* vms-tir.c: Add missing prototypes.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
... / ...
CommitLineData
1#!/bin/sh -u
2
3# Architecture commands for GDB, the GNU debugger.
4# Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5#
6# This file is part of GDB.
7#
8# This program is free software; you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation; either version 2 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the GNU General Public License
19# along with this program; if not, write to the Free Software
20# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22compare_new ()
23{
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34}
35
36
37# Format of the input table
38read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40do_read ()
41{
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65${line}
66EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ -n "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ -n "${postdefault}" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ -n "${predefault}" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault=""
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ -n "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129}
130
131
132fallback_default_p ()
133{
134 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
135 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
136}
137
138class_is_variable_p ()
139{
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144}
145
146class_is_function_p ()
147{
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152}
153
154class_is_multiarch_p ()
155{
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160}
161
162class_is_predicate_p ()
163{
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168}
169
170class_is_info_p ()
171{
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176}
177
178
179# dump out/verify the doco
180for field in ${read}
181do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # An initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After initialization, the
253 # freshly malloc()ed object is passed to the target
254 # architecture code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
259 # INVALID_P are specified, PREDEFAULT will be used as the
260 # default for the non- multi-arch target.
261
262 # A zero PREDEFAULT function will force the fallback to call
263 # internal_error().
264
265 # Variable declarations can refer to ``gdbarch'' which will
266 # contain the current architecture. Care should be taken.
267
268 postdefault ) : ;;
269
270 # A value to assign to MEMBER of the new gdbarch object should
271 # the target architecture code fail to change the PREDEFAULT
272 # value.
273
274 # If POSTDEFAULT is empty, no post update is performed.
275
276 # If both INVALID_P and POSTDEFAULT are non-empty then
277 # INVALID_P will be used to determine if MEMBER should be
278 # changed to POSTDEFAULT.
279
280 # If a non-empty POSTDEFAULT and a zero INVALID_P are
281 # specified, POSTDEFAULT will be used as the default for the
282 # non- multi-arch target (regardless of the value of
283 # PREDEFAULT).
284
285 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
286
287 # Variable declarations can refer to ``gdbarch'' which will
288 # contain the current architecture. Care should be taken.
289
290 invalid_p ) : ;;
291
292 # A predicate equation that validates MEMBER. Non-zero is
293 # returned if the code creating the new architecture failed to
294 # initialize MEMBER or the initialized the member is invalid.
295 # If POSTDEFAULT is non-empty then MEMBER will be updated to
296 # that value. If POSTDEFAULT is empty then internal_error()
297 # is called.
298
299 # If INVALID_P is empty, a check that MEMBER is no longer
300 # equal to PREDEFAULT is used.
301
302 # The expression ``0'' disables the INVALID_P check making
303 # PREDEFAULT a legitimate value.
304
305 # See also PREDEFAULT and POSTDEFAULT.
306
307 fmt ) : ;;
308
309 # printf style format string that can be used to print out the
310 # MEMBER. Sometimes "%s" is useful. For functions, this is
311 # ignored and the function address is printed.
312
313 # If FMT is empty, ``%ld'' is used.
314
315 print ) : ;;
316
317 # An optional equation that casts MEMBER to a value suitable
318 # for formatting by FMT.
319
320 # If PRINT is empty, ``(long)'' is used.
321
322 print_p ) : ;;
323
324 # An optional indicator for any predicte to wrap around the
325 # print member code.
326
327 # () -> Call a custom function to do the dump.
328 # exp -> Wrap print up in ``if (${print_p}) ...
329 # ``'' -> No predicate
330
331 # If PRINT_P is empty, ``1'' is always used.
332
333 description ) : ;;
334
335 # Currently unused.
336
337 *) exit 1;;
338 esac
339done
340
341
342function_list ()
343{
344 # See below (DOCO) for description of each field
345 cat <<EOF
346i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
347#
348i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
349# Number of bits in a char or unsigned char for the target machine.
350# Just like CHAR_BIT in <limits.h> but describes the target machine.
351# v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
352#
353# Number of bits in a short or unsigned short for the target machine.
354v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
355# Number of bits in an int or unsigned int for the target machine.
356v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
357# Number of bits in a long or unsigned long for the target machine.
358v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
359# Number of bits in a long long or unsigned long long for the target
360# machine.
361v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
362# Number of bits in a float for the target machine.
363v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
364# Number of bits in a double for the target machine.
365v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
366# Number of bits in a long double for the target machine.
367v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
368# For most targets, a pointer on the target and its representation as an
369# address in GDB have the same size and "look the same". For such a
370# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
371# / addr_bit will be set from it.
372#
373# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
374# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
375#
376# ptr_bit is the size of a pointer on the target
377v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
378# addr_bit is the size of a target address as represented in gdb
379v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
380# Number of bits in a BFD_VMA for the target object file format.
381v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
382#
383v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
384#
385f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
386f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
387f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
388f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
389f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
390f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
391# Function for getting target's idea of a frame pointer. FIXME: GDB's
392# whole scheme for dealing with "frames" and "frame pointers" needs a
393# serious shakedown.
394f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
395#
396M:::void:register_read:int regnum, char *buf:regnum, buf:
397M:::void:register_write:int regnum, char *buf:regnum, buf:
398#
399v:2:NUM_REGS:int:num_regs::::0:-1
400# This macro gives the number of pseudo-registers that live in the
401# register namespace but do not get fetched or stored on the target.
402# These pseudo-registers may be aliases for other registers,
403# combinations of other registers, or they may be computed by GDB.
404v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
405v:2:SP_REGNUM:int:sp_regnum::::0:-1
406v:2:FP_REGNUM:int:fp_regnum::::0:-1
407v:2:PC_REGNUM:int:pc_regnum::::0:-1
408v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
409v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
410v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
411# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
412f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
413# Provide a default mapping from a ecoff register number to a gdb REGNUM.
414f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
415# Provide a default mapping from a DWARF register number to a gdb REGNUM.
416f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
417# Convert from an sdb register number to an internal gdb register number.
418# This should be defined in tm.h, if REGISTER_NAMES is not set up
419# to map one to one onto the sdb register numbers.
420f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
421f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
422f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
423v:2:REGISTER_SIZE:int:register_size::::0:-1
424v:2:REGISTER_BYTES:int:register_bytes::::0:-1
425f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
426f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
427v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
428f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
429v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
430f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
431f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
432# MAP a GDB RAW register number onto a simulator register number. See
433# also include/...-sim.h.
434f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
435F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
436f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
437f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
438#
439v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
440v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
441f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
442v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
443v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
444v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
445v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
446f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
447v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
448v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
449v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
450v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
451v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
452f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
453f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
454f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
455#
456v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
457v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
458f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
459f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
460#
461f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
462f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
463f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
464# This function is called when the value of a pseudo-register needs to
465# be updated. Typically it will be defined on a per-architecture
466# basis.
467f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
468# This function is called when the value of a pseudo-register needs to
469# be set or stored. Typically it will be defined on a
470# per-architecture basis.
471f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
472#
473f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
474f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
475#
476f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
477f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
478f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
479f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
480f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
481f:2:POP_FRAME:void:pop_frame:void:-:::0
482#
483f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
484f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
485F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
486f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
487#
488f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
489f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
490#
491f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
492f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
493f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
494f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
495f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
496f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
497v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
498f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
499v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
500#
501f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
502#
503v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
504f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
505f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
506f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
507f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
508f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
509f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
510f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
511f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
512#
513F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
514v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
515F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
516F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
517v:2:PARM_BOUNDARY:int:parm_boundary
518#
519v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
520v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
521v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
522f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
523# On some machines there are bits in addresses which are not really
524# part of the address, but are used by the kernel, the hardware, etc.
525# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
526# we get a "real" address such as one would find in a symbol table.
527# This is used only for addresses of instructions, and even then I'm
528# not sure it's used in all contexts. It exists to deal with there
529# being a few stray bits in the PC which would mislead us, not as some
530# sort of generic thing to handle alignment or segmentation (it's
531# possible it should be in TARGET_READ_PC instead).
532f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
533# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
534# the target needs software single step. An ISA method to implement it.
535#
536# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
537# using the breakpoint system instead of blatting memory directly (as with rs6000).
538#
539# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
540# single step. If not, then implement single step using breakpoints.
541F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
542f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
543EOF
544}
545
546#
547# The .log file
548#
549exec > new-gdbarch.log
550function_list | while do_read
551do
552 cat <<EOF
553${class} ${macro}(${actual})
554 ${returntype} ${function} ($formal)${attrib}
555EOF
556 for r in ${read}
557 do
558 eval echo \"\ \ \ \ ${r}=\${${r}}\"
559 done
560# #fallbackdefault=${fallbackdefault}
561# #valid_p=${valid_p}
562#EOF
563 if class_is_predicate_p && fallback_default_p
564 then
565 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
566 kill $$
567 exit 1
568 fi
569 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
570 then
571 echo "Error: postdefault is useless when invalid_p=0" 1>&2
572 kill $$
573 exit 1
574 fi
575 echo ""
576done
577
578exec 1>&2
579compare_new gdbarch.log
580
581
582copyright ()
583{
584cat <<EOF
585/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
586
587/* Dynamic architecture support for GDB, the GNU debugger.
588 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
589
590 This file is part of GDB.
591
592 This program is free software; you can redistribute it and/or modify
593 it under the terms of the GNU General Public License as published by
594 the Free Software Foundation; either version 2 of the License, or
595 (at your option) any later version.
596
597 This program is distributed in the hope that it will be useful,
598 but WITHOUT ANY WARRANTY; without even the implied warranty of
599 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
600 GNU General Public License for more details.
601
602 You should have received a copy of the GNU General Public License
603 along with this program; if not, write to the Free Software
604 Foundation, Inc., 59 Temple Place - Suite 330,
605 Boston, MA 02111-1307, USA. */
606
607/* This file was created with the aid of \`\`gdbarch.sh''.
608
609 The Bourne shell script \`\`gdbarch.sh'' creates the files
610 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
611 against the existing \`\`gdbarch.[hc]''. Any differences found
612 being reported.
613
614 If editing this file, please also run gdbarch.sh and merge any
615 changes into that script. Conversely, when making sweeping changes
616 to this file, modifying gdbarch.sh and using its output may prove
617 easier. */
618
619EOF
620}
621
622#
623# The .h file
624#
625
626exec > new-gdbarch.h
627copyright
628cat <<EOF
629#ifndef GDBARCH_H
630#define GDBARCH_H
631
632struct frame_info;
633struct value;
634
635
636extern struct gdbarch *current_gdbarch;
637
638
639/* If any of the following are defined, the target wasn't correctly
640 converted. */
641
642#if GDB_MULTI_ARCH
643#if defined (EXTRA_FRAME_INFO)
644#error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
645#endif
646#endif
647
648#if GDB_MULTI_ARCH
649#if defined (FRAME_FIND_SAVED_REGS)
650#error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
651#endif
652#endif
653
654#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
655#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
656#endif
657EOF
658
659# function typedef's
660printf "\n"
661printf "\n"
662printf "/* The following are pre-initialized by GDBARCH. */\n"
663function_list | while do_read
664do
665 if class_is_info_p
666 then
667 printf "\n"
668 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
669 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
670 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
671 printf "#error \"Non multi-arch definition of ${macro}\"\n"
672 printf "#endif\n"
673 printf "#if GDB_MULTI_ARCH\n"
674 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
675 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
676 printf "#endif\n"
677 printf "#endif\n"
678 fi
679done
680
681# function typedef's
682printf "\n"
683printf "\n"
684printf "/* The following are initialized by the target dependent code. */\n"
685function_list | while do_read
686do
687 if [ -n "${comment}" ]
688 then
689 echo "${comment}" | sed \
690 -e '2 s,#,/*,' \
691 -e '3,$ s,#, ,' \
692 -e '$ s,$, */,'
693 fi
694 if class_is_multiarch_p
695 then
696 if class_is_predicate_p
697 then
698 printf "\n"
699 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
700 fi
701 else
702 if class_is_predicate_p
703 then
704 printf "\n"
705 printf "#if defined (${macro})\n"
706 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
707 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
708 printf "#if !defined (${macro}_P)\n"
709 printf "#define ${macro}_P() (1)\n"
710 printf "#endif\n"
711 printf "#endif\n"
712 printf "\n"
713 printf "/* Default predicate for non- multi-arch targets. */\n"
714 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
715 printf "#define ${macro}_P() (0)\n"
716 printf "#endif\n"
717 printf "\n"
718 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
719 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
720 printf "#error \"Non multi-arch definition of ${macro}\"\n"
721 printf "#endif\n"
722 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
723 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
724 printf "#endif\n"
725 fi
726 fi
727 if class_is_variable_p
728 then
729 if fallback_default_p || class_is_predicate_p
730 then
731 printf "\n"
732 printf "/* Default (value) for non- multi-arch platforms. */\n"
733 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
734 echo "#define ${macro} (${fallbackdefault})" \
735 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
736 printf "#endif\n"
737 fi
738 printf "\n"
739 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
740 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
741 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
742 printf "#error \"Non multi-arch definition of ${macro}\"\n"
743 printf "#endif\n"
744 printf "#if GDB_MULTI_ARCH\n"
745 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
746 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
747 printf "#endif\n"
748 printf "#endif\n"
749 fi
750 if class_is_function_p
751 then
752 if class_is_multiarch_p ; then :
753 elif fallback_default_p || class_is_predicate_p
754 then
755 printf "\n"
756 printf "/* Default (function) for non- multi-arch platforms. */\n"
757 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
758 if [ "x${fallbackdefault}" = "x0" ]
759 then
760 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
761 else
762 # FIXME: Should be passing current_gdbarch through!
763 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
764 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
765 fi
766 printf "#endif\n"
767 fi
768 printf "\n"
769 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
770 then
771 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
772 elif class_is_multiarch_p
773 then
774 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
775 else
776 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
777 fi
778 if [ "x${formal}" = "xvoid" ]
779 then
780 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
781 else
782 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
783 fi
784 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
785 if class_is_multiarch_p ; then :
786 else
787 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
788 printf "#error \"Non multi-arch definition of ${macro}\"\n"
789 printf "#endif\n"
790 printf "#if GDB_MULTI_ARCH\n"
791 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
792 if [ "x${actual}" = "x" ]
793 then
794 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
795 elif [ "x${actual}" = "x-" ]
796 then
797 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
798 else
799 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
800 fi
801 printf "#endif\n"
802 printf "#endif\n"
803 fi
804 fi
805done
806
807# close it off
808cat <<EOF
809
810extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
811
812
813/* Mechanism for co-ordinating the selection of a specific
814 architecture.
815
816 GDB targets (*-tdep.c) can register an interest in a specific
817 architecture. Other GDB components can register a need to maintain
818 per-architecture data.
819
820 The mechanisms below ensures that there is only a loose connection
821 between the set-architecture command and the various GDB
822 components. Each component can independently register their need
823 to maintain architecture specific data with gdbarch.
824
825 Pragmatics:
826
827 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
828 didn't scale.
829
830 The more traditional mega-struct containing architecture specific
831 data for all the various GDB components was also considered. Since
832 GDB is built from a variable number of (fairly independent)
833 components it was determined that the global aproach was not
834 applicable. */
835
836
837/* Register a new architectural family with GDB.
838
839 Register support for the specified ARCHITECTURE with GDB. When
840 gdbarch determines that the specified architecture has been
841 selected, the corresponding INIT function is called.
842
843 --
844
845 The INIT function takes two parameters: INFO which contains the
846 information available to gdbarch about the (possibly new)
847 architecture; ARCHES which is a list of the previously created
848 \`\`struct gdbarch'' for this architecture.
849
850 The INIT function parameter INFO shall, as far as possible, be
851 pre-initialized with information obtained from INFO.ABFD or
852 previously selected architecture (if similar). INIT shall ensure
853 that the INFO.BYTE_ORDER is non-zero.
854
855 The INIT function shall return any of: NULL - indicating that it
856 doesn't recognize the selected architecture; an existing \`\`struct
857 gdbarch'' from the ARCHES list - indicating that the new
858 architecture is just a synonym for an earlier architecture (see
859 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
860 - that describes the selected architecture (see gdbarch_alloc()).
861
862 The DUMP_TDEP function shall print out all target specific values.
863 Care should be taken to ensure that the function works in both the
864 multi-arch and non- multi-arch cases. */
865
866struct gdbarch_list
867{
868 struct gdbarch *gdbarch;
869 struct gdbarch_list *next;
870};
871
872struct gdbarch_info
873{
874 /* Use default: NULL (ZERO). */
875 const struct bfd_arch_info *bfd_arch_info;
876
877 /* Use default: 0 (ZERO). */
878 int byte_order;
879
880 /* Use default: NULL (ZERO). */
881 bfd *abfd;
882
883 /* Use default: NULL (ZERO). */
884 struct gdbarch_tdep_info *tdep_info;
885};
886
887typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
888typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
889
890/* DEPRECATED - use gdbarch_register() */
891extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
892
893extern void gdbarch_register (enum bfd_architecture architecture,
894 gdbarch_init_ftype *,
895 gdbarch_dump_tdep_ftype *);
896
897
898/* Return a freshly allocated, NULL terminated, array of the valid
899 architecture names. Since architectures are registered during the
900 _initialize phase this function only returns useful information
901 once initialization has been completed. */
902
903extern const char **gdbarch_printable_names (void);
904
905
906/* Helper function. Search the list of ARCHES for a GDBARCH that
907 matches the information provided by INFO. */
908
909extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
910
911
912/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
913 basic initialization using values obtained from the INFO andTDEP
914 parameters. set_gdbarch_*() functions are called to complete the
915 initialization of the object. */
916
917extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
918
919
920/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
921 It is assumed that the caller freeds the \`\`struct
922 gdbarch_tdep''. */
923
924extern void gdbarch_free (struct gdbarch *);
925
926
927/* Helper function. Force an update of the current architecture.
928
929 The actual architecture selected is determined by INFO, \`\`(gdb) set
930 architecture'' et.al., the existing architecture and BFD's default
931 architecture. INFO should be initialized to zero and then selected
932 fields should be updated.
933
934 Returns non-zero if the update succeeds */
935
936extern int gdbarch_update_p (struct gdbarch_info info);
937
938
939
940/* Register per-architecture data-pointer.
941
942 Reserve space for a per-architecture data-pointer. An identifier
943 for the reserved data-pointer is returned. That identifer should
944 be saved in a local static variable.
945
946 The per-architecture data-pointer can be initialized in one of two
947 ways: The value can be set explicitly using a call to
948 set_gdbarch_data(); the value can be set implicitly using the value
949 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
950 called after the basic architecture vector has been created.
951
952 When a previously created architecture is re-selected, the
953 per-architecture data-pointer for that previous architecture is
954 restored. INIT() is not called.
955
956 During initialization, multiple assignments of the data-pointer are
957 allowed, non-NULL values are deleted by calling FREE(). If the
958 architecture is deleted using gdbarch_free() all non-NULL data
959 pointers are also deleted using FREE().
960
961 Multiple registrarants for any architecture are allowed (and
962 strongly encouraged). */
963
964struct gdbarch_data;
965
966typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
967typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
968 void *pointer);
969extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
970 gdbarch_data_free_ftype *free);
971extern void set_gdbarch_data (struct gdbarch *gdbarch,
972 struct gdbarch_data *data,
973 void *pointer);
974
975extern void *gdbarch_data (struct gdbarch_data*);
976
977
978/* Register per-architecture memory region.
979
980 Provide a memory-region swap mechanism. Per-architecture memory
981 region are created. These memory regions are swapped whenever the
982 architecture is changed. For a new architecture, the memory region
983 is initialized with zero (0) and the INIT function is called.
984
985 Memory regions are swapped / initialized in the order that they are
986 registered. NULL DATA and/or INIT values can be specified.
987
988 New code should use register_gdbarch_data(). */
989
990typedef void (gdbarch_swap_ftype) (void);
991extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
992#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
993
994
995
996/* The target-system-dependent byte order is dynamic */
997
998/* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
999 is selectable at runtime. The user can use the \`\`set endian''
1000 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
1001 target_byte_order should be auto-detected (from the program image
1002 say). */
1003
1004#if GDB_MULTI_ARCH
1005/* Multi-arch GDB is always bi-endian. */
1006#define TARGET_BYTE_ORDER_SELECTABLE_P 1
1007#endif
1008
1009#ifndef TARGET_BYTE_ORDER_SELECTABLE_P
1010/* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
1011 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
1012#ifdef TARGET_BYTE_ORDER_SELECTABLE
1013#define TARGET_BYTE_ORDER_SELECTABLE_P 1
1014#else
1015#define TARGET_BYTE_ORDER_SELECTABLE_P 0
1016#endif
1017#endif
1018
1019extern int target_byte_order;
1020#ifdef TARGET_BYTE_ORDER_SELECTABLE
1021/* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
1022 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1023#undef TARGET_BYTE_ORDER
1024#endif
1025#ifndef TARGET_BYTE_ORDER
1026#define TARGET_BYTE_ORDER (target_byte_order + 0)
1027#endif
1028
1029extern int target_byte_order_auto;
1030#ifndef TARGET_BYTE_ORDER_AUTO
1031#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1032#endif
1033
1034
1035
1036/* The target-system-dependent BFD architecture is dynamic */
1037
1038extern int target_architecture_auto;
1039#ifndef TARGET_ARCHITECTURE_AUTO
1040#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1041#endif
1042
1043extern const struct bfd_arch_info *target_architecture;
1044#ifndef TARGET_ARCHITECTURE
1045#define TARGET_ARCHITECTURE (target_architecture + 0)
1046#endif
1047
1048
1049/* The target-system-dependent disassembler is semi-dynamic */
1050
1051#include "dis-asm.h" /* Get defs for disassemble_info */
1052
1053extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1054 unsigned int len, disassemble_info *info);
1055
1056extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1057 disassemble_info *info);
1058
1059extern void dis_asm_print_address (bfd_vma addr,
1060 disassemble_info *info);
1061
1062extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1063extern disassemble_info tm_print_insn_info;
1064#ifndef TARGET_PRINT_INSN
1065#define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
1066#endif
1067#ifndef TARGET_PRINT_INSN_INFO
1068#define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1069#endif
1070
1071
1072
1073/* Set the dynamic target-system-dependent parameters (architecture,
1074 byte-order, ...) using information found in the BFD */
1075
1076extern void set_gdbarch_from_file (bfd *);
1077
1078
1079/* Initialize the current architecture to the "first" one we find on
1080 our list. */
1081
1082extern void initialize_current_architecture (void);
1083
1084/* For non-multiarched targets, do any initialization of the default
1085 gdbarch object necessary after the _initialize_MODULE functions
1086 have run. */
1087extern void initialize_non_multiarch ();
1088
1089/* gdbarch trace variable */
1090extern int gdbarch_debug;
1091
1092extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1093
1094#endif
1095EOF
1096exec 1>&2
1097#../move-if-change new-gdbarch.h gdbarch.h
1098compare_new gdbarch.h
1099
1100
1101#
1102# C file
1103#
1104
1105exec > new-gdbarch.c
1106copyright
1107cat <<EOF
1108
1109#include "defs.h"
1110#include "arch-utils.h"
1111
1112#if GDB_MULTI_ARCH
1113#include "gdbcmd.h"
1114#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1115#else
1116/* Just include everything in sight so that the every old definition
1117 of macro is visible. */
1118#include "gdb_string.h"
1119#include <ctype.h>
1120#include "symtab.h"
1121#include "frame.h"
1122#include "inferior.h"
1123#include "breakpoint.h"
1124#include "gdb_wait.h"
1125#include "gdbcore.h"
1126#include "gdbcmd.h"
1127#include "target.h"
1128#include "gdbthread.h"
1129#include "annotate.h"
1130#include "symfile.h" /* for overlay functions */
1131#endif
1132#include "symcat.h"
1133
1134#include "floatformat.h"
1135
1136#include "gdb_assert.h"
1137#include "gdb-events.h"
1138
1139/* Static function declarations */
1140
1141static void verify_gdbarch (struct gdbarch *gdbarch);
1142static void alloc_gdbarch_data (struct gdbarch *);
1143static void init_gdbarch_data (struct gdbarch *);
1144static void free_gdbarch_data (struct gdbarch *);
1145static void init_gdbarch_swap (struct gdbarch *);
1146static void swapout_gdbarch_swap (struct gdbarch *);
1147static void swapin_gdbarch_swap (struct gdbarch *);
1148
1149/* Convenience macro for allocting typesafe memory. */
1150
1151#ifndef XMALLOC
1152#define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1153#endif
1154
1155
1156/* Non-zero if we want to trace architecture code. */
1157
1158#ifndef GDBARCH_DEBUG
1159#define GDBARCH_DEBUG 0
1160#endif
1161int gdbarch_debug = GDBARCH_DEBUG;
1162
1163EOF
1164
1165# gdbarch open the gdbarch object
1166printf "\n"
1167printf "/* Maintain the struct gdbarch object */\n"
1168printf "\n"
1169printf "struct gdbarch\n"
1170printf "{\n"
1171printf " /* basic architectural information */\n"
1172function_list | while do_read
1173do
1174 if class_is_info_p
1175 then
1176 printf " ${returntype} ${function};\n"
1177 fi
1178done
1179printf "\n"
1180printf " /* target specific vector. */\n"
1181printf " struct gdbarch_tdep *tdep;\n"
1182printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1183printf "\n"
1184printf " /* per-architecture data-pointers */\n"
1185printf " unsigned nr_data;\n"
1186printf " void **data;\n"
1187printf "\n"
1188printf " /* per-architecture swap-regions */\n"
1189printf " struct gdbarch_swap *swap;\n"
1190printf "\n"
1191cat <<EOF
1192 /* Multi-arch values.
1193
1194 When extending this structure you must:
1195
1196 Add the field below.
1197
1198 Declare set/get functions and define the corresponding
1199 macro in gdbarch.h.
1200
1201 gdbarch_alloc(): If zero/NULL is not a suitable default,
1202 initialize the new field.
1203
1204 verify_gdbarch(): Confirm that the target updated the field
1205 correctly.
1206
1207 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1208 field is dumped out
1209
1210 \`\`startup_gdbarch()'': Append an initial value to the static
1211 variable (base values on the host's c-type system).
1212
1213 get_gdbarch(): Implement the set/get functions (probably using
1214 the macro's as shortcuts).
1215
1216 */
1217
1218EOF
1219function_list | while do_read
1220do
1221 if class_is_variable_p
1222 then
1223 printf " ${returntype} ${function};\n"
1224 elif class_is_function_p
1225 then
1226 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1227 fi
1228done
1229printf "};\n"
1230
1231# A pre-initialized vector
1232printf "\n"
1233printf "\n"
1234cat <<EOF
1235/* The default architecture uses host values (for want of a better
1236 choice). */
1237EOF
1238printf "\n"
1239printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1240printf "\n"
1241printf "struct gdbarch startup_gdbarch =\n"
1242printf "{\n"
1243printf " /* basic architecture information */\n"
1244function_list | while do_read
1245do
1246 if class_is_info_p
1247 then
1248 printf " ${staticdefault},\n"
1249 fi
1250done
1251cat <<EOF
1252 /* target specific vector and its dump routine */
1253 NULL, NULL,
1254 /*per-architecture data-pointers and swap regions */
1255 0, NULL, NULL,
1256 /* Multi-arch values */
1257EOF
1258function_list | while do_read
1259do
1260 if class_is_function_p || class_is_variable_p
1261 then
1262 printf " ${staticdefault},\n"
1263 fi
1264done
1265cat <<EOF
1266 /* startup_gdbarch() */
1267};
1268
1269struct gdbarch *current_gdbarch = &startup_gdbarch;
1270
1271/* Do any initialization needed for a non-multiarch configuration
1272 after the _initialize_MODULE functions have been run. */
1273void
1274initialize_non_multiarch ()
1275{
1276 alloc_gdbarch_data (&startup_gdbarch);
1277 init_gdbarch_data (&startup_gdbarch);
1278}
1279EOF
1280
1281# Create a new gdbarch struct
1282printf "\n"
1283printf "\n"
1284cat <<EOF
1285/* Create a new \`\`struct gdbarch'' based on information provided by
1286 \`\`struct gdbarch_info''. */
1287EOF
1288printf "\n"
1289cat <<EOF
1290struct gdbarch *
1291gdbarch_alloc (const struct gdbarch_info *info,
1292 struct gdbarch_tdep *tdep)
1293{
1294 struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
1295 memset (gdbarch, 0, sizeof (*gdbarch));
1296
1297 alloc_gdbarch_data (gdbarch);
1298
1299 gdbarch->tdep = tdep;
1300EOF
1301printf "\n"
1302function_list | while do_read
1303do
1304 if class_is_info_p
1305 then
1306 printf " gdbarch->${function} = info->${function};\n"
1307 fi
1308done
1309printf "\n"
1310printf " /* Force the explicit initialization of these. */\n"
1311function_list | while do_read
1312do
1313 if class_is_function_p || class_is_variable_p
1314 then
1315 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1316 then
1317 printf " gdbarch->${function} = ${predefault};\n"
1318 fi
1319 fi
1320done
1321cat <<EOF
1322 /* gdbarch_alloc() */
1323
1324 return gdbarch;
1325}
1326EOF
1327
1328# Free a gdbarch struct.
1329printf "\n"
1330printf "\n"
1331cat <<EOF
1332/* Free a gdbarch struct. This should never happen in normal
1333 operation --- once you've created a gdbarch, you keep it around.
1334 However, if an architecture's init function encounters an error
1335 building the structure, it may need to clean up a partially
1336 constructed gdbarch. */
1337
1338void
1339gdbarch_free (struct gdbarch *arch)
1340{
1341 gdb_assert (arch != NULL);
1342 free_gdbarch_data (arch);
1343 xfree (arch);
1344}
1345EOF
1346
1347# verify a new architecture
1348printf "\n"
1349printf "\n"
1350printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1351printf "\n"
1352cat <<EOF
1353static void
1354verify_gdbarch (struct gdbarch *gdbarch)
1355{
1356 /* Only perform sanity checks on a multi-arch target. */
1357 if (!GDB_MULTI_ARCH)
1358 return;
1359 /* fundamental */
1360 if (gdbarch->byte_order == 0)
1361 internal_error (__FILE__, __LINE__,
1362 "verify_gdbarch: byte-order unset");
1363 if (gdbarch->bfd_arch_info == NULL)
1364 internal_error (__FILE__, __LINE__,
1365 "verify_gdbarch: bfd_arch_info unset");
1366 /* Check those that need to be defined for the given multi-arch level. */
1367EOF
1368function_list | while do_read
1369do
1370 if class_is_function_p || class_is_variable_p
1371 then
1372 if [ "x${invalid_p}" = "x0" ]
1373 then
1374 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1375 elif class_is_predicate_p
1376 then
1377 printf " /* Skip verify of ${function}, has predicate */\n"
1378 # FIXME: See do_read for potential simplification
1379 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1380 then
1381 printf " if (${invalid_p})\n"
1382 printf " gdbarch->${function} = ${postdefault};\n"
1383 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1384 then
1385 printf " if (gdbarch->${function} == ${predefault})\n"
1386 printf " gdbarch->${function} = ${postdefault};\n"
1387 elif [ -n "${postdefault}" ]
1388 then
1389 printf " if (gdbarch->${function} == 0)\n"
1390 printf " gdbarch->${function} = ${postdefault};\n"
1391 elif [ -n "${invalid_p}" ]
1392 then
1393 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1394 printf " && (${invalid_p}))\n"
1395 printf " internal_error (__FILE__, __LINE__,\n"
1396 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1397 elif [ -n "${predefault}" ]
1398 then
1399 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1400 printf " && (gdbarch->${function} == ${predefault}))\n"
1401 printf " internal_error (__FILE__, __LINE__,\n"
1402 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1403 fi
1404 fi
1405done
1406cat <<EOF
1407}
1408EOF
1409
1410# dump the structure
1411printf "\n"
1412printf "\n"
1413cat <<EOF
1414/* Print out the details of the current architecture. */
1415
1416/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1417 just happens to match the global variable \`\`current_gdbarch''. That
1418 way macros refering to that variable get the local and not the global
1419 version - ulgh. Once everything is parameterised with gdbarch, this
1420 will go away. */
1421
1422void
1423gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1424{
1425 fprintf_unfiltered (file,
1426 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1427 GDB_MULTI_ARCH);
1428EOF
1429function_list | while do_read
1430do
1431 # multiarch functions don't have macros.
1432 class_is_multiarch_p && continue
1433 if [ "x${returntype}" = "xvoid" ]
1434 then
1435 printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
1436 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1437 else
1438 printf "#ifdef ${macro}\n"
1439 fi
1440 if class_is_function_p
1441 then
1442 printf " fprintf_unfiltered (file,\n"
1443 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1444 printf " \"${macro}(${actual})\",\n"
1445 printf " XSTRING (${macro} (${actual})));\n"
1446 else
1447 printf " fprintf_unfiltered (file,\n"
1448 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1449 printf " XSTRING (${macro}));\n"
1450 fi
1451 printf "#endif\n"
1452done
1453function_list | while do_read
1454do
1455 if class_is_multiarch_p
1456 then
1457 printf " if (GDB_MULTI_ARCH)\n"
1458 printf " fprintf_unfiltered (file,\n"
1459 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1460 printf " (long) current_gdbarch->${function});\n"
1461 continue
1462 fi
1463 printf "#ifdef ${macro}\n"
1464 if [ "x${print_p}" = "x()" ]
1465 then
1466 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1467 elif [ "x${print_p}" = "x0" ]
1468 then
1469 printf " /* skip print of ${macro}, print_p == 0. */\n"
1470 elif [ -n "${print_p}" ]
1471 then
1472 printf " if (${print_p})\n"
1473 printf " fprintf_unfiltered (file,\n"
1474 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1475 printf " ${print});\n"
1476 elif class_is_function_p
1477 then
1478 printf " if (GDB_MULTI_ARCH)\n"
1479 printf " fprintf_unfiltered (file,\n"
1480 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1481 printf " (long) current_gdbarch->${function}\n"
1482 printf " /*${macro} ()*/);\n"
1483 else
1484 printf " fprintf_unfiltered (file,\n"
1485 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1486 printf " ${print});\n"
1487 fi
1488 printf "#endif\n"
1489done
1490cat <<EOF
1491 if (current_gdbarch->dump_tdep != NULL)
1492 current_gdbarch->dump_tdep (current_gdbarch, file);
1493}
1494EOF
1495
1496
1497# GET/SET
1498printf "\n"
1499cat <<EOF
1500struct gdbarch_tdep *
1501gdbarch_tdep (struct gdbarch *gdbarch)
1502{
1503 if (gdbarch_debug >= 2)
1504 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1505 return gdbarch->tdep;
1506}
1507EOF
1508printf "\n"
1509function_list | while do_read
1510do
1511 if class_is_predicate_p
1512 then
1513 printf "\n"
1514 printf "int\n"
1515 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1516 printf "{\n"
1517 if [ -n "${valid_p}" ]
1518 then
1519 printf " return ${valid_p};\n"
1520 else
1521 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1522 fi
1523 printf "}\n"
1524 fi
1525 if class_is_function_p
1526 then
1527 printf "\n"
1528 printf "${returntype}\n"
1529 if [ "x${formal}" = "xvoid" ]
1530 then
1531 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1532 else
1533 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1534 fi
1535 printf "{\n"
1536 printf " if (gdbarch->${function} == 0)\n"
1537 printf " internal_error (__FILE__, __LINE__,\n"
1538 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1539 printf " if (gdbarch_debug >= 2)\n"
1540 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1541 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1542 then
1543 if class_is_multiarch_p
1544 then
1545 params="gdbarch"
1546 else
1547 params=""
1548 fi
1549 else
1550 if class_is_multiarch_p
1551 then
1552 params="gdbarch, ${actual}"
1553 else
1554 params="${actual}"
1555 fi
1556 fi
1557 if [ "x${returntype}" = "xvoid" ]
1558 then
1559 printf " gdbarch->${function} (${params});\n"
1560 else
1561 printf " return gdbarch->${function} (${params});\n"
1562 fi
1563 printf "}\n"
1564 printf "\n"
1565 printf "void\n"
1566 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1567 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1568 printf "{\n"
1569 printf " gdbarch->${function} = ${function};\n"
1570 printf "}\n"
1571 elif class_is_variable_p
1572 then
1573 printf "\n"
1574 printf "${returntype}\n"
1575 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1576 printf "{\n"
1577 if [ "x${invalid_p}" = "x0" ]
1578 then
1579 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1580 elif [ -n "${invalid_p}" ]
1581 then
1582 printf " if (${invalid_p})\n"
1583 printf " internal_error (__FILE__, __LINE__,\n"
1584 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1585 elif [ -n "${predefault}" ]
1586 then
1587 printf " if (gdbarch->${function} == ${predefault})\n"
1588 printf " internal_error (__FILE__, __LINE__,\n"
1589 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1590 fi
1591 printf " if (gdbarch_debug >= 2)\n"
1592 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1593 printf " return gdbarch->${function};\n"
1594 printf "}\n"
1595 printf "\n"
1596 printf "void\n"
1597 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1598 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1599 printf "{\n"
1600 printf " gdbarch->${function} = ${function};\n"
1601 printf "}\n"
1602 elif class_is_info_p
1603 then
1604 printf "\n"
1605 printf "${returntype}\n"
1606 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1607 printf "{\n"
1608 printf " if (gdbarch_debug >= 2)\n"
1609 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1610 printf " return gdbarch->${function};\n"
1611 printf "}\n"
1612 fi
1613done
1614
1615# All the trailing guff
1616cat <<EOF
1617
1618
1619/* Keep a registry of per-architecture data-pointers required by GDB
1620 modules. */
1621
1622struct gdbarch_data
1623{
1624 unsigned index;
1625 gdbarch_data_init_ftype *init;
1626 gdbarch_data_free_ftype *free;
1627};
1628
1629struct gdbarch_data_registration
1630{
1631 struct gdbarch_data *data;
1632 struct gdbarch_data_registration *next;
1633};
1634
1635struct gdbarch_data_registry
1636{
1637 unsigned nr;
1638 struct gdbarch_data_registration *registrations;
1639};
1640
1641struct gdbarch_data_registry gdbarch_data_registry =
1642{
1643 0, NULL,
1644};
1645
1646struct gdbarch_data *
1647register_gdbarch_data (gdbarch_data_init_ftype *init,
1648 gdbarch_data_free_ftype *free)
1649{
1650 struct gdbarch_data_registration **curr;
1651 for (curr = &gdbarch_data_registry.registrations;
1652 (*curr) != NULL;
1653 curr = &(*curr)->next);
1654 (*curr) = XMALLOC (struct gdbarch_data_registration);
1655 (*curr)->next = NULL;
1656 (*curr)->data = XMALLOC (struct gdbarch_data);
1657 (*curr)->data->index = gdbarch_data_registry.nr++;
1658 (*curr)->data->init = init;
1659 (*curr)->data->free = free;
1660 return (*curr)->data;
1661}
1662
1663
1664/* Walk through all the registered users initializing each in turn. */
1665
1666static void
1667init_gdbarch_data (struct gdbarch *gdbarch)
1668{
1669 struct gdbarch_data_registration *rego;
1670 for (rego = gdbarch_data_registry.registrations;
1671 rego != NULL;
1672 rego = rego->next)
1673 {
1674 struct gdbarch_data *data = rego->data;
1675 gdb_assert (data->index < gdbarch->nr_data);
1676 if (data->init != NULL)
1677 {
1678 void *pointer = data->init (gdbarch);
1679 set_gdbarch_data (gdbarch, data, pointer);
1680 }
1681 }
1682}
1683
1684/* Create/delete the gdbarch data vector. */
1685
1686static void
1687alloc_gdbarch_data (struct gdbarch *gdbarch)
1688{
1689 gdb_assert (gdbarch->data == NULL);
1690 gdbarch->nr_data = gdbarch_data_registry.nr;
1691 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1692}
1693
1694static void
1695free_gdbarch_data (struct gdbarch *gdbarch)
1696{
1697 struct gdbarch_data_registration *rego;
1698 gdb_assert (gdbarch->data != NULL);
1699 for (rego = gdbarch_data_registry.registrations;
1700 rego != NULL;
1701 rego = rego->next)
1702 {
1703 struct gdbarch_data *data = rego->data;
1704 gdb_assert (data->index < gdbarch->nr_data);
1705 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1706 {
1707 data->free (gdbarch, gdbarch->data[data->index]);
1708 gdbarch->data[data->index] = NULL;
1709 }
1710 }
1711 xfree (gdbarch->data);
1712 gdbarch->data = NULL;
1713}
1714
1715
1716/* Initialize the current value of thee specified per-architecture
1717 data-pointer. */
1718
1719void
1720set_gdbarch_data (struct gdbarch *gdbarch,
1721 struct gdbarch_data *data,
1722 void *pointer)
1723{
1724 gdb_assert (data->index < gdbarch->nr_data);
1725 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1726 data->free (gdbarch, gdbarch->data[data->index]);
1727 gdbarch->data[data->index] = pointer;
1728}
1729
1730/* Return the current value of the specified per-architecture
1731 data-pointer. */
1732
1733void *
1734gdbarch_data (struct gdbarch_data *data)
1735{
1736 gdb_assert (data->index < current_gdbarch->nr_data);
1737 return current_gdbarch->data[data->index];
1738}
1739
1740
1741
1742/* Keep a registry of swapped data required by GDB modules. */
1743
1744struct gdbarch_swap
1745{
1746 void *swap;
1747 struct gdbarch_swap_registration *source;
1748 struct gdbarch_swap *next;
1749};
1750
1751struct gdbarch_swap_registration
1752{
1753 void *data;
1754 unsigned long sizeof_data;
1755 gdbarch_swap_ftype *init;
1756 struct gdbarch_swap_registration *next;
1757};
1758
1759struct gdbarch_swap_registry
1760{
1761 int nr;
1762 struct gdbarch_swap_registration *registrations;
1763};
1764
1765struct gdbarch_swap_registry gdbarch_swap_registry =
1766{
1767 0, NULL,
1768};
1769
1770void
1771register_gdbarch_swap (void *data,
1772 unsigned long sizeof_data,
1773 gdbarch_swap_ftype *init)
1774{
1775 struct gdbarch_swap_registration **rego;
1776 for (rego = &gdbarch_swap_registry.registrations;
1777 (*rego) != NULL;
1778 rego = &(*rego)->next);
1779 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1780 (*rego)->next = NULL;
1781 (*rego)->init = init;
1782 (*rego)->data = data;
1783 (*rego)->sizeof_data = sizeof_data;
1784}
1785
1786
1787static void
1788init_gdbarch_swap (struct gdbarch *gdbarch)
1789{
1790 struct gdbarch_swap_registration *rego;
1791 struct gdbarch_swap **curr = &gdbarch->swap;
1792 for (rego = gdbarch_swap_registry.registrations;
1793 rego != NULL;
1794 rego = rego->next)
1795 {
1796 if (rego->data != NULL)
1797 {
1798 (*curr) = XMALLOC (struct gdbarch_swap);
1799 (*curr)->source = rego;
1800 (*curr)->swap = xmalloc (rego->sizeof_data);
1801 (*curr)->next = NULL;
1802 memset (rego->data, 0, rego->sizeof_data);
1803 curr = &(*curr)->next;
1804 }
1805 if (rego->init != NULL)
1806 rego->init ();
1807 }
1808}
1809
1810static void
1811swapout_gdbarch_swap (struct gdbarch *gdbarch)
1812{
1813 struct gdbarch_swap *curr;
1814 for (curr = gdbarch->swap;
1815 curr != NULL;
1816 curr = curr->next)
1817 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1818}
1819
1820static void
1821swapin_gdbarch_swap (struct gdbarch *gdbarch)
1822{
1823 struct gdbarch_swap *curr;
1824 for (curr = gdbarch->swap;
1825 curr != NULL;
1826 curr = curr->next)
1827 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1828}
1829
1830
1831/* Keep a registry of the architectures known by GDB. */
1832
1833struct gdbarch_registration
1834{
1835 enum bfd_architecture bfd_architecture;
1836 gdbarch_init_ftype *init;
1837 gdbarch_dump_tdep_ftype *dump_tdep;
1838 struct gdbarch_list *arches;
1839 struct gdbarch_registration *next;
1840};
1841
1842static struct gdbarch_registration *gdbarch_registry = NULL;
1843
1844static void
1845append_name (const char ***buf, int *nr, const char *name)
1846{
1847 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1848 (*buf)[*nr] = name;
1849 *nr += 1;
1850}
1851
1852const char **
1853gdbarch_printable_names (void)
1854{
1855 if (GDB_MULTI_ARCH)
1856 {
1857 /* Accumulate a list of names based on the registed list of
1858 architectures. */
1859 enum bfd_architecture a;
1860 int nr_arches = 0;
1861 const char **arches = NULL;
1862 struct gdbarch_registration *rego;
1863 for (rego = gdbarch_registry;
1864 rego != NULL;
1865 rego = rego->next)
1866 {
1867 const struct bfd_arch_info *ap;
1868 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1869 if (ap == NULL)
1870 internal_error (__FILE__, __LINE__,
1871 "gdbarch_architecture_names: multi-arch unknown");
1872 do
1873 {
1874 append_name (&arches, &nr_arches, ap->printable_name);
1875 ap = ap->next;
1876 }
1877 while (ap != NULL);
1878 }
1879 append_name (&arches, &nr_arches, NULL);
1880 return arches;
1881 }
1882 else
1883 /* Just return all the architectures that BFD knows. Assume that
1884 the legacy architecture framework supports them. */
1885 return bfd_arch_list ();
1886}
1887
1888
1889void
1890gdbarch_register (enum bfd_architecture bfd_architecture,
1891 gdbarch_init_ftype *init,
1892 gdbarch_dump_tdep_ftype *dump_tdep)
1893{
1894 struct gdbarch_registration **curr;
1895 const struct bfd_arch_info *bfd_arch_info;
1896 /* Check that BFD recognizes this architecture */
1897 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1898 if (bfd_arch_info == NULL)
1899 {
1900 internal_error (__FILE__, __LINE__,
1901 "gdbarch: Attempt to register unknown architecture (%d)",
1902 bfd_architecture);
1903 }
1904 /* Check that we haven't seen this architecture before */
1905 for (curr = &gdbarch_registry;
1906 (*curr) != NULL;
1907 curr = &(*curr)->next)
1908 {
1909 if (bfd_architecture == (*curr)->bfd_architecture)
1910 internal_error (__FILE__, __LINE__,
1911 "gdbarch: Duplicate registraration of architecture (%s)",
1912 bfd_arch_info->printable_name);
1913 }
1914 /* log it */
1915 if (gdbarch_debug)
1916 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1917 bfd_arch_info->printable_name,
1918 (long) init);
1919 /* Append it */
1920 (*curr) = XMALLOC (struct gdbarch_registration);
1921 (*curr)->bfd_architecture = bfd_architecture;
1922 (*curr)->init = init;
1923 (*curr)->dump_tdep = dump_tdep;
1924 (*curr)->arches = NULL;
1925 (*curr)->next = NULL;
1926 /* When non- multi-arch, install whatever target dump routine we've
1927 been provided - hopefully that routine has been written correctly
1928 and works regardless of multi-arch. */
1929 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1930 && startup_gdbarch.dump_tdep == NULL)
1931 startup_gdbarch.dump_tdep = dump_tdep;
1932}
1933
1934void
1935register_gdbarch_init (enum bfd_architecture bfd_architecture,
1936 gdbarch_init_ftype *init)
1937{
1938 gdbarch_register (bfd_architecture, init, NULL);
1939}
1940
1941
1942/* Look for an architecture using gdbarch_info. Base search on only
1943 BFD_ARCH_INFO and BYTE_ORDER. */
1944
1945struct gdbarch_list *
1946gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1947 const struct gdbarch_info *info)
1948{
1949 for (; arches != NULL; arches = arches->next)
1950 {
1951 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1952 continue;
1953 if (info->byte_order != arches->gdbarch->byte_order)
1954 continue;
1955 return arches;
1956 }
1957 return NULL;
1958}
1959
1960
1961/* Update the current architecture. Return ZERO if the update request
1962 failed. */
1963
1964int
1965gdbarch_update_p (struct gdbarch_info info)
1966{
1967 struct gdbarch *new_gdbarch;
1968 struct gdbarch_list **list;
1969 struct gdbarch_registration *rego;
1970
1971 /* Fill in missing parts of the INFO struct using a number of
1972 sources: \`\`set ...''; INFOabfd supplied; existing target. */
1973
1974 /* \`\`(gdb) set architecture ...'' */
1975 if (info.bfd_arch_info == NULL
1976 && !TARGET_ARCHITECTURE_AUTO)
1977 info.bfd_arch_info = TARGET_ARCHITECTURE;
1978 if (info.bfd_arch_info == NULL
1979 && info.abfd != NULL
1980 && bfd_get_arch (info.abfd) != bfd_arch_unknown
1981 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
1982 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1983 if (info.bfd_arch_info == NULL)
1984 info.bfd_arch_info = TARGET_ARCHITECTURE;
1985
1986 /* \`\`(gdb) set byte-order ...'' */
1987 if (info.byte_order == 0
1988 && !TARGET_BYTE_ORDER_AUTO)
1989 info.byte_order = TARGET_BYTE_ORDER;
1990 /* From the INFO struct. */
1991 if (info.byte_order == 0
1992 && info.abfd != NULL)
1993 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
1994 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
1995 : 0);
1996 /* From the current target. */
1997 if (info.byte_order == 0)
1998 info.byte_order = TARGET_BYTE_ORDER;
1999
2000 /* Must have found some sort of architecture. */
2001 gdb_assert (info.bfd_arch_info != NULL);
2002
2003 if (gdbarch_debug)
2004 {
2005 fprintf_unfiltered (gdb_stdlog,
2006 "gdbarch_update: info.bfd_arch_info %s\n",
2007 (info.bfd_arch_info != NULL
2008 ? info.bfd_arch_info->printable_name
2009 : "(null)"));
2010 fprintf_unfiltered (gdb_stdlog,
2011 "gdbarch_update: info.byte_order %d (%s)\n",
2012 info.byte_order,
2013 (info.byte_order == BIG_ENDIAN ? "big"
2014 : info.byte_order == LITTLE_ENDIAN ? "little"
2015 : "default"));
2016 fprintf_unfiltered (gdb_stdlog,
2017 "gdbarch_update: info.abfd 0x%lx\n",
2018 (long) info.abfd);
2019 fprintf_unfiltered (gdb_stdlog,
2020 "gdbarch_update: info.tdep_info 0x%lx\n",
2021 (long) info.tdep_info);
2022 }
2023
2024 /* Find the target that knows about this architecture. */
2025 for (rego = gdbarch_registry;
2026 rego != NULL;
2027 rego = rego->next)
2028 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2029 break;
2030 if (rego == NULL)
2031 {
2032 if (gdbarch_debug)
2033 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2034 return 0;
2035 }
2036
2037 /* Ask the target for a replacement architecture. */
2038 new_gdbarch = rego->init (info, rego->arches);
2039
2040 /* Did the target like it? No. Reject the change. */
2041 if (new_gdbarch == NULL)
2042 {
2043 if (gdbarch_debug)
2044 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2045 return 0;
2046 }
2047
2048 /* Did the architecture change? No. Do nothing. */
2049 if (current_gdbarch == new_gdbarch)
2050 {
2051 if (gdbarch_debug)
2052 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2053 (long) new_gdbarch,
2054 new_gdbarch->bfd_arch_info->printable_name);
2055 return 1;
2056 }
2057
2058 /* Swap all data belonging to the old target out */
2059 swapout_gdbarch_swap (current_gdbarch);
2060
2061 /* Is this a pre-existing architecture? Yes. Swap it in. */
2062 for (list = &rego->arches;
2063 (*list) != NULL;
2064 list = &(*list)->next)
2065 {
2066 if ((*list)->gdbarch == new_gdbarch)
2067 {
2068 if (gdbarch_debug)
2069 fprintf_unfiltered (gdb_stdlog,
2070 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2071 (long) new_gdbarch,
2072 new_gdbarch->bfd_arch_info->printable_name);
2073 current_gdbarch = new_gdbarch;
2074 swapin_gdbarch_swap (new_gdbarch);
2075 architecture_changed_event ();
2076 return 1;
2077 }
2078 }
2079
2080 /* Append this new architecture to this targets list. */
2081 (*list) = XMALLOC (struct gdbarch_list);
2082 (*list)->next = NULL;
2083 (*list)->gdbarch = new_gdbarch;
2084
2085 /* Switch to this new architecture. Dump it out. */
2086 current_gdbarch = new_gdbarch;
2087 if (gdbarch_debug)
2088 {
2089 fprintf_unfiltered (gdb_stdlog,
2090 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2091 (long) new_gdbarch,
2092 new_gdbarch->bfd_arch_info->printable_name);
2093 }
2094
2095 /* Check that the newly installed architecture is valid. Plug in
2096 any post init values. */
2097 new_gdbarch->dump_tdep = rego->dump_tdep;
2098 verify_gdbarch (new_gdbarch);
2099
2100 /* Initialize the per-architecture memory (swap) areas.
2101 CURRENT_GDBARCH must be update before these modules are
2102 called. */
2103 init_gdbarch_swap (new_gdbarch);
2104
2105 /* Initialize the per-architecture data-pointer of all parties that
2106 registered an interest in this architecture. CURRENT_GDBARCH
2107 must be updated before these modules are called. */
2108 init_gdbarch_data (new_gdbarch);
2109 architecture_changed_event ();
2110
2111 if (gdbarch_debug)
2112 gdbarch_dump (current_gdbarch, gdb_stdlog);
2113
2114 return 1;
2115}
2116
2117
2118/* Disassembler */
2119
2120/* Pointer to the target-dependent disassembly function. */
2121int (*tm_print_insn) (bfd_vma, disassemble_info *);
2122disassemble_info tm_print_insn_info;
2123
2124
2125extern void _initialize_gdbarch (void);
2126
2127void
2128_initialize_gdbarch (void)
2129{
2130 struct cmd_list_element *c;
2131
2132 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2133 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2134 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2135 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2136 tm_print_insn_info.print_address_func = dis_asm_print_address;
2137
2138 add_show_from_set (add_set_cmd ("arch",
2139 class_maintenance,
2140 var_zinteger,
2141 (char *)&gdbarch_debug,
2142 "Set architecture debugging.\\n\\
2143When non-zero, architecture debugging is enabled.", &setdebuglist),
2144 &showdebuglist);
2145 c = add_set_cmd ("archdebug",
2146 class_maintenance,
2147 var_zinteger,
2148 (char *)&gdbarch_debug,
2149 "Set architecture debugging.\\n\\
2150When non-zero, architecture debugging is enabled.", &setlist);
2151
2152 deprecate_cmd (c, "set debug arch");
2153 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2154}
2155EOF
2156
2157# close things off
2158exec 1>&2
2159#../move-if-change new-gdbarch.c gdbarch.c
2160compare_new gdbarch.c
This page took 0.06451 seconds and 4 git commands to generate.