| 1 | /* DWARF debugging format support for GDB. |
| 2 | Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1998 |
| 3 | Free Software Foundation, Inc. |
| 4 | Written by Fred Fish at Cygnus Support. Portions based on dbxread.c, |
| 5 | mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port. |
| 6 | |
| 7 | This file is part of GDB. |
| 8 | |
| 9 | This program is free software; you can redistribute it and/or modify |
| 10 | it under the terms of the GNU General Public License as published by |
| 11 | the Free Software Foundation; either version 2 of the License, or |
| 12 | (at your option) any later version. |
| 13 | |
| 14 | This program is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | GNU General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU General Public License |
| 20 | along with this program; if not, write to the Free Software |
| 21 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
| 22 | |
| 23 | /* |
| 24 | |
| 25 | FIXME: Do we need to generate dependencies in partial symtabs? |
| 26 | (Perhaps we don't need to). |
| 27 | |
| 28 | FIXME: Resolve minor differences between what information we put in the |
| 29 | partial symbol table and what dbxread puts in. For example, we don't yet |
| 30 | put enum constants there. And dbxread seems to invent a lot of typedefs |
| 31 | we never see. Use the new printpsym command to see the partial symbol table |
| 32 | contents. |
| 33 | |
| 34 | FIXME: Figure out a better way to tell gdb about the name of the function |
| 35 | contain the user's entry point (I.E. main()) |
| 36 | |
| 37 | FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for |
| 38 | other things to work on, if you get bored. :-) |
| 39 | |
| 40 | */ |
| 41 | |
| 42 | #include "defs.h" |
| 43 | #include "symtab.h" |
| 44 | #include "gdbtypes.h" |
| 45 | #include "symfile.h" |
| 46 | #include "objfiles.h" |
| 47 | #include "elf/dwarf.h" |
| 48 | #include "buildsym.h" |
| 49 | #include "demangle.h" |
| 50 | #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */ |
| 51 | #include "language.h" |
| 52 | #include "complaints.h" |
| 53 | |
| 54 | #include <fcntl.h> |
| 55 | #include "gdb_string.h" |
| 56 | |
| 57 | /* Some macros to provide DIE info for complaints. */ |
| 58 | |
| 59 | #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0) |
| 60 | #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : "" |
| 61 | |
| 62 | /* Complaints that can be issued during DWARF debug info reading. */ |
| 63 | |
| 64 | struct complaint no_bfd_get_N = |
| 65 | { |
| 66 | "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0 |
| 67 | }; |
| 68 | |
| 69 | struct complaint malformed_die = |
| 70 | { |
| 71 | "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0 |
| 72 | }; |
| 73 | |
| 74 | struct complaint bad_die_ref = |
| 75 | { |
| 76 | "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0 |
| 77 | }; |
| 78 | |
| 79 | struct complaint unknown_attribute_form = |
| 80 | { |
| 81 | "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0 |
| 82 | }; |
| 83 | |
| 84 | struct complaint unknown_attribute_length = |
| 85 | { |
| 86 | "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0 |
| 87 | }; |
| 88 | |
| 89 | struct complaint unexpected_fund_type = |
| 90 | { |
| 91 | "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0 |
| 92 | }; |
| 93 | |
| 94 | struct complaint unknown_type_modifier = |
| 95 | { |
| 96 | "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0 |
| 97 | }; |
| 98 | |
| 99 | struct complaint volatile_ignored = |
| 100 | { |
| 101 | "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0 |
| 102 | }; |
| 103 | |
| 104 | struct complaint const_ignored = |
| 105 | { |
| 106 | "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0 |
| 107 | }; |
| 108 | |
| 109 | struct complaint botched_modified_type = |
| 110 | { |
| 111 | "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0 |
| 112 | }; |
| 113 | |
| 114 | struct complaint op_deref2 = |
| 115 | { |
| 116 | "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0 |
| 117 | }; |
| 118 | |
| 119 | struct complaint op_deref4 = |
| 120 | { |
| 121 | "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0 |
| 122 | }; |
| 123 | |
| 124 | struct complaint basereg_not_handled = |
| 125 | { |
| 126 | "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0 |
| 127 | }; |
| 128 | |
| 129 | struct complaint dup_user_type_allocation = |
| 130 | { |
| 131 | "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0 |
| 132 | }; |
| 133 | |
| 134 | struct complaint dup_user_type_definition = |
| 135 | { |
| 136 | "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0 |
| 137 | }; |
| 138 | |
| 139 | struct complaint missing_tag = |
| 140 | { |
| 141 | "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0 |
| 142 | }; |
| 143 | |
| 144 | struct complaint bad_array_element_type = |
| 145 | { |
| 146 | "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0 |
| 147 | }; |
| 148 | |
| 149 | struct complaint subscript_data_items = |
| 150 | { |
| 151 | "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0 |
| 152 | }; |
| 153 | |
| 154 | struct complaint unhandled_array_subscript_format = |
| 155 | { |
| 156 | "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0 |
| 157 | }; |
| 158 | |
| 159 | struct complaint unknown_array_subscript_format = |
| 160 | { |
| 161 | "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0 |
| 162 | }; |
| 163 | |
| 164 | struct complaint not_row_major = |
| 165 | { |
| 166 | "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0 |
| 167 | }; |
| 168 | |
| 169 | struct complaint missing_at_name = |
| 170 | { |
| 171 | "DIE @ 0x%x, AT_name tag missing", 0, 0 |
| 172 | }; |
| 173 | |
| 174 | typedef unsigned int DIE_REF; /* Reference to a DIE */ |
| 175 | |
| 176 | #ifndef GCC_PRODUCER |
| 177 | #define GCC_PRODUCER "GNU C " |
| 178 | #endif |
| 179 | |
| 180 | #ifndef GPLUS_PRODUCER |
| 181 | #define GPLUS_PRODUCER "GNU C++ " |
| 182 | #endif |
| 183 | |
| 184 | #ifndef LCC_PRODUCER |
| 185 | #define LCC_PRODUCER "NCR C/C++" |
| 186 | #endif |
| 187 | |
| 188 | #ifndef CHILL_PRODUCER |
| 189 | #define CHILL_PRODUCER "GNU Chill " |
| 190 | #endif |
| 191 | |
| 192 | /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */ |
| 193 | #ifndef DWARF_REG_TO_REGNUM |
| 194 | #define DWARF_REG_TO_REGNUM(num) (num) |
| 195 | #endif |
| 196 | |
| 197 | /* Flags to target_to_host() that tell whether or not the data object is |
| 198 | expected to be signed. Used, for example, when fetching a signed |
| 199 | integer in the target environment which is used as a signed integer |
| 200 | in the host environment, and the two environments have different sized |
| 201 | ints. In this case, *somebody* has to sign extend the smaller sized |
| 202 | int. */ |
| 203 | |
| 204 | #define GET_UNSIGNED 0 /* No sign extension required */ |
| 205 | #define GET_SIGNED 1 /* Sign extension required */ |
| 206 | |
| 207 | /* Defines for things which are specified in the document "DWARF Debugging |
| 208 | Information Format" published by UNIX International, Programming Languages |
| 209 | SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */ |
| 210 | |
| 211 | #define SIZEOF_DIE_LENGTH 4 |
| 212 | #define SIZEOF_DIE_TAG 2 |
| 213 | #define SIZEOF_ATTRIBUTE 2 |
| 214 | #define SIZEOF_FORMAT_SPECIFIER 1 |
| 215 | #define SIZEOF_FMT_FT 2 |
| 216 | #define SIZEOF_LINETBL_LENGTH 4 |
| 217 | #define SIZEOF_LINETBL_LINENO 4 |
| 218 | #define SIZEOF_LINETBL_STMT 2 |
| 219 | #define SIZEOF_LINETBL_DELTA 4 |
| 220 | #define SIZEOF_LOC_ATOM_CODE 1 |
| 221 | |
| 222 | #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */ |
| 223 | |
| 224 | /* Macros that return the sizes of various types of data in the target |
| 225 | environment. |
| 226 | |
| 227 | FIXME: Currently these are just compile time constants (as they are in |
| 228 | other parts of gdb as well). They need to be able to get the right size |
| 229 | either from the bfd or possibly from the DWARF info. It would be nice if |
| 230 | the DWARF producer inserted DIES that describe the fundamental types in |
| 231 | the target environment into the DWARF info, similar to the way dbx stabs |
| 232 | producers produce information about their fundamental types. */ |
| 233 | |
| 234 | #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT) |
| 235 | #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT) |
| 236 | |
| 237 | /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a |
| 238 | FORM_BLOCK2, and this is the value emitted by the AT&T compiler. |
| 239 | However, the Issue 2 DWARF specification from AT&T defines it as |
| 240 | a FORM_BLOCK4, as does the latest specification from UI/PLSIG. |
| 241 | For backwards compatibility with the AT&T compiler produced executables |
| 242 | we define AT_short_element_list for this variant. */ |
| 243 | |
| 244 | #define AT_short_element_list (0x00f0|FORM_BLOCK2) |
| 245 | |
| 246 | /* External variables referenced. */ |
| 247 | |
| 248 | extern int info_verbose; /* From main.c; nonzero => verbose */ |
| 249 | extern char *warning_pre_print; /* From utils.c */ |
| 250 | |
| 251 | /* The DWARF debugging information consists of two major pieces, |
| 252 | one is a block of DWARF Information Entries (DIE's) and the other |
| 253 | is a line number table. The "struct dieinfo" structure contains |
| 254 | the information for a single DIE, the one currently being processed. |
| 255 | |
| 256 | In order to make it easier to randomly access the attribute fields |
| 257 | of the current DIE, which are specifically unordered within the DIE, |
| 258 | each DIE is scanned and an instance of the "struct dieinfo" |
| 259 | structure is initialized. |
| 260 | |
| 261 | Initialization is done in two levels. The first, done by basicdieinfo(), |
| 262 | just initializes those fields that are vital to deciding whether or not |
| 263 | to use this DIE, how to skip past it, etc. The second, done by the |
| 264 | function completedieinfo(), fills in the rest of the information. |
| 265 | |
| 266 | Attributes which have block forms are not interpreted at the time |
| 267 | the DIE is scanned, instead we just save pointers to the start |
| 268 | of their value fields. |
| 269 | |
| 270 | Some fields have a flag <name>_p that is set when the value of the |
| 271 | field is valid (I.E. we found a matching attribute in the DIE). Since |
| 272 | we may want to test for the presence of some attributes in the DIE, |
| 273 | such as AT_low_pc, without restricting the values of the field, |
| 274 | we need someway to note that we found such an attribute. |
| 275 | |
| 276 | */ |
| 277 | |
| 278 | typedef char BLOCK; |
| 279 | |
| 280 | struct dieinfo |
| 281 | { |
| 282 | char *die; /* Pointer to the raw DIE data */ |
| 283 | unsigned long die_length; /* Length of the raw DIE data */ |
| 284 | DIE_REF die_ref; /* Offset of this DIE */ |
| 285 | unsigned short die_tag; /* Tag for this DIE */ |
| 286 | unsigned long at_padding; |
| 287 | unsigned long at_sibling; |
| 288 | BLOCK *at_location; |
| 289 | char *at_name; |
| 290 | unsigned short at_fund_type; |
| 291 | BLOCK *at_mod_fund_type; |
| 292 | unsigned long at_user_def_type; |
| 293 | BLOCK *at_mod_u_d_type; |
| 294 | unsigned short at_ordering; |
| 295 | BLOCK *at_subscr_data; |
| 296 | unsigned long at_byte_size; |
| 297 | unsigned short at_bit_offset; |
| 298 | unsigned long at_bit_size; |
| 299 | BLOCK *at_element_list; |
| 300 | unsigned long at_stmt_list; |
| 301 | CORE_ADDR at_low_pc; |
| 302 | CORE_ADDR at_high_pc; |
| 303 | unsigned long at_language; |
| 304 | unsigned long at_member; |
| 305 | unsigned long at_discr; |
| 306 | BLOCK *at_discr_value; |
| 307 | BLOCK *at_string_length; |
| 308 | char *at_comp_dir; |
| 309 | char *at_producer; |
| 310 | unsigned long at_start_scope; |
| 311 | unsigned long at_stride_size; |
| 312 | unsigned long at_src_info; |
| 313 | char *at_prototyped; |
| 314 | unsigned int has_at_low_pc:1; |
| 315 | unsigned int has_at_stmt_list:1; |
| 316 | unsigned int has_at_byte_size:1; |
| 317 | unsigned int short_element_list:1; |
| 318 | |
| 319 | /* Kludge to identify register variables */ |
| 320 | |
| 321 | unsigned int isreg; |
| 322 | |
| 323 | /* Kludge to identify optimized out variables */ |
| 324 | |
| 325 | unsigned int optimized_out; |
| 326 | |
| 327 | /* Kludge to identify basereg references. |
| 328 | Nonzero if we have an offset relative to a basereg. */ |
| 329 | |
| 330 | unsigned int offreg; |
| 331 | |
| 332 | /* Kludge to identify which base register is it relative to. */ |
| 333 | |
| 334 | unsigned int basereg; |
| 335 | }; |
| 336 | |
| 337 | static int diecount; /* Approximate count of dies for compilation unit */ |
| 338 | static struct dieinfo *curdie; /* For warnings and such */ |
| 339 | |
| 340 | static char *dbbase; /* Base pointer to dwarf info */ |
| 341 | static int dbsize; /* Size of dwarf info in bytes */ |
| 342 | static int dbroff; /* Relative offset from start of .debug section */ |
| 343 | static char *lnbase; /* Base pointer to line section */ |
| 344 | |
| 345 | /* This value is added to each symbol value. FIXME: Generalize to |
| 346 | the section_offsets structure used by dbxread (once this is done, |
| 347 | pass the appropriate section number to end_symtab). */ |
| 348 | static CORE_ADDR baseaddr; /* Add to each symbol value */ |
| 349 | |
| 350 | /* The section offsets used in the current psymtab or symtab. FIXME, |
| 351 | only used to pass one value (baseaddr) at the moment. */ |
| 352 | static struct section_offsets *base_section_offsets; |
| 353 | |
| 354 | /* We put a pointer to this structure in the read_symtab_private field |
| 355 | of the psymtab. */ |
| 356 | |
| 357 | struct dwfinfo |
| 358 | { |
| 359 | /* Always the absolute file offset to the start of the ".debug" |
| 360 | section for the file containing the DIE's being accessed. */ |
| 361 | file_ptr dbfoff; |
| 362 | /* Relative offset from the start of the ".debug" section to the |
| 363 | first DIE to be accessed. When building the partial symbol |
| 364 | table, this value will be zero since we are accessing the |
| 365 | entire ".debug" section. When expanding a partial symbol |
| 366 | table entry, this value will be the offset to the first |
| 367 | DIE for the compilation unit containing the symbol that |
| 368 | triggers the expansion. */ |
| 369 | int dbroff; |
| 370 | /* The size of the chunk of DIE's being examined, in bytes. */ |
| 371 | int dblength; |
| 372 | /* The absolute file offset to the line table fragment. Ignored |
| 373 | when building partial symbol tables, but used when expanding |
| 374 | them, and contains the absolute file offset to the fragment |
| 375 | of the ".line" section containing the line numbers for the |
| 376 | current compilation unit. */ |
| 377 | file_ptr lnfoff; |
| 378 | }; |
| 379 | |
| 380 | #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff) |
| 381 | #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff) |
| 382 | #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength) |
| 383 | #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff) |
| 384 | |
| 385 | /* The generic symbol table building routines have separate lists for |
| 386 | file scope symbols and all all other scopes (local scopes). So |
| 387 | we need to select the right one to pass to add_symbol_to_list(). |
| 388 | We do it by keeping a pointer to the correct list in list_in_scope. |
| 389 | |
| 390 | FIXME: The original dwarf code just treated the file scope as the first |
| 391 | local scope, and all other local scopes as nested local scopes, and worked |
| 392 | fine. Check to see if we really need to distinguish these in buildsym.c */ |
| 393 | |
| 394 | struct pending **list_in_scope = &file_symbols; |
| 395 | |
| 396 | /* DIES which have user defined types or modified user defined types refer to |
| 397 | other DIES for the type information. Thus we need to associate the offset |
| 398 | of a DIE for a user defined type with a pointer to the type information. |
| 399 | |
| 400 | Originally this was done using a simple but expensive algorithm, with an |
| 401 | array of unsorted structures, each containing an offset/type-pointer pair. |
| 402 | This array was scanned linearly each time a lookup was done. The result |
| 403 | was that gdb was spending over half it's startup time munging through this |
| 404 | array of pointers looking for a structure that had the right offset member. |
| 405 | |
| 406 | The second attempt used the same array of structures, but the array was |
| 407 | sorted using qsort each time a new offset/type was recorded, and a binary |
| 408 | search was used to find the type pointer for a given DIE offset. This was |
| 409 | even slower, due to the overhead of sorting the array each time a new |
| 410 | offset/type pair was entered. |
| 411 | |
| 412 | The third attempt uses a fixed size array of type pointers, indexed by a |
| 413 | value derived from the DIE offset. Since the minimum DIE size is 4 bytes, |
| 414 | we can divide any DIE offset by 4 to obtain a unique index into this fixed |
| 415 | size array. Since each element is a 4 byte pointer, it takes exactly as |
| 416 | much memory to hold this array as to hold the DWARF info for a given |
| 417 | compilation unit. But it gets freed as soon as we are done with it. |
| 418 | This has worked well in practice, as a reasonable tradeoff between memory |
| 419 | consumption and speed, without having to resort to much more complicated |
| 420 | algorithms. */ |
| 421 | |
| 422 | static struct type **utypes; /* Pointer to array of user type pointers */ |
| 423 | static int numutypes; /* Max number of user type pointers */ |
| 424 | |
| 425 | /* Maintain an array of referenced fundamental types for the current |
| 426 | compilation unit being read. For DWARF version 1, we have to construct |
| 427 | the fundamental types on the fly, since no information about the |
| 428 | fundamental types is supplied. Each such fundamental type is created by |
| 429 | calling a language dependent routine to create the type, and then a |
| 430 | pointer to that type is then placed in the array at the index specified |
| 431 | by it's FT_<TYPENAME> value. The array has a fixed size set by the |
| 432 | FT_NUM_MEMBERS compile time constant, which is the number of predefined |
| 433 | fundamental types gdb knows how to construct. */ |
| 434 | |
| 435 | static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */ |
| 436 | |
| 437 | /* Record the language for the compilation unit which is currently being |
| 438 | processed. We know it once we have seen the TAG_compile_unit DIE, |
| 439 | and we need it while processing the DIE's for that compilation unit. |
| 440 | It is eventually saved in the symtab structure, but we don't finalize |
| 441 | the symtab struct until we have processed all the DIE's for the |
| 442 | compilation unit. We also need to get and save a pointer to the |
| 443 | language struct for this language, so we can call the language |
| 444 | dependent routines for doing things such as creating fundamental |
| 445 | types. */ |
| 446 | |
| 447 | static enum language cu_language; |
| 448 | static const struct language_defn *cu_language_defn; |
| 449 | |
| 450 | /* Forward declarations of static functions so we don't have to worry |
| 451 | about ordering within this file. */ |
| 452 | |
| 453 | static void free_utypes (PTR); |
| 454 | |
| 455 | static int attribute_size (unsigned int); |
| 456 | |
| 457 | static CORE_ADDR target_to_host (char *, int, int, struct objfile *); |
| 458 | |
| 459 | static void add_enum_psymbol (struct dieinfo *, struct objfile *); |
| 460 | |
| 461 | static void handle_producer (char *); |
| 462 | |
| 463 | static void |
| 464 | read_file_scope (struct dieinfo *, char *, char *, struct objfile *); |
| 465 | |
| 466 | static void |
| 467 | read_func_scope (struct dieinfo *, char *, char *, struct objfile *); |
| 468 | |
| 469 | static void |
| 470 | read_lexical_block_scope (struct dieinfo *, char *, char *, struct objfile *); |
| 471 | |
| 472 | static void scan_partial_symbols (char *, char *, struct objfile *); |
| 473 | |
| 474 | static void |
| 475 | scan_compilation_units (char *, char *, file_ptr, file_ptr, struct objfile *); |
| 476 | |
| 477 | static void add_partial_symbol (struct dieinfo *, struct objfile *); |
| 478 | |
| 479 | static void basicdieinfo (struct dieinfo *, char *, struct objfile *); |
| 480 | |
| 481 | static void completedieinfo (struct dieinfo *, struct objfile *); |
| 482 | |
| 483 | static void dwarf_psymtab_to_symtab (struct partial_symtab *); |
| 484 | |
| 485 | static void psymtab_to_symtab_1 (struct partial_symtab *); |
| 486 | |
| 487 | static void read_ofile_symtab (struct partial_symtab *); |
| 488 | |
| 489 | static void process_dies (char *, char *, struct objfile *); |
| 490 | |
| 491 | static void |
| 492 | read_structure_scope (struct dieinfo *, char *, char *, struct objfile *); |
| 493 | |
| 494 | static struct type *decode_array_element_type (char *); |
| 495 | |
| 496 | static struct type *decode_subscript_data_item (char *, char *); |
| 497 | |
| 498 | static void dwarf_read_array_type (struct dieinfo *); |
| 499 | |
| 500 | static void read_tag_pointer_type (struct dieinfo *dip); |
| 501 | |
| 502 | static void read_tag_string_type (struct dieinfo *dip); |
| 503 | |
| 504 | static void read_subroutine_type (struct dieinfo *, char *, char *); |
| 505 | |
| 506 | static void |
| 507 | read_enumeration (struct dieinfo *, char *, char *, struct objfile *); |
| 508 | |
| 509 | static struct type *struct_type (struct dieinfo *, char *, char *, |
| 510 | struct objfile *); |
| 511 | |
| 512 | static struct type *enum_type (struct dieinfo *, struct objfile *); |
| 513 | |
| 514 | static void decode_line_numbers (char *); |
| 515 | |
| 516 | static struct type *decode_die_type (struct dieinfo *); |
| 517 | |
| 518 | static struct type *decode_mod_fund_type (char *); |
| 519 | |
| 520 | static struct type *decode_mod_u_d_type (char *); |
| 521 | |
| 522 | static struct type *decode_modified_type (char *, unsigned int, int); |
| 523 | |
| 524 | static struct type *decode_fund_type (unsigned int); |
| 525 | |
| 526 | static char *create_name (char *, struct obstack *); |
| 527 | |
| 528 | static struct type *lookup_utype (DIE_REF); |
| 529 | |
| 530 | static struct type *alloc_utype (DIE_REF, struct type *); |
| 531 | |
| 532 | static struct symbol *new_symbol (struct dieinfo *, struct objfile *); |
| 533 | |
| 534 | static void |
| 535 | synthesize_typedef (struct dieinfo *, struct objfile *, struct type *); |
| 536 | |
| 537 | static int locval (struct dieinfo *); |
| 538 | |
| 539 | static void set_cu_language (struct dieinfo *); |
| 540 | |
| 541 | static struct type *dwarf_fundamental_type (struct objfile *, int); |
| 542 | |
| 543 | |
| 544 | /* |
| 545 | |
| 546 | LOCAL FUNCTION |
| 547 | |
| 548 | dwarf_fundamental_type -- lookup or create a fundamental type |
| 549 | |
| 550 | SYNOPSIS |
| 551 | |
| 552 | struct type * |
| 553 | dwarf_fundamental_type (struct objfile *objfile, int typeid) |
| 554 | |
| 555 | DESCRIPTION |
| 556 | |
| 557 | DWARF version 1 doesn't supply any fundamental type information, |
| 558 | so gdb has to construct such types. It has a fixed number of |
| 559 | fundamental types that it knows how to construct, which is the |
| 560 | union of all types that it knows how to construct for all languages |
| 561 | that it knows about. These are enumerated in gdbtypes.h. |
| 562 | |
| 563 | As an example, assume we find a DIE that references a DWARF |
| 564 | fundamental type of FT_integer. We first look in the ftypes |
| 565 | array to see if we already have such a type, indexed by the |
| 566 | gdb internal value of FT_INTEGER. If so, we simply return a |
| 567 | pointer to that type. If not, then we ask an appropriate |
| 568 | language dependent routine to create a type FT_INTEGER, using |
| 569 | defaults reasonable for the current target machine, and install |
| 570 | that type in ftypes for future reference. |
| 571 | |
| 572 | RETURNS |
| 573 | |
| 574 | Pointer to a fundamental type. |
| 575 | |
| 576 | */ |
| 577 | |
| 578 | static struct type * |
| 579 | dwarf_fundamental_type (objfile, typeid) |
| 580 | struct objfile *objfile; |
| 581 | int typeid; |
| 582 | { |
| 583 | if (typeid < 0 || typeid >= FT_NUM_MEMBERS) |
| 584 | { |
| 585 | error ("internal error - invalid fundamental type id %d", typeid); |
| 586 | } |
| 587 | |
| 588 | /* Look for this particular type in the fundamental type vector. If one is |
| 589 | not found, create and install one appropriate for the current language |
| 590 | and the current target machine. */ |
| 591 | |
| 592 | if (ftypes[typeid] == NULL) |
| 593 | { |
| 594 | ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid); |
| 595 | } |
| 596 | |
| 597 | return (ftypes[typeid]); |
| 598 | } |
| 599 | |
| 600 | /* |
| 601 | |
| 602 | LOCAL FUNCTION |
| 603 | |
| 604 | set_cu_language -- set local copy of language for compilation unit |
| 605 | |
| 606 | SYNOPSIS |
| 607 | |
| 608 | void |
| 609 | set_cu_language (struct dieinfo *dip) |
| 610 | |
| 611 | DESCRIPTION |
| 612 | |
| 613 | Decode the language attribute for a compilation unit DIE and |
| 614 | remember what the language was. We use this at various times |
| 615 | when processing DIE's for a given compilation unit. |
| 616 | |
| 617 | RETURNS |
| 618 | |
| 619 | No return value. |
| 620 | |
| 621 | */ |
| 622 | |
| 623 | static void |
| 624 | set_cu_language (dip) |
| 625 | struct dieinfo *dip; |
| 626 | { |
| 627 | switch (dip->at_language) |
| 628 | { |
| 629 | case LANG_C89: |
| 630 | case LANG_C: |
| 631 | cu_language = language_c; |
| 632 | break; |
| 633 | case LANG_C_PLUS_PLUS: |
| 634 | cu_language = language_cplus; |
| 635 | break; |
| 636 | case LANG_CHILL: |
| 637 | cu_language = language_chill; |
| 638 | break; |
| 639 | case LANG_MODULA2: |
| 640 | cu_language = language_m2; |
| 641 | break; |
| 642 | case LANG_FORTRAN77: |
| 643 | case LANG_FORTRAN90: |
| 644 | cu_language = language_fortran; |
| 645 | break; |
| 646 | case LANG_ADA83: |
| 647 | case LANG_COBOL74: |
| 648 | case LANG_COBOL85: |
| 649 | case LANG_PASCAL83: |
| 650 | /* We don't know anything special about these yet. */ |
| 651 | cu_language = language_unknown; |
| 652 | break; |
| 653 | default: |
| 654 | /* If no at_language, try to deduce one from the filename */ |
| 655 | cu_language = deduce_language_from_filename (dip->at_name); |
| 656 | break; |
| 657 | } |
| 658 | cu_language_defn = language_def (cu_language); |
| 659 | } |
| 660 | |
| 661 | /* |
| 662 | |
| 663 | GLOBAL FUNCTION |
| 664 | |
| 665 | dwarf_build_psymtabs -- build partial symtabs from DWARF debug info |
| 666 | |
| 667 | SYNOPSIS |
| 668 | |
| 669 | void dwarf_build_psymtabs (struct objfile *objfile, |
| 670 | int mainline, file_ptr dbfoff, unsigned int dbfsize, |
| 671 | file_ptr lnoffset, unsigned int lnsize) |
| 672 | |
| 673 | DESCRIPTION |
| 674 | |
| 675 | This function is called upon to build partial symtabs from files |
| 676 | containing DIE's (Dwarf Information Entries) and DWARF line numbers. |
| 677 | |
| 678 | It is passed a bfd* containing the DIES |
| 679 | and line number information, the corresponding filename for that |
| 680 | file, a base address for relocating the symbols, a flag indicating |
| 681 | whether or not this debugging information is from a "main symbol |
| 682 | table" rather than a shared library or dynamically linked file, |
| 683 | and file offset/size pairs for the DIE information and line number |
| 684 | information. |
| 685 | |
| 686 | RETURNS |
| 687 | |
| 688 | No return value. |
| 689 | |
| 690 | */ |
| 691 | |
| 692 | void |
| 693 | dwarf_build_psymtabs (objfile, mainline, dbfoff, dbfsize, |
| 694 | lnoffset, lnsize) |
| 695 | struct objfile *objfile; |
| 696 | int mainline; |
| 697 | file_ptr dbfoff; |
| 698 | unsigned int dbfsize; |
| 699 | file_ptr lnoffset; |
| 700 | unsigned int lnsize; |
| 701 | { |
| 702 | bfd *abfd = objfile->obfd; |
| 703 | struct cleanup *back_to; |
| 704 | |
| 705 | current_objfile = objfile; |
| 706 | dbsize = dbfsize; |
| 707 | dbbase = xmalloc (dbsize); |
| 708 | dbroff = 0; |
| 709 | if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) || |
| 710 | (bfd_read (dbbase, dbsize, 1, abfd) != dbsize)) |
| 711 | { |
| 712 | free (dbbase); |
| 713 | error ("can't read DWARF data from '%s'", bfd_get_filename (abfd)); |
| 714 | } |
| 715 | back_to = make_cleanup (free, dbbase); |
| 716 | |
| 717 | /* If we are reinitializing, or if we have never loaded syms yet, init. |
| 718 | Since we have no idea how many DIES we are looking at, we just guess |
| 719 | some arbitrary value. */ |
| 720 | |
| 721 | if (mainline || objfile->global_psymbols.size == 0 || |
| 722 | objfile->static_psymbols.size == 0) |
| 723 | { |
| 724 | init_psymbol_list (objfile, 1024); |
| 725 | } |
| 726 | |
| 727 | /* Save the relocation factor where everybody can see it. */ |
| 728 | |
| 729 | base_section_offsets = objfile->section_offsets; |
| 730 | baseaddr = ANOFFSET (objfile->section_offsets, 0); |
| 731 | |
| 732 | /* Follow the compilation unit sibling chain, building a partial symbol |
| 733 | table entry for each one. Save enough information about each compilation |
| 734 | unit to locate the full DWARF information later. */ |
| 735 | |
| 736 | scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile); |
| 737 | |
| 738 | do_cleanups (back_to); |
| 739 | current_objfile = NULL; |
| 740 | } |
| 741 | |
| 742 | /* |
| 743 | |
| 744 | LOCAL FUNCTION |
| 745 | |
| 746 | read_lexical_block_scope -- process all dies in a lexical block |
| 747 | |
| 748 | SYNOPSIS |
| 749 | |
| 750 | static void read_lexical_block_scope (struct dieinfo *dip, |
| 751 | char *thisdie, char *enddie) |
| 752 | |
| 753 | DESCRIPTION |
| 754 | |
| 755 | Process all the DIES contained within a lexical block scope. |
| 756 | Start a new scope, process the dies, and then close the scope. |
| 757 | |
| 758 | */ |
| 759 | |
| 760 | static void |
| 761 | read_lexical_block_scope (dip, thisdie, enddie, objfile) |
| 762 | struct dieinfo *dip; |
| 763 | char *thisdie; |
| 764 | char *enddie; |
| 765 | struct objfile *objfile; |
| 766 | { |
| 767 | register struct context_stack *new; |
| 768 | |
| 769 | push_context (0, dip->at_low_pc); |
| 770 | process_dies (thisdie + dip->die_length, enddie, objfile); |
| 771 | new = pop_context (); |
| 772 | if (local_symbols != NULL) |
| 773 | { |
| 774 | finish_block (0, &local_symbols, new->old_blocks, new->start_addr, |
| 775 | dip->at_high_pc, objfile); |
| 776 | } |
| 777 | local_symbols = new->locals; |
| 778 | } |
| 779 | |
| 780 | /* |
| 781 | |
| 782 | LOCAL FUNCTION |
| 783 | |
| 784 | lookup_utype -- look up a user defined type from die reference |
| 785 | |
| 786 | SYNOPSIS |
| 787 | |
| 788 | static type *lookup_utype (DIE_REF die_ref) |
| 789 | |
| 790 | DESCRIPTION |
| 791 | |
| 792 | Given a DIE reference, lookup the user defined type associated with |
| 793 | that DIE, if it has been registered already. If not registered, then |
| 794 | return NULL. Alloc_utype() can be called to register an empty |
| 795 | type for this reference, which will be filled in later when the |
| 796 | actual referenced DIE is processed. |
| 797 | */ |
| 798 | |
| 799 | static struct type * |
| 800 | lookup_utype (die_ref) |
| 801 | DIE_REF die_ref; |
| 802 | { |
| 803 | struct type *type = NULL; |
| 804 | int utypeidx; |
| 805 | |
| 806 | utypeidx = (die_ref - dbroff) / 4; |
| 807 | if ((utypeidx < 0) || (utypeidx >= numutypes)) |
| 808 | { |
| 809 | complain (&bad_die_ref, DIE_ID, DIE_NAME); |
| 810 | } |
| 811 | else |
| 812 | { |
| 813 | type = *(utypes + utypeidx); |
| 814 | } |
| 815 | return (type); |
| 816 | } |
| 817 | |
| 818 | |
| 819 | /* |
| 820 | |
| 821 | LOCAL FUNCTION |
| 822 | |
| 823 | alloc_utype -- add a user defined type for die reference |
| 824 | |
| 825 | SYNOPSIS |
| 826 | |
| 827 | static type *alloc_utype (DIE_REF die_ref, struct type *utypep) |
| 828 | |
| 829 | DESCRIPTION |
| 830 | |
| 831 | Given a die reference DIE_REF, and a possible pointer to a user |
| 832 | defined type UTYPEP, register that this reference has a user |
| 833 | defined type and either use the specified type in UTYPEP or |
| 834 | make a new empty type that will be filled in later. |
| 835 | |
| 836 | We should only be called after calling lookup_utype() to verify that |
| 837 | there is not currently a type registered for DIE_REF. |
| 838 | */ |
| 839 | |
| 840 | static struct type * |
| 841 | alloc_utype (die_ref, utypep) |
| 842 | DIE_REF die_ref; |
| 843 | struct type *utypep; |
| 844 | { |
| 845 | struct type **typep; |
| 846 | int utypeidx; |
| 847 | |
| 848 | utypeidx = (die_ref - dbroff) / 4; |
| 849 | typep = utypes + utypeidx; |
| 850 | if ((utypeidx < 0) || (utypeidx >= numutypes)) |
| 851 | { |
| 852 | utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
| 853 | complain (&bad_die_ref, DIE_ID, DIE_NAME); |
| 854 | } |
| 855 | else if (*typep != NULL) |
| 856 | { |
| 857 | utypep = *typep; |
| 858 | complain (&dup_user_type_allocation, DIE_ID, DIE_NAME); |
| 859 | } |
| 860 | else |
| 861 | { |
| 862 | if (utypep == NULL) |
| 863 | { |
| 864 | utypep = alloc_type (current_objfile); |
| 865 | } |
| 866 | *typep = utypep; |
| 867 | } |
| 868 | return (utypep); |
| 869 | } |
| 870 | |
| 871 | /* |
| 872 | |
| 873 | LOCAL FUNCTION |
| 874 | |
| 875 | free_utypes -- free the utypes array and reset pointer & count |
| 876 | |
| 877 | SYNOPSIS |
| 878 | |
| 879 | static void free_utypes (PTR dummy) |
| 880 | |
| 881 | DESCRIPTION |
| 882 | |
| 883 | Called via do_cleanups to free the utypes array, reset the pointer to NULL, |
| 884 | and set numutypes back to zero. This ensures that the utypes does not get |
| 885 | referenced after being freed. |
| 886 | */ |
| 887 | |
| 888 | static void |
| 889 | free_utypes (dummy) |
| 890 | PTR dummy; |
| 891 | { |
| 892 | free (utypes); |
| 893 | utypes = NULL; |
| 894 | numutypes = 0; |
| 895 | } |
| 896 | |
| 897 | |
| 898 | /* |
| 899 | |
| 900 | LOCAL FUNCTION |
| 901 | |
| 902 | decode_die_type -- return a type for a specified die |
| 903 | |
| 904 | SYNOPSIS |
| 905 | |
| 906 | static struct type *decode_die_type (struct dieinfo *dip) |
| 907 | |
| 908 | DESCRIPTION |
| 909 | |
| 910 | Given a pointer to a die information structure DIP, decode the |
| 911 | type of the die and return a pointer to the decoded type. All |
| 912 | dies without specific types default to type int. |
| 913 | */ |
| 914 | |
| 915 | static struct type * |
| 916 | decode_die_type (dip) |
| 917 | struct dieinfo *dip; |
| 918 | { |
| 919 | struct type *type = NULL; |
| 920 | |
| 921 | if (dip->at_fund_type != 0) |
| 922 | { |
| 923 | type = decode_fund_type (dip->at_fund_type); |
| 924 | } |
| 925 | else if (dip->at_mod_fund_type != NULL) |
| 926 | { |
| 927 | type = decode_mod_fund_type (dip->at_mod_fund_type); |
| 928 | } |
| 929 | else if (dip->at_user_def_type) |
| 930 | { |
| 931 | if ((type = lookup_utype (dip->at_user_def_type)) == NULL) |
| 932 | { |
| 933 | type = alloc_utype (dip->at_user_def_type, NULL); |
| 934 | } |
| 935 | } |
| 936 | else if (dip->at_mod_u_d_type) |
| 937 | { |
| 938 | type = decode_mod_u_d_type (dip->at_mod_u_d_type); |
| 939 | } |
| 940 | else |
| 941 | { |
| 942 | type = dwarf_fundamental_type (current_objfile, FT_VOID); |
| 943 | } |
| 944 | return (type); |
| 945 | } |
| 946 | |
| 947 | /* |
| 948 | |
| 949 | LOCAL FUNCTION |
| 950 | |
| 951 | struct_type -- compute and return the type for a struct or union |
| 952 | |
| 953 | SYNOPSIS |
| 954 | |
| 955 | static struct type *struct_type (struct dieinfo *dip, char *thisdie, |
| 956 | char *enddie, struct objfile *objfile) |
| 957 | |
| 958 | DESCRIPTION |
| 959 | |
| 960 | Given pointer to a die information structure for a die which |
| 961 | defines a union or structure (and MUST define one or the other), |
| 962 | and pointers to the raw die data that define the range of dies which |
| 963 | define the members, compute and return the user defined type for the |
| 964 | structure or union. |
| 965 | */ |
| 966 | |
| 967 | static struct type * |
| 968 | struct_type (dip, thisdie, enddie, objfile) |
| 969 | struct dieinfo *dip; |
| 970 | char *thisdie; |
| 971 | char *enddie; |
| 972 | struct objfile *objfile; |
| 973 | { |
| 974 | struct type *type; |
| 975 | struct nextfield |
| 976 | { |
| 977 | struct nextfield *next; |
| 978 | struct field field; |
| 979 | }; |
| 980 | struct nextfield *list = NULL; |
| 981 | struct nextfield *new; |
| 982 | int nfields = 0; |
| 983 | int n; |
| 984 | struct dieinfo mbr; |
| 985 | char *nextdie; |
| 986 | int anonymous_size; |
| 987 | |
| 988 | if ((type = lookup_utype (dip->die_ref)) == NULL) |
| 989 | { |
| 990 | /* No forward references created an empty type, so install one now */ |
| 991 | type = alloc_utype (dip->die_ref, NULL); |
| 992 | } |
| 993 | INIT_CPLUS_SPECIFIC (type); |
| 994 | switch (dip->die_tag) |
| 995 | { |
| 996 | case TAG_class_type: |
| 997 | TYPE_CODE (type) = TYPE_CODE_CLASS; |
| 998 | break; |
| 999 | case TAG_structure_type: |
| 1000 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
| 1001 | break; |
| 1002 | case TAG_union_type: |
| 1003 | TYPE_CODE (type) = TYPE_CODE_UNION; |
| 1004 | break; |
| 1005 | default: |
| 1006 | /* Should never happen */ |
| 1007 | TYPE_CODE (type) = TYPE_CODE_UNDEF; |
| 1008 | complain (&missing_tag, DIE_ID, DIE_NAME); |
| 1009 | break; |
| 1010 | } |
| 1011 | /* Some compilers try to be helpful by inventing "fake" names for |
| 1012 | anonymous enums, structures, and unions, like "~0fake" or ".0fake". |
| 1013 | Thanks, but no thanks... */ |
| 1014 | if (dip->at_name != NULL |
| 1015 | && *dip->at_name != '~' |
| 1016 | && *dip->at_name != '.') |
| 1017 | { |
| 1018 | TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack, |
| 1019 | "", "", dip->at_name); |
| 1020 | } |
| 1021 | /* Use whatever size is known. Zero is a valid size. We might however |
| 1022 | wish to check has_at_byte_size to make sure that some byte size was |
| 1023 | given explicitly, but DWARF doesn't specify that explicit sizes of |
| 1024 | zero have to present, so complaining about missing sizes should |
| 1025 | probably not be the default. */ |
| 1026 | TYPE_LENGTH (type) = dip->at_byte_size; |
| 1027 | thisdie += dip->die_length; |
| 1028 | while (thisdie < enddie) |
| 1029 | { |
| 1030 | basicdieinfo (&mbr, thisdie, objfile); |
| 1031 | completedieinfo (&mbr, objfile); |
| 1032 | if (mbr.die_length <= SIZEOF_DIE_LENGTH) |
| 1033 | { |
| 1034 | break; |
| 1035 | } |
| 1036 | else if (mbr.at_sibling != 0) |
| 1037 | { |
| 1038 | nextdie = dbbase + mbr.at_sibling - dbroff; |
| 1039 | } |
| 1040 | else |
| 1041 | { |
| 1042 | nextdie = thisdie + mbr.die_length; |
| 1043 | } |
| 1044 | switch (mbr.die_tag) |
| 1045 | { |
| 1046 | case TAG_member: |
| 1047 | /* Get space to record the next field's data. */ |
| 1048 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); |
| 1049 | new->next = list; |
| 1050 | list = new; |
| 1051 | /* Save the data. */ |
| 1052 | list->field.name = |
| 1053 | obsavestring (mbr.at_name, strlen (mbr.at_name), |
| 1054 | &objfile->type_obstack); |
| 1055 | FIELD_TYPE (list->field) = decode_die_type (&mbr); |
| 1056 | FIELD_BITPOS (list->field) = 8 * locval (&mbr); |
| 1057 | /* Handle bit fields. */ |
| 1058 | FIELD_BITSIZE (list->field) = mbr.at_bit_size; |
| 1059 | if (BITS_BIG_ENDIAN) |
| 1060 | { |
| 1061 | /* For big endian bits, the at_bit_offset gives the |
| 1062 | additional bit offset from the MSB of the containing |
| 1063 | anonymous object to the MSB of the field. We don't |
| 1064 | have to do anything special since we don't need to |
| 1065 | know the size of the anonymous object. */ |
| 1066 | FIELD_BITPOS (list->field) += mbr.at_bit_offset; |
| 1067 | } |
| 1068 | else |
| 1069 | { |
| 1070 | /* For little endian bits, we need to have a non-zero |
| 1071 | at_bit_size, so that we know we are in fact dealing |
| 1072 | with a bitfield. Compute the bit offset to the MSB |
| 1073 | of the anonymous object, subtract off the number of |
| 1074 | bits from the MSB of the field to the MSB of the |
| 1075 | object, and then subtract off the number of bits of |
| 1076 | the field itself. The result is the bit offset of |
| 1077 | the LSB of the field. */ |
| 1078 | if (mbr.at_bit_size > 0) |
| 1079 | { |
| 1080 | if (mbr.has_at_byte_size) |
| 1081 | { |
| 1082 | /* The size of the anonymous object containing |
| 1083 | the bit field is explicit, so use the |
| 1084 | indicated size (in bytes). */ |
| 1085 | anonymous_size = mbr.at_byte_size; |
| 1086 | } |
| 1087 | else |
| 1088 | { |
| 1089 | /* The size of the anonymous object containing |
| 1090 | the bit field matches the size of an object |
| 1091 | of the bit field's type. DWARF allows |
| 1092 | at_byte_size to be left out in such cases, as |
| 1093 | a debug information size optimization. */ |
| 1094 | anonymous_size = TYPE_LENGTH (list->field.type); |
| 1095 | } |
| 1096 | FIELD_BITPOS (list->field) += |
| 1097 | anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size; |
| 1098 | } |
| 1099 | } |
| 1100 | nfields++; |
| 1101 | break; |
| 1102 | default: |
| 1103 | process_dies (thisdie, nextdie, objfile); |
| 1104 | break; |
| 1105 | } |
| 1106 | thisdie = nextdie; |
| 1107 | } |
| 1108 | /* Now create the vector of fields, and record how big it is. We may |
| 1109 | not even have any fields, if this DIE was generated due to a reference |
| 1110 | to an anonymous structure or union. In this case, TYPE_FLAG_STUB is |
| 1111 | set, which clues gdb in to the fact that it needs to search elsewhere |
| 1112 | for the full structure definition. */ |
| 1113 | if (nfields == 0) |
| 1114 | { |
| 1115 | TYPE_FLAGS (type) |= TYPE_FLAG_STUB; |
| 1116 | } |
| 1117 | else |
| 1118 | { |
| 1119 | TYPE_NFIELDS (type) = nfields; |
| 1120 | TYPE_FIELDS (type) = (struct field *) |
| 1121 | TYPE_ALLOC (type, sizeof (struct field) * nfields); |
| 1122 | /* Copy the saved-up fields into the field vector. */ |
| 1123 | for (n = nfields; list; list = list->next) |
| 1124 | { |
| 1125 | TYPE_FIELD (type, --n) = list->field; |
| 1126 | } |
| 1127 | } |
| 1128 | return (type); |
| 1129 | } |
| 1130 | |
| 1131 | /* |
| 1132 | |
| 1133 | LOCAL FUNCTION |
| 1134 | |
| 1135 | read_structure_scope -- process all dies within struct or union |
| 1136 | |
| 1137 | SYNOPSIS |
| 1138 | |
| 1139 | static void read_structure_scope (struct dieinfo *dip, |
| 1140 | char *thisdie, char *enddie, struct objfile *objfile) |
| 1141 | |
| 1142 | DESCRIPTION |
| 1143 | |
| 1144 | Called when we find the DIE that starts a structure or union |
| 1145 | scope (definition) to process all dies that define the members |
| 1146 | of the structure or union. DIP is a pointer to the die info |
| 1147 | struct for the DIE that names the structure or union. |
| 1148 | |
| 1149 | NOTES |
| 1150 | |
| 1151 | Note that we need to call struct_type regardless of whether or not |
| 1152 | the DIE has an at_name attribute, since it might be an anonymous |
| 1153 | structure or union. This gets the type entered into our set of |
| 1154 | user defined types. |
| 1155 | |
| 1156 | However, if the structure is incomplete (an opaque struct/union) |
| 1157 | then suppress creating a symbol table entry for it since gdb only |
| 1158 | wants to find the one with the complete definition. Note that if |
| 1159 | it is complete, we just call new_symbol, which does it's own |
| 1160 | checking about whether the struct/union is anonymous or not (and |
| 1161 | suppresses creating a symbol table entry itself). |
| 1162 | |
| 1163 | */ |
| 1164 | |
| 1165 | static void |
| 1166 | read_structure_scope (dip, thisdie, enddie, objfile) |
| 1167 | struct dieinfo *dip; |
| 1168 | char *thisdie; |
| 1169 | char *enddie; |
| 1170 | struct objfile *objfile; |
| 1171 | { |
| 1172 | struct type *type; |
| 1173 | struct symbol *sym; |
| 1174 | |
| 1175 | type = struct_type (dip, thisdie, enddie, objfile); |
| 1176 | if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB)) |
| 1177 | { |
| 1178 | sym = new_symbol (dip, objfile); |
| 1179 | if (sym != NULL) |
| 1180 | { |
| 1181 | SYMBOL_TYPE (sym) = type; |
| 1182 | if (cu_language == language_cplus) |
| 1183 | { |
| 1184 | synthesize_typedef (dip, objfile, type); |
| 1185 | } |
| 1186 | } |
| 1187 | } |
| 1188 | } |
| 1189 | |
| 1190 | /* |
| 1191 | |
| 1192 | LOCAL FUNCTION |
| 1193 | |
| 1194 | decode_array_element_type -- decode type of the array elements |
| 1195 | |
| 1196 | SYNOPSIS |
| 1197 | |
| 1198 | static struct type *decode_array_element_type (char *scan, char *end) |
| 1199 | |
| 1200 | DESCRIPTION |
| 1201 | |
| 1202 | As the last step in decoding the array subscript information for an |
| 1203 | array DIE, we need to decode the type of the array elements. We are |
| 1204 | passed a pointer to this last part of the subscript information and |
| 1205 | must return the appropriate type. If the type attribute is not |
| 1206 | recognized, just warn about the problem and return type int. |
| 1207 | */ |
| 1208 | |
| 1209 | static struct type * |
| 1210 | decode_array_element_type (scan) |
| 1211 | char *scan; |
| 1212 | { |
| 1213 | struct type *typep; |
| 1214 | DIE_REF die_ref; |
| 1215 | unsigned short attribute; |
| 1216 | unsigned short fundtype; |
| 1217 | int nbytes; |
| 1218 | |
| 1219 | attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED, |
| 1220 | current_objfile); |
| 1221 | scan += SIZEOF_ATTRIBUTE; |
| 1222 | if ((nbytes = attribute_size (attribute)) == -1) |
| 1223 | { |
| 1224 | complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute); |
| 1225 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
| 1226 | } |
| 1227 | else |
| 1228 | { |
| 1229 | switch (attribute) |
| 1230 | { |
| 1231 | case AT_fund_type: |
| 1232 | fundtype = target_to_host (scan, nbytes, GET_UNSIGNED, |
| 1233 | current_objfile); |
| 1234 | typep = decode_fund_type (fundtype); |
| 1235 | break; |
| 1236 | case AT_mod_fund_type: |
| 1237 | typep = decode_mod_fund_type (scan); |
| 1238 | break; |
| 1239 | case AT_user_def_type: |
| 1240 | die_ref = target_to_host (scan, nbytes, GET_UNSIGNED, |
| 1241 | current_objfile); |
| 1242 | if ((typep = lookup_utype (die_ref)) == NULL) |
| 1243 | { |
| 1244 | typep = alloc_utype (die_ref, NULL); |
| 1245 | } |
| 1246 | break; |
| 1247 | case AT_mod_u_d_type: |
| 1248 | typep = decode_mod_u_d_type (scan); |
| 1249 | break; |
| 1250 | default: |
| 1251 | complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute); |
| 1252 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
| 1253 | break; |
| 1254 | } |
| 1255 | } |
| 1256 | return (typep); |
| 1257 | } |
| 1258 | |
| 1259 | /* |
| 1260 | |
| 1261 | LOCAL FUNCTION |
| 1262 | |
| 1263 | decode_subscript_data_item -- decode array subscript item |
| 1264 | |
| 1265 | SYNOPSIS |
| 1266 | |
| 1267 | static struct type * |
| 1268 | decode_subscript_data_item (char *scan, char *end) |
| 1269 | |
| 1270 | DESCRIPTION |
| 1271 | |
| 1272 | The array subscripts and the data type of the elements of an |
| 1273 | array are described by a list of data items, stored as a block |
| 1274 | of contiguous bytes. There is a data item describing each array |
| 1275 | dimension, and a final data item describing the element type. |
| 1276 | The data items are ordered the same as their appearance in the |
| 1277 | source (I.E. leftmost dimension first, next to leftmost second, |
| 1278 | etc). |
| 1279 | |
| 1280 | The data items describing each array dimension consist of four |
| 1281 | parts: (1) a format specifier, (2) type type of the subscript |
| 1282 | index, (3) a description of the low bound of the array dimension, |
| 1283 | and (4) a description of the high bound of the array dimension. |
| 1284 | |
| 1285 | The last data item is the description of the type of each of |
| 1286 | the array elements. |
| 1287 | |
| 1288 | We are passed a pointer to the start of the block of bytes |
| 1289 | containing the remaining data items, and a pointer to the first |
| 1290 | byte past the data. This function recursively decodes the |
| 1291 | remaining data items and returns a type. |
| 1292 | |
| 1293 | If we somehow fail to decode some data, we complain about it |
| 1294 | and return a type "array of int". |
| 1295 | |
| 1296 | BUGS |
| 1297 | FIXME: This code only implements the forms currently used |
| 1298 | by the AT&T and GNU C compilers. |
| 1299 | |
| 1300 | The end pointer is supplied for error checking, maybe we should |
| 1301 | use it for that... |
| 1302 | */ |
| 1303 | |
| 1304 | static struct type * |
| 1305 | decode_subscript_data_item (scan, end) |
| 1306 | char *scan; |
| 1307 | char *end; |
| 1308 | { |
| 1309 | struct type *typep = NULL; /* Array type we are building */ |
| 1310 | struct type *nexttype; /* Type of each element (may be array) */ |
| 1311 | struct type *indextype; /* Type of this index */ |
| 1312 | struct type *rangetype; |
| 1313 | unsigned int format; |
| 1314 | unsigned short fundtype; |
| 1315 | unsigned long lowbound; |
| 1316 | unsigned long highbound; |
| 1317 | int nbytes; |
| 1318 | |
| 1319 | format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED, |
| 1320 | current_objfile); |
| 1321 | scan += SIZEOF_FORMAT_SPECIFIER; |
| 1322 | switch (format) |
| 1323 | { |
| 1324 | case FMT_ET: |
| 1325 | typep = decode_array_element_type (scan); |
| 1326 | break; |
| 1327 | case FMT_FT_C_C: |
| 1328 | fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED, |
| 1329 | current_objfile); |
| 1330 | indextype = decode_fund_type (fundtype); |
| 1331 | scan += SIZEOF_FMT_FT; |
| 1332 | nbytes = TARGET_FT_LONG_SIZE (current_objfile); |
| 1333 | lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); |
| 1334 | scan += nbytes; |
| 1335 | highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); |
| 1336 | scan += nbytes; |
| 1337 | nexttype = decode_subscript_data_item (scan, end); |
| 1338 | if (nexttype == NULL) |
| 1339 | { |
| 1340 | /* Munged subscript data or other problem, fake it. */ |
| 1341 | complain (&subscript_data_items, DIE_ID, DIE_NAME); |
| 1342 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
| 1343 | } |
| 1344 | rangetype = create_range_type ((struct type *) NULL, indextype, |
| 1345 | lowbound, highbound); |
| 1346 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); |
| 1347 | break; |
| 1348 | case FMT_FT_C_X: |
| 1349 | case FMT_FT_X_C: |
| 1350 | case FMT_FT_X_X: |
| 1351 | case FMT_UT_C_C: |
| 1352 | case FMT_UT_C_X: |
| 1353 | case FMT_UT_X_C: |
| 1354 | case FMT_UT_X_X: |
| 1355 | complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format); |
| 1356 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
| 1357 | rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); |
| 1358 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); |
| 1359 | break; |
| 1360 | default: |
| 1361 | complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format); |
| 1362 | nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
| 1363 | rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); |
| 1364 | typep = create_array_type ((struct type *) NULL, nexttype, rangetype); |
| 1365 | break; |
| 1366 | } |
| 1367 | return (typep); |
| 1368 | } |
| 1369 | |
| 1370 | /* |
| 1371 | |
| 1372 | LOCAL FUNCTION |
| 1373 | |
| 1374 | dwarf_read_array_type -- read TAG_array_type DIE |
| 1375 | |
| 1376 | SYNOPSIS |
| 1377 | |
| 1378 | static void dwarf_read_array_type (struct dieinfo *dip) |
| 1379 | |
| 1380 | DESCRIPTION |
| 1381 | |
| 1382 | Extract all information from a TAG_array_type DIE and add to |
| 1383 | the user defined type vector. |
| 1384 | */ |
| 1385 | |
| 1386 | static void |
| 1387 | dwarf_read_array_type (dip) |
| 1388 | struct dieinfo *dip; |
| 1389 | { |
| 1390 | struct type *type; |
| 1391 | struct type *utype; |
| 1392 | char *sub; |
| 1393 | char *subend; |
| 1394 | unsigned short blocksz; |
| 1395 | int nbytes; |
| 1396 | |
| 1397 | if (dip->at_ordering != ORD_row_major) |
| 1398 | { |
| 1399 | /* FIXME: Can gdb even handle column major arrays? */ |
| 1400 | complain (¬_row_major, DIE_ID, DIE_NAME); |
| 1401 | } |
| 1402 | if ((sub = dip->at_subscr_data) != NULL) |
| 1403 | { |
| 1404 | nbytes = attribute_size (AT_subscr_data); |
| 1405 | blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile); |
| 1406 | subend = sub + nbytes + blocksz; |
| 1407 | sub += nbytes; |
| 1408 | type = decode_subscript_data_item (sub, subend); |
| 1409 | if ((utype = lookup_utype (dip->die_ref)) == NULL) |
| 1410 | { |
| 1411 | /* Install user defined type that has not been referenced yet. */ |
| 1412 | alloc_utype (dip->die_ref, type); |
| 1413 | } |
| 1414 | else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF) |
| 1415 | { |
| 1416 | /* Ick! A forward ref has already generated a blank type in our |
| 1417 | slot, and this type probably already has things pointing to it |
| 1418 | (which is what caused it to be created in the first place). |
| 1419 | If it's just a place holder we can plop our fully defined type |
| 1420 | on top of it. We can't recover the space allocated for our |
| 1421 | new type since it might be on an obstack, but we could reuse |
| 1422 | it if we kept a list of them, but it might not be worth it |
| 1423 | (FIXME). */ |
| 1424 | *utype = *type; |
| 1425 | } |
| 1426 | else |
| 1427 | { |
| 1428 | /* Double ick! Not only is a type already in our slot, but |
| 1429 | someone has decorated it. Complain and leave it alone. */ |
| 1430 | complain (&dup_user_type_definition, DIE_ID, DIE_NAME); |
| 1431 | } |
| 1432 | } |
| 1433 | } |
| 1434 | |
| 1435 | /* |
| 1436 | |
| 1437 | LOCAL FUNCTION |
| 1438 | |
| 1439 | read_tag_pointer_type -- read TAG_pointer_type DIE |
| 1440 | |
| 1441 | SYNOPSIS |
| 1442 | |
| 1443 | static void read_tag_pointer_type (struct dieinfo *dip) |
| 1444 | |
| 1445 | DESCRIPTION |
| 1446 | |
| 1447 | Extract all information from a TAG_pointer_type DIE and add to |
| 1448 | the user defined type vector. |
| 1449 | */ |
| 1450 | |
| 1451 | static void |
| 1452 | read_tag_pointer_type (dip) |
| 1453 | struct dieinfo *dip; |
| 1454 | { |
| 1455 | struct type *type; |
| 1456 | struct type *utype; |
| 1457 | |
| 1458 | type = decode_die_type (dip); |
| 1459 | if ((utype = lookup_utype (dip->die_ref)) == NULL) |
| 1460 | { |
| 1461 | utype = lookup_pointer_type (type); |
| 1462 | alloc_utype (dip->die_ref, utype); |
| 1463 | } |
| 1464 | else |
| 1465 | { |
| 1466 | TYPE_TARGET_TYPE (utype) = type; |
| 1467 | TYPE_POINTER_TYPE (type) = utype; |
| 1468 | |
| 1469 | /* We assume the machine has only one representation for pointers! */ |
| 1470 | /* FIXME: Possably a poor assumption */ |
| 1471 | TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT; |
| 1472 | TYPE_CODE (utype) = TYPE_CODE_PTR; |
| 1473 | } |
| 1474 | } |
| 1475 | |
| 1476 | /* |
| 1477 | |
| 1478 | LOCAL FUNCTION |
| 1479 | |
| 1480 | read_tag_string_type -- read TAG_string_type DIE |
| 1481 | |
| 1482 | SYNOPSIS |
| 1483 | |
| 1484 | static void read_tag_string_type (struct dieinfo *dip) |
| 1485 | |
| 1486 | DESCRIPTION |
| 1487 | |
| 1488 | Extract all information from a TAG_string_type DIE and add to |
| 1489 | the user defined type vector. It isn't really a user defined |
| 1490 | type, but it behaves like one, with other DIE's using an |
| 1491 | AT_user_def_type attribute to reference it. |
| 1492 | */ |
| 1493 | |
| 1494 | static void |
| 1495 | read_tag_string_type (dip) |
| 1496 | struct dieinfo *dip; |
| 1497 | { |
| 1498 | struct type *utype; |
| 1499 | struct type *indextype; |
| 1500 | struct type *rangetype; |
| 1501 | unsigned long lowbound = 0; |
| 1502 | unsigned long highbound; |
| 1503 | |
| 1504 | if (dip->has_at_byte_size) |
| 1505 | { |
| 1506 | /* A fixed bounds string */ |
| 1507 | highbound = dip->at_byte_size - 1; |
| 1508 | } |
| 1509 | else |
| 1510 | { |
| 1511 | /* A varying length string. Stub for now. (FIXME) */ |
| 1512 | highbound = 1; |
| 1513 | } |
| 1514 | indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
| 1515 | rangetype = create_range_type ((struct type *) NULL, indextype, lowbound, |
| 1516 | highbound); |
| 1517 | |
| 1518 | utype = lookup_utype (dip->die_ref); |
| 1519 | if (utype == NULL) |
| 1520 | { |
| 1521 | /* No type defined, go ahead and create a blank one to use. */ |
| 1522 | utype = alloc_utype (dip->die_ref, (struct type *) NULL); |
| 1523 | } |
| 1524 | else |
| 1525 | { |
| 1526 | /* Already a type in our slot due to a forward reference. Make sure it |
| 1527 | is a blank one. If not, complain and leave it alone. */ |
| 1528 | if (TYPE_CODE (utype) != TYPE_CODE_UNDEF) |
| 1529 | { |
| 1530 | complain (&dup_user_type_definition, DIE_ID, DIE_NAME); |
| 1531 | return; |
| 1532 | } |
| 1533 | } |
| 1534 | |
| 1535 | /* Create the string type using the blank type we either found or created. */ |
| 1536 | utype = create_string_type (utype, rangetype); |
| 1537 | } |
| 1538 | |
| 1539 | /* |
| 1540 | |
| 1541 | LOCAL FUNCTION |
| 1542 | |
| 1543 | read_subroutine_type -- process TAG_subroutine_type dies |
| 1544 | |
| 1545 | SYNOPSIS |
| 1546 | |
| 1547 | static void read_subroutine_type (struct dieinfo *dip, char thisdie, |
| 1548 | char *enddie) |
| 1549 | |
| 1550 | DESCRIPTION |
| 1551 | |
| 1552 | Handle DIES due to C code like: |
| 1553 | |
| 1554 | struct foo { |
| 1555 | int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE) |
| 1556 | int b; |
| 1557 | }; |
| 1558 | |
| 1559 | NOTES |
| 1560 | |
| 1561 | The parameter DIES are currently ignored. See if gdb has a way to |
| 1562 | include this info in it's type system, and decode them if so. Is |
| 1563 | this what the type structure's "arg_types" field is for? (FIXME) |
| 1564 | */ |
| 1565 | |
| 1566 | static void |
| 1567 | read_subroutine_type (dip, thisdie, enddie) |
| 1568 | struct dieinfo *dip; |
| 1569 | char *thisdie; |
| 1570 | char *enddie; |
| 1571 | { |
| 1572 | struct type *type; /* Type that this function returns */ |
| 1573 | struct type *ftype; /* Function that returns above type */ |
| 1574 | |
| 1575 | /* Decode the type that this subroutine returns */ |
| 1576 | |
| 1577 | type = decode_die_type (dip); |
| 1578 | |
| 1579 | /* Check to see if we already have a partially constructed user |
| 1580 | defined type for this DIE, from a forward reference. */ |
| 1581 | |
| 1582 | if ((ftype = lookup_utype (dip->die_ref)) == NULL) |
| 1583 | { |
| 1584 | /* This is the first reference to one of these types. Make |
| 1585 | a new one and place it in the user defined types. */ |
| 1586 | ftype = lookup_function_type (type); |
| 1587 | alloc_utype (dip->die_ref, ftype); |
| 1588 | } |
| 1589 | else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF) |
| 1590 | { |
| 1591 | /* We have an existing partially constructed type, so bash it |
| 1592 | into the correct type. */ |
| 1593 | TYPE_TARGET_TYPE (ftype) = type; |
| 1594 | TYPE_LENGTH (ftype) = 1; |
| 1595 | TYPE_CODE (ftype) = TYPE_CODE_FUNC; |
| 1596 | } |
| 1597 | else |
| 1598 | { |
| 1599 | complain (&dup_user_type_definition, DIE_ID, DIE_NAME); |
| 1600 | } |
| 1601 | } |
| 1602 | |
| 1603 | /* |
| 1604 | |
| 1605 | LOCAL FUNCTION |
| 1606 | |
| 1607 | read_enumeration -- process dies which define an enumeration |
| 1608 | |
| 1609 | SYNOPSIS |
| 1610 | |
| 1611 | static void read_enumeration (struct dieinfo *dip, char *thisdie, |
| 1612 | char *enddie, struct objfile *objfile) |
| 1613 | |
| 1614 | DESCRIPTION |
| 1615 | |
| 1616 | Given a pointer to a die which begins an enumeration, process all |
| 1617 | the dies that define the members of the enumeration. |
| 1618 | |
| 1619 | NOTES |
| 1620 | |
| 1621 | Note that we need to call enum_type regardless of whether or not we |
| 1622 | have a symbol, since we might have an enum without a tag name (thus |
| 1623 | no symbol for the tagname). |
| 1624 | */ |
| 1625 | |
| 1626 | static void |
| 1627 | read_enumeration (dip, thisdie, enddie, objfile) |
| 1628 | struct dieinfo *dip; |
| 1629 | char *thisdie; |
| 1630 | char *enddie; |
| 1631 | struct objfile *objfile; |
| 1632 | { |
| 1633 | struct type *type; |
| 1634 | struct symbol *sym; |
| 1635 | |
| 1636 | type = enum_type (dip, objfile); |
| 1637 | sym = new_symbol (dip, objfile); |
| 1638 | if (sym != NULL) |
| 1639 | { |
| 1640 | SYMBOL_TYPE (sym) = type; |
| 1641 | if (cu_language == language_cplus) |
| 1642 | { |
| 1643 | synthesize_typedef (dip, objfile, type); |
| 1644 | } |
| 1645 | } |
| 1646 | } |
| 1647 | |
| 1648 | /* |
| 1649 | |
| 1650 | LOCAL FUNCTION |
| 1651 | |
| 1652 | enum_type -- decode and return a type for an enumeration |
| 1653 | |
| 1654 | SYNOPSIS |
| 1655 | |
| 1656 | static type *enum_type (struct dieinfo *dip, struct objfile *objfile) |
| 1657 | |
| 1658 | DESCRIPTION |
| 1659 | |
| 1660 | Given a pointer to a die information structure for the die which |
| 1661 | starts an enumeration, process all the dies that define the members |
| 1662 | of the enumeration and return a type pointer for the enumeration. |
| 1663 | |
| 1664 | At the same time, for each member of the enumeration, create a |
| 1665 | symbol for it with namespace VAR_NAMESPACE and class LOC_CONST, |
| 1666 | and give it the type of the enumeration itself. |
| 1667 | |
| 1668 | NOTES |
| 1669 | |
| 1670 | Note that the DWARF specification explicitly mandates that enum |
| 1671 | constants occur in reverse order from the source program order, |
| 1672 | for "consistency" and because this ordering is easier for many |
| 1673 | compilers to generate. (Draft 6, sec 3.8.5, Enumeration type |
| 1674 | Entries). Because gdb wants to see the enum members in program |
| 1675 | source order, we have to ensure that the order gets reversed while |
| 1676 | we are processing them. |
| 1677 | */ |
| 1678 | |
| 1679 | static struct type * |
| 1680 | enum_type (dip, objfile) |
| 1681 | struct dieinfo *dip; |
| 1682 | struct objfile *objfile; |
| 1683 | { |
| 1684 | struct type *type; |
| 1685 | struct nextfield |
| 1686 | { |
| 1687 | struct nextfield *next; |
| 1688 | struct field field; |
| 1689 | }; |
| 1690 | struct nextfield *list = NULL; |
| 1691 | struct nextfield *new; |
| 1692 | int nfields = 0; |
| 1693 | int n; |
| 1694 | char *scan; |
| 1695 | char *listend; |
| 1696 | unsigned short blocksz; |
| 1697 | struct symbol *sym; |
| 1698 | int nbytes; |
| 1699 | int unsigned_enum = 1; |
| 1700 | |
| 1701 | if ((type = lookup_utype (dip->die_ref)) == NULL) |
| 1702 | { |
| 1703 | /* No forward references created an empty type, so install one now */ |
| 1704 | type = alloc_utype (dip->die_ref, NULL); |
| 1705 | } |
| 1706 | TYPE_CODE (type) = TYPE_CODE_ENUM; |
| 1707 | /* Some compilers try to be helpful by inventing "fake" names for |
| 1708 | anonymous enums, structures, and unions, like "~0fake" or ".0fake". |
| 1709 | Thanks, but no thanks... */ |
| 1710 | if (dip->at_name != NULL |
| 1711 | && *dip->at_name != '~' |
| 1712 | && *dip->at_name != '.') |
| 1713 | { |
| 1714 | TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack, |
| 1715 | "", "", dip->at_name); |
| 1716 | } |
| 1717 | if (dip->at_byte_size != 0) |
| 1718 | { |
| 1719 | TYPE_LENGTH (type) = dip->at_byte_size; |
| 1720 | } |
| 1721 | if ((scan = dip->at_element_list) != NULL) |
| 1722 | { |
| 1723 | if (dip->short_element_list) |
| 1724 | { |
| 1725 | nbytes = attribute_size (AT_short_element_list); |
| 1726 | } |
| 1727 | else |
| 1728 | { |
| 1729 | nbytes = attribute_size (AT_element_list); |
| 1730 | } |
| 1731 | blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); |
| 1732 | listend = scan + nbytes + blocksz; |
| 1733 | scan += nbytes; |
| 1734 | while (scan < listend) |
| 1735 | { |
| 1736 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); |
| 1737 | new->next = list; |
| 1738 | list = new; |
| 1739 | FIELD_TYPE (list->field) = NULL; |
| 1740 | FIELD_BITSIZE (list->field) = 0; |
| 1741 | FIELD_BITPOS (list->field) = |
| 1742 | target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED, |
| 1743 | objfile); |
| 1744 | scan += TARGET_FT_LONG_SIZE (objfile); |
| 1745 | list->field.name = obsavestring (scan, strlen (scan), |
| 1746 | &objfile->type_obstack); |
| 1747 | scan += strlen (scan) + 1; |
| 1748 | nfields++; |
| 1749 | /* Handcraft a new symbol for this enum member. */ |
| 1750 | sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack, |
| 1751 | sizeof (struct symbol)); |
| 1752 | memset (sym, 0, sizeof (struct symbol)); |
| 1753 | SYMBOL_NAME (sym) = create_name (list->field.name, |
| 1754 | &objfile->symbol_obstack); |
| 1755 | SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); |
| 1756 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; |
| 1757 | SYMBOL_CLASS (sym) = LOC_CONST; |
| 1758 | SYMBOL_TYPE (sym) = type; |
| 1759 | SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field); |
| 1760 | if (SYMBOL_VALUE (sym) < 0) |
| 1761 | unsigned_enum = 0; |
| 1762 | add_symbol_to_list (sym, list_in_scope); |
| 1763 | } |
| 1764 | /* Now create the vector of fields, and record how big it is. This is |
| 1765 | where we reverse the order, by pulling the members off the list in |
| 1766 | reverse order from how they were inserted. If we have no fields |
| 1767 | (this is apparently possible in C++) then skip building a field |
| 1768 | vector. */ |
| 1769 | if (nfields > 0) |
| 1770 | { |
| 1771 | if (unsigned_enum) |
| 1772 | TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED; |
| 1773 | TYPE_NFIELDS (type) = nfields; |
| 1774 | TYPE_FIELDS (type) = (struct field *) |
| 1775 | obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields); |
| 1776 | /* Copy the saved-up fields into the field vector. */ |
| 1777 | for (n = 0; (n < nfields) && (list != NULL); list = list->next) |
| 1778 | { |
| 1779 | TYPE_FIELD (type, n++) = list->field; |
| 1780 | } |
| 1781 | } |
| 1782 | } |
| 1783 | return (type); |
| 1784 | } |
| 1785 | |
| 1786 | /* |
| 1787 | |
| 1788 | LOCAL FUNCTION |
| 1789 | |
| 1790 | read_func_scope -- process all dies within a function scope |
| 1791 | |
| 1792 | DESCRIPTION |
| 1793 | |
| 1794 | Process all dies within a given function scope. We are passed |
| 1795 | a die information structure pointer DIP for the die which |
| 1796 | starts the function scope, and pointers into the raw die data |
| 1797 | that define the dies within the function scope. |
| 1798 | |
| 1799 | For now, we ignore lexical block scopes within the function. |
| 1800 | The problem is that AT&T cc does not define a DWARF lexical |
| 1801 | block scope for the function itself, while gcc defines a |
| 1802 | lexical block scope for the function. We need to think about |
| 1803 | how to handle this difference, or if it is even a problem. |
| 1804 | (FIXME) |
| 1805 | */ |
| 1806 | |
| 1807 | static void |
| 1808 | read_func_scope (dip, thisdie, enddie, objfile) |
| 1809 | struct dieinfo *dip; |
| 1810 | char *thisdie; |
| 1811 | char *enddie; |
| 1812 | struct objfile *objfile; |
| 1813 | { |
| 1814 | register struct context_stack *new; |
| 1815 | |
| 1816 | /* AT_name is absent if the function is described with an |
| 1817 | AT_abstract_origin tag. |
| 1818 | Ignore the function description for now to avoid GDB core dumps. |
| 1819 | FIXME: Add code to handle AT_abstract_origin tags properly. */ |
| 1820 | if (dip->at_name == NULL) |
| 1821 | { |
| 1822 | complain (&missing_at_name, DIE_ID); |
| 1823 | return; |
| 1824 | } |
| 1825 | |
| 1826 | if (objfile->ei.entry_point >= dip->at_low_pc && |
| 1827 | objfile->ei.entry_point < dip->at_high_pc) |
| 1828 | { |
| 1829 | objfile->ei.entry_func_lowpc = dip->at_low_pc; |
| 1830 | objfile->ei.entry_func_highpc = dip->at_high_pc; |
| 1831 | } |
| 1832 | new = push_context (0, dip->at_low_pc); |
| 1833 | new->name = new_symbol (dip, objfile); |
| 1834 | list_in_scope = &local_symbols; |
| 1835 | process_dies (thisdie + dip->die_length, enddie, objfile); |
| 1836 | new = pop_context (); |
| 1837 | /* Make a block for the local symbols within. */ |
| 1838 | finish_block (new->name, &local_symbols, new->old_blocks, |
| 1839 | new->start_addr, dip->at_high_pc, objfile); |
| 1840 | list_in_scope = &file_symbols; |
| 1841 | } |
| 1842 | |
| 1843 | |
| 1844 | /* |
| 1845 | |
| 1846 | LOCAL FUNCTION |
| 1847 | |
| 1848 | handle_producer -- process the AT_producer attribute |
| 1849 | |
| 1850 | DESCRIPTION |
| 1851 | |
| 1852 | Perform any operations that depend on finding a particular |
| 1853 | AT_producer attribute. |
| 1854 | |
| 1855 | */ |
| 1856 | |
| 1857 | static void |
| 1858 | handle_producer (producer) |
| 1859 | char *producer; |
| 1860 | { |
| 1861 | |
| 1862 | /* If this compilation unit was compiled with g++ or gcc, then set the |
| 1863 | processing_gcc_compilation flag. */ |
| 1864 | |
| 1865 | if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER))) |
| 1866 | { |
| 1867 | char version = producer[strlen (GCC_PRODUCER)]; |
| 1868 | processing_gcc_compilation = (version == '2' ? 2 : 1); |
| 1869 | } |
| 1870 | else |
| 1871 | { |
| 1872 | processing_gcc_compilation = |
| 1873 | STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) |
| 1874 | || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER)); |
| 1875 | } |
| 1876 | |
| 1877 | /* Select a demangling style if we can identify the producer and if |
| 1878 | the current style is auto. We leave the current style alone if it |
| 1879 | is not auto. We also leave the demangling style alone if we find a |
| 1880 | gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */ |
| 1881 | |
| 1882 | if (AUTO_DEMANGLING) |
| 1883 | { |
| 1884 | if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))) |
| 1885 | { |
| 1886 | set_demangling_style (GNU_DEMANGLING_STYLE_STRING); |
| 1887 | } |
| 1888 | else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER))) |
| 1889 | { |
| 1890 | set_demangling_style (LUCID_DEMANGLING_STYLE_STRING); |
| 1891 | } |
| 1892 | } |
| 1893 | } |
| 1894 | |
| 1895 | |
| 1896 | /* |
| 1897 | |
| 1898 | LOCAL FUNCTION |
| 1899 | |
| 1900 | read_file_scope -- process all dies within a file scope |
| 1901 | |
| 1902 | DESCRIPTION |
| 1903 | |
| 1904 | Process all dies within a given file scope. We are passed a |
| 1905 | pointer to the die information structure for the die which |
| 1906 | starts the file scope, and pointers into the raw die data which |
| 1907 | mark the range of dies within the file scope. |
| 1908 | |
| 1909 | When the partial symbol table is built, the file offset for the line |
| 1910 | number table for each compilation unit is saved in the partial symbol |
| 1911 | table entry for that compilation unit. As the symbols for each |
| 1912 | compilation unit are read, the line number table is read into memory |
| 1913 | and the variable lnbase is set to point to it. Thus all we have to |
| 1914 | do is use lnbase to access the line number table for the current |
| 1915 | compilation unit. |
| 1916 | */ |
| 1917 | |
| 1918 | static void |
| 1919 | read_file_scope (dip, thisdie, enddie, objfile) |
| 1920 | struct dieinfo *dip; |
| 1921 | char *thisdie; |
| 1922 | char *enddie; |
| 1923 | struct objfile *objfile; |
| 1924 | { |
| 1925 | struct cleanup *back_to; |
| 1926 | struct symtab *symtab; |
| 1927 | |
| 1928 | if (objfile->ei.entry_point >= dip->at_low_pc && |
| 1929 | objfile->ei.entry_point < dip->at_high_pc) |
| 1930 | { |
| 1931 | objfile->ei.entry_file_lowpc = dip->at_low_pc; |
| 1932 | objfile->ei.entry_file_highpc = dip->at_high_pc; |
| 1933 | } |
| 1934 | set_cu_language (dip); |
| 1935 | if (dip->at_producer != NULL) |
| 1936 | { |
| 1937 | handle_producer (dip->at_producer); |
| 1938 | } |
| 1939 | numutypes = (enddie - thisdie) / 4; |
| 1940 | utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *)); |
| 1941 | back_to = make_cleanup (free_utypes, NULL); |
| 1942 | memset (utypes, 0, numutypes * sizeof (struct type *)); |
| 1943 | memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *)); |
| 1944 | start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc); |
| 1945 | record_debugformat ("DWARF 1"); |
| 1946 | decode_line_numbers (lnbase); |
| 1947 | process_dies (thisdie + dip->die_length, enddie, objfile); |
| 1948 | |
| 1949 | symtab = end_symtab (dip->at_high_pc, objfile, 0); |
| 1950 | if (symtab != NULL) |
| 1951 | { |
| 1952 | symtab->language = cu_language; |
| 1953 | } |
| 1954 | do_cleanups (back_to); |
| 1955 | } |
| 1956 | |
| 1957 | /* |
| 1958 | |
| 1959 | LOCAL FUNCTION |
| 1960 | |
| 1961 | process_dies -- process a range of DWARF Information Entries |
| 1962 | |
| 1963 | SYNOPSIS |
| 1964 | |
| 1965 | static void process_dies (char *thisdie, char *enddie, |
| 1966 | struct objfile *objfile) |
| 1967 | |
| 1968 | DESCRIPTION |
| 1969 | |
| 1970 | Process all DIE's in a specified range. May be (and almost |
| 1971 | certainly will be) called recursively. |
| 1972 | */ |
| 1973 | |
| 1974 | static void |
| 1975 | process_dies (thisdie, enddie, objfile) |
| 1976 | char *thisdie; |
| 1977 | char *enddie; |
| 1978 | struct objfile *objfile; |
| 1979 | { |
| 1980 | char *nextdie; |
| 1981 | struct dieinfo di; |
| 1982 | |
| 1983 | while (thisdie < enddie) |
| 1984 | { |
| 1985 | basicdieinfo (&di, thisdie, objfile); |
| 1986 | if (di.die_length < SIZEOF_DIE_LENGTH) |
| 1987 | { |
| 1988 | break; |
| 1989 | } |
| 1990 | else if (di.die_tag == TAG_padding) |
| 1991 | { |
| 1992 | nextdie = thisdie + di.die_length; |
| 1993 | } |
| 1994 | else |
| 1995 | { |
| 1996 | completedieinfo (&di, objfile); |
| 1997 | if (di.at_sibling != 0) |
| 1998 | { |
| 1999 | nextdie = dbbase + di.at_sibling - dbroff; |
| 2000 | } |
| 2001 | else |
| 2002 | { |
| 2003 | nextdie = thisdie + di.die_length; |
| 2004 | } |
| 2005 | #ifdef SMASH_TEXT_ADDRESS |
| 2006 | /* I think that these are always text, not data, addresses. */ |
| 2007 | SMASH_TEXT_ADDRESS (di.at_low_pc); |
| 2008 | SMASH_TEXT_ADDRESS (di.at_high_pc); |
| 2009 | #endif |
| 2010 | switch (di.die_tag) |
| 2011 | { |
| 2012 | case TAG_compile_unit: |
| 2013 | /* Skip Tag_compile_unit if we are already inside a compilation |
| 2014 | unit, we are unable to handle nested compilation units |
| 2015 | properly (FIXME). */ |
| 2016 | if (current_subfile == NULL) |
| 2017 | read_file_scope (&di, thisdie, nextdie, objfile); |
| 2018 | else |
| 2019 | nextdie = thisdie + di.die_length; |
| 2020 | break; |
| 2021 | case TAG_global_subroutine: |
| 2022 | case TAG_subroutine: |
| 2023 | if (di.has_at_low_pc) |
| 2024 | { |
| 2025 | read_func_scope (&di, thisdie, nextdie, objfile); |
| 2026 | } |
| 2027 | break; |
| 2028 | case TAG_lexical_block: |
| 2029 | read_lexical_block_scope (&di, thisdie, nextdie, objfile); |
| 2030 | break; |
| 2031 | case TAG_class_type: |
| 2032 | case TAG_structure_type: |
| 2033 | case TAG_union_type: |
| 2034 | read_structure_scope (&di, thisdie, nextdie, objfile); |
| 2035 | break; |
| 2036 | case TAG_enumeration_type: |
| 2037 | read_enumeration (&di, thisdie, nextdie, objfile); |
| 2038 | break; |
| 2039 | case TAG_subroutine_type: |
| 2040 | read_subroutine_type (&di, thisdie, nextdie); |
| 2041 | break; |
| 2042 | case TAG_array_type: |
| 2043 | dwarf_read_array_type (&di); |
| 2044 | break; |
| 2045 | case TAG_pointer_type: |
| 2046 | read_tag_pointer_type (&di); |
| 2047 | break; |
| 2048 | case TAG_string_type: |
| 2049 | read_tag_string_type (&di); |
| 2050 | break; |
| 2051 | default: |
| 2052 | new_symbol (&di, objfile); |
| 2053 | break; |
| 2054 | } |
| 2055 | } |
| 2056 | thisdie = nextdie; |
| 2057 | } |
| 2058 | } |
| 2059 | |
| 2060 | /* |
| 2061 | |
| 2062 | LOCAL FUNCTION |
| 2063 | |
| 2064 | decode_line_numbers -- decode a line number table fragment |
| 2065 | |
| 2066 | SYNOPSIS |
| 2067 | |
| 2068 | static void decode_line_numbers (char *tblscan, char *tblend, |
| 2069 | long length, long base, long line, long pc) |
| 2070 | |
| 2071 | DESCRIPTION |
| 2072 | |
| 2073 | Translate the DWARF line number information to gdb form. |
| 2074 | |
| 2075 | The ".line" section contains one or more line number tables, one for |
| 2076 | each ".line" section from the objects that were linked. |
| 2077 | |
| 2078 | The AT_stmt_list attribute for each TAG_source_file entry in the |
| 2079 | ".debug" section contains the offset into the ".line" section for the |
| 2080 | start of the table for that file. |
| 2081 | |
| 2082 | The table itself has the following structure: |
| 2083 | |
| 2084 | <table length><base address><source statement entry> |
| 2085 | 4 bytes 4 bytes 10 bytes |
| 2086 | |
| 2087 | The table length is the total size of the table, including the 4 bytes |
| 2088 | for the length information. |
| 2089 | |
| 2090 | The base address is the address of the first instruction generated |
| 2091 | for the source file. |
| 2092 | |
| 2093 | Each source statement entry has the following structure: |
| 2094 | |
| 2095 | <line number><statement position><address delta> |
| 2096 | 4 bytes 2 bytes 4 bytes |
| 2097 | |
| 2098 | The line number is relative to the start of the file, starting with |
| 2099 | line 1. |
| 2100 | |
| 2101 | The statement position either -1 (0xFFFF) or the number of characters |
| 2102 | from the beginning of the line to the beginning of the statement. |
| 2103 | |
| 2104 | The address delta is the difference between the base address and |
| 2105 | the address of the first instruction for the statement. |
| 2106 | |
| 2107 | Note that we must copy the bytes from the packed table to our local |
| 2108 | variables before attempting to use them, to avoid alignment problems |
| 2109 | on some machines, particularly RISC processors. |
| 2110 | |
| 2111 | BUGS |
| 2112 | |
| 2113 | Does gdb expect the line numbers to be sorted? They are now by |
| 2114 | chance/luck, but are not required to be. (FIXME) |
| 2115 | |
| 2116 | The line with number 0 is unused, gdb apparently can discover the |
| 2117 | span of the last line some other way. How? (FIXME) |
| 2118 | */ |
| 2119 | |
| 2120 | static void |
| 2121 | decode_line_numbers (linetable) |
| 2122 | char *linetable; |
| 2123 | { |
| 2124 | char *tblscan; |
| 2125 | char *tblend; |
| 2126 | unsigned long length; |
| 2127 | unsigned long base; |
| 2128 | unsigned long line; |
| 2129 | unsigned long pc; |
| 2130 | |
| 2131 | if (linetable != NULL) |
| 2132 | { |
| 2133 | tblscan = tblend = linetable; |
| 2134 | length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED, |
| 2135 | current_objfile); |
| 2136 | tblscan += SIZEOF_LINETBL_LENGTH; |
| 2137 | tblend += length; |
| 2138 | base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile), |
| 2139 | GET_UNSIGNED, current_objfile); |
| 2140 | tblscan += TARGET_FT_POINTER_SIZE (objfile); |
| 2141 | base += baseaddr; |
| 2142 | while (tblscan < tblend) |
| 2143 | { |
| 2144 | line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED, |
| 2145 | current_objfile); |
| 2146 | tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT; |
| 2147 | pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED, |
| 2148 | current_objfile); |
| 2149 | tblscan += SIZEOF_LINETBL_DELTA; |
| 2150 | pc += base; |
| 2151 | if (line != 0) |
| 2152 | { |
| 2153 | record_line (current_subfile, line, pc); |
| 2154 | } |
| 2155 | } |
| 2156 | } |
| 2157 | } |
| 2158 | |
| 2159 | /* |
| 2160 | |
| 2161 | LOCAL FUNCTION |
| 2162 | |
| 2163 | locval -- compute the value of a location attribute |
| 2164 | |
| 2165 | SYNOPSIS |
| 2166 | |
| 2167 | static int locval (struct dieinfo *dip) |
| 2168 | |
| 2169 | DESCRIPTION |
| 2170 | |
| 2171 | Given pointer to a string of bytes that define a location, compute |
| 2172 | the location and return the value. |
| 2173 | A location description containing no atoms indicates that the |
| 2174 | object is optimized out. The optimized_out flag is set for those, |
| 2175 | the return value is meaningless. |
| 2176 | |
| 2177 | When computing values involving the current value of the frame pointer, |
| 2178 | the value zero is used, which results in a value relative to the frame |
| 2179 | pointer, rather than the absolute value. This is what GDB wants |
| 2180 | anyway. |
| 2181 | |
| 2182 | When the result is a register number, the isreg flag is set, otherwise |
| 2183 | it is cleared. This is a kludge until we figure out a better |
| 2184 | way to handle the problem. Gdb's design does not mesh well with the |
| 2185 | DWARF notion of a location computing interpreter, which is a shame |
| 2186 | because the flexibility goes unused. |
| 2187 | |
| 2188 | NOTES |
| 2189 | |
| 2190 | Note that stack[0] is unused except as a default error return. |
| 2191 | Note that stack overflow is not yet handled. |
| 2192 | */ |
| 2193 | |
| 2194 | static int |
| 2195 | locval (dip) |
| 2196 | struct dieinfo *dip; |
| 2197 | { |
| 2198 | unsigned short nbytes; |
| 2199 | unsigned short locsize; |
| 2200 | auto long stack[64]; |
| 2201 | int stacki; |
| 2202 | char *loc; |
| 2203 | char *end; |
| 2204 | int loc_atom_code; |
| 2205 | int loc_value_size; |
| 2206 | |
| 2207 | loc = dip->at_location; |
| 2208 | nbytes = attribute_size (AT_location); |
| 2209 | locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile); |
| 2210 | loc += nbytes; |
| 2211 | end = loc + locsize; |
| 2212 | stacki = 0; |
| 2213 | stack[stacki] = 0; |
| 2214 | dip->isreg = 0; |
| 2215 | dip->offreg = 0; |
| 2216 | dip->optimized_out = 1; |
| 2217 | loc_value_size = TARGET_FT_LONG_SIZE (current_objfile); |
| 2218 | while (loc < end) |
| 2219 | { |
| 2220 | dip->optimized_out = 0; |
| 2221 | loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED, |
| 2222 | current_objfile); |
| 2223 | loc += SIZEOF_LOC_ATOM_CODE; |
| 2224 | switch (loc_atom_code) |
| 2225 | { |
| 2226 | case 0: |
| 2227 | /* error */ |
| 2228 | loc = end; |
| 2229 | break; |
| 2230 | case OP_REG: |
| 2231 | /* push register (number) */ |
| 2232 | stack[++stacki] |
| 2233 | = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size, |
| 2234 | GET_UNSIGNED, |
| 2235 | current_objfile)); |
| 2236 | loc += loc_value_size; |
| 2237 | dip->isreg = 1; |
| 2238 | break; |
| 2239 | case OP_BASEREG: |
| 2240 | /* push value of register (number) */ |
| 2241 | /* Actually, we compute the value as if register has 0, so the |
| 2242 | value ends up being the offset from that register. */ |
| 2243 | dip->offreg = 1; |
| 2244 | dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED, |
| 2245 | current_objfile); |
| 2246 | loc += loc_value_size; |
| 2247 | stack[++stacki] = 0; |
| 2248 | break; |
| 2249 | case OP_ADDR: |
| 2250 | /* push address (relocated address) */ |
| 2251 | stack[++stacki] = target_to_host (loc, loc_value_size, |
| 2252 | GET_UNSIGNED, current_objfile); |
| 2253 | loc += loc_value_size; |
| 2254 | break; |
| 2255 | case OP_CONST: |
| 2256 | /* push constant (number) FIXME: signed or unsigned! */ |
| 2257 | stack[++stacki] = target_to_host (loc, loc_value_size, |
| 2258 | GET_SIGNED, current_objfile); |
| 2259 | loc += loc_value_size; |
| 2260 | break; |
| 2261 | case OP_DEREF2: |
| 2262 | /* pop, deref and push 2 bytes (as a long) */ |
| 2263 | complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]); |
| 2264 | break; |
| 2265 | case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */ |
| 2266 | complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]); |
| 2267 | break; |
| 2268 | case OP_ADD: /* pop top 2 items, add, push result */ |
| 2269 | stack[stacki - 1] += stack[stacki]; |
| 2270 | stacki--; |
| 2271 | break; |
| 2272 | } |
| 2273 | } |
| 2274 | return (stack[stacki]); |
| 2275 | } |
| 2276 | |
| 2277 | /* |
| 2278 | |
| 2279 | LOCAL FUNCTION |
| 2280 | |
| 2281 | read_ofile_symtab -- build a full symtab entry from chunk of DIE's |
| 2282 | |
| 2283 | SYNOPSIS |
| 2284 | |
| 2285 | static void read_ofile_symtab (struct partial_symtab *pst) |
| 2286 | |
| 2287 | DESCRIPTION |
| 2288 | |
| 2289 | When expanding a partial symbol table entry to a full symbol table |
| 2290 | entry, this is the function that gets called to read in the symbols |
| 2291 | for the compilation unit. A pointer to the newly constructed symtab, |
| 2292 | which is now the new first one on the objfile's symtab list, is |
| 2293 | stashed in the partial symbol table entry. |
| 2294 | */ |
| 2295 | |
| 2296 | static void |
| 2297 | read_ofile_symtab (pst) |
| 2298 | struct partial_symtab *pst; |
| 2299 | { |
| 2300 | struct cleanup *back_to; |
| 2301 | unsigned long lnsize; |
| 2302 | file_ptr foffset; |
| 2303 | bfd *abfd; |
| 2304 | char lnsizedata[SIZEOF_LINETBL_LENGTH]; |
| 2305 | |
| 2306 | abfd = pst->objfile->obfd; |
| 2307 | current_objfile = pst->objfile; |
| 2308 | |
| 2309 | /* Allocate a buffer for the entire chunk of DIE's for this compilation |
| 2310 | unit, seek to the location in the file, and read in all the DIE's. */ |
| 2311 | |
| 2312 | diecount = 0; |
| 2313 | dbsize = DBLENGTH (pst); |
| 2314 | dbbase = xmalloc (dbsize); |
| 2315 | dbroff = DBROFF (pst); |
| 2316 | foffset = DBFOFF (pst) + dbroff; |
| 2317 | base_section_offsets = pst->section_offsets; |
| 2318 | baseaddr = ANOFFSET (pst->section_offsets, 0); |
| 2319 | if (bfd_seek (abfd, foffset, SEEK_SET) || |
| 2320 | (bfd_read (dbbase, dbsize, 1, abfd) != dbsize)) |
| 2321 | { |
| 2322 | free (dbbase); |
| 2323 | error ("can't read DWARF data"); |
| 2324 | } |
| 2325 | back_to = make_cleanup (free, dbbase); |
| 2326 | |
| 2327 | /* If there is a line number table associated with this compilation unit |
| 2328 | then read the size of this fragment in bytes, from the fragment itself. |
| 2329 | Allocate a buffer for the fragment and read it in for future |
| 2330 | processing. */ |
| 2331 | |
| 2332 | lnbase = NULL; |
| 2333 | if (LNFOFF (pst)) |
| 2334 | { |
| 2335 | if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || |
| 2336 | (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) != |
| 2337 | sizeof (lnsizedata))) |
| 2338 | { |
| 2339 | error ("can't read DWARF line number table size"); |
| 2340 | } |
| 2341 | lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH, |
| 2342 | GET_UNSIGNED, pst->objfile); |
| 2343 | lnbase = xmalloc (lnsize); |
| 2344 | if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || |
| 2345 | (bfd_read (lnbase, lnsize, 1, abfd) != lnsize)) |
| 2346 | { |
| 2347 | free (lnbase); |
| 2348 | error ("can't read DWARF line numbers"); |
| 2349 | } |
| 2350 | make_cleanup (free, lnbase); |
| 2351 | } |
| 2352 | |
| 2353 | process_dies (dbbase, dbbase + dbsize, pst->objfile); |
| 2354 | do_cleanups (back_to); |
| 2355 | current_objfile = NULL; |
| 2356 | pst->symtab = pst->objfile->symtabs; |
| 2357 | } |
| 2358 | |
| 2359 | /* |
| 2360 | |
| 2361 | LOCAL FUNCTION |
| 2362 | |
| 2363 | psymtab_to_symtab_1 -- do grunt work for building a full symtab entry |
| 2364 | |
| 2365 | SYNOPSIS |
| 2366 | |
| 2367 | static void psymtab_to_symtab_1 (struct partial_symtab *pst) |
| 2368 | |
| 2369 | DESCRIPTION |
| 2370 | |
| 2371 | Called once for each partial symbol table entry that needs to be |
| 2372 | expanded into a full symbol table entry. |
| 2373 | |
| 2374 | */ |
| 2375 | |
| 2376 | static void |
| 2377 | psymtab_to_symtab_1 (pst) |
| 2378 | struct partial_symtab *pst; |
| 2379 | { |
| 2380 | int i; |
| 2381 | struct cleanup *old_chain; |
| 2382 | |
| 2383 | if (pst != NULL) |
| 2384 | { |
| 2385 | if (pst->readin) |
| 2386 | { |
| 2387 | warning ("psymtab for %s already read in. Shouldn't happen.", |
| 2388 | pst->filename); |
| 2389 | } |
| 2390 | else |
| 2391 | { |
| 2392 | /* Read in all partial symtabs on which this one is dependent */ |
| 2393 | for (i = 0; i < pst->number_of_dependencies; i++) |
| 2394 | { |
| 2395 | if (!pst->dependencies[i]->readin) |
| 2396 | { |
| 2397 | /* Inform about additional files that need to be read in. */ |
| 2398 | if (info_verbose) |
| 2399 | { |
| 2400 | fputs_filtered (" ", gdb_stdout); |
| 2401 | wrap_here (""); |
| 2402 | fputs_filtered ("and ", gdb_stdout); |
| 2403 | wrap_here (""); |
| 2404 | printf_filtered ("%s...", |
| 2405 | pst->dependencies[i]->filename); |
| 2406 | wrap_here (""); |
| 2407 | gdb_flush (gdb_stdout); /* Flush output */ |
| 2408 | } |
| 2409 | psymtab_to_symtab_1 (pst->dependencies[i]); |
| 2410 | } |
| 2411 | } |
| 2412 | if (DBLENGTH (pst)) /* Otherwise it's a dummy */ |
| 2413 | { |
| 2414 | buildsym_init (); |
| 2415 | old_chain = make_cleanup (really_free_pendings, 0); |
| 2416 | read_ofile_symtab (pst); |
| 2417 | if (info_verbose) |
| 2418 | { |
| 2419 | printf_filtered ("%d DIE's, sorting...", diecount); |
| 2420 | wrap_here (""); |
| 2421 | gdb_flush (gdb_stdout); |
| 2422 | } |
| 2423 | sort_symtab_syms (pst->symtab); |
| 2424 | do_cleanups (old_chain); |
| 2425 | } |
| 2426 | pst->readin = 1; |
| 2427 | } |
| 2428 | } |
| 2429 | } |
| 2430 | |
| 2431 | /* |
| 2432 | |
| 2433 | LOCAL FUNCTION |
| 2434 | |
| 2435 | dwarf_psymtab_to_symtab -- build a full symtab entry from partial one |
| 2436 | |
| 2437 | SYNOPSIS |
| 2438 | |
| 2439 | static void dwarf_psymtab_to_symtab (struct partial_symtab *pst) |
| 2440 | |
| 2441 | DESCRIPTION |
| 2442 | |
| 2443 | This is the DWARF support entry point for building a full symbol |
| 2444 | table entry from a partial symbol table entry. We are passed a |
| 2445 | pointer to the partial symbol table entry that needs to be expanded. |
| 2446 | |
| 2447 | */ |
| 2448 | |
| 2449 | static void |
| 2450 | dwarf_psymtab_to_symtab (pst) |
| 2451 | struct partial_symtab *pst; |
| 2452 | { |
| 2453 | |
| 2454 | if (pst != NULL) |
| 2455 | { |
| 2456 | if (pst->readin) |
| 2457 | { |
| 2458 | warning ("psymtab for %s already read in. Shouldn't happen.", |
| 2459 | pst->filename); |
| 2460 | } |
| 2461 | else |
| 2462 | { |
| 2463 | if (DBLENGTH (pst) || pst->number_of_dependencies) |
| 2464 | { |
| 2465 | /* Print the message now, before starting serious work, to avoid |
| 2466 | disconcerting pauses. */ |
| 2467 | if (info_verbose) |
| 2468 | { |
| 2469 | printf_filtered ("Reading in symbols for %s...", |
| 2470 | pst->filename); |
| 2471 | gdb_flush (gdb_stdout); |
| 2472 | } |
| 2473 | |
| 2474 | psymtab_to_symtab_1 (pst); |
| 2475 | |
| 2476 | #if 0 /* FIXME: Check to see what dbxread is doing here and see if |
| 2477 | we need to do an equivalent or is this something peculiar to |
| 2478 | stabs/a.out format. |
| 2479 | Match with global symbols. This only needs to be done once, |
| 2480 | after all of the symtabs and dependencies have been read in. |
| 2481 | */ |
| 2482 | scan_file_globals (pst->objfile); |
| 2483 | #endif |
| 2484 | |
| 2485 | /* Finish up the verbose info message. */ |
| 2486 | if (info_verbose) |
| 2487 | { |
| 2488 | printf_filtered ("done.\n"); |
| 2489 | gdb_flush (gdb_stdout); |
| 2490 | } |
| 2491 | } |
| 2492 | } |
| 2493 | } |
| 2494 | } |
| 2495 | |
| 2496 | /* |
| 2497 | |
| 2498 | LOCAL FUNCTION |
| 2499 | |
| 2500 | add_enum_psymbol -- add enumeration members to partial symbol table |
| 2501 | |
| 2502 | DESCRIPTION |
| 2503 | |
| 2504 | Given pointer to a DIE that is known to be for an enumeration, |
| 2505 | extract the symbolic names of the enumeration members and add |
| 2506 | partial symbols for them. |
| 2507 | */ |
| 2508 | |
| 2509 | static void |
| 2510 | add_enum_psymbol (dip, objfile) |
| 2511 | struct dieinfo *dip; |
| 2512 | struct objfile *objfile; |
| 2513 | { |
| 2514 | char *scan; |
| 2515 | char *listend; |
| 2516 | unsigned short blocksz; |
| 2517 | int nbytes; |
| 2518 | |
| 2519 | if ((scan = dip->at_element_list) != NULL) |
| 2520 | { |
| 2521 | if (dip->short_element_list) |
| 2522 | { |
| 2523 | nbytes = attribute_size (AT_short_element_list); |
| 2524 | } |
| 2525 | else |
| 2526 | { |
| 2527 | nbytes = attribute_size (AT_element_list); |
| 2528 | } |
| 2529 | blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); |
| 2530 | scan += nbytes; |
| 2531 | listend = scan + blocksz; |
| 2532 | while (scan < listend) |
| 2533 | { |
| 2534 | scan += TARGET_FT_LONG_SIZE (objfile); |
| 2535 | add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST, |
| 2536 | &objfile->static_psymbols, 0, 0, cu_language, |
| 2537 | objfile); |
| 2538 | scan += strlen (scan) + 1; |
| 2539 | } |
| 2540 | } |
| 2541 | } |
| 2542 | |
| 2543 | /* |
| 2544 | |
| 2545 | LOCAL FUNCTION |
| 2546 | |
| 2547 | add_partial_symbol -- add symbol to partial symbol table |
| 2548 | |
| 2549 | DESCRIPTION |
| 2550 | |
| 2551 | Given a DIE, if it is one of the types that we want to |
| 2552 | add to a partial symbol table, finish filling in the die info |
| 2553 | and then add a partial symbol table entry for it. |
| 2554 | |
| 2555 | NOTES |
| 2556 | |
| 2557 | The caller must ensure that the DIE has a valid name attribute. |
| 2558 | */ |
| 2559 | |
| 2560 | static void |
| 2561 | add_partial_symbol (dip, objfile) |
| 2562 | struct dieinfo *dip; |
| 2563 | struct objfile *objfile; |
| 2564 | { |
| 2565 | switch (dip->die_tag) |
| 2566 | { |
| 2567 | case TAG_global_subroutine: |
| 2568 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
| 2569 | VAR_NAMESPACE, LOC_BLOCK, |
| 2570 | &objfile->global_psymbols, |
| 2571 | 0, dip->at_low_pc, cu_language, objfile); |
| 2572 | break; |
| 2573 | case TAG_global_variable: |
| 2574 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
| 2575 | VAR_NAMESPACE, LOC_STATIC, |
| 2576 | &objfile->global_psymbols, |
| 2577 | 0, 0, cu_language, objfile); |
| 2578 | break; |
| 2579 | case TAG_subroutine: |
| 2580 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
| 2581 | VAR_NAMESPACE, LOC_BLOCK, |
| 2582 | &objfile->static_psymbols, |
| 2583 | 0, dip->at_low_pc, cu_language, objfile); |
| 2584 | break; |
| 2585 | case TAG_local_variable: |
| 2586 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
| 2587 | VAR_NAMESPACE, LOC_STATIC, |
| 2588 | &objfile->static_psymbols, |
| 2589 | 0, 0, cu_language, objfile); |
| 2590 | break; |
| 2591 | case TAG_typedef: |
| 2592 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
| 2593 | VAR_NAMESPACE, LOC_TYPEDEF, |
| 2594 | &objfile->static_psymbols, |
| 2595 | 0, 0, cu_language, objfile); |
| 2596 | break; |
| 2597 | case TAG_class_type: |
| 2598 | case TAG_structure_type: |
| 2599 | case TAG_union_type: |
| 2600 | case TAG_enumeration_type: |
| 2601 | /* Do not add opaque aggregate definitions to the psymtab. */ |
| 2602 | if (!dip->has_at_byte_size) |
| 2603 | break; |
| 2604 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
| 2605 | STRUCT_NAMESPACE, LOC_TYPEDEF, |
| 2606 | &objfile->static_psymbols, |
| 2607 | 0, 0, cu_language, objfile); |
| 2608 | if (cu_language == language_cplus) |
| 2609 | { |
| 2610 | /* For C++, these implicitly act as typedefs as well. */ |
| 2611 | add_psymbol_to_list (dip->at_name, strlen (dip->at_name), |
| 2612 | VAR_NAMESPACE, LOC_TYPEDEF, |
| 2613 | &objfile->static_psymbols, |
| 2614 | 0, 0, cu_language, objfile); |
| 2615 | } |
| 2616 | break; |
| 2617 | } |
| 2618 | } |
| 2619 | /* *INDENT-OFF* */ |
| 2620 | /* |
| 2621 | |
| 2622 | LOCAL FUNCTION |
| 2623 | |
| 2624 | scan_partial_symbols -- scan DIE's within a single compilation unit |
| 2625 | |
| 2626 | DESCRIPTION |
| 2627 | |
| 2628 | Process the DIE's within a single compilation unit, looking for |
| 2629 | interesting DIE's that contribute to the partial symbol table entry |
| 2630 | for this compilation unit. |
| 2631 | |
| 2632 | NOTES |
| 2633 | |
| 2634 | There are some DIE's that may appear both at file scope and within |
| 2635 | the scope of a function. We are only interested in the ones at file |
| 2636 | scope, and the only way to tell them apart is to keep track of the |
| 2637 | scope. For example, consider the test case: |
| 2638 | |
| 2639 | static int i; |
| 2640 | main () { int j; } |
| 2641 | |
| 2642 | for which the relevant DWARF segment has the structure: |
| 2643 | |
| 2644 | 0x51: |
| 2645 | 0x23 global subrtn sibling 0x9b |
| 2646 | name main |
| 2647 | fund_type FT_integer |
| 2648 | low_pc 0x800004cc |
| 2649 | high_pc 0x800004d4 |
| 2650 | |
| 2651 | 0x74: |
| 2652 | 0x23 local var sibling 0x97 |
| 2653 | name j |
| 2654 | fund_type FT_integer |
| 2655 | location OP_BASEREG 0xe |
| 2656 | OP_CONST 0xfffffffc |
| 2657 | OP_ADD |
| 2658 | 0x97: |
| 2659 | 0x4 |
| 2660 | |
| 2661 | 0x9b: |
| 2662 | 0x1d local var sibling 0xb8 |
| 2663 | name i |
| 2664 | fund_type FT_integer |
| 2665 | location OP_ADDR 0x800025dc |
| 2666 | |
| 2667 | 0xb8: |
| 2668 | 0x4 |
| 2669 | |
| 2670 | We want to include the symbol 'i' in the partial symbol table, but |
| 2671 | not the symbol 'j'. In essence, we want to skip all the dies within |
| 2672 | the scope of a TAG_global_subroutine DIE. |
| 2673 | |
| 2674 | Don't attempt to add anonymous structures or unions since they have |
| 2675 | no name. Anonymous enumerations however are processed, because we |
| 2676 | want to extract their member names (the check for a tag name is |
| 2677 | done later). |
| 2678 | |
| 2679 | Also, for variables and subroutines, check that this is the place |
| 2680 | where the actual definition occurs, rather than just a reference |
| 2681 | to an external. |
| 2682 | */ |
| 2683 | /* *INDENT-ON* */ |
| 2684 | |
| 2685 | |
| 2686 | |
| 2687 | static void |
| 2688 | scan_partial_symbols (thisdie, enddie, objfile) |
| 2689 | char *thisdie; |
| 2690 | char *enddie; |
| 2691 | struct objfile *objfile; |
| 2692 | { |
| 2693 | char *nextdie; |
| 2694 | char *temp; |
| 2695 | struct dieinfo di; |
| 2696 | |
| 2697 | while (thisdie < enddie) |
| 2698 | { |
| 2699 | basicdieinfo (&di, thisdie, objfile); |
| 2700 | if (di.die_length < SIZEOF_DIE_LENGTH) |
| 2701 | { |
| 2702 | break; |
| 2703 | } |
| 2704 | else |
| 2705 | { |
| 2706 | nextdie = thisdie + di.die_length; |
| 2707 | /* To avoid getting complete die information for every die, we |
| 2708 | only do it (below) for the cases we are interested in. */ |
| 2709 | switch (di.die_tag) |
| 2710 | { |
| 2711 | case TAG_global_subroutine: |
| 2712 | case TAG_subroutine: |
| 2713 | completedieinfo (&di, objfile); |
| 2714 | if (di.at_name && (di.has_at_low_pc || di.at_location)) |
| 2715 | { |
| 2716 | add_partial_symbol (&di, objfile); |
| 2717 | /* If there is a sibling attribute, adjust the nextdie |
| 2718 | pointer to skip the entire scope of the subroutine. |
| 2719 | Apply some sanity checking to make sure we don't |
| 2720 | overrun or underrun the range of remaining DIE's */ |
| 2721 | if (di.at_sibling != 0) |
| 2722 | { |
| 2723 | temp = dbbase + di.at_sibling - dbroff; |
| 2724 | if ((temp < thisdie) || (temp >= enddie)) |
| 2725 | { |
| 2726 | complain (&bad_die_ref, DIE_ID, DIE_NAME, |
| 2727 | di.at_sibling); |
| 2728 | } |
| 2729 | else |
| 2730 | { |
| 2731 | nextdie = temp; |
| 2732 | } |
| 2733 | } |
| 2734 | } |
| 2735 | break; |
| 2736 | case TAG_global_variable: |
| 2737 | case TAG_local_variable: |
| 2738 | completedieinfo (&di, objfile); |
| 2739 | if (di.at_name && (di.has_at_low_pc || di.at_location)) |
| 2740 | { |
| 2741 | add_partial_symbol (&di, objfile); |
| 2742 | } |
| 2743 | break; |
| 2744 | case TAG_typedef: |
| 2745 | case TAG_class_type: |
| 2746 | case TAG_structure_type: |
| 2747 | case TAG_union_type: |
| 2748 | completedieinfo (&di, objfile); |
| 2749 | if (di.at_name) |
| 2750 | { |
| 2751 | add_partial_symbol (&di, objfile); |
| 2752 | } |
| 2753 | break; |
| 2754 | case TAG_enumeration_type: |
| 2755 | completedieinfo (&di, objfile); |
| 2756 | if (di.at_name) |
| 2757 | { |
| 2758 | add_partial_symbol (&di, objfile); |
| 2759 | } |
| 2760 | add_enum_psymbol (&di, objfile); |
| 2761 | break; |
| 2762 | } |
| 2763 | } |
| 2764 | thisdie = nextdie; |
| 2765 | } |
| 2766 | } |
| 2767 | |
| 2768 | /* |
| 2769 | |
| 2770 | LOCAL FUNCTION |
| 2771 | |
| 2772 | scan_compilation_units -- build a psymtab entry for each compilation |
| 2773 | |
| 2774 | DESCRIPTION |
| 2775 | |
| 2776 | This is the top level dwarf parsing routine for building partial |
| 2777 | symbol tables. |
| 2778 | |
| 2779 | It scans from the beginning of the DWARF table looking for the first |
| 2780 | TAG_compile_unit DIE, and then follows the sibling chain to locate |
| 2781 | each additional TAG_compile_unit DIE. |
| 2782 | |
| 2783 | For each TAG_compile_unit DIE it creates a partial symtab structure, |
| 2784 | calls a subordinate routine to collect all the compilation unit's |
| 2785 | global DIE's, file scope DIEs, typedef DIEs, etc, and then links the |
| 2786 | new partial symtab structure into the partial symbol table. It also |
| 2787 | records the appropriate information in the partial symbol table entry |
| 2788 | to allow the chunk of DIE's and line number table for this compilation |
| 2789 | unit to be located and re-read later, to generate a complete symbol |
| 2790 | table entry for the compilation unit. |
| 2791 | |
| 2792 | Thus it effectively partitions up a chunk of DIE's for multiple |
| 2793 | compilation units into smaller DIE chunks and line number tables, |
| 2794 | and associates them with a partial symbol table entry. |
| 2795 | |
| 2796 | NOTES |
| 2797 | |
| 2798 | If any compilation unit has no line number table associated with |
| 2799 | it for some reason (a missing at_stmt_list attribute, rather than |
| 2800 | just one with a value of zero, which is valid) then we ensure that |
| 2801 | the recorded file offset is zero so that the routine which later |
| 2802 | reads line number table fragments knows that there is no fragment |
| 2803 | to read. |
| 2804 | |
| 2805 | RETURNS |
| 2806 | |
| 2807 | Returns no value. |
| 2808 | |
| 2809 | */ |
| 2810 | |
| 2811 | static void |
| 2812 | scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile) |
| 2813 | char *thisdie; |
| 2814 | char *enddie; |
| 2815 | file_ptr dbfoff; |
| 2816 | file_ptr lnoffset; |
| 2817 | struct objfile *objfile; |
| 2818 | { |
| 2819 | char *nextdie; |
| 2820 | struct dieinfo di; |
| 2821 | struct partial_symtab *pst; |
| 2822 | int culength; |
| 2823 | int curoff; |
| 2824 | file_ptr curlnoffset; |
| 2825 | |
| 2826 | while (thisdie < enddie) |
| 2827 | { |
| 2828 | basicdieinfo (&di, thisdie, objfile); |
| 2829 | if (di.die_length < SIZEOF_DIE_LENGTH) |
| 2830 | { |
| 2831 | break; |
| 2832 | } |
| 2833 | else if (di.die_tag != TAG_compile_unit) |
| 2834 | { |
| 2835 | nextdie = thisdie + di.die_length; |
| 2836 | } |
| 2837 | else |
| 2838 | { |
| 2839 | completedieinfo (&di, objfile); |
| 2840 | set_cu_language (&di); |
| 2841 | if (di.at_sibling != 0) |
| 2842 | { |
| 2843 | nextdie = dbbase + di.at_sibling - dbroff; |
| 2844 | } |
| 2845 | else |
| 2846 | { |
| 2847 | nextdie = thisdie + di.die_length; |
| 2848 | } |
| 2849 | curoff = thisdie - dbbase; |
| 2850 | culength = nextdie - thisdie; |
| 2851 | curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0; |
| 2852 | |
| 2853 | /* First allocate a new partial symbol table structure */ |
| 2854 | |
| 2855 | pst = start_psymtab_common (objfile, base_section_offsets, |
| 2856 | di.at_name, di.at_low_pc, |
| 2857 | objfile->global_psymbols.next, |
| 2858 | objfile->static_psymbols.next); |
| 2859 | |
| 2860 | pst->texthigh = di.at_high_pc; |
| 2861 | pst->read_symtab_private = (char *) |
| 2862 | obstack_alloc (&objfile->psymbol_obstack, |
| 2863 | sizeof (struct dwfinfo)); |
| 2864 | DBFOFF (pst) = dbfoff; |
| 2865 | DBROFF (pst) = curoff; |
| 2866 | DBLENGTH (pst) = culength; |
| 2867 | LNFOFF (pst) = curlnoffset; |
| 2868 | pst->read_symtab = dwarf_psymtab_to_symtab; |
| 2869 | |
| 2870 | /* Now look for partial symbols */ |
| 2871 | |
| 2872 | scan_partial_symbols (thisdie + di.die_length, nextdie, objfile); |
| 2873 | |
| 2874 | pst->n_global_syms = objfile->global_psymbols.next - |
| 2875 | (objfile->global_psymbols.list + pst->globals_offset); |
| 2876 | pst->n_static_syms = objfile->static_psymbols.next - |
| 2877 | (objfile->static_psymbols.list + pst->statics_offset); |
| 2878 | sort_pst_symbols (pst); |
| 2879 | /* If there is already a psymtab or symtab for a file of this name, |
| 2880 | remove it. (If there is a symtab, more drastic things also |
| 2881 | happen.) This happens in VxWorks. */ |
| 2882 | free_named_symtabs (pst->filename); |
| 2883 | } |
| 2884 | thisdie = nextdie; |
| 2885 | } |
| 2886 | } |
| 2887 | |
| 2888 | /* |
| 2889 | |
| 2890 | LOCAL FUNCTION |
| 2891 | |
| 2892 | new_symbol -- make a symbol table entry for a new symbol |
| 2893 | |
| 2894 | SYNOPSIS |
| 2895 | |
| 2896 | static struct symbol *new_symbol (struct dieinfo *dip, |
| 2897 | struct objfile *objfile) |
| 2898 | |
| 2899 | DESCRIPTION |
| 2900 | |
| 2901 | Given a pointer to a DWARF information entry, figure out if we need |
| 2902 | to make a symbol table entry for it, and if so, create a new entry |
| 2903 | and return a pointer to it. |
| 2904 | */ |
| 2905 | |
| 2906 | static struct symbol * |
| 2907 | new_symbol (dip, objfile) |
| 2908 | struct dieinfo *dip; |
| 2909 | struct objfile *objfile; |
| 2910 | { |
| 2911 | struct symbol *sym = NULL; |
| 2912 | |
| 2913 | if (dip->at_name != NULL) |
| 2914 | { |
| 2915 | sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack, |
| 2916 | sizeof (struct symbol)); |
| 2917 | OBJSTAT (objfile, n_syms++); |
| 2918 | memset (sym, 0, sizeof (struct symbol)); |
| 2919 | SYMBOL_NAME (sym) = create_name (dip->at_name, |
| 2920 | &objfile->symbol_obstack); |
| 2921 | /* default assumptions */ |
| 2922 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; |
| 2923 | SYMBOL_CLASS (sym) = LOC_STATIC; |
| 2924 | SYMBOL_TYPE (sym) = decode_die_type (dip); |
| 2925 | |
| 2926 | /* If this symbol is from a C++ compilation, then attempt to cache the |
| 2927 | demangled form for future reference. This is a typical time versus |
| 2928 | space tradeoff, that was decided in favor of time because it sped up |
| 2929 | C++ symbol lookups by a factor of about 20. */ |
| 2930 | |
| 2931 | SYMBOL_LANGUAGE (sym) = cu_language; |
| 2932 | SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack); |
| 2933 | switch (dip->die_tag) |
| 2934 | { |
| 2935 | case TAG_label: |
| 2936 | SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc; |
| 2937 | SYMBOL_CLASS (sym) = LOC_LABEL; |
| 2938 | break; |
| 2939 | case TAG_global_subroutine: |
| 2940 | case TAG_subroutine: |
| 2941 | SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc; |
| 2942 | SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym)); |
| 2943 | if (dip->at_prototyped) |
| 2944 | TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED; |
| 2945 | SYMBOL_CLASS (sym) = LOC_BLOCK; |
| 2946 | if (dip->die_tag == TAG_global_subroutine) |
| 2947 | { |
| 2948 | add_symbol_to_list (sym, &global_symbols); |
| 2949 | } |
| 2950 | else |
| 2951 | { |
| 2952 | add_symbol_to_list (sym, list_in_scope); |
| 2953 | } |
| 2954 | break; |
| 2955 | case TAG_global_variable: |
| 2956 | if (dip->at_location != NULL) |
| 2957 | { |
| 2958 | SYMBOL_VALUE_ADDRESS (sym) = locval (dip); |
| 2959 | add_symbol_to_list (sym, &global_symbols); |
| 2960 | SYMBOL_CLASS (sym) = LOC_STATIC; |
| 2961 | SYMBOL_VALUE (sym) += baseaddr; |
| 2962 | } |
| 2963 | break; |
| 2964 | case TAG_local_variable: |
| 2965 | if (dip->at_location != NULL) |
| 2966 | { |
| 2967 | int loc = locval (dip); |
| 2968 | if (dip->optimized_out) |
| 2969 | { |
| 2970 | SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT; |
| 2971 | } |
| 2972 | else if (dip->isreg) |
| 2973 | { |
| 2974 | SYMBOL_CLASS (sym) = LOC_REGISTER; |
| 2975 | } |
| 2976 | else if (dip->offreg) |
| 2977 | { |
| 2978 | SYMBOL_CLASS (sym) = LOC_BASEREG; |
| 2979 | SYMBOL_BASEREG (sym) = dip->basereg; |
| 2980 | } |
| 2981 | else |
| 2982 | { |
| 2983 | SYMBOL_CLASS (sym) = LOC_STATIC; |
| 2984 | SYMBOL_VALUE (sym) += baseaddr; |
| 2985 | } |
| 2986 | if (SYMBOL_CLASS (sym) == LOC_STATIC) |
| 2987 | { |
| 2988 | /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS, |
| 2989 | which may store to a bigger location than SYMBOL_VALUE. */ |
| 2990 | SYMBOL_VALUE_ADDRESS (sym) = loc; |
| 2991 | } |
| 2992 | else |
| 2993 | { |
| 2994 | SYMBOL_VALUE (sym) = loc; |
| 2995 | } |
| 2996 | add_symbol_to_list (sym, list_in_scope); |
| 2997 | } |
| 2998 | break; |
| 2999 | case TAG_formal_parameter: |
| 3000 | if (dip->at_location != NULL) |
| 3001 | { |
| 3002 | SYMBOL_VALUE (sym) = locval (dip); |
| 3003 | } |
| 3004 | add_symbol_to_list (sym, list_in_scope); |
| 3005 | if (dip->isreg) |
| 3006 | { |
| 3007 | SYMBOL_CLASS (sym) = LOC_REGPARM; |
| 3008 | } |
| 3009 | else if (dip->offreg) |
| 3010 | { |
| 3011 | SYMBOL_CLASS (sym) = LOC_BASEREG_ARG; |
| 3012 | SYMBOL_BASEREG (sym) = dip->basereg; |
| 3013 | } |
| 3014 | else |
| 3015 | { |
| 3016 | SYMBOL_CLASS (sym) = LOC_ARG; |
| 3017 | } |
| 3018 | break; |
| 3019 | case TAG_unspecified_parameters: |
| 3020 | /* From varargs functions; gdb doesn't seem to have any interest in |
| 3021 | this information, so just ignore it for now. (FIXME?) */ |
| 3022 | break; |
| 3023 | case TAG_class_type: |
| 3024 | case TAG_structure_type: |
| 3025 | case TAG_union_type: |
| 3026 | case TAG_enumeration_type: |
| 3027 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; |
| 3028 | SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE; |
| 3029 | add_symbol_to_list (sym, list_in_scope); |
| 3030 | break; |
| 3031 | case TAG_typedef: |
| 3032 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; |
| 3033 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; |
| 3034 | add_symbol_to_list (sym, list_in_scope); |
| 3035 | break; |
| 3036 | default: |
| 3037 | /* Not a tag we recognize. Hopefully we aren't processing trash |
| 3038 | data, but since we must specifically ignore things we don't |
| 3039 | recognize, there is nothing else we should do at this point. */ |
| 3040 | break; |
| 3041 | } |
| 3042 | } |
| 3043 | return (sym); |
| 3044 | } |
| 3045 | |
| 3046 | /* |
| 3047 | |
| 3048 | LOCAL FUNCTION |
| 3049 | |
| 3050 | synthesize_typedef -- make a symbol table entry for a "fake" typedef |
| 3051 | |
| 3052 | SYNOPSIS |
| 3053 | |
| 3054 | static void synthesize_typedef (struct dieinfo *dip, |
| 3055 | struct objfile *objfile, |
| 3056 | struct type *type); |
| 3057 | |
| 3058 | DESCRIPTION |
| 3059 | |
| 3060 | Given a pointer to a DWARF information entry, synthesize a typedef |
| 3061 | for the name in the DIE, using the specified type. |
| 3062 | |
| 3063 | This is used for C++ class, structs, unions, and enumerations to |
| 3064 | set up the tag name as a type. |
| 3065 | |
| 3066 | */ |
| 3067 | |
| 3068 | static void |
| 3069 | synthesize_typedef (dip, objfile, type) |
| 3070 | struct dieinfo *dip; |
| 3071 | struct objfile *objfile; |
| 3072 | struct type *type; |
| 3073 | { |
| 3074 | struct symbol *sym = NULL; |
| 3075 | |
| 3076 | if (dip->at_name != NULL) |
| 3077 | { |
| 3078 | sym = (struct symbol *) |
| 3079 | obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol)); |
| 3080 | OBJSTAT (objfile, n_syms++); |
| 3081 | memset (sym, 0, sizeof (struct symbol)); |
| 3082 | SYMBOL_NAME (sym) = create_name (dip->at_name, |
| 3083 | &objfile->symbol_obstack); |
| 3084 | SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); |
| 3085 | SYMBOL_TYPE (sym) = type; |
| 3086 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; |
| 3087 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; |
| 3088 | add_symbol_to_list (sym, list_in_scope); |
| 3089 | } |
| 3090 | } |
| 3091 | |
| 3092 | /* |
| 3093 | |
| 3094 | LOCAL FUNCTION |
| 3095 | |
| 3096 | decode_mod_fund_type -- decode a modified fundamental type |
| 3097 | |
| 3098 | SYNOPSIS |
| 3099 | |
| 3100 | static struct type *decode_mod_fund_type (char *typedata) |
| 3101 | |
| 3102 | DESCRIPTION |
| 3103 | |
| 3104 | Decode a block of data containing a modified fundamental |
| 3105 | type specification. TYPEDATA is a pointer to the block, |
| 3106 | which starts with a length containing the size of the rest |
| 3107 | of the block. At the end of the block is a fundmental type |
| 3108 | code value that gives the fundamental type. Everything |
| 3109 | in between are type modifiers. |
| 3110 | |
| 3111 | We simply compute the number of modifiers and call the general |
| 3112 | function decode_modified_type to do the actual work. |
| 3113 | */ |
| 3114 | |
| 3115 | static struct type * |
| 3116 | decode_mod_fund_type (typedata) |
| 3117 | char *typedata; |
| 3118 | { |
| 3119 | struct type *typep = NULL; |
| 3120 | unsigned short modcount; |
| 3121 | int nbytes; |
| 3122 | |
| 3123 | /* Get the total size of the block, exclusive of the size itself */ |
| 3124 | |
| 3125 | nbytes = attribute_size (AT_mod_fund_type); |
| 3126 | modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); |
| 3127 | typedata += nbytes; |
| 3128 | |
| 3129 | /* Deduct the size of the fundamental type bytes at the end of the block. */ |
| 3130 | |
| 3131 | modcount -= attribute_size (AT_fund_type); |
| 3132 | |
| 3133 | /* Now do the actual decoding */ |
| 3134 | |
| 3135 | typep = decode_modified_type (typedata, modcount, AT_mod_fund_type); |
| 3136 | return (typep); |
| 3137 | } |
| 3138 | |
| 3139 | /* |
| 3140 | |
| 3141 | LOCAL FUNCTION |
| 3142 | |
| 3143 | decode_mod_u_d_type -- decode a modified user defined type |
| 3144 | |
| 3145 | SYNOPSIS |
| 3146 | |
| 3147 | static struct type *decode_mod_u_d_type (char *typedata) |
| 3148 | |
| 3149 | DESCRIPTION |
| 3150 | |
| 3151 | Decode a block of data containing a modified user defined |
| 3152 | type specification. TYPEDATA is a pointer to the block, |
| 3153 | which consists of a two byte length, containing the size |
| 3154 | of the rest of the block. At the end of the block is a |
| 3155 | four byte value that gives a reference to a user defined type. |
| 3156 | Everything in between are type modifiers. |
| 3157 | |
| 3158 | We simply compute the number of modifiers and call the general |
| 3159 | function decode_modified_type to do the actual work. |
| 3160 | */ |
| 3161 | |
| 3162 | static struct type * |
| 3163 | decode_mod_u_d_type (typedata) |
| 3164 | char *typedata; |
| 3165 | { |
| 3166 | struct type *typep = NULL; |
| 3167 | unsigned short modcount; |
| 3168 | int nbytes; |
| 3169 | |
| 3170 | /* Get the total size of the block, exclusive of the size itself */ |
| 3171 | |
| 3172 | nbytes = attribute_size (AT_mod_u_d_type); |
| 3173 | modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); |
| 3174 | typedata += nbytes; |
| 3175 | |
| 3176 | /* Deduct the size of the reference type bytes at the end of the block. */ |
| 3177 | |
| 3178 | modcount -= attribute_size (AT_user_def_type); |
| 3179 | |
| 3180 | /* Now do the actual decoding */ |
| 3181 | |
| 3182 | typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type); |
| 3183 | return (typep); |
| 3184 | } |
| 3185 | |
| 3186 | /* |
| 3187 | |
| 3188 | LOCAL FUNCTION |
| 3189 | |
| 3190 | decode_modified_type -- decode modified user or fundamental type |
| 3191 | |
| 3192 | SYNOPSIS |
| 3193 | |
| 3194 | static struct type *decode_modified_type (char *modifiers, |
| 3195 | unsigned short modcount, int mtype) |
| 3196 | |
| 3197 | DESCRIPTION |
| 3198 | |
| 3199 | Decode a modified type, either a modified fundamental type or |
| 3200 | a modified user defined type. MODIFIERS is a pointer to the |
| 3201 | block of bytes that define MODCOUNT modifiers. Immediately |
| 3202 | following the last modifier is a short containing the fundamental |
| 3203 | type or a long containing the reference to the user defined |
| 3204 | type. Which one is determined by MTYPE, which is either |
| 3205 | AT_mod_fund_type or AT_mod_u_d_type to indicate what modified |
| 3206 | type we are generating. |
| 3207 | |
| 3208 | We call ourself recursively to generate each modified type,` |
| 3209 | until MODCOUNT reaches zero, at which point we have consumed |
| 3210 | all the modifiers and generate either the fundamental type or |
| 3211 | user defined type. When the recursion unwinds, each modifier |
| 3212 | is applied in turn to generate the full modified type. |
| 3213 | |
| 3214 | NOTES |
| 3215 | |
| 3216 | If we find a modifier that we don't recognize, and it is not one |
| 3217 | of those reserved for application specific use, then we issue a |
| 3218 | warning and simply ignore the modifier. |
| 3219 | |
| 3220 | BUGS |
| 3221 | |
| 3222 | We currently ignore MOD_const and MOD_volatile. (FIXME) |
| 3223 | |
| 3224 | */ |
| 3225 | |
| 3226 | static struct type * |
| 3227 | decode_modified_type (modifiers, modcount, mtype) |
| 3228 | char *modifiers; |
| 3229 | unsigned int modcount; |
| 3230 | int mtype; |
| 3231 | { |
| 3232 | struct type *typep = NULL; |
| 3233 | unsigned short fundtype; |
| 3234 | DIE_REF die_ref; |
| 3235 | char modifier; |
| 3236 | int nbytes; |
| 3237 | |
| 3238 | if (modcount == 0) |
| 3239 | { |
| 3240 | switch (mtype) |
| 3241 | { |
| 3242 | case AT_mod_fund_type: |
| 3243 | nbytes = attribute_size (AT_fund_type); |
| 3244 | fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED, |
| 3245 | current_objfile); |
| 3246 | typep = decode_fund_type (fundtype); |
| 3247 | break; |
| 3248 | case AT_mod_u_d_type: |
| 3249 | nbytes = attribute_size (AT_user_def_type); |
| 3250 | die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED, |
| 3251 | current_objfile); |
| 3252 | if ((typep = lookup_utype (die_ref)) == NULL) |
| 3253 | { |
| 3254 | typep = alloc_utype (die_ref, NULL); |
| 3255 | } |
| 3256 | break; |
| 3257 | default: |
| 3258 | complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype); |
| 3259 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
| 3260 | break; |
| 3261 | } |
| 3262 | } |
| 3263 | else |
| 3264 | { |
| 3265 | modifier = *modifiers++; |
| 3266 | typep = decode_modified_type (modifiers, --modcount, mtype); |
| 3267 | switch (modifier) |
| 3268 | { |
| 3269 | case MOD_pointer_to: |
| 3270 | typep = lookup_pointer_type (typep); |
| 3271 | break; |
| 3272 | case MOD_reference_to: |
| 3273 | typep = lookup_reference_type (typep); |
| 3274 | break; |
| 3275 | case MOD_const: |
| 3276 | complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */ |
| 3277 | break; |
| 3278 | case MOD_volatile: |
| 3279 | complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */ |
| 3280 | break; |
| 3281 | default: |
| 3282 | if (!(MOD_lo_user <= (unsigned char) modifier |
| 3283 | && (unsigned char) modifier <= MOD_hi_user)) |
| 3284 | { |
| 3285 | complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier); |
| 3286 | } |
| 3287 | break; |
| 3288 | } |
| 3289 | } |
| 3290 | return (typep); |
| 3291 | } |
| 3292 | |
| 3293 | /* |
| 3294 | |
| 3295 | LOCAL FUNCTION |
| 3296 | |
| 3297 | decode_fund_type -- translate basic DWARF type to gdb base type |
| 3298 | |
| 3299 | DESCRIPTION |
| 3300 | |
| 3301 | Given an integer that is one of the fundamental DWARF types, |
| 3302 | translate it to one of the basic internal gdb types and return |
| 3303 | a pointer to the appropriate gdb type (a "struct type *"). |
| 3304 | |
| 3305 | NOTES |
| 3306 | |
| 3307 | For robustness, if we are asked to translate a fundamental |
| 3308 | type that we are unprepared to deal with, we return int so |
| 3309 | callers can always depend upon a valid type being returned, |
| 3310 | and so gdb may at least do something reasonable by default. |
| 3311 | If the type is not in the range of those types defined as |
| 3312 | application specific types, we also issue a warning. |
| 3313 | */ |
| 3314 | |
| 3315 | static struct type * |
| 3316 | decode_fund_type (fundtype) |
| 3317 | unsigned int fundtype; |
| 3318 | { |
| 3319 | struct type *typep = NULL; |
| 3320 | |
| 3321 | switch (fundtype) |
| 3322 | { |
| 3323 | |
| 3324 | case FT_void: |
| 3325 | typep = dwarf_fundamental_type (current_objfile, FT_VOID); |
| 3326 | break; |
| 3327 | |
| 3328 | case FT_boolean: /* Was FT_set in AT&T version */ |
| 3329 | typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN); |
| 3330 | break; |
| 3331 | |
| 3332 | case FT_pointer: /* (void *) */ |
| 3333 | typep = dwarf_fundamental_type (current_objfile, FT_VOID); |
| 3334 | typep = lookup_pointer_type (typep); |
| 3335 | break; |
| 3336 | |
| 3337 | case FT_char: |
| 3338 | typep = dwarf_fundamental_type (current_objfile, FT_CHAR); |
| 3339 | break; |
| 3340 | |
| 3341 | case FT_signed_char: |
| 3342 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR); |
| 3343 | break; |
| 3344 | |
| 3345 | case FT_unsigned_char: |
| 3346 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR); |
| 3347 | break; |
| 3348 | |
| 3349 | case FT_short: |
| 3350 | typep = dwarf_fundamental_type (current_objfile, FT_SHORT); |
| 3351 | break; |
| 3352 | |
| 3353 | case FT_signed_short: |
| 3354 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT); |
| 3355 | break; |
| 3356 | |
| 3357 | case FT_unsigned_short: |
| 3358 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT); |
| 3359 | break; |
| 3360 | |
| 3361 | case FT_integer: |
| 3362 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
| 3363 | break; |
| 3364 | |
| 3365 | case FT_signed_integer: |
| 3366 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER); |
| 3367 | break; |
| 3368 | |
| 3369 | case FT_unsigned_integer: |
| 3370 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER); |
| 3371 | break; |
| 3372 | |
| 3373 | case FT_long: |
| 3374 | typep = dwarf_fundamental_type (current_objfile, FT_LONG); |
| 3375 | break; |
| 3376 | |
| 3377 | case FT_signed_long: |
| 3378 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG); |
| 3379 | break; |
| 3380 | |
| 3381 | case FT_unsigned_long: |
| 3382 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG); |
| 3383 | break; |
| 3384 | |
| 3385 | case FT_long_long: |
| 3386 | typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG); |
| 3387 | break; |
| 3388 | |
| 3389 | case FT_signed_long_long: |
| 3390 | typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG); |
| 3391 | break; |
| 3392 | |
| 3393 | case FT_unsigned_long_long: |
| 3394 | typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG); |
| 3395 | break; |
| 3396 | |
| 3397 | case FT_float: |
| 3398 | typep = dwarf_fundamental_type (current_objfile, FT_FLOAT); |
| 3399 | break; |
| 3400 | |
| 3401 | case FT_dbl_prec_float: |
| 3402 | typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT); |
| 3403 | break; |
| 3404 | |
| 3405 | case FT_ext_prec_float: |
| 3406 | typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT); |
| 3407 | break; |
| 3408 | |
| 3409 | case FT_complex: |
| 3410 | typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX); |
| 3411 | break; |
| 3412 | |
| 3413 | case FT_dbl_prec_complex: |
| 3414 | typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX); |
| 3415 | break; |
| 3416 | |
| 3417 | case FT_ext_prec_complex: |
| 3418 | typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX); |
| 3419 | break; |
| 3420 | |
| 3421 | } |
| 3422 | |
| 3423 | if (typep == NULL) |
| 3424 | { |
| 3425 | typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); |
| 3426 | if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user)) |
| 3427 | { |
| 3428 | complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype); |
| 3429 | } |
| 3430 | } |
| 3431 | |
| 3432 | return (typep); |
| 3433 | } |
| 3434 | |
| 3435 | /* |
| 3436 | |
| 3437 | LOCAL FUNCTION |
| 3438 | |
| 3439 | create_name -- allocate a fresh copy of a string on an obstack |
| 3440 | |
| 3441 | DESCRIPTION |
| 3442 | |
| 3443 | Given a pointer to a string and a pointer to an obstack, allocates |
| 3444 | a fresh copy of the string on the specified obstack. |
| 3445 | |
| 3446 | */ |
| 3447 | |
| 3448 | static char * |
| 3449 | create_name (name, obstackp) |
| 3450 | char *name; |
| 3451 | struct obstack *obstackp; |
| 3452 | { |
| 3453 | int length; |
| 3454 | char *newname; |
| 3455 | |
| 3456 | length = strlen (name) + 1; |
| 3457 | newname = (char *) obstack_alloc (obstackp, length); |
| 3458 | strcpy (newname, name); |
| 3459 | return (newname); |
| 3460 | } |
| 3461 | |
| 3462 | /* |
| 3463 | |
| 3464 | LOCAL FUNCTION |
| 3465 | |
| 3466 | basicdieinfo -- extract the minimal die info from raw die data |
| 3467 | |
| 3468 | SYNOPSIS |
| 3469 | |
| 3470 | void basicdieinfo (char *diep, struct dieinfo *dip, |
| 3471 | struct objfile *objfile) |
| 3472 | |
| 3473 | DESCRIPTION |
| 3474 | |
| 3475 | Given a pointer to raw DIE data, and a pointer to an instance of a |
| 3476 | die info structure, this function extracts the basic information |
| 3477 | from the DIE data required to continue processing this DIE, along |
| 3478 | with some bookkeeping information about the DIE. |
| 3479 | |
| 3480 | The information we absolutely must have includes the DIE tag, |
| 3481 | and the DIE length. If we need the sibling reference, then we |
| 3482 | will have to call completedieinfo() to process all the remaining |
| 3483 | DIE information. |
| 3484 | |
| 3485 | Note that since there is no guarantee that the data is properly |
| 3486 | aligned in memory for the type of access required (indirection |
| 3487 | through anything other than a char pointer), and there is no |
| 3488 | guarantee that it is in the same byte order as the gdb host, |
| 3489 | we call a function which deals with both alignment and byte |
| 3490 | swapping issues. Possibly inefficient, but quite portable. |
| 3491 | |
| 3492 | We also take care of some other basic things at this point, such |
| 3493 | as ensuring that the instance of the die info structure starts |
| 3494 | out completely zero'd and that curdie is initialized for use |
| 3495 | in error reporting if we have a problem with the current die. |
| 3496 | |
| 3497 | NOTES |
| 3498 | |
| 3499 | All DIE's must have at least a valid length, thus the minimum |
| 3500 | DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the |
| 3501 | DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they |
| 3502 | are forced to be TAG_padding DIES. |
| 3503 | |
| 3504 | Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying |
| 3505 | that if a padding DIE is used for alignment and the amount needed is |
| 3506 | less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big |
| 3507 | enough to align to the next alignment boundry. |
| 3508 | |
| 3509 | We do some basic sanity checking here, such as verifying that the |
| 3510 | length of the die would not cause it to overrun the recorded end of |
| 3511 | the buffer holding the DIE info. If we find a DIE that is either |
| 3512 | too small or too large, we force it's length to zero which should |
| 3513 | cause the caller to take appropriate action. |
| 3514 | */ |
| 3515 | |
| 3516 | static void |
| 3517 | basicdieinfo (dip, diep, objfile) |
| 3518 | struct dieinfo *dip; |
| 3519 | char *diep; |
| 3520 | struct objfile *objfile; |
| 3521 | { |
| 3522 | curdie = dip; |
| 3523 | memset (dip, 0, sizeof (struct dieinfo)); |
| 3524 | dip->die = diep; |
| 3525 | dip->die_ref = dbroff + (diep - dbbase); |
| 3526 | dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED, |
| 3527 | objfile); |
| 3528 | if ((dip->die_length < SIZEOF_DIE_LENGTH) || |
| 3529 | ((diep + dip->die_length) > (dbbase + dbsize))) |
| 3530 | { |
| 3531 | complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length); |
| 3532 | dip->die_length = 0; |
| 3533 | } |
| 3534 | else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG)) |
| 3535 | { |
| 3536 | dip->die_tag = TAG_padding; |
| 3537 | } |
| 3538 | else |
| 3539 | { |
| 3540 | diep += SIZEOF_DIE_LENGTH; |
| 3541 | dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED, |
| 3542 | objfile); |
| 3543 | } |
| 3544 | } |
| 3545 | |
| 3546 | /* |
| 3547 | |
| 3548 | LOCAL FUNCTION |
| 3549 | |
| 3550 | completedieinfo -- finish reading the information for a given DIE |
| 3551 | |
| 3552 | SYNOPSIS |
| 3553 | |
| 3554 | void completedieinfo (struct dieinfo *dip, struct objfile *objfile) |
| 3555 | |
| 3556 | DESCRIPTION |
| 3557 | |
| 3558 | Given a pointer to an already partially initialized die info structure, |
| 3559 | scan the raw DIE data and finish filling in the die info structure |
| 3560 | from the various attributes found. |
| 3561 | |
| 3562 | Note that since there is no guarantee that the data is properly |
| 3563 | aligned in memory for the type of access required (indirection |
| 3564 | through anything other than a char pointer), and there is no |
| 3565 | guarantee that it is in the same byte order as the gdb host, |
| 3566 | we call a function which deals with both alignment and byte |
| 3567 | swapping issues. Possibly inefficient, but quite portable. |
| 3568 | |
| 3569 | NOTES |
| 3570 | |
| 3571 | Each time we are called, we increment the diecount variable, which |
| 3572 | keeps an approximate count of the number of dies processed for |
| 3573 | each compilation unit. This information is presented to the user |
| 3574 | if the info_verbose flag is set. |
| 3575 | |
| 3576 | */ |
| 3577 | |
| 3578 | static void |
| 3579 | completedieinfo (dip, objfile) |
| 3580 | struct dieinfo *dip; |
| 3581 | struct objfile *objfile; |
| 3582 | { |
| 3583 | char *diep; /* Current pointer into raw DIE data */ |
| 3584 | char *end; /* Terminate DIE scan here */ |
| 3585 | unsigned short attr; /* Current attribute being scanned */ |
| 3586 | unsigned short form; /* Form of the attribute */ |
| 3587 | int nbytes; /* Size of next field to read */ |
| 3588 | |
| 3589 | diecount++; |
| 3590 | diep = dip->die; |
| 3591 | end = diep + dip->die_length; |
| 3592 | diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG; |
| 3593 | while (diep < end) |
| 3594 | { |
| 3595 | attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile); |
| 3596 | diep += SIZEOF_ATTRIBUTE; |
| 3597 | if ((nbytes = attribute_size (attr)) == -1) |
| 3598 | { |
| 3599 | complain (&unknown_attribute_length, DIE_ID, DIE_NAME); |
| 3600 | diep = end; |
| 3601 | continue; |
| 3602 | } |
| 3603 | switch (attr) |
| 3604 | { |
| 3605 | case AT_fund_type: |
| 3606 | dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED, |
| 3607 | objfile); |
| 3608 | break; |
| 3609 | case AT_ordering: |
| 3610 | dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED, |
| 3611 | objfile); |
| 3612 | break; |
| 3613 | case AT_bit_offset: |
| 3614 | dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED, |
| 3615 | objfile); |
| 3616 | break; |
| 3617 | case AT_sibling: |
| 3618 | dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED, |
| 3619 | objfile); |
| 3620 | break; |
| 3621 | case AT_stmt_list: |
| 3622 | dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED, |
| 3623 | objfile); |
| 3624 | dip->has_at_stmt_list = 1; |
| 3625 | break; |
| 3626 | case AT_low_pc: |
| 3627 | dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED, |
| 3628 | objfile); |
| 3629 | dip->at_low_pc += baseaddr; |
| 3630 | dip->has_at_low_pc = 1; |
| 3631 | break; |
| 3632 | case AT_high_pc: |
| 3633 | dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED, |
| 3634 | objfile); |
| 3635 | dip->at_high_pc += baseaddr; |
| 3636 | break; |
| 3637 | case AT_language: |
| 3638 | dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED, |
| 3639 | objfile); |
| 3640 | break; |
| 3641 | case AT_user_def_type: |
| 3642 | dip->at_user_def_type = target_to_host (diep, nbytes, |
| 3643 | GET_UNSIGNED, objfile); |
| 3644 | break; |
| 3645 | case AT_byte_size: |
| 3646 | dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED, |
| 3647 | objfile); |
| 3648 | dip->has_at_byte_size = 1; |
| 3649 | break; |
| 3650 | case AT_bit_size: |
| 3651 | dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED, |
| 3652 | objfile); |
| 3653 | break; |
| 3654 | case AT_member: |
| 3655 | dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED, |
| 3656 | objfile); |
| 3657 | break; |
| 3658 | case AT_discr: |
| 3659 | dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED, |
| 3660 | objfile); |
| 3661 | break; |
| 3662 | case AT_location: |
| 3663 | dip->at_location = diep; |
| 3664 | break; |
| 3665 | case AT_mod_fund_type: |
| 3666 | dip->at_mod_fund_type = diep; |
| 3667 | break; |
| 3668 | case AT_subscr_data: |
| 3669 | dip->at_subscr_data = diep; |
| 3670 | break; |
| 3671 | case AT_mod_u_d_type: |
| 3672 | dip->at_mod_u_d_type = diep; |
| 3673 | break; |
| 3674 | case AT_element_list: |
| 3675 | dip->at_element_list = diep; |
| 3676 | dip->short_element_list = 0; |
| 3677 | break; |
| 3678 | case AT_short_element_list: |
| 3679 | dip->at_element_list = diep; |
| 3680 | dip->short_element_list = 1; |
| 3681 | break; |
| 3682 | case AT_discr_value: |
| 3683 | dip->at_discr_value = diep; |
| 3684 | break; |
| 3685 | case AT_string_length: |
| 3686 | dip->at_string_length = diep; |
| 3687 | break; |
| 3688 | case AT_name: |
| 3689 | dip->at_name = diep; |
| 3690 | break; |
| 3691 | case AT_comp_dir: |
| 3692 | /* For now, ignore any "hostname:" portion, since gdb doesn't |
| 3693 | know how to deal with it. (FIXME). */ |
| 3694 | dip->at_comp_dir = strrchr (diep, ':'); |
| 3695 | if (dip->at_comp_dir != NULL) |
| 3696 | { |
| 3697 | dip->at_comp_dir++; |
| 3698 | } |
| 3699 | else |
| 3700 | { |
| 3701 | dip->at_comp_dir = diep; |
| 3702 | } |
| 3703 | break; |
| 3704 | case AT_producer: |
| 3705 | dip->at_producer = diep; |
| 3706 | break; |
| 3707 | case AT_start_scope: |
| 3708 | dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED, |
| 3709 | objfile); |
| 3710 | break; |
| 3711 | case AT_stride_size: |
| 3712 | dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED, |
| 3713 | objfile); |
| 3714 | break; |
| 3715 | case AT_src_info: |
| 3716 | dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED, |
| 3717 | objfile); |
| 3718 | break; |
| 3719 | case AT_prototyped: |
| 3720 | dip->at_prototyped = diep; |
| 3721 | break; |
| 3722 | default: |
| 3723 | /* Found an attribute that we are unprepared to handle. However |
| 3724 | it is specifically one of the design goals of DWARF that |
| 3725 | consumers should ignore unknown attributes. As long as the |
| 3726 | form is one that we recognize (so we know how to skip it), |
| 3727 | we can just ignore the unknown attribute. */ |
| 3728 | break; |
| 3729 | } |
| 3730 | form = FORM_FROM_ATTR (attr); |
| 3731 | switch (form) |
| 3732 | { |
| 3733 | case FORM_DATA2: |
| 3734 | diep += 2; |
| 3735 | break; |
| 3736 | case FORM_DATA4: |
| 3737 | case FORM_REF: |
| 3738 | diep += 4; |
| 3739 | break; |
| 3740 | case FORM_DATA8: |
| 3741 | diep += 8; |
| 3742 | break; |
| 3743 | case FORM_ADDR: |
| 3744 | diep += TARGET_FT_POINTER_SIZE (objfile); |
| 3745 | break; |
| 3746 | case FORM_BLOCK2: |
| 3747 | diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); |
| 3748 | break; |
| 3749 | case FORM_BLOCK4: |
| 3750 | diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); |
| 3751 | break; |
| 3752 | case FORM_STRING: |
| 3753 | diep += strlen (diep) + 1; |
| 3754 | break; |
| 3755 | default: |
| 3756 | complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form); |
| 3757 | diep = end; |
| 3758 | break; |
| 3759 | } |
| 3760 | } |
| 3761 | } |
| 3762 | |
| 3763 | /* |
| 3764 | |
| 3765 | LOCAL FUNCTION |
| 3766 | |
| 3767 | target_to_host -- swap in target data to host |
| 3768 | |
| 3769 | SYNOPSIS |
| 3770 | |
| 3771 | target_to_host (char *from, int nbytes, int signextend, |
| 3772 | struct objfile *objfile) |
| 3773 | |
| 3774 | DESCRIPTION |
| 3775 | |
| 3776 | Given pointer to data in target format in FROM, a byte count for |
| 3777 | the size of the data in NBYTES, a flag indicating whether or not |
| 3778 | the data is signed in SIGNEXTEND, and a pointer to the current |
| 3779 | objfile in OBJFILE, convert the data to host format and return |
| 3780 | the converted value. |
| 3781 | |
| 3782 | NOTES |
| 3783 | |
| 3784 | FIXME: If we read data that is known to be signed, and expect to |
| 3785 | use it as signed data, then we need to explicitly sign extend the |
| 3786 | result until the bfd library is able to do this for us. |
| 3787 | |
| 3788 | FIXME: Would a 32 bit target ever need an 8 byte result? |
| 3789 | |
| 3790 | */ |
| 3791 | |
| 3792 | static CORE_ADDR |
| 3793 | target_to_host (from, nbytes, signextend, objfile) |
| 3794 | char *from; |
| 3795 | int nbytes; |
| 3796 | int signextend; /* FIXME: Unused */ |
| 3797 | struct objfile *objfile; |
| 3798 | { |
| 3799 | CORE_ADDR rtnval; |
| 3800 | |
| 3801 | switch (nbytes) |
| 3802 | { |
| 3803 | case 8: |
| 3804 | rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from); |
| 3805 | break; |
| 3806 | case 4: |
| 3807 | rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from); |
| 3808 | break; |
| 3809 | case 2: |
| 3810 | rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from); |
| 3811 | break; |
| 3812 | case 1: |
| 3813 | rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from); |
| 3814 | break; |
| 3815 | default: |
| 3816 | complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes); |
| 3817 | rtnval = 0; |
| 3818 | break; |
| 3819 | } |
| 3820 | return (rtnval); |
| 3821 | } |
| 3822 | |
| 3823 | /* |
| 3824 | |
| 3825 | LOCAL FUNCTION |
| 3826 | |
| 3827 | attribute_size -- compute size of data for a DWARF attribute |
| 3828 | |
| 3829 | SYNOPSIS |
| 3830 | |
| 3831 | static int attribute_size (unsigned int attr) |
| 3832 | |
| 3833 | DESCRIPTION |
| 3834 | |
| 3835 | Given a DWARF attribute in ATTR, compute the size of the first |
| 3836 | piece of data associated with this attribute and return that |
| 3837 | size. |
| 3838 | |
| 3839 | Returns -1 for unrecognized attributes. |
| 3840 | |
| 3841 | */ |
| 3842 | |
| 3843 | static int |
| 3844 | attribute_size (attr) |
| 3845 | unsigned int attr; |
| 3846 | { |
| 3847 | int nbytes; /* Size of next data for this attribute */ |
| 3848 | unsigned short form; /* Form of the attribute */ |
| 3849 | |
| 3850 | form = FORM_FROM_ATTR (attr); |
| 3851 | switch (form) |
| 3852 | { |
| 3853 | case FORM_STRING: /* A variable length field is next */ |
| 3854 | nbytes = 0; |
| 3855 | break; |
| 3856 | case FORM_DATA2: /* Next 2 byte field is the data itself */ |
| 3857 | case FORM_BLOCK2: /* Next 2 byte field is a block length */ |
| 3858 | nbytes = 2; |
| 3859 | break; |
| 3860 | case FORM_DATA4: /* Next 4 byte field is the data itself */ |
| 3861 | case FORM_BLOCK4: /* Next 4 byte field is a block length */ |
| 3862 | case FORM_REF: /* Next 4 byte field is a DIE offset */ |
| 3863 | nbytes = 4; |
| 3864 | break; |
| 3865 | case FORM_DATA8: /* Next 8 byte field is the data itself */ |
| 3866 | nbytes = 8; |
| 3867 | break; |
| 3868 | case FORM_ADDR: /* Next field size is target sizeof(void *) */ |
| 3869 | nbytes = TARGET_FT_POINTER_SIZE (objfile); |
| 3870 | break; |
| 3871 | default: |
| 3872 | complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form); |
| 3873 | nbytes = -1; |
| 3874 | break; |
| 3875 | } |
| 3876 | return (nbytes); |
| 3877 | } |