| 1 | /* Read ELF (Executable and Linking Format) object files for GDB. |
| 2 | |
| 3 | Copyright (C) 1991-2014 Free Software Foundation, Inc. |
| 4 | |
| 5 | Written by Fred Fish at Cygnus Support. |
| 6 | |
| 7 | This file is part of GDB. |
| 8 | |
| 9 | This program is free software; you can redistribute it and/or modify |
| 10 | it under the terms of the GNU General Public License as published by |
| 11 | the Free Software Foundation; either version 3 of the License, or |
| 12 | (at your option) any later version. |
| 13 | |
| 14 | This program is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | GNU General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU General Public License |
| 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| 21 | |
| 22 | #include "defs.h" |
| 23 | #include "bfd.h" |
| 24 | #include <string.h> |
| 25 | #include "elf-bfd.h" |
| 26 | #include "elf/common.h" |
| 27 | #include "elf/internal.h" |
| 28 | #include "elf/mips.h" |
| 29 | #include "symtab.h" |
| 30 | #include "symfile.h" |
| 31 | #include "objfiles.h" |
| 32 | #include "buildsym.h" |
| 33 | #include "stabsread.h" |
| 34 | #include "gdb-stabs.h" |
| 35 | #include "complaints.h" |
| 36 | #include "demangle.h" |
| 37 | #include "psympriv.h" |
| 38 | #include "filenames.h" |
| 39 | #include "probe.h" |
| 40 | #include "arch-utils.h" |
| 41 | #include "gdbtypes.h" |
| 42 | #include "value.h" |
| 43 | #include "infcall.h" |
| 44 | #include "gdbthread.h" |
| 45 | #include "regcache.h" |
| 46 | #include "bcache.h" |
| 47 | #include "gdb_bfd.h" |
| 48 | #include "build-id.h" |
| 49 | |
| 50 | extern void _initialize_elfread (void); |
| 51 | |
| 52 | /* Forward declarations. */ |
| 53 | static const struct sym_fns elf_sym_fns_gdb_index; |
| 54 | static const struct sym_fns elf_sym_fns_lazy_psyms; |
| 55 | |
| 56 | /* The struct elfinfo is available only during ELF symbol table and |
| 57 | psymtab reading. It is destroyed at the completion of psymtab-reading. |
| 58 | It's local to elf_symfile_read. */ |
| 59 | |
| 60 | struct elfinfo |
| 61 | { |
| 62 | asection *stabsect; /* Section pointer for .stab section */ |
| 63 | asection *mdebugsect; /* Section pointer for .mdebug section */ |
| 64 | }; |
| 65 | |
| 66 | /* Per-BFD data for probe info. */ |
| 67 | |
| 68 | static const struct bfd_data *probe_key = NULL; |
| 69 | |
| 70 | static void free_elfinfo (void *); |
| 71 | |
| 72 | /* Minimal symbols located at the GOT entries for .plt - that is the real |
| 73 | pointer where the given entry will jump to. It gets updated by the real |
| 74 | function address during lazy ld.so resolving in the inferior. These |
| 75 | minimal symbols are indexed for <tab>-completion. */ |
| 76 | |
| 77 | #define SYMBOL_GOT_PLT_SUFFIX "@got.plt" |
| 78 | |
| 79 | /* Locate the segments in ABFD. */ |
| 80 | |
| 81 | static struct symfile_segment_data * |
| 82 | elf_symfile_segments (bfd *abfd) |
| 83 | { |
| 84 | Elf_Internal_Phdr *phdrs, **segments; |
| 85 | long phdrs_size; |
| 86 | int num_phdrs, num_segments, num_sections, i; |
| 87 | asection *sect; |
| 88 | struct symfile_segment_data *data; |
| 89 | |
| 90 | phdrs_size = bfd_get_elf_phdr_upper_bound (abfd); |
| 91 | if (phdrs_size == -1) |
| 92 | return NULL; |
| 93 | |
| 94 | phdrs = alloca (phdrs_size); |
| 95 | num_phdrs = bfd_get_elf_phdrs (abfd, phdrs); |
| 96 | if (num_phdrs == -1) |
| 97 | return NULL; |
| 98 | |
| 99 | num_segments = 0; |
| 100 | segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs); |
| 101 | for (i = 0; i < num_phdrs; i++) |
| 102 | if (phdrs[i].p_type == PT_LOAD) |
| 103 | segments[num_segments++] = &phdrs[i]; |
| 104 | |
| 105 | if (num_segments == 0) |
| 106 | return NULL; |
| 107 | |
| 108 | data = XCNEW (struct symfile_segment_data); |
| 109 | data->num_segments = num_segments; |
| 110 | data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments); |
| 111 | data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments); |
| 112 | |
| 113 | for (i = 0; i < num_segments; i++) |
| 114 | { |
| 115 | data->segment_bases[i] = segments[i]->p_vaddr; |
| 116 | data->segment_sizes[i] = segments[i]->p_memsz; |
| 117 | } |
| 118 | |
| 119 | num_sections = bfd_count_sections (abfd); |
| 120 | data->segment_info = XCNEWVEC (int, num_sections); |
| 121 | |
| 122 | for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next) |
| 123 | { |
| 124 | int j; |
| 125 | CORE_ADDR vma; |
| 126 | |
| 127 | if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) |
| 128 | continue; |
| 129 | |
| 130 | vma = bfd_get_section_vma (abfd, sect); |
| 131 | |
| 132 | for (j = 0; j < num_segments; j++) |
| 133 | if (segments[j]->p_memsz > 0 |
| 134 | && vma >= segments[j]->p_vaddr |
| 135 | && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz) |
| 136 | { |
| 137 | data->segment_info[i] = j + 1; |
| 138 | break; |
| 139 | } |
| 140 | |
| 141 | /* We should have found a segment for every non-empty section. |
| 142 | If we haven't, we will not relocate this section by any |
| 143 | offsets we apply to the segments. As an exception, do not |
| 144 | warn about SHT_NOBITS sections; in normal ELF execution |
| 145 | environments, SHT_NOBITS means zero-initialized and belongs |
| 146 | in a segment, but in no-OS environments some tools (e.g. ARM |
| 147 | RealView) use SHT_NOBITS for uninitialized data. Since it is |
| 148 | uninitialized, it doesn't need a program header. Such |
| 149 | binaries are not relocatable. */ |
| 150 | if (bfd_get_section_size (sect) > 0 && j == num_segments |
| 151 | && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0) |
| 152 | warning (_("Loadable section \"%s\" outside of ELF segments"), |
| 153 | bfd_section_name (abfd, sect)); |
| 154 | } |
| 155 | |
| 156 | return data; |
| 157 | } |
| 158 | |
| 159 | /* We are called once per section from elf_symfile_read. We |
| 160 | need to examine each section we are passed, check to see |
| 161 | if it is something we are interested in processing, and |
| 162 | if so, stash away some access information for the section. |
| 163 | |
| 164 | For now we recognize the dwarf debug information sections and |
| 165 | line number sections from matching their section names. The |
| 166 | ELF definition is no real help here since it has no direct |
| 167 | knowledge of DWARF (by design, so any debugging format can be |
| 168 | used). |
| 169 | |
| 170 | We also recognize the ".stab" sections used by the Sun compilers |
| 171 | released with Solaris 2. |
| 172 | |
| 173 | FIXME: The section names should not be hardwired strings (what |
| 174 | should they be? I don't think most object file formats have enough |
| 175 | section flags to specify what kind of debug section it is. |
| 176 | -kingdon). */ |
| 177 | |
| 178 | static void |
| 179 | elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip) |
| 180 | { |
| 181 | struct elfinfo *ei; |
| 182 | |
| 183 | ei = (struct elfinfo *) eip; |
| 184 | if (strcmp (sectp->name, ".stab") == 0) |
| 185 | { |
| 186 | ei->stabsect = sectp; |
| 187 | } |
| 188 | else if (strcmp (sectp->name, ".mdebug") == 0) |
| 189 | { |
| 190 | ei->mdebugsect = sectp; |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | static struct minimal_symbol * |
| 195 | record_minimal_symbol (const char *name, int name_len, int copy_name, |
| 196 | CORE_ADDR address, |
| 197 | enum minimal_symbol_type ms_type, |
| 198 | asection *bfd_section, struct objfile *objfile) |
| 199 | { |
| 200 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| 201 | |
| 202 | if (ms_type == mst_text || ms_type == mst_file_text |
| 203 | || ms_type == mst_text_gnu_ifunc) |
| 204 | address = gdbarch_addr_bits_remove (gdbarch, address); |
| 205 | |
| 206 | return prim_record_minimal_symbol_full (name, name_len, copy_name, address, |
| 207 | ms_type, |
| 208 | gdb_bfd_section_index (objfile->obfd, |
| 209 | bfd_section), |
| 210 | objfile); |
| 211 | } |
| 212 | |
| 213 | /* Read the symbol table of an ELF file. |
| 214 | |
| 215 | Given an objfile, a symbol table, and a flag indicating whether the |
| 216 | symbol table contains regular, dynamic, or synthetic symbols, add all |
| 217 | the global function and data symbols to the minimal symbol table. |
| 218 | |
| 219 | In stabs-in-ELF, as implemented by Sun, there are some local symbols |
| 220 | defined in the ELF symbol table, which can be used to locate |
| 221 | the beginnings of sections from each ".o" file that was linked to |
| 222 | form the executable objfile. We gather any such info and record it |
| 223 | in data structures hung off the objfile's private data. */ |
| 224 | |
| 225 | #define ST_REGULAR 0 |
| 226 | #define ST_DYNAMIC 1 |
| 227 | #define ST_SYNTHETIC 2 |
| 228 | |
| 229 | static void |
| 230 | elf_symtab_read (struct objfile *objfile, int type, |
| 231 | long number_of_symbols, asymbol **symbol_table, |
| 232 | int copy_names) |
| 233 | { |
| 234 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| 235 | asymbol *sym; |
| 236 | long i; |
| 237 | CORE_ADDR symaddr; |
| 238 | CORE_ADDR offset; |
| 239 | enum minimal_symbol_type ms_type; |
| 240 | /* If sectinfo is nonNULL, it contains section info that should end up |
| 241 | filed in the objfile. */ |
| 242 | struct stab_section_info *sectinfo = NULL; |
| 243 | /* If filesym is nonzero, it points to a file symbol, but we haven't |
| 244 | seen any section info for it yet. */ |
| 245 | asymbol *filesym = 0; |
| 246 | /* Name of filesym. This is either a constant string or is saved on |
| 247 | the objfile's filename cache. */ |
| 248 | const char *filesymname = ""; |
| 249 | struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile); |
| 250 | int stripped = (bfd_get_symcount (objfile->obfd) == 0); |
| 251 | |
| 252 | for (i = 0; i < number_of_symbols; i++) |
| 253 | { |
| 254 | sym = symbol_table[i]; |
| 255 | if (sym->name == NULL || *sym->name == '\0') |
| 256 | { |
| 257 | /* Skip names that don't exist (shouldn't happen), or names |
| 258 | that are null strings (may happen). */ |
| 259 | continue; |
| 260 | } |
| 261 | |
| 262 | /* Skip "special" symbols, e.g. ARM mapping symbols. These are |
| 263 | symbols which do not correspond to objects in the symbol table, |
| 264 | but have some other target-specific meaning. */ |
| 265 | if (bfd_is_target_special_symbol (objfile->obfd, sym)) |
| 266 | { |
| 267 | if (gdbarch_record_special_symbol_p (gdbarch)) |
| 268 | gdbarch_record_special_symbol (gdbarch, objfile, sym); |
| 269 | continue; |
| 270 | } |
| 271 | |
| 272 | offset = ANOFFSET (objfile->section_offsets, |
| 273 | gdb_bfd_section_index (objfile->obfd, sym->section)); |
| 274 | if (type == ST_DYNAMIC |
| 275 | && sym->section == bfd_und_section_ptr |
| 276 | && (sym->flags & BSF_FUNCTION)) |
| 277 | { |
| 278 | struct minimal_symbol *msym; |
| 279 | bfd *abfd = objfile->obfd; |
| 280 | asection *sect; |
| 281 | |
| 282 | /* Symbol is a reference to a function defined in |
| 283 | a shared library. |
| 284 | If its value is non zero then it is usually the address |
| 285 | of the corresponding entry in the procedure linkage table, |
| 286 | plus the desired section offset. |
| 287 | If its value is zero then the dynamic linker has to resolve |
| 288 | the symbol. We are unable to find any meaningful address |
| 289 | for this symbol in the executable file, so we skip it. */ |
| 290 | symaddr = sym->value; |
| 291 | if (symaddr == 0) |
| 292 | continue; |
| 293 | |
| 294 | /* sym->section is the undefined section. However, we want to |
| 295 | record the section where the PLT stub resides with the |
| 296 | minimal symbol. Search the section table for the one that |
| 297 | covers the stub's address. */ |
| 298 | for (sect = abfd->sections; sect != NULL; sect = sect->next) |
| 299 | { |
| 300 | if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) |
| 301 | continue; |
| 302 | |
| 303 | if (symaddr >= bfd_get_section_vma (abfd, sect) |
| 304 | && symaddr < bfd_get_section_vma (abfd, sect) |
| 305 | + bfd_get_section_size (sect)) |
| 306 | break; |
| 307 | } |
| 308 | if (!sect) |
| 309 | continue; |
| 310 | |
| 311 | /* On ia64-hpux, we have discovered that the system linker |
| 312 | adds undefined symbols with nonzero addresses that cannot |
| 313 | be right (their address points inside the code of another |
| 314 | function in the .text section). This creates problems |
| 315 | when trying to determine which symbol corresponds to |
| 316 | a given address. |
| 317 | |
| 318 | We try to detect those buggy symbols by checking which |
| 319 | section we think they correspond to. Normally, PLT symbols |
| 320 | are stored inside their own section, and the typical name |
| 321 | for that section is ".plt". So, if there is a ".plt" |
| 322 | section, and yet the section name of our symbol does not |
| 323 | start with ".plt", we ignore that symbol. */ |
| 324 | if (strncmp (sect->name, ".plt", 4) != 0 |
| 325 | && bfd_get_section_by_name (abfd, ".plt") != NULL) |
| 326 | continue; |
| 327 | |
| 328 | msym = record_minimal_symbol |
| 329 | (sym->name, strlen (sym->name), copy_names, |
| 330 | symaddr, mst_solib_trampoline, sect, objfile); |
| 331 | if (msym != NULL) |
| 332 | msym->filename = filesymname; |
| 333 | continue; |
| 334 | } |
| 335 | |
| 336 | /* If it is a nonstripped executable, do not enter dynamic |
| 337 | symbols, as the dynamic symbol table is usually a subset |
| 338 | of the main symbol table. */ |
| 339 | if (type == ST_DYNAMIC && !stripped) |
| 340 | continue; |
| 341 | if (sym->flags & BSF_FILE) |
| 342 | { |
| 343 | /* STT_FILE debugging symbol that helps stabs-in-elf debugging. |
| 344 | Chain any old one onto the objfile; remember new sym. */ |
| 345 | if (sectinfo != NULL) |
| 346 | { |
| 347 | sectinfo->next = dbx->stab_section_info; |
| 348 | dbx->stab_section_info = sectinfo; |
| 349 | sectinfo = NULL; |
| 350 | } |
| 351 | filesym = sym; |
| 352 | filesymname = bcache (filesym->name, strlen (filesym->name) + 1, |
| 353 | objfile->per_bfd->filename_cache); |
| 354 | } |
| 355 | else if (sym->flags & BSF_SECTION_SYM) |
| 356 | continue; |
| 357 | else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK |
| 358 | | BSF_GNU_UNIQUE)) |
| 359 | { |
| 360 | struct minimal_symbol *msym; |
| 361 | |
| 362 | /* Select global/local/weak symbols. Note that bfd puts abs |
| 363 | symbols in their own section, so all symbols we are |
| 364 | interested in will have a section. */ |
| 365 | /* Bfd symbols are section relative. */ |
| 366 | symaddr = sym->value + sym->section->vma; |
| 367 | /* For non-absolute symbols, use the type of the section |
| 368 | they are relative to, to intuit text/data. Bfd provides |
| 369 | no way of figuring this out for absolute symbols. */ |
| 370 | if (sym->section == bfd_abs_section_ptr) |
| 371 | { |
| 372 | /* This is a hack to get the minimal symbol type |
| 373 | right for Irix 5, which has absolute addresses |
| 374 | with special section indices for dynamic symbols. |
| 375 | |
| 376 | NOTE: uweigand-20071112: Synthetic symbols do not |
| 377 | have an ELF-private part, so do not touch those. */ |
| 378 | unsigned int shndx = type == ST_SYNTHETIC ? 0 : |
| 379 | ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx; |
| 380 | |
| 381 | switch (shndx) |
| 382 | { |
| 383 | case SHN_MIPS_TEXT: |
| 384 | ms_type = mst_text; |
| 385 | break; |
| 386 | case SHN_MIPS_DATA: |
| 387 | ms_type = mst_data; |
| 388 | break; |
| 389 | case SHN_MIPS_ACOMMON: |
| 390 | ms_type = mst_bss; |
| 391 | break; |
| 392 | default: |
| 393 | ms_type = mst_abs; |
| 394 | } |
| 395 | |
| 396 | /* If it is an Irix dynamic symbol, skip section name |
| 397 | symbols, relocate all others by section offset. */ |
| 398 | if (ms_type != mst_abs) |
| 399 | { |
| 400 | if (sym->name[0] == '.') |
| 401 | continue; |
| 402 | } |
| 403 | } |
| 404 | else if (sym->section->flags & SEC_CODE) |
| 405 | { |
| 406 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) |
| 407 | { |
| 408 | if (sym->flags & BSF_GNU_INDIRECT_FUNCTION) |
| 409 | ms_type = mst_text_gnu_ifunc; |
| 410 | else |
| 411 | ms_type = mst_text; |
| 412 | } |
| 413 | /* The BSF_SYNTHETIC check is there to omit ppc64 function |
| 414 | descriptors mistaken for static functions starting with 'L'. |
| 415 | */ |
| 416 | else if ((sym->name[0] == '.' && sym->name[1] == 'L' |
| 417 | && (sym->flags & BSF_SYNTHETIC) == 0) |
| 418 | || ((sym->flags & BSF_LOCAL) |
| 419 | && sym->name[0] == '$' |
| 420 | && sym->name[1] == 'L')) |
| 421 | /* Looks like a compiler-generated label. Skip |
| 422 | it. The assembler should be skipping these (to |
| 423 | keep executables small), but apparently with |
| 424 | gcc on the (deleted) delta m88k SVR4, it loses. |
| 425 | So to have us check too should be harmless (but |
| 426 | I encourage people to fix this in the assembler |
| 427 | instead of adding checks here). */ |
| 428 | continue; |
| 429 | else |
| 430 | { |
| 431 | ms_type = mst_file_text; |
| 432 | } |
| 433 | } |
| 434 | else if (sym->section->flags & SEC_ALLOC) |
| 435 | { |
| 436 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) |
| 437 | { |
| 438 | if (sym->section->flags & SEC_LOAD) |
| 439 | { |
| 440 | ms_type = mst_data; |
| 441 | } |
| 442 | else |
| 443 | { |
| 444 | ms_type = mst_bss; |
| 445 | } |
| 446 | } |
| 447 | else if (sym->flags & BSF_LOCAL) |
| 448 | { |
| 449 | /* Named Local variable in a Data section. |
| 450 | Check its name for stabs-in-elf. */ |
| 451 | int special_local_sect; |
| 452 | |
| 453 | if (strcmp ("Bbss.bss", sym->name) == 0) |
| 454 | special_local_sect = SECT_OFF_BSS (objfile); |
| 455 | else if (strcmp ("Ddata.data", sym->name) == 0) |
| 456 | special_local_sect = SECT_OFF_DATA (objfile); |
| 457 | else if (strcmp ("Drodata.rodata", sym->name) == 0) |
| 458 | special_local_sect = SECT_OFF_RODATA (objfile); |
| 459 | else |
| 460 | special_local_sect = -1; |
| 461 | if (special_local_sect >= 0) |
| 462 | { |
| 463 | /* Found a special local symbol. Allocate a |
| 464 | sectinfo, if needed, and fill it in. */ |
| 465 | if (sectinfo == NULL) |
| 466 | { |
| 467 | int max_index; |
| 468 | size_t size; |
| 469 | |
| 470 | max_index = SECT_OFF_BSS (objfile); |
| 471 | if (objfile->sect_index_data > max_index) |
| 472 | max_index = objfile->sect_index_data; |
| 473 | if (objfile->sect_index_rodata > max_index) |
| 474 | max_index = objfile->sect_index_rodata; |
| 475 | |
| 476 | /* max_index is the largest index we'll |
| 477 | use into this array, so we must |
| 478 | allocate max_index+1 elements for it. |
| 479 | However, 'struct stab_section_info' |
| 480 | already includes one element, so we |
| 481 | need to allocate max_index aadditional |
| 482 | elements. */ |
| 483 | size = (sizeof (struct stab_section_info) |
| 484 | + (sizeof (CORE_ADDR) * max_index)); |
| 485 | sectinfo = (struct stab_section_info *) |
| 486 | xmalloc (size); |
| 487 | memset (sectinfo, 0, size); |
| 488 | sectinfo->num_sections = max_index; |
| 489 | if (filesym == NULL) |
| 490 | { |
| 491 | complaint (&symfile_complaints, |
| 492 | _("elf/stab section information %s " |
| 493 | "without a preceding file symbol"), |
| 494 | sym->name); |
| 495 | } |
| 496 | else |
| 497 | { |
| 498 | sectinfo->filename = |
| 499 | (char *) filesym->name; |
| 500 | } |
| 501 | } |
| 502 | if (sectinfo->sections[special_local_sect] != 0) |
| 503 | complaint (&symfile_complaints, |
| 504 | _("duplicated elf/stab section " |
| 505 | "information for %s"), |
| 506 | sectinfo->filename); |
| 507 | /* BFD symbols are section relative. */ |
| 508 | symaddr = sym->value + sym->section->vma; |
| 509 | /* Relocate non-absolute symbols by the |
| 510 | section offset. */ |
| 511 | if (sym->section != bfd_abs_section_ptr) |
| 512 | symaddr += offset; |
| 513 | sectinfo->sections[special_local_sect] = symaddr; |
| 514 | /* The special local symbols don't go in the |
| 515 | minimal symbol table, so ignore this one. */ |
| 516 | continue; |
| 517 | } |
| 518 | /* Not a special stabs-in-elf symbol, do regular |
| 519 | symbol processing. */ |
| 520 | if (sym->section->flags & SEC_LOAD) |
| 521 | { |
| 522 | ms_type = mst_file_data; |
| 523 | } |
| 524 | else |
| 525 | { |
| 526 | ms_type = mst_file_bss; |
| 527 | } |
| 528 | } |
| 529 | else |
| 530 | { |
| 531 | ms_type = mst_unknown; |
| 532 | } |
| 533 | } |
| 534 | else |
| 535 | { |
| 536 | /* FIXME: Solaris2 shared libraries include lots of |
| 537 | odd "absolute" and "undefined" symbols, that play |
| 538 | hob with actions like finding what function the PC |
| 539 | is in. Ignore them if they aren't text, data, or bss. */ |
| 540 | /* ms_type = mst_unknown; */ |
| 541 | continue; /* Skip this symbol. */ |
| 542 | } |
| 543 | msym = record_minimal_symbol |
| 544 | (sym->name, strlen (sym->name), copy_names, symaddr, |
| 545 | ms_type, sym->section, objfile); |
| 546 | |
| 547 | if (msym) |
| 548 | { |
| 549 | /* NOTE: uweigand-20071112: A synthetic symbol does not have an |
| 550 | ELF-private part. */ |
| 551 | if (type != ST_SYNTHETIC) |
| 552 | { |
| 553 | /* Pass symbol size field in via BFD. FIXME!!! */ |
| 554 | elf_symbol_type *elf_sym = (elf_symbol_type *) sym; |
| 555 | SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size); |
| 556 | } |
| 557 | |
| 558 | msym->filename = filesymname; |
| 559 | gdbarch_elf_make_msymbol_special (gdbarch, sym, msym); |
| 560 | } |
| 561 | |
| 562 | /* If we see a default versioned symbol, install it under |
| 563 | its version-less name. */ |
| 564 | if (msym != NULL) |
| 565 | { |
| 566 | const char *atsign = strchr (sym->name, '@'); |
| 567 | |
| 568 | if (atsign != NULL && atsign[1] == '@' && atsign > sym->name) |
| 569 | { |
| 570 | int len = atsign - sym->name; |
| 571 | |
| 572 | record_minimal_symbol (sym->name, len, 1, symaddr, |
| 573 | ms_type, sym->section, objfile); |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | /* For @plt symbols, also record a trampoline to the |
| 578 | destination symbol. The @plt symbol will be used in |
| 579 | disassembly, and the trampoline will be used when we are |
| 580 | trying to find the target. */ |
| 581 | if (msym && ms_type == mst_text && type == ST_SYNTHETIC) |
| 582 | { |
| 583 | int len = strlen (sym->name); |
| 584 | |
| 585 | if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0) |
| 586 | { |
| 587 | struct minimal_symbol *mtramp; |
| 588 | |
| 589 | mtramp = record_minimal_symbol (sym->name, len - 4, 1, |
| 590 | symaddr, |
| 591 | mst_solib_trampoline, |
| 592 | sym->section, objfile); |
| 593 | if (mtramp) |
| 594 | { |
| 595 | SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym)); |
| 596 | mtramp->created_by_gdb = 1; |
| 597 | mtramp->filename = filesymname; |
| 598 | gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp); |
| 599 | } |
| 600 | } |
| 601 | } |
| 602 | } |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX) |
| 607 | for later look ups of which function to call when user requests |
| 608 | a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target |
| 609 | library defining `function' we cannot yet know while reading OBJFILE which |
| 610 | of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later |
| 611 | DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */ |
| 612 | |
| 613 | static void |
| 614 | elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table) |
| 615 | { |
| 616 | bfd *obfd = objfile->obfd; |
| 617 | const struct elf_backend_data *bed = get_elf_backend_data (obfd); |
| 618 | asection *plt, *relplt, *got_plt; |
| 619 | int plt_elf_idx; |
| 620 | bfd_size_type reloc_count, reloc; |
| 621 | char *string_buffer = NULL; |
| 622 | size_t string_buffer_size = 0; |
| 623 | struct cleanup *back_to; |
| 624 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| 625 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; |
| 626 | size_t ptr_size = TYPE_LENGTH (ptr_type); |
| 627 | |
| 628 | if (objfile->separate_debug_objfile_backlink) |
| 629 | return; |
| 630 | |
| 631 | plt = bfd_get_section_by_name (obfd, ".plt"); |
| 632 | if (plt == NULL) |
| 633 | return; |
| 634 | plt_elf_idx = elf_section_data (plt)->this_idx; |
| 635 | |
| 636 | got_plt = bfd_get_section_by_name (obfd, ".got.plt"); |
| 637 | if (got_plt == NULL) |
| 638 | { |
| 639 | /* For platforms where there is no separate .got.plt. */ |
| 640 | got_plt = bfd_get_section_by_name (obfd, ".got"); |
| 641 | if (got_plt == NULL) |
| 642 | return; |
| 643 | } |
| 644 | |
| 645 | /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */ |
| 646 | for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next) |
| 647 | if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx |
| 648 | && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL |
| 649 | || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA)) |
| 650 | break; |
| 651 | if (relplt == NULL) |
| 652 | return; |
| 653 | |
| 654 | if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE)) |
| 655 | return; |
| 656 | |
| 657 | back_to = make_cleanup (free_current_contents, &string_buffer); |
| 658 | |
| 659 | reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize; |
| 660 | for (reloc = 0; reloc < reloc_count; reloc++) |
| 661 | { |
| 662 | const char *name; |
| 663 | struct minimal_symbol *msym; |
| 664 | CORE_ADDR address; |
| 665 | const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); |
| 666 | size_t name_len; |
| 667 | |
| 668 | name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr); |
| 669 | name_len = strlen (name); |
| 670 | address = relplt->relocation[reloc].address; |
| 671 | |
| 672 | /* Does the pointer reside in the .got.plt section? */ |
| 673 | if (!(bfd_get_section_vma (obfd, got_plt) <= address |
| 674 | && address < bfd_get_section_vma (obfd, got_plt) |
| 675 | + bfd_get_section_size (got_plt))) |
| 676 | continue; |
| 677 | |
| 678 | /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in |
| 679 | OBJFILE the symbol is undefined and the objfile having NAME defined |
| 680 | may not yet have been loaded. */ |
| 681 | |
| 682 | if (string_buffer_size < name_len + got_suffix_len + 1) |
| 683 | { |
| 684 | string_buffer_size = 2 * (name_len + got_suffix_len); |
| 685 | string_buffer = xrealloc (string_buffer, string_buffer_size); |
| 686 | } |
| 687 | memcpy (string_buffer, name, name_len); |
| 688 | memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX, |
| 689 | got_suffix_len + 1); |
| 690 | |
| 691 | msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len, |
| 692 | 1, address, mst_slot_got_plt, got_plt, |
| 693 | objfile); |
| 694 | if (msym) |
| 695 | SET_MSYMBOL_SIZE (msym, ptr_size); |
| 696 | } |
| 697 | |
| 698 | do_cleanups (back_to); |
| 699 | } |
| 700 | |
| 701 | /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */ |
| 702 | |
| 703 | static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data; |
| 704 | |
| 705 | /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */ |
| 706 | |
| 707 | struct elf_gnu_ifunc_cache |
| 708 | { |
| 709 | /* This is always a function entry address, not a function descriptor. */ |
| 710 | CORE_ADDR addr; |
| 711 | |
| 712 | char name[1]; |
| 713 | }; |
| 714 | |
| 715 | /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */ |
| 716 | |
| 717 | static hashval_t |
| 718 | elf_gnu_ifunc_cache_hash (const void *a_voidp) |
| 719 | { |
| 720 | const struct elf_gnu_ifunc_cache *a = a_voidp; |
| 721 | |
| 722 | return htab_hash_string (a->name); |
| 723 | } |
| 724 | |
| 725 | /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */ |
| 726 | |
| 727 | static int |
| 728 | elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp) |
| 729 | { |
| 730 | const struct elf_gnu_ifunc_cache *a = a_voidp; |
| 731 | const struct elf_gnu_ifunc_cache *b = b_voidp; |
| 732 | |
| 733 | return strcmp (a->name, b->name) == 0; |
| 734 | } |
| 735 | |
| 736 | /* Record the target function address of a STT_GNU_IFUNC function NAME is the |
| 737 | function entry address ADDR. Return 1 if NAME and ADDR are considered as |
| 738 | valid and therefore they were successfully recorded, return 0 otherwise. |
| 739 | |
| 740 | Function does not expect a duplicate entry. Use |
| 741 | elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already |
| 742 | exists. */ |
| 743 | |
| 744 | static int |
| 745 | elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr) |
| 746 | { |
| 747 | struct bound_minimal_symbol msym; |
| 748 | asection *sect; |
| 749 | struct objfile *objfile; |
| 750 | htab_t htab; |
| 751 | struct elf_gnu_ifunc_cache entry_local, *entry_p; |
| 752 | void **slot; |
| 753 | |
| 754 | msym = lookup_minimal_symbol_by_pc (addr); |
| 755 | if (msym.minsym == NULL) |
| 756 | return 0; |
| 757 | if (BMSYMBOL_VALUE_ADDRESS (msym) != addr) |
| 758 | return 0; |
| 759 | /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */ |
| 760 | sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section; |
| 761 | objfile = msym.objfile; |
| 762 | |
| 763 | /* If .plt jumps back to .plt the symbol is still deferred for later |
| 764 | resolution and it has no use for GDB. Besides ".text" this symbol can |
| 765 | reside also in ".opd" for ppc64 function descriptor. */ |
| 766 | if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0) |
| 767 | return 0; |
| 768 | |
| 769 | htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data); |
| 770 | if (htab == NULL) |
| 771 | { |
| 772 | htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash, |
| 773 | elf_gnu_ifunc_cache_eq, |
| 774 | NULL, &objfile->objfile_obstack, |
| 775 | hashtab_obstack_allocate, |
| 776 | dummy_obstack_deallocate); |
| 777 | set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab); |
| 778 | } |
| 779 | |
| 780 | entry_local.addr = addr; |
| 781 | obstack_grow (&objfile->objfile_obstack, &entry_local, |
| 782 | offsetof (struct elf_gnu_ifunc_cache, name)); |
| 783 | obstack_grow_str0 (&objfile->objfile_obstack, name); |
| 784 | entry_p = obstack_finish (&objfile->objfile_obstack); |
| 785 | |
| 786 | slot = htab_find_slot (htab, entry_p, INSERT); |
| 787 | if (*slot != NULL) |
| 788 | { |
| 789 | struct elf_gnu_ifunc_cache *entry_found_p = *slot; |
| 790 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| 791 | |
| 792 | if (entry_found_p->addr != addr) |
| 793 | { |
| 794 | /* This case indicates buggy inferior program, the resolved address |
| 795 | should never change. */ |
| 796 | |
| 797 | warning (_("gnu-indirect-function \"%s\" has changed its resolved " |
| 798 | "function_address from %s to %s"), |
| 799 | name, paddress (gdbarch, entry_found_p->addr), |
| 800 | paddress (gdbarch, addr)); |
| 801 | } |
| 802 | |
| 803 | /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */ |
| 804 | } |
| 805 | *slot = entry_p; |
| 806 | |
| 807 | return 1; |
| 808 | } |
| 809 | |
| 810 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC |
| 811 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P |
| 812 | is not NULL) and the function returns 1. It returns 0 otherwise. |
| 813 | |
| 814 | Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this |
| 815 | function. */ |
| 816 | |
| 817 | static int |
| 818 | elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p) |
| 819 | { |
| 820 | struct objfile *objfile; |
| 821 | |
| 822 | ALL_PSPACE_OBJFILES (current_program_space, objfile) |
| 823 | { |
| 824 | htab_t htab; |
| 825 | struct elf_gnu_ifunc_cache *entry_p; |
| 826 | void **slot; |
| 827 | |
| 828 | htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data); |
| 829 | if (htab == NULL) |
| 830 | continue; |
| 831 | |
| 832 | entry_p = alloca (sizeof (*entry_p) + strlen (name)); |
| 833 | strcpy (entry_p->name, name); |
| 834 | |
| 835 | slot = htab_find_slot (htab, entry_p, NO_INSERT); |
| 836 | if (slot == NULL) |
| 837 | continue; |
| 838 | entry_p = *slot; |
| 839 | gdb_assert (entry_p != NULL); |
| 840 | |
| 841 | if (addr_p) |
| 842 | *addr_p = entry_p->addr; |
| 843 | return 1; |
| 844 | } |
| 845 | |
| 846 | return 0; |
| 847 | } |
| 848 | |
| 849 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC |
| 850 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P |
| 851 | is not NULL) and the function returns 1. It returns 0 otherwise. |
| 852 | |
| 853 | Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. |
| 854 | elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to |
| 855 | prevent cache entries duplicates. */ |
| 856 | |
| 857 | static int |
| 858 | elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p) |
| 859 | { |
| 860 | char *name_got_plt; |
| 861 | struct objfile *objfile; |
| 862 | const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); |
| 863 | |
| 864 | name_got_plt = alloca (strlen (name) + got_suffix_len + 1); |
| 865 | sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name); |
| 866 | |
| 867 | ALL_PSPACE_OBJFILES (current_program_space, objfile) |
| 868 | { |
| 869 | bfd *obfd = objfile->obfd; |
| 870 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| 871 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; |
| 872 | size_t ptr_size = TYPE_LENGTH (ptr_type); |
| 873 | CORE_ADDR pointer_address, addr; |
| 874 | asection *plt; |
| 875 | gdb_byte *buf = alloca (ptr_size); |
| 876 | struct bound_minimal_symbol msym; |
| 877 | |
| 878 | msym = lookup_minimal_symbol (name_got_plt, NULL, objfile); |
| 879 | if (msym.minsym == NULL) |
| 880 | continue; |
| 881 | if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt) |
| 882 | continue; |
| 883 | pointer_address = BMSYMBOL_VALUE_ADDRESS (msym); |
| 884 | |
| 885 | plt = bfd_get_section_by_name (obfd, ".plt"); |
| 886 | if (plt == NULL) |
| 887 | continue; |
| 888 | |
| 889 | if (MSYMBOL_SIZE (msym.minsym) != ptr_size) |
| 890 | continue; |
| 891 | if (target_read_memory (pointer_address, buf, ptr_size) != 0) |
| 892 | continue; |
| 893 | addr = extract_typed_address (buf, ptr_type); |
| 894 | addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, |
| 895 | ¤t_target); |
| 896 | addr = gdbarch_addr_bits_remove (gdbarch, addr); |
| 897 | |
| 898 | if (addr_p) |
| 899 | *addr_p = addr; |
| 900 | if (elf_gnu_ifunc_record_cache (name, addr)) |
| 901 | return 1; |
| 902 | } |
| 903 | |
| 904 | return 0; |
| 905 | } |
| 906 | |
| 907 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC |
| 908 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P |
| 909 | is not NULL) and the function returns 1. It returns 0 otherwise. |
| 910 | |
| 911 | Both the elf_objfile_gnu_ifunc_cache_data hash table and |
| 912 | SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */ |
| 913 | |
| 914 | static int |
| 915 | elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p) |
| 916 | { |
| 917 | if (elf_gnu_ifunc_resolve_by_cache (name, addr_p)) |
| 918 | return 1; |
| 919 | |
| 920 | if (elf_gnu_ifunc_resolve_by_got (name, addr_p)) |
| 921 | return 1; |
| 922 | |
| 923 | return 0; |
| 924 | } |
| 925 | |
| 926 | /* Call STT_GNU_IFUNC - a function returning addresss of a real function to |
| 927 | call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned |
| 928 | is the entry point of the resolved STT_GNU_IFUNC target function to call. |
| 929 | */ |
| 930 | |
| 931 | static CORE_ADDR |
| 932 | elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc) |
| 933 | { |
| 934 | const char *name_at_pc; |
| 935 | CORE_ADDR start_at_pc, address; |
| 936 | struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; |
| 937 | struct value *function, *address_val; |
| 938 | |
| 939 | /* Try first any non-intrusive methods without an inferior call. */ |
| 940 | |
| 941 | if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL) |
| 942 | && start_at_pc == pc) |
| 943 | { |
| 944 | if (elf_gnu_ifunc_resolve_name (name_at_pc, &address)) |
| 945 | return address; |
| 946 | } |
| 947 | else |
| 948 | name_at_pc = NULL; |
| 949 | |
| 950 | function = allocate_value (func_func_type); |
| 951 | set_value_address (function, pc); |
| 952 | |
| 953 | /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the |
| 954 | function entry address. ADDRESS may be a function descriptor. */ |
| 955 | |
| 956 | address_val = call_function_by_hand (function, 0, NULL); |
| 957 | address = value_as_address (address_val); |
| 958 | address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, |
| 959 | ¤t_target); |
| 960 | address = gdbarch_addr_bits_remove (gdbarch, address); |
| 961 | |
| 962 | if (name_at_pc) |
| 963 | elf_gnu_ifunc_record_cache (name_at_pc, address); |
| 964 | |
| 965 | return address; |
| 966 | } |
| 967 | |
| 968 | /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */ |
| 969 | |
| 970 | static void |
| 971 | elf_gnu_ifunc_resolver_stop (struct breakpoint *b) |
| 972 | { |
| 973 | struct breakpoint *b_return; |
| 974 | struct frame_info *prev_frame = get_prev_frame (get_current_frame ()); |
| 975 | struct frame_id prev_frame_id = get_stack_frame_id (prev_frame); |
| 976 | CORE_ADDR prev_pc = get_frame_pc (prev_frame); |
| 977 | int thread_id = pid_to_thread_id (inferior_ptid); |
| 978 | |
| 979 | gdb_assert (b->type == bp_gnu_ifunc_resolver); |
| 980 | |
| 981 | for (b_return = b->related_breakpoint; b_return != b; |
| 982 | b_return = b_return->related_breakpoint) |
| 983 | { |
| 984 | gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return); |
| 985 | gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL); |
| 986 | gdb_assert (frame_id_p (b_return->frame_id)); |
| 987 | |
| 988 | if (b_return->thread == thread_id |
| 989 | && b_return->loc->requested_address == prev_pc |
| 990 | && frame_id_eq (b_return->frame_id, prev_frame_id)) |
| 991 | break; |
| 992 | } |
| 993 | |
| 994 | if (b_return == b) |
| 995 | { |
| 996 | struct symtab_and_line sal; |
| 997 | |
| 998 | /* No need to call find_pc_line for symbols resolving as this is only |
| 999 | a helper breakpointer never shown to the user. */ |
| 1000 | |
| 1001 | init_sal (&sal); |
| 1002 | sal.pspace = current_inferior ()->pspace; |
| 1003 | sal.pc = prev_pc; |
| 1004 | sal.section = find_pc_overlay (sal.pc); |
| 1005 | sal.explicit_pc = 1; |
| 1006 | b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal, |
| 1007 | prev_frame_id, |
| 1008 | bp_gnu_ifunc_resolver_return); |
| 1009 | |
| 1010 | /* set_momentary_breakpoint invalidates PREV_FRAME. */ |
| 1011 | prev_frame = NULL; |
| 1012 | |
| 1013 | /* Add new b_return to the ring list b->related_breakpoint. */ |
| 1014 | gdb_assert (b_return->related_breakpoint == b_return); |
| 1015 | b_return->related_breakpoint = b->related_breakpoint; |
| 1016 | b->related_breakpoint = b_return; |
| 1017 | } |
| 1018 | } |
| 1019 | |
| 1020 | /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */ |
| 1021 | |
| 1022 | static void |
| 1023 | elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b) |
| 1024 | { |
| 1025 | struct gdbarch *gdbarch = get_frame_arch (get_current_frame ()); |
| 1026 | struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; |
| 1027 | struct type *value_type = TYPE_TARGET_TYPE (func_func_type); |
| 1028 | struct regcache *regcache = get_thread_regcache (inferior_ptid); |
| 1029 | struct value *func_func; |
| 1030 | struct value *value; |
| 1031 | CORE_ADDR resolved_address, resolved_pc; |
| 1032 | struct symtab_and_line sal; |
| 1033 | struct symtabs_and_lines sals, sals_end; |
| 1034 | |
| 1035 | gdb_assert (b->type == bp_gnu_ifunc_resolver_return); |
| 1036 | |
| 1037 | while (b->related_breakpoint != b) |
| 1038 | { |
| 1039 | struct breakpoint *b_next = b->related_breakpoint; |
| 1040 | |
| 1041 | switch (b->type) |
| 1042 | { |
| 1043 | case bp_gnu_ifunc_resolver: |
| 1044 | break; |
| 1045 | case bp_gnu_ifunc_resolver_return: |
| 1046 | delete_breakpoint (b); |
| 1047 | break; |
| 1048 | default: |
| 1049 | internal_error (__FILE__, __LINE__, |
| 1050 | _("handle_inferior_event: Invalid " |
| 1051 | "gnu-indirect-function breakpoint type %d"), |
| 1052 | (int) b->type); |
| 1053 | } |
| 1054 | b = b_next; |
| 1055 | } |
| 1056 | gdb_assert (b->type == bp_gnu_ifunc_resolver); |
| 1057 | gdb_assert (b->loc->next == NULL); |
| 1058 | |
| 1059 | func_func = allocate_value (func_func_type); |
| 1060 | set_value_address (func_func, b->loc->related_address); |
| 1061 | |
| 1062 | value = allocate_value (value_type); |
| 1063 | gdbarch_return_value (gdbarch, func_func, value_type, regcache, |
| 1064 | value_contents_raw (value), NULL); |
| 1065 | resolved_address = value_as_address (value); |
| 1066 | resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch, |
| 1067 | resolved_address, |
| 1068 | ¤t_target); |
| 1069 | resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc); |
| 1070 | |
| 1071 | gdb_assert (current_program_space == b->pspace || b->pspace == NULL); |
| 1072 | elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc); |
| 1073 | |
| 1074 | sal = find_pc_line (resolved_pc, 0); |
| 1075 | sals.nelts = 1; |
| 1076 | sals.sals = &sal; |
| 1077 | sals_end.nelts = 0; |
| 1078 | |
| 1079 | b->type = bp_breakpoint; |
| 1080 | update_breakpoint_locations (b, sals, sals_end); |
| 1081 | } |
| 1082 | |
| 1083 | /* A helper function for elf_symfile_read that reads the minimal |
| 1084 | symbols. */ |
| 1085 | |
| 1086 | static void |
| 1087 | elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags, |
| 1088 | const struct elfinfo *ei) |
| 1089 | { |
| 1090 | bfd *synth_abfd, *abfd = objfile->obfd; |
| 1091 | struct cleanup *back_to; |
| 1092 | long symcount = 0, dynsymcount = 0, synthcount, storage_needed; |
| 1093 | asymbol **symbol_table = NULL, **dyn_symbol_table = NULL; |
| 1094 | asymbol *synthsyms; |
| 1095 | struct dbx_symfile_info *dbx; |
| 1096 | |
| 1097 | if (symtab_create_debug) |
| 1098 | { |
| 1099 | fprintf_unfiltered (gdb_stdlog, |
| 1100 | "Reading minimal symbols of objfile %s ...\n", |
| 1101 | objfile_name (objfile)); |
| 1102 | } |
| 1103 | |
| 1104 | /* If we already have minsyms, then we can skip some work here. |
| 1105 | However, if there were stabs or mdebug sections, we go ahead and |
| 1106 | redo all the work anyway, because the psym readers for those |
| 1107 | kinds of debuginfo need extra information found here. This can |
| 1108 | go away once all types of symbols are in the per-BFD object. */ |
| 1109 | if (objfile->per_bfd->minsyms_read |
| 1110 | && ei->stabsect == NULL |
| 1111 | && ei->mdebugsect == NULL) |
| 1112 | { |
| 1113 | if (symtab_create_debug) |
| 1114 | fprintf_unfiltered (gdb_stdlog, |
| 1115 | "... minimal symbols previously read\n"); |
| 1116 | return; |
| 1117 | } |
| 1118 | |
| 1119 | init_minimal_symbol_collection (); |
| 1120 | back_to = make_cleanup_discard_minimal_symbols (); |
| 1121 | |
| 1122 | /* Allocate struct to keep track of the symfile. */ |
| 1123 | dbx = XCNEW (struct dbx_symfile_info); |
| 1124 | set_objfile_data (objfile, dbx_objfile_data_key, dbx); |
| 1125 | make_cleanup (free_elfinfo, (void *) objfile); |
| 1126 | |
| 1127 | /* Process the normal ELF symbol table first. This may write some |
| 1128 | chain of info into the dbx_symfile_info of the objfile, which can |
| 1129 | later be used by elfstab_offset_sections. */ |
| 1130 | |
| 1131 | storage_needed = bfd_get_symtab_upper_bound (objfile->obfd); |
| 1132 | if (storage_needed < 0) |
| 1133 | error (_("Can't read symbols from %s: %s"), |
| 1134 | bfd_get_filename (objfile->obfd), |
| 1135 | bfd_errmsg (bfd_get_error ())); |
| 1136 | |
| 1137 | if (storage_needed > 0) |
| 1138 | { |
| 1139 | symbol_table = (asymbol **) xmalloc (storage_needed); |
| 1140 | make_cleanup (xfree, symbol_table); |
| 1141 | symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table); |
| 1142 | |
| 1143 | if (symcount < 0) |
| 1144 | error (_("Can't read symbols from %s: %s"), |
| 1145 | bfd_get_filename (objfile->obfd), |
| 1146 | bfd_errmsg (bfd_get_error ())); |
| 1147 | |
| 1148 | elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0); |
| 1149 | } |
| 1150 | |
| 1151 | /* Add the dynamic symbols. */ |
| 1152 | |
| 1153 | storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd); |
| 1154 | |
| 1155 | if (storage_needed > 0) |
| 1156 | { |
| 1157 | /* Memory gets permanently referenced from ABFD after |
| 1158 | bfd_get_synthetic_symtab so it must not get freed before ABFD gets. |
| 1159 | It happens only in the case when elf_slurp_reloc_table sees |
| 1160 | asection->relocation NULL. Determining which section is asection is |
| 1161 | done by _bfd_elf_get_synthetic_symtab which is all a bfd |
| 1162 | implementation detail, though. */ |
| 1163 | |
| 1164 | dyn_symbol_table = bfd_alloc (abfd, storage_needed); |
| 1165 | dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd, |
| 1166 | dyn_symbol_table); |
| 1167 | |
| 1168 | if (dynsymcount < 0) |
| 1169 | error (_("Can't read symbols from %s: %s"), |
| 1170 | bfd_get_filename (objfile->obfd), |
| 1171 | bfd_errmsg (bfd_get_error ())); |
| 1172 | |
| 1173 | elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0); |
| 1174 | |
| 1175 | elf_rel_plt_read (objfile, dyn_symbol_table); |
| 1176 | } |
| 1177 | |
| 1178 | /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from |
| 1179 | elfutils (eu-strip) moves even the .symtab section into the .debug file. |
| 1180 | |
| 1181 | bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol |
| 1182 | 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code |
| 1183 | address. But with eu-strip files bfd_get_synthetic_symtab would fail to |
| 1184 | read the code address from .opd while it reads the .symtab section from |
| 1185 | a separate debug info file as the .opd section is SHT_NOBITS there. |
| 1186 | |
| 1187 | With SYNTH_ABFD the .opd section will be read from the original |
| 1188 | backlinked binary where it is valid. */ |
| 1189 | |
| 1190 | if (objfile->separate_debug_objfile_backlink) |
| 1191 | synth_abfd = objfile->separate_debug_objfile_backlink->obfd; |
| 1192 | else |
| 1193 | synth_abfd = abfd; |
| 1194 | |
| 1195 | /* Add synthetic symbols - for instance, names for any PLT entries. */ |
| 1196 | |
| 1197 | synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table, |
| 1198 | dynsymcount, dyn_symbol_table, |
| 1199 | &synthsyms); |
| 1200 | if (synthcount > 0) |
| 1201 | { |
| 1202 | asymbol **synth_symbol_table; |
| 1203 | long i; |
| 1204 | |
| 1205 | make_cleanup (xfree, synthsyms); |
| 1206 | synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount); |
| 1207 | for (i = 0; i < synthcount; i++) |
| 1208 | synth_symbol_table[i] = synthsyms + i; |
| 1209 | make_cleanup (xfree, synth_symbol_table); |
| 1210 | elf_symtab_read (objfile, ST_SYNTHETIC, synthcount, |
| 1211 | synth_symbol_table, 1); |
| 1212 | } |
| 1213 | |
| 1214 | /* Install any minimal symbols that have been collected as the current |
| 1215 | minimal symbols for this objfile. The debug readers below this point |
| 1216 | should not generate new minimal symbols; if they do it's their |
| 1217 | responsibility to install them. "mdebug" appears to be the only one |
| 1218 | which will do this. */ |
| 1219 | |
| 1220 | install_minimal_symbols (objfile); |
| 1221 | do_cleanups (back_to); |
| 1222 | |
| 1223 | if (symtab_create_debug) |
| 1224 | fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n"); |
| 1225 | } |
| 1226 | |
| 1227 | /* Scan and build partial symbols for a symbol file. |
| 1228 | We have been initialized by a call to elf_symfile_init, which |
| 1229 | currently does nothing. |
| 1230 | |
| 1231 | SECTION_OFFSETS is a set of offsets to apply to relocate the symbols |
| 1232 | in each section. We simplify it down to a single offset for all |
| 1233 | symbols. FIXME. |
| 1234 | |
| 1235 | This function only does the minimum work necessary for letting the |
| 1236 | user "name" things symbolically; it does not read the entire symtab. |
| 1237 | Instead, it reads the external and static symbols and puts them in partial |
| 1238 | symbol tables. When more extensive information is requested of a |
| 1239 | file, the corresponding partial symbol table is mutated into a full |
| 1240 | fledged symbol table by going back and reading the symbols |
| 1241 | for real. |
| 1242 | |
| 1243 | We look for sections with specific names, to tell us what debug |
| 1244 | format to look for: FIXME!!! |
| 1245 | |
| 1246 | elfstab_build_psymtabs() handles STABS symbols; |
| 1247 | mdebug_build_psymtabs() handles ECOFF debugging information. |
| 1248 | |
| 1249 | Note that ELF files have a "minimal" symbol table, which looks a lot |
| 1250 | like a COFF symbol table, but has only the minimal information necessary |
| 1251 | for linking. We process this also, and use the information to |
| 1252 | build gdb's minimal symbol table. This gives us some minimal debugging |
| 1253 | capability even for files compiled without -g. */ |
| 1254 | |
| 1255 | static void |
| 1256 | elf_symfile_read (struct objfile *objfile, int symfile_flags) |
| 1257 | { |
| 1258 | bfd *abfd = objfile->obfd; |
| 1259 | struct elfinfo ei; |
| 1260 | |
| 1261 | memset ((char *) &ei, 0, sizeof (ei)); |
| 1262 | bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei); |
| 1263 | |
| 1264 | elf_read_minimal_symbols (objfile, symfile_flags, &ei); |
| 1265 | |
| 1266 | /* ELF debugging information is inserted into the psymtab in the |
| 1267 | order of least informative first - most informative last. Since |
| 1268 | the psymtab table is searched `most recent insertion first' this |
| 1269 | increases the probability that more detailed debug information |
| 1270 | for a section is found. |
| 1271 | |
| 1272 | For instance, an object file might contain both .mdebug (XCOFF) |
| 1273 | and .debug_info (DWARF2) sections then .mdebug is inserted first |
| 1274 | (searched last) and DWARF2 is inserted last (searched first). If |
| 1275 | we don't do this then the XCOFF info is found first - for code in |
| 1276 | an included file XCOFF info is useless. */ |
| 1277 | |
| 1278 | if (ei.mdebugsect) |
| 1279 | { |
| 1280 | const struct ecoff_debug_swap *swap; |
| 1281 | |
| 1282 | /* .mdebug section, presumably holding ECOFF debugging |
| 1283 | information. */ |
| 1284 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
| 1285 | if (swap) |
| 1286 | elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect); |
| 1287 | } |
| 1288 | if (ei.stabsect) |
| 1289 | { |
| 1290 | asection *str_sect; |
| 1291 | |
| 1292 | /* Stab sections have an associated string table that looks like |
| 1293 | a separate section. */ |
| 1294 | str_sect = bfd_get_section_by_name (abfd, ".stabstr"); |
| 1295 | |
| 1296 | /* FIXME should probably warn about a stab section without a stabstr. */ |
| 1297 | if (str_sect) |
| 1298 | elfstab_build_psymtabs (objfile, |
| 1299 | ei.stabsect, |
| 1300 | str_sect->filepos, |
| 1301 | bfd_section_size (abfd, str_sect)); |
| 1302 | } |
| 1303 | |
| 1304 | if (dwarf2_has_info (objfile, NULL)) |
| 1305 | { |
| 1306 | /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug |
| 1307 | information present in OBJFILE. If there is such debug info present |
| 1308 | never use .gdb_index. */ |
| 1309 | |
| 1310 | if (!objfile_has_partial_symbols (objfile) |
| 1311 | && dwarf2_initialize_objfile (objfile)) |
| 1312 | objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index); |
| 1313 | else |
| 1314 | { |
| 1315 | /* It is ok to do this even if the stabs reader made some |
| 1316 | partial symbols, because OBJF_PSYMTABS_READ has not been |
| 1317 | set, and so our lazy reader function will still be called |
| 1318 | when needed. */ |
| 1319 | objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms); |
| 1320 | } |
| 1321 | } |
| 1322 | /* If the file has its own symbol tables it has no separate debug |
| 1323 | info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to |
| 1324 | SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with |
| 1325 | `.note.gnu.build-id'. |
| 1326 | |
| 1327 | .gnu_debugdata is !objfile_has_partial_symbols because it contains only |
| 1328 | .symtab, not .debug_* section. But if we already added .gnu_debugdata as |
| 1329 | an objfile via find_separate_debug_file_in_section there was no separate |
| 1330 | debug info available. Therefore do not attempt to search for another one, |
| 1331 | objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to |
| 1332 | be NULL and we would possibly violate it. */ |
| 1333 | |
| 1334 | else if (!objfile_has_partial_symbols (objfile) |
| 1335 | && objfile->separate_debug_objfile == NULL |
| 1336 | && objfile->separate_debug_objfile_backlink == NULL) |
| 1337 | { |
| 1338 | char *debugfile; |
| 1339 | |
| 1340 | debugfile = find_separate_debug_file_by_buildid (objfile); |
| 1341 | |
| 1342 | if (debugfile == NULL) |
| 1343 | debugfile = find_separate_debug_file_by_debuglink (objfile); |
| 1344 | |
| 1345 | if (debugfile) |
| 1346 | { |
| 1347 | struct cleanup *cleanup = make_cleanup (xfree, debugfile); |
| 1348 | bfd *abfd = symfile_bfd_open (debugfile); |
| 1349 | |
| 1350 | make_cleanup_bfd_unref (abfd); |
| 1351 | symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile); |
| 1352 | do_cleanups (cleanup); |
| 1353 | } |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | /* Callback to lazily read psymtabs. */ |
| 1358 | |
| 1359 | static void |
| 1360 | read_psyms (struct objfile *objfile) |
| 1361 | { |
| 1362 | if (dwarf2_has_info (objfile, NULL)) |
| 1363 | dwarf2_build_psymtabs (objfile); |
| 1364 | } |
| 1365 | |
| 1366 | /* This cleans up the objfile's dbx symfile info, and the chain of |
| 1367 | stab_section_info's, that might be dangling from it. */ |
| 1368 | |
| 1369 | static void |
| 1370 | free_elfinfo (void *objp) |
| 1371 | { |
| 1372 | struct objfile *objfile = (struct objfile *) objp; |
| 1373 | struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile); |
| 1374 | struct stab_section_info *ssi, *nssi; |
| 1375 | |
| 1376 | ssi = dbxinfo->stab_section_info; |
| 1377 | while (ssi) |
| 1378 | { |
| 1379 | nssi = ssi->next; |
| 1380 | xfree (ssi); |
| 1381 | ssi = nssi; |
| 1382 | } |
| 1383 | |
| 1384 | dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */ |
| 1385 | } |
| 1386 | |
| 1387 | |
| 1388 | /* Initialize anything that needs initializing when a completely new symbol |
| 1389 | file is specified (not just adding some symbols from another file, e.g. a |
| 1390 | shared library). |
| 1391 | |
| 1392 | We reinitialize buildsym, since we may be reading stabs from an ELF |
| 1393 | file. */ |
| 1394 | |
| 1395 | static void |
| 1396 | elf_new_init (struct objfile *ignore) |
| 1397 | { |
| 1398 | stabsread_new_init (); |
| 1399 | buildsym_new_init (); |
| 1400 | } |
| 1401 | |
| 1402 | /* Perform any local cleanups required when we are done with a particular |
| 1403 | objfile. I.E, we are in the process of discarding all symbol information |
| 1404 | for an objfile, freeing up all memory held for it, and unlinking the |
| 1405 | objfile struct from the global list of known objfiles. */ |
| 1406 | |
| 1407 | static void |
| 1408 | elf_symfile_finish (struct objfile *objfile) |
| 1409 | { |
| 1410 | dwarf2_free_objfile (objfile); |
| 1411 | } |
| 1412 | |
| 1413 | /* ELF specific initialization routine for reading symbols. |
| 1414 | |
| 1415 | It is passed a pointer to a struct sym_fns which contains, among other |
| 1416 | things, the BFD for the file whose symbols are being read, and a slot for |
| 1417 | a pointer to "private data" which we can fill with goodies. |
| 1418 | |
| 1419 | For now at least, we have nothing in particular to do, so this function is |
| 1420 | just a stub. */ |
| 1421 | |
| 1422 | static void |
| 1423 | elf_symfile_init (struct objfile *objfile) |
| 1424 | { |
| 1425 | /* ELF objects may be reordered, so set OBJF_REORDERED. If we |
| 1426 | find this causes a significant slowdown in gdb then we could |
| 1427 | set it in the debug symbol readers only when necessary. */ |
| 1428 | objfile->flags |= OBJF_REORDERED; |
| 1429 | } |
| 1430 | |
| 1431 | /* When handling an ELF file that contains Sun STABS debug info, |
| 1432 | some of the debug info is relative to the particular chunk of the |
| 1433 | section that was generated in its individual .o file. E.g. |
| 1434 | offsets to static variables are relative to the start of the data |
| 1435 | segment *for that module before linking*. This information is |
| 1436 | painfully squirreled away in the ELF symbol table as local symbols |
| 1437 | with wierd names. Go get 'em when needed. */ |
| 1438 | |
| 1439 | void |
| 1440 | elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst) |
| 1441 | { |
| 1442 | const char *filename = pst->filename; |
| 1443 | struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile); |
| 1444 | struct stab_section_info *maybe = dbx->stab_section_info; |
| 1445 | struct stab_section_info *questionable = 0; |
| 1446 | int i; |
| 1447 | |
| 1448 | /* The ELF symbol info doesn't include path names, so strip the path |
| 1449 | (if any) from the psymtab filename. */ |
| 1450 | filename = lbasename (filename); |
| 1451 | |
| 1452 | /* FIXME: This linear search could speed up significantly |
| 1453 | if it was chained in the right order to match how we search it, |
| 1454 | and if we unchained when we found a match. */ |
| 1455 | for (; maybe; maybe = maybe->next) |
| 1456 | { |
| 1457 | if (filename[0] == maybe->filename[0] |
| 1458 | && filename_cmp (filename, maybe->filename) == 0) |
| 1459 | { |
| 1460 | /* We found a match. But there might be several source files |
| 1461 | (from different directories) with the same name. */ |
| 1462 | if (0 == maybe->found) |
| 1463 | break; |
| 1464 | questionable = maybe; /* Might use it later. */ |
| 1465 | } |
| 1466 | } |
| 1467 | |
| 1468 | if (maybe == 0 && questionable != 0) |
| 1469 | { |
| 1470 | complaint (&symfile_complaints, |
| 1471 | _("elf/stab section information questionable for %s"), |
| 1472 | filename); |
| 1473 | maybe = questionable; |
| 1474 | } |
| 1475 | |
| 1476 | if (maybe) |
| 1477 | { |
| 1478 | /* Found it! Allocate a new psymtab struct, and fill it in. */ |
| 1479 | maybe->found++; |
| 1480 | pst->section_offsets = (struct section_offsets *) |
| 1481 | obstack_alloc (&objfile->objfile_obstack, |
| 1482 | SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)); |
| 1483 | for (i = 0; i < maybe->num_sections; i++) |
| 1484 | (pst->section_offsets)->offsets[i] = maybe->sections[i]; |
| 1485 | return; |
| 1486 | } |
| 1487 | |
| 1488 | /* We were unable to find any offsets for this file. Complain. */ |
| 1489 | if (dbx->stab_section_info) /* If there *is* any info, */ |
| 1490 | complaint (&symfile_complaints, |
| 1491 | _("elf/stab section information missing for %s"), filename); |
| 1492 | } |
| 1493 | |
| 1494 | /* Implementation of `sym_get_probes', as documented in symfile.h. */ |
| 1495 | |
| 1496 | static VEC (probe_p) * |
| 1497 | elf_get_probes (struct objfile *objfile) |
| 1498 | { |
| 1499 | VEC (probe_p) *probes_per_bfd; |
| 1500 | |
| 1501 | /* Have we parsed this objfile's probes already? */ |
| 1502 | probes_per_bfd = bfd_data (objfile->obfd, probe_key); |
| 1503 | |
| 1504 | if (!probes_per_bfd) |
| 1505 | { |
| 1506 | int ix; |
| 1507 | const struct probe_ops *probe_ops; |
| 1508 | |
| 1509 | /* Here we try to gather information about all types of probes from the |
| 1510 | objfile. */ |
| 1511 | for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops); |
| 1512 | ix++) |
| 1513 | probe_ops->get_probes (&probes_per_bfd, objfile); |
| 1514 | |
| 1515 | if (probes_per_bfd == NULL) |
| 1516 | { |
| 1517 | VEC_reserve (probe_p, probes_per_bfd, 1); |
| 1518 | gdb_assert (probes_per_bfd != NULL); |
| 1519 | } |
| 1520 | |
| 1521 | set_bfd_data (objfile->obfd, probe_key, probes_per_bfd); |
| 1522 | } |
| 1523 | |
| 1524 | return probes_per_bfd; |
| 1525 | } |
| 1526 | |
| 1527 | /* Helper function used to free the space allocated for storing SystemTap |
| 1528 | probe information. */ |
| 1529 | |
| 1530 | static void |
| 1531 | probe_key_free (bfd *abfd, void *d) |
| 1532 | { |
| 1533 | int ix; |
| 1534 | VEC (probe_p) *probes = d; |
| 1535 | struct probe *probe; |
| 1536 | |
| 1537 | for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++) |
| 1538 | probe->pops->destroy (probe); |
| 1539 | |
| 1540 | VEC_free (probe_p, probes); |
| 1541 | } |
| 1542 | |
| 1543 | \f |
| 1544 | |
| 1545 | /* Implementation `sym_probe_fns', as documented in symfile.h. */ |
| 1546 | |
| 1547 | static const struct sym_probe_fns elf_probe_fns = |
| 1548 | { |
| 1549 | elf_get_probes, /* sym_get_probes */ |
| 1550 | }; |
| 1551 | |
| 1552 | /* Register that we are able to handle ELF object file formats. */ |
| 1553 | |
| 1554 | static const struct sym_fns elf_sym_fns = |
| 1555 | { |
| 1556 | elf_new_init, /* init anything gbl to entire symtab */ |
| 1557 | elf_symfile_init, /* read initial info, setup for sym_read() */ |
| 1558 | elf_symfile_read, /* read a symbol file into symtab */ |
| 1559 | NULL, /* sym_read_psymbols */ |
| 1560 | elf_symfile_finish, /* finished with file, cleanup */ |
| 1561 | default_symfile_offsets, /* Translate ext. to int. relocation */ |
| 1562 | elf_symfile_segments, /* Get segment information from a file. */ |
| 1563 | NULL, |
| 1564 | default_symfile_relocate, /* Relocate a debug section. */ |
| 1565 | &elf_probe_fns, /* sym_probe_fns */ |
| 1566 | &psym_functions |
| 1567 | }; |
| 1568 | |
| 1569 | /* The same as elf_sym_fns, but not registered and lazily reads |
| 1570 | psymbols. */ |
| 1571 | |
| 1572 | static const struct sym_fns elf_sym_fns_lazy_psyms = |
| 1573 | { |
| 1574 | elf_new_init, /* init anything gbl to entire symtab */ |
| 1575 | elf_symfile_init, /* read initial info, setup for sym_read() */ |
| 1576 | elf_symfile_read, /* read a symbol file into symtab */ |
| 1577 | read_psyms, /* sym_read_psymbols */ |
| 1578 | elf_symfile_finish, /* finished with file, cleanup */ |
| 1579 | default_symfile_offsets, /* Translate ext. to int. relocation */ |
| 1580 | elf_symfile_segments, /* Get segment information from a file. */ |
| 1581 | NULL, |
| 1582 | default_symfile_relocate, /* Relocate a debug section. */ |
| 1583 | &elf_probe_fns, /* sym_probe_fns */ |
| 1584 | &psym_functions |
| 1585 | }; |
| 1586 | |
| 1587 | /* The same as elf_sym_fns, but not registered and uses the |
| 1588 | DWARF-specific GNU index rather than psymtab. */ |
| 1589 | static const struct sym_fns elf_sym_fns_gdb_index = |
| 1590 | { |
| 1591 | elf_new_init, /* init anything gbl to entire symab */ |
| 1592 | elf_symfile_init, /* read initial info, setup for sym_red() */ |
| 1593 | elf_symfile_read, /* read a symbol file into symtab */ |
| 1594 | NULL, /* sym_read_psymbols */ |
| 1595 | elf_symfile_finish, /* finished with file, cleanup */ |
| 1596 | default_symfile_offsets, /* Translate ext. to int. relocatin */ |
| 1597 | elf_symfile_segments, /* Get segment information from a file. */ |
| 1598 | NULL, |
| 1599 | default_symfile_relocate, /* Relocate a debug section. */ |
| 1600 | &elf_probe_fns, /* sym_probe_fns */ |
| 1601 | &dwarf2_gdb_index_functions |
| 1602 | }; |
| 1603 | |
| 1604 | /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */ |
| 1605 | |
| 1606 | static const struct gnu_ifunc_fns elf_gnu_ifunc_fns = |
| 1607 | { |
| 1608 | elf_gnu_ifunc_resolve_addr, |
| 1609 | elf_gnu_ifunc_resolve_name, |
| 1610 | elf_gnu_ifunc_resolver_stop, |
| 1611 | elf_gnu_ifunc_resolver_return_stop |
| 1612 | }; |
| 1613 | |
| 1614 | void |
| 1615 | _initialize_elfread (void) |
| 1616 | { |
| 1617 | probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free); |
| 1618 | add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns); |
| 1619 | |
| 1620 | elf_objfile_gnu_ifunc_cache_data = register_objfile_data (); |
| 1621 | gnu_ifunc_fns_p = &elf_gnu_ifunc_fns; |
| 1622 | } |