Change find_partial_die_in_comp_unit to dwarf2_cu::find_partial_die
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
... / ...
CommitLineData
1/* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31#include "defs.h"
32#include "bfd.h"
33#include "elf-bfd.h"
34#include "symtab.h"
35#include "gdbtypes.h"
36#include "objfiles.h"
37#include "dwarf2.h"
38#include "buildsym.h"
39#include "demangle.h"
40#include "gdb-demangle.h"
41#include "expression.h"
42#include "filenames.h" /* for DOSish file names */
43#include "macrotab.h"
44#include "language.h"
45#include "complaints.h"
46#include "bcache.h"
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
49#include "cp-support.h"
50#include "hashtab.h"
51#include "command.h"
52#include "gdbcmd.h"
53#include "block.h"
54#include "addrmap.h"
55#include "typeprint.h"
56#include "psympriv.h"
57#include <sys/stat.h>
58#include "completer.h"
59#include "vec.h"
60#include "c-lang.h"
61#include "go-lang.h"
62#include "valprint.h"
63#include "gdbcore.h" /* for gnutarget */
64#include "gdb/gdb-index.h"
65#include <ctype.h>
66#include "gdb_bfd.h"
67#include "f-lang.h"
68#include "source.h"
69#include "filestuff.h"
70#include "build-id.h"
71#include "namespace.h"
72#include "common/gdb_unlinker.h"
73#include "common/function-view.h"
74#include "common/gdb_optional.h"
75#include "common/underlying.h"
76#include "common/byte-vector.h"
77#include "common/hash_enum.h"
78#include "filename-seen-cache.h"
79#include "producer.h"
80#include <fcntl.h>
81#include <sys/types.h>
82#include <algorithm>
83#include <unordered_set>
84#include <unordered_map>
85#include "selftest.h"
86#include <cmath>
87#include <set>
88#include <forward_list>
89
90/* When == 1, print basic high level tracing messages.
91 When > 1, be more verbose.
92 This is in contrast to the low level DIE reading of dwarf_die_debug. */
93static unsigned int dwarf_read_debug = 0;
94
95/* When non-zero, dump DIEs after they are read in. */
96static unsigned int dwarf_die_debug = 0;
97
98/* When non-zero, dump line number entries as they are read in. */
99static unsigned int dwarf_line_debug = 0;
100
101/* When non-zero, cross-check physname against demangler. */
102static int check_physname = 0;
103
104/* When non-zero, do not reject deprecated .gdb_index sections. */
105static int use_deprecated_index_sections = 0;
106
107static const struct objfile_data *dwarf2_objfile_data_key;
108
109/* The "aclass" indices for various kinds of computed DWARF symbols. */
110
111static int dwarf2_locexpr_index;
112static int dwarf2_loclist_index;
113static int dwarf2_locexpr_block_index;
114static int dwarf2_loclist_block_index;
115
116/* A descriptor for dwarf sections.
117
118 S.ASECTION, SIZE are typically initialized when the objfile is first
119 scanned. BUFFER, READIN are filled in later when the section is read.
120 If the section contained compressed data then SIZE is updated to record
121 the uncompressed size of the section.
122
123 DWP file format V2 introduces a wrinkle that is easiest to handle by
124 creating the concept of virtual sections contained within a real section.
125 In DWP V2 the sections of the input DWO files are concatenated together
126 into one section, but section offsets are kept relative to the original
127 input section.
128 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
129 the real section this "virtual" section is contained in, and BUFFER,SIZE
130 describe the virtual section. */
131
132struct dwarf2_section_info
133{
134 union
135 {
136 /* If this is a real section, the bfd section. */
137 asection *section;
138 /* If this is a virtual section, pointer to the containing ("real")
139 section. */
140 struct dwarf2_section_info *containing_section;
141 } s;
142 /* Pointer to section data, only valid if readin. */
143 const gdb_byte *buffer;
144 /* The size of the section, real or virtual. */
145 bfd_size_type size;
146 /* If this is a virtual section, the offset in the real section.
147 Only valid if is_virtual. */
148 bfd_size_type virtual_offset;
149 /* True if we have tried to read this section. */
150 char readin;
151 /* True if this is a virtual section, False otherwise.
152 This specifies which of s.section and s.containing_section to use. */
153 char is_virtual;
154};
155
156typedef struct dwarf2_section_info dwarf2_section_info_def;
157DEF_VEC_O (dwarf2_section_info_def);
158
159/* All offsets in the index are of this type. It must be
160 architecture-independent. */
161typedef uint32_t offset_type;
162
163DEF_VEC_I (offset_type);
164
165/* Ensure only legit values are used. */
166#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
167 do { \
168 gdb_assert ((unsigned int) (value) <= 1); \
169 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
170 } while (0)
171
172/* Ensure only legit values are used. */
173#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
174 do { \
175 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
176 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
177 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
178 } while (0)
179
180/* Ensure we don't use more than the alloted nuber of bits for the CU. */
181#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
182 do { \
183 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
184 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
185 } while (0)
186
187#if WORDS_BIGENDIAN
188
189/* Convert VALUE between big- and little-endian. */
190
191static offset_type
192byte_swap (offset_type value)
193{
194 offset_type result;
195
196 result = (value & 0xff) << 24;
197 result |= (value & 0xff00) << 8;
198 result |= (value & 0xff0000) >> 8;
199 result |= (value & 0xff000000) >> 24;
200 return result;
201}
202
203#define MAYBE_SWAP(V) byte_swap (V)
204
205#else
206#define MAYBE_SWAP(V) static_cast<offset_type> (V)
207#endif /* WORDS_BIGENDIAN */
208
209/* An index into a (C++) symbol name component in a symbol name as
210 recorded in the mapped_index's symbol table. For each C++ symbol
211 in the symbol table, we record one entry for the start of each
212 component in the symbol in a table of name components, and then
213 sort the table, in order to be able to binary search symbol names,
214 ignoring leading namespaces, both completion and regular look up.
215 For example, for symbol "A::B::C", we'll have an entry that points
216 to "A::B::C", another that points to "B::C", and another for "C".
217 Note that function symbols in GDB index have no parameter
218 information, just the function/method names. You can convert a
219 name_component to a "const char *" using the
220 'mapped_index::symbol_name_at(offset_type)' method. */
221
222struct name_component
223{
224 /* Offset in the symbol name where the component starts. Stored as
225 a (32-bit) offset instead of a pointer to save memory and improve
226 locality on 64-bit architectures. */
227 offset_type name_offset;
228
229 /* The symbol's index in the symbol and constant pool tables of a
230 mapped_index. */
231 offset_type idx;
232};
233
234/* Base class containing bits shared by both .gdb_index and
235 .debug_name indexes. */
236
237struct mapped_index_base
238{
239 /* The name_component table (a sorted vector). See name_component's
240 description above. */
241 std::vector<name_component> name_components;
242
243 /* How NAME_COMPONENTS is sorted. */
244 enum case_sensitivity name_components_casing;
245
246 /* Return the number of names in the symbol table. */
247 virtual size_t symbol_name_count () const = 0;
248
249 /* Get the name of the symbol at IDX in the symbol table. */
250 virtual const char *symbol_name_at (offset_type idx) const = 0;
251
252 /* Return whether the name at IDX in the symbol table should be
253 ignored. */
254 virtual bool symbol_name_slot_invalid (offset_type idx) const
255 {
256 return false;
257 }
258
259 /* Build the symbol name component sorted vector, if we haven't
260 yet. */
261 void build_name_components ();
262
263 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
264 possible matches for LN_NO_PARAMS in the name component
265 vector. */
266 std::pair<std::vector<name_component>::const_iterator,
267 std::vector<name_component>::const_iterator>
268 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
269
270 /* Prevent deleting/destroying via a base class pointer. */
271protected:
272 ~mapped_index_base() = default;
273};
274
275/* A description of the mapped index. The file format is described in
276 a comment by the code that writes the index. */
277struct mapped_index final : public mapped_index_base
278{
279 /* A slot/bucket in the symbol table hash. */
280 struct symbol_table_slot
281 {
282 const offset_type name;
283 const offset_type vec;
284 };
285
286 /* Index data format version. */
287 int version;
288
289 /* The total length of the buffer. */
290 off_t total_size;
291
292 /* The address table data. */
293 gdb::array_view<const gdb_byte> address_table;
294
295 /* The symbol table, implemented as a hash table. */
296 gdb::array_view<symbol_table_slot> symbol_table;
297
298 /* A pointer to the constant pool. */
299 const char *constant_pool;
300
301 bool symbol_name_slot_invalid (offset_type idx) const override
302 {
303 const auto &bucket = this->symbol_table[idx];
304 return bucket.name == 0 && bucket.vec;
305 }
306
307 /* Convenience method to get at the name of the symbol at IDX in the
308 symbol table. */
309 const char *symbol_name_at (offset_type idx) const override
310 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
311
312 size_t symbol_name_count () const override
313 { return this->symbol_table.size (); }
314};
315
316/* A description of the mapped .debug_names.
317 Uninitialized map has CU_COUNT 0. */
318struct mapped_debug_names final : public mapped_index_base
319{
320 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
321 : dwarf2_per_objfile (dwarf2_per_objfile_)
322 {}
323
324 struct dwarf2_per_objfile *dwarf2_per_objfile;
325 bfd_endian dwarf5_byte_order;
326 bool dwarf5_is_dwarf64;
327 bool augmentation_is_gdb;
328 uint8_t offset_size;
329 uint32_t cu_count = 0;
330 uint32_t tu_count, bucket_count, name_count;
331 const gdb_byte *cu_table_reordered, *tu_table_reordered;
332 const uint32_t *bucket_table_reordered, *hash_table_reordered;
333 const gdb_byte *name_table_string_offs_reordered;
334 const gdb_byte *name_table_entry_offs_reordered;
335 const gdb_byte *entry_pool;
336
337 struct index_val
338 {
339 ULONGEST dwarf_tag;
340 struct attr
341 {
342 /* Attribute name DW_IDX_*. */
343 ULONGEST dw_idx;
344
345 /* Attribute form DW_FORM_*. */
346 ULONGEST form;
347
348 /* Value if FORM is DW_FORM_implicit_const. */
349 LONGEST implicit_const;
350 };
351 std::vector<attr> attr_vec;
352 };
353
354 std::unordered_map<ULONGEST, index_val> abbrev_map;
355
356 const char *namei_to_name (uint32_t namei) const;
357
358 /* Implementation of the mapped_index_base virtual interface, for
359 the name_components cache. */
360
361 const char *symbol_name_at (offset_type idx) const override
362 { return namei_to_name (idx); }
363
364 size_t symbol_name_count () const override
365 { return this->name_count; }
366};
367
368typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
369DEF_VEC_P (dwarf2_per_cu_ptr);
370
371struct tu_stats
372{
373 int nr_uniq_abbrev_tables;
374 int nr_symtabs;
375 int nr_symtab_sharers;
376 int nr_stmt_less_type_units;
377 int nr_all_type_units_reallocs;
378};
379
380/* Collection of data recorded per objfile.
381 This hangs off of dwarf2_objfile_data_key. */
382
383struct dwarf2_per_objfile : public allocate_on_obstack
384{
385 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
386 dwarf2 section names, or is NULL if the standard ELF names are
387 used. */
388 dwarf2_per_objfile (struct objfile *objfile,
389 const dwarf2_debug_sections *names);
390
391 ~dwarf2_per_objfile ();
392
393 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
394
395 /* Free all cached compilation units. */
396 void free_cached_comp_units ();
397private:
398 /* This function is mapped across the sections and remembers the
399 offset and size of each of the debugging sections we are
400 interested in. */
401 void locate_sections (bfd *abfd, asection *sectp,
402 const dwarf2_debug_sections &names);
403
404public:
405 dwarf2_section_info info {};
406 dwarf2_section_info abbrev {};
407 dwarf2_section_info line {};
408 dwarf2_section_info loc {};
409 dwarf2_section_info loclists {};
410 dwarf2_section_info macinfo {};
411 dwarf2_section_info macro {};
412 dwarf2_section_info str {};
413 dwarf2_section_info line_str {};
414 dwarf2_section_info ranges {};
415 dwarf2_section_info rnglists {};
416 dwarf2_section_info addr {};
417 dwarf2_section_info frame {};
418 dwarf2_section_info eh_frame {};
419 dwarf2_section_info gdb_index {};
420 dwarf2_section_info debug_names {};
421 dwarf2_section_info debug_aranges {};
422
423 VEC (dwarf2_section_info_def) *types = NULL;
424
425 /* Back link. */
426 struct objfile *objfile = NULL;
427
428 /* Table of all the compilation units. This is used to locate
429 the target compilation unit of a particular reference. */
430 struct dwarf2_per_cu_data **all_comp_units = NULL;
431
432 /* The number of compilation units in ALL_COMP_UNITS. */
433 int n_comp_units = 0;
434
435 /* The number of .debug_types-related CUs. */
436 int n_type_units = 0;
437
438 /* The number of elements allocated in all_type_units.
439 If there are skeleton-less TUs, we add them to all_type_units lazily. */
440 int n_allocated_type_units = 0;
441
442 /* The .debug_types-related CUs (TUs).
443 This is stored in malloc space because we may realloc it. */
444 struct signatured_type **all_type_units = NULL;
445
446 /* Table of struct type_unit_group objects.
447 The hash key is the DW_AT_stmt_list value. */
448 htab_t type_unit_groups {};
449
450 /* A table mapping .debug_types signatures to its signatured_type entry.
451 This is NULL if the .debug_types section hasn't been read in yet. */
452 htab_t signatured_types {};
453
454 /* Type unit statistics, to see how well the scaling improvements
455 are doing. */
456 struct tu_stats tu_stats {};
457
458 /* A chain of compilation units that are currently read in, so that
459 they can be freed later. */
460 dwarf2_per_cu_data *read_in_chain = NULL;
461
462 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
463 This is NULL if the table hasn't been allocated yet. */
464 htab_t dwo_files {};
465
466 /* True if we've checked for whether there is a DWP file. */
467 bool dwp_checked = false;
468
469 /* The DWP file if there is one, or NULL. */
470 struct dwp_file *dwp_file = NULL;
471
472 /* The shared '.dwz' file, if one exists. This is used when the
473 original data was compressed using 'dwz -m'. */
474 struct dwz_file *dwz_file = NULL;
475
476 /* A flag indicating whether this objfile has a section loaded at a
477 VMA of 0. */
478 bool has_section_at_zero = false;
479
480 /* True if we are using the mapped index,
481 or we are faking it for OBJF_READNOW's sake. */
482 bool using_index = false;
483
484 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
485 mapped_index *index_table = NULL;
486
487 /* The mapped index, or NULL if .debug_names is missing or not being used. */
488 std::unique_ptr<mapped_debug_names> debug_names_table;
489
490 /* When using index_table, this keeps track of all quick_file_names entries.
491 TUs typically share line table entries with a CU, so we maintain a
492 separate table of all line table entries to support the sharing.
493 Note that while there can be way more TUs than CUs, we've already
494 sorted all the TUs into "type unit groups", grouped by their
495 DW_AT_stmt_list value. Therefore the only sharing done here is with a
496 CU and its associated TU group if there is one. */
497 htab_t quick_file_names_table {};
498
499 /* Set during partial symbol reading, to prevent queueing of full
500 symbols. */
501 bool reading_partial_symbols = false;
502
503 /* Table mapping type DIEs to their struct type *.
504 This is NULL if not allocated yet.
505 The mapping is done via (CU/TU + DIE offset) -> type. */
506 htab_t die_type_hash {};
507
508 /* The CUs we recently read. */
509 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
510
511 /* Table containing line_header indexed by offset and offset_in_dwz. */
512 htab_t line_header_hash {};
513
514 /* Table containing all filenames. This is an optional because the
515 table is lazily constructed on first access. */
516 gdb::optional<filename_seen_cache> filenames_cache;
517};
518
519/* Get the dwarf2_per_objfile associated to OBJFILE. */
520
521struct dwarf2_per_objfile *
522get_dwarf2_per_objfile (struct objfile *objfile)
523{
524 return ((struct dwarf2_per_objfile *)
525 objfile_data (objfile, dwarf2_objfile_data_key));
526}
527
528/* Set the dwarf2_per_objfile associated to OBJFILE. */
529
530void
531set_dwarf2_per_objfile (struct objfile *objfile,
532 struct dwarf2_per_objfile *dwarf2_per_objfile)
533{
534 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
535 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
536}
537
538/* Default names of the debugging sections. */
539
540/* Note that if the debugging section has been compressed, it might
541 have a name like .zdebug_info. */
542
543static const struct dwarf2_debug_sections dwarf2_elf_names =
544{
545 { ".debug_info", ".zdebug_info" },
546 { ".debug_abbrev", ".zdebug_abbrev" },
547 { ".debug_line", ".zdebug_line" },
548 { ".debug_loc", ".zdebug_loc" },
549 { ".debug_loclists", ".zdebug_loclists" },
550 { ".debug_macinfo", ".zdebug_macinfo" },
551 { ".debug_macro", ".zdebug_macro" },
552 { ".debug_str", ".zdebug_str" },
553 { ".debug_line_str", ".zdebug_line_str" },
554 { ".debug_ranges", ".zdebug_ranges" },
555 { ".debug_rnglists", ".zdebug_rnglists" },
556 { ".debug_types", ".zdebug_types" },
557 { ".debug_addr", ".zdebug_addr" },
558 { ".debug_frame", ".zdebug_frame" },
559 { ".eh_frame", NULL },
560 { ".gdb_index", ".zgdb_index" },
561 { ".debug_names", ".zdebug_names" },
562 { ".debug_aranges", ".zdebug_aranges" },
563 23
564};
565
566/* List of DWO/DWP sections. */
567
568static const struct dwop_section_names
569{
570 struct dwarf2_section_names abbrev_dwo;
571 struct dwarf2_section_names info_dwo;
572 struct dwarf2_section_names line_dwo;
573 struct dwarf2_section_names loc_dwo;
574 struct dwarf2_section_names loclists_dwo;
575 struct dwarf2_section_names macinfo_dwo;
576 struct dwarf2_section_names macro_dwo;
577 struct dwarf2_section_names str_dwo;
578 struct dwarf2_section_names str_offsets_dwo;
579 struct dwarf2_section_names types_dwo;
580 struct dwarf2_section_names cu_index;
581 struct dwarf2_section_names tu_index;
582}
583dwop_section_names =
584{
585 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
586 { ".debug_info.dwo", ".zdebug_info.dwo" },
587 { ".debug_line.dwo", ".zdebug_line.dwo" },
588 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
589 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
590 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
591 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
592 { ".debug_str.dwo", ".zdebug_str.dwo" },
593 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
594 { ".debug_types.dwo", ".zdebug_types.dwo" },
595 { ".debug_cu_index", ".zdebug_cu_index" },
596 { ".debug_tu_index", ".zdebug_tu_index" },
597};
598
599/* local data types */
600
601/* The data in a compilation unit header, after target2host
602 translation, looks like this. */
603struct comp_unit_head
604{
605 unsigned int length;
606 short version;
607 unsigned char addr_size;
608 unsigned char signed_addr_p;
609 sect_offset abbrev_sect_off;
610
611 /* Size of file offsets; either 4 or 8. */
612 unsigned int offset_size;
613
614 /* Size of the length field; either 4 or 12. */
615 unsigned int initial_length_size;
616
617 enum dwarf_unit_type unit_type;
618
619 /* Offset to the first byte of this compilation unit header in the
620 .debug_info section, for resolving relative reference dies. */
621 sect_offset sect_off;
622
623 /* Offset to first die in this cu from the start of the cu.
624 This will be the first byte following the compilation unit header. */
625 cu_offset first_die_cu_offset;
626
627 /* 64-bit signature of this type unit - it is valid only for
628 UNIT_TYPE DW_UT_type. */
629 ULONGEST signature;
630
631 /* For types, offset in the type's DIE of the type defined by this TU. */
632 cu_offset type_cu_offset_in_tu;
633};
634
635/* Type used for delaying computation of method physnames.
636 See comments for compute_delayed_physnames. */
637struct delayed_method_info
638{
639 /* The type to which the method is attached, i.e., its parent class. */
640 struct type *type;
641
642 /* The index of the method in the type's function fieldlists. */
643 int fnfield_index;
644
645 /* The index of the method in the fieldlist. */
646 int index;
647
648 /* The name of the DIE. */
649 const char *name;
650
651 /* The DIE associated with this method. */
652 struct die_info *die;
653};
654
655/* Internal state when decoding a particular compilation unit. */
656struct dwarf2_cu
657{
658 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
659 ~dwarf2_cu ();
660
661 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
662
663 /* The header of the compilation unit. */
664 struct comp_unit_head header {};
665
666 /* Base address of this compilation unit. */
667 CORE_ADDR base_address = 0;
668
669 /* Non-zero if base_address has been set. */
670 int base_known = 0;
671
672 /* The language we are debugging. */
673 enum language language = language_unknown;
674 const struct language_defn *language_defn = nullptr;
675
676 const char *producer = nullptr;
677
678 /* The generic symbol table building routines have separate lists for
679 file scope symbols and all all other scopes (local scopes). So
680 we need to select the right one to pass to add_symbol_to_list().
681 We do it by keeping a pointer to the correct list in list_in_scope.
682
683 FIXME: The original dwarf code just treated the file scope as the
684 first local scope, and all other local scopes as nested local
685 scopes, and worked fine. Check to see if we really need to
686 distinguish these in buildsym.c. */
687 struct pending **list_in_scope = nullptr;
688
689 /* Hash table holding all the loaded partial DIEs
690 with partial_die->offset.SECT_OFF as hash. */
691 htab_t partial_dies = nullptr;
692
693 /* Storage for things with the same lifetime as this read-in compilation
694 unit, including partial DIEs. */
695 auto_obstack comp_unit_obstack;
696
697 /* When multiple dwarf2_cu structures are living in memory, this field
698 chains them all together, so that they can be released efficiently.
699 We will probably also want a generation counter so that most-recently-used
700 compilation units are cached... */
701 struct dwarf2_per_cu_data *read_in_chain = nullptr;
702
703 /* Backlink to our per_cu entry. */
704 struct dwarf2_per_cu_data *per_cu;
705
706 /* How many compilation units ago was this CU last referenced? */
707 int last_used = 0;
708
709 /* A hash table of DIE cu_offset for following references with
710 die_info->offset.sect_off as hash. */
711 htab_t die_hash = nullptr;
712
713 /* Full DIEs if read in. */
714 struct die_info *dies = nullptr;
715
716 /* A set of pointers to dwarf2_per_cu_data objects for compilation
717 units referenced by this one. Only set during full symbol processing;
718 partial symbol tables do not have dependencies. */
719 htab_t dependencies = nullptr;
720
721 /* Header data from the line table, during full symbol processing. */
722 struct line_header *line_header = nullptr;
723 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
724 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
725 this is the DW_TAG_compile_unit die for this CU. We'll hold on
726 to the line header as long as this DIE is being processed. See
727 process_die_scope. */
728 die_info *line_header_die_owner = nullptr;
729
730 /* A list of methods which need to have physnames computed
731 after all type information has been read. */
732 std::vector<delayed_method_info> method_list;
733
734 /* To be copied to symtab->call_site_htab. */
735 htab_t call_site_htab = nullptr;
736
737 /* Non-NULL if this CU came from a DWO file.
738 There is an invariant here that is important to remember:
739 Except for attributes copied from the top level DIE in the "main"
740 (or "stub") file in preparation for reading the DWO file
741 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
742 Either there isn't a DWO file (in which case this is NULL and the point
743 is moot), or there is and either we're not going to read it (in which
744 case this is NULL) or there is and we are reading it (in which case this
745 is non-NULL). */
746 struct dwo_unit *dwo_unit = nullptr;
747
748 /* The DW_AT_addr_base attribute if present, zero otherwise
749 (zero is a valid value though).
750 Note this value comes from the Fission stub CU/TU's DIE. */
751 ULONGEST addr_base = 0;
752
753 /* The DW_AT_ranges_base attribute if present, zero otherwise
754 (zero is a valid value though).
755 Note this value comes from the Fission stub CU/TU's DIE.
756 Also note that the value is zero in the non-DWO case so this value can
757 be used without needing to know whether DWO files are in use or not.
758 N.B. This does not apply to DW_AT_ranges appearing in
759 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
760 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
761 DW_AT_ranges_base *would* have to be applied, and we'd have to care
762 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
763 ULONGEST ranges_base = 0;
764
765 /* Mark used when releasing cached dies. */
766 unsigned int mark : 1;
767
768 /* This CU references .debug_loc. See the symtab->locations_valid field.
769 This test is imperfect as there may exist optimized debug code not using
770 any location list and still facing inlining issues if handled as
771 unoptimized code. For a future better test see GCC PR other/32998. */
772 unsigned int has_loclist : 1;
773
774 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
775 if all the producer_is_* fields are valid. This information is cached
776 because profiling CU expansion showed excessive time spent in
777 producer_is_gxx_lt_4_6. */
778 unsigned int checked_producer : 1;
779 unsigned int producer_is_gxx_lt_4_6 : 1;
780 unsigned int producer_is_gcc_lt_4_3 : 1;
781 unsigned int producer_is_icc_lt_14 : 1;
782
783 /* When set, the file that we're processing is known to have
784 debugging info for C++ namespaces. GCC 3.3.x did not produce
785 this information, but later versions do. */
786
787 unsigned int processing_has_namespace_info : 1;
788
789 struct partial_die_info *find_partial_die (sect_offset sect_off);
790};
791
792/* Persistent data held for a compilation unit, even when not
793 processing it. We put a pointer to this structure in the
794 read_symtab_private field of the psymtab. */
795
796struct dwarf2_per_cu_data
797{
798 /* The start offset and length of this compilation unit.
799 NOTE: Unlike comp_unit_head.length, this length includes
800 initial_length_size.
801 If the DIE refers to a DWO file, this is always of the original die,
802 not the DWO file. */
803 sect_offset sect_off;
804 unsigned int length;
805
806 /* DWARF standard version this data has been read from (such as 4 or 5). */
807 short dwarf_version;
808
809 /* Flag indicating this compilation unit will be read in before
810 any of the current compilation units are processed. */
811 unsigned int queued : 1;
812
813 /* This flag will be set when reading partial DIEs if we need to load
814 absolutely all DIEs for this compilation unit, instead of just the ones
815 we think are interesting. It gets set if we look for a DIE in the
816 hash table and don't find it. */
817 unsigned int load_all_dies : 1;
818
819 /* Non-zero if this CU is from .debug_types.
820 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
821 this is non-zero. */
822 unsigned int is_debug_types : 1;
823
824 /* Non-zero if this CU is from the .dwz file. */
825 unsigned int is_dwz : 1;
826
827 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
828 This flag is only valid if is_debug_types is true.
829 We can't read a CU directly from a DWO file: There are required
830 attributes in the stub. */
831 unsigned int reading_dwo_directly : 1;
832
833 /* Non-zero if the TU has been read.
834 This is used to assist the "Stay in DWO Optimization" for Fission:
835 When reading a DWO, it's faster to read TUs from the DWO instead of
836 fetching them from random other DWOs (due to comdat folding).
837 If the TU has already been read, the optimization is unnecessary
838 (and unwise - we don't want to change where gdb thinks the TU lives
839 "midflight").
840 This flag is only valid if is_debug_types is true. */
841 unsigned int tu_read : 1;
842
843 /* The section this CU/TU lives in.
844 If the DIE refers to a DWO file, this is always the original die,
845 not the DWO file. */
846 struct dwarf2_section_info *section;
847
848 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
849 of the CU cache it gets reset to NULL again. This is left as NULL for
850 dummy CUs (a CU header, but nothing else). */
851 struct dwarf2_cu *cu;
852
853 /* The corresponding dwarf2_per_objfile. */
854 struct dwarf2_per_objfile *dwarf2_per_objfile;
855
856 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
857 is active. Otherwise, the 'psymtab' field is active. */
858 union
859 {
860 /* The partial symbol table associated with this compilation unit,
861 or NULL for unread partial units. */
862 struct partial_symtab *psymtab;
863
864 /* Data needed by the "quick" functions. */
865 struct dwarf2_per_cu_quick_data *quick;
866 } v;
867
868 /* The CUs we import using DW_TAG_imported_unit. This is filled in
869 while reading psymtabs, used to compute the psymtab dependencies,
870 and then cleared. Then it is filled in again while reading full
871 symbols, and only deleted when the objfile is destroyed.
872
873 This is also used to work around a difference between the way gold
874 generates .gdb_index version <=7 and the way gdb does. Arguably this
875 is a gold bug. For symbols coming from TUs, gold records in the index
876 the CU that includes the TU instead of the TU itself. This breaks
877 dw2_lookup_symbol: It assumes that if the index says symbol X lives
878 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
879 will find X. Alas TUs live in their own symtab, so after expanding CU Y
880 we need to look in TU Z to find X. Fortunately, this is akin to
881 DW_TAG_imported_unit, so we just use the same mechanism: For
882 .gdb_index version <=7 this also records the TUs that the CU referred
883 to. Concurrently with this change gdb was modified to emit version 8
884 indices so we only pay a price for gold generated indices.
885 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
886 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
887};
888
889/* Entry in the signatured_types hash table. */
890
891struct signatured_type
892{
893 /* The "per_cu" object of this type.
894 This struct is used iff per_cu.is_debug_types.
895 N.B.: This is the first member so that it's easy to convert pointers
896 between them. */
897 struct dwarf2_per_cu_data per_cu;
898
899 /* The type's signature. */
900 ULONGEST signature;
901
902 /* Offset in the TU of the type's DIE, as read from the TU header.
903 If this TU is a DWO stub and the definition lives in a DWO file
904 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
905 cu_offset type_offset_in_tu;
906
907 /* Offset in the section of the type's DIE.
908 If the definition lives in a DWO file, this is the offset in the
909 .debug_types.dwo section.
910 The value is zero until the actual value is known.
911 Zero is otherwise not a valid section offset. */
912 sect_offset type_offset_in_section;
913
914 /* Type units are grouped by their DW_AT_stmt_list entry so that they
915 can share them. This points to the containing symtab. */
916 struct type_unit_group *type_unit_group;
917
918 /* The type.
919 The first time we encounter this type we fully read it in and install it
920 in the symbol tables. Subsequent times we only need the type. */
921 struct type *type;
922
923 /* Containing DWO unit.
924 This field is valid iff per_cu.reading_dwo_directly. */
925 struct dwo_unit *dwo_unit;
926};
927
928typedef struct signatured_type *sig_type_ptr;
929DEF_VEC_P (sig_type_ptr);
930
931/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
932 This includes type_unit_group and quick_file_names. */
933
934struct stmt_list_hash
935{
936 /* The DWO unit this table is from or NULL if there is none. */
937 struct dwo_unit *dwo_unit;
938
939 /* Offset in .debug_line or .debug_line.dwo. */
940 sect_offset line_sect_off;
941};
942
943/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
944 an object of this type. */
945
946struct type_unit_group
947{
948 /* dwarf2read.c's main "handle" on a TU symtab.
949 To simplify things we create an artificial CU that "includes" all the
950 type units using this stmt_list so that the rest of the code still has
951 a "per_cu" handle on the symtab.
952 This PER_CU is recognized by having no section. */
953#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
954 struct dwarf2_per_cu_data per_cu;
955
956 /* The TUs that share this DW_AT_stmt_list entry.
957 This is added to while parsing type units to build partial symtabs,
958 and is deleted afterwards and not used again. */
959 VEC (sig_type_ptr) *tus;
960
961 /* The compunit symtab.
962 Type units in a group needn't all be defined in the same source file,
963 so we create an essentially anonymous symtab as the compunit symtab. */
964 struct compunit_symtab *compunit_symtab;
965
966 /* The data used to construct the hash key. */
967 struct stmt_list_hash hash;
968
969 /* The number of symtabs from the line header.
970 The value here must match line_header.num_file_names. */
971 unsigned int num_symtabs;
972
973 /* The symbol tables for this TU (obtained from the files listed in
974 DW_AT_stmt_list).
975 WARNING: The order of entries here must match the order of entries
976 in the line header. After the first TU using this type_unit_group, the
977 line header for the subsequent TUs is recreated from this. This is done
978 because we need to use the same symtabs for each TU using the same
979 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
980 there's no guarantee the line header doesn't have duplicate entries. */
981 struct symtab **symtabs;
982};
983
984/* These sections are what may appear in a (real or virtual) DWO file. */
985
986struct dwo_sections
987{
988 struct dwarf2_section_info abbrev;
989 struct dwarf2_section_info line;
990 struct dwarf2_section_info loc;
991 struct dwarf2_section_info loclists;
992 struct dwarf2_section_info macinfo;
993 struct dwarf2_section_info macro;
994 struct dwarf2_section_info str;
995 struct dwarf2_section_info str_offsets;
996 /* In the case of a virtual DWO file, these two are unused. */
997 struct dwarf2_section_info info;
998 VEC (dwarf2_section_info_def) *types;
999};
1000
1001/* CUs/TUs in DWP/DWO files. */
1002
1003struct dwo_unit
1004{
1005 /* Backlink to the containing struct dwo_file. */
1006 struct dwo_file *dwo_file;
1007
1008 /* The "id" that distinguishes this CU/TU.
1009 .debug_info calls this "dwo_id", .debug_types calls this "signature".
1010 Since signatures came first, we stick with it for consistency. */
1011 ULONGEST signature;
1012
1013 /* The section this CU/TU lives in, in the DWO file. */
1014 struct dwarf2_section_info *section;
1015
1016 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
1017 sect_offset sect_off;
1018 unsigned int length;
1019
1020 /* For types, offset in the type's DIE of the type defined by this TU. */
1021 cu_offset type_offset_in_tu;
1022};
1023
1024/* include/dwarf2.h defines the DWP section codes.
1025 It defines a max value but it doesn't define a min value, which we
1026 use for error checking, so provide one. */
1027
1028enum dwp_v2_section_ids
1029{
1030 DW_SECT_MIN = 1
1031};
1032
1033/* Data for one DWO file.
1034
1035 This includes virtual DWO files (a virtual DWO file is a DWO file as it
1036 appears in a DWP file). DWP files don't really have DWO files per se -
1037 comdat folding of types "loses" the DWO file they came from, and from
1038 a high level view DWP files appear to contain a mass of random types.
1039 However, to maintain consistency with the non-DWP case we pretend DWP
1040 files contain virtual DWO files, and we assign each TU with one virtual
1041 DWO file (generally based on the line and abbrev section offsets -
1042 a heuristic that seems to work in practice). */
1043
1044struct dwo_file
1045{
1046 /* The DW_AT_GNU_dwo_name attribute.
1047 For virtual DWO files the name is constructed from the section offsets
1048 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
1049 from related CU+TUs. */
1050 const char *dwo_name;
1051
1052 /* The DW_AT_comp_dir attribute. */
1053 const char *comp_dir;
1054
1055 /* The bfd, when the file is open. Otherwise this is NULL.
1056 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
1057 bfd *dbfd;
1058
1059 /* The sections that make up this DWO file.
1060 Remember that for virtual DWO files in DWP V2, these are virtual
1061 sections (for lack of a better name). */
1062 struct dwo_sections sections;
1063
1064 /* The CUs in the file.
1065 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
1066 an extension to handle LLVM's Link Time Optimization output (where
1067 multiple source files may be compiled into a single object/dwo pair). */
1068 htab_t cus;
1069
1070 /* Table of TUs in the file.
1071 Each element is a struct dwo_unit. */
1072 htab_t tus;
1073};
1074
1075/* These sections are what may appear in a DWP file. */
1076
1077struct dwp_sections
1078{
1079 /* These are used by both DWP version 1 and 2. */
1080 struct dwarf2_section_info str;
1081 struct dwarf2_section_info cu_index;
1082 struct dwarf2_section_info tu_index;
1083
1084 /* These are only used by DWP version 2 files.
1085 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
1086 sections are referenced by section number, and are not recorded here.
1087 In DWP version 2 there is at most one copy of all these sections, each
1088 section being (effectively) comprised of the concatenation of all of the
1089 individual sections that exist in the version 1 format.
1090 To keep the code simple we treat each of these concatenated pieces as a
1091 section itself (a virtual section?). */
1092 struct dwarf2_section_info abbrev;
1093 struct dwarf2_section_info info;
1094 struct dwarf2_section_info line;
1095 struct dwarf2_section_info loc;
1096 struct dwarf2_section_info macinfo;
1097 struct dwarf2_section_info macro;
1098 struct dwarf2_section_info str_offsets;
1099 struct dwarf2_section_info types;
1100};
1101
1102/* These sections are what may appear in a virtual DWO file in DWP version 1.
1103 A virtual DWO file is a DWO file as it appears in a DWP file. */
1104
1105struct virtual_v1_dwo_sections
1106{
1107 struct dwarf2_section_info abbrev;
1108 struct dwarf2_section_info line;
1109 struct dwarf2_section_info loc;
1110 struct dwarf2_section_info macinfo;
1111 struct dwarf2_section_info macro;
1112 struct dwarf2_section_info str_offsets;
1113 /* Each DWP hash table entry records one CU or one TU.
1114 That is recorded here, and copied to dwo_unit.section. */
1115 struct dwarf2_section_info info_or_types;
1116};
1117
1118/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
1119 In version 2, the sections of the DWO files are concatenated together
1120 and stored in one section of that name. Thus each ELF section contains
1121 several "virtual" sections. */
1122
1123struct virtual_v2_dwo_sections
1124{
1125 bfd_size_type abbrev_offset;
1126 bfd_size_type abbrev_size;
1127
1128 bfd_size_type line_offset;
1129 bfd_size_type line_size;
1130
1131 bfd_size_type loc_offset;
1132 bfd_size_type loc_size;
1133
1134 bfd_size_type macinfo_offset;
1135 bfd_size_type macinfo_size;
1136
1137 bfd_size_type macro_offset;
1138 bfd_size_type macro_size;
1139
1140 bfd_size_type str_offsets_offset;
1141 bfd_size_type str_offsets_size;
1142
1143 /* Each DWP hash table entry records one CU or one TU.
1144 That is recorded here, and copied to dwo_unit.section. */
1145 bfd_size_type info_or_types_offset;
1146 bfd_size_type info_or_types_size;
1147};
1148
1149/* Contents of DWP hash tables. */
1150
1151struct dwp_hash_table
1152{
1153 uint32_t version, nr_columns;
1154 uint32_t nr_units, nr_slots;
1155 const gdb_byte *hash_table, *unit_table;
1156 union
1157 {
1158 struct
1159 {
1160 const gdb_byte *indices;
1161 } v1;
1162 struct
1163 {
1164 /* This is indexed by column number and gives the id of the section
1165 in that column. */
1166#define MAX_NR_V2_DWO_SECTIONS \
1167 (1 /* .debug_info or .debug_types */ \
1168 + 1 /* .debug_abbrev */ \
1169 + 1 /* .debug_line */ \
1170 + 1 /* .debug_loc */ \
1171 + 1 /* .debug_str_offsets */ \
1172 + 1 /* .debug_macro or .debug_macinfo */)
1173 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1174 const gdb_byte *offsets;
1175 const gdb_byte *sizes;
1176 } v2;
1177 } section_pool;
1178};
1179
1180/* Data for one DWP file. */
1181
1182struct dwp_file
1183{
1184 /* Name of the file. */
1185 const char *name;
1186
1187 /* File format version. */
1188 int version;
1189
1190 /* The bfd. */
1191 bfd *dbfd;
1192
1193 /* Section info for this file. */
1194 struct dwp_sections sections;
1195
1196 /* Table of CUs in the file. */
1197 const struct dwp_hash_table *cus;
1198
1199 /* Table of TUs in the file. */
1200 const struct dwp_hash_table *tus;
1201
1202 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1203 htab_t loaded_cus;
1204 htab_t loaded_tus;
1205
1206 /* Table to map ELF section numbers to their sections.
1207 This is only needed for the DWP V1 file format. */
1208 unsigned int num_sections;
1209 asection **elf_sections;
1210};
1211
1212/* This represents a '.dwz' file. */
1213
1214struct dwz_file
1215{
1216 /* A dwz file can only contain a few sections. */
1217 struct dwarf2_section_info abbrev;
1218 struct dwarf2_section_info info;
1219 struct dwarf2_section_info str;
1220 struct dwarf2_section_info line;
1221 struct dwarf2_section_info macro;
1222 struct dwarf2_section_info gdb_index;
1223 struct dwarf2_section_info debug_names;
1224
1225 /* The dwz's BFD. */
1226 bfd *dwz_bfd;
1227};
1228
1229/* Struct used to pass misc. parameters to read_die_and_children, et
1230 al. which are used for both .debug_info and .debug_types dies.
1231 All parameters here are unchanging for the life of the call. This
1232 struct exists to abstract away the constant parameters of die reading. */
1233
1234struct die_reader_specs
1235{
1236 /* The bfd of die_section. */
1237 bfd* abfd;
1238
1239 /* The CU of the DIE we are parsing. */
1240 struct dwarf2_cu *cu;
1241
1242 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1243 struct dwo_file *dwo_file;
1244
1245 /* The section the die comes from.
1246 This is either .debug_info or .debug_types, or the .dwo variants. */
1247 struct dwarf2_section_info *die_section;
1248
1249 /* die_section->buffer. */
1250 const gdb_byte *buffer;
1251
1252 /* The end of the buffer. */
1253 const gdb_byte *buffer_end;
1254
1255 /* The value of the DW_AT_comp_dir attribute. */
1256 const char *comp_dir;
1257
1258 /* The abbreviation table to use when reading the DIEs. */
1259 struct abbrev_table *abbrev_table;
1260};
1261
1262/* Type of function passed to init_cutu_and_read_dies, et.al. */
1263typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1264 const gdb_byte *info_ptr,
1265 struct die_info *comp_unit_die,
1266 int has_children,
1267 void *data);
1268
1269/* A 1-based directory index. This is a strong typedef to prevent
1270 accidentally using a directory index as a 0-based index into an
1271 array/vector. */
1272enum class dir_index : unsigned int {};
1273
1274/* Likewise, a 1-based file name index. */
1275enum class file_name_index : unsigned int {};
1276
1277struct file_entry
1278{
1279 file_entry () = default;
1280
1281 file_entry (const char *name_, dir_index d_index_,
1282 unsigned int mod_time_, unsigned int length_)
1283 : name (name_),
1284 d_index (d_index_),
1285 mod_time (mod_time_),
1286 length (length_)
1287 {}
1288
1289 /* Return the include directory at D_INDEX stored in LH. Returns
1290 NULL if D_INDEX is out of bounds. */
1291 const char *include_dir (const line_header *lh) const;
1292
1293 /* The file name. Note this is an observing pointer. The memory is
1294 owned by debug_line_buffer. */
1295 const char *name {};
1296
1297 /* The directory index (1-based). */
1298 dir_index d_index {};
1299
1300 unsigned int mod_time {};
1301
1302 unsigned int length {};
1303
1304 /* True if referenced by the Line Number Program. */
1305 bool included_p {};
1306
1307 /* The associated symbol table, if any. */
1308 struct symtab *symtab {};
1309};
1310
1311/* The line number information for a compilation unit (found in the
1312 .debug_line section) begins with a "statement program header",
1313 which contains the following information. */
1314struct line_header
1315{
1316 line_header ()
1317 : offset_in_dwz {}
1318 {}
1319
1320 /* Add an entry to the include directory table. */
1321 void add_include_dir (const char *include_dir);
1322
1323 /* Add an entry to the file name table. */
1324 void add_file_name (const char *name, dir_index d_index,
1325 unsigned int mod_time, unsigned int length);
1326
1327 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1328 is out of bounds. */
1329 const char *include_dir_at (dir_index index) const
1330 {
1331 /* Convert directory index number (1-based) to vector index
1332 (0-based). */
1333 size_t vec_index = to_underlying (index) - 1;
1334
1335 if (vec_index >= include_dirs.size ())
1336 return NULL;
1337 return include_dirs[vec_index];
1338 }
1339
1340 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1341 is out of bounds. */
1342 file_entry *file_name_at (file_name_index index)
1343 {
1344 /* Convert file name index number (1-based) to vector index
1345 (0-based). */
1346 size_t vec_index = to_underlying (index) - 1;
1347
1348 if (vec_index >= file_names.size ())
1349 return NULL;
1350 return &file_names[vec_index];
1351 }
1352
1353 /* Const version of the above. */
1354 const file_entry *file_name_at (unsigned int index) const
1355 {
1356 if (index >= file_names.size ())
1357 return NULL;
1358 return &file_names[index];
1359 }
1360
1361 /* Offset of line number information in .debug_line section. */
1362 sect_offset sect_off {};
1363
1364 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1365 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1366
1367 unsigned int total_length {};
1368 unsigned short version {};
1369 unsigned int header_length {};
1370 unsigned char minimum_instruction_length {};
1371 unsigned char maximum_ops_per_instruction {};
1372 unsigned char default_is_stmt {};
1373 int line_base {};
1374 unsigned char line_range {};
1375 unsigned char opcode_base {};
1376
1377 /* standard_opcode_lengths[i] is the number of operands for the
1378 standard opcode whose value is i. This means that
1379 standard_opcode_lengths[0] is unused, and the last meaningful
1380 element is standard_opcode_lengths[opcode_base - 1]. */
1381 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1382
1383 /* The include_directories table. Note these are observing
1384 pointers. The memory is owned by debug_line_buffer. */
1385 std::vector<const char *> include_dirs;
1386
1387 /* The file_names table. */
1388 std::vector<file_entry> file_names;
1389
1390 /* The start and end of the statement program following this
1391 header. These point into dwarf2_per_objfile->line_buffer. */
1392 const gdb_byte *statement_program_start {}, *statement_program_end {};
1393};
1394
1395typedef std::unique_ptr<line_header> line_header_up;
1396
1397const char *
1398file_entry::include_dir (const line_header *lh) const
1399{
1400 return lh->include_dir_at (d_index);
1401}
1402
1403/* When we construct a partial symbol table entry we only
1404 need this much information. */
1405struct partial_die_info
1406 {
1407 /* Offset of this DIE. */
1408 sect_offset sect_off;
1409
1410 /* DWARF-2 tag for this DIE. */
1411 ENUM_BITFIELD(dwarf_tag) tag : 16;
1412
1413 /* Assorted flags describing the data found in this DIE. */
1414 unsigned int has_children : 1;
1415 unsigned int is_external : 1;
1416 unsigned int is_declaration : 1;
1417 unsigned int has_type : 1;
1418 unsigned int has_specification : 1;
1419 unsigned int has_pc_info : 1;
1420 unsigned int may_be_inlined : 1;
1421
1422 /* This DIE has been marked DW_AT_main_subprogram. */
1423 unsigned int main_subprogram : 1;
1424
1425 /* Flag set if the SCOPE field of this structure has been
1426 computed. */
1427 unsigned int scope_set : 1;
1428
1429 /* Flag set if the DIE has a byte_size attribute. */
1430 unsigned int has_byte_size : 1;
1431
1432 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1433 unsigned int has_const_value : 1;
1434
1435 /* Flag set if any of the DIE's children are template arguments. */
1436 unsigned int has_template_arguments : 1;
1437
1438 /* Flag set if fixup_partial_die has been called on this die. */
1439 unsigned int fixup_called : 1;
1440
1441 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1442 unsigned int is_dwz : 1;
1443
1444 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1445 unsigned int spec_is_dwz : 1;
1446
1447 /* The name of this DIE. Normally the value of DW_AT_name, but
1448 sometimes a default name for unnamed DIEs. */
1449 const char *name;
1450
1451 /* The linkage name, if present. */
1452 const char *linkage_name;
1453
1454 /* The scope to prepend to our children. This is generally
1455 allocated on the comp_unit_obstack, so will disappear
1456 when this compilation unit leaves the cache. */
1457 const char *scope;
1458
1459 /* Some data associated with the partial DIE. The tag determines
1460 which field is live. */
1461 union
1462 {
1463 /* The location description associated with this DIE, if any. */
1464 struct dwarf_block *locdesc;
1465 /* The offset of an import, for DW_TAG_imported_unit. */
1466 sect_offset sect_off;
1467 } d;
1468
1469 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1470 CORE_ADDR lowpc;
1471 CORE_ADDR highpc;
1472
1473 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1474 DW_AT_sibling, if any. */
1475 /* NOTE: This member isn't strictly necessary, read_partial_die could
1476 return DW_AT_sibling values to its caller load_partial_dies. */
1477 const gdb_byte *sibling;
1478
1479 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1480 DW_AT_specification (or DW_AT_abstract_origin or
1481 DW_AT_extension). */
1482 sect_offset spec_offset;
1483
1484 /* Pointers to this DIE's parent, first child, and next sibling,
1485 if any. */
1486 struct partial_die_info *die_parent, *die_child, *die_sibling;
1487 };
1488
1489/* This data structure holds the information of an abbrev. */
1490struct abbrev_info
1491 {
1492 unsigned int number; /* number identifying abbrev */
1493 enum dwarf_tag tag; /* dwarf tag */
1494 unsigned short has_children; /* boolean */
1495 unsigned short num_attrs; /* number of attributes */
1496 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1497 struct abbrev_info *next; /* next in chain */
1498 };
1499
1500struct attr_abbrev
1501 {
1502 ENUM_BITFIELD(dwarf_attribute) name : 16;
1503 ENUM_BITFIELD(dwarf_form) form : 16;
1504
1505 /* It is valid only if FORM is DW_FORM_implicit_const. */
1506 LONGEST implicit_const;
1507 };
1508
1509/* Size of abbrev_table.abbrev_hash_table. */
1510#define ABBREV_HASH_SIZE 121
1511
1512/* Top level data structure to contain an abbreviation table. */
1513
1514struct abbrev_table
1515{
1516 explicit abbrev_table (sect_offset off)
1517 : sect_off (off)
1518 {
1519 m_abbrevs =
1520 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1521 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1522 }
1523
1524 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1525
1526 /* Allocate space for a struct abbrev_info object in
1527 ABBREV_TABLE. */
1528 struct abbrev_info *alloc_abbrev ();
1529
1530 /* Add an abbreviation to the table. */
1531 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1532
1533 /* Look up an abbrev in the table.
1534 Returns NULL if the abbrev is not found. */
1535
1536 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1537
1538
1539 /* Where the abbrev table came from.
1540 This is used as a sanity check when the table is used. */
1541 const sect_offset sect_off;
1542
1543 /* Storage for the abbrev table. */
1544 auto_obstack abbrev_obstack;
1545
1546private:
1547
1548 /* Hash table of abbrevs.
1549 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1550 It could be statically allocated, but the previous code didn't so we
1551 don't either. */
1552 struct abbrev_info **m_abbrevs;
1553};
1554
1555typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1556
1557/* Attributes have a name and a value. */
1558struct attribute
1559 {
1560 ENUM_BITFIELD(dwarf_attribute) name : 16;
1561 ENUM_BITFIELD(dwarf_form) form : 15;
1562
1563 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1564 field should be in u.str (existing only for DW_STRING) but it is kept
1565 here for better struct attribute alignment. */
1566 unsigned int string_is_canonical : 1;
1567
1568 union
1569 {
1570 const char *str;
1571 struct dwarf_block *blk;
1572 ULONGEST unsnd;
1573 LONGEST snd;
1574 CORE_ADDR addr;
1575 ULONGEST signature;
1576 }
1577 u;
1578 };
1579
1580/* This data structure holds a complete die structure. */
1581struct die_info
1582 {
1583 /* DWARF-2 tag for this DIE. */
1584 ENUM_BITFIELD(dwarf_tag) tag : 16;
1585
1586 /* Number of attributes */
1587 unsigned char num_attrs;
1588
1589 /* True if we're presently building the full type name for the
1590 type derived from this DIE. */
1591 unsigned char building_fullname : 1;
1592
1593 /* True if this die is in process. PR 16581. */
1594 unsigned char in_process : 1;
1595
1596 /* Abbrev number */
1597 unsigned int abbrev;
1598
1599 /* Offset in .debug_info or .debug_types section. */
1600 sect_offset sect_off;
1601
1602 /* The dies in a compilation unit form an n-ary tree. PARENT
1603 points to this die's parent; CHILD points to the first child of
1604 this node; and all the children of a given node are chained
1605 together via their SIBLING fields. */
1606 struct die_info *child; /* Its first child, if any. */
1607 struct die_info *sibling; /* Its next sibling, if any. */
1608 struct die_info *parent; /* Its parent, if any. */
1609
1610 /* An array of attributes, with NUM_ATTRS elements. There may be
1611 zero, but it's not common and zero-sized arrays are not
1612 sufficiently portable C. */
1613 struct attribute attrs[1];
1614 };
1615
1616/* Get at parts of an attribute structure. */
1617
1618#define DW_STRING(attr) ((attr)->u.str)
1619#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1620#define DW_UNSND(attr) ((attr)->u.unsnd)
1621#define DW_BLOCK(attr) ((attr)->u.blk)
1622#define DW_SND(attr) ((attr)->u.snd)
1623#define DW_ADDR(attr) ((attr)->u.addr)
1624#define DW_SIGNATURE(attr) ((attr)->u.signature)
1625
1626/* Blocks are a bunch of untyped bytes. */
1627struct dwarf_block
1628 {
1629 size_t size;
1630
1631 /* Valid only if SIZE is not zero. */
1632 const gdb_byte *data;
1633 };
1634
1635#ifndef ATTR_ALLOC_CHUNK
1636#define ATTR_ALLOC_CHUNK 4
1637#endif
1638
1639/* Allocate fields for structs, unions and enums in this size. */
1640#ifndef DW_FIELD_ALLOC_CHUNK
1641#define DW_FIELD_ALLOC_CHUNK 4
1642#endif
1643
1644/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1645 but this would require a corresponding change in unpack_field_as_long
1646 and friends. */
1647static int bits_per_byte = 8;
1648
1649struct nextfield
1650{
1651 struct nextfield *next;
1652 int accessibility;
1653 int virtuality;
1654 struct field field;
1655};
1656
1657struct nextfnfield
1658{
1659 struct nextfnfield *next;
1660 struct fn_field fnfield;
1661};
1662
1663struct fnfieldlist
1664{
1665 const char *name;
1666 int length;
1667 struct nextfnfield *head;
1668};
1669
1670struct decl_field_list
1671{
1672 struct decl_field field;
1673 struct decl_field_list *next;
1674};
1675
1676/* The routines that read and process dies for a C struct or C++ class
1677 pass lists of data member fields and lists of member function fields
1678 in an instance of a field_info structure, as defined below. */
1679struct field_info
1680 {
1681 /* List of data member and baseclasses fields. */
1682 struct nextfield *fields, *baseclasses;
1683
1684 /* Number of fields (including baseclasses). */
1685 int nfields;
1686
1687 /* Number of baseclasses. */
1688 int nbaseclasses;
1689
1690 /* Set if the accesibility of one of the fields is not public. */
1691 int non_public_fields;
1692
1693 /* Member function fieldlist array, contains name of possibly overloaded
1694 member function, number of overloaded member functions and a pointer
1695 to the head of the member function field chain. */
1696 struct fnfieldlist *fnfieldlists;
1697
1698 /* Number of entries in the fnfieldlists array. */
1699 int nfnfields;
1700
1701 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1702 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1703 struct decl_field_list *typedef_field_list;
1704 unsigned typedef_field_list_count;
1705
1706 /* Nested types defined by this class and the number of elements in this
1707 list. */
1708 struct decl_field_list *nested_types_list;
1709 unsigned nested_types_list_count;
1710 };
1711
1712/* One item on the queue of compilation units to read in full symbols
1713 for. */
1714struct dwarf2_queue_item
1715{
1716 struct dwarf2_per_cu_data *per_cu;
1717 enum language pretend_language;
1718 struct dwarf2_queue_item *next;
1719};
1720
1721/* The current queue. */
1722static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1723
1724/* Loaded secondary compilation units are kept in memory until they
1725 have not been referenced for the processing of this many
1726 compilation units. Set this to zero to disable caching. Cache
1727 sizes of up to at least twenty will improve startup time for
1728 typical inter-CU-reference binaries, at an obvious memory cost. */
1729static int dwarf_max_cache_age = 5;
1730static void
1731show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1732 struct cmd_list_element *c, const char *value)
1733{
1734 fprintf_filtered (file, _("The upper bound on the age of cached "
1735 "DWARF compilation units is %s.\n"),
1736 value);
1737}
1738\f
1739/* local function prototypes */
1740
1741static const char *get_section_name (const struct dwarf2_section_info *);
1742
1743static const char *get_section_file_name (const struct dwarf2_section_info *);
1744
1745static void dwarf2_find_base_address (struct die_info *die,
1746 struct dwarf2_cu *cu);
1747
1748static struct partial_symtab *create_partial_symtab
1749 (struct dwarf2_per_cu_data *per_cu, const char *name);
1750
1751static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1752 const gdb_byte *info_ptr,
1753 struct die_info *type_unit_die,
1754 int has_children, void *data);
1755
1756static void dwarf2_build_psymtabs_hard
1757 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1758
1759static void scan_partial_symbols (struct partial_die_info *,
1760 CORE_ADDR *, CORE_ADDR *,
1761 int, struct dwarf2_cu *);
1762
1763static void add_partial_symbol (struct partial_die_info *,
1764 struct dwarf2_cu *);
1765
1766static void add_partial_namespace (struct partial_die_info *pdi,
1767 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1768 int set_addrmap, struct dwarf2_cu *cu);
1769
1770static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1771 CORE_ADDR *highpc, int set_addrmap,
1772 struct dwarf2_cu *cu);
1773
1774static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1775 struct dwarf2_cu *cu);
1776
1777static void add_partial_subprogram (struct partial_die_info *pdi,
1778 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1779 int need_pc, struct dwarf2_cu *cu);
1780
1781static void dwarf2_read_symtab (struct partial_symtab *,
1782 struct objfile *);
1783
1784static void psymtab_to_symtab_1 (struct partial_symtab *);
1785
1786static abbrev_table_up abbrev_table_read_table
1787 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1788 sect_offset);
1789
1790static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1791
1792static struct partial_die_info *load_partial_dies
1793 (const struct die_reader_specs *, const gdb_byte *, int);
1794
1795static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1796 struct partial_die_info *,
1797 const struct abbrev_info &,
1798 unsigned int,
1799 const gdb_byte *);
1800
1801static struct partial_die_info *find_partial_die (sect_offset, int,
1802 struct dwarf2_cu *);
1803
1804static void fixup_partial_die (struct partial_die_info *,
1805 struct dwarf2_cu *);
1806
1807static const gdb_byte *read_attribute (const struct die_reader_specs *,
1808 struct attribute *, struct attr_abbrev *,
1809 const gdb_byte *);
1810
1811static unsigned int read_1_byte (bfd *, const gdb_byte *);
1812
1813static int read_1_signed_byte (bfd *, const gdb_byte *);
1814
1815static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1816
1817static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1818
1819static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1820
1821static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1822 unsigned int *);
1823
1824static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1825
1826static LONGEST read_checked_initial_length_and_offset
1827 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1828 unsigned int *, unsigned int *);
1829
1830static LONGEST read_offset (bfd *, const gdb_byte *,
1831 const struct comp_unit_head *,
1832 unsigned int *);
1833
1834static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1835
1836static sect_offset read_abbrev_offset
1837 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1838 struct dwarf2_section_info *, sect_offset);
1839
1840static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1841
1842static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1843
1844static const char *read_indirect_string
1845 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1846 const struct comp_unit_head *, unsigned int *);
1847
1848static const char *read_indirect_line_string
1849 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1850 const struct comp_unit_head *, unsigned int *);
1851
1852static const char *read_indirect_string_at_offset
1853 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1854 LONGEST str_offset);
1855
1856static const char *read_indirect_string_from_dwz
1857 (struct objfile *objfile, struct dwz_file *, LONGEST);
1858
1859static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1860
1861static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1862 const gdb_byte *,
1863 unsigned int *);
1864
1865static const char *read_str_index (const struct die_reader_specs *reader,
1866 ULONGEST str_index);
1867
1868static void set_cu_language (unsigned int, struct dwarf2_cu *);
1869
1870static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1871 struct dwarf2_cu *);
1872
1873static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1874 unsigned int);
1875
1876static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1877 struct dwarf2_cu *cu);
1878
1879static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1880 struct dwarf2_cu *cu);
1881
1882static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1883
1884static struct die_info *die_specification (struct die_info *die,
1885 struct dwarf2_cu **);
1886
1887static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1888 struct dwarf2_cu *cu);
1889
1890static void dwarf_decode_lines (struct line_header *, const char *,
1891 struct dwarf2_cu *, struct partial_symtab *,
1892 CORE_ADDR, int decode_mapping);
1893
1894static void dwarf2_start_subfile (const char *, const char *);
1895
1896static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1897 const char *, const char *,
1898 CORE_ADDR);
1899
1900static struct symbol *new_symbol (struct die_info *, struct type *,
1901 struct dwarf2_cu *, struct symbol * = NULL);
1902
1903static void dwarf2_const_value (const struct attribute *, struct symbol *,
1904 struct dwarf2_cu *);
1905
1906static void dwarf2_const_value_attr (const struct attribute *attr,
1907 struct type *type,
1908 const char *name,
1909 struct obstack *obstack,
1910 struct dwarf2_cu *cu, LONGEST *value,
1911 const gdb_byte **bytes,
1912 struct dwarf2_locexpr_baton **baton);
1913
1914static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1915
1916static int need_gnat_info (struct dwarf2_cu *);
1917
1918static struct type *die_descriptive_type (struct die_info *,
1919 struct dwarf2_cu *);
1920
1921static void set_descriptive_type (struct type *, struct die_info *,
1922 struct dwarf2_cu *);
1923
1924static struct type *die_containing_type (struct die_info *,
1925 struct dwarf2_cu *);
1926
1927static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1928 struct dwarf2_cu *);
1929
1930static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1931
1932static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1933
1934static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1935
1936static char *typename_concat (struct obstack *obs, const char *prefix,
1937 const char *suffix, int physname,
1938 struct dwarf2_cu *cu);
1939
1940static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1941
1942static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1943
1944static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1945
1946static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1947
1948static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1949
1950static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1951
1952static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1953 struct dwarf2_cu *, struct partial_symtab *);
1954
1955/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1956 values. Keep the items ordered with increasing constraints compliance. */
1957enum pc_bounds_kind
1958{
1959 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1960 PC_BOUNDS_NOT_PRESENT,
1961
1962 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1963 were present but they do not form a valid range of PC addresses. */
1964 PC_BOUNDS_INVALID,
1965
1966 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1967 PC_BOUNDS_RANGES,
1968
1969 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1970 PC_BOUNDS_HIGH_LOW,
1971};
1972
1973static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1974 CORE_ADDR *, CORE_ADDR *,
1975 struct dwarf2_cu *,
1976 struct partial_symtab *);
1977
1978static void get_scope_pc_bounds (struct die_info *,
1979 CORE_ADDR *, CORE_ADDR *,
1980 struct dwarf2_cu *);
1981
1982static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1983 CORE_ADDR, struct dwarf2_cu *);
1984
1985static void dwarf2_add_field (struct field_info *, struct die_info *,
1986 struct dwarf2_cu *);
1987
1988static void dwarf2_attach_fields_to_type (struct field_info *,
1989 struct type *, struct dwarf2_cu *);
1990
1991static void dwarf2_add_member_fn (struct field_info *,
1992 struct die_info *, struct type *,
1993 struct dwarf2_cu *);
1994
1995static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1996 struct type *,
1997 struct dwarf2_cu *);
1998
1999static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
2000
2001static void read_common_block (struct die_info *, struct dwarf2_cu *);
2002
2003static void read_namespace (struct die_info *die, struct dwarf2_cu *);
2004
2005static void read_module (struct die_info *die, struct dwarf2_cu *cu);
2006
2007static struct using_direct **using_directives (enum language);
2008
2009static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
2010
2011static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
2012
2013static struct type *read_module_type (struct die_info *die,
2014 struct dwarf2_cu *cu);
2015
2016static const char *namespace_name (struct die_info *die,
2017 int *is_anonymous, struct dwarf2_cu *);
2018
2019static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
2020
2021static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
2022
2023static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
2024 struct dwarf2_cu *);
2025
2026static struct die_info *read_die_and_siblings_1
2027 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
2028 struct die_info *);
2029
2030static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
2031 const gdb_byte *info_ptr,
2032 const gdb_byte **new_info_ptr,
2033 struct die_info *parent);
2034
2035static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
2036 struct die_info **, const gdb_byte *,
2037 int *, int);
2038
2039static const gdb_byte *read_full_die (const struct die_reader_specs *,
2040 struct die_info **, const gdb_byte *,
2041 int *);
2042
2043static void process_die (struct die_info *, struct dwarf2_cu *);
2044
2045static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
2046 struct obstack *);
2047
2048static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
2049
2050static const char *dwarf2_full_name (const char *name,
2051 struct die_info *die,
2052 struct dwarf2_cu *cu);
2053
2054static const char *dwarf2_physname (const char *name, struct die_info *die,
2055 struct dwarf2_cu *cu);
2056
2057static struct die_info *dwarf2_extension (struct die_info *die,
2058 struct dwarf2_cu **);
2059
2060static const char *dwarf_tag_name (unsigned int);
2061
2062static const char *dwarf_attr_name (unsigned int);
2063
2064static const char *dwarf_form_name (unsigned int);
2065
2066static const char *dwarf_bool_name (unsigned int);
2067
2068static const char *dwarf_type_encoding_name (unsigned int);
2069
2070static struct die_info *sibling_die (struct die_info *);
2071
2072static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
2073
2074static void dump_die_for_error (struct die_info *);
2075
2076static void dump_die_1 (struct ui_file *, int level, int max_level,
2077 struct die_info *);
2078
2079/*static*/ void dump_die (struct die_info *, int max_level);
2080
2081static void store_in_ref_table (struct die_info *,
2082 struct dwarf2_cu *);
2083
2084static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
2085
2086static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
2087
2088static struct die_info *follow_die_ref_or_sig (struct die_info *,
2089 const struct attribute *,
2090 struct dwarf2_cu **);
2091
2092static struct die_info *follow_die_ref (struct die_info *,
2093 const struct attribute *,
2094 struct dwarf2_cu **);
2095
2096static struct die_info *follow_die_sig (struct die_info *,
2097 const struct attribute *,
2098 struct dwarf2_cu **);
2099
2100static struct type *get_signatured_type (struct die_info *, ULONGEST,
2101 struct dwarf2_cu *);
2102
2103static struct type *get_DW_AT_signature_type (struct die_info *,
2104 const struct attribute *,
2105 struct dwarf2_cu *);
2106
2107static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
2108
2109static void read_signatured_type (struct signatured_type *);
2110
2111static int attr_to_dynamic_prop (const struct attribute *attr,
2112 struct die_info *die, struct dwarf2_cu *cu,
2113 struct dynamic_prop *prop);
2114
2115/* memory allocation interface */
2116
2117static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
2118
2119static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
2120
2121static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2122
2123static int attr_form_is_block (const struct attribute *);
2124
2125static int attr_form_is_section_offset (const struct attribute *);
2126
2127static int attr_form_is_constant (const struct attribute *);
2128
2129static int attr_form_is_ref (const struct attribute *);
2130
2131static void fill_in_loclist_baton (struct dwarf2_cu *cu,
2132 struct dwarf2_loclist_baton *baton,
2133 const struct attribute *attr);
2134
2135static void dwarf2_symbol_mark_computed (const struct attribute *attr,
2136 struct symbol *sym,
2137 struct dwarf2_cu *cu,
2138 int is_block);
2139
2140static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
2141 const gdb_byte *info_ptr,
2142 struct abbrev_info *abbrev);
2143
2144static hashval_t partial_die_hash (const void *item);
2145
2146static int partial_die_eq (const void *item_lhs, const void *item_rhs);
2147
2148static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
2149 (sect_offset sect_off, unsigned int offset_in_dwz,
2150 struct dwarf2_per_objfile *dwarf2_per_objfile);
2151
2152static void prepare_one_comp_unit (struct dwarf2_cu *cu,
2153 struct die_info *comp_unit_die,
2154 enum language pretend_language);
2155
2156static void free_cached_comp_units (void *);
2157
2158static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2159
2160static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
2161
2162static struct type *set_die_type (struct die_info *, struct type *,
2163 struct dwarf2_cu *);
2164
2165static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2166
2167static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2168
2169static void load_full_comp_unit (struct dwarf2_per_cu_data *,
2170 enum language);
2171
2172static void process_full_comp_unit (struct dwarf2_per_cu_data *,
2173 enum language);
2174
2175static void process_full_type_unit (struct dwarf2_per_cu_data *,
2176 enum language);
2177
2178static void dwarf2_add_dependence (struct dwarf2_cu *,
2179 struct dwarf2_per_cu_data *);
2180
2181static void dwarf2_mark (struct dwarf2_cu *);
2182
2183static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
2184
2185static struct type *get_die_type_at_offset (sect_offset,
2186 struct dwarf2_per_cu_data *);
2187
2188static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
2189
2190static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
2191 enum language pretend_language);
2192
2193static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
2194
2195/* Class, the destructor of which frees all allocated queue entries. This
2196 will only have work to do if an error was thrown while processing the
2197 dwarf. If no error was thrown then the queue entries should have all
2198 been processed, and freed, as we went along. */
2199
2200class dwarf2_queue_guard
2201{
2202public:
2203 dwarf2_queue_guard () = default;
2204
2205 /* Free any entries remaining on the queue. There should only be
2206 entries left if we hit an error while processing the dwarf. */
2207 ~dwarf2_queue_guard ()
2208 {
2209 struct dwarf2_queue_item *item, *last;
2210
2211 item = dwarf2_queue;
2212 while (item)
2213 {
2214 /* Anything still marked queued is likely to be in an
2215 inconsistent state, so discard it. */
2216 if (item->per_cu->queued)
2217 {
2218 if (item->per_cu->cu != NULL)
2219 free_one_cached_comp_unit (item->per_cu);
2220 item->per_cu->queued = 0;
2221 }
2222
2223 last = item;
2224 item = item->next;
2225 xfree (last);
2226 }
2227
2228 dwarf2_queue = dwarf2_queue_tail = NULL;
2229 }
2230};
2231
2232/* The return type of find_file_and_directory. Note, the enclosed
2233 string pointers are only valid while this object is valid. */
2234
2235struct file_and_directory
2236{
2237 /* The filename. This is never NULL. */
2238 const char *name;
2239
2240 /* The compilation directory. NULL if not known. If we needed to
2241 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2242 points directly to the DW_AT_comp_dir string attribute owned by
2243 the obstack that owns the DIE. */
2244 const char *comp_dir;
2245
2246 /* If we needed to build a new string for comp_dir, this is what
2247 owns the storage. */
2248 std::string comp_dir_storage;
2249};
2250
2251static file_and_directory find_file_and_directory (struct die_info *die,
2252 struct dwarf2_cu *cu);
2253
2254static char *file_full_name (int file, struct line_header *lh,
2255 const char *comp_dir);
2256
2257/* Expected enum dwarf_unit_type for read_comp_unit_head. */
2258enum class rcuh_kind { COMPILE, TYPE };
2259
2260static const gdb_byte *read_and_check_comp_unit_head
2261 (struct dwarf2_per_objfile* dwarf2_per_objfile,
2262 struct comp_unit_head *header,
2263 struct dwarf2_section_info *section,
2264 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2265 rcuh_kind section_kind);
2266
2267static void init_cutu_and_read_dies
2268 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2269 int use_existing_cu, int keep,
2270 die_reader_func_ftype *die_reader_func, void *data);
2271
2272static void init_cutu_and_read_dies_simple
2273 (struct dwarf2_per_cu_data *this_cu,
2274 die_reader_func_ftype *die_reader_func, void *data);
2275
2276static htab_t allocate_signatured_type_table (struct objfile *objfile);
2277
2278static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2279
2280static struct dwo_unit *lookup_dwo_unit_in_dwp
2281 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2282 struct dwp_file *dwp_file, const char *comp_dir,
2283 ULONGEST signature, int is_debug_types);
2284
2285static struct dwp_file *get_dwp_file
2286 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2287
2288static struct dwo_unit *lookup_dwo_comp_unit
2289 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2290
2291static struct dwo_unit *lookup_dwo_type_unit
2292 (struct signatured_type *, const char *, const char *);
2293
2294static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2295
2296static void free_dwo_file_cleanup (void *);
2297
2298struct free_dwo_file_cleanup_data
2299{
2300 struct dwo_file *dwo_file;
2301 struct dwarf2_per_objfile *dwarf2_per_objfile;
2302};
2303
2304static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2305
2306static void check_producer (struct dwarf2_cu *cu);
2307
2308static void free_line_header_voidp (void *arg);
2309\f
2310/* Various complaints about symbol reading that don't abort the process. */
2311
2312static void
2313dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2314{
2315 complaint (&symfile_complaints,
2316 _("statement list doesn't fit in .debug_line section"));
2317}
2318
2319static void
2320dwarf2_debug_line_missing_file_complaint (void)
2321{
2322 complaint (&symfile_complaints,
2323 _(".debug_line section has line data without a file"));
2324}
2325
2326static void
2327dwarf2_debug_line_missing_end_sequence_complaint (void)
2328{
2329 complaint (&symfile_complaints,
2330 _(".debug_line section has line "
2331 "program sequence without an end"));
2332}
2333
2334static void
2335dwarf2_complex_location_expr_complaint (void)
2336{
2337 complaint (&symfile_complaints, _("location expression too complex"));
2338}
2339
2340static void
2341dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2342 int arg3)
2343{
2344 complaint (&symfile_complaints,
2345 _("const value length mismatch for '%s', got %d, expected %d"),
2346 arg1, arg2, arg3);
2347}
2348
2349static void
2350dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2351{
2352 complaint (&symfile_complaints,
2353 _("debug info runs off end of %s section"
2354 " [in module %s]"),
2355 get_section_name (section),
2356 get_section_file_name (section));
2357}
2358
2359static void
2360dwarf2_macro_malformed_definition_complaint (const char *arg1)
2361{
2362 complaint (&symfile_complaints,
2363 _("macro debug info contains a "
2364 "malformed macro definition:\n`%s'"),
2365 arg1);
2366}
2367
2368static void
2369dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2370{
2371 complaint (&symfile_complaints,
2372 _("invalid attribute class or form for '%s' in '%s'"),
2373 arg1, arg2);
2374}
2375
2376/* Hash function for line_header_hash. */
2377
2378static hashval_t
2379line_header_hash (const struct line_header *ofs)
2380{
2381 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2382}
2383
2384/* Hash function for htab_create_alloc_ex for line_header_hash. */
2385
2386static hashval_t
2387line_header_hash_voidp (const void *item)
2388{
2389 const struct line_header *ofs = (const struct line_header *) item;
2390
2391 return line_header_hash (ofs);
2392}
2393
2394/* Equality function for line_header_hash. */
2395
2396static int
2397line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2398{
2399 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2400 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2401
2402 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2403 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2404}
2405
2406\f
2407
2408/* Read the given attribute value as an address, taking the attribute's
2409 form into account. */
2410
2411static CORE_ADDR
2412attr_value_as_address (struct attribute *attr)
2413{
2414 CORE_ADDR addr;
2415
2416 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2417 {
2418 /* Aside from a few clearly defined exceptions, attributes that
2419 contain an address must always be in DW_FORM_addr form.
2420 Unfortunately, some compilers happen to be violating this
2421 requirement by encoding addresses using other forms, such
2422 as DW_FORM_data4 for example. For those broken compilers,
2423 we try to do our best, without any guarantee of success,
2424 to interpret the address correctly. It would also be nice
2425 to generate a complaint, but that would require us to maintain
2426 a list of legitimate cases where a non-address form is allowed,
2427 as well as update callers to pass in at least the CU's DWARF
2428 version. This is more overhead than what we're willing to
2429 expand for a pretty rare case. */
2430 addr = DW_UNSND (attr);
2431 }
2432 else
2433 addr = DW_ADDR (attr);
2434
2435 return addr;
2436}
2437
2438/* The suffix for an index file. */
2439#define INDEX4_SUFFIX ".gdb-index"
2440#define INDEX5_SUFFIX ".debug_names"
2441#define DEBUG_STR_SUFFIX ".debug_str"
2442
2443/* See declaration. */
2444
2445dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2446 const dwarf2_debug_sections *names)
2447 : objfile (objfile_)
2448{
2449 if (names == NULL)
2450 names = &dwarf2_elf_names;
2451
2452 bfd *obfd = objfile->obfd;
2453
2454 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2455 locate_sections (obfd, sec, *names);
2456}
2457
2458static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2459
2460dwarf2_per_objfile::~dwarf2_per_objfile ()
2461{
2462 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2463 free_cached_comp_units ();
2464
2465 if (quick_file_names_table)
2466 htab_delete (quick_file_names_table);
2467
2468 if (line_header_hash)
2469 htab_delete (line_header_hash);
2470
2471 for (int ix = 0; ix < n_comp_units; ++ix)
2472 VEC_free (dwarf2_per_cu_ptr, all_comp_units[ix]->imported_symtabs);
2473
2474 for (int ix = 0; ix < n_type_units; ++ix)
2475 VEC_free (dwarf2_per_cu_ptr,
2476 all_type_units[ix]->per_cu.imported_symtabs);
2477 xfree (all_type_units);
2478
2479 VEC_free (dwarf2_section_info_def, types);
2480
2481 if (dwo_files != NULL)
2482 free_dwo_files (dwo_files, objfile);
2483 if (dwp_file != NULL)
2484 gdb_bfd_unref (dwp_file->dbfd);
2485
2486 if (dwz_file != NULL && dwz_file->dwz_bfd)
2487 gdb_bfd_unref (dwz_file->dwz_bfd);
2488
2489 if (index_table != NULL)
2490 index_table->~mapped_index ();
2491
2492 /* Everything else should be on the objfile obstack. */
2493}
2494
2495/* See declaration. */
2496
2497void
2498dwarf2_per_objfile::free_cached_comp_units ()
2499{
2500 dwarf2_per_cu_data *per_cu = read_in_chain;
2501 dwarf2_per_cu_data **last_chain = &read_in_chain;
2502 while (per_cu != NULL)
2503 {
2504 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2505
2506 delete per_cu->cu;
2507 *last_chain = next_cu;
2508 per_cu = next_cu;
2509 }
2510}
2511
2512/* Try to locate the sections we need for DWARF 2 debugging
2513 information and return true if we have enough to do something.
2514 NAMES points to the dwarf2 section names, or is NULL if the standard
2515 ELF names are used. */
2516
2517int
2518dwarf2_has_info (struct objfile *objfile,
2519 const struct dwarf2_debug_sections *names)
2520{
2521 if (objfile->flags & OBJF_READNEVER)
2522 return 0;
2523
2524 struct dwarf2_per_objfile *dwarf2_per_objfile
2525 = get_dwarf2_per_objfile (objfile);
2526
2527 if (dwarf2_per_objfile == NULL)
2528 {
2529 /* Initialize per-objfile state. */
2530 dwarf2_per_objfile
2531 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2532 names);
2533 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2534 }
2535 return (!dwarf2_per_objfile->info.is_virtual
2536 && dwarf2_per_objfile->info.s.section != NULL
2537 && !dwarf2_per_objfile->abbrev.is_virtual
2538 && dwarf2_per_objfile->abbrev.s.section != NULL);
2539}
2540
2541/* Return the containing section of virtual section SECTION. */
2542
2543static struct dwarf2_section_info *
2544get_containing_section (const struct dwarf2_section_info *section)
2545{
2546 gdb_assert (section->is_virtual);
2547 return section->s.containing_section;
2548}
2549
2550/* Return the bfd owner of SECTION. */
2551
2552static struct bfd *
2553get_section_bfd_owner (const struct dwarf2_section_info *section)
2554{
2555 if (section->is_virtual)
2556 {
2557 section = get_containing_section (section);
2558 gdb_assert (!section->is_virtual);
2559 }
2560 return section->s.section->owner;
2561}
2562
2563/* Return the bfd section of SECTION.
2564 Returns NULL if the section is not present. */
2565
2566static asection *
2567get_section_bfd_section (const struct dwarf2_section_info *section)
2568{
2569 if (section->is_virtual)
2570 {
2571 section = get_containing_section (section);
2572 gdb_assert (!section->is_virtual);
2573 }
2574 return section->s.section;
2575}
2576
2577/* Return the name of SECTION. */
2578
2579static const char *
2580get_section_name (const struct dwarf2_section_info *section)
2581{
2582 asection *sectp = get_section_bfd_section (section);
2583
2584 gdb_assert (sectp != NULL);
2585 return bfd_section_name (get_section_bfd_owner (section), sectp);
2586}
2587
2588/* Return the name of the file SECTION is in. */
2589
2590static const char *
2591get_section_file_name (const struct dwarf2_section_info *section)
2592{
2593 bfd *abfd = get_section_bfd_owner (section);
2594
2595 return bfd_get_filename (abfd);
2596}
2597
2598/* Return the id of SECTION.
2599 Returns 0 if SECTION doesn't exist. */
2600
2601static int
2602get_section_id (const struct dwarf2_section_info *section)
2603{
2604 asection *sectp = get_section_bfd_section (section);
2605
2606 if (sectp == NULL)
2607 return 0;
2608 return sectp->id;
2609}
2610
2611/* Return the flags of SECTION.
2612 SECTION (or containing section if this is a virtual section) must exist. */
2613
2614static int
2615get_section_flags (const struct dwarf2_section_info *section)
2616{
2617 asection *sectp = get_section_bfd_section (section);
2618
2619 gdb_assert (sectp != NULL);
2620 return bfd_get_section_flags (sectp->owner, sectp);
2621}
2622
2623/* When loading sections, we look either for uncompressed section or for
2624 compressed section names. */
2625
2626static int
2627section_is_p (const char *section_name,
2628 const struct dwarf2_section_names *names)
2629{
2630 if (names->normal != NULL
2631 && strcmp (section_name, names->normal) == 0)
2632 return 1;
2633 if (names->compressed != NULL
2634 && strcmp (section_name, names->compressed) == 0)
2635 return 1;
2636 return 0;
2637}
2638
2639/* See declaration. */
2640
2641void
2642dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2643 const dwarf2_debug_sections &names)
2644{
2645 flagword aflag = bfd_get_section_flags (abfd, sectp);
2646
2647 if ((aflag & SEC_HAS_CONTENTS) == 0)
2648 {
2649 }
2650 else if (section_is_p (sectp->name, &names.info))
2651 {
2652 this->info.s.section = sectp;
2653 this->info.size = bfd_get_section_size (sectp);
2654 }
2655 else if (section_is_p (sectp->name, &names.abbrev))
2656 {
2657 this->abbrev.s.section = sectp;
2658 this->abbrev.size = bfd_get_section_size (sectp);
2659 }
2660 else if (section_is_p (sectp->name, &names.line))
2661 {
2662 this->line.s.section = sectp;
2663 this->line.size = bfd_get_section_size (sectp);
2664 }
2665 else if (section_is_p (sectp->name, &names.loc))
2666 {
2667 this->loc.s.section = sectp;
2668 this->loc.size = bfd_get_section_size (sectp);
2669 }
2670 else if (section_is_p (sectp->name, &names.loclists))
2671 {
2672 this->loclists.s.section = sectp;
2673 this->loclists.size = bfd_get_section_size (sectp);
2674 }
2675 else if (section_is_p (sectp->name, &names.macinfo))
2676 {
2677 this->macinfo.s.section = sectp;
2678 this->macinfo.size = bfd_get_section_size (sectp);
2679 }
2680 else if (section_is_p (sectp->name, &names.macro))
2681 {
2682 this->macro.s.section = sectp;
2683 this->macro.size = bfd_get_section_size (sectp);
2684 }
2685 else if (section_is_p (sectp->name, &names.str))
2686 {
2687 this->str.s.section = sectp;
2688 this->str.size = bfd_get_section_size (sectp);
2689 }
2690 else if (section_is_p (sectp->name, &names.line_str))
2691 {
2692 this->line_str.s.section = sectp;
2693 this->line_str.size = bfd_get_section_size (sectp);
2694 }
2695 else if (section_is_p (sectp->name, &names.addr))
2696 {
2697 this->addr.s.section = sectp;
2698 this->addr.size = bfd_get_section_size (sectp);
2699 }
2700 else if (section_is_p (sectp->name, &names.frame))
2701 {
2702 this->frame.s.section = sectp;
2703 this->frame.size = bfd_get_section_size (sectp);
2704 }
2705 else if (section_is_p (sectp->name, &names.eh_frame))
2706 {
2707 this->eh_frame.s.section = sectp;
2708 this->eh_frame.size = bfd_get_section_size (sectp);
2709 }
2710 else if (section_is_p (sectp->name, &names.ranges))
2711 {
2712 this->ranges.s.section = sectp;
2713 this->ranges.size = bfd_get_section_size (sectp);
2714 }
2715 else if (section_is_p (sectp->name, &names.rnglists))
2716 {
2717 this->rnglists.s.section = sectp;
2718 this->rnglists.size = bfd_get_section_size (sectp);
2719 }
2720 else if (section_is_p (sectp->name, &names.types))
2721 {
2722 struct dwarf2_section_info type_section;
2723
2724 memset (&type_section, 0, sizeof (type_section));
2725 type_section.s.section = sectp;
2726 type_section.size = bfd_get_section_size (sectp);
2727
2728 VEC_safe_push (dwarf2_section_info_def, this->types,
2729 &type_section);
2730 }
2731 else if (section_is_p (sectp->name, &names.gdb_index))
2732 {
2733 this->gdb_index.s.section = sectp;
2734 this->gdb_index.size = bfd_get_section_size (sectp);
2735 }
2736 else if (section_is_p (sectp->name, &names.debug_names))
2737 {
2738 this->debug_names.s.section = sectp;
2739 this->debug_names.size = bfd_get_section_size (sectp);
2740 }
2741 else if (section_is_p (sectp->name, &names.debug_aranges))
2742 {
2743 this->debug_aranges.s.section = sectp;
2744 this->debug_aranges.size = bfd_get_section_size (sectp);
2745 }
2746
2747 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2748 && bfd_section_vma (abfd, sectp) == 0)
2749 this->has_section_at_zero = true;
2750}
2751
2752/* A helper function that decides whether a section is empty,
2753 or not present. */
2754
2755static int
2756dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2757{
2758 if (section->is_virtual)
2759 return section->size == 0;
2760 return section->s.section == NULL || section->size == 0;
2761}
2762
2763/* Read the contents of the section INFO.
2764 OBJFILE is the main object file, but not necessarily the file where
2765 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2766 of the DWO file.
2767 If the section is compressed, uncompress it before returning. */
2768
2769static void
2770dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2771{
2772 asection *sectp;
2773 bfd *abfd;
2774 gdb_byte *buf, *retbuf;
2775
2776 if (info->readin)
2777 return;
2778 info->buffer = NULL;
2779 info->readin = 1;
2780
2781 if (dwarf2_section_empty_p (info))
2782 return;
2783
2784 sectp = get_section_bfd_section (info);
2785
2786 /* If this is a virtual section we need to read in the real one first. */
2787 if (info->is_virtual)
2788 {
2789 struct dwarf2_section_info *containing_section =
2790 get_containing_section (info);
2791
2792 gdb_assert (sectp != NULL);
2793 if ((sectp->flags & SEC_RELOC) != 0)
2794 {
2795 error (_("Dwarf Error: DWP format V2 with relocations is not"
2796 " supported in section %s [in module %s]"),
2797 get_section_name (info), get_section_file_name (info));
2798 }
2799 dwarf2_read_section (objfile, containing_section);
2800 /* Other code should have already caught virtual sections that don't
2801 fit. */
2802 gdb_assert (info->virtual_offset + info->size
2803 <= containing_section->size);
2804 /* If the real section is empty or there was a problem reading the
2805 section we shouldn't get here. */
2806 gdb_assert (containing_section->buffer != NULL);
2807 info->buffer = containing_section->buffer + info->virtual_offset;
2808 return;
2809 }
2810
2811 /* If the section has relocations, we must read it ourselves.
2812 Otherwise we attach it to the BFD. */
2813 if ((sectp->flags & SEC_RELOC) == 0)
2814 {
2815 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2816 return;
2817 }
2818
2819 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2820 info->buffer = buf;
2821
2822 /* When debugging .o files, we may need to apply relocations; see
2823 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2824 We never compress sections in .o files, so we only need to
2825 try this when the section is not compressed. */
2826 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2827 if (retbuf != NULL)
2828 {
2829 info->buffer = retbuf;
2830 return;
2831 }
2832
2833 abfd = get_section_bfd_owner (info);
2834 gdb_assert (abfd != NULL);
2835
2836 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2837 || bfd_bread (buf, info->size, abfd) != info->size)
2838 {
2839 error (_("Dwarf Error: Can't read DWARF data"
2840 " in section %s [in module %s]"),
2841 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2842 }
2843}
2844
2845/* A helper function that returns the size of a section in a safe way.
2846 If you are positive that the section has been read before using the
2847 size, then it is safe to refer to the dwarf2_section_info object's
2848 "size" field directly. In other cases, you must call this
2849 function, because for compressed sections the size field is not set
2850 correctly until the section has been read. */
2851
2852static bfd_size_type
2853dwarf2_section_size (struct objfile *objfile,
2854 struct dwarf2_section_info *info)
2855{
2856 if (!info->readin)
2857 dwarf2_read_section (objfile, info);
2858 return info->size;
2859}
2860
2861/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2862 SECTION_NAME. */
2863
2864void
2865dwarf2_get_section_info (struct objfile *objfile,
2866 enum dwarf2_section_enum sect,
2867 asection **sectp, const gdb_byte **bufp,
2868 bfd_size_type *sizep)
2869{
2870 struct dwarf2_per_objfile *data
2871 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2872 dwarf2_objfile_data_key);
2873 struct dwarf2_section_info *info;
2874
2875 /* We may see an objfile without any DWARF, in which case we just
2876 return nothing. */
2877 if (data == NULL)
2878 {
2879 *sectp = NULL;
2880 *bufp = NULL;
2881 *sizep = 0;
2882 return;
2883 }
2884 switch (sect)
2885 {
2886 case DWARF2_DEBUG_FRAME:
2887 info = &data->frame;
2888 break;
2889 case DWARF2_EH_FRAME:
2890 info = &data->eh_frame;
2891 break;
2892 default:
2893 gdb_assert_not_reached ("unexpected section");
2894 }
2895
2896 dwarf2_read_section (objfile, info);
2897
2898 *sectp = get_section_bfd_section (info);
2899 *bufp = info->buffer;
2900 *sizep = info->size;
2901}
2902
2903/* A helper function to find the sections for a .dwz file. */
2904
2905static void
2906locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2907{
2908 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2909
2910 /* Note that we only support the standard ELF names, because .dwz
2911 is ELF-only (at the time of writing). */
2912 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2913 {
2914 dwz_file->abbrev.s.section = sectp;
2915 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2916 }
2917 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2918 {
2919 dwz_file->info.s.section = sectp;
2920 dwz_file->info.size = bfd_get_section_size (sectp);
2921 }
2922 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2923 {
2924 dwz_file->str.s.section = sectp;
2925 dwz_file->str.size = bfd_get_section_size (sectp);
2926 }
2927 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2928 {
2929 dwz_file->line.s.section = sectp;
2930 dwz_file->line.size = bfd_get_section_size (sectp);
2931 }
2932 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2933 {
2934 dwz_file->macro.s.section = sectp;
2935 dwz_file->macro.size = bfd_get_section_size (sectp);
2936 }
2937 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2938 {
2939 dwz_file->gdb_index.s.section = sectp;
2940 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2941 }
2942 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2943 {
2944 dwz_file->debug_names.s.section = sectp;
2945 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2946 }
2947}
2948
2949/* Open the separate '.dwz' debug file, if needed. Return NULL if
2950 there is no .gnu_debugaltlink section in the file. Error if there
2951 is such a section but the file cannot be found. */
2952
2953static struct dwz_file *
2954dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2955{
2956 const char *filename;
2957 struct dwz_file *result;
2958 bfd_size_type buildid_len_arg;
2959 size_t buildid_len;
2960 bfd_byte *buildid;
2961
2962 if (dwarf2_per_objfile->dwz_file != NULL)
2963 return dwarf2_per_objfile->dwz_file;
2964
2965 bfd_set_error (bfd_error_no_error);
2966 gdb::unique_xmalloc_ptr<char> data
2967 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2968 &buildid_len_arg, &buildid));
2969 if (data == NULL)
2970 {
2971 if (bfd_get_error () == bfd_error_no_error)
2972 return NULL;
2973 error (_("could not read '.gnu_debugaltlink' section: %s"),
2974 bfd_errmsg (bfd_get_error ()));
2975 }
2976
2977 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2978
2979 buildid_len = (size_t) buildid_len_arg;
2980
2981 filename = data.get ();
2982
2983 std::string abs_storage;
2984 if (!IS_ABSOLUTE_PATH (filename))
2985 {
2986 gdb::unique_xmalloc_ptr<char> abs
2987 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2988
2989 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2990 filename = abs_storage.c_str ();
2991 }
2992
2993 /* First try the file name given in the section. If that doesn't
2994 work, try to use the build-id instead. */
2995 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2996 if (dwz_bfd != NULL)
2997 {
2998 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2999 dwz_bfd.release ();
3000 }
3001
3002 if (dwz_bfd == NULL)
3003 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
3004
3005 if (dwz_bfd == NULL)
3006 error (_("could not find '.gnu_debugaltlink' file for %s"),
3007 objfile_name (dwarf2_per_objfile->objfile));
3008
3009 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
3010 struct dwz_file);
3011 result->dwz_bfd = dwz_bfd.release ();
3012
3013 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
3014
3015 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
3016 dwarf2_per_objfile->dwz_file = result;
3017 return result;
3018}
3019\f
3020/* DWARF quick_symbols_functions support. */
3021
3022/* TUs can share .debug_line entries, and there can be a lot more TUs than
3023 unique line tables, so we maintain a separate table of all .debug_line
3024 derived entries to support the sharing.
3025 All the quick functions need is the list of file names. We discard the
3026 line_header when we're done and don't need to record it here. */
3027struct quick_file_names
3028{
3029 /* The data used to construct the hash key. */
3030 struct stmt_list_hash hash;
3031
3032 /* The number of entries in file_names, real_names. */
3033 unsigned int num_file_names;
3034
3035 /* The file names from the line table, after being run through
3036 file_full_name. */
3037 const char **file_names;
3038
3039 /* The file names from the line table after being run through
3040 gdb_realpath. These are computed lazily. */
3041 const char **real_names;
3042};
3043
3044/* When using the index (and thus not using psymtabs), each CU has an
3045 object of this type. This is used to hold information needed by
3046 the various "quick" methods. */
3047struct dwarf2_per_cu_quick_data
3048{
3049 /* The file table. This can be NULL if there was no file table
3050 or it's currently not read in.
3051 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
3052 struct quick_file_names *file_names;
3053
3054 /* The corresponding symbol table. This is NULL if symbols for this
3055 CU have not yet been read. */
3056 struct compunit_symtab *compunit_symtab;
3057
3058 /* A temporary mark bit used when iterating over all CUs in
3059 expand_symtabs_matching. */
3060 unsigned int mark : 1;
3061
3062 /* True if we've tried to read the file table and found there isn't one.
3063 There will be no point in trying to read it again next time. */
3064 unsigned int no_file_data : 1;
3065};
3066
3067/* Utility hash function for a stmt_list_hash. */
3068
3069static hashval_t
3070hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
3071{
3072 hashval_t v = 0;
3073
3074 if (stmt_list_hash->dwo_unit != NULL)
3075 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
3076 v += to_underlying (stmt_list_hash->line_sect_off);
3077 return v;
3078}
3079
3080/* Utility equality function for a stmt_list_hash. */
3081
3082static int
3083eq_stmt_list_entry (const struct stmt_list_hash *lhs,
3084 const struct stmt_list_hash *rhs)
3085{
3086 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
3087 return 0;
3088 if (lhs->dwo_unit != NULL
3089 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
3090 return 0;
3091
3092 return lhs->line_sect_off == rhs->line_sect_off;
3093}
3094
3095/* Hash function for a quick_file_names. */
3096
3097static hashval_t
3098hash_file_name_entry (const void *e)
3099{
3100 const struct quick_file_names *file_data
3101 = (const struct quick_file_names *) e;
3102
3103 return hash_stmt_list_entry (&file_data->hash);
3104}
3105
3106/* Equality function for a quick_file_names. */
3107
3108static int
3109eq_file_name_entry (const void *a, const void *b)
3110{
3111 const struct quick_file_names *ea = (const struct quick_file_names *) a;
3112 const struct quick_file_names *eb = (const struct quick_file_names *) b;
3113
3114 return eq_stmt_list_entry (&ea->hash, &eb->hash);
3115}
3116
3117/* Delete function for a quick_file_names. */
3118
3119static void
3120delete_file_name_entry (void *e)
3121{
3122 struct quick_file_names *file_data = (struct quick_file_names *) e;
3123 int i;
3124
3125 for (i = 0; i < file_data->num_file_names; ++i)
3126 {
3127 xfree ((void*) file_data->file_names[i]);
3128 if (file_data->real_names)
3129 xfree ((void*) file_data->real_names[i]);
3130 }
3131
3132 /* The space for the struct itself lives on objfile_obstack,
3133 so we don't free it here. */
3134}
3135
3136/* Create a quick_file_names hash table. */
3137
3138static htab_t
3139create_quick_file_names_table (unsigned int nr_initial_entries)
3140{
3141 return htab_create_alloc (nr_initial_entries,
3142 hash_file_name_entry, eq_file_name_entry,
3143 delete_file_name_entry, xcalloc, xfree);
3144}
3145
3146/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
3147 have to be created afterwards. You should call age_cached_comp_units after
3148 processing PER_CU->CU. dw2_setup must have been already called. */
3149
3150static void
3151load_cu (struct dwarf2_per_cu_data *per_cu)
3152{
3153 if (per_cu->is_debug_types)
3154 load_full_type_unit (per_cu);
3155 else
3156 load_full_comp_unit (per_cu, language_minimal);
3157
3158 if (per_cu->cu == NULL)
3159 return; /* Dummy CU. */
3160
3161 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
3162}
3163
3164/* Read in the symbols for PER_CU. */
3165
3166static void
3167dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3168{
3169 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3170
3171 /* Skip type_unit_groups, reading the type units they contain
3172 is handled elsewhere. */
3173 if (IS_TYPE_UNIT_GROUP (per_cu))
3174 return;
3175
3176 /* The destructor of dwarf2_queue_guard frees any entries left on
3177 the queue. After this point we're guaranteed to leave this function
3178 with the dwarf queue empty. */
3179 dwarf2_queue_guard q_guard;
3180
3181 if (dwarf2_per_objfile->using_index
3182 ? per_cu->v.quick->compunit_symtab == NULL
3183 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
3184 {
3185 queue_comp_unit (per_cu, language_minimal);
3186 load_cu (per_cu);
3187
3188 /* If we just loaded a CU from a DWO, and we're working with an index
3189 that may badly handle TUs, load all the TUs in that DWO as well.
3190 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
3191 if (!per_cu->is_debug_types
3192 && per_cu->cu != NULL
3193 && per_cu->cu->dwo_unit != NULL
3194 && dwarf2_per_objfile->index_table != NULL
3195 && dwarf2_per_objfile->index_table->version <= 7
3196 /* DWP files aren't supported yet. */
3197 && get_dwp_file (dwarf2_per_objfile) == NULL)
3198 queue_and_load_all_dwo_tus (per_cu);
3199 }
3200
3201 process_queue (dwarf2_per_objfile);
3202
3203 /* Age the cache, releasing compilation units that have not
3204 been used recently. */
3205 age_cached_comp_units (dwarf2_per_objfile);
3206}
3207
3208/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
3209 the objfile from which this CU came. Returns the resulting symbol
3210 table. */
3211
3212static struct compunit_symtab *
3213dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3214{
3215 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3216
3217 gdb_assert (dwarf2_per_objfile->using_index);
3218 if (!per_cu->v.quick->compunit_symtab)
3219 {
3220 struct cleanup *back_to = make_cleanup (free_cached_comp_units,
3221 dwarf2_per_objfile);
3222 scoped_restore decrementer = increment_reading_symtab ();
3223 dw2_do_instantiate_symtab (per_cu);
3224 process_cu_includes (dwarf2_per_objfile);
3225 do_cleanups (back_to);
3226 }
3227
3228 return per_cu->v.quick->compunit_symtab;
3229}
3230
3231/* Return the CU/TU given its index.
3232
3233 This is intended for loops like:
3234
3235 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3236 + dwarf2_per_objfile->n_type_units); ++i)
3237 {
3238 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3239
3240 ...;
3241 }
3242*/
3243
3244static struct dwarf2_per_cu_data *
3245dw2_get_cutu (struct dwarf2_per_objfile *dwarf2_per_objfile,
3246 int index)
3247{
3248 if (index >= dwarf2_per_objfile->n_comp_units)
3249 {
3250 index -= dwarf2_per_objfile->n_comp_units;
3251 gdb_assert (index < dwarf2_per_objfile->n_type_units);
3252 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
3253 }
3254
3255 return dwarf2_per_objfile->all_comp_units[index];
3256}
3257
3258/* Return the CU given its index.
3259 This differs from dw2_get_cutu in that it's for when you know INDEX
3260 refers to a CU. */
3261
3262static struct dwarf2_per_cu_data *
3263dw2_get_cu (struct dwarf2_per_objfile *dwarf2_per_objfile, int index)
3264{
3265 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
3266
3267 return dwarf2_per_objfile->all_comp_units[index];
3268}
3269
3270/* Return a new dwarf2_per_cu_data allocated on OBJFILE's
3271 objfile_obstack, and constructed with the specified field
3272 values. */
3273
3274static dwarf2_per_cu_data *
3275create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3276 struct dwarf2_section_info *section,
3277 int is_dwz,
3278 sect_offset sect_off, ULONGEST length)
3279{
3280 struct objfile *objfile = dwarf2_per_objfile->objfile;
3281 dwarf2_per_cu_data *the_cu
3282 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3283 struct dwarf2_per_cu_data);
3284 the_cu->sect_off = sect_off;
3285 the_cu->length = length;
3286 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3287 the_cu->section = section;
3288 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3289 struct dwarf2_per_cu_quick_data);
3290 the_cu->is_dwz = is_dwz;
3291 return the_cu;
3292}
3293
3294/* A helper for create_cus_from_index that handles a given list of
3295 CUs. */
3296
3297static void
3298create_cus_from_index_list (struct objfile *objfile,
3299 const gdb_byte *cu_list, offset_type n_elements,
3300 struct dwarf2_section_info *section,
3301 int is_dwz,
3302 int base_offset)
3303{
3304 offset_type i;
3305 struct dwarf2_per_objfile *dwarf2_per_objfile
3306 = get_dwarf2_per_objfile (objfile);
3307
3308 for (i = 0; i < n_elements; i += 2)
3309 {
3310 gdb_static_assert (sizeof (ULONGEST) >= 8);
3311
3312 sect_offset sect_off
3313 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3314 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3315 cu_list += 2 * 8;
3316
3317 dwarf2_per_objfile->all_comp_units[base_offset + i / 2]
3318 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3319 sect_off, length);
3320 }
3321}
3322
3323/* Read the CU list from the mapped index, and use it to create all
3324 the CU objects for this objfile. */
3325
3326static void
3327create_cus_from_index (struct objfile *objfile,
3328 const gdb_byte *cu_list, offset_type cu_list_elements,
3329 const gdb_byte *dwz_list, offset_type dwz_elements)
3330{
3331 struct dwz_file *dwz;
3332 struct dwarf2_per_objfile *dwarf2_per_objfile
3333 = get_dwarf2_per_objfile (objfile);
3334
3335 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3336 dwarf2_per_objfile->all_comp_units =
3337 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3338 dwarf2_per_objfile->n_comp_units);
3339
3340 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3341 &dwarf2_per_objfile->info, 0, 0);
3342
3343 if (dwz_elements == 0)
3344 return;
3345
3346 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3347 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3348 cu_list_elements / 2);
3349}
3350
3351/* Create the signatured type hash table from the index. */
3352
3353static void
3354create_signatured_type_table_from_index (struct objfile *objfile,
3355 struct dwarf2_section_info *section,
3356 const gdb_byte *bytes,
3357 offset_type elements)
3358{
3359 offset_type i;
3360 htab_t sig_types_hash;
3361 struct dwarf2_per_objfile *dwarf2_per_objfile
3362 = get_dwarf2_per_objfile (objfile);
3363
3364 dwarf2_per_objfile->n_type_units
3365 = dwarf2_per_objfile->n_allocated_type_units
3366 = elements / 3;
3367 dwarf2_per_objfile->all_type_units =
3368 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3369
3370 sig_types_hash = allocate_signatured_type_table (objfile);
3371
3372 for (i = 0; i < elements; i += 3)
3373 {
3374 struct signatured_type *sig_type;
3375 ULONGEST signature;
3376 void **slot;
3377 cu_offset type_offset_in_tu;
3378
3379 gdb_static_assert (sizeof (ULONGEST) >= 8);
3380 sect_offset sect_off
3381 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3382 type_offset_in_tu
3383 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3384 BFD_ENDIAN_LITTLE);
3385 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3386 bytes += 3 * 8;
3387
3388 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3389 struct signatured_type);
3390 sig_type->signature = signature;
3391 sig_type->type_offset_in_tu = type_offset_in_tu;
3392 sig_type->per_cu.is_debug_types = 1;
3393 sig_type->per_cu.section = section;
3394 sig_type->per_cu.sect_off = sect_off;
3395 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3396 sig_type->per_cu.v.quick
3397 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3398 struct dwarf2_per_cu_quick_data);
3399
3400 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3401 *slot = sig_type;
3402
3403 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3404 }
3405
3406 dwarf2_per_objfile->signatured_types = sig_types_hash;
3407}
3408
3409/* Create the signatured type hash table from .debug_names. */
3410
3411static void
3412create_signatured_type_table_from_debug_names
3413 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3414 const mapped_debug_names &map,
3415 struct dwarf2_section_info *section,
3416 struct dwarf2_section_info *abbrev_section)
3417{
3418 struct objfile *objfile = dwarf2_per_objfile->objfile;
3419
3420 dwarf2_read_section (objfile, section);
3421 dwarf2_read_section (objfile, abbrev_section);
3422
3423 dwarf2_per_objfile->n_type_units
3424 = dwarf2_per_objfile->n_allocated_type_units
3425 = map.tu_count;
3426 dwarf2_per_objfile->all_type_units
3427 = XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3428
3429 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3430
3431 for (uint32_t i = 0; i < map.tu_count; ++i)
3432 {
3433 struct signatured_type *sig_type;
3434 ULONGEST signature;
3435 void **slot;
3436 cu_offset type_offset_in_tu;
3437
3438 sect_offset sect_off
3439 = (sect_offset) (extract_unsigned_integer
3440 (map.tu_table_reordered + i * map.offset_size,
3441 map.offset_size,
3442 map.dwarf5_byte_order));
3443
3444 comp_unit_head cu_header;
3445 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3446 abbrev_section,
3447 section->buffer + to_underlying (sect_off),
3448 rcuh_kind::TYPE);
3449
3450 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3451 struct signatured_type);
3452 sig_type->signature = cu_header.signature;
3453 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3454 sig_type->per_cu.is_debug_types = 1;
3455 sig_type->per_cu.section = section;
3456 sig_type->per_cu.sect_off = sect_off;
3457 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3458 sig_type->per_cu.v.quick
3459 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3460 struct dwarf2_per_cu_quick_data);
3461
3462 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3463 *slot = sig_type;
3464
3465 dwarf2_per_objfile->all_type_units[i] = sig_type;
3466 }
3467
3468 dwarf2_per_objfile->signatured_types = sig_types_hash;
3469}
3470
3471/* Read the address map data from the mapped index, and use it to
3472 populate the objfile's psymtabs_addrmap. */
3473
3474static void
3475create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3476 struct mapped_index *index)
3477{
3478 struct objfile *objfile = dwarf2_per_objfile->objfile;
3479 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3480 const gdb_byte *iter, *end;
3481 struct addrmap *mutable_map;
3482 CORE_ADDR baseaddr;
3483
3484 auto_obstack temp_obstack;
3485
3486 mutable_map = addrmap_create_mutable (&temp_obstack);
3487
3488 iter = index->address_table.data ();
3489 end = iter + index->address_table.size ();
3490
3491 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3492
3493 while (iter < end)
3494 {
3495 ULONGEST hi, lo, cu_index;
3496 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3497 iter += 8;
3498 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3499 iter += 8;
3500 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3501 iter += 4;
3502
3503 if (lo > hi)
3504 {
3505 complaint (&symfile_complaints,
3506 _(".gdb_index address table has invalid range (%s - %s)"),
3507 hex_string (lo), hex_string (hi));
3508 continue;
3509 }
3510
3511 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3512 {
3513 complaint (&symfile_complaints,
3514 _(".gdb_index address table has invalid CU number %u"),
3515 (unsigned) cu_index);
3516 continue;
3517 }
3518
3519 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3520 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3521 addrmap_set_empty (mutable_map, lo, hi - 1,
3522 dw2_get_cutu (dwarf2_per_objfile, cu_index));
3523 }
3524
3525 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3526 &objfile->objfile_obstack);
3527}
3528
3529/* Read the address map data from DWARF-5 .debug_aranges, and use it to
3530 populate the objfile's psymtabs_addrmap. */
3531
3532static void
3533create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3534 struct dwarf2_section_info *section)
3535{
3536 struct objfile *objfile = dwarf2_per_objfile->objfile;
3537 bfd *abfd = objfile->obfd;
3538 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3539 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3540 SECT_OFF_TEXT (objfile));
3541
3542 auto_obstack temp_obstack;
3543 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3544
3545 std::unordered_map<sect_offset,
3546 dwarf2_per_cu_data *,
3547 gdb::hash_enum<sect_offset>>
3548 debug_info_offset_to_per_cu;
3549 for (int cui = 0; cui < dwarf2_per_objfile->n_comp_units; ++cui)
3550 {
3551 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, cui);
3552 const auto insertpair
3553 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3554 if (!insertpair.second)
3555 {
3556 warning (_("Section .debug_aranges in %s has duplicate "
3557 "debug_info_offset %s, ignoring .debug_aranges."),
3558 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3559 return;
3560 }
3561 }
3562
3563 dwarf2_read_section (objfile, section);
3564
3565 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3566
3567 const gdb_byte *addr = section->buffer;
3568
3569 while (addr < section->buffer + section->size)
3570 {
3571 const gdb_byte *const entry_addr = addr;
3572 unsigned int bytes_read;
3573
3574 const LONGEST entry_length = read_initial_length (abfd, addr,
3575 &bytes_read);
3576 addr += bytes_read;
3577
3578 const gdb_byte *const entry_end = addr + entry_length;
3579 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3580 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3581 if (addr + entry_length > section->buffer + section->size)
3582 {
3583 warning (_("Section .debug_aranges in %s entry at offset %zu "
3584 "length %s exceeds section length %s, "
3585 "ignoring .debug_aranges."),
3586 objfile_name (objfile), entry_addr - section->buffer,
3587 plongest (bytes_read + entry_length),
3588 pulongest (section->size));
3589 return;
3590 }
3591
3592 /* The version number. */
3593 const uint16_t version = read_2_bytes (abfd, addr);
3594 addr += 2;
3595 if (version != 2)
3596 {
3597 warning (_("Section .debug_aranges in %s entry at offset %zu "
3598 "has unsupported version %d, ignoring .debug_aranges."),
3599 objfile_name (objfile), entry_addr - section->buffer,
3600 version);
3601 return;
3602 }
3603
3604 const uint64_t debug_info_offset
3605 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3606 addr += offset_size;
3607 const auto per_cu_it
3608 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3609 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3610 {
3611 warning (_("Section .debug_aranges in %s entry at offset %zu "
3612 "debug_info_offset %s does not exists, "
3613 "ignoring .debug_aranges."),
3614 objfile_name (objfile), entry_addr - section->buffer,
3615 pulongest (debug_info_offset));
3616 return;
3617 }
3618 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3619
3620 const uint8_t address_size = *addr++;
3621 if (address_size < 1 || address_size > 8)
3622 {
3623 warning (_("Section .debug_aranges in %s entry at offset %zu "
3624 "address_size %u is invalid, ignoring .debug_aranges."),
3625 objfile_name (objfile), entry_addr - section->buffer,
3626 address_size);
3627 return;
3628 }
3629
3630 const uint8_t segment_selector_size = *addr++;
3631 if (segment_selector_size != 0)
3632 {
3633 warning (_("Section .debug_aranges in %s entry at offset %zu "
3634 "segment_selector_size %u is not supported, "
3635 "ignoring .debug_aranges."),
3636 objfile_name (objfile), entry_addr - section->buffer,
3637 segment_selector_size);
3638 return;
3639 }
3640
3641 /* Must pad to an alignment boundary that is twice the address
3642 size. It is undocumented by the DWARF standard but GCC does
3643 use it. */
3644 for (size_t padding = ((-(addr - section->buffer))
3645 & (2 * address_size - 1));
3646 padding > 0; padding--)
3647 if (*addr++ != 0)
3648 {
3649 warning (_("Section .debug_aranges in %s entry at offset %zu "
3650 "padding is not zero, ignoring .debug_aranges."),
3651 objfile_name (objfile), entry_addr - section->buffer);
3652 return;
3653 }
3654
3655 for (;;)
3656 {
3657 if (addr + 2 * address_size > entry_end)
3658 {
3659 warning (_("Section .debug_aranges in %s entry at offset %zu "
3660 "address list is not properly terminated, "
3661 "ignoring .debug_aranges."),
3662 objfile_name (objfile), entry_addr - section->buffer);
3663 return;
3664 }
3665 ULONGEST start = extract_unsigned_integer (addr, address_size,
3666 dwarf5_byte_order);
3667 addr += address_size;
3668 ULONGEST length = extract_unsigned_integer (addr, address_size,
3669 dwarf5_byte_order);
3670 addr += address_size;
3671 if (start == 0 && length == 0)
3672 break;
3673 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3674 {
3675 /* Symbol was eliminated due to a COMDAT group. */
3676 continue;
3677 }
3678 ULONGEST end = start + length;
3679 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3680 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3681 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3682 }
3683 }
3684
3685 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3686 &objfile->objfile_obstack);
3687}
3688
3689/* The hash function for strings in the mapped index. This is the same as
3690 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3691 implementation. This is necessary because the hash function is tied to the
3692 format of the mapped index file. The hash values do not have to match with
3693 SYMBOL_HASH_NEXT.
3694
3695 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3696
3697static hashval_t
3698mapped_index_string_hash (int index_version, const void *p)
3699{
3700 const unsigned char *str = (const unsigned char *) p;
3701 hashval_t r = 0;
3702 unsigned char c;
3703
3704 while ((c = *str++) != 0)
3705 {
3706 if (index_version >= 5)
3707 c = tolower (c);
3708 r = r * 67 + c - 113;
3709 }
3710
3711 return r;
3712}
3713
3714/* Find a slot in the mapped index INDEX for the object named NAME.
3715 If NAME is found, set *VEC_OUT to point to the CU vector in the
3716 constant pool and return true. If NAME cannot be found, return
3717 false. */
3718
3719static bool
3720find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3721 offset_type **vec_out)
3722{
3723 offset_type hash;
3724 offset_type slot, step;
3725 int (*cmp) (const char *, const char *);
3726
3727 gdb::unique_xmalloc_ptr<char> without_params;
3728 if (current_language->la_language == language_cplus
3729 || current_language->la_language == language_fortran
3730 || current_language->la_language == language_d)
3731 {
3732 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3733 not contain any. */
3734
3735 if (strchr (name, '(') != NULL)
3736 {
3737 without_params = cp_remove_params (name);
3738
3739 if (without_params != NULL)
3740 name = without_params.get ();
3741 }
3742 }
3743
3744 /* Index version 4 did not support case insensitive searches. But the
3745 indices for case insensitive languages are built in lowercase, therefore
3746 simulate our NAME being searched is also lowercased. */
3747 hash = mapped_index_string_hash ((index->version == 4
3748 && case_sensitivity == case_sensitive_off
3749 ? 5 : index->version),
3750 name);
3751
3752 slot = hash & (index->symbol_table.size () - 1);
3753 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3754 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3755
3756 for (;;)
3757 {
3758 const char *str;
3759
3760 const auto &bucket = index->symbol_table[slot];
3761 if (bucket.name == 0 && bucket.vec == 0)
3762 return false;
3763
3764 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3765 if (!cmp (name, str))
3766 {
3767 *vec_out = (offset_type *) (index->constant_pool
3768 + MAYBE_SWAP (bucket.vec));
3769 return true;
3770 }
3771
3772 slot = (slot + step) & (index->symbol_table.size () - 1);
3773 }
3774}
3775
3776/* A helper function that reads the .gdb_index from SECTION and fills
3777 in MAP. FILENAME is the name of the file containing the section;
3778 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3779 ok to use deprecated sections.
3780
3781 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3782 out parameters that are filled in with information about the CU and
3783 TU lists in the section.
3784
3785 Returns 1 if all went well, 0 otherwise. */
3786
3787static int
3788read_index_from_section (struct objfile *objfile,
3789 const char *filename,
3790 int deprecated_ok,
3791 struct dwarf2_section_info *section,
3792 struct mapped_index *map,
3793 const gdb_byte **cu_list,
3794 offset_type *cu_list_elements,
3795 const gdb_byte **types_list,
3796 offset_type *types_list_elements)
3797{
3798 const gdb_byte *addr;
3799 offset_type version;
3800 offset_type *metadata;
3801 int i;
3802
3803 if (dwarf2_section_empty_p (section))
3804 return 0;
3805
3806 /* Older elfutils strip versions could keep the section in the main
3807 executable while splitting it for the separate debug info file. */
3808 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3809 return 0;
3810
3811 dwarf2_read_section (objfile, section);
3812
3813 addr = section->buffer;
3814 /* Version check. */
3815 version = MAYBE_SWAP (*(offset_type *) addr);
3816 /* Versions earlier than 3 emitted every copy of a psymbol. This
3817 causes the index to behave very poorly for certain requests. Version 3
3818 contained incomplete addrmap. So, it seems better to just ignore such
3819 indices. */
3820 if (version < 4)
3821 {
3822 static int warning_printed = 0;
3823 if (!warning_printed)
3824 {
3825 warning (_("Skipping obsolete .gdb_index section in %s."),
3826 filename);
3827 warning_printed = 1;
3828 }
3829 return 0;
3830 }
3831 /* Index version 4 uses a different hash function than index version
3832 5 and later.
3833
3834 Versions earlier than 6 did not emit psymbols for inlined
3835 functions. Using these files will cause GDB not to be able to
3836 set breakpoints on inlined functions by name, so we ignore these
3837 indices unless the user has done
3838 "set use-deprecated-index-sections on". */
3839 if (version < 6 && !deprecated_ok)
3840 {
3841 static int warning_printed = 0;
3842 if (!warning_printed)
3843 {
3844 warning (_("\
3845Skipping deprecated .gdb_index section in %s.\n\
3846Do \"set use-deprecated-index-sections on\" before the file is read\n\
3847to use the section anyway."),
3848 filename);
3849 warning_printed = 1;
3850 }
3851 return 0;
3852 }
3853 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3854 of the TU (for symbols coming from TUs),
3855 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3856 Plus gold-generated indices can have duplicate entries for global symbols,
3857 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3858 These are just performance bugs, and we can't distinguish gdb-generated
3859 indices from gold-generated ones, so issue no warning here. */
3860
3861 /* Indexes with higher version than the one supported by GDB may be no
3862 longer backward compatible. */
3863 if (version > 8)
3864 return 0;
3865
3866 map->version = version;
3867 map->total_size = section->size;
3868
3869 metadata = (offset_type *) (addr + sizeof (offset_type));
3870
3871 i = 0;
3872 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3873 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3874 / 8);
3875 ++i;
3876
3877 *types_list = addr + MAYBE_SWAP (metadata[i]);
3878 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3879 - MAYBE_SWAP (metadata[i]))
3880 / 8);
3881 ++i;
3882
3883 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3884 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3885 map->address_table
3886 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3887 ++i;
3888
3889 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3890 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3891 map->symbol_table
3892 = gdb::array_view<mapped_index::symbol_table_slot>
3893 ((mapped_index::symbol_table_slot *) symbol_table,
3894 (mapped_index::symbol_table_slot *) symbol_table_end);
3895
3896 ++i;
3897 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3898
3899 return 1;
3900}
3901
3902/* Read .gdb_index. If everything went ok, initialize the "quick"
3903 elements of all the CUs and return 1. Otherwise, return 0. */
3904
3905static int
3906dwarf2_read_index (struct objfile *objfile)
3907{
3908 struct mapped_index local_map, *map;
3909 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3910 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3911 struct dwz_file *dwz;
3912 struct dwarf2_per_objfile *dwarf2_per_objfile
3913 = get_dwarf2_per_objfile (objfile);
3914
3915 if (!read_index_from_section (objfile, objfile_name (objfile),
3916 use_deprecated_index_sections,
3917 &dwarf2_per_objfile->gdb_index, &local_map,
3918 &cu_list, &cu_list_elements,
3919 &types_list, &types_list_elements))
3920 return 0;
3921
3922 /* Don't use the index if it's empty. */
3923 if (local_map.symbol_table.empty ())
3924 return 0;
3925
3926 /* If there is a .dwz file, read it so we can get its CU list as
3927 well. */
3928 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3929 if (dwz != NULL)
3930 {
3931 struct mapped_index dwz_map;
3932 const gdb_byte *dwz_types_ignore;
3933 offset_type dwz_types_elements_ignore;
3934
3935 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3936 1,
3937 &dwz->gdb_index, &dwz_map,
3938 &dwz_list, &dwz_list_elements,
3939 &dwz_types_ignore,
3940 &dwz_types_elements_ignore))
3941 {
3942 warning (_("could not read '.gdb_index' section from %s; skipping"),
3943 bfd_get_filename (dwz->dwz_bfd));
3944 return 0;
3945 }
3946 }
3947
3948 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3949 dwz_list_elements);
3950
3951 if (types_list_elements)
3952 {
3953 struct dwarf2_section_info *section;
3954
3955 /* We can only handle a single .debug_types when we have an
3956 index. */
3957 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3958 return 0;
3959
3960 section = VEC_index (dwarf2_section_info_def,
3961 dwarf2_per_objfile->types, 0);
3962
3963 create_signatured_type_table_from_index (objfile, section, types_list,
3964 types_list_elements);
3965 }
3966
3967 create_addrmap_from_index (dwarf2_per_objfile, &local_map);
3968
3969 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3970 map = new (map) mapped_index ();
3971 *map = local_map;
3972
3973 dwarf2_per_objfile->index_table = map;
3974 dwarf2_per_objfile->using_index = 1;
3975 dwarf2_per_objfile->quick_file_names_table =
3976 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3977
3978 return 1;
3979}
3980
3981/* die_reader_func for dw2_get_file_names. */
3982
3983static void
3984dw2_get_file_names_reader (const struct die_reader_specs *reader,
3985 const gdb_byte *info_ptr,
3986 struct die_info *comp_unit_die,
3987 int has_children,
3988 void *data)
3989{
3990 struct dwarf2_cu *cu = reader->cu;
3991 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3992 struct dwarf2_per_objfile *dwarf2_per_objfile
3993 = cu->per_cu->dwarf2_per_objfile;
3994 struct objfile *objfile = dwarf2_per_objfile->objfile;
3995 struct dwarf2_per_cu_data *lh_cu;
3996 struct attribute *attr;
3997 int i;
3998 void **slot;
3999 struct quick_file_names *qfn;
4000
4001 gdb_assert (! this_cu->is_debug_types);
4002
4003 /* Our callers never want to match partial units -- instead they
4004 will match the enclosing full CU. */
4005 if (comp_unit_die->tag == DW_TAG_partial_unit)
4006 {
4007 this_cu->v.quick->no_file_data = 1;
4008 return;
4009 }
4010
4011 lh_cu = this_cu;
4012 slot = NULL;
4013
4014 line_header_up lh;
4015 sect_offset line_offset {};
4016
4017 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4018 if (attr)
4019 {
4020 struct quick_file_names find_entry;
4021
4022 line_offset = (sect_offset) DW_UNSND (attr);
4023
4024 /* We may have already read in this line header (TU line header sharing).
4025 If we have we're done. */
4026 find_entry.hash.dwo_unit = cu->dwo_unit;
4027 find_entry.hash.line_sect_off = line_offset;
4028 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
4029 &find_entry, INSERT);
4030 if (*slot != NULL)
4031 {
4032 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
4033 return;
4034 }
4035
4036 lh = dwarf_decode_line_header (line_offset, cu);
4037 }
4038 if (lh == NULL)
4039 {
4040 lh_cu->v.quick->no_file_data = 1;
4041 return;
4042 }
4043
4044 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
4045 qfn->hash.dwo_unit = cu->dwo_unit;
4046 qfn->hash.line_sect_off = line_offset;
4047 gdb_assert (slot != NULL);
4048 *slot = qfn;
4049
4050 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
4051
4052 qfn->num_file_names = lh->file_names.size ();
4053 qfn->file_names =
4054 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
4055 for (i = 0; i < lh->file_names.size (); ++i)
4056 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
4057 qfn->real_names = NULL;
4058
4059 lh_cu->v.quick->file_names = qfn;
4060}
4061
4062/* A helper for the "quick" functions which attempts to read the line
4063 table for THIS_CU. */
4064
4065static struct quick_file_names *
4066dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
4067{
4068 /* This should never be called for TUs. */
4069 gdb_assert (! this_cu->is_debug_types);
4070 /* Nor type unit groups. */
4071 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
4072
4073 if (this_cu->v.quick->file_names != NULL)
4074 return this_cu->v.quick->file_names;
4075 /* If we know there is no line data, no point in looking again. */
4076 if (this_cu->v.quick->no_file_data)
4077 return NULL;
4078
4079 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
4080
4081 if (this_cu->v.quick->no_file_data)
4082 return NULL;
4083 return this_cu->v.quick->file_names;
4084}
4085
4086/* A helper for the "quick" functions which computes and caches the
4087 real path for a given file name from the line table. */
4088
4089static const char *
4090dw2_get_real_path (struct objfile *objfile,
4091 struct quick_file_names *qfn, int index)
4092{
4093 if (qfn->real_names == NULL)
4094 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
4095 qfn->num_file_names, const char *);
4096
4097 if (qfn->real_names[index] == NULL)
4098 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
4099
4100 return qfn->real_names[index];
4101}
4102
4103static struct symtab *
4104dw2_find_last_source_symtab (struct objfile *objfile)
4105{
4106 struct dwarf2_per_objfile *dwarf2_per_objfile
4107 = get_dwarf2_per_objfile (objfile);
4108 int index = dwarf2_per_objfile->n_comp_units - 1;
4109 dwarf2_per_cu_data *dwarf_cu = dw2_get_cutu (dwarf2_per_objfile, index);
4110 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu);
4111
4112 if (cust == NULL)
4113 return NULL;
4114
4115 return compunit_primary_filetab (cust);
4116}
4117
4118/* Traversal function for dw2_forget_cached_source_info. */
4119
4120static int
4121dw2_free_cached_file_names (void **slot, void *info)
4122{
4123 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
4124
4125 if (file_data->real_names)
4126 {
4127 int i;
4128
4129 for (i = 0; i < file_data->num_file_names; ++i)
4130 {
4131 xfree ((void*) file_data->real_names[i]);
4132 file_data->real_names[i] = NULL;
4133 }
4134 }
4135
4136 return 1;
4137}
4138
4139static void
4140dw2_forget_cached_source_info (struct objfile *objfile)
4141{
4142 struct dwarf2_per_objfile *dwarf2_per_objfile
4143 = get_dwarf2_per_objfile (objfile);
4144
4145 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
4146 dw2_free_cached_file_names, NULL);
4147}
4148
4149/* Helper function for dw2_map_symtabs_matching_filename that expands
4150 the symtabs and calls the iterator. */
4151
4152static int
4153dw2_map_expand_apply (struct objfile *objfile,
4154 struct dwarf2_per_cu_data *per_cu,
4155 const char *name, const char *real_path,
4156 gdb::function_view<bool (symtab *)> callback)
4157{
4158 struct compunit_symtab *last_made = objfile->compunit_symtabs;
4159
4160 /* Don't visit already-expanded CUs. */
4161 if (per_cu->v.quick->compunit_symtab)
4162 return 0;
4163
4164 /* This may expand more than one symtab, and we want to iterate over
4165 all of them. */
4166 dw2_instantiate_symtab (per_cu);
4167
4168 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
4169 last_made, callback);
4170}
4171
4172/* Implementation of the map_symtabs_matching_filename method. */
4173
4174static bool
4175dw2_map_symtabs_matching_filename
4176 (struct objfile *objfile, const char *name, const char *real_path,
4177 gdb::function_view<bool (symtab *)> callback)
4178{
4179 int i;
4180 const char *name_basename = lbasename (name);
4181 struct dwarf2_per_objfile *dwarf2_per_objfile
4182 = get_dwarf2_per_objfile (objfile);
4183
4184 /* The rule is CUs specify all the files, including those used by
4185 any TU, so there's no need to scan TUs here. */
4186
4187 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4188 {
4189 int j;
4190 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
4191 struct quick_file_names *file_data;
4192
4193 /* We only need to look at symtabs not already expanded. */
4194 if (per_cu->v.quick->compunit_symtab)
4195 continue;
4196
4197 file_data = dw2_get_file_names (per_cu);
4198 if (file_data == NULL)
4199 continue;
4200
4201 for (j = 0; j < file_data->num_file_names; ++j)
4202 {
4203 const char *this_name = file_data->file_names[j];
4204 const char *this_real_name;
4205
4206 if (compare_filenames_for_search (this_name, name))
4207 {
4208 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4209 callback))
4210 return true;
4211 continue;
4212 }
4213
4214 /* Before we invoke realpath, which can get expensive when many
4215 files are involved, do a quick comparison of the basenames. */
4216 if (! basenames_may_differ
4217 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
4218 continue;
4219
4220 this_real_name = dw2_get_real_path (objfile, file_data, j);
4221 if (compare_filenames_for_search (this_real_name, name))
4222 {
4223 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4224 callback))
4225 return true;
4226 continue;
4227 }
4228
4229 if (real_path != NULL)
4230 {
4231 gdb_assert (IS_ABSOLUTE_PATH (real_path));
4232 gdb_assert (IS_ABSOLUTE_PATH (name));
4233 if (this_real_name != NULL
4234 && FILENAME_CMP (real_path, this_real_name) == 0)
4235 {
4236 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4237 callback))
4238 return true;
4239 continue;
4240 }
4241 }
4242 }
4243 }
4244
4245 return false;
4246}
4247
4248/* Struct used to manage iterating over all CUs looking for a symbol. */
4249
4250struct dw2_symtab_iterator
4251{
4252 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
4253 struct dwarf2_per_objfile *dwarf2_per_objfile;
4254 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
4255 int want_specific_block;
4256 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
4257 Unused if !WANT_SPECIFIC_BLOCK. */
4258 int block_index;
4259 /* The kind of symbol we're looking for. */
4260 domain_enum domain;
4261 /* The list of CUs from the index entry of the symbol,
4262 or NULL if not found. */
4263 offset_type *vec;
4264 /* The next element in VEC to look at. */
4265 int next;
4266 /* The number of elements in VEC, or zero if there is no match. */
4267 int length;
4268 /* Have we seen a global version of the symbol?
4269 If so we can ignore all further global instances.
4270 This is to work around gold/15646, inefficient gold-generated
4271 indices. */
4272 int global_seen;
4273};
4274
4275/* Initialize the index symtab iterator ITER.
4276 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
4277 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
4278
4279static void
4280dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
4281 struct dwarf2_per_objfile *dwarf2_per_objfile,
4282 int want_specific_block,
4283 int block_index,
4284 domain_enum domain,
4285 const char *name)
4286{
4287 iter->dwarf2_per_objfile = dwarf2_per_objfile;
4288 iter->want_specific_block = want_specific_block;
4289 iter->block_index = block_index;
4290 iter->domain = domain;
4291 iter->next = 0;
4292 iter->global_seen = 0;
4293
4294 mapped_index *index = dwarf2_per_objfile->index_table;
4295
4296 /* index is NULL if OBJF_READNOW. */
4297 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
4298 iter->length = MAYBE_SWAP (*iter->vec);
4299 else
4300 {
4301 iter->vec = NULL;
4302 iter->length = 0;
4303 }
4304}
4305
4306/* Return the next matching CU or NULL if there are no more. */
4307
4308static struct dwarf2_per_cu_data *
4309dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
4310{
4311 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
4312
4313 for ( ; iter->next < iter->length; ++iter->next)
4314 {
4315 offset_type cu_index_and_attrs =
4316 MAYBE_SWAP (iter->vec[iter->next + 1]);
4317 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4318 struct dwarf2_per_cu_data *per_cu;
4319 int want_static = iter->block_index != GLOBAL_BLOCK;
4320 /* This value is only valid for index versions >= 7. */
4321 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4322 gdb_index_symbol_kind symbol_kind =
4323 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4324 /* Only check the symbol attributes if they're present.
4325 Indices prior to version 7 don't record them,
4326 and indices >= 7 may elide them for certain symbols
4327 (gold does this). */
4328 int attrs_valid =
4329 (dwarf2_per_objfile->index_table->version >= 7
4330 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4331
4332 /* Don't crash on bad data. */
4333 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4334 + dwarf2_per_objfile->n_type_units))
4335 {
4336 complaint (&symfile_complaints,
4337 _(".gdb_index entry has bad CU index"
4338 " [in module %s]"),
4339 objfile_name (dwarf2_per_objfile->objfile));
4340 continue;
4341 }
4342
4343 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
4344
4345 /* Skip if already read in. */
4346 if (per_cu->v.quick->compunit_symtab)
4347 continue;
4348
4349 /* Check static vs global. */
4350 if (attrs_valid)
4351 {
4352 if (iter->want_specific_block
4353 && want_static != is_static)
4354 continue;
4355 /* Work around gold/15646. */
4356 if (!is_static && iter->global_seen)
4357 continue;
4358 if (!is_static)
4359 iter->global_seen = 1;
4360 }
4361
4362 /* Only check the symbol's kind if it has one. */
4363 if (attrs_valid)
4364 {
4365 switch (iter->domain)
4366 {
4367 case VAR_DOMAIN:
4368 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4369 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4370 /* Some types are also in VAR_DOMAIN. */
4371 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4372 continue;
4373 break;
4374 case STRUCT_DOMAIN:
4375 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4376 continue;
4377 break;
4378 case LABEL_DOMAIN:
4379 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4380 continue;
4381 break;
4382 default:
4383 break;
4384 }
4385 }
4386
4387 ++iter->next;
4388 return per_cu;
4389 }
4390
4391 return NULL;
4392}
4393
4394static struct compunit_symtab *
4395dw2_lookup_symbol (struct objfile *objfile, int block_index,
4396 const char *name, domain_enum domain)
4397{
4398 struct compunit_symtab *stab_best = NULL;
4399 struct dwarf2_per_objfile *dwarf2_per_objfile
4400 = get_dwarf2_per_objfile (objfile);
4401
4402 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4403
4404 struct dw2_symtab_iterator iter;
4405 struct dwarf2_per_cu_data *per_cu;
4406
4407 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4408
4409 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4410 {
4411 struct symbol *sym, *with_opaque = NULL;
4412 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
4413 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4414 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4415
4416 sym = block_find_symbol (block, name, domain,
4417 block_find_non_opaque_type_preferred,
4418 &with_opaque);
4419
4420 /* Some caution must be observed with overloaded functions
4421 and methods, since the index will not contain any overload
4422 information (but NAME might contain it). */
4423
4424 if (sym != NULL
4425 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4426 return stab;
4427 if (with_opaque != NULL
4428 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4429 stab_best = stab;
4430
4431 /* Keep looking through other CUs. */
4432 }
4433
4434 return stab_best;
4435}
4436
4437static void
4438dw2_print_stats (struct objfile *objfile)
4439{
4440 struct dwarf2_per_objfile *dwarf2_per_objfile
4441 = get_dwarf2_per_objfile (objfile);
4442 int total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
4443 int count = 0;
4444
4445 for (int i = 0; i < total; ++i)
4446 {
4447 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4448
4449 if (!per_cu->v.quick->compunit_symtab)
4450 ++count;
4451 }
4452 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4453 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4454}
4455
4456/* This dumps minimal information about the index.
4457 It is called via "mt print objfiles".
4458 One use is to verify .gdb_index has been loaded by the
4459 gdb.dwarf2/gdb-index.exp testcase. */
4460
4461static void
4462dw2_dump (struct objfile *objfile)
4463{
4464 struct dwarf2_per_objfile *dwarf2_per_objfile
4465 = get_dwarf2_per_objfile (objfile);
4466
4467 gdb_assert (dwarf2_per_objfile->using_index);
4468 printf_filtered (".gdb_index:");
4469 if (dwarf2_per_objfile->index_table != NULL)
4470 {
4471 printf_filtered (" version %d\n",
4472 dwarf2_per_objfile->index_table->version);
4473 }
4474 else
4475 printf_filtered (" faked for \"readnow\"\n");
4476 printf_filtered ("\n");
4477}
4478
4479static void
4480dw2_relocate (struct objfile *objfile,
4481 const struct section_offsets *new_offsets,
4482 const struct section_offsets *delta)
4483{
4484 /* There's nothing to relocate here. */
4485}
4486
4487static void
4488dw2_expand_symtabs_for_function (struct objfile *objfile,
4489 const char *func_name)
4490{
4491 struct dwarf2_per_objfile *dwarf2_per_objfile
4492 = get_dwarf2_per_objfile (objfile);
4493
4494 struct dw2_symtab_iterator iter;
4495 struct dwarf2_per_cu_data *per_cu;
4496
4497 /* Note: It doesn't matter what we pass for block_index here. */
4498 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4499 func_name);
4500
4501 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4502 dw2_instantiate_symtab (per_cu);
4503
4504}
4505
4506static void
4507dw2_expand_all_symtabs (struct objfile *objfile)
4508{
4509 struct dwarf2_per_objfile *dwarf2_per_objfile
4510 = get_dwarf2_per_objfile (objfile);
4511 int total_units = (dwarf2_per_objfile->n_comp_units
4512 + dwarf2_per_objfile->n_type_units);
4513
4514 for (int i = 0; i < total_units; ++i)
4515 {
4516 struct dwarf2_per_cu_data *per_cu
4517 = dw2_get_cutu (dwarf2_per_objfile, i);
4518
4519 dw2_instantiate_symtab (per_cu);
4520 }
4521}
4522
4523static void
4524dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4525 const char *fullname)
4526{
4527 struct dwarf2_per_objfile *dwarf2_per_objfile
4528 = get_dwarf2_per_objfile (objfile);
4529
4530 /* We don't need to consider type units here.
4531 This is only called for examining code, e.g. expand_line_sal.
4532 There can be an order of magnitude (or more) more type units
4533 than comp units, and we avoid them if we can. */
4534
4535 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4536 {
4537 int j;
4538 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4539 struct quick_file_names *file_data;
4540
4541 /* We only need to look at symtabs not already expanded. */
4542 if (per_cu->v.quick->compunit_symtab)
4543 continue;
4544
4545 file_data = dw2_get_file_names (per_cu);
4546 if (file_data == NULL)
4547 continue;
4548
4549 for (j = 0; j < file_data->num_file_names; ++j)
4550 {
4551 const char *this_fullname = file_data->file_names[j];
4552
4553 if (filename_cmp (this_fullname, fullname) == 0)
4554 {
4555 dw2_instantiate_symtab (per_cu);
4556 break;
4557 }
4558 }
4559 }
4560}
4561
4562static void
4563dw2_map_matching_symbols (struct objfile *objfile,
4564 const char * name, domain_enum domain,
4565 int global,
4566 int (*callback) (struct block *,
4567 struct symbol *, void *),
4568 void *data, symbol_name_match_type match,
4569 symbol_compare_ftype *ordered_compare)
4570{
4571 /* Currently unimplemented; used for Ada. The function can be called if the
4572 current language is Ada for a non-Ada objfile using GNU index. As Ada
4573 does not look for non-Ada symbols this function should just return. */
4574}
4575
4576/* Symbol name matcher for .gdb_index names.
4577
4578 Symbol names in .gdb_index have a few particularities:
4579
4580 - There's no indication of which is the language of each symbol.
4581
4582 Since each language has its own symbol name matching algorithm,
4583 and we don't know which language is the right one, we must match
4584 each symbol against all languages. This would be a potential
4585 performance problem if it were not mitigated by the
4586 mapped_index::name_components lookup table, which significantly
4587 reduces the number of times we need to call into this matcher,
4588 making it a non-issue.
4589
4590 - Symbol names in the index have no overload (parameter)
4591 information. I.e., in C++, "foo(int)" and "foo(long)" both
4592 appear as "foo" in the index, for example.
4593
4594 This means that the lookup names passed to the symbol name
4595 matcher functions must have no parameter information either
4596 because (e.g.) symbol search name "foo" does not match
4597 lookup-name "foo(int)" [while swapping search name for lookup
4598 name would match].
4599*/
4600class gdb_index_symbol_name_matcher
4601{
4602public:
4603 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4604 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4605
4606 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4607 Returns true if any matcher matches. */
4608 bool matches (const char *symbol_name);
4609
4610private:
4611 /* A reference to the lookup name we're matching against. */
4612 const lookup_name_info &m_lookup_name;
4613
4614 /* A vector holding all the different symbol name matchers, for all
4615 languages. */
4616 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4617};
4618
4619gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4620 (const lookup_name_info &lookup_name)
4621 : m_lookup_name (lookup_name)
4622{
4623 /* Prepare the vector of comparison functions upfront, to avoid
4624 doing the same work for each symbol. Care is taken to avoid
4625 matching with the same matcher more than once if/when multiple
4626 languages use the same matcher function. */
4627 auto &matchers = m_symbol_name_matcher_funcs;
4628 matchers.reserve (nr_languages);
4629
4630 matchers.push_back (default_symbol_name_matcher);
4631
4632 for (int i = 0; i < nr_languages; i++)
4633 {
4634 const language_defn *lang = language_def ((enum language) i);
4635 symbol_name_matcher_ftype *name_matcher
4636 = get_symbol_name_matcher (lang, m_lookup_name);
4637
4638 /* Don't insert the same comparison routine more than once.
4639 Note that we do this linear walk instead of a seemingly
4640 cheaper sorted insert, or use a std::set or something like
4641 that, because relative order of function addresses is not
4642 stable. This is not a problem in practice because the number
4643 of supported languages is low, and the cost here is tiny
4644 compared to the number of searches we'll do afterwards using
4645 this object. */
4646 if (name_matcher != default_symbol_name_matcher
4647 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4648 == matchers.end ()))
4649 matchers.push_back (name_matcher);
4650 }
4651}
4652
4653bool
4654gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4655{
4656 for (auto matches_name : m_symbol_name_matcher_funcs)
4657 if (matches_name (symbol_name, m_lookup_name, NULL))
4658 return true;
4659
4660 return false;
4661}
4662
4663/* Starting from a search name, return the string that finds the upper
4664 bound of all strings that start with SEARCH_NAME in a sorted name
4665 list. Returns the empty string to indicate that the upper bound is
4666 the end of the list. */
4667
4668static std::string
4669make_sort_after_prefix_name (const char *search_name)
4670{
4671 /* When looking to complete "func", we find the upper bound of all
4672 symbols that start with "func" by looking for where we'd insert
4673 the closest string that would follow "func" in lexicographical
4674 order. Usually, that's "func"-with-last-character-incremented,
4675 i.e. "fund". Mind non-ASCII characters, though. Usually those
4676 will be UTF-8 multi-byte sequences, but we can't be certain.
4677 Especially mind the 0xff character, which is a valid character in
4678 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4679 rule out compilers allowing it in identifiers. Note that
4680 conveniently, strcmp/strcasecmp are specified to compare
4681 characters interpreted as unsigned char. So what we do is treat
4682 the whole string as a base 256 number composed of a sequence of
4683 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4684 to 0, and carries 1 to the following more-significant position.
4685 If the very first character in SEARCH_NAME ends up incremented
4686 and carries/overflows, then the upper bound is the end of the
4687 list. The string after the empty string is also the empty
4688 string.
4689
4690 Some examples of this operation:
4691
4692 SEARCH_NAME => "+1" RESULT
4693
4694 "abc" => "abd"
4695 "ab\xff" => "ac"
4696 "\xff" "a" "\xff" => "\xff" "b"
4697 "\xff" => ""
4698 "\xff\xff" => ""
4699 "" => ""
4700
4701 Then, with these symbols for example:
4702
4703 func
4704 func1
4705 fund
4706
4707 completing "func" looks for symbols between "func" and
4708 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4709 which finds "func" and "func1", but not "fund".
4710
4711 And with:
4712
4713 funcÿ (Latin1 'ÿ' [0xff])
4714 funcÿ1
4715 fund
4716
4717 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4718 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4719
4720 And with:
4721
4722 ÿÿ (Latin1 'ÿ' [0xff])
4723 ÿÿ1
4724
4725 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4726 the end of the list.
4727 */
4728 std::string after = search_name;
4729 while (!after.empty () && (unsigned char) after.back () == 0xff)
4730 after.pop_back ();
4731 if (!after.empty ())
4732 after.back () = (unsigned char) after.back () + 1;
4733 return after;
4734}
4735
4736/* See declaration. */
4737
4738std::pair<std::vector<name_component>::const_iterator,
4739 std::vector<name_component>::const_iterator>
4740mapped_index_base::find_name_components_bounds
4741 (const lookup_name_info &lookup_name_without_params) const
4742{
4743 auto *name_cmp
4744 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4745
4746 const char *cplus
4747 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4748
4749 /* Comparison function object for lower_bound that matches against a
4750 given symbol name. */
4751 auto lookup_compare_lower = [&] (const name_component &elem,
4752 const char *name)
4753 {
4754 const char *elem_qualified = this->symbol_name_at (elem.idx);
4755 const char *elem_name = elem_qualified + elem.name_offset;
4756 return name_cmp (elem_name, name) < 0;
4757 };
4758
4759 /* Comparison function object for upper_bound that matches against a
4760 given symbol name. */
4761 auto lookup_compare_upper = [&] (const char *name,
4762 const name_component &elem)
4763 {
4764 const char *elem_qualified = this->symbol_name_at (elem.idx);
4765 const char *elem_name = elem_qualified + elem.name_offset;
4766 return name_cmp (name, elem_name) < 0;
4767 };
4768
4769 auto begin = this->name_components.begin ();
4770 auto end = this->name_components.end ();
4771
4772 /* Find the lower bound. */
4773 auto lower = [&] ()
4774 {
4775 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4776 return begin;
4777 else
4778 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4779 } ();
4780
4781 /* Find the upper bound. */
4782 auto upper = [&] ()
4783 {
4784 if (lookup_name_without_params.completion_mode ())
4785 {
4786 /* In completion mode, we want UPPER to point past all
4787 symbols names that have the same prefix. I.e., with
4788 these symbols, and completing "func":
4789
4790 function << lower bound
4791 function1
4792 other_function << upper bound
4793
4794 We find the upper bound by looking for the insertion
4795 point of "func"-with-last-character-incremented,
4796 i.e. "fund". */
4797 std::string after = make_sort_after_prefix_name (cplus);
4798 if (after.empty ())
4799 return end;
4800 return std::lower_bound (lower, end, after.c_str (),
4801 lookup_compare_lower);
4802 }
4803 else
4804 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4805 } ();
4806
4807 return {lower, upper};
4808}
4809
4810/* See declaration. */
4811
4812void
4813mapped_index_base::build_name_components ()
4814{
4815 if (!this->name_components.empty ())
4816 return;
4817
4818 this->name_components_casing = case_sensitivity;
4819 auto *name_cmp
4820 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4821
4822 /* The code below only knows how to break apart components of C++
4823 symbol names (and other languages that use '::' as
4824 namespace/module separator). If we add support for wild matching
4825 to some language that uses some other operator (E.g., Ada, Go and
4826 D use '.'), then we'll need to try splitting the symbol name
4827 according to that language too. Note that Ada does support wild
4828 matching, but doesn't currently support .gdb_index. */
4829 auto count = this->symbol_name_count ();
4830 for (offset_type idx = 0; idx < count; idx++)
4831 {
4832 if (this->symbol_name_slot_invalid (idx))
4833 continue;
4834
4835 const char *name = this->symbol_name_at (idx);
4836
4837 /* Add each name component to the name component table. */
4838 unsigned int previous_len = 0;
4839 for (unsigned int current_len = cp_find_first_component (name);
4840 name[current_len] != '\0';
4841 current_len += cp_find_first_component (name + current_len))
4842 {
4843 gdb_assert (name[current_len] == ':');
4844 this->name_components.push_back ({previous_len, idx});
4845 /* Skip the '::'. */
4846 current_len += 2;
4847 previous_len = current_len;
4848 }
4849 this->name_components.push_back ({previous_len, idx});
4850 }
4851
4852 /* Sort name_components elements by name. */
4853 auto name_comp_compare = [&] (const name_component &left,
4854 const name_component &right)
4855 {
4856 const char *left_qualified = this->symbol_name_at (left.idx);
4857 const char *right_qualified = this->symbol_name_at (right.idx);
4858
4859 const char *left_name = left_qualified + left.name_offset;
4860 const char *right_name = right_qualified + right.name_offset;
4861
4862 return name_cmp (left_name, right_name) < 0;
4863 };
4864
4865 std::sort (this->name_components.begin (),
4866 this->name_components.end (),
4867 name_comp_compare);
4868}
4869
4870/* Helper for dw2_expand_symtabs_matching that works with a
4871 mapped_index_base instead of the containing objfile. This is split
4872 to a separate function in order to be able to unit test the
4873 name_components matching using a mock mapped_index_base. For each
4874 symbol name that matches, calls MATCH_CALLBACK, passing it the
4875 symbol's index in the mapped_index_base symbol table. */
4876
4877static void
4878dw2_expand_symtabs_matching_symbol
4879 (mapped_index_base &index,
4880 const lookup_name_info &lookup_name_in,
4881 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4882 enum search_domain kind,
4883 gdb::function_view<void (offset_type)> match_callback)
4884{
4885 lookup_name_info lookup_name_without_params
4886 = lookup_name_in.make_ignore_params ();
4887 gdb_index_symbol_name_matcher lookup_name_matcher
4888 (lookup_name_without_params);
4889
4890 /* Build the symbol name component sorted vector, if we haven't
4891 yet. */
4892 index.build_name_components ();
4893
4894 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4895
4896 /* Now for each symbol name in range, check to see if we have a name
4897 match, and if so, call the MATCH_CALLBACK callback. */
4898
4899 /* The same symbol may appear more than once in the range though.
4900 E.g., if we're looking for symbols that complete "w", and we have
4901 a symbol named "w1::w2", we'll find the two name components for
4902 that same symbol in the range. To be sure we only call the
4903 callback once per symbol, we first collect the symbol name
4904 indexes that matched in a temporary vector and ignore
4905 duplicates. */
4906 std::vector<offset_type> matches;
4907 matches.reserve (std::distance (bounds.first, bounds.second));
4908
4909 for (; bounds.first != bounds.second; ++bounds.first)
4910 {
4911 const char *qualified = index.symbol_name_at (bounds.first->idx);
4912
4913 if (!lookup_name_matcher.matches (qualified)
4914 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4915 continue;
4916
4917 matches.push_back (bounds.first->idx);
4918 }
4919
4920 std::sort (matches.begin (), matches.end ());
4921
4922 /* Finally call the callback, once per match. */
4923 ULONGEST prev = -1;
4924 for (offset_type idx : matches)
4925 {
4926 if (prev != idx)
4927 {
4928 match_callback (idx);
4929 prev = idx;
4930 }
4931 }
4932
4933 /* Above we use a type wider than idx's for 'prev', since 0 and
4934 (offset_type)-1 are both possible values. */
4935 static_assert (sizeof (prev) > sizeof (offset_type), "");
4936}
4937
4938#if GDB_SELF_TEST
4939
4940namespace selftests { namespace dw2_expand_symtabs_matching {
4941
4942/* A mock .gdb_index/.debug_names-like name index table, enough to
4943 exercise dw2_expand_symtabs_matching_symbol, which works with the
4944 mapped_index_base interface. Builds an index from the symbol list
4945 passed as parameter to the constructor. */
4946class mock_mapped_index : public mapped_index_base
4947{
4948public:
4949 mock_mapped_index (gdb::array_view<const char *> symbols)
4950 : m_symbol_table (symbols)
4951 {}
4952
4953 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4954
4955 /* Return the number of names in the symbol table. */
4956 virtual size_t symbol_name_count () const
4957 {
4958 return m_symbol_table.size ();
4959 }
4960
4961 /* Get the name of the symbol at IDX in the symbol table. */
4962 virtual const char *symbol_name_at (offset_type idx) const
4963 {
4964 return m_symbol_table[idx];
4965 }
4966
4967private:
4968 gdb::array_view<const char *> m_symbol_table;
4969};
4970
4971/* Convenience function that converts a NULL pointer to a "<null>"
4972 string, to pass to print routines. */
4973
4974static const char *
4975string_or_null (const char *str)
4976{
4977 return str != NULL ? str : "<null>";
4978}
4979
4980/* Check if a lookup_name_info built from
4981 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4982 index. EXPECTED_LIST is the list of expected matches, in expected
4983 matching order. If no match expected, then an empty list is
4984 specified. Returns true on success. On failure prints a warning
4985 indicating the file:line that failed, and returns false. */
4986
4987static bool
4988check_match (const char *file, int line,
4989 mock_mapped_index &mock_index,
4990 const char *name, symbol_name_match_type match_type,
4991 bool completion_mode,
4992 std::initializer_list<const char *> expected_list)
4993{
4994 lookup_name_info lookup_name (name, match_type, completion_mode);
4995
4996 bool matched = true;
4997
4998 auto mismatch = [&] (const char *expected_str,
4999 const char *got)
5000 {
5001 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
5002 "expected=\"%s\", got=\"%s\"\n"),
5003 file, line,
5004 (match_type == symbol_name_match_type::FULL
5005 ? "FULL" : "WILD"),
5006 name, string_or_null (expected_str), string_or_null (got));
5007 matched = false;
5008 };
5009
5010 auto expected_it = expected_list.begin ();
5011 auto expected_end = expected_list.end ();
5012
5013 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
5014 NULL, ALL_DOMAIN,
5015 [&] (offset_type idx)
5016 {
5017 const char *matched_name = mock_index.symbol_name_at (idx);
5018 const char *expected_str
5019 = expected_it == expected_end ? NULL : *expected_it++;
5020
5021 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
5022 mismatch (expected_str, matched_name);
5023 });
5024
5025 const char *expected_str
5026 = expected_it == expected_end ? NULL : *expected_it++;
5027 if (expected_str != NULL)
5028 mismatch (expected_str, NULL);
5029
5030 return matched;
5031}
5032
5033/* The symbols added to the mock mapped_index for testing (in
5034 canonical form). */
5035static const char *test_symbols[] = {
5036 "function",
5037 "std::bar",
5038 "std::zfunction",
5039 "std::zfunction2",
5040 "w1::w2",
5041 "ns::foo<char*>",
5042 "ns::foo<int>",
5043 "ns::foo<long>",
5044 "ns2::tmpl<int>::foo2",
5045 "(anonymous namespace)::A::B::C",
5046
5047 /* These are used to check that the increment-last-char in the
5048 matching algorithm for completion doesn't match "t1_fund" when
5049 completing "t1_func". */
5050 "t1_func",
5051 "t1_func1",
5052 "t1_fund",
5053 "t1_fund1",
5054
5055 /* A UTF-8 name with multi-byte sequences to make sure that
5056 cp-name-parser understands this as a single identifier ("função"
5057 is "function" in PT). */
5058 u8"u8função",
5059
5060 /* \377 (0xff) is Latin1 'ÿ'. */
5061 "yfunc\377",
5062
5063 /* \377 (0xff) is Latin1 'ÿ'. */
5064 "\377",
5065 "\377\377123",
5066
5067 /* A name with all sorts of complications. Starts with "z" to make
5068 it easier for the completion tests below. */
5069#define Z_SYM_NAME \
5070 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
5071 "::tuple<(anonymous namespace)::ui*, " \
5072 "std::default_delete<(anonymous namespace)::ui>, void>"
5073
5074 Z_SYM_NAME
5075};
5076
5077/* Returns true if the mapped_index_base::find_name_component_bounds
5078 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
5079 in completion mode. */
5080
5081static bool
5082check_find_bounds_finds (mapped_index_base &index,
5083 const char *search_name,
5084 gdb::array_view<const char *> expected_syms)
5085{
5086 lookup_name_info lookup_name (search_name,
5087 symbol_name_match_type::FULL, true);
5088
5089 auto bounds = index.find_name_components_bounds (lookup_name);
5090
5091 size_t distance = std::distance (bounds.first, bounds.second);
5092 if (distance != expected_syms.size ())
5093 return false;
5094
5095 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
5096 {
5097 auto nc_elem = bounds.first + exp_elem;
5098 const char *qualified = index.symbol_name_at (nc_elem->idx);
5099 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
5100 return false;
5101 }
5102
5103 return true;
5104}
5105
5106/* Test the lower-level mapped_index::find_name_component_bounds
5107 method. */
5108
5109static void
5110test_mapped_index_find_name_component_bounds ()
5111{
5112 mock_mapped_index mock_index (test_symbols);
5113
5114 mock_index.build_name_components ();
5115
5116 /* Test the lower-level mapped_index::find_name_component_bounds
5117 method in completion mode. */
5118 {
5119 static const char *expected_syms[] = {
5120 "t1_func",
5121 "t1_func1",
5122 };
5123
5124 SELF_CHECK (check_find_bounds_finds (mock_index,
5125 "t1_func", expected_syms));
5126 }
5127
5128 /* Check that the increment-last-char in the name matching algorithm
5129 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
5130 {
5131 static const char *expected_syms1[] = {
5132 "\377",
5133 "\377\377123",
5134 };
5135 SELF_CHECK (check_find_bounds_finds (mock_index,
5136 "\377", expected_syms1));
5137
5138 static const char *expected_syms2[] = {
5139 "\377\377123",
5140 };
5141 SELF_CHECK (check_find_bounds_finds (mock_index,
5142 "\377\377", expected_syms2));
5143 }
5144}
5145
5146/* Test dw2_expand_symtabs_matching_symbol. */
5147
5148static void
5149test_dw2_expand_symtabs_matching_symbol ()
5150{
5151 mock_mapped_index mock_index (test_symbols);
5152
5153 /* We let all tests run until the end even if some fails, for debug
5154 convenience. */
5155 bool any_mismatch = false;
5156
5157 /* Create the expected symbols list (an initializer_list). Needed
5158 because lists have commas, and we need to pass them to CHECK,
5159 which is a macro. */
5160#define EXPECT(...) { __VA_ARGS__ }
5161
5162 /* Wrapper for check_match that passes down the current
5163 __FILE__/__LINE__. */
5164#define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
5165 any_mismatch |= !check_match (__FILE__, __LINE__, \
5166 mock_index, \
5167 NAME, MATCH_TYPE, COMPLETION_MODE, \
5168 EXPECTED_LIST)
5169
5170 /* Identity checks. */
5171 for (const char *sym : test_symbols)
5172 {
5173 /* Should be able to match all existing symbols. */
5174 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
5175 EXPECT (sym));
5176
5177 /* Should be able to match all existing symbols with
5178 parameters. */
5179 std::string with_params = std::string (sym) + "(int)";
5180 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5181 EXPECT (sym));
5182
5183 /* Should be able to match all existing symbols with
5184 parameters and qualifiers. */
5185 with_params = std::string (sym) + " ( int ) const";
5186 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5187 EXPECT (sym));
5188
5189 /* This should really find sym, but cp-name-parser.y doesn't
5190 know about lvalue/rvalue qualifiers yet. */
5191 with_params = std::string (sym) + " ( int ) &&";
5192 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5193 {});
5194 }
5195
5196 /* Check that the name matching algorithm for completion doesn't get
5197 confused with Latin1 'ÿ' / 0xff. */
5198 {
5199 static const char str[] = "\377";
5200 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
5201 EXPECT ("\377", "\377\377123"));
5202 }
5203
5204 /* Check that the increment-last-char in the matching algorithm for
5205 completion doesn't match "t1_fund" when completing "t1_func". */
5206 {
5207 static const char str[] = "t1_func";
5208 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
5209 EXPECT ("t1_func", "t1_func1"));
5210 }
5211
5212 /* Check that completion mode works at each prefix of the expected
5213 symbol name. */
5214 {
5215 static const char str[] = "function(int)";
5216 size_t len = strlen (str);
5217 std::string lookup;
5218
5219 for (size_t i = 1; i < len; i++)
5220 {
5221 lookup.assign (str, i);
5222 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
5223 EXPECT ("function"));
5224 }
5225 }
5226
5227 /* While "w" is a prefix of both components, the match function
5228 should still only be called once. */
5229 {
5230 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
5231 EXPECT ("w1::w2"));
5232 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
5233 EXPECT ("w1::w2"));
5234 }
5235
5236 /* Same, with a "complicated" symbol. */
5237 {
5238 static const char str[] = Z_SYM_NAME;
5239 size_t len = strlen (str);
5240 std::string lookup;
5241
5242 for (size_t i = 1; i < len; i++)
5243 {
5244 lookup.assign (str, i);
5245 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
5246 EXPECT (Z_SYM_NAME));
5247 }
5248 }
5249
5250 /* In FULL mode, an incomplete symbol doesn't match. */
5251 {
5252 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
5253 {});
5254 }
5255
5256 /* A complete symbol with parameters matches any overload, since the
5257 index has no overload info. */
5258 {
5259 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
5260 EXPECT ("std::zfunction", "std::zfunction2"));
5261 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
5262 EXPECT ("std::zfunction", "std::zfunction2"));
5263 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
5264 EXPECT ("std::zfunction", "std::zfunction2"));
5265 }
5266
5267 /* Check that whitespace is ignored appropriately. A symbol with a
5268 template argument list. */
5269 {
5270 static const char expected[] = "ns::foo<int>";
5271 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
5272 EXPECT (expected));
5273 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
5274 EXPECT (expected));
5275 }
5276
5277 /* Check that whitespace is ignored appropriately. A symbol with a
5278 template argument list that includes a pointer. */
5279 {
5280 static const char expected[] = "ns::foo<char*>";
5281 /* Try both completion and non-completion modes. */
5282 static const bool completion_mode[2] = {false, true};
5283 for (size_t i = 0; i < 2; i++)
5284 {
5285 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
5286 completion_mode[i], EXPECT (expected));
5287 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
5288 completion_mode[i], EXPECT (expected));
5289
5290 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
5291 completion_mode[i], EXPECT (expected));
5292 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
5293 completion_mode[i], EXPECT (expected));
5294 }
5295 }
5296
5297 {
5298 /* Check method qualifiers are ignored. */
5299 static const char expected[] = "ns::foo<char*>";
5300 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
5301 symbol_name_match_type::FULL, true, EXPECT (expected));
5302 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
5303 symbol_name_match_type::FULL, true, EXPECT (expected));
5304 CHECK_MATCH ("foo < char * > ( int ) const",
5305 symbol_name_match_type::WILD, true, EXPECT (expected));
5306 CHECK_MATCH ("foo < char * > ( int ) &&",
5307 symbol_name_match_type::WILD, true, EXPECT (expected));
5308 }
5309
5310 /* Test lookup names that don't match anything. */
5311 {
5312 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
5313 {});
5314
5315 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
5316 {});
5317 }
5318
5319 /* Some wild matching tests, exercising "(anonymous namespace)",
5320 which should not be confused with a parameter list. */
5321 {
5322 static const char *syms[] = {
5323 "A::B::C",
5324 "B::C",
5325 "C",
5326 "A :: B :: C ( int )",
5327 "B :: C ( int )",
5328 "C ( int )",
5329 };
5330
5331 for (const char *s : syms)
5332 {
5333 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
5334 EXPECT ("(anonymous namespace)::A::B::C"));
5335 }
5336 }
5337
5338 {
5339 static const char expected[] = "ns2::tmpl<int>::foo2";
5340 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5341 EXPECT (expected));
5342 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5343 EXPECT (expected));
5344 }
5345
5346 SELF_CHECK (!any_mismatch);
5347
5348#undef EXPECT
5349#undef CHECK_MATCH
5350}
5351
5352static void
5353run_test ()
5354{
5355 test_mapped_index_find_name_component_bounds ();
5356 test_dw2_expand_symtabs_matching_symbol ();
5357}
5358
5359}} // namespace selftests::dw2_expand_symtabs_matching
5360
5361#endif /* GDB_SELF_TEST */
5362
5363/* If FILE_MATCHER is NULL or if PER_CU has
5364 dwarf2_per_cu_quick_data::MARK set (see
5365 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5366 EXPANSION_NOTIFY on it. */
5367
5368static void
5369dw2_expand_symtabs_matching_one
5370 (struct dwarf2_per_cu_data *per_cu,
5371 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5372 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5373{
5374 if (file_matcher == NULL || per_cu->v.quick->mark)
5375 {
5376 bool symtab_was_null
5377 = (per_cu->v.quick->compunit_symtab == NULL);
5378
5379 dw2_instantiate_symtab (per_cu);
5380
5381 if (expansion_notify != NULL
5382 && symtab_was_null
5383 && per_cu->v.quick->compunit_symtab != NULL)
5384 expansion_notify (per_cu->v.quick->compunit_symtab);
5385 }
5386}
5387
5388/* Helper for dw2_expand_matching symtabs. Called on each symbol
5389 matched, to expand corresponding CUs that were marked. IDX is the
5390 index of the symbol name that matched. */
5391
5392static void
5393dw2_expand_marked_cus
5394 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5395 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5396 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5397 search_domain kind)
5398{
5399 offset_type *vec, vec_len, vec_idx;
5400 bool global_seen = false;
5401 mapped_index &index = *dwarf2_per_objfile->index_table;
5402
5403 vec = (offset_type *) (index.constant_pool
5404 + MAYBE_SWAP (index.symbol_table[idx].vec));
5405 vec_len = MAYBE_SWAP (vec[0]);
5406 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5407 {
5408 struct dwarf2_per_cu_data *per_cu;
5409 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5410 /* This value is only valid for index versions >= 7. */
5411 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5412 gdb_index_symbol_kind symbol_kind =
5413 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5414 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5415 /* Only check the symbol attributes if they're present.
5416 Indices prior to version 7 don't record them,
5417 and indices >= 7 may elide them for certain symbols
5418 (gold does this). */
5419 int attrs_valid =
5420 (index.version >= 7
5421 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5422
5423 /* Work around gold/15646. */
5424 if (attrs_valid)
5425 {
5426 if (!is_static && global_seen)
5427 continue;
5428 if (!is_static)
5429 global_seen = true;
5430 }
5431
5432 /* Only check the symbol's kind if it has one. */
5433 if (attrs_valid)
5434 {
5435 switch (kind)
5436 {
5437 case VARIABLES_DOMAIN:
5438 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5439 continue;
5440 break;
5441 case FUNCTIONS_DOMAIN:
5442 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5443 continue;
5444 break;
5445 case TYPES_DOMAIN:
5446 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5447 continue;
5448 break;
5449 default:
5450 break;
5451 }
5452 }
5453
5454 /* Don't crash on bad data. */
5455 if (cu_index >= (dwarf2_per_objfile->n_comp_units
5456 + dwarf2_per_objfile->n_type_units))
5457 {
5458 complaint (&symfile_complaints,
5459 _(".gdb_index entry has bad CU index"
5460 " [in module %s]"),
5461 objfile_name (dwarf2_per_objfile->objfile));
5462 continue;
5463 }
5464
5465 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
5466 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5467 expansion_notify);
5468 }
5469}
5470
5471/* If FILE_MATCHER is non-NULL, set all the
5472 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5473 that match FILE_MATCHER. */
5474
5475static void
5476dw_expand_symtabs_matching_file_matcher
5477 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5478 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5479{
5480 if (file_matcher == NULL)
5481 return;
5482
5483 objfile *const objfile = dwarf2_per_objfile->objfile;
5484
5485 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5486 htab_eq_pointer,
5487 NULL, xcalloc, xfree));
5488 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5489 htab_eq_pointer,
5490 NULL, xcalloc, xfree));
5491
5492 /* The rule is CUs specify all the files, including those used by
5493 any TU, so there's no need to scan TUs here. */
5494
5495 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5496 {
5497 int j;
5498 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5499 struct quick_file_names *file_data;
5500 void **slot;
5501
5502 QUIT;
5503
5504 per_cu->v.quick->mark = 0;
5505
5506 /* We only need to look at symtabs not already expanded. */
5507 if (per_cu->v.quick->compunit_symtab)
5508 continue;
5509
5510 file_data = dw2_get_file_names (per_cu);
5511 if (file_data == NULL)
5512 continue;
5513
5514 if (htab_find (visited_not_found.get (), file_data) != NULL)
5515 continue;
5516 else if (htab_find (visited_found.get (), file_data) != NULL)
5517 {
5518 per_cu->v.quick->mark = 1;
5519 continue;
5520 }
5521
5522 for (j = 0; j < file_data->num_file_names; ++j)
5523 {
5524 const char *this_real_name;
5525
5526 if (file_matcher (file_data->file_names[j], false))
5527 {
5528 per_cu->v.quick->mark = 1;
5529 break;
5530 }
5531
5532 /* Before we invoke realpath, which can get expensive when many
5533 files are involved, do a quick comparison of the basenames. */
5534 if (!basenames_may_differ
5535 && !file_matcher (lbasename (file_data->file_names[j]),
5536 true))
5537 continue;
5538
5539 this_real_name = dw2_get_real_path (objfile, file_data, j);
5540 if (file_matcher (this_real_name, false))
5541 {
5542 per_cu->v.quick->mark = 1;
5543 break;
5544 }
5545 }
5546
5547 slot = htab_find_slot (per_cu->v.quick->mark
5548 ? visited_found.get ()
5549 : visited_not_found.get (),
5550 file_data, INSERT);
5551 *slot = file_data;
5552 }
5553}
5554
5555static void
5556dw2_expand_symtabs_matching
5557 (struct objfile *objfile,
5558 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5559 const lookup_name_info &lookup_name,
5560 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5561 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5562 enum search_domain kind)
5563{
5564 struct dwarf2_per_objfile *dwarf2_per_objfile
5565 = get_dwarf2_per_objfile (objfile);
5566
5567 /* index_table is NULL if OBJF_READNOW. */
5568 if (!dwarf2_per_objfile->index_table)
5569 return;
5570
5571 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5572
5573 mapped_index &index = *dwarf2_per_objfile->index_table;
5574
5575 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5576 symbol_matcher,
5577 kind, [&] (offset_type idx)
5578 {
5579 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5580 expansion_notify, kind);
5581 });
5582}
5583
5584/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5585 symtab. */
5586
5587static struct compunit_symtab *
5588recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5589 CORE_ADDR pc)
5590{
5591 int i;
5592
5593 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5594 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5595 return cust;
5596
5597 if (cust->includes == NULL)
5598 return NULL;
5599
5600 for (i = 0; cust->includes[i]; ++i)
5601 {
5602 struct compunit_symtab *s = cust->includes[i];
5603
5604 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5605 if (s != NULL)
5606 return s;
5607 }
5608
5609 return NULL;
5610}
5611
5612static struct compunit_symtab *
5613dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5614 struct bound_minimal_symbol msymbol,
5615 CORE_ADDR pc,
5616 struct obj_section *section,
5617 int warn_if_readin)
5618{
5619 struct dwarf2_per_cu_data *data;
5620 struct compunit_symtab *result;
5621
5622 if (!objfile->psymtabs_addrmap)
5623 return NULL;
5624
5625 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5626 pc);
5627 if (!data)
5628 return NULL;
5629
5630 if (warn_if_readin && data->v.quick->compunit_symtab)
5631 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5632 paddress (get_objfile_arch (objfile), pc));
5633
5634 result
5635 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5636 pc);
5637 gdb_assert (result != NULL);
5638 return result;
5639}
5640
5641static void
5642dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5643 void *data, int need_fullname)
5644{
5645 struct dwarf2_per_objfile *dwarf2_per_objfile
5646 = get_dwarf2_per_objfile (objfile);
5647
5648 if (!dwarf2_per_objfile->filenames_cache)
5649 {
5650 dwarf2_per_objfile->filenames_cache.emplace ();
5651
5652 htab_up visited (htab_create_alloc (10,
5653 htab_hash_pointer, htab_eq_pointer,
5654 NULL, xcalloc, xfree));
5655
5656 /* The rule is CUs specify all the files, including those used
5657 by any TU, so there's no need to scan TUs here. We can
5658 ignore file names coming from already-expanded CUs. */
5659
5660 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5661 {
5662 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
5663
5664 if (per_cu->v.quick->compunit_symtab)
5665 {
5666 void **slot = htab_find_slot (visited.get (),
5667 per_cu->v.quick->file_names,
5668 INSERT);
5669
5670 *slot = per_cu->v.quick->file_names;
5671 }
5672 }
5673
5674 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5675 {
5676 dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5677 struct quick_file_names *file_data;
5678 void **slot;
5679
5680 /* We only need to look at symtabs not already expanded. */
5681 if (per_cu->v.quick->compunit_symtab)
5682 continue;
5683
5684 file_data = dw2_get_file_names (per_cu);
5685 if (file_data == NULL)
5686 continue;
5687
5688 slot = htab_find_slot (visited.get (), file_data, INSERT);
5689 if (*slot)
5690 {
5691 /* Already visited. */
5692 continue;
5693 }
5694 *slot = file_data;
5695
5696 for (int j = 0; j < file_data->num_file_names; ++j)
5697 {
5698 const char *filename = file_data->file_names[j];
5699 dwarf2_per_objfile->filenames_cache->seen (filename);
5700 }
5701 }
5702 }
5703
5704 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5705 {
5706 gdb::unique_xmalloc_ptr<char> this_real_name;
5707
5708 if (need_fullname)
5709 this_real_name = gdb_realpath (filename);
5710 (*fun) (filename, this_real_name.get (), data);
5711 });
5712}
5713
5714static int
5715dw2_has_symbols (struct objfile *objfile)
5716{
5717 return 1;
5718}
5719
5720const struct quick_symbol_functions dwarf2_gdb_index_functions =
5721{
5722 dw2_has_symbols,
5723 dw2_find_last_source_symtab,
5724 dw2_forget_cached_source_info,
5725 dw2_map_symtabs_matching_filename,
5726 dw2_lookup_symbol,
5727 dw2_print_stats,
5728 dw2_dump,
5729 dw2_relocate,
5730 dw2_expand_symtabs_for_function,
5731 dw2_expand_all_symtabs,
5732 dw2_expand_symtabs_with_fullname,
5733 dw2_map_matching_symbols,
5734 dw2_expand_symtabs_matching,
5735 dw2_find_pc_sect_compunit_symtab,
5736 NULL,
5737 dw2_map_symbol_filenames
5738};
5739
5740/* DWARF-5 debug_names reader. */
5741
5742/* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5743static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5744
5745/* A helper function that reads the .debug_names section in SECTION
5746 and fills in MAP. FILENAME is the name of the file containing the
5747 section; it is used for error reporting.
5748
5749 Returns true if all went well, false otherwise. */
5750
5751static bool
5752read_debug_names_from_section (struct objfile *objfile,
5753 const char *filename,
5754 struct dwarf2_section_info *section,
5755 mapped_debug_names &map)
5756{
5757 if (dwarf2_section_empty_p (section))
5758 return false;
5759
5760 /* Older elfutils strip versions could keep the section in the main
5761 executable while splitting it for the separate debug info file. */
5762 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5763 return false;
5764
5765 dwarf2_read_section (objfile, section);
5766
5767 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5768
5769 const gdb_byte *addr = section->buffer;
5770
5771 bfd *const abfd = get_section_bfd_owner (section);
5772
5773 unsigned int bytes_read;
5774 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5775 addr += bytes_read;
5776
5777 map.dwarf5_is_dwarf64 = bytes_read != 4;
5778 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5779 if (bytes_read + length != section->size)
5780 {
5781 /* There may be multiple per-CU indices. */
5782 warning (_("Section .debug_names in %s length %s does not match "
5783 "section length %s, ignoring .debug_names."),
5784 filename, plongest (bytes_read + length),
5785 pulongest (section->size));
5786 return false;
5787 }
5788
5789 /* The version number. */
5790 uint16_t version = read_2_bytes (abfd, addr);
5791 addr += 2;
5792 if (version != 5)
5793 {
5794 warning (_("Section .debug_names in %s has unsupported version %d, "
5795 "ignoring .debug_names."),
5796 filename, version);
5797 return false;
5798 }
5799
5800 /* Padding. */
5801 uint16_t padding = read_2_bytes (abfd, addr);
5802 addr += 2;
5803 if (padding != 0)
5804 {
5805 warning (_("Section .debug_names in %s has unsupported padding %d, "
5806 "ignoring .debug_names."),
5807 filename, padding);
5808 return false;
5809 }
5810
5811 /* comp_unit_count - The number of CUs in the CU list. */
5812 map.cu_count = read_4_bytes (abfd, addr);
5813 addr += 4;
5814
5815 /* local_type_unit_count - The number of TUs in the local TU
5816 list. */
5817 map.tu_count = read_4_bytes (abfd, addr);
5818 addr += 4;
5819
5820 /* foreign_type_unit_count - The number of TUs in the foreign TU
5821 list. */
5822 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5823 addr += 4;
5824 if (foreign_tu_count != 0)
5825 {
5826 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5827 "ignoring .debug_names."),
5828 filename, static_cast<unsigned long> (foreign_tu_count));
5829 return false;
5830 }
5831
5832 /* bucket_count - The number of hash buckets in the hash lookup
5833 table. */
5834 map.bucket_count = read_4_bytes (abfd, addr);
5835 addr += 4;
5836
5837 /* name_count - The number of unique names in the index. */
5838 map.name_count = read_4_bytes (abfd, addr);
5839 addr += 4;
5840
5841 /* abbrev_table_size - The size in bytes of the abbreviations
5842 table. */
5843 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5844 addr += 4;
5845
5846 /* augmentation_string_size - The size in bytes of the augmentation
5847 string. This value is rounded up to a multiple of 4. */
5848 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5849 addr += 4;
5850 map.augmentation_is_gdb = ((augmentation_string_size
5851 == sizeof (dwarf5_augmentation))
5852 && memcmp (addr, dwarf5_augmentation,
5853 sizeof (dwarf5_augmentation)) == 0);
5854 augmentation_string_size += (-augmentation_string_size) & 3;
5855 addr += augmentation_string_size;
5856
5857 /* List of CUs */
5858 map.cu_table_reordered = addr;
5859 addr += map.cu_count * map.offset_size;
5860
5861 /* List of Local TUs */
5862 map.tu_table_reordered = addr;
5863 addr += map.tu_count * map.offset_size;
5864
5865 /* Hash Lookup Table */
5866 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5867 addr += map.bucket_count * 4;
5868 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5869 addr += map.name_count * 4;
5870
5871 /* Name Table */
5872 map.name_table_string_offs_reordered = addr;
5873 addr += map.name_count * map.offset_size;
5874 map.name_table_entry_offs_reordered = addr;
5875 addr += map.name_count * map.offset_size;
5876
5877 const gdb_byte *abbrev_table_start = addr;
5878 for (;;)
5879 {
5880 unsigned int bytes_read;
5881 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5882 addr += bytes_read;
5883 if (index_num == 0)
5884 break;
5885
5886 const auto insertpair
5887 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5888 if (!insertpair.second)
5889 {
5890 warning (_("Section .debug_names in %s has duplicate index %s, "
5891 "ignoring .debug_names."),
5892 filename, pulongest (index_num));
5893 return false;
5894 }
5895 mapped_debug_names::index_val &indexval = insertpair.first->second;
5896 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5897 addr += bytes_read;
5898
5899 for (;;)
5900 {
5901 mapped_debug_names::index_val::attr attr;
5902 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5903 addr += bytes_read;
5904 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5905 addr += bytes_read;
5906 if (attr.form == DW_FORM_implicit_const)
5907 {
5908 attr.implicit_const = read_signed_leb128 (abfd, addr,
5909 &bytes_read);
5910 addr += bytes_read;
5911 }
5912 if (attr.dw_idx == 0 && attr.form == 0)
5913 break;
5914 indexval.attr_vec.push_back (std::move (attr));
5915 }
5916 }
5917 if (addr != abbrev_table_start + abbrev_table_size)
5918 {
5919 warning (_("Section .debug_names in %s has abbreviation_table "
5920 "of size %zu vs. written as %u, ignoring .debug_names."),
5921 filename, addr - abbrev_table_start, abbrev_table_size);
5922 return false;
5923 }
5924 map.entry_pool = addr;
5925
5926 return true;
5927}
5928
5929/* A helper for create_cus_from_debug_names that handles the MAP's CU
5930 list. */
5931
5932static void
5933create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5934 const mapped_debug_names &map,
5935 dwarf2_section_info &section,
5936 bool is_dwz, int base_offset)
5937{
5938 sect_offset sect_off_prev;
5939 for (uint32_t i = 0; i <= map.cu_count; ++i)
5940 {
5941 sect_offset sect_off_next;
5942 if (i < map.cu_count)
5943 {
5944 sect_off_next
5945 = (sect_offset) (extract_unsigned_integer
5946 (map.cu_table_reordered + i * map.offset_size,
5947 map.offset_size,
5948 map.dwarf5_byte_order));
5949 }
5950 else
5951 sect_off_next = (sect_offset) section.size;
5952 if (i >= 1)
5953 {
5954 const ULONGEST length = sect_off_next - sect_off_prev;
5955 dwarf2_per_objfile->all_comp_units[base_offset + (i - 1)]
5956 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5957 sect_off_prev, length);
5958 }
5959 sect_off_prev = sect_off_next;
5960 }
5961}
5962
5963/* Read the CU list from the mapped index, and use it to create all
5964 the CU objects for this dwarf2_per_objfile. */
5965
5966static void
5967create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5968 const mapped_debug_names &map,
5969 const mapped_debug_names &dwz_map)
5970{
5971 struct objfile *objfile = dwarf2_per_objfile->objfile;
5972
5973 dwarf2_per_objfile->n_comp_units = map.cu_count + dwz_map.cu_count;
5974 dwarf2_per_objfile->all_comp_units
5975 = XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
5976 dwarf2_per_objfile->n_comp_units);
5977
5978 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5979 dwarf2_per_objfile->info,
5980 false /* is_dwz */,
5981 0 /* base_offset */);
5982
5983 if (dwz_map.cu_count == 0)
5984 return;
5985
5986 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5987 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5988 true /* is_dwz */,
5989 map.cu_count /* base_offset */);
5990}
5991
5992/* Read .debug_names. If everything went ok, initialize the "quick"
5993 elements of all the CUs and return true. Otherwise, return false. */
5994
5995static bool
5996dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5997{
5998 mapped_debug_names local_map (dwarf2_per_objfile);
5999 mapped_debug_names dwz_map (dwarf2_per_objfile);
6000 struct objfile *objfile = dwarf2_per_objfile->objfile;
6001
6002 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
6003 &dwarf2_per_objfile->debug_names,
6004 local_map))
6005 return false;
6006
6007 /* Don't use the index if it's empty. */
6008 if (local_map.name_count == 0)
6009 return false;
6010
6011 /* If there is a .dwz file, read it so we can get its CU list as
6012 well. */
6013 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
6014 if (dwz != NULL)
6015 {
6016 if (!read_debug_names_from_section (objfile,
6017 bfd_get_filename (dwz->dwz_bfd),
6018 &dwz->debug_names, dwz_map))
6019 {
6020 warning (_("could not read '.debug_names' section from %s; skipping"),
6021 bfd_get_filename (dwz->dwz_bfd));
6022 return false;
6023 }
6024 }
6025
6026 create_cus_from_debug_names (dwarf2_per_objfile, local_map, dwz_map);
6027
6028 if (local_map.tu_count != 0)
6029 {
6030 /* We can only handle a single .debug_types when we have an
6031 index. */
6032 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
6033 return false;
6034
6035 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
6036 dwarf2_per_objfile->types, 0);
6037
6038 create_signatured_type_table_from_debug_names
6039 (dwarf2_per_objfile, local_map, section, &dwarf2_per_objfile->abbrev);
6040 }
6041
6042 create_addrmap_from_aranges (dwarf2_per_objfile,
6043 &dwarf2_per_objfile->debug_aranges);
6044
6045 dwarf2_per_objfile->debug_names_table.reset
6046 (new mapped_debug_names (dwarf2_per_objfile));
6047 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
6048 dwarf2_per_objfile->using_index = 1;
6049 dwarf2_per_objfile->quick_file_names_table =
6050 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6051
6052 return true;
6053}
6054
6055/* Symbol name hashing function as specified by DWARF-5. */
6056
6057static uint32_t
6058dwarf5_djb_hash (const char *str_)
6059{
6060 const unsigned char *str = (const unsigned char *) str_;
6061
6062 /* Note: tolower here ignores UTF-8, which isn't fully compliant.
6063 See http://dwarfstd.org/ShowIssue.php?issue=161027.1. */
6064
6065 uint32_t hash = 5381;
6066 while (int c = *str++)
6067 hash = hash * 33 + tolower (c);
6068 return hash;
6069}
6070
6071/* Type used to manage iterating over all CUs looking for a symbol for
6072 .debug_names. */
6073
6074class dw2_debug_names_iterator
6075{
6076public:
6077 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
6078 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
6079 dw2_debug_names_iterator (const mapped_debug_names &map,
6080 bool want_specific_block,
6081 block_enum block_index, domain_enum domain,
6082 const char *name)
6083 : m_map (map), m_want_specific_block (want_specific_block),
6084 m_block_index (block_index), m_domain (domain),
6085 m_addr (find_vec_in_debug_names (map, name))
6086 {}
6087
6088 dw2_debug_names_iterator (const mapped_debug_names &map,
6089 search_domain search, uint32_t namei)
6090 : m_map (map),
6091 m_search (search),
6092 m_addr (find_vec_in_debug_names (map, namei))
6093 {}
6094
6095 /* Return the next matching CU or NULL if there are no more. */
6096 dwarf2_per_cu_data *next ();
6097
6098private:
6099 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
6100 const char *name);
6101 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
6102 uint32_t namei);
6103
6104 /* The internalized form of .debug_names. */
6105 const mapped_debug_names &m_map;
6106
6107 /* If true, only look for symbols that match BLOCK_INDEX. */
6108 const bool m_want_specific_block = false;
6109
6110 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
6111 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
6112 value. */
6113 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
6114
6115 /* The kind of symbol we're looking for. */
6116 const domain_enum m_domain = UNDEF_DOMAIN;
6117 const search_domain m_search = ALL_DOMAIN;
6118
6119 /* The list of CUs from the index entry of the symbol, or NULL if
6120 not found. */
6121 const gdb_byte *m_addr;
6122};
6123
6124const char *
6125mapped_debug_names::namei_to_name (uint32_t namei) const
6126{
6127 const ULONGEST namei_string_offs
6128 = extract_unsigned_integer ((name_table_string_offs_reordered
6129 + namei * offset_size),
6130 offset_size,
6131 dwarf5_byte_order);
6132 return read_indirect_string_at_offset
6133 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
6134}
6135
6136/* Find a slot in .debug_names for the object named NAME. If NAME is
6137 found, return pointer to its pool data. If NAME cannot be found,
6138 return NULL. */
6139
6140const gdb_byte *
6141dw2_debug_names_iterator::find_vec_in_debug_names
6142 (const mapped_debug_names &map, const char *name)
6143{
6144 int (*cmp) (const char *, const char *);
6145
6146 if (current_language->la_language == language_cplus
6147 || current_language->la_language == language_fortran
6148 || current_language->la_language == language_d)
6149 {
6150 /* NAME is already canonical. Drop any qualifiers as
6151 .debug_names does not contain any. */
6152
6153 if (strchr (name, '(') != NULL)
6154 {
6155 gdb::unique_xmalloc_ptr<char> without_params
6156 = cp_remove_params (name);
6157
6158 if (without_params != NULL)
6159 {
6160 name = without_params.get();
6161 }
6162 }
6163 }
6164
6165 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
6166
6167 const uint32_t full_hash = dwarf5_djb_hash (name);
6168 uint32_t namei
6169 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
6170 (map.bucket_table_reordered
6171 + (full_hash % map.bucket_count)), 4,
6172 map.dwarf5_byte_order);
6173 if (namei == 0)
6174 return NULL;
6175 --namei;
6176 if (namei >= map.name_count)
6177 {
6178 complaint (&symfile_complaints,
6179 _("Wrong .debug_names with name index %u but name_count=%u "
6180 "[in module %s]"),
6181 namei, map.name_count,
6182 objfile_name (map.dwarf2_per_objfile->objfile));
6183 return NULL;
6184 }
6185
6186 for (;;)
6187 {
6188 const uint32_t namei_full_hash
6189 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
6190 (map.hash_table_reordered + namei), 4,
6191 map.dwarf5_byte_order);
6192 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
6193 return NULL;
6194
6195 if (full_hash == namei_full_hash)
6196 {
6197 const char *const namei_string = map.namei_to_name (namei);
6198
6199#if 0 /* An expensive sanity check. */
6200 if (namei_full_hash != dwarf5_djb_hash (namei_string))
6201 {
6202 complaint (&symfile_complaints,
6203 _("Wrong .debug_names hash for string at index %u "
6204 "[in module %s]"),
6205 namei, objfile_name (dwarf2_per_objfile->objfile));
6206 return NULL;
6207 }
6208#endif
6209
6210 if (cmp (namei_string, name) == 0)
6211 {
6212 const ULONGEST namei_entry_offs
6213 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
6214 + namei * map.offset_size),
6215 map.offset_size, map.dwarf5_byte_order);
6216 return map.entry_pool + namei_entry_offs;
6217 }
6218 }
6219
6220 ++namei;
6221 if (namei >= map.name_count)
6222 return NULL;
6223 }
6224}
6225
6226const gdb_byte *
6227dw2_debug_names_iterator::find_vec_in_debug_names
6228 (const mapped_debug_names &map, uint32_t namei)
6229{
6230 if (namei >= map.name_count)
6231 {
6232 complaint (&symfile_complaints,
6233 _("Wrong .debug_names with name index %u but name_count=%u "
6234 "[in module %s]"),
6235 namei, map.name_count,
6236 objfile_name (map.dwarf2_per_objfile->objfile));
6237 return NULL;
6238 }
6239
6240 const ULONGEST namei_entry_offs
6241 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
6242 + namei * map.offset_size),
6243 map.offset_size, map.dwarf5_byte_order);
6244 return map.entry_pool + namei_entry_offs;
6245}
6246
6247/* See dw2_debug_names_iterator. */
6248
6249dwarf2_per_cu_data *
6250dw2_debug_names_iterator::next ()
6251{
6252 if (m_addr == NULL)
6253 return NULL;
6254
6255 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
6256 struct objfile *objfile = dwarf2_per_objfile->objfile;
6257 bfd *const abfd = objfile->obfd;
6258
6259 again:
6260
6261 unsigned int bytes_read;
6262 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
6263 m_addr += bytes_read;
6264 if (abbrev == 0)
6265 return NULL;
6266
6267 const auto indexval_it = m_map.abbrev_map.find (abbrev);
6268 if (indexval_it == m_map.abbrev_map.cend ())
6269 {
6270 complaint (&symfile_complaints,
6271 _("Wrong .debug_names undefined abbrev code %s "
6272 "[in module %s]"),
6273 pulongest (abbrev), objfile_name (objfile));
6274 return NULL;
6275 }
6276 const mapped_debug_names::index_val &indexval = indexval_it->second;
6277 bool have_is_static = false;
6278 bool is_static;
6279 dwarf2_per_cu_data *per_cu = NULL;
6280 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
6281 {
6282 ULONGEST ull;
6283 switch (attr.form)
6284 {
6285 case DW_FORM_implicit_const:
6286 ull = attr.implicit_const;
6287 break;
6288 case DW_FORM_flag_present:
6289 ull = 1;
6290 break;
6291 case DW_FORM_udata:
6292 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
6293 m_addr += bytes_read;
6294 break;
6295 default:
6296 complaint (&symfile_complaints,
6297 _("Unsupported .debug_names form %s [in module %s]"),
6298 dwarf_form_name (attr.form),
6299 objfile_name (objfile));
6300 return NULL;
6301 }
6302 switch (attr.dw_idx)
6303 {
6304 case DW_IDX_compile_unit:
6305 /* Don't crash on bad data. */
6306 if (ull >= dwarf2_per_objfile->n_comp_units)
6307 {
6308 complaint (&symfile_complaints,
6309 _(".debug_names entry has bad CU index %s"
6310 " [in module %s]"),
6311 pulongest (ull),
6312 objfile_name (dwarf2_per_objfile->objfile));
6313 continue;
6314 }
6315 per_cu = dw2_get_cutu (dwarf2_per_objfile, ull);
6316 break;
6317 case DW_IDX_type_unit:
6318 /* Don't crash on bad data. */
6319 if (ull >= dwarf2_per_objfile->n_type_units)
6320 {
6321 complaint (&symfile_complaints,
6322 _(".debug_names entry has bad TU index %s"
6323 " [in module %s]"),
6324 pulongest (ull),
6325 objfile_name (dwarf2_per_objfile->objfile));
6326 continue;
6327 }
6328 per_cu = dw2_get_cutu (dwarf2_per_objfile,
6329 dwarf2_per_objfile->n_comp_units + ull);
6330 break;
6331 case DW_IDX_GNU_internal:
6332 if (!m_map.augmentation_is_gdb)
6333 break;
6334 have_is_static = true;
6335 is_static = true;
6336 break;
6337 case DW_IDX_GNU_external:
6338 if (!m_map.augmentation_is_gdb)
6339 break;
6340 have_is_static = true;
6341 is_static = false;
6342 break;
6343 }
6344 }
6345
6346 /* Skip if already read in. */
6347 if (per_cu->v.quick->compunit_symtab)
6348 goto again;
6349
6350 /* Check static vs global. */
6351 if (have_is_static)
6352 {
6353 const bool want_static = m_block_index != GLOBAL_BLOCK;
6354 if (m_want_specific_block && want_static != is_static)
6355 goto again;
6356 }
6357
6358 /* Match dw2_symtab_iter_next, symbol_kind
6359 and debug_names::psymbol_tag. */
6360 switch (m_domain)
6361 {
6362 case VAR_DOMAIN:
6363 switch (indexval.dwarf_tag)
6364 {
6365 case DW_TAG_variable:
6366 case DW_TAG_subprogram:
6367 /* Some types are also in VAR_DOMAIN. */
6368 case DW_TAG_typedef:
6369 case DW_TAG_structure_type:
6370 break;
6371 default:
6372 goto again;
6373 }
6374 break;
6375 case STRUCT_DOMAIN:
6376 switch (indexval.dwarf_tag)
6377 {
6378 case DW_TAG_typedef:
6379 case DW_TAG_structure_type:
6380 break;
6381 default:
6382 goto again;
6383 }
6384 break;
6385 case LABEL_DOMAIN:
6386 switch (indexval.dwarf_tag)
6387 {
6388 case 0:
6389 case DW_TAG_variable:
6390 break;
6391 default:
6392 goto again;
6393 }
6394 break;
6395 default:
6396 break;
6397 }
6398
6399 /* Match dw2_expand_symtabs_matching, symbol_kind and
6400 debug_names::psymbol_tag. */
6401 switch (m_search)
6402 {
6403 case VARIABLES_DOMAIN:
6404 switch (indexval.dwarf_tag)
6405 {
6406 case DW_TAG_variable:
6407 break;
6408 default:
6409 goto again;
6410 }
6411 break;
6412 case FUNCTIONS_DOMAIN:
6413 switch (indexval.dwarf_tag)
6414 {
6415 case DW_TAG_subprogram:
6416 break;
6417 default:
6418 goto again;
6419 }
6420 break;
6421 case TYPES_DOMAIN:
6422 switch (indexval.dwarf_tag)
6423 {
6424 case DW_TAG_typedef:
6425 case DW_TAG_structure_type:
6426 break;
6427 default:
6428 goto again;
6429 }
6430 break;
6431 default:
6432 break;
6433 }
6434
6435 return per_cu;
6436}
6437
6438static struct compunit_symtab *
6439dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6440 const char *name, domain_enum domain)
6441{
6442 const block_enum block_index = static_cast<block_enum> (block_index_int);
6443 struct dwarf2_per_objfile *dwarf2_per_objfile
6444 = get_dwarf2_per_objfile (objfile);
6445
6446 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6447 if (!mapp)
6448 {
6449 /* index is NULL if OBJF_READNOW. */
6450 return NULL;
6451 }
6452 const auto &map = *mapp;
6453
6454 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6455 block_index, domain, name);
6456
6457 struct compunit_symtab *stab_best = NULL;
6458 struct dwarf2_per_cu_data *per_cu;
6459 while ((per_cu = iter.next ()) != NULL)
6460 {
6461 struct symbol *sym, *with_opaque = NULL;
6462 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
6463 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6464 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6465
6466 sym = block_find_symbol (block, name, domain,
6467 block_find_non_opaque_type_preferred,
6468 &with_opaque);
6469
6470 /* Some caution must be observed with overloaded functions and
6471 methods, since the index will not contain any overload
6472 information (but NAME might contain it). */
6473
6474 if (sym != NULL
6475 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6476 return stab;
6477 if (with_opaque != NULL
6478 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6479 stab_best = stab;
6480
6481 /* Keep looking through other CUs. */
6482 }
6483
6484 return stab_best;
6485}
6486
6487/* This dumps minimal information about .debug_names. It is called
6488 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6489 uses this to verify that .debug_names has been loaded. */
6490
6491static void
6492dw2_debug_names_dump (struct objfile *objfile)
6493{
6494 struct dwarf2_per_objfile *dwarf2_per_objfile
6495 = get_dwarf2_per_objfile (objfile);
6496
6497 gdb_assert (dwarf2_per_objfile->using_index);
6498 printf_filtered (".debug_names:");
6499 if (dwarf2_per_objfile->debug_names_table)
6500 printf_filtered (" exists\n");
6501 else
6502 printf_filtered (" faked for \"readnow\"\n");
6503 printf_filtered ("\n");
6504}
6505
6506static void
6507dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6508 const char *func_name)
6509{
6510 struct dwarf2_per_objfile *dwarf2_per_objfile
6511 = get_dwarf2_per_objfile (objfile);
6512
6513 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6514 if (dwarf2_per_objfile->debug_names_table)
6515 {
6516 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6517
6518 /* Note: It doesn't matter what we pass for block_index here. */
6519 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6520 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6521
6522 struct dwarf2_per_cu_data *per_cu;
6523 while ((per_cu = iter.next ()) != NULL)
6524 dw2_instantiate_symtab (per_cu);
6525 }
6526}
6527
6528static void
6529dw2_debug_names_expand_symtabs_matching
6530 (struct objfile *objfile,
6531 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6532 const lookup_name_info &lookup_name,
6533 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6534 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6535 enum search_domain kind)
6536{
6537 struct dwarf2_per_objfile *dwarf2_per_objfile
6538 = get_dwarf2_per_objfile (objfile);
6539
6540 /* debug_names_table is NULL if OBJF_READNOW. */
6541 if (!dwarf2_per_objfile->debug_names_table)
6542 return;
6543
6544 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6545
6546 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6547
6548 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6549 symbol_matcher,
6550 kind, [&] (offset_type namei)
6551 {
6552 /* The name was matched, now expand corresponding CUs that were
6553 marked. */
6554 dw2_debug_names_iterator iter (map, kind, namei);
6555
6556 struct dwarf2_per_cu_data *per_cu;
6557 while ((per_cu = iter.next ()) != NULL)
6558 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6559 expansion_notify);
6560 });
6561}
6562
6563const struct quick_symbol_functions dwarf2_debug_names_functions =
6564{
6565 dw2_has_symbols,
6566 dw2_find_last_source_symtab,
6567 dw2_forget_cached_source_info,
6568 dw2_map_symtabs_matching_filename,
6569 dw2_debug_names_lookup_symbol,
6570 dw2_print_stats,
6571 dw2_debug_names_dump,
6572 dw2_relocate,
6573 dw2_debug_names_expand_symtabs_for_function,
6574 dw2_expand_all_symtabs,
6575 dw2_expand_symtabs_with_fullname,
6576 dw2_map_matching_symbols,
6577 dw2_debug_names_expand_symtabs_matching,
6578 dw2_find_pc_sect_compunit_symtab,
6579 NULL,
6580 dw2_map_symbol_filenames
6581};
6582
6583/* See symfile.h. */
6584
6585bool
6586dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6587{
6588 struct dwarf2_per_objfile *dwarf2_per_objfile
6589 = get_dwarf2_per_objfile (objfile);
6590
6591 /* If we're about to read full symbols, don't bother with the
6592 indices. In this case we also don't care if some other debug
6593 format is making psymtabs, because they are all about to be
6594 expanded anyway. */
6595 if ((objfile->flags & OBJF_READNOW))
6596 {
6597 int i;
6598
6599 dwarf2_per_objfile->using_index = 1;
6600 create_all_comp_units (dwarf2_per_objfile);
6601 create_all_type_units (dwarf2_per_objfile);
6602 dwarf2_per_objfile->quick_file_names_table =
6603 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6604
6605 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
6606 + dwarf2_per_objfile->n_type_units); ++i)
6607 {
6608 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
6609
6610 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6611 struct dwarf2_per_cu_quick_data);
6612 }
6613
6614 /* Return 1 so that gdb sees the "quick" functions. However,
6615 these functions will be no-ops because we will have expanded
6616 all symtabs. */
6617 *index_kind = dw_index_kind::GDB_INDEX;
6618 return true;
6619 }
6620
6621 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6622 {
6623 *index_kind = dw_index_kind::DEBUG_NAMES;
6624 return true;
6625 }
6626
6627 if (dwarf2_read_index (objfile))
6628 {
6629 *index_kind = dw_index_kind::GDB_INDEX;
6630 return true;
6631 }
6632
6633 return false;
6634}
6635
6636\f
6637
6638/* Build a partial symbol table. */
6639
6640void
6641dwarf2_build_psymtabs (struct objfile *objfile)
6642{
6643 struct dwarf2_per_objfile *dwarf2_per_objfile
6644 = get_dwarf2_per_objfile (objfile);
6645
6646 if (objfile->global_psymbols.capacity () == 0
6647 && objfile->static_psymbols.capacity () == 0)
6648 init_psymbol_list (objfile, 1024);
6649
6650 TRY
6651 {
6652 /* This isn't really ideal: all the data we allocate on the
6653 objfile's obstack is still uselessly kept around. However,
6654 freeing it seems unsafe. */
6655 psymtab_discarder psymtabs (objfile);
6656 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6657 psymtabs.keep ();
6658 }
6659 CATCH (except, RETURN_MASK_ERROR)
6660 {
6661 exception_print (gdb_stderr, except);
6662 }
6663 END_CATCH
6664}
6665
6666/* Return the total length of the CU described by HEADER. */
6667
6668static unsigned int
6669get_cu_length (const struct comp_unit_head *header)
6670{
6671 return header->initial_length_size + header->length;
6672}
6673
6674/* Return TRUE if SECT_OFF is within CU_HEADER. */
6675
6676static inline bool
6677offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6678{
6679 sect_offset bottom = cu_header->sect_off;
6680 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6681
6682 return sect_off >= bottom && sect_off < top;
6683}
6684
6685/* Find the base address of the compilation unit for range lists and
6686 location lists. It will normally be specified by DW_AT_low_pc.
6687 In DWARF-3 draft 4, the base address could be overridden by
6688 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6689 compilation units with discontinuous ranges. */
6690
6691static void
6692dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6693{
6694 struct attribute *attr;
6695
6696 cu->base_known = 0;
6697 cu->base_address = 0;
6698
6699 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6700 if (attr)
6701 {
6702 cu->base_address = attr_value_as_address (attr);
6703 cu->base_known = 1;
6704 }
6705 else
6706 {
6707 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6708 if (attr)
6709 {
6710 cu->base_address = attr_value_as_address (attr);
6711 cu->base_known = 1;
6712 }
6713 }
6714}
6715
6716/* Read in the comp unit header information from the debug_info at info_ptr.
6717 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6718 NOTE: This leaves members offset, first_die_offset to be filled in
6719 by the caller. */
6720
6721static const gdb_byte *
6722read_comp_unit_head (struct comp_unit_head *cu_header,
6723 const gdb_byte *info_ptr,
6724 struct dwarf2_section_info *section,
6725 rcuh_kind section_kind)
6726{
6727 int signed_addr;
6728 unsigned int bytes_read;
6729 const char *filename = get_section_file_name (section);
6730 bfd *abfd = get_section_bfd_owner (section);
6731
6732 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6733 cu_header->initial_length_size = bytes_read;
6734 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6735 info_ptr += bytes_read;
6736 cu_header->version = read_2_bytes (abfd, info_ptr);
6737 info_ptr += 2;
6738 if (cu_header->version < 5)
6739 switch (section_kind)
6740 {
6741 case rcuh_kind::COMPILE:
6742 cu_header->unit_type = DW_UT_compile;
6743 break;
6744 case rcuh_kind::TYPE:
6745 cu_header->unit_type = DW_UT_type;
6746 break;
6747 default:
6748 internal_error (__FILE__, __LINE__,
6749 _("read_comp_unit_head: invalid section_kind"));
6750 }
6751 else
6752 {
6753 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6754 (read_1_byte (abfd, info_ptr));
6755 info_ptr += 1;
6756 switch (cu_header->unit_type)
6757 {
6758 case DW_UT_compile:
6759 if (section_kind != rcuh_kind::COMPILE)
6760 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6761 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6762 filename);
6763 break;
6764 case DW_UT_type:
6765 section_kind = rcuh_kind::TYPE;
6766 break;
6767 default:
6768 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6769 "(is %d, should be %d or %d) [in module %s]"),
6770 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6771 }
6772
6773 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6774 info_ptr += 1;
6775 }
6776 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6777 cu_header,
6778 &bytes_read);
6779 info_ptr += bytes_read;
6780 if (cu_header->version < 5)
6781 {
6782 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6783 info_ptr += 1;
6784 }
6785 signed_addr = bfd_get_sign_extend_vma (abfd);
6786 if (signed_addr < 0)
6787 internal_error (__FILE__, __LINE__,
6788 _("read_comp_unit_head: dwarf from non elf file"));
6789 cu_header->signed_addr_p = signed_addr;
6790
6791 if (section_kind == rcuh_kind::TYPE)
6792 {
6793 LONGEST type_offset;
6794
6795 cu_header->signature = read_8_bytes (abfd, info_ptr);
6796 info_ptr += 8;
6797
6798 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6799 info_ptr += bytes_read;
6800 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6801 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6802 error (_("Dwarf Error: Too big type_offset in compilation unit "
6803 "header (is %s) [in module %s]"), plongest (type_offset),
6804 filename);
6805 }
6806
6807 return info_ptr;
6808}
6809
6810/* Helper function that returns the proper abbrev section for
6811 THIS_CU. */
6812
6813static struct dwarf2_section_info *
6814get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6815{
6816 struct dwarf2_section_info *abbrev;
6817 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6818
6819 if (this_cu->is_dwz)
6820 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6821 else
6822 abbrev = &dwarf2_per_objfile->abbrev;
6823
6824 return abbrev;
6825}
6826
6827/* Subroutine of read_and_check_comp_unit_head and
6828 read_and_check_type_unit_head to simplify them.
6829 Perform various error checking on the header. */
6830
6831static void
6832error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6833 struct comp_unit_head *header,
6834 struct dwarf2_section_info *section,
6835 struct dwarf2_section_info *abbrev_section)
6836{
6837 const char *filename = get_section_file_name (section);
6838
6839 if (header->version < 2 || header->version > 5)
6840 error (_("Dwarf Error: wrong version in compilation unit header "
6841 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6842 filename);
6843
6844 if (to_underlying (header->abbrev_sect_off)
6845 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6846 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6847 "(offset %s + 6) [in module %s]"),
6848 sect_offset_str (header->abbrev_sect_off),
6849 sect_offset_str (header->sect_off),
6850 filename);
6851
6852 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6853 avoid potential 32-bit overflow. */
6854 if (((ULONGEST) header->sect_off + get_cu_length (header))
6855 > section->size)
6856 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6857 "(offset %s + 0) [in module %s]"),
6858 header->length, sect_offset_str (header->sect_off),
6859 filename);
6860}
6861
6862/* Read in a CU/TU header and perform some basic error checking.
6863 The contents of the header are stored in HEADER.
6864 The result is a pointer to the start of the first DIE. */
6865
6866static const gdb_byte *
6867read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6868 struct comp_unit_head *header,
6869 struct dwarf2_section_info *section,
6870 struct dwarf2_section_info *abbrev_section,
6871 const gdb_byte *info_ptr,
6872 rcuh_kind section_kind)
6873{
6874 const gdb_byte *beg_of_comp_unit = info_ptr;
6875
6876 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6877
6878 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6879
6880 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6881
6882 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6883 abbrev_section);
6884
6885 return info_ptr;
6886}
6887
6888/* Fetch the abbreviation table offset from a comp or type unit header. */
6889
6890static sect_offset
6891read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6892 struct dwarf2_section_info *section,
6893 sect_offset sect_off)
6894{
6895 bfd *abfd = get_section_bfd_owner (section);
6896 const gdb_byte *info_ptr;
6897 unsigned int initial_length_size, offset_size;
6898 uint16_t version;
6899
6900 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6901 info_ptr = section->buffer + to_underlying (sect_off);
6902 read_initial_length (abfd, info_ptr, &initial_length_size);
6903 offset_size = initial_length_size == 4 ? 4 : 8;
6904 info_ptr += initial_length_size;
6905
6906 version = read_2_bytes (abfd, info_ptr);
6907 info_ptr += 2;
6908 if (version >= 5)
6909 {
6910 /* Skip unit type and address size. */
6911 info_ptr += 2;
6912 }
6913
6914 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6915}
6916
6917/* Allocate a new partial symtab for file named NAME and mark this new
6918 partial symtab as being an include of PST. */
6919
6920static void
6921dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6922 struct objfile *objfile)
6923{
6924 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6925
6926 if (!IS_ABSOLUTE_PATH (subpst->filename))
6927 {
6928 /* It shares objfile->objfile_obstack. */
6929 subpst->dirname = pst->dirname;
6930 }
6931
6932 subpst->textlow = 0;
6933 subpst->texthigh = 0;
6934
6935 subpst->dependencies
6936 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6937 subpst->dependencies[0] = pst;
6938 subpst->number_of_dependencies = 1;
6939
6940 subpst->globals_offset = 0;
6941 subpst->n_global_syms = 0;
6942 subpst->statics_offset = 0;
6943 subpst->n_static_syms = 0;
6944 subpst->compunit_symtab = NULL;
6945 subpst->read_symtab = pst->read_symtab;
6946 subpst->readin = 0;
6947
6948 /* No private part is necessary for include psymtabs. This property
6949 can be used to differentiate between such include psymtabs and
6950 the regular ones. */
6951 subpst->read_symtab_private = NULL;
6952}
6953
6954/* Read the Line Number Program data and extract the list of files
6955 included by the source file represented by PST. Build an include
6956 partial symtab for each of these included files. */
6957
6958static void
6959dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6960 struct die_info *die,
6961 struct partial_symtab *pst)
6962{
6963 line_header_up lh;
6964 struct attribute *attr;
6965
6966 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6967 if (attr)
6968 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6969 if (lh == NULL)
6970 return; /* No linetable, so no includes. */
6971
6972 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6973 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6974}
6975
6976static hashval_t
6977hash_signatured_type (const void *item)
6978{
6979 const struct signatured_type *sig_type
6980 = (const struct signatured_type *) item;
6981
6982 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6983 return sig_type->signature;
6984}
6985
6986static int
6987eq_signatured_type (const void *item_lhs, const void *item_rhs)
6988{
6989 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6990 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6991
6992 return lhs->signature == rhs->signature;
6993}
6994
6995/* Allocate a hash table for signatured types. */
6996
6997static htab_t
6998allocate_signatured_type_table (struct objfile *objfile)
6999{
7000 return htab_create_alloc_ex (41,
7001 hash_signatured_type,
7002 eq_signatured_type,
7003 NULL,
7004 &objfile->objfile_obstack,
7005 hashtab_obstack_allocate,
7006 dummy_obstack_deallocate);
7007}
7008
7009/* A helper function to add a signatured type CU to a table. */
7010
7011static int
7012add_signatured_type_cu_to_table (void **slot, void *datum)
7013{
7014 struct signatured_type *sigt = (struct signatured_type *) *slot;
7015 struct signatured_type ***datap = (struct signatured_type ***) datum;
7016
7017 **datap = sigt;
7018 ++*datap;
7019
7020 return 1;
7021}
7022
7023/* A helper for create_debug_types_hash_table. Read types from SECTION
7024 and fill them into TYPES_HTAB. It will process only type units,
7025 therefore DW_UT_type. */
7026
7027static void
7028create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
7029 struct dwo_file *dwo_file,
7030 dwarf2_section_info *section, htab_t &types_htab,
7031 rcuh_kind section_kind)
7032{
7033 struct objfile *objfile = dwarf2_per_objfile->objfile;
7034 struct dwarf2_section_info *abbrev_section;
7035 bfd *abfd;
7036 const gdb_byte *info_ptr, *end_ptr;
7037
7038 abbrev_section = (dwo_file != NULL
7039 ? &dwo_file->sections.abbrev
7040 : &dwarf2_per_objfile->abbrev);
7041
7042 if (dwarf_read_debug)
7043 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
7044 get_section_name (section),
7045 get_section_file_name (abbrev_section));
7046
7047 dwarf2_read_section (objfile, section);
7048 info_ptr = section->buffer;
7049
7050 if (info_ptr == NULL)
7051 return;
7052
7053 /* We can't set abfd until now because the section may be empty or
7054 not present, in which case the bfd is unknown. */
7055 abfd = get_section_bfd_owner (section);
7056
7057 /* We don't use init_cutu_and_read_dies_simple, or some such, here
7058 because we don't need to read any dies: the signature is in the
7059 header. */
7060
7061 end_ptr = info_ptr + section->size;
7062 while (info_ptr < end_ptr)
7063 {
7064 struct signatured_type *sig_type;
7065 struct dwo_unit *dwo_tu;
7066 void **slot;
7067 const gdb_byte *ptr = info_ptr;
7068 struct comp_unit_head header;
7069 unsigned int length;
7070
7071 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
7072
7073 /* Initialize it due to a false compiler warning. */
7074 header.signature = -1;
7075 header.type_cu_offset_in_tu = (cu_offset) -1;
7076
7077 /* We need to read the type's signature in order to build the hash
7078 table, but we don't need anything else just yet. */
7079
7080 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
7081 abbrev_section, ptr, section_kind);
7082
7083 length = get_cu_length (&header);
7084
7085 /* Skip dummy type units. */
7086 if (ptr >= info_ptr + length
7087 || peek_abbrev_code (abfd, ptr) == 0
7088 || header.unit_type != DW_UT_type)
7089 {
7090 info_ptr += length;
7091 continue;
7092 }
7093
7094 if (types_htab == NULL)
7095 {
7096 if (dwo_file)
7097 types_htab = allocate_dwo_unit_table (objfile);
7098 else
7099 types_htab = allocate_signatured_type_table (objfile);
7100 }
7101
7102 if (dwo_file)
7103 {
7104 sig_type = NULL;
7105 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7106 struct dwo_unit);
7107 dwo_tu->dwo_file = dwo_file;
7108 dwo_tu->signature = header.signature;
7109 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
7110 dwo_tu->section = section;
7111 dwo_tu->sect_off = sect_off;
7112 dwo_tu->length = length;
7113 }
7114 else
7115 {
7116 /* N.B.: type_offset is not usable if this type uses a DWO file.
7117 The real type_offset is in the DWO file. */
7118 dwo_tu = NULL;
7119 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7120 struct signatured_type);
7121 sig_type->signature = header.signature;
7122 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
7123 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7124 sig_type->per_cu.is_debug_types = 1;
7125 sig_type->per_cu.section = section;
7126 sig_type->per_cu.sect_off = sect_off;
7127 sig_type->per_cu.length = length;
7128 }
7129
7130 slot = htab_find_slot (types_htab,
7131 dwo_file ? (void*) dwo_tu : (void *) sig_type,
7132 INSERT);
7133 gdb_assert (slot != NULL);
7134 if (*slot != NULL)
7135 {
7136 sect_offset dup_sect_off;
7137
7138 if (dwo_file)
7139 {
7140 const struct dwo_unit *dup_tu
7141 = (const struct dwo_unit *) *slot;
7142
7143 dup_sect_off = dup_tu->sect_off;
7144 }
7145 else
7146 {
7147 const struct signatured_type *dup_tu
7148 = (const struct signatured_type *) *slot;
7149
7150 dup_sect_off = dup_tu->per_cu.sect_off;
7151 }
7152
7153 complaint (&symfile_complaints,
7154 _("debug type entry at offset %s is duplicate to"
7155 " the entry at offset %s, signature %s"),
7156 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
7157 hex_string (header.signature));
7158 }
7159 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
7160
7161 if (dwarf_read_debug > 1)
7162 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
7163 sect_offset_str (sect_off),
7164 hex_string (header.signature));
7165
7166 info_ptr += length;
7167 }
7168}
7169
7170/* Create the hash table of all entries in the .debug_types
7171 (or .debug_types.dwo) section(s).
7172 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
7173 otherwise it is NULL.
7174
7175 The result is a pointer to the hash table or NULL if there are no types.
7176
7177 Note: This function processes DWO files only, not DWP files. */
7178
7179static void
7180create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
7181 struct dwo_file *dwo_file,
7182 VEC (dwarf2_section_info_def) *types,
7183 htab_t &types_htab)
7184{
7185 int ix;
7186 struct dwarf2_section_info *section;
7187
7188 if (VEC_empty (dwarf2_section_info_def, types))
7189 return;
7190
7191 for (ix = 0;
7192 VEC_iterate (dwarf2_section_info_def, types, ix, section);
7193 ++ix)
7194 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
7195 types_htab, rcuh_kind::TYPE);
7196}
7197
7198/* Create the hash table of all entries in the .debug_types section,
7199 and initialize all_type_units.
7200 The result is zero if there is an error (e.g. missing .debug_types section),
7201 otherwise non-zero. */
7202
7203static int
7204create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7205{
7206 htab_t types_htab = NULL;
7207 struct signatured_type **iter;
7208
7209 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
7210 &dwarf2_per_objfile->info, types_htab,
7211 rcuh_kind::COMPILE);
7212 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
7213 dwarf2_per_objfile->types, types_htab);
7214 if (types_htab == NULL)
7215 {
7216 dwarf2_per_objfile->signatured_types = NULL;
7217 return 0;
7218 }
7219
7220 dwarf2_per_objfile->signatured_types = types_htab;
7221
7222 dwarf2_per_objfile->n_type_units
7223 = dwarf2_per_objfile->n_allocated_type_units
7224 = htab_elements (types_htab);
7225 dwarf2_per_objfile->all_type_units =
7226 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
7227 iter = &dwarf2_per_objfile->all_type_units[0];
7228 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
7229 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
7230 == dwarf2_per_objfile->n_type_units);
7231
7232 return 1;
7233}
7234
7235/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
7236 If SLOT is non-NULL, it is the entry to use in the hash table.
7237 Otherwise we find one. */
7238
7239static struct signatured_type *
7240add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
7241 void **slot)
7242{
7243 struct objfile *objfile = dwarf2_per_objfile->objfile;
7244 int n_type_units = dwarf2_per_objfile->n_type_units;
7245 struct signatured_type *sig_type;
7246
7247 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
7248 ++n_type_units;
7249 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
7250 {
7251 if (dwarf2_per_objfile->n_allocated_type_units == 0)
7252 dwarf2_per_objfile->n_allocated_type_units = 1;
7253 dwarf2_per_objfile->n_allocated_type_units *= 2;
7254 dwarf2_per_objfile->all_type_units
7255 = XRESIZEVEC (struct signatured_type *,
7256 dwarf2_per_objfile->all_type_units,
7257 dwarf2_per_objfile->n_allocated_type_units);
7258 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
7259 }
7260 dwarf2_per_objfile->n_type_units = n_type_units;
7261
7262 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7263 struct signatured_type);
7264 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
7265 sig_type->signature = sig;
7266 sig_type->per_cu.is_debug_types = 1;
7267 if (dwarf2_per_objfile->using_index)
7268 {
7269 sig_type->per_cu.v.quick =
7270 OBSTACK_ZALLOC (&objfile->objfile_obstack,
7271 struct dwarf2_per_cu_quick_data);
7272 }
7273
7274 if (slot == NULL)
7275 {
7276 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7277 sig_type, INSERT);
7278 }
7279 gdb_assert (*slot == NULL);
7280 *slot = sig_type;
7281 /* The rest of sig_type must be filled in by the caller. */
7282 return sig_type;
7283}
7284
7285/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
7286 Fill in SIG_ENTRY with DWO_ENTRY. */
7287
7288static void
7289fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
7290 struct signatured_type *sig_entry,
7291 struct dwo_unit *dwo_entry)
7292{
7293 /* Make sure we're not clobbering something we don't expect to. */
7294 gdb_assert (! sig_entry->per_cu.queued);
7295 gdb_assert (sig_entry->per_cu.cu == NULL);
7296 if (dwarf2_per_objfile->using_index)
7297 {
7298 gdb_assert (sig_entry->per_cu.v.quick != NULL);
7299 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
7300 }
7301 else
7302 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
7303 gdb_assert (sig_entry->signature == dwo_entry->signature);
7304 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
7305 gdb_assert (sig_entry->type_unit_group == NULL);
7306 gdb_assert (sig_entry->dwo_unit == NULL);
7307
7308 sig_entry->per_cu.section = dwo_entry->section;
7309 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7310 sig_entry->per_cu.length = dwo_entry->length;
7311 sig_entry->per_cu.reading_dwo_directly = 1;
7312 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7313 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
7314 sig_entry->dwo_unit = dwo_entry;
7315}
7316
7317/* Subroutine of lookup_signatured_type.
7318 If we haven't read the TU yet, create the signatured_type data structure
7319 for a TU to be read in directly from a DWO file, bypassing the stub.
7320 This is the "Stay in DWO Optimization": When there is no DWP file and we're
7321 using .gdb_index, then when reading a CU we want to stay in the DWO file
7322 containing that CU. Otherwise we could end up reading several other DWO
7323 files (due to comdat folding) to process the transitive closure of all the
7324 mentioned TUs, and that can be slow. The current DWO file will have every
7325 type signature that it needs.
7326 We only do this for .gdb_index because in the psymtab case we already have
7327 to read all the DWOs to build the type unit groups. */
7328
7329static struct signatured_type *
7330lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7331{
7332 struct dwarf2_per_objfile *dwarf2_per_objfile
7333 = cu->per_cu->dwarf2_per_objfile;
7334 struct objfile *objfile = dwarf2_per_objfile->objfile;
7335 struct dwo_file *dwo_file;
7336 struct dwo_unit find_dwo_entry, *dwo_entry;
7337 struct signatured_type find_sig_entry, *sig_entry;
7338 void **slot;
7339
7340 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7341
7342 /* If TU skeletons have been removed then we may not have read in any
7343 TUs yet. */
7344 if (dwarf2_per_objfile->signatured_types == NULL)
7345 {
7346 dwarf2_per_objfile->signatured_types
7347 = allocate_signatured_type_table (objfile);
7348 }
7349
7350 /* We only ever need to read in one copy of a signatured type.
7351 Use the global signatured_types array to do our own comdat-folding
7352 of types. If this is the first time we're reading this TU, and
7353 the TU has an entry in .gdb_index, replace the recorded data from
7354 .gdb_index with this TU. */
7355
7356 find_sig_entry.signature = sig;
7357 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7358 &find_sig_entry, INSERT);
7359 sig_entry = (struct signatured_type *) *slot;
7360
7361 /* We can get here with the TU already read, *or* in the process of being
7362 read. Don't reassign the global entry to point to this DWO if that's
7363 the case. Also note that if the TU is already being read, it may not
7364 have come from a DWO, the program may be a mix of Fission-compiled
7365 code and non-Fission-compiled code. */
7366
7367 /* Have we already tried to read this TU?
7368 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7369 needn't exist in the global table yet). */
7370 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7371 return sig_entry;
7372
7373 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7374 dwo_unit of the TU itself. */
7375 dwo_file = cu->dwo_unit->dwo_file;
7376
7377 /* Ok, this is the first time we're reading this TU. */
7378 if (dwo_file->tus == NULL)
7379 return NULL;
7380 find_dwo_entry.signature = sig;
7381 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7382 if (dwo_entry == NULL)
7383 return NULL;
7384
7385 /* If the global table doesn't have an entry for this TU, add one. */
7386 if (sig_entry == NULL)
7387 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7388
7389 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7390 sig_entry->per_cu.tu_read = 1;
7391 return sig_entry;
7392}
7393
7394/* Subroutine of lookup_signatured_type.
7395 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7396 then try the DWP file. If the TU stub (skeleton) has been removed then
7397 it won't be in .gdb_index. */
7398
7399static struct signatured_type *
7400lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7401{
7402 struct dwarf2_per_objfile *dwarf2_per_objfile
7403 = cu->per_cu->dwarf2_per_objfile;
7404 struct objfile *objfile = dwarf2_per_objfile->objfile;
7405 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7406 struct dwo_unit *dwo_entry;
7407 struct signatured_type find_sig_entry, *sig_entry;
7408 void **slot;
7409
7410 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7411 gdb_assert (dwp_file != NULL);
7412
7413 /* If TU skeletons have been removed then we may not have read in any
7414 TUs yet. */
7415 if (dwarf2_per_objfile->signatured_types == NULL)
7416 {
7417 dwarf2_per_objfile->signatured_types
7418 = allocate_signatured_type_table (objfile);
7419 }
7420
7421 find_sig_entry.signature = sig;
7422 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7423 &find_sig_entry, INSERT);
7424 sig_entry = (struct signatured_type *) *slot;
7425
7426 /* Have we already tried to read this TU?
7427 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7428 needn't exist in the global table yet). */
7429 if (sig_entry != NULL)
7430 return sig_entry;
7431
7432 if (dwp_file->tus == NULL)
7433 return NULL;
7434 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7435 sig, 1 /* is_debug_types */);
7436 if (dwo_entry == NULL)
7437 return NULL;
7438
7439 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7440 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7441
7442 return sig_entry;
7443}
7444
7445/* Lookup a signature based type for DW_FORM_ref_sig8.
7446 Returns NULL if signature SIG is not present in the table.
7447 It is up to the caller to complain about this. */
7448
7449static struct signatured_type *
7450lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7451{
7452 struct dwarf2_per_objfile *dwarf2_per_objfile
7453 = cu->per_cu->dwarf2_per_objfile;
7454
7455 if (cu->dwo_unit
7456 && dwarf2_per_objfile->using_index)
7457 {
7458 /* We're in a DWO/DWP file, and we're using .gdb_index.
7459 These cases require special processing. */
7460 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7461 return lookup_dwo_signatured_type (cu, sig);
7462 else
7463 return lookup_dwp_signatured_type (cu, sig);
7464 }
7465 else
7466 {
7467 struct signatured_type find_entry, *entry;
7468
7469 if (dwarf2_per_objfile->signatured_types == NULL)
7470 return NULL;
7471 find_entry.signature = sig;
7472 entry = ((struct signatured_type *)
7473 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7474 return entry;
7475 }
7476}
7477\f
7478/* Low level DIE reading support. */
7479
7480/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7481
7482static void
7483init_cu_die_reader (struct die_reader_specs *reader,
7484 struct dwarf2_cu *cu,
7485 struct dwarf2_section_info *section,
7486 struct dwo_file *dwo_file,
7487 struct abbrev_table *abbrev_table)
7488{
7489 gdb_assert (section->readin && section->buffer != NULL);
7490 reader->abfd = get_section_bfd_owner (section);
7491 reader->cu = cu;
7492 reader->dwo_file = dwo_file;
7493 reader->die_section = section;
7494 reader->buffer = section->buffer;
7495 reader->buffer_end = section->buffer + section->size;
7496 reader->comp_dir = NULL;
7497 reader->abbrev_table = abbrev_table;
7498}
7499
7500/* Subroutine of init_cutu_and_read_dies to simplify it.
7501 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7502 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7503 already.
7504
7505 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7506 from it to the DIE in the DWO. If NULL we are skipping the stub.
7507 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7508 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7509 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7510 STUB_COMP_DIR may be non-NULL.
7511 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7512 are filled in with the info of the DIE from the DWO file.
7513 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7514 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7515 kept around for at least as long as *RESULT_READER.
7516
7517 The result is non-zero if a valid (non-dummy) DIE was found. */
7518
7519static int
7520read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7521 struct dwo_unit *dwo_unit,
7522 struct die_info *stub_comp_unit_die,
7523 const char *stub_comp_dir,
7524 struct die_reader_specs *result_reader,
7525 const gdb_byte **result_info_ptr,
7526 struct die_info **result_comp_unit_die,
7527 int *result_has_children,
7528 abbrev_table_up *result_dwo_abbrev_table)
7529{
7530 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7531 struct objfile *objfile = dwarf2_per_objfile->objfile;
7532 struct dwarf2_cu *cu = this_cu->cu;
7533 bfd *abfd;
7534 const gdb_byte *begin_info_ptr, *info_ptr;
7535 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7536 int i,num_extra_attrs;
7537 struct dwarf2_section_info *dwo_abbrev_section;
7538 struct attribute *attr;
7539 struct die_info *comp_unit_die;
7540
7541 /* At most one of these may be provided. */
7542 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7543
7544 /* These attributes aren't processed until later:
7545 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7546 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7547 referenced later. However, these attributes are found in the stub
7548 which we won't have later. In order to not impose this complication
7549 on the rest of the code, we read them here and copy them to the
7550 DWO CU/TU die. */
7551
7552 stmt_list = NULL;
7553 low_pc = NULL;
7554 high_pc = NULL;
7555 ranges = NULL;
7556 comp_dir = NULL;
7557
7558 if (stub_comp_unit_die != NULL)
7559 {
7560 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7561 DWO file. */
7562 if (! this_cu->is_debug_types)
7563 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7564 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7565 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7566 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7567 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7568
7569 /* There should be a DW_AT_addr_base attribute here (if needed).
7570 We need the value before we can process DW_FORM_GNU_addr_index. */
7571 cu->addr_base = 0;
7572 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7573 if (attr)
7574 cu->addr_base = DW_UNSND (attr);
7575
7576 /* There should be a DW_AT_ranges_base attribute here (if needed).
7577 We need the value before we can process DW_AT_ranges. */
7578 cu->ranges_base = 0;
7579 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7580 if (attr)
7581 cu->ranges_base = DW_UNSND (attr);
7582 }
7583 else if (stub_comp_dir != NULL)
7584 {
7585 /* Reconstruct the comp_dir attribute to simplify the code below. */
7586 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7587 comp_dir->name = DW_AT_comp_dir;
7588 comp_dir->form = DW_FORM_string;
7589 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7590 DW_STRING (comp_dir) = stub_comp_dir;
7591 }
7592
7593 /* Set up for reading the DWO CU/TU. */
7594 cu->dwo_unit = dwo_unit;
7595 dwarf2_section_info *section = dwo_unit->section;
7596 dwarf2_read_section (objfile, section);
7597 abfd = get_section_bfd_owner (section);
7598 begin_info_ptr = info_ptr = (section->buffer
7599 + to_underlying (dwo_unit->sect_off));
7600 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7601
7602 if (this_cu->is_debug_types)
7603 {
7604 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7605
7606 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7607 &cu->header, section,
7608 dwo_abbrev_section,
7609 info_ptr, rcuh_kind::TYPE);
7610 /* This is not an assert because it can be caused by bad debug info. */
7611 if (sig_type->signature != cu->header.signature)
7612 {
7613 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7614 " TU at offset %s [in module %s]"),
7615 hex_string (sig_type->signature),
7616 hex_string (cu->header.signature),
7617 sect_offset_str (dwo_unit->sect_off),
7618 bfd_get_filename (abfd));
7619 }
7620 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7621 /* For DWOs coming from DWP files, we don't know the CU length
7622 nor the type's offset in the TU until now. */
7623 dwo_unit->length = get_cu_length (&cu->header);
7624 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7625
7626 /* Establish the type offset that can be used to lookup the type.
7627 For DWO files, we don't know it until now. */
7628 sig_type->type_offset_in_section
7629 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7630 }
7631 else
7632 {
7633 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7634 &cu->header, section,
7635 dwo_abbrev_section,
7636 info_ptr, rcuh_kind::COMPILE);
7637 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7638 /* For DWOs coming from DWP files, we don't know the CU length
7639 until now. */
7640 dwo_unit->length = get_cu_length (&cu->header);
7641 }
7642
7643 *result_dwo_abbrev_table
7644 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7645 cu->header.abbrev_sect_off);
7646 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7647 result_dwo_abbrev_table->get ());
7648
7649 /* Read in the die, but leave space to copy over the attributes
7650 from the stub. This has the benefit of simplifying the rest of
7651 the code - all the work to maintain the illusion of a single
7652 DW_TAG_{compile,type}_unit DIE is done here. */
7653 num_extra_attrs = ((stmt_list != NULL)
7654 + (low_pc != NULL)
7655 + (high_pc != NULL)
7656 + (ranges != NULL)
7657 + (comp_dir != NULL));
7658 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7659 result_has_children, num_extra_attrs);
7660
7661 /* Copy over the attributes from the stub to the DIE we just read in. */
7662 comp_unit_die = *result_comp_unit_die;
7663 i = comp_unit_die->num_attrs;
7664 if (stmt_list != NULL)
7665 comp_unit_die->attrs[i++] = *stmt_list;
7666 if (low_pc != NULL)
7667 comp_unit_die->attrs[i++] = *low_pc;
7668 if (high_pc != NULL)
7669 comp_unit_die->attrs[i++] = *high_pc;
7670 if (ranges != NULL)
7671 comp_unit_die->attrs[i++] = *ranges;
7672 if (comp_dir != NULL)
7673 comp_unit_die->attrs[i++] = *comp_dir;
7674 comp_unit_die->num_attrs += num_extra_attrs;
7675
7676 if (dwarf_die_debug)
7677 {
7678 fprintf_unfiltered (gdb_stdlog,
7679 "Read die from %s@0x%x of %s:\n",
7680 get_section_name (section),
7681 (unsigned) (begin_info_ptr - section->buffer),
7682 bfd_get_filename (abfd));
7683 dump_die (comp_unit_die, dwarf_die_debug);
7684 }
7685
7686 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7687 TUs by skipping the stub and going directly to the entry in the DWO file.
7688 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7689 to get it via circuitous means. Blech. */
7690 if (comp_dir != NULL)
7691 result_reader->comp_dir = DW_STRING (comp_dir);
7692
7693 /* Skip dummy compilation units. */
7694 if (info_ptr >= begin_info_ptr + dwo_unit->length
7695 || peek_abbrev_code (abfd, info_ptr) == 0)
7696 return 0;
7697
7698 *result_info_ptr = info_ptr;
7699 return 1;
7700}
7701
7702/* Subroutine of init_cutu_and_read_dies to simplify it.
7703 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7704 Returns NULL if the specified DWO unit cannot be found. */
7705
7706static struct dwo_unit *
7707lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7708 struct die_info *comp_unit_die)
7709{
7710 struct dwarf2_cu *cu = this_cu->cu;
7711 ULONGEST signature;
7712 struct dwo_unit *dwo_unit;
7713 const char *comp_dir, *dwo_name;
7714
7715 gdb_assert (cu != NULL);
7716
7717 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7718 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7719 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7720
7721 if (this_cu->is_debug_types)
7722 {
7723 struct signatured_type *sig_type;
7724
7725 /* Since this_cu is the first member of struct signatured_type,
7726 we can go from a pointer to one to a pointer to the other. */
7727 sig_type = (struct signatured_type *) this_cu;
7728 signature = sig_type->signature;
7729 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7730 }
7731 else
7732 {
7733 struct attribute *attr;
7734
7735 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7736 if (! attr)
7737 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7738 " [in module %s]"),
7739 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7740 signature = DW_UNSND (attr);
7741 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7742 signature);
7743 }
7744
7745 return dwo_unit;
7746}
7747
7748/* Subroutine of init_cutu_and_read_dies to simplify it.
7749 See it for a description of the parameters.
7750 Read a TU directly from a DWO file, bypassing the stub. */
7751
7752static void
7753init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7754 int use_existing_cu, int keep,
7755 die_reader_func_ftype *die_reader_func,
7756 void *data)
7757{
7758 std::unique_ptr<dwarf2_cu> new_cu;
7759 struct signatured_type *sig_type;
7760 struct die_reader_specs reader;
7761 const gdb_byte *info_ptr;
7762 struct die_info *comp_unit_die;
7763 int has_children;
7764 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7765
7766 /* Verify we can do the following downcast, and that we have the
7767 data we need. */
7768 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7769 sig_type = (struct signatured_type *) this_cu;
7770 gdb_assert (sig_type->dwo_unit != NULL);
7771
7772 if (use_existing_cu && this_cu->cu != NULL)
7773 {
7774 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7775 /* There's no need to do the rereading_dwo_cu handling that
7776 init_cutu_and_read_dies does since we don't read the stub. */
7777 }
7778 else
7779 {
7780 /* If !use_existing_cu, this_cu->cu must be NULL. */
7781 gdb_assert (this_cu->cu == NULL);
7782 new_cu.reset (new dwarf2_cu (this_cu));
7783 }
7784
7785 /* A future optimization, if needed, would be to use an existing
7786 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7787 could share abbrev tables. */
7788
7789 /* The abbreviation table used by READER, this must live at least as long as
7790 READER. */
7791 abbrev_table_up dwo_abbrev_table;
7792
7793 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7794 NULL /* stub_comp_unit_die */,
7795 sig_type->dwo_unit->dwo_file->comp_dir,
7796 &reader, &info_ptr,
7797 &comp_unit_die, &has_children,
7798 &dwo_abbrev_table) == 0)
7799 {
7800 /* Dummy die. */
7801 return;
7802 }
7803
7804 /* All the "real" work is done here. */
7805 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7806
7807 /* This duplicates the code in init_cutu_and_read_dies,
7808 but the alternative is making the latter more complex.
7809 This function is only for the special case of using DWO files directly:
7810 no point in overly complicating the general case just to handle this. */
7811 if (new_cu != NULL && keep)
7812 {
7813 /* Link this CU into read_in_chain. */
7814 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7815 dwarf2_per_objfile->read_in_chain = this_cu;
7816 /* The chain owns it now. */
7817 new_cu.release ();
7818 }
7819}
7820
7821/* Initialize a CU (or TU) and read its DIEs.
7822 If the CU defers to a DWO file, read the DWO file as well.
7823
7824 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7825 Otherwise the table specified in the comp unit header is read in and used.
7826 This is an optimization for when we already have the abbrev table.
7827
7828 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7829 Otherwise, a new CU is allocated with xmalloc.
7830
7831 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7832 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7833
7834 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7835 linker) then DIE_READER_FUNC will not get called. */
7836
7837static void
7838init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7839 struct abbrev_table *abbrev_table,
7840 int use_existing_cu, int keep,
7841 die_reader_func_ftype *die_reader_func,
7842 void *data)
7843{
7844 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7845 struct objfile *objfile = dwarf2_per_objfile->objfile;
7846 struct dwarf2_section_info *section = this_cu->section;
7847 bfd *abfd = get_section_bfd_owner (section);
7848 struct dwarf2_cu *cu;
7849 const gdb_byte *begin_info_ptr, *info_ptr;
7850 struct die_reader_specs reader;
7851 struct die_info *comp_unit_die;
7852 int has_children;
7853 struct attribute *attr;
7854 struct signatured_type *sig_type = NULL;
7855 struct dwarf2_section_info *abbrev_section;
7856 /* Non-zero if CU currently points to a DWO file and we need to
7857 reread it. When this happens we need to reread the skeleton die
7858 before we can reread the DWO file (this only applies to CUs, not TUs). */
7859 int rereading_dwo_cu = 0;
7860
7861 if (dwarf_die_debug)
7862 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7863 this_cu->is_debug_types ? "type" : "comp",
7864 sect_offset_str (this_cu->sect_off));
7865
7866 if (use_existing_cu)
7867 gdb_assert (keep);
7868
7869 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7870 file (instead of going through the stub), short-circuit all of this. */
7871 if (this_cu->reading_dwo_directly)
7872 {
7873 /* Narrow down the scope of possibilities to have to understand. */
7874 gdb_assert (this_cu->is_debug_types);
7875 gdb_assert (abbrev_table == NULL);
7876 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7877 die_reader_func, data);
7878 return;
7879 }
7880
7881 /* This is cheap if the section is already read in. */
7882 dwarf2_read_section (objfile, section);
7883
7884 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7885
7886 abbrev_section = get_abbrev_section_for_cu (this_cu);
7887
7888 std::unique_ptr<dwarf2_cu> new_cu;
7889 if (use_existing_cu && this_cu->cu != NULL)
7890 {
7891 cu = this_cu->cu;
7892 /* If this CU is from a DWO file we need to start over, we need to
7893 refetch the attributes from the skeleton CU.
7894 This could be optimized by retrieving those attributes from when we
7895 were here the first time: the previous comp_unit_die was stored in
7896 comp_unit_obstack. But there's no data yet that we need this
7897 optimization. */
7898 if (cu->dwo_unit != NULL)
7899 rereading_dwo_cu = 1;
7900 }
7901 else
7902 {
7903 /* If !use_existing_cu, this_cu->cu must be NULL. */
7904 gdb_assert (this_cu->cu == NULL);
7905 new_cu.reset (new dwarf2_cu (this_cu));
7906 cu = new_cu.get ();
7907 }
7908
7909 /* Get the header. */
7910 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7911 {
7912 /* We already have the header, there's no need to read it in again. */
7913 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7914 }
7915 else
7916 {
7917 if (this_cu->is_debug_types)
7918 {
7919 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7920 &cu->header, section,
7921 abbrev_section, info_ptr,
7922 rcuh_kind::TYPE);
7923
7924 /* Since per_cu is the first member of struct signatured_type,
7925 we can go from a pointer to one to a pointer to the other. */
7926 sig_type = (struct signatured_type *) this_cu;
7927 gdb_assert (sig_type->signature == cu->header.signature);
7928 gdb_assert (sig_type->type_offset_in_tu
7929 == cu->header.type_cu_offset_in_tu);
7930 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7931
7932 /* LENGTH has not been set yet for type units if we're
7933 using .gdb_index. */
7934 this_cu->length = get_cu_length (&cu->header);
7935
7936 /* Establish the type offset that can be used to lookup the type. */
7937 sig_type->type_offset_in_section =
7938 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7939
7940 this_cu->dwarf_version = cu->header.version;
7941 }
7942 else
7943 {
7944 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7945 &cu->header, section,
7946 abbrev_section,
7947 info_ptr,
7948 rcuh_kind::COMPILE);
7949
7950 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7951 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7952 this_cu->dwarf_version = cu->header.version;
7953 }
7954 }
7955
7956 /* Skip dummy compilation units. */
7957 if (info_ptr >= begin_info_ptr + this_cu->length
7958 || peek_abbrev_code (abfd, info_ptr) == 0)
7959 return;
7960
7961 /* If we don't have them yet, read the abbrevs for this compilation unit.
7962 And if we need to read them now, make sure they're freed when we're
7963 done (own the table through ABBREV_TABLE_HOLDER). */
7964 abbrev_table_up abbrev_table_holder;
7965 if (abbrev_table != NULL)
7966 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7967 else
7968 {
7969 abbrev_table_holder
7970 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7971 cu->header.abbrev_sect_off);
7972 abbrev_table = abbrev_table_holder.get ();
7973 }
7974
7975 /* Read the top level CU/TU die. */
7976 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7977 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7978
7979 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7980 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7981 table from the DWO file and pass the ownership over to us. It will be
7982 referenced from READER, so we must make sure to free it after we're done
7983 with READER.
7984
7985 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7986 DWO CU, that this test will fail (the attribute will not be present). */
7987 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7988 abbrev_table_up dwo_abbrev_table;
7989 if (attr)
7990 {
7991 struct dwo_unit *dwo_unit;
7992 struct die_info *dwo_comp_unit_die;
7993
7994 if (has_children)
7995 {
7996 complaint (&symfile_complaints,
7997 _("compilation unit with DW_AT_GNU_dwo_name"
7998 " has children (offset %s) [in module %s]"),
7999 sect_offset_str (this_cu->sect_off),
8000 bfd_get_filename (abfd));
8001 }
8002 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
8003 if (dwo_unit != NULL)
8004 {
8005 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
8006 comp_unit_die, NULL,
8007 &reader, &info_ptr,
8008 &dwo_comp_unit_die, &has_children,
8009 &dwo_abbrev_table) == 0)
8010 {
8011 /* Dummy die. */
8012 return;
8013 }
8014 comp_unit_die = dwo_comp_unit_die;
8015 }
8016 else
8017 {
8018 /* Yikes, we couldn't find the rest of the DIE, we only have
8019 the stub. A complaint has already been logged. There's
8020 not much more we can do except pass on the stub DIE to
8021 die_reader_func. We don't want to throw an error on bad
8022 debug info. */
8023 }
8024 }
8025
8026 /* All of the above is setup for this call. Yikes. */
8027 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
8028
8029 /* Done, clean up. */
8030 if (new_cu != NULL && keep)
8031 {
8032 /* Link this CU into read_in_chain. */
8033 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
8034 dwarf2_per_objfile->read_in_chain = this_cu;
8035 /* The chain owns it now. */
8036 new_cu.release ();
8037 }
8038}
8039
8040/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
8041 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
8042 to have already done the lookup to find the DWO file).
8043
8044 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
8045 THIS_CU->is_debug_types, but nothing else.
8046
8047 We fill in THIS_CU->length.
8048
8049 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
8050 linker) then DIE_READER_FUNC will not get called.
8051
8052 THIS_CU->cu is always freed when done.
8053 This is done in order to not leave THIS_CU->cu in a state where we have
8054 to care whether it refers to the "main" CU or the DWO CU. */
8055
8056static void
8057init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
8058 struct dwo_file *dwo_file,
8059 die_reader_func_ftype *die_reader_func,
8060 void *data)
8061{
8062 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
8063 struct objfile *objfile = dwarf2_per_objfile->objfile;
8064 struct dwarf2_section_info *section = this_cu->section;
8065 bfd *abfd = get_section_bfd_owner (section);
8066 struct dwarf2_section_info *abbrev_section;
8067 const gdb_byte *begin_info_ptr, *info_ptr;
8068 struct die_reader_specs reader;
8069 struct die_info *comp_unit_die;
8070 int has_children;
8071
8072 if (dwarf_die_debug)
8073 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
8074 this_cu->is_debug_types ? "type" : "comp",
8075 sect_offset_str (this_cu->sect_off));
8076
8077 gdb_assert (this_cu->cu == NULL);
8078
8079 abbrev_section = (dwo_file != NULL
8080 ? &dwo_file->sections.abbrev
8081 : get_abbrev_section_for_cu (this_cu));
8082
8083 /* This is cheap if the section is already read in. */
8084 dwarf2_read_section (objfile, section);
8085
8086 struct dwarf2_cu cu (this_cu);
8087
8088 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
8089 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
8090 &cu.header, section,
8091 abbrev_section, info_ptr,
8092 (this_cu->is_debug_types
8093 ? rcuh_kind::TYPE
8094 : rcuh_kind::COMPILE));
8095
8096 this_cu->length = get_cu_length (&cu.header);
8097
8098 /* Skip dummy compilation units. */
8099 if (info_ptr >= begin_info_ptr + this_cu->length
8100 || peek_abbrev_code (abfd, info_ptr) == 0)
8101 return;
8102
8103 abbrev_table_up abbrev_table
8104 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
8105 cu.header.abbrev_sect_off);
8106
8107 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
8108 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
8109
8110 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
8111}
8112
8113/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
8114 does not lookup the specified DWO file.
8115 This cannot be used to read DWO files.
8116
8117 THIS_CU->cu is always freed when done.
8118 This is done in order to not leave THIS_CU->cu in a state where we have
8119 to care whether it refers to the "main" CU or the DWO CU.
8120 We can revisit this if the data shows there's a performance issue. */
8121
8122static void
8123init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
8124 die_reader_func_ftype *die_reader_func,
8125 void *data)
8126{
8127 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
8128}
8129\f
8130/* Type Unit Groups.
8131
8132 Type Unit Groups are a way to collapse the set of all TUs (type units) into
8133 a more manageable set. The grouping is done by DW_AT_stmt_list entry
8134 so that all types coming from the same compilation (.o file) are grouped
8135 together. A future step could be to put the types in the same symtab as
8136 the CU the types ultimately came from. */
8137
8138static hashval_t
8139hash_type_unit_group (const void *item)
8140{
8141 const struct type_unit_group *tu_group
8142 = (const struct type_unit_group *) item;
8143
8144 return hash_stmt_list_entry (&tu_group->hash);
8145}
8146
8147static int
8148eq_type_unit_group (const void *item_lhs, const void *item_rhs)
8149{
8150 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
8151 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
8152
8153 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
8154}
8155
8156/* Allocate a hash table for type unit groups. */
8157
8158static htab_t
8159allocate_type_unit_groups_table (struct objfile *objfile)
8160{
8161 return htab_create_alloc_ex (3,
8162 hash_type_unit_group,
8163 eq_type_unit_group,
8164 NULL,
8165 &objfile->objfile_obstack,
8166 hashtab_obstack_allocate,
8167 dummy_obstack_deallocate);
8168}
8169
8170/* Type units that don't have DW_AT_stmt_list are grouped into their own
8171 partial symtabs. We combine several TUs per psymtab to not let the size
8172 of any one psymtab grow too big. */
8173#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
8174#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
8175
8176/* Helper routine for get_type_unit_group.
8177 Create the type_unit_group object used to hold one or more TUs. */
8178
8179static struct type_unit_group *
8180create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
8181{
8182 struct dwarf2_per_objfile *dwarf2_per_objfile
8183 = cu->per_cu->dwarf2_per_objfile;
8184 struct objfile *objfile = dwarf2_per_objfile->objfile;
8185 struct dwarf2_per_cu_data *per_cu;
8186 struct type_unit_group *tu_group;
8187
8188 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8189 struct type_unit_group);
8190 per_cu = &tu_group->per_cu;
8191 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8192
8193 if (dwarf2_per_objfile->using_index)
8194 {
8195 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8196 struct dwarf2_per_cu_quick_data);
8197 }
8198 else
8199 {
8200 unsigned int line_offset = to_underlying (line_offset_struct);
8201 struct partial_symtab *pst;
8202 char *name;
8203
8204 /* Give the symtab a useful name for debug purposes. */
8205 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
8206 name = xstrprintf ("<type_units_%d>",
8207 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
8208 else
8209 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
8210
8211 pst = create_partial_symtab (per_cu, name);
8212 pst->anonymous = 1;
8213
8214 xfree (name);
8215 }
8216
8217 tu_group->hash.dwo_unit = cu->dwo_unit;
8218 tu_group->hash.line_sect_off = line_offset_struct;
8219
8220 return tu_group;
8221}
8222
8223/* Look up the type_unit_group for type unit CU, and create it if necessary.
8224 STMT_LIST is a DW_AT_stmt_list attribute. */
8225
8226static struct type_unit_group *
8227get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
8228{
8229 struct dwarf2_per_objfile *dwarf2_per_objfile
8230 = cu->per_cu->dwarf2_per_objfile;
8231 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8232 struct type_unit_group *tu_group;
8233 void **slot;
8234 unsigned int line_offset;
8235 struct type_unit_group type_unit_group_for_lookup;
8236
8237 if (dwarf2_per_objfile->type_unit_groups == NULL)
8238 {
8239 dwarf2_per_objfile->type_unit_groups =
8240 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
8241 }
8242
8243 /* Do we need to create a new group, or can we use an existing one? */
8244
8245 if (stmt_list)
8246 {
8247 line_offset = DW_UNSND (stmt_list);
8248 ++tu_stats->nr_symtab_sharers;
8249 }
8250 else
8251 {
8252 /* Ugh, no stmt_list. Rare, but we have to handle it.
8253 We can do various things here like create one group per TU or
8254 spread them over multiple groups to split up the expansion work.
8255 To avoid worst case scenarios (too many groups or too large groups)
8256 we, umm, group them in bunches. */
8257 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
8258 | (tu_stats->nr_stmt_less_type_units
8259 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
8260 ++tu_stats->nr_stmt_less_type_units;
8261 }
8262
8263 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
8264 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
8265 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
8266 &type_unit_group_for_lookup, INSERT);
8267 if (*slot != NULL)
8268 {
8269 tu_group = (struct type_unit_group *) *slot;
8270 gdb_assert (tu_group != NULL);
8271 }
8272 else
8273 {
8274 sect_offset line_offset_struct = (sect_offset) line_offset;
8275 tu_group = create_type_unit_group (cu, line_offset_struct);
8276 *slot = tu_group;
8277 ++tu_stats->nr_symtabs;
8278 }
8279
8280 return tu_group;
8281}
8282\f
8283/* Partial symbol tables. */
8284
8285/* Create a psymtab named NAME and assign it to PER_CU.
8286
8287 The caller must fill in the following details:
8288 dirname, textlow, texthigh. */
8289
8290static struct partial_symtab *
8291create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
8292{
8293 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
8294 struct partial_symtab *pst;
8295
8296 pst = start_psymtab_common (objfile, name, 0,
8297 objfile->global_psymbols,
8298 objfile->static_psymbols);
8299
8300 pst->psymtabs_addrmap_supported = 1;
8301
8302 /* This is the glue that links PST into GDB's symbol API. */
8303 pst->read_symtab_private = per_cu;
8304 pst->read_symtab = dwarf2_read_symtab;
8305 per_cu->v.psymtab = pst;
8306
8307 return pst;
8308}
8309
8310/* The DATA object passed to process_psymtab_comp_unit_reader has this
8311 type. */
8312
8313struct process_psymtab_comp_unit_data
8314{
8315 /* True if we are reading a DW_TAG_partial_unit. */
8316
8317 int want_partial_unit;
8318
8319 /* The "pretend" language that is used if the CU doesn't declare a
8320 language. */
8321
8322 enum language pretend_language;
8323};
8324
8325/* die_reader_func for process_psymtab_comp_unit. */
8326
8327static void
8328process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
8329 const gdb_byte *info_ptr,
8330 struct die_info *comp_unit_die,
8331 int has_children,
8332 void *data)
8333{
8334 struct dwarf2_cu *cu = reader->cu;
8335 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8336 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8337 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8338 CORE_ADDR baseaddr;
8339 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8340 struct partial_symtab *pst;
8341 enum pc_bounds_kind cu_bounds_kind;
8342 const char *filename;
8343 struct process_psymtab_comp_unit_data *info
8344 = (struct process_psymtab_comp_unit_data *) data;
8345
8346 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8347 return;
8348
8349 gdb_assert (! per_cu->is_debug_types);
8350
8351 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8352
8353 cu->list_in_scope = &file_symbols;
8354
8355 /* Allocate a new partial symbol table structure. */
8356 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8357 if (filename == NULL)
8358 filename = "";
8359
8360 pst = create_partial_symtab (per_cu, filename);
8361
8362 /* This must be done before calling dwarf2_build_include_psymtabs. */
8363 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8364
8365 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8366
8367 dwarf2_find_base_address (comp_unit_die, cu);
8368
8369 /* Possibly set the default values of LOWPC and HIGHPC from
8370 `DW_AT_ranges'. */
8371 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8372 &best_highpc, cu, pst);
8373 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8374 /* Store the contiguous range if it is not empty; it can be empty for
8375 CUs with no code. */
8376 addrmap_set_empty (objfile->psymtabs_addrmap,
8377 gdbarch_adjust_dwarf2_addr (gdbarch,
8378 best_lowpc + baseaddr),
8379 gdbarch_adjust_dwarf2_addr (gdbarch,
8380 best_highpc + baseaddr) - 1,
8381 pst);
8382
8383 /* Check if comp unit has_children.
8384 If so, read the rest of the partial symbols from this comp unit.
8385 If not, there's no more debug_info for this comp unit. */
8386 if (has_children)
8387 {
8388 struct partial_die_info *first_die;
8389 CORE_ADDR lowpc, highpc;
8390
8391 lowpc = ((CORE_ADDR) -1);
8392 highpc = ((CORE_ADDR) 0);
8393
8394 first_die = load_partial_dies (reader, info_ptr, 1);
8395
8396 scan_partial_symbols (first_die, &lowpc, &highpc,
8397 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8398
8399 /* If we didn't find a lowpc, set it to highpc to avoid
8400 complaints from `maint check'. */
8401 if (lowpc == ((CORE_ADDR) -1))
8402 lowpc = highpc;
8403
8404 /* If the compilation unit didn't have an explicit address range,
8405 then use the information extracted from its child dies. */
8406 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8407 {
8408 best_lowpc = lowpc;
8409 best_highpc = highpc;
8410 }
8411 }
8412 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
8413 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
8414
8415 end_psymtab_common (objfile, pst);
8416
8417 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8418 {
8419 int i;
8420 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8421 struct dwarf2_per_cu_data *iter;
8422
8423 /* Fill in 'dependencies' here; we fill in 'users' in a
8424 post-pass. */
8425 pst->number_of_dependencies = len;
8426 pst->dependencies =
8427 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8428 for (i = 0;
8429 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8430 i, iter);
8431 ++i)
8432 pst->dependencies[i] = iter->v.psymtab;
8433
8434 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8435 }
8436
8437 /* Get the list of files included in the current compilation unit,
8438 and build a psymtab for each of them. */
8439 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8440
8441 if (dwarf_read_debug)
8442 {
8443 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8444
8445 fprintf_unfiltered (gdb_stdlog,
8446 "Psymtab for %s unit @%s: %s - %s"
8447 ", %d global, %d static syms\n",
8448 per_cu->is_debug_types ? "type" : "comp",
8449 sect_offset_str (per_cu->sect_off),
8450 paddress (gdbarch, pst->textlow),
8451 paddress (gdbarch, pst->texthigh),
8452 pst->n_global_syms, pst->n_static_syms);
8453 }
8454}
8455
8456/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8457 Process compilation unit THIS_CU for a psymtab. */
8458
8459static void
8460process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8461 int want_partial_unit,
8462 enum language pretend_language)
8463{
8464 /* If this compilation unit was already read in, free the
8465 cached copy in order to read it in again. This is
8466 necessary because we skipped some symbols when we first
8467 read in the compilation unit (see load_partial_dies).
8468 This problem could be avoided, but the benefit is unclear. */
8469 if (this_cu->cu != NULL)
8470 free_one_cached_comp_unit (this_cu);
8471
8472 if (this_cu->is_debug_types)
8473 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
8474 NULL);
8475 else
8476 {
8477 process_psymtab_comp_unit_data info;
8478 info.want_partial_unit = want_partial_unit;
8479 info.pretend_language = pretend_language;
8480 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
8481 process_psymtab_comp_unit_reader, &info);
8482 }
8483
8484 /* Age out any secondary CUs. */
8485 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8486}
8487
8488/* Reader function for build_type_psymtabs. */
8489
8490static void
8491build_type_psymtabs_reader (const struct die_reader_specs *reader,
8492 const gdb_byte *info_ptr,
8493 struct die_info *type_unit_die,
8494 int has_children,
8495 void *data)
8496{
8497 struct dwarf2_per_objfile *dwarf2_per_objfile
8498 = reader->cu->per_cu->dwarf2_per_objfile;
8499 struct objfile *objfile = dwarf2_per_objfile->objfile;
8500 struct dwarf2_cu *cu = reader->cu;
8501 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8502 struct signatured_type *sig_type;
8503 struct type_unit_group *tu_group;
8504 struct attribute *attr;
8505 struct partial_die_info *first_die;
8506 CORE_ADDR lowpc, highpc;
8507 struct partial_symtab *pst;
8508
8509 gdb_assert (data == NULL);
8510 gdb_assert (per_cu->is_debug_types);
8511 sig_type = (struct signatured_type *) per_cu;
8512
8513 if (! has_children)
8514 return;
8515
8516 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8517 tu_group = get_type_unit_group (cu, attr);
8518
8519 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8520
8521 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8522 cu->list_in_scope = &file_symbols;
8523 pst = create_partial_symtab (per_cu, "");
8524 pst->anonymous = 1;
8525
8526 first_die = load_partial_dies (reader, info_ptr, 1);
8527
8528 lowpc = (CORE_ADDR) -1;
8529 highpc = (CORE_ADDR) 0;
8530 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8531
8532 end_psymtab_common (objfile, pst);
8533}
8534
8535/* Struct used to sort TUs by their abbreviation table offset. */
8536
8537struct tu_abbrev_offset
8538{
8539 struct signatured_type *sig_type;
8540 sect_offset abbrev_offset;
8541};
8542
8543/* Helper routine for build_type_psymtabs_1, passed to qsort. */
8544
8545static int
8546sort_tu_by_abbrev_offset (const void *ap, const void *bp)
8547{
8548 const struct tu_abbrev_offset * const *a
8549 = (const struct tu_abbrev_offset * const*) ap;
8550 const struct tu_abbrev_offset * const *b
8551 = (const struct tu_abbrev_offset * const*) bp;
8552 sect_offset aoff = (*a)->abbrev_offset;
8553 sect_offset boff = (*b)->abbrev_offset;
8554
8555 return (aoff > boff) - (aoff < boff);
8556}
8557
8558/* Efficiently read all the type units.
8559 This does the bulk of the work for build_type_psymtabs.
8560
8561 The efficiency is because we sort TUs by the abbrev table they use and
8562 only read each abbrev table once. In one program there are 200K TUs
8563 sharing 8K abbrev tables.
8564
8565 The main purpose of this function is to support building the
8566 dwarf2_per_objfile->type_unit_groups table.
8567 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8568 can collapse the search space by grouping them by stmt_list.
8569 The savings can be significant, in the same program from above the 200K TUs
8570 share 8K stmt_list tables.
8571
8572 FUNC is expected to call get_type_unit_group, which will create the
8573 struct type_unit_group if necessary and add it to
8574 dwarf2_per_objfile->type_unit_groups. */
8575
8576static void
8577build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8578{
8579 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8580 struct cleanup *cleanups;
8581 abbrev_table_up abbrev_table;
8582 sect_offset abbrev_offset;
8583 struct tu_abbrev_offset *sorted_by_abbrev;
8584 int i;
8585
8586 /* It's up to the caller to not call us multiple times. */
8587 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8588
8589 if (dwarf2_per_objfile->n_type_units == 0)
8590 return;
8591
8592 /* TUs typically share abbrev tables, and there can be way more TUs than
8593 abbrev tables. Sort by abbrev table to reduce the number of times we
8594 read each abbrev table in.
8595 Alternatives are to punt or to maintain a cache of abbrev tables.
8596 This is simpler and efficient enough for now.
8597
8598 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8599 symtab to use). Typically TUs with the same abbrev offset have the same
8600 stmt_list value too so in practice this should work well.
8601
8602 The basic algorithm here is:
8603
8604 sort TUs by abbrev table
8605 for each TU with same abbrev table:
8606 read abbrev table if first user
8607 read TU top level DIE
8608 [IWBN if DWO skeletons had DW_AT_stmt_list]
8609 call FUNC */
8610
8611 if (dwarf_read_debug)
8612 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8613
8614 /* Sort in a separate table to maintain the order of all_type_units
8615 for .gdb_index: TU indices directly index all_type_units. */
8616 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
8617 dwarf2_per_objfile->n_type_units);
8618 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8619 {
8620 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
8621
8622 sorted_by_abbrev[i].sig_type = sig_type;
8623 sorted_by_abbrev[i].abbrev_offset =
8624 read_abbrev_offset (dwarf2_per_objfile,
8625 sig_type->per_cu.section,
8626 sig_type->per_cu.sect_off);
8627 }
8628 cleanups = make_cleanup (xfree, sorted_by_abbrev);
8629 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
8630 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
8631
8632 abbrev_offset = (sect_offset) ~(unsigned) 0;
8633
8634 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8635 {
8636 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
8637
8638 /* Switch to the next abbrev table if necessary. */
8639 if (abbrev_table == NULL
8640 || tu->abbrev_offset != abbrev_offset)
8641 {
8642 abbrev_offset = tu->abbrev_offset;
8643 abbrev_table =
8644 abbrev_table_read_table (dwarf2_per_objfile,
8645 &dwarf2_per_objfile->abbrev,
8646 abbrev_offset);
8647 ++tu_stats->nr_uniq_abbrev_tables;
8648 }
8649
8650 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table.get (),
8651 0, 0, build_type_psymtabs_reader, NULL);
8652 }
8653
8654 do_cleanups (cleanups);
8655}
8656
8657/* Print collected type unit statistics. */
8658
8659static void
8660print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8661{
8662 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8663
8664 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8665 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
8666 dwarf2_per_objfile->n_type_units);
8667 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8668 tu_stats->nr_uniq_abbrev_tables);
8669 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8670 tu_stats->nr_symtabs);
8671 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8672 tu_stats->nr_symtab_sharers);
8673 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8674 tu_stats->nr_stmt_less_type_units);
8675 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8676 tu_stats->nr_all_type_units_reallocs);
8677}
8678
8679/* Traversal function for build_type_psymtabs. */
8680
8681static int
8682build_type_psymtab_dependencies (void **slot, void *info)
8683{
8684 struct dwarf2_per_objfile *dwarf2_per_objfile
8685 = (struct dwarf2_per_objfile *) info;
8686 struct objfile *objfile = dwarf2_per_objfile->objfile;
8687 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8688 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8689 struct partial_symtab *pst = per_cu->v.psymtab;
8690 int len = VEC_length (sig_type_ptr, tu_group->tus);
8691 struct signatured_type *iter;
8692 int i;
8693
8694 gdb_assert (len > 0);
8695 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8696
8697 pst->number_of_dependencies = len;
8698 pst->dependencies =
8699 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8700 for (i = 0;
8701 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8702 ++i)
8703 {
8704 gdb_assert (iter->per_cu.is_debug_types);
8705 pst->dependencies[i] = iter->per_cu.v.psymtab;
8706 iter->type_unit_group = tu_group;
8707 }
8708
8709 VEC_free (sig_type_ptr, tu_group->tus);
8710
8711 return 1;
8712}
8713
8714/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8715 Build partial symbol tables for the .debug_types comp-units. */
8716
8717static void
8718build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8719{
8720 if (! create_all_type_units (dwarf2_per_objfile))
8721 return;
8722
8723 build_type_psymtabs_1 (dwarf2_per_objfile);
8724}
8725
8726/* Traversal function for process_skeletonless_type_unit.
8727 Read a TU in a DWO file and build partial symbols for it. */
8728
8729static int
8730process_skeletonless_type_unit (void **slot, void *info)
8731{
8732 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8733 struct dwarf2_per_objfile *dwarf2_per_objfile
8734 = (struct dwarf2_per_objfile *) info;
8735 struct signatured_type find_entry, *entry;
8736
8737 /* If this TU doesn't exist in the global table, add it and read it in. */
8738
8739 if (dwarf2_per_objfile->signatured_types == NULL)
8740 {
8741 dwarf2_per_objfile->signatured_types
8742 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8743 }
8744
8745 find_entry.signature = dwo_unit->signature;
8746 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8747 INSERT);
8748 /* If we've already seen this type there's nothing to do. What's happening
8749 is we're doing our own version of comdat-folding here. */
8750 if (*slot != NULL)
8751 return 1;
8752
8753 /* This does the job that create_all_type_units would have done for
8754 this TU. */
8755 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8756 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8757 *slot = entry;
8758
8759 /* This does the job that build_type_psymtabs_1 would have done. */
8760 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
8761 build_type_psymtabs_reader, NULL);
8762
8763 return 1;
8764}
8765
8766/* Traversal function for process_skeletonless_type_units. */
8767
8768static int
8769process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8770{
8771 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8772
8773 if (dwo_file->tus != NULL)
8774 {
8775 htab_traverse_noresize (dwo_file->tus,
8776 process_skeletonless_type_unit, info);
8777 }
8778
8779 return 1;
8780}
8781
8782/* Scan all TUs of DWO files, verifying we've processed them.
8783 This is needed in case a TU was emitted without its skeleton.
8784 Note: This can't be done until we know what all the DWO files are. */
8785
8786static void
8787process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8788{
8789 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8790 if (get_dwp_file (dwarf2_per_objfile) == NULL
8791 && dwarf2_per_objfile->dwo_files != NULL)
8792 {
8793 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8794 process_dwo_file_for_skeletonless_type_units,
8795 dwarf2_per_objfile);
8796 }
8797}
8798
8799/* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8800
8801static void
8802set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8803{
8804 int i;
8805
8806 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8807 {
8808 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8809 struct partial_symtab *pst = per_cu->v.psymtab;
8810 int j;
8811
8812 if (pst == NULL)
8813 continue;
8814
8815 for (j = 0; j < pst->number_of_dependencies; ++j)
8816 {
8817 /* Set the 'user' field only if it is not already set. */
8818 if (pst->dependencies[j]->user == NULL)
8819 pst->dependencies[j]->user = pst;
8820 }
8821 }
8822}
8823
8824/* Build the partial symbol table by doing a quick pass through the
8825 .debug_info and .debug_abbrev sections. */
8826
8827static void
8828dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8829{
8830 struct cleanup *back_to;
8831 int i;
8832 struct objfile *objfile = dwarf2_per_objfile->objfile;
8833
8834 if (dwarf_read_debug)
8835 {
8836 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8837 objfile_name (objfile));
8838 }
8839
8840 dwarf2_per_objfile->reading_partial_symbols = 1;
8841
8842 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8843
8844 /* Any cached compilation units will be linked by the per-objfile
8845 read_in_chain. Make sure to free them when we're done. */
8846 back_to = make_cleanup (free_cached_comp_units, dwarf2_per_objfile);
8847
8848 build_type_psymtabs (dwarf2_per_objfile);
8849
8850 create_all_comp_units (dwarf2_per_objfile);
8851
8852 /* Create a temporary address map on a temporary obstack. We later
8853 copy this to the final obstack. */
8854 auto_obstack temp_obstack;
8855
8856 scoped_restore save_psymtabs_addrmap
8857 = make_scoped_restore (&objfile->psymtabs_addrmap,
8858 addrmap_create_mutable (&temp_obstack));
8859
8860 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8861 {
8862 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8863
8864 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8865 }
8866
8867 /* This has to wait until we read the CUs, we need the list of DWOs. */
8868 process_skeletonless_type_units (dwarf2_per_objfile);
8869
8870 /* Now that all TUs have been processed we can fill in the dependencies. */
8871 if (dwarf2_per_objfile->type_unit_groups != NULL)
8872 {
8873 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8874 build_type_psymtab_dependencies, dwarf2_per_objfile);
8875 }
8876
8877 if (dwarf_read_debug)
8878 print_tu_stats (dwarf2_per_objfile);
8879
8880 set_partial_user (dwarf2_per_objfile);
8881
8882 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8883 &objfile->objfile_obstack);
8884 /* At this point we want to keep the address map. */
8885 save_psymtabs_addrmap.release ();
8886
8887 do_cleanups (back_to);
8888
8889 if (dwarf_read_debug)
8890 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8891 objfile_name (objfile));
8892}
8893
8894/* die_reader_func for load_partial_comp_unit. */
8895
8896static void
8897load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8898 const gdb_byte *info_ptr,
8899 struct die_info *comp_unit_die,
8900 int has_children,
8901 void *data)
8902{
8903 struct dwarf2_cu *cu = reader->cu;
8904
8905 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8906
8907 /* Check if comp unit has_children.
8908 If so, read the rest of the partial symbols from this comp unit.
8909 If not, there's no more debug_info for this comp unit. */
8910 if (has_children)
8911 load_partial_dies (reader, info_ptr, 0);
8912}
8913
8914/* Load the partial DIEs for a secondary CU into memory.
8915 This is also used when rereading a primary CU with load_all_dies. */
8916
8917static void
8918load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8919{
8920 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8921 load_partial_comp_unit_reader, NULL);
8922}
8923
8924static void
8925read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8926 struct dwarf2_section_info *section,
8927 struct dwarf2_section_info *abbrev_section,
8928 unsigned int is_dwz,
8929 int *n_allocated,
8930 int *n_comp_units,
8931 struct dwarf2_per_cu_data ***all_comp_units)
8932{
8933 const gdb_byte *info_ptr;
8934 struct objfile *objfile = dwarf2_per_objfile->objfile;
8935
8936 if (dwarf_read_debug)
8937 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8938 get_section_name (section),
8939 get_section_file_name (section));
8940
8941 dwarf2_read_section (objfile, section);
8942
8943 info_ptr = section->buffer;
8944
8945 while (info_ptr < section->buffer + section->size)
8946 {
8947 struct dwarf2_per_cu_data *this_cu;
8948
8949 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8950
8951 comp_unit_head cu_header;
8952 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8953 abbrev_section, info_ptr,
8954 rcuh_kind::COMPILE);
8955
8956 /* Save the compilation unit for later lookup. */
8957 if (cu_header.unit_type != DW_UT_type)
8958 {
8959 this_cu = XOBNEW (&objfile->objfile_obstack,
8960 struct dwarf2_per_cu_data);
8961 memset (this_cu, 0, sizeof (*this_cu));
8962 }
8963 else
8964 {
8965 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8966 struct signatured_type);
8967 memset (sig_type, 0, sizeof (*sig_type));
8968 sig_type->signature = cu_header.signature;
8969 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8970 this_cu = &sig_type->per_cu;
8971 }
8972 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8973 this_cu->sect_off = sect_off;
8974 this_cu->length = cu_header.length + cu_header.initial_length_size;
8975 this_cu->is_dwz = is_dwz;
8976 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8977 this_cu->section = section;
8978
8979 if (*n_comp_units == *n_allocated)
8980 {
8981 *n_allocated *= 2;
8982 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
8983 *all_comp_units, *n_allocated);
8984 }
8985 (*all_comp_units)[*n_comp_units] = this_cu;
8986 ++*n_comp_units;
8987
8988 info_ptr = info_ptr + this_cu->length;
8989 }
8990}
8991
8992/* Create a list of all compilation units in OBJFILE.
8993 This is only done for -readnow and building partial symtabs. */
8994
8995static void
8996create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8997{
8998 int n_allocated;
8999 int n_comp_units;
9000 struct dwarf2_per_cu_data **all_comp_units;
9001 struct dwz_file *dwz;
9002 struct objfile *objfile = dwarf2_per_objfile->objfile;
9003
9004 n_comp_units = 0;
9005 n_allocated = 10;
9006 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
9007
9008 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
9009 &dwarf2_per_objfile->abbrev, 0,
9010 &n_allocated, &n_comp_units, &all_comp_units);
9011
9012 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
9013 if (dwz != NULL)
9014 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
9015 1, &n_allocated, &n_comp_units,
9016 &all_comp_units);
9017
9018 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
9019 struct dwarf2_per_cu_data *,
9020 n_comp_units);
9021 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
9022 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
9023 xfree (all_comp_units);
9024 dwarf2_per_objfile->n_comp_units = n_comp_units;
9025}
9026
9027/* Process all loaded DIEs for compilation unit CU, starting at
9028 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
9029 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
9030 DW_AT_ranges). See the comments of add_partial_subprogram on how
9031 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
9032
9033static void
9034scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
9035 CORE_ADDR *highpc, int set_addrmap,
9036 struct dwarf2_cu *cu)
9037{
9038 struct partial_die_info *pdi;
9039
9040 /* Now, march along the PDI's, descending into ones which have
9041 interesting children but skipping the children of the other ones,
9042 until we reach the end of the compilation unit. */
9043
9044 pdi = first_die;
9045
9046 while (pdi != NULL)
9047 {
9048 fixup_partial_die (pdi, cu);
9049
9050 /* Anonymous namespaces or modules have no name but have interesting
9051 children, so we need to look at them. Ditto for anonymous
9052 enums. */
9053
9054 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
9055 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
9056 || pdi->tag == DW_TAG_imported_unit
9057 || pdi->tag == DW_TAG_inlined_subroutine)
9058 {
9059 switch (pdi->tag)
9060 {
9061 case DW_TAG_subprogram:
9062 case DW_TAG_inlined_subroutine:
9063 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9064 break;
9065 case DW_TAG_constant:
9066 case DW_TAG_variable:
9067 case DW_TAG_typedef:
9068 case DW_TAG_union_type:
9069 if (!pdi->is_declaration)
9070 {
9071 add_partial_symbol (pdi, cu);
9072 }
9073 break;
9074 case DW_TAG_class_type:
9075 case DW_TAG_interface_type:
9076 case DW_TAG_structure_type:
9077 if (!pdi->is_declaration)
9078 {
9079 add_partial_symbol (pdi, cu);
9080 }
9081 if (cu->language == language_rust && pdi->has_children)
9082 scan_partial_symbols (pdi->die_child, lowpc, highpc,
9083 set_addrmap, cu);
9084 break;
9085 case DW_TAG_enumeration_type:
9086 if (!pdi->is_declaration)
9087 add_partial_enumeration (pdi, cu);
9088 break;
9089 case DW_TAG_base_type:
9090 case DW_TAG_subrange_type:
9091 /* File scope base type definitions are added to the partial
9092 symbol table. */
9093 add_partial_symbol (pdi, cu);
9094 break;
9095 case DW_TAG_namespace:
9096 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
9097 break;
9098 case DW_TAG_module:
9099 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
9100 break;
9101 case DW_TAG_imported_unit:
9102 {
9103 struct dwarf2_per_cu_data *per_cu;
9104
9105 /* For now we don't handle imported units in type units. */
9106 if (cu->per_cu->is_debug_types)
9107 {
9108 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9109 " supported in type units [in module %s]"),
9110 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9111 }
9112
9113 per_cu = dwarf2_find_containing_comp_unit
9114 (pdi->d.sect_off, pdi->is_dwz,
9115 cu->per_cu->dwarf2_per_objfile);
9116
9117 /* Go read the partial unit, if needed. */
9118 if (per_cu->v.psymtab == NULL)
9119 process_psymtab_comp_unit (per_cu, 1, cu->language);
9120
9121 VEC_safe_push (dwarf2_per_cu_ptr,
9122 cu->per_cu->imported_symtabs, per_cu);
9123 }
9124 break;
9125 case DW_TAG_imported_declaration:
9126 add_partial_symbol (pdi, cu);
9127 break;
9128 default:
9129 break;
9130 }
9131 }
9132
9133 /* If the die has a sibling, skip to the sibling. */
9134
9135 pdi = pdi->die_sibling;
9136 }
9137}
9138
9139/* Functions used to compute the fully scoped name of a partial DIE.
9140
9141 Normally, this is simple. For C++, the parent DIE's fully scoped
9142 name is concatenated with "::" and the partial DIE's name.
9143 Enumerators are an exception; they use the scope of their parent
9144 enumeration type, i.e. the name of the enumeration type is not
9145 prepended to the enumerator.
9146
9147 There are two complexities. One is DW_AT_specification; in this
9148 case "parent" means the parent of the target of the specification,
9149 instead of the direct parent of the DIE. The other is compilers
9150 which do not emit DW_TAG_namespace; in this case we try to guess
9151 the fully qualified name of structure types from their members'
9152 linkage names. This must be done using the DIE's children rather
9153 than the children of any DW_AT_specification target. We only need
9154 to do this for structures at the top level, i.e. if the target of
9155 any DW_AT_specification (if any; otherwise the DIE itself) does not
9156 have a parent. */
9157
9158/* Compute the scope prefix associated with PDI's parent, in
9159 compilation unit CU. The result will be allocated on CU's
9160 comp_unit_obstack, or a copy of the already allocated PDI->NAME
9161 field. NULL is returned if no prefix is necessary. */
9162static const char *
9163partial_die_parent_scope (struct partial_die_info *pdi,
9164 struct dwarf2_cu *cu)
9165{
9166 const char *grandparent_scope;
9167 struct partial_die_info *parent, *real_pdi;
9168
9169 /* We need to look at our parent DIE; if we have a DW_AT_specification,
9170 then this means the parent of the specification DIE. */
9171
9172 real_pdi = pdi;
9173 while (real_pdi->has_specification)
9174 real_pdi = find_partial_die (real_pdi->spec_offset,
9175 real_pdi->spec_is_dwz, cu);
9176
9177 parent = real_pdi->die_parent;
9178 if (parent == NULL)
9179 return NULL;
9180
9181 if (parent->scope_set)
9182 return parent->scope;
9183
9184 fixup_partial_die (parent, cu);
9185
9186 grandparent_scope = partial_die_parent_scope (parent, cu);
9187
9188 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
9189 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
9190 Work around this problem here. */
9191 if (cu->language == language_cplus
9192 && parent->tag == DW_TAG_namespace
9193 && strcmp (parent->name, "::") == 0
9194 && grandparent_scope == NULL)
9195 {
9196 parent->scope = NULL;
9197 parent->scope_set = 1;
9198 return NULL;
9199 }
9200
9201 if (pdi->tag == DW_TAG_enumerator)
9202 /* Enumerators should not get the name of the enumeration as a prefix. */
9203 parent->scope = grandparent_scope;
9204 else if (parent->tag == DW_TAG_namespace
9205 || parent->tag == DW_TAG_module
9206 || parent->tag == DW_TAG_structure_type
9207 || parent->tag == DW_TAG_class_type
9208 || parent->tag == DW_TAG_interface_type
9209 || parent->tag == DW_TAG_union_type
9210 || parent->tag == DW_TAG_enumeration_type)
9211 {
9212 if (grandparent_scope == NULL)
9213 parent->scope = parent->name;
9214 else
9215 parent->scope = typename_concat (&cu->comp_unit_obstack,
9216 grandparent_scope,
9217 parent->name, 0, cu);
9218 }
9219 else
9220 {
9221 /* FIXME drow/2004-04-01: What should we be doing with
9222 function-local names? For partial symbols, we should probably be
9223 ignoring them. */
9224 complaint (&symfile_complaints,
9225 _("unhandled containing DIE tag %d for DIE at %s"),
9226 parent->tag, sect_offset_str (pdi->sect_off));
9227 parent->scope = grandparent_scope;
9228 }
9229
9230 parent->scope_set = 1;
9231 return parent->scope;
9232}
9233
9234/* Return the fully scoped name associated with PDI, from compilation unit
9235 CU. The result will be allocated with malloc. */
9236
9237static char *
9238partial_die_full_name (struct partial_die_info *pdi,
9239 struct dwarf2_cu *cu)
9240{
9241 const char *parent_scope;
9242
9243 /* If this is a template instantiation, we can not work out the
9244 template arguments from partial DIEs. So, unfortunately, we have
9245 to go through the full DIEs. At least any work we do building
9246 types here will be reused if full symbols are loaded later. */
9247 if (pdi->has_template_arguments)
9248 {
9249 fixup_partial_die (pdi, cu);
9250
9251 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
9252 {
9253 struct die_info *die;
9254 struct attribute attr;
9255 struct dwarf2_cu *ref_cu = cu;
9256
9257 /* DW_FORM_ref_addr is using section offset. */
9258 attr.name = (enum dwarf_attribute) 0;
9259 attr.form = DW_FORM_ref_addr;
9260 attr.u.unsnd = to_underlying (pdi->sect_off);
9261 die = follow_die_ref (NULL, &attr, &ref_cu);
9262
9263 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
9264 }
9265 }
9266
9267 parent_scope = partial_die_parent_scope (pdi, cu);
9268 if (parent_scope == NULL)
9269 return NULL;
9270 else
9271 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
9272}
9273
9274static void
9275add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
9276{
9277 struct dwarf2_per_objfile *dwarf2_per_objfile
9278 = cu->per_cu->dwarf2_per_objfile;
9279 struct objfile *objfile = dwarf2_per_objfile->objfile;
9280 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9281 CORE_ADDR addr = 0;
9282 const char *actual_name = NULL;
9283 CORE_ADDR baseaddr;
9284 char *built_actual_name;
9285
9286 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9287
9288 built_actual_name = partial_die_full_name (pdi, cu);
9289 if (built_actual_name != NULL)
9290 actual_name = built_actual_name;
9291
9292 if (actual_name == NULL)
9293 actual_name = pdi->name;
9294
9295 switch (pdi->tag)
9296 {
9297 case DW_TAG_inlined_subroutine:
9298 case DW_TAG_subprogram:
9299 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
9300 if (pdi->is_external || cu->language == language_ada)
9301 {
9302 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
9303 of the global scope. But in Ada, we want to be able to access
9304 nested procedures globally. So all Ada subprograms are stored
9305 in the global scope. */
9306 add_psymbol_to_list (actual_name, strlen (actual_name),
9307 built_actual_name != NULL,
9308 VAR_DOMAIN, LOC_BLOCK,
9309 &objfile->global_psymbols,
9310 addr, cu->language, objfile);
9311 }
9312 else
9313 {
9314 add_psymbol_to_list (actual_name, strlen (actual_name),
9315 built_actual_name != NULL,
9316 VAR_DOMAIN, LOC_BLOCK,
9317 &objfile->static_psymbols,
9318 addr, cu->language, objfile);
9319 }
9320
9321 if (pdi->main_subprogram && actual_name != NULL)
9322 set_objfile_main_name (objfile, actual_name, cu->language);
9323 break;
9324 case DW_TAG_constant:
9325 {
9326 std::vector<partial_symbol *> *list;
9327
9328 if (pdi->is_external)
9329 list = &objfile->global_psymbols;
9330 else
9331 list = &objfile->static_psymbols;
9332 add_psymbol_to_list (actual_name, strlen (actual_name),
9333 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
9334 list, 0, cu->language, objfile);
9335 }
9336 break;
9337 case DW_TAG_variable:
9338 if (pdi->d.locdesc)
9339 addr = decode_locdesc (pdi->d.locdesc, cu);
9340
9341 if (pdi->d.locdesc
9342 && addr == 0
9343 && !dwarf2_per_objfile->has_section_at_zero)
9344 {
9345 /* A global or static variable may also have been stripped
9346 out by the linker if unused, in which case its address
9347 will be nullified; do not add such variables into partial
9348 symbol table then. */
9349 }
9350 else if (pdi->is_external)
9351 {
9352 /* Global Variable.
9353 Don't enter into the minimal symbol tables as there is
9354 a minimal symbol table entry from the ELF symbols already.
9355 Enter into partial symbol table if it has a location
9356 descriptor or a type.
9357 If the location descriptor is missing, new_symbol will create
9358 a LOC_UNRESOLVED symbol, the address of the variable will then
9359 be determined from the minimal symbol table whenever the variable
9360 is referenced.
9361 The address for the partial symbol table entry is not
9362 used by GDB, but it comes in handy for debugging partial symbol
9363 table building. */
9364
9365 if (pdi->d.locdesc || pdi->has_type)
9366 add_psymbol_to_list (actual_name, strlen (actual_name),
9367 built_actual_name != NULL,
9368 VAR_DOMAIN, LOC_STATIC,
9369 &objfile->global_psymbols,
9370 addr + baseaddr,
9371 cu->language, objfile);
9372 }
9373 else
9374 {
9375 int has_loc = pdi->d.locdesc != NULL;
9376
9377 /* Static Variable. Skip symbols whose value we cannot know (those
9378 without location descriptors or constant values). */
9379 if (!has_loc && !pdi->has_const_value)
9380 {
9381 xfree (built_actual_name);
9382 return;
9383 }
9384
9385 add_psymbol_to_list (actual_name, strlen (actual_name),
9386 built_actual_name != NULL,
9387 VAR_DOMAIN, LOC_STATIC,
9388 &objfile->static_psymbols,
9389 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
9390 cu->language, objfile);
9391 }
9392 break;
9393 case DW_TAG_typedef:
9394 case DW_TAG_base_type:
9395 case DW_TAG_subrange_type:
9396 add_psymbol_to_list (actual_name, strlen (actual_name),
9397 built_actual_name != NULL,
9398 VAR_DOMAIN, LOC_TYPEDEF,
9399 &objfile->static_psymbols,
9400 0, cu->language, objfile);
9401 break;
9402 case DW_TAG_imported_declaration:
9403 case DW_TAG_namespace:
9404 add_psymbol_to_list (actual_name, strlen (actual_name),
9405 built_actual_name != NULL,
9406 VAR_DOMAIN, LOC_TYPEDEF,
9407 &objfile->global_psymbols,
9408 0, cu->language, objfile);
9409 break;
9410 case DW_TAG_module:
9411 add_psymbol_to_list (actual_name, strlen (actual_name),
9412 built_actual_name != NULL,
9413 MODULE_DOMAIN, LOC_TYPEDEF,
9414 &objfile->global_psymbols,
9415 0, cu->language, objfile);
9416 break;
9417 case DW_TAG_class_type:
9418 case DW_TAG_interface_type:
9419 case DW_TAG_structure_type:
9420 case DW_TAG_union_type:
9421 case DW_TAG_enumeration_type:
9422 /* Skip external references. The DWARF standard says in the section
9423 about "Structure, Union, and Class Type Entries": "An incomplete
9424 structure, union or class type is represented by a structure,
9425 union or class entry that does not have a byte size attribute
9426 and that has a DW_AT_declaration attribute." */
9427 if (!pdi->has_byte_size && pdi->is_declaration)
9428 {
9429 xfree (built_actual_name);
9430 return;
9431 }
9432
9433 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9434 static vs. global. */
9435 add_psymbol_to_list (actual_name, strlen (actual_name),
9436 built_actual_name != NULL,
9437 STRUCT_DOMAIN, LOC_TYPEDEF,
9438 cu->language == language_cplus
9439 ? &objfile->global_psymbols
9440 : &objfile->static_psymbols,
9441 0, cu->language, objfile);
9442
9443 break;
9444 case DW_TAG_enumerator:
9445 add_psymbol_to_list (actual_name, strlen (actual_name),
9446 built_actual_name != NULL,
9447 VAR_DOMAIN, LOC_CONST,
9448 cu->language == language_cplus
9449 ? &objfile->global_psymbols
9450 : &objfile->static_psymbols,
9451 0, cu->language, objfile);
9452 break;
9453 default:
9454 break;
9455 }
9456
9457 xfree (built_actual_name);
9458}
9459
9460/* Read a partial die corresponding to a namespace; also, add a symbol
9461 corresponding to that namespace to the symbol table. NAMESPACE is
9462 the name of the enclosing namespace. */
9463
9464static void
9465add_partial_namespace (struct partial_die_info *pdi,
9466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9467 int set_addrmap, struct dwarf2_cu *cu)
9468{
9469 /* Add a symbol for the namespace. */
9470
9471 add_partial_symbol (pdi, cu);
9472
9473 /* Now scan partial symbols in that namespace. */
9474
9475 if (pdi->has_children)
9476 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9477}
9478
9479/* Read a partial die corresponding to a Fortran module. */
9480
9481static void
9482add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9483 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9484{
9485 /* Add a symbol for the namespace. */
9486
9487 add_partial_symbol (pdi, cu);
9488
9489 /* Now scan partial symbols in that module. */
9490
9491 if (pdi->has_children)
9492 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9493}
9494
9495/* Read a partial die corresponding to a subprogram or an inlined
9496 subprogram and create a partial symbol for that subprogram.
9497 When the CU language allows it, this routine also defines a partial
9498 symbol for each nested subprogram that this subprogram contains.
9499 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9500 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9501
9502 PDI may also be a lexical block, in which case we simply search
9503 recursively for subprograms defined inside that lexical block.
9504 Again, this is only performed when the CU language allows this
9505 type of definitions. */
9506
9507static void
9508add_partial_subprogram (struct partial_die_info *pdi,
9509 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9510 int set_addrmap, struct dwarf2_cu *cu)
9511{
9512 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9513 {
9514 if (pdi->has_pc_info)
9515 {
9516 if (pdi->lowpc < *lowpc)
9517 *lowpc = pdi->lowpc;
9518 if (pdi->highpc > *highpc)
9519 *highpc = pdi->highpc;
9520 if (set_addrmap)
9521 {
9522 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9523 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9524 CORE_ADDR baseaddr;
9525 CORE_ADDR highpc;
9526 CORE_ADDR lowpc;
9527
9528 baseaddr = ANOFFSET (objfile->section_offsets,
9529 SECT_OFF_TEXT (objfile));
9530 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9531 pdi->lowpc + baseaddr);
9532 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9533 pdi->highpc + baseaddr);
9534 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9535 cu->per_cu->v.psymtab);
9536 }
9537 }
9538
9539 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9540 {
9541 if (!pdi->is_declaration)
9542 /* Ignore subprogram DIEs that do not have a name, they are
9543 illegal. Do not emit a complaint at this point, we will
9544 do so when we convert this psymtab into a symtab. */
9545 if (pdi->name)
9546 add_partial_symbol (pdi, cu);
9547 }
9548 }
9549
9550 if (! pdi->has_children)
9551 return;
9552
9553 if (cu->language == language_ada)
9554 {
9555 pdi = pdi->die_child;
9556 while (pdi != NULL)
9557 {
9558 fixup_partial_die (pdi, cu);
9559 if (pdi->tag == DW_TAG_subprogram
9560 || pdi->tag == DW_TAG_inlined_subroutine
9561 || pdi->tag == DW_TAG_lexical_block)
9562 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9563 pdi = pdi->die_sibling;
9564 }
9565 }
9566}
9567
9568/* Read a partial die corresponding to an enumeration type. */
9569
9570static void
9571add_partial_enumeration (struct partial_die_info *enum_pdi,
9572 struct dwarf2_cu *cu)
9573{
9574 struct partial_die_info *pdi;
9575
9576 if (enum_pdi->name != NULL)
9577 add_partial_symbol (enum_pdi, cu);
9578
9579 pdi = enum_pdi->die_child;
9580 while (pdi)
9581 {
9582 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9583 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9584 else
9585 add_partial_symbol (pdi, cu);
9586 pdi = pdi->die_sibling;
9587 }
9588}
9589
9590/* Return the initial uleb128 in the die at INFO_PTR. */
9591
9592static unsigned int
9593peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9594{
9595 unsigned int bytes_read;
9596
9597 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9598}
9599
9600/* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9601 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9602
9603 Return the corresponding abbrev, or NULL if the number is zero (indicating
9604 an empty DIE). In either case *BYTES_READ will be set to the length of
9605 the initial number. */
9606
9607static struct abbrev_info *
9608peek_die_abbrev (const die_reader_specs &reader,
9609 const gdb_byte *info_ptr, unsigned int *bytes_read)
9610{
9611 dwarf2_cu *cu = reader.cu;
9612 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9613 unsigned int abbrev_number
9614 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9615
9616 if (abbrev_number == 0)
9617 return NULL;
9618
9619 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9620 if (!abbrev)
9621 {
9622 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9623 " at offset %s [in module %s]"),
9624 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9625 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9626 }
9627
9628 return abbrev;
9629}
9630
9631/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9632 Returns a pointer to the end of a series of DIEs, terminated by an empty
9633 DIE. Any children of the skipped DIEs will also be skipped. */
9634
9635static const gdb_byte *
9636skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9637{
9638 while (1)
9639 {
9640 unsigned int bytes_read;
9641 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9642
9643 if (abbrev == NULL)
9644 return info_ptr + bytes_read;
9645 else
9646 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9647 }
9648}
9649
9650/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9651 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9652 abbrev corresponding to that skipped uleb128 should be passed in
9653 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9654 children. */
9655
9656static const gdb_byte *
9657skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9658 struct abbrev_info *abbrev)
9659{
9660 unsigned int bytes_read;
9661 struct attribute attr;
9662 bfd *abfd = reader->abfd;
9663 struct dwarf2_cu *cu = reader->cu;
9664 const gdb_byte *buffer = reader->buffer;
9665 const gdb_byte *buffer_end = reader->buffer_end;
9666 unsigned int form, i;
9667
9668 for (i = 0; i < abbrev->num_attrs; i++)
9669 {
9670 /* The only abbrev we care about is DW_AT_sibling. */
9671 if (abbrev->attrs[i].name == DW_AT_sibling)
9672 {
9673 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9674 if (attr.form == DW_FORM_ref_addr)
9675 complaint (&symfile_complaints,
9676 _("ignoring absolute DW_AT_sibling"));
9677 else
9678 {
9679 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9680 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9681
9682 if (sibling_ptr < info_ptr)
9683 complaint (&symfile_complaints,
9684 _("DW_AT_sibling points backwards"));
9685 else if (sibling_ptr > reader->buffer_end)
9686 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9687 else
9688 return sibling_ptr;
9689 }
9690 }
9691
9692 /* If it isn't DW_AT_sibling, skip this attribute. */
9693 form = abbrev->attrs[i].form;
9694 skip_attribute:
9695 switch (form)
9696 {
9697 case DW_FORM_ref_addr:
9698 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9699 and later it is offset sized. */
9700 if (cu->header.version == 2)
9701 info_ptr += cu->header.addr_size;
9702 else
9703 info_ptr += cu->header.offset_size;
9704 break;
9705 case DW_FORM_GNU_ref_alt:
9706 info_ptr += cu->header.offset_size;
9707 break;
9708 case DW_FORM_addr:
9709 info_ptr += cu->header.addr_size;
9710 break;
9711 case DW_FORM_data1:
9712 case DW_FORM_ref1:
9713 case DW_FORM_flag:
9714 info_ptr += 1;
9715 break;
9716 case DW_FORM_flag_present:
9717 case DW_FORM_implicit_const:
9718 break;
9719 case DW_FORM_data2:
9720 case DW_FORM_ref2:
9721 info_ptr += 2;
9722 break;
9723 case DW_FORM_data4:
9724 case DW_FORM_ref4:
9725 info_ptr += 4;
9726 break;
9727 case DW_FORM_data8:
9728 case DW_FORM_ref8:
9729 case DW_FORM_ref_sig8:
9730 info_ptr += 8;
9731 break;
9732 case DW_FORM_data16:
9733 info_ptr += 16;
9734 break;
9735 case DW_FORM_string:
9736 read_direct_string (abfd, info_ptr, &bytes_read);
9737 info_ptr += bytes_read;
9738 break;
9739 case DW_FORM_sec_offset:
9740 case DW_FORM_strp:
9741 case DW_FORM_GNU_strp_alt:
9742 info_ptr += cu->header.offset_size;
9743 break;
9744 case DW_FORM_exprloc:
9745 case DW_FORM_block:
9746 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9747 info_ptr += bytes_read;
9748 break;
9749 case DW_FORM_block1:
9750 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9751 break;
9752 case DW_FORM_block2:
9753 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9754 break;
9755 case DW_FORM_block4:
9756 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9757 break;
9758 case DW_FORM_sdata:
9759 case DW_FORM_udata:
9760 case DW_FORM_ref_udata:
9761 case DW_FORM_GNU_addr_index:
9762 case DW_FORM_GNU_str_index:
9763 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9764 break;
9765 case DW_FORM_indirect:
9766 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9767 info_ptr += bytes_read;
9768 /* We need to continue parsing from here, so just go back to
9769 the top. */
9770 goto skip_attribute;
9771
9772 default:
9773 error (_("Dwarf Error: Cannot handle %s "
9774 "in DWARF reader [in module %s]"),
9775 dwarf_form_name (form),
9776 bfd_get_filename (abfd));
9777 }
9778 }
9779
9780 if (abbrev->has_children)
9781 return skip_children (reader, info_ptr);
9782 else
9783 return info_ptr;
9784}
9785
9786/* Locate ORIG_PDI's sibling.
9787 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9788
9789static const gdb_byte *
9790locate_pdi_sibling (const struct die_reader_specs *reader,
9791 struct partial_die_info *orig_pdi,
9792 const gdb_byte *info_ptr)
9793{
9794 /* Do we know the sibling already? */
9795
9796 if (orig_pdi->sibling)
9797 return orig_pdi->sibling;
9798
9799 /* Are there any children to deal with? */
9800
9801 if (!orig_pdi->has_children)
9802 return info_ptr;
9803
9804 /* Skip the children the long way. */
9805
9806 return skip_children (reader, info_ptr);
9807}
9808
9809/* Expand this partial symbol table into a full symbol table. SELF is
9810 not NULL. */
9811
9812static void
9813dwarf2_read_symtab (struct partial_symtab *self,
9814 struct objfile *objfile)
9815{
9816 struct dwarf2_per_objfile *dwarf2_per_objfile
9817 = get_dwarf2_per_objfile (objfile);
9818
9819 if (self->readin)
9820 {
9821 warning (_("bug: psymtab for %s is already read in."),
9822 self->filename);
9823 }
9824 else
9825 {
9826 if (info_verbose)
9827 {
9828 printf_filtered (_("Reading in symbols for %s..."),
9829 self->filename);
9830 gdb_flush (gdb_stdout);
9831 }
9832
9833 /* If this psymtab is constructed from a debug-only objfile, the
9834 has_section_at_zero flag will not necessarily be correct. We
9835 can get the correct value for this flag by looking at the data
9836 associated with the (presumably stripped) associated objfile. */
9837 if (objfile->separate_debug_objfile_backlink)
9838 {
9839 struct dwarf2_per_objfile *dpo_backlink
9840 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9841
9842 dwarf2_per_objfile->has_section_at_zero
9843 = dpo_backlink->has_section_at_zero;
9844 }
9845
9846 dwarf2_per_objfile->reading_partial_symbols = 0;
9847
9848 psymtab_to_symtab_1 (self);
9849
9850 /* Finish up the debug error message. */
9851 if (info_verbose)
9852 printf_filtered (_("done.\n"));
9853 }
9854
9855 process_cu_includes (dwarf2_per_objfile);
9856}
9857\f
9858/* Reading in full CUs. */
9859
9860/* Add PER_CU to the queue. */
9861
9862static void
9863queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9864 enum language pretend_language)
9865{
9866 struct dwarf2_queue_item *item;
9867
9868 per_cu->queued = 1;
9869 item = XNEW (struct dwarf2_queue_item);
9870 item->per_cu = per_cu;
9871 item->pretend_language = pretend_language;
9872 item->next = NULL;
9873
9874 if (dwarf2_queue == NULL)
9875 dwarf2_queue = item;
9876 else
9877 dwarf2_queue_tail->next = item;
9878
9879 dwarf2_queue_tail = item;
9880}
9881
9882/* If PER_CU is not yet queued, add it to the queue.
9883 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9884 dependency.
9885 The result is non-zero if PER_CU was queued, otherwise the result is zero
9886 meaning either PER_CU is already queued or it is already loaded.
9887
9888 N.B. There is an invariant here that if a CU is queued then it is loaded.
9889 The caller is required to load PER_CU if we return non-zero. */
9890
9891static int
9892maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9893 struct dwarf2_per_cu_data *per_cu,
9894 enum language pretend_language)
9895{
9896 /* We may arrive here during partial symbol reading, if we need full
9897 DIEs to process an unusual case (e.g. template arguments). Do
9898 not queue PER_CU, just tell our caller to load its DIEs. */
9899 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9900 {
9901 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9902 return 1;
9903 return 0;
9904 }
9905
9906 /* Mark the dependence relation so that we don't flush PER_CU
9907 too early. */
9908 if (dependent_cu != NULL)
9909 dwarf2_add_dependence (dependent_cu, per_cu);
9910
9911 /* If it's already on the queue, we have nothing to do. */
9912 if (per_cu->queued)
9913 return 0;
9914
9915 /* If the compilation unit is already loaded, just mark it as
9916 used. */
9917 if (per_cu->cu != NULL)
9918 {
9919 per_cu->cu->last_used = 0;
9920 return 0;
9921 }
9922
9923 /* Add it to the queue. */
9924 queue_comp_unit (per_cu, pretend_language);
9925
9926 return 1;
9927}
9928
9929/* Process the queue. */
9930
9931static void
9932process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9933{
9934 struct dwarf2_queue_item *item, *next_item;
9935
9936 if (dwarf_read_debug)
9937 {
9938 fprintf_unfiltered (gdb_stdlog,
9939 "Expanding one or more symtabs of objfile %s ...\n",
9940 objfile_name (dwarf2_per_objfile->objfile));
9941 }
9942
9943 /* The queue starts out with one item, but following a DIE reference
9944 may load a new CU, adding it to the end of the queue. */
9945 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9946 {
9947 if ((dwarf2_per_objfile->using_index
9948 ? !item->per_cu->v.quick->compunit_symtab
9949 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9950 /* Skip dummy CUs. */
9951 && item->per_cu->cu != NULL)
9952 {
9953 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9954 unsigned int debug_print_threshold;
9955 char buf[100];
9956
9957 if (per_cu->is_debug_types)
9958 {
9959 struct signatured_type *sig_type =
9960 (struct signatured_type *) per_cu;
9961
9962 sprintf (buf, "TU %s at offset %s",
9963 hex_string (sig_type->signature),
9964 sect_offset_str (per_cu->sect_off));
9965 /* There can be 100s of TUs.
9966 Only print them in verbose mode. */
9967 debug_print_threshold = 2;
9968 }
9969 else
9970 {
9971 sprintf (buf, "CU at offset %s",
9972 sect_offset_str (per_cu->sect_off));
9973 debug_print_threshold = 1;
9974 }
9975
9976 if (dwarf_read_debug >= debug_print_threshold)
9977 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9978
9979 if (per_cu->is_debug_types)
9980 process_full_type_unit (per_cu, item->pretend_language);
9981 else
9982 process_full_comp_unit (per_cu, item->pretend_language);
9983
9984 if (dwarf_read_debug >= debug_print_threshold)
9985 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9986 }
9987
9988 item->per_cu->queued = 0;
9989 next_item = item->next;
9990 xfree (item);
9991 }
9992
9993 dwarf2_queue_tail = NULL;
9994
9995 if (dwarf_read_debug)
9996 {
9997 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9998 objfile_name (dwarf2_per_objfile->objfile));
9999 }
10000}
10001
10002/* Read in full symbols for PST, and anything it depends on. */
10003
10004static void
10005psymtab_to_symtab_1 (struct partial_symtab *pst)
10006{
10007 struct dwarf2_per_cu_data *per_cu;
10008 int i;
10009
10010 if (pst->readin)
10011 return;
10012
10013 for (i = 0; i < pst->number_of_dependencies; i++)
10014 if (!pst->dependencies[i]->readin
10015 && pst->dependencies[i]->user == NULL)
10016 {
10017 /* Inform about additional files that need to be read in. */
10018 if (info_verbose)
10019 {
10020 /* FIXME: i18n: Need to make this a single string. */
10021 fputs_filtered (" ", gdb_stdout);
10022 wrap_here ("");
10023 fputs_filtered ("and ", gdb_stdout);
10024 wrap_here ("");
10025 printf_filtered ("%s...", pst->dependencies[i]->filename);
10026 wrap_here (""); /* Flush output. */
10027 gdb_flush (gdb_stdout);
10028 }
10029 psymtab_to_symtab_1 (pst->dependencies[i]);
10030 }
10031
10032 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10033
10034 if (per_cu == NULL)
10035 {
10036 /* It's an include file, no symbols to read for it.
10037 Everything is in the parent symtab. */
10038 pst->readin = 1;
10039 return;
10040 }
10041
10042 dw2_do_instantiate_symtab (per_cu);
10043}
10044
10045/* Trivial hash function for die_info: the hash value of a DIE
10046 is its offset in .debug_info for this objfile. */
10047
10048static hashval_t
10049die_hash (const void *item)
10050{
10051 const struct die_info *die = (const struct die_info *) item;
10052
10053 return to_underlying (die->sect_off);
10054}
10055
10056/* Trivial comparison function for die_info structures: two DIEs
10057 are equal if they have the same offset. */
10058
10059static int
10060die_eq (const void *item_lhs, const void *item_rhs)
10061{
10062 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
10063 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
10064
10065 return die_lhs->sect_off == die_rhs->sect_off;
10066}
10067
10068/* die_reader_func for load_full_comp_unit.
10069 This is identical to read_signatured_type_reader,
10070 but is kept separate for now. */
10071
10072static void
10073load_full_comp_unit_reader (const struct die_reader_specs *reader,
10074 const gdb_byte *info_ptr,
10075 struct die_info *comp_unit_die,
10076 int has_children,
10077 void *data)
10078{
10079 struct dwarf2_cu *cu = reader->cu;
10080 enum language *language_ptr = (enum language *) data;
10081
10082 gdb_assert (cu->die_hash == NULL);
10083 cu->die_hash =
10084 htab_create_alloc_ex (cu->header.length / 12,
10085 die_hash,
10086 die_eq,
10087 NULL,
10088 &cu->comp_unit_obstack,
10089 hashtab_obstack_allocate,
10090 dummy_obstack_deallocate);
10091
10092 if (has_children)
10093 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
10094 &info_ptr, comp_unit_die);
10095 cu->dies = comp_unit_die;
10096 /* comp_unit_die is not stored in die_hash, no need. */
10097
10098 /* We try not to read any attributes in this function, because not
10099 all CUs needed for references have been loaded yet, and symbol
10100 table processing isn't initialized. But we have to set the CU language,
10101 or we won't be able to build types correctly.
10102 Similarly, if we do not read the producer, we can not apply
10103 producer-specific interpretation. */
10104 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
10105}
10106
10107/* Load the DIEs associated with PER_CU into memory. */
10108
10109static void
10110load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
10111 enum language pretend_language)
10112{
10113 gdb_assert (! this_cu->is_debug_types);
10114
10115 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
10116 load_full_comp_unit_reader, &pretend_language);
10117}
10118
10119/* Add a DIE to the delayed physname list. */
10120
10121static void
10122add_to_method_list (struct type *type, int fnfield_index, int index,
10123 const char *name, struct die_info *die,
10124 struct dwarf2_cu *cu)
10125{
10126 struct delayed_method_info mi;
10127 mi.type = type;
10128 mi.fnfield_index = fnfield_index;
10129 mi.index = index;
10130 mi.name = name;
10131 mi.die = die;
10132 cu->method_list.push_back (mi);
10133}
10134
10135/* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
10136 "const" / "volatile". If so, decrements LEN by the length of the
10137 modifier and return true. Otherwise return false. */
10138
10139template<size_t N>
10140static bool
10141check_modifier (const char *physname, size_t &len, const char (&mod)[N])
10142{
10143 size_t mod_len = sizeof (mod) - 1;
10144 if (len > mod_len && startswith (physname + (len - mod_len), mod))
10145 {
10146 len -= mod_len;
10147 return true;
10148 }
10149 return false;
10150}
10151
10152/* Compute the physnames of any methods on the CU's method list.
10153
10154 The computation of method physnames is delayed in order to avoid the
10155 (bad) condition that one of the method's formal parameters is of an as yet
10156 incomplete type. */
10157
10158static void
10159compute_delayed_physnames (struct dwarf2_cu *cu)
10160{
10161 /* Only C++ delays computing physnames. */
10162 if (cu->method_list.empty ())
10163 return;
10164 gdb_assert (cu->language == language_cplus);
10165
10166 for (struct delayed_method_info &mi : cu->method_list)
10167 {
10168 const char *physname;
10169 struct fn_fieldlist *fn_flp
10170 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
10171 physname = dwarf2_physname (mi.name, mi.die, cu);
10172 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
10173 = physname ? physname : "";
10174
10175 /* Since there's no tag to indicate whether a method is a
10176 const/volatile overload, extract that information out of the
10177 demangled name. */
10178 if (physname != NULL)
10179 {
10180 size_t len = strlen (physname);
10181
10182 while (1)
10183 {
10184 if (physname[len] == ')') /* shortcut */
10185 break;
10186 else if (check_modifier (physname, len, " const"))
10187 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
10188 else if (check_modifier (physname, len, " volatile"))
10189 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
10190 else
10191 break;
10192 }
10193 }
10194 }
10195
10196 /* The list is no longer needed. */
10197 cu->method_list.clear ();
10198}
10199
10200/* Go objects should be embedded in a DW_TAG_module DIE,
10201 and it's not clear if/how imported objects will appear.
10202 To keep Go support simple until that's worked out,
10203 go back through what we've read and create something usable.
10204 We could do this while processing each DIE, and feels kinda cleaner,
10205 but that way is more invasive.
10206 This is to, for example, allow the user to type "p var" or "b main"
10207 without having to specify the package name, and allow lookups
10208 of module.object to work in contexts that use the expression
10209 parser. */
10210
10211static void
10212fixup_go_packaging (struct dwarf2_cu *cu)
10213{
10214 char *package_name = NULL;
10215 struct pending *list;
10216 int i;
10217
10218 for (list = global_symbols; list != NULL; list = list->next)
10219 {
10220 for (i = 0; i < list->nsyms; ++i)
10221 {
10222 struct symbol *sym = list->symbol[i];
10223
10224 if (SYMBOL_LANGUAGE (sym) == language_go
10225 && SYMBOL_CLASS (sym) == LOC_BLOCK)
10226 {
10227 char *this_package_name = go_symbol_package_name (sym);
10228
10229 if (this_package_name == NULL)
10230 continue;
10231 if (package_name == NULL)
10232 package_name = this_package_name;
10233 else
10234 {
10235 struct objfile *objfile
10236 = cu->per_cu->dwarf2_per_objfile->objfile;
10237 if (strcmp (package_name, this_package_name) != 0)
10238 complaint (&symfile_complaints,
10239 _("Symtab %s has objects from two different Go packages: %s and %s"),
10240 (symbol_symtab (sym) != NULL
10241 ? symtab_to_filename_for_display
10242 (symbol_symtab (sym))
10243 : objfile_name (objfile)),
10244 this_package_name, package_name);
10245 xfree (this_package_name);
10246 }
10247 }
10248 }
10249 }
10250
10251 if (package_name != NULL)
10252 {
10253 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10254 const char *saved_package_name
10255 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
10256 package_name,
10257 strlen (package_name));
10258 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
10259 saved_package_name);
10260 struct symbol *sym;
10261
10262 TYPE_TAG_NAME (type) = TYPE_NAME (type);
10263
10264 sym = allocate_symbol (objfile);
10265 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
10266 SYMBOL_SET_NAMES (sym, saved_package_name,
10267 strlen (saved_package_name), 0, objfile);
10268 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
10269 e.g., "main" finds the "main" module and not C's main(). */
10270 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
10271 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
10272 SYMBOL_TYPE (sym) = type;
10273
10274 add_symbol_to_list (sym, &global_symbols);
10275
10276 xfree (package_name);
10277 }
10278}
10279
10280/* Return the symtab for PER_CU. This works properly regardless of
10281 whether we're using the index or psymtabs. */
10282
10283static struct compunit_symtab *
10284get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10285{
10286 return (per_cu->dwarf2_per_objfile->using_index
10287 ? per_cu->v.quick->compunit_symtab
10288 : per_cu->v.psymtab->compunit_symtab);
10289}
10290
10291/* A helper function for computing the list of all symbol tables
10292 included by PER_CU. */
10293
10294static void
10295recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10296 htab_t all_children, htab_t all_type_symtabs,
10297 struct dwarf2_per_cu_data *per_cu,
10298 struct compunit_symtab *immediate_parent)
10299{
10300 void **slot;
10301 int ix;
10302 struct compunit_symtab *cust;
10303 struct dwarf2_per_cu_data *iter;
10304
10305 slot = htab_find_slot (all_children, per_cu, INSERT);
10306 if (*slot != NULL)
10307 {
10308 /* This inclusion and its children have been processed. */
10309 return;
10310 }
10311
10312 *slot = per_cu;
10313 /* Only add a CU if it has a symbol table. */
10314 cust = get_compunit_symtab (per_cu);
10315 if (cust != NULL)
10316 {
10317 /* If this is a type unit only add its symbol table if we haven't
10318 seen it yet (type unit per_cu's can share symtabs). */
10319 if (per_cu->is_debug_types)
10320 {
10321 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10322 if (*slot == NULL)
10323 {
10324 *slot = cust;
10325 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10326 if (cust->user == NULL)
10327 cust->user = immediate_parent;
10328 }
10329 }
10330 else
10331 {
10332 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10333 if (cust->user == NULL)
10334 cust->user = immediate_parent;
10335 }
10336 }
10337
10338 for (ix = 0;
10339 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10340 ++ix)
10341 {
10342 recursively_compute_inclusions (result, all_children,
10343 all_type_symtabs, iter, cust);
10344 }
10345}
10346
10347/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10348 PER_CU. */
10349
10350static void
10351compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10352{
10353 gdb_assert (! per_cu->is_debug_types);
10354
10355 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10356 {
10357 int ix, len;
10358 struct dwarf2_per_cu_data *per_cu_iter;
10359 struct compunit_symtab *compunit_symtab_iter;
10360 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10361 htab_t all_children, all_type_symtabs;
10362 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10363
10364 /* If we don't have a symtab, we can just skip this case. */
10365 if (cust == NULL)
10366 return;
10367
10368 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10369 NULL, xcalloc, xfree);
10370 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10371 NULL, xcalloc, xfree);
10372
10373 for (ix = 0;
10374 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10375 ix, per_cu_iter);
10376 ++ix)
10377 {
10378 recursively_compute_inclusions (&result_symtabs, all_children,
10379 all_type_symtabs, per_cu_iter,
10380 cust);
10381 }
10382
10383 /* Now we have a transitive closure of all the included symtabs. */
10384 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10385 cust->includes
10386 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10387 struct compunit_symtab *, len + 1);
10388 for (ix = 0;
10389 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10390 compunit_symtab_iter);
10391 ++ix)
10392 cust->includes[ix] = compunit_symtab_iter;
10393 cust->includes[len] = NULL;
10394
10395 VEC_free (compunit_symtab_ptr, result_symtabs);
10396 htab_delete (all_children);
10397 htab_delete (all_type_symtabs);
10398 }
10399}
10400
10401/* Compute the 'includes' field for the symtabs of all the CUs we just
10402 read. */
10403
10404static void
10405process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10406{
10407 int ix;
10408 struct dwarf2_per_cu_data *iter;
10409
10410 for (ix = 0;
10411 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10412 ix, iter);
10413 ++ix)
10414 {
10415 if (! iter->is_debug_types)
10416 compute_compunit_symtab_includes (iter);
10417 }
10418
10419 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10420}
10421
10422/* Generate full symbol information for PER_CU, whose DIEs have
10423 already been loaded into memory. */
10424
10425static void
10426process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10427 enum language pretend_language)
10428{
10429 struct dwarf2_cu *cu = per_cu->cu;
10430 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10431 struct objfile *objfile = dwarf2_per_objfile->objfile;
10432 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10433 CORE_ADDR lowpc, highpc;
10434 struct compunit_symtab *cust;
10435 CORE_ADDR baseaddr;
10436 struct block *static_block;
10437 CORE_ADDR addr;
10438
10439 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10440
10441 buildsym_init ();
10442 scoped_free_pendings free_pending;
10443
10444 /* Clear the list here in case something was left over. */
10445 cu->method_list.clear ();
10446
10447 cu->list_in_scope = &file_symbols;
10448
10449 cu->language = pretend_language;
10450 cu->language_defn = language_def (cu->language);
10451
10452 /* Do line number decoding in read_file_scope () */
10453 process_die (cu->dies, cu);
10454
10455 /* For now fudge the Go package. */
10456 if (cu->language == language_go)
10457 fixup_go_packaging (cu);
10458
10459 /* Now that we have processed all the DIEs in the CU, all the types
10460 should be complete, and it should now be safe to compute all of the
10461 physnames. */
10462 compute_delayed_physnames (cu);
10463
10464 /* Some compilers don't define a DW_AT_high_pc attribute for the
10465 compilation unit. If the DW_AT_high_pc is missing, synthesize
10466 it, by scanning the DIE's below the compilation unit. */
10467 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10468
10469 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10470 static_block = end_symtab_get_static_block (addr, 0, 1);
10471
10472 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10473 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10474 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10475 addrmap to help ensure it has an accurate map of pc values belonging to
10476 this comp unit. */
10477 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10478
10479 cust = end_symtab_from_static_block (static_block,
10480 SECT_OFF_TEXT (objfile), 0);
10481
10482 if (cust != NULL)
10483 {
10484 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10485
10486 /* Set symtab language to language from DW_AT_language. If the
10487 compilation is from a C file generated by language preprocessors, do
10488 not set the language if it was already deduced by start_subfile. */
10489 if (!(cu->language == language_c
10490 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10491 COMPUNIT_FILETABS (cust)->language = cu->language;
10492
10493 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10494 produce DW_AT_location with location lists but it can be possibly
10495 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10496 there were bugs in prologue debug info, fixed later in GCC-4.5
10497 by "unwind info for epilogues" patch (which is not directly related).
10498
10499 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10500 needed, it would be wrong due to missing DW_AT_producer there.
10501
10502 Still one can confuse GDB by using non-standard GCC compilation
10503 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10504 */
10505 if (cu->has_loclist && gcc_4_minor >= 5)
10506 cust->locations_valid = 1;
10507
10508 if (gcc_4_minor >= 5)
10509 cust->epilogue_unwind_valid = 1;
10510
10511 cust->call_site_htab = cu->call_site_htab;
10512 }
10513
10514 if (dwarf2_per_objfile->using_index)
10515 per_cu->v.quick->compunit_symtab = cust;
10516 else
10517 {
10518 struct partial_symtab *pst = per_cu->v.psymtab;
10519 pst->compunit_symtab = cust;
10520 pst->readin = 1;
10521 }
10522
10523 /* Push it for inclusion processing later. */
10524 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10525}
10526
10527/* Generate full symbol information for type unit PER_CU, whose DIEs have
10528 already been loaded into memory. */
10529
10530static void
10531process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10532 enum language pretend_language)
10533{
10534 struct dwarf2_cu *cu = per_cu->cu;
10535 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10536 struct objfile *objfile = dwarf2_per_objfile->objfile;
10537 struct compunit_symtab *cust;
10538 struct signatured_type *sig_type;
10539
10540 gdb_assert (per_cu->is_debug_types);
10541 sig_type = (struct signatured_type *) per_cu;
10542
10543 buildsym_init ();
10544 scoped_free_pendings free_pending;
10545
10546 /* Clear the list here in case something was left over. */
10547 cu->method_list.clear ();
10548
10549 cu->list_in_scope = &file_symbols;
10550
10551 cu->language = pretend_language;
10552 cu->language_defn = language_def (cu->language);
10553
10554 /* The symbol tables are set up in read_type_unit_scope. */
10555 process_die (cu->dies, cu);
10556
10557 /* For now fudge the Go package. */
10558 if (cu->language == language_go)
10559 fixup_go_packaging (cu);
10560
10561 /* Now that we have processed all the DIEs in the CU, all the types
10562 should be complete, and it should now be safe to compute all of the
10563 physnames. */
10564 compute_delayed_physnames (cu);
10565
10566 /* TUs share symbol tables.
10567 If this is the first TU to use this symtab, complete the construction
10568 of it with end_expandable_symtab. Otherwise, complete the addition of
10569 this TU's symbols to the existing symtab. */
10570 if (sig_type->type_unit_group->compunit_symtab == NULL)
10571 {
10572 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10573 sig_type->type_unit_group->compunit_symtab = cust;
10574
10575 if (cust != NULL)
10576 {
10577 /* Set symtab language to language from DW_AT_language. If the
10578 compilation is from a C file generated by language preprocessors,
10579 do not set the language if it was already deduced by
10580 start_subfile. */
10581 if (!(cu->language == language_c
10582 && COMPUNIT_FILETABS (cust)->language != language_c))
10583 COMPUNIT_FILETABS (cust)->language = cu->language;
10584 }
10585 }
10586 else
10587 {
10588 augment_type_symtab ();
10589 cust = sig_type->type_unit_group->compunit_symtab;
10590 }
10591
10592 if (dwarf2_per_objfile->using_index)
10593 per_cu->v.quick->compunit_symtab = cust;
10594 else
10595 {
10596 struct partial_symtab *pst = per_cu->v.psymtab;
10597 pst->compunit_symtab = cust;
10598 pst->readin = 1;
10599 }
10600}
10601
10602/* Process an imported unit DIE. */
10603
10604static void
10605process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10606{
10607 struct attribute *attr;
10608
10609 /* For now we don't handle imported units in type units. */
10610 if (cu->per_cu->is_debug_types)
10611 {
10612 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10613 " supported in type units [in module %s]"),
10614 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10615 }
10616
10617 attr = dwarf2_attr (die, DW_AT_import, cu);
10618 if (attr != NULL)
10619 {
10620 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10621 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10622 dwarf2_per_cu_data *per_cu
10623 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10624 cu->per_cu->dwarf2_per_objfile);
10625
10626 /* If necessary, add it to the queue and load its DIEs. */
10627 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10628 load_full_comp_unit (per_cu, cu->language);
10629
10630 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10631 per_cu);
10632 }
10633}
10634
10635/* RAII object that represents a process_die scope: i.e.,
10636 starts/finishes processing a DIE. */
10637class process_die_scope
10638{
10639public:
10640 process_die_scope (die_info *die, dwarf2_cu *cu)
10641 : m_die (die), m_cu (cu)
10642 {
10643 /* We should only be processing DIEs not already in process. */
10644 gdb_assert (!m_die->in_process);
10645 m_die->in_process = true;
10646 }
10647
10648 ~process_die_scope ()
10649 {
10650 m_die->in_process = false;
10651
10652 /* If we're done processing the DIE for the CU that owns the line
10653 header, we don't need the line header anymore. */
10654 if (m_cu->line_header_die_owner == m_die)
10655 {
10656 delete m_cu->line_header;
10657 m_cu->line_header = NULL;
10658 m_cu->line_header_die_owner = NULL;
10659 }
10660 }
10661
10662private:
10663 die_info *m_die;
10664 dwarf2_cu *m_cu;
10665};
10666
10667/* Process a die and its children. */
10668
10669static void
10670process_die (struct die_info *die, struct dwarf2_cu *cu)
10671{
10672 process_die_scope scope (die, cu);
10673
10674 switch (die->tag)
10675 {
10676 case DW_TAG_padding:
10677 break;
10678 case DW_TAG_compile_unit:
10679 case DW_TAG_partial_unit:
10680 read_file_scope (die, cu);
10681 break;
10682 case DW_TAG_type_unit:
10683 read_type_unit_scope (die, cu);
10684 break;
10685 case DW_TAG_subprogram:
10686 case DW_TAG_inlined_subroutine:
10687 read_func_scope (die, cu);
10688 break;
10689 case DW_TAG_lexical_block:
10690 case DW_TAG_try_block:
10691 case DW_TAG_catch_block:
10692 read_lexical_block_scope (die, cu);
10693 break;
10694 case DW_TAG_call_site:
10695 case DW_TAG_GNU_call_site:
10696 read_call_site_scope (die, cu);
10697 break;
10698 case DW_TAG_class_type:
10699 case DW_TAG_interface_type:
10700 case DW_TAG_structure_type:
10701 case DW_TAG_union_type:
10702 process_structure_scope (die, cu);
10703 break;
10704 case DW_TAG_enumeration_type:
10705 process_enumeration_scope (die, cu);
10706 break;
10707
10708 /* These dies have a type, but processing them does not create
10709 a symbol or recurse to process the children. Therefore we can
10710 read them on-demand through read_type_die. */
10711 case DW_TAG_subroutine_type:
10712 case DW_TAG_set_type:
10713 case DW_TAG_array_type:
10714 case DW_TAG_pointer_type:
10715 case DW_TAG_ptr_to_member_type:
10716 case DW_TAG_reference_type:
10717 case DW_TAG_rvalue_reference_type:
10718 case DW_TAG_string_type:
10719 break;
10720
10721 case DW_TAG_base_type:
10722 case DW_TAG_subrange_type:
10723 case DW_TAG_typedef:
10724 /* Add a typedef symbol for the type definition, if it has a
10725 DW_AT_name. */
10726 new_symbol (die, read_type_die (die, cu), cu);
10727 break;
10728 case DW_TAG_common_block:
10729 read_common_block (die, cu);
10730 break;
10731 case DW_TAG_common_inclusion:
10732 break;
10733 case DW_TAG_namespace:
10734 cu->processing_has_namespace_info = 1;
10735 read_namespace (die, cu);
10736 break;
10737 case DW_TAG_module:
10738 cu->processing_has_namespace_info = 1;
10739 read_module (die, cu);
10740 break;
10741 case DW_TAG_imported_declaration:
10742 cu->processing_has_namespace_info = 1;
10743 if (read_namespace_alias (die, cu))
10744 break;
10745 /* The declaration is not a global namespace alias: fall through. */
10746 case DW_TAG_imported_module:
10747 cu->processing_has_namespace_info = 1;
10748 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10749 || cu->language != language_fortran))
10750 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
10751 dwarf_tag_name (die->tag));
10752 read_import_statement (die, cu);
10753 break;
10754
10755 case DW_TAG_imported_unit:
10756 process_imported_unit_die (die, cu);
10757 break;
10758
10759 case DW_TAG_variable:
10760 read_variable (die, cu);
10761 break;
10762
10763 default:
10764 new_symbol (die, NULL, cu);
10765 break;
10766 }
10767}
10768\f
10769/* DWARF name computation. */
10770
10771/* A helper function for dwarf2_compute_name which determines whether DIE
10772 needs to have the name of the scope prepended to the name listed in the
10773 die. */
10774
10775static int
10776die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10777{
10778 struct attribute *attr;
10779
10780 switch (die->tag)
10781 {
10782 case DW_TAG_namespace:
10783 case DW_TAG_typedef:
10784 case DW_TAG_class_type:
10785 case DW_TAG_interface_type:
10786 case DW_TAG_structure_type:
10787 case DW_TAG_union_type:
10788 case DW_TAG_enumeration_type:
10789 case DW_TAG_enumerator:
10790 case DW_TAG_subprogram:
10791 case DW_TAG_inlined_subroutine:
10792 case DW_TAG_member:
10793 case DW_TAG_imported_declaration:
10794 return 1;
10795
10796 case DW_TAG_variable:
10797 case DW_TAG_constant:
10798 /* We only need to prefix "globally" visible variables. These include
10799 any variable marked with DW_AT_external or any variable that
10800 lives in a namespace. [Variables in anonymous namespaces
10801 require prefixing, but they are not DW_AT_external.] */
10802
10803 if (dwarf2_attr (die, DW_AT_specification, cu))
10804 {
10805 struct dwarf2_cu *spec_cu = cu;
10806
10807 return die_needs_namespace (die_specification (die, &spec_cu),
10808 spec_cu);
10809 }
10810
10811 attr = dwarf2_attr (die, DW_AT_external, cu);
10812 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10813 && die->parent->tag != DW_TAG_module)
10814 return 0;
10815 /* A variable in a lexical block of some kind does not need a
10816 namespace, even though in C++ such variables may be external
10817 and have a mangled name. */
10818 if (die->parent->tag == DW_TAG_lexical_block
10819 || die->parent->tag == DW_TAG_try_block
10820 || die->parent->tag == DW_TAG_catch_block
10821 || die->parent->tag == DW_TAG_subprogram)
10822 return 0;
10823 return 1;
10824
10825 default:
10826 return 0;
10827 }
10828}
10829
10830/* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10831 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10832 defined for the given DIE. */
10833
10834static struct attribute *
10835dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10836{
10837 struct attribute *attr;
10838
10839 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10840 if (attr == NULL)
10841 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10842
10843 return attr;
10844}
10845
10846/* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10847 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10848 defined for the given DIE. */
10849
10850static const char *
10851dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10852{
10853 const char *linkage_name;
10854
10855 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10856 if (linkage_name == NULL)
10857 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10858
10859 return linkage_name;
10860}
10861
10862/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10863 compute the physname for the object, which include a method's:
10864 - formal parameters (C++),
10865 - receiver type (Go),
10866
10867 The term "physname" is a bit confusing.
10868 For C++, for example, it is the demangled name.
10869 For Go, for example, it's the mangled name.
10870
10871 For Ada, return the DIE's linkage name rather than the fully qualified
10872 name. PHYSNAME is ignored..
10873
10874 The result is allocated on the objfile_obstack and canonicalized. */
10875
10876static const char *
10877dwarf2_compute_name (const char *name,
10878 struct die_info *die, struct dwarf2_cu *cu,
10879 int physname)
10880{
10881 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10882
10883 if (name == NULL)
10884 name = dwarf2_name (die, cu);
10885
10886 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10887 but otherwise compute it by typename_concat inside GDB.
10888 FIXME: Actually this is not really true, or at least not always true.
10889 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10890 Fortran names because there is no mangling standard. So new_symbol
10891 will set the demangled name to the result of dwarf2_full_name, and it is
10892 the demangled name that GDB uses if it exists. */
10893 if (cu->language == language_ada
10894 || (cu->language == language_fortran && physname))
10895 {
10896 /* For Ada unit, we prefer the linkage name over the name, as
10897 the former contains the exported name, which the user expects
10898 to be able to reference. Ideally, we want the user to be able
10899 to reference this entity using either natural or linkage name,
10900 but we haven't started looking at this enhancement yet. */
10901 const char *linkage_name = dw2_linkage_name (die, cu);
10902
10903 if (linkage_name != NULL)
10904 return linkage_name;
10905 }
10906
10907 /* These are the only languages we know how to qualify names in. */
10908 if (name != NULL
10909 && (cu->language == language_cplus
10910 || cu->language == language_fortran || cu->language == language_d
10911 || cu->language == language_rust))
10912 {
10913 if (die_needs_namespace (die, cu))
10914 {
10915 const char *prefix;
10916 const char *canonical_name = NULL;
10917
10918 string_file buf;
10919
10920 prefix = determine_prefix (die, cu);
10921 if (*prefix != '\0')
10922 {
10923 char *prefixed_name = typename_concat (NULL, prefix, name,
10924 physname, cu);
10925
10926 buf.puts (prefixed_name);
10927 xfree (prefixed_name);
10928 }
10929 else
10930 buf.puts (name);
10931
10932 /* Template parameters may be specified in the DIE's DW_AT_name, or
10933 as children with DW_TAG_template_type_param or
10934 DW_TAG_value_type_param. If the latter, add them to the name
10935 here. If the name already has template parameters, then
10936 skip this step; some versions of GCC emit both, and
10937 it is more efficient to use the pre-computed name.
10938
10939 Something to keep in mind about this process: it is very
10940 unlikely, or in some cases downright impossible, to produce
10941 something that will match the mangled name of a function.
10942 If the definition of the function has the same debug info,
10943 we should be able to match up with it anyway. But fallbacks
10944 using the minimal symbol, for instance to find a method
10945 implemented in a stripped copy of libstdc++, will not work.
10946 If we do not have debug info for the definition, we will have to
10947 match them up some other way.
10948
10949 When we do name matching there is a related problem with function
10950 templates; two instantiated function templates are allowed to
10951 differ only by their return types, which we do not add here. */
10952
10953 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10954 {
10955 struct attribute *attr;
10956 struct die_info *child;
10957 int first = 1;
10958
10959 die->building_fullname = 1;
10960
10961 for (child = die->child; child != NULL; child = child->sibling)
10962 {
10963 struct type *type;
10964 LONGEST value;
10965 const gdb_byte *bytes;
10966 struct dwarf2_locexpr_baton *baton;
10967 struct value *v;
10968
10969 if (child->tag != DW_TAG_template_type_param
10970 && child->tag != DW_TAG_template_value_param)
10971 continue;
10972
10973 if (first)
10974 {
10975 buf.puts ("<");
10976 first = 0;
10977 }
10978 else
10979 buf.puts (", ");
10980
10981 attr = dwarf2_attr (child, DW_AT_type, cu);
10982 if (attr == NULL)
10983 {
10984 complaint (&symfile_complaints,
10985 _("template parameter missing DW_AT_type"));
10986 buf.puts ("UNKNOWN_TYPE");
10987 continue;
10988 }
10989 type = die_type (child, cu);
10990
10991 if (child->tag == DW_TAG_template_type_param)
10992 {
10993 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
10994 continue;
10995 }
10996
10997 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10998 if (attr == NULL)
10999 {
11000 complaint (&symfile_complaints,
11001 _("template parameter missing "
11002 "DW_AT_const_value"));
11003 buf.puts ("UNKNOWN_VALUE");
11004 continue;
11005 }
11006
11007 dwarf2_const_value_attr (attr, type, name,
11008 &cu->comp_unit_obstack, cu,
11009 &value, &bytes, &baton);
11010
11011 if (TYPE_NOSIGN (type))
11012 /* GDB prints characters as NUMBER 'CHAR'. If that's
11013 changed, this can use value_print instead. */
11014 c_printchar (value, type, &buf);
11015 else
11016 {
11017 struct value_print_options opts;
11018
11019 if (baton != NULL)
11020 v = dwarf2_evaluate_loc_desc (type, NULL,
11021 baton->data,
11022 baton->size,
11023 baton->per_cu);
11024 else if (bytes != NULL)
11025 {
11026 v = allocate_value (type);
11027 memcpy (value_contents_writeable (v), bytes,
11028 TYPE_LENGTH (type));
11029 }
11030 else
11031 v = value_from_longest (type, value);
11032
11033 /* Specify decimal so that we do not depend on
11034 the radix. */
11035 get_formatted_print_options (&opts, 'd');
11036 opts.raw = 1;
11037 value_print (v, &buf, &opts);
11038 release_value (v);
11039 value_free (v);
11040 }
11041 }
11042
11043 die->building_fullname = 0;
11044
11045 if (!first)
11046 {
11047 /* Close the argument list, with a space if necessary
11048 (nested templates). */
11049 if (!buf.empty () && buf.string ().back () == '>')
11050 buf.puts (" >");
11051 else
11052 buf.puts (">");
11053 }
11054 }
11055
11056 /* For C++ methods, append formal parameter type
11057 information, if PHYSNAME. */
11058
11059 if (physname && die->tag == DW_TAG_subprogram
11060 && cu->language == language_cplus)
11061 {
11062 struct type *type = read_type_die (die, cu);
11063
11064 c_type_print_args (type, &buf, 1, cu->language,
11065 &type_print_raw_options);
11066
11067 if (cu->language == language_cplus)
11068 {
11069 /* Assume that an artificial first parameter is
11070 "this", but do not crash if it is not. RealView
11071 marks unnamed (and thus unused) parameters as
11072 artificial; there is no way to differentiate
11073 the two cases. */
11074 if (TYPE_NFIELDS (type) > 0
11075 && TYPE_FIELD_ARTIFICIAL (type, 0)
11076 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11077 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11078 0))))
11079 buf.puts (" const");
11080 }
11081 }
11082
11083 const std::string &intermediate_name = buf.string ();
11084
11085 if (cu->language == language_cplus)
11086 canonical_name
11087 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11088 &objfile->per_bfd->storage_obstack);
11089
11090 /* If we only computed INTERMEDIATE_NAME, or if
11091 INTERMEDIATE_NAME is already canonical, then we need to
11092 copy it to the appropriate obstack. */
11093 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11094 name = ((const char *)
11095 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11096 intermediate_name.c_str (),
11097 intermediate_name.length ()));
11098 else
11099 name = canonical_name;
11100 }
11101 }
11102
11103 return name;
11104}
11105
11106/* Return the fully qualified name of DIE, based on its DW_AT_name.
11107 If scope qualifiers are appropriate they will be added. The result
11108 will be allocated on the storage_obstack, or NULL if the DIE does
11109 not have a name. NAME may either be from a previous call to
11110 dwarf2_name or NULL.
11111
11112 The output string will be canonicalized (if C++). */
11113
11114static const char *
11115dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11116{
11117 return dwarf2_compute_name (name, die, cu, 0);
11118}
11119
11120/* Construct a physname for the given DIE in CU. NAME may either be
11121 from a previous call to dwarf2_name or NULL. The result will be
11122 allocated on the objfile_objstack or NULL if the DIE does not have a
11123 name.
11124
11125 The output string will be canonicalized (if C++). */
11126
11127static const char *
11128dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11129{
11130 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11131 const char *retval, *mangled = NULL, *canon = NULL;
11132 int need_copy = 1;
11133
11134 /* In this case dwarf2_compute_name is just a shortcut not building anything
11135 on its own. */
11136 if (!die_needs_namespace (die, cu))
11137 return dwarf2_compute_name (name, die, cu, 1);
11138
11139 mangled = dw2_linkage_name (die, cu);
11140
11141 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11142 See https://github.com/rust-lang/rust/issues/32925. */
11143 if (cu->language == language_rust && mangled != NULL
11144 && strchr (mangled, '{') != NULL)
11145 mangled = NULL;
11146
11147 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11148 has computed. */
11149 gdb::unique_xmalloc_ptr<char> demangled;
11150 if (mangled != NULL)
11151 {
11152
11153 if (cu->language == language_go)
11154 {
11155 /* This is a lie, but we already lie to the caller new_symbol.
11156 new_symbol assumes we return the mangled name.
11157 This just undoes that lie until things are cleaned up. */
11158 }
11159 else
11160 {
11161 /* Use DMGL_RET_DROP for C++ template functions to suppress
11162 their return type. It is easier for GDB users to search
11163 for such functions as `name(params)' than `long name(params)'.
11164 In such case the minimal symbol names do not match the full
11165 symbol names but for template functions there is never a need
11166 to look up their definition from their declaration so
11167 the only disadvantage remains the minimal symbol variant
11168 `long name(params)' does not have the proper inferior type. */
11169 demangled.reset (gdb_demangle (mangled,
11170 (DMGL_PARAMS | DMGL_ANSI
11171 | DMGL_RET_DROP)));
11172 }
11173 if (demangled)
11174 canon = demangled.get ();
11175 else
11176 {
11177 canon = mangled;
11178 need_copy = 0;
11179 }
11180 }
11181
11182 if (canon == NULL || check_physname)
11183 {
11184 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11185
11186 if (canon != NULL && strcmp (physname, canon) != 0)
11187 {
11188 /* It may not mean a bug in GDB. The compiler could also
11189 compute DW_AT_linkage_name incorrectly. But in such case
11190 GDB would need to be bug-to-bug compatible. */
11191
11192 complaint (&symfile_complaints,
11193 _("Computed physname <%s> does not match demangled <%s> "
11194 "(from linkage <%s>) - DIE at %s [in module %s]"),
11195 physname, canon, mangled, sect_offset_str (die->sect_off),
11196 objfile_name (objfile));
11197
11198 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11199 is available here - over computed PHYSNAME. It is safer
11200 against both buggy GDB and buggy compilers. */
11201
11202 retval = canon;
11203 }
11204 else
11205 {
11206 retval = physname;
11207 need_copy = 0;
11208 }
11209 }
11210 else
11211 retval = canon;
11212
11213 if (need_copy)
11214 retval = ((const char *)
11215 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11216 retval, strlen (retval)));
11217
11218 return retval;
11219}
11220
11221/* Inspect DIE in CU for a namespace alias. If one exists, record
11222 a new symbol for it.
11223
11224 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11225
11226static int
11227read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11228{
11229 struct attribute *attr;
11230
11231 /* If the die does not have a name, this is not a namespace
11232 alias. */
11233 attr = dwarf2_attr (die, DW_AT_name, cu);
11234 if (attr != NULL)
11235 {
11236 int num;
11237 struct die_info *d = die;
11238 struct dwarf2_cu *imported_cu = cu;
11239
11240 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11241 keep inspecting DIEs until we hit the underlying import. */
11242#define MAX_NESTED_IMPORTED_DECLARATIONS 100
11243 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11244 {
11245 attr = dwarf2_attr (d, DW_AT_import, cu);
11246 if (attr == NULL)
11247 break;
11248
11249 d = follow_die_ref (d, attr, &imported_cu);
11250 if (d->tag != DW_TAG_imported_declaration)
11251 break;
11252 }
11253
11254 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11255 {
11256 complaint (&symfile_complaints,
11257 _("DIE at %s has too many recursively imported "
11258 "declarations"), sect_offset_str (d->sect_off));
11259 return 0;
11260 }
11261
11262 if (attr != NULL)
11263 {
11264 struct type *type;
11265 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11266
11267 type = get_die_type_at_offset (sect_off, cu->per_cu);
11268 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11269 {
11270 /* This declaration is a global namespace alias. Add
11271 a symbol for it whose type is the aliased namespace. */
11272 new_symbol (die, type, cu);
11273 return 1;
11274 }
11275 }
11276 }
11277
11278 return 0;
11279}
11280
11281/* Return the using directives repository (global or local?) to use in the
11282 current context for LANGUAGE.
11283
11284 For Ada, imported declarations can materialize renamings, which *may* be
11285 global. However it is impossible (for now?) in DWARF to distinguish
11286 "external" imported declarations and "static" ones. As all imported
11287 declarations seem to be static in all other languages, make them all CU-wide
11288 global only in Ada. */
11289
11290static struct using_direct **
11291using_directives (enum language language)
11292{
11293 if (language == language_ada && context_stack_depth == 0)
11294 return &global_using_directives;
11295 else
11296 return &local_using_directives;
11297}
11298
11299/* Read the import statement specified by the given die and record it. */
11300
11301static void
11302read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11303{
11304 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11305 struct attribute *import_attr;
11306 struct die_info *imported_die, *child_die;
11307 struct dwarf2_cu *imported_cu;
11308 const char *imported_name;
11309 const char *imported_name_prefix;
11310 const char *canonical_name;
11311 const char *import_alias;
11312 const char *imported_declaration = NULL;
11313 const char *import_prefix;
11314 std::vector<const char *> excludes;
11315
11316 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11317 if (import_attr == NULL)
11318 {
11319 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11320 dwarf_tag_name (die->tag));
11321 return;
11322 }
11323
11324 imported_cu = cu;
11325 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11326 imported_name = dwarf2_name (imported_die, imported_cu);
11327 if (imported_name == NULL)
11328 {
11329 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11330
11331 The import in the following code:
11332 namespace A
11333 {
11334 typedef int B;
11335 }
11336
11337 int main ()
11338 {
11339 using A::B;
11340 B b;
11341 return b;
11342 }
11343
11344 ...
11345 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11346 <52> DW_AT_decl_file : 1
11347 <53> DW_AT_decl_line : 6
11348 <54> DW_AT_import : <0x75>
11349 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11350 <59> DW_AT_name : B
11351 <5b> DW_AT_decl_file : 1
11352 <5c> DW_AT_decl_line : 2
11353 <5d> DW_AT_type : <0x6e>
11354 ...
11355 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11356 <76> DW_AT_byte_size : 4
11357 <77> DW_AT_encoding : 5 (signed)
11358
11359 imports the wrong die ( 0x75 instead of 0x58 ).
11360 This case will be ignored until the gcc bug is fixed. */
11361 return;
11362 }
11363
11364 /* Figure out the local name after import. */
11365 import_alias = dwarf2_name (die, cu);
11366
11367 /* Figure out where the statement is being imported to. */
11368 import_prefix = determine_prefix (die, cu);
11369
11370 /* Figure out what the scope of the imported die is and prepend it
11371 to the name of the imported die. */
11372 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11373
11374 if (imported_die->tag != DW_TAG_namespace
11375 && imported_die->tag != DW_TAG_module)
11376 {
11377 imported_declaration = imported_name;
11378 canonical_name = imported_name_prefix;
11379 }
11380 else if (strlen (imported_name_prefix) > 0)
11381 canonical_name = obconcat (&objfile->objfile_obstack,
11382 imported_name_prefix,
11383 (cu->language == language_d ? "." : "::"),
11384 imported_name, (char *) NULL);
11385 else
11386 canonical_name = imported_name;
11387
11388 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11389 for (child_die = die->child; child_die && child_die->tag;
11390 child_die = sibling_die (child_die))
11391 {
11392 /* DWARF-4: A Fortran use statement with a “rename list” may be
11393 represented by an imported module entry with an import attribute
11394 referring to the module and owned entries corresponding to those
11395 entities that are renamed as part of being imported. */
11396
11397 if (child_die->tag != DW_TAG_imported_declaration)
11398 {
11399 complaint (&symfile_complaints,
11400 _("child DW_TAG_imported_declaration expected "
11401 "- DIE at %s [in module %s]"),
11402 sect_offset_str (child_die->sect_off),
11403 objfile_name (objfile));
11404 continue;
11405 }
11406
11407 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11408 if (import_attr == NULL)
11409 {
11410 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11411 dwarf_tag_name (child_die->tag));
11412 continue;
11413 }
11414
11415 imported_cu = cu;
11416 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11417 &imported_cu);
11418 imported_name = dwarf2_name (imported_die, imported_cu);
11419 if (imported_name == NULL)
11420 {
11421 complaint (&symfile_complaints,
11422 _("child DW_TAG_imported_declaration has unknown "
11423 "imported name - DIE at %s [in module %s]"),
11424 sect_offset_str (child_die->sect_off),
11425 objfile_name (objfile));
11426 continue;
11427 }
11428
11429 excludes.push_back (imported_name);
11430
11431 process_die (child_die, cu);
11432 }
11433
11434 add_using_directive (using_directives (cu->language),
11435 import_prefix,
11436 canonical_name,
11437 import_alias,
11438 imported_declaration,
11439 excludes,
11440 0,
11441 &objfile->objfile_obstack);
11442}
11443
11444/* ICC<14 does not output the required DW_AT_declaration on incomplete
11445 types, but gives them a size of zero. Starting with version 14,
11446 ICC is compatible with GCC. */
11447
11448static int
11449producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11450{
11451 if (!cu->checked_producer)
11452 check_producer (cu);
11453
11454 return cu->producer_is_icc_lt_14;
11455}
11456
11457/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11458 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11459 this, it was first present in GCC release 4.3.0. */
11460
11461static int
11462producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11463{
11464 if (!cu->checked_producer)
11465 check_producer (cu);
11466
11467 return cu->producer_is_gcc_lt_4_3;
11468}
11469
11470static file_and_directory
11471find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11472{
11473 file_and_directory res;
11474
11475 /* Find the filename. Do not use dwarf2_name here, since the filename
11476 is not a source language identifier. */
11477 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11478 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11479
11480 if (res.comp_dir == NULL
11481 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11482 && IS_ABSOLUTE_PATH (res.name))
11483 {
11484 res.comp_dir_storage = ldirname (res.name);
11485 if (!res.comp_dir_storage.empty ())
11486 res.comp_dir = res.comp_dir_storage.c_str ();
11487 }
11488 if (res.comp_dir != NULL)
11489 {
11490 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11491 directory, get rid of it. */
11492 const char *cp = strchr (res.comp_dir, ':');
11493
11494 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11495 res.comp_dir = cp + 1;
11496 }
11497
11498 if (res.name == NULL)
11499 res.name = "<unknown>";
11500
11501 return res;
11502}
11503
11504/* Handle DW_AT_stmt_list for a compilation unit.
11505 DIE is the DW_TAG_compile_unit die for CU.
11506 COMP_DIR is the compilation directory. LOWPC is passed to
11507 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11508
11509static void
11510handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11511 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11512{
11513 struct dwarf2_per_objfile *dwarf2_per_objfile
11514 = cu->per_cu->dwarf2_per_objfile;
11515 struct objfile *objfile = dwarf2_per_objfile->objfile;
11516 struct attribute *attr;
11517 struct line_header line_header_local;
11518 hashval_t line_header_local_hash;
11519 void **slot;
11520 int decode_mapping;
11521
11522 gdb_assert (! cu->per_cu->is_debug_types);
11523
11524 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11525 if (attr == NULL)
11526 return;
11527
11528 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11529
11530 /* The line header hash table is only created if needed (it exists to
11531 prevent redundant reading of the line table for partial_units).
11532 If we're given a partial_unit, we'll need it. If we're given a
11533 compile_unit, then use the line header hash table if it's already
11534 created, but don't create one just yet. */
11535
11536 if (dwarf2_per_objfile->line_header_hash == NULL
11537 && die->tag == DW_TAG_partial_unit)
11538 {
11539 dwarf2_per_objfile->line_header_hash
11540 = htab_create_alloc_ex (127, line_header_hash_voidp,
11541 line_header_eq_voidp,
11542 free_line_header_voidp,
11543 &objfile->objfile_obstack,
11544 hashtab_obstack_allocate,
11545 dummy_obstack_deallocate);
11546 }
11547
11548 line_header_local.sect_off = line_offset;
11549 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11550 line_header_local_hash = line_header_hash (&line_header_local);
11551 if (dwarf2_per_objfile->line_header_hash != NULL)
11552 {
11553 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11554 &line_header_local,
11555 line_header_local_hash, NO_INSERT);
11556
11557 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11558 is not present in *SLOT (since if there is something in *SLOT then
11559 it will be for a partial_unit). */
11560 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11561 {
11562 gdb_assert (*slot != NULL);
11563 cu->line_header = (struct line_header *) *slot;
11564 return;
11565 }
11566 }
11567
11568 /* dwarf_decode_line_header does not yet provide sufficient information.
11569 We always have to call also dwarf_decode_lines for it. */
11570 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11571 if (lh == NULL)
11572 return;
11573
11574 cu->line_header = lh.release ();
11575 cu->line_header_die_owner = die;
11576
11577 if (dwarf2_per_objfile->line_header_hash == NULL)
11578 slot = NULL;
11579 else
11580 {
11581 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11582 &line_header_local,
11583 line_header_local_hash, INSERT);
11584 gdb_assert (slot != NULL);
11585 }
11586 if (slot != NULL && *slot == NULL)
11587 {
11588 /* This newly decoded line number information unit will be owned
11589 by line_header_hash hash table. */
11590 *slot = cu->line_header;
11591 cu->line_header_die_owner = NULL;
11592 }
11593 else
11594 {
11595 /* We cannot free any current entry in (*slot) as that struct line_header
11596 may be already used by multiple CUs. Create only temporary decoded
11597 line_header for this CU - it may happen at most once for each line
11598 number information unit. And if we're not using line_header_hash
11599 then this is what we want as well. */
11600 gdb_assert (die->tag != DW_TAG_partial_unit);
11601 }
11602 decode_mapping = (die->tag != DW_TAG_partial_unit);
11603 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11604 decode_mapping);
11605
11606}
11607
11608/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11609
11610static void
11611read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11612{
11613 struct dwarf2_per_objfile *dwarf2_per_objfile
11614 = cu->per_cu->dwarf2_per_objfile;
11615 struct objfile *objfile = dwarf2_per_objfile->objfile;
11616 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11617 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11618 CORE_ADDR highpc = ((CORE_ADDR) 0);
11619 struct attribute *attr;
11620 struct die_info *child_die;
11621 CORE_ADDR baseaddr;
11622
11623 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11624
11625 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11626
11627 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11628 from finish_block. */
11629 if (lowpc == ((CORE_ADDR) -1))
11630 lowpc = highpc;
11631 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11632
11633 file_and_directory fnd = find_file_and_directory (die, cu);
11634
11635 prepare_one_comp_unit (cu, die, cu->language);
11636
11637 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11638 standardised yet. As a workaround for the language detection we fall
11639 back to the DW_AT_producer string. */
11640 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11641 cu->language = language_opencl;
11642
11643 /* Similar hack for Go. */
11644 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11645 set_cu_language (DW_LANG_Go, cu);
11646
11647 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11648
11649 /* Decode line number information if present. We do this before
11650 processing child DIEs, so that the line header table is available
11651 for DW_AT_decl_file. */
11652 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11653
11654 /* Process all dies in compilation unit. */
11655 if (die->child != NULL)
11656 {
11657 child_die = die->child;
11658 while (child_die && child_die->tag)
11659 {
11660 process_die (child_die, cu);
11661 child_die = sibling_die (child_die);
11662 }
11663 }
11664
11665 /* Decode macro information, if present. Dwarf 2 macro information
11666 refers to information in the line number info statement program
11667 header, so we can only read it if we've read the header
11668 successfully. */
11669 attr = dwarf2_attr (die, DW_AT_macros, cu);
11670 if (attr == NULL)
11671 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11672 if (attr && cu->line_header)
11673 {
11674 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11675 complaint (&symfile_complaints,
11676 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11677
11678 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11679 }
11680 else
11681 {
11682 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11683 if (attr && cu->line_header)
11684 {
11685 unsigned int macro_offset = DW_UNSND (attr);
11686
11687 dwarf_decode_macros (cu, macro_offset, 0);
11688 }
11689 }
11690}
11691
11692/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11693 Create the set of symtabs used by this TU, or if this TU is sharing
11694 symtabs with another TU and the symtabs have already been created
11695 then restore those symtabs in the line header.
11696 We don't need the pc/line-number mapping for type units. */
11697
11698static void
11699setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11700{
11701 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11702 struct type_unit_group *tu_group;
11703 int first_time;
11704 struct attribute *attr;
11705 unsigned int i;
11706 struct signatured_type *sig_type;
11707
11708 gdb_assert (per_cu->is_debug_types);
11709 sig_type = (struct signatured_type *) per_cu;
11710
11711 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11712
11713 /* If we're using .gdb_index (includes -readnow) then
11714 per_cu->type_unit_group may not have been set up yet. */
11715 if (sig_type->type_unit_group == NULL)
11716 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11717 tu_group = sig_type->type_unit_group;
11718
11719 /* If we've already processed this stmt_list there's no real need to
11720 do it again, we could fake it and just recreate the part we need
11721 (file name,index -> symtab mapping). If data shows this optimization
11722 is useful we can do it then. */
11723 first_time = tu_group->compunit_symtab == NULL;
11724
11725 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11726 debug info. */
11727 line_header_up lh;
11728 if (attr != NULL)
11729 {
11730 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11731 lh = dwarf_decode_line_header (line_offset, cu);
11732 }
11733 if (lh == NULL)
11734 {
11735 if (first_time)
11736 dwarf2_start_symtab (cu, "", NULL, 0);
11737 else
11738 {
11739 gdb_assert (tu_group->symtabs == NULL);
11740 restart_symtab (tu_group->compunit_symtab, "", 0);
11741 }
11742 return;
11743 }
11744
11745 cu->line_header = lh.release ();
11746 cu->line_header_die_owner = die;
11747
11748 if (first_time)
11749 {
11750 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11751
11752 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11753 still initializing it, and our caller (a few levels up)
11754 process_full_type_unit still needs to know if this is the first
11755 time. */
11756
11757 tu_group->num_symtabs = cu->line_header->file_names.size ();
11758 tu_group->symtabs = XNEWVEC (struct symtab *,
11759 cu->line_header->file_names.size ());
11760
11761 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11762 {
11763 file_entry &fe = cu->line_header->file_names[i];
11764
11765 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11766
11767 if (current_subfile->symtab == NULL)
11768 {
11769 /* NOTE: start_subfile will recognize when it's been
11770 passed a file it has already seen. So we can't
11771 assume there's a simple mapping from
11772 cu->line_header->file_names to subfiles, plus
11773 cu->line_header->file_names may contain dups. */
11774 current_subfile->symtab
11775 = allocate_symtab (cust, current_subfile->name);
11776 }
11777
11778 fe.symtab = current_subfile->symtab;
11779 tu_group->symtabs[i] = fe.symtab;
11780 }
11781 }
11782 else
11783 {
11784 restart_symtab (tu_group->compunit_symtab, "", 0);
11785
11786 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11787 {
11788 file_entry &fe = cu->line_header->file_names[i];
11789
11790 fe.symtab = tu_group->symtabs[i];
11791 }
11792 }
11793
11794 /* The main symtab is allocated last. Type units don't have DW_AT_name
11795 so they don't have a "real" (so to speak) symtab anyway.
11796 There is later code that will assign the main symtab to all symbols
11797 that don't have one. We need to handle the case of a symbol with a
11798 missing symtab (DW_AT_decl_file) anyway. */
11799}
11800
11801/* Process DW_TAG_type_unit.
11802 For TUs we want to skip the first top level sibling if it's not the
11803 actual type being defined by this TU. In this case the first top
11804 level sibling is there to provide context only. */
11805
11806static void
11807read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11808{
11809 struct die_info *child_die;
11810
11811 prepare_one_comp_unit (cu, die, language_minimal);
11812
11813 /* Initialize (or reinitialize) the machinery for building symtabs.
11814 We do this before processing child DIEs, so that the line header table
11815 is available for DW_AT_decl_file. */
11816 setup_type_unit_groups (die, cu);
11817
11818 if (die->child != NULL)
11819 {
11820 child_die = die->child;
11821 while (child_die && child_die->tag)
11822 {
11823 process_die (child_die, cu);
11824 child_die = sibling_die (child_die);
11825 }
11826 }
11827}
11828\f
11829/* DWO/DWP files.
11830
11831 http://gcc.gnu.org/wiki/DebugFission
11832 http://gcc.gnu.org/wiki/DebugFissionDWP
11833
11834 To simplify handling of both DWO files ("object" files with the DWARF info)
11835 and DWP files (a file with the DWOs packaged up into one file), we treat
11836 DWP files as having a collection of virtual DWO files. */
11837
11838static hashval_t
11839hash_dwo_file (const void *item)
11840{
11841 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11842 hashval_t hash;
11843
11844 hash = htab_hash_string (dwo_file->dwo_name);
11845 if (dwo_file->comp_dir != NULL)
11846 hash += htab_hash_string (dwo_file->comp_dir);
11847 return hash;
11848}
11849
11850static int
11851eq_dwo_file (const void *item_lhs, const void *item_rhs)
11852{
11853 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11854 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11855
11856 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11857 return 0;
11858 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11859 return lhs->comp_dir == rhs->comp_dir;
11860 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11861}
11862
11863/* Allocate a hash table for DWO files. */
11864
11865static htab_t
11866allocate_dwo_file_hash_table (struct objfile *objfile)
11867{
11868 return htab_create_alloc_ex (41,
11869 hash_dwo_file,
11870 eq_dwo_file,
11871 NULL,
11872 &objfile->objfile_obstack,
11873 hashtab_obstack_allocate,
11874 dummy_obstack_deallocate);
11875}
11876
11877/* Lookup DWO file DWO_NAME. */
11878
11879static void **
11880lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11881 const char *dwo_name,
11882 const char *comp_dir)
11883{
11884 struct dwo_file find_entry;
11885 void **slot;
11886
11887 if (dwarf2_per_objfile->dwo_files == NULL)
11888 dwarf2_per_objfile->dwo_files
11889 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11890
11891 memset (&find_entry, 0, sizeof (find_entry));
11892 find_entry.dwo_name = dwo_name;
11893 find_entry.comp_dir = comp_dir;
11894 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11895
11896 return slot;
11897}
11898
11899static hashval_t
11900hash_dwo_unit (const void *item)
11901{
11902 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11903
11904 /* This drops the top 32 bits of the id, but is ok for a hash. */
11905 return dwo_unit->signature;
11906}
11907
11908static int
11909eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11910{
11911 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11912 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11913
11914 /* The signature is assumed to be unique within the DWO file.
11915 So while object file CU dwo_id's always have the value zero,
11916 that's OK, assuming each object file DWO file has only one CU,
11917 and that's the rule for now. */
11918 return lhs->signature == rhs->signature;
11919}
11920
11921/* Allocate a hash table for DWO CUs,TUs.
11922 There is one of these tables for each of CUs,TUs for each DWO file. */
11923
11924static htab_t
11925allocate_dwo_unit_table (struct objfile *objfile)
11926{
11927 /* Start out with a pretty small number.
11928 Generally DWO files contain only one CU and maybe some TUs. */
11929 return htab_create_alloc_ex (3,
11930 hash_dwo_unit,
11931 eq_dwo_unit,
11932 NULL,
11933 &objfile->objfile_obstack,
11934 hashtab_obstack_allocate,
11935 dummy_obstack_deallocate);
11936}
11937
11938/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11939
11940struct create_dwo_cu_data
11941{
11942 struct dwo_file *dwo_file;
11943 struct dwo_unit dwo_unit;
11944};
11945
11946/* die_reader_func for create_dwo_cu. */
11947
11948static void
11949create_dwo_cu_reader (const struct die_reader_specs *reader,
11950 const gdb_byte *info_ptr,
11951 struct die_info *comp_unit_die,
11952 int has_children,
11953 void *datap)
11954{
11955 struct dwarf2_cu *cu = reader->cu;
11956 sect_offset sect_off = cu->per_cu->sect_off;
11957 struct dwarf2_section_info *section = cu->per_cu->section;
11958 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11959 struct dwo_file *dwo_file = data->dwo_file;
11960 struct dwo_unit *dwo_unit = &data->dwo_unit;
11961 struct attribute *attr;
11962
11963 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11964 if (attr == NULL)
11965 {
11966 complaint (&symfile_complaints,
11967 _("Dwarf Error: debug entry at offset %s is missing"
11968 " its dwo_id [in module %s]"),
11969 sect_offset_str (sect_off), dwo_file->dwo_name);
11970 return;
11971 }
11972
11973 dwo_unit->dwo_file = dwo_file;
11974 dwo_unit->signature = DW_UNSND (attr);
11975 dwo_unit->section = section;
11976 dwo_unit->sect_off = sect_off;
11977 dwo_unit->length = cu->per_cu->length;
11978
11979 if (dwarf_read_debug)
11980 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11981 sect_offset_str (sect_off),
11982 hex_string (dwo_unit->signature));
11983}
11984
11985/* Create the dwo_units for the CUs in a DWO_FILE.
11986 Note: This function processes DWO files only, not DWP files. */
11987
11988static void
11989create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11990 struct dwo_file &dwo_file, dwarf2_section_info &section,
11991 htab_t &cus_htab)
11992{
11993 struct objfile *objfile = dwarf2_per_objfile->objfile;
11994 const gdb_byte *info_ptr, *end_ptr;
11995
11996 dwarf2_read_section (objfile, &section);
11997 info_ptr = section.buffer;
11998
11999 if (info_ptr == NULL)
12000 return;
12001
12002 if (dwarf_read_debug)
12003 {
12004 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
12005 get_section_name (&section),
12006 get_section_file_name (&section));
12007 }
12008
12009 end_ptr = info_ptr + section.size;
12010 while (info_ptr < end_ptr)
12011 {
12012 struct dwarf2_per_cu_data per_cu;
12013 struct create_dwo_cu_data create_dwo_cu_data;
12014 struct dwo_unit *dwo_unit;
12015 void **slot;
12016 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
12017
12018 memset (&create_dwo_cu_data.dwo_unit, 0,
12019 sizeof (create_dwo_cu_data.dwo_unit));
12020 memset (&per_cu, 0, sizeof (per_cu));
12021 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
12022 per_cu.is_debug_types = 0;
12023 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
12024 per_cu.section = &section;
12025 create_dwo_cu_data.dwo_file = &dwo_file;
12026
12027 init_cutu_and_read_dies_no_follow (
12028 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
12029 info_ptr += per_cu.length;
12030
12031 // If the unit could not be parsed, skip it.
12032 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
12033 continue;
12034
12035 if (cus_htab == NULL)
12036 cus_htab = allocate_dwo_unit_table (objfile);
12037
12038 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12039 *dwo_unit = create_dwo_cu_data.dwo_unit;
12040 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
12041 gdb_assert (slot != NULL);
12042 if (*slot != NULL)
12043 {
12044 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
12045 sect_offset dup_sect_off = dup_cu->sect_off;
12046
12047 complaint (&symfile_complaints,
12048 _("debug cu entry at offset %s is duplicate to"
12049 " the entry at offset %s, signature %s"),
12050 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
12051 hex_string (dwo_unit->signature));
12052 }
12053 *slot = (void *)dwo_unit;
12054 }
12055}
12056
12057/* DWP file .debug_{cu,tu}_index section format:
12058 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12059
12060 DWP Version 1:
12061
12062 Both index sections have the same format, and serve to map a 64-bit
12063 signature to a set of section numbers. Each section begins with a header,
12064 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12065 indexes, and a pool of 32-bit section numbers. The index sections will be
12066 aligned at 8-byte boundaries in the file.
12067
12068 The index section header consists of:
12069
12070 V, 32 bit version number
12071 -, 32 bits unused
12072 N, 32 bit number of compilation units or type units in the index
12073 M, 32 bit number of slots in the hash table
12074
12075 Numbers are recorded using the byte order of the application binary.
12076
12077 The hash table begins at offset 16 in the section, and consists of an array
12078 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12079 order of the application binary). Unused slots in the hash table are 0.
12080 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12081
12082 The parallel table begins immediately after the hash table
12083 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12084 array of 32-bit indexes (using the byte order of the application binary),
12085 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12086 table contains a 32-bit index into the pool of section numbers. For unused
12087 hash table slots, the corresponding entry in the parallel table will be 0.
12088
12089 The pool of section numbers begins immediately following the hash table
12090 (at offset 16 + 12 * M from the beginning of the section). The pool of
12091 section numbers consists of an array of 32-bit words (using the byte order
12092 of the application binary). Each item in the array is indexed starting
12093 from 0. The hash table entry provides the index of the first section
12094 number in the set. Additional section numbers in the set follow, and the
12095 set is terminated by a 0 entry (section number 0 is not used in ELF).
12096
12097 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12098 section must be the first entry in the set, and the .debug_abbrev.dwo must
12099 be the second entry. Other members of the set may follow in any order.
12100
12101 ---
12102
12103 DWP Version 2:
12104
12105 DWP Version 2 combines all the .debug_info, etc. sections into one,
12106 and the entries in the index tables are now offsets into these sections.
12107 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12108 section.
12109
12110 Index Section Contents:
12111 Header
12112 Hash Table of Signatures dwp_hash_table.hash_table
12113 Parallel Table of Indices dwp_hash_table.unit_table
12114 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12115 Table of Section Sizes dwp_hash_table.v2.sizes
12116
12117 The index section header consists of:
12118
12119 V, 32 bit version number
12120 L, 32 bit number of columns in the table of section offsets
12121 N, 32 bit number of compilation units or type units in the index
12122 M, 32 bit number of slots in the hash table
12123
12124 Numbers are recorded using the byte order of the application binary.
12125
12126 The hash table has the same format as version 1.
12127 The parallel table of indices has the same format as version 1,
12128 except that the entries are origin-1 indices into the table of sections
12129 offsets and the table of section sizes.
12130
12131 The table of offsets begins immediately following the parallel table
12132 (at offset 16 + 12 * M from the beginning of the section). The table is
12133 a two-dimensional array of 32-bit words (using the byte order of the
12134 application binary), with L columns and N+1 rows, in row-major order.
12135 Each row in the array is indexed starting from 0. The first row provides
12136 a key to the remaining rows: each column in this row provides an identifier
12137 for a debug section, and the offsets in the same column of subsequent rows
12138 refer to that section. The section identifiers are:
12139
12140 DW_SECT_INFO 1 .debug_info.dwo
12141 DW_SECT_TYPES 2 .debug_types.dwo
12142 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12143 DW_SECT_LINE 4 .debug_line.dwo
12144 DW_SECT_LOC 5 .debug_loc.dwo
12145 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12146 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12147 DW_SECT_MACRO 8 .debug_macro.dwo
12148
12149 The offsets provided by the CU and TU index sections are the base offsets
12150 for the contributions made by each CU or TU to the corresponding section
12151 in the package file. Each CU and TU header contains an abbrev_offset
12152 field, used to find the abbreviations table for that CU or TU within the
12153 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12154 be interpreted as relative to the base offset given in the index section.
12155 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12156 should be interpreted as relative to the base offset for .debug_line.dwo,
12157 and offsets into other debug sections obtained from DWARF attributes should
12158 also be interpreted as relative to the corresponding base offset.
12159
12160 The table of sizes begins immediately following the table of offsets.
12161 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12162 with L columns and N rows, in row-major order. Each row in the array is
12163 indexed starting from 1 (row 0 is shared by the two tables).
12164
12165 ---
12166
12167 Hash table lookup is handled the same in version 1 and 2:
12168
12169 We assume that N and M will not exceed 2^32 - 1.
12170 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12171
12172 Given a 64-bit compilation unit signature or a type signature S, an entry
12173 in the hash table is located as follows:
12174
12175 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12176 the low-order k bits all set to 1.
12177
12178 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12179
12180 3) If the hash table entry at index H matches the signature, use that
12181 entry. If the hash table entry at index H is unused (all zeroes),
12182 terminate the search: the signature is not present in the table.
12183
12184 4) Let H = (H + H') modulo M. Repeat at Step 3.
12185
12186 Because M > N and H' and M are relatively prime, the search is guaranteed
12187 to stop at an unused slot or find the match. */
12188
12189/* Create a hash table to map DWO IDs to their CU/TU entry in
12190 .debug_{info,types}.dwo in DWP_FILE.
12191 Returns NULL if there isn't one.
12192 Note: This function processes DWP files only, not DWO files. */
12193
12194static struct dwp_hash_table *
12195create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12196 struct dwp_file *dwp_file, int is_debug_types)
12197{
12198 struct objfile *objfile = dwarf2_per_objfile->objfile;
12199 bfd *dbfd = dwp_file->dbfd;
12200 const gdb_byte *index_ptr, *index_end;
12201 struct dwarf2_section_info *index;
12202 uint32_t version, nr_columns, nr_units, nr_slots;
12203 struct dwp_hash_table *htab;
12204
12205 if (is_debug_types)
12206 index = &dwp_file->sections.tu_index;
12207 else
12208 index = &dwp_file->sections.cu_index;
12209
12210 if (dwarf2_section_empty_p (index))
12211 return NULL;
12212 dwarf2_read_section (objfile, index);
12213
12214 index_ptr = index->buffer;
12215 index_end = index_ptr + index->size;
12216
12217 version = read_4_bytes (dbfd, index_ptr);
12218 index_ptr += 4;
12219 if (version == 2)
12220 nr_columns = read_4_bytes (dbfd, index_ptr);
12221 else
12222 nr_columns = 0;
12223 index_ptr += 4;
12224 nr_units = read_4_bytes (dbfd, index_ptr);
12225 index_ptr += 4;
12226 nr_slots = read_4_bytes (dbfd, index_ptr);
12227 index_ptr += 4;
12228
12229 if (version != 1 && version != 2)
12230 {
12231 error (_("Dwarf Error: unsupported DWP file version (%s)"
12232 " [in module %s]"),
12233 pulongest (version), dwp_file->name);
12234 }
12235 if (nr_slots != (nr_slots & -nr_slots))
12236 {
12237 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12238 " is not power of 2 [in module %s]"),
12239 pulongest (nr_slots), dwp_file->name);
12240 }
12241
12242 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12243 htab->version = version;
12244 htab->nr_columns = nr_columns;
12245 htab->nr_units = nr_units;
12246 htab->nr_slots = nr_slots;
12247 htab->hash_table = index_ptr;
12248 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12249
12250 /* Exit early if the table is empty. */
12251 if (nr_slots == 0 || nr_units == 0
12252 || (version == 2 && nr_columns == 0))
12253 {
12254 /* All must be zero. */
12255 if (nr_slots != 0 || nr_units != 0
12256 || (version == 2 && nr_columns != 0))
12257 {
12258 complaint (&symfile_complaints,
12259 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12260 " all zero [in modules %s]"),
12261 dwp_file->name);
12262 }
12263 return htab;
12264 }
12265
12266 if (version == 1)
12267 {
12268 htab->section_pool.v1.indices =
12269 htab->unit_table + sizeof (uint32_t) * nr_slots;
12270 /* It's harder to decide whether the section is too small in v1.
12271 V1 is deprecated anyway so we punt. */
12272 }
12273 else
12274 {
12275 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12276 int *ids = htab->section_pool.v2.section_ids;
12277 /* Reverse map for error checking. */
12278 int ids_seen[DW_SECT_MAX + 1];
12279 int i;
12280
12281 if (nr_columns < 2)
12282 {
12283 error (_("Dwarf Error: bad DWP hash table, too few columns"
12284 " in section table [in module %s]"),
12285 dwp_file->name);
12286 }
12287 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12288 {
12289 error (_("Dwarf Error: bad DWP hash table, too many columns"
12290 " in section table [in module %s]"),
12291 dwp_file->name);
12292 }
12293 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12294 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12295 for (i = 0; i < nr_columns; ++i)
12296 {
12297 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12298
12299 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12300 {
12301 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12302 " in section table [in module %s]"),
12303 id, dwp_file->name);
12304 }
12305 if (ids_seen[id] != -1)
12306 {
12307 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12308 " id %d in section table [in module %s]"),
12309 id, dwp_file->name);
12310 }
12311 ids_seen[id] = i;
12312 ids[i] = id;
12313 }
12314 /* Must have exactly one info or types section. */
12315 if (((ids_seen[DW_SECT_INFO] != -1)
12316 + (ids_seen[DW_SECT_TYPES] != -1))
12317 != 1)
12318 {
12319 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12320 " DWO info/types section [in module %s]"),
12321 dwp_file->name);
12322 }
12323 /* Must have an abbrev section. */
12324 if (ids_seen[DW_SECT_ABBREV] == -1)
12325 {
12326 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12327 " section [in module %s]"),
12328 dwp_file->name);
12329 }
12330 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12331 htab->section_pool.v2.sizes =
12332 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12333 * nr_units * nr_columns);
12334 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12335 * nr_units * nr_columns))
12336 > index_end)
12337 {
12338 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12339 " [in module %s]"),
12340 dwp_file->name);
12341 }
12342 }
12343
12344 return htab;
12345}
12346
12347/* Update SECTIONS with the data from SECTP.
12348
12349 This function is like the other "locate" section routines that are
12350 passed to bfd_map_over_sections, but in this context the sections to
12351 read comes from the DWP V1 hash table, not the full ELF section table.
12352
12353 The result is non-zero for success, or zero if an error was found. */
12354
12355static int
12356locate_v1_virtual_dwo_sections (asection *sectp,
12357 struct virtual_v1_dwo_sections *sections)
12358{
12359 const struct dwop_section_names *names = &dwop_section_names;
12360
12361 if (section_is_p (sectp->name, &names->abbrev_dwo))
12362 {
12363 /* There can be only one. */
12364 if (sections->abbrev.s.section != NULL)
12365 return 0;
12366 sections->abbrev.s.section = sectp;
12367 sections->abbrev.size = bfd_get_section_size (sectp);
12368 }
12369 else if (section_is_p (sectp->name, &names->info_dwo)
12370 || section_is_p (sectp->name, &names->types_dwo))
12371 {
12372 /* There can be only one. */
12373 if (sections->info_or_types.s.section != NULL)
12374 return 0;
12375 sections->info_or_types.s.section = sectp;
12376 sections->info_or_types.size = bfd_get_section_size (sectp);
12377 }
12378 else if (section_is_p (sectp->name, &names->line_dwo))
12379 {
12380 /* There can be only one. */
12381 if (sections->line.s.section != NULL)
12382 return 0;
12383 sections->line.s.section = sectp;
12384 sections->line.size = bfd_get_section_size (sectp);
12385 }
12386 else if (section_is_p (sectp->name, &names->loc_dwo))
12387 {
12388 /* There can be only one. */
12389 if (sections->loc.s.section != NULL)
12390 return 0;
12391 sections->loc.s.section = sectp;
12392 sections->loc.size = bfd_get_section_size (sectp);
12393 }
12394 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12395 {
12396 /* There can be only one. */
12397 if (sections->macinfo.s.section != NULL)
12398 return 0;
12399 sections->macinfo.s.section = sectp;
12400 sections->macinfo.size = bfd_get_section_size (sectp);
12401 }
12402 else if (section_is_p (sectp->name, &names->macro_dwo))
12403 {
12404 /* There can be only one. */
12405 if (sections->macro.s.section != NULL)
12406 return 0;
12407 sections->macro.s.section = sectp;
12408 sections->macro.size = bfd_get_section_size (sectp);
12409 }
12410 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12411 {
12412 /* There can be only one. */
12413 if (sections->str_offsets.s.section != NULL)
12414 return 0;
12415 sections->str_offsets.s.section = sectp;
12416 sections->str_offsets.size = bfd_get_section_size (sectp);
12417 }
12418 else
12419 {
12420 /* No other kind of section is valid. */
12421 return 0;
12422 }
12423
12424 return 1;
12425}
12426
12427/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12428 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12429 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12430 This is for DWP version 1 files. */
12431
12432static struct dwo_unit *
12433create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12434 struct dwp_file *dwp_file,
12435 uint32_t unit_index,
12436 const char *comp_dir,
12437 ULONGEST signature, int is_debug_types)
12438{
12439 struct objfile *objfile = dwarf2_per_objfile->objfile;
12440 const struct dwp_hash_table *dwp_htab =
12441 is_debug_types ? dwp_file->tus : dwp_file->cus;
12442 bfd *dbfd = dwp_file->dbfd;
12443 const char *kind = is_debug_types ? "TU" : "CU";
12444 struct dwo_file *dwo_file;
12445 struct dwo_unit *dwo_unit;
12446 struct virtual_v1_dwo_sections sections;
12447 void **dwo_file_slot;
12448 int i;
12449
12450 gdb_assert (dwp_file->version == 1);
12451
12452 if (dwarf_read_debug)
12453 {
12454 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12455 kind,
12456 pulongest (unit_index), hex_string (signature),
12457 dwp_file->name);
12458 }
12459
12460 /* Fetch the sections of this DWO unit.
12461 Put a limit on the number of sections we look for so that bad data
12462 doesn't cause us to loop forever. */
12463
12464#define MAX_NR_V1_DWO_SECTIONS \
12465 (1 /* .debug_info or .debug_types */ \
12466 + 1 /* .debug_abbrev */ \
12467 + 1 /* .debug_line */ \
12468 + 1 /* .debug_loc */ \
12469 + 1 /* .debug_str_offsets */ \
12470 + 1 /* .debug_macro or .debug_macinfo */ \
12471 + 1 /* trailing zero */)
12472
12473 memset (&sections, 0, sizeof (sections));
12474
12475 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12476 {
12477 asection *sectp;
12478 uint32_t section_nr =
12479 read_4_bytes (dbfd,
12480 dwp_htab->section_pool.v1.indices
12481 + (unit_index + i) * sizeof (uint32_t));
12482
12483 if (section_nr == 0)
12484 break;
12485 if (section_nr >= dwp_file->num_sections)
12486 {
12487 error (_("Dwarf Error: bad DWP hash table, section number too large"
12488 " [in module %s]"),
12489 dwp_file->name);
12490 }
12491
12492 sectp = dwp_file->elf_sections[section_nr];
12493 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12494 {
12495 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12496 " [in module %s]"),
12497 dwp_file->name);
12498 }
12499 }
12500
12501 if (i < 2
12502 || dwarf2_section_empty_p (&sections.info_or_types)
12503 || dwarf2_section_empty_p (&sections.abbrev))
12504 {
12505 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12506 " [in module %s]"),
12507 dwp_file->name);
12508 }
12509 if (i == MAX_NR_V1_DWO_SECTIONS)
12510 {
12511 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12512 " [in module %s]"),
12513 dwp_file->name);
12514 }
12515
12516 /* It's easier for the rest of the code if we fake a struct dwo_file and
12517 have dwo_unit "live" in that. At least for now.
12518
12519 The DWP file can be made up of a random collection of CUs and TUs.
12520 However, for each CU + set of TUs that came from the same original DWO
12521 file, we can combine them back into a virtual DWO file to save space
12522 (fewer struct dwo_file objects to allocate). Remember that for really
12523 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12524
12525 std::string virtual_dwo_name =
12526 string_printf ("virtual-dwo/%d-%d-%d-%d",
12527 get_section_id (&sections.abbrev),
12528 get_section_id (&sections.line),
12529 get_section_id (&sections.loc),
12530 get_section_id (&sections.str_offsets));
12531 /* Can we use an existing virtual DWO file? */
12532 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12533 virtual_dwo_name.c_str (),
12534 comp_dir);
12535 /* Create one if necessary. */
12536 if (*dwo_file_slot == NULL)
12537 {
12538 if (dwarf_read_debug)
12539 {
12540 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12541 virtual_dwo_name.c_str ());
12542 }
12543 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12544 dwo_file->dwo_name
12545 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12546 virtual_dwo_name.c_str (),
12547 virtual_dwo_name.size ());
12548 dwo_file->comp_dir = comp_dir;
12549 dwo_file->sections.abbrev = sections.abbrev;
12550 dwo_file->sections.line = sections.line;
12551 dwo_file->sections.loc = sections.loc;
12552 dwo_file->sections.macinfo = sections.macinfo;
12553 dwo_file->sections.macro = sections.macro;
12554 dwo_file->sections.str_offsets = sections.str_offsets;
12555 /* The "str" section is global to the entire DWP file. */
12556 dwo_file->sections.str = dwp_file->sections.str;
12557 /* The info or types section is assigned below to dwo_unit,
12558 there's no need to record it in dwo_file.
12559 Also, we can't simply record type sections in dwo_file because
12560 we record a pointer into the vector in dwo_unit. As we collect more
12561 types we'll grow the vector and eventually have to reallocate space
12562 for it, invalidating all copies of pointers into the previous
12563 contents. */
12564 *dwo_file_slot = dwo_file;
12565 }
12566 else
12567 {
12568 if (dwarf_read_debug)
12569 {
12570 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12571 virtual_dwo_name.c_str ());
12572 }
12573 dwo_file = (struct dwo_file *) *dwo_file_slot;
12574 }
12575
12576 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12577 dwo_unit->dwo_file = dwo_file;
12578 dwo_unit->signature = signature;
12579 dwo_unit->section =
12580 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12581 *dwo_unit->section = sections.info_or_types;
12582 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12583
12584 return dwo_unit;
12585}
12586
12587/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12588 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12589 piece within that section used by a TU/CU, return a virtual section
12590 of just that piece. */
12591
12592static struct dwarf2_section_info
12593create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12594 struct dwarf2_section_info *section,
12595 bfd_size_type offset, bfd_size_type size)
12596{
12597 struct dwarf2_section_info result;
12598 asection *sectp;
12599
12600 gdb_assert (section != NULL);
12601 gdb_assert (!section->is_virtual);
12602
12603 memset (&result, 0, sizeof (result));
12604 result.s.containing_section = section;
12605 result.is_virtual = 1;
12606
12607 if (size == 0)
12608 return result;
12609
12610 sectp = get_section_bfd_section (section);
12611
12612 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12613 bounds of the real section. This is a pretty-rare event, so just
12614 flag an error (easier) instead of a warning and trying to cope. */
12615 if (sectp == NULL
12616 || offset + size > bfd_get_section_size (sectp))
12617 {
12618 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12619 " in section %s [in module %s]"),
12620 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12621 objfile_name (dwarf2_per_objfile->objfile));
12622 }
12623
12624 result.virtual_offset = offset;
12625 result.size = size;
12626 return result;
12627}
12628
12629/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12630 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12631 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12632 This is for DWP version 2 files. */
12633
12634static struct dwo_unit *
12635create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12636 struct dwp_file *dwp_file,
12637 uint32_t unit_index,
12638 const char *comp_dir,
12639 ULONGEST signature, int is_debug_types)
12640{
12641 struct objfile *objfile = dwarf2_per_objfile->objfile;
12642 const struct dwp_hash_table *dwp_htab =
12643 is_debug_types ? dwp_file->tus : dwp_file->cus;
12644 bfd *dbfd = dwp_file->dbfd;
12645 const char *kind = is_debug_types ? "TU" : "CU";
12646 struct dwo_file *dwo_file;
12647 struct dwo_unit *dwo_unit;
12648 struct virtual_v2_dwo_sections sections;
12649 void **dwo_file_slot;
12650 int i;
12651
12652 gdb_assert (dwp_file->version == 2);
12653
12654 if (dwarf_read_debug)
12655 {
12656 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12657 kind,
12658 pulongest (unit_index), hex_string (signature),
12659 dwp_file->name);
12660 }
12661
12662 /* Fetch the section offsets of this DWO unit. */
12663
12664 memset (&sections, 0, sizeof (sections));
12665
12666 for (i = 0; i < dwp_htab->nr_columns; ++i)
12667 {
12668 uint32_t offset = read_4_bytes (dbfd,
12669 dwp_htab->section_pool.v2.offsets
12670 + (((unit_index - 1) * dwp_htab->nr_columns
12671 + i)
12672 * sizeof (uint32_t)));
12673 uint32_t size = read_4_bytes (dbfd,
12674 dwp_htab->section_pool.v2.sizes
12675 + (((unit_index - 1) * dwp_htab->nr_columns
12676 + i)
12677 * sizeof (uint32_t)));
12678
12679 switch (dwp_htab->section_pool.v2.section_ids[i])
12680 {
12681 case DW_SECT_INFO:
12682 case DW_SECT_TYPES:
12683 sections.info_or_types_offset = offset;
12684 sections.info_or_types_size = size;
12685 break;
12686 case DW_SECT_ABBREV:
12687 sections.abbrev_offset = offset;
12688 sections.abbrev_size = size;
12689 break;
12690 case DW_SECT_LINE:
12691 sections.line_offset = offset;
12692 sections.line_size = size;
12693 break;
12694 case DW_SECT_LOC:
12695 sections.loc_offset = offset;
12696 sections.loc_size = size;
12697 break;
12698 case DW_SECT_STR_OFFSETS:
12699 sections.str_offsets_offset = offset;
12700 sections.str_offsets_size = size;
12701 break;
12702 case DW_SECT_MACINFO:
12703 sections.macinfo_offset = offset;
12704 sections.macinfo_size = size;
12705 break;
12706 case DW_SECT_MACRO:
12707 sections.macro_offset = offset;
12708 sections.macro_size = size;
12709 break;
12710 }
12711 }
12712
12713 /* It's easier for the rest of the code if we fake a struct dwo_file and
12714 have dwo_unit "live" in that. At least for now.
12715
12716 The DWP file can be made up of a random collection of CUs and TUs.
12717 However, for each CU + set of TUs that came from the same original DWO
12718 file, we can combine them back into a virtual DWO file to save space
12719 (fewer struct dwo_file objects to allocate). Remember that for really
12720 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12721
12722 std::string virtual_dwo_name =
12723 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12724 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12725 (long) (sections.line_size ? sections.line_offset : 0),
12726 (long) (sections.loc_size ? sections.loc_offset : 0),
12727 (long) (sections.str_offsets_size
12728 ? sections.str_offsets_offset : 0));
12729 /* Can we use an existing virtual DWO file? */
12730 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12731 virtual_dwo_name.c_str (),
12732 comp_dir);
12733 /* Create one if necessary. */
12734 if (*dwo_file_slot == NULL)
12735 {
12736 if (dwarf_read_debug)
12737 {
12738 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12739 virtual_dwo_name.c_str ());
12740 }
12741 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12742 dwo_file->dwo_name
12743 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12744 virtual_dwo_name.c_str (),
12745 virtual_dwo_name.size ());
12746 dwo_file->comp_dir = comp_dir;
12747 dwo_file->sections.abbrev =
12748 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12749 sections.abbrev_offset, sections.abbrev_size);
12750 dwo_file->sections.line =
12751 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12752 sections.line_offset, sections.line_size);
12753 dwo_file->sections.loc =
12754 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12755 sections.loc_offset, sections.loc_size);
12756 dwo_file->sections.macinfo =
12757 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12758 sections.macinfo_offset, sections.macinfo_size);
12759 dwo_file->sections.macro =
12760 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12761 sections.macro_offset, sections.macro_size);
12762 dwo_file->sections.str_offsets =
12763 create_dwp_v2_section (dwarf2_per_objfile,
12764 &dwp_file->sections.str_offsets,
12765 sections.str_offsets_offset,
12766 sections.str_offsets_size);
12767 /* The "str" section is global to the entire DWP file. */
12768 dwo_file->sections.str = dwp_file->sections.str;
12769 /* The info or types section is assigned below to dwo_unit,
12770 there's no need to record it in dwo_file.
12771 Also, we can't simply record type sections in dwo_file because
12772 we record a pointer into the vector in dwo_unit. As we collect more
12773 types we'll grow the vector and eventually have to reallocate space
12774 for it, invalidating all copies of pointers into the previous
12775 contents. */
12776 *dwo_file_slot = dwo_file;
12777 }
12778 else
12779 {
12780 if (dwarf_read_debug)
12781 {
12782 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12783 virtual_dwo_name.c_str ());
12784 }
12785 dwo_file = (struct dwo_file *) *dwo_file_slot;
12786 }
12787
12788 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12789 dwo_unit->dwo_file = dwo_file;
12790 dwo_unit->signature = signature;
12791 dwo_unit->section =
12792 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12793 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12794 is_debug_types
12795 ? &dwp_file->sections.types
12796 : &dwp_file->sections.info,
12797 sections.info_or_types_offset,
12798 sections.info_or_types_size);
12799 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12800
12801 return dwo_unit;
12802}
12803
12804/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12805 Returns NULL if the signature isn't found. */
12806
12807static struct dwo_unit *
12808lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12809 struct dwp_file *dwp_file, const char *comp_dir,
12810 ULONGEST signature, int is_debug_types)
12811{
12812 const struct dwp_hash_table *dwp_htab =
12813 is_debug_types ? dwp_file->tus : dwp_file->cus;
12814 bfd *dbfd = dwp_file->dbfd;
12815 uint32_t mask = dwp_htab->nr_slots - 1;
12816 uint32_t hash = signature & mask;
12817 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12818 unsigned int i;
12819 void **slot;
12820 struct dwo_unit find_dwo_cu;
12821
12822 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12823 find_dwo_cu.signature = signature;
12824 slot = htab_find_slot (is_debug_types
12825 ? dwp_file->loaded_tus
12826 : dwp_file->loaded_cus,
12827 &find_dwo_cu, INSERT);
12828
12829 if (*slot != NULL)
12830 return (struct dwo_unit *) *slot;
12831
12832 /* Use a for loop so that we don't loop forever on bad debug info. */
12833 for (i = 0; i < dwp_htab->nr_slots; ++i)
12834 {
12835 ULONGEST signature_in_table;
12836
12837 signature_in_table =
12838 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12839 if (signature_in_table == signature)
12840 {
12841 uint32_t unit_index =
12842 read_4_bytes (dbfd,
12843 dwp_htab->unit_table + hash * sizeof (uint32_t));
12844
12845 if (dwp_file->version == 1)
12846 {
12847 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12848 dwp_file, unit_index,
12849 comp_dir, signature,
12850 is_debug_types);
12851 }
12852 else
12853 {
12854 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12855 dwp_file, unit_index,
12856 comp_dir, signature,
12857 is_debug_types);
12858 }
12859 return (struct dwo_unit *) *slot;
12860 }
12861 if (signature_in_table == 0)
12862 return NULL;
12863 hash = (hash + hash2) & mask;
12864 }
12865
12866 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12867 " [in module %s]"),
12868 dwp_file->name);
12869}
12870
12871/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12872 Open the file specified by FILE_NAME and hand it off to BFD for
12873 preliminary analysis. Return a newly initialized bfd *, which
12874 includes a canonicalized copy of FILE_NAME.
12875 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12876 SEARCH_CWD is true if the current directory is to be searched.
12877 It will be searched before debug-file-directory.
12878 If successful, the file is added to the bfd include table of the
12879 objfile's bfd (see gdb_bfd_record_inclusion).
12880 If unable to find/open the file, return NULL.
12881 NOTE: This function is derived from symfile_bfd_open. */
12882
12883static gdb_bfd_ref_ptr
12884try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12885 const char *file_name, int is_dwp, int search_cwd)
12886{
12887 int desc;
12888 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12889 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12890 to debug_file_directory. */
12891 const char *search_path;
12892 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12893
12894 gdb::unique_xmalloc_ptr<char> search_path_holder;
12895 if (search_cwd)
12896 {
12897 if (*debug_file_directory != '\0')
12898 {
12899 search_path_holder.reset (concat (".", dirname_separator_string,
12900 debug_file_directory,
12901 (char *) NULL));
12902 search_path = search_path_holder.get ();
12903 }
12904 else
12905 search_path = ".";
12906 }
12907 else
12908 search_path = debug_file_directory;
12909
12910 openp_flags flags = OPF_RETURN_REALPATH;
12911 if (is_dwp)
12912 flags |= OPF_SEARCH_IN_PATH;
12913
12914 gdb::unique_xmalloc_ptr<char> absolute_name;
12915 desc = openp (search_path, flags, file_name,
12916 O_RDONLY | O_BINARY, &absolute_name);
12917 if (desc < 0)
12918 return NULL;
12919
12920 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12921 gnutarget, desc));
12922 if (sym_bfd == NULL)
12923 return NULL;
12924 bfd_set_cacheable (sym_bfd.get (), 1);
12925
12926 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12927 return NULL;
12928
12929 /* Success. Record the bfd as having been included by the objfile's bfd.
12930 This is important because things like demangled_names_hash lives in the
12931 objfile's per_bfd space and may have references to things like symbol
12932 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12933 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12934
12935 return sym_bfd;
12936}
12937
12938/* Try to open DWO file FILE_NAME.
12939 COMP_DIR is the DW_AT_comp_dir attribute.
12940 The result is the bfd handle of the file.
12941 If there is a problem finding or opening the file, return NULL.
12942 Upon success, the canonicalized path of the file is stored in the bfd,
12943 same as symfile_bfd_open. */
12944
12945static gdb_bfd_ref_ptr
12946open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12947 const char *file_name, const char *comp_dir)
12948{
12949 if (IS_ABSOLUTE_PATH (file_name))
12950 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12951 0 /*is_dwp*/, 0 /*search_cwd*/);
12952
12953 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12954
12955 if (comp_dir != NULL)
12956 {
12957 char *path_to_try = concat (comp_dir, SLASH_STRING,
12958 file_name, (char *) NULL);
12959
12960 /* NOTE: If comp_dir is a relative path, this will also try the
12961 search path, which seems useful. */
12962 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12963 path_to_try,
12964 0 /*is_dwp*/,
12965 1 /*search_cwd*/));
12966 xfree (path_to_try);
12967 if (abfd != NULL)
12968 return abfd;
12969 }
12970
12971 /* That didn't work, try debug-file-directory, which, despite its name,
12972 is a list of paths. */
12973
12974 if (*debug_file_directory == '\0')
12975 return NULL;
12976
12977 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12978 0 /*is_dwp*/, 1 /*search_cwd*/);
12979}
12980
12981/* This function is mapped across the sections and remembers the offset and
12982 size of each of the DWO debugging sections we are interested in. */
12983
12984static void
12985dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12986{
12987 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12988 const struct dwop_section_names *names = &dwop_section_names;
12989
12990 if (section_is_p (sectp->name, &names->abbrev_dwo))
12991 {
12992 dwo_sections->abbrev.s.section = sectp;
12993 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12994 }
12995 else if (section_is_p (sectp->name, &names->info_dwo))
12996 {
12997 dwo_sections->info.s.section = sectp;
12998 dwo_sections->info.size = bfd_get_section_size (sectp);
12999 }
13000 else if (section_is_p (sectp->name, &names->line_dwo))
13001 {
13002 dwo_sections->line.s.section = sectp;
13003 dwo_sections->line.size = bfd_get_section_size (sectp);
13004 }
13005 else if (section_is_p (sectp->name, &names->loc_dwo))
13006 {
13007 dwo_sections->loc.s.section = sectp;
13008 dwo_sections->loc.size = bfd_get_section_size (sectp);
13009 }
13010 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13011 {
13012 dwo_sections->macinfo.s.section = sectp;
13013 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
13014 }
13015 else if (section_is_p (sectp->name, &names->macro_dwo))
13016 {
13017 dwo_sections->macro.s.section = sectp;
13018 dwo_sections->macro.size = bfd_get_section_size (sectp);
13019 }
13020 else if (section_is_p (sectp->name, &names->str_dwo))
13021 {
13022 dwo_sections->str.s.section = sectp;
13023 dwo_sections->str.size = bfd_get_section_size (sectp);
13024 }
13025 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13026 {
13027 dwo_sections->str_offsets.s.section = sectp;
13028 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
13029 }
13030 else if (section_is_p (sectp->name, &names->types_dwo))
13031 {
13032 struct dwarf2_section_info type_section;
13033
13034 memset (&type_section, 0, sizeof (type_section));
13035 type_section.s.section = sectp;
13036 type_section.size = bfd_get_section_size (sectp);
13037 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
13038 &type_section);
13039 }
13040}
13041
13042/* Initialize the use of the DWO file specified by DWO_NAME and referenced
13043 by PER_CU. This is for the non-DWP case.
13044 The result is NULL if DWO_NAME can't be found. */
13045
13046static struct dwo_file *
13047open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
13048 const char *dwo_name, const char *comp_dir)
13049{
13050 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
13051 struct objfile *objfile = dwarf2_per_objfile->objfile;
13052 struct dwo_file *dwo_file;
13053 struct cleanup *cleanups;
13054
13055 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
13056 if (dbfd == NULL)
13057 {
13058 if (dwarf_read_debug)
13059 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13060 return NULL;
13061 }
13062 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
13063 dwo_file->dwo_name = dwo_name;
13064 dwo_file->comp_dir = comp_dir;
13065 dwo_file->dbfd = dbfd.release ();
13066
13067 free_dwo_file_cleanup_data *cleanup_data = XNEW (free_dwo_file_cleanup_data);
13068 cleanup_data->dwo_file = dwo_file;
13069 cleanup_data->dwarf2_per_objfile = dwarf2_per_objfile;
13070
13071 cleanups = make_cleanup (free_dwo_file_cleanup, cleanup_data);
13072
13073 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13074 &dwo_file->sections);
13075
13076 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13077 dwo_file->cus);
13078
13079 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file,
13080 dwo_file->sections.types, dwo_file->tus);
13081
13082 discard_cleanups (cleanups);
13083
13084 if (dwarf_read_debug)
13085 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13086
13087 return dwo_file;
13088}
13089
13090/* This function is mapped across the sections and remembers the offset and
13091 size of each of the DWP debugging sections common to version 1 and 2 that
13092 we are interested in. */
13093
13094static void
13095dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13096 void *dwp_file_ptr)
13097{
13098 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13099 const struct dwop_section_names *names = &dwop_section_names;
13100 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13101
13102 /* Record the ELF section number for later lookup: this is what the
13103 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13104 gdb_assert (elf_section_nr < dwp_file->num_sections);
13105 dwp_file->elf_sections[elf_section_nr] = sectp;
13106
13107 /* Look for specific sections that we need. */
13108 if (section_is_p (sectp->name, &names->str_dwo))
13109 {
13110 dwp_file->sections.str.s.section = sectp;
13111 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13112 }
13113 else if (section_is_p (sectp->name, &names->cu_index))
13114 {
13115 dwp_file->sections.cu_index.s.section = sectp;
13116 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13117 }
13118 else if (section_is_p (sectp->name, &names->tu_index))
13119 {
13120 dwp_file->sections.tu_index.s.section = sectp;
13121 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13122 }
13123}
13124
13125/* This function is mapped across the sections and remembers the offset and
13126 size of each of the DWP version 2 debugging sections that we are interested
13127 in. This is split into a separate function because we don't know if we
13128 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13129
13130static void
13131dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13132{
13133 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13134 const struct dwop_section_names *names = &dwop_section_names;
13135 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13136
13137 /* Record the ELF section number for later lookup: this is what the
13138 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13139 gdb_assert (elf_section_nr < dwp_file->num_sections);
13140 dwp_file->elf_sections[elf_section_nr] = sectp;
13141
13142 /* Look for specific sections that we need. */
13143 if (section_is_p (sectp->name, &names->abbrev_dwo))
13144 {
13145 dwp_file->sections.abbrev.s.section = sectp;
13146 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13147 }
13148 else if (section_is_p (sectp->name, &names->info_dwo))
13149 {
13150 dwp_file->sections.info.s.section = sectp;
13151 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13152 }
13153 else if (section_is_p (sectp->name, &names->line_dwo))
13154 {
13155 dwp_file->sections.line.s.section = sectp;
13156 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13157 }
13158 else if (section_is_p (sectp->name, &names->loc_dwo))
13159 {
13160 dwp_file->sections.loc.s.section = sectp;
13161 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13162 }
13163 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13164 {
13165 dwp_file->sections.macinfo.s.section = sectp;
13166 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13167 }
13168 else if (section_is_p (sectp->name, &names->macro_dwo))
13169 {
13170 dwp_file->sections.macro.s.section = sectp;
13171 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13172 }
13173 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13174 {
13175 dwp_file->sections.str_offsets.s.section = sectp;
13176 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13177 }
13178 else if (section_is_p (sectp->name, &names->types_dwo))
13179 {
13180 dwp_file->sections.types.s.section = sectp;
13181 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13182 }
13183}
13184
13185/* Hash function for dwp_file loaded CUs/TUs. */
13186
13187static hashval_t
13188hash_dwp_loaded_cutus (const void *item)
13189{
13190 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13191
13192 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13193 return dwo_unit->signature;
13194}
13195
13196/* Equality function for dwp_file loaded CUs/TUs. */
13197
13198static int
13199eq_dwp_loaded_cutus (const void *a, const void *b)
13200{
13201 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13202 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13203
13204 return dua->signature == dub->signature;
13205}
13206
13207/* Allocate a hash table for dwp_file loaded CUs/TUs. */
13208
13209static htab_t
13210allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13211{
13212 return htab_create_alloc_ex (3,
13213 hash_dwp_loaded_cutus,
13214 eq_dwp_loaded_cutus,
13215 NULL,
13216 &objfile->objfile_obstack,
13217 hashtab_obstack_allocate,
13218 dummy_obstack_deallocate);
13219}
13220
13221/* Try to open DWP file FILE_NAME.
13222 The result is the bfd handle of the file.
13223 If there is a problem finding or opening the file, return NULL.
13224 Upon success, the canonicalized path of the file is stored in the bfd,
13225 same as symfile_bfd_open. */
13226
13227static gdb_bfd_ref_ptr
13228open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13229 const char *file_name)
13230{
13231 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13232 1 /*is_dwp*/,
13233 1 /*search_cwd*/));
13234 if (abfd != NULL)
13235 return abfd;
13236
13237 /* Work around upstream bug 15652.
13238 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13239 [Whether that's a "bug" is debatable, but it is getting in our way.]
13240 We have no real idea where the dwp file is, because gdb's realpath-ing
13241 of the executable's path may have discarded the needed info.
13242 [IWBN if the dwp file name was recorded in the executable, akin to
13243 .gnu_debuglink, but that doesn't exist yet.]
13244 Strip the directory from FILE_NAME and search again. */
13245 if (*debug_file_directory != '\0')
13246 {
13247 /* Don't implicitly search the current directory here.
13248 If the user wants to search "." to handle this case,
13249 it must be added to debug-file-directory. */
13250 return try_open_dwop_file (dwarf2_per_objfile,
13251 lbasename (file_name), 1 /*is_dwp*/,
13252 0 /*search_cwd*/);
13253 }
13254
13255 return NULL;
13256}
13257
13258/* Initialize the use of the DWP file for the current objfile.
13259 By convention the name of the DWP file is ${objfile}.dwp.
13260 The result is NULL if it can't be found. */
13261
13262static struct dwp_file *
13263open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13264{
13265 struct objfile *objfile = dwarf2_per_objfile->objfile;
13266 struct dwp_file *dwp_file;
13267
13268 /* Try to find first .dwp for the binary file before any symbolic links
13269 resolving. */
13270
13271 /* If the objfile is a debug file, find the name of the real binary
13272 file and get the name of dwp file from there. */
13273 std::string dwp_name;
13274 if (objfile->separate_debug_objfile_backlink != NULL)
13275 {
13276 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13277 const char *backlink_basename = lbasename (backlink->original_name);
13278
13279 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13280 }
13281 else
13282 dwp_name = objfile->original_name;
13283
13284 dwp_name += ".dwp";
13285
13286 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13287 if (dbfd == NULL
13288 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13289 {
13290 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13291 dwp_name = objfile_name (objfile);
13292 dwp_name += ".dwp";
13293 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13294 }
13295
13296 if (dbfd == NULL)
13297 {
13298 if (dwarf_read_debug)
13299 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13300 return NULL;
13301 }
13302 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13303 dwp_file->name = bfd_get_filename (dbfd.get ());
13304 dwp_file->dbfd = dbfd.release ();
13305
13306 /* +1: section 0 is unused */
13307 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13308 dwp_file->elf_sections =
13309 OBSTACK_CALLOC (&objfile->objfile_obstack,
13310 dwp_file->num_sections, asection *);
13311
13312 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13313 dwp_file);
13314
13315 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 0);
13316
13317 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 1);
13318
13319 /* The DWP file version is stored in the hash table. Oh well. */
13320 if (dwp_file->cus && dwp_file->tus
13321 && dwp_file->cus->version != dwp_file->tus->version)
13322 {
13323 /* Technically speaking, we should try to limp along, but this is
13324 pretty bizarre. We use pulongest here because that's the established
13325 portability solution (e.g, we cannot use %u for uint32_t). */
13326 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13327 " TU version %s [in DWP file %s]"),
13328 pulongest (dwp_file->cus->version),
13329 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13330 }
13331
13332 if (dwp_file->cus)
13333 dwp_file->version = dwp_file->cus->version;
13334 else if (dwp_file->tus)
13335 dwp_file->version = dwp_file->tus->version;
13336 else
13337 dwp_file->version = 2;
13338
13339 if (dwp_file->version == 2)
13340 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13341 dwp_file);
13342
13343 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13344 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13345
13346 if (dwarf_read_debug)
13347 {
13348 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13349 fprintf_unfiltered (gdb_stdlog,
13350 " %s CUs, %s TUs\n",
13351 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13352 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13353 }
13354
13355 return dwp_file;
13356}
13357
13358/* Wrapper around open_and_init_dwp_file, only open it once. */
13359
13360static struct dwp_file *
13361get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13362{
13363 if (! dwarf2_per_objfile->dwp_checked)
13364 {
13365 dwarf2_per_objfile->dwp_file
13366 = open_and_init_dwp_file (dwarf2_per_objfile);
13367 dwarf2_per_objfile->dwp_checked = 1;
13368 }
13369 return dwarf2_per_objfile->dwp_file;
13370}
13371
13372/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13373 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13374 or in the DWP file for the objfile, referenced by THIS_UNIT.
13375 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13376 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13377
13378 This is called, for example, when wanting to read a variable with a
13379 complex location. Therefore we don't want to do file i/o for every call.
13380 Therefore we don't want to look for a DWO file on every call.
13381 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13382 then we check if we've already seen DWO_NAME, and only THEN do we check
13383 for a DWO file.
13384
13385 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13386 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13387
13388static struct dwo_unit *
13389lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13390 const char *dwo_name, const char *comp_dir,
13391 ULONGEST signature, int is_debug_types)
13392{
13393 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13394 struct objfile *objfile = dwarf2_per_objfile->objfile;
13395 const char *kind = is_debug_types ? "TU" : "CU";
13396 void **dwo_file_slot;
13397 struct dwo_file *dwo_file;
13398 struct dwp_file *dwp_file;
13399
13400 /* First see if there's a DWP file.
13401 If we have a DWP file but didn't find the DWO inside it, don't
13402 look for the original DWO file. It makes gdb behave differently
13403 depending on whether one is debugging in the build tree. */
13404
13405 dwp_file = get_dwp_file (dwarf2_per_objfile);
13406 if (dwp_file != NULL)
13407 {
13408 const struct dwp_hash_table *dwp_htab =
13409 is_debug_types ? dwp_file->tus : dwp_file->cus;
13410
13411 if (dwp_htab != NULL)
13412 {
13413 struct dwo_unit *dwo_cutu =
13414 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13415 signature, is_debug_types);
13416
13417 if (dwo_cutu != NULL)
13418 {
13419 if (dwarf_read_debug)
13420 {
13421 fprintf_unfiltered (gdb_stdlog,
13422 "Virtual DWO %s %s found: @%s\n",
13423 kind, hex_string (signature),
13424 host_address_to_string (dwo_cutu));
13425 }
13426 return dwo_cutu;
13427 }
13428 }
13429 }
13430 else
13431 {
13432 /* No DWP file, look for the DWO file. */
13433
13434 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13435 dwo_name, comp_dir);
13436 if (*dwo_file_slot == NULL)
13437 {
13438 /* Read in the file and build a table of the CUs/TUs it contains. */
13439 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13440 }
13441 /* NOTE: This will be NULL if unable to open the file. */
13442 dwo_file = (struct dwo_file *) *dwo_file_slot;
13443
13444 if (dwo_file != NULL)
13445 {
13446 struct dwo_unit *dwo_cutu = NULL;
13447
13448 if (is_debug_types && dwo_file->tus)
13449 {
13450 struct dwo_unit find_dwo_cutu;
13451
13452 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13453 find_dwo_cutu.signature = signature;
13454 dwo_cutu
13455 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13456 }
13457 else if (!is_debug_types && dwo_file->cus)
13458 {
13459 struct dwo_unit find_dwo_cutu;
13460
13461 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13462 find_dwo_cutu.signature = signature;
13463 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13464 &find_dwo_cutu);
13465 }
13466
13467 if (dwo_cutu != NULL)
13468 {
13469 if (dwarf_read_debug)
13470 {
13471 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13472 kind, dwo_name, hex_string (signature),
13473 host_address_to_string (dwo_cutu));
13474 }
13475 return dwo_cutu;
13476 }
13477 }
13478 }
13479
13480 /* We didn't find it. This could mean a dwo_id mismatch, or
13481 someone deleted the DWO/DWP file, or the search path isn't set up
13482 correctly to find the file. */
13483
13484 if (dwarf_read_debug)
13485 {
13486 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13487 kind, dwo_name, hex_string (signature));
13488 }
13489
13490 /* This is a warning and not a complaint because it can be caused by
13491 pilot error (e.g., user accidentally deleting the DWO). */
13492 {
13493 /* Print the name of the DWP file if we looked there, helps the user
13494 better diagnose the problem. */
13495 std::string dwp_text;
13496
13497 if (dwp_file != NULL)
13498 dwp_text = string_printf (" [in DWP file %s]",
13499 lbasename (dwp_file->name));
13500
13501 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13502 " [in module %s]"),
13503 kind, dwo_name, hex_string (signature),
13504 dwp_text.c_str (),
13505 this_unit->is_debug_types ? "TU" : "CU",
13506 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13507 }
13508 return NULL;
13509}
13510
13511/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13512 See lookup_dwo_cutu_unit for details. */
13513
13514static struct dwo_unit *
13515lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13516 const char *dwo_name, const char *comp_dir,
13517 ULONGEST signature)
13518{
13519 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13520}
13521
13522/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13523 See lookup_dwo_cutu_unit for details. */
13524
13525static struct dwo_unit *
13526lookup_dwo_type_unit (struct signatured_type *this_tu,
13527 const char *dwo_name, const char *comp_dir)
13528{
13529 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13530}
13531
13532/* Traversal function for queue_and_load_all_dwo_tus. */
13533
13534static int
13535queue_and_load_dwo_tu (void **slot, void *info)
13536{
13537 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13538 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13539 ULONGEST signature = dwo_unit->signature;
13540 struct signatured_type *sig_type =
13541 lookup_dwo_signatured_type (per_cu->cu, signature);
13542
13543 if (sig_type != NULL)
13544 {
13545 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13546
13547 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13548 a real dependency of PER_CU on SIG_TYPE. That is detected later
13549 while processing PER_CU. */
13550 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13551 load_full_type_unit (sig_cu);
13552 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13553 }
13554
13555 return 1;
13556}
13557
13558/* Queue all TUs contained in the DWO of PER_CU to be read in.
13559 The DWO may have the only definition of the type, though it may not be
13560 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13561 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13562
13563static void
13564queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13565{
13566 struct dwo_unit *dwo_unit;
13567 struct dwo_file *dwo_file;
13568
13569 gdb_assert (!per_cu->is_debug_types);
13570 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13571 gdb_assert (per_cu->cu != NULL);
13572
13573 dwo_unit = per_cu->cu->dwo_unit;
13574 gdb_assert (dwo_unit != NULL);
13575
13576 dwo_file = dwo_unit->dwo_file;
13577 if (dwo_file->tus != NULL)
13578 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13579}
13580
13581/* Free all resources associated with DWO_FILE.
13582 Close the DWO file and munmap the sections.
13583 All memory should be on the objfile obstack. */
13584
13585static void
13586free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
13587{
13588
13589 /* Note: dbfd is NULL for virtual DWO files. */
13590 gdb_bfd_unref (dwo_file->dbfd);
13591
13592 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13593}
13594
13595/* Wrapper for free_dwo_file for use in cleanups. */
13596
13597static void
13598free_dwo_file_cleanup (void *arg)
13599{
13600 struct free_dwo_file_cleanup_data *data
13601 = (struct free_dwo_file_cleanup_data *) arg;
13602 struct objfile *objfile = data->dwarf2_per_objfile->objfile;
13603
13604 free_dwo_file (data->dwo_file, objfile);
13605
13606 xfree (data);
13607}
13608
13609/* Traversal function for free_dwo_files. */
13610
13611static int
13612free_dwo_file_from_slot (void **slot, void *info)
13613{
13614 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13615 struct objfile *objfile = (struct objfile *) info;
13616
13617 free_dwo_file (dwo_file, objfile);
13618
13619 return 1;
13620}
13621
13622/* Free all resources associated with DWO_FILES. */
13623
13624static void
13625free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13626{
13627 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13628}
13629\f
13630/* Read in various DIEs. */
13631
13632/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13633 Inherit only the children of the DW_AT_abstract_origin DIE not being
13634 already referenced by DW_AT_abstract_origin from the children of the
13635 current DIE. */
13636
13637static void
13638inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13639{
13640 struct die_info *child_die;
13641 sect_offset *offsetp;
13642 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13643 struct die_info *origin_die;
13644 /* Iterator of the ORIGIN_DIE children. */
13645 struct die_info *origin_child_die;
13646 struct attribute *attr;
13647 struct dwarf2_cu *origin_cu;
13648 struct pending **origin_previous_list_in_scope;
13649
13650 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13651 if (!attr)
13652 return;
13653
13654 /* Note that following die references may follow to a die in a
13655 different cu. */
13656
13657 origin_cu = cu;
13658 origin_die = follow_die_ref (die, attr, &origin_cu);
13659
13660 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13661 symbols in. */
13662 origin_previous_list_in_scope = origin_cu->list_in_scope;
13663 origin_cu->list_in_scope = cu->list_in_scope;
13664
13665 if (die->tag != origin_die->tag
13666 && !(die->tag == DW_TAG_inlined_subroutine
13667 && origin_die->tag == DW_TAG_subprogram))
13668 complaint (&symfile_complaints,
13669 _("DIE %s and its abstract origin %s have different tags"),
13670 sect_offset_str (die->sect_off),
13671 sect_offset_str (origin_die->sect_off));
13672
13673 std::vector<sect_offset> offsets;
13674
13675 for (child_die = die->child;
13676 child_die && child_die->tag;
13677 child_die = sibling_die (child_die))
13678 {
13679 struct die_info *child_origin_die;
13680 struct dwarf2_cu *child_origin_cu;
13681
13682 /* We are trying to process concrete instance entries:
13683 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13684 it's not relevant to our analysis here. i.e. detecting DIEs that are
13685 present in the abstract instance but not referenced in the concrete
13686 one. */
13687 if (child_die->tag == DW_TAG_call_site
13688 || child_die->tag == DW_TAG_GNU_call_site)
13689 continue;
13690
13691 /* For each CHILD_DIE, find the corresponding child of
13692 ORIGIN_DIE. If there is more than one layer of
13693 DW_AT_abstract_origin, follow them all; there shouldn't be,
13694 but GCC versions at least through 4.4 generate this (GCC PR
13695 40573). */
13696 child_origin_die = child_die;
13697 child_origin_cu = cu;
13698 while (1)
13699 {
13700 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13701 child_origin_cu);
13702 if (attr == NULL)
13703 break;
13704 child_origin_die = follow_die_ref (child_origin_die, attr,
13705 &child_origin_cu);
13706 }
13707
13708 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13709 counterpart may exist. */
13710 if (child_origin_die != child_die)
13711 {
13712 if (child_die->tag != child_origin_die->tag
13713 && !(child_die->tag == DW_TAG_inlined_subroutine
13714 && child_origin_die->tag == DW_TAG_subprogram))
13715 complaint (&symfile_complaints,
13716 _("Child DIE %s and its abstract origin %s have "
13717 "different tags"),
13718 sect_offset_str (child_die->sect_off),
13719 sect_offset_str (child_origin_die->sect_off));
13720 if (child_origin_die->parent != origin_die)
13721 complaint (&symfile_complaints,
13722 _("Child DIE %s and its abstract origin %s have "
13723 "different parents"),
13724 sect_offset_str (child_die->sect_off),
13725 sect_offset_str (child_origin_die->sect_off));
13726 else
13727 offsets.push_back (child_origin_die->sect_off);
13728 }
13729 }
13730 std::sort (offsets.begin (), offsets.end ());
13731 sect_offset *offsets_end = offsets.data () + offsets.size ();
13732 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13733 if (offsetp[-1] == *offsetp)
13734 complaint (&symfile_complaints,
13735 _("Multiple children of DIE %s refer "
13736 "to DIE %s as their abstract origin"),
13737 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13738
13739 offsetp = offsets.data ();
13740 origin_child_die = origin_die->child;
13741 while (origin_child_die && origin_child_die->tag)
13742 {
13743 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13744 while (offsetp < offsets_end
13745 && *offsetp < origin_child_die->sect_off)
13746 offsetp++;
13747 if (offsetp >= offsets_end
13748 || *offsetp > origin_child_die->sect_off)
13749 {
13750 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13751 Check whether we're already processing ORIGIN_CHILD_DIE.
13752 This can happen with mutually referenced abstract_origins.
13753 PR 16581. */
13754 if (!origin_child_die->in_process)
13755 process_die (origin_child_die, origin_cu);
13756 }
13757 origin_child_die = sibling_die (origin_child_die);
13758 }
13759 origin_cu->list_in_scope = origin_previous_list_in_scope;
13760}
13761
13762static void
13763read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13764{
13765 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13766 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13767 struct context_stack *newobj;
13768 CORE_ADDR lowpc;
13769 CORE_ADDR highpc;
13770 struct die_info *child_die;
13771 struct attribute *attr, *call_line, *call_file;
13772 const char *name;
13773 CORE_ADDR baseaddr;
13774 struct block *block;
13775 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13776 std::vector<struct symbol *> template_args;
13777 struct template_symbol *templ_func = NULL;
13778
13779 if (inlined_func)
13780 {
13781 /* If we do not have call site information, we can't show the
13782 caller of this inlined function. That's too confusing, so
13783 only use the scope for local variables. */
13784 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13785 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13786 if (call_line == NULL || call_file == NULL)
13787 {
13788 read_lexical_block_scope (die, cu);
13789 return;
13790 }
13791 }
13792
13793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13794
13795 name = dwarf2_name (die, cu);
13796
13797 /* Ignore functions with missing or empty names. These are actually
13798 illegal according to the DWARF standard. */
13799 if (name == NULL)
13800 {
13801 complaint (&symfile_complaints,
13802 _("missing name for subprogram DIE at %s"),
13803 sect_offset_str (die->sect_off));
13804 return;
13805 }
13806
13807 /* Ignore functions with missing or invalid low and high pc attributes. */
13808 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13809 <= PC_BOUNDS_INVALID)
13810 {
13811 attr = dwarf2_attr (die, DW_AT_external, cu);
13812 if (!attr || !DW_UNSND (attr))
13813 complaint (&symfile_complaints,
13814 _("cannot get low and high bounds "
13815 "for subprogram DIE at %s"),
13816 sect_offset_str (die->sect_off));
13817 return;
13818 }
13819
13820 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13821 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13822
13823 /* If we have any template arguments, then we must allocate a
13824 different sort of symbol. */
13825 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13826 {
13827 if (child_die->tag == DW_TAG_template_type_param
13828 || child_die->tag == DW_TAG_template_value_param)
13829 {
13830 templ_func = allocate_template_symbol (objfile);
13831 templ_func->subclass = SYMBOL_TEMPLATE;
13832 break;
13833 }
13834 }
13835
13836 newobj = push_context (0, lowpc);
13837 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13838 (struct symbol *) templ_func);
13839
13840 /* If there is a location expression for DW_AT_frame_base, record
13841 it. */
13842 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13843 if (attr)
13844 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13845
13846 /* If there is a location for the static link, record it. */
13847 newobj->static_link = NULL;
13848 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13849 if (attr)
13850 {
13851 newobj->static_link
13852 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13853 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13854 }
13855
13856 cu->list_in_scope = &local_symbols;
13857
13858 if (die->child != NULL)
13859 {
13860 child_die = die->child;
13861 while (child_die && child_die->tag)
13862 {
13863 if (child_die->tag == DW_TAG_template_type_param
13864 || child_die->tag == DW_TAG_template_value_param)
13865 {
13866 struct symbol *arg = new_symbol (child_die, NULL, cu);
13867
13868 if (arg != NULL)
13869 template_args.push_back (arg);
13870 }
13871 else
13872 process_die (child_die, cu);
13873 child_die = sibling_die (child_die);
13874 }
13875 }
13876
13877 inherit_abstract_dies (die, cu);
13878
13879 /* If we have a DW_AT_specification, we might need to import using
13880 directives from the context of the specification DIE. See the
13881 comment in determine_prefix. */
13882 if (cu->language == language_cplus
13883 && dwarf2_attr (die, DW_AT_specification, cu))
13884 {
13885 struct dwarf2_cu *spec_cu = cu;
13886 struct die_info *spec_die = die_specification (die, &spec_cu);
13887
13888 while (spec_die)
13889 {
13890 child_die = spec_die->child;
13891 while (child_die && child_die->tag)
13892 {
13893 if (child_die->tag == DW_TAG_imported_module)
13894 process_die (child_die, spec_cu);
13895 child_die = sibling_die (child_die);
13896 }
13897
13898 /* In some cases, GCC generates specification DIEs that
13899 themselves contain DW_AT_specification attributes. */
13900 spec_die = die_specification (spec_die, &spec_cu);
13901 }
13902 }
13903
13904 newobj = pop_context ();
13905 /* Make a block for the local symbols within. */
13906 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13907 newobj->static_link, lowpc, highpc);
13908
13909 /* For C++, set the block's scope. */
13910 if ((cu->language == language_cplus
13911 || cu->language == language_fortran
13912 || cu->language == language_d
13913 || cu->language == language_rust)
13914 && cu->processing_has_namespace_info)
13915 block_set_scope (block, determine_prefix (die, cu),
13916 &objfile->objfile_obstack);
13917
13918 /* If we have address ranges, record them. */
13919 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13920
13921 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13922
13923 /* Attach template arguments to function. */
13924 if (!template_args.empty ())
13925 {
13926 gdb_assert (templ_func != NULL);
13927
13928 templ_func->n_template_arguments = template_args.size ();
13929 templ_func->template_arguments
13930 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13931 templ_func->n_template_arguments);
13932 memcpy (templ_func->template_arguments,
13933 template_args.data (),
13934 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13935 }
13936
13937 /* In C++, we can have functions nested inside functions (e.g., when
13938 a function declares a class that has methods). This means that
13939 when we finish processing a function scope, we may need to go
13940 back to building a containing block's symbol lists. */
13941 local_symbols = newobj->locals;
13942 local_using_directives = newobj->local_using_directives;
13943
13944 /* If we've finished processing a top-level function, subsequent
13945 symbols go in the file symbol list. */
13946 if (outermost_context_p ())
13947 cu->list_in_scope = &file_symbols;
13948}
13949
13950/* Process all the DIES contained within a lexical block scope. Start
13951 a new scope, process the dies, and then close the scope. */
13952
13953static void
13954read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13955{
13956 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13957 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13958 struct context_stack *newobj;
13959 CORE_ADDR lowpc, highpc;
13960 struct die_info *child_die;
13961 CORE_ADDR baseaddr;
13962
13963 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13964
13965 /* Ignore blocks with missing or invalid low and high pc attributes. */
13966 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13967 as multiple lexical blocks? Handling children in a sane way would
13968 be nasty. Might be easier to properly extend generic blocks to
13969 describe ranges. */
13970 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13971 {
13972 case PC_BOUNDS_NOT_PRESENT:
13973 /* DW_TAG_lexical_block has no attributes, process its children as if
13974 there was no wrapping by that DW_TAG_lexical_block.
13975 GCC does no longer produces such DWARF since GCC r224161. */
13976 for (child_die = die->child;
13977 child_die != NULL && child_die->tag;
13978 child_die = sibling_die (child_die))
13979 process_die (child_die, cu);
13980 return;
13981 case PC_BOUNDS_INVALID:
13982 return;
13983 }
13984 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13985 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13986
13987 push_context (0, lowpc);
13988 if (die->child != NULL)
13989 {
13990 child_die = die->child;
13991 while (child_die && child_die->tag)
13992 {
13993 process_die (child_die, cu);
13994 child_die = sibling_die (child_die);
13995 }
13996 }
13997 inherit_abstract_dies (die, cu);
13998 newobj = pop_context ();
13999
14000 if (local_symbols != NULL || local_using_directives != NULL)
14001 {
14002 struct block *block
14003 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
14004 newobj->start_addr, highpc);
14005
14006 /* Note that recording ranges after traversing children, as we
14007 do here, means that recording a parent's ranges entails
14008 walking across all its children's ranges as they appear in
14009 the address map, which is quadratic behavior.
14010
14011 It would be nicer to record the parent's ranges before
14012 traversing its children, simply overriding whatever you find
14013 there. But since we don't even decide whether to create a
14014 block until after we've traversed its children, that's hard
14015 to do. */
14016 dwarf2_record_block_ranges (die, block, baseaddr, cu);
14017 }
14018 local_symbols = newobj->locals;
14019 local_using_directives = newobj->local_using_directives;
14020}
14021
14022/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
14023
14024static void
14025read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
14026{
14027 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14028 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14029 CORE_ADDR pc, baseaddr;
14030 struct attribute *attr;
14031 struct call_site *call_site, call_site_local;
14032 void **slot;
14033 int nparams;
14034 struct die_info *child_die;
14035
14036 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14037
14038 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
14039 if (attr == NULL)
14040 {
14041 /* This was a pre-DWARF-5 GNU extension alias
14042 for DW_AT_call_return_pc. */
14043 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14044 }
14045 if (!attr)
14046 {
14047 complaint (&symfile_complaints,
14048 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
14049 "DIE %s [in module %s]"),
14050 sect_offset_str (die->sect_off), objfile_name (objfile));
14051 return;
14052 }
14053 pc = attr_value_as_address (attr) + baseaddr;
14054 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
14055
14056 if (cu->call_site_htab == NULL)
14057 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
14058 NULL, &objfile->objfile_obstack,
14059 hashtab_obstack_allocate, NULL);
14060 call_site_local.pc = pc;
14061 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
14062 if (*slot != NULL)
14063 {
14064 complaint (&symfile_complaints,
14065 _("Duplicate PC %s for DW_TAG_call_site "
14066 "DIE %s [in module %s]"),
14067 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
14068 objfile_name (objfile));
14069 return;
14070 }
14071
14072 /* Count parameters at the caller. */
14073
14074 nparams = 0;
14075 for (child_die = die->child; child_die && child_die->tag;
14076 child_die = sibling_die (child_die))
14077 {
14078 if (child_die->tag != DW_TAG_call_site_parameter
14079 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14080 {
14081 complaint (&symfile_complaints,
14082 _("Tag %d is not DW_TAG_call_site_parameter in "
14083 "DW_TAG_call_site child DIE %s [in module %s]"),
14084 child_die->tag, sect_offset_str (child_die->sect_off),
14085 objfile_name (objfile));
14086 continue;
14087 }
14088
14089 nparams++;
14090 }
14091
14092 call_site
14093 = ((struct call_site *)
14094 obstack_alloc (&objfile->objfile_obstack,
14095 sizeof (*call_site)
14096 + (sizeof (*call_site->parameter) * (nparams - 1))));
14097 *slot = call_site;
14098 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14099 call_site->pc = pc;
14100
14101 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14102 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14103 {
14104 struct die_info *func_die;
14105
14106 /* Skip also over DW_TAG_inlined_subroutine. */
14107 for (func_die = die->parent;
14108 func_die && func_die->tag != DW_TAG_subprogram
14109 && func_die->tag != DW_TAG_subroutine_type;
14110 func_die = func_die->parent);
14111
14112 /* DW_AT_call_all_calls is a superset
14113 of DW_AT_call_all_tail_calls. */
14114 if (func_die
14115 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14116 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14117 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14118 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14119 {
14120 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14121 not complete. But keep CALL_SITE for look ups via call_site_htab,
14122 both the initial caller containing the real return address PC and
14123 the final callee containing the current PC of a chain of tail
14124 calls do not need to have the tail call list complete. But any
14125 function candidate for a virtual tail call frame searched via
14126 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14127 determined unambiguously. */
14128 }
14129 else
14130 {
14131 struct type *func_type = NULL;
14132
14133 if (func_die)
14134 func_type = get_die_type (func_die, cu);
14135 if (func_type != NULL)
14136 {
14137 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14138
14139 /* Enlist this call site to the function. */
14140 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14141 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14142 }
14143 else
14144 complaint (&symfile_complaints,
14145 _("Cannot find function owning DW_TAG_call_site "
14146 "DIE %s [in module %s]"),
14147 sect_offset_str (die->sect_off), objfile_name (objfile));
14148 }
14149 }
14150
14151 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14152 if (attr == NULL)
14153 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14154 if (attr == NULL)
14155 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14156 if (attr == NULL)
14157 {
14158 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14159 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14160 }
14161 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14162 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14163 /* Keep NULL DWARF_BLOCK. */;
14164 else if (attr_form_is_block (attr))
14165 {
14166 struct dwarf2_locexpr_baton *dlbaton;
14167
14168 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14169 dlbaton->data = DW_BLOCK (attr)->data;
14170 dlbaton->size = DW_BLOCK (attr)->size;
14171 dlbaton->per_cu = cu->per_cu;
14172
14173 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14174 }
14175 else if (attr_form_is_ref (attr))
14176 {
14177 struct dwarf2_cu *target_cu = cu;
14178 struct die_info *target_die;
14179
14180 target_die = follow_die_ref (die, attr, &target_cu);
14181 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14182 if (die_is_declaration (target_die, target_cu))
14183 {
14184 const char *target_physname;
14185
14186 /* Prefer the mangled name; otherwise compute the demangled one. */
14187 target_physname = dw2_linkage_name (target_die, target_cu);
14188 if (target_physname == NULL)
14189 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14190 if (target_physname == NULL)
14191 complaint (&symfile_complaints,
14192 _("DW_AT_call_target target DIE has invalid "
14193 "physname, for referencing DIE %s [in module %s]"),
14194 sect_offset_str (die->sect_off), objfile_name (objfile));
14195 else
14196 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14197 }
14198 else
14199 {
14200 CORE_ADDR lowpc;
14201
14202 /* DW_AT_entry_pc should be preferred. */
14203 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14204 <= PC_BOUNDS_INVALID)
14205 complaint (&symfile_complaints,
14206 _("DW_AT_call_target target DIE has invalid "
14207 "low pc, for referencing DIE %s [in module %s]"),
14208 sect_offset_str (die->sect_off), objfile_name (objfile));
14209 else
14210 {
14211 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14212 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14213 }
14214 }
14215 }
14216 else
14217 complaint (&symfile_complaints,
14218 _("DW_TAG_call_site DW_AT_call_target is neither "
14219 "block nor reference, for DIE %s [in module %s]"),
14220 sect_offset_str (die->sect_off), objfile_name (objfile));
14221
14222 call_site->per_cu = cu->per_cu;
14223
14224 for (child_die = die->child;
14225 child_die && child_die->tag;
14226 child_die = sibling_die (child_die))
14227 {
14228 struct call_site_parameter *parameter;
14229 struct attribute *loc, *origin;
14230
14231 if (child_die->tag != DW_TAG_call_site_parameter
14232 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14233 {
14234 /* Already printed the complaint above. */
14235 continue;
14236 }
14237
14238 gdb_assert (call_site->parameter_count < nparams);
14239 parameter = &call_site->parameter[call_site->parameter_count];
14240
14241 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14242 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14243 register is contained in DW_AT_call_value. */
14244
14245 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14246 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14247 if (origin == NULL)
14248 {
14249 /* This was a pre-DWARF-5 GNU extension alias
14250 for DW_AT_call_parameter. */
14251 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14252 }
14253 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14254 {
14255 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14256
14257 sect_offset sect_off
14258 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14259 if (!offset_in_cu_p (&cu->header, sect_off))
14260 {
14261 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14262 binding can be done only inside one CU. Such referenced DIE
14263 therefore cannot be even moved to DW_TAG_partial_unit. */
14264 complaint (&symfile_complaints,
14265 _("DW_AT_call_parameter offset is not in CU for "
14266 "DW_TAG_call_site child DIE %s [in module %s]"),
14267 sect_offset_str (child_die->sect_off),
14268 objfile_name (objfile));
14269 continue;
14270 }
14271 parameter->u.param_cu_off
14272 = (cu_offset) (sect_off - cu->header.sect_off);
14273 }
14274 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14275 {
14276 complaint (&symfile_complaints,
14277 _("No DW_FORM_block* DW_AT_location for "
14278 "DW_TAG_call_site child DIE %s [in module %s]"),
14279 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14280 continue;
14281 }
14282 else
14283 {
14284 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14285 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14286 if (parameter->u.dwarf_reg != -1)
14287 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14288 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14289 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14290 &parameter->u.fb_offset))
14291 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14292 else
14293 {
14294 complaint (&symfile_complaints,
14295 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14296 "for DW_FORM_block* DW_AT_location is supported for "
14297 "DW_TAG_call_site child DIE %s "
14298 "[in module %s]"),
14299 sect_offset_str (child_die->sect_off),
14300 objfile_name (objfile));
14301 continue;
14302 }
14303 }
14304
14305 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14306 if (attr == NULL)
14307 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14308 if (!attr_form_is_block (attr))
14309 {
14310 complaint (&symfile_complaints,
14311 _("No DW_FORM_block* DW_AT_call_value for "
14312 "DW_TAG_call_site child DIE %s [in module %s]"),
14313 sect_offset_str (child_die->sect_off),
14314 objfile_name (objfile));
14315 continue;
14316 }
14317 parameter->value = DW_BLOCK (attr)->data;
14318 parameter->value_size = DW_BLOCK (attr)->size;
14319
14320 /* Parameters are not pre-cleared by memset above. */
14321 parameter->data_value = NULL;
14322 parameter->data_value_size = 0;
14323 call_site->parameter_count++;
14324
14325 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14326 if (attr == NULL)
14327 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14328 if (attr)
14329 {
14330 if (!attr_form_is_block (attr))
14331 complaint (&symfile_complaints,
14332 _("No DW_FORM_block* DW_AT_call_data_value for "
14333 "DW_TAG_call_site child DIE %s [in module %s]"),
14334 sect_offset_str (child_die->sect_off),
14335 objfile_name (objfile));
14336 else
14337 {
14338 parameter->data_value = DW_BLOCK (attr)->data;
14339 parameter->data_value_size = DW_BLOCK (attr)->size;
14340 }
14341 }
14342 }
14343}
14344
14345/* Helper function for read_variable. If DIE represents a virtual
14346 table, then return the type of the concrete object that is
14347 associated with the virtual table. Otherwise, return NULL. */
14348
14349static struct type *
14350rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14351{
14352 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14353 if (attr == NULL)
14354 return NULL;
14355
14356 /* Find the type DIE. */
14357 struct die_info *type_die = NULL;
14358 struct dwarf2_cu *type_cu = cu;
14359
14360 if (attr_form_is_ref (attr))
14361 type_die = follow_die_ref (die, attr, &type_cu);
14362 if (type_die == NULL)
14363 return NULL;
14364
14365 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14366 return NULL;
14367 return die_containing_type (type_die, type_cu);
14368}
14369
14370/* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14371
14372static void
14373read_variable (struct die_info *die, struct dwarf2_cu *cu)
14374{
14375 struct rust_vtable_symbol *storage = NULL;
14376
14377 if (cu->language == language_rust)
14378 {
14379 struct type *containing_type = rust_containing_type (die, cu);
14380
14381 if (containing_type != NULL)
14382 {
14383 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14384
14385 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14386 struct rust_vtable_symbol);
14387 initialize_objfile_symbol (storage);
14388 storage->concrete_type = containing_type;
14389 storage->subclass = SYMBOL_RUST_VTABLE;
14390 }
14391 }
14392
14393 new_symbol (die, NULL, cu, storage);
14394}
14395
14396/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14397 reading .debug_rnglists.
14398 Callback's type should be:
14399 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14400 Return true if the attributes are present and valid, otherwise,
14401 return false. */
14402
14403template <typename Callback>
14404static bool
14405dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14406 Callback &&callback)
14407{
14408 struct dwarf2_per_objfile *dwarf2_per_objfile
14409 = cu->per_cu->dwarf2_per_objfile;
14410 struct objfile *objfile = dwarf2_per_objfile->objfile;
14411 bfd *obfd = objfile->obfd;
14412 /* Base address selection entry. */
14413 CORE_ADDR base;
14414 int found_base;
14415 const gdb_byte *buffer;
14416 CORE_ADDR baseaddr;
14417 bool overflow = false;
14418
14419 found_base = cu->base_known;
14420 base = cu->base_address;
14421
14422 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14423 if (offset >= dwarf2_per_objfile->rnglists.size)
14424 {
14425 complaint (&symfile_complaints,
14426 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14427 offset);
14428 return false;
14429 }
14430 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14431
14432 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14433
14434 while (1)
14435 {
14436 /* Initialize it due to a false compiler warning. */
14437 CORE_ADDR range_beginning = 0, range_end = 0;
14438 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14439 + dwarf2_per_objfile->rnglists.size);
14440 unsigned int bytes_read;
14441
14442 if (buffer == buf_end)
14443 {
14444 overflow = true;
14445 break;
14446 }
14447 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14448 switch (rlet)
14449 {
14450 case DW_RLE_end_of_list:
14451 break;
14452 case DW_RLE_base_address:
14453 if (buffer + cu->header.addr_size > buf_end)
14454 {
14455 overflow = true;
14456 break;
14457 }
14458 base = read_address (obfd, buffer, cu, &bytes_read);
14459 found_base = 1;
14460 buffer += bytes_read;
14461 break;
14462 case DW_RLE_start_length:
14463 if (buffer + cu->header.addr_size > buf_end)
14464 {
14465 overflow = true;
14466 break;
14467 }
14468 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14469 buffer += bytes_read;
14470 range_end = (range_beginning
14471 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14472 buffer += bytes_read;
14473 if (buffer > buf_end)
14474 {
14475 overflow = true;
14476 break;
14477 }
14478 break;
14479 case DW_RLE_offset_pair:
14480 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14481 buffer += bytes_read;
14482 if (buffer > buf_end)
14483 {
14484 overflow = true;
14485 break;
14486 }
14487 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14488 buffer += bytes_read;
14489 if (buffer > buf_end)
14490 {
14491 overflow = true;
14492 break;
14493 }
14494 break;
14495 case DW_RLE_start_end:
14496 if (buffer + 2 * cu->header.addr_size > buf_end)
14497 {
14498 overflow = true;
14499 break;
14500 }
14501 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14502 buffer += bytes_read;
14503 range_end = read_address (obfd, buffer, cu, &bytes_read);
14504 buffer += bytes_read;
14505 break;
14506 default:
14507 complaint (&symfile_complaints,
14508 _("Invalid .debug_rnglists data (no base address)"));
14509 return false;
14510 }
14511 if (rlet == DW_RLE_end_of_list || overflow)
14512 break;
14513 if (rlet == DW_RLE_base_address)
14514 continue;
14515
14516 if (!found_base)
14517 {
14518 /* We have no valid base address for the ranges
14519 data. */
14520 complaint (&symfile_complaints,
14521 _("Invalid .debug_rnglists data (no base address)"));
14522 return false;
14523 }
14524
14525 if (range_beginning > range_end)
14526 {
14527 /* Inverted range entries are invalid. */
14528 complaint (&symfile_complaints,
14529 _("Invalid .debug_rnglists data (inverted range)"));
14530 return false;
14531 }
14532
14533 /* Empty range entries have no effect. */
14534 if (range_beginning == range_end)
14535 continue;
14536
14537 range_beginning += base;
14538 range_end += base;
14539
14540 /* A not-uncommon case of bad debug info.
14541 Don't pollute the addrmap with bad data. */
14542 if (range_beginning + baseaddr == 0
14543 && !dwarf2_per_objfile->has_section_at_zero)
14544 {
14545 complaint (&symfile_complaints,
14546 _(".debug_rnglists entry has start address of zero"
14547 " [in module %s]"), objfile_name (objfile));
14548 continue;
14549 }
14550
14551 callback (range_beginning, range_end);
14552 }
14553
14554 if (overflow)
14555 {
14556 complaint (&symfile_complaints,
14557 _("Offset %d is not terminated "
14558 "for DW_AT_ranges attribute"),
14559 offset);
14560 return false;
14561 }
14562
14563 return true;
14564}
14565
14566/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14567 Callback's type should be:
14568 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14569 Return 1 if the attributes are present and valid, otherwise, return 0. */
14570
14571template <typename Callback>
14572static int
14573dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14574 Callback &&callback)
14575{
14576 struct dwarf2_per_objfile *dwarf2_per_objfile
14577 = cu->per_cu->dwarf2_per_objfile;
14578 struct objfile *objfile = dwarf2_per_objfile->objfile;
14579 struct comp_unit_head *cu_header = &cu->header;
14580 bfd *obfd = objfile->obfd;
14581 unsigned int addr_size = cu_header->addr_size;
14582 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14583 /* Base address selection entry. */
14584 CORE_ADDR base;
14585 int found_base;
14586 unsigned int dummy;
14587 const gdb_byte *buffer;
14588 CORE_ADDR baseaddr;
14589
14590 if (cu_header->version >= 5)
14591 return dwarf2_rnglists_process (offset, cu, callback);
14592
14593 found_base = cu->base_known;
14594 base = cu->base_address;
14595
14596 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14597 if (offset >= dwarf2_per_objfile->ranges.size)
14598 {
14599 complaint (&symfile_complaints,
14600 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14601 offset);
14602 return 0;
14603 }
14604 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14605
14606 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14607
14608 while (1)
14609 {
14610 CORE_ADDR range_beginning, range_end;
14611
14612 range_beginning = read_address (obfd, buffer, cu, &dummy);
14613 buffer += addr_size;
14614 range_end = read_address (obfd, buffer, cu, &dummy);
14615 buffer += addr_size;
14616 offset += 2 * addr_size;
14617
14618 /* An end of list marker is a pair of zero addresses. */
14619 if (range_beginning == 0 && range_end == 0)
14620 /* Found the end of list entry. */
14621 break;
14622
14623 /* Each base address selection entry is a pair of 2 values.
14624 The first is the largest possible address, the second is
14625 the base address. Check for a base address here. */
14626 if ((range_beginning & mask) == mask)
14627 {
14628 /* If we found the largest possible address, then we already
14629 have the base address in range_end. */
14630 base = range_end;
14631 found_base = 1;
14632 continue;
14633 }
14634
14635 if (!found_base)
14636 {
14637 /* We have no valid base address for the ranges
14638 data. */
14639 complaint (&symfile_complaints,
14640 _("Invalid .debug_ranges data (no base address)"));
14641 return 0;
14642 }
14643
14644 if (range_beginning > range_end)
14645 {
14646 /* Inverted range entries are invalid. */
14647 complaint (&symfile_complaints,
14648 _("Invalid .debug_ranges data (inverted range)"));
14649 return 0;
14650 }
14651
14652 /* Empty range entries have no effect. */
14653 if (range_beginning == range_end)
14654 continue;
14655
14656 range_beginning += base;
14657 range_end += base;
14658
14659 /* A not-uncommon case of bad debug info.
14660 Don't pollute the addrmap with bad data. */
14661 if (range_beginning + baseaddr == 0
14662 && !dwarf2_per_objfile->has_section_at_zero)
14663 {
14664 complaint (&symfile_complaints,
14665 _(".debug_ranges entry has start address of zero"
14666 " [in module %s]"), objfile_name (objfile));
14667 continue;
14668 }
14669
14670 callback (range_beginning, range_end);
14671 }
14672
14673 return 1;
14674}
14675
14676/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14677 Return 1 if the attributes are present and valid, otherwise, return 0.
14678 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14679
14680static int
14681dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14682 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14683 struct partial_symtab *ranges_pst)
14684{
14685 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14686 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14687 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14688 SECT_OFF_TEXT (objfile));
14689 int low_set = 0;
14690 CORE_ADDR low = 0;
14691 CORE_ADDR high = 0;
14692 int retval;
14693
14694 retval = dwarf2_ranges_process (offset, cu,
14695 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14696 {
14697 if (ranges_pst != NULL)
14698 {
14699 CORE_ADDR lowpc;
14700 CORE_ADDR highpc;
14701
14702 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14703 range_beginning + baseaddr);
14704 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14705 range_end + baseaddr);
14706 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14707 ranges_pst);
14708 }
14709
14710 /* FIXME: This is recording everything as a low-high
14711 segment of consecutive addresses. We should have a
14712 data structure for discontiguous block ranges
14713 instead. */
14714 if (! low_set)
14715 {
14716 low = range_beginning;
14717 high = range_end;
14718 low_set = 1;
14719 }
14720 else
14721 {
14722 if (range_beginning < low)
14723 low = range_beginning;
14724 if (range_end > high)
14725 high = range_end;
14726 }
14727 });
14728 if (!retval)
14729 return 0;
14730
14731 if (! low_set)
14732 /* If the first entry is an end-of-list marker, the range
14733 describes an empty scope, i.e. no instructions. */
14734 return 0;
14735
14736 if (low_return)
14737 *low_return = low;
14738 if (high_return)
14739 *high_return = high;
14740 return 1;
14741}
14742
14743/* Get low and high pc attributes from a die. See enum pc_bounds_kind
14744 definition for the return value. *LOWPC and *HIGHPC are set iff
14745 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14746
14747static enum pc_bounds_kind
14748dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14749 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14750 struct partial_symtab *pst)
14751{
14752 struct dwarf2_per_objfile *dwarf2_per_objfile
14753 = cu->per_cu->dwarf2_per_objfile;
14754 struct attribute *attr;
14755 struct attribute *attr_high;
14756 CORE_ADDR low = 0;
14757 CORE_ADDR high = 0;
14758 enum pc_bounds_kind ret;
14759
14760 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14761 if (attr_high)
14762 {
14763 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14764 if (attr)
14765 {
14766 low = attr_value_as_address (attr);
14767 high = attr_value_as_address (attr_high);
14768 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14769 high += low;
14770 }
14771 else
14772 /* Found high w/o low attribute. */
14773 return PC_BOUNDS_INVALID;
14774
14775 /* Found consecutive range of addresses. */
14776 ret = PC_BOUNDS_HIGH_LOW;
14777 }
14778 else
14779 {
14780 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14781 if (attr != NULL)
14782 {
14783 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14784 We take advantage of the fact that DW_AT_ranges does not appear
14785 in DW_TAG_compile_unit of DWO files. */
14786 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14787 unsigned int ranges_offset = (DW_UNSND (attr)
14788 + (need_ranges_base
14789 ? cu->ranges_base
14790 : 0));
14791
14792 /* Value of the DW_AT_ranges attribute is the offset in the
14793 .debug_ranges section. */
14794 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14795 return PC_BOUNDS_INVALID;
14796 /* Found discontinuous range of addresses. */
14797 ret = PC_BOUNDS_RANGES;
14798 }
14799 else
14800 return PC_BOUNDS_NOT_PRESENT;
14801 }
14802
14803 /* read_partial_die has also the strict LOW < HIGH requirement. */
14804 if (high <= low)
14805 return PC_BOUNDS_INVALID;
14806
14807 /* When using the GNU linker, .gnu.linkonce. sections are used to
14808 eliminate duplicate copies of functions and vtables and such.
14809 The linker will arbitrarily choose one and discard the others.
14810 The AT_*_pc values for such functions refer to local labels in
14811 these sections. If the section from that file was discarded, the
14812 labels are not in the output, so the relocs get a value of 0.
14813 If this is a discarded function, mark the pc bounds as invalid,
14814 so that GDB will ignore it. */
14815 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14816 return PC_BOUNDS_INVALID;
14817
14818 *lowpc = low;
14819 if (highpc)
14820 *highpc = high;
14821 return ret;
14822}
14823
14824/* Assuming that DIE represents a subprogram DIE or a lexical block, get
14825 its low and high PC addresses. Do nothing if these addresses could not
14826 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14827 and HIGHPC to the high address if greater than HIGHPC. */
14828
14829static void
14830dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14831 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14832 struct dwarf2_cu *cu)
14833{
14834 CORE_ADDR low, high;
14835 struct die_info *child = die->child;
14836
14837 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14838 {
14839 *lowpc = std::min (*lowpc, low);
14840 *highpc = std::max (*highpc, high);
14841 }
14842
14843 /* If the language does not allow nested subprograms (either inside
14844 subprograms or lexical blocks), we're done. */
14845 if (cu->language != language_ada)
14846 return;
14847
14848 /* Check all the children of the given DIE. If it contains nested
14849 subprograms, then check their pc bounds. Likewise, we need to
14850 check lexical blocks as well, as they may also contain subprogram
14851 definitions. */
14852 while (child && child->tag)
14853 {
14854 if (child->tag == DW_TAG_subprogram
14855 || child->tag == DW_TAG_lexical_block)
14856 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14857 child = sibling_die (child);
14858 }
14859}
14860
14861/* Get the low and high pc's represented by the scope DIE, and store
14862 them in *LOWPC and *HIGHPC. If the correct values can't be
14863 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14864
14865static void
14866get_scope_pc_bounds (struct die_info *die,
14867 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14868 struct dwarf2_cu *cu)
14869{
14870 CORE_ADDR best_low = (CORE_ADDR) -1;
14871 CORE_ADDR best_high = (CORE_ADDR) 0;
14872 CORE_ADDR current_low, current_high;
14873
14874 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14875 >= PC_BOUNDS_RANGES)
14876 {
14877 best_low = current_low;
14878 best_high = current_high;
14879 }
14880 else
14881 {
14882 struct die_info *child = die->child;
14883
14884 while (child && child->tag)
14885 {
14886 switch (child->tag) {
14887 case DW_TAG_subprogram:
14888 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14889 break;
14890 case DW_TAG_namespace:
14891 case DW_TAG_module:
14892 /* FIXME: carlton/2004-01-16: Should we do this for
14893 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14894 that current GCC's always emit the DIEs corresponding
14895 to definitions of methods of classes as children of a
14896 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14897 the DIEs giving the declarations, which could be
14898 anywhere). But I don't see any reason why the
14899 standards says that they have to be there. */
14900 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14901
14902 if (current_low != ((CORE_ADDR) -1))
14903 {
14904 best_low = std::min (best_low, current_low);
14905 best_high = std::max (best_high, current_high);
14906 }
14907 break;
14908 default:
14909 /* Ignore. */
14910 break;
14911 }
14912
14913 child = sibling_die (child);
14914 }
14915 }
14916
14917 *lowpc = best_low;
14918 *highpc = best_high;
14919}
14920
14921/* Record the address ranges for BLOCK, offset by BASEADDR, as given
14922 in DIE. */
14923
14924static void
14925dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14926 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14927{
14928 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14929 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14930 struct attribute *attr;
14931 struct attribute *attr_high;
14932
14933 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14934 if (attr_high)
14935 {
14936 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14937 if (attr)
14938 {
14939 CORE_ADDR low = attr_value_as_address (attr);
14940 CORE_ADDR high = attr_value_as_address (attr_high);
14941
14942 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14943 high += low;
14944
14945 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14946 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14947 record_block_range (block, low, high - 1);
14948 }
14949 }
14950
14951 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14952 if (attr)
14953 {
14954 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14955 We take advantage of the fact that DW_AT_ranges does not appear
14956 in DW_TAG_compile_unit of DWO files. */
14957 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14958
14959 /* The value of the DW_AT_ranges attribute is the offset of the
14960 address range list in the .debug_ranges section. */
14961 unsigned long offset = (DW_UNSND (attr)
14962 + (need_ranges_base ? cu->ranges_base : 0));
14963 const gdb_byte *buffer;
14964
14965 /* For some target architectures, but not others, the
14966 read_address function sign-extends the addresses it returns.
14967 To recognize base address selection entries, we need a
14968 mask. */
14969 unsigned int addr_size = cu->header.addr_size;
14970 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14971
14972 /* The base address, to which the next pair is relative. Note
14973 that this 'base' is a DWARF concept: most entries in a range
14974 list are relative, to reduce the number of relocs against the
14975 debugging information. This is separate from this function's
14976 'baseaddr' argument, which GDB uses to relocate debugging
14977 information from a shared library based on the address at
14978 which the library was loaded. */
14979 CORE_ADDR base = cu->base_address;
14980 int base_known = cu->base_known;
14981
14982 dwarf2_ranges_process (offset, cu,
14983 [&] (CORE_ADDR start, CORE_ADDR end)
14984 {
14985 start += baseaddr;
14986 end += baseaddr;
14987 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14988 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14989 record_block_range (block, start, end - 1);
14990 });
14991 }
14992}
14993
14994/* Check whether the producer field indicates either of GCC < 4.6, or the
14995 Intel C/C++ compiler, and cache the result in CU. */
14996
14997static void
14998check_producer (struct dwarf2_cu *cu)
14999{
15000 int major, minor;
15001
15002 if (cu->producer == NULL)
15003 {
15004 /* For unknown compilers expect their behavior is DWARF version
15005 compliant.
15006
15007 GCC started to support .debug_types sections by -gdwarf-4 since
15008 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
15009 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
15010 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
15011 interpreted incorrectly by GDB now - GCC PR debug/48229. */
15012 }
15013 else if (producer_is_gcc (cu->producer, &major, &minor))
15014 {
15015 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
15016 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
15017 }
15018 else if (producer_is_icc (cu->producer, &major, &minor))
15019 cu->producer_is_icc_lt_14 = major < 14;
15020 else
15021 {
15022 /* For other non-GCC compilers, expect their behavior is DWARF version
15023 compliant. */
15024 }
15025
15026 cu->checked_producer = 1;
15027}
15028
15029/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
15030 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
15031 during 4.6.0 experimental. */
15032
15033static int
15034producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
15035{
15036 if (!cu->checked_producer)
15037 check_producer (cu);
15038
15039 return cu->producer_is_gxx_lt_4_6;
15040}
15041
15042/* Return the default accessibility type if it is not overriden by
15043 DW_AT_accessibility. */
15044
15045static enum dwarf_access_attribute
15046dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
15047{
15048 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
15049 {
15050 /* The default DWARF 2 accessibility for members is public, the default
15051 accessibility for inheritance is private. */
15052
15053 if (die->tag != DW_TAG_inheritance)
15054 return DW_ACCESS_public;
15055 else
15056 return DW_ACCESS_private;
15057 }
15058 else
15059 {
15060 /* DWARF 3+ defines the default accessibility a different way. The same
15061 rules apply now for DW_TAG_inheritance as for the members and it only
15062 depends on the container kind. */
15063
15064 if (die->parent->tag == DW_TAG_class_type)
15065 return DW_ACCESS_private;
15066 else
15067 return DW_ACCESS_public;
15068 }
15069}
15070
15071/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
15072 offset. If the attribute was not found return 0, otherwise return
15073 1. If it was found but could not properly be handled, set *OFFSET
15074 to 0. */
15075
15076static int
15077handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
15078 LONGEST *offset)
15079{
15080 struct attribute *attr;
15081
15082 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15083 if (attr != NULL)
15084 {
15085 *offset = 0;
15086
15087 /* Note that we do not check for a section offset first here.
15088 This is because DW_AT_data_member_location is new in DWARF 4,
15089 so if we see it, we can assume that a constant form is really
15090 a constant and not a section offset. */
15091 if (attr_form_is_constant (attr))
15092 *offset = dwarf2_get_attr_constant_value (attr, 0);
15093 else if (attr_form_is_section_offset (attr))
15094 dwarf2_complex_location_expr_complaint ();
15095 else if (attr_form_is_block (attr))
15096 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15097 else
15098 dwarf2_complex_location_expr_complaint ();
15099
15100 return 1;
15101 }
15102
15103 return 0;
15104}
15105
15106/* Add an aggregate field to the field list. */
15107
15108static void
15109dwarf2_add_field (struct field_info *fip, struct die_info *die,
15110 struct dwarf2_cu *cu)
15111{
15112 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15113 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15114 struct nextfield *new_field;
15115 struct attribute *attr;
15116 struct field *fp;
15117 const char *fieldname = "";
15118
15119 /* Allocate a new field list entry and link it in. */
15120 new_field = XNEW (struct nextfield);
15121 make_cleanup (xfree, new_field);
15122 memset (new_field, 0, sizeof (struct nextfield));
15123
15124 if (die->tag == DW_TAG_inheritance)
15125 {
15126 new_field->next = fip->baseclasses;
15127 fip->baseclasses = new_field;
15128 }
15129 else
15130 {
15131 new_field->next = fip->fields;
15132 fip->fields = new_field;
15133 }
15134 fip->nfields++;
15135
15136 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15137 if (attr)
15138 new_field->accessibility = DW_UNSND (attr);
15139 else
15140 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15141 if (new_field->accessibility != DW_ACCESS_public)
15142 fip->non_public_fields = 1;
15143
15144 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15145 if (attr)
15146 new_field->virtuality = DW_UNSND (attr);
15147 else
15148 new_field->virtuality = DW_VIRTUALITY_none;
15149
15150 fp = &new_field->field;
15151
15152 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15153 {
15154 LONGEST offset;
15155
15156 /* Data member other than a C++ static data member. */
15157
15158 /* Get type of field. */
15159 fp->type = die_type (die, cu);
15160
15161 SET_FIELD_BITPOS (*fp, 0);
15162
15163 /* Get bit size of field (zero if none). */
15164 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15165 if (attr)
15166 {
15167 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15168 }
15169 else
15170 {
15171 FIELD_BITSIZE (*fp) = 0;
15172 }
15173
15174 /* Get bit offset of field. */
15175 if (handle_data_member_location (die, cu, &offset))
15176 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15177 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15178 if (attr)
15179 {
15180 if (gdbarch_bits_big_endian (gdbarch))
15181 {
15182 /* For big endian bits, the DW_AT_bit_offset gives the
15183 additional bit offset from the MSB of the containing
15184 anonymous object to the MSB of the field. We don't
15185 have to do anything special since we don't need to
15186 know the size of the anonymous object. */
15187 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15188 }
15189 else
15190 {
15191 /* For little endian bits, compute the bit offset to the
15192 MSB of the anonymous object, subtract off the number of
15193 bits from the MSB of the field to the MSB of the
15194 object, and then subtract off the number of bits of
15195 the field itself. The result is the bit offset of
15196 the LSB of the field. */
15197 int anonymous_size;
15198 int bit_offset = DW_UNSND (attr);
15199
15200 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15201 if (attr)
15202 {
15203 /* The size of the anonymous object containing
15204 the bit field is explicit, so use the
15205 indicated size (in bytes). */
15206 anonymous_size = DW_UNSND (attr);
15207 }
15208 else
15209 {
15210 /* The size of the anonymous object containing
15211 the bit field must be inferred from the type
15212 attribute of the data member containing the
15213 bit field. */
15214 anonymous_size = TYPE_LENGTH (fp->type);
15215 }
15216 SET_FIELD_BITPOS (*fp,
15217 (FIELD_BITPOS (*fp)
15218 + anonymous_size * bits_per_byte
15219 - bit_offset - FIELD_BITSIZE (*fp)));
15220 }
15221 }
15222 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15223 if (attr != NULL)
15224 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15225 + dwarf2_get_attr_constant_value (attr, 0)));
15226
15227 /* Get name of field. */
15228 fieldname = dwarf2_name (die, cu);
15229 if (fieldname == NULL)
15230 fieldname = "";
15231
15232 /* The name is already allocated along with this objfile, so we don't
15233 need to duplicate it for the type. */
15234 fp->name = fieldname;
15235
15236 /* Change accessibility for artificial fields (e.g. virtual table
15237 pointer or virtual base class pointer) to private. */
15238 if (dwarf2_attr (die, DW_AT_artificial, cu))
15239 {
15240 FIELD_ARTIFICIAL (*fp) = 1;
15241 new_field->accessibility = DW_ACCESS_private;
15242 fip->non_public_fields = 1;
15243 }
15244 }
15245 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15246 {
15247 /* C++ static member. */
15248
15249 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15250 is a declaration, but all versions of G++ as of this writing
15251 (so through at least 3.2.1) incorrectly generate
15252 DW_TAG_variable tags. */
15253
15254 const char *physname;
15255
15256 /* Get name of field. */
15257 fieldname = dwarf2_name (die, cu);
15258 if (fieldname == NULL)
15259 return;
15260
15261 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15262 if (attr
15263 /* Only create a symbol if this is an external value.
15264 new_symbol checks this and puts the value in the global symbol
15265 table, which we want. If it is not external, new_symbol
15266 will try to put the value in cu->list_in_scope which is wrong. */
15267 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15268 {
15269 /* A static const member, not much different than an enum as far as
15270 we're concerned, except that we can support more types. */
15271 new_symbol (die, NULL, cu);
15272 }
15273
15274 /* Get physical name. */
15275 physname = dwarf2_physname (fieldname, die, cu);
15276
15277 /* The name is already allocated along with this objfile, so we don't
15278 need to duplicate it for the type. */
15279 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15280 FIELD_TYPE (*fp) = die_type (die, cu);
15281 FIELD_NAME (*fp) = fieldname;
15282 }
15283 else if (die->tag == DW_TAG_inheritance)
15284 {
15285 LONGEST offset;
15286
15287 /* C++ base class field. */
15288 if (handle_data_member_location (die, cu, &offset))
15289 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15290 FIELD_BITSIZE (*fp) = 0;
15291 FIELD_TYPE (*fp) = die_type (die, cu);
15292 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15293 fip->nbaseclasses++;
15294 }
15295}
15296
15297/* Can the type given by DIE define another type? */
15298
15299static bool
15300type_can_define_types (const struct die_info *die)
15301{
15302 switch (die->tag)
15303 {
15304 case DW_TAG_typedef:
15305 case DW_TAG_class_type:
15306 case DW_TAG_structure_type:
15307 case DW_TAG_union_type:
15308 case DW_TAG_enumeration_type:
15309 return true;
15310
15311 default:
15312 return false;
15313 }
15314}
15315
15316/* Add a type definition defined in the scope of the FIP's class. */
15317
15318static void
15319dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15320 struct dwarf2_cu *cu)
15321{
15322 struct decl_field_list *new_field;
15323 struct decl_field *fp;
15324
15325 /* Allocate a new field list entry and link it in. */
15326 new_field = XCNEW (struct decl_field_list);
15327 make_cleanup (xfree, new_field);
15328
15329 gdb_assert (type_can_define_types (die));
15330
15331 fp = &new_field->field;
15332
15333 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15334 fp->name = dwarf2_name (die, cu);
15335 fp->type = read_type_die (die, cu);
15336
15337 /* Save accessibility. */
15338 enum dwarf_access_attribute accessibility;
15339 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15340 if (attr != NULL)
15341 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15342 else
15343 accessibility = dwarf2_default_access_attribute (die, cu);
15344 switch (accessibility)
15345 {
15346 case DW_ACCESS_public:
15347 /* The assumed value if neither private nor protected. */
15348 break;
15349 case DW_ACCESS_private:
15350 fp->is_private = 1;
15351 break;
15352 case DW_ACCESS_protected:
15353 fp->is_protected = 1;
15354 break;
15355 default:
15356 complaint (&symfile_complaints,
15357 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15358 }
15359
15360 if (die->tag == DW_TAG_typedef)
15361 {
15362 new_field->next = fip->typedef_field_list;
15363 fip->typedef_field_list = new_field;
15364 fip->typedef_field_list_count++;
15365 }
15366 else
15367 {
15368 new_field->next = fip->nested_types_list;
15369 fip->nested_types_list = new_field;
15370 fip->nested_types_list_count++;
15371 }
15372}
15373
15374/* Create the vector of fields, and attach it to the type. */
15375
15376static void
15377dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15378 struct dwarf2_cu *cu)
15379{
15380 int nfields = fip->nfields;
15381
15382 /* Record the field count, allocate space for the array of fields,
15383 and create blank accessibility bitfields if necessary. */
15384 TYPE_NFIELDS (type) = nfields;
15385 TYPE_FIELDS (type) = (struct field *)
15386 TYPE_ALLOC (type, sizeof (struct field) * nfields);
15387 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
15388
15389 if (fip->non_public_fields && cu->language != language_ada)
15390 {
15391 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15392
15393 TYPE_FIELD_PRIVATE_BITS (type) =
15394 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15395 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15396
15397 TYPE_FIELD_PROTECTED_BITS (type) =
15398 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15399 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15400
15401 TYPE_FIELD_IGNORE_BITS (type) =
15402 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15403 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15404 }
15405
15406 /* If the type has baseclasses, allocate and clear a bit vector for
15407 TYPE_FIELD_VIRTUAL_BITS. */
15408 if (fip->nbaseclasses && cu->language != language_ada)
15409 {
15410 int num_bytes = B_BYTES (fip->nbaseclasses);
15411 unsigned char *pointer;
15412
15413 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15414 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15415 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15416 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
15417 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
15418 }
15419
15420 /* Copy the saved-up fields into the field vector. Start from the head of
15421 the list, adding to the tail of the field array, so that they end up in
15422 the same order in the array in which they were added to the list. */
15423 while (nfields-- > 0)
15424 {
15425 struct nextfield *fieldp;
15426
15427 if (fip->fields)
15428 {
15429 fieldp = fip->fields;
15430 fip->fields = fieldp->next;
15431 }
15432 else
15433 {
15434 fieldp = fip->baseclasses;
15435 fip->baseclasses = fieldp->next;
15436 }
15437
15438 TYPE_FIELD (type, nfields) = fieldp->field;
15439 switch (fieldp->accessibility)
15440 {
15441 case DW_ACCESS_private:
15442 if (cu->language != language_ada)
15443 SET_TYPE_FIELD_PRIVATE (type, nfields);
15444 break;
15445
15446 case DW_ACCESS_protected:
15447 if (cu->language != language_ada)
15448 SET_TYPE_FIELD_PROTECTED (type, nfields);
15449 break;
15450
15451 case DW_ACCESS_public:
15452 break;
15453
15454 default:
15455 /* Unknown accessibility. Complain and treat it as public. */
15456 {
15457 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15458 fieldp->accessibility);
15459 }
15460 break;
15461 }
15462 if (nfields < fip->nbaseclasses)
15463 {
15464 switch (fieldp->virtuality)
15465 {
15466 case DW_VIRTUALITY_virtual:
15467 case DW_VIRTUALITY_pure_virtual:
15468 if (cu->language == language_ada)
15469 error (_("unexpected virtuality in component of Ada type"));
15470 SET_TYPE_FIELD_VIRTUAL (type, nfields);
15471 break;
15472 }
15473 }
15474 }
15475}
15476
15477/* Return true if this member function is a constructor, false
15478 otherwise. */
15479
15480static int
15481dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15482{
15483 const char *fieldname;
15484 const char *type_name;
15485 int len;
15486
15487 if (die->parent == NULL)
15488 return 0;
15489
15490 if (die->parent->tag != DW_TAG_structure_type
15491 && die->parent->tag != DW_TAG_union_type
15492 && die->parent->tag != DW_TAG_class_type)
15493 return 0;
15494
15495 fieldname = dwarf2_name (die, cu);
15496 type_name = dwarf2_name (die->parent, cu);
15497 if (fieldname == NULL || type_name == NULL)
15498 return 0;
15499
15500 len = strlen (fieldname);
15501 return (strncmp (fieldname, type_name, len) == 0
15502 && (type_name[len] == '\0' || type_name[len] == '<'));
15503}
15504
15505/* Add a member function to the proper fieldlist. */
15506
15507static void
15508dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15509 struct type *type, struct dwarf2_cu *cu)
15510{
15511 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15512 struct attribute *attr;
15513 struct fnfieldlist *flp;
15514 int i;
15515 struct fn_field *fnp;
15516 const char *fieldname;
15517 struct nextfnfield *new_fnfield;
15518 struct type *this_type;
15519 enum dwarf_access_attribute accessibility;
15520
15521 if (cu->language == language_ada)
15522 error (_("unexpected member function in Ada type"));
15523
15524 /* Get name of member function. */
15525 fieldname = dwarf2_name (die, cu);
15526 if (fieldname == NULL)
15527 return;
15528
15529 /* Look up member function name in fieldlist. */
15530 for (i = 0; i < fip->nfnfields; i++)
15531 {
15532 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15533 break;
15534 }
15535
15536 /* Create new list element if necessary. */
15537 if (i < fip->nfnfields)
15538 flp = &fip->fnfieldlists[i];
15539 else
15540 {
15541 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
15542 {
15543 fip->fnfieldlists = (struct fnfieldlist *)
15544 xrealloc (fip->fnfieldlists,
15545 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
15546 * sizeof (struct fnfieldlist));
15547 if (fip->nfnfields == 0)
15548 make_cleanup (free_current_contents, &fip->fnfieldlists);
15549 }
15550 flp = &fip->fnfieldlists[fip->nfnfields];
15551 flp->name = fieldname;
15552 flp->length = 0;
15553 flp->head = NULL;
15554 i = fip->nfnfields++;
15555 }
15556
15557 /* Create a new member function field and chain it to the field list
15558 entry. */
15559 new_fnfield = XNEW (struct nextfnfield);
15560 make_cleanup (xfree, new_fnfield);
15561 memset (new_fnfield, 0, sizeof (struct nextfnfield));
15562 new_fnfield->next = flp->head;
15563 flp->head = new_fnfield;
15564 flp->length++;
15565
15566 /* Fill in the member function field info. */
15567 fnp = &new_fnfield->fnfield;
15568
15569 /* Delay processing of the physname until later. */
15570 if (cu->language == language_cplus)
15571 {
15572 add_to_method_list (type, i, flp->length - 1, fieldname,
15573 die, cu);
15574 }
15575 else
15576 {
15577 const char *physname = dwarf2_physname (fieldname, die, cu);
15578 fnp->physname = physname ? physname : "";
15579 }
15580
15581 fnp->type = alloc_type (objfile);
15582 this_type = read_type_die (die, cu);
15583 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15584 {
15585 int nparams = TYPE_NFIELDS (this_type);
15586
15587 /* TYPE is the domain of this method, and THIS_TYPE is the type
15588 of the method itself (TYPE_CODE_METHOD). */
15589 smash_to_method_type (fnp->type, type,
15590 TYPE_TARGET_TYPE (this_type),
15591 TYPE_FIELDS (this_type),
15592 TYPE_NFIELDS (this_type),
15593 TYPE_VARARGS (this_type));
15594
15595 /* Handle static member functions.
15596 Dwarf2 has no clean way to discern C++ static and non-static
15597 member functions. G++ helps GDB by marking the first
15598 parameter for non-static member functions (which is the this
15599 pointer) as artificial. We obtain this information from
15600 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15601 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15602 fnp->voffset = VOFFSET_STATIC;
15603 }
15604 else
15605 complaint (&symfile_complaints, _("member function type missing for '%s'"),
15606 dwarf2_full_name (fieldname, die, cu));
15607
15608 /* Get fcontext from DW_AT_containing_type if present. */
15609 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15610 fnp->fcontext = die_containing_type (die, cu);
15611
15612 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15613 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15614
15615 /* Get accessibility. */
15616 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15617 if (attr)
15618 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15619 else
15620 accessibility = dwarf2_default_access_attribute (die, cu);
15621 switch (accessibility)
15622 {
15623 case DW_ACCESS_private:
15624 fnp->is_private = 1;
15625 break;
15626 case DW_ACCESS_protected:
15627 fnp->is_protected = 1;
15628 break;
15629 }
15630
15631 /* Check for artificial methods. */
15632 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15633 if (attr && DW_UNSND (attr) != 0)
15634 fnp->is_artificial = 1;
15635
15636 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15637
15638 /* Get index in virtual function table if it is a virtual member
15639 function. For older versions of GCC, this is an offset in the
15640 appropriate virtual table, as specified by DW_AT_containing_type.
15641 For everyone else, it is an expression to be evaluated relative
15642 to the object address. */
15643
15644 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15645 if (attr)
15646 {
15647 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15648 {
15649 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15650 {
15651 /* Old-style GCC. */
15652 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15653 }
15654 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15655 || (DW_BLOCK (attr)->size > 1
15656 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15657 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15658 {
15659 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15660 if ((fnp->voffset % cu->header.addr_size) != 0)
15661 dwarf2_complex_location_expr_complaint ();
15662 else
15663 fnp->voffset /= cu->header.addr_size;
15664 fnp->voffset += 2;
15665 }
15666 else
15667 dwarf2_complex_location_expr_complaint ();
15668
15669 if (!fnp->fcontext)
15670 {
15671 /* If there is no `this' field and no DW_AT_containing_type,
15672 we cannot actually find a base class context for the
15673 vtable! */
15674 if (TYPE_NFIELDS (this_type) == 0
15675 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15676 {
15677 complaint (&symfile_complaints,
15678 _("cannot determine context for virtual member "
15679 "function \"%s\" (offset %s)"),
15680 fieldname, sect_offset_str (die->sect_off));
15681 }
15682 else
15683 {
15684 fnp->fcontext
15685 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15686 }
15687 }
15688 }
15689 else if (attr_form_is_section_offset (attr))
15690 {
15691 dwarf2_complex_location_expr_complaint ();
15692 }
15693 else
15694 {
15695 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15696 fieldname);
15697 }
15698 }
15699 else
15700 {
15701 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15702 if (attr && DW_UNSND (attr))
15703 {
15704 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15705 complaint (&symfile_complaints,
15706 _("Member function \"%s\" (offset %s) is virtual "
15707 "but the vtable offset is not specified"),
15708 fieldname, sect_offset_str (die->sect_off));
15709 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15710 TYPE_CPLUS_DYNAMIC (type) = 1;
15711 }
15712 }
15713}
15714
15715/* Create the vector of member function fields, and attach it to the type. */
15716
15717static void
15718dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15719 struct dwarf2_cu *cu)
15720{
15721 struct fnfieldlist *flp;
15722 int i;
15723
15724 if (cu->language == language_ada)
15725 error (_("unexpected member functions in Ada type"));
15726
15727 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15728 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15729 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
15730
15731 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
15732 {
15733 struct nextfnfield *nfp = flp->head;
15734 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15735 int k;
15736
15737 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
15738 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
15739 fn_flp->fn_fields = (struct fn_field *)
15740 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
15741 for (k = flp->length; (k--, nfp); nfp = nfp->next)
15742 fn_flp->fn_fields[k] = nfp->fnfield;
15743 }
15744
15745 TYPE_NFN_FIELDS (type) = fip->nfnfields;
15746}
15747
15748/* Returns non-zero if NAME is the name of a vtable member in CU's
15749 language, zero otherwise. */
15750static int
15751is_vtable_name (const char *name, struct dwarf2_cu *cu)
15752{
15753 static const char vptr[] = "_vptr";
15754
15755 /* Look for the C++ form of the vtable. */
15756 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15757 return 1;
15758
15759 return 0;
15760}
15761
15762/* GCC outputs unnamed structures that are really pointers to member
15763 functions, with the ABI-specified layout. If TYPE describes
15764 such a structure, smash it into a member function type.
15765
15766 GCC shouldn't do this; it should just output pointer to member DIEs.
15767 This is GCC PR debug/28767. */
15768
15769static void
15770quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15771{
15772 struct type *pfn_type, *self_type, *new_type;
15773
15774 /* Check for a structure with no name and two children. */
15775 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15776 return;
15777
15778 /* Check for __pfn and __delta members. */
15779 if (TYPE_FIELD_NAME (type, 0) == NULL
15780 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15781 || TYPE_FIELD_NAME (type, 1) == NULL
15782 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15783 return;
15784
15785 /* Find the type of the method. */
15786 pfn_type = TYPE_FIELD_TYPE (type, 0);
15787 if (pfn_type == NULL
15788 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15789 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15790 return;
15791
15792 /* Look for the "this" argument. */
15793 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15794 if (TYPE_NFIELDS (pfn_type) == 0
15795 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15796 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15797 return;
15798
15799 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15800 new_type = alloc_type (objfile);
15801 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15802 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15803 TYPE_VARARGS (pfn_type));
15804 smash_to_methodptr_type (type, new_type);
15805}
15806
15807
15808/* Called when we find the DIE that starts a structure or union scope
15809 (definition) to create a type for the structure or union. Fill in
15810 the type's name and general properties; the members will not be
15811 processed until process_structure_scope. A symbol table entry for
15812 the type will also not be done until process_structure_scope (assuming
15813 the type has a name).
15814
15815 NOTE: we need to call these functions regardless of whether or not the
15816 DIE has a DW_AT_name attribute, since it might be an anonymous
15817 structure or union. This gets the type entered into our set of
15818 user defined types. */
15819
15820static struct type *
15821read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15822{
15823 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15824 struct type *type;
15825 struct attribute *attr;
15826 const char *name;
15827
15828 /* If the definition of this type lives in .debug_types, read that type.
15829 Don't follow DW_AT_specification though, that will take us back up
15830 the chain and we want to go down. */
15831 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15832 if (attr)
15833 {
15834 type = get_DW_AT_signature_type (die, attr, cu);
15835
15836 /* The type's CU may not be the same as CU.
15837 Ensure TYPE is recorded with CU in die_type_hash. */
15838 return set_die_type (die, type, cu);
15839 }
15840
15841 type = alloc_type (objfile);
15842 INIT_CPLUS_SPECIFIC (type);
15843
15844 name = dwarf2_name (die, cu);
15845 if (name != NULL)
15846 {
15847 if (cu->language == language_cplus
15848 || cu->language == language_d
15849 || cu->language == language_rust)
15850 {
15851 const char *full_name = dwarf2_full_name (name, die, cu);
15852
15853 /* dwarf2_full_name might have already finished building the DIE's
15854 type. If so, there is no need to continue. */
15855 if (get_die_type (die, cu) != NULL)
15856 return get_die_type (die, cu);
15857
15858 TYPE_TAG_NAME (type) = full_name;
15859 if (die->tag == DW_TAG_structure_type
15860 || die->tag == DW_TAG_class_type)
15861 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15862 }
15863 else
15864 {
15865 /* The name is already allocated along with this objfile, so
15866 we don't need to duplicate it for the type. */
15867 TYPE_TAG_NAME (type) = name;
15868 if (die->tag == DW_TAG_class_type)
15869 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15870 }
15871 }
15872
15873 if (die->tag == DW_TAG_structure_type)
15874 {
15875 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15876 }
15877 else if (die->tag == DW_TAG_union_type)
15878 {
15879 TYPE_CODE (type) = TYPE_CODE_UNION;
15880 }
15881 else
15882 {
15883 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15884 }
15885
15886 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15887 TYPE_DECLARED_CLASS (type) = 1;
15888
15889 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15890 if (attr)
15891 {
15892 if (attr_form_is_constant (attr))
15893 TYPE_LENGTH (type) = DW_UNSND (attr);
15894 else
15895 {
15896 /* For the moment, dynamic type sizes are not supported
15897 by GDB's struct type. The actual size is determined
15898 on-demand when resolving the type of a given object,
15899 so set the type's length to zero for now. Otherwise,
15900 we record an expression as the length, and that expression
15901 could lead to a very large value, which could eventually
15902 lead to us trying to allocate that much memory when creating
15903 a value of that type. */
15904 TYPE_LENGTH (type) = 0;
15905 }
15906 }
15907 else
15908 {
15909 TYPE_LENGTH (type) = 0;
15910 }
15911
15912 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15913 {
15914 /* ICC<14 does not output the required DW_AT_declaration on
15915 incomplete types, but gives them a size of zero. */
15916 TYPE_STUB (type) = 1;
15917 }
15918 else
15919 TYPE_STUB_SUPPORTED (type) = 1;
15920
15921 if (die_is_declaration (die, cu))
15922 TYPE_STUB (type) = 1;
15923 else if (attr == NULL && die->child == NULL
15924 && producer_is_realview (cu->producer))
15925 /* RealView does not output the required DW_AT_declaration
15926 on incomplete types. */
15927 TYPE_STUB (type) = 1;
15928
15929 /* We need to add the type field to the die immediately so we don't
15930 infinitely recurse when dealing with pointers to the structure
15931 type within the structure itself. */
15932 set_die_type (die, type, cu);
15933
15934 /* set_die_type should be already done. */
15935 set_descriptive_type (type, die, cu);
15936
15937 return type;
15938}
15939
15940/* Finish creating a structure or union type, including filling in
15941 its members and creating a symbol for it. */
15942
15943static void
15944process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15945{
15946 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15947 struct die_info *child_die;
15948 struct type *type;
15949
15950 type = get_die_type (die, cu);
15951 if (type == NULL)
15952 type = read_structure_type (die, cu);
15953
15954 if (die->child != NULL && ! die_is_declaration (die, cu))
15955 {
15956 struct field_info fi;
15957 std::vector<struct symbol *> template_args;
15958 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
15959
15960 memset (&fi, 0, sizeof (struct field_info));
15961
15962 child_die = die->child;
15963
15964 while (child_die && child_die->tag)
15965 {
15966 if (child_die->tag == DW_TAG_member
15967 || child_die->tag == DW_TAG_variable)
15968 {
15969 /* NOTE: carlton/2002-11-05: A C++ static data member
15970 should be a DW_TAG_member that is a declaration, but
15971 all versions of G++ as of this writing (so through at
15972 least 3.2.1) incorrectly generate DW_TAG_variable
15973 tags for them instead. */
15974 dwarf2_add_field (&fi, child_die, cu);
15975 }
15976 else if (child_die->tag == DW_TAG_subprogram)
15977 {
15978 /* Rust doesn't have member functions in the C++ sense.
15979 However, it does emit ordinary functions as children
15980 of a struct DIE. */
15981 if (cu->language == language_rust)
15982 read_func_scope (child_die, cu);
15983 else
15984 {
15985 /* C++ member function. */
15986 dwarf2_add_member_fn (&fi, child_die, type, cu);
15987 }
15988 }
15989 else if (child_die->tag == DW_TAG_inheritance)
15990 {
15991 /* C++ base class field. */
15992 dwarf2_add_field (&fi, child_die, cu);
15993 }
15994 else if (type_can_define_types (child_die))
15995 dwarf2_add_type_defn (&fi, child_die, cu);
15996 else if (child_die->tag == DW_TAG_template_type_param
15997 || child_die->tag == DW_TAG_template_value_param)
15998 {
15999 struct symbol *arg = new_symbol (child_die, NULL, cu);
16000
16001 if (arg != NULL)
16002 template_args.push_back (arg);
16003 }
16004
16005 child_die = sibling_die (child_die);
16006 }
16007
16008 /* Attach template arguments to type. */
16009 if (!template_args.empty ())
16010 {
16011 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16012 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16013 TYPE_TEMPLATE_ARGUMENTS (type)
16014 = XOBNEWVEC (&objfile->objfile_obstack,
16015 struct symbol *,
16016 TYPE_N_TEMPLATE_ARGUMENTS (type));
16017 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16018 template_args.data (),
16019 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16020 * sizeof (struct symbol *)));
16021 }
16022
16023 /* Attach fields and member functions to the type. */
16024 if (fi.nfields)
16025 dwarf2_attach_fields_to_type (&fi, type, cu);
16026 if (fi.nfnfields)
16027 {
16028 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16029
16030 /* Get the type which refers to the base class (possibly this
16031 class itself) which contains the vtable pointer for the current
16032 class from the DW_AT_containing_type attribute. This use of
16033 DW_AT_containing_type is a GNU extension. */
16034
16035 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16036 {
16037 struct type *t = die_containing_type (die, cu);
16038
16039 set_type_vptr_basetype (type, t);
16040 if (type == t)
16041 {
16042 int i;
16043
16044 /* Our own class provides vtbl ptr. */
16045 for (i = TYPE_NFIELDS (t) - 1;
16046 i >= TYPE_N_BASECLASSES (t);
16047 --i)
16048 {
16049 const char *fieldname = TYPE_FIELD_NAME (t, i);
16050
16051 if (is_vtable_name (fieldname, cu))
16052 {
16053 set_type_vptr_fieldno (type, i);
16054 break;
16055 }
16056 }
16057
16058 /* Complain if virtual function table field not found. */
16059 if (i < TYPE_N_BASECLASSES (t))
16060 complaint (&symfile_complaints,
16061 _("virtual function table pointer "
16062 "not found when defining class '%s'"),
16063 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
16064 "");
16065 }
16066 else
16067 {
16068 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16069 }
16070 }
16071 else if (cu->producer
16072 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16073 {
16074 /* The IBM XLC compiler does not provide direct indication
16075 of the containing type, but the vtable pointer is
16076 always named __vfp. */
16077
16078 int i;
16079
16080 for (i = TYPE_NFIELDS (type) - 1;
16081 i >= TYPE_N_BASECLASSES (type);
16082 --i)
16083 {
16084 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16085 {
16086 set_type_vptr_fieldno (type, i);
16087 set_type_vptr_basetype (type, type);
16088 break;
16089 }
16090 }
16091 }
16092 }
16093
16094 /* Copy fi.typedef_field_list linked list elements content into the
16095 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16096 if (fi.typedef_field_list)
16097 {
16098 int i = fi.typedef_field_list_count;
16099
16100 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16101 TYPE_TYPEDEF_FIELD_ARRAY (type)
16102 = ((struct decl_field *)
16103 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
16104 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
16105
16106 /* Reverse the list order to keep the debug info elements order. */
16107 while (--i >= 0)
16108 {
16109 struct decl_field *dest, *src;
16110
16111 dest = &TYPE_TYPEDEF_FIELD (type, i);
16112 src = &fi.typedef_field_list->field;
16113 fi.typedef_field_list = fi.typedef_field_list->next;
16114 *dest = *src;
16115 }
16116 }
16117
16118 /* Copy fi.nested_types_list linked list elements content into the
16119 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16120 if (fi.nested_types_list != NULL && cu->language != language_ada)
16121 {
16122 int i = fi.nested_types_list_count;
16123
16124 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16125 TYPE_NESTED_TYPES_ARRAY (type)
16126 = ((struct decl_field *)
16127 TYPE_ALLOC (type, sizeof (struct decl_field) * i));
16128 TYPE_NESTED_TYPES_COUNT (type) = i;
16129
16130 /* Reverse the list order to keep the debug info elements order. */
16131 while (--i >= 0)
16132 {
16133 struct decl_field *dest, *src;
16134
16135 dest = &TYPE_NESTED_TYPES_FIELD (type, i);
16136 src = &fi.nested_types_list->field;
16137 fi.nested_types_list = fi.nested_types_list->next;
16138 *dest = *src;
16139 }
16140 }
16141
16142 do_cleanups (back_to);
16143 }
16144
16145 quirk_gcc_member_function_pointer (type, objfile);
16146
16147 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16148 snapshots) has been known to create a die giving a declaration
16149 for a class that has, as a child, a die giving a definition for a
16150 nested class. So we have to process our children even if the
16151 current die is a declaration. Normally, of course, a declaration
16152 won't have any children at all. */
16153
16154 child_die = die->child;
16155
16156 while (child_die != NULL && child_die->tag)
16157 {
16158 if (child_die->tag == DW_TAG_member
16159 || child_die->tag == DW_TAG_variable
16160 || child_die->tag == DW_TAG_inheritance
16161 || child_die->tag == DW_TAG_template_value_param
16162 || child_die->tag == DW_TAG_template_type_param)
16163 {
16164 /* Do nothing. */
16165 }
16166 else
16167 process_die (child_die, cu);
16168
16169 child_die = sibling_die (child_die);
16170 }
16171
16172 /* Do not consider external references. According to the DWARF standard,
16173 these DIEs are identified by the fact that they have no byte_size
16174 attribute, and a declaration attribute. */
16175 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16176 || !die_is_declaration (die, cu))
16177 new_symbol (die, type, cu);
16178}
16179
16180/* Assuming DIE is an enumeration type, and TYPE is its associated type,
16181 update TYPE using some information only available in DIE's children. */
16182
16183static void
16184update_enumeration_type_from_children (struct die_info *die,
16185 struct type *type,
16186 struct dwarf2_cu *cu)
16187{
16188 struct die_info *child_die;
16189 int unsigned_enum = 1;
16190 int flag_enum = 1;
16191 ULONGEST mask = 0;
16192
16193 auto_obstack obstack;
16194
16195 for (child_die = die->child;
16196 child_die != NULL && child_die->tag;
16197 child_die = sibling_die (child_die))
16198 {
16199 struct attribute *attr;
16200 LONGEST value;
16201 const gdb_byte *bytes;
16202 struct dwarf2_locexpr_baton *baton;
16203 const char *name;
16204
16205 if (child_die->tag != DW_TAG_enumerator)
16206 continue;
16207
16208 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16209 if (attr == NULL)
16210 continue;
16211
16212 name = dwarf2_name (child_die, cu);
16213 if (name == NULL)
16214 name = "<anonymous enumerator>";
16215
16216 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16217 &value, &bytes, &baton);
16218 if (value < 0)
16219 {
16220 unsigned_enum = 0;
16221 flag_enum = 0;
16222 }
16223 else if ((mask & value) != 0)
16224 flag_enum = 0;
16225 else
16226 mask |= value;
16227
16228 /* If we already know that the enum type is neither unsigned, nor
16229 a flag type, no need to look at the rest of the enumerates. */
16230 if (!unsigned_enum && !flag_enum)
16231 break;
16232 }
16233
16234 if (unsigned_enum)
16235 TYPE_UNSIGNED (type) = 1;
16236 if (flag_enum)
16237 TYPE_FLAG_ENUM (type) = 1;
16238}
16239
16240/* Given a DW_AT_enumeration_type die, set its type. We do not
16241 complete the type's fields yet, or create any symbols. */
16242
16243static struct type *
16244read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16245{
16246 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16247 struct type *type;
16248 struct attribute *attr;
16249 const char *name;
16250
16251 /* If the definition of this type lives in .debug_types, read that type.
16252 Don't follow DW_AT_specification though, that will take us back up
16253 the chain and we want to go down. */
16254 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16255 if (attr)
16256 {
16257 type = get_DW_AT_signature_type (die, attr, cu);
16258
16259 /* The type's CU may not be the same as CU.
16260 Ensure TYPE is recorded with CU in die_type_hash. */
16261 return set_die_type (die, type, cu);
16262 }
16263
16264 type = alloc_type (objfile);
16265
16266 TYPE_CODE (type) = TYPE_CODE_ENUM;
16267 name = dwarf2_full_name (NULL, die, cu);
16268 if (name != NULL)
16269 TYPE_TAG_NAME (type) = name;
16270
16271 attr = dwarf2_attr (die, DW_AT_type, cu);
16272 if (attr != NULL)
16273 {
16274 struct type *underlying_type = die_type (die, cu);
16275
16276 TYPE_TARGET_TYPE (type) = underlying_type;
16277 }
16278
16279 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16280 if (attr)
16281 {
16282 TYPE_LENGTH (type) = DW_UNSND (attr);
16283 }
16284 else
16285 {
16286 TYPE_LENGTH (type) = 0;
16287 }
16288
16289 /* The enumeration DIE can be incomplete. In Ada, any type can be
16290 declared as private in the package spec, and then defined only
16291 inside the package body. Such types are known as Taft Amendment
16292 Types. When another package uses such a type, an incomplete DIE
16293 may be generated by the compiler. */
16294 if (die_is_declaration (die, cu))
16295 TYPE_STUB (type) = 1;
16296
16297 /* Finish the creation of this type by using the enum's children.
16298 We must call this even when the underlying type has been provided
16299 so that we can determine if we're looking at a "flag" enum. */
16300 update_enumeration_type_from_children (die, type, cu);
16301
16302 /* If this type has an underlying type that is not a stub, then we
16303 may use its attributes. We always use the "unsigned" attribute
16304 in this situation, because ordinarily we guess whether the type
16305 is unsigned -- but the guess can be wrong and the underlying type
16306 can tell us the reality. However, we defer to a local size
16307 attribute if one exists, because this lets the compiler override
16308 the underlying type if needed. */
16309 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16310 {
16311 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16312 if (TYPE_LENGTH (type) == 0)
16313 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16314 }
16315
16316 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16317
16318 return set_die_type (die, type, cu);
16319}
16320
16321/* Given a pointer to a die which begins an enumeration, process all
16322 the dies that define the members of the enumeration, and create the
16323 symbol for the enumeration type.
16324
16325 NOTE: We reverse the order of the element list. */
16326
16327static void
16328process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16329{
16330 struct type *this_type;
16331
16332 this_type = get_die_type (die, cu);
16333 if (this_type == NULL)
16334 this_type = read_enumeration_type (die, cu);
16335
16336 if (die->child != NULL)
16337 {
16338 struct die_info *child_die;
16339 struct symbol *sym;
16340 struct field *fields = NULL;
16341 int num_fields = 0;
16342 const char *name;
16343
16344 child_die = die->child;
16345 while (child_die && child_die->tag)
16346 {
16347 if (child_die->tag != DW_TAG_enumerator)
16348 {
16349 process_die (child_die, cu);
16350 }
16351 else
16352 {
16353 name = dwarf2_name (child_die, cu);
16354 if (name)
16355 {
16356 sym = new_symbol (child_die, this_type, cu);
16357
16358 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16359 {
16360 fields = (struct field *)
16361 xrealloc (fields,
16362 (num_fields + DW_FIELD_ALLOC_CHUNK)
16363 * sizeof (struct field));
16364 }
16365
16366 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16367 FIELD_TYPE (fields[num_fields]) = NULL;
16368 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16369 FIELD_BITSIZE (fields[num_fields]) = 0;
16370
16371 num_fields++;
16372 }
16373 }
16374
16375 child_die = sibling_die (child_die);
16376 }
16377
16378 if (num_fields)
16379 {
16380 TYPE_NFIELDS (this_type) = num_fields;
16381 TYPE_FIELDS (this_type) = (struct field *)
16382 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16383 memcpy (TYPE_FIELDS (this_type), fields,
16384 sizeof (struct field) * num_fields);
16385 xfree (fields);
16386 }
16387 }
16388
16389 /* If we are reading an enum from a .debug_types unit, and the enum
16390 is a declaration, and the enum is not the signatured type in the
16391 unit, then we do not want to add a symbol for it. Adding a
16392 symbol would in some cases obscure the true definition of the
16393 enum, giving users an incomplete type when the definition is
16394 actually available. Note that we do not want to do this for all
16395 enums which are just declarations, because C++0x allows forward
16396 enum declarations. */
16397 if (cu->per_cu->is_debug_types
16398 && die_is_declaration (die, cu))
16399 {
16400 struct signatured_type *sig_type;
16401
16402 sig_type = (struct signatured_type *) cu->per_cu;
16403 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16404 if (sig_type->type_offset_in_section != die->sect_off)
16405 return;
16406 }
16407
16408 new_symbol (die, this_type, cu);
16409}
16410
16411/* Extract all information from a DW_TAG_array_type DIE and put it in
16412 the DIE's type field. For now, this only handles one dimensional
16413 arrays. */
16414
16415static struct type *
16416read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16417{
16418 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16419 struct die_info *child_die;
16420 struct type *type;
16421 struct type *element_type, *range_type, *index_type;
16422 struct attribute *attr;
16423 const char *name;
16424 struct dynamic_prop *byte_stride_prop = NULL;
16425 unsigned int bit_stride = 0;
16426
16427 element_type = die_type (die, cu);
16428
16429 /* The die_type call above may have already set the type for this DIE. */
16430 type = get_die_type (die, cu);
16431 if (type)
16432 return type;
16433
16434 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16435 if (attr != NULL)
16436 {
16437 int stride_ok;
16438
16439 byte_stride_prop
16440 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16441 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16442 if (!stride_ok)
16443 {
16444 complaint (&symfile_complaints,
16445 _("unable to read array DW_AT_byte_stride "
16446 " - DIE at %s [in module %s]"),
16447 sect_offset_str (die->sect_off),
16448 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16449 /* Ignore this attribute. We will likely not be able to print
16450 arrays of this type correctly, but there is little we can do
16451 to help if we cannot read the attribute's value. */
16452 byte_stride_prop = NULL;
16453 }
16454 }
16455
16456 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16457 if (attr != NULL)
16458 bit_stride = DW_UNSND (attr);
16459
16460 /* Irix 6.2 native cc creates array types without children for
16461 arrays with unspecified length. */
16462 if (die->child == NULL)
16463 {
16464 index_type = objfile_type (objfile)->builtin_int;
16465 range_type = create_static_range_type (NULL, index_type, 0, -1);
16466 type = create_array_type_with_stride (NULL, element_type, range_type,
16467 byte_stride_prop, bit_stride);
16468 return set_die_type (die, type, cu);
16469 }
16470
16471 std::vector<struct type *> range_types;
16472 child_die = die->child;
16473 while (child_die && child_die->tag)
16474 {
16475 if (child_die->tag == DW_TAG_subrange_type)
16476 {
16477 struct type *child_type = read_type_die (child_die, cu);
16478
16479 if (child_type != NULL)
16480 {
16481 /* The range type was succesfully read. Save it for the
16482 array type creation. */
16483 range_types.push_back (child_type);
16484 }
16485 }
16486 child_die = sibling_die (child_die);
16487 }
16488
16489 /* Dwarf2 dimensions are output from left to right, create the
16490 necessary array types in backwards order. */
16491
16492 type = element_type;
16493
16494 if (read_array_order (die, cu) == DW_ORD_col_major)
16495 {
16496 int i = 0;
16497
16498 while (i < range_types.size ())
16499 type = create_array_type_with_stride (NULL, type, range_types[i++],
16500 byte_stride_prop, bit_stride);
16501 }
16502 else
16503 {
16504 size_t ndim = range_types.size ();
16505 while (ndim-- > 0)
16506 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16507 byte_stride_prop, bit_stride);
16508 }
16509
16510 /* Understand Dwarf2 support for vector types (like they occur on
16511 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16512 array type. This is not part of the Dwarf2/3 standard yet, but a
16513 custom vendor extension. The main difference between a regular
16514 array and the vector variant is that vectors are passed by value
16515 to functions. */
16516 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16517 if (attr)
16518 make_vector_type (type);
16519
16520 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16521 implementation may choose to implement triple vectors using this
16522 attribute. */
16523 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16524 if (attr)
16525 {
16526 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16527 TYPE_LENGTH (type) = DW_UNSND (attr);
16528 else
16529 complaint (&symfile_complaints,
16530 _("DW_AT_byte_size for array type smaller "
16531 "than the total size of elements"));
16532 }
16533
16534 name = dwarf2_name (die, cu);
16535 if (name)
16536 TYPE_NAME (type) = name;
16537
16538 /* Install the type in the die. */
16539 set_die_type (die, type, cu);
16540
16541 /* set_die_type should be already done. */
16542 set_descriptive_type (type, die, cu);
16543
16544 return type;
16545}
16546
16547static enum dwarf_array_dim_ordering
16548read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16549{
16550 struct attribute *attr;
16551
16552 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16553
16554 if (attr)
16555 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16556
16557 /* GNU F77 is a special case, as at 08/2004 array type info is the
16558 opposite order to the dwarf2 specification, but data is still
16559 laid out as per normal fortran.
16560
16561 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16562 version checking. */
16563
16564 if (cu->language == language_fortran
16565 && cu->producer && strstr (cu->producer, "GNU F77"))
16566 {
16567 return DW_ORD_row_major;
16568 }
16569
16570 switch (cu->language_defn->la_array_ordering)
16571 {
16572 case array_column_major:
16573 return DW_ORD_col_major;
16574 case array_row_major:
16575 default:
16576 return DW_ORD_row_major;
16577 };
16578}
16579
16580/* Extract all information from a DW_TAG_set_type DIE and put it in
16581 the DIE's type field. */
16582
16583static struct type *
16584read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16585{
16586 struct type *domain_type, *set_type;
16587 struct attribute *attr;
16588
16589 domain_type = die_type (die, cu);
16590
16591 /* The die_type call above may have already set the type for this DIE. */
16592 set_type = get_die_type (die, cu);
16593 if (set_type)
16594 return set_type;
16595
16596 set_type = create_set_type (NULL, domain_type);
16597
16598 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16599 if (attr)
16600 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16601
16602 return set_die_type (die, set_type, cu);
16603}
16604
16605/* A helper for read_common_block that creates a locexpr baton.
16606 SYM is the symbol which we are marking as computed.
16607 COMMON_DIE is the DIE for the common block.
16608 COMMON_LOC is the location expression attribute for the common
16609 block itself.
16610 MEMBER_LOC is the location expression attribute for the particular
16611 member of the common block that we are processing.
16612 CU is the CU from which the above come. */
16613
16614static void
16615mark_common_block_symbol_computed (struct symbol *sym,
16616 struct die_info *common_die,
16617 struct attribute *common_loc,
16618 struct attribute *member_loc,
16619 struct dwarf2_cu *cu)
16620{
16621 struct dwarf2_per_objfile *dwarf2_per_objfile
16622 = cu->per_cu->dwarf2_per_objfile;
16623 struct objfile *objfile = dwarf2_per_objfile->objfile;
16624 struct dwarf2_locexpr_baton *baton;
16625 gdb_byte *ptr;
16626 unsigned int cu_off;
16627 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16628 LONGEST offset = 0;
16629
16630 gdb_assert (common_loc && member_loc);
16631 gdb_assert (attr_form_is_block (common_loc));
16632 gdb_assert (attr_form_is_block (member_loc)
16633 || attr_form_is_constant (member_loc));
16634
16635 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16636 baton->per_cu = cu->per_cu;
16637 gdb_assert (baton->per_cu);
16638
16639 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16640
16641 if (attr_form_is_constant (member_loc))
16642 {
16643 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16644 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16645 }
16646 else
16647 baton->size += DW_BLOCK (member_loc)->size;
16648
16649 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16650 baton->data = ptr;
16651
16652 *ptr++ = DW_OP_call4;
16653 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16654 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16655 ptr += 4;
16656
16657 if (attr_form_is_constant (member_loc))
16658 {
16659 *ptr++ = DW_OP_addr;
16660 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16661 ptr += cu->header.addr_size;
16662 }
16663 else
16664 {
16665 /* We have to copy the data here, because DW_OP_call4 will only
16666 use a DW_AT_location attribute. */
16667 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16668 ptr += DW_BLOCK (member_loc)->size;
16669 }
16670
16671 *ptr++ = DW_OP_plus;
16672 gdb_assert (ptr - baton->data == baton->size);
16673
16674 SYMBOL_LOCATION_BATON (sym) = baton;
16675 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16676}
16677
16678/* Create appropriate locally-scoped variables for all the
16679 DW_TAG_common_block entries. Also create a struct common_block
16680 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16681 is used to sepate the common blocks name namespace from regular
16682 variable names. */
16683
16684static void
16685read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16686{
16687 struct attribute *attr;
16688
16689 attr = dwarf2_attr (die, DW_AT_location, cu);
16690 if (attr)
16691 {
16692 /* Support the .debug_loc offsets. */
16693 if (attr_form_is_block (attr))
16694 {
16695 /* Ok. */
16696 }
16697 else if (attr_form_is_section_offset (attr))
16698 {
16699 dwarf2_complex_location_expr_complaint ();
16700 attr = NULL;
16701 }
16702 else
16703 {
16704 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16705 "common block member");
16706 attr = NULL;
16707 }
16708 }
16709
16710 if (die->child != NULL)
16711 {
16712 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16713 struct die_info *child_die;
16714 size_t n_entries = 0, size;
16715 struct common_block *common_block;
16716 struct symbol *sym;
16717
16718 for (child_die = die->child;
16719 child_die && child_die->tag;
16720 child_die = sibling_die (child_die))
16721 ++n_entries;
16722
16723 size = (sizeof (struct common_block)
16724 + (n_entries - 1) * sizeof (struct symbol *));
16725 common_block
16726 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16727 size);
16728 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16729 common_block->n_entries = 0;
16730
16731 for (child_die = die->child;
16732 child_die && child_die->tag;
16733 child_die = sibling_die (child_die))
16734 {
16735 /* Create the symbol in the DW_TAG_common_block block in the current
16736 symbol scope. */
16737 sym = new_symbol (child_die, NULL, cu);
16738 if (sym != NULL)
16739 {
16740 struct attribute *member_loc;
16741
16742 common_block->contents[common_block->n_entries++] = sym;
16743
16744 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16745 cu);
16746 if (member_loc)
16747 {
16748 /* GDB has handled this for a long time, but it is
16749 not specified by DWARF. It seems to have been
16750 emitted by gfortran at least as recently as:
16751 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16752 complaint (&symfile_complaints,
16753 _("Variable in common block has "
16754 "DW_AT_data_member_location "
16755 "- DIE at %s [in module %s]"),
16756 sect_offset_str (child_die->sect_off),
16757 objfile_name (objfile));
16758
16759 if (attr_form_is_section_offset (member_loc))
16760 dwarf2_complex_location_expr_complaint ();
16761 else if (attr_form_is_constant (member_loc)
16762 || attr_form_is_block (member_loc))
16763 {
16764 if (attr)
16765 mark_common_block_symbol_computed (sym, die, attr,
16766 member_loc, cu);
16767 }
16768 else
16769 dwarf2_complex_location_expr_complaint ();
16770 }
16771 }
16772 }
16773
16774 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16775 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16776 }
16777}
16778
16779/* Create a type for a C++ namespace. */
16780
16781static struct type *
16782read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16783{
16784 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16785 const char *previous_prefix, *name;
16786 int is_anonymous;
16787 struct type *type;
16788
16789 /* For extensions, reuse the type of the original namespace. */
16790 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16791 {
16792 struct die_info *ext_die;
16793 struct dwarf2_cu *ext_cu = cu;
16794
16795 ext_die = dwarf2_extension (die, &ext_cu);
16796 type = read_type_die (ext_die, ext_cu);
16797
16798 /* EXT_CU may not be the same as CU.
16799 Ensure TYPE is recorded with CU in die_type_hash. */
16800 return set_die_type (die, type, cu);
16801 }
16802
16803 name = namespace_name (die, &is_anonymous, cu);
16804
16805 /* Now build the name of the current namespace. */
16806
16807 previous_prefix = determine_prefix (die, cu);
16808 if (previous_prefix[0] != '\0')
16809 name = typename_concat (&objfile->objfile_obstack,
16810 previous_prefix, name, 0, cu);
16811
16812 /* Create the type. */
16813 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16814 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16815
16816 return set_die_type (die, type, cu);
16817}
16818
16819/* Read a namespace scope. */
16820
16821static void
16822read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16823{
16824 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16825 int is_anonymous;
16826
16827 /* Add a symbol associated to this if we haven't seen the namespace
16828 before. Also, add a using directive if it's an anonymous
16829 namespace. */
16830
16831 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16832 {
16833 struct type *type;
16834
16835 type = read_type_die (die, cu);
16836 new_symbol (die, type, cu);
16837
16838 namespace_name (die, &is_anonymous, cu);
16839 if (is_anonymous)
16840 {
16841 const char *previous_prefix = determine_prefix (die, cu);
16842
16843 std::vector<const char *> excludes;
16844 add_using_directive (using_directives (cu->language),
16845 previous_prefix, TYPE_NAME (type), NULL,
16846 NULL, excludes, 0, &objfile->objfile_obstack);
16847 }
16848 }
16849
16850 if (die->child != NULL)
16851 {
16852 struct die_info *child_die = die->child;
16853
16854 while (child_die && child_die->tag)
16855 {
16856 process_die (child_die, cu);
16857 child_die = sibling_die (child_die);
16858 }
16859 }
16860}
16861
16862/* Read a Fortran module as type. This DIE can be only a declaration used for
16863 imported module. Still we need that type as local Fortran "use ... only"
16864 declaration imports depend on the created type in determine_prefix. */
16865
16866static struct type *
16867read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16868{
16869 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16870 const char *module_name;
16871 struct type *type;
16872
16873 module_name = dwarf2_name (die, cu);
16874 if (!module_name)
16875 complaint (&symfile_complaints,
16876 _("DW_TAG_module has no name, offset %s"),
16877 sect_offset_str (die->sect_off));
16878 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16879
16880 /* determine_prefix uses TYPE_TAG_NAME. */
16881 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16882
16883 return set_die_type (die, type, cu);
16884}
16885
16886/* Read a Fortran module. */
16887
16888static void
16889read_module (struct die_info *die, struct dwarf2_cu *cu)
16890{
16891 struct die_info *child_die = die->child;
16892 struct type *type;
16893
16894 type = read_type_die (die, cu);
16895 new_symbol (die, type, cu);
16896
16897 while (child_die && child_die->tag)
16898 {
16899 process_die (child_die, cu);
16900 child_die = sibling_die (child_die);
16901 }
16902}
16903
16904/* Return the name of the namespace represented by DIE. Set
16905 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16906 namespace. */
16907
16908static const char *
16909namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16910{
16911 struct die_info *current_die;
16912 const char *name = NULL;
16913
16914 /* Loop through the extensions until we find a name. */
16915
16916 for (current_die = die;
16917 current_die != NULL;
16918 current_die = dwarf2_extension (die, &cu))
16919 {
16920 /* We don't use dwarf2_name here so that we can detect the absence
16921 of a name -> anonymous namespace. */
16922 name = dwarf2_string_attr (die, DW_AT_name, cu);
16923
16924 if (name != NULL)
16925 break;
16926 }
16927
16928 /* Is it an anonymous namespace? */
16929
16930 *is_anonymous = (name == NULL);
16931 if (*is_anonymous)
16932 name = CP_ANONYMOUS_NAMESPACE_STR;
16933
16934 return name;
16935}
16936
16937/* Extract all information from a DW_TAG_pointer_type DIE and add to
16938 the user defined type vector. */
16939
16940static struct type *
16941read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16942{
16943 struct gdbarch *gdbarch
16944 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16945 struct comp_unit_head *cu_header = &cu->header;
16946 struct type *type;
16947 struct attribute *attr_byte_size;
16948 struct attribute *attr_address_class;
16949 int byte_size, addr_class;
16950 struct type *target_type;
16951
16952 target_type = die_type (die, cu);
16953
16954 /* The die_type call above may have already set the type for this DIE. */
16955 type = get_die_type (die, cu);
16956 if (type)
16957 return type;
16958
16959 type = lookup_pointer_type (target_type);
16960
16961 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16962 if (attr_byte_size)
16963 byte_size = DW_UNSND (attr_byte_size);
16964 else
16965 byte_size = cu_header->addr_size;
16966
16967 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16968 if (attr_address_class)
16969 addr_class = DW_UNSND (attr_address_class);
16970 else
16971 addr_class = DW_ADDR_none;
16972
16973 /* If the pointer size or address class is different than the
16974 default, create a type variant marked as such and set the
16975 length accordingly. */
16976 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
16977 {
16978 if (gdbarch_address_class_type_flags_p (gdbarch))
16979 {
16980 int type_flags;
16981
16982 type_flags = gdbarch_address_class_type_flags
16983 (gdbarch, byte_size, addr_class);
16984 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16985 == 0);
16986 type = make_type_with_address_space (type, type_flags);
16987 }
16988 else if (TYPE_LENGTH (type) != byte_size)
16989 {
16990 complaint (&symfile_complaints,
16991 _("invalid pointer size %d"), byte_size);
16992 }
16993 else
16994 {
16995 /* Should we also complain about unhandled address classes? */
16996 }
16997 }
16998
16999 TYPE_LENGTH (type) = byte_size;
17000 return set_die_type (die, type, cu);
17001}
17002
17003/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17004 the user defined type vector. */
17005
17006static struct type *
17007read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17008{
17009 struct type *type;
17010 struct type *to_type;
17011 struct type *domain;
17012
17013 to_type = die_type (die, cu);
17014 domain = die_containing_type (die, cu);
17015
17016 /* The calls above may have already set the type for this DIE. */
17017 type = get_die_type (die, cu);
17018 if (type)
17019 return type;
17020
17021 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17022 type = lookup_methodptr_type (to_type);
17023 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17024 {
17025 struct type *new_type
17026 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17027
17028 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17029 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17030 TYPE_VARARGS (to_type));
17031 type = lookup_methodptr_type (new_type);
17032 }
17033 else
17034 type = lookup_memberptr_type (to_type, domain);
17035
17036 return set_die_type (die, type, cu);
17037}
17038
17039/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17040 the user defined type vector. */
17041
17042static struct type *
17043read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17044 enum type_code refcode)
17045{
17046 struct comp_unit_head *cu_header = &cu->header;
17047 struct type *type, *target_type;
17048 struct attribute *attr;
17049
17050 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17051
17052 target_type = die_type (die, cu);
17053
17054 /* The die_type call above may have already set the type for this DIE. */
17055 type = get_die_type (die, cu);
17056 if (type)
17057 return type;
17058
17059 type = lookup_reference_type (target_type, refcode);
17060 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17061 if (attr)
17062 {
17063 TYPE_LENGTH (type) = DW_UNSND (attr);
17064 }
17065 else
17066 {
17067 TYPE_LENGTH (type) = cu_header->addr_size;
17068 }
17069 return set_die_type (die, type, cu);
17070}
17071
17072/* Add the given cv-qualifiers to the element type of the array. GCC
17073 outputs DWARF type qualifiers that apply to an array, not the
17074 element type. But GDB relies on the array element type to carry
17075 the cv-qualifiers. This mimics section 6.7.3 of the C99
17076 specification. */
17077
17078static struct type *
17079add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17080 struct type *base_type, int cnst, int voltl)
17081{
17082 struct type *el_type, *inner_array;
17083
17084 base_type = copy_type (base_type);
17085 inner_array = base_type;
17086
17087 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17088 {
17089 TYPE_TARGET_TYPE (inner_array) =
17090 copy_type (TYPE_TARGET_TYPE (inner_array));
17091 inner_array = TYPE_TARGET_TYPE (inner_array);
17092 }
17093
17094 el_type = TYPE_TARGET_TYPE (inner_array);
17095 cnst |= TYPE_CONST (el_type);
17096 voltl |= TYPE_VOLATILE (el_type);
17097 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17098
17099 return set_die_type (die, base_type, cu);
17100}
17101
17102static struct type *
17103read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17104{
17105 struct type *base_type, *cv_type;
17106
17107 base_type = die_type (die, cu);
17108
17109 /* The die_type call above may have already set the type for this DIE. */
17110 cv_type = get_die_type (die, cu);
17111 if (cv_type)
17112 return cv_type;
17113
17114 /* In case the const qualifier is applied to an array type, the element type
17115 is so qualified, not the array type (section 6.7.3 of C99). */
17116 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17117 return add_array_cv_type (die, cu, base_type, 1, 0);
17118
17119 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17120 return set_die_type (die, cv_type, cu);
17121}
17122
17123static struct type *
17124read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17125{
17126 struct type *base_type, *cv_type;
17127
17128 base_type = die_type (die, cu);
17129
17130 /* The die_type call above may have already set the type for this DIE. */
17131 cv_type = get_die_type (die, cu);
17132 if (cv_type)
17133 return cv_type;
17134
17135 /* In case the volatile qualifier is applied to an array type, the
17136 element type is so qualified, not the array type (section 6.7.3
17137 of C99). */
17138 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17139 return add_array_cv_type (die, cu, base_type, 0, 1);
17140
17141 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17142 return set_die_type (die, cv_type, cu);
17143}
17144
17145/* Handle DW_TAG_restrict_type. */
17146
17147static struct type *
17148read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17149{
17150 struct type *base_type, *cv_type;
17151
17152 base_type = die_type (die, cu);
17153
17154 /* The die_type call above may have already set the type for this DIE. */
17155 cv_type = get_die_type (die, cu);
17156 if (cv_type)
17157 return cv_type;
17158
17159 cv_type = make_restrict_type (base_type);
17160 return set_die_type (die, cv_type, cu);
17161}
17162
17163/* Handle DW_TAG_atomic_type. */
17164
17165static struct type *
17166read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17167{
17168 struct type *base_type, *cv_type;
17169
17170 base_type = die_type (die, cu);
17171
17172 /* The die_type call above may have already set the type for this DIE. */
17173 cv_type = get_die_type (die, cu);
17174 if (cv_type)
17175 return cv_type;
17176
17177 cv_type = make_atomic_type (base_type);
17178 return set_die_type (die, cv_type, cu);
17179}
17180
17181/* Extract all information from a DW_TAG_string_type DIE and add to
17182 the user defined type vector. It isn't really a user defined type,
17183 but it behaves like one, with other DIE's using an AT_user_def_type
17184 attribute to reference it. */
17185
17186static struct type *
17187read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17188{
17189 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17190 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17191 struct type *type, *range_type, *index_type, *char_type;
17192 struct attribute *attr;
17193 unsigned int length;
17194
17195 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17196 if (attr)
17197 {
17198 length = DW_UNSND (attr);
17199 }
17200 else
17201 {
17202 /* Check for the DW_AT_byte_size attribute. */
17203 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17204 if (attr)
17205 {
17206 length = DW_UNSND (attr);
17207 }
17208 else
17209 {
17210 length = 1;
17211 }
17212 }
17213
17214 index_type = objfile_type (objfile)->builtin_int;
17215 range_type = create_static_range_type (NULL, index_type, 1, length);
17216 char_type = language_string_char_type (cu->language_defn, gdbarch);
17217 type = create_string_type (NULL, char_type, range_type);
17218
17219 return set_die_type (die, type, cu);
17220}
17221
17222/* Assuming that DIE corresponds to a function, returns nonzero
17223 if the function is prototyped. */
17224
17225static int
17226prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17227{
17228 struct attribute *attr;
17229
17230 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17231 if (attr && (DW_UNSND (attr) != 0))
17232 return 1;
17233
17234 /* The DWARF standard implies that the DW_AT_prototyped attribute
17235 is only meaninful for C, but the concept also extends to other
17236 languages that allow unprototyped functions (Eg: Objective C).
17237 For all other languages, assume that functions are always
17238 prototyped. */
17239 if (cu->language != language_c
17240 && cu->language != language_objc
17241 && cu->language != language_opencl)
17242 return 1;
17243
17244 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17245 prototyped and unprototyped functions; default to prototyped,
17246 since that is more common in modern code (and RealView warns
17247 about unprototyped functions). */
17248 if (producer_is_realview (cu->producer))
17249 return 1;
17250
17251 return 0;
17252}
17253
17254/* Handle DIES due to C code like:
17255
17256 struct foo
17257 {
17258 int (*funcp)(int a, long l);
17259 int b;
17260 };
17261
17262 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17263
17264static struct type *
17265read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17266{
17267 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17268 struct type *type; /* Type that this function returns. */
17269 struct type *ftype; /* Function that returns above type. */
17270 struct attribute *attr;
17271
17272 type = die_type (die, cu);
17273
17274 /* The die_type call above may have already set the type for this DIE. */
17275 ftype = get_die_type (die, cu);
17276 if (ftype)
17277 return ftype;
17278
17279 ftype = lookup_function_type (type);
17280
17281 if (prototyped_function_p (die, cu))
17282 TYPE_PROTOTYPED (ftype) = 1;
17283
17284 /* Store the calling convention in the type if it's available in
17285 the subroutine die. Otherwise set the calling convention to
17286 the default value DW_CC_normal. */
17287 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17288 if (attr)
17289 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17290 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17291 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17292 else
17293 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17294
17295 /* Record whether the function returns normally to its caller or not
17296 if the DWARF producer set that information. */
17297 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17298 if (attr && (DW_UNSND (attr) != 0))
17299 TYPE_NO_RETURN (ftype) = 1;
17300
17301 /* We need to add the subroutine type to the die immediately so
17302 we don't infinitely recurse when dealing with parameters
17303 declared as the same subroutine type. */
17304 set_die_type (die, ftype, cu);
17305
17306 if (die->child != NULL)
17307 {
17308 struct type *void_type = objfile_type (objfile)->builtin_void;
17309 struct die_info *child_die;
17310 int nparams, iparams;
17311
17312 /* Count the number of parameters.
17313 FIXME: GDB currently ignores vararg functions, but knows about
17314 vararg member functions. */
17315 nparams = 0;
17316 child_die = die->child;
17317 while (child_die && child_die->tag)
17318 {
17319 if (child_die->tag == DW_TAG_formal_parameter)
17320 nparams++;
17321 else if (child_die->tag == DW_TAG_unspecified_parameters)
17322 TYPE_VARARGS (ftype) = 1;
17323 child_die = sibling_die (child_die);
17324 }
17325
17326 /* Allocate storage for parameters and fill them in. */
17327 TYPE_NFIELDS (ftype) = nparams;
17328 TYPE_FIELDS (ftype) = (struct field *)
17329 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17330
17331 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17332 even if we error out during the parameters reading below. */
17333 for (iparams = 0; iparams < nparams; iparams++)
17334 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17335
17336 iparams = 0;
17337 child_die = die->child;
17338 while (child_die && child_die->tag)
17339 {
17340 if (child_die->tag == DW_TAG_formal_parameter)
17341 {
17342 struct type *arg_type;
17343
17344 /* DWARF version 2 has no clean way to discern C++
17345 static and non-static member functions. G++ helps
17346 GDB by marking the first parameter for non-static
17347 member functions (which is the this pointer) as
17348 artificial. We pass this information to
17349 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17350
17351 DWARF version 3 added DW_AT_object_pointer, which GCC
17352 4.5 does not yet generate. */
17353 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17354 if (attr)
17355 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17356 else
17357 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17358 arg_type = die_type (child_die, cu);
17359
17360 /* RealView does not mark THIS as const, which the testsuite
17361 expects. GCC marks THIS as const in method definitions,
17362 but not in the class specifications (GCC PR 43053). */
17363 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17364 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17365 {
17366 int is_this = 0;
17367 struct dwarf2_cu *arg_cu = cu;
17368 const char *name = dwarf2_name (child_die, cu);
17369
17370 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17371 if (attr)
17372 {
17373 /* If the compiler emits this, use it. */
17374 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17375 is_this = 1;
17376 }
17377 else if (name && strcmp (name, "this") == 0)
17378 /* Function definitions will have the argument names. */
17379 is_this = 1;
17380 else if (name == NULL && iparams == 0)
17381 /* Declarations may not have the names, so like
17382 elsewhere in GDB, assume an artificial first
17383 argument is "this". */
17384 is_this = 1;
17385
17386 if (is_this)
17387 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17388 arg_type, 0);
17389 }
17390
17391 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17392 iparams++;
17393 }
17394 child_die = sibling_die (child_die);
17395 }
17396 }
17397
17398 return ftype;
17399}
17400
17401static struct type *
17402read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17403{
17404 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17405 const char *name = NULL;
17406 struct type *this_type, *target_type;
17407
17408 name = dwarf2_full_name (NULL, die, cu);
17409 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17410 TYPE_TARGET_STUB (this_type) = 1;
17411 set_die_type (die, this_type, cu);
17412 target_type = die_type (die, cu);
17413 if (target_type != this_type)
17414 TYPE_TARGET_TYPE (this_type) = target_type;
17415 else
17416 {
17417 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17418 spec and cause infinite loops in GDB. */
17419 complaint (&symfile_complaints,
17420 _("Self-referential DW_TAG_typedef "
17421 "- DIE at %s [in module %s]"),
17422 sect_offset_str (die->sect_off), objfile_name (objfile));
17423 TYPE_TARGET_TYPE (this_type) = NULL;
17424 }
17425 return this_type;
17426}
17427
17428/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17429 (which may be different from NAME) to the architecture back-end to allow
17430 it to guess the correct format if necessary. */
17431
17432static struct type *
17433dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17434 const char *name_hint)
17435{
17436 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17437 const struct floatformat **format;
17438 struct type *type;
17439
17440 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17441 if (format)
17442 type = init_float_type (objfile, bits, name, format);
17443 else
17444 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17445
17446 return type;
17447}
17448
17449/* Find a representation of a given base type and install
17450 it in the TYPE field of the die. */
17451
17452static struct type *
17453read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17454{
17455 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17456 struct type *type;
17457 struct attribute *attr;
17458 int encoding = 0, bits = 0;
17459 const char *name;
17460
17461 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17462 if (attr)
17463 {
17464 encoding = DW_UNSND (attr);
17465 }
17466 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17467 if (attr)
17468 {
17469 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17470 }
17471 name = dwarf2_name (die, cu);
17472 if (!name)
17473 {
17474 complaint (&symfile_complaints,
17475 _("DW_AT_name missing from DW_TAG_base_type"));
17476 }
17477
17478 switch (encoding)
17479 {
17480 case DW_ATE_address:
17481 /* Turn DW_ATE_address into a void * pointer. */
17482 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17483 type = init_pointer_type (objfile, bits, name, type);
17484 break;
17485 case DW_ATE_boolean:
17486 type = init_boolean_type (objfile, bits, 1, name);
17487 break;
17488 case DW_ATE_complex_float:
17489 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17490 type = init_complex_type (objfile, name, type);
17491 break;
17492 case DW_ATE_decimal_float:
17493 type = init_decfloat_type (objfile, bits, name);
17494 break;
17495 case DW_ATE_float:
17496 type = dwarf2_init_float_type (objfile, bits, name, name);
17497 break;
17498 case DW_ATE_signed:
17499 type = init_integer_type (objfile, bits, 0, name);
17500 break;
17501 case DW_ATE_unsigned:
17502 if (cu->language == language_fortran
17503 && name
17504 && startswith (name, "character("))
17505 type = init_character_type (objfile, bits, 1, name);
17506 else
17507 type = init_integer_type (objfile, bits, 1, name);
17508 break;
17509 case DW_ATE_signed_char:
17510 if (cu->language == language_ada || cu->language == language_m2
17511 || cu->language == language_pascal
17512 || cu->language == language_fortran)
17513 type = init_character_type (objfile, bits, 0, name);
17514 else
17515 type = init_integer_type (objfile, bits, 0, name);
17516 break;
17517 case DW_ATE_unsigned_char:
17518 if (cu->language == language_ada || cu->language == language_m2
17519 || cu->language == language_pascal
17520 || cu->language == language_fortran
17521 || cu->language == language_rust)
17522 type = init_character_type (objfile, bits, 1, name);
17523 else
17524 type = init_integer_type (objfile, bits, 1, name);
17525 break;
17526 case DW_ATE_UTF:
17527 {
17528 gdbarch *arch = get_objfile_arch (objfile);
17529
17530 if (bits == 16)
17531 type = builtin_type (arch)->builtin_char16;
17532 else if (bits == 32)
17533 type = builtin_type (arch)->builtin_char32;
17534 else
17535 {
17536 complaint (&symfile_complaints,
17537 _("unsupported DW_ATE_UTF bit size: '%d'"),
17538 bits);
17539 type = init_integer_type (objfile, bits, 1, name);
17540 }
17541 return set_die_type (die, type, cu);
17542 }
17543 break;
17544
17545 default:
17546 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
17547 dwarf_type_encoding_name (encoding));
17548 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17549 break;
17550 }
17551
17552 if (name && strcmp (name, "char") == 0)
17553 TYPE_NOSIGN (type) = 1;
17554
17555 return set_die_type (die, type, cu);
17556}
17557
17558/* Parse dwarf attribute if it's a block, reference or constant and put the
17559 resulting value of the attribute into struct bound_prop.
17560 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17561
17562static int
17563attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17564 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17565{
17566 struct dwarf2_property_baton *baton;
17567 struct obstack *obstack
17568 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17569
17570 if (attr == NULL || prop == NULL)
17571 return 0;
17572
17573 if (attr_form_is_block (attr))
17574 {
17575 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17576 baton->referenced_type = NULL;
17577 baton->locexpr.per_cu = cu->per_cu;
17578 baton->locexpr.size = DW_BLOCK (attr)->size;
17579 baton->locexpr.data = DW_BLOCK (attr)->data;
17580 prop->data.baton = baton;
17581 prop->kind = PROP_LOCEXPR;
17582 gdb_assert (prop->data.baton != NULL);
17583 }
17584 else if (attr_form_is_ref (attr))
17585 {
17586 struct dwarf2_cu *target_cu = cu;
17587 struct die_info *target_die;
17588 struct attribute *target_attr;
17589
17590 target_die = follow_die_ref (die, attr, &target_cu);
17591 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17592 if (target_attr == NULL)
17593 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17594 target_cu);
17595 if (target_attr == NULL)
17596 return 0;
17597
17598 switch (target_attr->name)
17599 {
17600 case DW_AT_location:
17601 if (attr_form_is_section_offset (target_attr))
17602 {
17603 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17604 baton->referenced_type = die_type (target_die, target_cu);
17605 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17606 prop->data.baton = baton;
17607 prop->kind = PROP_LOCLIST;
17608 gdb_assert (prop->data.baton != NULL);
17609 }
17610 else if (attr_form_is_block (target_attr))
17611 {
17612 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17613 baton->referenced_type = die_type (target_die, target_cu);
17614 baton->locexpr.per_cu = cu->per_cu;
17615 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17616 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17617 prop->data.baton = baton;
17618 prop->kind = PROP_LOCEXPR;
17619 gdb_assert (prop->data.baton != NULL);
17620 }
17621 else
17622 {
17623 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17624 "dynamic property");
17625 return 0;
17626 }
17627 break;
17628 case DW_AT_data_member_location:
17629 {
17630 LONGEST offset;
17631
17632 if (!handle_data_member_location (target_die, target_cu,
17633 &offset))
17634 return 0;
17635
17636 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17637 baton->referenced_type = read_type_die (target_die->parent,
17638 target_cu);
17639 baton->offset_info.offset = offset;
17640 baton->offset_info.type = die_type (target_die, target_cu);
17641 prop->data.baton = baton;
17642 prop->kind = PROP_ADDR_OFFSET;
17643 break;
17644 }
17645 }
17646 }
17647 else if (attr_form_is_constant (attr))
17648 {
17649 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17650 prop->kind = PROP_CONST;
17651 }
17652 else
17653 {
17654 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17655 dwarf2_name (die, cu));
17656 return 0;
17657 }
17658
17659 return 1;
17660}
17661
17662/* Read the given DW_AT_subrange DIE. */
17663
17664static struct type *
17665read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17666{
17667 struct type *base_type, *orig_base_type;
17668 struct type *range_type;
17669 struct attribute *attr;
17670 struct dynamic_prop low, high;
17671 int low_default_is_valid;
17672 int high_bound_is_count = 0;
17673 const char *name;
17674 LONGEST negative_mask;
17675
17676 orig_base_type = die_type (die, cu);
17677 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17678 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17679 creating the range type, but we use the result of check_typedef
17680 when examining properties of the type. */
17681 base_type = check_typedef (orig_base_type);
17682
17683 /* The die_type call above may have already set the type for this DIE. */
17684 range_type = get_die_type (die, cu);
17685 if (range_type)
17686 return range_type;
17687
17688 low.kind = PROP_CONST;
17689 high.kind = PROP_CONST;
17690 high.data.const_val = 0;
17691
17692 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17693 omitting DW_AT_lower_bound. */
17694 switch (cu->language)
17695 {
17696 case language_c:
17697 case language_cplus:
17698 low.data.const_val = 0;
17699 low_default_is_valid = 1;
17700 break;
17701 case language_fortran:
17702 low.data.const_val = 1;
17703 low_default_is_valid = 1;
17704 break;
17705 case language_d:
17706 case language_objc:
17707 case language_rust:
17708 low.data.const_val = 0;
17709 low_default_is_valid = (cu->header.version >= 4);
17710 break;
17711 case language_ada:
17712 case language_m2:
17713 case language_pascal:
17714 low.data.const_val = 1;
17715 low_default_is_valid = (cu->header.version >= 4);
17716 break;
17717 default:
17718 low.data.const_val = 0;
17719 low_default_is_valid = 0;
17720 break;
17721 }
17722
17723 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17724 if (attr)
17725 attr_to_dynamic_prop (attr, die, cu, &low);
17726 else if (!low_default_is_valid)
17727 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
17728 "- DIE at %s [in module %s]"),
17729 sect_offset_str (die->sect_off),
17730 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17731
17732 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17733 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17734 {
17735 attr = dwarf2_attr (die, DW_AT_count, cu);
17736 if (attr_to_dynamic_prop (attr, die, cu, &high))
17737 {
17738 /* If bounds are constant do the final calculation here. */
17739 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17740 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17741 else
17742 high_bound_is_count = 1;
17743 }
17744 }
17745
17746 /* Dwarf-2 specifications explicitly allows to create subrange types
17747 without specifying a base type.
17748 In that case, the base type must be set to the type of
17749 the lower bound, upper bound or count, in that order, if any of these
17750 three attributes references an object that has a type.
17751 If no base type is found, the Dwarf-2 specifications say that
17752 a signed integer type of size equal to the size of an address should
17753 be used.
17754 For the following C code: `extern char gdb_int [];'
17755 GCC produces an empty range DIE.
17756 FIXME: muller/2010-05-28: Possible references to object for low bound,
17757 high bound or count are not yet handled by this code. */
17758 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17759 {
17760 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17761 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17762 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17763 struct type *int_type = objfile_type (objfile)->builtin_int;
17764
17765 /* Test "int", "long int", and "long long int" objfile types,
17766 and select the first one having a size above or equal to the
17767 architecture address size. */
17768 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17769 base_type = int_type;
17770 else
17771 {
17772 int_type = objfile_type (objfile)->builtin_long;
17773 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17774 base_type = int_type;
17775 else
17776 {
17777 int_type = objfile_type (objfile)->builtin_long_long;
17778 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17779 base_type = int_type;
17780 }
17781 }
17782 }
17783
17784 /* Normally, the DWARF producers are expected to use a signed
17785 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17786 But this is unfortunately not always the case, as witnessed
17787 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17788 is used instead. To work around that ambiguity, we treat
17789 the bounds as signed, and thus sign-extend their values, when
17790 the base type is signed. */
17791 negative_mask =
17792 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17793 if (low.kind == PROP_CONST
17794 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17795 low.data.const_val |= negative_mask;
17796 if (high.kind == PROP_CONST
17797 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17798 high.data.const_val |= negative_mask;
17799
17800 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17801
17802 if (high_bound_is_count)
17803 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17804
17805 /* Ada expects an empty array on no boundary attributes. */
17806 if (attr == NULL && cu->language != language_ada)
17807 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17808
17809 name = dwarf2_name (die, cu);
17810 if (name)
17811 TYPE_NAME (range_type) = name;
17812
17813 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17814 if (attr)
17815 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17816
17817 set_die_type (die, range_type, cu);
17818
17819 /* set_die_type should be already done. */
17820 set_descriptive_type (range_type, die, cu);
17821
17822 return range_type;
17823}
17824
17825static struct type *
17826read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17827{
17828 struct type *type;
17829
17830 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17831 NULL);
17832 TYPE_NAME (type) = dwarf2_name (die, cu);
17833
17834 /* In Ada, an unspecified type is typically used when the description
17835 of the type is defered to a different unit. When encountering
17836 such a type, we treat it as a stub, and try to resolve it later on,
17837 when needed. */
17838 if (cu->language == language_ada)
17839 TYPE_STUB (type) = 1;
17840
17841 return set_die_type (die, type, cu);
17842}
17843
17844/* Read a single die and all its descendents. Set the die's sibling
17845 field to NULL; set other fields in the die correctly, and set all
17846 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17847 location of the info_ptr after reading all of those dies. PARENT
17848 is the parent of the die in question. */
17849
17850static struct die_info *
17851read_die_and_children (const struct die_reader_specs *reader,
17852 const gdb_byte *info_ptr,
17853 const gdb_byte **new_info_ptr,
17854 struct die_info *parent)
17855{
17856 struct die_info *die;
17857 const gdb_byte *cur_ptr;
17858 int has_children;
17859
17860 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17861 if (die == NULL)
17862 {
17863 *new_info_ptr = cur_ptr;
17864 return NULL;
17865 }
17866 store_in_ref_table (die, reader->cu);
17867
17868 if (has_children)
17869 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17870 else
17871 {
17872 die->child = NULL;
17873 *new_info_ptr = cur_ptr;
17874 }
17875
17876 die->sibling = NULL;
17877 die->parent = parent;
17878 return die;
17879}
17880
17881/* Read a die, all of its descendents, and all of its siblings; set
17882 all of the fields of all of the dies correctly. Arguments are as
17883 in read_die_and_children. */
17884
17885static struct die_info *
17886read_die_and_siblings_1 (const struct die_reader_specs *reader,
17887 const gdb_byte *info_ptr,
17888 const gdb_byte **new_info_ptr,
17889 struct die_info *parent)
17890{
17891 struct die_info *first_die, *last_sibling;
17892 const gdb_byte *cur_ptr;
17893
17894 cur_ptr = info_ptr;
17895 first_die = last_sibling = NULL;
17896
17897 while (1)
17898 {
17899 struct die_info *die
17900 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17901
17902 if (die == NULL)
17903 {
17904 *new_info_ptr = cur_ptr;
17905 return first_die;
17906 }
17907
17908 if (!first_die)
17909 first_die = die;
17910 else
17911 last_sibling->sibling = die;
17912
17913 last_sibling = die;
17914 }
17915}
17916
17917/* Read a die, all of its descendents, and all of its siblings; set
17918 all of the fields of all of the dies correctly. Arguments are as
17919 in read_die_and_children.
17920 This the main entry point for reading a DIE and all its children. */
17921
17922static struct die_info *
17923read_die_and_siblings (const struct die_reader_specs *reader,
17924 const gdb_byte *info_ptr,
17925 const gdb_byte **new_info_ptr,
17926 struct die_info *parent)
17927{
17928 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17929 new_info_ptr, parent);
17930
17931 if (dwarf_die_debug)
17932 {
17933 fprintf_unfiltered (gdb_stdlog,
17934 "Read die from %s@0x%x of %s:\n",
17935 get_section_name (reader->die_section),
17936 (unsigned) (info_ptr - reader->die_section->buffer),
17937 bfd_get_filename (reader->abfd));
17938 dump_die (die, dwarf_die_debug);
17939 }
17940
17941 return die;
17942}
17943
17944/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17945 attributes.
17946 The caller is responsible for filling in the extra attributes
17947 and updating (*DIEP)->num_attrs.
17948 Set DIEP to point to a newly allocated die with its information,
17949 except for its child, sibling, and parent fields.
17950 Set HAS_CHILDREN to tell whether the die has children or not. */
17951
17952static const gdb_byte *
17953read_full_die_1 (const struct die_reader_specs *reader,
17954 struct die_info **diep, const gdb_byte *info_ptr,
17955 int *has_children, int num_extra_attrs)
17956{
17957 unsigned int abbrev_number, bytes_read, i;
17958 struct abbrev_info *abbrev;
17959 struct die_info *die;
17960 struct dwarf2_cu *cu = reader->cu;
17961 bfd *abfd = reader->abfd;
17962
17963 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17964 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17965 info_ptr += bytes_read;
17966 if (!abbrev_number)
17967 {
17968 *diep = NULL;
17969 *has_children = 0;
17970 return info_ptr;
17971 }
17972
17973 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17974 if (!abbrev)
17975 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17976 abbrev_number,
17977 bfd_get_filename (abfd));
17978
17979 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17980 die->sect_off = sect_off;
17981 die->tag = abbrev->tag;
17982 die->abbrev = abbrev_number;
17983
17984 /* Make the result usable.
17985 The caller needs to update num_attrs after adding the extra
17986 attributes. */
17987 die->num_attrs = abbrev->num_attrs;
17988
17989 for (i = 0; i < abbrev->num_attrs; ++i)
17990 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17991 info_ptr);
17992
17993 *diep = die;
17994 *has_children = abbrev->has_children;
17995 return info_ptr;
17996}
17997
17998/* Read a die and all its attributes.
17999 Set DIEP to point to a newly allocated die with its information,
18000 except for its child, sibling, and parent fields.
18001 Set HAS_CHILDREN to tell whether the die has children or not. */
18002
18003static const gdb_byte *
18004read_full_die (const struct die_reader_specs *reader,
18005 struct die_info **diep, const gdb_byte *info_ptr,
18006 int *has_children)
18007{
18008 const gdb_byte *result;
18009
18010 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18011
18012 if (dwarf_die_debug)
18013 {
18014 fprintf_unfiltered (gdb_stdlog,
18015 "Read die from %s@0x%x of %s:\n",
18016 get_section_name (reader->die_section),
18017 (unsigned) (info_ptr - reader->die_section->buffer),
18018 bfd_get_filename (reader->abfd));
18019 dump_die (*diep, dwarf_die_debug);
18020 }
18021
18022 return result;
18023}
18024\f
18025/* Abbreviation tables.
18026
18027 In DWARF version 2, the description of the debugging information is
18028 stored in a separate .debug_abbrev section. Before we read any
18029 dies from a section we read in all abbreviations and install them
18030 in a hash table. */
18031
18032/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18033
18034struct abbrev_info *
18035abbrev_table::alloc_abbrev ()
18036{
18037 struct abbrev_info *abbrev;
18038
18039 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18040 memset (abbrev, 0, sizeof (struct abbrev_info));
18041
18042 return abbrev;
18043}
18044
18045/* Add an abbreviation to the table. */
18046
18047void
18048abbrev_table::add_abbrev (unsigned int abbrev_number,
18049 struct abbrev_info *abbrev)
18050{
18051 unsigned int hash_number;
18052
18053 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18054 abbrev->next = m_abbrevs[hash_number];
18055 m_abbrevs[hash_number] = abbrev;
18056}
18057
18058/* Look up an abbrev in the table.
18059 Returns NULL if the abbrev is not found. */
18060
18061struct abbrev_info *
18062abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18063{
18064 unsigned int hash_number;
18065 struct abbrev_info *abbrev;
18066
18067 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18068 abbrev = m_abbrevs[hash_number];
18069
18070 while (abbrev)
18071 {
18072 if (abbrev->number == abbrev_number)
18073 return abbrev;
18074 abbrev = abbrev->next;
18075 }
18076 return NULL;
18077}
18078
18079/* Read in an abbrev table. */
18080
18081static abbrev_table_up
18082abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18083 struct dwarf2_section_info *section,
18084 sect_offset sect_off)
18085{
18086 struct objfile *objfile = dwarf2_per_objfile->objfile;
18087 bfd *abfd = get_section_bfd_owner (section);
18088 const gdb_byte *abbrev_ptr;
18089 struct abbrev_info *cur_abbrev;
18090 unsigned int abbrev_number, bytes_read, abbrev_name;
18091 unsigned int abbrev_form;
18092 struct attr_abbrev *cur_attrs;
18093 unsigned int allocated_attrs;
18094
18095 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18096
18097 dwarf2_read_section (objfile, section);
18098 abbrev_ptr = section->buffer + to_underlying (sect_off);
18099 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18100 abbrev_ptr += bytes_read;
18101
18102 allocated_attrs = ATTR_ALLOC_CHUNK;
18103 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18104
18105 /* Loop until we reach an abbrev number of 0. */
18106 while (abbrev_number)
18107 {
18108 cur_abbrev = abbrev_table->alloc_abbrev ();
18109
18110 /* read in abbrev header */
18111 cur_abbrev->number = abbrev_number;
18112 cur_abbrev->tag
18113 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18114 abbrev_ptr += bytes_read;
18115 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18116 abbrev_ptr += 1;
18117
18118 /* now read in declarations */
18119 for (;;)
18120 {
18121 LONGEST implicit_const;
18122
18123 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18124 abbrev_ptr += bytes_read;
18125 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18126 abbrev_ptr += bytes_read;
18127 if (abbrev_form == DW_FORM_implicit_const)
18128 {
18129 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18130 &bytes_read);
18131 abbrev_ptr += bytes_read;
18132 }
18133 else
18134 {
18135 /* Initialize it due to a false compiler warning. */
18136 implicit_const = -1;
18137 }
18138
18139 if (abbrev_name == 0)
18140 break;
18141
18142 if (cur_abbrev->num_attrs == allocated_attrs)
18143 {
18144 allocated_attrs += ATTR_ALLOC_CHUNK;
18145 cur_attrs
18146 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18147 }
18148
18149 cur_attrs[cur_abbrev->num_attrs].name
18150 = (enum dwarf_attribute) abbrev_name;
18151 cur_attrs[cur_abbrev->num_attrs].form
18152 = (enum dwarf_form) abbrev_form;
18153 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18154 ++cur_abbrev->num_attrs;
18155 }
18156
18157 cur_abbrev->attrs =
18158 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18159 cur_abbrev->num_attrs);
18160 memcpy (cur_abbrev->attrs, cur_attrs,
18161 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18162
18163 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18164
18165 /* Get next abbreviation.
18166 Under Irix6 the abbreviations for a compilation unit are not
18167 always properly terminated with an abbrev number of 0.
18168 Exit loop if we encounter an abbreviation which we have
18169 already read (which means we are about to read the abbreviations
18170 for the next compile unit) or if the end of the abbreviation
18171 table is reached. */
18172 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18173 break;
18174 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18175 abbrev_ptr += bytes_read;
18176 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18177 break;
18178 }
18179
18180 xfree (cur_attrs);
18181 return abbrev_table;
18182}
18183
18184/* Returns nonzero if TAG represents a type that we might generate a partial
18185 symbol for. */
18186
18187static int
18188is_type_tag_for_partial (int tag)
18189{
18190 switch (tag)
18191 {
18192#if 0
18193 /* Some types that would be reasonable to generate partial symbols for,
18194 that we don't at present. */
18195 case DW_TAG_array_type:
18196 case DW_TAG_file_type:
18197 case DW_TAG_ptr_to_member_type:
18198 case DW_TAG_set_type:
18199 case DW_TAG_string_type:
18200 case DW_TAG_subroutine_type:
18201#endif
18202 case DW_TAG_base_type:
18203 case DW_TAG_class_type:
18204 case DW_TAG_interface_type:
18205 case DW_TAG_enumeration_type:
18206 case DW_TAG_structure_type:
18207 case DW_TAG_subrange_type:
18208 case DW_TAG_typedef:
18209 case DW_TAG_union_type:
18210 return 1;
18211 default:
18212 return 0;
18213 }
18214}
18215
18216/* Load all DIEs that are interesting for partial symbols into memory. */
18217
18218static struct partial_die_info *
18219load_partial_dies (const struct die_reader_specs *reader,
18220 const gdb_byte *info_ptr, int building_psymtab)
18221{
18222 struct dwarf2_cu *cu = reader->cu;
18223 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18224 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18225 unsigned int bytes_read;
18226 unsigned int load_all = 0;
18227 int nesting_level = 1;
18228
18229 parent_die = NULL;
18230 last_die = NULL;
18231
18232 gdb_assert (cu->per_cu != NULL);
18233 if (cu->per_cu->load_all_dies)
18234 load_all = 1;
18235
18236 cu->partial_dies
18237 = htab_create_alloc_ex (cu->header.length / 12,
18238 partial_die_hash,
18239 partial_die_eq,
18240 NULL,
18241 &cu->comp_unit_obstack,
18242 hashtab_obstack_allocate,
18243 dummy_obstack_deallocate);
18244
18245 while (1)
18246 {
18247 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18248
18249 /* A NULL abbrev means the end of a series of children. */
18250 if (abbrev == NULL)
18251 {
18252 if (--nesting_level == 0)
18253 return first_die;
18254
18255 info_ptr += bytes_read;
18256 last_die = parent_die;
18257 parent_die = parent_die->die_parent;
18258 continue;
18259 }
18260
18261 /* Check for template arguments. We never save these; if
18262 they're seen, we just mark the parent, and go on our way. */
18263 if (parent_die != NULL
18264 && cu->language == language_cplus
18265 && (abbrev->tag == DW_TAG_template_type_param
18266 || abbrev->tag == DW_TAG_template_value_param))
18267 {
18268 parent_die->has_template_arguments = 1;
18269
18270 if (!load_all)
18271 {
18272 /* We don't need a partial DIE for the template argument. */
18273 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18274 continue;
18275 }
18276 }
18277
18278 /* We only recurse into c++ subprograms looking for template arguments.
18279 Skip their other children. */
18280 if (!load_all
18281 && cu->language == language_cplus
18282 && parent_die != NULL
18283 && parent_die->tag == DW_TAG_subprogram)
18284 {
18285 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18286 continue;
18287 }
18288
18289 /* Check whether this DIE is interesting enough to save. Normally
18290 we would not be interested in members here, but there may be
18291 later variables referencing them via DW_AT_specification (for
18292 static members). */
18293 if (!load_all
18294 && !is_type_tag_for_partial (abbrev->tag)
18295 && abbrev->tag != DW_TAG_constant
18296 && abbrev->tag != DW_TAG_enumerator
18297 && abbrev->tag != DW_TAG_subprogram
18298 && abbrev->tag != DW_TAG_inlined_subroutine
18299 && abbrev->tag != DW_TAG_lexical_block
18300 && abbrev->tag != DW_TAG_variable
18301 && abbrev->tag != DW_TAG_namespace
18302 && abbrev->tag != DW_TAG_module
18303 && abbrev->tag != DW_TAG_member
18304 && abbrev->tag != DW_TAG_imported_unit
18305 && abbrev->tag != DW_TAG_imported_declaration)
18306 {
18307 /* Otherwise we skip to the next sibling, if any. */
18308 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18309 continue;
18310 }
18311
18312 struct partial_die_info pdi;
18313
18314 memset (&pdi, 0, sizeof (pdi));
18315 info_ptr = read_partial_die (reader, &pdi, *abbrev, bytes_read,
18316 info_ptr);
18317
18318 /* This two-pass algorithm for processing partial symbols has a
18319 high cost in cache pressure. Thus, handle some simple cases
18320 here which cover the majority of C partial symbols. DIEs
18321 which neither have specification tags in them, nor could have
18322 specification tags elsewhere pointing at them, can simply be
18323 processed and discarded.
18324
18325 This segment is also optional; scan_partial_symbols and
18326 add_partial_symbol will handle these DIEs if we chain
18327 them in normally. When compilers which do not emit large
18328 quantities of duplicate debug information are more common,
18329 this code can probably be removed. */
18330
18331 /* Any complete simple types at the top level (pretty much all
18332 of them, for a language without namespaces), can be processed
18333 directly. */
18334 if (parent_die == NULL
18335 && pdi.has_specification == 0
18336 && pdi.is_declaration == 0
18337 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18338 || pdi.tag == DW_TAG_base_type
18339 || pdi.tag == DW_TAG_subrange_type))
18340 {
18341 if (building_psymtab && pdi.name != NULL)
18342 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18343 VAR_DOMAIN, LOC_TYPEDEF,
18344 &objfile->static_psymbols,
18345 0, cu->language, objfile);
18346 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18347 continue;
18348 }
18349
18350 /* The exception for DW_TAG_typedef with has_children above is
18351 a workaround of GCC PR debug/47510. In the case of this complaint
18352 type_name_no_tag_or_error will error on such types later.
18353
18354 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18355 it could not find the child DIEs referenced later, this is checked
18356 above. In correct DWARF DW_TAG_typedef should have no children. */
18357
18358 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18359 complaint (&symfile_complaints,
18360 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18361 "- DIE at %s [in module %s]"),
18362 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18363
18364 /* If we're at the second level, and we're an enumerator, and
18365 our parent has no specification (meaning possibly lives in a
18366 namespace elsewhere), then we can add the partial symbol now
18367 instead of queueing it. */
18368 if (pdi.tag == DW_TAG_enumerator
18369 && parent_die != NULL
18370 && parent_die->die_parent == NULL
18371 && parent_die->tag == DW_TAG_enumeration_type
18372 && parent_die->has_specification == 0)
18373 {
18374 if (pdi.name == NULL)
18375 complaint (&symfile_complaints,
18376 _("malformed enumerator DIE ignored"));
18377 else if (building_psymtab)
18378 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18379 VAR_DOMAIN, LOC_CONST,
18380 cu->language == language_cplus
18381 ? &objfile->global_psymbols
18382 : &objfile->static_psymbols,
18383 0, cu->language, objfile);
18384
18385 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18386 continue;
18387 }
18388
18389 struct partial_die_info *part_die
18390 = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
18391
18392 memcpy (part_die, &pdi, sizeof (pdi));
18393 /* We'll save this DIE so link it in. */
18394 part_die->die_parent = parent_die;
18395 part_die->die_sibling = NULL;
18396 part_die->die_child = NULL;
18397
18398 if (last_die && last_die == parent_die)
18399 last_die->die_child = part_die;
18400 else if (last_die)
18401 last_die->die_sibling = part_die;
18402
18403 last_die = part_die;
18404
18405 if (first_die == NULL)
18406 first_die = part_die;
18407
18408 /* Maybe add the DIE to the hash table. Not all DIEs that we
18409 find interesting need to be in the hash table, because we
18410 also have the parent/sibling/child chains; only those that we
18411 might refer to by offset later during partial symbol reading.
18412
18413 For now this means things that might have be the target of a
18414 DW_AT_specification, DW_AT_abstract_origin, or
18415 DW_AT_extension. DW_AT_extension will refer only to
18416 namespaces; DW_AT_abstract_origin refers to functions (and
18417 many things under the function DIE, but we do not recurse
18418 into function DIEs during partial symbol reading) and
18419 possibly variables as well; DW_AT_specification refers to
18420 declarations. Declarations ought to have the DW_AT_declaration
18421 flag. It happens that GCC forgets to put it in sometimes, but
18422 only for functions, not for types.
18423
18424 Adding more things than necessary to the hash table is harmless
18425 except for the performance cost. Adding too few will result in
18426 wasted time in find_partial_die, when we reread the compilation
18427 unit with load_all_dies set. */
18428
18429 if (load_all
18430 || abbrev->tag == DW_TAG_constant
18431 || abbrev->tag == DW_TAG_subprogram
18432 || abbrev->tag == DW_TAG_variable
18433 || abbrev->tag == DW_TAG_namespace
18434 || part_die->is_declaration)
18435 {
18436 void **slot;
18437
18438 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18439 to_underlying (part_die->sect_off),
18440 INSERT);
18441 *slot = part_die;
18442 }
18443
18444 /* For some DIEs we want to follow their children (if any). For C
18445 we have no reason to follow the children of structures; for other
18446 languages we have to, so that we can get at method physnames
18447 to infer fully qualified class names, for DW_AT_specification,
18448 and for C++ template arguments. For C++, we also look one level
18449 inside functions to find template arguments (if the name of the
18450 function does not already contain the template arguments).
18451
18452 For Ada, we need to scan the children of subprograms and lexical
18453 blocks as well because Ada allows the definition of nested
18454 entities that could be interesting for the debugger, such as
18455 nested subprograms for instance. */
18456 if (last_die->has_children
18457 && (load_all
18458 || last_die->tag == DW_TAG_namespace
18459 || last_die->tag == DW_TAG_module
18460 || last_die->tag == DW_TAG_enumeration_type
18461 || (cu->language == language_cplus
18462 && last_die->tag == DW_TAG_subprogram
18463 && (last_die->name == NULL
18464 || strchr (last_die->name, '<') == NULL))
18465 || (cu->language != language_c
18466 && (last_die->tag == DW_TAG_class_type
18467 || last_die->tag == DW_TAG_interface_type
18468 || last_die->tag == DW_TAG_structure_type
18469 || last_die->tag == DW_TAG_union_type))
18470 || (cu->language == language_ada
18471 && (last_die->tag == DW_TAG_subprogram
18472 || last_die->tag == DW_TAG_lexical_block))))
18473 {
18474 nesting_level++;
18475 parent_die = last_die;
18476 continue;
18477 }
18478
18479 /* Otherwise we skip to the next sibling, if any. */
18480 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18481
18482 /* Back to the top, do it again. */
18483 }
18484}
18485
18486/* Read a minimal amount of information into the minimal die structure. */
18487
18488static const gdb_byte *
18489read_partial_die (const struct die_reader_specs *reader,
18490 struct partial_die_info *part_die,
18491 const struct abbrev_info &abbrev, unsigned int abbrev_len,
18492 const gdb_byte *info_ptr)
18493{
18494 struct dwarf2_cu *cu = reader->cu;
18495 struct dwarf2_per_objfile *dwarf2_per_objfile
18496 = cu->per_cu->dwarf2_per_objfile;
18497 struct objfile *objfile = dwarf2_per_objfile->objfile;
18498 const gdb_byte *buffer = reader->buffer;
18499 unsigned int i;
18500 struct attribute attr;
18501 int has_low_pc_attr = 0;
18502 int has_high_pc_attr = 0;
18503 int high_pc_relative = 0;
18504
18505 memset (part_die, 0, sizeof (struct partial_die_info));
18506
18507 part_die->sect_off = (sect_offset) (info_ptr - buffer);
18508
18509 info_ptr += abbrev_len;
18510
18511 part_die->tag = abbrev.tag;
18512 part_die->has_children = abbrev.has_children;
18513
18514 for (i = 0; i < abbrev.num_attrs; ++i)
18515 {
18516 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18517
18518 /* Store the data if it is of an attribute we want to keep in a
18519 partial symbol table. */
18520 switch (attr.name)
18521 {
18522 case DW_AT_name:
18523 switch (part_die->tag)
18524 {
18525 case DW_TAG_compile_unit:
18526 case DW_TAG_partial_unit:
18527 case DW_TAG_type_unit:
18528 /* Compilation units have a DW_AT_name that is a filename, not
18529 a source language identifier. */
18530 case DW_TAG_enumeration_type:
18531 case DW_TAG_enumerator:
18532 /* These tags always have simple identifiers already; no need
18533 to canonicalize them. */
18534 part_die->name = DW_STRING (&attr);
18535 break;
18536 default:
18537 part_die->name
18538 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18539 &objfile->per_bfd->storage_obstack);
18540 break;
18541 }
18542 break;
18543 case DW_AT_linkage_name:
18544 case DW_AT_MIPS_linkage_name:
18545 /* Note that both forms of linkage name might appear. We
18546 assume they will be the same, and we only store the last
18547 one we see. */
18548 if (cu->language == language_ada)
18549 part_die->name = DW_STRING (&attr);
18550 part_die->linkage_name = DW_STRING (&attr);
18551 break;
18552 case DW_AT_low_pc:
18553 has_low_pc_attr = 1;
18554 part_die->lowpc = attr_value_as_address (&attr);
18555 break;
18556 case DW_AT_high_pc:
18557 has_high_pc_attr = 1;
18558 part_die->highpc = attr_value_as_address (&attr);
18559 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18560 high_pc_relative = 1;
18561 break;
18562 case DW_AT_location:
18563 /* Support the .debug_loc offsets. */
18564 if (attr_form_is_block (&attr))
18565 {
18566 part_die->d.locdesc = DW_BLOCK (&attr);
18567 }
18568 else if (attr_form_is_section_offset (&attr))
18569 {
18570 dwarf2_complex_location_expr_complaint ();
18571 }
18572 else
18573 {
18574 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18575 "partial symbol information");
18576 }
18577 break;
18578 case DW_AT_external:
18579 part_die->is_external = DW_UNSND (&attr);
18580 break;
18581 case DW_AT_declaration:
18582 part_die->is_declaration = DW_UNSND (&attr);
18583 break;
18584 case DW_AT_type:
18585 part_die->has_type = 1;
18586 break;
18587 case DW_AT_abstract_origin:
18588 case DW_AT_specification:
18589 case DW_AT_extension:
18590 part_die->has_specification = 1;
18591 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
18592 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18593 || cu->per_cu->is_dwz);
18594 break;
18595 case DW_AT_sibling:
18596 /* Ignore absolute siblings, they might point outside of
18597 the current compile unit. */
18598 if (attr.form == DW_FORM_ref_addr)
18599 complaint (&symfile_complaints,
18600 _("ignoring absolute DW_AT_sibling"));
18601 else
18602 {
18603 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18604 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18605
18606 if (sibling_ptr < info_ptr)
18607 complaint (&symfile_complaints,
18608 _("DW_AT_sibling points backwards"));
18609 else if (sibling_ptr > reader->buffer_end)
18610 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18611 else
18612 part_die->sibling = sibling_ptr;
18613 }
18614 break;
18615 case DW_AT_byte_size:
18616 part_die->has_byte_size = 1;
18617 break;
18618 case DW_AT_const_value:
18619 part_die->has_const_value = 1;
18620 break;
18621 case DW_AT_calling_convention:
18622 /* DWARF doesn't provide a way to identify a program's source-level
18623 entry point. DW_AT_calling_convention attributes are only meant
18624 to describe functions' calling conventions.
18625
18626 However, because it's a necessary piece of information in
18627 Fortran, and before DWARF 4 DW_CC_program was the only
18628 piece of debugging information whose definition refers to
18629 a 'main program' at all, several compilers marked Fortran
18630 main programs with DW_CC_program --- even when those
18631 functions use the standard calling conventions.
18632
18633 Although DWARF now specifies a way to provide this
18634 information, we support this practice for backward
18635 compatibility. */
18636 if (DW_UNSND (&attr) == DW_CC_program
18637 && cu->language == language_fortran)
18638 part_die->main_subprogram = 1;
18639 break;
18640 case DW_AT_inline:
18641 if (DW_UNSND (&attr) == DW_INL_inlined
18642 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18643 part_die->may_be_inlined = 1;
18644 break;
18645
18646 case DW_AT_import:
18647 if (part_die->tag == DW_TAG_imported_unit)
18648 {
18649 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
18650 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18651 || cu->per_cu->is_dwz);
18652 }
18653 break;
18654
18655 case DW_AT_main_subprogram:
18656 part_die->main_subprogram = DW_UNSND (&attr);
18657 break;
18658
18659 default:
18660 break;
18661 }
18662 }
18663
18664 if (high_pc_relative)
18665 part_die->highpc += part_die->lowpc;
18666
18667 if (has_low_pc_attr && has_high_pc_attr)
18668 {
18669 /* When using the GNU linker, .gnu.linkonce. sections are used to
18670 eliminate duplicate copies of functions and vtables and such.
18671 The linker will arbitrarily choose one and discard the others.
18672 The AT_*_pc values for such functions refer to local labels in
18673 these sections. If the section from that file was discarded, the
18674 labels are not in the output, so the relocs get a value of 0.
18675 If this is a discarded function, mark the pc bounds as invalid,
18676 so that GDB will ignore it. */
18677 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18678 {
18679 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18680
18681 complaint (&symfile_complaints,
18682 _("DW_AT_low_pc %s is zero "
18683 "for DIE at %s [in module %s]"),
18684 paddress (gdbarch, part_die->lowpc),
18685 sect_offset_str (part_die->sect_off),
18686 objfile_name (objfile));
18687 }
18688 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18689 else if (part_die->lowpc >= part_die->highpc)
18690 {
18691 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18692
18693 complaint (&symfile_complaints,
18694 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18695 "for DIE at %s [in module %s]"),
18696 paddress (gdbarch, part_die->lowpc),
18697 paddress (gdbarch, part_die->highpc),
18698 sect_offset_str (part_die->sect_off),
18699 objfile_name (objfile));
18700 }
18701 else
18702 part_die->has_pc_info = 1;
18703 }
18704
18705 return info_ptr;
18706}
18707
18708/* Find a cached partial DIE at OFFSET in CU. */
18709
18710struct partial_die_info *
18711dwarf2_cu::find_partial_die (sect_offset sect_off)
18712{
18713 struct partial_die_info *lookup_die = NULL;
18714 struct partial_die_info part_die;
18715
18716 part_die.sect_off = sect_off;
18717 lookup_die = ((struct partial_die_info *)
18718 htab_find_with_hash (partial_dies, &part_die,
18719 to_underlying (sect_off)));
18720
18721 return lookup_die;
18722}
18723
18724/* Find a partial DIE at OFFSET, which may or may not be in CU,
18725 except in the case of .debug_types DIEs which do not reference
18726 outside their CU (they do however referencing other types via
18727 DW_FORM_ref_sig8). */
18728
18729static struct partial_die_info *
18730find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18731{
18732 struct dwarf2_per_objfile *dwarf2_per_objfile
18733 = cu->per_cu->dwarf2_per_objfile;
18734 struct objfile *objfile = dwarf2_per_objfile->objfile;
18735 struct dwarf2_per_cu_data *per_cu = NULL;
18736 struct partial_die_info *pd = NULL;
18737
18738 if (offset_in_dwz == cu->per_cu->is_dwz
18739 && offset_in_cu_p (&cu->header, sect_off))
18740 {
18741 pd = cu->find_partial_die (sect_off);
18742 if (pd != NULL)
18743 return pd;
18744 /* We missed recording what we needed.
18745 Load all dies and try again. */
18746 per_cu = cu->per_cu;
18747 }
18748 else
18749 {
18750 /* TUs don't reference other CUs/TUs (except via type signatures). */
18751 if (cu->per_cu->is_debug_types)
18752 {
18753 error (_("Dwarf Error: Type Unit at offset %s contains"
18754 " external reference to offset %s [in module %s].\n"),
18755 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18756 bfd_get_filename (objfile->obfd));
18757 }
18758 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18759 dwarf2_per_objfile);
18760
18761 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18762 load_partial_comp_unit (per_cu);
18763
18764 per_cu->cu->last_used = 0;
18765 pd = per_cu->cu->find_partial_die (sect_off);
18766 }
18767
18768 /* If we didn't find it, and not all dies have been loaded,
18769 load them all and try again. */
18770
18771 if (pd == NULL && per_cu->load_all_dies == 0)
18772 {
18773 per_cu->load_all_dies = 1;
18774
18775 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18776 THIS_CU->cu may already be in use. So we can't just free it and
18777 replace its DIEs with the ones we read in. Instead, we leave those
18778 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18779 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18780 set. */
18781 load_partial_comp_unit (per_cu);
18782
18783 pd = per_cu->cu->find_partial_die (sect_off);
18784 }
18785
18786 if (pd == NULL)
18787 internal_error (__FILE__, __LINE__,
18788 _("could not find partial DIE %s "
18789 "in cache [from module %s]\n"),
18790 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18791 return pd;
18792}
18793
18794/* See if we can figure out if the class lives in a namespace. We do
18795 this by looking for a member function; its demangled name will
18796 contain namespace info, if there is any. */
18797
18798static void
18799guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18800 struct dwarf2_cu *cu)
18801{
18802 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18803 what template types look like, because the demangler
18804 frequently doesn't give the same name as the debug info. We
18805 could fix this by only using the demangled name to get the
18806 prefix (but see comment in read_structure_type). */
18807
18808 struct partial_die_info *real_pdi;
18809 struct partial_die_info *child_pdi;
18810
18811 /* If this DIE (this DIE's specification, if any) has a parent, then
18812 we should not do this. We'll prepend the parent's fully qualified
18813 name when we create the partial symbol. */
18814
18815 real_pdi = struct_pdi;
18816 while (real_pdi->has_specification)
18817 real_pdi = find_partial_die (real_pdi->spec_offset,
18818 real_pdi->spec_is_dwz, cu);
18819
18820 if (real_pdi->die_parent != NULL)
18821 return;
18822
18823 for (child_pdi = struct_pdi->die_child;
18824 child_pdi != NULL;
18825 child_pdi = child_pdi->die_sibling)
18826 {
18827 if (child_pdi->tag == DW_TAG_subprogram
18828 && child_pdi->linkage_name != NULL)
18829 {
18830 char *actual_class_name
18831 = language_class_name_from_physname (cu->language_defn,
18832 child_pdi->linkage_name);
18833 if (actual_class_name != NULL)
18834 {
18835 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18836 struct_pdi->name
18837 = ((const char *)
18838 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18839 actual_class_name,
18840 strlen (actual_class_name)));
18841 xfree (actual_class_name);
18842 }
18843 break;
18844 }
18845 }
18846}
18847
18848/* Adjust PART_DIE before generating a symbol for it. This function
18849 may set the is_external flag or change the DIE's name. */
18850
18851static void
18852fixup_partial_die (struct partial_die_info *part_die,
18853 struct dwarf2_cu *cu)
18854{
18855 /* Once we've fixed up a die, there's no point in doing so again.
18856 This also avoids a memory leak if we were to call
18857 guess_partial_die_structure_name multiple times. */
18858 if (part_die->fixup_called)
18859 return;
18860
18861 /* If we found a reference attribute and the DIE has no name, try
18862 to find a name in the referred to DIE. */
18863
18864 if (part_die->name == NULL && part_die->has_specification)
18865 {
18866 struct partial_die_info *spec_die;
18867
18868 spec_die = find_partial_die (part_die->spec_offset,
18869 part_die->spec_is_dwz, cu);
18870
18871 fixup_partial_die (spec_die, cu);
18872
18873 if (spec_die->name)
18874 {
18875 part_die->name = spec_die->name;
18876
18877 /* Copy DW_AT_external attribute if it is set. */
18878 if (spec_die->is_external)
18879 part_die->is_external = spec_die->is_external;
18880 }
18881 }
18882
18883 /* Set default names for some unnamed DIEs. */
18884
18885 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
18886 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
18887
18888 /* If there is no parent die to provide a namespace, and there are
18889 children, see if we can determine the namespace from their linkage
18890 name. */
18891 if (cu->language == language_cplus
18892 && !VEC_empty (dwarf2_section_info_def,
18893 cu->per_cu->dwarf2_per_objfile->types)
18894 && part_die->die_parent == NULL
18895 && part_die->has_children
18896 && (part_die->tag == DW_TAG_class_type
18897 || part_die->tag == DW_TAG_structure_type
18898 || part_die->tag == DW_TAG_union_type))
18899 guess_partial_die_structure_name (part_die, cu);
18900
18901 /* GCC might emit a nameless struct or union that has a linkage
18902 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18903 if (part_die->name == NULL
18904 && (part_die->tag == DW_TAG_class_type
18905 || part_die->tag == DW_TAG_interface_type
18906 || part_die->tag == DW_TAG_structure_type
18907 || part_die->tag == DW_TAG_union_type)
18908 && part_die->linkage_name != NULL)
18909 {
18910 char *demangled;
18911
18912 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
18913 if (demangled)
18914 {
18915 const char *base;
18916
18917 /* Strip any leading namespaces/classes, keep only the base name.
18918 DW_AT_name for named DIEs does not contain the prefixes. */
18919 base = strrchr (demangled, ':');
18920 if (base && base > demangled && base[-1] == ':')
18921 base++;
18922 else
18923 base = demangled;
18924
18925 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18926 part_die->name
18927 = ((const char *)
18928 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18929 base, strlen (base)));
18930 xfree (demangled);
18931 }
18932 }
18933
18934 part_die->fixup_called = 1;
18935}
18936
18937/* Read an attribute value described by an attribute form. */
18938
18939static const gdb_byte *
18940read_attribute_value (const struct die_reader_specs *reader,
18941 struct attribute *attr, unsigned form,
18942 LONGEST implicit_const, const gdb_byte *info_ptr)
18943{
18944 struct dwarf2_cu *cu = reader->cu;
18945 struct dwarf2_per_objfile *dwarf2_per_objfile
18946 = cu->per_cu->dwarf2_per_objfile;
18947 struct objfile *objfile = dwarf2_per_objfile->objfile;
18948 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18949 bfd *abfd = reader->abfd;
18950 struct comp_unit_head *cu_header = &cu->header;
18951 unsigned int bytes_read;
18952 struct dwarf_block *blk;
18953
18954 attr->form = (enum dwarf_form) form;
18955 switch (form)
18956 {
18957 case DW_FORM_ref_addr:
18958 if (cu->header.version == 2)
18959 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18960 else
18961 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18962 &cu->header, &bytes_read);
18963 info_ptr += bytes_read;
18964 break;
18965 case DW_FORM_GNU_ref_alt:
18966 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18967 info_ptr += bytes_read;
18968 break;
18969 case DW_FORM_addr:
18970 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18971 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18972 info_ptr += bytes_read;
18973 break;
18974 case DW_FORM_block2:
18975 blk = dwarf_alloc_block (cu);
18976 blk->size = read_2_bytes (abfd, info_ptr);
18977 info_ptr += 2;
18978 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18979 info_ptr += blk->size;
18980 DW_BLOCK (attr) = blk;
18981 break;
18982 case DW_FORM_block4:
18983 blk = dwarf_alloc_block (cu);
18984 blk->size = read_4_bytes (abfd, info_ptr);
18985 info_ptr += 4;
18986 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18987 info_ptr += blk->size;
18988 DW_BLOCK (attr) = blk;
18989 break;
18990 case DW_FORM_data2:
18991 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18992 info_ptr += 2;
18993 break;
18994 case DW_FORM_data4:
18995 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18996 info_ptr += 4;
18997 break;
18998 case DW_FORM_data8:
18999 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19000 info_ptr += 8;
19001 break;
19002 case DW_FORM_data16:
19003 blk = dwarf_alloc_block (cu);
19004 blk->size = 16;
19005 blk->data = read_n_bytes (abfd, info_ptr, 16);
19006 info_ptr += 16;
19007 DW_BLOCK (attr) = blk;
19008 break;
19009 case DW_FORM_sec_offset:
19010 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19011 info_ptr += bytes_read;
19012 break;
19013 case DW_FORM_string:
19014 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19015 DW_STRING_IS_CANONICAL (attr) = 0;
19016 info_ptr += bytes_read;
19017 break;
19018 case DW_FORM_strp:
19019 if (!cu->per_cu->is_dwz)
19020 {
19021 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19022 abfd, info_ptr, cu_header,
19023 &bytes_read);
19024 DW_STRING_IS_CANONICAL (attr) = 0;
19025 info_ptr += bytes_read;
19026 break;
19027 }
19028 /* FALLTHROUGH */
19029 case DW_FORM_line_strp:
19030 if (!cu->per_cu->is_dwz)
19031 {
19032 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19033 abfd, info_ptr,
19034 cu_header, &bytes_read);
19035 DW_STRING_IS_CANONICAL (attr) = 0;
19036 info_ptr += bytes_read;
19037 break;
19038 }
19039 /* FALLTHROUGH */
19040 case DW_FORM_GNU_strp_alt:
19041 {
19042 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19043 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19044 &bytes_read);
19045
19046 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19047 dwz, str_offset);
19048 DW_STRING_IS_CANONICAL (attr) = 0;
19049 info_ptr += bytes_read;
19050 }
19051 break;
19052 case DW_FORM_exprloc:
19053 case DW_FORM_block:
19054 blk = dwarf_alloc_block (cu);
19055 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19056 info_ptr += bytes_read;
19057 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19058 info_ptr += blk->size;
19059 DW_BLOCK (attr) = blk;
19060 break;
19061 case DW_FORM_block1:
19062 blk = dwarf_alloc_block (cu);
19063 blk->size = read_1_byte (abfd, info_ptr);
19064 info_ptr += 1;
19065 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19066 info_ptr += blk->size;
19067 DW_BLOCK (attr) = blk;
19068 break;
19069 case DW_FORM_data1:
19070 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19071 info_ptr += 1;
19072 break;
19073 case DW_FORM_flag:
19074 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19075 info_ptr += 1;
19076 break;
19077 case DW_FORM_flag_present:
19078 DW_UNSND (attr) = 1;
19079 break;
19080 case DW_FORM_sdata:
19081 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19082 info_ptr += bytes_read;
19083 break;
19084 case DW_FORM_udata:
19085 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19086 info_ptr += bytes_read;
19087 break;
19088 case DW_FORM_ref1:
19089 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19090 + read_1_byte (abfd, info_ptr));
19091 info_ptr += 1;
19092 break;
19093 case DW_FORM_ref2:
19094 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19095 + read_2_bytes (abfd, info_ptr));
19096 info_ptr += 2;
19097 break;
19098 case DW_FORM_ref4:
19099 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19100 + read_4_bytes (abfd, info_ptr));
19101 info_ptr += 4;
19102 break;
19103 case DW_FORM_ref8:
19104 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19105 + read_8_bytes (abfd, info_ptr));
19106 info_ptr += 8;
19107 break;
19108 case DW_FORM_ref_sig8:
19109 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19110 info_ptr += 8;
19111 break;
19112 case DW_FORM_ref_udata:
19113 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19114 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19115 info_ptr += bytes_read;
19116 break;
19117 case DW_FORM_indirect:
19118 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19119 info_ptr += bytes_read;
19120 if (form == DW_FORM_implicit_const)
19121 {
19122 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19123 info_ptr += bytes_read;
19124 }
19125 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19126 info_ptr);
19127 break;
19128 case DW_FORM_implicit_const:
19129 DW_SND (attr) = implicit_const;
19130 break;
19131 case DW_FORM_GNU_addr_index:
19132 if (reader->dwo_file == NULL)
19133 {
19134 /* For now flag a hard error.
19135 Later we can turn this into a complaint. */
19136 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19137 dwarf_form_name (form),
19138 bfd_get_filename (abfd));
19139 }
19140 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19141 info_ptr += bytes_read;
19142 break;
19143 case DW_FORM_GNU_str_index:
19144 if (reader->dwo_file == NULL)
19145 {
19146 /* For now flag a hard error.
19147 Later we can turn this into a complaint if warranted. */
19148 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19149 dwarf_form_name (form),
19150 bfd_get_filename (abfd));
19151 }
19152 {
19153 ULONGEST str_index =
19154 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19155
19156 DW_STRING (attr) = read_str_index (reader, str_index);
19157 DW_STRING_IS_CANONICAL (attr) = 0;
19158 info_ptr += bytes_read;
19159 }
19160 break;
19161 default:
19162 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19163 dwarf_form_name (form),
19164 bfd_get_filename (abfd));
19165 }
19166
19167 /* Super hack. */
19168 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19169 attr->form = DW_FORM_GNU_ref_alt;
19170
19171 /* We have seen instances where the compiler tried to emit a byte
19172 size attribute of -1 which ended up being encoded as an unsigned
19173 0xffffffff. Although 0xffffffff is technically a valid size value,
19174 an object of this size seems pretty unlikely so we can relatively
19175 safely treat these cases as if the size attribute was invalid and
19176 treat them as zero by default. */
19177 if (attr->name == DW_AT_byte_size
19178 && form == DW_FORM_data4
19179 && DW_UNSND (attr) >= 0xffffffff)
19180 {
19181 complaint
19182 (&symfile_complaints,
19183 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19184 hex_string (DW_UNSND (attr)));
19185 DW_UNSND (attr) = 0;
19186 }
19187
19188 return info_ptr;
19189}
19190
19191/* Read an attribute described by an abbreviated attribute. */
19192
19193static const gdb_byte *
19194read_attribute (const struct die_reader_specs *reader,
19195 struct attribute *attr, struct attr_abbrev *abbrev,
19196 const gdb_byte *info_ptr)
19197{
19198 attr->name = abbrev->name;
19199 return read_attribute_value (reader, attr, abbrev->form,
19200 abbrev->implicit_const, info_ptr);
19201}
19202
19203/* Read dwarf information from a buffer. */
19204
19205static unsigned int
19206read_1_byte (bfd *abfd, const gdb_byte *buf)
19207{
19208 return bfd_get_8 (abfd, buf);
19209}
19210
19211static int
19212read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19213{
19214 return bfd_get_signed_8 (abfd, buf);
19215}
19216
19217static unsigned int
19218read_2_bytes (bfd *abfd, const gdb_byte *buf)
19219{
19220 return bfd_get_16 (abfd, buf);
19221}
19222
19223static int
19224read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19225{
19226 return bfd_get_signed_16 (abfd, buf);
19227}
19228
19229static unsigned int
19230read_4_bytes (bfd *abfd, const gdb_byte *buf)
19231{
19232 return bfd_get_32 (abfd, buf);
19233}
19234
19235static int
19236read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19237{
19238 return bfd_get_signed_32 (abfd, buf);
19239}
19240
19241static ULONGEST
19242read_8_bytes (bfd *abfd, const gdb_byte *buf)
19243{
19244 return bfd_get_64 (abfd, buf);
19245}
19246
19247static CORE_ADDR
19248read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19249 unsigned int *bytes_read)
19250{
19251 struct comp_unit_head *cu_header = &cu->header;
19252 CORE_ADDR retval = 0;
19253
19254 if (cu_header->signed_addr_p)
19255 {
19256 switch (cu_header->addr_size)
19257 {
19258 case 2:
19259 retval = bfd_get_signed_16 (abfd, buf);
19260 break;
19261 case 4:
19262 retval = bfd_get_signed_32 (abfd, buf);
19263 break;
19264 case 8:
19265 retval = bfd_get_signed_64 (abfd, buf);
19266 break;
19267 default:
19268 internal_error (__FILE__, __LINE__,
19269 _("read_address: bad switch, signed [in module %s]"),
19270 bfd_get_filename (abfd));
19271 }
19272 }
19273 else
19274 {
19275 switch (cu_header->addr_size)
19276 {
19277 case 2:
19278 retval = bfd_get_16 (abfd, buf);
19279 break;
19280 case 4:
19281 retval = bfd_get_32 (abfd, buf);
19282 break;
19283 case 8:
19284 retval = bfd_get_64 (abfd, buf);
19285 break;
19286 default:
19287 internal_error (__FILE__, __LINE__,
19288 _("read_address: bad switch, "
19289 "unsigned [in module %s]"),
19290 bfd_get_filename (abfd));
19291 }
19292 }
19293
19294 *bytes_read = cu_header->addr_size;
19295 return retval;
19296}
19297
19298/* Read the initial length from a section. The (draft) DWARF 3
19299 specification allows the initial length to take up either 4 bytes
19300 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19301 bytes describe the length and all offsets will be 8 bytes in length
19302 instead of 4.
19303
19304 An older, non-standard 64-bit format is also handled by this
19305 function. The older format in question stores the initial length
19306 as an 8-byte quantity without an escape value. Lengths greater
19307 than 2^32 aren't very common which means that the initial 4 bytes
19308 is almost always zero. Since a length value of zero doesn't make
19309 sense for the 32-bit format, this initial zero can be considered to
19310 be an escape value which indicates the presence of the older 64-bit
19311 format. As written, the code can't detect (old format) lengths
19312 greater than 4GB. If it becomes necessary to handle lengths
19313 somewhat larger than 4GB, we could allow other small values (such
19314 as the non-sensical values of 1, 2, and 3) to also be used as
19315 escape values indicating the presence of the old format.
19316
19317 The value returned via bytes_read should be used to increment the
19318 relevant pointer after calling read_initial_length().
19319
19320 [ Note: read_initial_length() and read_offset() are based on the
19321 document entitled "DWARF Debugging Information Format", revision
19322 3, draft 8, dated November 19, 2001. This document was obtained
19323 from:
19324
19325 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19326
19327 This document is only a draft and is subject to change. (So beware.)
19328
19329 Details regarding the older, non-standard 64-bit format were
19330 determined empirically by examining 64-bit ELF files produced by
19331 the SGI toolchain on an IRIX 6.5 machine.
19332
19333 - Kevin, July 16, 2002
19334 ] */
19335
19336static LONGEST
19337read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19338{
19339 LONGEST length = bfd_get_32 (abfd, buf);
19340
19341 if (length == 0xffffffff)
19342 {
19343 length = bfd_get_64 (abfd, buf + 4);
19344 *bytes_read = 12;
19345 }
19346 else if (length == 0)
19347 {
19348 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19349 length = bfd_get_64 (abfd, buf);
19350 *bytes_read = 8;
19351 }
19352 else
19353 {
19354 *bytes_read = 4;
19355 }
19356
19357 return length;
19358}
19359
19360/* Cover function for read_initial_length.
19361 Returns the length of the object at BUF, and stores the size of the
19362 initial length in *BYTES_READ and stores the size that offsets will be in
19363 *OFFSET_SIZE.
19364 If the initial length size is not equivalent to that specified in
19365 CU_HEADER then issue a complaint.
19366 This is useful when reading non-comp-unit headers. */
19367
19368static LONGEST
19369read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19370 const struct comp_unit_head *cu_header,
19371 unsigned int *bytes_read,
19372 unsigned int *offset_size)
19373{
19374 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19375
19376 gdb_assert (cu_header->initial_length_size == 4
19377 || cu_header->initial_length_size == 8
19378 || cu_header->initial_length_size == 12);
19379
19380 if (cu_header->initial_length_size != *bytes_read)
19381 complaint (&symfile_complaints,
19382 _("intermixed 32-bit and 64-bit DWARF sections"));
19383
19384 *offset_size = (*bytes_read == 4) ? 4 : 8;
19385 return length;
19386}
19387
19388/* Read an offset from the data stream. The size of the offset is
19389 given by cu_header->offset_size. */
19390
19391static LONGEST
19392read_offset (bfd *abfd, const gdb_byte *buf,
19393 const struct comp_unit_head *cu_header,
19394 unsigned int *bytes_read)
19395{
19396 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19397
19398 *bytes_read = cu_header->offset_size;
19399 return offset;
19400}
19401
19402/* Read an offset from the data stream. */
19403
19404static LONGEST
19405read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19406{
19407 LONGEST retval = 0;
19408
19409 switch (offset_size)
19410 {
19411 case 4:
19412 retval = bfd_get_32 (abfd, buf);
19413 break;
19414 case 8:
19415 retval = bfd_get_64 (abfd, buf);
19416 break;
19417 default:
19418 internal_error (__FILE__, __LINE__,
19419 _("read_offset_1: bad switch [in module %s]"),
19420 bfd_get_filename (abfd));
19421 }
19422
19423 return retval;
19424}
19425
19426static const gdb_byte *
19427read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19428{
19429 /* If the size of a host char is 8 bits, we can return a pointer
19430 to the buffer, otherwise we have to copy the data to a buffer
19431 allocated on the temporary obstack. */
19432 gdb_assert (HOST_CHAR_BIT == 8);
19433 return buf;
19434}
19435
19436static const char *
19437read_direct_string (bfd *abfd, const gdb_byte *buf,
19438 unsigned int *bytes_read_ptr)
19439{
19440 /* If the size of a host char is 8 bits, we can return a pointer
19441 to the string, otherwise we have to copy the string to a buffer
19442 allocated on the temporary obstack. */
19443 gdb_assert (HOST_CHAR_BIT == 8);
19444 if (*buf == '\0')
19445 {
19446 *bytes_read_ptr = 1;
19447 return NULL;
19448 }
19449 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19450 return (const char *) buf;
19451}
19452
19453/* Return pointer to string at section SECT offset STR_OFFSET with error
19454 reporting strings FORM_NAME and SECT_NAME. */
19455
19456static const char *
19457read_indirect_string_at_offset_from (struct objfile *objfile,
19458 bfd *abfd, LONGEST str_offset,
19459 struct dwarf2_section_info *sect,
19460 const char *form_name,
19461 const char *sect_name)
19462{
19463 dwarf2_read_section (objfile, sect);
19464 if (sect->buffer == NULL)
19465 error (_("%s used without %s section [in module %s]"),
19466 form_name, sect_name, bfd_get_filename (abfd));
19467 if (str_offset >= sect->size)
19468 error (_("%s pointing outside of %s section [in module %s]"),
19469 form_name, sect_name, bfd_get_filename (abfd));
19470 gdb_assert (HOST_CHAR_BIT == 8);
19471 if (sect->buffer[str_offset] == '\0')
19472 return NULL;
19473 return (const char *) (sect->buffer + str_offset);
19474}
19475
19476/* Return pointer to string at .debug_str offset STR_OFFSET. */
19477
19478static const char *
19479read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19480 bfd *abfd, LONGEST str_offset)
19481{
19482 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19483 abfd, str_offset,
19484 &dwarf2_per_objfile->str,
19485 "DW_FORM_strp", ".debug_str");
19486}
19487
19488/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19489
19490static const char *
19491read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19492 bfd *abfd, LONGEST str_offset)
19493{
19494 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19495 abfd, str_offset,
19496 &dwarf2_per_objfile->line_str,
19497 "DW_FORM_line_strp",
19498 ".debug_line_str");
19499}
19500
19501/* Read a string at offset STR_OFFSET in the .debug_str section from
19502 the .dwz file DWZ. Throw an error if the offset is too large. If
19503 the string consists of a single NUL byte, return NULL; otherwise
19504 return a pointer to the string. */
19505
19506static const char *
19507read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19508 LONGEST str_offset)
19509{
19510 dwarf2_read_section (objfile, &dwz->str);
19511
19512 if (dwz->str.buffer == NULL)
19513 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19514 "section [in module %s]"),
19515 bfd_get_filename (dwz->dwz_bfd));
19516 if (str_offset >= dwz->str.size)
19517 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19518 ".debug_str section [in module %s]"),
19519 bfd_get_filename (dwz->dwz_bfd));
19520 gdb_assert (HOST_CHAR_BIT == 8);
19521 if (dwz->str.buffer[str_offset] == '\0')
19522 return NULL;
19523 return (const char *) (dwz->str.buffer + str_offset);
19524}
19525
19526/* Return pointer to string at .debug_str offset as read from BUF.
19527 BUF is assumed to be in a compilation unit described by CU_HEADER.
19528 Return *BYTES_READ_PTR count of bytes read from BUF. */
19529
19530static const char *
19531read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19532 const gdb_byte *buf,
19533 const struct comp_unit_head *cu_header,
19534 unsigned int *bytes_read_ptr)
19535{
19536 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19537
19538 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19539}
19540
19541/* Return pointer to string at .debug_line_str offset as read from BUF.
19542 BUF is assumed to be in a compilation unit described by CU_HEADER.
19543 Return *BYTES_READ_PTR count of bytes read from BUF. */
19544
19545static const char *
19546read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19547 bfd *abfd, const gdb_byte *buf,
19548 const struct comp_unit_head *cu_header,
19549 unsigned int *bytes_read_ptr)
19550{
19551 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19552
19553 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19554 str_offset);
19555}
19556
19557ULONGEST
19558read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19559 unsigned int *bytes_read_ptr)
19560{
19561 ULONGEST result;
19562 unsigned int num_read;
19563 int shift;
19564 unsigned char byte;
19565
19566 result = 0;
19567 shift = 0;
19568 num_read = 0;
19569 while (1)
19570 {
19571 byte = bfd_get_8 (abfd, buf);
19572 buf++;
19573 num_read++;
19574 result |= ((ULONGEST) (byte & 127) << shift);
19575 if ((byte & 128) == 0)
19576 {
19577 break;
19578 }
19579 shift += 7;
19580 }
19581 *bytes_read_ptr = num_read;
19582 return result;
19583}
19584
19585static LONGEST
19586read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19587 unsigned int *bytes_read_ptr)
19588{
19589 LONGEST result;
19590 int shift, num_read;
19591 unsigned char byte;
19592
19593 result = 0;
19594 shift = 0;
19595 num_read = 0;
19596 while (1)
19597 {
19598 byte = bfd_get_8 (abfd, buf);
19599 buf++;
19600 num_read++;
19601 result |= ((LONGEST) (byte & 127) << shift);
19602 shift += 7;
19603 if ((byte & 128) == 0)
19604 {
19605 break;
19606 }
19607 }
19608 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19609 result |= -(((LONGEST) 1) << shift);
19610 *bytes_read_ptr = num_read;
19611 return result;
19612}
19613
19614/* Given index ADDR_INDEX in .debug_addr, fetch the value.
19615 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19616 ADDR_SIZE is the size of addresses from the CU header. */
19617
19618static CORE_ADDR
19619read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19620 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19621{
19622 struct objfile *objfile = dwarf2_per_objfile->objfile;
19623 bfd *abfd = objfile->obfd;
19624 const gdb_byte *info_ptr;
19625
19626 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19627 if (dwarf2_per_objfile->addr.buffer == NULL)
19628 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19629 objfile_name (objfile));
19630 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19631 error (_("DW_FORM_addr_index pointing outside of "
19632 ".debug_addr section [in module %s]"),
19633 objfile_name (objfile));
19634 info_ptr = (dwarf2_per_objfile->addr.buffer
19635 + addr_base + addr_index * addr_size);
19636 if (addr_size == 4)
19637 return bfd_get_32 (abfd, info_ptr);
19638 else
19639 return bfd_get_64 (abfd, info_ptr);
19640}
19641
19642/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19643
19644static CORE_ADDR
19645read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19646{
19647 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19648 cu->addr_base, cu->header.addr_size);
19649}
19650
19651/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19652
19653static CORE_ADDR
19654read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19655 unsigned int *bytes_read)
19656{
19657 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19658 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19659
19660 return read_addr_index (cu, addr_index);
19661}
19662
19663/* Data structure to pass results from dwarf2_read_addr_index_reader
19664 back to dwarf2_read_addr_index. */
19665
19666struct dwarf2_read_addr_index_data
19667{
19668 ULONGEST addr_base;
19669 int addr_size;
19670};
19671
19672/* die_reader_func for dwarf2_read_addr_index. */
19673
19674static void
19675dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19676 const gdb_byte *info_ptr,
19677 struct die_info *comp_unit_die,
19678 int has_children,
19679 void *data)
19680{
19681 struct dwarf2_cu *cu = reader->cu;
19682 struct dwarf2_read_addr_index_data *aidata =
19683 (struct dwarf2_read_addr_index_data *) data;
19684
19685 aidata->addr_base = cu->addr_base;
19686 aidata->addr_size = cu->header.addr_size;
19687}
19688
19689/* Given an index in .debug_addr, fetch the value.
19690 NOTE: This can be called during dwarf expression evaluation,
19691 long after the debug information has been read, and thus per_cu->cu
19692 may no longer exist. */
19693
19694CORE_ADDR
19695dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19696 unsigned int addr_index)
19697{
19698 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19699 struct objfile *objfile = dwarf2_per_objfile->objfile;
19700 struct dwarf2_cu *cu = per_cu->cu;
19701 ULONGEST addr_base;
19702 int addr_size;
19703
19704 /* We need addr_base and addr_size.
19705 If we don't have PER_CU->cu, we have to get it.
19706 Nasty, but the alternative is storing the needed info in PER_CU,
19707 which at this point doesn't seem justified: it's not clear how frequently
19708 it would get used and it would increase the size of every PER_CU.
19709 Entry points like dwarf2_per_cu_addr_size do a similar thing
19710 so we're not in uncharted territory here.
19711 Alas we need to be a bit more complicated as addr_base is contained
19712 in the DIE.
19713
19714 We don't need to read the entire CU(/TU).
19715 We just need the header and top level die.
19716
19717 IWBN to use the aging mechanism to let us lazily later discard the CU.
19718 For now we skip this optimization. */
19719
19720 if (cu != NULL)
19721 {
19722 addr_base = cu->addr_base;
19723 addr_size = cu->header.addr_size;
19724 }
19725 else
19726 {
19727 struct dwarf2_read_addr_index_data aidata;
19728
19729 /* Note: We can't use init_cutu_and_read_dies_simple here,
19730 we need addr_base. */
19731 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
19732 dwarf2_read_addr_index_reader, &aidata);
19733 addr_base = aidata.addr_base;
19734 addr_size = aidata.addr_size;
19735 }
19736
19737 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19738 addr_size);
19739}
19740
19741/* Given a DW_FORM_GNU_str_index, fetch the string.
19742 This is only used by the Fission support. */
19743
19744static const char *
19745read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19746{
19747 struct dwarf2_cu *cu = reader->cu;
19748 struct dwarf2_per_objfile *dwarf2_per_objfile
19749 = cu->per_cu->dwarf2_per_objfile;
19750 struct objfile *objfile = dwarf2_per_objfile->objfile;
19751 const char *objf_name = objfile_name (objfile);
19752 bfd *abfd = objfile->obfd;
19753 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19754 struct dwarf2_section_info *str_offsets_section =
19755 &reader->dwo_file->sections.str_offsets;
19756 const gdb_byte *info_ptr;
19757 ULONGEST str_offset;
19758 static const char form_name[] = "DW_FORM_GNU_str_index";
19759
19760 dwarf2_read_section (objfile, str_section);
19761 dwarf2_read_section (objfile, str_offsets_section);
19762 if (str_section->buffer == NULL)
19763 error (_("%s used without .debug_str.dwo section"
19764 " in CU at offset %s [in module %s]"),
19765 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19766 if (str_offsets_section->buffer == NULL)
19767 error (_("%s used without .debug_str_offsets.dwo section"
19768 " in CU at offset %s [in module %s]"),
19769 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19770 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19771 error (_("%s pointing outside of .debug_str_offsets.dwo"
19772 " section in CU at offset %s [in module %s]"),
19773 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19774 info_ptr = (str_offsets_section->buffer
19775 + str_index * cu->header.offset_size);
19776 if (cu->header.offset_size == 4)
19777 str_offset = bfd_get_32 (abfd, info_ptr);
19778 else
19779 str_offset = bfd_get_64 (abfd, info_ptr);
19780 if (str_offset >= str_section->size)
19781 error (_("Offset from %s pointing outside of"
19782 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19783 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19784 return (const char *) (str_section->buffer + str_offset);
19785}
19786
19787/* Return the length of an LEB128 number in BUF. */
19788
19789static int
19790leb128_size (const gdb_byte *buf)
19791{
19792 const gdb_byte *begin = buf;
19793 gdb_byte byte;
19794
19795 while (1)
19796 {
19797 byte = *buf++;
19798 if ((byte & 128) == 0)
19799 return buf - begin;
19800 }
19801}
19802
19803static void
19804set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19805{
19806 switch (lang)
19807 {
19808 case DW_LANG_C89:
19809 case DW_LANG_C99:
19810 case DW_LANG_C11:
19811 case DW_LANG_C:
19812 case DW_LANG_UPC:
19813 cu->language = language_c;
19814 break;
19815 case DW_LANG_Java:
19816 case DW_LANG_C_plus_plus:
19817 case DW_LANG_C_plus_plus_11:
19818 case DW_LANG_C_plus_plus_14:
19819 cu->language = language_cplus;
19820 break;
19821 case DW_LANG_D:
19822 cu->language = language_d;
19823 break;
19824 case DW_LANG_Fortran77:
19825 case DW_LANG_Fortran90:
19826 case DW_LANG_Fortran95:
19827 case DW_LANG_Fortran03:
19828 case DW_LANG_Fortran08:
19829 cu->language = language_fortran;
19830 break;
19831 case DW_LANG_Go:
19832 cu->language = language_go;
19833 break;
19834 case DW_LANG_Mips_Assembler:
19835 cu->language = language_asm;
19836 break;
19837 case DW_LANG_Ada83:
19838 case DW_LANG_Ada95:
19839 cu->language = language_ada;
19840 break;
19841 case DW_LANG_Modula2:
19842 cu->language = language_m2;
19843 break;
19844 case DW_LANG_Pascal83:
19845 cu->language = language_pascal;
19846 break;
19847 case DW_LANG_ObjC:
19848 cu->language = language_objc;
19849 break;
19850 case DW_LANG_Rust:
19851 case DW_LANG_Rust_old:
19852 cu->language = language_rust;
19853 break;
19854 case DW_LANG_Cobol74:
19855 case DW_LANG_Cobol85:
19856 default:
19857 cu->language = language_minimal;
19858 break;
19859 }
19860 cu->language_defn = language_def (cu->language);
19861}
19862
19863/* Return the named attribute or NULL if not there. */
19864
19865static struct attribute *
19866dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19867{
19868 for (;;)
19869 {
19870 unsigned int i;
19871 struct attribute *spec = NULL;
19872
19873 for (i = 0; i < die->num_attrs; ++i)
19874 {
19875 if (die->attrs[i].name == name)
19876 return &die->attrs[i];
19877 if (die->attrs[i].name == DW_AT_specification
19878 || die->attrs[i].name == DW_AT_abstract_origin)
19879 spec = &die->attrs[i];
19880 }
19881
19882 if (!spec)
19883 break;
19884
19885 die = follow_die_ref (die, spec, &cu);
19886 }
19887
19888 return NULL;
19889}
19890
19891/* Return the named attribute or NULL if not there,
19892 but do not follow DW_AT_specification, etc.
19893 This is for use in contexts where we're reading .debug_types dies.
19894 Following DW_AT_specification, DW_AT_abstract_origin will take us
19895 back up the chain, and we want to go down. */
19896
19897static struct attribute *
19898dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19899{
19900 unsigned int i;
19901
19902 for (i = 0; i < die->num_attrs; ++i)
19903 if (die->attrs[i].name == name)
19904 return &die->attrs[i];
19905
19906 return NULL;
19907}
19908
19909/* Return the string associated with a string-typed attribute, or NULL if it
19910 is either not found or is of an incorrect type. */
19911
19912static const char *
19913dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19914{
19915 struct attribute *attr;
19916 const char *str = NULL;
19917
19918 attr = dwarf2_attr (die, name, cu);
19919
19920 if (attr != NULL)
19921 {
19922 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19923 || attr->form == DW_FORM_string
19924 || attr->form == DW_FORM_GNU_str_index
19925 || attr->form == DW_FORM_GNU_strp_alt)
19926 str = DW_STRING (attr);
19927 else
19928 complaint (&symfile_complaints,
19929 _("string type expected for attribute %s for "
19930 "DIE at %s in module %s"),
19931 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19932 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19933 }
19934
19935 return str;
19936}
19937
19938/* Return non-zero iff the attribute NAME is defined for the given DIE,
19939 and holds a non-zero value. This function should only be used for
19940 DW_FORM_flag or DW_FORM_flag_present attributes. */
19941
19942static int
19943dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19944{
19945 struct attribute *attr = dwarf2_attr (die, name, cu);
19946
19947 return (attr && DW_UNSND (attr));
19948}
19949
19950static int
19951die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19952{
19953 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19954 which value is non-zero. However, we have to be careful with
19955 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19956 (via dwarf2_flag_true_p) follows this attribute. So we may
19957 end up accidently finding a declaration attribute that belongs
19958 to a different DIE referenced by the specification attribute,
19959 even though the given DIE does not have a declaration attribute. */
19960 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19961 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19962}
19963
19964/* Return the die giving the specification for DIE, if there is
19965 one. *SPEC_CU is the CU containing DIE on input, and the CU
19966 containing the return value on output. If there is no
19967 specification, but there is an abstract origin, that is
19968 returned. */
19969
19970static struct die_info *
19971die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19972{
19973 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19974 *spec_cu);
19975
19976 if (spec_attr == NULL)
19977 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19978
19979 if (spec_attr == NULL)
19980 return NULL;
19981 else
19982 return follow_die_ref (die, spec_attr, spec_cu);
19983}
19984
19985/* Stub for free_line_header to match void * callback types. */
19986
19987static void
19988free_line_header_voidp (void *arg)
19989{
19990 struct line_header *lh = (struct line_header *) arg;
19991
19992 delete lh;
19993}
19994
19995void
19996line_header::add_include_dir (const char *include_dir)
19997{
19998 if (dwarf_line_debug >= 2)
19999 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20000 include_dirs.size () + 1, include_dir);
20001
20002 include_dirs.push_back (include_dir);
20003}
20004
20005void
20006line_header::add_file_name (const char *name,
20007 dir_index d_index,
20008 unsigned int mod_time,
20009 unsigned int length)
20010{
20011 if (dwarf_line_debug >= 2)
20012 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20013 (unsigned) file_names.size () + 1, name);
20014
20015 file_names.emplace_back (name, d_index, mod_time, length);
20016}
20017
20018/* A convenience function to find the proper .debug_line section for a CU. */
20019
20020static struct dwarf2_section_info *
20021get_debug_line_section (struct dwarf2_cu *cu)
20022{
20023 struct dwarf2_section_info *section;
20024 struct dwarf2_per_objfile *dwarf2_per_objfile
20025 = cu->per_cu->dwarf2_per_objfile;
20026
20027 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20028 DWO file. */
20029 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20030 section = &cu->dwo_unit->dwo_file->sections.line;
20031 else if (cu->per_cu->is_dwz)
20032 {
20033 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20034
20035 section = &dwz->line;
20036 }
20037 else
20038 section = &dwarf2_per_objfile->line;
20039
20040 return section;
20041}
20042
20043/* Read directory or file name entry format, starting with byte of
20044 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20045 entries count and the entries themselves in the described entry
20046 format. */
20047
20048static void
20049read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20050 bfd *abfd, const gdb_byte **bufp,
20051 struct line_header *lh,
20052 const struct comp_unit_head *cu_header,
20053 void (*callback) (struct line_header *lh,
20054 const char *name,
20055 dir_index d_index,
20056 unsigned int mod_time,
20057 unsigned int length))
20058{
20059 gdb_byte format_count, formati;
20060 ULONGEST data_count, datai;
20061 const gdb_byte *buf = *bufp;
20062 const gdb_byte *format_header_data;
20063 unsigned int bytes_read;
20064
20065 format_count = read_1_byte (abfd, buf);
20066 buf += 1;
20067 format_header_data = buf;
20068 for (formati = 0; formati < format_count; formati++)
20069 {
20070 read_unsigned_leb128 (abfd, buf, &bytes_read);
20071 buf += bytes_read;
20072 read_unsigned_leb128 (abfd, buf, &bytes_read);
20073 buf += bytes_read;
20074 }
20075
20076 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20077 buf += bytes_read;
20078 for (datai = 0; datai < data_count; datai++)
20079 {
20080 const gdb_byte *format = format_header_data;
20081 struct file_entry fe;
20082
20083 for (formati = 0; formati < format_count; formati++)
20084 {
20085 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20086 format += bytes_read;
20087
20088 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20089 format += bytes_read;
20090
20091 gdb::optional<const char *> string;
20092 gdb::optional<unsigned int> uint;
20093
20094 switch (form)
20095 {
20096 case DW_FORM_string:
20097 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20098 buf += bytes_read;
20099 break;
20100
20101 case DW_FORM_line_strp:
20102 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20103 abfd, buf,
20104 cu_header,
20105 &bytes_read));
20106 buf += bytes_read;
20107 break;
20108
20109 case DW_FORM_data1:
20110 uint.emplace (read_1_byte (abfd, buf));
20111 buf += 1;
20112 break;
20113
20114 case DW_FORM_data2:
20115 uint.emplace (read_2_bytes (abfd, buf));
20116 buf += 2;
20117 break;
20118
20119 case DW_FORM_data4:
20120 uint.emplace (read_4_bytes (abfd, buf));
20121 buf += 4;
20122 break;
20123
20124 case DW_FORM_data8:
20125 uint.emplace (read_8_bytes (abfd, buf));
20126 buf += 8;
20127 break;
20128
20129 case DW_FORM_udata:
20130 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20131 buf += bytes_read;
20132 break;
20133
20134 case DW_FORM_block:
20135 /* It is valid only for DW_LNCT_timestamp which is ignored by
20136 current GDB. */
20137 break;
20138 }
20139
20140 switch (content_type)
20141 {
20142 case DW_LNCT_path:
20143 if (string.has_value ())
20144 fe.name = *string;
20145 break;
20146 case DW_LNCT_directory_index:
20147 if (uint.has_value ())
20148 fe.d_index = (dir_index) *uint;
20149 break;
20150 case DW_LNCT_timestamp:
20151 if (uint.has_value ())
20152 fe.mod_time = *uint;
20153 break;
20154 case DW_LNCT_size:
20155 if (uint.has_value ())
20156 fe.length = *uint;
20157 break;
20158 case DW_LNCT_MD5:
20159 break;
20160 default:
20161 complaint (&symfile_complaints,
20162 _("Unknown format content type %s"),
20163 pulongest (content_type));
20164 }
20165 }
20166
20167 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20168 }
20169
20170 *bufp = buf;
20171}
20172
20173/* Read the statement program header starting at OFFSET in
20174 .debug_line, or .debug_line.dwo. Return a pointer
20175 to a struct line_header, allocated using xmalloc.
20176 Returns NULL if there is a problem reading the header, e.g., if it
20177 has a version we don't understand.
20178
20179 NOTE: the strings in the include directory and file name tables of
20180 the returned object point into the dwarf line section buffer,
20181 and must not be freed. */
20182
20183static line_header_up
20184dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20185{
20186 const gdb_byte *line_ptr;
20187 unsigned int bytes_read, offset_size;
20188 int i;
20189 const char *cur_dir, *cur_file;
20190 struct dwarf2_section_info *section;
20191 bfd *abfd;
20192 struct dwarf2_per_objfile *dwarf2_per_objfile
20193 = cu->per_cu->dwarf2_per_objfile;
20194
20195 section = get_debug_line_section (cu);
20196 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20197 if (section->buffer == NULL)
20198 {
20199 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20200 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20201 else
20202 complaint (&symfile_complaints, _("missing .debug_line section"));
20203 return 0;
20204 }
20205
20206 /* We can't do this until we know the section is non-empty.
20207 Only then do we know we have such a section. */
20208 abfd = get_section_bfd_owner (section);
20209
20210 /* Make sure that at least there's room for the total_length field.
20211 That could be 12 bytes long, but we're just going to fudge that. */
20212 if (to_underlying (sect_off) + 4 >= section->size)
20213 {
20214 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20215 return 0;
20216 }
20217
20218 line_header_up lh (new line_header ());
20219
20220 lh->sect_off = sect_off;
20221 lh->offset_in_dwz = cu->per_cu->is_dwz;
20222
20223 line_ptr = section->buffer + to_underlying (sect_off);
20224
20225 /* Read in the header. */
20226 lh->total_length =
20227 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20228 &bytes_read, &offset_size);
20229 line_ptr += bytes_read;
20230 if (line_ptr + lh->total_length > (section->buffer + section->size))
20231 {
20232 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20233 return 0;
20234 }
20235 lh->statement_program_end = line_ptr + lh->total_length;
20236 lh->version = read_2_bytes (abfd, line_ptr);
20237 line_ptr += 2;
20238 if (lh->version > 5)
20239 {
20240 /* This is a version we don't understand. The format could have
20241 changed in ways we don't handle properly so just punt. */
20242 complaint (&symfile_complaints,
20243 _("unsupported version in .debug_line section"));
20244 return NULL;
20245 }
20246 if (lh->version >= 5)
20247 {
20248 gdb_byte segment_selector_size;
20249
20250 /* Skip address size. */
20251 read_1_byte (abfd, line_ptr);
20252 line_ptr += 1;
20253
20254 segment_selector_size = read_1_byte (abfd, line_ptr);
20255 line_ptr += 1;
20256 if (segment_selector_size != 0)
20257 {
20258 complaint (&symfile_complaints,
20259 _("unsupported segment selector size %u "
20260 "in .debug_line section"),
20261 segment_selector_size);
20262 return NULL;
20263 }
20264 }
20265 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20266 line_ptr += offset_size;
20267 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20268 line_ptr += 1;
20269 if (lh->version >= 4)
20270 {
20271 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20272 line_ptr += 1;
20273 }
20274 else
20275 lh->maximum_ops_per_instruction = 1;
20276
20277 if (lh->maximum_ops_per_instruction == 0)
20278 {
20279 lh->maximum_ops_per_instruction = 1;
20280 complaint (&symfile_complaints,
20281 _("invalid maximum_ops_per_instruction "
20282 "in `.debug_line' section"));
20283 }
20284
20285 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20286 line_ptr += 1;
20287 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20288 line_ptr += 1;
20289 lh->line_range = read_1_byte (abfd, line_ptr);
20290 line_ptr += 1;
20291 lh->opcode_base = read_1_byte (abfd, line_ptr);
20292 line_ptr += 1;
20293 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20294
20295 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20296 for (i = 1; i < lh->opcode_base; ++i)
20297 {
20298 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20299 line_ptr += 1;
20300 }
20301
20302 if (lh->version >= 5)
20303 {
20304 /* Read directory table. */
20305 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20306 &cu->header,
20307 [] (struct line_header *lh, const char *name,
20308 dir_index d_index, unsigned int mod_time,
20309 unsigned int length)
20310 {
20311 lh->add_include_dir (name);
20312 });
20313
20314 /* Read file name table. */
20315 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20316 &cu->header,
20317 [] (struct line_header *lh, const char *name,
20318 dir_index d_index, unsigned int mod_time,
20319 unsigned int length)
20320 {
20321 lh->add_file_name (name, d_index, mod_time, length);
20322 });
20323 }
20324 else
20325 {
20326 /* Read directory table. */
20327 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20328 {
20329 line_ptr += bytes_read;
20330 lh->add_include_dir (cur_dir);
20331 }
20332 line_ptr += bytes_read;
20333
20334 /* Read file name table. */
20335 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20336 {
20337 unsigned int mod_time, length;
20338 dir_index d_index;
20339
20340 line_ptr += bytes_read;
20341 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20342 line_ptr += bytes_read;
20343 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20344 line_ptr += bytes_read;
20345 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20346 line_ptr += bytes_read;
20347
20348 lh->add_file_name (cur_file, d_index, mod_time, length);
20349 }
20350 line_ptr += bytes_read;
20351 }
20352 lh->statement_program_start = line_ptr;
20353
20354 if (line_ptr > (section->buffer + section->size))
20355 complaint (&symfile_complaints,
20356 _("line number info header doesn't "
20357 "fit in `.debug_line' section"));
20358
20359 return lh;
20360}
20361
20362/* Subroutine of dwarf_decode_lines to simplify it.
20363 Return the file name of the psymtab for included file FILE_INDEX
20364 in line header LH of PST.
20365 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20366 If space for the result is malloc'd, *NAME_HOLDER will be set.
20367 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20368
20369static const char *
20370psymtab_include_file_name (const struct line_header *lh, int file_index,
20371 const struct partial_symtab *pst,
20372 const char *comp_dir,
20373 gdb::unique_xmalloc_ptr<char> *name_holder)
20374{
20375 const file_entry &fe = lh->file_names[file_index];
20376 const char *include_name = fe.name;
20377 const char *include_name_to_compare = include_name;
20378 const char *pst_filename;
20379 int file_is_pst;
20380
20381 const char *dir_name = fe.include_dir (lh);
20382
20383 gdb::unique_xmalloc_ptr<char> hold_compare;
20384 if (!IS_ABSOLUTE_PATH (include_name)
20385 && (dir_name != NULL || comp_dir != NULL))
20386 {
20387 /* Avoid creating a duplicate psymtab for PST.
20388 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20389 Before we do the comparison, however, we need to account
20390 for DIR_NAME and COMP_DIR.
20391 First prepend dir_name (if non-NULL). If we still don't
20392 have an absolute path prepend comp_dir (if non-NULL).
20393 However, the directory we record in the include-file's
20394 psymtab does not contain COMP_DIR (to match the
20395 corresponding symtab(s)).
20396
20397 Example:
20398
20399 bash$ cd /tmp
20400 bash$ gcc -g ./hello.c
20401 include_name = "hello.c"
20402 dir_name = "."
20403 DW_AT_comp_dir = comp_dir = "/tmp"
20404 DW_AT_name = "./hello.c"
20405
20406 */
20407
20408 if (dir_name != NULL)
20409 {
20410 name_holder->reset (concat (dir_name, SLASH_STRING,
20411 include_name, (char *) NULL));
20412 include_name = name_holder->get ();
20413 include_name_to_compare = include_name;
20414 }
20415 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20416 {
20417 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20418 include_name, (char *) NULL));
20419 include_name_to_compare = hold_compare.get ();
20420 }
20421 }
20422
20423 pst_filename = pst->filename;
20424 gdb::unique_xmalloc_ptr<char> copied_name;
20425 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20426 {
20427 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20428 pst_filename, (char *) NULL));
20429 pst_filename = copied_name.get ();
20430 }
20431
20432 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20433
20434 if (file_is_pst)
20435 return NULL;
20436 return include_name;
20437}
20438
20439/* State machine to track the state of the line number program. */
20440
20441class lnp_state_machine
20442{
20443public:
20444 /* Initialize a machine state for the start of a line number
20445 program. */
20446 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20447
20448 file_entry *current_file ()
20449 {
20450 /* lh->file_names is 0-based, but the file name numbers in the
20451 statement program are 1-based. */
20452 return m_line_header->file_name_at (m_file);
20453 }
20454
20455 /* Record the line in the state machine. END_SEQUENCE is true if
20456 we're processing the end of a sequence. */
20457 void record_line (bool end_sequence);
20458
20459 /* Check address and if invalid nop-out the rest of the lines in this
20460 sequence. */
20461 void check_line_address (struct dwarf2_cu *cu,
20462 const gdb_byte *line_ptr,
20463 CORE_ADDR lowpc, CORE_ADDR address);
20464
20465 void handle_set_discriminator (unsigned int discriminator)
20466 {
20467 m_discriminator = discriminator;
20468 m_line_has_non_zero_discriminator |= discriminator != 0;
20469 }
20470
20471 /* Handle DW_LNE_set_address. */
20472 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20473 {
20474 m_op_index = 0;
20475 address += baseaddr;
20476 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20477 }
20478
20479 /* Handle DW_LNS_advance_pc. */
20480 void handle_advance_pc (CORE_ADDR adjust);
20481
20482 /* Handle a special opcode. */
20483 void handle_special_opcode (unsigned char op_code);
20484
20485 /* Handle DW_LNS_advance_line. */
20486 void handle_advance_line (int line_delta)
20487 {
20488 advance_line (line_delta);
20489 }
20490
20491 /* Handle DW_LNS_set_file. */
20492 void handle_set_file (file_name_index file);
20493
20494 /* Handle DW_LNS_negate_stmt. */
20495 void handle_negate_stmt ()
20496 {
20497 m_is_stmt = !m_is_stmt;
20498 }
20499
20500 /* Handle DW_LNS_const_add_pc. */
20501 void handle_const_add_pc ();
20502
20503 /* Handle DW_LNS_fixed_advance_pc. */
20504 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20505 {
20506 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20507 m_op_index = 0;
20508 }
20509
20510 /* Handle DW_LNS_copy. */
20511 void handle_copy ()
20512 {
20513 record_line (false);
20514 m_discriminator = 0;
20515 }
20516
20517 /* Handle DW_LNE_end_sequence. */
20518 void handle_end_sequence ()
20519 {
20520 m_record_line_callback = ::record_line;
20521 }
20522
20523private:
20524 /* Advance the line by LINE_DELTA. */
20525 void advance_line (int line_delta)
20526 {
20527 m_line += line_delta;
20528
20529 if (line_delta != 0)
20530 m_line_has_non_zero_discriminator = m_discriminator != 0;
20531 }
20532
20533 gdbarch *m_gdbarch;
20534
20535 /* True if we're recording lines.
20536 Otherwise we're building partial symtabs and are just interested in
20537 finding include files mentioned by the line number program. */
20538 bool m_record_lines_p;
20539
20540 /* The line number header. */
20541 line_header *m_line_header;
20542
20543 /* These are part of the standard DWARF line number state machine,
20544 and initialized according to the DWARF spec. */
20545
20546 unsigned char m_op_index = 0;
20547 /* The line table index (1-based) of the current file. */
20548 file_name_index m_file = (file_name_index) 1;
20549 unsigned int m_line = 1;
20550
20551 /* These are initialized in the constructor. */
20552
20553 CORE_ADDR m_address;
20554 bool m_is_stmt;
20555 unsigned int m_discriminator;
20556
20557 /* Additional bits of state we need to track. */
20558
20559 /* The last file that we called dwarf2_start_subfile for.
20560 This is only used for TLLs. */
20561 unsigned int m_last_file = 0;
20562 /* The last file a line number was recorded for. */
20563 struct subfile *m_last_subfile = NULL;
20564
20565 /* The function to call to record a line. */
20566 record_line_ftype *m_record_line_callback = NULL;
20567
20568 /* The last line number that was recorded, used to coalesce
20569 consecutive entries for the same line. This can happen, for
20570 example, when discriminators are present. PR 17276. */
20571 unsigned int m_last_line = 0;
20572 bool m_line_has_non_zero_discriminator = false;
20573};
20574
20575void
20576lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20577{
20578 CORE_ADDR addr_adj = (((m_op_index + adjust)
20579 / m_line_header->maximum_ops_per_instruction)
20580 * m_line_header->minimum_instruction_length);
20581 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20582 m_op_index = ((m_op_index + adjust)
20583 % m_line_header->maximum_ops_per_instruction);
20584}
20585
20586void
20587lnp_state_machine::handle_special_opcode (unsigned char op_code)
20588{
20589 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20590 CORE_ADDR addr_adj = (((m_op_index
20591 + (adj_opcode / m_line_header->line_range))
20592 / m_line_header->maximum_ops_per_instruction)
20593 * m_line_header->minimum_instruction_length);
20594 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20595 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20596 % m_line_header->maximum_ops_per_instruction);
20597
20598 int line_delta = (m_line_header->line_base
20599 + (adj_opcode % m_line_header->line_range));
20600 advance_line (line_delta);
20601 record_line (false);
20602 m_discriminator = 0;
20603}
20604
20605void
20606lnp_state_machine::handle_set_file (file_name_index file)
20607{
20608 m_file = file;
20609
20610 const file_entry *fe = current_file ();
20611 if (fe == NULL)
20612 dwarf2_debug_line_missing_file_complaint ();
20613 else if (m_record_lines_p)
20614 {
20615 const char *dir = fe->include_dir (m_line_header);
20616
20617 m_last_subfile = current_subfile;
20618 m_line_has_non_zero_discriminator = m_discriminator != 0;
20619 dwarf2_start_subfile (fe->name, dir);
20620 }
20621}
20622
20623void
20624lnp_state_machine::handle_const_add_pc ()
20625{
20626 CORE_ADDR adjust
20627 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20628
20629 CORE_ADDR addr_adj
20630 = (((m_op_index + adjust)
20631 / m_line_header->maximum_ops_per_instruction)
20632 * m_line_header->minimum_instruction_length);
20633
20634 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20635 m_op_index = ((m_op_index + adjust)
20636 % m_line_header->maximum_ops_per_instruction);
20637}
20638
20639/* Ignore this record_line request. */
20640
20641static void
20642noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20643{
20644 return;
20645}
20646
20647/* Return non-zero if we should add LINE to the line number table.
20648 LINE is the line to add, LAST_LINE is the last line that was added,
20649 LAST_SUBFILE is the subfile for LAST_LINE.
20650 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20651 had a non-zero discriminator.
20652
20653 We have to be careful in the presence of discriminators.
20654 E.g., for this line:
20655
20656 for (i = 0; i < 100000; i++);
20657
20658 clang can emit four line number entries for that one line,
20659 each with a different discriminator.
20660 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20661
20662 However, we want gdb to coalesce all four entries into one.
20663 Otherwise the user could stepi into the middle of the line and
20664 gdb would get confused about whether the pc really was in the
20665 middle of the line.
20666
20667 Things are further complicated by the fact that two consecutive
20668 line number entries for the same line is a heuristic used by gcc
20669 to denote the end of the prologue. So we can't just discard duplicate
20670 entries, we have to be selective about it. The heuristic we use is
20671 that we only collapse consecutive entries for the same line if at least
20672 one of those entries has a non-zero discriminator. PR 17276.
20673
20674 Note: Addresses in the line number state machine can never go backwards
20675 within one sequence, thus this coalescing is ok. */
20676
20677static int
20678dwarf_record_line_p (unsigned int line, unsigned int last_line,
20679 int line_has_non_zero_discriminator,
20680 struct subfile *last_subfile)
20681{
20682 if (current_subfile != last_subfile)
20683 return 1;
20684 if (line != last_line)
20685 return 1;
20686 /* Same line for the same file that we've seen already.
20687 As a last check, for pr 17276, only record the line if the line
20688 has never had a non-zero discriminator. */
20689 if (!line_has_non_zero_discriminator)
20690 return 1;
20691 return 0;
20692}
20693
20694/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20695 in the line table of subfile SUBFILE. */
20696
20697static void
20698dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20699 unsigned int line, CORE_ADDR address,
20700 record_line_ftype p_record_line)
20701{
20702 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20703
20704 if (dwarf_line_debug)
20705 {
20706 fprintf_unfiltered (gdb_stdlog,
20707 "Recording line %u, file %s, address %s\n",
20708 line, lbasename (subfile->name),
20709 paddress (gdbarch, address));
20710 }
20711
20712 (*p_record_line) (subfile, line, addr);
20713}
20714
20715/* Subroutine of dwarf_decode_lines_1 to simplify it.
20716 Mark the end of a set of line number records.
20717 The arguments are the same as for dwarf_record_line_1.
20718 If SUBFILE is NULL the request is ignored. */
20719
20720static void
20721dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20722 CORE_ADDR address, record_line_ftype p_record_line)
20723{
20724 if (subfile == NULL)
20725 return;
20726
20727 if (dwarf_line_debug)
20728 {
20729 fprintf_unfiltered (gdb_stdlog,
20730 "Finishing current line, file %s, address %s\n",
20731 lbasename (subfile->name),
20732 paddress (gdbarch, address));
20733 }
20734
20735 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20736}
20737
20738void
20739lnp_state_machine::record_line (bool end_sequence)
20740{
20741 if (dwarf_line_debug)
20742 {
20743 fprintf_unfiltered (gdb_stdlog,
20744 "Processing actual line %u: file %u,"
20745 " address %s, is_stmt %u, discrim %u\n",
20746 m_line, to_underlying (m_file),
20747 paddress (m_gdbarch, m_address),
20748 m_is_stmt, m_discriminator);
20749 }
20750
20751 file_entry *fe = current_file ();
20752
20753 if (fe == NULL)
20754 dwarf2_debug_line_missing_file_complaint ();
20755 /* For now we ignore lines not starting on an instruction boundary.
20756 But not when processing end_sequence for compatibility with the
20757 previous version of the code. */
20758 else if (m_op_index == 0 || end_sequence)
20759 {
20760 fe->included_p = 1;
20761 if (m_record_lines_p && m_is_stmt)
20762 {
20763 if (m_last_subfile != current_subfile || end_sequence)
20764 {
20765 dwarf_finish_line (m_gdbarch, m_last_subfile,
20766 m_address, m_record_line_callback);
20767 }
20768
20769 if (!end_sequence)
20770 {
20771 if (dwarf_record_line_p (m_line, m_last_line,
20772 m_line_has_non_zero_discriminator,
20773 m_last_subfile))
20774 {
20775 dwarf_record_line_1 (m_gdbarch, current_subfile,
20776 m_line, m_address,
20777 m_record_line_callback);
20778 }
20779 m_last_subfile = current_subfile;
20780 m_last_line = m_line;
20781 }
20782 }
20783 }
20784}
20785
20786lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20787 bool record_lines_p)
20788{
20789 m_gdbarch = arch;
20790 m_record_lines_p = record_lines_p;
20791 m_line_header = lh;
20792
20793 m_record_line_callback = ::record_line;
20794
20795 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20796 was a line entry for it so that the backend has a chance to adjust it
20797 and also record it in case it needs it. This is currently used by MIPS
20798 code, cf. `mips_adjust_dwarf2_line'. */
20799 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20800 m_is_stmt = lh->default_is_stmt;
20801 m_discriminator = 0;
20802}
20803
20804void
20805lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20806 const gdb_byte *line_ptr,
20807 CORE_ADDR lowpc, CORE_ADDR address)
20808{
20809 /* If address < lowpc then it's not a usable value, it's outside the
20810 pc range of the CU. However, we restrict the test to only address
20811 values of zero to preserve GDB's previous behaviour which is to
20812 handle the specific case of a function being GC'd by the linker. */
20813
20814 if (address == 0 && address < lowpc)
20815 {
20816 /* This line table is for a function which has been
20817 GCd by the linker. Ignore it. PR gdb/12528 */
20818
20819 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20820 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20821
20822 complaint (&symfile_complaints,
20823 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20824 line_offset, objfile_name (objfile));
20825 m_record_line_callback = noop_record_line;
20826 /* Note: record_line_callback is left as noop_record_line until
20827 we see DW_LNE_end_sequence. */
20828 }
20829}
20830
20831/* Subroutine of dwarf_decode_lines to simplify it.
20832 Process the line number information in LH.
20833 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20834 program in order to set included_p for every referenced header. */
20835
20836static void
20837dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20838 const int decode_for_pst_p, CORE_ADDR lowpc)
20839{
20840 const gdb_byte *line_ptr, *extended_end;
20841 const gdb_byte *line_end;
20842 unsigned int bytes_read, extended_len;
20843 unsigned char op_code, extended_op;
20844 CORE_ADDR baseaddr;
20845 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20846 bfd *abfd = objfile->obfd;
20847 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20848 /* True if we're recording line info (as opposed to building partial
20849 symtabs and just interested in finding include files mentioned by
20850 the line number program). */
20851 bool record_lines_p = !decode_for_pst_p;
20852
20853 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20854
20855 line_ptr = lh->statement_program_start;
20856 line_end = lh->statement_program_end;
20857
20858 /* Read the statement sequences until there's nothing left. */
20859 while (line_ptr < line_end)
20860 {
20861 /* The DWARF line number program state machine. Reset the state
20862 machine at the start of each sequence. */
20863 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20864 bool end_sequence = false;
20865
20866 if (record_lines_p)
20867 {
20868 /* Start a subfile for the current file of the state
20869 machine. */
20870 const file_entry *fe = state_machine.current_file ();
20871
20872 if (fe != NULL)
20873 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20874 }
20875
20876 /* Decode the table. */
20877 while (line_ptr < line_end && !end_sequence)
20878 {
20879 op_code = read_1_byte (abfd, line_ptr);
20880 line_ptr += 1;
20881
20882 if (op_code >= lh->opcode_base)
20883 {
20884 /* Special opcode. */
20885 state_machine.handle_special_opcode (op_code);
20886 }
20887 else switch (op_code)
20888 {
20889 case DW_LNS_extended_op:
20890 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20891 &bytes_read);
20892 line_ptr += bytes_read;
20893 extended_end = line_ptr + extended_len;
20894 extended_op = read_1_byte (abfd, line_ptr);
20895 line_ptr += 1;
20896 switch (extended_op)
20897 {
20898 case DW_LNE_end_sequence:
20899 state_machine.handle_end_sequence ();
20900 end_sequence = true;
20901 break;
20902 case DW_LNE_set_address:
20903 {
20904 CORE_ADDR address
20905 = read_address (abfd, line_ptr, cu, &bytes_read);
20906 line_ptr += bytes_read;
20907
20908 state_machine.check_line_address (cu, line_ptr,
20909 lowpc, address);
20910 state_machine.handle_set_address (baseaddr, address);
20911 }
20912 break;
20913 case DW_LNE_define_file:
20914 {
20915 const char *cur_file;
20916 unsigned int mod_time, length;
20917 dir_index dindex;
20918
20919 cur_file = read_direct_string (abfd, line_ptr,
20920 &bytes_read);
20921 line_ptr += bytes_read;
20922 dindex = (dir_index)
20923 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20924 line_ptr += bytes_read;
20925 mod_time =
20926 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20927 line_ptr += bytes_read;
20928 length =
20929 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20930 line_ptr += bytes_read;
20931 lh->add_file_name (cur_file, dindex, mod_time, length);
20932 }
20933 break;
20934 case DW_LNE_set_discriminator:
20935 {
20936 /* The discriminator is not interesting to the
20937 debugger; just ignore it. We still need to
20938 check its value though:
20939 if there are consecutive entries for the same
20940 (non-prologue) line we want to coalesce them.
20941 PR 17276. */
20942 unsigned int discr
20943 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20944 line_ptr += bytes_read;
20945
20946 state_machine.handle_set_discriminator (discr);
20947 }
20948 break;
20949 default:
20950 complaint (&symfile_complaints,
20951 _("mangled .debug_line section"));
20952 return;
20953 }
20954 /* Make sure that we parsed the extended op correctly. If e.g.
20955 we expected a different address size than the producer used,
20956 we may have read the wrong number of bytes. */
20957 if (line_ptr != extended_end)
20958 {
20959 complaint (&symfile_complaints,
20960 _("mangled .debug_line section"));
20961 return;
20962 }
20963 break;
20964 case DW_LNS_copy:
20965 state_machine.handle_copy ();
20966 break;
20967 case DW_LNS_advance_pc:
20968 {
20969 CORE_ADDR adjust
20970 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20971 line_ptr += bytes_read;
20972
20973 state_machine.handle_advance_pc (adjust);
20974 }
20975 break;
20976 case DW_LNS_advance_line:
20977 {
20978 int line_delta
20979 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20980 line_ptr += bytes_read;
20981
20982 state_machine.handle_advance_line (line_delta);
20983 }
20984 break;
20985 case DW_LNS_set_file:
20986 {
20987 file_name_index file
20988 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20989 &bytes_read);
20990 line_ptr += bytes_read;
20991
20992 state_machine.handle_set_file (file);
20993 }
20994 break;
20995 case DW_LNS_set_column:
20996 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20997 line_ptr += bytes_read;
20998 break;
20999 case DW_LNS_negate_stmt:
21000 state_machine.handle_negate_stmt ();
21001 break;
21002 case DW_LNS_set_basic_block:
21003 break;
21004 /* Add to the address register of the state machine the
21005 address increment value corresponding to special opcode
21006 255. I.e., this value is scaled by the minimum
21007 instruction length since special opcode 255 would have
21008 scaled the increment. */
21009 case DW_LNS_const_add_pc:
21010 state_machine.handle_const_add_pc ();
21011 break;
21012 case DW_LNS_fixed_advance_pc:
21013 {
21014 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21015 line_ptr += 2;
21016
21017 state_machine.handle_fixed_advance_pc (addr_adj);
21018 }
21019 break;
21020 default:
21021 {
21022 /* Unknown standard opcode, ignore it. */
21023 int i;
21024
21025 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21026 {
21027 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21028 line_ptr += bytes_read;
21029 }
21030 }
21031 }
21032 }
21033
21034 if (!end_sequence)
21035 dwarf2_debug_line_missing_end_sequence_complaint ();
21036
21037 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21038 in which case we still finish recording the last line). */
21039 state_machine.record_line (true);
21040 }
21041}
21042
21043/* Decode the Line Number Program (LNP) for the given line_header
21044 structure and CU. The actual information extracted and the type
21045 of structures created from the LNP depends on the value of PST.
21046
21047 1. If PST is NULL, then this procedure uses the data from the program
21048 to create all necessary symbol tables, and their linetables.
21049
21050 2. If PST is not NULL, this procedure reads the program to determine
21051 the list of files included by the unit represented by PST, and
21052 builds all the associated partial symbol tables.
21053
21054 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21055 It is used for relative paths in the line table.
21056 NOTE: When processing partial symtabs (pst != NULL),
21057 comp_dir == pst->dirname.
21058
21059 NOTE: It is important that psymtabs have the same file name (via strcmp)
21060 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21061 symtab we don't use it in the name of the psymtabs we create.
21062 E.g. expand_line_sal requires this when finding psymtabs to expand.
21063 A good testcase for this is mb-inline.exp.
21064
21065 LOWPC is the lowest address in CU (or 0 if not known).
21066
21067 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21068 for its PC<->lines mapping information. Otherwise only the filename
21069 table is read in. */
21070
21071static void
21072dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21073 struct dwarf2_cu *cu, struct partial_symtab *pst,
21074 CORE_ADDR lowpc, int decode_mapping)
21075{
21076 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21077 const int decode_for_pst_p = (pst != NULL);
21078
21079 if (decode_mapping)
21080 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21081
21082 if (decode_for_pst_p)
21083 {
21084 int file_index;
21085
21086 /* Now that we're done scanning the Line Header Program, we can
21087 create the psymtab of each included file. */
21088 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21089 if (lh->file_names[file_index].included_p == 1)
21090 {
21091 gdb::unique_xmalloc_ptr<char> name_holder;
21092 const char *include_name =
21093 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21094 &name_holder);
21095 if (include_name != NULL)
21096 dwarf2_create_include_psymtab (include_name, pst, objfile);
21097 }
21098 }
21099 else
21100 {
21101 /* Make sure a symtab is created for every file, even files
21102 which contain only variables (i.e. no code with associated
21103 line numbers). */
21104 struct compunit_symtab *cust = buildsym_compunit_symtab ();
21105 int i;
21106
21107 for (i = 0; i < lh->file_names.size (); i++)
21108 {
21109 file_entry &fe = lh->file_names[i];
21110
21111 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
21112
21113 if (current_subfile->symtab == NULL)
21114 {
21115 current_subfile->symtab
21116 = allocate_symtab (cust, current_subfile->name);
21117 }
21118 fe.symtab = current_subfile->symtab;
21119 }
21120 }
21121}
21122
21123/* Start a subfile for DWARF. FILENAME is the name of the file and
21124 DIRNAME the name of the source directory which contains FILENAME
21125 or NULL if not known.
21126 This routine tries to keep line numbers from identical absolute and
21127 relative file names in a common subfile.
21128
21129 Using the `list' example from the GDB testsuite, which resides in
21130 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21131 of /srcdir/list0.c yields the following debugging information for list0.c:
21132
21133 DW_AT_name: /srcdir/list0.c
21134 DW_AT_comp_dir: /compdir
21135 files.files[0].name: list0.h
21136 files.files[0].dir: /srcdir
21137 files.files[1].name: list0.c
21138 files.files[1].dir: /srcdir
21139
21140 The line number information for list0.c has to end up in a single
21141 subfile, so that `break /srcdir/list0.c:1' works as expected.
21142 start_subfile will ensure that this happens provided that we pass the
21143 concatenation of files.files[1].dir and files.files[1].name as the
21144 subfile's name. */
21145
21146static void
21147dwarf2_start_subfile (const char *filename, const char *dirname)
21148{
21149 char *copy = NULL;
21150
21151 /* In order not to lose the line information directory,
21152 we concatenate it to the filename when it makes sense.
21153 Note that the Dwarf3 standard says (speaking of filenames in line
21154 information): ``The directory index is ignored for file names
21155 that represent full path names''. Thus ignoring dirname in the
21156 `else' branch below isn't an issue. */
21157
21158 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21159 {
21160 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21161 filename = copy;
21162 }
21163
21164 start_subfile (filename);
21165
21166 if (copy != NULL)
21167 xfree (copy);
21168}
21169
21170/* Start a symtab for DWARF.
21171 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21172
21173static struct compunit_symtab *
21174dwarf2_start_symtab (struct dwarf2_cu *cu,
21175 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21176{
21177 struct compunit_symtab *cust
21178 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21179 low_pc, cu->language);
21180
21181 record_debugformat ("DWARF 2");
21182 record_producer (cu->producer);
21183
21184 /* We assume that we're processing GCC output. */
21185 processing_gcc_compilation = 2;
21186
21187 cu->processing_has_namespace_info = 0;
21188
21189 return cust;
21190}
21191
21192static void
21193var_decode_location (struct attribute *attr, struct symbol *sym,
21194 struct dwarf2_cu *cu)
21195{
21196 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21197 struct comp_unit_head *cu_header = &cu->header;
21198
21199 /* NOTE drow/2003-01-30: There used to be a comment and some special
21200 code here to turn a symbol with DW_AT_external and a
21201 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21202 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21203 with some versions of binutils) where shared libraries could have
21204 relocations against symbols in their debug information - the
21205 minimal symbol would have the right address, but the debug info
21206 would not. It's no longer necessary, because we will explicitly
21207 apply relocations when we read in the debug information now. */
21208
21209 /* A DW_AT_location attribute with no contents indicates that a
21210 variable has been optimized away. */
21211 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21212 {
21213 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21214 return;
21215 }
21216
21217 /* Handle one degenerate form of location expression specially, to
21218 preserve GDB's previous behavior when section offsets are
21219 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21220 then mark this symbol as LOC_STATIC. */
21221
21222 if (attr_form_is_block (attr)
21223 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21224 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21225 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21226 && (DW_BLOCK (attr)->size
21227 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21228 {
21229 unsigned int dummy;
21230
21231 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21232 SYMBOL_VALUE_ADDRESS (sym) =
21233 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21234 else
21235 SYMBOL_VALUE_ADDRESS (sym) =
21236 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21237 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21238 fixup_symbol_section (sym, objfile);
21239 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21240 SYMBOL_SECTION (sym));
21241 return;
21242 }
21243
21244 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21245 expression evaluator, and use LOC_COMPUTED only when necessary
21246 (i.e. when the value of a register or memory location is
21247 referenced, or a thread-local block, etc.). Then again, it might
21248 not be worthwhile. I'm assuming that it isn't unless performance
21249 or memory numbers show me otherwise. */
21250
21251 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21252
21253 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21254 cu->has_loclist = 1;
21255}
21256
21257/* Given a pointer to a DWARF information entry, figure out if we need
21258 to make a symbol table entry for it, and if so, create a new entry
21259 and return a pointer to it.
21260 If TYPE is NULL, determine symbol type from the die, otherwise
21261 used the passed type.
21262 If SPACE is not NULL, use it to hold the new symbol. If it is
21263 NULL, allocate a new symbol on the objfile's obstack. */
21264
21265static struct symbol *
21266new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21267 struct symbol *space)
21268{
21269 struct dwarf2_per_objfile *dwarf2_per_objfile
21270 = cu->per_cu->dwarf2_per_objfile;
21271 struct objfile *objfile = dwarf2_per_objfile->objfile;
21272 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21273 struct symbol *sym = NULL;
21274 const char *name;
21275 struct attribute *attr = NULL;
21276 struct attribute *attr2 = NULL;
21277 CORE_ADDR baseaddr;
21278 struct pending **list_to_add = NULL;
21279
21280 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21281
21282 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21283
21284 name = dwarf2_name (die, cu);
21285 if (name)
21286 {
21287 const char *linkagename;
21288 int suppress_add = 0;
21289
21290 if (space)
21291 sym = space;
21292 else
21293 sym = allocate_symbol (objfile);
21294 OBJSTAT (objfile, n_syms++);
21295
21296 /* Cache this symbol's name and the name's demangled form (if any). */
21297 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21298 linkagename = dwarf2_physname (name, die, cu);
21299 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21300
21301 /* Fortran does not have mangling standard and the mangling does differ
21302 between gfortran, iFort etc. */
21303 if (cu->language == language_fortran
21304 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21305 symbol_set_demangled_name (&(sym->ginfo),
21306 dwarf2_full_name (name, die, cu),
21307 NULL);
21308
21309 /* Default assumptions.
21310 Use the passed type or decode it from the die. */
21311 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21312 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21313 if (type != NULL)
21314 SYMBOL_TYPE (sym) = type;
21315 else
21316 SYMBOL_TYPE (sym) = die_type (die, cu);
21317 attr = dwarf2_attr (die,
21318 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21319 cu);
21320 if (attr)
21321 {
21322 SYMBOL_LINE (sym) = DW_UNSND (attr);
21323 }
21324
21325 attr = dwarf2_attr (die,
21326 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21327 cu);
21328 if (attr)
21329 {
21330 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21331 struct file_entry *fe;
21332
21333 if (cu->line_header != NULL)
21334 fe = cu->line_header->file_name_at (file_index);
21335 else
21336 fe = NULL;
21337
21338 if (fe == NULL)
21339 complaint (&symfile_complaints,
21340 _("file index out of range"));
21341 else
21342 symbol_set_symtab (sym, fe->symtab);
21343 }
21344
21345 switch (die->tag)
21346 {
21347 case DW_TAG_label:
21348 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21349 if (attr)
21350 {
21351 CORE_ADDR addr;
21352
21353 addr = attr_value_as_address (attr);
21354 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21355 SYMBOL_VALUE_ADDRESS (sym) = addr;
21356 }
21357 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21358 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21359 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21360 add_symbol_to_list (sym, cu->list_in_scope);
21361 break;
21362 case DW_TAG_subprogram:
21363 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21364 finish_block. */
21365 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21366 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21367 if ((attr2 && (DW_UNSND (attr2) != 0))
21368 || cu->language == language_ada)
21369 {
21370 /* Subprograms marked external are stored as a global symbol.
21371 Ada subprograms, whether marked external or not, are always
21372 stored as a global symbol, because we want to be able to
21373 access them globally. For instance, we want to be able
21374 to break on a nested subprogram without having to
21375 specify the context. */
21376 list_to_add = &global_symbols;
21377 }
21378 else
21379 {
21380 list_to_add = cu->list_in_scope;
21381 }
21382 break;
21383 case DW_TAG_inlined_subroutine:
21384 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21385 finish_block. */
21386 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21387 SYMBOL_INLINED (sym) = 1;
21388 list_to_add = cu->list_in_scope;
21389 break;
21390 case DW_TAG_template_value_param:
21391 suppress_add = 1;
21392 /* Fall through. */
21393 case DW_TAG_constant:
21394 case DW_TAG_variable:
21395 case DW_TAG_member:
21396 /* Compilation with minimal debug info may result in
21397 variables with missing type entries. Change the
21398 misleading `void' type to something sensible. */
21399 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21400 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21401
21402 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21403 /* In the case of DW_TAG_member, we should only be called for
21404 static const members. */
21405 if (die->tag == DW_TAG_member)
21406 {
21407 /* dwarf2_add_field uses die_is_declaration,
21408 so we do the same. */
21409 gdb_assert (die_is_declaration (die, cu));
21410 gdb_assert (attr);
21411 }
21412 if (attr)
21413 {
21414 dwarf2_const_value (attr, sym, cu);
21415 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21416 if (!suppress_add)
21417 {
21418 if (attr2 && (DW_UNSND (attr2) != 0))
21419 list_to_add = &global_symbols;
21420 else
21421 list_to_add = cu->list_in_scope;
21422 }
21423 break;
21424 }
21425 attr = dwarf2_attr (die, DW_AT_location, cu);
21426 if (attr)
21427 {
21428 var_decode_location (attr, sym, cu);
21429 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21430
21431 /* Fortran explicitly imports any global symbols to the local
21432 scope by DW_TAG_common_block. */
21433 if (cu->language == language_fortran && die->parent
21434 && die->parent->tag == DW_TAG_common_block)
21435 attr2 = NULL;
21436
21437 if (SYMBOL_CLASS (sym) == LOC_STATIC
21438 && SYMBOL_VALUE_ADDRESS (sym) == 0
21439 && !dwarf2_per_objfile->has_section_at_zero)
21440 {
21441 /* When a static variable is eliminated by the linker,
21442 the corresponding debug information is not stripped
21443 out, but the variable address is set to null;
21444 do not add such variables into symbol table. */
21445 }
21446 else if (attr2 && (DW_UNSND (attr2) != 0))
21447 {
21448 /* Workaround gfortran PR debug/40040 - it uses
21449 DW_AT_location for variables in -fPIC libraries which may
21450 get overriden by other libraries/executable and get
21451 a different address. Resolve it by the minimal symbol
21452 which may come from inferior's executable using copy
21453 relocation. Make this workaround only for gfortran as for
21454 other compilers GDB cannot guess the minimal symbol
21455 Fortran mangling kind. */
21456 if (cu->language == language_fortran && die->parent
21457 && die->parent->tag == DW_TAG_module
21458 && cu->producer
21459 && startswith (cu->producer, "GNU Fortran"))
21460 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21461
21462 /* A variable with DW_AT_external is never static,
21463 but it may be block-scoped. */
21464 list_to_add = (cu->list_in_scope == &file_symbols
21465 ? &global_symbols : cu->list_in_scope);
21466 }
21467 else
21468 list_to_add = cu->list_in_scope;
21469 }
21470 else
21471 {
21472 /* We do not know the address of this symbol.
21473 If it is an external symbol and we have type information
21474 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21475 The address of the variable will then be determined from
21476 the minimal symbol table whenever the variable is
21477 referenced. */
21478 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21479
21480 /* Fortran explicitly imports any global symbols to the local
21481 scope by DW_TAG_common_block. */
21482 if (cu->language == language_fortran && die->parent
21483 && die->parent->tag == DW_TAG_common_block)
21484 {
21485 /* SYMBOL_CLASS doesn't matter here because
21486 read_common_block is going to reset it. */
21487 if (!suppress_add)
21488 list_to_add = cu->list_in_scope;
21489 }
21490 else if (attr2 && (DW_UNSND (attr2) != 0)
21491 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21492 {
21493 /* A variable with DW_AT_external is never static, but it
21494 may be block-scoped. */
21495 list_to_add = (cu->list_in_scope == &file_symbols
21496 ? &global_symbols : cu->list_in_scope);
21497
21498 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21499 }
21500 else if (!die_is_declaration (die, cu))
21501 {
21502 /* Use the default LOC_OPTIMIZED_OUT class. */
21503 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21504 if (!suppress_add)
21505 list_to_add = cu->list_in_scope;
21506 }
21507 }
21508 break;
21509 case DW_TAG_formal_parameter:
21510 /* If we are inside a function, mark this as an argument. If
21511 not, we might be looking at an argument to an inlined function
21512 when we do not have enough information to show inlined frames;
21513 pretend it's a local variable in that case so that the user can
21514 still see it. */
21515 if (context_stack_depth > 0
21516 && context_stack[context_stack_depth - 1].name != NULL)
21517 SYMBOL_IS_ARGUMENT (sym) = 1;
21518 attr = dwarf2_attr (die, DW_AT_location, cu);
21519 if (attr)
21520 {
21521 var_decode_location (attr, sym, cu);
21522 }
21523 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21524 if (attr)
21525 {
21526 dwarf2_const_value (attr, sym, cu);
21527 }
21528
21529 list_to_add = cu->list_in_scope;
21530 break;
21531 case DW_TAG_unspecified_parameters:
21532 /* From varargs functions; gdb doesn't seem to have any
21533 interest in this information, so just ignore it for now.
21534 (FIXME?) */
21535 break;
21536 case DW_TAG_template_type_param:
21537 suppress_add = 1;
21538 /* Fall through. */
21539 case DW_TAG_class_type:
21540 case DW_TAG_interface_type:
21541 case DW_TAG_structure_type:
21542 case DW_TAG_union_type:
21543 case DW_TAG_set_type:
21544 case DW_TAG_enumeration_type:
21545 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21546 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21547
21548 {
21549 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21550 really ever be static objects: otherwise, if you try
21551 to, say, break of a class's method and you're in a file
21552 which doesn't mention that class, it won't work unless
21553 the check for all static symbols in lookup_symbol_aux
21554 saves you. See the OtherFileClass tests in
21555 gdb.c++/namespace.exp. */
21556
21557 if (!suppress_add)
21558 {
21559 list_to_add = (cu->list_in_scope == &file_symbols
21560 && cu->language == language_cplus
21561 ? &global_symbols : cu->list_in_scope);
21562
21563 /* The semantics of C++ state that "struct foo {
21564 ... }" also defines a typedef for "foo". */
21565 if (cu->language == language_cplus
21566 || cu->language == language_ada
21567 || cu->language == language_d
21568 || cu->language == language_rust)
21569 {
21570 /* The symbol's name is already allocated along
21571 with this objfile, so we don't need to
21572 duplicate it for the type. */
21573 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21574 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21575 }
21576 }
21577 }
21578 break;
21579 case DW_TAG_typedef:
21580 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21581 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21582 list_to_add = cu->list_in_scope;
21583 break;
21584 case DW_TAG_base_type:
21585 case DW_TAG_subrange_type:
21586 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21587 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21588 list_to_add = cu->list_in_scope;
21589 break;
21590 case DW_TAG_enumerator:
21591 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21592 if (attr)
21593 {
21594 dwarf2_const_value (attr, sym, cu);
21595 }
21596 {
21597 /* NOTE: carlton/2003-11-10: See comment above in the
21598 DW_TAG_class_type, etc. block. */
21599
21600 list_to_add = (cu->list_in_scope == &file_symbols
21601 && cu->language == language_cplus
21602 ? &global_symbols : cu->list_in_scope);
21603 }
21604 break;
21605 case DW_TAG_imported_declaration:
21606 case DW_TAG_namespace:
21607 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21608 list_to_add = &global_symbols;
21609 break;
21610 case DW_TAG_module:
21611 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21612 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21613 list_to_add = &global_symbols;
21614 break;
21615 case DW_TAG_common_block:
21616 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21617 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21618 add_symbol_to_list (sym, cu->list_in_scope);
21619 break;
21620 default:
21621 /* Not a tag we recognize. Hopefully we aren't processing
21622 trash data, but since we must specifically ignore things
21623 we don't recognize, there is nothing else we should do at
21624 this point. */
21625 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
21626 dwarf_tag_name (die->tag));
21627 break;
21628 }
21629
21630 if (suppress_add)
21631 {
21632 sym->hash_next = objfile->template_symbols;
21633 objfile->template_symbols = sym;
21634 list_to_add = NULL;
21635 }
21636
21637 if (list_to_add != NULL)
21638 add_symbol_to_list (sym, list_to_add);
21639
21640 /* For the benefit of old versions of GCC, check for anonymous
21641 namespaces based on the demangled name. */
21642 if (!cu->processing_has_namespace_info
21643 && cu->language == language_cplus)
21644 cp_scan_for_anonymous_namespaces (sym, objfile);
21645 }
21646 return (sym);
21647}
21648
21649/* Given an attr with a DW_FORM_dataN value in host byte order,
21650 zero-extend it as appropriate for the symbol's type. The DWARF
21651 standard (v4) is not entirely clear about the meaning of using
21652 DW_FORM_dataN for a constant with a signed type, where the type is
21653 wider than the data. The conclusion of a discussion on the DWARF
21654 list was that this is unspecified. We choose to always zero-extend
21655 because that is the interpretation long in use by GCC. */
21656
21657static gdb_byte *
21658dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21659 struct dwarf2_cu *cu, LONGEST *value, int bits)
21660{
21661 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21662 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21663 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21664 LONGEST l = DW_UNSND (attr);
21665
21666 if (bits < sizeof (*value) * 8)
21667 {
21668 l &= ((LONGEST) 1 << bits) - 1;
21669 *value = l;
21670 }
21671 else if (bits == sizeof (*value) * 8)
21672 *value = l;
21673 else
21674 {
21675 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21676 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21677 return bytes;
21678 }
21679
21680 return NULL;
21681}
21682
21683/* Read a constant value from an attribute. Either set *VALUE, or if
21684 the value does not fit in *VALUE, set *BYTES - either already
21685 allocated on the objfile obstack, or newly allocated on OBSTACK,
21686 or, set *BATON, if we translated the constant to a location
21687 expression. */
21688
21689static void
21690dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21691 const char *name, struct obstack *obstack,
21692 struct dwarf2_cu *cu,
21693 LONGEST *value, const gdb_byte **bytes,
21694 struct dwarf2_locexpr_baton **baton)
21695{
21696 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21697 struct comp_unit_head *cu_header = &cu->header;
21698 struct dwarf_block *blk;
21699 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21700 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21701
21702 *value = 0;
21703 *bytes = NULL;
21704 *baton = NULL;
21705
21706 switch (attr->form)
21707 {
21708 case DW_FORM_addr:
21709 case DW_FORM_GNU_addr_index:
21710 {
21711 gdb_byte *data;
21712
21713 if (TYPE_LENGTH (type) != cu_header->addr_size)
21714 dwarf2_const_value_length_mismatch_complaint (name,
21715 cu_header->addr_size,
21716 TYPE_LENGTH (type));
21717 /* Symbols of this form are reasonably rare, so we just
21718 piggyback on the existing location code rather than writing
21719 a new implementation of symbol_computed_ops. */
21720 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21721 (*baton)->per_cu = cu->per_cu;
21722 gdb_assert ((*baton)->per_cu);
21723
21724 (*baton)->size = 2 + cu_header->addr_size;
21725 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21726 (*baton)->data = data;
21727
21728 data[0] = DW_OP_addr;
21729 store_unsigned_integer (&data[1], cu_header->addr_size,
21730 byte_order, DW_ADDR (attr));
21731 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21732 }
21733 break;
21734 case DW_FORM_string:
21735 case DW_FORM_strp:
21736 case DW_FORM_GNU_str_index:
21737 case DW_FORM_GNU_strp_alt:
21738 /* DW_STRING is already allocated on the objfile obstack, point
21739 directly to it. */
21740 *bytes = (const gdb_byte *) DW_STRING (attr);
21741 break;
21742 case DW_FORM_block1:
21743 case DW_FORM_block2:
21744 case DW_FORM_block4:
21745 case DW_FORM_block:
21746 case DW_FORM_exprloc:
21747 case DW_FORM_data16:
21748 blk = DW_BLOCK (attr);
21749 if (TYPE_LENGTH (type) != blk->size)
21750 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21751 TYPE_LENGTH (type));
21752 *bytes = blk->data;
21753 break;
21754
21755 /* The DW_AT_const_value attributes are supposed to carry the
21756 symbol's value "represented as it would be on the target
21757 architecture." By the time we get here, it's already been
21758 converted to host endianness, so we just need to sign- or
21759 zero-extend it as appropriate. */
21760 case DW_FORM_data1:
21761 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21762 break;
21763 case DW_FORM_data2:
21764 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21765 break;
21766 case DW_FORM_data4:
21767 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21768 break;
21769 case DW_FORM_data8:
21770 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21771 break;
21772
21773 case DW_FORM_sdata:
21774 case DW_FORM_implicit_const:
21775 *value = DW_SND (attr);
21776 break;
21777
21778 case DW_FORM_udata:
21779 *value = DW_UNSND (attr);
21780 break;
21781
21782 default:
21783 complaint (&symfile_complaints,
21784 _("unsupported const value attribute form: '%s'"),
21785 dwarf_form_name (attr->form));
21786 *value = 0;
21787 break;
21788 }
21789}
21790
21791
21792/* Copy constant value from an attribute to a symbol. */
21793
21794static void
21795dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21796 struct dwarf2_cu *cu)
21797{
21798 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21799 LONGEST value;
21800 const gdb_byte *bytes;
21801 struct dwarf2_locexpr_baton *baton;
21802
21803 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21804 SYMBOL_PRINT_NAME (sym),
21805 &objfile->objfile_obstack, cu,
21806 &value, &bytes, &baton);
21807
21808 if (baton != NULL)
21809 {
21810 SYMBOL_LOCATION_BATON (sym) = baton;
21811 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21812 }
21813 else if (bytes != NULL)
21814 {
21815 SYMBOL_VALUE_BYTES (sym) = bytes;
21816 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21817 }
21818 else
21819 {
21820 SYMBOL_VALUE (sym) = value;
21821 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21822 }
21823}
21824
21825/* Return the type of the die in question using its DW_AT_type attribute. */
21826
21827static struct type *
21828die_type (struct die_info *die, struct dwarf2_cu *cu)
21829{
21830 struct attribute *type_attr;
21831
21832 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21833 if (!type_attr)
21834 {
21835 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21836 /* A missing DW_AT_type represents a void type. */
21837 return objfile_type (objfile)->builtin_void;
21838 }
21839
21840 return lookup_die_type (die, type_attr, cu);
21841}
21842
21843/* True iff CU's producer generates GNAT Ada auxiliary information
21844 that allows to find parallel types through that information instead
21845 of having to do expensive parallel lookups by type name. */
21846
21847static int
21848need_gnat_info (struct dwarf2_cu *cu)
21849{
21850 /* Assume that the Ada compiler was GNAT, which always produces
21851 the auxiliary information. */
21852 return (cu->language == language_ada);
21853}
21854
21855/* Return the auxiliary type of the die in question using its
21856 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21857 attribute is not present. */
21858
21859static struct type *
21860die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21861{
21862 struct attribute *type_attr;
21863
21864 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21865 if (!type_attr)
21866 return NULL;
21867
21868 return lookup_die_type (die, type_attr, cu);
21869}
21870
21871/* If DIE has a descriptive_type attribute, then set the TYPE's
21872 descriptive type accordingly. */
21873
21874static void
21875set_descriptive_type (struct type *type, struct die_info *die,
21876 struct dwarf2_cu *cu)
21877{
21878 struct type *descriptive_type = die_descriptive_type (die, cu);
21879
21880 if (descriptive_type)
21881 {
21882 ALLOCATE_GNAT_AUX_TYPE (type);
21883 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21884 }
21885}
21886
21887/* Return the containing type of the die in question using its
21888 DW_AT_containing_type attribute. */
21889
21890static struct type *
21891die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21892{
21893 struct attribute *type_attr;
21894 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21895
21896 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21897 if (!type_attr)
21898 error (_("Dwarf Error: Problem turning containing type into gdb type "
21899 "[in module %s]"), objfile_name (objfile));
21900
21901 return lookup_die_type (die, type_attr, cu);
21902}
21903
21904/* Return an error marker type to use for the ill formed type in DIE/CU. */
21905
21906static struct type *
21907build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21908{
21909 struct dwarf2_per_objfile *dwarf2_per_objfile
21910 = cu->per_cu->dwarf2_per_objfile;
21911 struct objfile *objfile = dwarf2_per_objfile->objfile;
21912 char *message, *saved;
21913
21914 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21915 objfile_name (objfile),
21916 sect_offset_str (cu->header.sect_off),
21917 sect_offset_str (die->sect_off));
21918 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21919 message, strlen (message));
21920 xfree (message);
21921
21922 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21923}
21924
21925/* Look up the type of DIE in CU using its type attribute ATTR.
21926 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21927 DW_AT_containing_type.
21928 If there is no type substitute an error marker. */
21929
21930static struct type *
21931lookup_die_type (struct die_info *die, const struct attribute *attr,
21932 struct dwarf2_cu *cu)
21933{
21934 struct dwarf2_per_objfile *dwarf2_per_objfile
21935 = cu->per_cu->dwarf2_per_objfile;
21936 struct objfile *objfile = dwarf2_per_objfile->objfile;
21937 struct type *this_type;
21938
21939 gdb_assert (attr->name == DW_AT_type
21940 || attr->name == DW_AT_GNAT_descriptive_type
21941 || attr->name == DW_AT_containing_type);
21942
21943 /* First see if we have it cached. */
21944
21945 if (attr->form == DW_FORM_GNU_ref_alt)
21946 {
21947 struct dwarf2_per_cu_data *per_cu;
21948 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21949
21950 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21951 dwarf2_per_objfile);
21952 this_type = get_die_type_at_offset (sect_off, per_cu);
21953 }
21954 else if (attr_form_is_ref (attr))
21955 {
21956 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21957
21958 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21959 }
21960 else if (attr->form == DW_FORM_ref_sig8)
21961 {
21962 ULONGEST signature = DW_SIGNATURE (attr);
21963
21964 return get_signatured_type (die, signature, cu);
21965 }
21966 else
21967 {
21968 complaint (&symfile_complaints,
21969 _("Dwarf Error: Bad type attribute %s in DIE"
21970 " at %s [in module %s]"),
21971 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21972 objfile_name (objfile));
21973 return build_error_marker_type (cu, die);
21974 }
21975
21976 /* If not cached we need to read it in. */
21977
21978 if (this_type == NULL)
21979 {
21980 struct die_info *type_die = NULL;
21981 struct dwarf2_cu *type_cu = cu;
21982
21983 if (attr_form_is_ref (attr))
21984 type_die = follow_die_ref (die, attr, &type_cu);
21985 if (type_die == NULL)
21986 return build_error_marker_type (cu, die);
21987 /* If we find the type now, it's probably because the type came
21988 from an inter-CU reference and the type's CU got expanded before
21989 ours. */
21990 this_type = read_type_die (type_die, type_cu);
21991 }
21992
21993 /* If we still don't have a type use an error marker. */
21994
21995 if (this_type == NULL)
21996 return build_error_marker_type (cu, die);
21997
21998 return this_type;
21999}
22000
22001/* Return the type in DIE, CU.
22002 Returns NULL for invalid types.
22003
22004 This first does a lookup in die_type_hash,
22005 and only reads the die in if necessary.
22006
22007 NOTE: This can be called when reading in partial or full symbols. */
22008
22009static struct type *
22010read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22011{
22012 struct type *this_type;
22013
22014 this_type = get_die_type (die, cu);
22015 if (this_type)
22016 return this_type;
22017
22018 return read_type_die_1 (die, cu);
22019}
22020
22021/* Read the type in DIE, CU.
22022 Returns NULL for invalid types. */
22023
22024static struct type *
22025read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22026{
22027 struct type *this_type = NULL;
22028
22029 switch (die->tag)
22030 {
22031 case DW_TAG_class_type:
22032 case DW_TAG_interface_type:
22033 case DW_TAG_structure_type:
22034 case DW_TAG_union_type:
22035 this_type = read_structure_type (die, cu);
22036 break;
22037 case DW_TAG_enumeration_type:
22038 this_type = read_enumeration_type (die, cu);
22039 break;
22040 case DW_TAG_subprogram:
22041 case DW_TAG_subroutine_type:
22042 case DW_TAG_inlined_subroutine:
22043 this_type = read_subroutine_type (die, cu);
22044 break;
22045 case DW_TAG_array_type:
22046 this_type = read_array_type (die, cu);
22047 break;
22048 case DW_TAG_set_type:
22049 this_type = read_set_type (die, cu);
22050 break;
22051 case DW_TAG_pointer_type:
22052 this_type = read_tag_pointer_type (die, cu);
22053 break;
22054 case DW_TAG_ptr_to_member_type:
22055 this_type = read_tag_ptr_to_member_type (die, cu);
22056 break;
22057 case DW_TAG_reference_type:
22058 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22059 break;
22060 case DW_TAG_rvalue_reference_type:
22061 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22062 break;
22063 case DW_TAG_const_type:
22064 this_type = read_tag_const_type (die, cu);
22065 break;
22066 case DW_TAG_volatile_type:
22067 this_type = read_tag_volatile_type (die, cu);
22068 break;
22069 case DW_TAG_restrict_type:
22070 this_type = read_tag_restrict_type (die, cu);
22071 break;
22072 case DW_TAG_string_type:
22073 this_type = read_tag_string_type (die, cu);
22074 break;
22075 case DW_TAG_typedef:
22076 this_type = read_typedef (die, cu);
22077 break;
22078 case DW_TAG_subrange_type:
22079 this_type = read_subrange_type (die, cu);
22080 break;
22081 case DW_TAG_base_type:
22082 this_type = read_base_type (die, cu);
22083 break;
22084 case DW_TAG_unspecified_type:
22085 this_type = read_unspecified_type (die, cu);
22086 break;
22087 case DW_TAG_namespace:
22088 this_type = read_namespace_type (die, cu);
22089 break;
22090 case DW_TAG_module:
22091 this_type = read_module_type (die, cu);
22092 break;
22093 case DW_TAG_atomic_type:
22094 this_type = read_tag_atomic_type (die, cu);
22095 break;
22096 default:
22097 complaint (&symfile_complaints,
22098 _("unexpected tag in read_type_die: '%s'"),
22099 dwarf_tag_name (die->tag));
22100 break;
22101 }
22102
22103 return this_type;
22104}
22105
22106/* See if we can figure out if the class lives in a namespace. We do
22107 this by looking for a member function; its demangled name will
22108 contain namespace info, if there is any.
22109 Return the computed name or NULL.
22110 Space for the result is allocated on the objfile's obstack.
22111 This is the full-die version of guess_partial_die_structure_name.
22112 In this case we know DIE has no useful parent. */
22113
22114static char *
22115guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22116{
22117 struct die_info *spec_die;
22118 struct dwarf2_cu *spec_cu;
22119 struct die_info *child;
22120 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22121
22122 spec_cu = cu;
22123 spec_die = die_specification (die, &spec_cu);
22124 if (spec_die != NULL)
22125 {
22126 die = spec_die;
22127 cu = spec_cu;
22128 }
22129
22130 for (child = die->child;
22131 child != NULL;
22132 child = child->sibling)
22133 {
22134 if (child->tag == DW_TAG_subprogram)
22135 {
22136 const char *linkage_name = dw2_linkage_name (child, cu);
22137
22138 if (linkage_name != NULL)
22139 {
22140 char *actual_name
22141 = language_class_name_from_physname (cu->language_defn,
22142 linkage_name);
22143 char *name = NULL;
22144
22145 if (actual_name != NULL)
22146 {
22147 const char *die_name = dwarf2_name (die, cu);
22148
22149 if (die_name != NULL
22150 && strcmp (die_name, actual_name) != 0)
22151 {
22152 /* Strip off the class name from the full name.
22153 We want the prefix. */
22154 int die_name_len = strlen (die_name);
22155 int actual_name_len = strlen (actual_name);
22156
22157 /* Test for '::' as a sanity check. */
22158 if (actual_name_len > die_name_len + 2
22159 && actual_name[actual_name_len
22160 - die_name_len - 1] == ':')
22161 name = (char *) obstack_copy0 (
22162 &objfile->per_bfd->storage_obstack,
22163 actual_name, actual_name_len - die_name_len - 2);
22164 }
22165 }
22166 xfree (actual_name);
22167 return name;
22168 }
22169 }
22170 }
22171
22172 return NULL;
22173}
22174
22175/* GCC might emit a nameless typedef that has a linkage name. Determine the
22176 prefix part in such case. See
22177 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22178
22179static const char *
22180anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22181{
22182 struct attribute *attr;
22183 const char *base;
22184
22185 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22186 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22187 return NULL;
22188
22189 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22190 return NULL;
22191
22192 attr = dw2_linkage_name_attr (die, cu);
22193 if (attr == NULL || DW_STRING (attr) == NULL)
22194 return NULL;
22195
22196 /* dwarf2_name had to be already called. */
22197 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22198
22199 /* Strip the base name, keep any leading namespaces/classes. */
22200 base = strrchr (DW_STRING (attr), ':');
22201 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22202 return "";
22203
22204 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22205 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22206 DW_STRING (attr),
22207 &base[-1] - DW_STRING (attr));
22208}
22209
22210/* Return the name of the namespace/class that DIE is defined within,
22211 or "" if we can't tell. The caller should not xfree the result.
22212
22213 For example, if we're within the method foo() in the following
22214 code:
22215
22216 namespace N {
22217 class C {
22218 void foo () {
22219 }
22220 };
22221 }
22222
22223 then determine_prefix on foo's die will return "N::C". */
22224
22225static const char *
22226determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22227{
22228 struct dwarf2_per_objfile *dwarf2_per_objfile
22229 = cu->per_cu->dwarf2_per_objfile;
22230 struct die_info *parent, *spec_die;
22231 struct dwarf2_cu *spec_cu;
22232 struct type *parent_type;
22233 const char *retval;
22234
22235 if (cu->language != language_cplus
22236 && cu->language != language_fortran && cu->language != language_d
22237 && cu->language != language_rust)
22238 return "";
22239
22240 retval = anonymous_struct_prefix (die, cu);
22241 if (retval)
22242 return retval;
22243
22244 /* We have to be careful in the presence of DW_AT_specification.
22245 For example, with GCC 3.4, given the code
22246
22247 namespace N {
22248 void foo() {
22249 // Definition of N::foo.
22250 }
22251 }
22252
22253 then we'll have a tree of DIEs like this:
22254
22255 1: DW_TAG_compile_unit
22256 2: DW_TAG_namespace // N
22257 3: DW_TAG_subprogram // declaration of N::foo
22258 4: DW_TAG_subprogram // definition of N::foo
22259 DW_AT_specification // refers to die #3
22260
22261 Thus, when processing die #4, we have to pretend that we're in
22262 the context of its DW_AT_specification, namely the contex of die
22263 #3. */
22264 spec_cu = cu;
22265 spec_die = die_specification (die, &spec_cu);
22266 if (spec_die == NULL)
22267 parent = die->parent;
22268 else
22269 {
22270 parent = spec_die->parent;
22271 cu = spec_cu;
22272 }
22273
22274 if (parent == NULL)
22275 return "";
22276 else if (parent->building_fullname)
22277 {
22278 const char *name;
22279 const char *parent_name;
22280
22281 /* It has been seen on RealView 2.2 built binaries,
22282 DW_TAG_template_type_param types actually _defined_ as
22283 children of the parent class:
22284
22285 enum E {};
22286 template class <class Enum> Class{};
22287 Class<enum E> class_e;
22288
22289 1: DW_TAG_class_type (Class)
22290 2: DW_TAG_enumeration_type (E)
22291 3: DW_TAG_enumerator (enum1:0)
22292 3: DW_TAG_enumerator (enum2:1)
22293 ...
22294 2: DW_TAG_template_type_param
22295 DW_AT_type DW_FORM_ref_udata (E)
22296
22297 Besides being broken debug info, it can put GDB into an
22298 infinite loop. Consider:
22299
22300 When we're building the full name for Class<E>, we'll start
22301 at Class, and go look over its template type parameters,
22302 finding E. We'll then try to build the full name of E, and
22303 reach here. We're now trying to build the full name of E,
22304 and look over the parent DIE for containing scope. In the
22305 broken case, if we followed the parent DIE of E, we'd again
22306 find Class, and once again go look at its template type
22307 arguments, etc., etc. Simply don't consider such parent die
22308 as source-level parent of this die (it can't be, the language
22309 doesn't allow it), and break the loop here. */
22310 name = dwarf2_name (die, cu);
22311 parent_name = dwarf2_name (parent, cu);
22312 complaint (&symfile_complaints,
22313 _("template param type '%s' defined within parent '%s'"),
22314 name ? name : "<unknown>",
22315 parent_name ? parent_name : "<unknown>");
22316 return "";
22317 }
22318 else
22319 switch (parent->tag)
22320 {
22321 case DW_TAG_namespace:
22322 parent_type = read_type_die (parent, cu);
22323 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22324 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22325 Work around this problem here. */
22326 if (cu->language == language_cplus
22327 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22328 return "";
22329 /* We give a name to even anonymous namespaces. */
22330 return TYPE_TAG_NAME (parent_type);
22331 case DW_TAG_class_type:
22332 case DW_TAG_interface_type:
22333 case DW_TAG_structure_type:
22334 case DW_TAG_union_type:
22335 case DW_TAG_module:
22336 parent_type = read_type_die (parent, cu);
22337 if (TYPE_TAG_NAME (parent_type) != NULL)
22338 return TYPE_TAG_NAME (parent_type);
22339 else
22340 /* An anonymous structure is only allowed non-static data
22341 members; no typedefs, no member functions, et cetera.
22342 So it does not need a prefix. */
22343 return "";
22344 case DW_TAG_compile_unit:
22345 case DW_TAG_partial_unit:
22346 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22347 if (cu->language == language_cplus
22348 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22349 && die->child != NULL
22350 && (die->tag == DW_TAG_class_type
22351 || die->tag == DW_TAG_structure_type
22352 || die->tag == DW_TAG_union_type))
22353 {
22354 char *name = guess_full_die_structure_name (die, cu);
22355 if (name != NULL)
22356 return name;
22357 }
22358 return "";
22359 case DW_TAG_enumeration_type:
22360 parent_type = read_type_die (parent, cu);
22361 if (TYPE_DECLARED_CLASS (parent_type))
22362 {
22363 if (TYPE_TAG_NAME (parent_type) != NULL)
22364 return TYPE_TAG_NAME (parent_type);
22365 return "";
22366 }
22367 /* Fall through. */
22368 default:
22369 return determine_prefix (parent, cu);
22370 }
22371}
22372
22373/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22374 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22375 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22376 an obconcat, otherwise allocate storage for the result. The CU argument is
22377 used to determine the language and hence, the appropriate separator. */
22378
22379#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22380
22381static char *
22382typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22383 int physname, struct dwarf2_cu *cu)
22384{
22385 const char *lead = "";
22386 const char *sep;
22387
22388 if (suffix == NULL || suffix[0] == '\0'
22389 || prefix == NULL || prefix[0] == '\0')
22390 sep = "";
22391 else if (cu->language == language_d)
22392 {
22393 /* For D, the 'main' function could be defined in any module, but it
22394 should never be prefixed. */
22395 if (strcmp (suffix, "D main") == 0)
22396 {
22397 prefix = "";
22398 sep = "";
22399 }
22400 else
22401 sep = ".";
22402 }
22403 else if (cu->language == language_fortran && physname)
22404 {
22405 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22406 DW_AT_MIPS_linkage_name is preferred and used instead. */
22407
22408 lead = "__";
22409 sep = "_MOD_";
22410 }
22411 else
22412 sep = "::";
22413
22414 if (prefix == NULL)
22415 prefix = "";
22416 if (suffix == NULL)
22417 suffix = "";
22418
22419 if (obs == NULL)
22420 {
22421 char *retval
22422 = ((char *)
22423 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22424
22425 strcpy (retval, lead);
22426 strcat (retval, prefix);
22427 strcat (retval, sep);
22428 strcat (retval, suffix);
22429 return retval;
22430 }
22431 else
22432 {
22433 /* We have an obstack. */
22434 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22435 }
22436}
22437
22438/* Return sibling of die, NULL if no sibling. */
22439
22440static struct die_info *
22441sibling_die (struct die_info *die)
22442{
22443 return die->sibling;
22444}
22445
22446/* Get name of a die, return NULL if not found. */
22447
22448static const char *
22449dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22450 struct obstack *obstack)
22451{
22452 if (name && cu->language == language_cplus)
22453 {
22454 std::string canon_name = cp_canonicalize_string (name);
22455
22456 if (!canon_name.empty ())
22457 {
22458 if (canon_name != name)
22459 name = (const char *) obstack_copy0 (obstack,
22460 canon_name.c_str (),
22461 canon_name.length ());
22462 }
22463 }
22464
22465 return name;
22466}
22467
22468/* Get name of a die, return NULL if not found.
22469 Anonymous namespaces are converted to their magic string. */
22470
22471static const char *
22472dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22473{
22474 struct attribute *attr;
22475 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22476
22477 attr = dwarf2_attr (die, DW_AT_name, cu);
22478 if ((!attr || !DW_STRING (attr))
22479 && die->tag != DW_TAG_namespace
22480 && die->tag != DW_TAG_class_type
22481 && die->tag != DW_TAG_interface_type
22482 && die->tag != DW_TAG_structure_type
22483 && die->tag != DW_TAG_union_type)
22484 return NULL;
22485
22486 switch (die->tag)
22487 {
22488 case DW_TAG_compile_unit:
22489 case DW_TAG_partial_unit:
22490 /* Compilation units have a DW_AT_name that is a filename, not
22491 a source language identifier. */
22492 case DW_TAG_enumeration_type:
22493 case DW_TAG_enumerator:
22494 /* These tags always have simple identifiers already; no need
22495 to canonicalize them. */
22496 return DW_STRING (attr);
22497
22498 case DW_TAG_namespace:
22499 if (attr != NULL && DW_STRING (attr) != NULL)
22500 return DW_STRING (attr);
22501 return CP_ANONYMOUS_NAMESPACE_STR;
22502
22503 case DW_TAG_class_type:
22504 case DW_TAG_interface_type:
22505 case DW_TAG_structure_type:
22506 case DW_TAG_union_type:
22507 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22508 structures or unions. These were of the form "._%d" in GCC 4.1,
22509 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22510 and GCC 4.4. We work around this problem by ignoring these. */
22511 if (attr && DW_STRING (attr)
22512 && (startswith (DW_STRING (attr), "._")
22513 || startswith (DW_STRING (attr), "<anonymous")))
22514 return NULL;
22515
22516 /* GCC might emit a nameless typedef that has a linkage name. See
22517 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22518 if (!attr || DW_STRING (attr) == NULL)
22519 {
22520 char *demangled = NULL;
22521
22522 attr = dw2_linkage_name_attr (die, cu);
22523 if (attr == NULL || DW_STRING (attr) == NULL)
22524 return NULL;
22525
22526 /* Avoid demangling DW_STRING (attr) the second time on a second
22527 call for the same DIE. */
22528 if (!DW_STRING_IS_CANONICAL (attr))
22529 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22530
22531 if (demangled)
22532 {
22533 const char *base;
22534
22535 /* FIXME: we already did this for the partial symbol... */
22536 DW_STRING (attr)
22537 = ((const char *)
22538 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22539 demangled, strlen (demangled)));
22540 DW_STRING_IS_CANONICAL (attr) = 1;
22541 xfree (demangled);
22542
22543 /* Strip any leading namespaces/classes, keep only the base name.
22544 DW_AT_name for named DIEs does not contain the prefixes. */
22545 base = strrchr (DW_STRING (attr), ':');
22546 if (base && base > DW_STRING (attr) && base[-1] == ':')
22547 return &base[1];
22548 else
22549 return DW_STRING (attr);
22550 }
22551 }
22552 break;
22553
22554 default:
22555 break;
22556 }
22557
22558 if (!DW_STRING_IS_CANONICAL (attr))
22559 {
22560 DW_STRING (attr)
22561 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22562 &objfile->per_bfd->storage_obstack);
22563 DW_STRING_IS_CANONICAL (attr) = 1;
22564 }
22565 return DW_STRING (attr);
22566}
22567
22568/* Return the die that this die in an extension of, or NULL if there
22569 is none. *EXT_CU is the CU containing DIE on input, and the CU
22570 containing the return value on output. */
22571
22572static struct die_info *
22573dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22574{
22575 struct attribute *attr;
22576
22577 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22578 if (attr == NULL)
22579 return NULL;
22580
22581 return follow_die_ref (die, attr, ext_cu);
22582}
22583
22584/* Convert a DIE tag into its string name. */
22585
22586static const char *
22587dwarf_tag_name (unsigned tag)
22588{
22589 const char *name = get_DW_TAG_name (tag);
22590
22591 if (name == NULL)
22592 return "DW_TAG_<unknown>";
22593
22594 return name;
22595}
22596
22597/* Convert a DWARF attribute code into its string name. */
22598
22599static const char *
22600dwarf_attr_name (unsigned attr)
22601{
22602 const char *name;
22603
22604#ifdef MIPS /* collides with DW_AT_HP_block_index */
22605 if (attr == DW_AT_MIPS_fde)
22606 return "DW_AT_MIPS_fde";
22607#else
22608 if (attr == DW_AT_HP_block_index)
22609 return "DW_AT_HP_block_index";
22610#endif
22611
22612 name = get_DW_AT_name (attr);
22613
22614 if (name == NULL)
22615 return "DW_AT_<unknown>";
22616
22617 return name;
22618}
22619
22620/* Convert a DWARF value form code into its string name. */
22621
22622static const char *
22623dwarf_form_name (unsigned form)
22624{
22625 const char *name = get_DW_FORM_name (form);
22626
22627 if (name == NULL)
22628 return "DW_FORM_<unknown>";
22629
22630 return name;
22631}
22632
22633static const char *
22634dwarf_bool_name (unsigned mybool)
22635{
22636 if (mybool)
22637 return "TRUE";
22638 else
22639 return "FALSE";
22640}
22641
22642/* Convert a DWARF type code into its string name. */
22643
22644static const char *
22645dwarf_type_encoding_name (unsigned enc)
22646{
22647 const char *name = get_DW_ATE_name (enc);
22648
22649 if (name == NULL)
22650 return "DW_ATE_<unknown>";
22651
22652 return name;
22653}
22654
22655static void
22656dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22657{
22658 unsigned int i;
22659
22660 print_spaces (indent, f);
22661 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22662 dwarf_tag_name (die->tag), die->abbrev,
22663 sect_offset_str (die->sect_off));
22664
22665 if (die->parent != NULL)
22666 {
22667 print_spaces (indent, f);
22668 fprintf_unfiltered (f, " parent at offset: %s\n",
22669 sect_offset_str (die->parent->sect_off));
22670 }
22671
22672 print_spaces (indent, f);
22673 fprintf_unfiltered (f, " has children: %s\n",
22674 dwarf_bool_name (die->child != NULL));
22675
22676 print_spaces (indent, f);
22677 fprintf_unfiltered (f, " attributes:\n");
22678
22679 for (i = 0; i < die->num_attrs; ++i)
22680 {
22681 print_spaces (indent, f);
22682 fprintf_unfiltered (f, " %s (%s) ",
22683 dwarf_attr_name (die->attrs[i].name),
22684 dwarf_form_name (die->attrs[i].form));
22685
22686 switch (die->attrs[i].form)
22687 {
22688 case DW_FORM_addr:
22689 case DW_FORM_GNU_addr_index:
22690 fprintf_unfiltered (f, "address: ");
22691 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22692 break;
22693 case DW_FORM_block2:
22694 case DW_FORM_block4:
22695 case DW_FORM_block:
22696 case DW_FORM_block1:
22697 fprintf_unfiltered (f, "block: size %s",
22698 pulongest (DW_BLOCK (&die->attrs[i])->size));
22699 break;
22700 case DW_FORM_exprloc:
22701 fprintf_unfiltered (f, "expression: size %s",
22702 pulongest (DW_BLOCK (&die->attrs[i])->size));
22703 break;
22704 case DW_FORM_data16:
22705 fprintf_unfiltered (f, "constant of 16 bytes");
22706 break;
22707 case DW_FORM_ref_addr:
22708 fprintf_unfiltered (f, "ref address: ");
22709 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22710 break;
22711 case DW_FORM_GNU_ref_alt:
22712 fprintf_unfiltered (f, "alt ref address: ");
22713 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22714 break;
22715 case DW_FORM_ref1:
22716 case DW_FORM_ref2:
22717 case DW_FORM_ref4:
22718 case DW_FORM_ref8:
22719 case DW_FORM_ref_udata:
22720 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22721 (long) (DW_UNSND (&die->attrs[i])));
22722 break;
22723 case DW_FORM_data1:
22724 case DW_FORM_data2:
22725 case DW_FORM_data4:
22726 case DW_FORM_data8:
22727 case DW_FORM_udata:
22728 case DW_FORM_sdata:
22729 fprintf_unfiltered (f, "constant: %s",
22730 pulongest (DW_UNSND (&die->attrs[i])));
22731 break;
22732 case DW_FORM_sec_offset:
22733 fprintf_unfiltered (f, "section offset: %s",
22734 pulongest (DW_UNSND (&die->attrs[i])));
22735 break;
22736 case DW_FORM_ref_sig8:
22737 fprintf_unfiltered (f, "signature: %s",
22738 hex_string (DW_SIGNATURE (&die->attrs[i])));
22739 break;
22740 case DW_FORM_string:
22741 case DW_FORM_strp:
22742 case DW_FORM_line_strp:
22743 case DW_FORM_GNU_str_index:
22744 case DW_FORM_GNU_strp_alt:
22745 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22746 DW_STRING (&die->attrs[i])
22747 ? DW_STRING (&die->attrs[i]) : "",
22748 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22749 break;
22750 case DW_FORM_flag:
22751 if (DW_UNSND (&die->attrs[i]))
22752 fprintf_unfiltered (f, "flag: TRUE");
22753 else
22754 fprintf_unfiltered (f, "flag: FALSE");
22755 break;
22756 case DW_FORM_flag_present:
22757 fprintf_unfiltered (f, "flag: TRUE");
22758 break;
22759 case DW_FORM_indirect:
22760 /* The reader will have reduced the indirect form to
22761 the "base form" so this form should not occur. */
22762 fprintf_unfiltered (f,
22763 "unexpected attribute form: DW_FORM_indirect");
22764 break;
22765 case DW_FORM_implicit_const:
22766 fprintf_unfiltered (f, "constant: %s",
22767 plongest (DW_SND (&die->attrs[i])));
22768 break;
22769 default:
22770 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22771 die->attrs[i].form);
22772 break;
22773 }
22774 fprintf_unfiltered (f, "\n");
22775 }
22776}
22777
22778static void
22779dump_die_for_error (struct die_info *die)
22780{
22781 dump_die_shallow (gdb_stderr, 0, die);
22782}
22783
22784static void
22785dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22786{
22787 int indent = level * 4;
22788
22789 gdb_assert (die != NULL);
22790
22791 if (level >= max_level)
22792 return;
22793
22794 dump_die_shallow (f, indent, die);
22795
22796 if (die->child != NULL)
22797 {
22798 print_spaces (indent, f);
22799 fprintf_unfiltered (f, " Children:");
22800 if (level + 1 < max_level)
22801 {
22802 fprintf_unfiltered (f, "\n");
22803 dump_die_1 (f, level + 1, max_level, die->child);
22804 }
22805 else
22806 {
22807 fprintf_unfiltered (f,
22808 " [not printed, max nesting level reached]\n");
22809 }
22810 }
22811
22812 if (die->sibling != NULL && level > 0)
22813 {
22814 dump_die_1 (f, level, max_level, die->sibling);
22815 }
22816}
22817
22818/* This is called from the pdie macro in gdbinit.in.
22819 It's not static so gcc will keep a copy callable from gdb. */
22820
22821void
22822dump_die (struct die_info *die, int max_level)
22823{
22824 dump_die_1 (gdb_stdlog, 0, max_level, die);
22825}
22826
22827static void
22828store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22829{
22830 void **slot;
22831
22832 slot = htab_find_slot_with_hash (cu->die_hash, die,
22833 to_underlying (die->sect_off),
22834 INSERT);
22835
22836 *slot = die;
22837}
22838
22839/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22840 required kind. */
22841
22842static sect_offset
22843dwarf2_get_ref_die_offset (const struct attribute *attr)
22844{
22845 if (attr_form_is_ref (attr))
22846 return (sect_offset) DW_UNSND (attr);
22847
22848 complaint (&symfile_complaints,
22849 _("unsupported die ref attribute form: '%s'"),
22850 dwarf_form_name (attr->form));
22851 return {};
22852}
22853
22854/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22855 * the value held by the attribute is not constant. */
22856
22857static LONGEST
22858dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22859{
22860 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22861 return DW_SND (attr);
22862 else if (attr->form == DW_FORM_udata
22863 || attr->form == DW_FORM_data1
22864 || attr->form == DW_FORM_data2
22865 || attr->form == DW_FORM_data4
22866 || attr->form == DW_FORM_data8)
22867 return DW_UNSND (attr);
22868 else
22869 {
22870 /* For DW_FORM_data16 see attr_form_is_constant. */
22871 complaint (&symfile_complaints,
22872 _("Attribute value is not a constant (%s)"),
22873 dwarf_form_name (attr->form));
22874 return default_value;
22875 }
22876}
22877
22878/* Follow reference or signature attribute ATTR of SRC_DIE.
22879 On entry *REF_CU is the CU of SRC_DIE.
22880 On exit *REF_CU is the CU of the result. */
22881
22882static struct die_info *
22883follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22884 struct dwarf2_cu **ref_cu)
22885{
22886 struct die_info *die;
22887
22888 if (attr_form_is_ref (attr))
22889 die = follow_die_ref (src_die, attr, ref_cu);
22890 else if (attr->form == DW_FORM_ref_sig8)
22891 die = follow_die_sig (src_die, attr, ref_cu);
22892 else
22893 {
22894 dump_die_for_error (src_die);
22895 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22896 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22897 }
22898
22899 return die;
22900}
22901
22902/* Follow reference OFFSET.
22903 On entry *REF_CU is the CU of the source die referencing OFFSET.
22904 On exit *REF_CU is the CU of the result.
22905 Returns NULL if OFFSET is invalid. */
22906
22907static struct die_info *
22908follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22909 struct dwarf2_cu **ref_cu)
22910{
22911 struct die_info temp_die;
22912 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22913 struct dwarf2_per_objfile *dwarf2_per_objfile
22914 = cu->per_cu->dwarf2_per_objfile;
22915 struct objfile *objfile = dwarf2_per_objfile->objfile;
22916
22917 gdb_assert (cu->per_cu != NULL);
22918
22919 target_cu = cu;
22920
22921 if (cu->per_cu->is_debug_types)
22922 {
22923 /* .debug_types CUs cannot reference anything outside their CU.
22924 If they need to, they have to reference a signatured type via
22925 DW_FORM_ref_sig8. */
22926 if (!offset_in_cu_p (&cu->header, sect_off))
22927 return NULL;
22928 }
22929 else if (offset_in_dwz != cu->per_cu->is_dwz
22930 || !offset_in_cu_p (&cu->header, sect_off))
22931 {
22932 struct dwarf2_per_cu_data *per_cu;
22933
22934 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22935 dwarf2_per_objfile);
22936
22937 /* If necessary, add it to the queue and load its DIEs. */
22938 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22939 load_full_comp_unit (per_cu, cu->language);
22940
22941 target_cu = per_cu->cu;
22942 }
22943 else if (cu->dies == NULL)
22944 {
22945 /* We're loading full DIEs during partial symbol reading. */
22946 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22947 load_full_comp_unit (cu->per_cu, language_minimal);
22948 }
22949
22950 *ref_cu = target_cu;
22951 temp_die.sect_off = sect_off;
22952 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22953 &temp_die,
22954 to_underlying (sect_off));
22955}
22956
22957/* Follow reference attribute ATTR of SRC_DIE.
22958 On entry *REF_CU is the CU of SRC_DIE.
22959 On exit *REF_CU is the CU of the result. */
22960
22961static struct die_info *
22962follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22963 struct dwarf2_cu **ref_cu)
22964{
22965 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22966 struct dwarf2_cu *cu = *ref_cu;
22967 struct die_info *die;
22968
22969 die = follow_die_offset (sect_off,
22970 (attr->form == DW_FORM_GNU_ref_alt
22971 || cu->per_cu->is_dwz),
22972 ref_cu);
22973 if (!die)
22974 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22975 "at %s [in module %s]"),
22976 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22977 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22978
22979 return die;
22980}
22981
22982/* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22983 Returned value is intended for DW_OP_call*. Returned
22984 dwarf2_locexpr_baton->data has lifetime of
22985 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22986
22987struct dwarf2_locexpr_baton
22988dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22989 struct dwarf2_per_cu_data *per_cu,
22990 CORE_ADDR (*get_frame_pc) (void *baton),
22991 void *baton)
22992{
22993 struct dwarf2_cu *cu;
22994 struct die_info *die;
22995 struct attribute *attr;
22996 struct dwarf2_locexpr_baton retval;
22997 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22998 struct dwarf2_per_objfile *dwarf2_per_objfile
22999 = get_dwarf2_per_objfile (objfile);
23000
23001 if (per_cu->cu == NULL)
23002 load_cu (per_cu);
23003 cu = per_cu->cu;
23004 if (cu == NULL)
23005 {
23006 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23007 Instead just throw an error, not much else we can do. */
23008 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23009 sect_offset_str (sect_off), objfile_name (objfile));
23010 }
23011
23012 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23013 if (!die)
23014 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23015 sect_offset_str (sect_off), objfile_name (objfile));
23016
23017 attr = dwarf2_attr (die, DW_AT_location, cu);
23018 if (!attr)
23019 {
23020 /* DWARF: "If there is no such attribute, then there is no effect.".
23021 DATA is ignored if SIZE is 0. */
23022
23023 retval.data = NULL;
23024 retval.size = 0;
23025 }
23026 else if (attr_form_is_section_offset (attr))
23027 {
23028 struct dwarf2_loclist_baton loclist_baton;
23029 CORE_ADDR pc = (*get_frame_pc) (baton);
23030 size_t size;
23031
23032 fill_in_loclist_baton (cu, &loclist_baton, attr);
23033
23034 retval.data = dwarf2_find_location_expression (&loclist_baton,
23035 &size, pc);
23036 retval.size = size;
23037 }
23038 else
23039 {
23040 if (!attr_form_is_block (attr))
23041 error (_("Dwarf Error: DIE at %s referenced in module %s "
23042 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23043 sect_offset_str (sect_off), objfile_name (objfile));
23044
23045 retval.data = DW_BLOCK (attr)->data;
23046 retval.size = DW_BLOCK (attr)->size;
23047 }
23048 retval.per_cu = cu->per_cu;
23049
23050 age_cached_comp_units (dwarf2_per_objfile);
23051
23052 return retval;
23053}
23054
23055/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23056 offset. */
23057
23058struct dwarf2_locexpr_baton
23059dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23060 struct dwarf2_per_cu_data *per_cu,
23061 CORE_ADDR (*get_frame_pc) (void *baton),
23062 void *baton)
23063{
23064 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23065
23066 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23067}
23068
23069/* Write a constant of a given type as target-ordered bytes into
23070 OBSTACK. */
23071
23072static const gdb_byte *
23073write_constant_as_bytes (struct obstack *obstack,
23074 enum bfd_endian byte_order,
23075 struct type *type,
23076 ULONGEST value,
23077 LONGEST *len)
23078{
23079 gdb_byte *result;
23080
23081 *len = TYPE_LENGTH (type);
23082 result = (gdb_byte *) obstack_alloc (obstack, *len);
23083 store_unsigned_integer (result, *len, byte_order, value);
23084
23085 return result;
23086}
23087
23088/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23089 pointer to the constant bytes and set LEN to the length of the
23090 data. If memory is needed, allocate it on OBSTACK. If the DIE
23091 does not have a DW_AT_const_value, return NULL. */
23092
23093const gdb_byte *
23094dwarf2_fetch_constant_bytes (sect_offset sect_off,
23095 struct dwarf2_per_cu_data *per_cu,
23096 struct obstack *obstack,
23097 LONGEST *len)
23098{
23099 struct dwarf2_cu *cu;
23100 struct die_info *die;
23101 struct attribute *attr;
23102 const gdb_byte *result = NULL;
23103 struct type *type;
23104 LONGEST value;
23105 enum bfd_endian byte_order;
23106 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23107
23108 if (per_cu->cu == NULL)
23109 load_cu (per_cu);
23110 cu = per_cu->cu;
23111 if (cu == NULL)
23112 {
23113 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23114 Instead just throw an error, not much else we can do. */
23115 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23116 sect_offset_str (sect_off), objfile_name (objfile));
23117 }
23118
23119 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23120 if (!die)
23121 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23122 sect_offset_str (sect_off), objfile_name (objfile));
23123
23124 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23125 if (attr == NULL)
23126 return NULL;
23127
23128 byte_order = (bfd_big_endian (objfile->obfd)
23129 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23130
23131 switch (attr->form)
23132 {
23133 case DW_FORM_addr:
23134 case DW_FORM_GNU_addr_index:
23135 {
23136 gdb_byte *tem;
23137
23138 *len = cu->header.addr_size;
23139 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23140 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23141 result = tem;
23142 }
23143 break;
23144 case DW_FORM_string:
23145 case DW_FORM_strp:
23146 case DW_FORM_GNU_str_index:
23147 case DW_FORM_GNU_strp_alt:
23148 /* DW_STRING is already allocated on the objfile obstack, point
23149 directly to it. */
23150 result = (const gdb_byte *) DW_STRING (attr);
23151 *len = strlen (DW_STRING (attr));
23152 break;
23153 case DW_FORM_block1:
23154 case DW_FORM_block2:
23155 case DW_FORM_block4:
23156 case DW_FORM_block:
23157 case DW_FORM_exprloc:
23158 case DW_FORM_data16:
23159 result = DW_BLOCK (attr)->data;
23160 *len = DW_BLOCK (attr)->size;
23161 break;
23162
23163 /* The DW_AT_const_value attributes are supposed to carry the
23164 symbol's value "represented as it would be on the target
23165 architecture." By the time we get here, it's already been
23166 converted to host endianness, so we just need to sign- or
23167 zero-extend it as appropriate. */
23168 case DW_FORM_data1:
23169 type = die_type (die, cu);
23170 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23171 if (result == NULL)
23172 result = write_constant_as_bytes (obstack, byte_order,
23173 type, value, len);
23174 break;
23175 case DW_FORM_data2:
23176 type = die_type (die, cu);
23177 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23178 if (result == NULL)
23179 result = write_constant_as_bytes (obstack, byte_order,
23180 type, value, len);
23181 break;
23182 case DW_FORM_data4:
23183 type = die_type (die, cu);
23184 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23185 if (result == NULL)
23186 result = write_constant_as_bytes (obstack, byte_order,
23187 type, value, len);
23188 break;
23189 case DW_FORM_data8:
23190 type = die_type (die, cu);
23191 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23192 if (result == NULL)
23193 result = write_constant_as_bytes (obstack, byte_order,
23194 type, value, len);
23195 break;
23196
23197 case DW_FORM_sdata:
23198 case DW_FORM_implicit_const:
23199 type = die_type (die, cu);
23200 result = write_constant_as_bytes (obstack, byte_order,
23201 type, DW_SND (attr), len);
23202 break;
23203
23204 case DW_FORM_udata:
23205 type = die_type (die, cu);
23206 result = write_constant_as_bytes (obstack, byte_order,
23207 type, DW_UNSND (attr), len);
23208 break;
23209
23210 default:
23211 complaint (&symfile_complaints,
23212 _("unsupported const value attribute form: '%s'"),
23213 dwarf_form_name (attr->form));
23214 break;
23215 }
23216
23217 return result;
23218}
23219
23220/* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23221 valid type for this die is found. */
23222
23223struct type *
23224dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23225 struct dwarf2_per_cu_data *per_cu)
23226{
23227 struct dwarf2_cu *cu;
23228 struct die_info *die;
23229
23230 if (per_cu->cu == NULL)
23231 load_cu (per_cu);
23232 cu = per_cu->cu;
23233 if (!cu)
23234 return NULL;
23235
23236 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23237 if (!die)
23238 return NULL;
23239
23240 return die_type (die, cu);
23241}
23242
23243/* Return the type of the DIE at DIE_OFFSET in the CU named by
23244 PER_CU. */
23245
23246struct type *
23247dwarf2_get_die_type (cu_offset die_offset,
23248 struct dwarf2_per_cu_data *per_cu)
23249{
23250 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23251 return get_die_type_at_offset (die_offset_sect, per_cu);
23252}
23253
23254/* Follow type unit SIG_TYPE referenced by SRC_DIE.
23255 On entry *REF_CU is the CU of SRC_DIE.
23256 On exit *REF_CU is the CU of the result.
23257 Returns NULL if the referenced DIE isn't found. */
23258
23259static struct die_info *
23260follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23261 struct dwarf2_cu **ref_cu)
23262{
23263 struct die_info temp_die;
23264 struct dwarf2_cu *sig_cu;
23265 struct die_info *die;
23266
23267 /* While it might be nice to assert sig_type->type == NULL here,
23268 we can get here for DW_AT_imported_declaration where we need
23269 the DIE not the type. */
23270
23271 /* If necessary, add it to the queue and load its DIEs. */
23272
23273 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23274 read_signatured_type (sig_type);
23275
23276 sig_cu = sig_type->per_cu.cu;
23277 gdb_assert (sig_cu != NULL);
23278 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23279 temp_die.sect_off = sig_type->type_offset_in_section;
23280 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23281 to_underlying (temp_die.sect_off));
23282 if (die)
23283 {
23284 struct dwarf2_per_objfile *dwarf2_per_objfile
23285 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23286
23287 /* For .gdb_index version 7 keep track of included TUs.
23288 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23289 if (dwarf2_per_objfile->index_table != NULL
23290 && dwarf2_per_objfile->index_table->version <= 7)
23291 {
23292 VEC_safe_push (dwarf2_per_cu_ptr,
23293 (*ref_cu)->per_cu->imported_symtabs,
23294 sig_cu->per_cu);
23295 }
23296
23297 *ref_cu = sig_cu;
23298 return die;
23299 }
23300
23301 return NULL;
23302}
23303
23304/* Follow signatured type referenced by ATTR in SRC_DIE.
23305 On entry *REF_CU is the CU of SRC_DIE.
23306 On exit *REF_CU is the CU of the result.
23307 The result is the DIE of the type.
23308 If the referenced type cannot be found an error is thrown. */
23309
23310static struct die_info *
23311follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23312 struct dwarf2_cu **ref_cu)
23313{
23314 ULONGEST signature = DW_SIGNATURE (attr);
23315 struct signatured_type *sig_type;
23316 struct die_info *die;
23317
23318 gdb_assert (attr->form == DW_FORM_ref_sig8);
23319
23320 sig_type = lookup_signatured_type (*ref_cu, signature);
23321 /* sig_type will be NULL if the signatured type is missing from
23322 the debug info. */
23323 if (sig_type == NULL)
23324 {
23325 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23326 " from DIE at %s [in module %s]"),
23327 hex_string (signature), sect_offset_str (src_die->sect_off),
23328 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23329 }
23330
23331 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23332 if (die == NULL)
23333 {
23334 dump_die_for_error (src_die);
23335 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23336 " from DIE at %s [in module %s]"),
23337 hex_string (signature), sect_offset_str (src_die->sect_off),
23338 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23339 }
23340
23341 return die;
23342}
23343
23344/* Get the type specified by SIGNATURE referenced in DIE/CU,
23345 reading in and processing the type unit if necessary. */
23346
23347static struct type *
23348get_signatured_type (struct die_info *die, ULONGEST signature,
23349 struct dwarf2_cu *cu)
23350{
23351 struct dwarf2_per_objfile *dwarf2_per_objfile
23352 = cu->per_cu->dwarf2_per_objfile;
23353 struct signatured_type *sig_type;
23354 struct dwarf2_cu *type_cu;
23355 struct die_info *type_die;
23356 struct type *type;
23357
23358 sig_type = lookup_signatured_type (cu, signature);
23359 /* sig_type will be NULL if the signatured type is missing from
23360 the debug info. */
23361 if (sig_type == NULL)
23362 {
23363 complaint (&symfile_complaints,
23364 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23365 " from DIE at %s [in module %s]"),
23366 hex_string (signature), sect_offset_str (die->sect_off),
23367 objfile_name (dwarf2_per_objfile->objfile));
23368 return build_error_marker_type (cu, die);
23369 }
23370
23371 /* If we already know the type we're done. */
23372 if (sig_type->type != NULL)
23373 return sig_type->type;
23374
23375 type_cu = cu;
23376 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23377 if (type_die != NULL)
23378 {
23379 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23380 is created. This is important, for example, because for c++ classes
23381 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23382 type = read_type_die (type_die, type_cu);
23383 if (type == NULL)
23384 {
23385 complaint (&symfile_complaints,
23386 _("Dwarf Error: Cannot build signatured type %s"
23387 " referenced from DIE at %s [in module %s]"),
23388 hex_string (signature), sect_offset_str (die->sect_off),
23389 objfile_name (dwarf2_per_objfile->objfile));
23390 type = build_error_marker_type (cu, die);
23391 }
23392 }
23393 else
23394 {
23395 complaint (&symfile_complaints,
23396 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23397 " from DIE at %s [in module %s]"),
23398 hex_string (signature), sect_offset_str (die->sect_off),
23399 objfile_name (dwarf2_per_objfile->objfile));
23400 type = build_error_marker_type (cu, die);
23401 }
23402 sig_type->type = type;
23403
23404 return type;
23405}
23406
23407/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23408 reading in and processing the type unit if necessary. */
23409
23410static struct type *
23411get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23412 struct dwarf2_cu *cu) /* ARI: editCase function */
23413{
23414 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23415 if (attr_form_is_ref (attr))
23416 {
23417 struct dwarf2_cu *type_cu = cu;
23418 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23419
23420 return read_type_die (type_die, type_cu);
23421 }
23422 else if (attr->form == DW_FORM_ref_sig8)
23423 {
23424 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23425 }
23426 else
23427 {
23428 struct dwarf2_per_objfile *dwarf2_per_objfile
23429 = cu->per_cu->dwarf2_per_objfile;
23430
23431 complaint (&symfile_complaints,
23432 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23433 " at %s [in module %s]"),
23434 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23435 objfile_name (dwarf2_per_objfile->objfile));
23436 return build_error_marker_type (cu, die);
23437 }
23438}
23439
23440/* Load the DIEs associated with type unit PER_CU into memory. */
23441
23442static void
23443load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23444{
23445 struct signatured_type *sig_type;
23446
23447 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23448 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23449
23450 /* We have the per_cu, but we need the signatured_type.
23451 Fortunately this is an easy translation. */
23452 gdb_assert (per_cu->is_debug_types);
23453 sig_type = (struct signatured_type *) per_cu;
23454
23455 gdb_assert (per_cu->cu == NULL);
23456
23457 read_signatured_type (sig_type);
23458
23459 gdb_assert (per_cu->cu != NULL);
23460}
23461
23462/* die_reader_func for read_signatured_type.
23463 This is identical to load_full_comp_unit_reader,
23464 but is kept separate for now. */
23465
23466static void
23467read_signatured_type_reader (const struct die_reader_specs *reader,
23468 const gdb_byte *info_ptr,
23469 struct die_info *comp_unit_die,
23470 int has_children,
23471 void *data)
23472{
23473 struct dwarf2_cu *cu = reader->cu;
23474
23475 gdb_assert (cu->die_hash == NULL);
23476 cu->die_hash =
23477 htab_create_alloc_ex (cu->header.length / 12,
23478 die_hash,
23479 die_eq,
23480 NULL,
23481 &cu->comp_unit_obstack,
23482 hashtab_obstack_allocate,
23483 dummy_obstack_deallocate);
23484
23485 if (has_children)
23486 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23487 &info_ptr, comp_unit_die);
23488 cu->dies = comp_unit_die;
23489 /* comp_unit_die is not stored in die_hash, no need. */
23490
23491 /* We try not to read any attributes in this function, because not
23492 all CUs needed for references have been loaded yet, and symbol
23493 table processing isn't initialized. But we have to set the CU language,
23494 or we won't be able to build types correctly.
23495 Similarly, if we do not read the producer, we can not apply
23496 producer-specific interpretation. */
23497 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23498}
23499
23500/* Read in a signatured type and build its CU and DIEs.
23501 If the type is a stub for the real type in a DWO file,
23502 read in the real type from the DWO file as well. */
23503
23504static void
23505read_signatured_type (struct signatured_type *sig_type)
23506{
23507 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23508
23509 gdb_assert (per_cu->is_debug_types);
23510 gdb_assert (per_cu->cu == NULL);
23511
23512 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
23513 read_signatured_type_reader, NULL);
23514 sig_type->per_cu.tu_read = 1;
23515}
23516
23517/* Decode simple location descriptions.
23518 Given a pointer to a dwarf block that defines a location, compute
23519 the location and return the value.
23520
23521 NOTE drow/2003-11-18: This function is called in two situations
23522 now: for the address of static or global variables (partial symbols
23523 only) and for offsets into structures which are expected to be
23524 (more or less) constant. The partial symbol case should go away,
23525 and only the constant case should remain. That will let this
23526 function complain more accurately. A few special modes are allowed
23527 without complaint for global variables (for instance, global
23528 register values and thread-local values).
23529
23530 A location description containing no operations indicates that the
23531 object is optimized out. The return value is 0 for that case.
23532 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23533 callers will only want a very basic result and this can become a
23534 complaint.
23535
23536 Note that stack[0] is unused except as a default error return. */
23537
23538static CORE_ADDR
23539decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23540{
23541 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23542 size_t i;
23543 size_t size = blk->size;
23544 const gdb_byte *data = blk->data;
23545 CORE_ADDR stack[64];
23546 int stacki;
23547 unsigned int bytes_read, unsnd;
23548 gdb_byte op;
23549
23550 i = 0;
23551 stacki = 0;
23552 stack[stacki] = 0;
23553 stack[++stacki] = 0;
23554
23555 while (i < size)
23556 {
23557 op = data[i++];
23558 switch (op)
23559 {
23560 case DW_OP_lit0:
23561 case DW_OP_lit1:
23562 case DW_OP_lit2:
23563 case DW_OP_lit3:
23564 case DW_OP_lit4:
23565 case DW_OP_lit5:
23566 case DW_OP_lit6:
23567 case DW_OP_lit7:
23568 case DW_OP_lit8:
23569 case DW_OP_lit9:
23570 case DW_OP_lit10:
23571 case DW_OP_lit11:
23572 case DW_OP_lit12:
23573 case DW_OP_lit13:
23574 case DW_OP_lit14:
23575 case DW_OP_lit15:
23576 case DW_OP_lit16:
23577 case DW_OP_lit17:
23578 case DW_OP_lit18:
23579 case DW_OP_lit19:
23580 case DW_OP_lit20:
23581 case DW_OP_lit21:
23582 case DW_OP_lit22:
23583 case DW_OP_lit23:
23584 case DW_OP_lit24:
23585 case DW_OP_lit25:
23586 case DW_OP_lit26:
23587 case DW_OP_lit27:
23588 case DW_OP_lit28:
23589 case DW_OP_lit29:
23590 case DW_OP_lit30:
23591 case DW_OP_lit31:
23592 stack[++stacki] = op - DW_OP_lit0;
23593 break;
23594
23595 case DW_OP_reg0:
23596 case DW_OP_reg1:
23597 case DW_OP_reg2:
23598 case DW_OP_reg3:
23599 case DW_OP_reg4:
23600 case DW_OP_reg5:
23601 case DW_OP_reg6:
23602 case DW_OP_reg7:
23603 case DW_OP_reg8:
23604 case DW_OP_reg9:
23605 case DW_OP_reg10:
23606 case DW_OP_reg11:
23607 case DW_OP_reg12:
23608 case DW_OP_reg13:
23609 case DW_OP_reg14:
23610 case DW_OP_reg15:
23611 case DW_OP_reg16:
23612 case DW_OP_reg17:
23613 case DW_OP_reg18:
23614 case DW_OP_reg19:
23615 case DW_OP_reg20:
23616 case DW_OP_reg21:
23617 case DW_OP_reg22:
23618 case DW_OP_reg23:
23619 case DW_OP_reg24:
23620 case DW_OP_reg25:
23621 case DW_OP_reg26:
23622 case DW_OP_reg27:
23623 case DW_OP_reg28:
23624 case DW_OP_reg29:
23625 case DW_OP_reg30:
23626 case DW_OP_reg31:
23627 stack[++stacki] = op - DW_OP_reg0;
23628 if (i < size)
23629 dwarf2_complex_location_expr_complaint ();
23630 break;
23631
23632 case DW_OP_regx:
23633 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23634 i += bytes_read;
23635 stack[++stacki] = unsnd;
23636 if (i < size)
23637 dwarf2_complex_location_expr_complaint ();
23638 break;
23639
23640 case DW_OP_addr:
23641 stack[++stacki] = read_address (objfile->obfd, &data[i],
23642 cu, &bytes_read);
23643 i += bytes_read;
23644 break;
23645
23646 case DW_OP_const1u:
23647 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23648 i += 1;
23649 break;
23650
23651 case DW_OP_const1s:
23652 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23653 i += 1;
23654 break;
23655
23656 case DW_OP_const2u:
23657 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23658 i += 2;
23659 break;
23660
23661 case DW_OP_const2s:
23662 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23663 i += 2;
23664 break;
23665
23666 case DW_OP_const4u:
23667 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23668 i += 4;
23669 break;
23670
23671 case DW_OP_const4s:
23672 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23673 i += 4;
23674 break;
23675
23676 case DW_OP_const8u:
23677 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23678 i += 8;
23679 break;
23680
23681 case DW_OP_constu:
23682 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23683 &bytes_read);
23684 i += bytes_read;
23685 break;
23686
23687 case DW_OP_consts:
23688 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23689 i += bytes_read;
23690 break;
23691
23692 case DW_OP_dup:
23693 stack[stacki + 1] = stack[stacki];
23694 stacki++;
23695 break;
23696
23697 case DW_OP_plus:
23698 stack[stacki - 1] += stack[stacki];
23699 stacki--;
23700 break;
23701
23702 case DW_OP_plus_uconst:
23703 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23704 &bytes_read);
23705 i += bytes_read;
23706 break;
23707
23708 case DW_OP_minus:
23709 stack[stacki - 1] -= stack[stacki];
23710 stacki--;
23711 break;
23712
23713 case DW_OP_deref:
23714 /* If we're not the last op, then we definitely can't encode
23715 this using GDB's address_class enum. This is valid for partial
23716 global symbols, although the variable's address will be bogus
23717 in the psymtab. */
23718 if (i < size)
23719 dwarf2_complex_location_expr_complaint ();
23720 break;
23721
23722 case DW_OP_GNU_push_tls_address:
23723 case DW_OP_form_tls_address:
23724 /* The top of the stack has the offset from the beginning
23725 of the thread control block at which the variable is located. */
23726 /* Nothing should follow this operator, so the top of stack would
23727 be returned. */
23728 /* This is valid for partial global symbols, but the variable's
23729 address will be bogus in the psymtab. Make it always at least
23730 non-zero to not look as a variable garbage collected by linker
23731 which have DW_OP_addr 0. */
23732 if (i < size)
23733 dwarf2_complex_location_expr_complaint ();
23734 stack[stacki]++;
23735 break;
23736
23737 case DW_OP_GNU_uninit:
23738 break;
23739
23740 case DW_OP_GNU_addr_index:
23741 case DW_OP_GNU_const_index:
23742 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23743 &bytes_read);
23744 i += bytes_read;
23745 break;
23746
23747 default:
23748 {
23749 const char *name = get_DW_OP_name (op);
23750
23751 if (name)
23752 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
23753 name);
23754 else
23755 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
23756 op);
23757 }
23758
23759 return (stack[stacki]);
23760 }
23761
23762 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23763 outside of the allocated space. Also enforce minimum>0. */
23764 if (stacki >= ARRAY_SIZE (stack) - 1)
23765 {
23766 complaint (&symfile_complaints,
23767 _("location description stack overflow"));
23768 return 0;
23769 }
23770
23771 if (stacki <= 0)
23772 {
23773 complaint (&symfile_complaints,
23774 _("location description stack underflow"));
23775 return 0;
23776 }
23777 }
23778 return (stack[stacki]);
23779}
23780
23781/* memory allocation interface */
23782
23783static struct dwarf_block *
23784dwarf_alloc_block (struct dwarf2_cu *cu)
23785{
23786 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23787}
23788
23789static struct die_info *
23790dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23791{
23792 struct die_info *die;
23793 size_t size = sizeof (struct die_info);
23794
23795 if (num_attrs > 1)
23796 size += (num_attrs - 1) * sizeof (struct attribute);
23797
23798 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23799 memset (die, 0, sizeof (struct die_info));
23800 return (die);
23801}
23802
23803\f
23804/* Macro support. */
23805
23806/* Return file name relative to the compilation directory of file number I in
23807 *LH's file name table. The result is allocated using xmalloc; the caller is
23808 responsible for freeing it. */
23809
23810static char *
23811file_file_name (int file, struct line_header *lh)
23812{
23813 /* Is the file number a valid index into the line header's file name
23814 table? Remember that file numbers start with one, not zero. */
23815 if (1 <= file && file <= lh->file_names.size ())
23816 {
23817 const file_entry &fe = lh->file_names[file - 1];
23818
23819 if (!IS_ABSOLUTE_PATH (fe.name))
23820 {
23821 const char *dir = fe.include_dir (lh);
23822 if (dir != NULL)
23823 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23824 }
23825 return xstrdup (fe.name);
23826 }
23827 else
23828 {
23829 /* The compiler produced a bogus file number. We can at least
23830 record the macro definitions made in the file, even if we
23831 won't be able to find the file by name. */
23832 char fake_name[80];
23833
23834 xsnprintf (fake_name, sizeof (fake_name),
23835 "<bad macro file number %d>", file);
23836
23837 complaint (&symfile_complaints,
23838 _("bad file number in macro information (%d)"),
23839 file);
23840
23841 return xstrdup (fake_name);
23842 }
23843}
23844
23845/* Return the full name of file number I in *LH's file name table.
23846 Use COMP_DIR as the name of the current directory of the
23847 compilation. The result is allocated using xmalloc; the caller is
23848 responsible for freeing it. */
23849static char *
23850file_full_name (int file, struct line_header *lh, const char *comp_dir)
23851{
23852 /* Is the file number a valid index into the line header's file name
23853 table? Remember that file numbers start with one, not zero. */
23854 if (1 <= file && file <= lh->file_names.size ())
23855 {
23856 char *relative = file_file_name (file, lh);
23857
23858 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23859 return relative;
23860 return reconcat (relative, comp_dir, SLASH_STRING,
23861 relative, (char *) NULL);
23862 }
23863 else
23864 return file_file_name (file, lh);
23865}
23866
23867
23868static struct macro_source_file *
23869macro_start_file (int file, int line,
23870 struct macro_source_file *current_file,
23871 struct line_header *lh)
23872{
23873 /* File name relative to the compilation directory of this source file. */
23874 char *file_name = file_file_name (file, lh);
23875
23876 if (! current_file)
23877 {
23878 /* Note: We don't create a macro table for this compilation unit
23879 at all until we actually get a filename. */
23880 struct macro_table *macro_table = get_macro_table ();
23881
23882 /* If we have no current file, then this must be the start_file
23883 directive for the compilation unit's main source file. */
23884 current_file = macro_set_main (macro_table, file_name);
23885 macro_define_special (macro_table);
23886 }
23887 else
23888 current_file = macro_include (current_file, line, file_name);
23889
23890 xfree (file_name);
23891
23892 return current_file;
23893}
23894
23895static const char *
23896consume_improper_spaces (const char *p, const char *body)
23897{
23898 if (*p == ' ')
23899 {
23900 complaint (&symfile_complaints,
23901 _("macro definition contains spaces "
23902 "in formal argument list:\n`%s'"),
23903 body);
23904
23905 while (*p == ' ')
23906 p++;
23907 }
23908
23909 return p;
23910}
23911
23912
23913static void
23914parse_macro_definition (struct macro_source_file *file, int line,
23915 const char *body)
23916{
23917 const char *p;
23918
23919 /* The body string takes one of two forms. For object-like macro
23920 definitions, it should be:
23921
23922 <macro name> " " <definition>
23923
23924 For function-like macro definitions, it should be:
23925
23926 <macro name> "() " <definition>
23927 or
23928 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23929
23930 Spaces may appear only where explicitly indicated, and in the
23931 <definition>.
23932
23933 The Dwarf 2 spec says that an object-like macro's name is always
23934 followed by a space, but versions of GCC around March 2002 omit
23935 the space when the macro's definition is the empty string.
23936
23937 The Dwarf 2 spec says that there should be no spaces between the
23938 formal arguments in a function-like macro's formal argument list,
23939 but versions of GCC around March 2002 include spaces after the
23940 commas. */
23941
23942
23943 /* Find the extent of the macro name. The macro name is terminated
23944 by either a space or null character (for an object-like macro) or
23945 an opening paren (for a function-like macro). */
23946 for (p = body; *p; p++)
23947 if (*p == ' ' || *p == '(')
23948 break;
23949
23950 if (*p == ' ' || *p == '\0')
23951 {
23952 /* It's an object-like macro. */
23953 int name_len = p - body;
23954 char *name = savestring (body, name_len);
23955 const char *replacement;
23956
23957 if (*p == ' ')
23958 replacement = body + name_len + 1;
23959 else
23960 {
23961 dwarf2_macro_malformed_definition_complaint (body);
23962 replacement = body + name_len;
23963 }
23964
23965 macro_define_object (file, line, name, replacement);
23966
23967 xfree (name);
23968 }
23969 else if (*p == '(')
23970 {
23971 /* It's a function-like macro. */
23972 char *name = savestring (body, p - body);
23973 int argc = 0;
23974 int argv_size = 1;
23975 char **argv = XNEWVEC (char *, argv_size);
23976
23977 p++;
23978
23979 p = consume_improper_spaces (p, body);
23980
23981 /* Parse the formal argument list. */
23982 while (*p && *p != ')')
23983 {
23984 /* Find the extent of the current argument name. */
23985 const char *arg_start = p;
23986
23987 while (*p && *p != ',' && *p != ')' && *p != ' ')
23988 p++;
23989
23990 if (! *p || p == arg_start)
23991 dwarf2_macro_malformed_definition_complaint (body);
23992 else
23993 {
23994 /* Make sure argv has room for the new argument. */
23995 if (argc >= argv_size)
23996 {
23997 argv_size *= 2;
23998 argv = XRESIZEVEC (char *, argv, argv_size);
23999 }
24000
24001 argv[argc++] = savestring (arg_start, p - arg_start);
24002 }
24003
24004 p = consume_improper_spaces (p, body);
24005
24006 /* Consume the comma, if present. */
24007 if (*p == ',')
24008 {
24009 p++;
24010
24011 p = consume_improper_spaces (p, body);
24012 }
24013 }
24014
24015 if (*p == ')')
24016 {
24017 p++;
24018
24019 if (*p == ' ')
24020 /* Perfectly formed definition, no complaints. */
24021 macro_define_function (file, line, name,
24022 argc, (const char **) argv,
24023 p + 1);
24024 else if (*p == '\0')
24025 {
24026 /* Complain, but do define it. */
24027 dwarf2_macro_malformed_definition_complaint (body);
24028 macro_define_function (file, line, name,
24029 argc, (const char **) argv,
24030 p);
24031 }
24032 else
24033 /* Just complain. */
24034 dwarf2_macro_malformed_definition_complaint (body);
24035 }
24036 else
24037 /* Just complain. */
24038 dwarf2_macro_malformed_definition_complaint (body);
24039
24040 xfree (name);
24041 {
24042 int i;
24043
24044 for (i = 0; i < argc; i++)
24045 xfree (argv[i]);
24046 }
24047 xfree (argv);
24048 }
24049 else
24050 dwarf2_macro_malformed_definition_complaint (body);
24051}
24052
24053/* Skip some bytes from BYTES according to the form given in FORM.
24054 Returns the new pointer. */
24055
24056static const gdb_byte *
24057skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24058 enum dwarf_form form,
24059 unsigned int offset_size,
24060 struct dwarf2_section_info *section)
24061{
24062 unsigned int bytes_read;
24063
24064 switch (form)
24065 {
24066 case DW_FORM_data1:
24067 case DW_FORM_flag:
24068 ++bytes;
24069 break;
24070
24071 case DW_FORM_data2:
24072 bytes += 2;
24073 break;
24074
24075 case DW_FORM_data4:
24076 bytes += 4;
24077 break;
24078
24079 case DW_FORM_data8:
24080 bytes += 8;
24081 break;
24082
24083 case DW_FORM_data16:
24084 bytes += 16;
24085 break;
24086
24087 case DW_FORM_string:
24088 read_direct_string (abfd, bytes, &bytes_read);
24089 bytes += bytes_read;
24090 break;
24091
24092 case DW_FORM_sec_offset:
24093 case DW_FORM_strp:
24094 case DW_FORM_GNU_strp_alt:
24095 bytes += offset_size;
24096 break;
24097
24098 case DW_FORM_block:
24099 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24100 bytes += bytes_read;
24101 break;
24102
24103 case DW_FORM_block1:
24104 bytes += 1 + read_1_byte (abfd, bytes);
24105 break;
24106 case DW_FORM_block2:
24107 bytes += 2 + read_2_bytes (abfd, bytes);
24108 break;
24109 case DW_FORM_block4:
24110 bytes += 4 + read_4_bytes (abfd, bytes);
24111 break;
24112
24113 case DW_FORM_sdata:
24114 case DW_FORM_udata:
24115 case DW_FORM_GNU_addr_index:
24116 case DW_FORM_GNU_str_index:
24117 bytes = gdb_skip_leb128 (bytes, buffer_end);
24118 if (bytes == NULL)
24119 {
24120 dwarf2_section_buffer_overflow_complaint (section);
24121 return NULL;
24122 }
24123 break;
24124
24125 case DW_FORM_implicit_const:
24126 break;
24127
24128 default:
24129 {
24130 complaint (&symfile_complaints,
24131 _("invalid form 0x%x in `%s'"),
24132 form, get_section_name (section));
24133 return NULL;
24134 }
24135 }
24136
24137 return bytes;
24138}
24139
24140/* A helper for dwarf_decode_macros that handles skipping an unknown
24141 opcode. Returns an updated pointer to the macro data buffer; or,
24142 on error, issues a complaint and returns NULL. */
24143
24144static const gdb_byte *
24145skip_unknown_opcode (unsigned int opcode,
24146 const gdb_byte **opcode_definitions,
24147 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24148 bfd *abfd,
24149 unsigned int offset_size,
24150 struct dwarf2_section_info *section)
24151{
24152 unsigned int bytes_read, i;
24153 unsigned long arg;
24154 const gdb_byte *defn;
24155
24156 if (opcode_definitions[opcode] == NULL)
24157 {
24158 complaint (&symfile_complaints,
24159 _("unrecognized DW_MACFINO opcode 0x%x"),
24160 opcode);
24161 return NULL;
24162 }
24163
24164 defn = opcode_definitions[opcode];
24165 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24166 defn += bytes_read;
24167
24168 for (i = 0; i < arg; ++i)
24169 {
24170 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24171 (enum dwarf_form) defn[i], offset_size,
24172 section);
24173 if (mac_ptr == NULL)
24174 {
24175 /* skip_form_bytes already issued the complaint. */
24176 return NULL;
24177 }
24178 }
24179
24180 return mac_ptr;
24181}
24182
24183/* A helper function which parses the header of a macro section.
24184 If the macro section is the extended (for now called "GNU") type,
24185 then this updates *OFFSET_SIZE. Returns a pointer to just after
24186 the header, or issues a complaint and returns NULL on error. */
24187
24188static const gdb_byte *
24189dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24190 bfd *abfd,
24191 const gdb_byte *mac_ptr,
24192 unsigned int *offset_size,
24193 int section_is_gnu)
24194{
24195 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24196
24197 if (section_is_gnu)
24198 {
24199 unsigned int version, flags;
24200
24201 version = read_2_bytes (abfd, mac_ptr);
24202 if (version != 4 && version != 5)
24203 {
24204 complaint (&symfile_complaints,
24205 _("unrecognized version `%d' in .debug_macro section"),
24206 version);
24207 return NULL;
24208 }
24209 mac_ptr += 2;
24210
24211 flags = read_1_byte (abfd, mac_ptr);
24212 ++mac_ptr;
24213 *offset_size = (flags & 1) ? 8 : 4;
24214
24215 if ((flags & 2) != 0)
24216 /* We don't need the line table offset. */
24217 mac_ptr += *offset_size;
24218
24219 /* Vendor opcode descriptions. */
24220 if ((flags & 4) != 0)
24221 {
24222 unsigned int i, count;
24223
24224 count = read_1_byte (abfd, mac_ptr);
24225 ++mac_ptr;
24226 for (i = 0; i < count; ++i)
24227 {
24228 unsigned int opcode, bytes_read;
24229 unsigned long arg;
24230
24231 opcode = read_1_byte (abfd, mac_ptr);
24232 ++mac_ptr;
24233 opcode_definitions[opcode] = mac_ptr;
24234 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24235 mac_ptr += bytes_read;
24236 mac_ptr += arg;
24237 }
24238 }
24239 }
24240
24241 return mac_ptr;
24242}
24243
24244/* A helper for dwarf_decode_macros that handles the GNU extensions,
24245 including DW_MACRO_import. */
24246
24247static void
24248dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24249 bfd *abfd,
24250 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24251 struct macro_source_file *current_file,
24252 struct line_header *lh,
24253 struct dwarf2_section_info *section,
24254 int section_is_gnu, int section_is_dwz,
24255 unsigned int offset_size,
24256 htab_t include_hash)
24257{
24258 struct objfile *objfile = dwarf2_per_objfile->objfile;
24259 enum dwarf_macro_record_type macinfo_type;
24260 int at_commandline;
24261 const gdb_byte *opcode_definitions[256];
24262
24263 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24264 &offset_size, section_is_gnu);
24265 if (mac_ptr == NULL)
24266 {
24267 /* We already issued a complaint. */
24268 return;
24269 }
24270
24271 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24272 GDB is still reading the definitions from command line. First
24273 DW_MACINFO_start_file will need to be ignored as it was already executed
24274 to create CURRENT_FILE for the main source holding also the command line
24275 definitions. On first met DW_MACINFO_start_file this flag is reset to
24276 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24277
24278 at_commandline = 1;
24279
24280 do
24281 {
24282 /* Do we at least have room for a macinfo type byte? */
24283 if (mac_ptr >= mac_end)
24284 {
24285 dwarf2_section_buffer_overflow_complaint (section);
24286 break;
24287 }
24288
24289 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24290 mac_ptr++;
24291
24292 /* Note that we rely on the fact that the corresponding GNU and
24293 DWARF constants are the same. */
24294 DIAGNOSTIC_PUSH
24295 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24296 switch (macinfo_type)
24297 {
24298 /* A zero macinfo type indicates the end of the macro
24299 information. */
24300 case 0:
24301 break;
24302
24303 case DW_MACRO_define:
24304 case DW_MACRO_undef:
24305 case DW_MACRO_define_strp:
24306 case DW_MACRO_undef_strp:
24307 case DW_MACRO_define_sup:
24308 case DW_MACRO_undef_sup:
24309 {
24310 unsigned int bytes_read;
24311 int line;
24312 const char *body;
24313 int is_define;
24314
24315 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24316 mac_ptr += bytes_read;
24317
24318 if (macinfo_type == DW_MACRO_define
24319 || macinfo_type == DW_MACRO_undef)
24320 {
24321 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24322 mac_ptr += bytes_read;
24323 }
24324 else
24325 {
24326 LONGEST str_offset;
24327
24328 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24329 mac_ptr += offset_size;
24330
24331 if (macinfo_type == DW_MACRO_define_sup
24332 || macinfo_type == DW_MACRO_undef_sup
24333 || section_is_dwz)
24334 {
24335 struct dwz_file *dwz
24336 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24337
24338 body = read_indirect_string_from_dwz (objfile,
24339 dwz, str_offset);
24340 }
24341 else
24342 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24343 abfd, str_offset);
24344 }
24345
24346 is_define = (macinfo_type == DW_MACRO_define
24347 || macinfo_type == DW_MACRO_define_strp
24348 || macinfo_type == DW_MACRO_define_sup);
24349 if (! current_file)
24350 {
24351 /* DWARF violation as no main source is present. */
24352 complaint (&symfile_complaints,
24353 _("debug info with no main source gives macro %s "
24354 "on line %d: %s"),
24355 is_define ? _("definition") : _("undefinition"),
24356 line, body);
24357 break;
24358 }
24359 if ((line == 0 && !at_commandline)
24360 || (line != 0 && at_commandline))
24361 complaint (&symfile_complaints,
24362 _("debug info gives %s macro %s with %s line %d: %s"),
24363 at_commandline ? _("command-line") : _("in-file"),
24364 is_define ? _("definition") : _("undefinition"),
24365 line == 0 ? _("zero") : _("non-zero"), line, body);
24366
24367 if (is_define)
24368 parse_macro_definition (current_file, line, body);
24369 else
24370 {
24371 gdb_assert (macinfo_type == DW_MACRO_undef
24372 || macinfo_type == DW_MACRO_undef_strp
24373 || macinfo_type == DW_MACRO_undef_sup);
24374 macro_undef (current_file, line, body);
24375 }
24376 }
24377 break;
24378
24379 case DW_MACRO_start_file:
24380 {
24381 unsigned int bytes_read;
24382 int line, file;
24383
24384 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24385 mac_ptr += bytes_read;
24386 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24387 mac_ptr += bytes_read;
24388
24389 if ((line == 0 && !at_commandline)
24390 || (line != 0 && at_commandline))
24391 complaint (&symfile_complaints,
24392 _("debug info gives source %d included "
24393 "from %s at %s line %d"),
24394 file, at_commandline ? _("command-line") : _("file"),
24395 line == 0 ? _("zero") : _("non-zero"), line);
24396
24397 if (at_commandline)
24398 {
24399 /* This DW_MACRO_start_file was executed in the
24400 pass one. */
24401 at_commandline = 0;
24402 }
24403 else
24404 current_file = macro_start_file (file, line, current_file, lh);
24405 }
24406 break;
24407
24408 case DW_MACRO_end_file:
24409 if (! current_file)
24410 complaint (&symfile_complaints,
24411 _("macro debug info has an unmatched "
24412 "`close_file' directive"));
24413 else
24414 {
24415 current_file = current_file->included_by;
24416 if (! current_file)
24417 {
24418 enum dwarf_macro_record_type next_type;
24419
24420 /* GCC circa March 2002 doesn't produce the zero
24421 type byte marking the end of the compilation
24422 unit. Complain if it's not there, but exit no
24423 matter what. */
24424
24425 /* Do we at least have room for a macinfo type byte? */
24426 if (mac_ptr >= mac_end)
24427 {
24428 dwarf2_section_buffer_overflow_complaint (section);
24429 return;
24430 }
24431
24432 /* We don't increment mac_ptr here, so this is just
24433 a look-ahead. */
24434 next_type
24435 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24436 mac_ptr);
24437 if (next_type != 0)
24438 complaint (&symfile_complaints,
24439 _("no terminating 0-type entry for "
24440 "macros in `.debug_macinfo' section"));
24441
24442 return;
24443 }
24444 }
24445 break;
24446
24447 case DW_MACRO_import:
24448 case DW_MACRO_import_sup:
24449 {
24450 LONGEST offset;
24451 void **slot;
24452 bfd *include_bfd = abfd;
24453 struct dwarf2_section_info *include_section = section;
24454 const gdb_byte *include_mac_end = mac_end;
24455 int is_dwz = section_is_dwz;
24456 const gdb_byte *new_mac_ptr;
24457
24458 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24459 mac_ptr += offset_size;
24460
24461 if (macinfo_type == DW_MACRO_import_sup)
24462 {
24463 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24464
24465 dwarf2_read_section (objfile, &dwz->macro);
24466
24467 include_section = &dwz->macro;
24468 include_bfd = get_section_bfd_owner (include_section);
24469 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24470 is_dwz = 1;
24471 }
24472
24473 new_mac_ptr = include_section->buffer + offset;
24474 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24475
24476 if (*slot != NULL)
24477 {
24478 /* This has actually happened; see
24479 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24480 complaint (&symfile_complaints,
24481 _("recursive DW_MACRO_import in "
24482 ".debug_macro section"));
24483 }
24484 else
24485 {
24486 *slot = (void *) new_mac_ptr;
24487
24488 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24489 include_bfd, new_mac_ptr,
24490 include_mac_end, current_file, lh,
24491 section, section_is_gnu, is_dwz,
24492 offset_size, include_hash);
24493
24494 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24495 }
24496 }
24497 break;
24498
24499 case DW_MACINFO_vendor_ext:
24500 if (!section_is_gnu)
24501 {
24502 unsigned int bytes_read;
24503
24504 /* This reads the constant, but since we don't recognize
24505 any vendor extensions, we ignore it. */
24506 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24507 mac_ptr += bytes_read;
24508 read_direct_string (abfd, mac_ptr, &bytes_read);
24509 mac_ptr += bytes_read;
24510
24511 /* We don't recognize any vendor extensions. */
24512 break;
24513 }
24514 /* FALLTHROUGH */
24515
24516 default:
24517 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24518 mac_ptr, mac_end, abfd, offset_size,
24519 section);
24520 if (mac_ptr == NULL)
24521 return;
24522 break;
24523 }
24524 DIAGNOSTIC_POP
24525 } while (macinfo_type != 0);
24526}
24527
24528static void
24529dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24530 int section_is_gnu)
24531{
24532 struct dwarf2_per_objfile *dwarf2_per_objfile
24533 = cu->per_cu->dwarf2_per_objfile;
24534 struct objfile *objfile = dwarf2_per_objfile->objfile;
24535 struct line_header *lh = cu->line_header;
24536 bfd *abfd;
24537 const gdb_byte *mac_ptr, *mac_end;
24538 struct macro_source_file *current_file = 0;
24539 enum dwarf_macro_record_type macinfo_type;
24540 unsigned int offset_size = cu->header.offset_size;
24541 const gdb_byte *opcode_definitions[256];
24542 void **slot;
24543 struct dwarf2_section_info *section;
24544 const char *section_name;
24545
24546 if (cu->dwo_unit != NULL)
24547 {
24548 if (section_is_gnu)
24549 {
24550 section = &cu->dwo_unit->dwo_file->sections.macro;
24551 section_name = ".debug_macro.dwo";
24552 }
24553 else
24554 {
24555 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24556 section_name = ".debug_macinfo.dwo";
24557 }
24558 }
24559 else
24560 {
24561 if (section_is_gnu)
24562 {
24563 section = &dwarf2_per_objfile->macro;
24564 section_name = ".debug_macro";
24565 }
24566 else
24567 {
24568 section = &dwarf2_per_objfile->macinfo;
24569 section_name = ".debug_macinfo";
24570 }
24571 }
24572
24573 dwarf2_read_section (objfile, section);
24574 if (section->buffer == NULL)
24575 {
24576 complaint (&symfile_complaints, _("missing %s section"), section_name);
24577 return;
24578 }
24579 abfd = get_section_bfd_owner (section);
24580
24581 /* First pass: Find the name of the base filename.
24582 This filename is needed in order to process all macros whose definition
24583 (or undefinition) comes from the command line. These macros are defined
24584 before the first DW_MACINFO_start_file entry, and yet still need to be
24585 associated to the base file.
24586
24587 To determine the base file name, we scan the macro definitions until we
24588 reach the first DW_MACINFO_start_file entry. We then initialize
24589 CURRENT_FILE accordingly so that any macro definition found before the
24590 first DW_MACINFO_start_file can still be associated to the base file. */
24591
24592 mac_ptr = section->buffer + offset;
24593 mac_end = section->buffer + section->size;
24594
24595 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24596 &offset_size, section_is_gnu);
24597 if (mac_ptr == NULL)
24598 {
24599 /* We already issued a complaint. */
24600 return;
24601 }
24602
24603 do
24604 {
24605 /* Do we at least have room for a macinfo type byte? */
24606 if (mac_ptr >= mac_end)
24607 {
24608 /* Complaint is printed during the second pass as GDB will probably
24609 stop the first pass earlier upon finding
24610 DW_MACINFO_start_file. */
24611 break;
24612 }
24613
24614 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24615 mac_ptr++;
24616
24617 /* Note that we rely on the fact that the corresponding GNU and
24618 DWARF constants are the same. */
24619 DIAGNOSTIC_PUSH
24620 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24621 switch (macinfo_type)
24622 {
24623 /* A zero macinfo type indicates the end of the macro
24624 information. */
24625 case 0:
24626 break;
24627
24628 case DW_MACRO_define:
24629 case DW_MACRO_undef:
24630 /* Only skip the data by MAC_PTR. */
24631 {
24632 unsigned int bytes_read;
24633
24634 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24635 mac_ptr += bytes_read;
24636 read_direct_string (abfd, mac_ptr, &bytes_read);
24637 mac_ptr += bytes_read;
24638 }
24639 break;
24640
24641 case DW_MACRO_start_file:
24642 {
24643 unsigned int bytes_read;
24644 int line, file;
24645
24646 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24647 mac_ptr += bytes_read;
24648 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24649 mac_ptr += bytes_read;
24650
24651 current_file = macro_start_file (file, line, current_file, lh);
24652 }
24653 break;
24654
24655 case DW_MACRO_end_file:
24656 /* No data to skip by MAC_PTR. */
24657 break;
24658
24659 case DW_MACRO_define_strp:
24660 case DW_MACRO_undef_strp:
24661 case DW_MACRO_define_sup:
24662 case DW_MACRO_undef_sup:
24663 {
24664 unsigned int bytes_read;
24665
24666 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24667 mac_ptr += bytes_read;
24668 mac_ptr += offset_size;
24669 }
24670 break;
24671
24672 case DW_MACRO_import:
24673 case DW_MACRO_import_sup:
24674 /* Note that, according to the spec, a transparent include
24675 chain cannot call DW_MACRO_start_file. So, we can just
24676 skip this opcode. */
24677 mac_ptr += offset_size;
24678 break;
24679
24680 case DW_MACINFO_vendor_ext:
24681 /* Only skip the data by MAC_PTR. */
24682 if (!section_is_gnu)
24683 {
24684 unsigned int bytes_read;
24685
24686 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24687 mac_ptr += bytes_read;
24688 read_direct_string (abfd, mac_ptr, &bytes_read);
24689 mac_ptr += bytes_read;
24690 }
24691 /* FALLTHROUGH */
24692
24693 default:
24694 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24695 mac_ptr, mac_end, abfd, offset_size,
24696 section);
24697 if (mac_ptr == NULL)
24698 return;
24699 break;
24700 }
24701 DIAGNOSTIC_POP
24702 } while (macinfo_type != 0 && current_file == NULL);
24703
24704 /* Second pass: Process all entries.
24705
24706 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24707 command-line macro definitions/undefinitions. This flag is unset when we
24708 reach the first DW_MACINFO_start_file entry. */
24709
24710 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24711 htab_eq_pointer,
24712 NULL, xcalloc, xfree));
24713 mac_ptr = section->buffer + offset;
24714 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24715 *slot = (void *) mac_ptr;
24716 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24717 abfd, mac_ptr, mac_end,
24718 current_file, lh, section,
24719 section_is_gnu, 0, offset_size,
24720 include_hash.get ());
24721}
24722
24723/* Check if the attribute's form is a DW_FORM_block*
24724 if so return true else false. */
24725
24726static int
24727attr_form_is_block (const struct attribute *attr)
24728{
24729 return (attr == NULL ? 0 :
24730 attr->form == DW_FORM_block1
24731 || attr->form == DW_FORM_block2
24732 || attr->form == DW_FORM_block4
24733 || attr->form == DW_FORM_block
24734 || attr->form == DW_FORM_exprloc);
24735}
24736
24737/* Return non-zero if ATTR's value is a section offset --- classes
24738 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24739 You may use DW_UNSND (attr) to retrieve such offsets.
24740
24741 Section 7.5.4, "Attribute Encodings", explains that no attribute
24742 may have a value that belongs to more than one of these classes; it
24743 would be ambiguous if we did, because we use the same forms for all
24744 of them. */
24745
24746static int
24747attr_form_is_section_offset (const struct attribute *attr)
24748{
24749 return (attr->form == DW_FORM_data4
24750 || attr->form == DW_FORM_data8
24751 || attr->form == DW_FORM_sec_offset);
24752}
24753
24754/* Return non-zero if ATTR's value falls in the 'constant' class, or
24755 zero otherwise. When this function returns true, you can apply
24756 dwarf2_get_attr_constant_value to it.
24757
24758 However, note that for some attributes you must check
24759 attr_form_is_section_offset before using this test. DW_FORM_data4
24760 and DW_FORM_data8 are members of both the constant class, and of
24761 the classes that contain offsets into other debug sections
24762 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24763 that, if an attribute's can be either a constant or one of the
24764 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24765 taken as section offsets, not constants.
24766
24767 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24768 cannot handle that. */
24769
24770static int
24771attr_form_is_constant (const struct attribute *attr)
24772{
24773 switch (attr->form)
24774 {
24775 case DW_FORM_sdata:
24776 case DW_FORM_udata:
24777 case DW_FORM_data1:
24778 case DW_FORM_data2:
24779 case DW_FORM_data4:
24780 case DW_FORM_data8:
24781 case DW_FORM_implicit_const:
24782 return 1;
24783 default:
24784 return 0;
24785 }
24786}
24787
24788
24789/* DW_ADDR is always stored already as sect_offset; despite for the forms
24790 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24791
24792static int
24793attr_form_is_ref (const struct attribute *attr)
24794{
24795 switch (attr->form)
24796 {
24797 case DW_FORM_ref_addr:
24798 case DW_FORM_ref1:
24799 case DW_FORM_ref2:
24800 case DW_FORM_ref4:
24801 case DW_FORM_ref8:
24802 case DW_FORM_ref_udata:
24803 case DW_FORM_GNU_ref_alt:
24804 return 1;
24805 default:
24806 return 0;
24807 }
24808}
24809
24810/* Return the .debug_loc section to use for CU.
24811 For DWO files use .debug_loc.dwo. */
24812
24813static struct dwarf2_section_info *
24814cu_debug_loc_section (struct dwarf2_cu *cu)
24815{
24816 struct dwarf2_per_objfile *dwarf2_per_objfile
24817 = cu->per_cu->dwarf2_per_objfile;
24818
24819 if (cu->dwo_unit)
24820 {
24821 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24822
24823 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24824 }
24825 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24826 : &dwarf2_per_objfile->loc);
24827}
24828
24829/* A helper function that fills in a dwarf2_loclist_baton. */
24830
24831static void
24832fill_in_loclist_baton (struct dwarf2_cu *cu,
24833 struct dwarf2_loclist_baton *baton,
24834 const struct attribute *attr)
24835{
24836 struct dwarf2_per_objfile *dwarf2_per_objfile
24837 = cu->per_cu->dwarf2_per_objfile;
24838 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24839
24840 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24841
24842 baton->per_cu = cu->per_cu;
24843 gdb_assert (baton->per_cu);
24844 /* We don't know how long the location list is, but make sure we
24845 don't run off the edge of the section. */
24846 baton->size = section->size - DW_UNSND (attr);
24847 baton->data = section->buffer + DW_UNSND (attr);
24848 baton->base_address = cu->base_address;
24849 baton->from_dwo = cu->dwo_unit != NULL;
24850}
24851
24852static void
24853dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24854 struct dwarf2_cu *cu, int is_block)
24855{
24856 struct dwarf2_per_objfile *dwarf2_per_objfile
24857 = cu->per_cu->dwarf2_per_objfile;
24858 struct objfile *objfile = dwarf2_per_objfile->objfile;
24859 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24860
24861 if (attr_form_is_section_offset (attr)
24862 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24863 the section. If so, fall through to the complaint in the
24864 other branch. */
24865 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24866 {
24867 struct dwarf2_loclist_baton *baton;
24868
24869 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24870
24871 fill_in_loclist_baton (cu, baton, attr);
24872
24873 if (cu->base_known == 0)
24874 complaint (&symfile_complaints,
24875 _("Location list used without "
24876 "specifying the CU base address."));
24877
24878 SYMBOL_ACLASS_INDEX (sym) = (is_block
24879 ? dwarf2_loclist_block_index
24880 : dwarf2_loclist_index);
24881 SYMBOL_LOCATION_BATON (sym) = baton;
24882 }
24883 else
24884 {
24885 struct dwarf2_locexpr_baton *baton;
24886
24887 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24888 baton->per_cu = cu->per_cu;
24889 gdb_assert (baton->per_cu);
24890
24891 if (attr_form_is_block (attr))
24892 {
24893 /* Note that we're just copying the block's data pointer
24894 here, not the actual data. We're still pointing into the
24895 info_buffer for SYM's objfile; right now we never release
24896 that buffer, but when we do clean up properly this may
24897 need to change. */
24898 baton->size = DW_BLOCK (attr)->size;
24899 baton->data = DW_BLOCK (attr)->data;
24900 }
24901 else
24902 {
24903 dwarf2_invalid_attrib_class_complaint ("location description",
24904 SYMBOL_NATURAL_NAME (sym));
24905 baton->size = 0;
24906 }
24907
24908 SYMBOL_ACLASS_INDEX (sym) = (is_block
24909 ? dwarf2_locexpr_block_index
24910 : dwarf2_locexpr_index);
24911 SYMBOL_LOCATION_BATON (sym) = baton;
24912 }
24913}
24914
24915/* Return the OBJFILE associated with the compilation unit CU. If CU
24916 came from a separate debuginfo file, then the master objfile is
24917 returned. */
24918
24919struct objfile *
24920dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24921{
24922 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24923
24924 /* Return the master objfile, so that we can report and look up the
24925 correct file containing this variable. */
24926 if (objfile->separate_debug_objfile_backlink)
24927 objfile = objfile->separate_debug_objfile_backlink;
24928
24929 return objfile;
24930}
24931
24932/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24933 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24934 CU_HEADERP first. */
24935
24936static const struct comp_unit_head *
24937per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24938 struct dwarf2_per_cu_data *per_cu)
24939{
24940 const gdb_byte *info_ptr;
24941
24942 if (per_cu->cu)
24943 return &per_cu->cu->header;
24944
24945 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24946
24947 memset (cu_headerp, 0, sizeof (*cu_headerp));
24948 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24949 rcuh_kind::COMPILE);
24950
24951 return cu_headerp;
24952}
24953
24954/* Return the address size given in the compilation unit header for CU. */
24955
24956int
24957dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24958{
24959 struct comp_unit_head cu_header_local;
24960 const struct comp_unit_head *cu_headerp;
24961
24962 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24963
24964 return cu_headerp->addr_size;
24965}
24966
24967/* Return the offset size given in the compilation unit header for CU. */
24968
24969int
24970dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24971{
24972 struct comp_unit_head cu_header_local;
24973 const struct comp_unit_head *cu_headerp;
24974
24975 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24976
24977 return cu_headerp->offset_size;
24978}
24979
24980/* See its dwarf2loc.h declaration. */
24981
24982int
24983dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24984{
24985 struct comp_unit_head cu_header_local;
24986 const struct comp_unit_head *cu_headerp;
24987
24988 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24989
24990 if (cu_headerp->version == 2)
24991 return cu_headerp->addr_size;
24992 else
24993 return cu_headerp->offset_size;
24994}
24995
24996/* Return the text offset of the CU. The returned offset comes from
24997 this CU's objfile. If this objfile came from a separate debuginfo
24998 file, then the offset may be different from the corresponding
24999 offset in the parent objfile. */
25000
25001CORE_ADDR
25002dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25003{
25004 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25005
25006 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25007}
25008
25009/* Return DWARF version number of PER_CU. */
25010
25011short
25012dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25013{
25014 return per_cu->dwarf_version;
25015}
25016
25017/* Locate the .debug_info compilation unit from CU's objfile which contains
25018 the DIE at OFFSET. Raises an error on failure. */
25019
25020static struct dwarf2_per_cu_data *
25021dwarf2_find_containing_comp_unit (sect_offset sect_off,
25022 unsigned int offset_in_dwz,
25023 struct dwarf2_per_objfile *dwarf2_per_objfile)
25024{
25025 struct dwarf2_per_cu_data *this_cu;
25026 int low, high;
25027 const sect_offset *cu_off;
25028
25029 low = 0;
25030 high = dwarf2_per_objfile->n_comp_units - 1;
25031 while (high > low)
25032 {
25033 struct dwarf2_per_cu_data *mid_cu;
25034 int mid = low + (high - low) / 2;
25035
25036 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25037 cu_off = &mid_cu->sect_off;
25038 if (mid_cu->is_dwz > offset_in_dwz
25039 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25040 high = mid;
25041 else
25042 low = mid + 1;
25043 }
25044 gdb_assert (low == high);
25045 this_cu = dwarf2_per_objfile->all_comp_units[low];
25046 cu_off = &this_cu->sect_off;
25047 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25048 {
25049 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25050 error (_("Dwarf Error: could not find partial DIE containing "
25051 "offset %s [in module %s]"),
25052 sect_offset_str (sect_off),
25053 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25054
25055 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25056 <= sect_off);
25057 return dwarf2_per_objfile->all_comp_units[low-1];
25058 }
25059 else
25060 {
25061 this_cu = dwarf2_per_objfile->all_comp_units[low];
25062 if (low == dwarf2_per_objfile->n_comp_units - 1
25063 && sect_off >= this_cu->sect_off + this_cu->length)
25064 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25065 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25066 return this_cu;
25067 }
25068}
25069
25070/* Initialize dwarf2_cu CU, owned by PER_CU. */
25071
25072dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25073 : per_cu (per_cu_),
25074 mark (0),
25075 has_loclist (0),
25076 checked_producer (0),
25077 producer_is_gxx_lt_4_6 (0),
25078 producer_is_gcc_lt_4_3 (0),
25079 producer_is_icc_lt_14 (0),
25080 processing_has_namespace_info (0)
25081{
25082 per_cu->cu = this;
25083}
25084
25085/* Destroy a dwarf2_cu. */
25086
25087dwarf2_cu::~dwarf2_cu ()
25088{
25089 per_cu->cu = NULL;
25090}
25091
25092/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25093
25094static void
25095prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25096 enum language pretend_language)
25097{
25098 struct attribute *attr;
25099
25100 /* Set the language we're debugging. */
25101 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25102 if (attr)
25103 set_cu_language (DW_UNSND (attr), cu);
25104 else
25105 {
25106 cu->language = pretend_language;
25107 cu->language_defn = language_def (cu->language);
25108 }
25109
25110 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25111}
25112
25113/* Free all cached compilation units. */
25114
25115static void
25116free_cached_comp_units (void *data)
25117{
25118 struct dwarf2_per_objfile *dwarf2_per_objfile
25119 = (struct dwarf2_per_objfile *) data;
25120
25121 dwarf2_per_objfile->free_cached_comp_units ();
25122}
25123
25124/* Increase the age counter on each cached compilation unit, and free
25125 any that are too old. */
25126
25127static void
25128age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25129{
25130 struct dwarf2_per_cu_data *per_cu, **last_chain;
25131
25132 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25133 per_cu = dwarf2_per_objfile->read_in_chain;
25134 while (per_cu != NULL)
25135 {
25136 per_cu->cu->last_used ++;
25137 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25138 dwarf2_mark (per_cu->cu);
25139 per_cu = per_cu->cu->read_in_chain;
25140 }
25141
25142 per_cu = dwarf2_per_objfile->read_in_chain;
25143 last_chain = &dwarf2_per_objfile->read_in_chain;
25144 while (per_cu != NULL)
25145 {
25146 struct dwarf2_per_cu_data *next_cu;
25147
25148 next_cu = per_cu->cu->read_in_chain;
25149
25150 if (!per_cu->cu->mark)
25151 {
25152 delete per_cu->cu;
25153 *last_chain = next_cu;
25154 }
25155 else
25156 last_chain = &per_cu->cu->read_in_chain;
25157
25158 per_cu = next_cu;
25159 }
25160}
25161
25162/* Remove a single compilation unit from the cache. */
25163
25164static void
25165free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25166{
25167 struct dwarf2_per_cu_data *per_cu, **last_chain;
25168 struct dwarf2_per_objfile *dwarf2_per_objfile
25169 = target_per_cu->dwarf2_per_objfile;
25170
25171 per_cu = dwarf2_per_objfile->read_in_chain;
25172 last_chain = &dwarf2_per_objfile->read_in_chain;
25173 while (per_cu != NULL)
25174 {
25175 struct dwarf2_per_cu_data *next_cu;
25176
25177 next_cu = per_cu->cu->read_in_chain;
25178
25179 if (per_cu == target_per_cu)
25180 {
25181 delete per_cu->cu;
25182 per_cu->cu = NULL;
25183 *last_chain = next_cu;
25184 break;
25185 }
25186 else
25187 last_chain = &per_cu->cu->read_in_chain;
25188
25189 per_cu = next_cu;
25190 }
25191}
25192
25193/* Release all extra memory associated with OBJFILE. */
25194
25195void
25196dwarf2_free_objfile (struct objfile *objfile)
25197{
25198 struct dwarf2_per_objfile *dwarf2_per_objfile
25199 = get_dwarf2_per_objfile (objfile);
25200
25201 delete dwarf2_per_objfile;
25202}
25203
25204/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25205 We store these in a hash table separate from the DIEs, and preserve them
25206 when the DIEs are flushed out of cache.
25207
25208 The CU "per_cu" pointer is needed because offset alone is not enough to
25209 uniquely identify the type. A file may have multiple .debug_types sections,
25210 or the type may come from a DWO file. Furthermore, while it's more logical
25211 to use per_cu->section+offset, with Fission the section with the data is in
25212 the DWO file but we don't know that section at the point we need it.
25213 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25214 because we can enter the lookup routine, get_die_type_at_offset, from
25215 outside this file, and thus won't necessarily have PER_CU->cu.
25216 Fortunately, PER_CU is stable for the life of the objfile. */
25217
25218struct dwarf2_per_cu_offset_and_type
25219{
25220 const struct dwarf2_per_cu_data *per_cu;
25221 sect_offset sect_off;
25222 struct type *type;
25223};
25224
25225/* Hash function for a dwarf2_per_cu_offset_and_type. */
25226
25227static hashval_t
25228per_cu_offset_and_type_hash (const void *item)
25229{
25230 const struct dwarf2_per_cu_offset_and_type *ofs
25231 = (const struct dwarf2_per_cu_offset_and_type *) item;
25232
25233 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25234}
25235
25236/* Equality function for a dwarf2_per_cu_offset_and_type. */
25237
25238static int
25239per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25240{
25241 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25242 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25243 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25244 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25245
25246 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25247 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25248}
25249
25250/* Set the type associated with DIE to TYPE. Save it in CU's hash
25251 table if necessary. For convenience, return TYPE.
25252
25253 The DIEs reading must have careful ordering to:
25254 * Not cause infite loops trying to read in DIEs as a prerequisite for
25255 reading current DIE.
25256 * Not trying to dereference contents of still incompletely read in types
25257 while reading in other DIEs.
25258 * Enable referencing still incompletely read in types just by a pointer to
25259 the type without accessing its fields.
25260
25261 Therefore caller should follow these rules:
25262 * Try to fetch any prerequisite types we may need to build this DIE type
25263 before building the type and calling set_die_type.
25264 * After building type call set_die_type for current DIE as soon as
25265 possible before fetching more types to complete the current type.
25266 * Make the type as complete as possible before fetching more types. */
25267
25268static struct type *
25269set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25270{
25271 struct dwarf2_per_objfile *dwarf2_per_objfile
25272 = cu->per_cu->dwarf2_per_objfile;
25273 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25274 struct objfile *objfile = dwarf2_per_objfile->objfile;
25275 struct attribute *attr;
25276 struct dynamic_prop prop;
25277
25278 /* For Ada types, make sure that the gnat-specific data is always
25279 initialized (if not already set). There are a few types where
25280 we should not be doing so, because the type-specific area is
25281 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25282 where the type-specific area is used to store the floatformat).
25283 But this is not a problem, because the gnat-specific information
25284 is actually not needed for these types. */
25285 if (need_gnat_info (cu)
25286 && TYPE_CODE (type) != TYPE_CODE_FUNC
25287 && TYPE_CODE (type) != TYPE_CODE_FLT
25288 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25289 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25290 && TYPE_CODE (type) != TYPE_CODE_METHOD
25291 && !HAVE_GNAT_AUX_INFO (type))
25292 INIT_GNAT_SPECIFIC (type);
25293
25294 /* Read DW_AT_allocated and set in type. */
25295 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25296 if (attr_form_is_block (attr))
25297 {
25298 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25299 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25300 }
25301 else if (attr != NULL)
25302 {
25303 complaint (&symfile_complaints,
25304 _("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25305 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25306 sect_offset_str (die->sect_off));
25307 }
25308
25309 /* Read DW_AT_associated and set in type. */
25310 attr = dwarf2_attr (die, DW_AT_associated, cu);
25311 if (attr_form_is_block (attr))
25312 {
25313 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25314 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25315 }
25316 else if (attr != NULL)
25317 {
25318 complaint (&symfile_complaints,
25319 _("DW_AT_associated has the wrong form (%s) at DIE %s"),
25320 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25321 sect_offset_str (die->sect_off));
25322 }
25323
25324 /* Read DW_AT_data_location and set in type. */
25325 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25326 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25327 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25328
25329 if (dwarf2_per_objfile->die_type_hash == NULL)
25330 {
25331 dwarf2_per_objfile->die_type_hash =
25332 htab_create_alloc_ex (127,
25333 per_cu_offset_and_type_hash,
25334 per_cu_offset_and_type_eq,
25335 NULL,
25336 &objfile->objfile_obstack,
25337 hashtab_obstack_allocate,
25338 dummy_obstack_deallocate);
25339 }
25340
25341 ofs.per_cu = cu->per_cu;
25342 ofs.sect_off = die->sect_off;
25343 ofs.type = type;
25344 slot = (struct dwarf2_per_cu_offset_and_type **)
25345 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25346 if (*slot)
25347 complaint (&symfile_complaints,
25348 _("A problem internal to GDB: DIE %s has type already set"),
25349 sect_offset_str (die->sect_off));
25350 *slot = XOBNEW (&objfile->objfile_obstack,
25351 struct dwarf2_per_cu_offset_and_type);
25352 **slot = ofs;
25353 return type;
25354}
25355
25356/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25357 or return NULL if the die does not have a saved type. */
25358
25359static struct type *
25360get_die_type_at_offset (sect_offset sect_off,
25361 struct dwarf2_per_cu_data *per_cu)
25362{
25363 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25364 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25365
25366 if (dwarf2_per_objfile->die_type_hash == NULL)
25367 return NULL;
25368
25369 ofs.per_cu = per_cu;
25370 ofs.sect_off = sect_off;
25371 slot = ((struct dwarf2_per_cu_offset_and_type *)
25372 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25373 if (slot)
25374 return slot->type;
25375 else
25376 return NULL;
25377}
25378
25379/* Look up the type for DIE in CU in die_type_hash,
25380 or return NULL if DIE does not have a saved type. */
25381
25382static struct type *
25383get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25384{
25385 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25386}
25387
25388/* Add a dependence relationship from CU to REF_PER_CU. */
25389
25390static void
25391dwarf2_add_dependence (struct dwarf2_cu *cu,
25392 struct dwarf2_per_cu_data *ref_per_cu)
25393{
25394 void **slot;
25395
25396 if (cu->dependencies == NULL)
25397 cu->dependencies
25398 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25399 NULL, &cu->comp_unit_obstack,
25400 hashtab_obstack_allocate,
25401 dummy_obstack_deallocate);
25402
25403 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25404 if (*slot == NULL)
25405 *slot = ref_per_cu;
25406}
25407
25408/* Subroutine of dwarf2_mark to pass to htab_traverse.
25409 Set the mark field in every compilation unit in the
25410 cache that we must keep because we are keeping CU. */
25411
25412static int
25413dwarf2_mark_helper (void **slot, void *data)
25414{
25415 struct dwarf2_per_cu_data *per_cu;
25416
25417 per_cu = (struct dwarf2_per_cu_data *) *slot;
25418
25419 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25420 reading of the chain. As such dependencies remain valid it is not much
25421 useful to track and undo them during QUIT cleanups. */
25422 if (per_cu->cu == NULL)
25423 return 1;
25424
25425 if (per_cu->cu->mark)
25426 return 1;
25427 per_cu->cu->mark = 1;
25428
25429 if (per_cu->cu->dependencies != NULL)
25430 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25431
25432 return 1;
25433}
25434
25435/* Set the mark field in CU and in every other compilation unit in the
25436 cache that we must keep because we are keeping CU. */
25437
25438static void
25439dwarf2_mark (struct dwarf2_cu *cu)
25440{
25441 if (cu->mark)
25442 return;
25443 cu->mark = 1;
25444 if (cu->dependencies != NULL)
25445 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25446}
25447
25448static void
25449dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25450{
25451 while (per_cu)
25452 {
25453 per_cu->cu->mark = 0;
25454 per_cu = per_cu->cu->read_in_chain;
25455 }
25456}
25457
25458/* Trivial hash function for partial_die_info: the hash value of a DIE
25459 is its offset in .debug_info for this objfile. */
25460
25461static hashval_t
25462partial_die_hash (const void *item)
25463{
25464 const struct partial_die_info *part_die
25465 = (const struct partial_die_info *) item;
25466
25467 return to_underlying (part_die->sect_off);
25468}
25469
25470/* Trivial comparison function for partial_die_info structures: two DIEs
25471 are equal if they have the same offset. */
25472
25473static int
25474partial_die_eq (const void *item_lhs, const void *item_rhs)
25475{
25476 const struct partial_die_info *part_die_lhs
25477 = (const struct partial_die_info *) item_lhs;
25478 const struct partial_die_info *part_die_rhs
25479 = (const struct partial_die_info *) item_rhs;
25480
25481 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25482}
25483
25484static struct cmd_list_element *set_dwarf_cmdlist;
25485static struct cmd_list_element *show_dwarf_cmdlist;
25486
25487static void
25488set_dwarf_cmd (const char *args, int from_tty)
25489{
25490 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25491 gdb_stdout);
25492}
25493
25494static void
25495show_dwarf_cmd (const char *args, int from_tty)
25496{
25497 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25498}
25499
25500/* The "save gdb-index" command. */
25501
25502/* Write SIZE bytes from the buffer pointed to by DATA to FILE, with
25503 error checking. */
25504
25505static void
25506file_write (FILE *file, const void *data, size_t size)
25507{
25508 if (fwrite (data, 1, size, file) != size)
25509 error (_("couldn't data write to file"));
25510}
25511
25512/* Write the contents of VEC to FILE, with error checking. */
25513
25514template<typename Elem, typename Alloc>
25515static void
25516file_write (FILE *file, const std::vector<Elem, Alloc> &vec)
25517{
25518 file_write (file, vec.data (), vec.size () * sizeof (vec[0]));
25519}
25520
25521/* In-memory buffer to prepare data to be written later to a file. */
25522class data_buf
25523{
25524public:
25525 /* Copy DATA to the end of the buffer. */
25526 template<typename T>
25527 void append_data (const T &data)
25528 {
25529 std::copy (reinterpret_cast<const gdb_byte *> (&data),
25530 reinterpret_cast<const gdb_byte *> (&data + 1),
25531 grow (sizeof (data)));
25532 }
25533
25534 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
25535 terminating zero is appended too. */
25536 void append_cstr0 (const char *cstr)
25537 {
25538 const size_t size = strlen (cstr) + 1;
25539 std::copy (cstr, cstr + size, grow (size));
25540 }
25541
25542 /* Store INPUT as ULEB128 to the end of buffer. */
25543 void append_unsigned_leb128 (ULONGEST input)
25544 {
25545 for (;;)
25546 {
25547 gdb_byte output = input & 0x7f;
25548 input >>= 7;
25549 if (input)
25550 output |= 0x80;
25551 append_data (output);
25552 if (input == 0)
25553 break;
25554 }
25555 }
25556
25557 /* Accept a host-format integer in VAL and append it to the buffer
25558 as a target-format integer which is LEN bytes long. */
25559 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
25560 {
25561 ::store_unsigned_integer (grow (len), len, byte_order, val);
25562 }
25563
25564 /* Return the size of the buffer. */
25565 size_t size () const
25566 {
25567 return m_vec.size ();
25568 }
25569
25570 /* Return true iff the buffer is empty. */
25571 bool empty () const
25572 {
25573 return m_vec.empty ();
25574 }
25575
25576 /* Write the buffer to FILE. */
25577 void file_write (FILE *file) const
25578 {
25579 ::file_write (file, m_vec);
25580 }
25581
25582private:
25583 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
25584 the start of the new block. */
25585 gdb_byte *grow (size_t size)
25586 {
25587 m_vec.resize (m_vec.size () + size);
25588 return &*m_vec.end () - size;
25589 }
25590
25591 gdb::byte_vector m_vec;
25592};
25593
25594/* An entry in the symbol table. */
25595struct symtab_index_entry
25596{
25597 /* The name of the symbol. */
25598 const char *name;
25599 /* The offset of the name in the constant pool. */
25600 offset_type index_offset;
25601 /* A sorted vector of the indices of all the CUs that hold an object
25602 of this name. */
25603 std::vector<offset_type> cu_indices;
25604};
25605
25606/* The symbol table. This is a power-of-2-sized hash table. */
25607struct mapped_symtab
25608{
25609 mapped_symtab ()
25610 {
25611 data.resize (1024);
25612 }
25613
25614 offset_type n_elements = 0;
25615 std::vector<symtab_index_entry> data;
25616};
25617
25618/* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
25619 the slot.
25620
25621 Function is used only during write_hash_table so no index format backward
25622 compatibility is needed. */
25623
25624static symtab_index_entry &
25625find_slot (struct mapped_symtab *symtab, const char *name)
25626{
25627 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
25628
25629 index = hash & (symtab->data.size () - 1);
25630 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
25631
25632 for (;;)
25633 {
25634 if (symtab->data[index].name == NULL
25635 || strcmp (name, symtab->data[index].name) == 0)
25636 return symtab->data[index];
25637 index = (index + step) & (symtab->data.size () - 1);
25638 }
25639}
25640
25641/* Expand SYMTAB's hash table. */
25642
25643static void
25644hash_expand (struct mapped_symtab *symtab)
25645{
25646 auto old_entries = std::move (symtab->data);
25647
25648 symtab->data.clear ();
25649 symtab->data.resize (old_entries.size () * 2);
25650
25651 for (auto &it : old_entries)
25652 if (it.name != NULL)
25653 {
25654 auto &ref = find_slot (symtab, it.name);
25655 ref = std::move (it);
25656 }
25657}
25658
25659/* Add an entry to SYMTAB. NAME is the name of the symbol.
25660 CU_INDEX is the index of the CU in which the symbol appears.
25661 IS_STATIC is one if the symbol is static, otherwise zero (global). */
25662
25663static void
25664add_index_entry (struct mapped_symtab *symtab, const char *name,
25665 int is_static, gdb_index_symbol_kind kind,
25666 offset_type cu_index)
25667{
25668 offset_type cu_index_and_attrs;
25669
25670 ++symtab->n_elements;
25671 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
25672 hash_expand (symtab);
25673
25674 symtab_index_entry &slot = find_slot (symtab, name);
25675 if (slot.name == NULL)
25676 {
25677 slot.name = name;
25678 /* index_offset is set later. */
25679 }
25680
25681 cu_index_and_attrs = 0;
25682 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
25683 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
25684 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
25685
25686 /* We don't want to record an index value twice as we want to avoid the
25687 duplication.
25688 We process all global symbols and then all static symbols
25689 (which would allow us to avoid the duplication by only having to check
25690 the last entry pushed), but a symbol could have multiple kinds in one CU.
25691 To keep things simple we don't worry about the duplication here and
25692 sort and uniqufy the list after we've processed all symbols. */
25693 slot.cu_indices.push_back (cu_index_and_attrs);
25694}
25695
25696/* Sort and remove duplicates of all symbols' cu_indices lists. */
25697
25698static void
25699uniquify_cu_indices (struct mapped_symtab *symtab)
25700{
25701 for (auto &entry : symtab->data)
25702 {
25703 if (entry.name != NULL && !entry.cu_indices.empty ())
25704 {
25705 auto &cu_indices = entry.cu_indices;
25706 std::sort (cu_indices.begin (), cu_indices.end ());
25707 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
25708 cu_indices.erase (from, cu_indices.end ());
25709 }
25710 }
25711}
25712
25713/* A form of 'const char *' suitable for container keys. Only the
25714 pointer is stored. The strings themselves are compared, not the
25715 pointers. */
25716class c_str_view
25717{
25718public:
25719 c_str_view (const char *cstr)
25720 : m_cstr (cstr)
25721 {}
25722
25723 bool operator== (const c_str_view &other) const
25724 {
25725 return strcmp (m_cstr, other.m_cstr) == 0;
25726 }
25727
25728 /* Return the underlying C string. Note, the returned string is
25729 only a reference with lifetime of this object. */
25730 const char *c_str () const
25731 {
25732 return m_cstr;
25733 }
25734
25735private:
25736 friend class c_str_view_hasher;
25737 const char *const m_cstr;
25738};
25739
25740/* A std::unordered_map::hasher for c_str_view that uses the right
25741 hash function for strings in a mapped index. */
25742class c_str_view_hasher
25743{
25744public:
25745 size_t operator () (const c_str_view &x) const
25746 {
25747 return mapped_index_string_hash (INT_MAX, x.m_cstr);
25748 }
25749};
25750
25751/* A std::unordered_map::hasher for std::vector<>. */
25752template<typename T>
25753class vector_hasher
25754{
25755public:
25756 size_t operator () (const std::vector<T> &key) const
25757 {
25758 return iterative_hash (key.data (),
25759 sizeof (key.front ()) * key.size (), 0);
25760 }
25761};
25762
25763/* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
25764 constant pool entries going into the data buffer CPOOL. */
25765
25766static void
25767write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
25768{
25769 {
25770 /* Elements are sorted vectors of the indices of all the CUs that
25771 hold an object of this name. */
25772 std::unordered_map<std::vector<offset_type>, offset_type,
25773 vector_hasher<offset_type>>
25774 symbol_hash_table;
25775
25776 /* We add all the index vectors to the constant pool first, to
25777 ensure alignment is ok. */
25778 for (symtab_index_entry &entry : symtab->data)
25779 {
25780 if (entry.name == NULL)
25781 continue;
25782 gdb_assert (entry.index_offset == 0);
25783
25784 /* Finding before inserting is faster than always trying to
25785 insert, because inserting always allocates a node, does the
25786 lookup, and then destroys the new node if another node
25787 already had the same key. C++17 try_emplace will avoid
25788 this. */
25789 const auto found
25790 = symbol_hash_table.find (entry.cu_indices);
25791 if (found != symbol_hash_table.end ())
25792 {
25793 entry.index_offset = found->second;
25794 continue;
25795 }
25796
25797 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
25798 entry.index_offset = cpool.size ();
25799 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
25800 for (const auto index : entry.cu_indices)
25801 cpool.append_data (MAYBE_SWAP (index));
25802 }
25803 }
25804
25805 /* Now write out the hash table. */
25806 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
25807 for (const auto &entry : symtab->data)
25808 {
25809 offset_type str_off, vec_off;
25810
25811 if (entry.name != NULL)
25812 {
25813 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
25814 if (insertpair.second)
25815 cpool.append_cstr0 (entry.name);
25816 str_off = insertpair.first->second;
25817 vec_off = entry.index_offset;
25818 }
25819 else
25820 {
25821 /* While 0 is a valid constant pool index, it is not valid
25822 to have 0 for both offsets. */
25823 str_off = 0;
25824 vec_off = 0;
25825 }
25826
25827 output.append_data (MAYBE_SWAP (str_off));
25828 output.append_data (MAYBE_SWAP (vec_off));
25829 }
25830}
25831
25832typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
25833
25834/* Helper struct for building the address table. */
25835struct addrmap_index_data
25836{
25837 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
25838 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
25839 {}
25840
25841 struct objfile *objfile;
25842 data_buf &addr_vec;
25843 psym_index_map &cu_index_htab;
25844
25845 /* Non-zero if the previous_* fields are valid.
25846 We can't write an entry until we see the next entry (since it is only then
25847 that we know the end of the entry). */
25848 int previous_valid;
25849 /* Index of the CU in the table of all CUs in the index file. */
25850 unsigned int previous_cu_index;
25851 /* Start address of the CU. */
25852 CORE_ADDR previous_cu_start;
25853};
25854
25855/* Write an address entry to ADDR_VEC. */
25856
25857static void
25858add_address_entry (struct objfile *objfile, data_buf &addr_vec,
25859 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
25860{
25861 CORE_ADDR baseaddr;
25862
25863 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25864
25865 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
25866 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
25867 addr_vec.append_data (MAYBE_SWAP (cu_index));
25868}
25869
25870/* Worker function for traversing an addrmap to build the address table. */
25871
25872static int
25873add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
25874{
25875 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
25876 struct partial_symtab *pst = (struct partial_symtab *) obj;
25877
25878 if (data->previous_valid)
25879 add_address_entry (data->objfile, data->addr_vec,
25880 data->previous_cu_start, start_addr,
25881 data->previous_cu_index);
25882
25883 data->previous_cu_start = start_addr;
25884 if (pst != NULL)
25885 {
25886 const auto it = data->cu_index_htab.find (pst);
25887 gdb_assert (it != data->cu_index_htab.cend ());
25888 data->previous_cu_index = it->second;
25889 data->previous_valid = 1;
25890 }
25891 else
25892 data->previous_valid = 0;
25893
25894 return 0;
25895}
25896
25897/* Write OBJFILE's address map to ADDR_VEC.
25898 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
25899 in the index file. */
25900
25901static void
25902write_address_map (struct objfile *objfile, data_buf &addr_vec,
25903 psym_index_map &cu_index_htab)
25904{
25905 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
25906
25907 /* When writing the address table, we have to cope with the fact that
25908 the addrmap iterator only provides the start of a region; we have to
25909 wait until the next invocation to get the start of the next region. */
25910
25911 addrmap_index_data.objfile = objfile;
25912 addrmap_index_data.previous_valid = 0;
25913
25914 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
25915 &addrmap_index_data);
25916
25917 /* It's highly unlikely the last entry (end address = 0xff...ff)
25918 is valid, but we should still handle it.
25919 The end address is recorded as the start of the next region, but that
25920 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
25921 anyway. */
25922 if (addrmap_index_data.previous_valid)
25923 add_address_entry (objfile, addr_vec,
25924 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
25925 addrmap_index_data.previous_cu_index);
25926}
25927
25928/* Return the symbol kind of PSYM. */
25929
25930static gdb_index_symbol_kind
25931symbol_kind (struct partial_symbol *psym)
25932{
25933 domain_enum domain = PSYMBOL_DOMAIN (psym);
25934 enum address_class aclass = PSYMBOL_CLASS (psym);
25935
25936 switch (domain)
25937 {
25938 case VAR_DOMAIN:
25939 switch (aclass)
25940 {
25941 case LOC_BLOCK:
25942 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
25943 case LOC_TYPEDEF:
25944 return GDB_INDEX_SYMBOL_KIND_TYPE;
25945 case LOC_COMPUTED:
25946 case LOC_CONST_BYTES:
25947 case LOC_OPTIMIZED_OUT:
25948 case LOC_STATIC:
25949 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
25950 case LOC_CONST:
25951 /* Note: It's currently impossible to recognize psyms as enum values
25952 short of reading the type info. For now punt. */
25953 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
25954 default:
25955 /* There are other LOC_FOO values that one might want to classify
25956 as variables, but dwarf2read.c doesn't currently use them. */
25957 return GDB_INDEX_SYMBOL_KIND_OTHER;
25958 }
25959 case STRUCT_DOMAIN:
25960 return GDB_INDEX_SYMBOL_KIND_TYPE;
25961 default:
25962 return GDB_INDEX_SYMBOL_KIND_OTHER;
25963 }
25964}
25965
25966/* Add a list of partial symbols to SYMTAB. */
25967
25968static void
25969write_psymbols (struct mapped_symtab *symtab,
25970 std::unordered_set<partial_symbol *> &psyms_seen,
25971 struct partial_symbol **psymp,
25972 int count,
25973 offset_type cu_index,
25974 int is_static)
25975{
25976 for (; count-- > 0; ++psymp)
25977 {
25978 struct partial_symbol *psym = *psymp;
25979
25980 if (SYMBOL_LANGUAGE (psym) == language_ada)
25981 error (_("Ada is not currently supported by the index"));
25982
25983 /* Only add a given psymbol once. */
25984 if (psyms_seen.insert (psym).second)
25985 {
25986 gdb_index_symbol_kind kind = symbol_kind (psym);
25987
25988 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
25989 is_static, kind, cu_index);
25990 }
25991 }
25992}
25993
25994/* A helper struct used when iterating over debug_types. */
25995struct signatured_type_index_data
25996{
25997 signatured_type_index_data (data_buf &types_list_,
25998 std::unordered_set<partial_symbol *> &psyms_seen_)
25999 : types_list (types_list_), psyms_seen (psyms_seen_)
26000 {}
26001
26002 struct objfile *objfile;
26003 struct mapped_symtab *symtab;
26004 data_buf &types_list;
26005 std::unordered_set<partial_symbol *> &psyms_seen;
26006 int cu_index;
26007};
26008
26009/* A helper function that writes a single signatured_type to an
26010 obstack. */
26011
26012static int
26013write_one_signatured_type (void **slot, void *d)
26014{
26015 struct signatured_type_index_data *info
26016 = (struct signatured_type_index_data *) d;
26017 struct signatured_type *entry = (struct signatured_type *) *slot;
26018 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
26019
26020 write_psymbols (info->symtab,
26021 info->psyms_seen,
26022 &info->objfile->global_psymbols[psymtab->globals_offset],
26023 psymtab->n_global_syms, info->cu_index,
26024 0);
26025 write_psymbols (info->symtab,
26026 info->psyms_seen,
26027 &info->objfile->static_psymbols[psymtab->statics_offset],
26028 psymtab->n_static_syms, info->cu_index,
26029 1);
26030
26031 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
26032 to_underlying (entry->per_cu.sect_off));
26033 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
26034 to_underlying (entry->type_offset_in_tu));
26035 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
26036
26037 ++info->cu_index;
26038
26039 return 1;
26040}
26041
26042/* Recurse into all "included" dependencies and count their symbols as
26043 if they appeared in this psymtab. */
26044
26045static void
26046recursively_count_psymbols (struct partial_symtab *psymtab,
26047 size_t &psyms_seen)
26048{
26049 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
26050 if (psymtab->dependencies[i]->user != NULL)
26051 recursively_count_psymbols (psymtab->dependencies[i],
26052 psyms_seen);
26053
26054 psyms_seen += psymtab->n_global_syms;
26055 psyms_seen += psymtab->n_static_syms;
26056}
26057
26058/* Recurse into all "included" dependencies and write their symbols as
26059 if they appeared in this psymtab. */
26060
26061static void
26062recursively_write_psymbols (struct objfile *objfile,
26063 struct partial_symtab *psymtab,
26064 struct mapped_symtab *symtab,
26065 std::unordered_set<partial_symbol *> &psyms_seen,
26066 offset_type cu_index)
26067{
26068 int i;
26069
26070 for (i = 0; i < psymtab->number_of_dependencies; ++i)
26071 if (psymtab->dependencies[i]->user != NULL)
26072 recursively_write_psymbols (objfile, psymtab->dependencies[i],
26073 symtab, psyms_seen, cu_index);
26074
26075 write_psymbols (symtab,
26076 psyms_seen,
26077 &objfile->global_psymbols[psymtab->globals_offset],
26078 psymtab->n_global_syms, cu_index,
26079 0);
26080 write_psymbols (symtab,
26081 psyms_seen,
26082 &objfile->static_psymbols[psymtab->statics_offset],
26083 psymtab->n_static_syms, cu_index,
26084 1);
26085}
26086
26087/* DWARF-5 .debug_names builder. */
26088class debug_names
26089{
26090public:
26091 debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile, bool is_dwarf64,
26092 bfd_endian dwarf5_byte_order)
26093 : m_dwarf5_byte_order (dwarf5_byte_order),
26094 m_dwarf32 (dwarf5_byte_order),
26095 m_dwarf64 (dwarf5_byte_order),
26096 m_dwarf (is_dwarf64
26097 ? static_cast<dwarf &> (m_dwarf64)
26098 : static_cast<dwarf &> (m_dwarf32)),
26099 m_name_table_string_offs (m_dwarf.name_table_string_offs),
26100 m_name_table_entry_offs (m_dwarf.name_table_entry_offs),
26101 m_debugstrlookup (dwarf2_per_objfile)
26102 {}
26103
26104 int dwarf5_offset_size () const
26105 {
26106 const bool dwarf5_is_dwarf64 = &m_dwarf == &m_dwarf64;
26107 return dwarf5_is_dwarf64 ? 8 : 4;
26108 }
26109
26110 /* Is this symbol from DW_TAG_compile_unit or DW_TAG_type_unit? */
26111 enum class unit_kind { cu, tu };
26112
26113 /* Insert one symbol. */
26114 void insert (const partial_symbol *psym, int cu_index, bool is_static,
26115 unit_kind kind)
26116 {
26117 const int dwarf_tag = psymbol_tag (psym);
26118 if (dwarf_tag == 0)
26119 return;
26120 const char *const name = SYMBOL_SEARCH_NAME (psym);
26121 const auto insertpair
26122 = m_name_to_value_set.emplace (c_str_view (name),
26123 std::set<symbol_value> ());
26124 std::set<symbol_value> &value_set = insertpair.first->second;
26125 value_set.emplace (symbol_value (dwarf_tag, cu_index, is_static, kind));
26126 }
26127
26128 /* Build all the tables. All symbols must be already inserted.
26129 This function does not call file_write, caller has to do it
26130 afterwards. */
26131 void build ()
26132 {
26133 /* Verify the build method has not be called twice. */
26134 gdb_assert (m_abbrev_table.empty ());
26135 const size_t name_count = m_name_to_value_set.size ();
26136 m_bucket_table.resize
26137 (std::pow (2, std::ceil (std::log2 (name_count * 4 / 3))));
26138 m_hash_table.reserve (name_count);
26139 m_name_table_string_offs.reserve (name_count);
26140 m_name_table_entry_offs.reserve (name_count);
26141
26142 /* Map each hash of symbol to its name and value. */
26143 struct hash_it_pair
26144 {
26145 uint32_t hash;
26146 decltype (m_name_to_value_set)::const_iterator it;
26147 };
26148 std::vector<std::forward_list<hash_it_pair>> bucket_hash;
26149 bucket_hash.resize (m_bucket_table.size ());
26150 for (decltype (m_name_to_value_set)::const_iterator it
26151 = m_name_to_value_set.cbegin ();
26152 it != m_name_to_value_set.cend ();
26153 ++it)
26154 {
26155 const char *const name = it->first.c_str ();
26156 const uint32_t hash = dwarf5_djb_hash (name);
26157 hash_it_pair hashitpair;
26158 hashitpair.hash = hash;
26159 hashitpair.it = it;
26160 auto &slot = bucket_hash[hash % bucket_hash.size()];
26161 slot.push_front (std::move (hashitpair));
26162 }
26163 for (size_t bucket_ix = 0; bucket_ix < bucket_hash.size (); ++bucket_ix)
26164 {
26165 const std::forward_list<hash_it_pair> &hashitlist
26166 = bucket_hash[bucket_ix];
26167 if (hashitlist.empty ())
26168 continue;
26169 uint32_t &bucket_slot = m_bucket_table[bucket_ix];
26170 /* The hashes array is indexed starting at 1. */
26171 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&bucket_slot),
26172 sizeof (bucket_slot), m_dwarf5_byte_order,
26173 m_hash_table.size () + 1);
26174 for (const hash_it_pair &hashitpair : hashitlist)
26175 {
26176 m_hash_table.push_back (0);
26177 store_unsigned_integer (reinterpret_cast<gdb_byte *>
26178 (&m_hash_table.back ()),
26179 sizeof (m_hash_table.back ()),
26180 m_dwarf5_byte_order, hashitpair.hash);
26181 const c_str_view &name = hashitpair.it->first;
26182 const std::set<symbol_value> &value_set = hashitpair.it->second;
26183 m_name_table_string_offs.push_back_reorder
26184 (m_debugstrlookup.lookup (name.c_str ()));
26185 m_name_table_entry_offs.push_back_reorder (m_entry_pool.size ());
26186 gdb_assert (!value_set.empty ());
26187 for (const symbol_value &value : value_set)
26188 {
26189 int &idx = m_indexkey_to_idx[index_key (value.dwarf_tag,
26190 value.is_static,
26191 value.kind)];
26192 if (idx == 0)
26193 {
26194 idx = m_idx_next++;
26195 m_abbrev_table.append_unsigned_leb128 (idx);
26196 m_abbrev_table.append_unsigned_leb128 (value.dwarf_tag);
26197 m_abbrev_table.append_unsigned_leb128
26198 (value.kind == unit_kind::cu ? DW_IDX_compile_unit
26199 : DW_IDX_type_unit);
26200 m_abbrev_table.append_unsigned_leb128 (DW_FORM_udata);
26201 m_abbrev_table.append_unsigned_leb128 (value.is_static
26202 ? DW_IDX_GNU_internal
26203 : DW_IDX_GNU_external);
26204 m_abbrev_table.append_unsigned_leb128 (DW_FORM_flag_present);
26205
26206 /* Terminate attributes list. */
26207 m_abbrev_table.append_unsigned_leb128 (0);
26208 m_abbrev_table.append_unsigned_leb128 (0);
26209 }
26210
26211 m_entry_pool.append_unsigned_leb128 (idx);
26212 m_entry_pool.append_unsigned_leb128 (value.cu_index);
26213 }
26214
26215 /* Terminate the list of CUs. */
26216 m_entry_pool.append_unsigned_leb128 (0);
26217 }
26218 }
26219 gdb_assert (m_hash_table.size () == name_count);
26220
26221 /* Terminate tags list. */
26222 m_abbrev_table.append_unsigned_leb128 (0);
26223 }
26224
26225 /* Return .debug_names bucket count. This must be called only after
26226 calling the build method. */
26227 uint32_t bucket_count () const
26228 {
26229 /* Verify the build method has been already called. */
26230 gdb_assert (!m_abbrev_table.empty ());
26231 const uint32_t retval = m_bucket_table.size ();
26232
26233 /* Check for overflow. */
26234 gdb_assert (retval == m_bucket_table.size ());
26235 return retval;
26236 }
26237
26238 /* Return .debug_names names count. This must be called only after
26239 calling the build method. */
26240 uint32_t name_count () const
26241 {
26242 /* Verify the build method has been already called. */
26243 gdb_assert (!m_abbrev_table.empty ());
26244 const uint32_t retval = m_hash_table.size ();
26245
26246 /* Check for overflow. */
26247 gdb_assert (retval == m_hash_table.size ());
26248 return retval;
26249 }
26250
26251 /* Return number of bytes of .debug_names abbreviation table. This
26252 must be called only after calling the build method. */
26253 uint32_t abbrev_table_bytes () const
26254 {
26255 gdb_assert (!m_abbrev_table.empty ());
26256 return m_abbrev_table.size ();
26257 }
26258
26259 /* Recurse into all "included" dependencies and store their symbols
26260 as if they appeared in this psymtab. */
26261 void recursively_write_psymbols
26262 (struct objfile *objfile,
26263 struct partial_symtab *psymtab,
26264 std::unordered_set<partial_symbol *> &psyms_seen,
26265 int cu_index)
26266 {
26267 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
26268 if (psymtab->dependencies[i]->user != NULL)
26269 recursively_write_psymbols (objfile, psymtab->dependencies[i],
26270 psyms_seen, cu_index);
26271
26272 write_psymbols (psyms_seen,
26273 &objfile->global_psymbols[psymtab->globals_offset],
26274 psymtab->n_global_syms, cu_index, false, unit_kind::cu);
26275 write_psymbols (psyms_seen,
26276 &objfile->static_psymbols[psymtab->statics_offset],
26277 psymtab->n_static_syms, cu_index, true, unit_kind::cu);
26278 }
26279
26280 /* Return number of bytes the .debug_names section will have. This
26281 must be called only after calling the build method. */
26282 size_t bytes () const
26283 {
26284 /* Verify the build method has been already called. */
26285 gdb_assert (!m_abbrev_table.empty ());
26286 size_t expected_bytes = 0;
26287 expected_bytes += m_bucket_table.size () * sizeof (m_bucket_table[0]);
26288 expected_bytes += m_hash_table.size () * sizeof (m_hash_table[0]);
26289 expected_bytes += m_name_table_string_offs.bytes ();
26290 expected_bytes += m_name_table_entry_offs.bytes ();
26291 expected_bytes += m_abbrev_table.size ();
26292 expected_bytes += m_entry_pool.size ();
26293 return expected_bytes;
26294 }
26295
26296 /* Write .debug_names to FILE_NAMES and .debug_str addition to
26297 FILE_STR. This must be called only after calling the build
26298 method. */
26299 void file_write (FILE *file_names, FILE *file_str) const
26300 {
26301 /* Verify the build method has been already called. */
26302 gdb_assert (!m_abbrev_table.empty ());
26303 ::file_write (file_names, m_bucket_table);
26304 ::file_write (file_names, m_hash_table);
26305 m_name_table_string_offs.file_write (file_names);
26306 m_name_table_entry_offs.file_write (file_names);
26307 m_abbrev_table.file_write (file_names);
26308 m_entry_pool.file_write (file_names);
26309 m_debugstrlookup.file_write (file_str);
26310 }
26311
26312 /* A helper user data for write_one_signatured_type. */
26313 class write_one_signatured_type_data
26314 {
26315 public:
26316 write_one_signatured_type_data (debug_names &nametable_,
26317 signatured_type_index_data &&info_)
26318 : nametable (nametable_), info (std::move (info_))
26319 {}
26320 debug_names &nametable;
26321 struct signatured_type_index_data info;
26322 };
26323
26324 /* A helper function to pass write_one_signatured_type to
26325 htab_traverse_noresize. */
26326 static int
26327 write_one_signatured_type (void **slot, void *d)
26328 {
26329 write_one_signatured_type_data *data = (write_one_signatured_type_data *) d;
26330 struct signatured_type_index_data *info = &data->info;
26331 struct signatured_type *entry = (struct signatured_type *) *slot;
26332
26333 data->nametable.write_one_signatured_type (entry, info);
26334
26335 return 1;
26336 }
26337
26338private:
26339
26340 /* Storage for symbol names mapping them to their .debug_str section
26341 offsets. */
26342 class debug_str_lookup
26343 {
26344 public:
26345
26346 /* Object costructor to be called for current DWARF2_PER_OBJFILE.
26347 All .debug_str section strings are automatically stored. */
26348 debug_str_lookup (struct dwarf2_per_objfile *dwarf2_per_objfile)
26349 : m_abfd (dwarf2_per_objfile->objfile->obfd),
26350 m_dwarf2_per_objfile (dwarf2_per_objfile)
26351 {
26352 dwarf2_read_section (dwarf2_per_objfile->objfile,
26353 &dwarf2_per_objfile->str);
26354 if (dwarf2_per_objfile->str.buffer == NULL)
26355 return;
26356 for (const gdb_byte *data = dwarf2_per_objfile->str.buffer;
26357 data < (dwarf2_per_objfile->str.buffer
26358 + dwarf2_per_objfile->str.size);)
26359 {
26360 const char *const s = reinterpret_cast<const char *> (data);
26361 const auto insertpair
26362 = m_str_table.emplace (c_str_view (s),
26363 data - dwarf2_per_objfile->str.buffer);
26364 if (!insertpair.second)
26365 complaint (&symfile_complaints,
26366 _("Duplicate string \"%s\" in "
26367 ".debug_str section [in module %s]"),
26368 s, bfd_get_filename (m_abfd));
26369 data += strlen (s) + 1;
26370 }
26371 }
26372
26373 /* Return offset of symbol name S in the .debug_str section. Add
26374 such symbol to the section's end if it does not exist there
26375 yet. */
26376 size_t lookup (const char *s)
26377 {
26378 const auto it = m_str_table.find (c_str_view (s));
26379 if (it != m_str_table.end ())
26380 return it->second;
26381 const size_t offset = (m_dwarf2_per_objfile->str.size
26382 + m_str_add_buf.size ());
26383 m_str_table.emplace (c_str_view (s), offset);
26384 m_str_add_buf.append_cstr0 (s);
26385 return offset;
26386 }
26387
26388 /* Append the end of the .debug_str section to FILE. */
26389 void file_write (FILE *file) const
26390 {
26391 m_str_add_buf.file_write (file);
26392 }
26393
26394 private:
26395 std::unordered_map<c_str_view, size_t, c_str_view_hasher> m_str_table;
26396 bfd *const m_abfd;
26397 struct dwarf2_per_objfile *m_dwarf2_per_objfile;
26398
26399 /* Data to add at the end of .debug_str for new needed symbol names. */
26400 data_buf m_str_add_buf;
26401 };
26402
26403 /* Container to map used DWARF tags to their .debug_names abbreviation
26404 tags. */
26405 class index_key
26406 {
26407 public:
26408 index_key (int dwarf_tag_, bool is_static_, unit_kind kind_)
26409 : dwarf_tag (dwarf_tag_), is_static (is_static_), kind (kind_)
26410 {
26411 }
26412
26413 bool
26414 operator== (const index_key &other) const
26415 {
26416 return (dwarf_tag == other.dwarf_tag && is_static == other.is_static
26417 && kind == other.kind);
26418 }
26419
26420 const int dwarf_tag;
26421 const bool is_static;
26422 const unit_kind kind;
26423 };
26424
26425 /* Provide std::unordered_map::hasher for index_key. */
26426 class index_key_hasher
26427 {
26428 public:
26429 size_t
26430 operator () (const index_key &key) const
26431 {
26432 return (std::hash<int>() (key.dwarf_tag) << 1) | key.is_static;
26433 }
26434 };
26435
26436 /* Parameters of one symbol entry. */
26437 class symbol_value
26438 {
26439 public:
26440 const int dwarf_tag, cu_index;
26441 const bool is_static;
26442 const unit_kind kind;
26443
26444 symbol_value (int dwarf_tag_, int cu_index_, bool is_static_,
26445 unit_kind kind_)
26446 : dwarf_tag (dwarf_tag_), cu_index (cu_index_), is_static (is_static_),
26447 kind (kind_)
26448 {}
26449
26450 bool
26451 operator< (const symbol_value &other) const
26452 {
26453#define X(n) \
26454 do \
26455 { \
26456 if (n < other.n) \
26457 return true; \
26458 if (n > other.n) \
26459 return false; \
26460 } \
26461 while (0)
26462 X (dwarf_tag);
26463 X (is_static);
26464 X (kind);
26465 X (cu_index);
26466#undef X
26467 return false;
26468 }
26469 };
26470
26471 /* Abstract base class to unify DWARF-32 and DWARF-64 name table
26472 output. */
26473 class offset_vec
26474 {
26475 protected:
26476 const bfd_endian dwarf5_byte_order;
26477 public:
26478 explicit offset_vec (bfd_endian dwarf5_byte_order_)
26479 : dwarf5_byte_order (dwarf5_byte_order_)
26480 {}
26481
26482 /* Call std::vector::reserve for NELEM elements. */
26483 virtual void reserve (size_t nelem) = 0;
26484
26485 /* Call std::vector::push_back with store_unsigned_integer byte
26486 reordering for ELEM. */
26487 virtual void push_back_reorder (size_t elem) = 0;
26488
26489 /* Return expected output size in bytes. */
26490 virtual size_t bytes () const = 0;
26491
26492 /* Write name table to FILE. */
26493 virtual void file_write (FILE *file) const = 0;
26494 };
26495
26496 /* Template to unify DWARF-32 and DWARF-64 output. */
26497 template<typename OffsetSize>
26498 class offset_vec_tmpl : public offset_vec
26499 {
26500 public:
26501 explicit offset_vec_tmpl (bfd_endian dwarf5_byte_order_)
26502 : offset_vec (dwarf5_byte_order_)
26503 {}
26504
26505 /* Implement offset_vec::reserve. */
26506 void reserve (size_t nelem) override
26507 {
26508 m_vec.reserve (nelem);
26509 }
26510
26511 /* Implement offset_vec::push_back_reorder. */
26512 void push_back_reorder (size_t elem) override
26513 {
26514 m_vec.push_back (elem);
26515 /* Check for overflow. */
26516 gdb_assert (m_vec.back () == elem);
26517 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&m_vec.back ()),
26518 sizeof (m_vec.back ()), dwarf5_byte_order, elem);
26519 }
26520
26521 /* Implement offset_vec::bytes. */
26522 size_t bytes () const override
26523 {
26524 return m_vec.size () * sizeof (m_vec[0]);
26525 }
26526
26527 /* Implement offset_vec::file_write. */
26528 void file_write (FILE *file) const override
26529 {
26530 ::file_write (file, m_vec);
26531 }
26532
26533 private:
26534 std::vector<OffsetSize> m_vec;
26535 };
26536
26537 /* Base class to unify DWARF-32 and DWARF-64 .debug_names output
26538 respecting name table width. */
26539 class dwarf
26540 {
26541 public:
26542 offset_vec &name_table_string_offs, &name_table_entry_offs;
26543
26544 dwarf (offset_vec &name_table_string_offs_,
26545 offset_vec &name_table_entry_offs_)
26546 : name_table_string_offs (name_table_string_offs_),
26547 name_table_entry_offs (name_table_entry_offs_)
26548 {
26549 }
26550 };
26551
26552 /* Template to unify DWARF-32 and DWARF-64 .debug_names output
26553 respecting name table width. */
26554 template<typename OffsetSize>
26555 class dwarf_tmpl : public dwarf
26556 {
26557 public:
26558 explicit dwarf_tmpl (bfd_endian dwarf5_byte_order_)
26559 : dwarf (m_name_table_string_offs, m_name_table_entry_offs),
26560 m_name_table_string_offs (dwarf5_byte_order_),
26561 m_name_table_entry_offs (dwarf5_byte_order_)
26562 {}
26563
26564 private:
26565 offset_vec_tmpl<OffsetSize> m_name_table_string_offs;
26566 offset_vec_tmpl<OffsetSize> m_name_table_entry_offs;
26567 };
26568
26569 /* Try to reconstruct original DWARF tag for given partial_symbol.
26570 This function is not DWARF-5 compliant but it is sufficient for
26571 GDB as a DWARF-5 index consumer. */
26572 static int psymbol_tag (const struct partial_symbol *psym)
26573 {
26574 domain_enum domain = PSYMBOL_DOMAIN (psym);
26575 enum address_class aclass = PSYMBOL_CLASS (psym);
26576
26577 switch (domain)
26578 {
26579 case VAR_DOMAIN:
26580 switch (aclass)
26581 {
26582 case LOC_BLOCK:
26583 return DW_TAG_subprogram;
26584 case LOC_TYPEDEF:
26585 return DW_TAG_typedef;
26586 case LOC_COMPUTED:
26587 case LOC_CONST_BYTES:
26588 case LOC_OPTIMIZED_OUT:
26589 case LOC_STATIC:
26590 return DW_TAG_variable;
26591 case LOC_CONST:
26592 /* Note: It's currently impossible to recognize psyms as enum values
26593 short of reading the type info. For now punt. */
26594 return DW_TAG_variable;
26595 default:
26596 /* There are other LOC_FOO values that one might want to classify
26597 as variables, but dwarf2read.c doesn't currently use them. */
26598 return DW_TAG_variable;
26599 }
26600 case STRUCT_DOMAIN:
26601 return DW_TAG_structure_type;
26602 default:
26603 return 0;
26604 }
26605 }
26606
26607 /* Call insert for all partial symbols and mark them in PSYMS_SEEN. */
26608 void write_psymbols (std::unordered_set<partial_symbol *> &psyms_seen,
26609 struct partial_symbol **psymp, int count, int cu_index,
26610 bool is_static, unit_kind kind)
26611 {
26612 for (; count-- > 0; ++psymp)
26613 {
26614 struct partial_symbol *psym = *psymp;
26615
26616 if (SYMBOL_LANGUAGE (psym) == language_ada)
26617 error (_("Ada is not currently supported by the index"));
26618
26619 /* Only add a given psymbol once. */
26620 if (psyms_seen.insert (psym).second)
26621 insert (psym, cu_index, is_static, kind);
26622 }
26623 }
26624
26625 /* A helper function that writes a single signatured_type
26626 to a debug_names. */
26627 void
26628 write_one_signatured_type (struct signatured_type *entry,
26629 struct signatured_type_index_data *info)
26630 {
26631 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
26632
26633 write_psymbols (info->psyms_seen,
26634 &info->objfile->global_psymbols[psymtab->globals_offset],
26635 psymtab->n_global_syms, info->cu_index, false,
26636 unit_kind::tu);
26637 write_psymbols (info->psyms_seen,
26638 &info->objfile->static_psymbols[psymtab->statics_offset],
26639 psymtab->n_static_syms, info->cu_index, true,
26640 unit_kind::tu);
26641
26642 info->types_list.append_uint (dwarf5_offset_size (), m_dwarf5_byte_order,
26643 to_underlying (entry->per_cu.sect_off));
26644
26645 ++info->cu_index;
26646 }
26647
26648 /* Store value of each symbol. */
26649 std::unordered_map<c_str_view, std::set<symbol_value>, c_str_view_hasher>
26650 m_name_to_value_set;
26651
26652 /* Tables of DWARF-5 .debug_names. They are in object file byte
26653 order. */
26654 std::vector<uint32_t> m_bucket_table;
26655 std::vector<uint32_t> m_hash_table;
26656
26657 const bfd_endian m_dwarf5_byte_order;
26658 dwarf_tmpl<uint32_t> m_dwarf32;
26659 dwarf_tmpl<uint64_t> m_dwarf64;
26660 dwarf &m_dwarf;
26661 offset_vec &m_name_table_string_offs, &m_name_table_entry_offs;
26662 debug_str_lookup m_debugstrlookup;
26663
26664 /* Map each used .debug_names abbreviation tag parameter to its
26665 index value. */
26666 std::unordered_map<index_key, int, index_key_hasher> m_indexkey_to_idx;
26667
26668 /* Next unused .debug_names abbreviation tag for
26669 m_indexkey_to_idx. */
26670 int m_idx_next = 1;
26671
26672 /* .debug_names abbreviation table. */
26673 data_buf m_abbrev_table;
26674
26675 /* .debug_names entry pool. */
26676 data_buf m_entry_pool;
26677};
26678
26679/* Return iff any of the needed offsets does not fit into 32-bit
26680 .debug_names section. */
26681
26682static bool
26683check_dwarf64_offsets (struct dwarf2_per_objfile *dwarf2_per_objfile)
26684{
26685 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26686 {
26687 const dwarf2_per_cu_data &per_cu = *dwarf2_per_objfile->all_comp_units[i];
26688
26689 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
26690 return true;
26691 }
26692 for (int i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
26693 {
26694 const signatured_type &sigtype = *dwarf2_per_objfile->all_type_units[i];
26695 const dwarf2_per_cu_data &per_cu = sigtype.per_cu;
26696
26697 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
26698 return true;
26699 }
26700 return false;
26701}
26702
26703/* The psyms_seen set is potentially going to be largish (~40k
26704 elements when indexing a -g3 build of GDB itself). Estimate the
26705 number of elements in order to avoid too many rehashes, which
26706 require rebuilding buckets and thus many trips to
26707 malloc/free. */
26708
26709static size_t
26710psyms_seen_size (struct dwarf2_per_objfile *dwarf2_per_objfile)
26711{
26712 size_t psyms_count = 0;
26713 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26714 {
26715 struct dwarf2_per_cu_data *per_cu
26716 = dwarf2_per_objfile->all_comp_units[i];
26717 struct partial_symtab *psymtab = per_cu->v.psymtab;
26718
26719 if (psymtab != NULL && psymtab->user == NULL)
26720 recursively_count_psymbols (psymtab, psyms_count);
26721 }
26722 /* Generating an index for gdb itself shows a ratio of
26723 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
26724 return psyms_count / 4;
26725}
26726
26727/* Write new .gdb_index section for OBJFILE into OUT_FILE.
26728 Return how many bytes were expected to be written into OUT_FILE. */
26729
26730static size_t
26731write_gdbindex (struct dwarf2_per_objfile *dwarf2_per_objfile, FILE *out_file)
26732{
26733 struct objfile *objfile = dwarf2_per_objfile->objfile;
26734 mapped_symtab symtab;
26735 data_buf cu_list;
26736
26737 /* While we're scanning CU's create a table that maps a psymtab pointer
26738 (which is what addrmap records) to its index (which is what is recorded
26739 in the index file). This will later be needed to write the address
26740 table. */
26741 psym_index_map cu_index_htab;
26742 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
26743
26744 /* The CU list is already sorted, so we don't need to do additional
26745 work here. Also, the debug_types entries do not appear in
26746 all_comp_units, but only in their own hash table. */
26747
26748 std::unordered_set<partial_symbol *> psyms_seen
26749 (psyms_seen_size (dwarf2_per_objfile));
26750 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26751 {
26752 struct dwarf2_per_cu_data *per_cu
26753 = dwarf2_per_objfile->all_comp_units[i];
26754 struct partial_symtab *psymtab = per_cu->v.psymtab;
26755
26756 /* CU of a shared file from 'dwz -m' may be unused by this main file.
26757 It may be referenced from a local scope but in such case it does not
26758 need to be present in .gdb_index. */
26759 if (psymtab == NULL)
26760 continue;
26761
26762 if (psymtab->user == NULL)
26763 recursively_write_psymbols (objfile, psymtab, &symtab,
26764 psyms_seen, i);
26765
26766 const auto insertpair = cu_index_htab.emplace (psymtab, i);
26767 gdb_assert (insertpair.second);
26768
26769 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
26770 to_underlying (per_cu->sect_off));
26771 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
26772 }
26773
26774 /* Dump the address map. */
26775 data_buf addr_vec;
26776 write_address_map (objfile, addr_vec, cu_index_htab);
26777
26778 /* Write out the .debug_type entries, if any. */
26779 data_buf types_cu_list;
26780 if (dwarf2_per_objfile->signatured_types)
26781 {
26782 signatured_type_index_data sig_data (types_cu_list,
26783 psyms_seen);
26784
26785 sig_data.objfile = objfile;
26786 sig_data.symtab = &symtab;
26787 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
26788 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
26789 write_one_signatured_type, &sig_data);
26790 }
26791
26792 /* Now that we've processed all symbols we can shrink their cu_indices
26793 lists. */
26794 uniquify_cu_indices (&symtab);
26795
26796 data_buf symtab_vec, constant_pool;
26797 write_hash_table (&symtab, symtab_vec, constant_pool);
26798
26799 data_buf contents;
26800 const offset_type size_of_contents = 6 * sizeof (offset_type);
26801 offset_type total_len = size_of_contents;
26802
26803 /* The version number. */
26804 contents.append_data (MAYBE_SWAP (8));
26805
26806 /* The offset of the CU list from the start of the file. */
26807 contents.append_data (MAYBE_SWAP (total_len));
26808 total_len += cu_list.size ();
26809
26810 /* The offset of the types CU list from the start of the file. */
26811 contents.append_data (MAYBE_SWAP (total_len));
26812 total_len += types_cu_list.size ();
26813
26814 /* The offset of the address table from the start of the file. */
26815 contents.append_data (MAYBE_SWAP (total_len));
26816 total_len += addr_vec.size ();
26817
26818 /* The offset of the symbol table from the start of the file. */
26819 contents.append_data (MAYBE_SWAP (total_len));
26820 total_len += symtab_vec.size ();
26821
26822 /* The offset of the constant pool from the start of the file. */
26823 contents.append_data (MAYBE_SWAP (total_len));
26824 total_len += constant_pool.size ();
26825
26826 gdb_assert (contents.size () == size_of_contents);
26827
26828 contents.file_write (out_file);
26829 cu_list.file_write (out_file);
26830 types_cu_list.file_write (out_file);
26831 addr_vec.file_write (out_file);
26832 symtab_vec.file_write (out_file);
26833 constant_pool.file_write (out_file);
26834
26835 return total_len;
26836}
26837
26838/* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
26839static const gdb_byte dwarf5_gdb_augmentation[] = { 'G', 'D', 'B', 0 };
26840
26841/* Write a new .debug_names section for OBJFILE into OUT_FILE, write
26842 needed addition to .debug_str section to OUT_FILE_STR. Return how
26843 many bytes were expected to be written into OUT_FILE. */
26844
26845static size_t
26846write_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
26847 FILE *out_file, FILE *out_file_str)
26848{
26849 const bool dwarf5_is_dwarf64 = check_dwarf64_offsets (dwarf2_per_objfile);
26850 struct objfile *objfile = dwarf2_per_objfile->objfile;
26851 const enum bfd_endian dwarf5_byte_order
26852 = gdbarch_byte_order (get_objfile_arch (objfile));
26853
26854 /* The CU list is already sorted, so we don't need to do additional
26855 work here. Also, the debug_types entries do not appear in
26856 all_comp_units, but only in their own hash table. */
26857 data_buf cu_list;
26858 debug_names nametable (dwarf2_per_objfile, dwarf5_is_dwarf64,
26859 dwarf5_byte_order);
26860 std::unordered_set<partial_symbol *>
26861 psyms_seen (psyms_seen_size (dwarf2_per_objfile));
26862 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26863 {
26864 const dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->all_comp_units[i];
26865 partial_symtab *psymtab = per_cu->v.psymtab;
26866
26867 /* CU of a shared file from 'dwz -m' may be unused by this main
26868 file. It may be referenced from a local scope but in such
26869 case it does not need to be present in .debug_names. */
26870 if (psymtab == NULL)
26871 continue;
26872
26873 if (psymtab->user == NULL)
26874 nametable.recursively_write_psymbols (objfile, psymtab, psyms_seen, i);
26875
26876 cu_list.append_uint (nametable.dwarf5_offset_size (), dwarf5_byte_order,
26877 to_underlying (per_cu->sect_off));
26878 }
26879
26880 /* Write out the .debug_type entries, if any. */
26881 data_buf types_cu_list;
26882 if (dwarf2_per_objfile->signatured_types)
26883 {
26884 debug_names::write_one_signatured_type_data sig_data (nametable,
26885 signatured_type_index_data (types_cu_list, psyms_seen));
26886
26887 sig_data.info.objfile = objfile;
26888 /* It is used only for gdb_index. */
26889 sig_data.info.symtab = nullptr;
26890 sig_data.info.cu_index = 0;
26891 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
26892 debug_names::write_one_signatured_type,
26893 &sig_data);
26894 }
26895
26896 nametable.build ();
26897
26898 /* No addr_vec - DWARF-5 uses .debug_aranges generated by GCC. */
26899
26900 const offset_type bytes_of_header
26901 = ((dwarf5_is_dwarf64 ? 12 : 4)
26902 + 2 + 2 + 7 * 4
26903 + sizeof (dwarf5_gdb_augmentation));
26904 size_t expected_bytes = 0;
26905 expected_bytes += bytes_of_header;
26906 expected_bytes += cu_list.size ();
26907 expected_bytes += types_cu_list.size ();
26908 expected_bytes += nametable.bytes ();
26909 data_buf header;
26910
26911 if (!dwarf5_is_dwarf64)
26912 {
26913 const uint64_t size64 = expected_bytes - 4;
26914 gdb_assert (size64 < 0xfffffff0);
26915 header.append_uint (4, dwarf5_byte_order, size64);
26916 }
26917 else
26918 {
26919 header.append_uint (4, dwarf5_byte_order, 0xffffffff);
26920 header.append_uint (8, dwarf5_byte_order, expected_bytes - 12);
26921 }
26922
26923 /* The version number. */
26924 header.append_uint (2, dwarf5_byte_order, 5);
26925
26926 /* Padding. */
26927 header.append_uint (2, dwarf5_byte_order, 0);
26928
26929 /* comp_unit_count - The number of CUs in the CU list. */
26930 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_comp_units);
26931
26932 /* local_type_unit_count - The number of TUs in the local TU
26933 list. */
26934 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_type_units);
26935
26936 /* foreign_type_unit_count - The number of TUs in the foreign TU
26937 list. */
26938 header.append_uint (4, dwarf5_byte_order, 0);
26939
26940 /* bucket_count - The number of hash buckets in the hash lookup
26941 table. */
26942 header.append_uint (4, dwarf5_byte_order, nametable.bucket_count ());
26943
26944 /* name_count - The number of unique names in the index. */
26945 header.append_uint (4, dwarf5_byte_order, nametable.name_count ());
26946
26947 /* abbrev_table_size - The size in bytes of the abbreviations
26948 table. */
26949 header.append_uint (4, dwarf5_byte_order, nametable.abbrev_table_bytes ());
26950
26951 /* augmentation_string_size - The size in bytes of the augmentation
26952 string. This value is rounded up to a multiple of 4. */
26953 static_assert (sizeof (dwarf5_gdb_augmentation) % 4 == 0, "");
26954 header.append_uint (4, dwarf5_byte_order, sizeof (dwarf5_gdb_augmentation));
26955 header.append_data (dwarf5_gdb_augmentation);
26956
26957 gdb_assert (header.size () == bytes_of_header);
26958
26959 header.file_write (out_file);
26960 cu_list.file_write (out_file);
26961 types_cu_list.file_write (out_file);
26962 nametable.file_write (out_file, out_file_str);
26963
26964 return expected_bytes;
26965}
26966
26967/* Assert that FILE's size is EXPECTED_SIZE. Assumes file's seek
26968 position is at the end of the file. */
26969
26970static void
26971assert_file_size (FILE *file, const char *filename, size_t expected_size)
26972{
26973 const auto file_size = ftell (file);
26974 if (file_size == -1)
26975 error (_("Can't get `%s' size"), filename);
26976 gdb_assert (file_size == expected_size);
26977}
26978
26979/* Create an index file for OBJFILE in the directory DIR. */
26980
26981static void
26982write_psymtabs_to_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
26983 const char *dir,
26984 dw_index_kind index_kind)
26985{
26986 struct objfile *objfile = dwarf2_per_objfile->objfile;
26987
26988 if (dwarf2_per_objfile->using_index)
26989 error (_("Cannot use an index to create the index"));
26990
26991 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
26992 error (_("Cannot make an index when the file has multiple .debug_types sections"));
26993
26994 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
26995 return;
26996
26997 struct stat st;
26998 if (stat (objfile_name (objfile), &st) < 0)
26999 perror_with_name (objfile_name (objfile));
27000
27001 std::string filename (std::string (dir) + SLASH_STRING
27002 + lbasename (objfile_name (objfile))
27003 + (index_kind == dw_index_kind::DEBUG_NAMES
27004 ? INDEX5_SUFFIX : INDEX4_SUFFIX));
27005
27006 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
27007 if (!out_file)
27008 error (_("Can't open `%s' for writing"), filename.c_str ());
27009
27010 /* Order matters here; we want FILE to be closed before FILENAME is
27011 unlinked, because on MS-Windows one cannot delete a file that is
27012 still open. (Don't call anything here that might throw until
27013 file_closer is created.) */
27014 gdb::unlinker unlink_file (filename.c_str ());
27015 gdb_file_up close_out_file (out_file);
27016
27017 if (index_kind == dw_index_kind::DEBUG_NAMES)
27018 {
27019 std::string filename_str (std::string (dir) + SLASH_STRING
27020 + lbasename (objfile_name (objfile))
27021 + DEBUG_STR_SUFFIX);
27022 FILE *out_file_str
27023 = gdb_fopen_cloexec (filename_str.c_str (), "wb").release ();
27024 if (!out_file_str)
27025 error (_("Can't open `%s' for writing"), filename_str.c_str ());
27026 gdb::unlinker unlink_file_str (filename_str.c_str ());
27027 gdb_file_up close_out_file_str (out_file_str);
27028
27029 const size_t total_len
27030 = write_debug_names (dwarf2_per_objfile, out_file, out_file_str);
27031 assert_file_size (out_file, filename.c_str (), total_len);
27032
27033 /* We want to keep the file .debug_str file too. */
27034 unlink_file_str.keep ();
27035 }
27036 else
27037 {
27038 const size_t total_len
27039 = write_gdbindex (dwarf2_per_objfile, out_file);
27040 assert_file_size (out_file, filename.c_str (), total_len);
27041 }
27042
27043 /* We want to keep the file. */
27044 unlink_file.keep ();
27045}
27046
27047/* Implementation of the `save gdb-index' command.
27048
27049 Note that the .gdb_index file format used by this command is
27050 documented in the GDB manual. Any changes here must be documented
27051 there. */
27052
27053static void
27054save_gdb_index_command (const char *arg, int from_tty)
27055{
27056 struct objfile *objfile;
27057 const char dwarf5space[] = "-dwarf-5 ";
27058 dw_index_kind index_kind = dw_index_kind::GDB_INDEX;
27059
27060 if (!arg)
27061 arg = "";
27062
27063 arg = skip_spaces (arg);
27064 if (strncmp (arg, dwarf5space, strlen (dwarf5space)) == 0)
27065 {
27066 index_kind = dw_index_kind::DEBUG_NAMES;
27067 arg += strlen (dwarf5space);
27068 arg = skip_spaces (arg);
27069 }
27070
27071 if (!*arg)
27072 error (_("usage: save gdb-index [-dwarf-5] DIRECTORY"));
27073
27074 ALL_OBJFILES (objfile)
27075 {
27076 struct stat st;
27077
27078 /* If the objfile does not correspond to an actual file, skip it. */
27079 if (stat (objfile_name (objfile), &st) < 0)
27080 continue;
27081
27082 struct dwarf2_per_objfile *dwarf2_per_objfile
27083 = get_dwarf2_per_objfile (objfile);
27084
27085 if (dwarf2_per_objfile != NULL)
27086 {
27087 TRY
27088 {
27089 write_psymtabs_to_index (dwarf2_per_objfile, arg, index_kind);
27090 }
27091 CATCH (except, RETURN_MASK_ERROR)
27092 {
27093 exception_fprintf (gdb_stderr, except,
27094 _("Error while writing index for `%s': "),
27095 objfile_name (objfile));
27096 }
27097 END_CATCH
27098 }
27099
27100 }
27101}
27102
27103\f
27104
27105int dwarf_always_disassemble;
27106
27107static void
27108show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
27109 struct cmd_list_element *c, const char *value)
27110{
27111 fprintf_filtered (file,
27112 _("Whether to always disassemble "
27113 "DWARF expressions is %s.\n"),
27114 value);
27115}
27116
27117static void
27118show_check_physname (struct ui_file *file, int from_tty,
27119 struct cmd_list_element *c, const char *value)
27120{
27121 fprintf_filtered (file,
27122 _("Whether to check \"physname\" is %s.\n"),
27123 value);
27124}
27125
27126void
27127_initialize_dwarf2_read (void)
27128{
27129 struct cmd_list_element *c;
27130
27131 dwarf2_objfile_data_key = register_objfile_data ();
27132
27133 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
27134Set DWARF specific variables.\n\
27135Configure DWARF variables such as the cache size"),
27136 &set_dwarf_cmdlist, "maintenance set dwarf ",
27137 0/*allow-unknown*/, &maintenance_set_cmdlist);
27138
27139 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
27140Show DWARF specific variables\n\
27141Show DWARF variables such as the cache size"),
27142 &show_dwarf_cmdlist, "maintenance show dwarf ",
27143 0/*allow-unknown*/, &maintenance_show_cmdlist);
27144
27145 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
27146 &dwarf_max_cache_age, _("\
27147Set the upper bound on the age of cached DWARF compilation units."), _("\
27148Show the upper bound on the age of cached DWARF compilation units."), _("\
27149A higher limit means that cached compilation units will be stored\n\
27150in memory longer, and more total memory will be used. Zero disables\n\
27151caching, which can slow down startup."),
27152 NULL,
27153 show_dwarf_max_cache_age,
27154 &set_dwarf_cmdlist,
27155 &show_dwarf_cmdlist);
27156
27157 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
27158 &dwarf_always_disassemble, _("\
27159Set whether `info address' always disassembles DWARF expressions."), _("\
27160Show whether `info address' always disassembles DWARF expressions."), _("\
27161When enabled, DWARF expressions are always printed in an assembly-like\n\
27162syntax. When disabled, expressions will be printed in a more\n\
27163conversational style, when possible."),
27164 NULL,
27165 show_dwarf_always_disassemble,
27166 &set_dwarf_cmdlist,
27167 &show_dwarf_cmdlist);
27168
27169 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
27170Set debugging of the DWARF reader."), _("\
27171Show debugging of the DWARF reader."), _("\
27172When enabled (non-zero), debugging messages are printed during DWARF\n\
27173reading and symtab expansion. A value of 1 (one) provides basic\n\
27174information. A value greater than 1 provides more verbose information."),
27175 NULL,
27176 NULL,
27177 &setdebuglist, &showdebuglist);
27178
27179 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
27180Set debugging of the DWARF DIE reader."), _("\
27181Show debugging of the DWARF DIE reader."), _("\
27182When enabled (non-zero), DIEs are dumped after they are read in.\n\
27183The value is the maximum depth to print."),
27184 NULL,
27185 NULL,
27186 &setdebuglist, &showdebuglist);
27187
27188 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
27189Set debugging of the dwarf line reader."), _("\
27190Show debugging of the dwarf line reader."), _("\
27191When enabled (non-zero), line number entries are dumped as they are read in.\n\
27192A value of 1 (one) provides basic information.\n\
27193A value greater than 1 provides more verbose information."),
27194 NULL,
27195 NULL,
27196 &setdebuglist, &showdebuglist);
27197
27198 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
27199Set cross-checking of \"physname\" code against demangler."), _("\
27200Show cross-checking of \"physname\" code against demangler."), _("\
27201When enabled, GDB's internal \"physname\" code is checked against\n\
27202the demangler."),
27203 NULL, show_check_physname,
27204 &setdebuglist, &showdebuglist);
27205
27206 add_setshow_boolean_cmd ("use-deprecated-index-sections",
27207 no_class, &use_deprecated_index_sections, _("\
27208Set whether to use deprecated gdb_index sections."), _("\
27209Show whether to use deprecated gdb_index sections."), _("\
27210When enabled, deprecated .gdb_index sections are used anyway.\n\
27211Normally they are ignored either because of a missing feature or\n\
27212performance issue.\n\
27213Warning: This option must be enabled before gdb reads the file."),
27214 NULL,
27215 NULL,
27216 &setlist, &showlist);
27217
27218 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
27219 _("\
27220Save a gdb-index file.\n\
27221Usage: save gdb-index [-dwarf-5] DIRECTORY\n\
27222\n\
27223No options create one file with .gdb-index extension for pre-DWARF-5\n\
27224compatible .gdb_index section. With -dwarf-5 creates two files with\n\
27225extension .debug_names and .debug_str for DWARF-5 .debug_names section."),
27226 &save_cmdlist);
27227 set_cmd_completer (c, filename_completer);
27228
27229 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
27230 &dwarf2_locexpr_funcs);
27231 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
27232 &dwarf2_loclist_funcs);
27233
27234 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
27235 &dwarf2_block_frame_base_locexpr_funcs);
27236 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
27237 &dwarf2_block_frame_base_loclist_funcs);
27238
27239#if GDB_SELF_TEST
27240 selftests::register_test ("dw2_expand_symtabs_matching",
27241 selftests::dw2_expand_symtabs_matching::run_test);
27242#endif
27243}
This page took 0.229825 seconds and 4 git commands to generate.