* symfile.c (compare_psymbols, compare_symbols): Declare using
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
... / ...
CommitLineData
1#!/bin/sh -u
2
3# Architecture commands for GDB, the GNU debugger.
4# Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5#
6# This file is part of GDB.
7#
8# This program is free software; you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation; either version 2 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the GNU General Public License
19# along with this program; if not, write to the Free Software
20# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22compare_new ()
23{
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34}
35
36
37# Format of the input table
38read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40do_read ()
41{
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65${line}
66EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ "${postdefault}" != "" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ "${predefault}" != "" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault=""
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129}
130
131
132fallback_default_p ()
133{
134 [ "${postdefault}" != "" -a "${invalid_p}" != "0" ] \
135 || [ "${predefault}" != "" -a "${invalid_p}" = "0" ]
136}
137
138class_is_variable_p ()
139{
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144}
145
146class_is_function_p ()
147{
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152}
153
154class_is_multiarch_p ()
155{
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160}
161
162class_is_predicate_p ()
163{
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168}
169
170class_is_info_p ()
171{
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176}
177
178
179# dump out/verify the doco
180for field in ${read}
181do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # A initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After the gdbarch object has
253 # been initialized using PREDEFAULT, it is passed to the
254 # target code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # When POSTDEFAULT is empty, a non-empty PREDEFAULT and a zero
259 # INVALID_P will be used as default values when when
260 # multi-arch is disabled. Specify a zero PREDEFAULT function
261 # to make that fallback call internal_error().
262
263 # Variable declarations can refer to ``gdbarch'' which will
264 # contain the current architecture. Care should be taken.
265
266 postdefault ) : ;;
267
268 # A value to assign to MEMBER of the new gdbarch object should
269 # the target code fail to change the PREDEFAULT value. Also
270 # use POSTDEFAULT as the fallback value for the non-
271 # multi-arch case.
272
273 # If POSTDEFAULT is empty, no post update is performed.
274
275 # If both INVALID_P and POSTDEFAULT are non-empty then
276 # INVALID_P will be used to determine if MEMBER should be
277 # changed to POSTDEFAULT.
278
279 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
280
281 # Variable declarations can refer to ``gdbarch'' which will
282 # contain the current architecture. Care should be taken.
283
284 invalid_p ) : ;;
285
286 # A predicate equation that validates MEMBER. Non-zero is
287 # returned if the code creating the new architecture failed to
288 # initialize MEMBER or the initialized the member is invalid.
289 # If POSTDEFAULT is non-empty then MEMBER will be updated to
290 # that value. If POSTDEFAULT is empty then internal_error()
291 # is called.
292
293 # If INVALID_P is empty, a check that MEMBER is no longer
294 # equal to PREDEFAULT is used.
295
296 # The expression ``0'' disables the INVALID_P check making
297 # PREDEFAULT a legitimate value.
298
299 # See also PREDEFAULT and POSTDEFAULT.
300
301 fmt ) : ;;
302
303 # printf style format string that can be used to print out the
304 # MEMBER. Sometimes "%s" is useful. For functions, this is
305 # ignored and the function address is printed.
306
307 # If FMT is empty, ``%ld'' is used.
308
309 print ) : ;;
310
311 # An optional equation that casts MEMBER to a value suitable
312 # for formatting by FMT.
313
314 # If PRINT is empty, ``(long)'' is used.
315
316 print_p ) : ;;
317
318 # An optional indicator for any predicte to wrap around the
319 # print member code.
320
321 # () -> Call a custom function to do the dump.
322 # exp -> Wrap print up in ``if (${print_p}) ...
323 # ``'' -> No predicate
324
325 # If PRINT_P is empty, ``1'' is always used.
326
327 description ) : ;;
328
329 # Currently unused.
330
331 *) exit 1;;
332 esac
333done
334
335
336function_list ()
337{
338 # See below (DOCO) for description of each field
339 cat <<EOF
340i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
341#
342i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
343# Number of bits in a char or unsigned char for the target machine.
344# Just like CHAR_BIT in <limits.h> but describes the target machine.
345# v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
346#
347# Number of bits in a short or unsigned short for the target machine.
348v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
349# Number of bits in an int or unsigned int for the target machine.
350v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
351# Number of bits in a long or unsigned long for the target machine.
352v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
353# Number of bits in a long long or unsigned long long for the target
354# machine.
355v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
356# Number of bits in a float for the target machine.
357v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
358# Number of bits in a double for the target machine.
359v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
360# Number of bits in a long double for the target machine.
361v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
362# For most targets, a pointer on the target and its representation as an
363# address in GDB have the same size and "look the same". For such a
364# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
365# / addr_bit will be set from it.
366#
367# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
368# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
369#
370# ptr_bit is the size of a pointer on the target
371v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
372# addr_bit is the size of a target address as represented in gdb
373v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
374# Number of bits in a BFD_VMA for the target object file format.
375v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
376#
377v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
378#
379f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
380f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
381f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
382f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
383f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
384f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
385#
386M:::void:register_read:int regnum, char *buf:regnum, buf:
387M:::void:register_write:int regnum, char *buf:regnum, buf:
388#
389v:2:NUM_REGS:int:num_regs::::0:-1
390# This macro gives the number of pseudo-registers that live in the
391# register namespace but do not get fetched or stored on the target.
392# These pseudo-registers may be aliases for other registers,
393# combinations of other registers, or they may be computed by GDB.
394v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
395v:2:SP_REGNUM:int:sp_regnum::::0:-1
396v:2:FP_REGNUM:int:fp_regnum::::0:-1
397v:2:PC_REGNUM:int:pc_regnum::::0:-1
398v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
399v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
400v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
401# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
402f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
403# Provide a default mapping from a ecoff register number to a gdb REGNUM.
404f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
405# Provide a default mapping from a DWARF register number to a gdb REGNUM.
406f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
407# Convert from an sdb register number to an internal gdb register number.
408# This should be defined in tm.h, if REGISTER_NAMES is not set up
409# to map one to one onto the sdb register numbers.
410f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
411f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
412f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
413v:2:REGISTER_SIZE:int:register_size::::0:-1
414v:2:REGISTER_BYTES:int:register_bytes::::0:-1
415f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
416f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
417v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
418f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
419v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
420f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
421f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
422# MAP a GDB RAW register number onto a simulator register number. See
423# also include/...-sim.h.
424f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
425F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
426#
427v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
428v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
429f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
430v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
431v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
432v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
433v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
434f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
435v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
436v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
437v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
438v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
439v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
440f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
441#
442v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
443v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
444f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
445f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
446#
447f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
448f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
449f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
450# This function is called when the value of a pseudo-register needs to
451# be updated. Typically it will be defined on a per-architecture
452# basis.
453f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
454# This function is called when the value of a pseudo-register needs to
455# be set or stored. Typically it will be defined on a
456# per-architecture basis.
457f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
458#
459f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
460f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
461#
462f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
463f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
464f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
465f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
466f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
467f:2:POP_FRAME:void:pop_frame:void:-:::0
468#
469# I wish that these would just go away....
470f:2:D10V_MAKE_DADDR:CORE_ADDR:d10v_make_daddr:CORE_ADDR x:x:::0::0
471f:2:D10V_MAKE_IADDR:CORE_ADDR:d10v_make_iaddr:CORE_ADDR x:x:::0::0
472f:2:D10V_DADDR_P:int:d10v_daddr_p:CORE_ADDR x:x:::0::0
473f:2:D10V_IADDR_P:int:d10v_iaddr_p:CORE_ADDR x:x:::0::0
474f:2:D10V_CONVERT_DADDR_TO_RAW:CORE_ADDR:d10v_convert_daddr_to_raw:CORE_ADDR x:x:::0::0
475f:2:D10V_CONVERT_IADDR_TO_RAW:CORE_ADDR:d10v_convert_iaddr_to_raw:CORE_ADDR x:x:::0::0
476#
477f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
478f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
479f:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
480f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
481#
482f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
483f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
484#
485f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
486f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
487f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
488f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
489f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
490f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
491v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
492f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
493v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
494#
495f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
496#
497v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
498f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
499f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
500f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
501f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
502f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
503f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
504f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
505f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
506#
507F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
508v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
509F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
510F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
511v:2:PARM_BOUNDARY:int:parm_boundary
512#
513v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
514v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
515v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
516f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::default_convert_from_func_ptr_addr::0
517# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
518# the target needs software single step. An ISA method to implement it.
519#
520# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
521# using the breakpoint system instead of blatting memory directly (as with rs6000).
522#
523# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
524# single step. If not, then implement single step using breakpoints.
525F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
526EOF
527}
528
529#
530# The .log file
531#
532exec > new-gdbarch.log
533function_list | while do_read
534do
535 cat <<EOF
536${class} ${macro}(${actual})
537 ${returntype} ${function} ($formal)${attrib}
538EOF
539 for r in ${read}
540 do
541 eval echo \"\ \ \ \ ${r}=\${${r}}\"
542 done
543# #fallbackdefault=${fallbackdefault}
544# #valid_p=${valid_p}
545#EOF
546 if class_is_predicate_p && fallback_default_p
547 then
548 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
549 kill $$
550 exit 1
551 fi
552 if [ "${invalid_p}" = "0" -a "${postdefault}" != "" ]
553 then
554 echo "Error: postdefault is useless when invalid_p=0" 1>&2
555 kill $$
556 exit 1
557 fi
558 echo ""
559done
560
561exec 1>&2
562compare_new gdbarch.log
563
564
565copyright ()
566{
567cat <<EOF
568/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
569
570/* Dynamic architecture support for GDB, the GNU debugger.
571 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
572
573 This file is part of GDB.
574
575 This program is free software; you can redistribute it and/or modify
576 it under the terms of the GNU General Public License as published by
577 the Free Software Foundation; either version 2 of the License, or
578 (at your option) any later version.
579
580 This program is distributed in the hope that it will be useful,
581 but WITHOUT ANY WARRANTY; without even the implied warranty of
582 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
583 GNU General Public License for more details.
584
585 You should have received a copy of the GNU General Public License
586 along with this program; if not, write to the Free Software
587 Foundation, Inc., 59 Temple Place - Suite 330,
588 Boston, MA 02111-1307, USA. */
589
590/* This file was created with the aid of \`\`gdbarch.sh''.
591
592 The Bourne shell script \`\`gdbarch.sh'' creates the files
593 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
594 against the existing \`\`gdbarch.[hc]''. Any differences found
595 being reported.
596
597 If editing this file, please also run gdbarch.sh and merge any
598 changes into that script. Conversely, when making sweeping changes
599 to this file, modifying gdbarch.sh and using its output may prove
600 easier. */
601
602EOF
603}
604
605#
606# The .h file
607#
608
609exec > new-gdbarch.h
610copyright
611cat <<EOF
612#ifndef GDBARCH_H
613#define GDBARCH_H
614
615struct frame_info;
616struct value;
617
618
619extern struct gdbarch *current_gdbarch;
620
621
622/* If any of the following are defined, the target wasn't correctly
623 converted. */
624
625#if GDB_MULTI_ARCH
626#if defined (EXTRA_FRAME_INFO)
627#error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
628#endif
629#endif
630
631#if GDB_MULTI_ARCH
632#if defined (FRAME_FIND_SAVED_REGS)
633#error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
634#endif
635#endif
636EOF
637
638# function typedef's
639printf "\n"
640printf "\n"
641printf "/* The following are pre-initialized by GDBARCH. */\n"
642function_list | while do_read
643do
644 if class_is_info_p
645 then
646 printf "\n"
647 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
648 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
649 printf "#if GDB_MULTI_ARCH\n"
650 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
651 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
652 printf "#endif\n"
653 printf "#endif\n"
654 fi
655done
656
657# function typedef's
658printf "\n"
659printf "\n"
660printf "/* The following are initialized by the target dependent code. */\n"
661function_list | while do_read
662do
663 if [ "${comment}" ]
664 then
665 echo "${comment}" | sed \
666 -e '2 s,#,/*,' \
667 -e '3,$ s,#, ,' \
668 -e '$ s,$, */,'
669 fi
670 if class_is_multiarch_p
671 then
672 if class_is_predicate_p
673 then
674 printf "\n"
675 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
676 fi
677 else
678 if class_is_predicate_p
679 then
680 printf "\n"
681 printf "#if defined (${macro})\n"
682 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
683 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
684 printf "#if !defined (${macro}_P)\n"
685 printf "#define ${macro}_P() (1)\n"
686 printf "#endif\n"
687 printf "#endif\n"
688 printf "\n"
689 printf "/* Default predicate for non- multi-arch targets. */\n"
690 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
691 printf "#define ${macro}_P() (0)\n"
692 printf "#endif\n"
693 printf "\n"
694 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
695 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
696 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
697 printf "#endif\n"
698 fi
699 fi
700 if class_is_variable_p
701 then
702 if fallback_default_p || class_is_predicate_p
703 then
704 printf "\n"
705 printf "/* Default (value) for non- multi-arch platforms. */\n"
706 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
707 echo "#define ${macro} (${fallbackdefault})" \
708 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
709 printf "#endif\n"
710 fi
711 printf "\n"
712 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
713 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
714 printf "#if GDB_MULTI_ARCH\n"
715 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
716 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
717 printf "#endif\n"
718 printf "#endif\n"
719 fi
720 if class_is_function_p
721 then
722 if class_is_multiarch_p ; then :
723 elif fallback_default_p || class_is_predicate_p
724 then
725 printf "\n"
726 printf "/* Default (function) for non- multi-arch platforms. */\n"
727 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
728 if [ "${fallbackdefault}" = "0" ]
729 then
730 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
731 else
732 # FIXME: Should be passing current_gdbarch through!
733 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
734 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
735 fi
736 printf "#endif\n"
737 fi
738 printf "\n"
739 if [ "${formal}" = "void" ] && class_is_multiarch_p
740 then
741 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
742 elif class_is_multiarch_p
743 then
744 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
745 else
746 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
747 fi
748 if [ "${formal}" = "void" ]
749 then
750 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
751 else
752 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
753 fi
754 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
755 if class_is_multiarch_p ; then :
756 else
757 printf "#if GDB_MULTI_ARCH\n"
758 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
759 if [ "${actual}" = "" ]
760 then
761 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
762 elif [ "${actual}" = "-" ]
763 then
764 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
765 else
766 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
767 fi
768 printf "#endif\n"
769 printf "#endif\n"
770 fi
771 fi
772done
773
774# close it off
775cat <<EOF
776
777extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
778
779
780/* Mechanism for co-ordinating the selection of a specific
781 architecture.
782
783 GDB targets (*-tdep.c) can register an interest in a specific
784 architecture. Other GDB components can register a need to maintain
785 per-architecture data.
786
787 The mechanisms below ensures that there is only a loose connection
788 between the set-architecture command and the various GDB
789 components. Each component can independently register their need
790 to maintain architecture specific data with gdbarch.
791
792 Pragmatics:
793
794 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
795 didn't scale.
796
797 The more traditional mega-struct containing architecture specific
798 data for all the various GDB components was also considered. Since
799 GDB is built from a variable number of (fairly independent)
800 components it was determined that the global aproach was not
801 applicable. */
802
803
804/* Register a new architectural family with GDB.
805
806 Register support for the specified ARCHITECTURE with GDB. When
807 gdbarch determines that the specified architecture has been
808 selected, the corresponding INIT function is called.
809
810 --
811
812 The INIT function takes two parameters: INFO which contains the
813 information available to gdbarch about the (possibly new)
814 architecture; ARCHES which is a list of the previously created
815 \`\`struct gdbarch'' for this architecture.
816
817 The INIT function parameter INFO shall, as far as possible, be
818 pre-initialized with information obtained from INFO.ABFD or
819 previously selected architecture (if similar). INIT shall ensure
820 that the INFO.BYTE_ORDER is non-zero.
821
822 The INIT function shall return any of: NULL - indicating that it
823 doesn't recognize the selected architecture; an existing \`\`struct
824 gdbarch'' from the ARCHES list - indicating that the new
825 architecture is just a synonym for an earlier architecture (see
826 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
827 - that describes the selected architecture (see gdbarch_alloc()).
828
829 The DUMP_TDEP function shall print out all target specific values.
830 Care should be taken to ensure that the function works in both the
831 multi-arch and non- multi-arch cases. */
832
833struct gdbarch_list
834{
835 struct gdbarch *gdbarch;
836 struct gdbarch_list *next;
837};
838
839struct gdbarch_info
840{
841 /* Use default: NULL (ZERO). */
842 const struct bfd_arch_info *bfd_arch_info;
843
844 /* Use default: 0 (ZERO). */
845 int byte_order;
846
847 /* Use default: NULL (ZERO). */
848 bfd *abfd;
849
850 /* Use default: NULL (ZERO). */
851 struct gdbarch_tdep_info *tdep_info;
852};
853
854typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
855typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
856
857/* DEPRECATED - use gdbarch_register() */
858extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
859
860extern void gdbarch_register (enum bfd_architecture architecture,
861 gdbarch_init_ftype *,
862 gdbarch_dump_tdep_ftype *);
863
864
865/* Return a freshly allocated, NULL terminated, array of the valid
866 architecture names. Since architectures are registered during the
867 _initialize phase this function only returns useful information
868 once initialization has been completed. */
869
870extern const char **gdbarch_printable_names (void);
871
872
873/* Helper function. Search the list of ARCHES for a GDBARCH that
874 matches the information provided by INFO. */
875
876extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
877
878
879/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
880 basic initialization using values obtained from the INFO andTDEP
881 parameters. set_gdbarch_*() functions are called to complete the
882 initialization of the object. */
883
884extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
885
886
887/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
888 It is assumed that the caller freeds the \`\`struct
889 gdbarch_tdep''. */
890
891extern void gdbarch_free (struct gdbarch *);
892
893
894/* Helper function. Force an update of the current architecture.
895
896 The actual architecture selected is determined by INFO, \`\`(gdb) set
897 architecture'' et.al., the existing architecture and BFD's default
898 architecture. INFO should be initialized to zero and then selected
899 fields should be updated.
900
901 Returns non-zero if the update succeeds */
902
903extern int gdbarch_update_p (struct gdbarch_info info);
904
905
906
907/* Register per-architecture data-pointer.
908
909 Reserve space for a per-architecture data-pointer. An identifier
910 for the reserved data-pointer is returned. That identifer should
911 be saved in a local static variable.
912
913 The per-architecture data-pointer can be initialized in one of two
914 ways: The value can be set explicitly using a call to
915 set_gdbarch_data(); the value can be set implicitly using the value
916 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
917 called after the basic architecture vector has been created.
918
919 When a previously created architecture is re-selected, the
920 per-architecture data-pointer for that previous architecture is
921 restored. INIT() is not called.
922
923 During initialization, multiple assignments of the data-pointer are
924 allowed, non-NULL values are deleted by calling FREE(). If the
925 architecture is deleted using gdbarch_free() all non-NULL data
926 pointers are also deleted using FREE().
927
928 Multiple registrarants for any architecture are allowed (and
929 strongly encouraged). */
930
931struct gdbarch_data;
932
933typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
934typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
935 void *pointer);
936extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
937 gdbarch_data_free_ftype *free);
938extern void set_gdbarch_data (struct gdbarch *gdbarch,
939 struct gdbarch_data *data,
940 void *pointer);
941
942extern void *gdbarch_data (struct gdbarch_data*);
943
944
945/* Register per-architecture memory region.
946
947 Provide a memory-region swap mechanism. Per-architecture memory
948 region are created. These memory regions are swapped whenever the
949 architecture is changed. For a new architecture, the memory region
950 is initialized with zero (0) and the INIT function is called.
951
952 Memory regions are swapped / initialized in the order that they are
953 registered. NULL DATA and/or INIT values can be specified.
954
955 New code should use register_gdbarch_data(). */
956
957typedef void (gdbarch_swap_ftype) (void);
958extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
959#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
960
961
962
963/* The target-system-dependent byte order is dynamic */
964
965/* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
966 is selectable at runtime. The user can use the \`\`set endian''
967 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
968 target_byte_order should be auto-detected (from the program image
969 say). */
970
971#if GDB_MULTI_ARCH
972/* Multi-arch GDB is always bi-endian. */
973#define TARGET_BYTE_ORDER_SELECTABLE_P 1
974#endif
975
976#ifndef TARGET_BYTE_ORDER_SELECTABLE_P
977/* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
978 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
979#ifdef TARGET_BYTE_ORDER_SELECTABLE
980#define TARGET_BYTE_ORDER_SELECTABLE_P 1
981#else
982#define TARGET_BYTE_ORDER_SELECTABLE_P 0
983#endif
984#endif
985
986extern int target_byte_order;
987#ifdef TARGET_BYTE_ORDER_SELECTABLE
988/* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
989 and expect defs.h to re-define TARGET_BYTE_ORDER. */
990#undef TARGET_BYTE_ORDER
991#endif
992#ifndef TARGET_BYTE_ORDER
993#define TARGET_BYTE_ORDER (target_byte_order + 0)
994#endif
995
996extern int target_byte_order_auto;
997#ifndef TARGET_BYTE_ORDER_AUTO
998#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
999#endif
1000
1001
1002
1003/* The target-system-dependent BFD architecture is dynamic */
1004
1005extern int target_architecture_auto;
1006#ifndef TARGET_ARCHITECTURE_AUTO
1007#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1008#endif
1009
1010extern const struct bfd_arch_info *target_architecture;
1011#ifndef TARGET_ARCHITECTURE
1012#define TARGET_ARCHITECTURE (target_architecture + 0)
1013#endif
1014
1015
1016/* The target-system-dependent disassembler is semi-dynamic */
1017
1018#include "dis-asm.h" /* Get defs for disassemble_info */
1019
1020extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1021 unsigned int len, disassemble_info *info);
1022
1023extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1024 disassemble_info *info);
1025
1026extern void dis_asm_print_address (bfd_vma addr,
1027 disassemble_info *info);
1028
1029extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1030extern disassemble_info tm_print_insn_info;
1031#ifndef TARGET_PRINT_INSN
1032#define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
1033#endif
1034#ifndef TARGET_PRINT_INSN_INFO
1035#define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1036#endif
1037
1038
1039
1040/* Explicit test for D10V architecture.
1041 USE of these macro's is *STRONGLY* discouraged. */
1042
1043#define GDB_TARGET_IS_D10V (TARGET_ARCHITECTURE->arch == bfd_arch_d10v)
1044
1045
1046/* Fallback definition for EXTRACT_STRUCT_VALUE_ADDRESS */
1047#ifndef EXTRACT_STRUCT_VALUE_ADDRESS
1048#define EXTRACT_STRUCT_VALUE_ADDRESS_P (0)
1049#define EXTRACT_STRUCT_VALUE_ADDRESS(X) (internal_error (__FILE__, __LINE__, "gdbarch: EXTRACT_STRUCT_VALUE_ADDRESS"), 0)
1050#else
1051#ifndef EXTRACT_STRUCT_VALUE_ADDRESS_P
1052#define EXTRACT_STRUCT_VALUE_ADDRESS_P (1)
1053#endif
1054#endif
1055
1056
1057/* Set the dynamic target-system-dependent parameters (architecture,
1058 byte-order, ...) using information found in the BFD */
1059
1060extern void set_gdbarch_from_file (bfd *);
1061
1062
1063/* Initialize the current architecture to the "first" one we find on
1064 our list. */
1065
1066extern void initialize_current_architecture (void);
1067
1068
1069/* gdbarch trace variable */
1070extern int gdbarch_debug;
1071
1072extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1073
1074#endif
1075EOF
1076exec 1>&2
1077#../move-if-change new-gdbarch.h gdbarch.h
1078compare_new gdbarch.h
1079
1080
1081#
1082# C file
1083#
1084
1085exec > new-gdbarch.c
1086copyright
1087cat <<EOF
1088
1089#include "defs.h"
1090#include "arch-utils.h"
1091
1092#if GDB_MULTI_ARCH
1093#include "gdbcmd.h"
1094#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1095#else
1096/* Just include everything in sight so that the every old definition
1097 of macro is visible. */
1098#include "gdb_string.h"
1099#include <ctype.h>
1100#include "symtab.h"
1101#include "frame.h"
1102#include "inferior.h"
1103#include "breakpoint.h"
1104#include "gdb_wait.h"
1105#include "gdbcore.h"
1106#include "gdbcmd.h"
1107#include "target.h"
1108#include "gdbthread.h"
1109#include "annotate.h"
1110#include "symfile.h" /* for overlay functions */
1111#endif
1112#include "symcat.h"
1113
1114#include "floatformat.h"
1115
1116#include "gdb_assert.h"
1117
1118/* Static function declarations */
1119
1120static void verify_gdbarch (struct gdbarch *gdbarch);
1121static void alloc_gdbarch_data (struct gdbarch *);
1122static void init_gdbarch_data (struct gdbarch *);
1123static void free_gdbarch_data (struct gdbarch *);
1124static void init_gdbarch_swap (struct gdbarch *);
1125static void swapout_gdbarch_swap (struct gdbarch *);
1126static void swapin_gdbarch_swap (struct gdbarch *);
1127
1128/* Convenience macro for allocting typesafe memory. */
1129
1130#ifndef XMALLOC
1131#define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1132#endif
1133
1134
1135/* Non-zero if we want to trace architecture code. */
1136
1137#ifndef GDBARCH_DEBUG
1138#define GDBARCH_DEBUG 0
1139#endif
1140int gdbarch_debug = GDBARCH_DEBUG;
1141
1142EOF
1143
1144# gdbarch open the gdbarch object
1145printf "\n"
1146printf "/* Maintain the struct gdbarch object */\n"
1147printf "\n"
1148printf "struct gdbarch\n"
1149printf "{\n"
1150printf " /* basic architectural information */\n"
1151function_list | while do_read
1152do
1153 if class_is_info_p
1154 then
1155 printf " ${returntype} ${function};\n"
1156 fi
1157done
1158printf "\n"
1159printf " /* target specific vector. */\n"
1160printf " struct gdbarch_tdep *tdep;\n"
1161printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1162printf "\n"
1163printf " /* per-architecture data-pointers */\n"
1164printf " unsigned nr_data;\n"
1165printf " void **data;\n"
1166printf "\n"
1167printf " /* per-architecture swap-regions */\n"
1168printf " struct gdbarch_swap *swap;\n"
1169printf "\n"
1170cat <<EOF
1171 /* Multi-arch values.
1172
1173 When extending this structure you must:
1174
1175 Add the field below.
1176
1177 Declare set/get functions and define the corresponding
1178 macro in gdbarch.h.
1179
1180 gdbarch_alloc(): If zero/NULL is not a suitable default,
1181 initialize the new field.
1182
1183 verify_gdbarch(): Confirm that the target updated the field
1184 correctly.
1185
1186 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1187 field is dumped out
1188
1189 \`\`startup_gdbarch()'': Append an initial value to the static
1190 variable (base values on the host's c-type system).
1191
1192 get_gdbarch(): Implement the set/get functions (probably using
1193 the macro's as shortcuts).
1194
1195 */
1196
1197EOF
1198function_list | while do_read
1199do
1200 if class_is_variable_p
1201 then
1202 printf " ${returntype} ${function};\n"
1203 elif class_is_function_p
1204 then
1205 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1206 fi
1207done
1208printf "};\n"
1209
1210# A pre-initialized vector
1211printf "\n"
1212printf "\n"
1213cat <<EOF
1214/* The default architecture uses host values (for want of a better
1215 choice). */
1216EOF
1217printf "\n"
1218printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1219printf "\n"
1220printf "struct gdbarch startup_gdbarch =\n"
1221printf "{\n"
1222printf " /* basic architecture information */\n"
1223function_list | while do_read
1224do
1225 if class_is_info_p
1226 then
1227 printf " ${staticdefault},\n"
1228 fi
1229done
1230cat <<EOF
1231 /* target specific vector and its dump routine */
1232 NULL, NULL,
1233 /*per-architecture data-pointers and swap regions */
1234 0, NULL, NULL,
1235 /* Multi-arch values */
1236EOF
1237function_list | while do_read
1238do
1239 if class_is_function_p || class_is_variable_p
1240 then
1241 printf " ${staticdefault},\n"
1242 fi
1243done
1244cat <<EOF
1245 /* startup_gdbarch() */
1246};
1247
1248struct gdbarch *current_gdbarch = &startup_gdbarch;
1249EOF
1250
1251# Create a new gdbarch struct
1252printf "\n"
1253printf "\n"
1254cat <<EOF
1255/* Create a new \`\`struct gdbarch'' based on information provided by
1256 \`\`struct gdbarch_info''. */
1257EOF
1258printf "\n"
1259cat <<EOF
1260struct gdbarch *
1261gdbarch_alloc (const struct gdbarch_info *info,
1262 struct gdbarch_tdep *tdep)
1263{
1264 struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
1265 memset (gdbarch, 0, sizeof (*gdbarch));
1266
1267 alloc_gdbarch_data (gdbarch);
1268
1269 gdbarch->tdep = tdep;
1270EOF
1271printf "\n"
1272function_list | while do_read
1273do
1274 if class_is_info_p
1275 then
1276 printf " gdbarch->${function} = info->${function};\n"
1277 fi
1278done
1279printf "\n"
1280printf " /* Force the explicit initialization of these. */\n"
1281function_list | while do_read
1282do
1283 if class_is_function_p || class_is_variable_p
1284 then
1285 if [ "${predefault}" != "" -a "${predefault}" != "0" ]
1286 then
1287 printf " gdbarch->${function} = ${predefault};\n"
1288 fi
1289 fi
1290done
1291cat <<EOF
1292 /* gdbarch_alloc() */
1293
1294 return gdbarch;
1295}
1296EOF
1297
1298# Free a gdbarch struct.
1299printf "\n"
1300printf "\n"
1301cat <<EOF
1302/* Free a gdbarch struct. This should never happen in normal
1303 operation --- once you've created a gdbarch, you keep it around.
1304 However, if an architecture's init function encounters an error
1305 building the structure, it may need to clean up a partially
1306 constructed gdbarch. */
1307
1308void
1309gdbarch_free (struct gdbarch *arch)
1310{
1311 gdb_assert (arch != NULL);
1312 free_gdbarch_data (arch);
1313 xfree (arch);
1314}
1315EOF
1316
1317# verify a new architecture
1318printf "\n"
1319printf "\n"
1320printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1321printf "\n"
1322cat <<EOF
1323static void
1324verify_gdbarch (struct gdbarch *gdbarch)
1325{
1326 /* Only perform sanity checks on a multi-arch target. */
1327 if (!GDB_MULTI_ARCH)
1328 return;
1329 /* fundamental */
1330 if (gdbarch->byte_order == 0)
1331 internal_error (__FILE__, __LINE__,
1332 "verify_gdbarch: byte-order unset");
1333 if (gdbarch->bfd_arch_info == NULL)
1334 internal_error (__FILE__, __LINE__,
1335 "verify_gdbarch: bfd_arch_info unset");
1336 /* Check those that need to be defined for the given multi-arch level. */
1337EOF
1338function_list | while do_read
1339do
1340 if class_is_function_p || class_is_variable_p
1341 then
1342 if [ "${invalid_p}" = "0" ]
1343 then
1344 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1345 elif class_is_predicate_p
1346 then
1347 printf " /* Skip verify of ${function}, has predicate */\n"
1348 # FIXME: See do_read for potential simplification
1349 elif [ "${invalid_p}" -a "${postdefault}" ]
1350 then
1351 printf " if (${invalid_p})\n"
1352 printf " gdbarch->${function} = ${postdefault};\n"
1353 elif [ "${predefault}" -a "${postdefault}" ]
1354 then
1355 printf " if (gdbarch->${function} == ${predefault})\n"
1356 printf " gdbarch->${function} = ${postdefault};\n"
1357 elif [ "${postdefault}" ]
1358 then
1359 printf " if (gdbarch->${function} == 0)\n"
1360 printf " gdbarch->${function} = ${postdefault};\n"
1361 elif [ "${invalid_p}" ]
1362 then
1363 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1364 printf " && (${invalid_p}))\n"
1365 printf " internal_error (__FILE__, __LINE__,\n"
1366 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1367 elif [ "${predefault}" ]
1368 then
1369 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1370 printf " && (gdbarch->${function} == ${predefault}))\n"
1371 printf " internal_error (__FILE__, __LINE__,\n"
1372 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1373 fi
1374 fi
1375done
1376cat <<EOF
1377}
1378EOF
1379
1380# dump the structure
1381printf "\n"
1382printf "\n"
1383cat <<EOF
1384/* Print out the details of the current architecture. */
1385
1386/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1387 just happens to match the global variable \`\`current_gdbarch''. That
1388 way macros refering to that variable get the local and not the global
1389 version - ulgh. Once everything is parameterised with gdbarch, this
1390 will go away. */
1391
1392void
1393gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1394{
1395 fprintf_unfiltered (file,
1396 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1397 GDB_MULTI_ARCH);
1398EOF
1399function_list | while do_read
1400do
1401 # multiarch functions don't have macros.
1402 class_is_multiarch_p && continue
1403 if [ "${returntype}" = "void" ]
1404 then
1405 printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
1406 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1407 else
1408 printf "#ifdef ${macro}\n"
1409 fi
1410 if class_is_function_p
1411 then
1412 printf " fprintf_unfiltered (file,\n"
1413 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1414 printf " \"${macro}(${actual})\",\n"
1415 printf " XSTRING (${macro} (${actual})));\n"
1416 else
1417 printf " fprintf_unfiltered (file,\n"
1418 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1419 printf " XSTRING (${macro}));\n"
1420 fi
1421 printf "#endif\n"
1422done
1423function_list | while do_read
1424do
1425 if class_is_multiarch_p
1426 then
1427 printf " if (GDB_MULTI_ARCH)\n"
1428 printf " fprintf_unfiltered (file,\n"
1429 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1430 printf " (long) current_gdbarch->${function});\n"
1431 continue
1432 fi
1433 printf "#ifdef ${macro}\n"
1434 if [ "${print_p}" = "()" ]
1435 then
1436 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1437 elif [ "${print_p}" = "0" ]
1438 then
1439 printf " /* skip print of ${macro}, print_p == 0. */\n"
1440 elif [ "${print_p}" ]
1441 then
1442 printf " if (${print_p})\n"
1443 printf " fprintf_unfiltered (file,\n"
1444 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1445 printf " ${print});\n"
1446 elif class_is_function_p
1447 then
1448 printf " if (GDB_MULTI_ARCH)\n"
1449 printf " fprintf_unfiltered (file,\n"
1450 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1451 printf " (long) current_gdbarch->${function}\n"
1452 printf " /*${macro} ()*/);\n"
1453 else
1454 printf " fprintf_unfiltered (file,\n"
1455 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1456 printf " ${print});\n"
1457 fi
1458 printf "#endif\n"
1459done
1460cat <<EOF
1461 if (current_gdbarch->dump_tdep != NULL)
1462 current_gdbarch->dump_tdep (current_gdbarch, file);
1463}
1464EOF
1465
1466
1467# GET/SET
1468printf "\n"
1469cat <<EOF
1470struct gdbarch_tdep *
1471gdbarch_tdep (struct gdbarch *gdbarch)
1472{
1473 if (gdbarch_debug >= 2)
1474 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1475 return gdbarch->tdep;
1476}
1477EOF
1478printf "\n"
1479function_list | while do_read
1480do
1481 if class_is_predicate_p
1482 then
1483 printf "\n"
1484 printf "int\n"
1485 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1486 printf "{\n"
1487 if [ "${valid_p}" ]
1488 then
1489 printf " return ${valid_p};\n"
1490 else
1491 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1492 fi
1493 printf "}\n"
1494 fi
1495 if class_is_function_p
1496 then
1497 printf "\n"
1498 printf "${returntype}\n"
1499 if [ "${formal}" = "void" ]
1500 then
1501 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1502 else
1503 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1504 fi
1505 printf "{\n"
1506 printf " if (gdbarch->${function} == 0)\n"
1507 printf " internal_error (__FILE__, __LINE__,\n"
1508 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1509 printf " if (gdbarch_debug >= 2)\n"
1510 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1511 if [ "${actual}" = "-" -o "${actual}" = "" ]
1512 then
1513 if class_is_multiarch_p
1514 then
1515 params="gdbarch"
1516 else
1517 params=""
1518 fi
1519 else
1520 if class_is_multiarch_p
1521 then
1522 params="gdbarch, ${actual}"
1523 else
1524 params="${actual}"
1525 fi
1526 fi
1527 if [ "${returntype}" = "void" ]
1528 then
1529 printf " gdbarch->${function} (${params});\n"
1530 else
1531 printf " return gdbarch->${function} (${params});\n"
1532 fi
1533 printf "}\n"
1534 printf "\n"
1535 printf "void\n"
1536 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1537 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1538 printf "{\n"
1539 printf " gdbarch->${function} = ${function};\n"
1540 printf "}\n"
1541 elif class_is_variable_p
1542 then
1543 printf "\n"
1544 printf "${returntype}\n"
1545 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1546 printf "{\n"
1547 if [ "${invalid_p}" = "0" ]
1548 then
1549 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1550 elif [ "${invalid_p}" ]
1551 then
1552 printf " if (${invalid_p})\n"
1553 printf " internal_error (__FILE__, __LINE__,\n"
1554 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1555 elif [ "${predefault}" ]
1556 then
1557 printf " if (gdbarch->${function} == ${predefault})\n"
1558 printf " internal_error (__FILE__, __LINE__,\n"
1559 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1560 fi
1561 printf " if (gdbarch_debug >= 2)\n"
1562 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1563 printf " return gdbarch->${function};\n"
1564 printf "}\n"
1565 printf "\n"
1566 printf "void\n"
1567 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1568 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1569 printf "{\n"
1570 printf " gdbarch->${function} = ${function};\n"
1571 printf "}\n"
1572 elif class_is_info_p
1573 then
1574 printf "\n"
1575 printf "${returntype}\n"
1576 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1577 printf "{\n"
1578 printf " if (gdbarch_debug >= 2)\n"
1579 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1580 printf " return gdbarch->${function};\n"
1581 printf "}\n"
1582 fi
1583done
1584
1585# All the trailing guff
1586cat <<EOF
1587
1588
1589/* Keep a registry of per-architecture data-pointers required by GDB
1590 modules. */
1591
1592struct gdbarch_data
1593{
1594 unsigned index;
1595 gdbarch_data_init_ftype *init;
1596 gdbarch_data_free_ftype *free;
1597};
1598
1599struct gdbarch_data_registration
1600{
1601 struct gdbarch_data *data;
1602 struct gdbarch_data_registration *next;
1603};
1604
1605struct gdbarch_data_registry
1606{
1607 unsigned nr;
1608 struct gdbarch_data_registration *registrations;
1609};
1610
1611struct gdbarch_data_registry gdbarch_data_registry =
1612{
1613 0, NULL,
1614};
1615
1616struct gdbarch_data *
1617register_gdbarch_data (gdbarch_data_init_ftype *init,
1618 gdbarch_data_free_ftype *free)
1619{
1620 struct gdbarch_data_registration **curr;
1621 for (curr = &gdbarch_data_registry.registrations;
1622 (*curr) != NULL;
1623 curr = &(*curr)->next);
1624 (*curr) = XMALLOC (struct gdbarch_data_registration);
1625 (*curr)->next = NULL;
1626 (*curr)->data = XMALLOC (struct gdbarch_data);
1627 (*curr)->data->index = gdbarch_data_registry.nr++;
1628 (*curr)->data->init = init;
1629 (*curr)->data->free = free;
1630 return (*curr)->data;
1631}
1632
1633
1634/* Walk through all the registered users initializing each in turn. */
1635
1636static void
1637init_gdbarch_data (struct gdbarch *gdbarch)
1638{
1639 struct gdbarch_data_registration *rego;
1640 for (rego = gdbarch_data_registry.registrations;
1641 rego != NULL;
1642 rego = rego->next)
1643 {
1644 struct gdbarch_data *data = rego->data;
1645 gdb_assert (data->index < gdbarch->nr_data);
1646 if (data->init != NULL)
1647 {
1648 void *pointer = data->init (gdbarch);
1649 set_gdbarch_data (gdbarch, data, pointer);
1650 }
1651 }
1652}
1653
1654/* Create/delete the gdbarch data vector. */
1655
1656static void
1657alloc_gdbarch_data (struct gdbarch *gdbarch)
1658{
1659 gdb_assert (gdbarch->data == NULL);
1660 gdbarch->nr_data = gdbarch_data_registry.nr;
1661 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1662}
1663
1664static void
1665free_gdbarch_data (struct gdbarch *gdbarch)
1666{
1667 struct gdbarch_data_registration *rego;
1668 gdb_assert (gdbarch->data != NULL);
1669 for (rego = gdbarch_data_registry.registrations;
1670 rego != NULL;
1671 rego = rego->next)
1672 {
1673 struct gdbarch_data *data = rego->data;
1674 gdb_assert (data->index < gdbarch->nr_data);
1675 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1676 {
1677 data->free (gdbarch, gdbarch->data[data->index]);
1678 gdbarch->data[data->index] = NULL;
1679 }
1680 }
1681 xfree (gdbarch->data);
1682 gdbarch->data = NULL;
1683}
1684
1685
1686/* Initialize the current value of thee specified per-architecture
1687 data-pointer. */
1688
1689void
1690set_gdbarch_data (struct gdbarch *gdbarch,
1691 struct gdbarch_data *data,
1692 void *pointer)
1693{
1694 gdb_assert (data->index < gdbarch->nr_data);
1695 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1696 data->free (gdbarch, gdbarch->data[data->index]);
1697 gdbarch->data[data->index] = pointer;
1698}
1699
1700/* Return the current value of the specified per-architecture
1701 data-pointer. */
1702
1703void *
1704gdbarch_data (struct gdbarch_data *data)
1705{
1706 gdb_assert (data->index < current_gdbarch->nr_data);
1707 return current_gdbarch->data[data->index];
1708}
1709
1710
1711
1712/* Keep a registry of swapped data required by GDB modules. */
1713
1714struct gdbarch_swap
1715{
1716 void *swap;
1717 struct gdbarch_swap_registration *source;
1718 struct gdbarch_swap *next;
1719};
1720
1721struct gdbarch_swap_registration
1722{
1723 void *data;
1724 unsigned long sizeof_data;
1725 gdbarch_swap_ftype *init;
1726 struct gdbarch_swap_registration *next;
1727};
1728
1729struct gdbarch_swap_registry
1730{
1731 int nr;
1732 struct gdbarch_swap_registration *registrations;
1733};
1734
1735struct gdbarch_swap_registry gdbarch_swap_registry =
1736{
1737 0, NULL,
1738};
1739
1740void
1741register_gdbarch_swap (void *data,
1742 unsigned long sizeof_data,
1743 gdbarch_swap_ftype *init)
1744{
1745 struct gdbarch_swap_registration **rego;
1746 for (rego = &gdbarch_swap_registry.registrations;
1747 (*rego) != NULL;
1748 rego = &(*rego)->next);
1749 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1750 (*rego)->next = NULL;
1751 (*rego)->init = init;
1752 (*rego)->data = data;
1753 (*rego)->sizeof_data = sizeof_data;
1754}
1755
1756
1757static void
1758init_gdbarch_swap (struct gdbarch *gdbarch)
1759{
1760 struct gdbarch_swap_registration *rego;
1761 struct gdbarch_swap **curr = &gdbarch->swap;
1762 for (rego = gdbarch_swap_registry.registrations;
1763 rego != NULL;
1764 rego = rego->next)
1765 {
1766 if (rego->data != NULL)
1767 {
1768 (*curr) = XMALLOC (struct gdbarch_swap);
1769 (*curr)->source = rego;
1770 (*curr)->swap = xmalloc (rego->sizeof_data);
1771 (*curr)->next = NULL;
1772 memset (rego->data, 0, rego->sizeof_data);
1773 curr = &(*curr)->next;
1774 }
1775 if (rego->init != NULL)
1776 rego->init ();
1777 }
1778}
1779
1780static void
1781swapout_gdbarch_swap (struct gdbarch *gdbarch)
1782{
1783 struct gdbarch_swap *curr;
1784 for (curr = gdbarch->swap;
1785 curr != NULL;
1786 curr = curr->next)
1787 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1788}
1789
1790static void
1791swapin_gdbarch_swap (struct gdbarch *gdbarch)
1792{
1793 struct gdbarch_swap *curr;
1794 for (curr = gdbarch->swap;
1795 curr != NULL;
1796 curr = curr->next)
1797 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1798}
1799
1800
1801/* Keep a registry of the architectures known by GDB. */
1802
1803struct gdbarch_registration
1804{
1805 enum bfd_architecture bfd_architecture;
1806 gdbarch_init_ftype *init;
1807 gdbarch_dump_tdep_ftype *dump_tdep;
1808 struct gdbarch_list *arches;
1809 struct gdbarch_registration *next;
1810};
1811
1812static struct gdbarch_registration *gdbarch_registry = NULL;
1813
1814static void
1815append_name (const char ***buf, int *nr, const char *name)
1816{
1817 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1818 (*buf)[*nr] = name;
1819 *nr += 1;
1820}
1821
1822const char **
1823gdbarch_printable_names (void)
1824{
1825 if (GDB_MULTI_ARCH)
1826 {
1827 /* Accumulate a list of names based on the registed list of
1828 architectures. */
1829 enum bfd_architecture a;
1830 int nr_arches = 0;
1831 const char **arches = NULL;
1832 struct gdbarch_registration *rego;
1833 for (rego = gdbarch_registry;
1834 rego != NULL;
1835 rego = rego->next)
1836 {
1837 const struct bfd_arch_info *ap;
1838 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1839 if (ap == NULL)
1840 internal_error (__FILE__, __LINE__,
1841 "gdbarch_architecture_names: multi-arch unknown");
1842 do
1843 {
1844 append_name (&arches, &nr_arches, ap->printable_name);
1845 ap = ap->next;
1846 }
1847 while (ap != NULL);
1848 }
1849 append_name (&arches, &nr_arches, NULL);
1850 return arches;
1851 }
1852 else
1853 /* Just return all the architectures that BFD knows. Assume that
1854 the legacy architecture framework supports them. */
1855 return bfd_arch_list ();
1856}
1857
1858
1859void
1860gdbarch_register (enum bfd_architecture bfd_architecture,
1861 gdbarch_init_ftype *init,
1862 gdbarch_dump_tdep_ftype *dump_tdep)
1863{
1864 struct gdbarch_registration **curr;
1865 const struct bfd_arch_info *bfd_arch_info;
1866 /* Check that BFD recognizes this architecture */
1867 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1868 if (bfd_arch_info == NULL)
1869 {
1870 internal_error (__FILE__, __LINE__,
1871 "gdbarch: Attempt to register unknown architecture (%d)",
1872 bfd_architecture);
1873 }
1874 /* Check that we haven't seen this architecture before */
1875 for (curr = &gdbarch_registry;
1876 (*curr) != NULL;
1877 curr = &(*curr)->next)
1878 {
1879 if (bfd_architecture == (*curr)->bfd_architecture)
1880 internal_error (__FILE__, __LINE__,
1881 "gdbarch: Duplicate registraration of architecture (%s)",
1882 bfd_arch_info->printable_name);
1883 }
1884 /* log it */
1885 if (gdbarch_debug)
1886 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1887 bfd_arch_info->printable_name,
1888 (long) init);
1889 /* Append it */
1890 (*curr) = XMALLOC (struct gdbarch_registration);
1891 (*curr)->bfd_architecture = bfd_architecture;
1892 (*curr)->init = init;
1893 (*curr)->dump_tdep = dump_tdep;
1894 (*curr)->arches = NULL;
1895 (*curr)->next = NULL;
1896 /* When non- multi-arch, install whatever target dump routine we've
1897 been provided - hopefully that routine has been written correctly
1898 and works regardless of multi-arch. */
1899 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1900 && startup_gdbarch.dump_tdep == NULL)
1901 startup_gdbarch.dump_tdep = dump_tdep;
1902}
1903
1904void
1905register_gdbarch_init (enum bfd_architecture bfd_architecture,
1906 gdbarch_init_ftype *init)
1907{
1908 gdbarch_register (bfd_architecture, init, NULL);
1909}
1910
1911
1912/* Look for an architecture using gdbarch_info. Base search on only
1913 BFD_ARCH_INFO and BYTE_ORDER. */
1914
1915struct gdbarch_list *
1916gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1917 const struct gdbarch_info *info)
1918{
1919 for (; arches != NULL; arches = arches->next)
1920 {
1921 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1922 continue;
1923 if (info->byte_order != arches->gdbarch->byte_order)
1924 continue;
1925 return arches;
1926 }
1927 return NULL;
1928}
1929
1930
1931/* Update the current architecture. Return ZERO if the update request
1932 failed. */
1933
1934int
1935gdbarch_update_p (struct gdbarch_info info)
1936{
1937 struct gdbarch *new_gdbarch;
1938 struct gdbarch_list **list;
1939 struct gdbarch_registration *rego;
1940
1941 /* Fill in missing parts of the INFO struct using a number of
1942 sources: \`\`set ...''; INFOabfd supplied; existing target. */
1943
1944 /* \`\`(gdb) set architecture ...'' */
1945 if (info.bfd_arch_info == NULL
1946 && !TARGET_ARCHITECTURE_AUTO)
1947 info.bfd_arch_info = TARGET_ARCHITECTURE;
1948 if (info.bfd_arch_info == NULL
1949 && info.abfd != NULL
1950 && bfd_get_arch (info.abfd) != bfd_arch_unknown
1951 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
1952 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1953 if (info.bfd_arch_info == NULL)
1954 info.bfd_arch_info = TARGET_ARCHITECTURE;
1955
1956 /* \`\`(gdb) set byte-order ...'' */
1957 if (info.byte_order == 0
1958 && !TARGET_BYTE_ORDER_AUTO)
1959 info.byte_order = TARGET_BYTE_ORDER;
1960 /* From the INFO struct. */
1961 if (info.byte_order == 0
1962 && info.abfd != NULL)
1963 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
1964 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
1965 : 0);
1966 /* From the current target. */
1967 if (info.byte_order == 0)
1968 info.byte_order = TARGET_BYTE_ORDER;
1969
1970 /* Must have found some sort of architecture. */
1971 gdb_assert (info.bfd_arch_info != NULL);
1972
1973 if (gdbarch_debug)
1974 {
1975 fprintf_unfiltered (gdb_stdlog,
1976 "gdbarch_update: info.bfd_arch_info %s\n",
1977 (info.bfd_arch_info != NULL
1978 ? info.bfd_arch_info->printable_name
1979 : "(null)"));
1980 fprintf_unfiltered (gdb_stdlog,
1981 "gdbarch_update: info.byte_order %d (%s)\n",
1982 info.byte_order,
1983 (info.byte_order == BIG_ENDIAN ? "big"
1984 : info.byte_order == LITTLE_ENDIAN ? "little"
1985 : "default"));
1986 fprintf_unfiltered (gdb_stdlog,
1987 "gdbarch_update: info.abfd 0x%lx\n",
1988 (long) info.abfd);
1989 fprintf_unfiltered (gdb_stdlog,
1990 "gdbarch_update: info.tdep_info 0x%lx\n",
1991 (long) info.tdep_info);
1992 }
1993
1994 /* Find the target that knows about this architecture. */
1995 for (rego = gdbarch_registry;
1996 rego != NULL;
1997 rego = rego->next)
1998 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1999 break;
2000 if (rego == NULL)
2001 {
2002 if (gdbarch_debug)
2003 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2004 return 0;
2005 }
2006
2007 /* Ask the target for a replacement architecture. */
2008 new_gdbarch = rego->init (info, rego->arches);
2009
2010 /* Did the target like it? No. Reject the change. */
2011 if (new_gdbarch == NULL)
2012 {
2013 if (gdbarch_debug)
2014 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2015 return 0;
2016 }
2017
2018 /* Did the architecture change? No. Do nothing. */
2019 if (current_gdbarch == new_gdbarch)
2020 {
2021 if (gdbarch_debug)
2022 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2023 (long) new_gdbarch,
2024 new_gdbarch->bfd_arch_info->printable_name);
2025 return 1;
2026 }
2027
2028 /* Swap all data belonging to the old target out */
2029 swapout_gdbarch_swap (current_gdbarch);
2030
2031 /* Is this a pre-existing architecture? Yes. Swap it in. */
2032 for (list = &rego->arches;
2033 (*list) != NULL;
2034 list = &(*list)->next)
2035 {
2036 if ((*list)->gdbarch == new_gdbarch)
2037 {
2038 if (gdbarch_debug)
2039 fprintf_unfiltered (gdb_stdlog,
2040 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2041 (long) new_gdbarch,
2042 new_gdbarch->bfd_arch_info->printable_name);
2043 current_gdbarch = new_gdbarch;
2044 swapin_gdbarch_swap (new_gdbarch);
2045 return 1;
2046 }
2047 }
2048
2049 /* Append this new architecture to this targets list. */
2050 (*list) = XMALLOC (struct gdbarch_list);
2051 (*list)->next = NULL;
2052 (*list)->gdbarch = new_gdbarch;
2053
2054 /* Switch to this new architecture. Dump it out. */
2055 current_gdbarch = new_gdbarch;
2056 if (gdbarch_debug)
2057 {
2058 fprintf_unfiltered (gdb_stdlog,
2059 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2060 (long) new_gdbarch,
2061 new_gdbarch->bfd_arch_info->printable_name);
2062 }
2063
2064 /* Check that the newly installed architecture is valid. Plug in
2065 any post init values. */
2066 new_gdbarch->dump_tdep = rego->dump_tdep;
2067 verify_gdbarch (new_gdbarch);
2068
2069 /* Initialize the per-architecture memory (swap) areas.
2070 CURRENT_GDBARCH must be update before these modules are
2071 called. */
2072 init_gdbarch_swap (new_gdbarch);
2073
2074 /* Initialize the per-architecture data-pointer of all parties that
2075 registered an interest in this architecture. CURRENT_GDBARCH
2076 must be updated before these modules are called. */
2077 init_gdbarch_data (new_gdbarch);
2078
2079 if (gdbarch_debug)
2080 gdbarch_dump (current_gdbarch, gdb_stdlog);
2081
2082 return 1;
2083}
2084
2085
2086/* Disassembler */
2087
2088/* Pointer to the target-dependent disassembly function. */
2089int (*tm_print_insn) (bfd_vma, disassemble_info *);
2090disassemble_info tm_print_insn_info;
2091
2092
2093extern void _initialize_gdbarch (void);
2094
2095void
2096_initialize_gdbarch (void)
2097{
2098 struct cmd_list_element *c;
2099
2100 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2101 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2102 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2103 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2104 tm_print_insn_info.print_address_func = dis_asm_print_address;
2105
2106 add_show_from_set (add_set_cmd ("arch",
2107 class_maintenance,
2108 var_zinteger,
2109 (char *)&gdbarch_debug,
2110 "Set architecture debugging.\\n\\
2111When non-zero, architecture debugging is enabled.", &setdebuglist),
2112 &showdebuglist);
2113 c = add_set_cmd ("archdebug",
2114 class_maintenance,
2115 var_zinteger,
2116 (char *)&gdbarch_debug,
2117 "Set architecture debugging.\\n\\
2118When non-zero, architecture debugging is enabled.", &setlist);
2119
2120 deprecate_cmd (c, "set debug arch");
2121 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2122}
2123EOF
2124
2125# close things off
2126exec 1>&2
2127#../move-if-change new-gdbarch.c gdbarch.c
2128compare_new gdbarch.c
This page took 0.029419 seconds and 4 git commands to generate.