Make instream be per UI
[deliverable/binutils-gdb.git] / gdb / event-top.c
... / ...
CommitLineData
1/* Top level stuff for GDB, the GNU debugger.
2
3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
4
5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "top.h"
24#include "inferior.h"
25#include "infrun.h"
26#include "target.h"
27#include "terminal.h" /* for job_control */
28#include "event-loop.h"
29#include "event-top.h"
30#include "interps.h"
31#include <signal.h>
32#include "cli/cli-script.h" /* for reset_command_nest_depth */
33#include "main.h"
34#include "gdbthread.h"
35#include "observer.h"
36#include "continuations.h"
37#include "gdbcmd.h" /* for dont_repeat() */
38#include "annotate.h"
39#include "maint.h"
40#include "buffer.h"
41#include "ser-event.h"
42#include "gdb_select.h"
43
44/* readline include files. */
45#include "readline/readline.h"
46#include "readline/history.h"
47
48/* readline defines this. */
49#undef savestring
50
51static void command_line_handler (char *rl);
52static void change_line_handler (void);
53static char *top_level_prompt (void);
54
55/* Signal handlers. */
56#ifdef SIGQUIT
57static void handle_sigquit (int sig);
58#endif
59#ifdef SIGHUP
60static void handle_sighup (int sig);
61#endif
62static void handle_sigfpe (int sig);
63
64/* Functions to be invoked by the event loop in response to
65 signals. */
66#if defined (SIGQUIT) || defined (SIGHUP)
67static void async_do_nothing (gdb_client_data);
68#endif
69#ifdef SIGHUP
70static void async_disconnect (gdb_client_data);
71#endif
72static void async_float_handler (gdb_client_data);
73#ifdef STOP_SIGNAL
74static void async_stop_sig (gdb_client_data);
75#endif
76static void async_sigterm_handler (gdb_client_data arg);
77
78/* Instead of invoking (and waiting for) readline to read the command
79 line and pass it back for processing, we use readline's alternate
80 interface, via callback functions, so that the event loop can react
81 to other event sources while we wait for input. */
82
83/* Important variables for the event loop. */
84
85/* This is used to determine if GDB is using the readline library or
86 its own simplified form of readline. It is used by the asynchronous
87 form of the set editing command.
88 ezannoni: as of 1999-04-29 I expect that this
89 variable will not be used after gdb is changed to use the event
90 loop as default engine, and event-top.c is merged into top.c. */
91int async_command_editing_p;
92
93/* This is used to display the notification of the completion of an
94 asynchronous execution command. */
95int exec_done_display_p = 0;
96
97/* This is the file descriptor for the input stream that GDB uses to
98 read commands from. */
99int input_fd;
100
101/* Used by the stdin event handler to compensate for missed stdin events.
102 Setting this to a non-zero value inside an stdin callback makes the callback
103 run again. */
104int call_stdin_event_handler_again_p;
105
106/* Signal handling variables. */
107/* Each of these is a pointer to a function that the event loop will
108 invoke if the corresponding signal has received. The real signal
109 handlers mark these functions as ready to be executed and the event
110 loop, in a later iteration, calls them. See the function
111 invoke_async_signal_handler. */
112static struct async_signal_handler *sigint_token;
113#ifdef SIGHUP
114static struct async_signal_handler *sighup_token;
115#endif
116#ifdef SIGQUIT
117static struct async_signal_handler *sigquit_token;
118#endif
119static struct async_signal_handler *sigfpe_token;
120#ifdef STOP_SIGNAL
121static struct async_signal_handler *sigtstp_token;
122#endif
123static struct async_signal_handler *async_sigterm_token;
124
125/* This hook is called by gdb_rl_callback_read_char_wrapper after each
126 character is processed. */
127void (*after_char_processing_hook) (void);
128\f
129
130/* Wrapper function for calling into the readline library. This takes
131 care of a couple things:
132
133 - The event loop expects the callback function to have a parameter,
134 while readline expects none.
135
136 - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER
137 across readline requires special handling.
138
139 On the exceptions issue:
140
141 DWARF-based unwinding cannot cross code built without -fexceptions.
142 Any exception that tries to propagate through such code will fail
143 and the result is a call to std::terminate. While some ABIs, such
144 as x86-64, require all code to be built with exception tables,
145 others don't.
146
147 This is a problem when GDB calls some non-EH-aware C library code,
148 that calls into GDB again through a callback, and that GDB callback
149 code throws a C++ exception. Turns out this is exactly what
150 happens with GDB's readline callback.
151
152 In such cases, we must catch and save any C++ exception that might
153 be thrown from the GDB callback before returning to the
154 non-EH-aware code. When the non-EH-aware function itself returns
155 back to GDB, we then rethrow the original C++ exception.
156
157 In the readline case however, the right thing to do is to longjmp
158 out of the callback, rather than do a normal return -- there's no
159 way for the callback to return to readline an indication that an
160 error happened, so a normal return would have rl_callback_read_char
161 potentially continue processing further input, redisplay the
162 prompt, etc. Instead of raw setjmp/longjmp however, we use our
163 sjlj-based TRY/CATCH mechanism, which knows to handle multiple
164 levels of active setjmp/longjmp frames, needed in order to handle
165 the readline callback recursing, as happens with e.g., secondary
166 prompts / queries, through gdb_readline_wrapper. */
167
168static void
169gdb_rl_callback_read_char_wrapper (gdb_client_data client_data)
170{
171 struct gdb_exception gdb_expt = exception_none;
172
173 /* C++ exceptions can't normally be thrown across readline (unless
174 it is built with -fexceptions, but it won't by default on many
175 ABIs). So we instead wrap the readline call with a sjlj-based
176 TRY/CATCH, and rethrow the GDB exception once back in GDB. */
177 TRY_SJLJ
178 {
179 rl_callback_read_char ();
180 if (after_char_processing_hook)
181 (*after_char_processing_hook) ();
182 }
183 CATCH_SJLJ (ex, RETURN_MASK_ALL)
184 {
185 gdb_expt = ex;
186 }
187 END_CATCH_SJLJ
188
189 /* Rethrow using the normal EH mechanism. */
190 if (gdb_expt.reason < 0)
191 throw_exception (gdb_expt);
192}
193
194/* GDB's readline callback handler. Calls the current INPUT_HANDLER,
195 and propagates GDB exceptions/errors thrown from INPUT_HANDLER back
196 across readline. See gdb_rl_callback_read_char_wrapper. */
197
198static void
199gdb_rl_callback_handler (char *rl)
200{
201 struct gdb_exception gdb_rl_expt = exception_none;
202 struct ui *ui = current_ui;
203
204 TRY
205 {
206 ui->input_handler (rl);
207 }
208 CATCH (ex, RETURN_MASK_ALL)
209 {
210 gdb_rl_expt = ex;
211 }
212 END_CATCH
213
214 /* If we caught a GDB exception, longjmp out of the readline
215 callback. There's no other way for the callback to signal to
216 readline that an error happened. A normal return would have
217 readline potentially continue processing further input, redisplay
218 the prompt, etc. (This is what GDB historically did when it was
219 a C program.) Note that since we're long jumping, local variable
220 dtors are NOT run automatically. */
221 if (gdb_rl_expt.reason < 0)
222 throw_exception_sjlj (gdb_rl_expt);
223}
224
225/* Initialize all the necessary variables, start the event loop,
226 register readline, and stdin, start the loop. The DATA is the
227 interpreter data cookie, ignored for now. */
228
229void
230cli_command_loop (void *data)
231{
232 display_gdb_prompt (0);
233
234 /* Now it's time to start the event loop. */
235 start_event_loop ();
236}
237
238/* Change the function to be invoked every time there is a character
239 ready on stdin. This is used when the user sets the editing off,
240 therefore bypassing readline, and letting gdb handle the input
241 itself, via gdb_readline_no_editing_callback. Also it is used in
242 the opposite case in which the user sets editing on again, by
243 restoring readline handling of the input. */
244static void
245change_line_handler (void)
246{
247 struct ui *ui = current_ui;
248
249 /* NOTE: this operates on input_fd, not instream. If we are reading
250 commands from a file, instream will point to the file. However in
251 async mode, we always read commands from a file with editing
252 off. This means that the 'set editing on/off' will have effect
253 only on the interactive session. */
254
255 if (async_command_editing_p)
256 {
257 /* Turn on editing by using readline. */
258 ui->call_readline = gdb_rl_callback_read_char_wrapper;
259 ui->input_handler = command_line_handler;
260 }
261 else
262 {
263 /* Turn off editing by using gdb_readline_no_editing_callback. */
264 gdb_rl_callback_handler_remove ();
265 ui->call_readline = gdb_readline_no_editing_callback;
266
267 /* Set up the command handler as well, in case we are called as
268 first thing from .gdbinit. */
269 ui->input_handler = command_line_handler;
270 }
271}
272
273/* The functions below are wrappers for rl_callback_handler_remove and
274 rl_callback_handler_install that keep track of whether the callback
275 handler is installed in readline. This is necessary because after
276 handling a target event of a background execution command, we may
277 need to reinstall the callback handler if it was removed due to a
278 secondary prompt. See gdb_readline_wrapper_line. We don't
279 unconditionally install the handler for every target event because
280 that also clears the line buffer, thus installing it while the user
281 is typing would lose input. */
282
283/* Whether we've registered a callback handler with readline. */
284static int callback_handler_installed;
285
286/* See event-top.h, and above. */
287
288void
289gdb_rl_callback_handler_remove (void)
290{
291 rl_callback_handler_remove ();
292 callback_handler_installed = 0;
293}
294
295/* See event-top.h, and above. Note this wrapper doesn't have an
296 actual callback parameter because we always install
297 INPUT_HANDLER. */
298
299void
300gdb_rl_callback_handler_install (const char *prompt)
301{
302 /* Calling rl_callback_handler_install resets readline's input
303 buffer. Calling this when we were already processing input
304 therefore loses input. */
305 gdb_assert (!callback_handler_installed);
306
307 rl_callback_handler_install (prompt, gdb_rl_callback_handler);
308 callback_handler_installed = 1;
309}
310
311/* See event-top.h, and above. */
312
313void
314gdb_rl_callback_handler_reinstall (void)
315{
316 if (!callback_handler_installed)
317 {
318 /* Passing NULL as prompt argument tells readline to not display
319 a prompt. */
320 gdb_rl_callback_handler_install (NULL);
321 }
322}
323
324/* Displays the prompt. If the argument NEW_PROMPT is NULL, the
325 prompt that is displayed is the current top level prompt.
326 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
327 prompt.
328
329 This is used after each gdb command has completed, and in the
330 following cases:
331
332 1. When the user enters a command line which is ended by '\'
333 indicating that the command will continue on the next line. In
334 that case the prompt that is displayed is the empty string.
335
336 2. When the user is entering 'commands' for a breakpoint, or
337 actions for a tracepoint. In this case the prompt will be '>'
338
339 3. On prompting for pagination. */
340
341void
342display_gdb_prompt (const char *new_prompt)
343{
344 char *actual_gdb_prompt = NULL;
345 struct cleanup *old_chain;
346
347 annotate_display_prompt ();
348
349 /* Reset the nesting depth used when trace-commands is set. */
350 reset_command_nest_depth ();
351
352 old_chain = make_cleanup (free_current_contents, &actual_gdb_prompt);
353
354 /* Do not call the python hook on an explicit prompt change as
355 passed to this function, as this forms a secondary/local prompt,
356 IE, displayed but not set. */
357 if (! new_prompt)
358 {
359 if (sync_execution)
360 {
361 /* This is to trick readline into not trying to display the
362 prompt. Even though we display the prompt using this
363 function, readline still tries to do its own display if
364 we don't call rl_callback_handler_install and
365 rl_callback_handler_remove (which readline detects
366 because a global variable is not set). If readline did
367 that, it could mess up gdb signal handlers for SIGINT.
368 Readline assumes that between calls to rl_set_signals and
369 rl_clear_signals gdb doesn't do anything with the signal
370 handlers. Well, that's not the case, because when the
371 target executes we change the SIGINT signal handler. If
372 we allowed readline to display the prompt, the signal
373 handler change would happen exactly between the calls to
374 the above two functions. Calling
375 rl_callback_handler_remove(), does the job. */
376
377 gdb_rl_callback_handler_remove ();
378 do_cleanups (old_chain);
379 return;
380 }
381 else
382 {
383 /* Display the top level prompt. */
384 actual_gdb_prompt = top_level_prompt ();
385 }
386 }
387 else
388 actual_gdb_prompt = xstrdup (new_prompt);
389
390 if (async_command_editing_p)
391 {
392 gdb_rl_callback_handler_remove ();
393 gdb_rl_callback_handler_install (actual_gdb_prompt);
394 }
395 /* new_prompt at this point can be the top of the stack or the one
396 passed in. It can't be NULL. */
397 else
398 {
399 /* Don't use a _filtered function here. It causes the assumed
400 character position to be off, since the newline we read from
401 the user is not accounted for. */
402 fputs_unfiltered (actual_gdb_prompt, gdb_stdout);
403 gdb_flush (gdb_stdout);
404 }
405
406 do_cleanups (old_chain);
407}
408
409/* Return the top level prompt, as specified by "set prompt", possibly
410 overriden by the python gdb.prompt_hook hook, and then composed
411 with the prompt prefix and suffix (annotations). The caller is
412 responsible for freeing the returned string. */
413
414static char *
415top_level_prompt (void)
416{
417 char *prompt;
418
419 /* Give observers a chance of changing the prompt. E.g., the python
420 `gdb.prompt_hook' is installed as an observer. */
421 observer_notify_before_prompt (get_prompt ());
422
423 prompt = get_prompt ();
424
425 if (annotation_level >= 2)
426 {
427 /* Prefix needs to have new line at end. */
428 const char prefix[] = "\n\032\032pre-prompt\n";
429
430 /* Suffix needs to have a new line at end and \032 \032 at
431 beginning. */
432 const char suffix[] = "\n\032\032prompt\n";
433
434 return concat (prefix, prompt, suffix, (char *) NULL);
435 }
436
437 return xstrdup (prompt);
438}
439
440/* The main UI. */
441static struct ui main_ui_;
442
443struct ui *main_ui = &main_ui_;
444struct ui *current_ui = &main_ui_;
445struct ui *ui_list = &main_ui_;
446
447/* Cleanup that restores the current UI. */
448
449static void
450restore_ui_cleanup (void *data)
451{
452 current_ui = (struct ui *) data;
453}
454
455/* See top.h. */
456
457void
458switch_thru_all_uis_init (struct switch_thru_all_uis *state)
459{
460 state->iter = ui_list;
461 state->old_chain = make_cleanup (restore_ui_cleanup, current_ui);
462}
463
464/* See top.h. */
465
466int
467switch_thru_all_uis_cond (struct switch_thru_all_uis *state)
468{
469 if (state->iter != NULL)
470 {
471 current_ui = state->iter;
472 return 1;
473 }
474 else
475 {
476 do_cleanups (state->old_chain);
477 return 0;
478 }
479}
480
481/* See top.h. */
482
483void
484switch_thru_all_uis_next (struct switch_thru_all_uis *state)
485{
486 state->iter = state->iter->next;
487}
488
489/* Get a pointer to the current UI's line buffer. This is used to
490 construct a whole line of input from partial input. */
491
492static struct buffer *
493get_command_line_buffer (void)
494{
495 return &current_ui->line_buffer;
496}
497
498/* When there is an event ready on the stdin file descriptor, instead
499 of calling readline directly throught the callback function, or
500 instead of calling gdb_readline_no_editing_callback, give gdb a
501 chance to detect errors and do something. */
502
503void
504stdin_event_handler (int error, gdb_client_data client_data)
505{
506 struct ui *ui = current_ui;
507
508 if (error)
509 {
510 printf_unfiltered (_("error detected on stdin\n"));
511 delete_file_handler (input_fd);
512 /* If stdin died, we may as well kill gdb. */
513 quit_command ((char *) 0, stdin == ui->instream);
514 }
515 else
516 {
517 /* This makes sure a ^C immediately followed by further input is
518 always processed in that order. E.g,. with input like
519 "^Cprint 1\n", the SIGINT handler runs, marks the async signal
520 handler, and then select/poll may return with stdin ready,
521 instead of -1/EINTR. The
522 gdb.base/double-prompt-target-event-error.exp test exercises
523 this. */
524 QUIT;
525
526 do
527 {
528 call_stdin_event_handler_again_p = 0;
529 ui->call_readline (client_data);
530 } while (call_stdin_event_handler_again_p != 0);
531 }
532}
533
534/* Re-enable stdin after the end of an execution command in
535 synchronous mode, or after an error from the target, and we aborted
536 the exec operation. */
537
538void
539async_enable_stdin (void)
540{
541 if (sync_execution)
542 {
543 /* See NOTE in async_disable_stdin(). */
544 /* FIXME: cagney/1999-09-27: Call this before clearing
545 sync_execution. Current target_terminal_ours() implementations
546 check for sync_execution before switching the terminal. */
547 target_terminal_ours ();
548 sync_execution = 0;
549 }
550}
551
552/* Disable reads from stdin (the console) marking the command as
553 synchronous. */
554
555void
556async_disable_stdin (void)
557{
558 sync_execution = 1;
559}
560\f
561
562/* Handle a gdb command line. This function is called when
563 handle_line_of_input has concatenated one or more input lines into
564 a whole command. */
565
566void
567command_handler (char *command)
568{
569 struct ui *ui = current_ui;
570 struct cleanup *stat_chain;
571 char *c;
572
573 if (ui->instream == stdin)
574 reinitialize_more_filter ();
575
576 stat_chain = make_command_stats_cleanup (1);
577
578 /* Do not execute commented lines. */
579 for (c = command; *c == ' ' || *c == '\t'; c++)
580 ;
581 if (c[0] != '#')
582 {
583 execute_command (command, ui->instream == stdin);
584
585 /* Do any commands attached to breakpoint we stopped at. */
586 bpstat_do_actions ();
587 }
588
589 do_cleanups (stat_chain);
590}
591
592/* Append RL, an input line returned by readline or one of its
593 emulations, to CMD_LINE_BUFFER. Returns the command line if we
594 have a whole command line ready to be processed by the command
595 interpreter or NULL if the command line isn't complete yet (input
596 line ends in a backslash). Takes ownership of RL. */
597
598static char *
599command_line_append_input_line (struct buffer *cmd_line_buffer, char *rl)
600{
601 char *cmd;
602 size_t len;
603
604 len = strlen (rl);
605
606 if (len > 0 && rl[len - 1] == '\\')
607 {
608 /* Don't copy the backslash and wait for more. */
609 buffer_grow (cmd_line_buffer, rl, len - 1);
610 cmd = NULL;
611 }
612 else
613 {
614 /* Copy whole line including terminating null, and we're
615 done. */
616 buffer_grow (cmd_line_buffer, rl, len + 1);
617 cmd = cmd_line_buffer->buffer;
618 }
619
620 /* Allocated in readline. */
621 xfree (rl);
622
623 return cmd;
624}
625
626/* Handle a line of input coming from readline.
627
628 If the read line ends with a continuation character (backslash),
629 save the partial input in CMD_LINE_BUFFER (except the backslash),
630 and return NULL. Otherwise, save the partial input and return a
631 pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a
632 whole command line is ready to be executed.
633
634 Returns EOF on end of file.
635
636 If REPEAT, handle command repetitions:
637
638 - If the input command line is NOT empty, the command returned is
639 copied into the global 'saved_command_line' var so that it can
640 be repeated later.
641
642 - OTOH, if the input command line IS empty, return the previously
643 saved command instead of the empty input line.
644*/
645
646char *
647handle_line_of_input (struct buffer *cmd_line_buffer,
648 char *rl, int repeat, char *annotation_suffix)
649{
650 struct ui *ui = current_ui;
651 char *p1;
652 char *cmd;
653
654 if (rl == NULL)
655 return (char *) EOF;
656
657 cmd = command_line_append_input_line (cmd_line_buffer, rl);
658 if (cmd == NULL)
659 return NULL;
660
661 /* We have a complete command line now. Prepare for the next
662 command, but leave ownership of memory to the buffer . */
663 cmd_line_buffer->used_size = 0;
664
665 if (annotation_level > 1 && ui->instream == stdin)
666 {
667 printf_unfiltered (("\n\032\032post-"));
668 puts_unfiltered (annotation_suffix);
669 printf_unfiltered (("\n"));
670 }
671
672#define SERVER_COMMAND_PREFIX "server "
673 if (startswith (cmd, SERVER_COMMAND_PREFIX))
674 {
675 /* Note that we don't set `saved_command_line'. Between this
676 and the check in dont_repeat, this insures that repeating
677 will still do the right thing. */
678 return cmd + strlen (SERVER_COMMAND_PREFIX);
679 }
680
681 /* Do history expansion if that is wished. */
682 if (history_expansion_p && ui->instream == stdin
683 && ISATTY (ui->instream))
684 {
685 char *history_value;
686 int expanded;
687
688 expanded = history_expand (cmd, &history_value);
689 if (expanded)
690 {
691 size_t len;
692
693 /* Print the changes. */
694 printf_unfiltered ("%s\n", history_value);
695
696 /* If there was an error, call this function again. */
697 if (expanded < 0)
698 {
699 xfree (history_value);
700 return cmd;
701 }
702
703 /* history_expand returns an allocated string. Just replace
704 our buffer with it. */
705 len = strlen (history_value);
706 xfree (buffer_finish (cmd_line_buffer));
707 cmd_line_buffer->buffer = history_value;
708 cmd_line_buffer->buffer_size = len + 1;
709 cmd = history_value;
710 }
711 }
712
713 /* If we just got an empty line, and that is supposed to repeat the
714 previous command, return the previously saved command. */
715 for (p1 = cmd; *p1 == ' ' || *p1 == '\t'; p1++)
716 ;
717 if (repeat && *p1 == '\0')
718 return saved_command_line;
719
720 /* Add command to history if appropriate. Note: lines consisting
721 solely of comments are also added to the command history. This
722 is useful when you type a command, and then realize you don't
723 want to execute it quite yet. You can comment out the command
724 and then later fetch it from the value history and remove the
725 '#'. The kill ring is probably better, but some people are in
726 the habit of commenting things out. */
727 if (*cmd != '\0' && input_from_terminal_p ())
728 gdb_add_history (cmd);
729
730 /* Save into global buffer if appropriate. */
731 if (repeat)
732 {
733 xfree (saved_command_line);
734 saved_command_line = xstrdup (cmd);
735 return saved_command_line;
736 }
737 else
738 return cmd;
739}
740
741/* Handle a complete line of input. This is called by the callback
742 mechanism within the readline library. Deal with incomplete
743 commands as well, by saving the partial input in a global
744 buffer.
745
746 NOTE: This is the asynchronous version of the command_line_input
747 function. */
748
749void
750command_line_handler (char *rl)
751{
752 struct buffer *line_buffer = get_command_line_buffer ();
753 struct ui *ui = current_ui;
754 char *cmd;
755
756 cmd = handle_line_of_input (line_buffer, rl, ui->instream == stdin,
757 "prompt");
758 if (cmd == (char *) EOF)
759 {
760 /* stdin closed. The connection with the terminal is gone.
761 This happens at the end of a testsuite run, after Expect has
762 hung up but GDB is still alive. In such a case, we just quit
763 gdb killing the inferior program too. */
764 printf_unfiltered ("quit\n");
765 execute_command ("quit", stdin == ui->instream);
766 }
767 else if (cmd == NULL)
768 {
769 /* We don't have a full line yet. Print an empty prompt. */
770 display_gdb_prompt ("");
771 }
772 else
773 {
774 command_handler (cmd);
775 display_gdb_prompt (0);
776 }
777}
778
779/* Does reading of input from terminal w/o the editing features
780 provided by the readline library. Calls the line input handler
781 once we have a whole input line. */
782
783void
784gdb_readline_no_editing_callback (gdb_client_data client_data)
785{
786 int c;
787 char *result;
788 struct buffer line_buffer;
789 static int done_once = 0;
790 struct ui *ui = current_ui;
791
792 buffer_init (&line_buffer);
793
794 /* Unbuffer the input stream, so that, later on, the calls to fgetc
795 fetch only one char at the time from the stream. The fgetc's will
796 get up to the first newline, but there may be more chars in the
797 stream after '\n'. If we buffer the input and fgetc drains the
798 stream, getting stuff beyond the newline as well, a select, done
799 afterwards will not trigger. */
800 if (!done_once && !ISATTY (ui->instream))
801 {
802 setbuf (ui->instream, NULL);
803 done_once = 1;
804 }
805
806 /* We still need the while loop here, even though it would seem
807 obvious to invoke gdb_readline_no_editing_callback at every
808 character entered. If not using the readline library, the
809 terminal is in cooked mode, which sends the characters all at
810 once. Poll will notice that the input fd has changed state only
811 after enter is pressed. At this point we still need to fetch all
812 the chars entered. */
813
814 while (1)
815 {
816 /* Read from stdin if we are executing a user defined command.
817 This is the right thing for prompt_for_continue, at least. */
818 c = fgetc (ui->instream ? ui->instream : stdin);
819
820 if (c == EOF)
821 {
822 if (line_buffer.used_size > 0)
823 {
824 /* The last line does not end with a newline. Return it, and
825 if we are called again fgetc will still return EOF and
826 we'll return NULL then. */
827 break;
828 }
829 xfree (buffer_finish (&line_buffer));
830 ui->input_handler (NULL);
831 return;
832 }
833
834 if (c == '\n')
835 {
836 if (line_buffer.used_size > 0
837 && line_buffer.buffer[line_buffer.used_size - 1] == '\r')
838 line_buffer.used_size--;
839 break;
840 }
841
842 buffer_grow_char (&line_buffer, c);
843 }
844
845 buffer_grow_char (&line_buffer, '\0');
846 result = buffer_finish (&line_buffer);
847 ui->input_handler (result);
848}
849\f
850
851/* The serial event associated with the QUIT flag. set_quit_flag sets
852 this, and check_quit_flag clears it. Used by interruptible_select
853 to be able to do interruptible I/O with no race with the SIGINT
854 handler. */
855static struct serial_event *quit_serial_event;
856
857/* Initialization of signal handlers and tokens. There is a function
858 handle_sig* for each of the signals GDB cares about. Specifically:
859 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
860 functions are the actual signal handlers associated to the signals
861 via calls to signal(). The only job for these functions is to
862 enqueue the appropriate event/procedure with the event loop. Such
863 procedures are the old signal handlers. The event loop will take
864 care of invoking the queued procedures to perform the usual tasks
865 associated with the reception of the signal. */
866/* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
867 init_signals will become obsolete as we move to have to event loop
868 as the default for gdb. */
869void
870async_init_signals (void)
871{
872 initialize_async_signal_handlers ();
873
874 quit_serial_event = make_serial_event ();
875
876 signal (SIGINT, handle_sigint);
877 sigint_token =
878 create_async_signal_handler (async_request_quit, NULL);
879 signal (SIGTERM, handle_sigterm);
880 async_sigterm_token
881 = create_async_signal_handler (async_sigterm_handler, NULL);
882
883 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
884 to the inferior and breakpoints will be ignored. */
885#ifdef SIGTRAP
886 signal (SIGTRAP, SIG_DFL);
887#endif
888
889#ifdef SIGQUIT
890 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
891 passed to the inferior, which we don't want. It would be
892 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
893 on BSD4.3 systems using vfork, that can affect the
894 GDB process as well as the inferior (the signal handling tables
895 might be in memory, shared between the two). Since we establish
896 a handler for SIGQUIT, when we call exec it will set the signal
897 to SIG_DFL for us. */
898 signal (SIGQUIT, handle_sigquit);
899 sigquit_token =
900 create_async_signal_handler (async_do_nothing, NULL);
901#endif
902#ifdef SIGHUP
903 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
904 sighup_token =
905 create_async_signal_handler (async_disconnect, NULL);
906 else
907 sighup_token =
908 create_async_signal_handler (async_do_nothing, NULL);
909#endif
910 signal (SIGFPE, handle_sigfpe);
911 sigfpe_token =
912 create_async_signal_handler (async_float_handler, NULL);
913
914#ifdef STOP_SIGNAL
915 sigtstp_token =
916 create_async_signal_handler (async_stop_sig, NULL);
917#endif
918}
919
920/* See defs.h. */
921
922void
923quit_serial_event_set (void)
924{
925 serial_event_set (quit_serial_event);
926}
927
928/* See defs.h. */
929
930void
931quit_serial_event_clear (void)
932{
933 serial_event_clear (quit_serial_event);
934}
935
936/* Return the selectable file descriptor of the serial event
937 associated with the quit flag. */
938
939static int
940quit_serial_event_fd (void)
941{
942 return serial_event_fd (quit_serial_event);
943}
944
945/* See defs.h. */
946
947void
948default_quit_handler (void)
949{
950 if (check_quit_flag ())
951 {
952 if (target_terminal_is_ours ())
953 quit ();
954 else
955 target_pass_ctrlc ();
956 }
957}
958
959/* See defs.h. */
960quit_handler_ftype *quit_handler = default_quit_handler;
961
962/* Data for make_cleanup_override_quit_handler. Wrap the previous
963 handler pointer in a data struct because it's not portable to cast
964 a function pointer to a data pointer, which is what make_cleanup
965 expects. */
966struct quit_handler_cleanup_data
967{
968 /* The previous quit handler. */
969 quit_handler_ftype *prev_handler;
970};
971
972/* Cleanup call that restores the previous quit handler. */
973
974static void
975restore_quit_handler (void *arg)
976{
977 struct quit_handler_cleanup_data *data
978 = (struct quit_handler_cleanup_data *) arg;
979
980 quit_handler = data->prev_handler;
981}
982
983/* Destructor for the quit handler cleanup. */
984
985static void
986restore_quit_handler_dtor (void *arg)
987{
988 xfree (arg);
989}
990
991/* See defs.h. */
992
993struct cleanup *
994make_cleanup_override_quit_handler (quit_handler_ftype *new_quit_handler)
995{
996 struct cleanup *old_chain;
997 struct quit_handler_cleanup_data *data;
998
999 data = XNEW (struct quit_handler_cleanup_data);
1000 data->prev_handler = quit_handler;
1001 old_chain = make_cleanup_dtor (restore_quit_handler, data,
1002 restore_quit_handler_dtor);
1003 quit_handler = new_quit_handler;
1004 return old_chain;
1005}
1006
1007/* Handle a SIGINT. */
1008
1009void
1010handle_sigint (int sig)
1011{
1012 signal (sig, handle_sigint);
1013
1014 /* We could be running in a loop reading in symfiles or something so
1015 it may be quite a while before we get back to the event loop. So
1016 set quit_flag to 1 here. Then if QUIT is called before we get to
1017 the event loop, we will unwind as expected. */
1018 set_quit_flag ();
1019
1020 /* In case nothing calls QUIT before the event loop is reached, the
1021 event loop handles it. */
1022 mark_async_signal_handler (sigint_token);
1023}
1024
1025/* See gdb_select.h. */
1026
1027int
1028interruptible_select (int n,
1029 fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
1030 struct timeval *timeout)
1031{
1032 fd_set my_readfds;
1033 int fd;
1034 int res;
1035
1036 if (readfds == NULL)
1037 {
1038 readfds = &my_readfds;
1039 FD_ZERO (&my_readfds);
1040 }
1041
1042 fd = quit_serial_event_fd ();
1043 FD_SET (fd, readfds);
1044 if (n <= fd)
1045 n = fd + 1;
1046
1047 do
1048 {
1049 res = gdb_select (n, readfds, writefds, exceptfds, timeout);
1050 }
1051 while (res == -1 && errno == EINTR);
1052
1053 if (res == 1 && FD_ISSET (fd, readfds))
1054 {
1055 errno = EINTR;
1056 return -1;
1057 }
1058 return res;
1059}
1060
1061/* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
1062
1063static void
1064async_sigterm_handler (gdb_client_data arg)
1065{
1066 quit_force (NULL, stdin == current_ui->instream);
1067}
1068
1069/* See defs.h. */
1070volatile int sync_quit_force_run;
1071
1072/* Quit GDB if SIGTERM is received.
1073 GDB would quit anyway, but this way it will clean up properly. */
1074void
1075handle_sigterm (int sig)
1076{
1077 signal (sig, handle_sigterm);
1078
1079 sync_quit_force_run = 1;
1080 set_quit_flag ();
1081
1082 mark_async_signal_handler (async_sigterm_token);
1083}
1084
1085/* Do the quit. All the checks have been done by the caller. */
1086void
1087async_request_quit (gdb_client_data arg)
1088{
1089 /* If the quit_flag has gotten reset back to 0 by the time we get
1090 back here, that means that an exception was thrown to unwind the
1091 current command before we got back to the event loop. So there
1092 is no reason to call quit again here. */
1093 QUIT;
1094}
1095
1096#ifdef SIGQUIT
1097/* Tell the event loop what to do if SIGQUIT is received.
1098 See event-signal.c. */
1099static void
1100handle_sigquit (int sig)
1101{
1102 mark_async_signal_handler (sigquit_token);
1103 signal (sig, handle_sigquit);
1104}
1105#endif
1106
1107#if defined (SIGQUIT) || defined (SIGHUP)
1108/* Called by the event loop in response to a SIGQUIT or an
1109 ignored SIGHUP. */
1110static void
1111async_do_nothing (gdb_client_data arg)
1112{
1113 /* Empty function body. */
1114}
1115#endif
1116
1117#ifdef SIGHUP
1118/* Tell the event loop what to do if SIGHUP is received.
1119 See event-signal.c. */
1120static void
1121handle_sighup (int sig)
1122{
1123 mark_async_signal_handler (sighup_token);
1124 signal (sig, handle_sighup);
1125}
1126
1127/* Called by the event loop to process a SIGHUP. */
1128static void
1129async_disconnect (gdb_client_data arg)
1130{
1131
1132 TRY
1133 {
1134 quit_cover ();
1135 }
1136
1137 CATCH (exception, RETURN_MASK_ALL)
1138 {
1139 fputs_filtered ("Could not kill the program being debugged",
1140 gdb_stderr);
1141 exception_print (gdb_stderr, exception);
1142 }
1143 END_CATCH
1144
1145 TRY
1146 {
1147 pop_all_targets ();
1148 }
1149 CATCH (exception, RETURN_MASK_ALL)
1150 {
1151 }
1152 END_CATCH
1153
1154 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
1155 raise (SIGHUP);
1156}
1157#endif
1158
1159#ifdef STOP_SIGNAL
1160void
1161handle_stop_sig (int sig)
1162{
1163 mark_async_signal_handler (sigtstp_token);
1164 signal (sig, handle_stop_sig);
1165}
1166
1167static void
1168async_stop_sig (gdb_client_data arg)
1169{
1170 char *prompt = get_prompt ();
1171
1172#if STOP_SIGNAL == SIGTSTP
1173 signal (SIGTSTP, SIG_DFL);
1174#if HAVE_SIGPROCMASK
1175 {
1176 sigset_t zero;
1177
1178 sigemptyset (&zero);
1179 sigprocmask (SIG_SETMASK, &zero, 0);
1180 }
1181#elif HAVE_SIGSETMASK
1182 sigsetmask (0);
1183#endif
1184 raise (SIGTSTP);
1185 signal (SIGTSTP, handle_stop_sig);
1186#else
1187 signal (STOP_SIGNAL, handle_stop_sig);
1188#endif
1189 printf_unfiltered ("%s", prompt);
1190 gdb_flush (gdb_stdout);
1191
1192 /* Forget about any previous command -- null line now will do
1193 nothing. */
1194 dont_repeat ();
1195}
1196#endif /* STOP_SIGNAL */
1197
1198/* Tell the event loop what to do if SIGFPE is received.
1199 See event-signal.c. */
1200static void
1201handle_sigfpe (int sig)
1202{
1203 mark_async_signal_handler (sigfpe_token);
1204 signal (sig, handle_sigfpe);
1205}
1206
1207/* Event loop will call this functin to process a SIGFPE. */
1208static void
1209async_float_handler (gdb_client_data arg)
1210{
1211 /* This message is based on ANSI C, section 4.7. Note that integer
1212 divide by zero causes this, so "float" is a misnomer. */
1213 error (_("Erroneous arithmetic operation."));
1214}
1215\f
1216
1217/* Called by do_setshow_command. */
1218void
1219set_async_editing_command (char *args, int from_tty,
1220 struct cmd_list_element *c)
1221{
1222 change_line_handler ();
1223}
1224
1225/* Set things up for readline to be invoked via the alternate
1226 interface, i.e. via a callback function
1227 (gdb_rl_callback_read_char), and hook up instream to the event
1228 loop. */
1229
1230void
1231gdb_setup_readline (void)
1232{
1233 struct ui *ui = current_ui;
1234
1235 /* This function is a noop for the sync case. The assumption is
1236 that the sync setup is ALL done in gdb_init, and we would only
1237 mess it up here. The sync stuff should really go away over
1238 time. */
1239 if (!batch_silent)
1240 gdb_stdout = stdio_fileopen (stdout);
1241 gdb_stderr = stderr_fileopen ();
1242 gdb_stdlog = gdb_stderr; /* for moment */
1243 gdb_stdtarg = gdb_stderr; /* for moment */
1244 gdb_stdtargerr = gdb_stderr; /* for moment */
1245
1246 /* If the input stream is connected to a terminal, turn on
1247 editing. */
1248 if (ISATTY (ui->instream))
1249 {
1250 /* Tell gdb that we will be using the readline library. This
1251 could be overwritten by a command in .gdbinit like 'set
1252 editing on' or 'off'. */
1253 async_command_editing_p = 1;
1254
1255 /* When a character is detected on instream by select or poll,
1256 readline will be invoked via this callback function. */
1257 ui->call_readline = gdb_rl_callback_read_char_wrapper;
1258 }
1259 else
1260 {
1261 async_command_editing_p = 0;
1262 ui->call_readline = gdb_readline_no_editing_callback;
1263 }
1264
1265 /* When readline has read an end-of-line character, it passes the
1266 complete line to gdb for processing; command_line_handler is the
1267 function that does this. */
1268 ui->input_handler = command_line_handler;
1269
1270 /* Tell readline to use the same input stream that gdb uses. */
1271 rl_instream = ui->instream;
1272
1273 /* Get a file descriptor for the input stream, so that we can
1274 register it with the event loop. */
1275 input_fd = fileno (ui->instream);
1276
1277 /* Now we need to create the event sources for the input file
1278 descriptor. */
1279 /* At this point in time, this is the only event source that we
1280 register with the even loop. Another source is going to be the
1281 target program (inferior), but that must be registered only when
1282 it actually exists (I.e. after we say 'run' or after we connect
1283 to a remote target. */
1284 add_file_handler (input_fd, stdin_event_handler, 0);
1285}
1286
1287/* Disable command input through the standard CLI channels. Used in
1288 the suspend proc for interpreters that use the standard gdb readline
1289 interface, like the cli & the mi. */
1290void
1291gdb_disable_readline (void)
1292{
1293 /* FIXME - It is too heavyweight to delete and remake these every
1294 time you run an interpreter that needs readline. It is probably
1295 better to have the interpreters cache these, which in turn means
1296 that this needs to be moved into interpreter specific code. */
1297
1298#if 0
1299 ui_file_delete (gdb_stdout);
1300 ui_file_delete (gdb_stderr);
1301 gdb_stdlog = NULL;
1302 gdb_stdtarg = NULL;
1303 gdb_stdtargerr = NULL;
1304#endif
1305
1306 gdb_rl_callback_handler_remove ();
1307 delete_file_handler (input_fd);
1308}
This page took 0.02654 seconds and 4 git commands to generate.