*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / elfread.c
... / ...
CommitLineData
1/* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2013 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "bfd.h"
24#include "gdb_string.h"
25#include "elf-bfd.h"
26#include "elf/common.h"
27#include "elf/internal.h"
28#include "elf/mips.h"
29#include "symtab.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "buildsym.h"
33#include "stabsread.h"
34#include "gdb-stabs.h"
35#include "complaints.h"
36#include "demangle.h"
37#include "psympriv.h"
38#include "filenames.h"
39#include "probe.h"
40#include "arch-utils.h"
41#include "gdbtypes.h"
42#include "value.h"
43#include "infcall.h"
44#include "gdbthread.h"
45#include "regcache.h"
46#include "bcache.h"
47#include "gdb_bfd.h"
48
49extern void _initialize_elfread (void);
50
51/* Forward declarations. */
52static const struct sym_fns elf_sym_fns_gdb_index;
53static const struct sym_fns elf_sym_fns_lazy_psyms;
54
55/* The struct elfinfo is available only during ELF symbol table and
56 psymtab reading. It is destroyed at the completion of psymtab-reading.
57 It's local to elf_symfile_read. */
58
59struct elfinfo
60 {
61 asection *stabsect; /* Section pointer for .stab section */
62 asection *stabindexsect; /* Section pointer for .stab.index section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66/* Per-objfile data for probe info. */
67
68static const struct objfile_data *probe_key = NULL;
69
70static void free_elfinfo (void *);
71
72/* Minimal symbols located at the GOT entries for .plt - that is the real
73 pointer where the given entry will jump to. It gets updated by the real
74 function address during lazy ld.so resolving in the inferior. These
75 minimal symbols are indexed for <tab>-completion. */
76
77#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
78
79/* Locate the segments in ABFD. */
80
81static struct symfile_segment_data *
82elf_symfile_segments (bfd *abfd)
83{
84 Elf_Internal_Phdr *phdrs, **segments;
85 long phdrs_size;
86 int num_phdrs, num_segments, num_sections, i;
87 asection *sect;
88 struct symfile_segment_data *data;
89
90 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
91 if (phdrs_size == -1)
92 return NULL;
93
94 phdrs = alloca (phdrs_size);
95 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
96 if (num_phdrs == -1)
97 return NULL;
98
99 num_segments = 0;
100 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
101 for (i = 0; i < num_phdrs; i++)
102 if (phdrs[i].p_type == PT_LOAD)
103 segments[num_segments++] = &phdrs[i];
104
105 if (num_segments == 0)
106 return NULL;
107
108 data = XZALLOC (struct symfile_segment_data);
109 data->num_segments = num_segments;
110 data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
111 data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
112
113 for (i = 0; i < num_segments; i++)
114 {
115 data->segment_bases[i] = segments[i]->p_vaddr;
116 data->segment_sizes[i] = segments[i]->p_memsz;
117 }
118
119 num_sections = bfd_count_sections (abfd);
120 data->segment_info = XCALLOC (num_sections, int);
121
122 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
123 {
124 int j;
125 CORE_ADDR vma;
126
127 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
128 continue;
129
130 vma = bfd_get_section_vma (abfd, sect);
131
132 for (j = 0; j < num_segments; j++)
133 if (segments[j]->p_memsz > 0
134 && vma >= segments[j]->p_vaddr
135 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_get_section_size (sect) > 0 && j == num_segments
151 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
152 warning (_("Loadable section \"%s\" outside of ELF segments"),
153 bfd_section_name (abfd, sect));
154 }
155
156 return data;
157}
158
159/* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
175 section flags to specify what kind of debug section it is.
176 -kingdon). */
177
178static void
179elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
180{
181 struct elfinfo *ei;
182
183 ei = (struct elfinfo *) eip;
184 if (strcmp (sectp->name, ".stab") == 0)
185 {
186 ei->stabsect = sectp;
187 }
188 else if (strcmp (sectp->name, ".stab.index") == 0)
189 {
190 ei->stabindexsect = sectp;
191 }
192 else if (strcmp (sectp->name, ".mdebug") == 0)
193 {
194 ei->mdebugsect = sectp;
195 }
196}
197
198static struct minimal_symbol *
199record_minimal_symbol (const char *name, int name_len, int copy_name,
200 CORE_ADDR address,
201 enum minimal_symbol_type ms_type,
202 asection *bfd_section, struct objfile *objfile)
203{
204 struct gdbarch *gdbarch = get_objfile_arch (objfile);
205
206 if (ms_type == mst_text || ms_type == mst_file_text
207 || ms_type == mst_text_gnu_ifunc)
208 address = gdbarch_addr_bits_remove (gdbarch, address);
209
210 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
211 ms_type, bfd_section->index,
212 bfd_section, objfile);
213}
214
215/* Read the symbol table of an ELF file.
216
217 Given an objfile, a symbol table, and a flag indicating whether the
218 symbol table contains regular, dynamic, or synthetic symbols, add all
219 the global function and data symbols to the minimal symbol table.
220
221 In stabs-in-ELF, as implemented by Sun, there are some local symbols
222 defined in the ELF symbol table, which can be used to locate
223 the beginnings of sections from each ".o" file that was linked to
224 form the executable objfile. We gather any such info and record it
225 in data structures hung off the objfile's private data. */
226
227#define ST_REGULAR 0
228#define ST_DYNAMIC 1
229#define ST_SYNTHETIC 2
230
231static void
232elf_symtab_read (struct objfile *objfile, int type,
233 long number_of_symbols, asymbol **symbol_table,
234 int copy_names)
235{
236 struct gdbarch *gdbarch = get_objfile_arch (objfile);
237 asymbol *sym;
238 long i;
239 CORE_ADDR symaddr;
240 CORE_ADDR offset;
241 enum minimal_symbol_type ms_type;
242 /* If sectinfo is nonNULL, it contains section info that should end up
243 filed in the objfile. */
244 struct stab_section_info *sectinfo = NULL;
245 /* If filesym is nonzero, it points to a file symbol, but we haven't
246 seen any section info for it yet. */
247 asymbol *filesym = 0;
248 /* Name of filesym. This is either a constant string or is saved on
249 the objfile's filename cache. */
250 const char *filesymname = "";
251 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
252 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
253
254 for (i = 0; i < number_of_symbols; i++)
255 {
256 sym = symbol_table[i];
257 if (sym->name == NULL || *sym->name == '\0')
258 {
259 /* Skip names that don't exist (shouldn't happen), or names
260 that are null strings (may happen). */
261 continue;
262 }
263
264 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
265 symbols which do not correspond to objects in the symbol table,
266 but have some other target-specific meaning. */
267 if (bfd_is_target_special_symbol (objfile->obfd, sym))
268 {
269 if (gdbarch_record_special_symbol_p (gdbarch))
270 gdbarch_record_special_symbol (gdbarch, objfile, sym);
271 continue;
272 }
273
274 offset = ANOFFSET (objfile->section_offsets, sym->section->index);
275 if (type == ST_DYNAMIC
276 && sym->section == bfd_und_section_ptr
277 && (sym->flags & BSF_FUNCTION))
278 {
279 struct minimal_symbol *msym;
280 bfd *abfd = objfile->obfd;
281 asection *sect;
282
283 /* Symbol is a reference to a function defined in
284 a shared library.
285 If its value is non zero then it is usually the address
286 of the corresponding entry in the procedure linkage table,
287 plus the desired section offset.
288 If its value is zero then the dynamic linker has to resolve
289 the symbol. We are unable to find any meaningful address
290 for this symbol in the executable file, so we skip it. */
291 symaddr = sym->value;
292 if (symaddr == 0)
293 continue;
294
295 /* sym->section is the undefined section. However, we want to
296 record the section where the PLT stub resides with the
297 minimal symbol. Search the section table for the one that
298 covers the stub's address. */
299 for (sect = abfd->sections; sect != NULL; sect = sect->next)
300 {
301 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
302 continue;
303
304 if (symaddr >= bfd_get_section_vma (abfd, sect)
305 && symaddr < bfd_get_section_vma (abfd, sect)
306 + bfd_get_section_size (sect))
307 break;
308 }
309 if (!sect)
310 continue;
311
312 /* On ia64-hpux, we have discovered that the system linker
313 adds undefined symbols with nonzero addresses that cannot
314 be right (their address points inside the code of another
315 function in the .text section). This creates problems
316 when trying to determine which symbol corresponds to
317 a given address.
318
319 We try to detect those buggy symbols by checking which
320 section we think they correspond to. Normally, PLT symbols
321 are stored inside their own section, and the typical name
322 for that section is ".plt". So, if there is a ".plt"
323 section, and yet the section name of our symbol does not
324 start with ".plt", we ignore that symbol. */
325 if (strncmp (sect->name, ".plt", 4) != 0
326 && bfd_get_section_by_name (abfd, ".plt") != NULL)
327 continue;
328
329 symaddr += ANOFFSET (objfile->section_offsets, sect->index);
330
331 msym = record_minimal_symbol
332 (sym->name, strlen (sym->name), copy_names,
333 symaddr, mst_solib_trampoline, sect, objfile);
334 if (msym != NULL)
335 msym->filename = filesymname;
336 continue;
337 }
338
339 /* If it is a nonstripped executable, do not enter dynamic
340 symbols, as the dynamic symbol table is usually a subset
341 of the main symbol table. */
342 if (type == ST_DYNAMIC && !stripped)
343 continue;
344 if (sym->flags & BSF_FILE)
345 {
346 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
347 Chain any old one onto the objfile; remember new sym. */
348 if (sectinfo != NULL)
349 {
350 sectinfo->next = dbx->stab_section_info;
351 dbx->stab_section_info = sectinfo;
352 sectinfo = NULL;
353 }
354 filesym = sym;
355 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
356 objfile->per_bfd->filename_cache);
357 }
358 else if (sym->flags & BSF_SECTION_SYM)
359 continue;
360 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK))
361 {
362 struct minimal_symbol *msym;
363
364 /* Select global/local/weak symbols. Note that bfd puts abs
365 symbols in their own section, so all symbols we are
366 interested in will have a section. */
367 /* Bfd symbols are section relative. */
368 symaddr = sym->value + sym->section->vma;
369 /* Relocate all non-absolute and non-TLS symbols by the
370 section offset. */
371 if (sym->section != bfd_abs_section_ptr
372 && !(sym->section->flags & SEC_THREAD_LOCAL))
373 {
374 symaddr += offset;
375 }
376 /* For non-absolute symbols, use the type of the section
377 they are relative to, to intuit text/data. Bfd provides
378 no way of figuring this out for absolute symbols. */
379 if (sym->section == bfd_abs_section_ptr)
380 {
381 /* This is a hack to get the minimal symbol type
382 right for Irix 5, which has absolute addresses
383 with special section indices for dynamic symbols.
384
385 NOTE: uweigand-20071112: Synthetic symbols do not
386 have an ELF-private part, so do not touch those. */
387 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
388 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
389
390 switch (shndx)
391 {
392 case SHN_MIPS_TEXT:
393 ms_type = mst_text;
394 break;
395 case SHN_MIPS_DATA:
396 ms_type = mst_data;
397 break;
398 case SHN_MIPS_ACOMMON:
399 ms_type = mst_bss;
400 break;
401 default:
402 ms_type = mst_abs;
403 }
404
405 /* If it is an Irix dynamic symbol, skip section name
406 symbols, relocate all others by section offset. */
407 if (ms_type != mst_abs)
408 {
409 if (sym->name[0] == '.')
410 continue;
411 symaddr += offset;
412 }
413 }
414 else if (sym->section->flags & SEC_CODE)
415 {
416 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
417 {
418 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
419 ms_type = mst_text_gnu_ifunc;
420 else
421 ms_type = mst_text;
422 }
423 /* The BSF_SYNTHETIC check is there to omit ppc64 function
424 descriptors mistaken for static functions starting with 'L'.
425 */
426 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
427 && (sym->flags & BSF_SYNTHETIC) == 0)
428 || ((sym->flags & BSF_LOCAL)
429 && sym->name[0] == '$'
430 && sym->name[1] == 'L'))
431 /* Looks like a compiler-generated label. Skip
432 it. The assembler should be skipping these (to
433 keep executables small), but apparently with
434 gcc on the (deleted) delta m88k SVR4, it loses.
435 So to have us check too should be harmless (but
436 I encourage people to fix this in the assembler
437 instead of adding checks here). */
438 continue;
439 else
440 {
441 ms_type = mst_file_text;
442 }
443 }
444 else if (sym->section->flags & SEC_ALLOC)
445 {
446 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
447 {
448 if (sym->section->flags & SEC_LOAD)
449 {
450 ms_type = mst_data;
451 }
452 else
453 {
454 ms_type = mst_bss;
455 }
456 }
457 else if (sym->flags & BSF_LOCAL)
458 {
459 /* Named Local variable in a Data section.
460 Check its name for stabs-in-elf. */
461 int special_local_sect;
462
463 if (strcmp ("Bbss.bss", sym->name) == 0)
464 special_local_sect = SECT_OFF_BSS (objfile);
465 else if (strcmp ("Ddata.data", sym->name) == 0)
466 special_local_sect = SECT_OFF_DATA (objfile);
467 else if (strcmp ("Drodata.rodata", sym->name) == 0)
468 special_local_sect = SECT_OFF_RODATA (objfile);
469 else
470 special_local_sect = -1;
471 if (special_local_sect >= 0)
472 {
473 /* Found a special local symbol. Allocate a
474 sectinfo, if needed, and fill it in. */
475 if (sectinfo == NULL)
476 {
477 int max_index;
478 size_t size;
479
480 max_index = SECT_OFF_BSS (objfile);
481 if (objfile->sect_index_data > max_index)
482 max_index = objfile->sect_index_data;
483 if (objfile->sect_index_rodata > max_index)
484 max_index = objfile->sect_index_rodata;
485
486 /* max_index is the largest index we'll
487 use into this array, so we must
488 allocate max_index+1 elements for it.
489 However, 'struct stab_section_info'
490 already includes one element, so we
491 need to allocate max_index aadditional
492 elements. */
493 size = (sizeof (struct stab_section_info)
494 + (sizeof (CORE_ADDR) * max_index));
495 sectinfo = (struct stab_section_info *)
496 xmalloc (size);
497 memset (sectinfo, 0, size);
498 sectinfo->num_sections = max_index;
499 if (filesym == NULL)
500 {
501 complaint (&symfile_complaints,
502 _("elf/stab section information %s "
503 "without a preceding file symbol"),
504 sym->name);
505 }
506 else
507 {
508 sectinfo->filename =
509 (char *) filesym->name;
510 }
511 }
512 if (sectinfo->sections[special_local_sect] != 0)
513 complaint (&symfile_complaints,
514 _("duplicated elf/stab section "
515 "information for %s"),
516 sectinfo->filename);
517 /* BFD symbols are section relative. */
518 symaddr = sym->value + sym->section->vma;
519 /* Relocate non-absolute symbols by the
520 section offset. */
521 if (sym->section != bfd_abs_section_ptr)
522 symaddr += offset;
523 sectinfo->sections[special_local_sect] = symaddr;
524 /* The special local symbols don't go in the
525 minimal symbol table, so ignore this one. */
526 continue;
527 }
528 /* Not a special stabs-in-elf symbol, do regular
529 symbol processing. */
530 if (sym->section->flags & SEC_LOAD)
531 {
532 ms_type = mst_file_data;
533 }
534 else
535 {
536 ms_type = mst_file_bss;
537 }
538 }
539 else
540 {
541 ms_type = mst_unknown;
542 }
543 }
544 else
545 {
546 /* FIXME: Solaris2 shared libraries include lots of
547 odd "absolute" and "undefined" symbols, that play
548 hob with actions like finding what function the PC
549 is in. Ignore them if they aren't text, data, or bss. */
550 /* ms_type = mst_unknown; */
551 continue; /* Skip this symbol. */
552 }
553 msym = record_minimal_symbol
554 (sym->name, strlen (sym->name), copy_names, symaddr,
555 ms_type, sym->section, objfile);
556
557 if (msym)
558 {
559 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
560 ELF-private part. */
561 if (type != ST_SYNTHETIC)
562 {
563 /* Pass symbol size field in via BFD. FIXME!!! */
564 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
565 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
566 }
567
568 msym->filename = filesymname;
569 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
570 }
571
572 /* For @plt symbols, also record a trampoline to the
573 destination symbol. The @plt symbol will be used in
574 disassembly, and the trampoline will be used when we are
575 trying to find the target. */
576 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
577 {
578 int len = strlen (sym->name);
579
580 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
581 {
582 struct minimal_symbol *mtramp;
583
584 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
585 symaddr,
586 mst_solib_trampoline,
587 sym->section, objfile);
588 if (mtramp)
589 {
590 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
591 mtramp->created_by_gdb = 1;
592 mtramp->filename = filesymname;
593 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
594 }
595 }
596 }
597 }
598 }
599}
600
601/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
602 for later look ups of which function to call when user requests
603 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
604 library defining `function' we cannot yet know while reading OBJFILE which
605 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
606 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
607
608static void
609elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
610{
611 bfd *obfd = objfile->obfd;
612 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
613 asection *plt, *relplt, *got_plt;
614 int plt_elf_idx;
615 bfd_size_type reloc_count, reloc;
616 char *string_buffer = NULL;
617 size_t string_buffer_size = 0;
618 struct cleanup *back_to;
619 struct gdbarch *gdbarch = objfile->gdbarch;
620 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
621 size_t ptr_size = TYPE_LENGTH (ptr_type);
622
623 if (objfile->separate_debug_objfile_backlink)
624 return;
625
626 plt = bfd_get_section_by_name (obfd, ".plt");
627 if (plt == NULL)
628 return;
629 plt_elf_idx = elf_section_data (plt)->this_idx;
630
631 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
632 if (got_plt == NULL)
633 return;
634
635 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
636 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
637 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
638 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
639 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
640 break;
641 if (relplt == NULL)
642 return;
643
644 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
645 return;
646
647 back_to = make_cleanup (free_current_contents, &string_buffer);
648
649 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
650 for (reloc = 0; reloc < reloc_count; reloc++)
651 {
652 const char *name;
653 struct minimal_symbol *msym;
654 CORE_ADDR address;
655 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
656 size_t name_len;
657
658 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
659 name_len = strlen (name);
660 address = relplt->relocation[reloc].address;
661
662 /* Does the pointer reside in the .got.plt section? */
663 if (!(bfd_get_section_vma (obfd, got_plt) <= address
664 && address < bfd_get_section_vma (obfd, got_plt)
665 + bfd_get_section_size (got_plt)))
666 continue;
667
668 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
669 OBJFILE the symbol is undefined and the objfile having NAME defined
670 may not yet have been loaded. */
671
672 if (string_buffer_size < name_len + got_suffix_len + 1)
673 {
674 string_buffer_size = 2 * (name_len + got_suffix_len);
675 string_buffer = xrealloc (string_buffer, string_buffer_size);
676 }
677 memcpy (string_buffer, name, name_len);
678 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
679 got_suffix_len + 1);
680
681 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
682 1, address, mst_slot_got_plt, got_plt,
683 objfile);
684 if (msym)
685 SET_MSYMBOL_SIZE (msym, ptr_size);
686 }
687
688 do_cleanups (back_to);
689}
690
691/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
692
693static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
694
695/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
696
697struct elf_gnu_ifunc_cache
698{
699 /* This is always a function entry address, not a function descriptor. */
700 CORE_ADDR addr;
701
702 char name[1];
703};
704
705/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
706
707static hashval_t
708elf_gnu_ifunc_cache_hash (const void *a_voidp)
709{
710 const struct elf_gnu_ifunc_cache *a = a_voidp;
711
712 return htab_hash_string (a->name);
713}
714
715/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
716
717static int
718elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
719{
720 const struct elf_gnu_ifunc_cache *a = a_voidp;
721 const struct elf_gnu_ifunc_cache *b = b_voidp;
722
723 return strcmp (a->name, b->name) == 0;
724}
725
726/* Record the target function address of a STT_GNU_IFUNC function NAME is the
727 function entry address ADDR. Return 1 if NAME and ADDR are considered as
728 valid and therefore they were successfully recorded, return 0 otherwise.
729
730 Function does not expect a duplicate entry. Use
731 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
732 exists. */
733
734static int
735elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
736{
737 struct minimal_symbol *msym;
738 asection *sect;
739 struct objfile *objfile;
740 htab_t htab;
741 struct elf_gnu_ifunc_cache entry_local, *entry_p;
742 void **slot;
743
744 msym = lookup_minimal_symbol_by_pc (addr);
745 if (msym == NULL)
746 return 0;
747 if (SYMBOL_VALUE_ADDRESS (msym) != addr)
748 return 0;
749 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
750 sect = SYMBOL_OBJ_SECTION (msym)->the_bfd_section;
751 objfile = SYMBOL_OBJ_SECTION (msym)->objfile;
752
753 /* If .plt jumps back to .plt the symbol is still deferred for later
754 resolution and it has no use for GDB. Besides ".text" this symbol can
755 reside also in ".opd" for ppc64 function descriptor. */
756 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
757 return 0;
758
759 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
760 if (htab == NULL)
761 {
762 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
763 elf_gnu_ifunc_cache_eq,
764 NULL, &objfile->objfile_obstack,
765 hashtab_obstack_allocate,
766 dummy_obstack_deallocate);
767 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
768 }
769
770 entry_local.addr = addr;
771 obstack_grow (&objfile->objfile_obstack, &entry_local,
772 offsetof (struct elf_gnu_ifunc_cache, name));
773 obstack_grow_str0 (&objfile->objfile_obstack, name);
774 entry_p = obstack_finish (&objfile->objfile_obstack);
775
776 slot = htab_find_slot (htab, entry_p, INSERT);
777 if (*slot != NULL)
778 {
779 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
780 struct gdbarch *gdbarch = objfile->gdbarch;
781
782 if (entry_found_p->addr != addr)
783 {
784 /* This case indicates buggy inferior program, the resolved address
785 should never change. */
786
787 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
788 "function_address from %s to %s"),
789 name, paddress (gdbarch, entry_found_p->addr),
790 paddress (gdbarch, addr));
791 }
792
793 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
794 }
795 *slot = entry_p;
796
797 return 1;
798}
799
800/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
801 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
802 is not NULL) and the function returns 1. It returns 0 otherwise.
803
804 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
805 function. */
806
807static int
808elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
809{
810 struct objfile *objfile;
811
812 ALL_PSPACE_OBJFILES (current_program_space, objfile)
813 {
814 htab_t htab;
815 struct elf_gnu_ifunc_cache *entry_p;
816 void **slot;
817
818 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
819 if (htab == NULL)
820 continue;
821
822 entry_p = alloca (sizeof (*entry_p) + strlen (name));
823 strcpy (entry_p->name, name);
824
825 slot = htab_find_slot (htab, entry_p, NO_INSERT);
826 if (slot == NULL)
827 continue;
828 entry_p = *slot;
829 gdb_assert (entry_p != NULL);
830
831 if (addr_p)
832 *addr_p = entry_p->addr;
833 return 1;
834 }
835
836 return 0;
837}
838
839/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
840 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
841 is not NULL) and the function returns 1. It returns 0 otherwise.
842
843 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
844 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
845 prevent cache entries duplicates. */
846
847static int
848elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
849{
850 char *name_got_plt;
851 struct objfile *objfile;
852 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
853
854 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
855 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
856
857 ALL_PSPACE_OBJFILES (current_program_space, objfile)
858 {
859 bfd *obfd = objfile->obfd;
860 struct gdbarch *gdbarch = objfile->gdbarch;
861 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
862 size_t ptr_size = TYPE_LENGTH (ptr_type);
863 CORE_ADDR pointer_address, addr;
864 asection *plt;
865 gdb_byte *buf = alloca (ptr_size);
866 struct minimal_symbol *msym;
867
868 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
869 if (msym == NULL)
870 continue;
871 if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
872 continue;
873 pointer_address = SYMBOL_VALUE_ADDRESS (msym);
874
875 plt = bfd_get_section_by_name (obfd, ".plt");
876 if (plt == NULL)
877 continue;
878
879 if (MSYMBOL_SIZE (msym) != ptr_size)
880 continue;
881 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
882 continue;
883 addr = extract_typed_address (buf, ptr_type);
884 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
885 &current_target);
886
887 if (addr_p)
888 *addr_p = addr;
889 if (elf_gnu_ifunc_record_cache (name, addr))
890 return 1;
891 }
892
893 return 0;
894}
895
896/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
897 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
898 is not NULL) and the function returns 1. It returns 0 otherwise.
899
900 Both the elf_objfile_gnu_ifunc_cache_data hash table and
901 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
902
903static int
904elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
905{
906 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
907 return 1;
908
909 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
910 return 1;
911
912 return 0;
913}
914
915/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
916 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
917 is the entry point of the resolved STT_GNU_IFUNC target function to call.
918 */
919
920static CORE_ADDR
921elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
922{
923 const char *name_at_pc;
924 CORE_ADDR start_at_pc, address;
925 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
926 struct value *function, *address_val;
927
928 /* Try first any non-intrusive methods without an inferior call. */
929
930 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
931 && start_at_pc == pc)
932 {
933 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
934 return address;
935 }
936 else
937 name_at_pc = NULL;
938
939 function = allocate_value (func_func_type);
940 set_value_address (function, pc);
941
942 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
943 function entry address. ADDRESS may be a function descriptor. */
944
945 address_val = call_function_by_hand (function, 0, NULL);
946 address = value_as_address (address_val);
947 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
948 &current_target);
949
950 if (name_at_pc)
951 elf_gnu_ifunc_record_cache (name_at_pc, address);
952
953 return address;
954}
955
956/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
957
958static void
959elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
960{
961 struct breakpoint *b_return;
962 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
963 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
964 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
965 int thread_id = pid_to_thread_id (inferior_ptid);
966
967 gdb_assert (b->type == bp_gnu_ifunc_resolver);
968
969 for (b_return = b->related_breakpoint; b_return != b;
970 b_return = b_return->related_breakpoint)
971 {
972 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
973 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
974 gdb_assert (frame_id_p (b_return->frame_id));
975
976 if (b_return->thread == thread_id
977 && b_return->loc->requested_address == prev_pc
978 && frame_id_eq (b_return->frame_id, prev_frame_id))
979 break;
980 }
981
982 if (b_return == b)
983 {
984 struct symtab_and_line sal;
985
986 /* No need to call find_pc_line for symbols resolving as this is only
987 a helper breakpointer never shown to the user. */
988
989 init_sal (&sal);
990 sal.pspace = current_inferior ()->pspace;
991 sal.pc = prev_pc;
992 sal.section = find_pc_overlay (sal.pc);
993 sal.explicit_pc = 1;
994 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
995 prev_frame_id,
996 bp_gnu_ifunc_resolver_return);
997
998 /* set_momentary_breakpoint invalidates PREV_FRAME. */
999 prev_frame = NULL;
1000
1001 /* Add new b_return to the ring list b->related_breakpoint. */
1002 gdb_assert (b_return->related_breakpoint == b_return);
1003 b_return->related_breakpoint = b->related_breakpoint;
1004 b->related_breakpoint = b_return;
1005 }
1006}
1007
1008/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1009
1010static void
1011elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1012{
1013 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1014 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1015 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1016 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1017 struct value *func_func;
1018 struct value *value;
1019 CORE_ADDR resolved_address, resolved_pc;
1020 struct symtab_and_line sal;
1021 struct symtabs_and_lines sals, sals_end;
1022
1023 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1024
1025 while (b->related_breakpoint != b)
1026 {
1027 struct breakpoint *b_next = b->related_breakpoint;
1028
1029 switch (b->type)
1030 {
1031 case bp_gnu_ifunc_resolver:
1032 break;
1033 case bp_gnu_ifunc_resolver_return:
1034 delete_breakpoint (b);
1035 break;
1036 default:
1037 internal_error (__FILE__, __LINE__,
1038 _("handle_inferior_event: Invalid "
1039 "gnu-indirect-function breakpoint type %d"),
1040 (int) b->type);
1041 }
1042 b = b_next;
1043 }
1044 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1045 gdb_assert (b->loc->next == NULL);
1046
1047 func_func = allocate_value (func_func_type);
1048 set_value_address (func_func, b->loc->related_address);
1049
1050 value = allocate_value (value_type);
1051 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1052 value_contents_raw (value), NULL);
1053 resolved_address = value_as_address (value);
1054 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1055 resolved_address,
1056 &current_target);
1057
1058 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1059 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1060
1061 sal = find_pc_line (resolved_pc, 0);
1062 sals.nelts = 1;
1063 sals.sals = &sal;
1064 sals_end.nelts = 0;
1065
1066 b->type = bp_breakpoint;
1067 update_breakpoint_locations (b, sals, sals_end);
1068}
1069
1070/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1071
1072static const struct elf_build_id *
1073build_id_bfd_get (bfd *abfd)
1074{
1075 if (!bfd_check_format (abfd, bfd_object)
1076 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1077 || elf_tdata (abfd)->build_id == NULL)
1078 return NULL;
1079
1080 return elf_tdata (abfd)->build_id;
1081}
1082
1083/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1084
1085static int
1086build_id_verify (const char *filename, const struct elf_build_id *check)
1087{
1088 bfd *abfd;
1089 const struct elf_build_id *found;
1090 int retval = 0;
1091
1092 /* We expect to be silent on the non-existing files. */
1093 abfd = gdb_bfd_open_maybe_remote (filename);
1094 if (abfd == NULL)
1095 return 0;
1096
1097 found = build_id_bfd_get (abfd);
1098
1099 if (found == NULL)
1100 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1101 else if (found->size != check->size
1102 || memcmp (found->data, check->data, found->size) != 0)
1103 warning (_("File \"%s\" has a different build-id, file skipped"),
1104 filename);
1105 else
1106 retval = 1;
1107
1108 gdb_bfd_unref (abfd);
1109
1110 return retval;
1111}
1112
1113static char *
1114build_id_to_debug_filename (const struct elf_build_id *build_id)
1115{
1116 char *link, *debugdir, *retval = NULL;
1117 VEC (char_ptr) *debugdir_vec;
1118 struct cleanup *back_to;
1119 int ix;
1120
1121 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1122 link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1123 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1124
1125 /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1126 cause "/.build-id/..." lookups. */
1127
1128 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1129 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1130
1131 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1132 {
1133 size_t debugdir_len = strlen (debugdir);
1134 const gdb_byte *data = build_id->data;
1135 size_t size = build_id->size;
1136 char *s;
1137
1138 memcpy (link, debugdir, debugdir_len);
1139 s = &link[debugdir_len];
1140 s += sprintf (s, "/.build-id/");
1141 if (size > 0)
1142 {
1143 size--;
1144 s += sprintf (s, "%02x", (unsigned) *data++);
1145 }
1146 if (size > 0)
1147 *s++ = '/';
1148 while (size-- > 0)
1149 s += sprintf (s, "%02x", (unsigned) *data++);
1150 strcpy (s, ".debug");
1151
1152 /* lrealpath() is expensive even for the usually non-existent files. */
1153 if (access (link, F_OK) == 0)
1154 retval = lrealpath (link);
1155
1156 if (retval != NULL && !build_id_verify (retval, build_id))
1157 {
1158 xfree (retval);
1159 retval = NULL;
1160 }
1161
1162 if (retval != NULL)
1163 break;
1164 }
1165
1166 do_cleanups (back_to);
1167 return retval;
1168}
1169
1170static char *
1171find_separate_debug_file_by_buildid (struct objfile *objfile)
1172{
1173 const struct elf_build_id *build_id;
1174
1175 build_id = build_id_bfd_get (objfile->obfd);
1176 if (build_id != NULL)
1177 {
1178 char *build_id_name;
1179
1180 build_id_name = build_id_to_debug_filename (build_id);
1181 /* Prevent looping on a stripped .debug file. */
1182 if (build_id_name != NULL
1183 && filename_cmp (build_id_name, objfile->name) == 0)
1184 {
1185 warning (_("\"%s\": separate debug info file has no debug info"),
1186 build_id_name);
1187 xfree (build_id_name);
1188 }
1189 else if (build_id_name != NULL)
1190 return build_id_name;
1191 }
1192 return NULL;
1193}
1194
1195/* Scan and build partial symbols for a symbol file.
1196 We have been initialized by a call to elf_symfile_init, which
1197 currently does nothing.
1198
1199 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1200 in each section. We simplify it down to a single offset for all
1201 symbols. FIXME.
1202
1203 This function only does the minimum work necessary for letting the
1204 user "name" things symbolically; it does not read the entire symtab.
1205 Instead, it reads the external and static symbols and puts them in partial
1206 symbol tables. When more extensive information is requested of a
1207 file, the corresponding partial symbol table is mutated into a full
1208 fledged symbol table by going back and reading the symbols
1209 for real.
1210
1211 We look for sections with specific names, to tell us what debug
1212 format to look for: FIXME!!!
1213
1214 elfstab_build_psymtabs() handles STABS symbols;
1215 mdebug_build_psymtabs() handles ECOFF debugging information.
1216
1217 Note that ELF files have a "minimal" symbol table, which looks a lot
1218 like a COFF symbol table, but has only the minimal information necessary
1219 for linking. We process this also, and use the information to
1220 build gdb's minimal symbol table. This gives us some minimal debugging
1221 capability even for files compiled without -g. */
1222
1223static void
1224elf_symfile_read (struct objfile *objfile, int symfile_flags)
1225{
1226 bfd *synth_abfd, *abfd = objfile->obfd;
1227 struct elfinfo ei;
1228 struct cleanup *back_to;
1229 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1230 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1231 asymbol *synthsyms;
1232 struct dbx_symfile_info *dbx;
1233
1234 if (symtab_create_debug)
1235 {
1236 fprintf_unfiltered (gdb_stdlog,
1237 "Reading minimal symbols of objfile %s ...\n",
1238 objfile->name);
1239 }
1240
1241 init_minimal_symbol_collection ();
1242 back_to = make_cleanup_discard_minimal_symbols ();
1243
1244 memset ((char *) &ei, 0, sizeof (ei));
1245
1246 /* Allocate struct to keep track of the symfile. */
1247 dbx = XCNEW (struct dbx_symfile_info);
1248 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1249 make_cleanup (free_elfinfo, (void *) objfile);
1250
1251 /* Process the normal ELF symbol table first. This may write some
1252 chain of info into the dbx_symfile_info of the objfile, which can
1253 later be used by elfstab_offset_sections. */
1254
1255 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1256 if (storage_needed < 0)
1257 error (_("Can't read symbols from %s: %s"),
1258 bfd_get_filename (objfile->obfd),
1259 bfd_errmsg (bfd_get_error ()));
1260
1261 if (storage_needed > 0)
1262 {
1263 symbol_table = (asymbol **) xmalloc (storage_needed);
1264 make_cleanup (xfree, symbol_table);
1265 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1266
1267 if (symcount < 0)
1268 error (_("Can't read symbols from %s: %s"),
1269 bfd_get_filename (objfile->obfd),
1270 bfd_errmsg (bfd_get_error ()));
1271
1272 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1273 }
1274
1275 /* Add the dynamic symbols. */
1276
1277 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1278
1279 if (storage_needed > 0)
1280 {
1281 /* Memory gets permanently referenced from ABFD after
1282 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1283 It happens only in the case when elf_slurp_reloc_table sees
1284 asection->relocation NULL. Determining which section is asection is
1285 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1286 implementation detail, though. */
1287
1288 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1289 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1290 dyn_symbol_table);
1291
1292 if (dynsymcount < 0)
1293 error (_("Can't read symbols from %s: %s"),
1294 bfd_get_filename (objfile->obfd),
1295 bfd_errmsg (bfd_get_error ()));
1296
1297 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1298
1299 elf_rel_plt_read (objfile, dyn_symbol_table);
1300 }
1301
1302 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1303 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1304
1305 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1306 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1307 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1308 read the code address from .opd while it reads the .symtab section from
1309 a separate debug info file as the .opd section is SHT_NOBITS there.
1310
1311 With SYNTH_ABFD the .opd section will be read from the original
1312 backlinked binary where it is valid. */
1313
1314 if (objfile->separate_debug_objfile_backlink)
1315 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1316 else
1317 synth_abfd = abfd;
1318
1319 /* Add synthetic symbols - for instance, names for any PLT entries. */
1320
1321 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1322 dynsymcount, dyn_symbol_table,
1323 &synthsyms);
1324 if (synthcount > 0)
1325 {
1326 asymbol **synth_symbol_table;
1327 long i;
1328
1329 make_cleanup (xfree, synthsyms);
1330 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1331 for (i = 0; i < synthcount; i++)
1332 synth_symbol_table[i] = synthsyms + i;
1333 make_cleanup (xfree, synth_symbol_table);
1334 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1335 synth_symbol_table, 1);
1336 }
1337
1338 /* Install any minimal symbols that have been collected as the current
1339 minimal symbols for this objfile. The debug readers below this point
1340 should not generate new minimal symbols; if they do it's their
1341 responsibility to install them. "mdebug" appears to be the only one
1342 which will do this. */
1343
1344 install_minimal_symbols (objfile);
1345 do_cleanups (back_to);
1346
1347 /* Now process debugging information, which is contained in
1348 special ELF sections. */
1349
1350 /* We first have to find them... */
1351 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1352
1353 /* ELF debugging information is inserted into the psymtab in the
1354 order of least informative first - most informative last. Since
1355 the psymtab table is searched `most recent insertion first' this
1356 increases the probability that more detailed debug information
1357 for a section is found.
1358
1359 For instance, an object file might contain both .mdebug (XCOFF)
1360 and .debug_info (DWARF2) sections then .mdebug is inserted first
1361 (searched last) and DWARF2 is inserted last (searched first). If
1362 we don't do this then the XCOFF info is found first - for code in
1363 an included file XCOFF info is useless. */
1364
1365 if (ei.mdebugsect)
1366 {
1367 const struct ecoff_debug_swap *swap;
1368
1369 /* .mdebug section, presumably holding ECOFF debugging
1370 information. */
1371 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1372 if (swap)
1373 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1374 }
1375 if (ei.stabsect)
1376 {
1377 asection *str_sect;
1378
1379 /* Stab sections have an associated string table that looks like
1380 a separate section. */
1381 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1382
1383 /* FIXME should probably warn about a stab section without a stabstr. */
1384 if (str_sect)
1385 elfstab_build_psymtabs (objfile,
1386 ei.stabsect,
1387 str_sect->filepos,
1388 bfd_section_size (abfd, str_sect));
1389 }
1390
1391 if (dwarf2_has_info (objfile, NULL))
1392 {
1393 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1394 information present in OBJFILE. If there is such debug info present
1395 never use .gdb_index. */
1396
1397 if (!objfile_has_partial_symbols (objfile)
1398 && dwarf2_initialize_objfile (objfile))
1399 objfile->sf = &elf_sym_fns_gdb_index;
1400 else
1401 {
1402 /* It is ok to do this even if the stabs reader made some
1403 partial symbols, because OBJF_PSYMTABS_READ has not been
1404 set, and so our lazy reader function will still be called
1405 when needed. */
1406 objfile->sf = &elf_sym_fns_lazy_psyms;
1407 }
1408 }
1409 /* If the file has its own symbol tables it has no separate debug
1410 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1411 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1412 `.note.gnu.build-id'.
1413
1414 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1415 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1416 an objfile via find_separate_debug_file_in_section there was no separate
1417 debug info available. Therefore do not attempt to search for another one,
1418 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1419 be NULL and we would possibly violate it. */
1420
1421 else if (!objfile_has_partial_symbols (objfile)
1422 && objfile->separate_debug_objfile == NULL
1423 && objfile->separate_debug_objfile_backlink == NULL)
1424 {
1425 char *debugfile;
1426
1427 debugfile = find_separate_debug_file_by_buildid (objfile);
1428
1429 if (debugfile == NULL)
1430 debugfile = find_separate_debug_file_by_debuglink (objfile);
1431
1432 if (debugfile)
1433 {
1434 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1435 bfd *abfd = symfile_bfd_open (debugfile);
1436
1437 make_cleanup_bfd_unref (abfd);
1438 symbol_file_add_separate (abfd, symfile_flags, objfile);
1439 do_cleanups (cleanup);
1440 }
1441 }
1442
1443 if (symtab_create_debug)
1444 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1445}
1446
1447/* Callback to lazily read psymtabs. */
1448
1449static void
1450read_psyms (struct objfile *objfile)
1451{
1452 if (dwarf2_has_info (objfile, NULL))
1453 dwarf2_build_psymtabs (objfile);
1454}
1455
1456/* This cleans up the objfile's dbx symfile info, and the chain of
1457 stab_section_info's, that might be dangling from it. */
1458
1459static void
1460free_elfinfo (void *objp)
1461{
1462 struct objfile *objfile = (struct objfile *) objp;
1463 struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile);
1464 struct stab_section_info *ssi, *nssi;
1465
1466 ssi = dbxinfo->stab_section_info;
1467 while (ssi)
1468 {
1469 nssi = ssi->next;
1470 xfree (ssi);
1471 ssi = nssi;
1472 }
1473
1474 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1475}
1476
1477
1478/* Initialize anything that needs initializing when a completely new symbol
1479 file is specified (not just adding some symbols from another file, e.g. a
1480 shared library).
1481
1482 We reinitialize buildsym, since we may be reading stabs from an ELF
1483 file. */
1484
1485static void
1486elf_new_init (struct objfile *ignore)
1487{
1488 stabsread_new_init ();
1489 buildsym_new_init ();
1490}
1491
1492/* Perform any local cleanups required when we are done with a particular
1493 objfile. I.E, we are in the process of discarding all symbol information
1494 for an objfile, freeing up all memory held for it, and unlinking the
1495 objfile struct from the global list of known objfiles. */
1496
1497static void
1498elf_symfile_finish (struct objfile *objfile)
1499{
1500 dwarf2_free_objfile (objfile);
1501}
1502
1503/* ELF specific initialization routine for reading symbols.
1504
1505 It is passed a pointer to a struct sym_fns which contains, among other
1506 things, the BFD for the file whose symbols are being read, and a slot for
1507 a pointer to "private data" which we can fill with goodies.
1508
1509 For now at least, we have nothing in particular to do, so this function is
1510 just a stub. */
1511
1512static void
1513elf_symfile_init (struct objfile *objfile)
1514{
1515 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1516 find this causes a significant slowdown in gdb then we could
1517 set it in the debug symbol readers only when necessary. */
1518 objfile->flags |= OBJF_REORDERED;
1519}
1520
1521/* When handling an ELF file that contains Sun STABS debug info,
1522 some of the debug info is relative to the particular chunk of the
1523 section that was generated in its individual .o file. E.g.
1524 offsets to static variables are relative to the start of the data
1525 segment *for that module before linking*. This information is
1526 painfully squirreled away in the ELF symbol table as local symbols
1527 with wierd names. Go get 'em when needed. */
1528
1529void
1530elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1531{
1532 const char *filename = pst->filename;
1533 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
1534 struct stab_section_info *maybe = dbx->stab_section_info;
1535 struct stab_section_info *questionable = 0;
1536 int i;
1537
1538 /* The ELF symbol info doesn't include path names, so strip the path
1539 (if any) from the psymtab filename. */
1540 filename = lbasename (filename);
1541
1542 /* FIXME: This linear search could speed up significantly
1543 if it was chained in the right order to match how we search it,
1544 and if we unchained when we found a match. */
1545 for (; maybe; maybe = maybe->next)
1546 {
1547 if (filename[0] == maybe->filename[0]
1548 && filename_cmp (filename, maybe->filename) == 0)
1549 {
1550 /* We found a match. But there might be several source files
1551 (from different directories) with the same name. */
1552 if (0 == maybe->found)
1553 break;
1554 questionable = maybe; /* Might use it later. */
1555 }
1556 }
1557
1558 if (maybe == 0 && questionable != 0)
1559 {
1560 complaint (&symfile_complaints,
1561 _("elf/stab section information questionable for %s"),
1562 filename);
1563 maybe = questionable;
1564 }
1565
1566 if (maybe)
1567 {
1568 /* Found it! Allocate a new psymtab struct, and fill it in. */
1569 maybe->found++;
1570 pst->section_offsets = (struct section_offsets *)
1571 obstack_alloc (&objfile->objfile_obstack,
1572 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1573 for (i = 0; i < maybe->num_sections; i++)
1574 (pst->section_offsets)->offsets[i] = maybe->sections[i];
1575 return;
1576 }
1577
1578 /* We were unable to find any offsets for this file. Complain. */
1579 if (dbx->stab_section_info) /* If there *is* any info, */
1580 complaint (&symfile_complaints,
1581 _("elf/stab section information missing for %s"), filename);
1582}
1583
1584/* Implementation of `sym_get_probes', as documented in symfile.h. */
1585
1586static VEC (probe_p) *
1587elf_get_probes (struct objfile *objfile)
1588{
1589 VEC (probe_p) *probes_per_objfile;
1590
1591 /* Have we parsed this objfile's probes already? */
1592 probes_per_objfile = objfile_data (objfile, probe_key);
1593
1594 if (!probes_per_objfile)
1595 {
1596 int ix;
1597 const struct probe_ops *probe_ops;
1598
1599 /* Here we try to gather information about all types of probes from the
1600 objfile. */
1601 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1602 ix++)
1603 probe_ops->get_probes (&probes_per_objfile, objfile);
1604
1605 if (probes_per_objfile == NULL)
1606 {
1607 VEC_reserve (probe_p, probes_per_objfile, 1);
1608 gdb_assert (probes_per_objfile != NULL);
1609 }
1610
1611 set_objfile_data (objfile, probe_key, probes_per_objfile);
1612 }
1613
1614 return probes_per_objfile;
1615}
1616
1617/* Implementation of `sym_get_probe_argument_count', as documented in
1618 symfile.h. */
1619
1620static unsigned
1621elf_get_probe_argument_count (struct probe *probe)
1622{
1623 return probe->pops->get_probe_argument_count (probe);
1624}
1625
1626/* Implementation of `sym_evaluate_probe_argument', as documented in
1627 symfile.h. */
1628
1629static struct value *
1630elf_evaluate_probe_argument (struct probe *probe, unsigned n)
1631{
1632 return probe->pops->evaluate_probe_argument (probe, n);
1633}
1634
1635/* Implementation of `sym_compile_to_ax', as documented in symfile.h. */
1636
1637static void
1638elf_compile_to_ax (struct probe *probe,
1639 struct agent_expr *expr,
1640 struct axs_value *value,
1641 unsigned n)
1642{
1643 probe->pops->compile_to_ax (probe, expr, value, n);
1644}
1645
1646/* Implementation of `sym_relocate_probe', as documented in symfile.h. */
1647
1648static void
1649elf_symfile_relocate_probe (struct objfile *objfile,
1650 struct section_offsets *new_offsets,
1651 struct section_offsets *delta)
1652{
1653 int ix;
1654 VEC (probe_p) *probes = objfile_data (objfile, probe_key);
1655 struct probe *probe;
1656
1657 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1658 probe->pops->relocate (probe, ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
1659}
1660
1661/* Helper function used to free the space allocated for storing SystemTap
1662 probe information. */
1663
1664static void
1665probe_key_free (struct objfile *objfile, void *d)
1666{
1667 int ix;
1668 VEC (probe_p) *probes = d;
1669 struct probe *probe;
1670
1671 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1672 probe->pops->destroy (probe);
1673
1674 VEC_free (probe_p, probes);
1675}
1676
1677\f
1678
1679/* Implementation `sym_probe_fns', as documented in symfile.h. */
1680
1681static const struct sym_probe_fns elf_probe_fns =
1682{
1683 elf_get_probes, /* sym_get_probes */
1684 elf_get_probe_argument_count, /* sym_get_probe_argument_count */
1685 elf_evaluate_probe_argument, /* sym_evaluate_probe_argument */
1686 elf_compile_to_ax, /* sym_compile_to_ax */
1687 elf_symfile_relocate_probe, /* sym_relocate_probe */
1688};
1689
1690/* Register that we are able to handle ELF object file formats. */
1691
1692static const struct sym_fns elf_sym_fns =
1693{
1694 bfd_target_elf_flavour,
1695 elf_new_init, /* init anything gbl to entire symtab */
1696 elf_symfile_init, /* read initial info, setup for sym_read() */
1697 elf_symfile_read, /* read a symbol file into symtab */
1698 NULL, /* sym_read_psymbols */
1699 elf_symfile_finish, /* finished with file, cleanup */
1700 default_symfile_offsets, /* Translate ext. to int. relocation */
1701 elf_symfile_segments, /* Get segment information from a file. */
1702 NULL,
1703 default_symfile_relocate, /* Relocate a debug section. */
1704 &elf_probe_fns, /* sym_probe_fns */
1705 &psym_functions
1706};
1707
1708/* The same as elf_sym_fns, but not registered and lazily reads
1709 psymbols. */
1710
1711static const struct sym_fns elf_sym_fns_lazy_psyms =
1712{
1713 bfd_target_elf_flavour,
1714 elf_new_init, /* init anything gbl to entire symtab */
1715 elf_symfile_init, /* read initial info, setup for sym_read() */
1716 elf_symfile_read, /* read a symbol file into symtab */
1717 read_psyms, /* sym_read_psymbols */
1718 elf_symfile_finish, /* finished with file, cleanup */
1719 default_symfile_offsets, /* Translate ext. to int. relocation */
1720 elf_symfile_segments, /* Get segment information from a file. */
1721 NULL,
1722 default_symfile_relocate, /* Relocate a debug section. */
1723 &elf_probe_fns, /* sym_probe_fns */
1724 &psym_functions
1725};
1726
1727/* The same as elf_sym_fns, but not registered and uses the
1728 DWARF-specific GNU index rather than psymtab. */
1729static const struct sym_fns elf_sym_fns_gdb_index =
1730{
1731 bfd_target_elf_flavour,
1732 elf_new_init, /* init anything gbl to entire symab */
1733 elf_symfile_init, /* read initial info, setup for sym_red() */
1734 elf_symfile_read, /* read a symbol file into symtab */
1735 NULL, /* sym_read_psymbols */
1736 elf_symfile_finish, /* finished with file, cleanup */
1737 default_symfile_offsets, /* Translate ext. to int. relocatin */
1738 elf_symfile_segments, /* Get segment information from a file. */
1739 NULL,
1740 default_symfile_relocate, /* Relocate a debug section. */
1741 &elf_probe_fns, /* sym_probe_fns */
1742 &dwarf2_gdb_index_functions
1743};
1744
1745/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1746
1747static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1748{
1749 elf_gnu_ifunc_resolve_addr,
1750 elf_gnu_ifunc_resolve_name,
1751 elf_gnu_ifunc_resolver_stop,
1752 elf_gnu_ifunc_resolver_return_stop
1753};
1754
1755void
1756_initialize_elfread (void)
1757{
1758 probe_key = register_objfile_data_with_cleanup (NULL, probe_key_free);
1759 add_symtab_fns (&elf_sym_fns);
1760
1761 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1762 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1763}
This page took 0.029481 seconds and 4 git commands to generate.