]>
Commit | Line | Data |
---|---|---|
1 | /* Support for printing Fortran values for GDB, the GNU debugger. | |
2 | ||
3 | Copyright (C) 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2003, 2005, 2006, | |
4 | 2007, 2008, 2009, 2010 Free Software Foundation, Inc. | |
5 | ||
6 | Contributed by Motorola. Adapted from the C definitions by Farooq Butt | |
7 | (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs. | |
8 | ||
9 | This file is part of GDB. | |
10 | ||
11 | This program is free software; you can redistribute it and/or modify | |
12 | it under the terms of the GNU General Public License as published by | |
13 | the Free Software Foundation; either version 3 of the License, or | |
14 | (at your option) any later version. | |
15 | ||
16 | This program is distributed in the hope that it will be useful, | |
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | GNU General Public License for more details. | |
20 | ||
21 | You should have received a copy of the GNU General Public License | |
22 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
23 | ||
24 | #include "defs.h" | |
25 | #include "gdb_string.h" | |
26 | #include "symtab.h" | |
27 | #include "gdbtypes.h" | |
28 | #include "expression.h" | |
29 | #include "value.h" | |
30 | #include "valprint.h" | |
31 | #include "language.h" | |
32 | #include "f-lang.h" | |
33 | #include "frame.h" | |
34 | #include "gdbcore.h" | |
35 | #include "command.h" | |
36 | #include "block.h" | |
37 | ||
38 | #if 0 | |
39 | static int there_is_a_visible_common_named (char *); | |
40 | #endif | |
41 | ||
42 | extern void _initialize_f_valprint (void); | |
43 | static void info_common_command (char *, int); | |
44 | static void list_all_visible_commons (char *); | |
45 | static void f77_create_arrayprint_offset_tbl (struct type *, | |
46 | struct ui_file *); | |
47 | static void f77_get_dynamic_length_of_aggregate (struct type *); | |
48 | ||
49 | int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2]; | |
50 | ||
51 | /* Array which holds offsets to be applied to get a row's elements | |
52 | for a given array. Array also holds the size of each subarray. */ | |
53 | ||
54 | /* The following macro gives us the size of the nth dimension, Where | |
55 | n is 1 based. */ | |
56 | ||
57 | #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1]) | |
58 | ||
59 | /* The following gives us the offset for row n where n is 1-based. */ | |
60 | ||
61 | #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0]) | |
62 | ||
63 | int | |
64 | f77_get_lowerbound (struct type *type) | |
65 | { | |
66 | if (TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type)) | |
67 | error (_("Lower bound may not be '*' in F77")); | |
68 | ||
69 | return TYPE_ARRAY_LOWER_BOUND_VALUE (type); | |
70 | } | |
71 | ||
72 | int | |
73 | f77_get_upperbound (struct type *type) | |
74 | { | |
75 | if (TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) | |
76 | { | |
77 | /* We have an assumed size array on our hands. Assume that | |
78 | upper_bound == lower_bound so that we show at least 1 element. | |
79 | If the user wants to see more elements, let him manually ask for 'em | |
80 | and we'll subscript the array and show him. */ | |
81 | ||
82 | return f77_get_lowerbound (type); | |
83 | } | |
84 | ||
85 | return TYPE_ARRAY_UPPER_BOUND_VALUE (type); | |
86 | } | |
87 | ||
88 | /* Obtain F77 adjustable array dimensions */ | |
89 | ||
90 | static void | |
91 | f77_get_dynamic_length_of_aggregate (struct type *type) | |
92 | { | |
93 | int upper_bound = -1; | |
94 | int lower_bound = 1; | |
95 | int retcode; | |
96 | ||
97 | /* Recursively go all the way down into a possibly multi-dimensional | |
98 | F77 array and get the bounds. For simple arrays, this is pretty | |
99 | easy but when the bounds are dynamic, we must be very careful | |
100 | to add up all the lengths correctly. Not doing this right | |
101 | will lead to horrendous-looking arrays in parameter lists. | |
102 | ||
103 | This function also works for strings which behave very | |
104 | similarly to arrays. */ | |
105 | ||
106 | if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY | |
107 | || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING) | |
108 | f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type)); | |
109 | ||
110 | /* Recursion ends here, start setting up lengths. */ | |
111 | lower_bound = f77_get_lowerbound (type); | |
112 | upper_bound = f77_get_upperbound (type); | |
113 | ||
114 | /* Patch in a valid length value. */ | |
115 | ||
116 | TYPE_LENGTH (type) = | |
117 | (upper_bound - lower_bound + 1) * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type))); | |
118 | } | |
119 | ||
120 | /* Function that sets up the array offset,size table for the array | |
121 | type "type". */ | |
122 | ||
123 | static void | |
124 | f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream) | |
125 | { | |
126 | struct type *tmp_type; | |
127 | int eltlen; | |
128 | int ndimen = 1; | |
129 | int upper, lower, retcode; | |
130 | ||
131 | tmp_type = type; | |
132 | ||
133 | while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)) | |
134 | { | |
135 | upper = f77_get_upperbound (tmp_type); | |
136 | lower = f77_get_lowerbound (tmp_type); | |
137 | ||
138 | F77_DIM_SIZE (ndimen) = upper - lower + 1; | |
139 | ||
140 | tmp_type = TYPE_TARGET_TYPE (tmp_type); | |
141 | ndimen++; | |
142 | } | |
143 | ||
144 | /* Now we multiply eltlen by all the offsets, so that later we | |
145 | can print out array elements correctly. Up till now we | |
146 | know an offset to apply to get the item but we also | |
147 | have to know how much to add to get to the next item */ | |
148 | ||
149 | ndimen--; | |
150 | eltlen = TYPE_LENGTH (tmp_type); | |
151 | F77_DIM_OFFSET (ndimen) = eltlen; | |
152 | while (--ndimen > 0) | |
153 | { | |
154 | eltlen *= F77_DIM_SIZE (ndimen + 1); | |
155 | F77_DIM_OFFSET (ndimen) = eltlen; | |
156 | } | |
157 | } | |
158 | ||
159 | ||
160 | ||
161 | /* Actual function which prints out F77 arrays, Valaddr == address in | |
162 | the superior. Address == the address in the inferior. */ | |
163 | ||
164 | static void | |
165 | f77_print_array_1 (int nss, int ndimensions, struct type *type, | |
166 | const gdb_byte *valaddr, CORE_ADDR address, | |
167 | struct ui_file *stream, int recurse, | |
168 | const struct value_print_options *options, | |
169 | int *elts) | |
170 | { | |
171 | int i; | |
172 | ||
173 | if (nss != ndimensions) | |
174 | { | |
175 | for (i = 0; (i < F77_DIM_SIZE (nss) && (*elts) < options->print_max); i++) | |
176 | { | |
177 | fprintf_filtered (stream, "( "); | |
178 | f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type), | |
179 | valaddr + i * F77_DIM_OFFSET (nss), | |
180 | address + i * F77_DIM_OFFSET (nss), | |
181 | stream, recurse, options, elts); | |
182 | fprintf_filtered (stream, ") "); | |
183 | } | |
184 | if (*elts >= options->print_max && i < F77_DIM_SIZE (nss)) | |
185 | fprintf_filtered (stream, "..."); | |
186 | } | |
187 | else | |
188 | { | |
189 | for (i = 0; i < F77_DIM_SIZE (nss) && (*elts) < options->print_max; | |
190 | i++, (*elts)++) | |
191 | { | |
192 | val_print (TYPE_TARGET_TYPE (type), | |
193 | valaddr + i * F77_DIM_OFFSET (ndimensions), | |
194 | 0, | |
195 | address + i * F77_DIM_OFFSET (ndimensions), | |
196 | stream, recurse, options, current_language); | |
197 | ||
198 | if (i != (F77_DIM_SIZE (nss) - 1)) | |
199 | fprintf_filtered (stream, ", "); | |
200 | ||
201 | if ((*elts == options->print_max - 1) | |
202 | && (i != (F77_DIM_SIZE (nss) - 1))) | |
203 | fprintf_filtered (stream, "..."); | |
204 | } | |
205 | } | |
206 | } | |
207 | ||
208 | /* This function gets called to print an F77 array, we set up some | |
209 | stuff and then immediately call f77_print_array_1() */ | |
210 | ||
211 | static void | |
212 | f77_print_array (struct type *type, const gdb_byte *valaddr, | |
213 | CORE_ADDR address, struct ui_file *stream, | |
214 | int recurse, const struct value_print_options *options) | |
215 | { | |
216 | int ndimensions; | |
217 | int elts = 0; | |
218 | ||
219 | ndimensions = calc_f77_array_dims (type); | |
220 | ||
221 | if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0) | |
222 | error (_("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)"), | |
223 | ndimensions, MAX_FORTRAN_DIMS); | |
224 | ||
225 | /* Since F77 arrays are stored column-major, we set up an | |
226 | offset table to get at the various row's elements. The | |
227 | offset table contains entries for both offset and subarray size. */ | |
228 | ||
229 | f77_create_arrayprint_offset_tbl (type, stream); | |
230 | ||
231 | f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, | |
232 | recurse, options, &elts); | |
233 | } | |
234 | \f | |
235 | ||
236 | /* Print data of type TYPE located at VALADDR (within GDB), which came from | |
237 | the inferior at address ADDRESS, onto stdio stream STREAM according to | |
238 | OPTIONS. The data at VALADDR is in target byte order. | |
239 | ||
240 | If the data are a string pointer, returns the number of string characters | |
241 | printed. */ | |
242 | ||
243 | int | |
244 | f_val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset, | |
245 | CORE_ADDR address, struct ui_file *stream, int recurse, | |
246 | const struct value_print_options *options) | |
247 | { | |
248 | struct gdbarch *gdbarch = get_type_arch (type); | |
249 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
250 | unsigned int i = 0; /* Number of characters printed */ | |
251 | struct type *elttype; | |
252 | LONGEST val; | |
253 | CORE_ADDR addr; | |
254 | int index; | |
255 | ||
256 | CHECK_TYPEDEF (type); | |
257 | switch (TYPE_CODE (type)) | |
258 | { | |
259 | case TYPE_CODE_STRING: | |
260 | f77_get_dynamic_length_of_aggregate (type); | |
261 | LA_PRINT_STRING (stream, builtin_type (gdbarch)->builtin_char, | |
262 | valaddr, TYPE_LENGTH (type), NULL, 0, options); | |
263 | break; | |
264 | ||
265 | case TYPE_CODE_ARRAY: | |
266 | fprintf_filtered (stream, "("); | |
267 | f77_print_array (type, valaddr, address, stream, recurse, options); | |
268 | fprintf_filtered (stream, ")"); | |
269 | break; | |
270 | ||
271 | case TYPE_CODE_PTR: | |
272 | if (options->format && options->format != 's') | |
273 | { | |
274 | print_scalar_formatted (valaddr, type, options, 0, stream); | |
275 | break; | |
276 | } | |
277 | else | |
278 | { | |
279 | addr = unpack_pointer (type, valaddr); | |
280 | elttype = check_typedef (TYPE_TARGET_TYPE (type)); | |
281 | ||
282 | if (TYPE_CODE (elttype) == TYPE_CODE_FUNC) | |
283 | { | |
284 | /* Try to print what function it points to. */ | |
285 | print_address_demangle (gdbarch, addr, stream, demangle); | |
286 | /* Return value is irrelevant except for string pointers. */ | |
287 | return 0; | |
288 | } | |
289 | ||
290 | if (options->addressprint && options->format != 's') | |
291 | fputs_filtered (paddress (gdbarch, addr), stream); | |
292 | ||
293 | /* For a pointer to char or unsigned char, also print the string | |
294 | pointed to, unless pointer is null. */ | |
295 | if (TYPE_LENGTH (elttype) == 1 | |
296 | && TYPE_CODE (elttype) == TYPE_CODE_INT | |
297 | && (options->format == 0 || options->format == 's') | |
298 | && addr != 0) | |
299 | i = val_print_string (TYPE_TARGET_TYPE (type), addr, -1, stream, | |
300 | options); | |
301 | ||
302 | /* Return number of characters printed, including the terminating | |
303 | '\0' if we reached the end. val_print_string takes care including | |
304 | the terminating '\0' if necessary. */ | |
305 | return i; | |
306 | } | |
307 | break; | |
308 | ||
309 | case TYPE_CODE_REF: | |
310 | elttype = check_typedef (TYPE_TARGET_TYPE (type)); | |
311 | if (options->addressprint) | |
312 | { | |
313 | CORE_ADDR addr | |
314 | = extract_typed_address (valaddr + embedded_offset, type); | |
315 | fprintf_filtered (stream, "@"); | |
316 | fputs_filtered (paddress (gdbarch, addr), stream); | |
317 | if (options->deref_ref) | |
318 | fputs_filtered (": ", stream); | |
319 | } | |
320 | /* De-reference the reference. */ | |
321 | if (options->deref_ref) | |
322 | { | |
323 | if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF) | |
324 | { | |
325 | struct value *deref_val = | |
326 | value_at | |
327 | (TYPE_TARGET_TYPE (type), | |
328 | unpack_pointer (type, valaddr + embedded_offset)); | |
329 | common_val_print (deref_val, stream, recurse, | |
330 | options, current_language); | |
331 | } | |
332 | else | |
333 | fputs_filtered ("???", stream); | |
334 | } | |
335 | break; | |
336 | ||
337 | case TYPE_CODE_FUNC: | |
338 | if (options->format) | |
339 | { | |
340 | print_scalar_formatted (valaddr, type, options, 0, stream); | |
341 | break; | |
342 | } | |
343 | /* FIXME, we should consider, at least for ANSI C language, eliminating | |
344 | the distinction made between FUNCs and POINTERs to FUNCs. */ | |
345 | fprintf_filtered (stream, "{"); | |
346 | type_print (type, "", stream, -1); | |
347 | fprintf_filtered (stream, "} "); | |
348 | /* Try to print what function it points to, and its address. */ | |
349 | print_address_demangle (gdbarch, address, stream, demangle); | |
350 | break; | |
351 | ||
352 | case TYPE_CODE_INT: | |
353 | if (options->format || options->output_format) | |
354 | { | |
355 | struct value_print_options opts = *options; | |
356 | opts.format = (options->format ? options->format | |
357 | : options->output_format); | |
358 | print_scalar_formatted (valaddr, type, &opts, 0, stream); | |
359 | } | |
360 | else | |
361 | { | |
362 | val_print_type_code_int (type, valaddr, stream); | |
363 | /* C and C++ has no single byte int type, char is used instead. | |
364 | Since we don't know whether the value is really intended to | |
365 | be used as an integer or a character, print the character | |
366 | equivalent as well. */ | |
367 | if (TYPE_LENGTH (type) == 1) | |
368 | { | |
369 | fputs_filtered (" ", stream); | |
370 | LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr), | |
371 | type, stream); | |
372 | } | |
373 | } | |
374 | break; | |
375 | ||
376 | case TYPE_CODE_FLAGS: | |
377 | if (options->format) | |
378 | print_scalar_formatted (valaddr, type, options, 0, stream); | |
379 | else | |
380 | val_print_type_code_flags (type, valaddr, stream); | |
381 | break; | |
382 | ||
383 | case TYPE_CODE_FLT: | |
384 | if (options->format) | |
385 | print_scalar_formatted (valaddr, type, options, 0, stream); | |
386 | else | |
387 | print_floating (valaddr, type, stream); | |
388 | break; | |
389 | ||
390 | case TYPE_CODE_VOID: | |
391 | fprintf_filtered (stream, "VOID"); | |
392 | break; | |
393 | ||
394 | case TYPE_CODE_ERROR: | |
395 | fprintf_filtered (stream, "<error type>"); | |
396 | break; | |
397 | ||
398 | case TYPE_CODE_RANGE: | |
399 | /* FIXME, we should not ever have to print one of these yet. */ | |
400 | fprintf_filtered (stream, "<range type>"); | |
401 | break; | |
402 | ||
403 | case TYPE_CODE_BOOL: | |
404 | if (options->format || options->output_format) | |
405 | { | |
406 | struct value_print_options opts = *options; | |
407 | opts.format = (options->format ? options->format | |
408 | : options->output_format); | |
409 | print_scalar_formatted (valaddr, type, &opts, 0, stream); | |
410 | } | |
411 | else | |
412 | { | |
413 | val = extract_unsigned_integer (valaddr, | |
414 | TYPE_LENGTH (type), byte_order); | |
415 | if (val == 0) | |
416 | fprintf_filtered (stream, ".FALSE."); | |
417 | else if (val == 1) | |
418 | fprintf_filtered (stream, ".TRUE."); | |
419 | else | |
420 | /* Not a legitimate logical type, print as an integer. */ | |
421 | { | |
422 | /* Bash the type code temporarily. */ | |
423 | TYPE_CODE (type) = TYPE_CODE_INT; | |
424 | f_val_print (type, valaddr, 0, address, stream, recurse, options); | |
425 | /* Restore the type code so later uses work as intended. */ | |
426 | TYPE_CODE (type) = TYPE_CODE_BOOL; | |
427 | } | |
428 | } | |
429 | break; | |
430 | ||
431 | case TYPE_CODE_COMPLEX: | |
432 | type = TYPE_TARGET_TYPE (type); | |
433 | fputs_filtered ("(", stream); | |
434 | print_floating (valaddr, type, stream); | |
435 | fputs_filtered (",", stream); | |
436 | print_floating (valaddr + TYPE_LENGTH (type), type, stream); | |
437 | fputs_filtered (")", stream); | |
438 | break; | |
439 | ||
440 | case TYPE_CODE_UNDEF: | |
441 | /* This happens (without TYPE_FLAG_STUB set) on systems which don't use | |
442 | dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar" | |
443 | and no complete type for struct foo in that file. */ | |
444 | fprintf_filtered (stream, "<incomplete type>"); | |
445 | break; | |
446 | ||
447 | case TYPE_CODE_STRUCT: | |
448 | case TYPE_CODE_UNION: | |
449 | /* Starting from the Fortran 90 standard, Fortran supports derived | |
450 | types. */ | |
451 | fprintf_filtered (stream, "( "); | |
452 | for (index = 0; index < TYPE_NFIELDS (type); index++) | |
453 | { | |
454 | int offset = TYPE_FIELD_BITPOS (type, index) / 8; | |
455 | f_val_print (TYPE_FIELD_TYPE (type, index), valaddr + offset, | |
456 | embedded_offset, address, stream, recurse, options); | |
457 | if (index != TYPE_NFIELDS (type) - 1) | |
458 | fputs_filtered (", ", stream); | |
459 | } | |
460 | fprintf_filtered (stream, " )"); | |
461 | break; | |
462 | ||
463 | default: | |
464 | error (_("Invalid F77 type code %d in symbol table."), TYPE_CODE (type)); | |
465 | } | |
466 | gdb_flush (stream); | |
467 | return 0; | |
468 | } | |
469 | ||
470 | static void | |
471 | list_all_visible_commons (char *funname) | |
472 | { | |
473 | SAVED_F77_COMMON_PTR tmp; | |
474 | ||
475 | tmp = head_common_list; | |
476 | ||
477 | printf_filtered (_("All COMMON blocks visible at this level:\n\n")); | |
478 | ||
479 | while (tmp != NULL) | |
480 | { | |
481 | if (strcmp (tmp->owning_function, funname) == 0) | |
482 | printf_filtered ("%s\n", tmp->name); | |
483 | ||
484 | tmp = tmp->next; | |
485 | } | |
486 | } | |
487 | ||
488 | /* This function is used to print out the values in a given COMMON | |
489 | block. It will always use the most local common block of the | |
490 | given name */ | |
491 | ||
492 | static void | |
493 | info_common_command (char *comname, int from_tty) | |
494 | { | |
495 | SAVED_F77_COMMON_PTR the_common; | |
496 | COMMON_ENTRY_PTR entry; | |
497 | struct frame_info *fi; | |
498 | char *funname = 0; | |
499 | struct symbol *func; | |
500 | ||
501 | /* We have been told to display the contents of F77 COMMON | |
502 | block supposedly visible in this function. Let us | |
503 | first make sure that it is visible and if so, let | |
504 | us display its contents */ | |
505 | ||
506 | fi = get_selected_frame (_("No frame selected")); | |
507 | ||
508 | /* The following is generally ripped off from stack.c's routine | |
509 | print_frame_info() */ | |
510 | ||
511 | func = find_pc_function (get_frame_pc (fi)); | |
512 | if (func) | |
513 | { | |
514 | /* In certain pathological cases, the symtabs give the wrong | |
515 | function (when we are in the first function in a file which | |
516 | is compiled without debugging symbols, the previous function | |
517 | is compiled with debugging symbols, and the "foo.o" symbol | |
518 | that is supposed to tell us where the file with debugging symbols | |
519 | ends has been truncated by ar because it is longer than 15 | |
520 | characters). | |
521 | ||
522 | So look in the minimal symbol tables as well, and if it comes | |
523 | up with a larger address for the function use that instead. | |
524 | I don't think this can ever cause any problems; there shouldn't | |
525 | be any minimal symbols in the middle of a function. | |
526 | FIXME: (Not necessarily true. What about text labels) */ | |
527 | ||
528 | struct minimal_symbol *msymbol = | |
529 | lookup_minimal_symbol_by_pc (get_frame_pc (fi)); | |
530 | ||
531 | if (msymbol != NULL | |
532 | && (SYMBOL_VALUE_ADDRESS (msymbol) | |
533 | > BLOCK_START (SYMBOL_BLOCK_VALUE (func)))) | |
534 | funname = SYMBOL_LINKAGE_NAME (msymbol); | |
535 | else | |
536 | funname = SYMBOL_LINKAGE_NAME (func); | |
537 | } | |
538 | else | |
539 | { | |
540 | struct minimal_symbol *msymbol = | |
541 | lookup_minimal_symbol_by_pc (get_frame_pc (fi)); | |
542 | ||
543 | if (msymbol != NULL) | |
544 | funname = SYMBOL_LINKAGE_NAME (msymbol); | |
545 | else /* Got no 'funname', code below will fail. */ | |
546 | error (_("No function found for frame.")); | |
547 | } | |
548 | ||
549 | /* If comname is NULL, we assume the user wishes to see the | |
550 | which COMMON blocks are visible here and then return */ | |
551 | ||
552 | if (comname == 0) | |
553 | { | |
554 | list_all_visible_commons (funname); | |
555 | return; | |
556 | } | |
557 | ||
558 | the_common = find_common_for_function (comname, funname); | |
559 | ||
560 | if (the_common) | |
561 | { | |
562 | if (strcmp (comname, BLANK_COMMON_NAME_LOCAL) == 0) | |
563 | printf_filtered (_("Contents of blank COMMON block:\n")); | |
564 | else | |
565 | printf_filtered (_("Contents of F77 COMMON block '%s':\n"), comname); | |
566 | ||
567 | printf_filtered ("\n"); | |
568 | entry = the_common->entries; | |
569 | ||
570 | while (entry != NULL) | |
571 | { | |
572 | print_variable_and_value (NULL, entry->symbol, fi, gdb_stdout, 0); | |
573 | entry = entry->next; | |
574 | } | |
575 | } | |
576 | else | |
577 | printf_filtered (_("Cannot locate the common block %s in function '%s'\n"), | |
578 | comname, funname); | |
579 | } | |
580 | ||
581 | /* This function is used to determine whether there is a | |
582 | F77 common block visible at the current scope called 'comname'. */ | |
583 | ||
584 | #if 0 | |
585 | static int | |
586 | there_is_a_visible_common_named (char *comname) | |
587 | { | |
588 | SAVED_F77_COMMON_PTR the_common; | |
589 | struct frame_info *fi; | |
590 | char *funname = 0; | |
591 | struct symbol *func; | |
592 | ||
593 | if (comname == NULL) | |
594 | error (_("Cannot deal with NULL common name!")); | |
595 | ||
596 | fi = get_selected_frame (_("No frame selected")); | |
597 | ||
598 | /* The following is generally ripped off from stack.c's routine | |
599 | print_frame_info() */ | |
600 | ||
601 | func = find_pc_function (fi->pc); | |
602 | if (func) | |
603 | { | |
604 | /* In certain pathological cases, the symtabs give the wrong | |
605 | function (when we are in the first function in a file which | |
606 | is compiled without debugging symbols, the previous function | |
607 | is compiled with debugging symbols, and the "foo.o" symbol | |
608 | that is supposed to tell us where the file with debugging symbols | |
609 | ends has been truncated by ar because it is longer than 15 | |
610 | characters). | |
611 | ||
612 | So look in the minimal symbol tables as well, and if it comes | |
613 | up with a larger address for the function use that instead. | |
614 | I don't think this can ever cause any problems; there shouldn't | |
615 | be any minimal symbols in the middle of a function. | |
616 | FIXME: (Not necessarily true. What about text labels) */ | |
617 | ||
618 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc); | |
619 | ||
620 | if (msymbol != NULL | |
621 | && (SYMBOL_VALUE_ADDRESS (msymbol) | |
622 | > BLOCK_START (SYMBOL_BLOCK_VALUE (func)))) | |
623 | funname = SYMBOL_LINKAGE_NAME (msymbol); | |
624 | else | |
625 | funname = SYMBOL_LINKAGE_NAME (func); | |
626 | } | |
627 | else | |
628 | { | |
629 | struct minimal_symbol *msymbol = | |
630 | lookup_minimal_symbol_by_pc (fi->pc); | |
631 | ||
632 | if (msymbol != NULL) | |
633 | funname = SYMBOL_LINKAGE_NAME (msymbol); | |
634 | } | |
635 | ||
636 | the_common = find_common_for_function (comname, funname); | |
637 | ||
638 | return (the_common ? 1 : 0); | |
639 | } | |
640 | #endif | |
641 | ||
642 | void | |
643 | _initialize_f_valprint (void) | |
644 | { | |
645 | add_info ("common", info_common_command, | |
646 | _("Print out the values contained in a Fortran COMMON block.")); | |
647 | if (xdb_commands) | |
648 | add_com ("lc", class_info, info_common_command, | |
649 | _("Print out the values contained in a Fortran COMMON block.")); | |
650 | } |