* frame.c (get_frame_register_bytes): Take pseudo registers into
[deliverable/binutils-gdb.git] / gdb / frame.c
... / ...
CommitLineData
1/* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "frame.h"
23#include "target.h"
24#include "value.h"
25#include "inferior.h" /* for inferior_ptid */
26#include "regcache.h"
27#include "gdb_assert.h"
28#include "gdb_string.h"
29#include "user-regs.h"
30#include "gdb_obstack.h"
31#include "dummy-frame.h"
32#include "sentinel-frame.h"
33#include "gdbcore.h"
34#include "annotate.h"
35#include "language.h"
36#include "frame-unwind.h"
37#include "frame-base.h"
38#include "command.h"
39#include "gdbcmd.h"
40#include "observer.h"
41#include "objfiles.h"
42#include "exceptions.h"
43#include "gdbthread.h"
44
45static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
46
47/* We keep a cache of stack frames, each of which is a "struct
48 frame_info". The innermost one gets allocated (in
49 wait_for_inferior) each time the inferior stops; current_frame
50 points to it. Additional frames get allocated (in get_prev_frame)
51 as needed, and are chained through the next and prev fields. Any
52 time that the frame cache becomes invalid (most notably when we
53 execute something, but also if we change how we interpret the
54 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
55 which reads new symbols)), we should call reinit_frame_cache. */
56
57struct frame_info
58{
59 /* Level of this frame. The inner-most (youngest) frame is at level
60 0. As you move towards the outer-most (oldest) frame, the level
61 increases. This is a cached value. It could just as easily be
62 computed by counting back from the selected frame to the inner
63 most frame. */
64 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
65 reserved to indicate a bogus frame - one that has been created
66 just to keep GDB happy (GDB always needs a frame). For the
67 moment leave this as speculation. */
68 int level;
69
70 /* The frame's low-level unwinder and corresponding cache. The
71 low-level unwinder is responsible for unwinding register values
72 for the previous frame. The low-level unwind methods are
73 selected based on the presence, or otherwise, of register unwind
74 information such as CFI. */
75 void *prologue_cache;
76 const struct frame_unwind *unwind;
77
78 /* Cached copy of the previous frame's resume address. */
79 struct {
80 int p;
81 CORE_ADDR value;
82 } prev_pc;
83
84 /* Cached copy of the previous frame's function address. */
85 struct
86 {
87 CORE_ADDR addr;
88 int p;
89 } prev_func;
90
91 /* This frame's ID. */
92 struct
93 {
94 int p;
95 struct frame_id value;
96 } this_id;
97
98 /* The frame's high-level base methods, and corresponding cache.
99 The high level base methods are selected based on the frame's
100 debug info. */
101 const struct frame_base *base;
102 void *base_cache;
103
104 /* Pointers to the next (down, inner, younger) and previous (up,
105 outer, older) frame_info's in the frame cache. */
106 struct frame_info *next; /* down, inner, younger */
107 int prev_p;
108 struct frame_info *prev; /* up, outer, older */
109
110 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
111 could. Only valid when PREV_P is set. */
112 enum unwind_stop_reason stop_reason;
113};
114
115/* Flag to control debugging. */
116
117int frame_debug;
118static void
119show_frame_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121{
122 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
123}
124
125/* Flag to indicate whether backtraces should stop at main et.al. */
126
127static int backtrace_past_main;
128static void
129show_backtrace_past_main (struct ui_file *file, int from_tty,
130 struct cmd_list_element *c, const char *value)
131{
132 fprintf_filtered (file, _("\
133Whether backtraces should continue past \"main\" is %s.\n"),
134 value);
135}
136
137static int backtrace_past_entry;
138static void
139show_backtrace_past_entry (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141{
142 fprintf_filtered (file, _("\
143Whether backtraces should continue past the entry point of a program is %s.\n"),
144 value);
145}
146
147static int backtrace_limit = INT_MAX;
148static void
149show_backtrace_limit (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151{
152 fprintf_filtered (file, _("\
153An upper bound on the number of backtrace levels is %s.\n"),
154 value);
155}
156
157
158static void
159fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
160{
161 if (p)
162 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
163 else
164 fprintf_unfiltered (file, "!%s", name);
165}
166
167void
168fprint_frame_id (struct ui_file *file, struct frame_id id)
169{
170 fprintf_unfiltered (file, "{");
171 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
172 fprintf_unfiltered (file, ",");
173 fprint_field (file, "code", id.code_addr_p, id.code_addr);
174 fprintf_unfiltered (file, ",");
175 fprint_field (file, "special", id.special_addr_p, id.special_addr);
176 fprintf_unfiltered (file, "}");
177}
178
179static void
180fprint_frame_type (struct ui_file *file, enum frame_type type)
181{
182 switch (type)
183 {
184 case NORMAL_FRAME:
185 fprintf_unfiltered (file, "NORMAL_FRAME");
186 return;
187 case DUMMY_FRAME:
188 fprintf_unfiltered (file, "DUMMY_FRAME");
189 return;
190 case SIGTRAMP_FRAME:
191 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
192 return;
193 default:
194 fprintf_unfiltered (file, "<unknown type>");
195 return;
196 };
197}
198
199static void
200fprint_frame (struct ui_file *file, struct frame_info *fi)
201{
202 if (fi == NULL)
203 {
204 fprintf_unfiltered (file, "<NULL frame>");
205 return;
206 }
207 fprintf_unfiltered (file, "{");
208 fprintf_unfiltered (file, "level=%d", fi->level);
209 fprintf_unfiltered (file, ",");
210 fprintf_unfiltered (file, "type=");
211 if (fi->unwind != NULL)
212 fprint_frame_type (file, fi->unwind->type);
213 else
214 fprintf_unfiltered (file, "<unknown>");
215 fprintf_unfiltered (file, ",");
216 fprintf_unfiltered (file, "unwind=");
217 if (fi->unwind != NULL)
218 gdb_print_host_address (fi->unwind, file);
219 else
220 fprintf_unfiltered (file, "<unknown>");
221 fprintf_unfiltered (file, ",");
222 fprintf_unfiltered (file, "pc=");
223 if (fi->next != NULL && fi->next->prev_pc.p)
224 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
225 else
226 fprintf_unfiltered (file, "<unknown>");
227 fprintf_unfiltered (file, ",");
228 fprintf_unfiltered (file, "id=");
229 if (fi->this_id.p)
230 fprint_frame_id (file, fi->this_id.value);
231 else
232 fprintf_unfiltered (file, "<unknown>");
233 fprintf_unfiltered (file, ",");
234 fprintf_unfiltered (file, "func=");
235 if (fi->next != NULL && fi->next->prev_func.p)
236 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
237 else
238 fprintf_unfiltered (file, "<unknown>");
239 fprintf_unfiltered (file, "}");
240}
241
242/* Return a frame uniq ID that can be used to, later, re-find the
243 frame. */
244
245struct frame_id
246get_frame_id (struct frame_info *fi)
247{
248 if (fi == NULL)
249 {
250 return null_frame_id;
251 }
252 if (!fi->this_id.p)
253 {
254 if (frame_debug)
255 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
256 fi->level);
257 /* Find the unwinder. */
258 if (fi->unwind == NULL)
259 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
260 /* Find THIS frame's ID. */
261 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
262 fi->this_id.p = 1;
263 if (frame_debug)
264 {
265 fprintf_unfiltered (gdb_stdlog, "-> ");
266 fprint_frame_id (gdb_stdlog, fi->this_id.value);
267 fprintf_unfiltered (gdb_stdlog, " }\n");
268 }
269 }
270 return fi->this_id.value;
271}
272
273struct frame_id
274frame_unwind_id (struct frame_info *next_frame)
275{
276 /* Use prev_frame, and not get_prev_frame. The latter will truncate
277 the frame chain, leading to this function unintentionally
278 returning a null_frame_id (e.g., when a caller requests the frame
279 ID of "main()"s caller. */
280 return get_frame_id (get_prev_frame_1 (next_frame));
281}
282
283const struct frame_id null_frame_id; /* All zeros. */
284
285struct frame_id
286frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
287 CORE_ADDR special_addr)
288{
289 struct frame_id id = null_frame_id;
290 id.stack_addr = stack_addr;
291 id.stack_addr_p = 1;
292 id.code_addr = code_addr;
293 id.code_addr_p = 1;
294 id.special_addr = special_addr;
295 id.special_addr_p = 1;
296 return id;
297}
298
299struct frame_id
300frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
301{
302 struct frame_id id = null_frame_id;
303 id.stack_addr = stack_addr;
304 id.stack_addr_p = 1;
305 id.code_addr = code_addr;
306 id.code_addr_p = 1;
307 return id;
308}
309
310struct frame_id
311frame_id_build_wild (CORE_ADDR stack_addr)
312{
313 struct frame_id id = null_frame_id;
314 id.stack_addr = stack_addr;
315 id.stack_addr_p = 1;
316 return id;
317}
318
319int
320frame_id_p (struct frame_id l)
321{
322 int p;
323 /* The frame is valid iff it has a valid stack address. */
324 p = l.stack_addr_p;
325 if (frame_debug)
326 {
327 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
328 fprint_frame_id (gdb_stdlog, l);
329 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
330 }
331 return p;
332}
333
334int
335frame_id_eq (struct frame_id l, struct frame_id r)
336{
337 int eq;
338 if (!l.stack_addr_p || !r.stack_addr_p)
339 /* Like a NaN, if either ID is invalid, the result is false.
340 Note that a frame ID is invalid iff it is the null frame ID. */
341 eq = 0;
342 else if (l.stack_addr != r.stack_addr)
343 /* If .stack addresses are different, the frames are different. */
344 eq = 0;
345 else if (!l.code_addr_p || !r.code_addr_p)
346 /* An invalid code addr is a wild card, always succeed. */
347 eq = 1;
348 else if (l.code_addr != r.code_addr)
349 /* If .code addresses are different, the frames are different. */
350 eq = 0;
351 else if (!l.special_addr_p || !r.special_addr_p)
352 /* An invalid special addr is a wild card (or unused), always succeed. */
353 eq = 1;
354 else if (l.special_addr == r.special_addr)
355 /* Frames are equal. */
356 eq = 1;
357 else
358 /* No luck. */
359 eq = 0;
360 if (frame_debug)
361 {
362 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
363 fprint_frame_id (gdb_stdlog, l);
364 fprintf_unfiltered (gdb_stdlog, ",r=");
365 fprint_frame_id (gdb_stdlog, r);
366 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
367 }
368 return eq;
369}
370
371/* Safety net to check whether frame ID L should be inner to
372 frame ID R, according to their stack addresses.
373
374 This method cannot be used to compare arbitrary frames, as the
375 ranges of valid stack addresses may be discontiguous (e.g. due
376 to sigaltstack).
377
378 However, it can be used as safety net to discover invalid frame
379 IDs in certain circumstances.
380
381 * If frame NEXT is the immediate inner frame to THIS, and NEXT
382 is a NORMAL frame, then the stack address of NEXT must be
383 inner-than-or-equal to the stack address of THIS.
384
385 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
386 error has occurred.
387
388 * If frame NEXT is the immediate inner frame to THIS, and NEXT
389 is a NORMAL frame, and NEXT and THIS have different stack
390 addresses, no other frame in the frame chain may have a stack
391 address in between.
392
393 Therefore, if frame_id_inner (TEST, THIS) holds, but
394 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
395 to a valid frame in the frame chain. */
396
397static int
398frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
399{
400 int inner;
401 if (!l.stack_addr_p || !r.stack_addr_p)
402 /* Like NaN, any operation involving an invalid ID always fails. */
403 inner = 0;
404 else
405 /* Only return non-zero when strictly inner than. Note that, per
406 comment in "frame.h", there is some fuzz here. Frameless
407 functions are not strictly inner than (same .stack but
408 different .code and/or .special address). */
409 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
410 if (frame_debug)
411 {
412 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
413 fprint_frame_id (gdb_stdlog, l);
414 fprintf_unfiltered (gdb_stdlog, ",r=");
415 fprint_frame_id (gdb_stdlog, r);
416 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
417 }
418 return inner;
419}
420
421struct frame_info *
422frame_find_by_id (struct frame_id id)
423{
424 struct frame_info *frame, *prev_frame;
425
426 /* ZERO denotes the null frame, let the caller decide what to do
427 about it. Should it instead return get_current_frame()? */
428 if (!frame_id_p (id))
429 return NULL;
430
431 for (frame = get_current_frame (); ; frame = prev_frame)
432 {
433 struct frame_id this = get_frame_id (frame);
434 if (frame_id_eq (id, this))
435 /* An exact match. */
436 return frame;
437
438 prev_frame = get_prev_frame (frame);
439 if (!prev_frame)
440 return NULL;
441
442 /* As a safety net to avoid unnecessary backtracing while trying
443 to find an invalid ID, we check for a common situation where
444 we can detect from comparing stack addresses that no other
445 frame in the current frame chain can have this ID. See the
446 comment at frame_id_inner for details. */
447 if (get_frame_type (frame) == NORMAL_FRAME
448 && !frame_id_inner (get_frame_arch (frame), id, this)
449 && frame_id_inner (get_frame_arch (prev_frame), id,
450 get_frame_id (prev_frame)))
451 return NULL;
452 }
453 return NULL;
454}
455
456CORE_ADDR
457frame_pc_unwind (struct frame_info *this_frame)
458{
459 if (!this_frame->prev_pc.p)
460 {
461 CORE_ADDR pc;
462 if (gdbarch_unwind_pc_p (get_frame_arch (this_frame)))
463 {
464 /* The right way. The `pure' way. The one true way. This
465 method depends solely on the register-unwind code to
466 determine the value of registers in THIS frame, and hence
467 the value of this frame's PC (resume address). A typical
468 implementation is no more than:
469
470 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
471 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
472
473 Note: this method is very heavily dependent on a correct
474 register-unwind implementation, it pays to fix that
475 method first; this method is frame type agnostic, since
476 it only deals with register values, it works with any
477 frame. This is all in stark contrast to the old
478 FRAME_SAVED_PC which would try to directly handle all the
479 different ways that a PC could be unwound. */
480 pc = gdbarch_unwind_pc (get_frame_arch (this_frame), this_frame);
481 }
482 else
483 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
484 this_frame->prev_pc.value = pc;
485 this_frame->prev_pc.p = 1;
486 if (frame_debug)
487 fprintf_unfiltered (gdb_stdlog,
488 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
489 this_frame->level,
490 paddr_nz (this_frame->prev_pc.value));
491 }
492 return this_frame->prev_pc.value;
493}
494
495CORE_ADDR
496get_frame_func (struct frame_info *this_frame)
497{
498 struct frame_info *next_frame = this_frame->next;
499
500 if (!next_frame->prev_func.p)
501 {
502 /* Make certain that this, and not the adjacent, function is
503 found. */
504 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
505 next_frame->prev_func.p = 1;
506 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
507 if (frame_debug)
508 fprintf_unfiltered (gdb_stdlog,
509 "{ get_frame_func (this_frame=%d) -> 0x%s }\n",
510 this_frame->level,
511 paddr_nz (next_frame->prev_func.addr));
512 }
513 return next_frame->prev_func.addr;
514}
515
516static int
517do_frame_register_read (void *src, int regnum, gdb_byte *buf)
518{
519 return frame_register_read (src, regnum, buf);
520}
521
522struct regcache *
523frame_save_as_regcache (struct frame_info *this_frame)
524{
525 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
526 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
527 regcache_save (regcache, do_frame_register_read, this_frame);
528 discard_cleanups (cleanups);
529 return regcache;
530}
531
532void
533frame_pop (struct frame_info *this_frame)
534{
535 struct frame_info *prev_frame;
536 struct regcache *scratch;
537 struct cleanup *cleanups;
538
539 /* Ensure that we have a frame to pop to. */
540 prev_frame = get_prev_frame_1 (this_frame);
541
542 if (!prev_frame)
543 error (_("Cannot pop the initial frame."));
544
545 /* Make a copy of all the register values unwound from this frame.
546 Save them in a scratch buffer so that there isn't a race between
547 trying to extract the old values from the current regcache while
548 at the same time writing new values into that same cache. */
549 scratch = frame_save_as_regcache (prev_frame);
550 cleanups = make_cleanup_regcache_xfree (scratch);
551
552 /* If we are popping a dummy frame, clean up the associated
553 data as well. */
554 if (get_frame_type (this_frame) == DUMMY_FRAME)
555 dummy_frame_pop (get_frame_id (this_frame));
556
557 /* FIXME: cagney/2003-03-16: It should be possible to tell the
558 target's register cache that it is about to be hit with a burst
559 register transfer and that the sequence of register writes should
560 be batched. The pair target_prepare_to_store() and
561 target_store_registers() kind of suggest this functionality.
562 Unfortunately, they don't implement it. Their lack of a formal
563 definition can lead to targets writing back bogus values
564 (arguably a bug in the target code mind). */
565 /* Now copy those saved registers into the current regcache.
566 Here, regcache_cpy() calls regcache_restore(). */
567 regcache_cpy (get_current_regcache (), scratch);
568 do_cleanups (cleanups);
569
570 /* We've made right mess of GDB's local state, just discard
571 everything. */
572 reinit_frame_cache ();
573}
574
575void
576frame_register_unwind (struct frame_info *frame, int regnum,
577 int *optimizedp, enum lval_type *lvalp,
578 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
579{
580 struct value *value;
581
582 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
583 that the value proper does not need to be fetched. */
584 gdb_assert (optimizedp != NULL);
585 gdb_assert (lvalp != NULL);
586 gdb_assert (addrp != NULL);
587 gdb_assert (realnump != NULL);
588 /* gdb_assert (bufferp != NULL); */
589
590 value = frame_unwind_register_value (frame, regnum);
591
592 gdb_assert (value != NULL);
593
594 *optimizedp = value_optimized_out (value);
595 *lvalp = VALUE_LVAL (value);
596 *addrp = VALUE_ADDRESS (value);
597 *realnump = VALUE_REGNUM (value);
598
599 if (bufferp)
600 memcpy (bufferp, value_contents_all (value),
601 TYPE_LENGTH (value_type (value)));
602
603 /* Dispose of the new value. This prevents watchpoints from
604 trying to watch the saved frame pointer. */
605 release_value (value);
606 value_free (value);
607}
608
609void
610frame_register (struct frame_info *frame, int regnum,
611 int *optimizedp, enum lval_type *lvalp,
612 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
613{
614 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
615 that the value proper does not need to be fetched. */
616 gdb_assert (optimizedp != NULL);
617 gdb_assert (lvalp != NULL);
618 gdb_assert (addrp != NULL);
619 gdb_assert (realnump != NULL);
620 /* gdb_assert (bufferp != NULL); */
621
622 /* Obtain the register value by unwinding the register from the next
623 (more inner frame). */
624 gdb_assert (frame != NULL && frame->next != NULL);
625 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
626 realnump, bufferp);
627}
628
629void
630frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
631{
632 int optimized;
633 CORE_ADDR addr;
634 int realnum;
635 enum lval_type lval;
636 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
637 &realnum, buf);
638}
639
640void
641get_frame_register (struct frame_info *frame,
642 int regnum, gdb_byte *buf)
643{
644 frame_unwind_register (frame->next, regnum, buf);
645}
646
647struct value *
648frame_unwind_register_value (struct frame_info *frame, int regnum)
649{
650 struct value *value;
651
652 gdb_assert (frame != NULL);
653
654 if (frame_debug)
655 {
656 fprintf_unfiltered (gdb_stdlog, "\
657{ frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
658 frame->level, regnum,
659 user_reg_map_regnum_to_name
660 (get_frame_arch (frame), regnum));
661 }
662
663 /* Find the unwinder. */
664 if (frame->unwind == NULL)
665 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
666
667 /* Ask this frame to unwind its register. */
668 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
669
670 if (frame_debug)
671 {
672 fprintf_unfiltered (gdb_stdlog, "->");
673 if (value_optimized_out (value))
674 fprintf_unfiltered (gdb_stdlog, " optimized out");
675 else
676 {
677 if (VALUE_LVAL (value) == lval_register)
678 fprintf_unfiltered (gdb_stdlog, " register=%d",
679 VALUE_REGNUM (value));
680 else if (VALUE_LVAL (value) == lval_memory)
681 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
682 paddr_nz (VALUE_ADDRESS (value)));
683 else
684 fprintf_unfiltered (gdb_stdlog, " computed");
685
686 if (value_lazy (value))
687 fprintf_unfiltered (gdb_stdlog, " lazy");
688 else
689 {
690 int i;
691 const gdb_byte *buf = value_contents (value);
692
693 fprintf_unfiltered (gdb_stdlog, " bytes=");
694 fprintf_unfiltered (gdb_stdlog, "[");
695 for (i = 0; i < register_size (get_frame_arch (frame), regnum); i++)
696 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
697 fprintf_unfiltered (gdb_stdlog, "]");
698 }
699 }
700
701 fprintf_unfiltered (gdb_stdlog, " }\n");
702 }
703
704 return value;
705}
706
707struct value *
708get_frame_register_value (struct frame_info *frame, int regnum)
709{
710 return frame_unwind_register_value (frame->next, regnum);
711}
712
713LONGEST
714frame_unwind_register_signed (struct frame_info *frame, int regnum)
715{
716 gdb_byte buf[MAX_REGISTER_SIZE];
717 frame_unwind_register (frame, regnum, buf);
718 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
719 regnum));
720}
721
722LONGEST
723get_frame_register_signed (struct frame_info *frame, int regnum)
724{
725 return frame_unwind_register_signed (frame->next, regnum);
726}
727
728ULONGEST
729frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
730{
731 gdb_byte buf[MAX_REGISTER_SIZE];
732 frame_unwind_register (frame, regnum, buf);
733 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
734 regnum));
735}
736
737ULONGEST
738get_frame_register_unsigned (struct frame_info *frame, int regnum)
739{
740 return frame_unwind_register_unsigned (frame->next, regnum);
741}
742
743void
744put_frame_register (struct frame_info *frame, int regnum,
745 const gdb_byte *buf)
746{
747 struct gdbarch *gdbarch = get_frame_arch (frame);
748 int realnum;
749 int optim;
750 enum lval_type lval;
751 CORE_ADDR addr;
752 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
753 if (optim)
754 error (_("Attempt to assign to a value that was optimized out."));
755 switch (lval)
756 {
757 case lval_memory:
758 {
759 /* FIXME: write_memory doesn't yet take constant buffers.
760 Arrrg! */
761 gdb_byte tmp[MAX_REGISTER_SIZE];
762 memcpy (tmp, buf, register_size (gdbarch, regnum));
763 write_memory (addr, tmp, register_size (gdbarch, regnum));
764 break;
765 }
766 case lval_register:
767 regcache_cooked_write (get_current_regcache (), realnum, buf);
768 break;
769 default:
770 error (_("Attempt to assign to an unmodifiable value."));
771 }
772}
773
774/* frame_register_read ()
775
776 Find and return the value of REGNUM for the specified stack frame.
777 The number of bytes copied is REGISTER_SIZE (REGNUM).
778
779 Returns 0 if the register value could not be found. */
780
781int
782frame_register_read (struct frame_info *frame, int regnum,
783 gdb_byte *myaddr)
784{
785 int optimized;
786 enum lval_type lval;
787 CORE_ADDR addr;
788 int realnum;
789 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
790
791 return !optimized;
792}
793
794int
795get_frame_register_bytes (struct frame_info *frame, int regnum,
796 CORE_ADDR offset, int len, gdb_byte *myaddr)
797{
798 struct gdbarch *gdbarch = get_frame_arch (frame);
799 int i;
800 int maxsize;
801
802 /* Skip registers wholly inside of OFFSET. */
803 while (offset >= register_size (gdbarch, regnum))
804 {
805 offset -= register_size (gdbarch, regnum);
806 regnum++;
807 }
808
809 /* Ensure that we will not read beyond the end of the register file.
810 This can only ever happen if the debug information is bad. */
811 maxsize = -offset;
812 for (i = regnum;
813 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch); i++)
814 {
815 int thissize = register_size (gdbarch, i);
816 if (thissize == 0)
817 break; /* This register is not available on this architecture. */
818 maxsize += thissize;
819 }
820 if (len > maxsize)
821 {
822 warning (_("Bad debug information detected: "
823 "Attempt to read %d bytes from registers."), len);
824 return 0;
825 }
826
827 /* Copy the data. */
828 while (len > 0)
829 {
830 int curr_len = register_size (gdbarch, regnum) - offset;
831 if (curr_len > len)
832 curr_len = len;
833
834 if (curr_len == register_size (gdbarch, regnum))
835 {
836 if (!frame_register_read (frame, regnum, myaddr))
837 return 0;
838 }
839 else
840 {
841 gdb_byte buf[MAX_REGISTER_SIZE];
842 if (!frame_register_read (frame, regnum, buf))
843 return 0;
844 memcpy (myaddr, buf + offset, curr_len);
845 }
846
847 myaddr += curr_len;
848 len -= curr_len;
849 offset = 0;
850 regnum++;
851 }
852
853 return 1;
854}
855
856void
857put_frame_register_bytes (struct frame_info *frame, int regnum,
858 CORE_ADDR offset, int len, const gdb_byte *myaddr)
859{
860 struct gdbarch *gdbarch = get_frame_arch (frame);
861
862 /* Skip registers wholly inside of OFFSET. */
863 while (offset >= register_size (gdbarch, regnum))
864 {
865 offset -= register_size (gdbarch, regnum);
866 regnum++;
867 }
868
869 /* Copy the data. */
870 while (len > 0)
871 {
872 int curr_len = register_size (gdbarch, regnum) - offset;
873 if (curr_len > len)
874 curr_len = len;
875
876 if (curr_len == register_size (gdbarch, regnum))
877 {
878 put_frame_register (frame, regnum, myaddr);
879 }
880 else
881 {
882 gdb_byte buf[MAX_REGISTER_SIZE];
883 frame_register_read (frame, regnum, buf);
884 memcpy (buf + offset, myaddr, curr_len);
885 put_frame_register (frame, regnum, buf);
886 }
887
888 myaddr += curr_len;
889 len -= curr_len;
890 offset = 0;
891 regnum++;
892 }
893}
894
895/* Create a sentinel frame. */
896
897static struct frame_info *
898create_sentinel_frame (struct regcache *regcache)
899{
900 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
901 frame->level = -1;
902 /* Explicitly initialize the sentinel frame's cache. Provide it
903 with the underlying regcache. In the future additional
904 information, such as the frame's thread will be added. */
905 frame->prologue_cache = sentinel_frame_cache (regcache);
906 /* For the moment there is only one sentinel frame implementation. */
907 frame->unwind = sentinel_frame_unwind;
908 /* Link this frame back to itself. The frame is self referential
909 (the unwound PC is the same as the pc), so make it so. */
910 frame->next = frame;
911 /* Make the sentinel frame's ID valid, but invalid. That way all
912 comparisons with it should fail. */
913 frame->this_id.p = 1;
914 frame->this_id.value = null_frame_id;
915 if (frame_debug)
916 {
917 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
918 fprint_frame (gdb_stdlog, frame);
919 fprintf_unfiltered (gdb_stdlog, " }\n");
920 }
921 return frame;
922}
923
924/* Info about the innermost stack frame (contents of FP register) */
925
926static struct frame_info *current_frame;
927
928/* Cache for frame addresses already read by gdb. Valid only while
929 inferior is stopped. Control variables for the frame cache should
930 be local to this module. */
931
932static struct obstack frame_cache_obstack;
933
934void *
935frame_obstack_zalloc (unsigned long size)
936{
937 void *data = obstack_alloc (&frame_cache_obstack, size);
938 memset (data, 0, size);
939 return data;
940}
941
942/* Return the innermost (currently executing) stack frame. This is
943 split into two functions. The function unwind_to_current_frame()
944 is wrapped in catch exceptions so that, even when the unwind of the
945 sentinel frame fails, the function still returns a stack frame. */
946
947static int
948unwind_to_current_frame (struct ui_out *ui_out, void *args)
949{
950 struct frame_info *frame = get_prev_frame (args);
951 /* A sentinel frame can fail to unwind, e.g., because its PC value
952 lands in somewhere like start. */
953 if (frame == NULL)
954 return 1;
955 current_frame = frame;
956 return 0;
957}
958
959struct frame_info *
960get_current_frame (void)
961{
962 /* First check, and report, the lack of registers. Having GDB
963 report "No stack!" or "No memory" when the target doesn't even
964 have registers is very confusing. Besides, "printcmd.exp"
965 explicitly checks that ``print $pc'' with no registers prints "No
966 registers". */
967 if (!target_has_registers)
968 error (_("No registers."));
969 if (!target_has_stack)
970 error (_("No stack."));
971 if (!target_has_memory)
972 error (_("No memory."));
973 if (is_executing (inferior_ptid))
974 error (_("Target is executing."));
975
976 if (current_frame == NULL)
977 {
978 struct frame_info *sentinel_frame =
979 create_sentinel_frame (get_current_regcache ());
980 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
981 RETURN_MASK_ERROR) != 0)
982 {
983 /* Oops! Fake a current frame? Is this useful? It has a PC
984 of zero, for instance. */
985 current_frame = sentinel_frame;
986 }
987 }
988 return current_frame;
989}
990
991/* The "selected" stack frame is used by default for local and arg
992 access. May be zero, for no selected frame. */
993
994static struct frame_info *selected_frame;
995
996static int
997has_stack_frames (void)
998{
999 if (!target_has_registers || !target_has_stack || !target_has_memory)
1000 return 0;
1001
1002 /* If the current thread is executing, don't try to read from
1003 it. */
1004 if (is_executing (inferior_ptid))
1005 return 0;
1006
1007 return 1;
1008}
1009
1010/* Return the selected frame. Always non-NULL (unless there isn't an
1011 inferior sufficient for creating a frame) in which case an error is
1012 thrown. */
1013
1014struct frame_info *
1015get_selected_frame (const char *message)
1016{
1017 if (selected_frame == NULL)
1018 {
1019 if (message != NULL && !has_stack_frames ())
1020 error (("%s"), message);
1021 /* Hey! Don't trust this. It should really be re-finding the
1022 last selected frame of the currently selected thread. This,
1023 though, is better than nothing. */
1024 select_frame (get_current_frame ());
1025 }
1026 /* There is always a frame. */
1027 gdb_assert (selected_frame != NULL);
1028 return selected_frame;
1029}
1030
1031/* This is a variant of get_selected_frame() which can be called when
1032 the inferior does not have a frame; in that case it will return
1033 NULL instead of calling error(). */
1034
1035struct frame_info *
1036deprecated_safe_get_selected_frame (void)
1037{
1038 if (!has_stack_frames ())
1039 return NULL;
1040 return get_selected_frame (NULL);
1041}
1042
1043/* Select frame FI (or NULL - to invalidate the current frame). */
1044
1045void
1046select_frame (struct frame_info *fi)
1047{
1048 struct symtab *s;
1049
1050 selected_frame = fi;
1051 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1052 frame is being invalidated. */
1053 if (deprecated_selected_frame_level_changed_hook)
1054 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1055
1056 /* FIXME: kseitz/2002-08-28: It would be nice to call
1057 selected_frame_level_changed_event() right here, but due to limitations
1058 in the current interfaces, we would end up flooding UIs with events
1059 because select_frame() is used extensively internally.
1060
1061 Once we have frame-parameterized frame (and frame-related) commands,
1062 the event notification can be moved here, since this function will only
1063 be called when the user's selected frame is being changed. */
1064
1065 /* Ensure that symbols for this frame are read in. Also, determine the
1066 source language of this frame, and switch to it if desired. */
1067 if (fi)
1068 {
1069 /* We retrieve the frame's symtab by using the frame PC. However
1070 we cannot use the frame PC as-is, because it usually points to
1071 the instruction following the "call", which is sometimes the
1072 first instruction of another function. So we rely on
1073 get_frame_address_in_block() which provides us with a PC which
1074 is guaranteed to be inside the frame's code block. */
1075 s = find_pc_symtab (get_frame_address_in_block (fi));
1076 if (s
1077 && s->language != current_language->la_language
1078 && s->language != language_unknown
1079 && language_mode == language_mode_auto)
1080 {
1081 set_language (s->language);
1082 }
1083 }
1084}
1085
1086/* Create an arbitrary (i.e. address specified by user) or innermost frame.
1087 Always returns a non-NULL value. */
1088
1089struct frame_info *
1090create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1091{
1092 struct frame_info *fi;
1093
1094 if (frame_debug)
1095 {
1096 fprintf_unfiltered (gdb_stdlog,
1097 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1098 paddr_nz (addr), paddr_nz (pc));
1099 }
1100
1101 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1102
1103 fi->next = create_sentinel_frame (get_current_regcache ());
1104
1105 /* Select/initialize both the unwind function and the frame's type
1106 based on the PC. */
1107 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1108
1109 fi->this_id.p = 1;
1110 deprecated_update_frame_base_hack (fi, addr);
1111 deprecated_update_frame_pc_hack (fi, pc);
1112
1113 if (frame_debug)
1114 {
1115 fprintf_unfiltered (gdb_stdlog, "-> ");
1116 fprint_frame (gdb_stdlog, fi);
1117 fprintf_unfiltered (gdb_stdlog, " }\n");
1118 }
1119
1120 return fi;
1121}
1122
1123/* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1124 innermost frame). Be careful to not fall off the bottom of the
1125 frame chain and onto the sentinel frame. */
1126
1127struct frame_info *
1128get_next_frame (struct frame_info *this_frame)
1129{
1130 if (this_frame->level > 0)
1131 return this_frame->next;
1132 else
1133 return NULL;
1134}
1135
1136/* Observer for the target_changed event. */
1137
1138void
1139frame_observer_target_changed (struct target_ops *target)
1140{
1141 reinit_frame_cache ();
1142}
1143
1144/* Flush the entire frame cache. */
1145
1146void
1147reinit_frame_cache (void)
1148{
1149 struct frame_info *fi;
1150
1151 /* Tear down all frame caches. */
1152 for (fi = current_frame; fi != NULL; fi = fi->prev)
1153 {
1154 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1155 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1156 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1157 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1158 }
1159
1160 /* Since we can't really be sure what the first object allocated was */
1161 obstack_free (&frame_cache_obstack, 0);
1162 obstack_init (&frame_cache_obstack);
1163
1164 if (current_frame != NULL)
1165 annotate_frames_invalid ();
1166
1167 current_frame = NULL; /* Invalidate cache */
1168 select_frame (NULL);
1169 if (frame_debug)
1170 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1171}
1172
1173/* Find where a register is saved (in memory or another register).
1174 The result of frame_register_unwind is just where it is saved
1175 relative to this particular frame. */
1176
1177static void
1178frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1179 int *optimizedp, enum lval_type *lvalp,
1180 CORE_ADDR *addrp, int *realnump)
1181{
1182 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1183
1184 while (this_frame != NULL)
1185 {
1186 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1187 addrp, realnump, NULL);
1188
1189 if (*optimizedp)
1190 break;
1191
1192 if (*lvalp != lval_register)
1193 break;
1194
1195 regnum = *realnump;
1196 this_frame = get_next_frame (this_frame);
1197 }
1198}
1199
1200/* Return a "struct frame_info" corresponding to the frame that called
1201 THIS_FRAME. Returns NULL if there is no such frame.
1202
1203 Unlike get_prev_frame, this function always tries to unwind the
1204 frame. */
1205
1206static struct frame_info *
1207get_prev_frame_1 (struct frame_info *this_frame)
1208{
1209 struct frame_info *prev_frame;
1210 struct frame_id this_id;
1211 struct gdbarch *gdbarch;
1212
1213 gdb_assert (this_frame != NULL);
1214 gdbarch = get_frame_arch (this_frame);
1215
1216 if (frame_debug)
1217 {
1218 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1219 if (this_frame != NULL)
1220 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1221 else
1222 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1223 fprintf_unfiltered (gdb_stdlog, ") ");
1224 }
1225
1226 /* Only try to do the unwind once. */
1227 if (this_frame->prev_p)
1228 {
1229 if (frame_debug)
1230 {
1231 fprintf_unfiltered (gdb_stdlog, "-> ");
1232 fprint_frame (gdb_stdlog, this_frame->prev);
1233 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1234 }
1235 return this_frame->prev;
1236 }
1237
1238 /* If the frame unwinder hasn't been selected yet, we must do so
1239 before setting prev_p; otherwise the check for misbehaved
1240 sniffers will think that this frame's sniffer tried to unwind
1241 further (see frame_cleanup_after_sniffer). */
1242 if (this_frame->unwind == NULL)
1243 this_frame->unwind
1244 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1245
1246 this_frame->prev_p = 1;
1247 this_frame->stop_reason = UNWIND_NO_REASON;
1248
1249 /* Check that this frame's ID was valid. If it wasn't, don't try to
1250 unwind to the prev frame. Be careful to not apply this test to
1251 the sentinel frame. */
1252 this_id = get_frame_id (this_frame);
1253 if (this_frame->level >= 0 && !frame_id_p (this_id))
1254 {
1255 if (frame_debug)
1256 {
1257 fprintf_unfiltered (gdb_stdlog, "-> ");
1258 fprint_frame (gdb_stdlog, NULL);
1259 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1260 }
1261 this_frame->stop_reason = UNWIND_NULL_ID;
1262 return NULL;
1263 }
1264
1265 /* Check that this frame's ID isn't inner to (younger, below, next)
1266 the next frame. This happens when a frame unwind goes backwards.
1267 This check is valid only if the next frame is NORMAL. See the
1268 comment at frame_id_inner for details. */
1269 if (this_frame->next->unwind->type == NORMAL_FRAME
1270 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1271 get_frame_id (this_frame->next)))
1272 {
1273 if (frame_debug)
1274 {
1275 fprintf_unfiltered (gdb_stdlog, "-> ");
1276 fprint_frame (gdb_stdlog, NULL);
1277 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1278 }
1279 this_frame->stop_reason = UNWIND_INNER_ID;
1280 return NULL;
1281 }
1282
1283 /* Check that this and the next frame are not identical. If they
1284 are, there is most likely a stack cycle. As with the inner-than
1285 test above, avoid comparing the inner-most and sentinel frames. */
1286 if (this_frame->level > 0
1287 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1288 {
1289 if (frame_debug)
1290 {
1291 fprintf_unfiltered (gdb_stdlog, "-> ");
1292 fprint_frame (gdb_stdlog, NULL);
1293 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1294 }
1295 this_frame->stop_reason = UNWIND_SAME_ID;
1296 return NULL;
1297 }
1298
1299 /* Check that this and the next frame do not unwind the PC register
1300 to the same memory location. If they do, then even though they
1301 have different frame IDs, the new frame will be bogus; two
1302 functions can't share a register save slot for the PC. This can
1303 happen when the prologue analyzer finds a stack adjustment, but
1304 no PC save.
1305
1306 This check does assume that the "PC register" is roughly a
1307 traditional PC, even if the gdbarch_unwind_pc method adjusts
1308 it (we do not rely on the value, only on the unwound PC being
1309 dependent on this value). A potential improvement would be
1310 to have the frame prev_pc method and the gdbarch unwind_pc
1311 method set the same lval and location information as
1312 frame_register_unwind. */
1313 if (this_frame->level > 0
1314 && gdbarch_pc_regnum (gdbarch) >= 0
1315 && get_frame_type (this_frame) == NORMAL_FRAME
1316 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1317 {
1318 int optimized, realnum, nrealnum;
1319 enum lval_type lval, nlval;
1320 CORE_ADDR addr, naddr;
1321
1322 frame_register_unwind_location (this_frame,
1323 gdbarch_pc_regnum (gdbarch),
1324 &optimized, &lval, &addr, &realnum);
1325 frame_register_unwind_location (get_next_frame (this_frame),
1326 gdbarch_pc_regnum (gdbarch),
1327 &optimized, &nlval, &naddr, &nrealnum);
1328
1329 if ((lval == lval_memory && lval == nlval && addr == naddr)
1330 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1331 {
1332 if (frame_debug)
1333 {
1334 fprintf_unfiltered (gdb_stdlog, "-> ");
1335 fprint_frame (gdb_stdlog, NULL);
1336 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1337 }
1338
1339 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1340 this_frame->prev = NULL;
1341 return NULL;
1342 }
1343 }
1344
1345 /* Allocate the new frame but do not wire it in to the frame chain.
1346 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1347 frame->next to pull some fancy tricks (of course such code is, by
1348 definition, recursive). Try to prevent it.
1349
1350 There is no reason to worry about memory leaks, should the
1351 remainder of the function fail. The allocated memory will be
1352 quickly reclaimed when the frame cache is flushed, and the `we've
1353 been here before' check above will stop repeated memory
1354 allocation calls. */
1355 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1356 prev_frame->level = this_frame->level + 1;
1357
1358 /* Don't yet compute ->unwind (and hence ->type). It is computed
1359 on-demand in get_frame_type, frame_register_unwind, and
1360 get_frame_id. */
1361
1362 /* Don't yet compute the frame's ID. It is computed on-demand by
1363 get_frame_id(). */
1364
1365 /* The unwound frame ID is validate at the start of this function,
1366 as part of the logic to decide if that frame should be further
1367 unwound, and not here while the prev frame is being created.
1368 Doing this makes it possible for the user to examine a frame that
1369 has an invalid frame ID.
1370
1371 Some very old VAX code noted: [...] For the sake of argument,
1372 suppose that the stack is somewhat trashed (which is one reason
1373 that "info frame" exists). So, return 0 (indicating we don't
1374 know the address of the arglist) if we don't know what frame this
1375 frame calls. */
1376
1377 /* Link it in. */
1378 this_frame->prev = prev_frame;
1379 prev_frame->next = this_frame;
1380
1381 if (frame_debug)
1382 {
1383 fprintf_unfiltered (gdb_stdlog, "-> ");
1384 fprint_frame (gdb_stdlog, prev_frame);
1385 fprintf_unfiltered (gdb_stdlog, " }\n");
1386 }
1387
1388 return prev_frame;
1389}
1390
1391/* Debug routine to print a NULL frame being returned. */
1392
1393static void
1394frame_debug_got_null_frame (struct ui_file *file,
1395 struct frame_info *this_frame,
1396 const char *reason)
1397{
1398 if (frame_debug)
1399 {
1400 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1401 if (this_frame != NULL)
1402 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1403 else
1404 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1405 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1406 }
1407}
1408
1409/* Is this (non-sentinel) frame in the "main"() function? */
1410
1411static int
1412inside_main_func (struct frame_info *this_frame)
1413{
1414 struct minimal_symbol *msymbol;
1415 CORE_ADDR maddr;
1416
1417 if (symfile_objfile == 0)
1418 return 0;
1419 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1420 if (msymbol == NULL)
1421 return 0;
1422 /* Make certain that the code, and not descriptor, address is
1423 returned. */
1424 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1425 SYMBOL_VALUE_ADDRESS (msymbol),
1426 &current_target);
1427 return maddr == get_frame_func (this_frame);
1428}
1429
1430/* Test whether THIS_FRAME is inside the process entry point function. */
1431
1432static int
1433inside_entry_func (struct frame_info *this_frame)
1434{
1435 return (get_frame_func (this_frame) == entry_point_address ());
1436}
1437
1438/* Return a structure containing various interesting information about
1439 the frame that called THIS_FRAME. Returns NULL if there is entier
1440 no such frame or the frame fails any of a set of target-independent
1441 condition that should terminate the frame chain (e.g., as unwinding
1442 past main()).
1443
1444 This function should not contain target-dependent tests, such as
1445 checking whether the program-counter is zero. */
1446
1447struct frame_info *
1448get_prev_frame (struct frame_info *this_frame)
1449{
1450 struct frame_info *prev_frame;
1451
1452 /* Return the inner-most frame, when the caller passes in NULL. */
1453 /* NOTE: cagney/2002-11-09: Not sure how this would happen. The
1454 caller should have previously obtained a valid frame using
1455 get_selected_frame() and then called this code - only possibility
1456 I can think of is code behaving badly.
1457
1458 NOTE: cagney/2003-01-10: Talk about code behaving badly. Check
1459 block_innermost_frame(). It does the sequence: frame = NULL;
1460 while (1) { frame = get_prev_frame (frame); .... }. Ulgh! Why
1461 it couldn't be written better, I don't know.
1462
1463 NOTE: cagney/2003-01-11: I suspect what is happening in
1464 block_innermost_frame() is, when the target has no state
1465 (registers, memory, ...), it is still calling this function. The
1466 assumption being that this function will return NULL indicating
1467 that a frame isn't possible, rather than checking that the target
1468 has state and then calling get_current_frame() and
1469 get_prev_frame(). This is a guess mind. */
1470 if (this_frame == NULL)
1471 {
1472 /* NOTE: cagney/2002-11-09: There was a code segment here that
1473 would error out when CURRENT_FRAME was NULL. The comment
1474 that went with it made the claim ...
1475
1476 ``This screws value_of_variable, which just wants a nice
1477 clean NULL return from block_innermost_frame if there are no
1478 frames. I don't think I've ever seen this message happen
1479 otherwise. And returning NULL here is a perfectly legitimate
1480 thing to do.''
1481
1482 Per the above, this code shouldn't even be called with a NULL
1483 THIS_FRAME. */
1484 frame_debug_got_null_frame (gdb_stdlog, this_frame, "this_frame NULL");
1485 return current_frame;
1486 }
1487
1488 /* There is always a frame. If this assertion fails, suspect that
1489 something should be calling get_selected_frame() or
1490 get_current_frame(). */
1491 gdb_assert (this_frame != NULL);
1492
1493 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1494 sense to stop unwinding at a dummy frame. One place where a dummy
1495 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1496 pcsqh register (space register for the instruction at the head of the
1497 instruction queue) cannot be written directly; the only way to set it
1498 is to branch to code that is in the target space. In order to implement
1499 frame dummies on HPUX, the called function is made to jump back to where
1500 the inferior was when the user function was called. If gdb was inside
1501 the main function when we created the dummy frame, the dummy frame will
1502 point inside the main function. */
1503 if (this_frame->level >= 0
1504 && get_frame_type (this_frame) != DUMMY_FRAME
1505 && !backtrace_past_main
1506 && inside_main_func (this_frame))
1507 /* Don't unwind past main(). Note, this is done _before_ the
1508 frame has been marked as previously unwound. That way if the
1509 user later decides to enable unwinds past main(), that will
1510 automatically happen. */
1511 {
1512 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside main func");
1513 return NULL;
1514 }
1515
1516 /* If the user's backtrace limit has been exceeded, stop. We must
1517 add two to the current level; one of those accounts for backtrace_limit
1518 being 1-based and the level being 0-based, and the other accounts for
1519 the level of the new frame instead of the level of the current
1520 frame. */
1521 if (this_frame->level + 2 > backtrace_limit)
1522 {
1523 frame_debug_got_null_frame (gdb_stdlog, this_frame,
1524 "backtrace limit exceeded");
1525 return NULL;
1526 }
1527
1528 /* If we're already inside the entry function for the main objfile,
1529 then it isn't valid. Don't apply this test to a dummy frame -
1530 dummy frame PCs typically land in the entry func. Don't apply
1531 this test to the sentinel frame. Sentinel frames should always
1532 be allowed to unwind. */
1533 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1534 wasn't checking for "main" in the minimal symbols. With that
1535 fixed asm-source tests now stop in "main" instead of halting the
1536 backtrace in weird and wonderful ways somewhere inside the entry
1537 file. Suspect that tests for inside the entry file/func were
1538 added to work around that (now fixed) case. */
1539 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1540 suggested having the inside_entry_func test use the
1541 inside_main_func() msymbol trick (along with entry_point_address()
1542 I guess) to determine the address range of the start function.
1543 That should provide a far better stopper than the current
1544 heuristics. */
1545 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1546 applied tail-call optimizations to main so that a function called
1547 from main returns directly to the caller of main. Since we don't
1548 stop at main, we should at least stop at the entry point of the
1549 application. */
1550 if (!backtrace_past_entry
1551 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1552 && inside_entry_func (this_frame))
1553 {
1554 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside entry func");
1555 return NULL;
1556 }
1557
1558 /* Assume that the only way to get a zero PC is through something
1559 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1560 will never unwind a zero PC. */
1561 if (this_frame->level > 0
1562 && get_frame_type (this_frame) == NORMAL_FRAME
1563 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1564 && get_frame_pc (this_frame) == 0)
1565 {
1566 frame_debug_got_null_frame (gdb_stdlog, this_frame, "zero PC");
1567 return NULL;
1568 }
1569
1570 return get_prev_frame_1 (this_frame);
1571}
1572
1573CORE_ADDR
1574get_frame_pc (struct frame_info *frame)
1575{
1576 gdb_assert (frame->next != NULL);
1577 return frame_pc_unwind (frame->next);
1578}
1579
1580/* Return an address that falls within THIS_FRAME's code block. */
1581
1582CORE_ADDR
1583get_frame_address_in_block (struct frame_info *this_frame)
1584{
1585 /* A draft address. */
1586 CORE_ADDR pc = get_frame_pc (this_frame);
1587
1588 struct frame_info *next_frame = this_frame->next;
1589
1590 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1591 Normally the resume address is inside the body of the function
1592 associated with THIS_FRAME, but there is a special case: when
1593 calling a function which the compiler knows will never return
1594 (for instance abort), the call may be the very last instruction
1595 in the calling function. The resume address will point after the
1596 call and may be at the beginning of a different function
1597 entirely.
1598
1599 If THIS_FRAME is a signal frame or dummy frame, then we should
1600 not adjust the unwound PC. For a dummy frame, GDB pushed the
1601 resume address manually onto the stack. For a signal frame, the
1602 OS may have pushed the resume address manually and invoked the
1603 handler (e.g. GNU/Linux), or invoked the trampoline which called
1604 the signal handler - but in either case the signal handler is
1605 expected to return to the trampoline. So in both of these
1606 cases we know that the resume address is executable and
1607 related. So we only need to adjust the PC if THIS_FRAME
1608 is a normal function.
1609
1610 If the program has been interrupted while THIS_FRAME is current,
1611 then clearly the resume address is inside the associated
1612 function. There are three kinds of interruption: debugger stop
1613 (next frame will be SENTINEL_FRAME), operating system
1614 signal or exception (next frame will be SIGTRAMP_FRAME),
1615 or debugger-induced function call (next frame will be
1616 DUMMY_FRAME). So we only need to adjust the PC if
1617 NEXT_FRAME is a normal function.
1618
1619 We check the type of NEXT_FRAME first, since it is already
1620 known; frame type is determined by the unwinder, and since
1621 we have THIS_FRAME we've already selected an unwinder for
1622 NEXT_FRAME. */
1623 if (get_frame_type (next_frame) == NORMAL_FRAME
1624 && get_frame_type (this_frame) == NORMAL_FRAME)
1625 return pc - 1;
1626
1627 return pc;
1628}
1629
1630static int
1631pc_notcurrent (struct frame_info *frame)
1632{
1633 /* If FRAME is not the innermost frame, that normally means that
1634 FRAME->pc points at the return instruction (which is *after* the
1635 call instruction), and we want to get the line containing the
1636 call (because the call is where the user thinks the program is).
1637 However, if the next frame is either a SIGTRAMP_FRAME or a
1638 DUMMY_FRAME, then the next frame will contain a saved interrupt
1639 PC and such a PC indicates the current (rather than next)
1640 instruction/line, consequently, for such cases, want to get the
1641 line containing fi->pc. */
1642 struct frame_info *next = get_next_frame (frame);
1643 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1644 return notcurrent;
1645}
1646
1647void
1648find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1649{
1650 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1651}
1652
1653/* Per "frame.h", return the ``address'' of the frame. Code should
1654 really be using get_frame_id(). */
1655CORE_ADDR
1656get_frame_base (struct frame_info *fi)
1657{
1658 return get_frame_id (fi).stack_addr;
1659}
1660
1661/* High-level offsets into the frame. Used by the debug info. */
1662
1663CORE_ADDR
1664get_frame_base_address (struct frame_info *fi)
1665{
1666 if (get_frame_type (fi) != NORMAL_FRAME)
1667 return 0;
1668 if (fi->base == NULL)
1669 fi->base = frame_base_find_by_frame (fi);
1670 /* Sneaky: If the low-level unwind and high-level base code share a
1671 common unwinder, let them share the prologue cache. */
1672 if (fi->base->unwind == fi->unwind)
1673 return fi->base->this_base (fi, &fi->prologue_cache);
1674 return fi->base->this_base (fi, &fi->base_cache);
1675}
1676
1677CORE_ADDR
1678get_frame_locals_address (struct frame_info *fi)
1679{
1680 void **cache;
1681 if (get_frame_type (fi) != NORMAL_FRAME)
1682 return 0;
1683 /* If there isn't a frame address method, find it. */
1684 if (fi->base == NULL)
1685 fi->base = frame_base_find_by_frame (fi);
1686 /* Sneaky: If the low-level unwind and high-level base code share a
1687 common unwinder, let them share the prologue cache. */
1688 if (fi->base->unwind == fi->unwind)
1689 return fi->base->this_locals (fi, &fi->prologue_cache);
1690 return fi->base->this_locals (fi, &fi->base_cache);
1691}
1692
1693CORE_ADDR
1694get_frame_args_address (struct frame_info *fi)
1695{
1696 void **cache;
1697 if (get_frame_type (fi) != NORMAL_FRAME)
1698 return 0;
1699 /* If there isn't a frame address method, find it. */
1700 if (fi->base == NULL)
1701 fi->base = frame_base_find_by_frame (fi);
1702 /* Sneaky: If the low-level unwind and high-level base code share a
1703 common unwinder, let them share the prologue cache. */
1704 if (fi->base->unwind == fi->unwind)
1705 return fi->base->this_args (fi, &fi->prologue_cache);
1706 return fi->base->this_args (fi, &fi->base_cache);
1707}
1708
1709/* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1710 or -1 for a NULL frame. */
1711
1712int
1713frame_relative_level (struct frame_info *fi)
1714{
1715 if (fi == NULL)
1716 return -1;
1717 else
1718 return fi->level;
1719}
1720
1721enum frame_type
1722get_frame_type (struct frame_info *frame)
1723{
1724 if (frame->unwind == NULL)
1725 /* Initialize the frame's unwinder because that's what
1726 provides the frame's type. */
1727 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1728 return frame->unwind->type;
1729}
1730
1731void
1732deprecated_update_frame_pc_hack (struct frame_info *frame, CORE_ADDR pc)
1733{
1734 if (frame_debug)
1735 fprintf_unfiltered (gdb_stdlog,
1736 "{ deprecated_update_frame_pc_hack (frame=%d,pc=0x%s) }\n",
1737 frame->level, paddr_nz (pc));
1738 /* NOTE: cagney/2003-03-11: Some architectures (e.g., Arm) are
1739 maintaining a locally allocated frame object. Since such frames
1740 are not in the frame chain, it isn't possible to assume that the
1741 frame has a next. Sigh. */
1742 if (frame->next != NULL)
1743 {
1744 /* While we're at it, update this frame's cached PC value, found
1745 in the next frame. Oh for the day when "struct frame_info"
1746 is opaque and this hack on hack can just go away. */
1747 frame->next->prev_pc.value = pc;
1748 frame->next->prev_pc.p = 1;
1749 }
1750}
1751
1752void
1753deprecated_update_frame_base_hack (struct frame_info *frame, CORE_ADDR base)
1754{
1755 if (frame_debug)
1756 fprintf_unfiltered (gdb_stdlog,
1757 "{ deprecated_update_frame_base_hack (frame=%d,base=0x%s) }\n",
1758 frame->level, paddr_nz (base));
1759 /* See comment in "frame.h". */
1760 frame->this_id.value.stack_addr = base;
1761}
1762
1763/* Memory access methods. */
1764
1765void
1766get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1767 gdb_byte *buf, int len)
1768{
1769 read_memory (addr, buf, len);
1770}
1771
1772LONGEST
1773get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1774 int len)
1775{
1776 return read_memory_integer (addr, len);
1777}
1778
1779ULONGEST
1780get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1781 int len)
1782{
1783 return read_memory_unsigned_integer (addr, len);
1784}
1785
1786int
1787safe_frame_unwind_memory (struct frame_info *this_frame,
1788 CORE_ADDR addr, gdb_byte *buf, int len)
1789{
1790 /* NOTE: target_read_memory returns zero on success! */
1791 return !target_read_memory (addr, buf, len);
1792}
1793
1794/* Architecture method. */
1795
1796struct gdbarch *
1797get_frame_arch (struct frame_info *this_frame)
1798{
1799 return current_gdbarch;
1800}
1801
1802/* Stack pointer methods. */
1803
1804CORE_ADDR
1805get_frame_sp (struct frame_info *this_frame)
1806{
1807 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1808 /* Normality - an architecture that provides a way of obtaining any
1809 frame inner-most address. */
1810 if (gdbarch_unwind_sp_p (gdbarch))
1811 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
1812 operate on THIS_FRAME now. */
1813 return gdbarch_unwind_sp (gdbarch, this_frame->next);
1814 /* Now things are really are grim. Hope that the value returned by
1815 the gdbarch_sp_regnum register is meaningful. */
1816 if (gdbarch_sp_regnum (gdbarch) >= 0)
1817 return get_frame_register_unsigned (this_frame,
1818 gdbarch_sp_regnum (gdbarch));
1819 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1820}
1821
1822/* Return the reason why we can't unwind past FRAME. */
1823
1824enum unwind_stop_reason
1825get_frame_unwind_stop_reason (struct frame_info *frame)
1826{
1827 /* If we haven't tried to unwind past this point yet, then assume
1828 that unwinding would succeed. */
1829 if (frame->prev_p == 0)
1830 return UNWIND_NO_REASON;
1831
1832 /* Otherwise, we set a reason when we succeeded (or failed) to
1833 unwind. */
1834 return frame->stop_reason;
1835}
1836
1837/* Return a string explaining REASON. */
1838
1839const char *
1840frame_stop_reason_string (enum unwind_stop_reason reason)
1841{
1842 switch (reason)
1843 {
1844 case UNWIND_NULL_ID:
1845 return _("unwinder did not report frame ID");
1846
1847 case UNWIND_INNER_ID:
1848 return _("previous frame inner to this frame (corrupt stack?)");
1849
1850 case UNWIND_SAME_ID:
1851 return _("previous frame identical to this frame (corrupt stack?)");
1852
1853 case UNWIND_NO_SAVED_PC:
1854 return _("frame did not save the PC");
1855
1856 case UNWIND_NO_REASON:
1857 case UNWIND_FIRST_ERROR:
1858 default:
1859 internal_error (__FILE__, __LINE__,
1860 "Invalid frame stop reason");
1861 }
1862}
1863
1864/* Clean up after a failed (wrong unwinder) attempt to unwind past
1865 FRAME. */
1866
1867static void
1868frame_cleanup_after_sniffer (void *arg)
1869{
1870 struct frame_info *frame = arg;
1871
1872 /* The sniffer should not allocate a prologue cache if it did not
1873 match this frame. */
1874 gdb_assert (frame->prologue_cache == NULL);
1875
1876 /* No sniffer should extend the frame chain; sniff based on what is
1877 already certain. */
1878 gdb_assert (!frame->prev_p);
1879
1880 /* The sniffer should not check the frame's ID; that's circular. */
1881 gdb_assert (!frame->this_id.p);
1882
1883 /* Clear cached fields dependent on the unwinder.
1884
1885 The previous PC is independent of the unwinder, but the previous
1886 function is not (see get_frame_address_in_block). */
1887 frame->prev_func.p = 0;
1888 frame->prev_func.addr = 0;
1889
1890 /* Discard the unwinder last, so that we can easily find it if an assertion
1891 in this function triggers. */
1892 frame->unwind = NULL;
1893}
1894
1895/* Set FRAME's unwinder temporarily, so that we can call a sniffer.
1896 Return a cleanup which should be called if unwinding fails, and
1897 discarded if it succeeds. */
1898
1899struct cleanup *
1900frame_prepare_for_sniffer (struct frame_info *frame,
1901 const struct frame_unwind *unwind)
1902{
1903 gdb_assert (frame->unwind == NULL);
1904 frame->unwind = unwind;
1905 return make_cleanup (frame_cleanup_after_sniffer, frame);
1906}
1907
1908extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1909
1910static struct cmd_list_element *set_backtrace_cmdlist;
1911static struct cmd_list_element *show_backtrace_cmdlist;
1912
1913static void
1914set_backtrace_cmd (char *args, int from_tty)
1915{
1916 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1917}
1918
1919static void
1920show_backtrace_cmd (char *args, int from_tty)
1921{
1922 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1923}
1924
1925void
1926_initialize_frame (void)
1927{
1928 obstack_init (&frame_cache_obstack);
1929
1930 observer_attach_target_changed (frame_observer_target_changed);
1931
1932 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1933Set backtrace specific variables.\n\
1934Configure backtrace variables such as the backtrace limit"),
1935 &set_backtrace_cmdlist, "set backtrace ",
1936 0/*allow-unknown*/, &setlist);
1937 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1938Show backtrace specific variables\n\
1939Show backtrace variables such as the backtrace limit"),
1940 &show_backtrace_cmdlist, "show backtrace ",
1941 0/*allow-unknown*/, &showlist);
1942
1943 add_setshow_boolean_cmd ("past-main", class_obscure,
1944 &backtrace_past_main, _("\
1945Set whether backtraces should continue past \"main\"."), _("\
1946Show whether backtraces should continue past \"main\"."), _("\
1947Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1948the backtrace at \"main\". Set this variable if you need to see the rest\n\
1949of the stack trace."),
1950 NULL,
1951 show_backtrace_past_main,
1952 &set_backtrace_cmdlist,
1953 &show_backtrace_cmdlist);
1954
1955 add_setshow_boolean_cmd ("past-entry", class_obscure,
1956 &backtrace_past_entry, _("\
1957Set whether backtraces should continue past the entry point of a program."),
1958 _("\
1959Show whether backtraces should continue past the entry point of a program."),
1960 _("\
1961Normally there are no callers beyond the entry point of a program, so GDB\n\
1962will terminate the backtrace there. Set this variable if you need to see \n\
1963the rest of the stack trace."),
1964 NULL,
1965 show_backtrace_past_entry,
1966 &set_backtrace_cmdlist,
1967 &show_backtrace_cmdlist);
1968
1969 add_setshow_integer_cmd ("limit", class_obscure,
1970 &backtrace_limit, _("\
1971Set an upper bound on the number of backtrace levels."), _("\
1972Show the upper bound on the number of backtrace levels."), _("\
1973No more than the specified number of frames can be displayed or examined.\n\
1974Zero is unlimited."),
1975 NULL,
1976 show_backtrace_limit,
1977 &set_backtrace_cmdlist,
1978 &show_backtrace_cmdlist);
1979
1980 /* Debug this files internals. */
1981 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1982Set frame debugging."), _("\
1983Show frame debugging."), _("\
1984When non-zero, frame specific internal debugging is enabled."),
1985 NULL,
1986 show_frame_debug,
1987 &setdebuglist, &showdebuglist);
1988}
This page took 0.040316 seconds and 4 git commands to generate.