complaint if warranted. */
18979 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
18980 dwarf_form_name (form),
18981 bfd_get_filename (abfd));
18982 }
18983 {
18984 ULONGEST str_index =
18985 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18986
18987 DW_STRING (attr) = read_str_index (reader, str_index);
18988 DW_STRING_IS_CANONICAL (attr) = 0;
18989 info_ptr += bytes_read;
18990 }
18991 break;
18992 default:
18993 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
18994 dwarf_form_name (form),
18995 bfd_get_filename (abfd));
18996 }
18997
18998 /* Super hack. */
18999 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19000 attr->form = DW_FORM_GNU_ref_alt;
19001
19002 /* We have seen instances where the compiler tried to emit a byte
19003 size attribute of -1 which ended up being encoded as an unsigned
19004 0xffffffff. Although 0xffffffff is technically a valid size value,
19005 an object of this size seems pretty unlikely so we can relatively
19006 safely treat these cases as if the size attribute was invalid and
19007 treat them as zero by default. */
19008 if (attr->name == DW_AT_byte_size
19009 && form == DW_FORM_data4
19010 && DW_UNSND (attr) >= 0xffffffff)
19011 {
19012 complaint
19013 (&symfile_complaints,
19014 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19015 hex_string (DW_UNSND (attr)));
19016 DW_UNSND (attr) = 0;
19017 }
19018
19019 return info_ptr;
19020}
19021
19022/* Read an attribute described by an abbreviated attribute. */
19023
19024static const gdb_byte *
19025read_attribute (const struct die_reader_specs *reader,
19026 struct attribute *attr, struct attr_abbrev *abbrev,
19027 const gdb_byte *info_ptr)
19028{
19029 attr->name = abbrev->name;
19030 return read_attribute_value (reader, attr, abbrev->form,
19031 abbrev->implicit_const, info_ptr);
19032}
19033
19034/* Read dwarf information from a buffer. */
19035
19036static unsigned int
19037read_1_byte (bfd *abfd, const gdb_byte *buf)
19038{
19039 return bfd_get_8 (abfd, buf);
19040}
19041
19042static int
19043read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19044{
19045 return bfd_get_signed_8 (abfd, buf);
19046}
19047
19048static unsigned int
19049read_2_bytes (bfd *abfd, const gdb_byte *buf)
19050{
19051 return bfd_get_16 (abfd, buf);
19052}
19053
19054static int
19055read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19056{
19057 return bfd_get_signed_16 (abfd, buf);
19058}
19059
19060static unsigned int
19061read_4_bytes (bfd *abfd, const gdb_byte *buf)
19062{
19063 return bfd_get_32 (abfd, buf);
19064}
19065
19066static int
19067read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19068{
19069 return bfd_get_signed_32 (abfd, buf);
19070}
19071
19072static ULONGEST
19073read_8_bytes (bfd *abfd, const gdb_byte *buf)
19074{
19075 return bfd_get_64 (abfd, buf);
19076}
19077
19078static CORE_ADDR
19079read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19080 unsigned int *bytes_read)
19081{
19082 struct comp_unit_head *cu_header = &cu->header;
19083 CORE_ADDR retval = 0;
19084
19085 if (cu_header->signed_addr_p)
19086 {
19087 switch (cu_header->addr_size)
19088 {
19089 case 2:
19090 retval = bfd_get_signed_16 (abfd, buf);
19091 break;
19092 case 4:
19093 retval = bfd_get_signed_32 (abfd, buf);
19094 break;
19095 case 8:
19096 retval = bfd_get_signed_64 (abfd, buf);
19097 break;
19098 default:
19099 internal_error (__FILE__, __LINE__,
19100 _("read_address: bad switch, signed [in module %s]"),
19101 bfd_get_filename (abfd));
19102 }
19103 }
19104 else
19105 {
19106 switch (cu_header->addr_size)
19107 {
19108 case 2:
19109 retval = bfd_get_16 (abfd, buf);
19110 break;
19111 case 4:
19112 retval = bfd_get_32 (abfd, buf);
19113 break;
19114 case 8:
19115 retval = bfd_get_64 (abfd, buf);
19116 break;
19117 default:
19118 internal_error (__FILE__, __LINE__,
19119 _("read_address: bad switch, "
19120 "unsigned [in module %s]"),
19121 bfd_get_filename (abfd));
19122 }
19123 }
19124
19125 *bytes_read = cu_header->addr_size;
19126 return retval;
19127}
19128
19129/* Read the initial length from a section. The (draft) DWARF 3
19130 specification allows the initial length to take up either 4 bytes
19131 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19132 bytes describe the length and all offsets will be 8 bytes in length
19133 instead of 4.
19134
19135 An older, non-standard 64-bit format is also handled by this
19136 function. The older format in question stores the initial length
19137 as an 8-byte quantity without an escape value. Lengths greater
19138 than 2^32 aren't very common which means that the initial 4 bytes
19139 is almost always zero. Since a length value of zero doesn't make
19140 sense for the 32-bit format, this initial zero can be considered to
19141 be an escape value which indicates the presence of the older 64-bit
19142 format. As written, the code can't detect (old format) lengths
19143 greater than 4GB. If it becomes necessary to handle lengths
19144 somewhat larger than 4GB, we could allow other small values (such
19145 as the non-sensical values of 1, 2, and 3) to also be used as
19146 escape values indicating the presence of the old format.
19147
19148 The value returned via bytes_read should be used to increment the
19149 relevant pointer after calling read_initial_length().
19150
19151 [ Note: read_initial_length() and read_offset() are based on the
19152 document entitled "DWARF Debugging Information Format", revision
19153 3, draft 8, dated November 19, 2001. This document was obtained
19154 from:
19155
19156 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19157
19158 This document is only a draft and is subject to change. (So beware.)
19159
19160 Details regarding the older, non-standard 64-bit format were
19161 determined empirically by examining 64-bit ELF files produced by
19162 the SGI toolchain on an IRIX 6.5 machine.
19163
19164 - Kevin, July 16, 2002
19165 ] */
19166
19167static LONGEST
19168read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19169{
19170 LONGEST length = bfd_get_32 (abfd, buf);
19171
19172 if (length == 0xffffffff)
19173 {
19174 length = bfd_get_64 (abfd, buf + 4);
19175 *bytes_read = 12;
19176 }
19177 else if (length == 0)
19178 {
19179 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19180 length = bfd_get_64 (abfd, buf);
19181 *bytes_read = 8;
19182 }
19183 else
19184 {
19185 *bytes_read = 4;
19186 }
19187
19188 return length;
19189}
19190
19191/* Cover function for read_initial_length.
19192 Returns the length of the object at BUF, and stores the size of the
19193 initial length in *BYTES_READ and stores the size that offsets will be in
19194 *OFFSET_SIZE.
19195 If the initial length size is not equivalent to that specified in
19196 CU_HEADER then issue a complaint.
19197 This is useful when reading non-comp-unit headers. */
19198
19199static LONGEST
19200read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19201 const struct comp_unit_head *cu_header,
19202 unsigned int *bytes_read,
19203 unsigned int *offset_size)
19204{
19205 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19206
19207 gdb_assert (cu_header->initial_length_size == 4
19208 || cu_header->initial_length_size == 8
19209 || cu_header->initial_length_size == 12);
19210
19211 if (cu_header->initial_length_size != *bytes_read)
19212 complaint (&symfile_complaints,
19213 _("intermixed 32-bit and 64-bit DWARF sections"));
19214
19215 *offset_size = (*bytes_read == 4) ? 4 : 8;
19216 return length;
19217}
19218
19219/* Read an offset from the data stream. The size of the offset is
19220 given by cu_header->offset_size. */
19221
19222static LONGEST
19223read_offset (bfd *abfd, const gdb_byte *buf,
19224 const struct comp_unit_head *cu_header,
19225 unsigned int *bytes_read)
19226{
19227 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19228
19229 *bytes_read = cu_header->offset_size;
19230 return offset;
19231}
19232
19233/* Read an offset from the data stream. */
19234
19235static LONGEST
19236read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19237{
19238 LONGEST retval = 0;
19239
19240 switch (offset_size)
19241 {
19242 case 4:
19243 retval = bfd_get_32 (abfd, buf);
19244 break;
19245 case 8:
19246 retval = bfd_get_64 (abfd, buf);
19247 break;
19248 default:
19249 internal_error (__FILE__, __LINE__,
19250 _("read_offset_1: bad switch [in module %s]"),
19251 bfd_get_filename (abfd));
19252 }
19253
19254 return retval;
19255}
19256
19257static const gdb_byte *
19258read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19259{
19260 /* If the size of a host char is 8 bits, we can return a pointer
19261 to the buffer, otherwise we have to copy the data to a buffer
19262 allocated on the temporary obstack. */
19263 gdb_assert (HOST_CHAR_BIT == 8);
19264 return buf;
19265}
19266
19267static const char *
19268read_direct_string (bfd *abfd, const gdb_byte *buf,
19269 unsigned int *bytes_read_ptr)
19270{
19271 /* If the size of a host char is 8 bits, we can return a pointer
19272 to the string, otherwise we have to copy the string to a buffer
19273 allocated on the temporary obstack. */
19274 gdb_assert (HOST_CHAR_BIT == 8);
19275 if (*buf == '\0')
19276 {
19277 *bytes_read_ptr = 1;
19278 return NULL;
19279 }
19280 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19281 return (const char *) buf;
19282}
19283
19284/* Return pointer to string at section SECT offset STR_OFFSET with error
19285 reporting strings FORM_NAME and SECT_NAME. */
19286
19287static const char *
19288read_indirect_string_at_offset_from (struct objfile *objfile,
19289 bfd *abfd, LONGEST str_offset,
19290 struct dwarf2_section_info *sect,
19291 const char *form_name,
19292 const char *sect_name)
19293{
19294 dwarf2_read_section (objfile, sect);
19295 if (sect->buffer == NULL)
19296 error (_("%s used without %s section [in module %s]"),
19297 form_name, sect_name, bfd_get_filename (abfd));
19298 if (str_offset >= sect->size)
19299 error (_("%s pointing outside of %s section [in module %s]"),
19300 form_name, sect_name, bfd_get_filename (abfd));
19301 gdb_assert (HOST_CHAR_BIT == 8);
19302 if (sect->buffer[str_offset] == '\0')
19303 return NULL;
19304 return (const char *) (sect->buffer + str_offset);
19305}
19306
19307/* Return pointer to string at .debug_str offset STR_OFFSET. */
19308
19309static const char *
19310read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19311 bfd *abfd, LONGEST str_offset)
19312{
19313 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19314 abfd, str_offset,
19315 &dwarf2_per_objfile->str,
19316 "DW_FORM_strp", ".debug_str");
19317}
19318
19319/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19320
19321static const char *
19322read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19323 bfd *abfd, LONGEST str_offset)
19324{
19325 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19326 abfd, str_offset,
19327 &dwarf2_per_objfile->line_str,
19328 "DW_FORM_line_strp",
19329 ".debug_line_str");
19330}
19331
19332/* Read a string at offset STR_OFFSET in the .debug_str section from
19333 the .dwz file DWZ. Throw an error if the offset is too large. If
19334 the string consists of a single NUL byte, return NULL; otherwise
19335 return a pointer to the string. */
19336
19337static const char *
19338read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19339 LONGEST str_offset)
19340{
19341 dwarf2_read_section (objfile, &dwz->str);
19342
19343 if (dwz->str.buffer == NULL)
19344 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19345 "section [in module %s]"),
19346 bfd_get_filename (dwz->dwz_bfd));
19347 if (str_offset >= dwz->str.size)
19348 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19349 ".debug_str section [in module %s]"),
19350 bfd_get_filename (dwz->dwz_bfd));
19351 gdb_assert (HOST_CHAR_BIT == 8);
19352 if (dwz->str.buffer[str_offset] == '\0')
19353 return NULL;
19354 return (const char *) (dwz->str.buffer + str_offset);
19355}
19356
19357/* Return pointer to string at .debug_str offset as read from BUF.
19358 BUF is assumed to be in a compilation unit described by CU_HEADER.
19359 Return *BYTES_READ_PTR count of bytes read from BUF. */
19360
19361static const char *
19362read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19363 const gdb_byte *buf,
19364 const struct comp_unit_head *cu_header,
19365 unsigned int *bytes_read_ptr)
19366{
19367 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19368
19369 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19370}
19371
19372/* Return pointer to string at .debug_line_str offset as read from BUF.
19373 BUF is assumed to be in a compilation unit described by CU_HEADER.
19374 Return *BYTES_READ_PTR count of bytes read from BUF. */
19375
19376static const char *
19377read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19378 bfd *abfd, const gdb_byte *buf,
19379 const struct comp_unit_head *cu_header,
19380 unsigned int *bytes_read_ptr)
19381{
19382 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19383
19384 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19385 str_offset);
19386}
19387
19388ULONGEST
19389read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19390 unsigned int *bytes_read_ptr)
19391{
19392 ULONGEST result;
19393 unsigned int num_read;
19394 int shift;
19395 unsigned char byte;
19396
19397 result = 0;
19398 shift = 0;
19399 num_read = 0;
19400 while (1)
19401 {
19402 byte = bfd_get_8 (abfd, buf);
19403 buf++;
19404 num_read++;
19405 result |= ((ULONGEST) (byte & 127) << shift);
19406 if ((byte & 128) == 0)
19407 {
19408 break;
19409 }
19410 shift += 7;
19411 }
19412 *bytes_read_ptr = num_read;
19413 return result;
19414}
19415
19416static LONGEST
19417read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19418 unsigned int *bytes_read_ptr)
19419{
19420 LONGEST result;
19421 int shift, num_read;
19422 unsigned char byte;
19423
19424 result = 0;
19425 shift = 0;
19426 num_read = 0;
19427 while (1)
19428 {
19429 byte = bfd_get_8 (abfd, buf);
19430 buf++;
19431 num_read++;
19432 result |= ((LONGEST) (byte & 127) << shift);
19433 shift += 7;
19434 if ((byte & 128) == 0)
19435 {
19436 break;
19437 }
19438 }
19439 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19440 result |= -(((LONGEST) 1) << shift);
19441 *bytes_read_ptr = num_read;
19442 return result;
19443}
19444
19445/* Given index ADDR_INDEX in .debug_addr, fetch the value.
19446 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19447 ADDR_SIZE is the size of addresses from the CU header. */
19448
19449static CORE_ADDR
19450read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19451 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19452{
19453 struct objfile *objfile = dwarf2_per_objfile->objfile;
19454 bfd *abfd = objfile->obfd;
19455 const gdb_byte *info_ptr;
19456
19457 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19458 if (dwarf2_per_objfile->addr.buffer == NULL)
19459 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19460 objfile_name (objfile));
19461 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19462 error (_("DW_FORM_addr_index pointing outside of "
19463 ".debug_addr section [in module %s]"),
19464 objfile_name (objfile));
19465 info_ptr = (dwarf2_per_objfile->addr.buffer
19466 + addr_base + addr_index * addr_size);
19467 if (addr_size == 4)
19468 return bfd_get_32 (abfd, info_ptr);
19469 else
19470 return bfd_get_64 (abfd, info_ptr);
19471}
19472
19473/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19474
19475static CORE_ADDR
19476read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19477{
19478 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19479 cu->addr_base, cu->header.addr_size);
19480}
19481
19482/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19483
19484static CORE_ADDR
19485read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19486 unsigned int *bytes_read)
19487{
19488 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19489 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19490
19491 return read_addr_index (cu, addr_index);
19492}
19493
19494/* Data structure to pass results from dwarf2_read_addr_index_reader
19495 back to dwarf2_read_addr_index. */
19496
19497struct dwarf2_read_addr_index_data
19498{
19499 ULONGEST addr_base;
19500 int addr_size;
19501};
19502
19503/* die_reader_func for dwarf2_read_addr_index. */
19504
19505static void
19506dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19507 const gdb_byte *info_ptr,
19508 struct die_info *comp_unit_die,
19509 int has_children,
19510 void *data)
19511{
19512 struct dwarf2_cu *cu = reader->cu;
19513 struct dwarf2_read_addr_index_data *aidata =
19514 (struct dwarf2_read_addr_index_data *) data;
19515
19516 aidata->addr_base = cu->addr_base;
19517 aidata->addr_size = cu->header.addr_size;
19518}
19519
19520/* Given an index in .debug_addr, fetch the value.
19521 NOTE: This can be called during dwarf expression evaluation,
19522 long after the debug information has been read, and thus per_cu->cu
19523 may no longer exist. */
19524
19525CORE_ADDR
19526dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19527 unsigned int addr_index)
19528{
19529 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19530 struct dwarf2_cu *cu = per_cu->cu;
19531 ULONGEST addr_base;
19532 int addr_size;
19533
19534 /* We need addr_base and addr_size.
19535 If we don't have PER_CU->cu, we have to get it.
19536 Nasty, but the alternative is storing the needed info in PER_CU,
19537 which at this point doesn't seem justified: it's not clear how frequently
19538 it would get used and it would increase the size of every PER_CU.
19539 Entry points like dwarf2_per_cu_addr_size do a similar thing
19540 so we're not in uncharted territory here.
19541 Alas we need to be a bit more complicated as addr_base is contained
19542 in the DIE.
19543
19544 We don't need to read the entire CU(/TU).
19545 We just need the header and top level die.
19546
19547 IWBN to use the aging mechanism to let us lazily later discard the CU.
19548 For now we skip this optimization. */
19549
19550 if (cu != NULL)
19551 {
19552 addr_base = cu->addr_base;
19553 addr_size = cu->header.addr_size;
19554 }
19555 else
19556 {
19557 struct dwarf2_read_addr_index_data aidata;
19558
19559 /* Note: We can't use init_cutu_and_read_dies_simple here,
19560 we need addr_base. */
19561 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
19562 dwarf2_read_addr_index_reader, &aidata);
19563 addr_base = aidata.addr_base;
19564 addr_size = aidata.addr_size;
19565 }
19566
19567 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19568 addr_size);
19569}
19570
19571/* Given a DW_FORM_GNU_str_index, fetch the string.
19572 This is only used by the Fission support. */
19573
19574static const char *
19575read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19576{
19577 struct dwarf2_cu *cu = reader->cu;
19578 struct dwarf2_per_objfile *dwarf2_per_objfile
19579 = cu->per_cu->dwarf2_per_objfile;
19580 struct objfile *objfile = dwarf2_per_objfile->objfile;
19581 const char *objf_name = objfile_name (objfile);
19582 bfd *abfd = objfile->obfd;
19583 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19584 struct dwarf2_section_info *str_offsets_section =
19585 &reader->dwo_file->sections.str_offsets;
19586 const gdb_byte *info_ptr;
19587 ULONGEST str_offset;
19588 static const char form_name[] = "DW_FORM_GNU_str_index";
19589
19590 dwarf2_read_section (objfile, str_section);
19591 dwarf2_read_section (objfile, str_offsets_section);
19592 if (str_section->buffer == NULL)
19593 error (_("%s used without .debug_str.dwo section"
19594 " in CU at offset %s [in module %s]"),
19595 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19596 if (str_offsets_section->buffer == NULL)
19597 error (_("%s used without .debug_str_offsets.dwo section"
19598 " in CU at offset %s [in module %s]"),
19599 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19600 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19601 error (_("%s pointing outside of .debug_str_offsets.dwo"
19602 " section in CU at offset %s [in module %s]"),
19603 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19604 info_ptr = (str_offsets_section->buffer
19605 + str_index * cu->header.offset_size);
19606 if (cu->header.offset_size == 4)
19607 str_offset = bfd_get_32 (abfd, info_ptr);
19608 else
19609 str_offset = bfd_get_64 (abfd, info_ptr);
19610 if (str_offset >= str_section->size)
19611 error (_("Offset from %s pointing outside of"
19612 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19613 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19614 return (const char *) (str_section->buffer + str_offset);
19615}
19616
19617/* Return the length of an LEB128 number in BUF. */
19618
19619static int
19620leb128_size (const gdb_byte *buf)
19621{
19622 const gdb_byte *begin = buf;
19623 gdb_byte byte;
19624
19625 while (1)
19626 {
19627 byte = *buf++;
19628 if ((byte & 128) == 0)
19629 return buf - begin;
19630 }
19631}
19632
19633static void
19634set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19635{
19636 switch (lang)
19637 {
19638 case DW_LANG_C89:
19639 case DW_LANG_C99:
19640 case DW_LANG_C11:
19641 case DW_LANG_C:
19642 case DW_LANG_UPC:
19643 cu->language = language_c;
19644 break;
19645 case DW_LANG_Java:
19646 case DW_LANG_C_plus_plus:
19647 case DW_LANG_C_plus_plus_11:
19648 case DW_LANG_C_plus_plus_14:
19649 cu->language = language_cplus;
19650 break;
19651 case DW_LANG_D:
19652 cu->language = language_d;
19653 break;
19654 case DW_LANG_Fortran77:
19655 case DW_LANG_Fortran90:
19656 case DW_LANG_Fortran95:
19657 case DW_LANG_Fortran03:
19658 case DW_LANG_Fortran08:
19659 cu->language = language_fortran;
19660 break;
19661 case DW_LANG_Go:
19662 cu->language = language_go;
19663 break;
19664 case DW_LANG_Mips_Assembler:
19665 cu->language = language_asm;
19666 break;
19667 case DW_LANG_Ada83:
19668 case DW_LANG_Ada95:
19669 cu->language = language_ada;
19670 break;
19671 case DW_LANG_Modula2:
19672 cu->language = language_m2;
19673 break;
19674 case DW_LANG_Pascal83:
19675 cu->language = language_pascal;
19676 break;
19677 case DW_LANG_ObjC:
19678 cu->language = language_objc;
19679 break;
19680 case DW_LANG_Rust:
19681 case DW_LANG_Rust_old:
19682 cu->language = language_rust;
19683 break;
19684 case DW_LANG_Cobol74:
19685 case DW_LANG_Cobol85:
19686 default:
19687 cu->language = language_minimal;
19688 break;
19689 }
19690 cu->language_defn = language_def (cu->language);
19691}
19692
19693/* Return the named attribute or NULL if not there. */
19694
19695static struct attribute *
19696dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19697{
19698 for (;;)
19699 {
19700 unsigned int i;
19701 struct attribute *spec = NULL;
19702
19703 for (i = 0; i < die->num_attrs; ++i)
19704 {
19705 if (die->attrs[i].name == name)
19706 return &die->attrs[i];
19707 if (die->attrs[i].name == DW_AT_specification
19708 || die->attrs[i].name == DW_AT_abstract_origin)
19709 spec = &die->attrs[i];
19710 }
19711
19712 if (!spec)
19713 break;
19714
19715 die = follow_die_ref (die, spec, &cu);
19716 }
19717
19718 return NULL;
19719}
19720
19721/* Return the named attribute or NULL if not there,
19722 but do not follow DW_AT_specification, etc.
19723 This is for use in contexts where we're reading .debug_types dies.
19724 Following DW_AT_specification, DW_AT_abstract_origin will take us
19725 back up the chain, and we want to go down. */
19726
19727static struct attribute *
19728dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19729{
19730 unsigned int i;
19731
19732 for (i = 0; i < die->num_attrs; ++i)
19733 if (die->attrs[i].name == name)
19734 return &die->attrs[i];
19735
19736 return NULL;
19737}
19738
19739/* Return the string associated with a string-typed attribute, or NULL if it
19740 is either not found or is of an incorrect type. */
19741
19742static const char *
19743dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19744{
19745 struct attribute *attr;
19746 const char *str = NULL;
19747
19748 attr = dwarf2_attr (die, name, cu);
19749
19750 if (attr != NULL)
19751 {
19752 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19753 || attr->form == DW_FORM_string
19754 || attr->form == DW_FORM_GNU_str_index
19755 || attr->form == DW_FORM_GNU_strp_alt)
19756 str = DW_STRING (attr);
19757 else
19758 complaint (&symfile_complaints,
19759 _("string type expected for attribute %s for "
19760 "DIE at %s in module %s"),
19761 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19762 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19763 }
19764
19765 return str;
19766}
19767
19768/* Return non-zero iff the attribute NAME is defined for the given DIE,
19769 and holds a non-zero value. This function should only be used for
19770 DW_FORM_flag or DW_FORM_flag_present attributes. */
19771
19772static int
19773dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19774{
19775 struct attribute *attr = dwarf2_attr (die, name, cu);
19776
19777 return (attr && DW_UNSND (attr));
19778}
19779
19780static int
19781die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19782{
19783 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19784 which value is non-zero. However, we have to be careful with
19785 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19786 (via dwarf2_flag_true_p) follows this attribute. So we may
19787 end up accidently finding a declaration attribute that belongs
19788 to a different DIE referenced by the specification attribute,
19789 even though the given DIE does not have a declaration attribute. */
19790 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19791 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19792}
19793
19794/* Return the die giving the specification for DIE, if there is
19795 one. *SPEC_CU is the CU containing DIE on input, and the CU
19796 containing the return value on output. If there is no
19797 specification, but there is an abstract origin, that is
19798 returned. */
19799
19800static struct die_info *
19801die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19802{
19803 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19804 *spec_cu);
19805
19806 if (spec_attr == NULL)
19807 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19808
19809 if (spec_attr == NULL)
19810 return NULL;
19811 else
19812 return follow_die_ref (die, spec_attr, spec_cu);
19813}
19814
19815/* Stub for free_line_header to match void * callback types. */
19816
19817static void
19818free_line_header_voidp (void *arg)
19819{
19820 struct line_header *lh = (struct line_header *) arg;
19821
19822 delete lh;
19823}
19824
19825void
19826line_header::add_include_dir (const char *include_dir)
19827{
19828 if (dwarf_line_debug >= 2)
19829 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19830 include_dirs.size () + 1, include_dir);
19831
19832 include_dirs.push_back (include_dir);
19833}
19834
19835void
19836line_header::add_file_name (const char *name,
19837 dir_index d_index,
19838 unsigned int mod_time,
19839 unsigned int length)
19840{
19841 if (dwarf_line_debug >= 2)
19842 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19843 (unsigned) file_names.size () + 1, name);
19844
19845 file_names.emplace_back (name, d_index, mod_time, length);
19846}
19847
19848/* A convenience function to find the proper .debug_line section for a CU. */
19849
19850static struct dwarf2_section_info *
19851get_debug_line_section (struct dwarf2_cu *cu)
19852{
19853 struct dwarf2_section_info *section;
19854 struct dwarf2_per_objfile *dwarf2_per_objfile
19855 = cu->per_cu->dwarf2_per_objfile;
19856
19857 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19858 DWO file. */
19859 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19860 section = &cu->dwo_unit->dwo_file->sections.line;
19861 else if (cu->per_cu->is_dwz)
19862 {
19863 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19864
19865 section = &dwz->line;
19866 }
19867 else
19868 section = &dwarf2_per_objfile->line;
19869
19870 return section;
19871}
19872
19873/* Read directory or file name entry format, starting with byte of
19874 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19875 entries count and the entries themselves in the described entry
19876 format. */
19877
19878static void
19879read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19880 bfd *abfd, const gdb_byte **bufp,
19881 struct line_header *lh,
19882 const struct comp_unit_head *cu_header,
19883 void (*callback) (struct line_header *lh,
19884 const char *name,
19885 dir_index d_index,
19886 unsigned int mod_time,
19887 unsigned int length))
19888{
19889 gdb_byte format_count, formati;
19890 ULONGEST data_count, datai;
19891 const gdb_byte *buf = *bufp;
19892 const gdb_byte *format_header_data;
19893 unsigned int bytes_read;
19894
19895 format_count = read_1_byte (abfd, buf);
19896 buf += 1;
19897 format_header_data = buf;
19898 for (formati = 0; formati < format_count; formati++)
19899 {
19900 read_unsigned_leb128 (abfd, buf, &bytes_read);
19901 buf += bytes_read;
19902 read_unsigned_leb128 (abfd, buf, &bytes_read);
19903 buf += bytes_read;
19904 }
19905
19906 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19907 buf += bytes_read;
19908 for (datai = 0; datai < data_count; datai++)
19909 {
19910 const gdb_byte *format = format_header_data;
19911 struct file_entry fe;
19912
19913 for (formati = 0; formati < format_count; formati++)
19914 {
19915 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19916 format += bytes_read;
19917
19918 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19919 format += bytes_read;
19920
19921 gdb::optional<const char *> string;
19922 gdb::optional<unsigned int> uint;
19923
19924 switch (form)
19925 {
19926 case DW_FORM_string:
19927 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19928 buf += bytes_read;
19929 break;
19930
19931 case DW_FORM_line_strp:
19932 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19933 abfd, buf,
19934 cu_header,
19935 &bytes_read));
19936 buf += bytes_read;
19937 break;
19938
19939 case DW_FORM_data1:
19940 uint.emplace (read_1_byte (abfd, buf));
19941 buf += 1;
19942 break;
19943
19944 case DW_FORM_data2:
19945 uint.emplace (read_2_bytes (abfd, buf));
19946 buf += 2;
19947 break;
19948
19949 case DW_FORM_data4:
19950 uint.emplace (read_4_bytes (abfd, buf));
19951 buf += 4;
19952 break;
19953
19954 case DW_FORM_data8:
19955 uint.emplace (read_8_bytes (abfd, buf));
19956 buf += 8;
19957 break;
19958
19959 case DW_FORM_udata:
19960 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19961 buf += bytes_read;
19962 break;
19963
19964 case DW_FORM_block:
19965 /* It is valid only for DW_LNCT_timestamp which is ignored by
19966 current GDB. */
19967 break;
19968 }
19969
19970 switch (content_type)
19971 {
19972 case DW_LNCT_path:
19973 if (string.has_value ())
19974 fe.name = *string;
19975 break;
19976 case DW_LNCT_directory_index:
19977 if (uint.has_value ())
19978 fe.d_index = (dir_index) *uint;
19979 break;
19980 case DW_LNCT_timestamp:
19981 if (uint.has_value ())
19982 fe.mod_time = *uint;
19983 break;
19984 case DW_LNCT_size:
19985 if (uint.has_value ())
19986 fe.length = *uint;
19987 break;
19988 case DW_LNCT_MD5:
19989 break;
19990 default:
19991 complaint (&symfile_complaints,
19992 _("Unknown format content type %s"),
19993 pulongest (content_type));
19994 }
19995 }
19996
19997 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
19998 }
19999
20000 *bufp = buf;
20001}
20002
20003/* Read the statement program header starting at OFFSET in
20004 .debug_line, or .debug_line.dwo. Return a pointer
20005 to a struct line_header, allocated using xmalloc.
20006 Returns NULL if there is a problem reading the header, e.g., if it
20007 has a version we don't understand.
20008
20009 NOTE: the strings in the include directory and file name tables of
20010 the returned object point into the dwarf line section buffer,
20011 and must not be freed. */
20012
20013static line_header_up
20014dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20015{
20016 const gdb_byte *line_ptr;
20017 unsigned int bytes_read, offset_size;
20018 int i;
20019 const char *cur_dir, *cur_file;
20020 struct dwarf2_section_info *section;
20021 bfd *abfd;
20022 struct dwarf2_per_objfile *dwarf2_per_objfile
20023 = cu->per_cu->dwarf2_per_objfile;
20024
20025 section = get_debug_line_section (cu);
20026 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20027 if (section->buffer == NULL)
20028 {
20029 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20030 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20031 else
20032 complaint (&symfile_complaints, _("missing .debug_line section"));
20033 return 0;
20034 }
20035
20036 /* We can't do this until we know the section is non-empty.
20037 Only then do we know we have such a section. */
20038 abfd = get_section_bfd_owner (section);
20039
20040 /* Make sure that at least there's room for the total_length field.
20041 That could be 12 bytes long, but we're just going to fudge that. */
20042 if (to_underlying (sect_off) + 4 >= section->size)
20043 {
20044 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20045 return 0;
20046 }
20047
20048 line_header_up lh (new line_header ());
20049
20050 lh->sect_off = sect_off;
20051 lh->offset_in_dwz = cu->per_cu->is_dwz;
20052
20053 line_ptr = section->buffer + to_underlying (sect_off);
20054
20055 /* Read in the header. */
20056 lh->total_length =
20057 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20058 &bytes_read, &offset_size);
20059 line_ptr += bytes_read;
20060 if (line_ptr + lh->total_length > (section->buffer + section->size))
20061 {
20062 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20063 return 0;
20064 }
20065 lh->statement_program_end = line_ptr + lh->total_length;
20066 lh->version = read_2_bytes (abfd, line_ptr);
20067 line_ptr += 2;
20068 if (lh->version > 5)
20069 {
20070 /* This is a version we don't understand. The format could have
20071 changed in ways we don't handle properly so just punt. */
20072 complaint (&symfile_complaints,
20073 _("unsupported version in .debug_line section"));
20074 return NULL;
20075 }
20076 if (lh->version >= 5)
20077 {
20078 gdb_byte segment_selector_size;
20079
20080 /* Skip address size. */
20081 read_1_byte (abfd, line_ptr);
20082 line_ptr += 1;
20083
20084 segment_selector_size = read_1_byte (abfd, line_ptr);
20085 line_ptr += 1;
20086 if (segment_selector_size != 0)
20087 {
20088 complaint (&symfile_complaints,
20089 _("unsupported segment selector size %u "
20090 "in .debug_line section"),
20091 segment_selector_size);
20092 return NULL;
20093 }
20094 }
20095 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20096 line_ptr += offset_size;
20097 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20098 line_ptr += 1;
20099 if (lh->version >= 4)
20100 {
20101 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20102 line_ptr += 1;
20103 }
20104 else
20105 lh->maximum_ops_per_instruction = 1;
20106
20107 if (lh->maximum_ops_per_instruction == 0)
20108 {
20109 lh->maximum_ops_per_instruction = 1;
20110 complaint (&symfile_complaints,
20111 _("invalid maximum_ops_per_instruction "
20112 "in `.debug_line' section"));
20113 }
20114
20115 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20116 line_ptr += 1;
20117 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20118 line_ptr += 1;
20119 lh->line_range = read_1_byte (abfd, line_ptr);
20120 line_ptr += 1;
20121 lh->opcode_base = read_1_byte (abfd, line_ptr);
20122 line_ptr += 1;
20123 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20124
20125 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20126 for (i = 1; i < lh->opcode_base; ++i)
20127 {
20128 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20129 line_ptr += 1;
20130 }
20131
20132 if (lh->version >= 5)
20133 {
20134 /* Read directory table. */
20135 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20136 &cu->header,
20137 [] (struct line_header *lh, const char *name,
20138 dir_index d_index, unsigned int mod_time,
20139 unsigned int length)
20140 {
20141 lh->add_include_dir (name);
20142 });
20143
20144 /* Read file name table. */
20145 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20146 &cu->header,
20147 [] (struct line_header *lh, const char *name,
20148 dir_index d_index, unsigned int mod_time,
20149 unsigned int length)
20150 {
20151 lh->add_file_name (name, d_index, mod_time, length);
20152 });
20153 }
20154 else
20155 {
20156 /* Read directory table. */
20157 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20158 {
20159 line_ptr += bytes_read;
20160 lh->add_include_dir (cur_dir);
20161 }
20162 line_ptr += bytes_read;
20163
20164 /* Read file name table. */
20165 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20166 {
20167 unsigned int mod_time, length;
20168 dir_index d_index;
20169
20170 line_ptr += bytes_read;
20171 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20172 line_ptr += bytes_read;
20173 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20174 line_ptr += bytes_read;
20175 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20176 line_ptr += bytes_read;
20177
20178 lh->add_file_name (cur_file, d_index, mod_time, length);
20179 }
20180 line_ptr += bytes_read;
20181 }
20182 lh->statement_program_start = line_ptr;
20183
20184 if (line_ptr > (section->buffer + section->size))
20185 complaint (&symfile_complaints,
20186 _("line number info header doesn't "
20187 "fit in `.debug_line' section"));
20188
20189 return lh;
20190}
20191
20192/* Subroutine of dwarf_decode_lines to simplify it.
20193 Return the file name of the psymtab for included file FILE_INDEX
20194 in line header LH of PST.
20195 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20196 If space for the result is malloc'd, *NAME_HOLDER will be set.
20197 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20198
20199static const char *
20200psymtab_include_file_name (const struct line_header *lh, int file_index,
20201 const struct partial_symtab *pst,
20202 const char *comp_dir,
20203 gdb::unique_xmalloc_ptr<char> *name_holder)
20204{
20205 const file_entry &fe = lh->file_names[file_index];
20206 const char *include_name = fe.name;
20207 const char *include_name_to_compare = include_name;
20208 const char *pst_filename;
20209 int file_is_pst;
20210
20211 const char *dir_name = fe.include_dir (lh);
20212
20213 gdb::unique_xmalloc_ptr<char> hold_compare;
20214 if (!IS_ABSOLUTE_PATH (include_name)
20215 && (dir_name != NULL || comp_dir != NULL))
20216 {
20217 /* Avoid creating a duplicate psymtab for PST.
20218 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20219 Before we do the comparison, however, we need to account
20220 for DIR_NAME and COMP_DIR.
20221 First prepend dir_name (if non-NULL). If we still don't
20222 have an absolute path prepend comp_dir (if non-NULL).
20223 However, the directory we record in the include-file's
20224 psymtab does not contain COMP_DIR (to match the
20225 corresponding symtab(s)).
20226
20227 Example:
20228
20229 bash$ cd /tmp
20230 bash$ gcc -g ./hello.c
20231 include_name = "hello.c"
20232 dir_name = "."
20233 DW_AT_comp_dir = comp_dir = "/tmp"
20234 DW_AT_name = "./hello.c"
20235
20236 */
20237
20238 if (dir_name != NULL)
20239 {
20240 name_holder->reset (concat (dir_name, SLASH_STRING,
20241 include_name, (char *) NULL));
20242 include_name = name_holder->get ();
20243 include_name_to_compare = include_name;
20244 }
20245 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20246 {
20247 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20248 include_name, (char *) NULL));
20249 include_name_to_compare = hold_compare.get ();
20250 }
20251 }
20252
20253 pst_filename = pst->filename;
20254 gdb::unique_xmalloc_ptr<char> copied_name;
20255 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20256 {
20257 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20258 pst_filename, (char *) NULL));
20259 pst_filename = copied_name.get ();
20260 }
20261
20262 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20263
20264 if (file_is_pst)
20265 return NULL;
20266 return include_name;
20267}
20268
20269/* State machine to track the state of the line number program. */
20270
20271class lnp_state_machine
20272{
20273public:
20274 /* Initialize a machine state for the start of a line number
20275 program. */
20276 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20277
20278 file_entry *current_file ()
20279 {
20280 /* lh->file_names is 0-based, but the file name numbers in the
20281 statement program are 1-based. */
20282 return m_line_header->file_name_at (m_file);
20283 }
20284
20285 /* Record the line in the state machine. END_SEQUENCE is true if
20286 we're processing the end of a sequence. */
20287 void record_line (bool end_sequence);
20288
20289 /* Check address and if invalid nop-out the rest of the lines in this
20290 sequence. */
20291 void check_line_address (struct dwarf2_cu *cu,
20292 const gdb_byte *line_ptr,
20293 CORE_ADDR lowpc, CORE_ADDR address);
20294
20295 void handle_set_discriminator (unsigned int discriminator)
20296 {
20297 m_discriminator = discriminator;
20298 m_line_has_non_zero_discriminator |= discriminator != 0;
20299 }
20300
20301 /* Handle DW_LNE_set_address. */
20302 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20303 {
20304 m_op_index = 0;
20305 address += baseaddr;
20306 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20307 }
20308
20309 /* Handle DW_LNS_advance_pc. */
20310 void handle_advance_pc (CORE_ADDR adjust);
20311
20312 /* Handle a special opcode. */
20313 void handle_special_opcode (unsigned char op_code);
20314
20315 /* Handle DW_LNS_advance_line. */
20316 void handle_advance_line (int line_delta)
20317 {
20318 advance_line (line_delta);
20319 }
20320
20321 /* Handle DW_LNS_set_file. */
20322 void handle_set_file (file_name_index file);
20323
20324 /* Handle DW_LNS_negate_stmt. */
20325 void handle_negate_stmt ()
20326 {
20327 m_is_stmt = !m_is_stmt;
20328 }
20329
20330 /* Handle DW_LNS_const_add_pc. */
20331 void handle_const_add_pc ();
20332
20333 /* Handle DW_LNS_fixed_advance_pc. */
20334 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20335 {
20336 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20337 m_op_index = 0;
20338 }
20339
20340 /* Handle DW_LNS_copy. */
20341 void handle_copy ()
20342 {
20343 record_line (false);
20344 m_discriminator = 0;
20345 }
20346
20347 /* Handle DW_LNE_end_sequence. */
20348 void handle_end_sequence ()
20349 {
20350 m_record_line_callback = ::record_line;
20351 }
20352
20353private:
20354 /* Advance the line by LINE_DELTA. */
20355 void advance_line (int line_delta)
20356 {
20357 m_line += line_delta;
20358
20359 if (line_delta != 0)
20360 m_line_has_non_zero_discriminator = m_discriminator != 0;
20361 }
20362
20363 gdbarch *m_gdbarch;
20364
20365 /* True if we're recording lines.
20366 Otherwise we're building partial symtabs and are just interested in
20367 finding include files mentioned by the line number program. */
20368 bool m_record_lines_p;
20369
20370 /* The line number header. */
20371 line_header *m_line_header;
20372
20373 /* These are part of the standard DWARF line number state machine,
20374 and initialized according to the DWARF spec. */
20375
20376 unsigned char m_op_index = 0;
20377 /* The line table index (1-based) of the current file. */
20378 file_name_index m_file = (file_name_index) 1;
20379 unsigned int m_line = 1;
20380
20381 /* These are initialized in the constructor. */
20382
20383 CORE_ADDR m_address;
20384 bool m_is_stmt;
20385 unsigned int m_discriminator;
20386
20387 /* Additional bits of state we need to track. */
20388
20389 /* The last file that we called dwarf2_start_subfile for.
20390 This is only used for TLLs. */
20391 unsigned int m_last_file = 0;
20392 /* The last file a line number was recorded for. */
20393 struct subfile *m_last_subfile = NULL;
20394
20395 /* The function to call to record a line. */
20396 record_line_ftype *m_record_line_callback = NULL;
20397
20398 /* The last line number that was recorded, used to coalesce
20399 consecutive entries for the same line. This can happen, for
20400 example, when discriminators are present. PR 17276. */
20401 unsigned int m_last_line = 0;
20402 bool m_line_has_non_zero_discriminator = false;
20403};
20404
20405void
20406lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20407{
20408 CORE_ADDR addr_adj = (((m_op_index + adjust)
20409 / m_line_header->maximum_ops_per_instruction)
20410 * m_line_header->minimum_instruction_length);
20411 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20412 m_op_index = ((m_op_index + adjust)
20413 % m_line_header->maximum_ops_per_instruction);
20414}
20415
20416void
20417lnp_state_machine::handle_special_opcode (unsigned char op_code)
20418{
20419 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20420 CORE_ADDR addr_adj = (((m_op_index
20421 + (adj_opcode / m_line_header->line_range))
20422 / m_line_header->maximum_ops_per_instruction)
20423 * m_line_header->minimum_instruction_length);
20424 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20425 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20426 % m_line_header->maximum_ops_per_instruction);
20427
20428 int line_delta = (m_line_header->line_base
20429 + (adj_opcode % m_line_header->line_range));
20430 advance_line (line_delta);
20431 record_line (false);
20432 m_discriminator = 0;
20433}
20434
20435void
20436lnp_state_machine::handle_set_file (file_name_index file)
20437{
20438 m_file = file;
20439
20440 const file_entry *fe = current_file ();
20441 if (fe == NULL)
20442 dwarf2_debug_line_missing_file_complaint ();
20443 else if (m_record_lines_p)
20444 {
20445 const char *dir = fe->include_dir (m_line_header);
20446
20447 m_last_subfile = current_subfile;
20448 m_line_has_non_zero_discriminator = m_discriminator != 0;
20449 dwarf2_start_subfile (fe->name, dir);
20450 }
20451}
20452
20453void
20454lnp_state_machine::handle_const_add_pc ()
20455{
20456 CORE_ADDR adjust
20457 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20458
20459 CORE_ADDR addr_adj
20460 = (((m_op_index + adjust)
20461 / m_line_header->maximum_ops_per_instruction)
20462 * m_line_header->minimum_instruction_length);
20463
20464 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20465 m_op_index = ((m_op_index + adjust)
20466 % m_line_header->maximum_ops_per_instruction);
20467}
20468
20469/* Ignore this record_line request. */
20470
20471static void
20472noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20473{
20474 return;
20475}
20476
20477/* Return non-zero if we should add LINE to the line number table.
20478 LINE is the line to add, LAST_LINE is the last line that was added,
20479 LAST_SUBFILE is the subfile for LAST_LINE.
20480 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20481 had a non-zero discriminator.
20482
20483 We have to be careful in the presence of discriminators.
20484 E.g., for this line:
20485
20486 for (i = 0; i < 100000; i++);
20487
20488 clang can emit four line number entries for that one line,
20489 each with a different discriminator.
20490 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20491
20492 However, we want gdb to coalesce all four entries into one.
20493 Otherwise the user could stepi into the middle of the line and
20494 gdb would get confused about whether the pc really was in the
20495 middle of the line.
20496
20497 Things are further complicated by the fact that two consecutive
20498 line number entries for the same line is a heuristic used by gcc
20499 to denote the end of the prologue. So we can't just discard duplicate
20500 entries, we have to be selective about it. The heuristic we use is
20501 that we only collapse consecutive entries for the same line if at least
20502 one of those entries has a non-zero discriminator. PR 17276.
20503
20504 Note: Addresses in the line number state machine can never go backwards
20505 within one sequence, thus this coalescing is ok. */
20506
20507static int
20508dwarf_record_line_p (unsigned int line, unsigned int last_line,
20509 int line_has_non_zero_discriminator,
20510 struct subfile *last_subfile)
20511{
20512 if (current_subfile != last_subfile)
20513 return 1;
20514 if (line != last_line)
20515 return 1;
20516 /* Same line for the same file that we've seen already.
20517 As a last check, for pr 17276, only record the line if the line
20518 has never had a non-zero discriminator. */
20519 if (!line_has_non_zero_discriminator)
20520 return 1;
20521 return 0;
20522}
20523
20524/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20525 in the line table of subfile SUBFILE. */
20526
20527static void
20528dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20529 unsigned int line, CORE_ADDR address,
20530 record_line_ftype p_record_line)
20531{
20532 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20533
20534 if (dwarf_line_debug)
20535 {
20536 fprintf_unfiltered (gdb_stdlog,
20537 "Recording line %u, file %s, address %s\n",
20538 line, lbasename (subfile->name),
20539 paddress (gdbarch, address));
20540 }
20541
20542 (*p_record_line) (subfile, line, addr);
20543}
20544
20545/* Subroutine of dwarf_decode_lines_1 to simplify it.
20546 Mark the end of a set of line number records.
20547 The arguments are the same as for dwarf_record_line_1.
20548 If SUBFILE is NULL the request is ignored. */
20549
20550static void
20551dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20552 CORE_ADDR address, record_line_ftype p_record_line)
20553{
20554 if (subfile == NULL)
20555 return;
20556
20557 if (dwarf_line_debug)
20558 {
20559 fprintf_unfiltered (gdb_stdlog,
20560 "Finishing current line, file %s, address %s\n",
20561 lbasename (subfile->name),
20562 paddress (gdbarch, address));
20563 }
20564
20565 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20566}
20567
20568void
20569lnp_state_machine::record_line (bool end_sequence)
20570{
20571 if (dwarf_line_debug)
20572 {
20573 fprintf_unfiltered (gdb_stdlog,
20574 "Processing actual line %u: file %u,"
20575 " address %s, is_stmt %u, discrim %u\n",
20576 m_line, to_underlying (m_file),
20577 paddress (m_gdbarch, m_address),
20578 m_is_stmt, m_discriminator);
20579 }
20580
20581 file_entry *fe = current_file ();
20582
20583 if (fe == NULL)
20584 dwarf2_debug_line_missing_file_complaint ();
20585 /* For now we ignore lines not starting on an instruction boundary.
20586 But not when processing end_sequence for compatibility with the
20587 previous version of the code. */
20588 else if (m_op_index == 0 || end_sequence)
20589 {
20590 fe->included_p = 1;
20591 if (m_record_lines_p && m_is_stmt)
20592 {
20593 if (m_last_subfile != current_subfile || end_sequence)
20594 {
20595 dwarf_finish_line (m_gdbarch, m_last_subfile,
20596 m_address, m_record_line_callback);
20597 }
20598
20599 if (!end_sequence)
20600 {
20601 if (dwarf_record_line_p (m_line, m_last_line,
20602 m_line_has_non_zero_discriminator,
20603 m_last_subfile))
20604 {
20605 dwarf_record_line_1 (m_gdbarch, current_subfile,
20606 m_line, m_address,
20607 m_record_line_callback);
20608 }
20609 m_last_subfile = current_subfile;
20610 m_last_line = m_line;
20611 }
20612 }
20613 }
20614}
20615
20616lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20617 bool record_lines_p)
20618{
20619 m_gdbarch = arch;
20620 m_record_lines_p = record_lines_p;
20621 m_line_header = lh;
20622
20623 m_record_line_callback = ::record_line;
20624
20625 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20626 was a line entry for it so that the backend has a chance to adjust it
20627 and also record it in case it needs it. This is currently used by MIPS
20628 code, cf. `mips_adjust_dwarf2_line'. */
20629 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20630 m_is_stmt = lh->default_is_stmt;
20631 m_discriminator = 0;
20632}
20633
20634void
20635lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20636 const gdb_byte *line_ptr,
20637 CORE_ADDR lowpc, CORE_ADDR address)
20638{
20639 /* If address < lowpc then it's not a usable value, it's outside the
20640 pc range of the CU. However, we restrict the test to only address
20641 values of zero to preserve GDB's previous behaviour which is to
20642 handle the specific case of a function being GC'd by the linker. */
20643
20644 if (address == 0 && address < lowpc)
20645 {
20646 /* This line table is for a function which has been
20647 GCd by the linker. Ignore it. PR gdb/12528 */
20648
20649 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20650 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20651
20652 complaint (&symfile_complaints,
20653 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20654 line_offset, objfile_name (objfile));
20655 m_record_line_callback = noop_record_line;
20656 /* Note: record_line_callback is left as noop_record_line until
20657 we see DW_LNE_end_sequence. */
20658 }
20659}
20660
20661/* Subroutine of dwarf_decode_lines to simplify it.
20662 Process the line number information in LH.
20663 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20664 program in order to set included_p for every referenced header. */
20665
20666static void
20667dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20668 const int decode_for_pst_p, CORE_ADDR lowpc)
20669{
20670 const gdb_byte *line_ptr, *extended_end;
20671 const gdb_byte *line_end;
20672 unsigned int bytes_read, extended_len;
20673 unsigned char op_code, extended_op;
20674 CORE_ADDR baseaddr;
20675 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20676 bfd *abfd = objfile->obfd;
20677 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20678 /* True if we're recording line info (as opposed to building partial
20679 symtabs and just interested in finding include files mentioned by
20680 the line number program). */
20681 bool record_lines_p = !decode_for_pst_p;
20682
20683 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20684
20685 line_ptr = lh->statement_program_start;
20686 line_end = lh->statement_program_end;
20687
20688 /* Read the statement sequences until there's nothing left. */
20689 while (line_ptr < line_end)
20690 {
20691 /* The DWARF line number program state machine. Reset the state
20692 machine at the start of each sequence. */
20693 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20694 bool end_sequence = false;
20695
20696 if (record_lines_p)
20697 {
20698 /* Start a subfile for the current file of the state
20699 machine. */
20700 const file_entry *fe = state_machine.current_file ();
20701
20702 if (fe != NULL)
20703 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20704 }
20705
20706 /* Decode the table. */
20707 while (line_ptr < line_end && !end_sequence)
20708 {
20709 op_code = read_1_byte (abfd, line_ptr);
20710 line_ptr += 1;
20711
20712 if (op_code >= lh->opcode_base)
20713 {
20714 /* Special opcode. */
20715 state_machine.handle_special_opcode (op_code);
20716 }
20717 else switch (op_code)
20718 {
20719 case DW_LNS_extended_op:
20720 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20721 &bytes_read);
20722 line_ptr += bytes_read;
20723 extended_end = line_ptr + extended_len;
20724 extended_op = read_1_byte (abfd, line_ptr);
20725 line_ptr += 1;
20726 switch (extended_op)
20727 {
20728 case DW_LNE_end_sequence:
20729 state_machine.handle_end_sequence ();
20730 end_sequence = true;
20731 break;
20732 case DW_LNE_set_address:
20733 {
20734 CORE_ADDR address
20735 = read_address (abfd, line_ptr, cu, &bytes_read);
20736 line_ptr += bytes_read;
20737
20738 state_machine.check_line_address (cu, line_ptr,
20739 lowpc, address);
20740 state_machine.handle_set_address (baseaddr, address);
20741 }
20742 break;
20743 case DW_LNE_define_file:
20744 {
20745 const char *cur_file;
20746 unsigned int mod_time, length;
20747 dir_index dindex;
20748
20749 cur_file = read_direct_string (abfd, line_ptr,
20750 &bytes_read);
20751 line_ptr += bytes_read;
20752 dindex = (dir_index)
20753 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20754 line_ptr += bytes_read;
20755 mod_time =
20756 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20757 line_ptr += bytes_read;
20758 length =
20759 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20760 line_ptr += bytes_read;
20761 lh->add_file_name (cur_file, dindex, mod_time, length);
20762 }
20763 break;
20764 case DW_LNE_set_discriminator:
20765 {
20766 /* The discriminator is not interesting to the
20767 debugger; just ignore it. We still need to
20768 check its value though:
20769 if there are consecutive entries for the same
20770 (non-prologue) line we want to coalesce them.
20771 PR 17276. */
20772 unsigned int discr
20773 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20774 line_ptr += bytes_read;
20775
20776 state_machine.handle_set_discriminator (discr);
20777 }
20778 break;
20779 default:
20780 complaint (&symfile_complaints,
20781 _("mangled .debug_line section"));
20782 return;
20783 }
20784 /* Make sure that we parsed the extended op correctly. If e.g.
20785 we expected a different address size than the producer used,
20786 we may have read the wrong number of bytes. */
20787 if (line_ptr != extended_end)
20788 {
20789 complaint (&symfile_complaints,
20790 _("mangled .debug_line section"));
20791 return;
20792 }
20793 break;
20794 case DW_LNS_copy:
20795 state_machine.handle_copy ();
20796 break;
20797 case DW_LNS_advance_pc:
20798 {
20799 CORE_ADDR adjust
20800 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20801 line_ptr += bytes_read;
20802
20803 state_machine.handle_advance_pc (adjust);
20804 }
20805 break;
20806 case DW_LNS_advance_line:
20807 {
20808 int line_delta
20809 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20810 line_ptr += bytes_read;
20811
20812 state_machine.handle_advance_line (line_delta);
20813 }
20814 break;
20815 case DW_LNS_set_file:
20816 {
20817 file_name_index file
20818 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20819 &bytes_read);
20820 line_ptr += bytes_read;
20821
20822 state_machine.handle_set_file (file);
20823 }
20824 break;
20825 case DW_LNS_set_column:
20826 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20827 line_ptr += bytes_read;
20828 break;
20829 case DW_LNS_negate_stmt:
20830 state_machine.handle_negate_stmt ();
20831 break;
20832 case DW_LNS_set_basic_block:
20833 break;
20834 /* Add to the address register of the state machine the
20835 address increment value corresponding to special opcode
20836 255. I.e., this value is scaled by the minimum
20837 instruction length since special opcode 255 would have
20838 scaled the increment. */
20839 case DW_LNS_const_add_pc:
20840 state_machine.handle_const_add_pc ();
20841 break;
20842 case DW_LNS_fixed_advance_pc:
20843 {
20844 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20845 line_ptr += 2;
20846
20847 state_machine.handle_fixed_advance_pc (addr_adj);
20848 }
20849 break;
20850 default:
20851 {
20852 /* Unknown standard opcode, ignore it. */
20853 int i;
20854
20855 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20856 {
20857 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20858 line_ptr += bytes_read;
20859 }
20860 }
20861 }
20862 }
20863
20864 if (!end_sequence)
20865 dwarf2_debug_line_missing_end_sequence_complaint ();
20866
20867 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20868 in which case we still finish recording the last line). */
20869 state_machine.record_line (true);
20870 }
20871}
20872
20873/* Decode the Line Number Program (LNP) for the given line_header
20874 structure and CU. The actual information extracted and the type
20875 of structures created from the LNP depends on the value of PST.
20876
20877 1. If PST is NULL, then this procedure uses the data from the program
20878 to create all necessary symbol tables, and their linetables.
20879
20880 2. If PST is not NULL, this procedure reads the program to determine
20881 the list of files included by the unit represented by PST, and
20882 builds all the associated partial symbol tables.
20883
20884 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20885 It is used for relative paths in the line table.
20886 NOTE: When processing partial symtabs (pst != NULL),
20887 comp_dir == pst->dirname.
20888
20889 NOTE: It is important that psymtabs have the same file name (via strcmp)
20890 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20891 symtab we don't use it in the name of the psymtabs we create.
20892 E.g. expand_line_sal requires this when finding psymtabs to expand.
20893 A good testcase for this is mb-inline.exp.
20894
20895 LOWPC is the lowest address in CU (or 0 if not known).
20896
20897 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20898 for its PC<->lines mapping information. Otherwise only the filename
20899 table is read in. */
20900
20901static void
20902dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20903 struct dwarf2_cu *cu, struct partial_symtab *pst,
20904 CORE_ADDR lowpc, int decode_mapping)
20905{
20906 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20907 const int decode_for_pst_p = (pst != NULL);
20908
20909 if (decode_mapping)
20910 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20911
20912 if (decode_for_pst_p)
20913 {
20914 int file_index;
20915
20916 /* Now that we're done scanning the Line Header Program, we can
20917 create the psymtab of each included file. */
20918 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
20919 if (lh->file_names[file_index].included_p == 1)
20920 {
20921 gdb::unique_xmalloc_ptr<char> name_holder;
20922 const char *include_name =
20923 psymtab_include_file_name (lh, file_index, pst, comp_dir,
20924 &name_holder);
20925 if (include_name != NULL)
20926 dwarf2_create_include_psymtab (include_name, pst, objfile);
20927 }
20928 }
20929 else
20930 {
20931 /* Make sure a symtab is created for every file, even files
20932 which contain only variables (i.e. no code with associated
20933 line numbers). */
20934 struct compunit_symtab *cust = buildsym_compunit_symtab ();
20935 int i;
20936
20937 for (i = 0; i < lh->file_names.size (); i++)
20938 {
20939 file_entry &fe = lh->file_names[i];
20940
20941 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
20942
20943 if (current_subfile->symtab == NULL)
20944 {
20945 current_subfile->symtab
20946 = allocate_symtab (cust, current_subfile->name);
20947 }
20948 fe.symtab = current_subfile->symtab;
20949 }
20950 }
20951}
20952
20953/* Start a subfile for DWARF. FILENAME is the name of the file and
20954 DIRNAME the name of the source directory which contains FILENAME
20955 or NULL if not known.
20956 This routine tries to keep line numbers from identical absolute and
20957 relative file names in a common subfile.
20958
20959 Using the `list' example from the GDB testsuite, which resides in
20960 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20961 of /srcdir/list0.c yields the following debugging information for list0.c:
20962
20963 DW_AT_name: /srcdir/list0.c
20964 DW_AT_comp_dir: /compdir
20965 files.files[0].name: list0.h
20966 files.files[0].dir: /srcdir
20967 files.files[1].name: list0.c
20968 files.files[1].dir: /srcdir
20969
20970 The line number information for list0.c has to end up in a single
20971 subfile, so that `break /srcdir/list0.c:1' works as expected.
20972 start_subfile will ensure that this happens provided that we pass the
20973 concatenation of files.files[1].dir and files.files[1].name as the
20974 subfile's name. */
20975
20976static void
20977dwarf2_start_subfile (const char *filename, const char *dirname)
20978{
20979 char *copy = NULL;
20980
20981 /* In order not to lose the line information directory,
20982 we concatenate it to the filename when it makes sense.
20983 Note that the Dwarf3 standard says (speaking of filenames in line
20984 information): ``The directory index is ignored for file names
20985 that represent full path names''. Thus ignoring dirname in the
20986 `else' branch below isn't an issue. */
20987
20988 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20989 {
20990 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
20991 filename = copy;
20992 }
20993
20994 start_subfile (filename);
20995
20996 if (copy != NULL)
20997 xfree (copy);
20998}
20999
21000/* Start a symtab for DWARF.
21001 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21002
21003static struct compunit_symtab *
21004dwarf2_start_symtab (struct dwarf2_cu *cu,
21005 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21006{
21007 struct compunit_symtab *cust
21008 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21009 low_pc, cu->language);
21010
21011 record_debugformat ("DWARF 2");
21012 record_producer (cu->producer);
21013
21014 /* We assume that we're processing GCC output. */
21015 processing_gcc_compilation = 2;
21016
21017 cu->processing_has_namespace_info = 0;
21018
21019 return cust;
21020}
21021
21022static void
21023var_decode_location (struct attribute *attr, struct symbol *sym,
21024 struct dwarf2_cu *cu)
21025{
21026 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21027 struct comp_unit_head *cu_header = &cu->header;
21028
21029 /* NOTE drow/2003-01-30: There used to be a comment and some special
21030 code here to turn a symbol with DW_AT_external and a
21031 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21032 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21033 with some versions of binutils) where shared libraries could have
21034 relocations against symbols in their debug information - the
21035 minimal symbol would have the right address, but the debug info
21036 would not. It's no longer necessary, because we will explicitly
21037 apply relocations when we read in the debug information now. */
21038
21039 /* A DW_AT_location attribute with no contents indicates that a
21040 variable has been optimized away. */
21041 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21042 {
21043 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21044 return;
21045 }
21046
21047 /* Handle one degenerate form of location expression specially, to
21048 preserve GDB's previous behavior when section offsets are
21049 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21050 then mark this symbol as LOC_STATIC. */
21051
21052 if (attr_form_is_block (attr)
21053 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21054 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21055 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21056 && (DW_BLOCK (attr)->size
21057 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21058 {
21059 unsigned int dummy;
21060
21061 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21062 SYMBOL_VALUE_ADDRESS (sym) =
21063 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21064 else
21065 SYMBOL_VALUE_ADDRESS (sym) =
21066 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21067 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21068 fixup_symbol_section (sym, objfile);
21069 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21070 SYMBOL_SECTION (sym));
21071 return;
21072 }
21073
21074 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21075 expression evaluator, and use LOC_COMPUTED only when necessary
21076 (i.e. when the value of a register or memory location is
21077 referenced, or a thread-local block, etc.). Then again, it might
21078 not be worthwhile. I'm assuming that it isn't unless performance
21079 or memory numbers show me otherwise. */
21080
21081 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21082
21083 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21084 cu->has_loclist = 1;
21085}
21086
21087/* Given a pointer to a DWARF information entry, figure out if we need
21088 to make a symbol table entry for it, and if so, create a new entry
21089 and return a pointer to it.
21090 If TYPE is NULL, determine symbol type from the die, otherwise
21091 used the passed type.
21092 If SPACE is not NULL, use it to hold the new symbol. If it is
21093 NULL, allocate a new symbol on the objfile's obstack. */
21094
21095static struct symbol *
21096new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21097 struct symbol *space)
21098{
21099 struct dwarf2_per_objfile *dwarf2_per_objfile
21100 = cu->per_cu->dwarf2_per_objfile;
21101 struct objfile *objfile = dwarf2_per_objfile->objfile;
21102 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21103 struct symbol *sym = NULL;
21104 const char *name;
21105 struct attribute *attr = NULL;
21106 struct attribute *attr2 = NULL;
21107 CORE_ADDR baseaddr;
21108 struct pending **list_to_add = NULL;
21109
21110 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21111
21112 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21113
21114 name = dwarf2_name (die, cu);
21115 if (name)
21116 {
21117 const char *linkagename;
21118 int suppress_add = 0;
21119
21120 if (space)
21121 sym = space;
21122 else
21123 sym = allocate_symbol (objfile);
21124 OBJSTAT (objfile, n_syms++);
21125
21126 /* Cache this symbol's name and the name's demangled form (if any). */
21127 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21128 linkagename = dwarf2_physname (name, die, cu);
21129 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21130
21131 /* Fortran does not have mangling standard and the mangling does differ
21132 between gfortran, iFort etc. */
21133 if (cu->language == language_fortran
21134 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21135 symbol_set_demangled_name (&(sym->ginfo),
21136 dwarf2_full_name (name, die, cu),
21137 NULL);
21138
21139 /* Default assumptions.
21140 Use the passed type or decode it from the die. */
21141 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21142 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21143 if (type != NULL)
21144 SYMBOL_TYPE (sym) = type;
21145 else
21146 SYMBOL_TYPE (sym) = die_type (die, cu);
21147 attr = dwarf2_attr (die,
21148 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21149 cu);
21150 if (attr)
21151 {
21152 SYMBOL_LINE (sym) = DW_UNSND (attr);
21153 }
21154
21155 attr = dwarf2_attr (die,
21156 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21157 cu);
21158 if (attr)
21159 {
21160 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21161 struct file_entry *fe;
21162
21163 if (cu->line_header != NULL)
21164 fe = cu->line_header->file_name_at (file_index);
21165 else
21166 fe = NULL;
21167
21168 if (fe == NULL)
21169 complaint (&symfile_complaints,
21170 _("file index out of range"));
21171 else
21172 symbol_set_symtab (sym, fe->symtab);
21173 }
21174
21175 switch (die->tag)
21176 {
21177 case DW_TAG_label:
21178 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21179 if (attr)
21180 {
21181 CORE_ADDR addr;
21182
21183 addr = attr_value_as_address (attr);
21184 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21185 SYMBOL_VALUE_ADDRESS (sym) = addr;
21186 }
21187 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21188 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21189 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21190 add_symbol_to_list (sym, cu->list_in_scope);
21191 break;
21192 case DW_TAG_subprogram:
21193 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21194 finish_block. */
21195 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21196 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21197 if ((attr2 && (DW_UNSND (attr2) != 0))
21198 || cu->language == language_ada)
21199 {
21200 /* Subprograms marked external are stored as a global symbol.
21201 Ada subprograms, whether marked external or not, are always
21202 stored as a global symbol, because we want to be able to
21203 access them globally. For instance, we want to be able
21204 to break on a nested subprogram without having to
21205 specify the context. */
21206 list_to_add = &global_symbols;
21207 }
21208 else
21209 {
21210 list_to_add = cu->list_in_scope;
21211 }
21212 break;
21213 case DW_TAG_inlined_subroutine:
21214 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21215 finish_block. */
21216 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21217 SYMBOL_INLINED (sym) = 1;
21218 list_to_add = cu->list_in_scope;
21219 break;
21220 case DW_TAG_template_value_param:
21221 suppress_add = 1;
21222 /* Fall through. */
21223 case DW_TAG_constant:
21224 case DW_TAG_variable:
21225 case DW_TAG_member:
21226 /* Compilation with minimal debug info may result in
21227 variables with missing type entries. Change the
21228 misleading `void' type to something sensible. */
21229 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21230 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21231
21232 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21233 /* In the case of DW_TAG_member, we should only be called for
21234 static const members. */
21235 if (die->tag == DW_TAG_member)
21236 {
21237 /* dwarf2_add_field uses die_is_declaration,
21238 so we do the same. */
21239 gdb_assert (die_is_declaration (die, cu));
21240 gdb_assert (attr);
21241 }
21242 if (attr)
21243 {
21244 dwarf2_const_value (attr, sym, cu);
21245 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21246 if (!suppress_add)
21247 {
21248 if (attr2 && (DW_UNSND (attr2) != 0))
21249 list_to_add = &global_symbols;
21250 else
21251 list_to_add = cu->list_in_scope;
21252 }
21253 break;
21254 }
21255 attr = dwarf2_attr (die, DW_AT_location, cu);
21256 if (attr)
21257 {
21258 var_decode_location (attr, sym, cu);
21259 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21260
21261 /* Fortran explicitly imports any global symbols to the local
21262 scope by DW_TAG_common_block. */
21263 if (cu->language == language_fortran && die->parent
21264 && die->parent->tag == DW_TAG_common_block)
21265 attr2 = NULL;
21266
21267 if (SYMBOL_CLASS (sym) == LOC_STATIC
21268 && SYMBOL_VALUE_ADDRESS (sym) == 0
21269 && !dwarf2_per_objfile->has_section_at_zero)
21270 {
21271 /* When a static variable is eliminated by the linker,
21272 the corresponding debug information is not stripped
21273 out, but the variable address is set to null;
21274 do not add such variables into symbol table. */
21275 }
21276 else if (attr2 && (DW_UNSND (attr2) != 0))
21277 {
21278 /* Workaround gfortran PR debug/40040 - it uses
21279 DW_AT_location for variables in -fPIC libraries which may
21280 get overriden by other libraries/executable and get
21281 a different address. Resolve it by the minimal symbol
21282 which may come from inferior's executable using copy
21283 relocation. Make this workaround only for gfortran as for
21284 other compilers GDB cannot guess the minimal symbol
21285 Fortran mangling kind. */
21286 if (cu->language == language_fortran && die->parent
21287 && die->parent->tag == DW_TAG_module
21288 && cu->producer
21289 && startswith (cu->producer, "GNU Fortran"))
21290 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21291
21292 /* A variable with DW_AT_external is never static,
21293 but it may be block-scoped. */
21294 list_to_add = (cu->list_in_scope == &file_symbols
21295 ? &global_symbols : cu->list_in_scope);
21296 }
21297 else
21298 list_to_add = cu->list_in_scope;
21299 }
21300 else
21301 {
21302 /* We do not know the address of this symbol.
21303 If it is an external symbol and we have type information
21304 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21305 The address of the variable will then be determined from
21306 the minimal symbol table whenever the variable is
21307 referenced. */
21308 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21309
21310 /* Fortran explicitly imports any global symbols to the local
21311 scope by DW_TAG_common_block. */
21312 if (cu->language == language_fortran && die->parent
21313 && die->parent->tag == DW_TAG_common_block)
21314 {
21315 /* SYMBOL_CLASS doesn't matter here because
21316 read_common_block is going to reset it. */
21317 if (!suppress_add)
21318 list_to_add = cu->list_in_scope;
21319 }
21320 else if (attr2 && (DW_UNSND (attr2) != 0)
21321 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21322 {
21323 /* A variable with DW_AT_external is never static, but it
21324 may be block-scoped. */
21325 list_to_add = (cu->list_in_scope == &file_symbols
21326 ? &global_symbols : cu->list_in_scope);
21327
21328 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21329 }
21330 else if (!die_is_declaration (die, cu))
21331 {
21332 /* Use the default LOC_OPTIMIZED_OUT class. */
21333 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21334 if (!suppress_add)
21335 list_to_add = cu->list_in_scope;
21336 }
21337 }
21338 break;
21339 case DW_TAG_formal_parameter:
21340 /* If we are inside a function, mark this as an argument. If
21341 not, we might be looking at an argument to an inlined function
21342 when we do not have enough information to show inlined frames;
21343 pretend it's a local variable in that case so that the user can
21344 still see it. */
21345 if (context_stack_depth > 0
21346 && context_stack[context_stack_depth - 1].name != NULL)
21347 SYMBOL_IS_ARGUMENT (sym) = 1;
21348 attr = dwarf2_attr (die, DW_AT_location, cu);
21349 if (attr)
21350 {
21351 var_decode_location (attr, sym, cu);
21352 }
21353 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21354 if (attr)
21355 {
21356 dwarf2_const_value (attr, sym, cu);
21357 }
21358
21359 list_to_add = cu->list_in_scope;
21360 break;
21361 case DW_TAG_unspecified_parameters:
21362 /* From varargs functions; gdb doesn't seem to have any
21363 interest in this information, so just ignore it for now.
21364 (FIXME?) */
21365 break;
21366 case DW_TAG_template_type_param:
21367 suppress_add = 1;
21368 /* Fall through. */
21369 case DW_TAG_class_type:
21370 case DW_TAG_interface_type:
21371 case DW_TAG_structure_type:
21372 case DW_TAG_union_type:
21373 case DW_TAG_set_type:
21374 case DW_TAG_enumeration_type:
21375 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21376 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21377
21378 {
21379 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21380 really ever be static objects: otherwise, if you try
21381 to, say, break of a class's method and you're in a file
21382 which doesn't mention that class, it won't work unless
21383 the check for all static symbols in lookup_symbol_aux
21384 saves you. See the OtherFileClass tests in
21385 gdb.c++/namespace.exp. */
21386
21387 if (!suppress_add)
21388 {
21389 list_to_add = (cu->list_in_scope == &file_symbols
21390 && cu->language == language_cplus
21391 ? &global_symbols : cu->list_in_scope);
21392
21393 /* The semantics of C++ state that "struct foo {
21394 ... }" also defines a typedef for "foo". */
21395 if (cu->language == language_cplus
21396 || cu->language == language_ada
21397 || cu->language == language_d
21398 || cu->language == language_rust)
21399 {
21400 /* The symbol's name is already allocated along
21401 with this objfile, so we don't need to
21402 duplicate it for the type. */
21403 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21404 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21405 }
21406 }
21407 }
21408 break;
21409 case DW_TAG_typedef:
21410 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21411 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21412 list_to_add = cu->list_in_scope;
21413 break;
21414 case DW_TAG_base_type:
21415 case DW_TAG_subrange_type:
21416 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21418 list_to_add = cu->list_in_scope;
21419 break;
21420 case DW_TAG_enumerator:
21421 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21422 if (attr)
21423 {
21424 dwarf2_const_value (attr, sym, cu);
21425 }
21426 {
21427 /* NOTE: carlton/2003-11-10: See comment above in the
21428 DW_TAG_class_type, etc. block. */
21429
21430 list_to_add = (cu->list_in_scope == &file_symbols
21431 && cu->language == language_cplus
21432 ? &global_symbols : cu->list_in_scope);
21433 }
21434 break;
21435 case DW_TAG_imported_declaration:
21436 case DW_TAG_namespace:
21437 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21438 list_to_add = &global_symbols;
21439 break;
21440 case DW_TAG_module:
21441 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21442 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21443 list_to_add = &global_symbols;
21444 break;
21445 case DW_TAG_common_block:
21446 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21447 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21448 add_symbol_to_list (sym, cu->list_in_scope);
21449 break;
21450 default:
21451 /* Not a tag we recognize. Hopefully we aren't processing
21452 trash data, but since we must specifically ignore things
21453 we don't recognize, there is nothing else we should do at
21454 this point. */
21455 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
21456 dwarf_tag_name (die->tag));
21457 break;
21458 }
21459
21460 if (suppress_add)
21461 {
21462 sym->hash_next = objfile->template_symbols;
21463 objfile->template_symbols = sym;
21464 list_to_add = NULL;
21465 }
21466
21467 if (list_to_add != NULL)
21468 add_symbol_to_list (sym, list_to_add);
21469
21470 /* For the benefit of old versions of GCC, check for anonymous
21471 namespaces based on the demangled name. */
21472 if (!cu->processing_has_namespace_info
21473 && cu->language == language_cplus)
21474 cp_scan_for_anonymous_namespaces (sym, objfile);
21475 }
21476 return (sym);
21477}
21478
21479/* Given an attr with a DW_FORM_dataN value in host byte order,
21480 zero-extend it as appropriate for the symbol's type. The DWARF
21481 standard (v4) is not entirely clear about the meaning of using
21482 DW_FORM_dataN for a constant with a signed type, where the type is
21483 wider than the data. The conclusion of a discussion on the DWARF
21484 list was that this is unspecified. We choose to always zero-extend
21485 because that is the interpretation long in use by GCC. */
21486
21487static gdb_byte *
21488dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21489 struct dwarf2_cu *cu, LONGEST *value, int bits)
21490{
21491 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21492 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21493 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21494 LONGEST l = DW_UNSND (attr);
21495
21496 if (bits < sizeof (*value) * 8)
21497 {
21498 l &= ((LONGEST) 1 << bits) - 1;
21499 *value = l;
21500 }
21501 else if (bits == sizeof (*value) * 8)
21502 *value = l;
21503 else
21504 {
21505 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21506 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21507 return bytes;
21508 }
21509
21510 return NULL;
21511}
21512
21513/* Read a constant value from an attribute. Either set *VALUE, or if
21514 the value does not fit in *VALUE, set *BYTES - either already
21515 allocated on the objfile obstack, or newly allocated on OBSTACK,
21516 or, set *BATON, if we translated the constant to a location
21517 expression. */
21518
21519static void
21520dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21521 const char *name, struct obstack *obstack,
21522 struct dwarf2_cu *cu,
21523 LONGEST *value, const gdb_byte **bytes,
21524 struct dwarf2_locexpr_baton **baton)
21525{
21526 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21527 struct comp_unit_head *cu_header = &cu->header;
21528 struct dwarf_block *blk;
21529 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21530 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21531
21532 *value = 0;
21533 *bytes = NULL;
21534 *baton = NULL;
21535
21536 switch (attr->form)
21537 {
21538 case DW_FORM_addr:
21539 case DW_FORM_GNU_addr_index:
21540 {
21541 gdb_byte *data;
21542
21543 if (TYPE_LENGTH (type) != cu_header->addr_size)
21544 dwarf2_const_value_length_mismatch_complaint (name,
21545 cu_header->addr_size,
21546 TYPE_LENGTH (type));
21547 /* Symbols of this form are reasonably rare, so we just
21548 piggyback on the existing location code rather than writing
21549 a new implementation of symbol_computed_ops. */
21550 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21551 (*baton)->per_cu = cu->per_cu;
21552 gdb_assert ((*baton)->per_cu);
21553
21554 (*baton)->size = 2 + cu_header->addr_size;
21555 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21556 (*baton)->data = data;
21557
21558 data[0] = DW_OP_addr;
21559 store_unsigned_integer (&data[1], cu_header->addr_size,
21560 byte_order, DW_ADDR (attr));
21561 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21562 }
21563 break;
21564 case DW_FORM_string:
21565 case DW_FORM_strp:
21566 case DW_FORM_GNU_str_index:
21567 case DW_FORM_GNU_strp_alt:
21568 /* DW_STRING is already allocated on the objfile obstack, point
21569 directly to it. */
21570 *bytes = (const gdb_byte *) DW_STRING (attr);
21571 break;
21572 case DW_FORM_block1:
21573 case DW_FORM_block2:
21574 case DW_FORM_block4:
21575 case DW_FORM_block:
21576 case DW_FORM_exprloc:
21577 case DW_FORM_data16:
21578 blk = DW_BLOCK (attr);
21579 if (TYPE_LENGTH (type) != blk->size)
21580 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21581 TYPE_LENGTH (type));
21582 *bytes = blk->data;
21583 break;
21584
21585 /* The DW_AT_const_value attributes are supposed to carry the
21586 symbol's value "represented as it would be on the target
21587 architecture." By the time we get here, it's already been
21588 converted to host endianness, so we just need to sign- or
21589 zero-extend it as appropriate. */
21590 case DW_FORM_data1:
21591 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21592 break;
21593 case DW_FORM_data2:
21594 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21595 break;
21596 case DW_FORM_data4:
21597 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21598 break;
21599 case DW_FORM_data8:
21600 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21601 break;
21602
21603 case DW_FORM_sdata:
21604 case DW_FORM_implicit_const:
21605 *value = DW_SND (attr);
21606 break;
21607
21608 case DW_FORM_udata:
21609 *value = DW_UNSND (attr);
21610 break;
21611
21612 default:
21613 complaint (&symfile_complaints,
21614 _("unsupported const value attribute form: '%s'"),
21615 dwarf_form_name (attr->form));
21616 *value = 0;
21617 break;
21618 }
21619}
21620
21621
21622/* Copy constant value from an attribute to a symbol. */
21623
21624static void
21625dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21626 struct dwarf2_cu *cu)
21627{
21628 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21629 LONGEST value;
21630 const gdb_byte *bytes;
21631 struct dwarf2_locexpr_baton *baton;
21632
21633 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21634 SYMBOL_PRINT_NAME (sym),
21635 &objfile->objfile_obstack, cu,
21636 &value, &bytes, &baton);
21637
21638 if (baton != NULL)
21639 {
21640 SYMBOL_LOCATION_BATON (sym) = baton;
21641 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21642 }
21643 else if (bytes != NULL)
21644 {
21645 SYMBOL_VALUE_BYTES (sym) = bytes;
21646 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21647 }
21648 else
21649 {
21650 SYMBOL_VALUE (sym) = value;
21651 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21652 }
21653}
21654
21655/* Return the type of the die in question using its DW_AT_type attribute. */
21656
21657static struct type *
21658die_type (struct die_info *die, struct dwarf2_cu *cu)
21659{
21660 struct attribute *type_attr;
21661
21662 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21663 if (!type_attr)
21664 {
21665 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21666 /* A missing DW_AT_type represents a void type. */
21667 return objfile_type (objfile)->builtin_void;
21668 }
21669
21670 return lookup_die_type (die, type_attr, cu);
21671}
21672
21673/* True iff CU's producer generates GNAT Ada auxiliary information
21674 that allows to find parallel types through that information instead
21675 of having to do expensive parallel lookups by type name. */
21676
21677static int
21678need_gnat_info (struct dwarf2_cu *cu)
21679{
21680 /* Assume that the Ada compiler was GNAT, which always produces
21681 the auxiliary information. */
21682 return (cu->language == language_ada);
21683}
21684
21685/* Return the auxiliary type of the die in question using its
21686 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21687 attribute is not present. */
21688
21689static struct type *
21690die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21691{
21692 struct attribute *type_attr;
21693
21694 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21695 if (!type_attr)
21696 return NULL;
21697
21698 return lookup_die_type (die, type_attr, cu);
21699}
21700
21701/* If DIE has a descriptive_type attribute, then set the TYPE's
21702 descriptive type accordingly. */
21703
21704static void
21705set_descriptive_type (struct type *type, struct die_info *die,
21706 struct dwarf2_cu *cu)
21707{
21708 struct type *descriptive_type = die_descriptive_type (die, cu);
21709
21710 if (descriptive_type)
21711 {
21712 ALLOCATE_GNAT_AUX_TYPE (type);
21713 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21714 }
21715}
21716
21717/* Return the containing type of the die in question using its
21718 DW_AT_containing_type attribute. */
21719
21720static struct type *
21721die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21722{
21723 struct attribute *type_attr;
21724 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21725
21726 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21727 if (!type_attr)
21728 error (_("Dwarf Error: Problem turning containing type into gdb type "
21729 "[in module %s]"), objfile_name (objfile));
21730
21731 return lookup_die_type (die, type_attr, cu);
21732}
21733
21734/* Return an error marker type to use for the ill formed type in DIE/CU. */
21735
21736static struct type *
21737build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21738{
21739 struct dwarf2_per_objfile *dwarf2_per_objfile
21740 = cu->per_cu->dwarf2_per_objfile;
21741 struct objfile *objfile = dwarf2_per_objfile->objfile;
21742 char *message, *saved;
21743
21744 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21745 objfile_name (objfile),
21746 sect_offset_str (cu->header.sect_off),
21747 sect_offset_str (die->sect_off));
21748 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21749 message, strlen (message));
21750 xfree (message);
21751
21752 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21753}
21754
21755/* Look up the type of DIE in CU using its type attribute ATTR.
21756 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21757 DW_AT_containing_type.
21758 If there is no type substitute an error marker. */
21759
21760static struct type *
21761lookup_die_type (struct die_info *die, const struct attribute *attr,
21762 struct dwarf2_cu *cu)
21763{
21764 struct dwarf2_per_objfile *dwarf2_per_objfile
21765 = cu->per_cu->dwarf2_per_objfile;
21766 struct objfile *objfile = dwarf2_per_objfile->objfile;
21767 struct type *this_type;
21768
21769 gdb_assert (attr->name == DW_AT_type
21770 || attr->name == DW_AT_GNAT_descriptive_type
21771 || attr->name == DW_AT_containing_type);
21772
21773 /* First see if we have it cached. */
21774
21775 if (attr->form == DW_FORM_GNU_ref_alt)
21776 {
21777 struct dwarf2_per_cu_data *per_cu;
21778 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21779
21780 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21781 dwarf2_per_objfile);
21782 this_type = get_die_type_at_offset (sect_off, per_cu);
21783 }
21784 else if (attr_form_is_ref (attr))
21785 {
21786 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21787
21788 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21789 }
21790 else if (attr->form == DW_FORM_ref_sig8)
21791 {
21792 ULONGEST signature = DW_SIGNATURE (attr);
21793
21794 return get_signatured_type (die, signature, cu);
21795 }
21796 else
21797 {
21798 complaint (&symfile_complaints,
21799 _("Dwarf Error: Bad type attribute %s in DIE"
21800 " at %s [in module %s]"),
21801 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21802 objfile_name (objfile));
21803 return build_error_marker_type (cu, die);
21804 }
21805
21806 /* If not cached we need to read it in. */
21807
21808 if (this_type == NULL)
21809 {
21810 struct die_info *type_die = NULL;
21811 struct dwarf2_cu *type_cu = cu;
21812
21813 if (attr_form_is_ref (attr))
21814 type_die = follow_die_ref (die, attr, &type_cu);
21815 if (type_die == NULL)
21816 return build_error_marker_type (cu, die);
21817 /* If we find the type now, it's probably because the type came
21818 from an inter-CU reference and the type's CU got expanded before
21819 ours. */
21820 this_type = read_type_die (type_die, type_cu);
21821 }
21822
21823 /* If we still don't have a type use an error marker. */
21824
21825 if (this_type == NULL)
21826 return build_error_marker_type (cu, die);
21827
21828 return this_type;
21829}
21830
21831/* Return the type in DIE, CU.
21832 Returns NULL for invalid types.
21833
21834 This first does a lookup in die_type_hash,
21835 and only reads the die in if necessary.
21836
21837 NOTE: This can be called when reading in partial or full symbols. */
21838
21839static struct type *
21840read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21841{
21842 struct type *this_type;
21843
21844 this_type = get_die_type (die, cu);
21845 if (this_type)
21846 return this_type;
21847
21848 return read_type_die_1 (die, cu);
21849}
21850
21851/* Read the type in DIE, CU.
21852 Returns NULL for invalid types. */
21853
21854static struct type *
21855read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21856{
21857 struct type *this_type = NULL;
21858
21859 switch (die->tag)
21860 {
21861 case DW_TAG_class_type:
21862 case DW_TAG_interface_type:
21863 case DW_TAG_structure_type:
21864 case DW_TAG_union_type:
21865 this_type = read_structure_type (die, cu);
21866 break;
21867 case DW_TAG_enumeration_type:
21868 this_type = read_enumeration_type (die, cu);
21869 break;
21870 case DW_TAG_subprogram:
21871 case DW_TAG_subroutine_type:
21872 case DW_TAG_inlined_subroutine:
21873 this_type = read_subroutine_type (die, cu);
21874 break;
21875 case DW_TAG_array_type:
21876 this_type = read_array_type (die, cu);
21877 break;
21878 case DW_TAG_set_type:
21879 this_type = read_set_type (die, cu);
21880 break;
21881 case DW_TAG_pointer_type:
21882 this_type = read_tag_pointer_type (die, cu);
21883 break;
21884 case DW_TAG_ptr_to_member_type:
21885 this_type = read_tag_ptr_to_member_type (die, cu);
21886 break;
21887 case DW_TAG_reference_type:
21888 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21889 break;
21890 case DW_TAG_rvalue_reference_type:
21891 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21892 break;
21893 case DW_TAG_const_type:
21894 this_type = read_tag_const_type (die, cu);
21895 break;
21896 case DW_TAG_volatile_type:
21897 this_type = read_tag_volatile_type (die, cu);
21898 break;
21899 case DW_TAG_restrict_type:
21900 this_type = read_tag_restrict_type (die, cu);
21901 break;
21902 case DW_TAG_string_type:
21903 this_type = read_tag_string_type (die, cu);
21904 break;
21905 case DW_TAG_typedef:
21906 this_type = read_typedef (die, cu);
21907 break;
21908 case DW_TAG_subrange_type:
21909 this_type = read_subrange_type (die, cu);
21910 break;
21911 case DW_TAG_base_type:
21912 this_type = read_base_type (die, cu);
21913 break;
21914 case DW_TAG_unspecified_type:
21915 this_type = read_unspecified_type (die, cu);
21916 break;
21917 case DW_TAG_namespace:
21918 this_type = read_namespace_type (die, cu);
21919 break;
21920 case DW_TAG_module:
21921 this_type = read_module_type (die, cu);
21922 break;
21923 case DW_TAG_atomic_type:
21924 this_type = read_tag_atomic_type (die, cu);
21925 break;
21926 default:
21927 complaint (&symfile_complaints,
21928 _("unexpected tag in read_type_die: '%s'"),
21929 dwarf_tag_name (die->tag));
21930 break;
21931 }
21932
21933 return this_type;
21934}
21935
21936/* See if we can figure out if the class lives in a namespace. We do
21937 this by looking for a member function; its demangled name will
21938 contain namespace info, if there is any.
21939 Return the computed name or NULL.
21940 Space for the result is allocated on the objfile's obstack.
21941 This is the full-die version of guess_partial_die_structure_name.
21942 In this case we know DIE has no useful parent. */
21943
21944static char *
21945guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21946{
21947 struct die_info *spec_die;
21948 struct dwarf2_cu *spec_cu;
21949 struct die_info *child;
21950 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21951
21952 spec_cu = cu;
21953 spec_die = die_specification (die, &spec_cu);
21954 if (spec_die != NULL)
21955 {
21956 die = spec_die;
21957 cu = spec_cu;
21958 }
21959
21960 for (child = die->child;
21961 child != NULL;
21962 child = child->sibling)
21963 {
21964 if (child->tag == DW_TAG_subprogram)
21965 {
21966 const char *linkage_name = dw2_linkage_name (child, cu);
21967
21968 if (linkage_name != NULL)
21969 {
21970 char *actual_name
21971 = language_class_name_from_physname (cu->language_defn,
21972 linkage_name);
21973 char *name = NULL;
21974
21975 if (actual_name != NULL)
21976 {
21977 const char *die_name = dwarf2_name (die, cu);
21978
21979 if (die_name != NULL
21980 && strcmp (die_name, actual_name) != 0)
21981 {
21982 /* Strip off the class name from the full name.
21983 We want the prefix. */
21984 int die_name_len = strlen (die_name);
21985 int actual_name_len = strlen (actual_name);
21986
21987 /* Test for '::' as a sanity check. */
21988 if (actual_name_len > die_name_len + 2
21989 && actual_name[actual_name_len
21990 - die_name_len - 1] == ':')
21991 name = (char *) obstack_copy0 (
21992 &objfile->per_bfd->storage_obstack,
21993 actual_name, actual_name_len - die_name_len - 2);
21994 }
21995 }
21996 xfree (actual_name);
21997 return name;
21998 }
21999 }
22000 }
22001
22002 return NULL;
22003}
22004
22005/* GCC might emit a nameless typedef that has a linkage name. Determine the
22006 prefix part in such case. See
22007 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22008
22009static const char *
22010anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22011{
22012 struct attribute *attr;
22013 const char *base;
22014
22015 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22016 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22017 return NULL;
22018
22019 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22020 return NULL;
22021
22022 attr = dw2_linkage_name_attr (die, cu);
22023 if (attr == NULL || DW_STRING (attr) == NULL)
22024 return NULL;
22025
22026 /* dwarf2_name had to be already called. */
22027 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22028
22029 /* Strip the base name, keep any leading namespaces/classes. */
22030 base = strrchr (DW_STRING (attr), ':');
22031 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22032 return "";
22033
22034 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22035 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22036 DW_STRING (attr),
22037 &base[-1] - DW_STRING (attr));
22038}
22039
22040/* Return the name of the namespace/class that DIE is defined within,
22041 or "" if we can't tell. The caller should not xfree the result.
22042
22043 For example, if we're within the method foo() in the following
22044 code:
22045
22046 namespace N {
22047 class C {
22048 void foo () {
22049 }
22050 };
22051 }
22052
22053 then determine_prefix on foo's die will return "N::C". */
22054
22055static const char *
22056determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22057{
22058 struct dwarf2_per_objfile *dwarf2_per_objfile
22059 = cu->per_cu->dwarf2_per_objfile;
22060 struct die_info *parent, *spec_die;
22061 struct dwarf2_cu *spec_cu;
22062 struct type *parent_type;
22063 const char *retval;
22064
22065 if (cu->language != language_cplus
22066 && cu->language != language_fortran && cu->language != language_d
22067 && cu->language != language_rust)
22068 return "";
22069
22070 retval = anonymous_struct_prefix (die, cu);
22071 if (retval)
22072 return retval;
22073
22074 /* We have to be careful in the presence of DW_AT_specification.
22075 For example, with GCC 3.4, given the code
22076
22077 namespace N {
22078 void foo() {
22079 // Definition of N::foo.
22080 }
22081 }
22082
22083 then we'll have a tree of DIEs like this:
22084
22085 1: DW_TAG_compile_unit
22086 2: DW_TAG_namespace // N
22087 3: DW_TAG_subprogram // declaration of N::foo
22088 4: DW_TAG_subprogram // definition of N::foo
22089 DW_AT_specification // refers to die #3
22090
22091 Thus, when processing die #4, we have to pretend that we're in
22092 the context of its DW_AT_specification, namely the contex of die
22093 #3. */
22094 spec_cu = cu;
22095 spec_die = die_specification (die, &spec_cu);
22096 if (spec_die == NULL)
22097 parent = die->parent;
22098 else
22099 {
22100 parent = spec_die->parent;
22101 cu = spec_cu;
22102 }
22103
22104 if (parent == NULL)
22105 return "";
22106 else if (parent->building_fullname)
22107 {
22108 const char *name;
22109 const char *parent_name;
22110
22111 /* It has been seen on RealView 2.2 built binaries,
22112 DW_TAG_template_type_param types actually _defined_ as
22113 children of the parent class:
22114
22115 enum E {};
22116 template class <class Enum> Class{};
22117 Class<enum E> class_e;
22118
22119 1: DW_TAG_class_type (Class)
22120 2: DW_TAG_enumeration_type (E)
22121 3: DW_TAG_enumerator (enum1:0)
22122 3: DW_TAG_enumerator (enum2:1)
22123 ...
22124 2: DW_TAG_template_type_param
22125 DW_AT_type DW_FORM_ref_udata (E)
22126
22127 Besides being broken debug info, it can put GDB into an
22128 infinite loop. Consider:
22129
22130 When we're building the full name for Class<E>, we'll start
22131 at Class, and go look over its template type parameters,
22132 finding E. We'll then try to build the full name of E, and
22133 reach here. We're now trying to build the full name of E,
22134 and look over the parent DIE for containing scope. In the
22135 broken case, if we followed the parent DIE of E, we'd again
22136 find Class, and once again go look at its template type
22137 arguments, etc., etc. Simply don't consider such parent die
22138 as source-level parent of this die (it can't be, the language
22139 doesn't allow it), and break the loop here. */
22140 name = dwarf2_name (die, cu);
22141 parent_name = dwarf2_name (parent, cu);
22142 complaint (&symfile_complaints,
22143 _("template param type '%s' defined within parent '%s'"),
22144 name ? name : "<unknown>",
22145 parent_name ? parent_name : "<unknown>");
22146 return "";
22147 }
22148 else
22149 switch (parent->tag)
22150 {
22151 case DW_TAG_namespace:
22152 parent_type = read_type_die (parent, cu);
22153 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22154 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22155 Work around this problem here. */
22156 if (cu->language == language_cplus
22157 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22158 return "";
22159 /* We give a name to even anonymous namespaces. */
22160 return TYPE_TAG_NAME (parent_type);
22161 case DW_TAG_class_type:
22162 case DW_TAG_interface_type:
22163 case DW_TAG_structure_type:
22164 case DW_TAG_union_type:
22165 case DW_TAG_module:
22166 parent_type = read_type_die (parent, cu);
22167 if (TYPE_TAG_NAME (parent_type) != NULL)
22168 return TYPE_TAG_NAME (parent_type);
22169 else
22170 /* An anonymous structure is only allowed non-static data
22171 members; no typedefs, no member functions, et cetera.
22172 So it does not need a prefix. */
22173 return "";
22174 case DW_TAG_compile_unit:
22175 case DW_TAG_partial_unit:
22176 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22177 if (cu->language == language_cplus
22178 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22179 && die->child != NULL
22180 && (die->tag == DW_TAG_class_type
22181 || die->tag == DW_TAG_structure_type
22182 || die->tag == DW_TAG_union_type))
22183 {
22184 char *name = guess_full_die_structure_name (die, cu);
22185 if (name != NULL)
22186 return name;
22187 }
22188 return "";
22189 case DW_TAG_enumeration_type:
22190 parent_type = read_type_die (parent, cu);
22191 if (TYPE_DECLARED_CLASS (parent_type))
22192 {
22193 if (TYPE_TAG_NAME (parent_type) != NULL)
22194 return TYPE_TAG_NAME (parent_type);
22195 return "";
22196 }
22197 /* Fall through. */
22198 default:
22199 return determine_prefix (parent, cu);
22200 }
22201}
22202
22203/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22204 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22205 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22206 an obconcat, otherwise allocate storage for the result. The CU argument is
22207 used to determine the language and hence, the appropriate separator. */
22208
22209#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22210
22211static char *
22212typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22213 int physname, struct dwarf2_cu *cu)
22214{
22215 const char *lead = "";
22216 const char *sep;
22217
22218 if (suffix == NULL || suffix[0] == '\0'
22219 || prefix == NULL || prefix[0] == '\0')
22220 sep = "";
22221 else if (cu->language == language_d)
22222 {
22223 /* For D, the 'main' function could be defined in any module, but it
22224 should never be prefixed. */
22225 if (strcmp (suffix, "D main") == 0)
22226 {
22227 prefix = "";
22228 sep = "";
22229 }
22230 else
22231 sep = ".";
22232 }
22233 else if (cu->language == language_fortran && physname)
22234 {
22235 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22236 DW_AT_MIPS_linkage_name is preferred and used instead. */
22237
22238 lead = "__";
22239 sep = "_MOD_";
22240 }
22241 else
22242 sep = "::";
22243
22244 if (prefix == NULL)
22245 prefix = "";
22246 if (suffix == NULL)
22247 suffix = "";
22248
22249 if (obs == NULL)
22250 {
22251 char *retval
22252 = ((char *)
22253 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22254
22255 strcpy (retval, lead);
22256 strcat (retval, prefix);
22257 strcat (retval, sep);
22258 strcat (retval, suffix);
22259 return retval;
22260 }
22261 else
22262 {
22263 /* We have an obstack. */
22264 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22265 }
22266}
22267
22268/* Return sibling of die, NULL if no sibling. */
22269
22270static struct die_info *
22271sibling_die (struct die_info *die)
22272{
22273 return die->sibling;
22274}
22275
22276/* Get name of a die, return NULL if not found. */
22277
22278static const char *
22279dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22280 struct obstack *obstack)
22281{
22282 if (name && cu->language == language_cplus)
22283 {
22284 std::string canon_name = cp_canonicalize_string (name);
22285
22286 if (!canon_name.empty ())
22287 {
22288 if (canon_name != name)
22289 name = (const char *) obstack_copy0 (obstack,
22290 canon_name.c_str (),
22291 canon_name.length ());
22292 }
22293 }
22294
22295 return name;
22296}
22297
22298/* Get name of a die, return NULL if not found.
22299 Anonymous namespaces are converted to their magic string. */
22300
22301static const char *
22302dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22303{
22304 struct attribute *attr;
22305 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22306
22307 attr = dwarf2_attr (die, DW_AT_name, cu);
22308 if ((!attr || !DW_STRING (attr))
22309 && die->tag != DW_TAG_namespace
22310 && die->tag != DW_TAG_class_type
22311 && die->tag != DW_TAG_interface_type
22312 && die->tag != DW_TAG_structure_type
22313 && die->tag != DW_TAG_union_type)
22314 return NULL;
22315
22316 switch (die->tag)
22317 {
22318 case DW_TAG_compile_unit:
22319 case DW_TAG_partial_unit:
22320 /* Compilation units have a DW_AT_name that is a filename, not
22321 a source language identifier. */
22322 case DW_TAG_enumeration_type:
22323 case DW_TAG_enumerator:
22324 /* These tags always have simple identifiers already; no need
22325 to canonicalize them. */
22326 return DW_STRING (attr);
22327
22328 case DW_TAG_namespace:
22329 if (attr != NULL && DW_STRING (attr) != NULL)
22330 return DW_STRING (attr);
22331 return CP_ANONYMOUS_NAMESPACE_STR;
22332
22333 case DW_TAG_class_type:
22334 case DW_TAG_interface_type:
22335 case DW_TAG_structure_type:
22336 case DW_TAG_union_type:
22337 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22338 structures or unions. These were of the form "._%d" in GCC 4.1,
22339 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22340 and GCC 4.4. We work around this problem by ignoring these. */
22341 if (attr && DW_STRING (attr)
22342 && (startswith (DW_STRING (attr), "._")
22343 || startswith (DW_STRING (attr), "<anonymous")))
22344 return NULL;
22345
22346 /* GCC might emit a nameless typedef that has a linkage name. See
22347 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22348 if (!attr || DW_STRING (attr) == NULL)
22349 {
22350 char *demangled = NULL;
22351
22352 attr = dw2_linkage_name_attr (die, cu);
22353 if (attr == NULL || DW_STRING (attr) == NULL)
22354 return NULL;
22355
22356 /* Avoid demangling DW_STRING (attr) the second time on a second
22357 call for the same DIE. */
22358 if (!DW_STRING_IS_CANONICAL (attr))
22359 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22360
22361 if (demangled)
22362 {
22363 const char *base;
22364
22365 /* FIXME: we already did this for the partial symbol... */
22366 DW_STRING (attr)
22367 = ((const char *)
22368 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22369 demangled, strlen (demangled)));
22370 DW_STRING_IS_CANONICAL (attr) = 1;
22371 xfree (demangled);
22372
22373 /* Strip any leading namespaces/classes, keep only the base name.
22374 DW_AT_name for named DIEs does not contain the prefixes. */
22375 base = strrchr (DW_STRING (attr), ':');
22376 if (base && base > DW_STRING (attr) && base[-1] == ':')
22377 return &base[1];
22378 else
22379 return DW_STRING (attr);
22380 }
22381 }
22382 break;
22383
22384 default:
22385 break;
22386 }
22387
22388 if (!DW_STRING_IS_CANONICAL (attr))
22389 {
22390 DW_STRING (attr)
22391 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22392 &objfile->per_bfd->storage_obstack);
22393 DW_STRING_IS_CANONICAL (attr) = 1;
22394 }
22395 return DW_STRING (attr);
22396}
22397
22398/* Return the die that this die in an extension of, or NULL if there
22399 is none. *EXT_CU is the CU containing DIE on input, and the CU
22400 containing the return value on output. */
22401
22402static struct die_info *
22403dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22404{
22405 struct attribute *attr;
22406
22407 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22408 if (attr == NULL)
22409 return NULL;
22410
22411 return follow_die_ref (die, attr, ext_cu);
22412}
22413
22414/* Convert a DIE tag into its string name. */
22415
22416static const char *
22417dwarf_tag_name (unsigned tag)
22418{
22419 const char *name = get_DW_TAG_name (tag);
22420
22421 if (name == NULL)
22422 return "DW_TAG_<unknown>";
22423
22424 return name;
22425}
22426
22427/* Convert a DWARF attribute code into its string name. */
22428
22429static const char *
22430dwarf_attr_name (unsigned attr)
22431{
22432 const char *name;
22433
22434#ifdef MIPS /* collides with DW_AT_HP_block_index */
22435 if (attr == DW_AT_MIPS_fde)
22436 return "DW_AT_MIPS_fde";
22437#else
22438 if (attr == DW_AT_HP_block_index)
22439 return "DW_AT_HP_block_index";
22440#endif
22441
22442 name = get_DW_AT_name (attr);
22443
22444 if (name == NULL)
22445 return "DW_AT_<unknown>";
22446
22447 return name;
22448}
22449
22450/* Convert a DWARF value form code into its string name. */
22451
22452static const char *
22453dwarf_form_name (unsigned form)
22454{
22455 const char *name = get_DW_FORM_name (form);
22456
22457 if (name == NULL)
22458 return "DW_FORM_<unknown>";
22459
22460 return name;
22461}
22462
22463static const char *
22464dwarf_bool_name (unsigned mybool)
22465{
22466 if (mybool)
22467 return "TRUE";
22468 else
22469 return "FALSE";
22470}
22471
22472/* Convert a DWARF type code into its string name. */
22473
22474static const char *
22475dwarf_type_encoding_name (unsigned enc)
22476{
22477 const char *name = get_DW_ATE_name (enc);
22478
22479 if (name == NULL)
22480 return "DW_ATE_<unknown>";
22481
22482 return name;
22483}
22484
22485static void
22486dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22487{
22488 unsigned int i;
22489
22490 print_spaces (indent, f);
22491 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22492 dwarf_tag_name (die->tag), die->abbrev,
22493 sect_offset_str (die->sect_off));
22494
22495 if (die->parent != NULL)
22496 {
22497 print_spaces (indent, f);
22498 fprintf_unfiltered (f, " parent at offset: %s\n",
22499 sect_offset_str (die->parent->sect_off));
22500 }
22501
22502 print_spaces (indent, f);
22503 fprintf_unfiltered (f, " has children: %s\n",
22504 dwarf_bool_name (die->child != NULL));
22505
22506 print_spaces (indent, f);
22507 fprintf_unfiltered (f, " attributes:\n");
22508
22509 for (i = 0; i < die->num_attrs; ++i)
22510 {
22511 print_spaces (indent, f);
22512 fprintf_unfiltered (f, " %s (%s) ",
22513 dwarf_attr_name (die->attrs[i].name),
22514 dwarf_form_name (die->attrs[i].form));
22515
22516 switch (die->attrs[i].form)
22517 {
22518 case DW_FORM_addr:
22519 case DW_FORM_GNU_addr_index:
22520 fprintf_unfiltered (f, "address: ");
22521 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22522 break;
22523 case DW_FORM_block2:
22524 case DW_FORM_block4:
22525 case DW_FORM_block:
22526 case DW_FORM_block1:
22527 fprintf_unfiltered (f, "block: size %s",
22528 pulongest (DW_BLOCK (&die->attrs[i])->size));
22529 break;
22530 case DW_FORM_exprloc:
22531 fprintf_unfiltered (f, "expression: size %s",
22532 pulongest (DW_BLOCK (&die->attrs[i])->size));
22533 break;
22534 case DW_FORM_data16:
22535 fprintf_unfiltered (f, "constant of 16 bytes");
22536 break;
22537 case DW_FORM_ref_addr:
22538 fprintf_unfiltered (f, "ref address: ");
22539 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22540 break;
22541 case DW_FORM_GNU_ref_alt:
22542 fprintf_unfiltered (f, "alt ref address: ");
22543 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22544 break;
22545 case DW_FORM_ref1:
22546 case DW_FORM_ref2:
22547 case DW_FORM_ref4:
22548 case DW_FORM_ref8:
22549 case DW_FORM_ref_udata:
22550 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22551 (long) (DW_UNSND (&die->attrs[i])));
22552 break;
22553 case DW_FORM_data1:
22554 case DW_FORM_data2:
22555 case DW_FORM_data4:
22556 case DW_FORM_data8:
22557 case DW_FORM_udata:
22558 case DW_FORM_sdata:
22559 fprintf_unfiltered (f, "constant: %s",
22560 pulongest (DW_UNSND (&die->attrs[i])));
22561 break;
22562 case DW_FORM_sec_offset:
22563 fprintf_unfiltered (f, "section offset: %s",
22564 pulongest (DW_UNSND (&die->attrs[i])));
22565 break;
22566 case DW_FORM_ref_sig8:
22567 fprintf_unfiltered (f, "signature: %s",
22568 hex_string (DW_SIGNATURE (&die->attrs[i])));
22569 break;
22570 case DW_FORM_string:
22571 case DW_FORM_strp:
22572 case DW_FORM_line_strp:
22573 case DW_FORM_GNU_str_index:
22574 case DW_FORM_GNU_strp_alt:
22575 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22576 DW_STRING (&die->attrs[i])
22577 ? DW_STRING (&die->attrs[i]) : "",
22578 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22579 break;
22580 case DW_FORM_flag:
22581 if (DW_UNSND (&die->attrs[i]))
22582 fprintf_unfiltered (f, "flag: TRUE");
22583 else
22584 fprintf_unfiltered (f, "flag: FALSE");
22585 break;
22586 case DW_FORM_flag_present:
22587 fprintf_unfiltered (f, "flag: TRUE");
22588 break;
22589 case DW_FORM_indirect:
22590 /* The reader will have reduced the indirect form to
22591 the "base form" so this form should not occur. */
22592 fprintf_unfiltered (f,
22593 "unexpected attribute form: DW_FORM_indirect");
22594 break;
22595 case DW_FORM_implicit_const:
22596 fprintf_unfiltered (f, "constant: %s",
22597 plongest (DW_SND (&die->attrs[i])));
22598 break;
22599 default:
22600 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22601 die->attrs[i].form);
22602 break;
22603 }
22604 fprintf_unfiltered (f, "\n");
22605 }
22606}
22607
22608static void
22609dump_die_for_error (struct die_info *die)
22610{
22611 dump_die_shallow (gdb_stderr, 0, die);
22612}
22613
22614static void
22615dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22616{
22617 int indent = level * 4;
22618
22619 gdb_assert (die != NULL);
22620
22621 if (level >= max_level)
22622 return;
22623
22624 dump_die_shallow (f, indent, die);
22625
22626 if (die->child != NULL)
22627 {
22628 print_spaces (indent, f);
22629 fprintf_unfiltered (f, " Children:");
22630 if (level + 1 < max_level)
22631 {
22632 fprintf_unfiltered (f, "\n");
22633 dump_die_1 (f, level + 1, max_level, die->child);
22634 }
22635 else
22636 {
22637 fprintf_unfiltered (f,
22638 " [not printed, max nesting level reached]\n");
22639 }
22640 }
22641
22642 if (die->sibling != NULL && level > 0)
22643 {
22644 dump_die_1 (f, level, max_level, die->sibling);
22645 }
22646}
22647
22648/* This is called from the pdie macro in gdbinit.in.
22649 It's not static so gcc will keep a copy callable from gdb. */
22650
22651void
22652dump_die (struct die_info *die, int max_level)
22653{
22654 dump_die_1 (gdb_stdlog, 0, max_level, die);
22655}
22656
22657static void
22658store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22659{
22660 void **slot;
22661
22662 slot = htab_find_slot_with_hash (cu->die_hash, die,
22663 to_underlying (die->sect_off),
22664 INSERT);
22665
22666 *slot = die;
22667}
22668
22669/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22670 required kind. */
22671
22672static sect_offset
22673dwarf2_get_ref_die_offset (const struct attribute *attr)
22674{
22675 if (attr_form_is_ref (attr))
22676 return (sect_offset) DW_UNSND (attr);
22677
22678 complaint (&symfile_complaints,
22679 _("unsupported die ref attribute form: '%s'"),
22680 dwarf_form_name (attr->form));
22681 return {};
22682}
22683
22684/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22685 * the value held by the attribute is not constant. */
22686
22687static LONGEST
22688dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22689{
22690 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22691 return DW_SND (attr);
22692 else if (attr->form == DW_FORM_udata
22693 || attr->form == DW_FORM_data1
22694 || attr->form == DW_FORM_data2
22695 || attr->form == DW_FORM_data4
22696 || attr->form == DW_FORM_data8)
22697 return DW_UNSND (attr);
22698 else
22699 {
22700 /* For DW_FORM_data16 see attr_form_is_constant. */
22701 complaint (&symfile_complaints,
22702 _("Attribute value is not a constant (%s)"),
22703 dwarf_form_name (attr->form));
22704 return default_value;
22705 }
22706}
22707
22708/* Follow reference or signature attribute ATTR of SRC_DIE.
22709 On entry *REF_CU is the CU of SRC_DIE.
22710 On exit *REF_CU is the CU of the result. */
22711
22712static struct die_info *
22713follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22714 struct dwarf2_cu **ref_cu)
22715{
22716 struct die_info *die;
22717
22718 if (attr_form_is_ref (attr))
22719 die = follow_die_ref (src_die, attr, ref_cu);
22720 else if (attr->form == DW_FORM_ref_sig8)
22721 die = follow_die_sig (src_die, attr, ref_cu);
22722 else
22723 {
22724 dump_die_for_error (src_die);
22725 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22726 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22727 }
22728
22729 return die;
22730}
22731
22732/* Follow reference OFFSET.
22733 On entry *REF_CU is the CU of the source die referencing OFFSET.
22734 On exit *REF_CU is the CU of the result.
22735 Returns NULL if OFFSET is invalid. */
22736
22737static struct die_info *
22738follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22739 struct dwarf2_cu **ref_cu)
22740{
22741 struct die_info temp_die;
22742 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22743 struct dwarf2_per_objfile *dwarf2_per_objfile
22744 = cu->per_cu->dwarf2_per_objfile;
22745
22746 gdb_assert (cu->per_cu != NULL);
22747
22748 target_cu = cu;
22749
22750 if (cu->per_cu->is_debug_types)
22751 {
22752 /* .debug_types CUs cannot reference anything outside their CU.
22753 If they need to, they have to reference a signatured type via
22754 DW_FORM_ref_sig8. */
22755 if (!offset_in_cu_p (&cu->header, sect_off))
22756 return NULL;
22757 }
22758 else if (offset_in_dwz != cu->per_cu->is_dwz
22759 || !offset_in_cu_p (&cu->header, sect_off))
22760 {
22761 struct dwarf2_per_cu_data *per_cu;
22762
22763 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22764 dwarf2_per_objfile);
22765
22766 /* If necessary, add it to the queue and load its DIEs. */
22767 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22768 load_full_comp_unit (per_cu, cu->language);
22769
22770 target_cu = per_cu->cu;
22771 }
22772 else if (cu->dies == NULL)
22773 {
22774 /* We're loading full DIEs during partial symbol reading. */
22775 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22776 load_full_comp_unit (cu->per_cu, language_minimal);
22777 }
22778
22779 *ref_cu = target_cu;
22780 temp_die.sect_off = sect_off;
22781 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22782 &temp_die,
22783 to_underlying (sect_off));
22784}
22785
22786/* Follow reference attribute ATTR of SRC_DIE.
22787 On entry *REF_CU is the CU of SRC_DIE.
22788 On exit *REF_CU is the CU of the result. */
22789
22790static struct die_info *
22791follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22792 struct dwarf2_cu **ref_cu)
22793{
22794 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22795 struct dwarf2_cu *cu = *ref_cu;
22796 struct die_info *die;
22797
22798 die = follow_die_offset (sect_off,
22799 (attr->form == DW_FORM_GNU_ref_alt
22800 || cu->per_cu->is_dwz),
22801 ref_cu);
22802 if (!die)
22803 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22804 "at %s [in module %s]"),
22805 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22806 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22807
22808 return die;
22809}
22810
22811/* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22812 Returned value is intended for DW_OP_call*. Returned
22813 dwarf2_locexpr_baton->data has lifetime of
22814 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22815
22816struct dwarf2_locexpr_baton
22817dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22818 struct dwarf2_per_cu_data *per_cu,
22819 CORE_ADDR (*get_frame_pc) (void *baton),
22820 void *baton)
22821{
22822 struct dwarf2_cu *cu;
22823 struct die_info *die;
22824 struct attribute *attr;
22825 struct dwarf2_locexpr_baton retval;
22826 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22827 struct objfile *objfile = dwarf2_per_objfile->objfile;
22828
22829 if (per_cu->cu == NULL)
22830 load_cu (per_cu);
22831 cu = per_cu->cu;
22832 if (cu == NULL)
22833 {
22834 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22835 Instead just throw an error, not much else we can do. */
22836 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22837 sect_offset_str (sect_off), objfile_name (objfile));
22838 }
22839
22840 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22841 if (!die)
22842 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22843 sect_offset_str (sect_off), objfile_name (objfile));
22844
22845 attr = dwarf2_attr (die, DW_AT_location, cu);
22846 if (!attr)
22847 {
22848 /* DWARF: "If there is no such attribute, then there is no effect.".
22849 DATA is ignored if SIZE is 0. */
22850
22851 retval.data = NULL;
22852 retval.size = 0;
22853 }
22854 else if (attr_form_is_section_offset (attr))
22855 {
22856 struct dwarf2_loclist_baton loclist_baton;
22857 CORE_ADDR pc = (*get_frame_pc) (baton);
22858 size_t size;
22859
22860 fill_in_loclist_baton (cu, &loclist_baton, attr);
22861
22862 retval.data = dwarf2_find_location_expression (&loclist_baton,
22863 &size, pc);
22864 retval.size = size;
22865 }
22866 else
22867 {
22868 if (!attr_form_is_block (attr))
22869 error (_("Dwarf Error: DIE at %s referenced in module %s "
22870 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22871 sect_offset_str (sect_off), objfile_name (objfile));
22872
22873 retval.data = DW_BLOCK (attr)->data;
22874 retval.size = DW_BLOCK (attr)->size;
22875 }
22876 retval.per_cu = cu->per_cu;
22877
22878 age_cached_comp_units (dwarf2_per_objfile);
22879
22880 return retval;
22881}
22882
22883/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22884 offset. */
22885
22886struct dwarf2_locexpr_baton
22887dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22888 struct dwarf2_per_cu_data *per_cu,
22889 CORE_ADDR (*get_frame_pc) (void *baton),
22890 void *baton)
22891{
22892 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22893
22894 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22895}
22896
22897/* Write a constant of a given type as target-ordered bytes into
22898 OBSTACK. */
22899
22900static const gdb_byte *
22901write_constant_as_bytes (struct obstack *obstack,
22902 enum bfd_endian byte_order,
22903 struct type *type,
22904 ULONGEST value,
22905 LONGEST *len)
22906{
22907 gdb_byte *result;
22908
22909 *len = TYPE_LENGTH (type);
22910 result = (gdb_byte *) obstack_alloc (obstack, *len);
22911 store_unsigned_integer (result, *len, byte_order, value);
22912
22913 return result;
22914}
22915
22916/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22917 pointer to the constant bytes and set LEN to the length of the
22918 data. If memory is needed, allocate it on OBSTACK. If the DIE
22919 does not have a DW_AT_const_value, return NULL. */
22920
22921const gdb_byte *
22922dwarf2_fetch_constant_bytes (sect_offset sect_off,
22923 struct dwarf2_per_cu_data *per_cu,
22924 struct obstack *obstack,
22925 LONGEST *len)
22926{
22927 struct dwarf2_cu *cu;
22928 struct die_info *die;
22929 struct attribute *attr;
22930 const gdb_byte *result = NULL;
22931 struct type *type;
22932 LONGEST value;
22933 enum bfd_endian byte_order;
22934 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22935
22936 if (per_cu->cu == NULL)
22937 load_cu (per_cu);
22938 cu = per_cu->cu;
22939 if (cu == NULL)
22940 {
22941 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22942 Instead just throw an error, not much else we can do. */
22943 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22944 sect_offset_str (sect_off), objfile_name (objfile));
22945 }
22946
22947 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22948 if (!die)
22949 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22950 sect_offset_str (sect_off), objfile_name (objfile));
22951
22952 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22953 if (attr == NULL)
22954 return NULL;
22955
22956 byte_order = (bfd_big_endian (objfile->obfd)
22957 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22958
22959 switch (attr->form)
22960 {
22961 case DW_FORM_addr:
22962 case DW_FORM_GNU_addr_index:
22963 {
22964 gdb_byte *tem;
22965
22966 *len = cu->header.addr_size;
22967 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22968 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22969 result = tem;
22970 }
22971 break;
22972 case DW_FORM_string:
22973 case DW_FORM_strp:
22974 case DW_FORM_GNU_str_index:
22975 case DW_FORM_GNU_strp_alt:
22976 /* DW_STRING is already allocated on the objfile obstack, point
22977 directly to it. */
22978 result = (const gdb_byte *) DW_STRING (attr);
22979 *len = strlen (DW_STRING (attr));
22980 break;
22981 case DW_FORM_block1:
22982 case DW_FORM_block2:
22983 case DW_FORM_block4:
22984 case DW_FORM_block:
22985 case DW_FORM_exprloc:
22986 case DW_FORM_data16:
22987 result = DW_BLOCK (attr)->data;
22988 *len = DW_BLOCK (attr)->size;
22989 break;
22990
22991 /* The DW_AT_const_value attributes are supposed to carry the
22992 symbol's value "represented as it would be on the target
22993 architecture." By the time we get here, it's already been
22994 converted to host endianness, so we just need to sign- or
22995 zero-extend it as appropriate. */
22996 case DW_FORM_data1:
22997 type = die_type (die, cu);
22998 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22999 if (result == NULL)
23000 result = write_constant_as_bytes (obstack, byte_order,
23001 type, value, len);
23002 break;
23003 case DW_FORM_data2:
23004 type = die_type (die, cu);
23005 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23006 if (result == NULL)
23007 result = write_constant_as_bytes (obstack, byte_order,
23008 type, value, len);
23009 break;
23010 case DW_FORM_data4:
23011 type = die_type (die, cu);
23012 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23013 if (result == NULL)
23014 result = write_constant_as_bytes (obstack, byte_order,
23015 type, value, len);
23016 break;
23017 case DW_FORM_data8:
23018 type = die_type (die, cu);
23019 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23020 if (result == NULL)
23021 result = write_constant_as_bytes (obstack, byte_order,
23022 type, value, len);
23023 break;
23024
23025 case DW_FORM_sdata:
23026 case DW_FORM_implicit_const:
23027 type = die_type (die, cu);
23028 result = write_constant_as_bytes (obstack, byte_order,
23029 type, DW_SND (attr), len);
23030 break;
23031
23032 case DW_FORM_udata:
23033 type = die_type (die, cu);
23034 result = write_constant_as_bytes (obstack, byte_order,
23035 type, DW_UNSND (attr), len);
23036 break;
23037
23038 default:
23039 complaint (&symfile_complaints,
23040 _("unsupported const value attribute form: '%s'"),
23041 dwarf_form_name (attr->form));
23042 break;
23043 }
23044
23045 return result;
23046}
23047
23048/* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23049 valid type for this die is found. */
23050
23051struct type *
23052dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23053 struct dwarf2_per_cu_data *per_cu)
23054{
23055 struct dwarf2_cu *cu;
23056 struct die_info *die;
23057
23058 if (per_cu->cu == NULL)
23059 load_cu (per_cu);
23060 cu = per_cu->cu;
23061 if (!cu)
23062 return NULL;
23063
23064 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23065 if (!die)
23066 return NULL;
23067
23068 return die_type (die, cu);
23069}
23070
23071/* Return the type of the DIE at DIE_OFFSET in the CU named by
23072 PER_CU. */
23073
23074struct type *
23075dwarf2_get_die_type (cu_offset die_offset,
23076 struct dwarf2_per_cu_data *per_cu)
23077{
23078 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23079 return get_die_type_at_offset (die_offset_sect, per_cu);
23080}
23081
23082/* Follow type unit SIG_TYPE referenced by SRC_DIE.
23083 On entry *REF_CU is the CU of SRC_DIE.
23084 On exit *REF_CU is the CU of the result.
23085 Returns NULL if the referenced DIE isn't found. */
23086
23087static struct die_info *
23088follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23089 struct dwarf2_cu **ref_cu)
23090{
23091 struct die_info temp_die;
23092 struct dwarf2_cu *sig_cu;
23093 struct die_info *die;
23094
23095 /* While it might be nice to assert sig_type->type == NULL here,
23096 we can get here for DW_AT_imported_declaration where we need
23097 the DIE not the type. */
23098
23099 /* If necessary, add it to the queue and load its DIEs. */
23100
23101 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23102 read_signatured_type (sig_type);
23103
23104 sig_cu = sig_type->per_cu.cu;
23105 gdb_assert (sig_cu != NULL);
23106 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23107 temp_die.sect_off = sig_type->type_offset_in_section;
23108 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23109 to_underlying (temp_die.sect_off));
23110 if (die)
23111 {
23112 struct dwarf2_per_objfile *dwarf2_per_objfile
23113 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23114
23115 /* For .gdb_index version 7 keep track of included TUs.
23116 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23117 if (dwarf2_per_objfile->index_table != NULL
23118 && dwarf2_per_objfile->index_table->version <= 7)
23119 {
23120 VEC_safe_push (dwarf2_per_cu_ptr,
23121 (*ref_cu)->per_cu->imported_symtabs,
23122 sig_cu->per_cu);
23123 }
23124
23125 *ref_cu = sig_cu;
23126 return die;
23127 }
23128
23129 return NULL;
23130}
23131
23132/* Follow signatured type referenced by ATTR in SRC_DIE.
23133 On entry *REF_CU is the CU of SRC_DIE.
23134 On exit *REF_CU is the CU of the result.
23135 The result is the DIE of the type.
23136 If the referenced type cannot be found an error is thrown. */
23137
23138static struct die_info *
23139follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23140 struct dwarf2_cu **ref_cu)
23141{
23142 ULONGEST signature = DW_SIGNATURE (attr);
23143 struct signatured_type *sig_type;
23144 struct die_info *die;
23145
23146 gdb_assert (attr->form == DW_FORM_ref_sig8);
23147
23148 sig_type = lookup_signatured_type (*ref_cu, signature);
23149 /* sig_type will be NULL if the signatured type is missing from
23150 the debug info. */
23151 if (sig_type == NULL)
23152 {
23153 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23154 " from DIE at %s [in module %s]"),
23155 hex_string (signature), sect_offset_str (src_die->sect_off),
23156 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23157 }
23158
23159 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23160 if (die == NULL)
23161 {
23162 dump_die_for_error (src_die);
23163 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23164 " from DIE at %s [in module %s]"),
23165 hex_string (signature), sect_offset_str (src_die->sect_off),
23166 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23167 }
23168
23169 return die;
23170}
23171
23172/* Get the type specified by SIGNATURE referenced in DIE/CU,
23173 reading in and processing the type unit if necessary. */
23174
23175static struct type *
23176get_signatured_type (struct die_info *die, ULONGEST signature,
23177 struct dwarf2_cu *cu)
23178{
23179 struct dwarf2_per_objfile *dwarf2_per_objfile
23180 = cu->per_cu->dwarf2_per_objfile;
23181 struct signatured_type *sig_type;
23182 struct dwarf2_cu *type_cu;
23183 struct die_info *type_die;
23184 struct type *type;
23185
23186 sig_type = lookup_signatured_type (cu, signature);
23187 /* sig_type will be NULL if the signatured type is missing from
23188 the debug info. */
23189 if (sig_type == NULL)
23190 {
23191 complaint (&symfile_complaints,
23192 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23193 " from DIE at %s [in module %s]"),
23194 hex_string (signature), sect_offset_str (die->sect_off),
23195 objfile_name (dwarf2_per_objfile->objfile));
23196 return build_error_marker_type (cu, die);
23197 }
23198
23199 /* If we already know the type we're done. */
23200 if (sig_type->type != NULL)
23201 return sig_type->type;
23202
23203 type_cu = cu;
23204 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23205 if (type_die != NULL)
23206 {
23207 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23208 is created. This is important, for example, because for c++ classes
23209 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23210 type = read_type_die (type_die, type_cu);
23211 if (type == NULL)
23212 {
23213 complaint (&symfile_complaints,
23214 _("Dwarf Error: Cannot build signatured type %s"
23215 " referenced from DIE at %s [in module %s]"),
23216 hex_string (signature), sect_offset_str (die->sect_off),
23217 objfile_name (dwarf2_per_objfile->objfile));
23218 type = build_error_marker_type (cu, die);
23219 }
23220 }
23221 else
23222 {
23223 complaint (&symfile_complaints,
23224 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23225 " from DIE at %s [in module %s]"),
23226 hex_string (signature), sect_offset_str (die->sect_off),
23227 objfile_name (dwarf2_per_objfile->objfile));
23228 type = build_error_marker_type (cu, die);
23229 }
23230 sig_type->type = type;
23231
23232 return type;
23233}
23234
23235/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23236 reading in and processing the type unit if necessary. */
23237
23238static struct type *
23239get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23240 struct dwarf2_cu *cu) /* ARI: editCase function */
23241{
23242 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23243 if (attr_form_is_ref (attr))
23244 {
23245 struct dwarf2_cu *type_cu = cu;
23246 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23247
23248 return read_type_die (type_die, type_cu);
23249 }
23250 else if (attr->form == DW_FORM_ref_sig8)
23251 {
23252 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23253 }
23254 else
23255 {
23256 struct dwarf2_per_objfile *dwarf2_per_objfile
23257 = cu->per_cu->dwarf2_per_objfile;
23258
23259 complaint (&symfile_complaints,
23260 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23261 " at %s [in module %s]"),
23262 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23263 objfile_name (dwarf2_per_objfile->objfile));
23264 return build_error_marker_type (cu, die);
23265 }
23266}
23267
23268/* Load the DIEs associated with type unit PER_CU into memory. */
23269
23270static void
23271load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23272{
23273 struct signatured_type *sig_type;
23274
23275 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23276 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23277
23278 /* We have the per_cu, but we need the signatured_type.
23279 Fortunately this is an easy translation. */
23280 gdb_assert (per_cu->is_debug_types);
23281 sig_type = (struct signatured_type *) per_cu;
23282
23283 gdb_assert (per_cu->cu == NULL);
23284
23285 read_signatured_type (sig_type);
23286
23287 gdb_assert (per_cu->cu != NULL);
23288}
23289
23290/* die_reader_func for read_signatured_type.
23291 This is identical to load_full_comp_unit_reader,
23292 but is kept separate for now. */
23293
23294static void
23295read_signatured_type_reader (const struct die_reader_specs *reader,
23296 const gdb_byte *info_ptr,
23297 struct die_info *comp_unit_die,
23298 int has_children,
23299 void *data)
23300{
23301 struct dwarf2_cu *cu = reader->cu;
23302
23303 gdb_assert (cu->die_hash == NULL);
23304 cu->die_hash =
23305 htab_create_alloc_ex (cu->header.length / 12,
23306 die_hash,
23307 die_eq,
23308 NULL,
23309 &cu->comp_unit_obstack,
23310 hashtab_obstack_allocate,
23311 dummy_obstack_deallocate);
23312
23313 if (has_children)
23314 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23315 &info_ptr, comp_unit_die);
23316 cu->dies = comp_unit_die;
23317 /* comp_unit_die is not stored in die_hash, no need. */
23318
23319 /* We try not to read any attributes in this function, because not
23320 all CUs needed for references have been loaded yet, and symbol
23321 table processing isn't initialized. But we have to set the CU language,
23322 or we won't be able to build types correctly.
23323 Similarly, if we do not read the producer, we can not apply
23324 producer-specific interpretation. */
23325 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23326}
23327
23328/* Read in a signatured type and build its CU and DIEs.
23329 If the type is a stub for the real type in a DWO file,
23330 read in the real type from the DWO file as well. */
23331
23332static void
23333read_signatured_type (struct signatured_type *sig_type)
23334{
23335 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23336
23337 gdb_assert (per_cu->is_debug_types);
23338 gdb_assert (per_cu->cu == NULL);
23339
23340 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
23341 read_signatured_type_reader, NULL);
23342 sig_type->per_cu.tu_read = 1;
23343}
23344
23345/* Decode simple location descriptions.
23346 Given a pointer to a dwarf block that defines a location, compute
23347 the location and return the value.
23348
23349 NOTE drow/2003-11-18: This function is called in two situations
23350 now: for the address of static or global variables (partial symbols
23351 only) and for offsets into structures which are expected to be
23352 (more or less) constant. The partial symbol case should go away,
23353 and only the constant case should remain. That will let this
23354 function complain more accurately. A few special modes are allowed
23355 without complaint for global variables (for instance, global
23356 register values and thread-local values).
23357
23358 A location description containing no operations indicates that the
23359 object is optimized out. The return value is 0 for that case.
23360 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23361 callers will only want a very basic result and this can become a
23362 complaint.
23363
23364 Note that stack[0] is unused except as a default error return. */
23365
23366static CORE_ADDR
23367decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23368{
23369 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23370 size_t i;
23371 size_t size = blk->size;
23372 const gdb_byte *data = blk->data;
23373 CORE_ADDR stack[64];
23374 int stacki;
23375 unsigned int bytes_read, unsnd;
23376 gdb_byte op;
23377
23378 i = 0;
23379 stacki = 0;
23380 stack[stacki] = 0;
23381 stack[++stacki] = 0;
23382
23383 while (i < size)
23384 {
23385 op = data[i++];
23386 switch (op)
23387 {
23388 case DW_OP_lit0:
23389 case DW_OP_lit1:
23390 case DW_OP_lit2:
23391 case DW_OP_lit3:
23392 case DW_OP_lit4:
23393 case DW_OP_lit5:
23394 case DW_OP_lit6:
23395 case DW_OP_lit7:
23396 case DW_OP_lit8:
23397 case DW_OP_lit9:
23398 case DW_OP_lit10:
23399 case DW_OP_lit11:
23400 case DW_OP_lit12:
23401 case DW_OP_lit13:
23402 case DW_OP_lit14:
23403 case DW_OP_lit15:
23404 case DW_OP_lit16:
23405 case DW_OP_lit17:
23406 case DW_OP_lit18:
23407 case DW_OP_lit19:
23408 case DW_OP_lit20:
23409 case DW_OP_lit21:
23410 case DW_OP_lit22:
23411 case DW_OP_lit23:
23412 case DW_OP_lit24:
23413 case DW_OP_lit25:
23414 case DW_OP_lit26:
23415 case DW_OP_lit27:
23416 case DW_OP_lit28:
23417 case DW_OP_lit29:
23418 case DW_OP_lit30:
23419 case DW_OP_lit31:
23420 stack[++stacki] = op - DW_OP_lit0;
23421 break;
23422
23423 case DW_OP_reg0:
23424 case DW_OP_reg1:
23425 case DW_OP_reg2:
23426 case DW_OP_reg3:
23427 case DW_OP_reg4:
23428 case DW_OP_reg5:
23429 case DW_OP_reg6:
23430 case DW_OP_reg7:
23431 case DW_OP_reg8:
23432 case DW_OP_reg9:
23433 case DW_OP_reg10:
23434 case DW_OP_reg11:
23435 case DW_OP_reg12:
23436 case DW_OP_reg13:
23437 case DW_OP_reg14:
23438 case DW_OP_reg15:
23439 case DW_OP_reg16:
23440 case DW_OP_reg17:
23441 case DW_OP_reg18:
23442 case DW_OP_reg19:
23443 case DW_OP_reg20:
23444 case DW_OP_reg21:
23445 case DW_OP_reg22:
23446 case DW_OP_reg23:
23447 case DW_OP_reg24:
23448 case DW_OP_reg25:
23449 case DW_OP_reg26:
23450 case DW_OP_reg27:
23451 case DW_OP_reg28:
23452 case DW_OP_reg29:
23453 case DW_OP_reg30:
23454 case DW_OP_reg31:
23455 stack[++stacki] = op - DW_OP_reg0;
23456 if (i < size)
23457 dwarf2_complex_location_expr_complaint ();
23458 break;
23459
23460 case DW_OP_regx:
23461 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23462 i += bytes_read;
23463 stack[++stacki] = unsnd;
23464 if (i < size)
23465 dwarf2_complex_location_expr_complaint ();
23466 break;
23467
23468 case DW_OP_addr:
23469 stack[++stacki] = read_address (objfile->obfd, &data[i],
23470 cu, &bytes_read);
23471 i += bytes_read;
23472 break;
23473
23474 case DW_OP_const1u:
23475 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23476 i += 1;
23477 break;
23478
23479 case DW_OP_const1s:
23480 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23481 i += 1;
23482 break;
23483
23484 case DW_OP_const2u:
23485 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23486 i += 2;
23487 break;
23488
23489 case DW_OP_const2s:
23490 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23491 i += 2;
23492 break;
23493
23494 case DW_OP_const4u:
23495 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23496 i += 4;
23497 break;
23498
23499 case DW_OP_const4s:
23500 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23501 i += 4;
23502 break;
23503
23504 case DW_OP_const8u:
23505 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23506 i += 8;
23507 break;
23508
23509 case DW_OP_constu:
23510 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23511 &bytes_read);
23512 i += bytes_read;
23513 break;
23514
23515 case DW_OP_consts:
23516 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23517 i += bytes_read;
23518 break;
23519
23520 case DW_OP_dup:
23521 stack[stacki + 1] = stack[stacki];
23522 stacki++;
23523 break;
23524
23525 case DW_OP_plus:
23526 stack[stacki - 1] += stack[stacki];
23527 stacki--;
23528 break;
23529
23530 case DW_OP_plus_uconst:
23531 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23532 &bytes_read);
23533 i += bytes_read;
23534 break;
23535
23536 case DW_OP_minus:
23537 stack[stacki - 1] -= stack[stacki];
23538 stacki--;
23539 break;
23540
23541 case DW_OP_deref:
23542 /* If we're not the last op, then we definitely can't encode
23543 this using GDB's address_class enum. This is valid for partial
23544 global symbols, although the variable's address will be bogus
23545 in the psymtab. */
23546 if (i < size)
23547 dwarf2_complex_location_expr_complaint ();
23548 break;
23549
23550 case DW_OP_GNU_push_tls_address:
23551 case DW_OP_form_tls_address:
23552 /* The top of the stack has the offset from the beginning
23553 of the thread control block at which the variable is located. */
23554 /* Nothing should follow this operator, so the top of stack would
23555 be returned. */
23556 /* This is valid for partial global symbols, but the variable's
23557 address will be bogus in the psymtab. Make it always at least
23558 non-zero to not look as a variable garbage collected by linker
23559 which have DW_OP_addr 0. */
23560 if (i < size)
23561 dwarf2_complex_location_expr_complaint ();
23562 stack[stacki]++;
23563 break;
23564
23565 case DW_OP_GNU_uninit:
23566 break;
23567
23568 case DW_OP_GNU_addr_index:
23569 case DW_OP_GNU_const_index:
23570 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23571 &bytes_read);
23572 i += bytes_read;
23573 break;
23574
23575 default:
23576 {
23577 const char *name = get_DW_OP_name (op);
23578
23579 if (name)
23580 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
23581 name);
23582 else
23583 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
23584 op);
23585 }
23586
23587 return (stack[stacki]);
23588 }
23589
23590 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23591 outside of the allocated space. Also enforce minimum>0. */
23592 if (stacki >= ARRAY_SIZE (stack) - 1)
23593 {
23594 complaint (&symfile_complaints,
23595 _("location description stack overflow"));
23596 return 0;
23597 }
23598
23599 if (stacki <= 0)
23600 {
23601 complaint (&symfile_complaints,
23602 _("location description stack underflow"));
23603 return 0;
23604 }
23605 }
23606 return (stack[stacki]);
23607}
23608
23609/* memory allocation interface */
23610
23611static struct dwarf_block *
23612dwarf_alloc_block (struct dwarf2_cu *cu)
23613{
23614 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23615}
23616
23617static struct die_info *
23618dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23619{
23620 struct die_info *die;
23621 size_t size = sizeof (struct die_info);
23622
23623 if (num_attrs > 1)
23624 size += (num_attrs - 1) * sizeof (struct attribute);
23625
23626 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23627 memset (die, 0, sizeof (struct die_info));
23628 return (die);
23629}
23630
23631\f
23632/* Macro support. */
23633
23634/* Return file name relative to the compilation directory of file number I in
23635 *LH's file name table. The result is allocated using xmalloc; the caller is
23636 responsible for freeing it. */
23637
23638static char *
23639file_file_name (int file, struct line_header *lh)
23640{
23641 /* Is the file number a valid index into the line header's file name
23642 table? Remember that file numbers start with one, not zero. */
23643 if (1 <= file && file <= lh->file_names.size ())
23644 {
23645 const file_entry &fe = lh->file_names[file - 1];
23646
23647 if (!IS_ABSOLUTE_PATH (fe.name))
23648 {
23649 const char *dir = fe.include_dir (lh);
23650 if (dir != NULL)
23651 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23652 }
23653 return xstrdup (fe.name);
23654 }
23655 else
23656 {
23657 /* The compiler produced a bogus file number. We can at least
23658 record the macro definitions made in the file, even if we
23659 won't be able to find the file by name. */
23660 char fake_name[80];
23661
23662 xsnprintf (fake_name, sizeof (fake_name),
23663 "<bad macro file number %d>", file);
23664
23665 complaint (&symfile_complaints,
23666 _("bad file number in macro information (%d)"),
23667 file);
23668
23669 return xstrdup (fake_name);
23670 }
23671}
23672
23673/* Return the full name of file number I in *LH's file name table.
23674 Use COMP_DIR as the name of the current directory of the
23675 compilation. The result is allocated using xmalloc; the caller is
23676 responsible for freeing it. */
23677static char *
23678file_full_name (int file, struct line_header *lh, const char *comp_dir)
23679{
23680 /* Is the file number a valid index into the line header's file name
23681 table? Remember that file numbers start with one, not zero. */
23682 if (1 <= file && file <= lh->file_names.size ())
23683 {
23684 char *relative = file_file_name (file, lh);
23685
23686 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23687 return relative;
23688 return reconcat (relative, comp_dir, SLASH_STRING,
23689 relative, (char *) NULL);
23690 }
23691 else
23692 return file_file_name (file, lh);
23693}
23694
23695
23696static struct macro_source_file *
23697macro_start_file (int file, int line,
23698 struct macro_source_file *current_file,
23699 struct line_header *lh)
23700{
23701 /* File name relative to the compilation directory of this source file. */
23702 char *file_name = file_file_name (file, lh);
23703
23704 if (! current_file)
23705 {
23706 /* Note: We don't create a macro table for this compilation unit
23707 at all until we actually get a filename. */
23708 struct macro_table *macro_table = get_macro_table ();
23709
23710 /* If we have no current file, then this must be the start_file
23711 directive for the compilation unit's main source file. */
23712 current_file = macro_set_main (macro_table, file_name);
23713 macro_define_special (macro_table);
23714 }
23715 else
23716 current_file = macro_include (current_file, line, file_name);
23717
23718 xfree (file_name);
23719
23720 return current_file;
23721}
23722
23723static const char *
23724consume_improper_spaces (const char *p, const char *body)
23725{
23726 if (*p == ' ')
23727 {
23728 complaint (&symfile_complaints,
23729 _("macro definition contains spaces "
23730 "in formal argument list:\n`%s'"),
23731 body);
23732
23733 while (*p == ' ')
23734 p++;
23735 }
23736
23737 return p;
23738}
23739
23740
23741static void
23742parse_macro_definition (struct macro_source_file *file, int line,
23743 const char *body)
23744{
23745 const char *p;
23746
23747 /* The body string takes one of two forms. For object-like macro
23748 definitions, it should be:
23749
23750 <macro name> " " <definition>
23751
23752 For function-like macro definitions, it should be:
23753
23754 <macro name> "() " <definition>
23755 or
23756 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23757
23758 Spaces may appear only where explicitly indicated, and in the
23759 <definition>.
23760
23761 The Dwarf 2 spec says that an object-like macro's name is always
23762 followed by a space, but versions of GCC around March 2002 omit
23763 the space when the macro's definition is the empty string.
23764
23765 The Dwarf 2 spec says that there should be no spaces between the
23766 formal arguments in a function-like macro's formal argument list,
23767 but versions of GCC around March 2002 include spaces after the
23768 commas. */
23769
23770
23771 /* Find the extent of the macro name. The macro name is terminated
23772 by either a space or null character (for an object-like macro) or
23773 an opening paren (for a function-like macro). */
23774 for (p = body; *p; p++)
23775 if (*p == ' ' || *p == '(')
23776 break;
23777
23778 if (*p == ' ' || *p == '\0')
23779 {
23780 /* It's an object-like macro. */
23781 int name_len = p - body;
23782 char *name = savestring (body, name_len);
23783 const char *replacement;
23784
23785 if (*p == ' ')
23786 replacement = body + name_len + 1;
23787 else
23788 {
23789 dwarf2_macro_malformed_definition_complaint (body);
23790 replacement = body + name_len;
23791 }
23792
23793 macro_define_object (file, line, name, replacement);
23794
23795 xfree (name);
23796 }
23797 else if (*p == '(')
23798 {
23799 /* It's a function-like macro. */
23800 char *name = savestring (body, p - body);
23801 int argc = 0;
23802 int argv_size = 1;
23803 char **argv = XNEWVEC (char *, argv_size);
23804
23805 p++;
23806
23807 p = consume_improper_spaces (p, body);
23808
23809 /* Parse the formal argument list. */
23810 while (*p && *p != ')')
23811 {
23812 /* Find the extent of the current argument name. */
23813 const char *arg_start = p;
23814
23815 while (*p && *p != ',' && *p != ')' && *p != ' ')
23816 p++;
23817
23818 if (! *p || p == arg_start)
23819 dwarf2_macro_malformed_definition_complaint (body);
23820 else
23821 {
23822 /* Make sure argv has room for the new argument. */
23823 if (argc >= argv_size)
23824 {
23825 argv_size *= 2;
23826 argv = XRESIZEVEC (char *, argv, argv_size);
23827 }
23828
23829 argv[argc++] = savestring (arg_start, p - arg_start);
23830 }
23831
23832 p = consume_improper_spaces (p, body);
23833
23834 /* Consume the comma, if present. */
23835 if (*p == ',')
23836 {
23837 p++;
23838
23839 p = consume_improper_spaces (p, body);
23840 }
23841 }
23842
23843 if (*p == ')')
23844 {
23845 p++;
23846
23847 if (*p == ' ')
23848 /* Perfectly formed definition, no complaints. */
23849 macro_define_function (file, line, name,
23850 argc, (const char **) argv,
23851 p + 1);
23852 else if (*p == '\0')
23853 {
23854 /* Complain, but do define it. */
23855 dwarf2_macro_malformed_definition_complaint (body);
23856 macro_define_function (file, line, name,
23857 argc, (const char **) argv,
23858 p);
23859 }
23860 else
23861 /* Just complain. */
23862 dwarf2_macro_malformed_definition_complaint (body);
23863 }
23864 else
23865 /* Just complain. */
23866 dwarf2_macro_malformed_definition_complaint (body);
23867
23868 xfree (name);
23869 {
23870 int i;
23871
23872 for (i = 0; i < argc; i++)
23873 xfree (argv[i]);
23874 }
23875 xfree (argv);
23876 }
23877 else
23878 dwarf2_macro_malformed_definition_complaint (body);
23879}
23880
23881/* Skip some bytes from BYTES according to the form given in FORM.
23882 Returns the new pointer. */
23883
23884static const gdb_byte *
23885skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23886 enum dwarf_form form,
23887 unsigned int offset_size,
23888 struct dwarf2_section_info *section)
23889{
23890 unsigned int bytes_read;
23891
23892 switch (form)
23893 {
23894 case DW_FORM_data1:
23895 case DW_FORM_flag:
23896 ++bytes;
23897 break;
23898
23899 case DW_FORM_data2:
23900 bytes += 2;
23901 break;
23902
23903 case DW_FORM_data4:
23904 bytes += 4;
23905 break;
23906
23907 case DW_FORM_data8:
23908 bytes += 8;
23909 break;
23910
23911 case DW_FORM_data16:
23912 bytes += 16;
23913 break;
23914
23915 case DW_FORM_string:
23916 read_direct_string (abfd, bytes, &bytes_read);
23917 bytes += bytes_read;
23918 break;
23919
23920 case DW_FORM_sec_offset:
23921 case DW_FORM_strp:
23922 case DW_FORM_GNU_strp_alt:
23923 bytes += offset_size;
23924 break;
23925
23926 case DW_FORM_block:
23927 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23928 bytes += bytes_read;
23929 break;
23930
23931 case DW_FORM_block1:
23932 bytes += 1 + read_1_byte (abfd, bytes);
23933 break;
23934 case DW_FORM_block2:
23935 bytes += 2 + read_2_bytes (abfd, bytes);
23936 break;
23937 case DW_FORM_block4:
23938 bytes += 4 + read_4_bytes (abfd, bytes);
23939 break;
23940
23941 case DW_FORM_sdata:
23942 case DW_FORM_udata:
23943 case DW_FORM_GNU_addr_index:
23944 case DW_FORM_GNU_str_index:
23945 bytes = gdb_skip_leb128 (bytes, buffer_end);
23946 if (bytes == NULL)
23947 {
23948 dwarf2_section_buffer_overflow_complaint (section);
23949 return NULL;
23950 }
23951 break;
23952
23953 case DW_FORM_implicit_const:
23954 break;
23955
23956 default:
23957 {
23958 complaint (&symfile_complaints,
23959 _("invalid form 0x%x in `%s'"),
23960 form, get_section_name (section));
23961 return NULL;
23962 }
23963 }
23964
23965 return bytes;
23966}
23967
23968/* A helper for dwarf_decode_macros that handles skipping an unknown
23969 opcode. Returns an updated pointer to the macro data buffer; or,
23970 on error, issues a complaint and returns NULL. */
23971
23972static const gdb_byte *
23973skip_unknown_opcode (unsigned int opcode,
23974 const gdb_byte **opcode_definitions,
23975 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23976 bfd *abfd,
23977 unsigned int offset_size,
23978 struct dwarf2_section_info *section)
23979{
23980 unsigned int bytes_read, i;
23981 unsigned long arg;
23982 const gdb_byte *defn;
23983
23984 if (opcode_definitions[opcode] == NULL)
23985 {
23986 complaint (&symfile_complaints,
23987 _("unrecognized DW_MACFINO opcode 0x%x"),
23988 opcode);
23989 return NULL;
23990 }
23991
23992 defn = opcode_definitions[opcode];
23993 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
23994 defn += bytes_read;
23995
23996 for (i = 0; i < arg; ++i)
23997 {
23998 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
23999 (enum dwarf_form) defn[i], offset_size,
24000 section);
24001 if (mac_ptr == NULL)
24002 {
24003 /* skip_form_bytes already issued the complaint. */
24004 return NULL;
24005 }
24006 }
24007
24008 return mac_ptr;
24009}
24010
24011/* A helper function which parses the header of a macro section.
24012 If the macro section is the extended (for now called "GNU") type,
24013 then this updates *OFFSET_SIZE. Returns a pointer to just after
24014 the header, or issues a complaint and returns NULL on error. */
24015
24016static const gdb_byte *
24017dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24018 bfd *abfd,
24019 const gdb_byte *mac_ptr,
24020 unsigned int *offset_size,
24021 int section_is_gnu)
24022{
24023 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24024
24025 if (section_is_gnu)
24026 {
24027 unsigned int version, flags;
24028
24029 version = read_2_bytes (abfd, mac_ptr);
24030 if (version != 4 && version != 5)
24031 {
24032 complaint (&symfile_complaints,
24033 _("unrecognized version `%d' in .debug_macro section"),
24034 version);
24035 return NULL;
24036 }
24037 mac_ptr += 2;
24038
24039 flags = read_1_byte (abfd, mac_ptr);
24040 ++mac_ptr;
24041 *offset_size = (flags & 1) ? 8 : 4;
24042
24043 if ((flags & 2) != 0)
24044 /* We don't need the line table offset. */
24045 mac_ptr += *offset_size;
24046
24047 /* Vendor opcode descriptions. */
24048 if ((flags & 4) != 0)
24049 {
24050 unsigned int i, count;
24051
24052 count = read_1_byte (abfd, mac_ptr);
24053 ++mac_ptr;
24054 for (i = 0; i < count; ++i)
24055 {
24056 unsigned int opcode, bytes_read;
24057 unsigned long arg;
24058
24059 opcode = read_1_byte (abfd, mac_ptr);
24060 ++mac_ptr;
24061 opcode_definitions[opcode] = mac_ptr;
24062 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24063 mac_ptr += bytes_read;
24064 mac_ptr += arg;
24065 }
24066 }
24067 }
24068
24069 return mac_ptr;
24070}
24071
24072/* A helper for dwarf_decode_macros that handles the GNU extensions,
24073 including DW_MACRO_import. */
24074
24075static void
24076dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24077 bfd *abfd,
24078 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24079 struct macro_source_file *current_file,
24080 struct line_header *lh,
24081 struct dwarf2_section_info *section,
24082 int section_is_gnu, int section_is_dwz,
24083 unsigned int offset_size,
24084 htab_t include_hash)
24085{
24086 struct objfile *objfile = dwarf2_per_objfile->objfile;
24087 enum dwarf_macro_record_type macinfo_type;
24088 int at_commandline;
24089 const gdb_byte *opcode_definitions[256];
24090
24091 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24092 &offset_size, section_is_gnu);
24093 if (mac_ptr == NULL)
24094 {
24095 /* We already issued a complaint. */
24096 return;
24097 }
24098
24099 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24100 GDB is still reading the definitions from command line. First
24101 DW_MACINFO_start_file will need to be ignored as it was already executed
24102 to create CURRENT_FILE for the main source holding also the command line
24103 definitions. On first met DW_MACINFO_start_file this flag is reset to
24104 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24105
24106 at_commandline = 1;
24107
24108 do
24109 {
24110 /* Do we at least have room for a macinfo type byte? */
24111 if (mac_ptr >= mac_end)
24112 {
24113 dwarf2_section_buffer_overflow_complaint (section);
24114 break;
24115 }
24116
24117 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24118 mac_ptr++;
24119
24120 /* Note that we rely on the fact that the corresponding GNU and
24121 DWARF constants are the same. */
24122 DIAGNOSTIC_PUSH
24123 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24124 switch (macinfo_type)
24125 {
24126 /* A zero macinfo type indicates the end of the macro
24127 information. */
24128 case 0:
24129 break;
24130
24131 case DW_MACRO_define:
24132 case DW_MACRO_undef:
24133 case DW_MACRO_define_strp:
24134 case DW_MACRO_undef_strp:
24135 case DW_MACRO_define_sup:
24136 case DW_MACRO_undef_sup:
24137 {
24138 unsigned int bytes_read;
24139 int line;
24140 const char *body;
24141 int is_define;
24142
24143 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24144 mac_ptr += bytes_read;
24145
24146 if (macinfo_type == DW_MACRO_define
24147 || macinfo_type == DW_MACRO_undef)
24148 {
24149 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24150 mac_ptr += bytes_read;
24151 }
24152 else
24153 {
24154 LONGEST str_offset;
24155
24156 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24157 mac_ptr += offset_size;
24158
24159 if (macinfo_type == DW_MACRO_define_sup
24160 || macinfo_type == DW_MACRO_undef_sup
24161 || section_is_dwz)
24162 {
24163 struct dwz_file *dwz
24164 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24165
24166 body = read_indirect_string_from_dwz (objfile,
24167 dwz, str_offset);
24168 }
24169 else
24170 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24171 abfd, str_offset);
24172 }
24173
24174 is_define = (macinfo_type == DW_MACRO_define
24175 || macinfo_type == DW_MACRO_define_strp
24176 || macinfo_type == DW_MACRO_define_sup);
24177 if (! current_file)
24178 {
24179 /* DWARF violation as no main source is present. */
24180 complaint (&symfile_complaints,
24181 _("debug info with no main source gives macro %s "
24182 "on line %d: %s"),
24183 is_define ? _("definition") : _("undefinition"),
24184 line, body);
24185 break;
24186 }
24187 if ((line == 0 && !at_commandline)
24188 || (line != 0 && at_commandline))
24189 complaint (&symfile_complaints,
24190 _("debug info gives %s macro %s with %s line %d: %s"),
24191 at_commandline ? _("command-line") : _("in-file"),
24192 is_define ? _("definition") : _("undefinition"),
24193 line == 0 ? _("zero") : _("non-zero"), line, body);
24194
24195 if (is_define)
24196 parse_macro_definition (current_file, line, body);
24197 else
24198 {
24199 gdb_assert (macinfo_type == DW_MACRO_undef
24200 || macinfo_type == DW_MACRO_undef_strp
24201 || macinfo_type == DW_MACRO_undef_sup);
24202 macro_undef (current_file, line, body);
24203 }
24204 }
24205 break;
24206
24207 case DW_MACRO_start_file:
24208 {
24209 unsigned int bytes_read;
24210 int line, file;
24211
24212 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24213 mac_ptr += bytes_read;
24214 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24215 mac_ptr += bytes_read;
24216
24217 if ((line == 0 && !at_commandline)
24218 || (line != 0 && at_commandline))
24219 complaint (&symfile_complaints,
24220 _("debug info gives source %d included "
24221 "from %s at %s line %d"),
24222 file, at_commandline ? _("command-line") : _("file"),
24223 line == 0 ? _("zero") : _("non-zero"), line);
24224
24225 if (at_commandline)
24226 {
24227 /* This DW_MACRO_start_file was executed in the
24228 pass one. */
24229 at_commandline = 0;
24230 }
24231 else
24232 current_file = macro_start_file (file, line, current_file, lh);
24233 }
24234 break;
24235
24236 case DW_MACRO_end_file:
24237 if (! current_file)
24238 complaint (&symfile_complaints,
24239 _("macro debug info has an unmatched "
24240 "`close_file' directive"));
24241 else
24242 {
24243 current_file = current_file->included_by;
24244 if (! current_file)
24245 {
24246 enum dwarf_macro_record_type next_type;
24247
24248 /* GCC circa March 2002 doesn't produce the zero
24249 type byte marking the end of the compilation
24250 unit. Complain if it's not there, but exit no
24251 matter what. */
24252
24253 /* Do we at least have room for a macinfo type byte? */
24254 if (mac_ptr >= mac_end)
24255 {
24256 dwarf2_section_buffer_overflow_complaint (section);
24257 return;
24258 }
24259
24260 /* We don't increment mac_ptr here, so this is just
24261 a look-ahead. */
24262 next_type
24263 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24264 mac_ptr);
24265 if (next_type != 0)
24266 complaint (&symfile_complaints,
24267 _("no terminating 0-type entry for "
24268 "macros in `.debug_macinfo' section"));
24269
24270 return;
24271 }
24272 }
24273 break;
24274
24275 case DW_MACRO_import:
24276 case DW_MACRO_import_sup:
24277 {
24278 LONGEST offset;
24279 void **slot;
24280 bfd *include_bfd = abfd;
24281 struct dwarf2_section_info *include_section = section;
24282 const gdb_byte *include_mac_end = mac_end;
24283 int is_dwz = section_is_dwz;
24284 const gdb_byte *new_mac_ptr;
24285
24286 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24287 mac_ptr += offset_size;
24288
24289 if (macinfo_type == DW_MACRO_import_sup)
24290 {
24291 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24292
24293 dwarf2_read_section (objfile, &dwz->macro);
24294
24295 include_section = &dwz->macro;
24296 include_bfd = get_section_bfd_owner (include_section);
24297 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24298 is_dwz = 1;
24299 }
24300
24301 new_mac_ptr = include_section->buffer + offset;
24302 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24303
24304 if (*slot != NULL)
24305 {
24306 /* This has actually happened; see
24307 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24308 complaint (&symfile_complaints,
24309 _("recursive DW_MACRO_import in "
24310 ".debug_macro section"));
24311 }
24312 else
24313 {
24314 *slot = (void *) new_mac_ptr;
24315
24316 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24317 include_bfd, new_mac_ptr,
24318 include_mac_end, current_file, lh,
24319 section, section_is_gnu, is_dwz,
24320 offset_size, include_hash);
24321
24322 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24323 }
24324 }
24325 break;
24326
24327 case DW_MACINFO_vendor_ext:
24328 if (!section_is_gnu)
24329 {
24330 unsigned int bytes_read;
24331
24332 /* This reads the constant, but since we don't recognize
24333 any vendor extensions, we ignore it. */
24334 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24335 mac_ptr += bytes_read;
24336 read_direct_string (abfd, mac_ptr, &bytes_read);
24337 mac_ptr += bytes_read;
24338
24339 /* We don't recognize any vendor extensions. */
24340 break;
24341 }
24342 /* FALLTHROUGH */
24343
24344 default:
24345 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24346 mac_ptr, mac_end, abfd, offset_size,
24347 section);
24348 if (mac_ptr == NULL)
24349 return;
24350 break;
24351 }
24352 DIAGNOSTIC_POP
24353 } while (macinfo_type != 0);
24354}
24355
24356static void
24357dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24358 int section_is_gnu)
24359{
24360 struct dwarf2_per_objfile *dwarf2_per_objfile
24361 = cu->per_cu->dwarf2_per_objfile;
24362 struct objfile *objfile = dwarf2_per_objfile->objfile;
24363 struct line_header *lh = cu->line_header;
24364 bfd *abfd;
24365 const gdb_byte *mac_ptr, *mac_end;
24366 struct macro_source_file *current_file = 0;
24367 enum dwarf_macro_record_type macinfo_type;
24368 unsigned int offset_size = cu->header.offset_size;
24369 const gdb_byte *opcode_definitions[256];
24370 void **slot;
24371 struct dwarf2_section_info *section;
24372 const char *section_name;
24373
24374 if (cu->dwo_unit != NULL)
24375 {
24376 if (section_is_gnu)
24377 {
24378 section = &cu->dwo_unit->dwo_file->sections.macro;
24379 section_name = ".debug_macro.dwo";
24380 }
24381 else
24382 {
24383 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24384 section_name = ".debug_macinfo.dwo";
24385 }
24386 }
24387 else
24388 {
24389 if (section_is_gnu)
24390 {
24391 section = &dwarf2_per_objfile->macro;
24392 section_name = ".debug_macro";
24393 }
24394 else
24395 {
24396 section = &dwarf2_per_objfile->macinfo;
24397 section_name = ".debug_macinfo";
24398 }
24399 }
24400
24401 dwarf2_read_section (objfile, section);
24402 if (section->buffer == NULL)
24403 {
24404 complaint (&symfile_complaints, _("missing %s section"), section_name);
24405 return;
24406 }
24407 abfd = get_section_bfd_owner (section);
24408
24409 /* First pass: Find the name of the base filename.
24410 This filename is needed in order to process all macros whose definition
24411 (or undefinition) comes from the command line. These macros are defined
24412 before the first DW_MACINFO_start_file entry, and yet still need to be
24413 associated to the base file.
24414
24415 To determine the base file name, we scan the macro definitions until we
24416 reach the first DW_MACINFO_start_file entry. We then initialize
24417 CURRENT_FILE accordingly so that any macro definition found before the
24418 first DW_MACINFO_start_file can still be associated to the base file. */
24419
24420 mac_ptr = section->buffer + offset;
24421 mac_end = section->buffer + section->size;
24422
24423 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24424 &offset_size, section_is_gnu);
24425 if (mac_ptr == NULL)
24426 {
24427 /* We already issued a complaint. */
24428 return;
24429 }
24430
24431 do
24432 {
24433 /* Do we at least have room for a macinfo type byte? */
24434 if (mac_ptr >= mac_end)
24435 {
24436 /* Complaint is printed during the second pass as GDB will probably
24437 stop the first pass earlier upon finding
24438 DW_MACINFO_start_file. */
24439 break;
24440 }
24441
24442 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24443 mac_ptr++;
24444
24445 /* Note that we rely on the fact that the corresponding GNU and
24446 DWARF constants are the same. */
24447 DIAGNOSTIC_PUSH
24448 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24449 switch (macinfo_type)
24450 {
24451 /* A zero macinfo type indicates the end of the macro
24452 information. */
24453 case 0:
24454 break;
24455
24456 case DW_MACRO_define:
24457 case DW_MACRO_undef:
24458 /* Only skip the data by MAC_PTR. */
24459 {
24460 unsigned int bytes_read;
24461
24462 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24463 mac_ptr += bytes_read;
24464 read_direct_string (abfd, mac_ptr, &bytes_read);
24465 mac_ptr += bytes_read;
24466 }
24467 break;
24468
24469 case DW_MACRO_start_file:
24470 {
24471 unsigned int bytes_read;
24472 int line, file;
24473
24474 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24475 mac_ptr += bytes_read;
24476 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24477 mac_ptr += bytes_read;
24478
24479 current_file = macro_start_file (file, line, current_file, lh);
24480 }
24481 break;
24482
24483 case DW_MACRO_end_file:
24484 /* No data to skip by MAC_PTR. */
24485 break;
24486
24487 case DW_MACRO_define_strp:
24488 case DW_MACRO_undef_strp:
24489 case DW_MACRO_define_sup:
24490 case DW_MACRO_undef_sup:
24491 {
24492 unsigned int bytes_read;
24493
24494 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24495 mac_ptr += bytes_read;
24496 mac_ptr += offset_size;
24497 }
24498 break;
24499
24500 case DW_MACRO_import:
24501 case DW_MACRO_import_sup:
24502 /* Note that, according to the spec, a transparent include
24503 chain cannot call DW_MACRO_start_file. So, we can just
24504 skip this opcode. */
24505 mac_ptr += offset_size;
24506 break;
24507
24508 case DW_MACINFO_vendor_ext:
24509 /* Only skip the data by MAC_PTR. */
24510 if (!section_is_gnu)
24511 {
24512 unsigned int bytes_read;
24513
24514 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24515 mac_ptr += bytes_read;
24516 read_direct_string (abfd, mac_ptr, &bytes_read);
24517 mac_ptr += bytes_read;
24518 }
24519 /* FALLTHROUGH */
24520
24521 default:
24522 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24523 mac_ptr, mac_end, abfd, offset_size,
24524 section);
24525 if (mac_ptr == NULL)
24526 return;
24527 break;
24528 }
24529 DIAGNOSTIC_POP
24530 } while (macinfo_type != 0 && current_file == NULL);
24531
24532 /* Second pass: Process all entries.
24533
24534 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24535 command-line macro definitions/undefinitions. This flag is unset when we
24536 reach the first DW_MACINFO_start_file entry. */
24537
24538 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24539 htab_eq_pointer,
24540 NULL, xcalloc, xfree));
24541 mac_ptr = section->buffer + offset;
24542 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24543 *slot = (void *) mac_ptr;
24544 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24545 abfd, mac_ptr, mac_end,
24546 current_file, lh, section,
24547 section_is_gnu, 0, offset_size,
24548 include_hash.get ());
24549}
24550
24551/* Check if the attribute's form is a DW_FORM_block*
24552 if so return true else false. */
24553
24554static int
24555attr_form_is_block (const struct attribute *attr)
24556{
24557 return (attr == NULL ? 0 :
24558 attr->form == DW_FORM_block1
24559 || attr->form == DW_FORM_block2
24560 || attr->form == DW_FORM_block4
24561 || attr->form == DW_FORM_block
24562 || attr->form == DW_FORM_exprloc);
24563}
24564
24565/* Return non-zero if ATTR's value is a section offset --- classes
24566 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24567 You may use DW_UNSND (attr) to retrieve such offsets.
24568
24569 Section 7.5.4, "Attribute Encodings", explains that no attribute
24570 may have a value that belongs to more than one of these classes; it
24571 would be ambiguous if we did, because we use the same forms for all
24572 of them. */
24573
24574static int
24575attr_form_is_section_offset (const struct attribute *attr)
24576{
24577 return (attr->form == DW_FORM_data4
24578 || attr->form == DW_FORM_data8
24579 || attr->form == DW_FORM_sec_offset);
24580}
24581
24582/* Return non-zero if ATTR's value falls in the 'constant' class, or
24583 zero otherwise. When this function returns true, you can apply
24584 dwarf2_get_attr_constant_value to it.
24585
24586 However, note that for some attributes you must check
24587 attr_form_is_section_offset before using this test. DW_FORM_data4
24588 and DW_FORM_data8 are members of both the constant class, and of
24589 the classes that contain offsets into other debug sections
24590 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24591 that, if an attribute's can be either a constant or one of the
24592 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24593 taken as section offsets, not constants.
24594
24595 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24596 cannot handle that. */
24597
24598static int
24599attr_form_is_constant (const struct attribute *attr)
24600{
24601 switch (attr->form)
24602 {
24603 case DW_FORM_sdata:
24604 case DW_FORM_udata:
24605 case DW_FORM_data1:
24606 case DW_FORM_data2:
24607 case DW_FORM_data4:
24608 case DW_FORM_data8:
24609 case DW_FORM_implicit_const:
24610 return 1;
24611 default:
24612 return 0;
24613 }
24614}
24615
24616
24617/* DW_ADDR is always stored already as sect_offset; despite for the forms
24618 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24619
24620static int
24621attr_form_is_ref (const struct attribute *attr)
24622{
24623 switch (attr->form)
24624 {
24625 case DW_FORM_ref_addr:
24626 case DW_FORM_ref1:
24627 case DW_FORM_ref2:
24628 case DW_FORM_ref4:
24629 case DW_FORM_ref8:
24630 case DW_FORM_ref_udata:
24631 case DW_FORM_GNU_ref_alt:
24632 return 1;
24633 default:
24634 return 0;
24635 }
24636}
24637
24638/* Return the .debug_loc section to use for CU.
24639 For DWO files use .debug_loc.dwo. */
24640
24641static struct dwarf2_section_info *
24642cu_debug_loc_section (struct dwarf2_cu *cu)
24643{
24644 struct dwarf2_per_objfile *dwarf2_per_objfile
24645 = cu->per_cu->dwarf2_per_objfile;
24646
24647 if (cu->dwo_unit)
24648 {
24649 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24650
24651 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24652 }
24653 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24654 : &dwarf2_per_objfile->loc);
24655}
24656
24657/* A helper function that fills in a dwarf2_loclist_baton. */
24658
24659static void
24660fill_in_loclist_baton (struct dwarf2_cu *cu,
24661 struct dwarf2_loclist_baton *baton,
24662 const struct attribute *attr)
24663{
24664 struct dwarf2_per_objfile *dwarf2_per_objfile
24665 = cu->per_cu->dwarf2_per_objfile;
24666 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24667
24668 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24669
24670 baton->per_cu = cu->per_cu;
24671 gdb_assert (baton->per_cu);
24672 /* We don't know how long the location list is, but make sure we
24673 don't run off the edge of the section. */
24674 baton->size = section->size - DW_UNSND (attr);
24675 baton->data = section->buffer + DW_UNSND (attr);
24676 baton->base_address = cu->base_address;
24677 baton->from_dwo = cu->dwo_unit != NULL;
24678}
24679
24680static void
24681dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24682 struct dwarf2_cu *cu, int is_block)
24683{
24684 struct dwarf2_per_objfile *dwarf2_per_objfile
24685 = cu->per_cu->dwarf2_per_objfile;
24686 struct objfile *objfile = dwarf2_per_objfile->objfile;
24687 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24688
24689 if (attr_form_is_section_offset (attr)
24690 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24691 the section. If so, fall through to the complaint in the
24692 other branch. */
24693 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24694 {
24695 struct dwarf2_loclist_baton *baton;
24696
24697 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24698
24699 fill_in_loclist_baton (cu, baton, attr);
24700
24701 if (cu->base_known == 0)
24702 complaint (&symfile_complaints,
24703 _("Location list used without "
24704 "specifying the CU base address."));
24705
24706 SYMBOL_ACLASS_INDEX (sym) = (is_block
24707 ? dwarf2_loclist_block_index
24708 : dwarf2_loclist_index);
24709 SYMBOL_LOCATION_BATON (sym) = baton;
24710 }
24711 else
24712 {
24713 struct dwarf2_locexpr_baton *baton;
24714
24715 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24716 baton->per_cu = cu->per_cu;
24717 gdb_assert (baton->per_cu);
24718
24719 if (attr_form_is_block (attr))
24720 {
24721 /* Note that we're just copying the block's data pointer
24722 here, not the actual data. We're still pointing into the
24723 info_buffer for SYM's objfile; right now we never release
24724 that buffer, but when we do clean up properly this may
24725 need to change. */
24726 baton->size = DW_BLOCK (attr)->size;
24727 baton->data = DW_BLOCK (attr)->data;
24728 }
24729 else
24730 {
24731 dwarf2_invalid_attrib_class_complaint ("location description",
24732 SYMBOL_NATURAL_NAME (sym));
24733 baton->size = 0;
24734 }
24735
24736 SYMBOL_ACLASS_INDEX (sym) = (is_block
24737 ? dwarf2_locexpr_block_index
24738 : dwarf2_locexpr_index);
24739 SYMBOL_LOCATION_BATON (sym) = baton;
24740 }
24741}
24742
24743/* Return the OBJFILE associated with the compilation unit CU. If CU
24744 came from a separate debuginfo file, then the master objfile is
24745 returned. */
24746
24747struct objfile *
24748dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24749{
24750 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24751
24752 /* Return the master objfile, so that we can report and look up the
24753 correct file containing this variable. */
24754 if (objfile->separate_debug_objfile_backlink)
24755 objfile = objfile->separate_debug_objfile_backlink;
24756
24757 return objfile;
24758}
24759
24760/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24761 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24762 CU_HEADERP first. */
24763
24764static const struct comp_unit_head *
24765per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24766 struct dwarf2_per_cu_data *per_cu)
24767{
24768 const gdb_byte *info_ptr;
24769
24770 if (per_cu->cu)
24771 return &per_cu->cu->header;
24772
24773 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24774
24775 memset (cu_headerp, 0, sizeof (*cu_headerp));
24776 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24777 rcuh_kind::COMPILE);
24778
24779 return cu_headerp;
24780}
24781
24782/* Return the address size given in the compilation unit header for CU. */
24783
24784int
24785dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24786{
24787 struct comp_unit_head cu_header_local;
24788 const struct comp_unit_head *cu_headerp;
24789
24790 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24791
24792 return cu_headerp->addr_size;
24793}
24794
24795/* Return the offset size given in the compilation unit header for CU. */
24796
24797int
24798dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24799{
24800 struct comp_unit_head cu_header_local;
24801 const struct comp_unit_head *cu_headerp;
24802
24803 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24804
24805 return cu_headerp->offset_size;
24806}
24807
24808/* See its dwarf2loc.h declaration. */
24809
24810int
24811dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24812{
24813 struct comp_unit_head cu_header_local;
24814 const struct comp_unit_head *cu_headerp;
24815
24816 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24817
24818 if (cu_headerp->version == 2)
24819 return cu_headerp->addr_size;
24820 else
24821 return cu_headerp->offset_size;
24822}
24823
24824/* Return the text offset of the CU. The returned offset comes from
24825 this CU's objfile. If this objfile came from a separate debuginfo
24826 file, then the offset may be different from the corresponding
24827 offset in the parent objfile. */
24828
24829CORE_ADDR
24830dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24831{
24832 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24833
24834 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24835}
24836
24837/* Return DWARF version number of PER_CU. */
24838
24839short
24840dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24841{
24842 return per_cu->dwarf_version;
24843}
24844
24845/* Locate the .debug_info compilation unit from CU's objfile which contains
24846 the DIE at OFFSET. Raises an error on failure. */
24847
24848static struct dwarf2_per_cu_data *
24849dwarf2_find_containing_comp_unit (sect_offset sect_off,
24850 unsigned int offset_in_dwz,
24851 struct dwarf2_per_objfile *dwarf2_per_objfile)
24852{
24853 struct dwarf2_per_cu_data *this_cu;
24854 int low, high;
24855 const sect_offset *cu_off;
24856
24857 low = 0;
24858 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24859 while (high > low)
24860 {
24861 struct dwarf2_per_cu_data *mid_cu;
24862 int mid = low + (high - low) / 2;
24863
24864 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24865 cu_off = &mid_cu->sect_off;
24866 if (mid_cu->is_dwz > offset_in_dwz
24867 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24868 high = mid;
24869 else
24870 low = mid + 1;
24871 }
24872 gdb_assert (low == high);
24873 this_cu = dwarf2_per_objfile->all_comp_units[low];
24874 cu_off = &this_cu->sect_off;
24875 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24876 {
24877 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24878 error (_("Dwarf Error: could not find partial DIE containing "
24879 "offset %s [in module %s]"),
24880 sect_offset_str (sect_off),
24881 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24882
24883 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24884 <= sect_off);
24885 return dwarf2_per_objfile->all_comp_units[low-1];
24886 }
24887 else
24888 {
24889 this_cu = dwarf2_per_objfile->all_comp_units[low];
24890 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24891 && sect_off >= this_cu->sect_off + this_cu->length)
24892 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24893 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24894 return this_cu;
24895 }
24896}
24897
24898/* Initialize dwarf2_cu CU, owned by PER_CU. */
24899
24900dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24901 : per_cu (per_cu_),
24902 mark (0),
24903 has_loclist (0),
24904 checked_producer (0),
24905 producer_is_gxx_lt_4_6 (0),
24906 producer_is_gcc_lt_4_3 (0),
24907 producer_is_icc_lt_14 (0),
24908 processing_has_namespace_info (0)
24909{
24910 per_cu->cu = this;
24911}
24912
24913/* Destroy a dwarf2_cu. */
24914
24915dwarf2_cu::~dwarf2_cu ()
24916{
24917 per_cu->cu = NULL;
24918}
24919
24920/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24921
24922static void
24923prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24924 enum language pretend_language)
24925{
24926 struct attribute *attr;
24927
24928 /* Set the language we're debugging. */
24929 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24930 if (attr)
24931 set_cu_language (DW_UNSND (attr), cu);
24932 else
24933 {
24934 cu->language = pretend_language;
24935 cu->language_defn = language_def (cu->language);
24936 }
24937
24938 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24939}
24940
24941/* Increase the age counter on each cached compilation unit, and free
24942 any that are too old. */
24943
24944static void
24945age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24946{
24947 struct dwarf2_per_cu_data *per_cu, **last_chain;
24948
24949 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24950 per_cu = dwarf2_per_objfile->read_in_chain;
24951 while (per_cu != NULL)
24952 {
24953 per_cu->cu->last_used ++;
24954 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24955 dwarf2_mark (per_cu->cu);
24956 per_cu = per_cu->cu->read_in_chain;
24957 }
24958
24959 per_cu = dwarf2_per_objfile->read_in_chain;
24960 last_chain = &dwarf2_per_objfile->read_in_chain;
24961 while (per_cu != NULL)
24962 {
24963 struct dwarf2_per_cu_data *next_cu;
24964
24965 next_cu = per_cu->cu->read_in_chain;
24966
24967 if (!per_cu->cu->mark)
24968 {
24969 delete per_cu->cu;
24970 *last_chain = next_cu;
24971 }
24972 else
24973 last_chain = &per_cu->cu->read_in_chain;
24974
24975 per_cu = next_cu;
24976 }
24977}
24978
24979/* Remove a single compilation unit from the cache. */
24980
24981static void
24982free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24983{
24984 struct dwarf2_per_cu_data *per_cu, **last_chain;
24985 struct dwarf2_per_objfile *dwarf2_per_objfile
24986 = target_per_cu->dwarf2_per_objfile;
24987
24988 per_cu = dwarf2_per_objfile->read_in_chain;
24989 last_chain = &dwarf2_per_objfile->read_in_chain;
24990 while (per_cu != NULL)
24991 {
24992 struct dwarf2_per_cu_data *next_cu;
24993
24994 next_cu = per_cu->cu->read_in_chain;
24995
24996 if (per_cu == target_per_cu)
24997 {
24998 delete per_cu->cu;
24999 per_cu->cu = NULL;
25000 *last_chain = next_cu;
25001 break;
25002 }
25003 else
25004 last_chain = &per_cu->cu->read_in_chain;
25005
25006 per_cu = next_cu;
25007 }
25008}
25009
25010/* Release all extra memory associated with OBJFILE. */
25011
25012void
25013dwarf2_free_objfile (struct objfile *objfile)
25014{
25015 struct dwarf2_per_objfile *dwarf2_per_objfile
25016 = get_dwarf2_per_objfile (objfile);
25017
25018 delete dwarf2_per_objfile;
25019}
25020
25021/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25022 We store these in a hash table separate from the DIEs, and preserve them
25023 when the DIEs are flushed out of cache.
25024
25025 The CU "per_cu" pointer is needed because offset alone is not enough to
25026 uniquely identify the type. A file may have multiple .debug_types sections,
25027 or the type may come from a DWO file. Furthermore, while it's more logical
25028 to use per_cu->section+offset, with Fission the section with the data is in
25029 the DWO file but we don't know that section at the point we need it.
25030 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25031 because we can enter the lookup routine, get_die_type_at_offset, from
25032 outside this file, and thus won't necessarily have PER_CU->cu.
25033 Fortunately, PER_CU is stable for the life of the objfile. */
25034
25035struct dwarf2_per_cu_offset_and_type
25036{
25037 const struct dwarf2_per_cu_data *per_cu;
25038 sect_offset sect_off;
25039 struct type *type;
25040};
25041
25042/* Hash function for a dwarf2_per_cu_offset_and_type. */
25043
25044static hashval_t
25045per_cu_offset_and_type_hash (const void *item)
25046{
25047 const struct dwarf2_per_cu_offset_and_type *ofs
25048 = (const struct dwarf2_per_cu_offset_and_type *) item;
25049
25050 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25051}
25052
25053/* Equality function for a dwarf2_per_cu_offset_and_type. */
25054
25055static int
25056per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25057{
25058 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25059 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25060 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25061 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25062
25063 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25064 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25065}
25066
25067/* Set the type associated with DIE to TYPE. Save it in CU's hash
25068 table if necessary. For convenience, return TYPE.
25069
25070 The DIEs reading must have careful ordering to:
25071 * Not cause infite loops trying to read in DIEs as a prerequisite for
25072 reading current DIE.
25073 * Not trying to dereference contents of still incompletely read in types
25074 while reading in other DIEs.
25075 * Enable referencing still incompletely read in types just by a pointer to
25076 the type without accessing its fields.
25077
25078 Therefore caller should follow these rules:
25079 * Try to fetch any prerequisite types we may need to build this DIE type
25080 before building the type and calling set_die_type.
25081 * After building type call set_die_type for current DIE as soon as
25082 possible before fetching more types to complete the current type.
25083 * Make the type as complete as possible before fetching more types. */
25084
25085static struct type *
25086set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25087{
25088 struct dwarf2_per_objfile *dwarf2_per_objfile
25089 = cu->per_cu->dwarf2_per_objfile;
25090 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25091 struct objfile *objfile = dwarf2_per_objfile->objfile;
25092 struct attribute *attr;
25093 struct dynamic_prop prop;
25094
25095 /* For Ada types, make sure that the gnat-specific data is always
25096 initialized (if not already set). There are a few types where
25097 we should not be doing so, because the type-specific area is
25098 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25099 where the type-specific area is used to store the floatformat).
25100 But this is not a problem, because the gnat-specific information
25101 is actually not needed for these types. */
25102 if (need_gnat_info (cu)
25103 && TYPE_CODE (type) != TYPE_CODE_FUNC
25104 && TYPE_CODE (type) != TYPE_CODE_FLT
25105 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25106 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25107 && TYPE_CODE (type) != TYPE_CODE_METHOD
25108 && !HAVE_GNAT_AUX_INFO (type))
25109 INIT_GNAT_SPECIFIC (type);
25110
25111 /* Read DW_AT_allocated and set in type. */
25112 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25113 if (attr_form_is_block (attr))
25114 {
25115 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25116 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25117 }
25118 else if (attr != NULL)
25119 {
25120 complaint (&symfile_complaints,
25121 _("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25122 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25123 sect_offset_str (die->sect_off));
25124 }
25125
25126 /* Read DW_AT_associated and set in type. */
25127 attr = dwarf2_attr (die, DW_AT_associated, cu);
25128 if (attr_form_is_block (attr))
25129 {
25130 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25131 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25132 }
25133 else if (attr != NULL)
25134 {
25135 complaint (&symfile_complaints,
25136 _("DW_AT_associated has the wrong form (%s) at DIE %s"),
25137 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25138 sect_offset_str (die->sect_off));
25139 }
25140
25141 /* Read DW_AT_data_location and set in type. */
25142 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25143 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25144 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25145
25146 if (dwarf2_per_objfile->die_type_hash == NULL)
25147 {
25148 dwarf2_per_objfile->die_type_hash =
25149 htab_create_alloc_ex (127,
25150 per_cu_offset_and_type_hash,
25151 per_cu_offset_and_type_eq,
25152 NULL,
25153 &objfile->objfile_obstack,
25154 hashtab_obstack_allocate,
25155 dummy_obstack_deallocate);
25156 }
25157
25158 ofs.per_cu = cu->per_cu;
25159 ofs.sect_off = die->sect_off;
25160 ofs.type = type;
25161 slot = (struct dwarf2_per_cu_offset_and_type **)
25162 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25163 if (*slot)
25164 complaint (&symfile_complaints,
25165 _("A problem internal to GDB: DIE %s has type already set"),
25166 sect_offset_str (die->sect_off));
25167 *slot = XOBNEW (&objfile->objfile_obstack,
25168 struct dwarf2_per_cu_offset_and_type);
25169 **slot = ofs;
25170 return type;
25171}
25172
25173/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25174 or return NULL if the die does not have a saved type. */
25175
25176static struct type *
25177get_die_type_at_offset (sect_offset sect_off,
25178 struct dwarf2_per_cu_data *per_cu)
25179{
25180 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25181 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25182
25183 if (dwarf2_per_objfile->die_type_hash == NULL)
25184 return NULL;
25185
25186 ofs.per_cu = per_cu;
25187 ofs.sect_off = sect_off;
25188 slot = ((struct dwarf2_per_cu_offset_and_type *)
25189 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25190 if (slot)
25191 return slot->type;
25192 else
25193 return NULL;
25194}
25195
25196/* Look up the type for DIE in CU in die_type_hash,
25197 or return NULL if DIE does not have a saved type. */
25198
25199static struct type *
25200get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25201{
25202 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25203}
25204
25205/* Add a dependence relationship from CU to REF_PER_CU. */
25206
25207static void
25208dwarf2_add_dependence (struct dwarf2_cu *cu,
25209 struct dwarf2_per_cu_data *ref_per_cu)
25210{
25211 void **slot;
25212
25213 if (cu->dependencies == NULL)
25214 cu->dependencies
25215 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25216 NULL, &cu->comp_unit_obstack,
25217 hashtab_obstack_allocate,
25218 dummy_obstack_deallocate);
25219
25220 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25221 if (*slot == NULL)
25222 *slot = ref_per_cu;
25223}
25224
25225/* Subroutine of dwarf2_mark to pass to htab_traverse.
25226 Set the mark field in every compilation unit in the
25227 cache that we must keep because we are keeping CU. */
25228
25229static int
25230dwarf2_mark_helper (void **slot, void *data)
25231{
25232 struct dwarf2_per_cu_data *per_cu;
25233
25234 per_cu = (struct dwarf2_per_cu_data *) *slot;
25235
25236 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25237 reading of the chain. As such dependencies remain valid it is not much
25238 useful to track and undo them during QUIT cleanups. */
25239 if (per_cu->cu == NULL)
25240 return 1;
25241
25242 if (per_cu->cu->mark)
25243 return 1;
25244 per_cu->cu->mark = 1;
25245
25246 if (per_cu->cu->dependencies != NULL)
25247 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25248
25249 return 1;
25250}
25251
25252/* Set the mark field in CU and in every other compilation unit in the
25253 cache that we must keep because we are keeping CU. */
25254
25255static void
25256dwarf2_mark (struct dwarf2_cu *cu)
25257{
25258 if (cu->mark)
25259 return;
25260 cu->mark = 1;
25261 if (cu->dependencies != NULL)
25262 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25263}
25264
25265static void
25266dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25267{
25268 while (per_cu)
25269 {
25270 per_cu->cu->mark = 0;
25271 per_cu = per_cu->cu->read_in_chain;
25272 }
25273}
25274
25275/* Trivial hash function for partial_die_info: the hash value of a DIE
25276 is its offset in .debug_info for this objfile. */
25277
25278static hashval_t
25279partial_die_hash (const void *item)
25280{
25281 const struct partial_die_info *part_die
25282 = (const struct partial_die_info *) item;
25283
25284 return to_underlying (part_die->sect_off);
25285}
25286
25287/* Trivial comparison function for partial_die_info structures: two DIEs
25288 are equal if they have the same offset. */
25289
25290static int
25291partial_die_eq (const void *item_lhs, const void *item_rhs)
25292{
25293 const struct partial_die_info *part_die_lhs
25294 = (const struct partial_die_info *) item_lhs;
25295 const struct partial_die_info *part_die_rhs
25296 = (const struct partial_die_info *) item_rhs;
25297
25298 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25299}
25300
25301static struct cmd_list_element *set_dwarf_cmdlist;
25302static struct cmd_list_element *show_dwarf_cmdlist;
25303
25304static void
25305set_dwarf_cmd (const char *args, int from_tty)
25306{
25307 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25308 gdb_stdout);
25309}
25310
25311static void
25312show_dwarf_cmd (const char *args, int from_tty)
25313{
25314 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25315}
25316
25317int dwarf_always_disassemble;
25318
25319static void
25320show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25321 struct cmd_list_element *c, const char *value)
25322{
25323 fprintf_filtered (file,
25324 _("Whether to always disassemble "
25325 "DWARF expressions is %s.\n"),
25326 value);
25327}
25328
25329static void
25330show_check_physname (struct ui_file *file, int from_tty,
25331 struct cmd_list_element *c, const char *value)
25332{
25333 fprintf_filtered (file,
25334 _("Whether to check \"physname\" is %s.\n"),
25335 value);
25336}
25337
25338void
25339_initialize_dwarf2_read (void)
25340{
25341
25342 dwarf2_objfile_data_key = register_objfile_data ();
25343
25344 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25345Set DWARF specific variables.\n\
25346Configure DWARF variables such as the cache size"),
25347 &set_dwarf_cmdlist, "maintenance set dwarf ",
25348 0/*allow-unknown*/, &maintenance_set_cmdlist);
25349
25350 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25351Show DWARF specific variables\n\
25352Show DWARF variables such as the cache size"),
25353 &show_dwarf_cmdlist, "maintenance show dwarf ",
25354 0/*allow-unknown*/, &maintenance_show_cmdlist);
25355
25356 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25357 &dwarf_max_cache_age, _("\
25358Set the upper bound on the age of cached DWARF compilation units."), _("\
25359Show the upper bound on the age of cached DWARF compilation units."), _("\
25360A higher limit means that cached compilation units will be stored\n\
25361in memory longer, and more total memory will be used. Zero disables\n\
25362caching, which can slow down startup."),
25363 NULL,
25364 show_dwarf_max_cache_age,
25365 &set_dwarf_cmdlist,
25366 &show_dwarf_cmdlist);
25367
25368 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25369 &dwarf_always_disassemble, _("\
25370Set whether `info address' always disassembles DWARF expressions."), _("\
25371Show whether `info address' always disassembles DWARF expressions."), _("\
25372When enabled, DWARF expressions are always printed in an assembly-like\n\
25373syntax. When disabled, expressions will be printed in a more\n\
25374conversational style, when possible."),
25375 NULL,
25376 show_dwarf_always_disassemble,
25377 &set_dwarf_cmdlist,
25378 &show_dwarf_cmdlist);
25379
25380 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25381Set debugging of the DWARF reader."), _("\
25382Show debugging of the DWARF reader."), _("\
25383When enabled (non-zero), debugging messages are printed during DWARF\n\
25384reading and symtab expansion. A value of 1 (one) provides basic\n\
25385information. A value greater than 1 provides more verbose information."),
25386 NULL,
25387 NULL,
25388 &setdebuglist, &showdebuglist);
25389
25390 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25391Set debugging of the DWARF DIE reader."), _("\
25392Show debugging of the DWARF DIE reader."), _("\
25393When enabled (non-zero), DIEs are dumped after they are read in.\n\
25394The value is the maximum depth to print."),
25395 NULL,
25396 NULL,
25397 &setdebuglist, &showdebuglist);
25398
25399 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25400Set debugging of the dwarf line reader."), _("\
25401Show debugging of the dwarf line reader."), _("\
25402When enabled (non-zero), line number entries are dumped as they are read in.\n\
25403A value of 1 (one) provides basic information.\n\
25404A value greater than 1 provides more verbose information."),
25405 NULL,
25406 NULL,
25407 &setdebuglist, &showdebuglist);
25408
25409 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25410Set cross-checking of \"physname\" code against demangler."), _("\
25411Show cross-checking of \"physname\" code against demangler."), _("\
25412When enabled, GDB's internal \"physname\" code is checked against\n\
25413the demangler."),
25414 NULL, show_check_physname,
25415 &setdebuglist, &showdebuglist);
25416
25417 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25418 no_class, &use_deprecated_index_sections, _("\
25419Set whether to use deprecated gdb_index sections."), _("\
25420Show whether to use deprecated gdb_index sections."), _("\
25421When enabled, deprecated .gdb_index sections are used anyway.\n\
25422Normally they are ignored either because of a missing feature or\n\
25423performance issue.\n\
25424Warning: This option must be enabled before gdb reads the file."),
25425 NULL,
25426 NULL,
25427 &setlist, &showlist);
25428
25429 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25430 &dwarf2_locexpr_funcs);
25431 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25432 &dwarf2_loclist_funcs);
25433
25434 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25435 &dwarf2_block_frame_base_locexpr_funcs);
25436 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25437 &dwarf2_block_frame_base_loclist_funcs);
25438
25439#if GDB_SELF_TEST
25440 selftests::register_test ("dw2_expand_symtabs_matching",
25441 selftests::dw2_expand_symtabs_matching::run_test);
25442#endif
25443}
This page took 0.137671 seconds and 4 git commands to generate.