Calling ifunc functions when resolver has debug info, user symbol same name
[deliverable/binutils-gdb.git] / gdb / elfread.c
... / ...
CommitLineData
1/* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2018 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "bfd.h"
24#include "elf-bfd.h"
25#include "elf/common.h"
26#include "elf/internal.h"
27#include "elf/mips.h"
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "buildsym.h"
32#include "stabsread.h"
33#include "gdb-stabs.h"
34#include "complaints.h"
35#include "demangle.h"
36#include "psympriv.h"
37#include "filenames.h"
38#include "probe.h"
39#include "arch-utils.h"
40#include "gdbtypes.h"
41#include "value.h"
42#include "infcall.h"
43#include "gdbthread.h"
44#include "regcache.h"
45#include "bcache.h"
46#include "gdb_bfd.h"
47#include "build-id.h"
48#include "location.h"
49#include "auxv.h"
50
51/* Forward declarations. */
52extern const struct sym_fns elf_sym_fns_gdb_index;
53extern const struct sym_fns elf_sym_fns_debug_names;
54extern const struct sym_fns elf_sym_fns_lazy_psyms;
55
56/* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66/* Per-BFD data for probe info. */
67
68static const struct bfd_data *probe_key = NULL;
69
70/* Minimal symbols located at the GOT entries for .plt - that is the real
71 pointer where the given entry will jump to. It gets updated by the real
72 function address during lazy ld.so resolving in the inferior. These
73 minimal symbols are indexed for <tab>-completion. */
74
75#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
76
77/* Locate the segments in ABFD. */
78
79static struct symfile_segment_data *
80elf_symfile_segments (bfd *abfd)
81{
82 Elf_Internal_Phdr *phdrs, **segments;
83 long phdrs_size;
84 int num_phdrs, num_segments, num_sections, i;
85 asection *sect;
86 struct symfile_segment_data *data;
87
88 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
89 if (phdrs_size == -1)
90 return NULL;
91
92 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
93 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
94 if (num_phdrs == -1)
95 return NULL;
96
97 num_segments = 0;
98 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
99 for (i = 0; i < num_phdrs; i++)
100 if (phdrs[i].p_type == PT_LOAD)
101 segments[num_segments++] = &phdrs[i];
102
103 if (num_segments == 0)
104 return NULL;
105
106 data = XCNEW (struct symfile_segment_data);
107 data->num_segments = num_segments;
108 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
109 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
110
111 for (i = 0; i < num_segments; i++)
112 {
113 data->segment_bases[i] = segments[i]->p_vaddr;
114 data->segment_sizes[i] = segments[i]->p_memsz;
115 }
116
117 num_sections = bfd_count_sections (abfd);
118 data->segment_info = XCNEWVEC (int, num_sections);
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
123 CORE_ADDR vma;
124
125 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
126 continue;
127
128 vma = bfd_get_section_vma (abfd, sect);
129
130 for (j = 0; j < num_segments; j++)
131 if (segments[j]->p_memsz > 0
132 && vma >= segments[j]->p_vaddr
133 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
134 {
135 data->segment_info[i] = j + 1;
136 break;
137 }
138
139 /* We should have found a segment for every non-empty section.
140 If we haven't, we will not relocate this section by any
141 offsets we apply to the segments. As an exception, do not
142 warn about SHT_NOBITS sections; in normal ELF execution
143 environments, SHT_NOBITS means zero-initialized and belongs
144 in a segment, but in no-OS environments some tools (e.g. ARM
145 RealView) use SHT_NOBITS for uninitialized data. Since it is
146 uninitialized, it doesn't need a program header. Such
147 binaries are not relocatable. */
148 if (bfd_get_section_size (sect) > 0 && j == num_segments
149 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
150 warning (_("Loadable section \"%s\" outside of ELF segments"),
151 bfd_section_name (abfd, sect));
152 }
153
154 return data;
155}
156
157/* We are called once per section from elf_symfile_read. We
158 need to examine each section we are passed, check to see
159 if it is something we are interested in processing, and
160 if so, stash away some access information for the section.
161
162 For now we recognize the dwarf debug information sections and
163 line number sections from matching their section names. The
164 ELF definition is no real help here since it has no direct
165 knowledge of DWARF (by design, so any debugging format can be
166 used).
167
168 We also recognize the ".stab" sections used by the Sun compilers
169 released with Solaris 2.
170
171 FIXME: The section names should not be hardwired strings (what
172 should they be? I don't think most object file formats have enough
173 section flags to specify what kind of debug section it is.
174 -kingdon). */
175
176static void
177elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
178{
179 struct elfinfo *ei;
180
181 ei = (struct elfinfo *) eip;
182 if (strcmp (sectp->name, ".stab") == 0)
183 {
184 ei->stabsect = sectp;
185 }
186 else if (strcmp (sectp->name, ".mdebug") == 0)
187 {
188 ei->mdebugsect = sectp;
189 }
190}
191
192static struct minimal_symbol *
193record_minimal_symbol (minimal_symbol_reader &reader,
194 const char *name, int name_len, bool copy_name,
195 CORE_ADDR address,
196 enum minimal_symbol_type ms_type,
197 asection *bfd_section, struct objfile *objfile)
198{
199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
200
201 if (ms_type == mst_text || ms_type == mst_file_text
202 || ms_type == mst_text_gnu_ifunc)
203 address = gdbarch_addr_bits_remove (gdbarch, address);
204
205 return reader.record_full (name, name_len, copy_name, address,
206 ms_type,
207 gdb_bfd_section_index (objfile->obfd,
208 bfd_section));
209}
210
211/* Read the symbol table of an ELF file.
212
213 Given an objfile, a symbol table, and a flag indicating whether the
214 symbol table contains regular, dynamic, or synthetic symbols, add all
215 the global function and data symbols to the minimal symbol table.
216
217 In stabs-in-ELF, as implemented by Sun, there are some local symbols
218 defined in the ELF symbol table, which can be used to locate
219 the beginnings of sections from each ".o" file that was linked to
220 form the executable objfile. We gather any such info and record it
221 in data structures hung off the objfile's private data. */
222
223#define ST_REGULAR 0
224#define ST_DYNAMIC 1
225#define ST_SYNTHETIC 2
226
227static void
228elf_symtab_read (minimal_symbol_reader &reader,
229 struct objfile *objfile, int type,
230 long number_of_symbols, asymbol **symbol_table,
231 bool copy_names)
232{
233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
234 asymbol *sym;
235 long i;
236 CORE_ADDR symaddr;
237 enum minimal_symbol_type ms_type;
238 /* Name of the last file symbol. This is either a constant string or is
239 saved on the objfile's filename cache. */
240 const char *filesymname = "";
241 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
242 int elf_make_msymbol_special_p
243 = gdbarch_elf_make_msymbol_special_p (gdbarch);
244
245 for (i = 0; i < number_of_symbols; i++)
246 {
247 sym = symbol_table[i];
248 if (sym->name == NULL || *sym->name == '\0')
249 {
250 /* Skip names that don't exist (shouldn't happen), or names
251 that are null strings (may happen). */
252 continue;
253 }
254
255 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
256 symbols which do not correspond to objects in the symbol table,
257 but have some other target-specific meaning. */
258 if (bfd_is_target_special_symbol (objfile->obfd, sym))
259 {
260 if (gdbarch_record_special_symbol_p (gdbarch))
261 gdbarch_record_special_symbol (gdbarch, objfile, sym);
262 continue;
263 }
264
265 if (type == ST_DYNAMIC
266 && sym->section == bfd_und_section_ptr
267 && (sym->flags & BSF_FUNCTION))
268 {
269 struct minimal_symbol *msym;
270 bfd *abfd = objfile->obfd;
271 asection *sect;
272
273 /* Symbol is a reference to a function defined in
274 a shared library.
275 If its value is non zero then it is usually the address
276 of the corresponding entry in the procedure linkage table,
277 plus the desired section offset.
278 If its value is zero then the dynamic linker has to resolve
279 the symbol. We are unable to find any meaningful address
280 for this symbol in the executable file, so we skip it. */
281 symaddr = sym->value;
282 if (symaddr == 0)
283 continue;
284
285 /* sym->section is the undefined section. However, we want to
286 record the section where the PLT stub resides with the
287 minimal symbol. Search the section table for the one that
288 covers the stub's address. */
289 for (sect = abfd->sections; sect != NULL; sect = sect->next)
290 {
291 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
292 continue;
293
294 if (symaddr >= bfd_get_section_vma (abfd, sect)
295 && symaddr < bfd_get_section_vma (abfd, sect)
296 + bfd_get_section_size (sect))
297 break;
298 }
299 if (!sect)
300 continue;
301
302 /* On ia64-hpux, we have discovered that the system linker
303 adds undefined symbols with nonzero addresses that cannot
304 be right (their address points inside the code of another
305 function in the .text section). This creates problems
306 when trying to determine which symbol corresponds to
307 a given address.
308
309 We try to detect those buggy symbols by checking which
310 section we think they correspond to. Normally, PLT symbols
311 are stored inside their own section, and the typical name
312 for that section is ".plt". So, if there is a ".plt"
313 section, and yet the section name of our symbol does not
314 start with ".plt", we ignore that symbol. */
315 if (!startswith (sect->name, ".plt")
316 && bfd_get_section_by_name (abfd, ".plt") != NULL)
317 continue;
318
319 msym = record_minimal_symbol
320 (reader, sym->name, strlen (sym->name), copy_names,
321 symaddr, mst_solib_trampoline, sect, objfile);
322 if (msym != NULL)
323 {
324 msym->filename = filesymname;
325 if (elf_make_msymbol_special_p)
326 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
327 }
328 continue;
329 }
330
331 /* If it is a nonstripped executable, do not enter dynamic
332 symbols, as the dynamic symbol table is usually a subset
333 of the main symbol table. */
334 if (type == ST_DYNAMIC && !stripped)
335 continue;
336 if (sym->flags & BSF_FILE)
337 {
338 filesymname
339 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
340 objfile->per_bfd->filename_cache);
341 }
342 else if (sym->flags & BSF_SECTION_SYM)
343 continue;
344 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
345 | BSF_GNU_UNIQUE))
346 {
347 struct minimal_symbol *msym;
348
349 /* Select global/local/weak symbols. Note that bfd puts abs
350 symbols in their own section, so all symbols we are
351 interested in will have a section. */
352 /* Bfd symbols are section relative. */
353 symaddr = sym->value + sym->section->vma;
354 /* For non-absolute symbols, use the type of the section
355 they are relative to, to intuit text/data. Bfd provides
356 no way of figuring this out for absolute symbols. */
357 if (sym->section == bfd_abs_section_ptr)
358 {
359 /* This is a hack to get the minimal symbol type
360 right for Irix 5, which has absolute addresses
361 with special section indices for dynamic symbols.
362
363 NOTE: uweigand-20071112: Synthetic symbols do not
364 have an ELF-private part, so do not touch those. */
365 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
366 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
367
368 switch (shndx)
369 {
370 case SHN_MIPS_TEXT:
371 ms_type = mst_text;
372 break;
373 case SHN_MIPS_DATA:
374 ms_type = mst_data;
375 break;
376 case SHN_MIPS_ACOMMON:
377 ms_type = mst_bss;
378 break;
379 default:
380 ms_type = mst_abs;
381 }
382
383 /* If it is an Irix dynamic symbol, skip section name
384 symbols, relocate all others by section offset. */
385 if (ms_type != mst_abs)
386 {
387 if (sym->name[0] == '.')
388 continue;
389 }
390 }
391 else if (sym->section->flags & SEC_CODE)
392 {
393 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
394 {
395 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
396 ms_type = mst_text_gnu_ifunc;
397 else
398 ms_type = mst_text;
399 }
400 /* The BSF_SYNTHETIC check is there to omit ppc64 function
401 descriptors mistaken for static functions starting with 'L'.
402 */
403 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
404 && (sym->flags & BSF_SYNTHETIC) == 0)
405 || ((sym->flags & BSF_LOCAL)
406 && sym->name[0] == '$'
407 && sym->name[1] == 'L'))
408 /* Looks like a compiler-generated label. Skip
409 it. The assembler should be skipping these (to
410 keep executables small), but apparently with
411 gcc on the (deleted) delta m88k SVR4, it loses.
412 So to have us check too should be harmless (but
413 I encourage people to fix this in the assembler
414 instead of adding checks here). */
415 continue;
416 else
417 {
418 ms_type = mst_file_text;
419 }
420 }
421 else if (sym->section->flags & SEC_ALLOC)
422 {
423 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
424 {
425 if (sym->section->flags & SEC_LOAD)
426 {
427 ms_type = mst_data;
428 }
429 else
430 {
431 ms_type = mst_bss;
432 }
433 }
434 else if (sym->flags & BSF_LOCAL)
435 {
436 if (sym->section->flags & SEC_LOAD)
437 {
438 ms_type = mst_file_data;
439 }
440 else
441 {
442 ms_type = mst_file_bss;
443 }
444 }
445 else
446 {
447 ms_type = mst_unknown;
448 }
449 }
450 else
451 {
452 /* FIXME: Solaris2 shared libraries include lots of
453 odd "absolute" and "undefined" symbols, that play
454 hob with actions like finding what function the PC
455 is in. Ignore them if they aren't text, data, or bss. */
456 /* ms_type = mst_unknown; */
457 continue; /* Skip this symbol. */
458 }
459 msym = record_minimal_symbol
460 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
461 ms_type, sym->section, objfile);
462
463 if (msym)
464 {
465 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
466 ELF-private part. */
467 if (type != ST_SYNTHETIC)
468 {
469 /* Pass symbol size field in via BFD. FIXME!!! */
470 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
471 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
472 }
473
474 msym->filename = filesymname;
475 if (elf_make_msymbol_special_p)
476 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
477 }
478
479 /* If we see a default versioned symbol, install it under
480 its version-less name. */
481 if (msym != NULL)
482 {
483 const char *atsign = strchr (sym->name, '@');
484
485 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
486 {
487 int len = atsign - sym->name;
488
489 record_minimal_symbol (reader, sym->name, len, true, symaddr,
490 ms_type, sym->section, objfile);
491 }
492 }
493
494 /* For @plt symbols, also record a trampoline to the
495 destination symbol. The @plt symbol will be used in
496 disassembly, and the trampoline will be used when we are
497 trying to find the target. */
498 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
499 {
500 int len = strlen (sym->name);
501
502 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
503 {
504 struct minimal_symbol *mtramp;
505
506 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
507 true, symaddr,
508 mst_solib_trampoline,
509 sym->section, objfile);
510 if (mtramp)
511 {
512 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
513 mtramp->created_by_gdb = 1;
514 mtramp->filename = filesymname;
515 if (elf_make_msymbol_special_p)
516 gdbarch_elf_make_msymbol_special (gdbarch,
517 sym, mtramp);
518 }
519 }
520 }
521 }
522 }
523}
524
525/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
526 for later look ups of which function to call when user requests
527 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
528 library defining `function' we cannot yet know while reading OBJFILE which
529 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
530 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
531
532static void
533elf_rel_plt_read (minimal_symbol_reader &reader,
534 struct objfile *objfile, asymbol **dyn_symbol_table)
535{
536 bfd *obfd = objfile->obfd;
537 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
538 asection *relplt, *got_plt;
539 bfd_size_type reloc_count, reloc;
540 struct gdbarch *gdbarch = get_objfile_arch (objfile);
541 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
542 size_t ptr_size = TYPE_LENGTH (ptr_type);
543
544 if (objfile->separate_debug_objfile_backlink)
545 return;
546
547 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
548 if (got_plt == NULL)
549 {
550 /* For platforms where there is no separate .got.plt. */
551 got_plt = bfd_get_section_by_name (obfd, ".got");
552 if (got_plt == NULL)
553 return;
554 }
555
556 /* Depending on system, we may find jump slots in a relocation
557 section for either .got.plt or .plt. */
558 asection *plt = bfd_get_section_by_name (obfd, ".plt");
559 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
560
561 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
562
563 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
564 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
565 {
566 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
567
568 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
569 {
570 if (this_hdr.sh_info == plt_elf_idx
571 || this_hdr.sh_info == got_plt_elf_idx)
572 break;
573 }
574 }
575 if (relplt == NULL)
576 return;
577
578 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
579 return;
580
581 std::string string_buffer;
582
583 /* Does ADDRESS reside in SECTION of OBFD? */
584 auto within_section = [obfd] (asection *section, CORE_ADDR address)
585 {
586 if (section == NULL)
587 return false;
588
589 return (bfd_get_section_vma (obfd, section) <= address
590 && (address < bfd_get_section_vma (obfd, section)
591 + bfd_get_section_size (section)));
592 };
593
594 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
595 for (reloc = 0; reloc < reloc_count; reloc++)
596 {
597 const char *name;
598 struct minimal_symbol *msym;
599 CORE_ADDR address;
600 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
601 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
602
603 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
604 address = relplt->relocation[reloc].address;
605
606 asection *msym_section;
607
608 /* Does the pointer reside in either the .got.plt or .plt
609 sections? */
610 if (within_section (got_plt, address))
611 msym_section = got_plt;
612 else if (within_section (plt, address))
613 msym_section = plt;
614 else
615 continue;
616
617 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
618 OBJFILE the symbol is undefined and the objfile having NAME defined
619 may not yet have been loaded. */
620
621 string_buffer.assign (name);
622 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
623
624 msym = record_minimal_symbol (reader, string_buffer.c_str (),
625 string_buffer.size (),
626 true, address, mst_slot_got_plt,
627 msym_section, objfile);
628 if (msym)
629 SET_MSYMBOL_SIZE (msym, ptr_size);
630 }
631}
632
633/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
634
635static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
636
637/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
638
639struct elf_gnu_ifunc_cache
640{
641 /* This is always a function entry address, not a function descriptor. */
642 CORE_ADDR addr;
643
644 char name[1];
645};
646
647/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
648
649static hashval_t
650elf_gnu_ifunc_cache_hash (const void *a_voidp)
651{
652 const struct elf_gnu_ifunc_cache *a
653 = (const struct elf_gnu_ifunc_cache *) a_voidp;
654
655 return htab_hash_string (a->name);
656}
657
658/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
659
660static int
661elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
662{
663 const struct elf_gnu_ifunc_cache *a
664 = (const struct elf_gnu_ifunc_cache *) a_voidp;
665 const struct elf_gnu_ifunc_cache *b
666 = (const struct elf_gnu_ifunc_cache *) b_voidp;
667
668 return strcmp (a->name, b->name) == 0;
669}
670
671/* Record the target function address of a STT_GNU_IFUNC function NAME is the
672 function entry address ADDR. Return 1 if NAME and ADDR are considered as
673 valid and therefore they were successfully recorded, return 0 otherwise.
674
675 Function does not expect a duplicate entry. Use
676 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
677 exists. */
678
679static int
680elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
681{
682 struct bound_minimal_symbol msym;
683 asection *sect;
684 struct objfile *objfile;
685 htab_t htab;
686 struct elf_gnu_ifunc_cache entry_local, *entry_p;
687 void **slot;
688
689 msym = lookup_minimal_symbol_by_pc (addr);
690 if (msym.minsym == NULL)
691 return 0;
692 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
693 return 0;
694 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
695 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
696 objfile = msym.objfile;
697
698 /* If .plt jumps back to .plt the symbol is still deferred for later
699 resolution and it has no use for GDB. Besides ".text" this symbol can
700 reside also in ".opd" for ppc64 function descriptor. */
701 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
702 return 0;
703
704 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
705 if (htab == NULL)
706 {
707 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
708 elf_gnu_ifunc_cache_eq,
709 NULL, &objfile->objfile_obstack,
710 hashtab_obstack_allocate,
711 dummy_obstack_deallocate);
712 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
713 }
714
715 entry_local.addr = addr;
716 obstack_grow (&objfile->objfile_obstack, &entry_local,
717 offsetof (struct elf_gnu_ifunc_cache, name));
718 obstack_grow_str0 (&objfile->objfile_obstack, name);
719 entry_p
720 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
721
722 slot = htab_find_slot (htab, entry_p, INSERT);
723 if (*slot != NULL)
724 {
725 struct elf_gnu_ifunc_cache *entry_found_p
726 = (struct elf_gnu_ifunc_cache *) *slot;
727 struct gdbarch *gdbarch = get_objfile_arch (objfile);
728
729 if (entry_found_p->addr != addr)
730 {
731 /* This case indicates buggy inferior program, the resolved address
732 should never change. */
733
734 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
735 "function_address from %s to %s"),
736 name, paddress (gdbarch, entry_found_p->addr),
737 paddress (gdbarch, addr));
738 }
739
740 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
741 }
742 *slot = entry_p;
743
744 return 1;
745}
746
747/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
748 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
749 is not NULL) and the function returns 1. It returns 0 otherwise.
750
751 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
752 function. */
753
754static int
755elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
756{
757 struct objfile *objfile;
758
759 ALL_PSPACE_OBJFILES (current_program_space, objfile)
760 {
761 htab_t htab;
762 struct elf_gnu_ifunc_cache *entry_p;
763 void **slot;
764
765 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
766 if (htab == NULL)
767 continue;
768
769 entry_p = ((struct elf_gnu_ifunc_cache *)
770 alloca (sizeof (*entry_p) + strlen (name)));
771 strcpy (entry_p->name, name);
772
773 slot = htab_find_slot (htab, entry_p, NO_INSERT);
774 if (slot == NULL)
775 continue;
776 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
777 gdb_assert (entry_p != NULL);
778
779 if (addr_p)
780 *addr_p = entry_p->addr;
781 return 1;
782 }
783
784 return 0;
785}
786
787/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
788 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
789 is not NULL) and the function returns 1. It returns 0 otherwise.
790
791 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
792 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
793 prevent cache entries duplicates. */
794
795static int
796elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
797{
798 char *name_got_plt;
799 struct objfile *objfile;
800 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
801
802 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
803 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
804
805 ALL_PSPACE_OBJFILES (current_program_space, objfile)
806 {
807 bfd *obfd = objfile->obfd;
808 struct gdbarch *gdbarch = get_objfile_arch (objfile);
809 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
810 size_t ptr_size = TYPE_LENGTH (ptr_type);
811 CORE_ADDR pointer_address, addr;
812 asection *plt;
813 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
814 struct bound_minimal_symbol msym;
815
816 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
817 if (msym.minsym == NULL)
818 continue;
819 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
820 continue;
821 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
822
823 plt = bfd_get_section_by_name (obfd, ".plt");
824 if (plt == NULL)
825 continue;
826
827 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
828 continue;
829 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
830 continue;
831 addr = extract_typed_address (buf, ptr_type);
832 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
833 &current_target);
834 addr = gdbarch_addr_bits_remove (gdbarch, addr);
835
836 if (addr_p)
837 *addr_p = addr;
838 if (elf_gnu_ifunc_record_cache (name, addr))
839 return 1;
840 }
841
842 return 0;
843}
844
845/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
846 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
847 is not NULL) and the function returns 1. It returns 0 otherwise.
848
849 Both the elf_objfile_gnu_ifunc_cache_data hash table and
850 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
851
852static int
853elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
854{
855 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
856 return 1;
857
858 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
859 return 1;
860
861 return 0;
862}
863
864/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
865 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
866 is the entry point of the resolved STT_GNU_IFUNC target function to call.
867 */
868
869static CORE_ADDR
870elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
871{
872 const char *name_at_pc;
873 CORE_ADDR start_at_pc, address;
874 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
875 struct value *function, *address_val;
876 CORE_ADDR hwcap = 0;
877 struct value *hwcap_val;
878
879 /* Try first any non-intrusive methods without an inferior call. */
880
881 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
882 && start_at_pc == pc)
883 {
884 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
885 return address;
886 }
887 else
888 name_at_pc = NULL;
889
890 function = allocate_value (func_func_type);
891 VALUE_LVAL (function) = lval_memory;
892 set_value_address (function, pc);
893
894 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
895 parameter. FUNCTION is the function entry address. ADDRESS may be a
896 function descriptor. */
897
898 target_auxv_search (&current_target, AT_HWCAP, &hwcap);
899 hwcap_val = value_from_longest (builtin_type (gdbarch)
900 ->builtin_unsigned_long, hwcap);
901 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
902 address = value_as_address (address_val);
903 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
904 &current_target);
905 address = gdbarch_addr_bits_remove (gdbarch, address);
906
907 if (name_at_pc)
908 elf_gnu_ifunc_record_cache (name_at_pc, address);
909
910 return address;
911}
912
913/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
914
915static void
916elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
917{
918 struct breakpoint *b_return;
919 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
920 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
921 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
922 int thread_id = ptid_to_global_thread_id (inferior_ptid);
923
924 gdb_assert (b->type == bp_gnu_ifunc_resolver);
925
926 for (b_return = b->related_breakpoint; b_return != b;
927 b_return = b_return->related_breakpoint)
928 {
929 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
930 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
931 gdb_assert (frame_id_p (b_return->frame_id));
932
933 if (b_return->thread == thread_id
934 && b_return->loc->requested_address == prev_pc
935 && frame_id_eq (b_return->frame_id, prev_frame_id))
936 break;
937 }
938
939 if (b_return == b)
940 {
941 /* No need to call find_pc_line for symbols resolving as this is only
942 a helper breakpointer never shown to the user. */
943
944 symtab_and_line sal;
945 sal.pspace = current_inferior ()->pspace;
946 sal.pc = prev_pc;
947 sal.section = find_pc_overlay (sal.pc);
948 sal.explicit_pc = 1;
949 b_return
950 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
951 prev_frame_id,
952 bp_gnu_ifunc_resolver_return).release ();
953
954 /* set_momentary_breakpoint invalidates PREV_FRAME. */
955 prev_frame = NULL;
956
957 /* Add new b_return to the ring list b->related_breakpoint. */
958 gdb_assert (b_return->related_breakpoint == b_return);
959 b_return->related_breakpoint = b->related_breakpoint;
960 b->related_breakpoint = b_return;
961 }
962}
963
964/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
965
966static void
967elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
968{
969 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
970 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
971 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
972 struct regcache *regcache = get_thread_regcache (inferior_ptid);
973 struct value *func_func;
974 struct value *value;
975 CORE_ADDR resolved_address, resolved_pc;
976
977 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
978
979 while (b->related_breakpoint != b)
980 {
981 struct breakpoint *b_next = b->related_breakpoint;
982
983 switch (b->type)
984 {
985 case bp_gnu_ifunc_resolver:
986 break;
987 case bp_gnu_ifunc_resolver_return:
988 delete_breakpoint (b);
989 break;
990 default:
991 internal_error (__FILE__, __LINE__,
992 _("handle_inferior_event: Invalid "
993 "gnu-indirect-function breakpoint type %d"),
994 (int) b->type);
995 }
996 b = b_next;
997 }
998 gdb_assert (b->type == bp_gnu_ifunc_resolver);
999 gdb_assert (b->loc->next == NULL);
1000
1001 func_func = allocate_value (func_func_type);
1002 VALUE_LVAL (func_func) = lval_memory;
1003 set_value_address (func_func, b->loc->related_address);
1004
1005 value = allocate_value (value_type);
1006 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1007 value_contents_raw (value), NULL);
1008 resolved_address = value_as_address (value);
1009 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1010 resolved_address,
1011 &current_target);
1012 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1013
1014 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1015 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1016 resolved_pc);
1017
1018 b->type = bp_breakpoint;
1019 update_breakpoint_locations (b, current_program_space,
1020 find_pc_line (resolved_pc, 0), {});
1021}
1022
1023/* A helper function for elf_symfile_read that reads the minimal
1024 symbols. */
1025
1026static void
1027elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1028 const struct elfinfo *ei)
1029{
1030 bfd *synth_abfd, *abfd = objfile->obfd;
1031 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1032 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1033 asymbol *synthsyms;
1034 struct dbx_symfile_info *dbx;
1035
1036 if (symtab_create_debug)
1037 {
1038 fprintf_unfiltered (gdb_stdlog,
1039 "Reading minimal symbols of objfile %s ...\n",
1040 objfile_name (objfile));
1041 }
1042
1043 /* If we already have minsyms, then we can skip some work here.
1044 However, if there were stabs or mdebug sections, we go ahead and
1045 redo all the work anyway, because the psym readers for those
1046 kinds of debuginfo need extra information found here. This can
1047 go away once all types of symbols are in the per-BFD object. */
1048 if (objfile->per_bfd->minsyms_read
1049 && ei->stabsect == NULL
1050 && ei->mdebugsect == NULL)
1051 {
1052 if (symtab_create_debug)
1053 fprintf_unfiltered (gdb_stdlog,
1054 "... minimal symbols previously read\n");
1055 return;
1056 }
1057
1058 minimal_symbol_reader reader (objfile);
1059
1060 /* Allocate struct to keep track of the symfile. */
1061 dbx = XCNEW (struct dbx_symfile_info);
1062 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1063
1064 /* Process the normal ELF symbol table first. */
1065
1066 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1067 if (storage_needed < 0)
1068 error (_("Can't read symbols from %s: %s"),
1069 bfd_get_filename (objfile->obfd),
1070 bfd_errmsg (bfd_get_error ()));
1071
1072 if (storage_needed > 0)
1073 {
1074 /* Memory gets permanently referenced from ABFD after
1075 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1076
1077 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1078 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1079
1080 if (symcount < 0)
1081 error (_("Can't read symbols from %s: %s"),
1082 bfd_get_filename (objfile->obfd),
1083 bfd_errmsg (bfd_get_error ()));
1084
1085 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1086 false);
1087 }
1088
1089 /* Add the dynamic symbols. */
1090
1091 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1092
1093 if (storage_needed > 0)
1094 {
1095 /* Memory gets permanently referenced from ABFD after
1096 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1097 It happens only in the case when elf_slurp_reloc_table sees
1098 asection->relocation NULL. Determining which section is asection is
1099 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1100 implementation detail, though. */
1101
1102 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1103 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1104 dyn_symbol_table);
1105
1106 if (dynsymcount < 0)
1107 error (_("Can't read symbols from %s: %s"),
1108 bfd_get_filename (objfile->obfd),
1109 bfd_errmsg (bfd_get_error ()));
1110
1111 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1112 dyn_symbol_table, false);
1113
1114 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1115 }
1116
1117 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1118 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1119
1120 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1121 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1122 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1123 read the code address from .opd while it reads the .symtab section from
1124 a separate debug info file as the .opd section is SHT_NOBITS there.
1125
1126 With SYNTH_ABFD the .opd section will be read from the original
1127 backlinked binary where it is valid. */
1128
1129 if (objfile->separate_debug_objfile_backlink)
1130 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1131 else
1132 synth_abfd = abfd;
1133
1134 /* Add synthetic symbols - for instance, names for any PLT entries. */
1135
1136 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1137 dynsymcount, dyn_symbol_table,
1138 &synthsyms);
1139 if (synthcount > 0)
1140 {
1141 long i;
1142
1143 std::unique_ptr<asymbol *[]>
1144 synth_symbol_table (new asymbol *[synthcount]);
1145 for (i = 0; i < synthcount; i++)
1146 synth_symbol_table[i] = synthsyms + i;
1147 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1148 synth_symbol_table.get (), true);
1149
1150 xfree (synthsyms);
1151 synthsyms = NULL;
1152 }
1153
1154 /* Install any minimal symbols that have been collected as the current
1155 minimal symbols for this objfile. The debug readers below this point
1156 should not generate new minimal symbols; if they do it's their
1157 responsibility to install them. "mdebug" appears to be the only one
1158 which will do this. */
1159
1160 reader.install ();
1161
1162 if (symtab_create_debug)
1163 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1164}
1165
1166/* Scan and build partial symbols for a symbol file.
1167 We have been initialized by a call to elf_symfile_init, which
1168 currently does nothing.
1169
1170 This function only does the minimum work necessary for letting the
1171 user "name" things symbolically; it does not read the entire symtab.
1172 Instead, it reads the external and static symbols and puts them in partial
1173 symbol tables. When more extensive information is requested of a
1174 file, the corresponding partial symbol table is mutated into a full
1175 fledged symbol table by going back and reading the symbols
1176 for real.
1177
1178 We look for sections with specific names, to tell us what debug
1179 format to look for: FIXME!!!
1180
1181 elfstab_build_psymtabs() handles STABS symbols;
1182 mdebug_build_psymtabs() handles ECOFF debugging information.
1183
1184 Note that ELF files have a "minimal" symbol table, which looks a lot
1185 like a COFF symbol table, but has only the minimal information necessary
1186 for linking. We process this also, and use the information to
1187 build gdb's minimal symbol table. This gives us some minimal debugging
1188 capability even for files compiled without -g. */
1189
1190static void
1191elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1192{
1193 bfd *abfd = objfile->obfd;
1194 struct elfinfo ei;
1195
1196 memset ((char *) &ei, 0, sizeof (ei));
1197 if (!(objfile->flags & OBJF_READNEVER))
1198 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1199
1200 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1201
1202 /* ELF debugging information is inserted into the psymtab in the
1203 order of least informative first - most informative last. Since
1204 the psymtab table is searched `most recent insertion first' this
1205 increases the probability that more detailed debug information
1206 for a section is found.
1207
1208 For instance, an object file might contain both .mdebug (XCOFF)
1209 and .debug_info (DWARF2) sections then .mdebug is inserted first
1210 (searched last) and DWARF2 is inserted last (searched first). If
1211 we don't do this then the XCOFF info is found first - for code in
1212 an included file XCOFF info is useless. */
1213
1214 if (ei.mdebugsect)
1215 {
1216 const struct ecoff_debug_swap *swap;
1217
1218 /* .mdebug section, presumably holding ECOFF debugging
1219 information. */
1220 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1221 if (swap)
1222 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1223 }
1224 if (ei.stabsect)
1225 {
1226 asection *str_sect;
1227
1228 /* Stab sections have an associated string table that looks like
1229 a separate section. */
1230 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1231
1232 /* FIXME should probably warn about a stab section without a stabstr. */
1233 if (str_sect)
1234 elfstab_build_psymtabs (objfile,
1235 ei.stabsect,
1236 str_sect->filepos,
1237 bfd_section_size (abfd, str_sect));
1238 }
1239
1240 if (dwarf2_has_info (objfile, NULL))
1241 {
1242 dw_index_kind index_kind;
1243
1244 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1245 debug information present in OBJFILE. If there is such debug
1246 info present never use an index. */
1247 if (!objfile_has_partial_symbols (objfile)
1248 && dwarf2_initialize_objfile (objfile, &index_kind))
1249 {
1250 switch (index_kind)
1251 {
1252 case dw_index_kind::GDB_INDEX:
1253 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1254 break;
1255 case dw_index_kind::DEBUG_NAMES:
1256 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1257 break;
1258 }
1259 }
1260 else
1261 {
1262 /* It is ok to do this even if the stabs reader made some
1263 partial symbols, because OBJF_PSYMTABS_READ has not been
1264 set, and so our lazy reader function will still be called
1265 when needed. */
1266 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1267 }
1268 }
1269 /* If the file has its own symbol tables it has no separate debug
1270 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1271 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1272 `.note.gnu.build-id'.
1273
1274 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1275 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1276 an objfile via find_separate_debug_file_in_section there was no separate
1277 debug info available. Therefore do not attempt to search for another one,
1278 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1279 be NULL and we would possibly violate it. */
1280
1281 else if (!objfile_has_partial_symbols (objfile)
1282 && objfile->separate_debug_objfile == NULL
1283 && objfile->separate_debug_objfile_backlink == NULL)
1284 {
1285 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1286
1287 if (debugfile.empty ())
1288 debugfile = find_separate_debug_file_by_debuglink (objfile);
1289
1290 if (!debugfile.empty ())
1291 {
1292 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.c_str ()));
1293
1294 symbol_file_add_separate (abfd.get (), debugfile.c_str (),
1295 symfile_flags, objfile);
1296 }
1297 }
1298}
1299
1300/* Callback to lazily read psymtabs. */
1301
1302static void
1303read_psyms (struct objfile *objfile)
1304{
1305 if (dwarf2_has_info (objfile, NULL))
1306 dwarf2_build_psymtabs (objfile);
1307}
1308
1309/* Initialize anything that needs initializing when a completely new symbol
1310 file is specified (not just adding some symbols from another file, e.g. a
1311 shared library).
1312
1313 We reinitialize buildsym, since we may be reading stabs from an ELF
1314 file. */
1315
1316static void
1317elf_new_init (struct objfile *ignore)
1318{
1319 stabsread_new_init ();
1320 buildsym_new_init ();
1321}
1322
1323/* Perform any local cleanups required when we are done with a particular
1324 objfile. I.E, we are in the process of discarding all symbol information
1325 for an objfile, freeing up all memory held for it, and unlinking the
1326 objfile struct from the global list of known objfiles. */
1327
1328static void
1329elf_symfile_finish (struct objfile *objfile)
1330{
1331 dwarf2_free_objfile (objfile);
1332}
1333
1334/* ELF specific initialization routine for reading symbols. */
1335
1336static void
1337elf_symfile_init (struct objfile *objfile)
1338{
1339 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1340 find this causes a significant slowdown in gdb then we could
1341 set it in the debug symbol readers only when necessary. */
1342 objfile->flags |= OBJF_REORDERED;
1343}
1344
1345/* Implementation of `sym_get_probes', as documented in symfile.h. */
1346
1347static const std::vector<probe *> &
1348elf_get_probes (struct objfile *objfile)
1349{
1350 std::vector<probe *> *probes_per_bfd;
1351
1352 /* Have we parsed this objfile's probes already? */
1353 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
1354
1355 if (probes_per_bfd == NULL)
1356 {
1357 probes_per_bfd = new std::vector<probe *>;
1358
1359 /* Here we try to gather information about all types of probes from the
1360 objfile. */
1361 for (const static_probe_ops *ops : all_static_probe_ops)
1362 ops->get_probes (probes_per_bfd, objfile);
1363
1364 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1365 }
1366
1367 return *probes_per_bfd;
1368}
1369
1370/* Helper function used to free the space allocated for storing SystemTap
1371 probe information. */
1372
1373static void
1374probe_key_free (bfd *abfd, void *d)
1375{
1376 std::vector<probe *> *probes = (std::vector<probe *> *) d;
1377
1378 for (probe *p : *probes)
1379 delete p;
1380
1381 delete probes;
1382}
1383
1384\f
1385
1386/* Implementation `sym_probe_fns', as documented in symfile.h. */
1387
1388static const struct sym_probe_fns elf_probe_fns =
1389{
1390 elf_get_probes, /* sym_get_probes */
1391};
1392
1393/* Register that we are able to handle ELF object file formats. */
1394
1395static const struct sym_fns elf_sym_fns =
1396{
1397 elf_new_init, /* init anything gbl to entire symtab */
1398 elf_symfile_init, /* read initial info, setup for sym_read() */
1399 elf_symfile_read, /* read a symbol file into symtab */
1400 NULL, /* sym_read_psymbols */
1401 elf_symfile_finish, /* finished with file, cleanup */
1402 default_symfile_offsets, /* Translate ext. to int. relocation */
1403 elf_symfile_segments, /* Get segment information from a file. */
1404 NULL,
1405 default_symfile_relocate, /* Relocate a debug section. */
1406 &elf_probe_fns, /* sym_probe_fns */
1407 &psym_functions
1408};
1409
1410/* The same as elf_sym_fns, but not registered and lazily reads
1411 psymbols. */
1412
1413const struct sym_fns elf_sym_fns_lazy_psyms =
1414{
1415 elf_new_init, /* init anything gbl to entire symtab */
1416 elf_symfile_init, /* read initial info, setup for sym_read() */
1417 elf_symfile_read, /* read a symbol file into symtab */
1418 read_psyms, /* sym_read_psymbols */
1419 elf_symfile_finish, /* finished with file, cleanup */
1420 default_symfile_offsets, /* Translate ext. to int. relocation */
1421 elf_symfile_segments, /* Get segment information from a file. */
1422 NULL,
1423 default_symfile_relocate, /* Relocate a debug section. */
1424 &elf_probe_fns, /* sym_probe_fns */
1425 &psym_functions
1426};
1427
1428/* The same as elf_sym_fns, but not registered and uses the
1429 DWARF-specific GNU index rather than psymtab. */
1430const struct sym_fns elf_sym_fns_gdb_index =
1431{
1432 elf_new_init, /* init anything gbl to entire symab */
1433 elf_symfile_init, /* read initial info, setup for sym_red() */
1434 elf_symfile_read, /* read a symbol file into symtab */
1435 NULL, /* sym_read_psymbols */
1436 elf_symfile_finish, /* finished with file, cleanup */
1437 default_symfile_offsets, /* Translate ext. to int. relocatin */
1438 elf_symfile_segments, /* Get segment information from a file. */
1439 NULL,
1440 default_symfile_relocate, /* Relocate a debug section. */
1441 &elf_probe_fns, /* sym_probe_fns */
1442 &dwarf2_gdb_index_functions
1443};
1444
1445/* The same as elf_sym_fns, but not registered and uses the
1446 DWARF-specific .debug_names index rather than psymtab. */
1447const struct sym_fns elf_sym_fns_debug_names =
1448{
1449 elf_new_init, /* init anything gbl to entire symab */
1450 elf_symfile_init, /* read initial info, setup for sym_red() */
1451 elf_symfile_read, /* read a symbol file into symtab */
1452 NULL, /* sym_read_psymbols */
1453 elf_symfile_finish, /* finished with file, cleanup */
1454 default_symfile_offsets, /* Translate ext. to int. relocatin */
1455 elf_symfile_segments, /* Get segment information from a file. */
1456 NULL,
1457 default_symfile_relocate, /* Relocate a debug section. */
1458 &elf_probe_fns, /* sym_probe_fns */
1459 &dwarf2_debug_names_functions
1460};
1461
1462/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1463
1464static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1465{
1466 elf_gnu_ifunc_resolve_addr,
1467 elf_gnu_ifunc_resolve_name,
1468 elf_gnu_ifunc_resolver_stop,
1469 elf_gnu_ifunc_resolver_return_stop
1470};
1471
1472void
1473_initialize_elfread (void)
1474{
1475 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1476 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1477
1478 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1479 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1480}
This page took 0.028453 seconds and 4 git commands to generate.