2008-08-21 Sterling Augustine <sterling@tensilica.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
... / ...
CommitLineData
1#!/bin/sh -u
2
3# Architecture commands for GDB, the GNU debugger.
4#
5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6# 2008 Free Software Foundation, Inc.
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
12# the Free Software Foundation; either version 3 of the License, or
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
21# along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23# Make certain that the script is not running in an internationalized
24# environment.
25LANG=c ; export LANG
26LC_ALL=c ; export LC_ALL
27
28
29compare_new ()
30{
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47do_read ()
48{
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152}
153
154
155fallback_default_p ()
156{
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159}
160
161class_is_variable_p ()
162{
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167}
168
169class_is_function_p ()
170{
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183}
184
185class_is_predicate_p ()
186{
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191}
192
193class_is_info_p ()
194{
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199}
200
201
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
322 # (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332done
333
334
335function_list ()
336{
337 # See below (DOCO) for description of each field
338 cat <<EOF
339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340#
341i:int:byte_order:::BFD_ENDIAN_BIG
342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343#
344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345#
346i:const struct target_desc *:target_desc:::::::paddr_d ((long) gdbarch->target_desc)
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355#
356# Number of bits in a short or unsigned short for the target machine.
357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358# Number of bits in an int or unsigned int for the target machine.
359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360# Number of bits in a long or unsigned long for the target machine.
361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362# Number of bits in a long long or unsigned long long for the target
363# machine.
364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
369# Each format describes both the big and little endian layouts (if
370# useful).
371
372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382# / addr_bit will be set from it.
383#
384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
387#
388# ptr_bit is the size of a pointer on the target
389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390# addr_bit is the size of a target address as represented in gdb
391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392#
393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
394v:int:char_signed:::1:-1:1
395#
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402#
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405#
406v:int:num_regs:::0:-1
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
411v:int:num_pseudo_regs:::0:0::0
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
415# all (-1).
416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425# Convert from an sdb register number to an internal gdb register number.
426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429m:const char *:register_name:int regnr:regnr::0
430
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
434M:struct type *:register_type:int reg_nr:reg_nr
435
436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439# deprecated_fp_regnum.
440v:int:deprecated_fp_regnum:::-1:-1::0
441
442# See gdbint.texinfo. See infcall.c.
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455# setjmp/longjmp support.
456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457#
458v:int:believe_pcc_promotion:::::::
459#
460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468#
469f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494# A function can be addressed by either it's "pointer" (possibly a
495# descriptor address) or "entry point" (first executable instruction).
496# The method "convert_from_func_ptr_addr" converting the former to the
497# latter. gdbarch_deprecated_function_start_offset is being used to implement
498# a simplified subset of that functionality - the function's address
499# corresponds to the "function pointer" and the function's start
500# corresponds to the "function entry point" - and hence is redundant.
501
502v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504# Return the remote protocol register number associated with this
505# register. Normally the identity mapping.
506m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508# Fetch the target specific address used to represent a load module.
509F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510#
511v:CORE_ADDR:frame_args_skip:::0:::0
512M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515# frame-base. Enable frame-base before frame-unwind.
516F:int:frame_num_args:struct frame_info *frame:frame
517#
518M:CORE_ADDR:frame_align:CORE_ADDR address:address
519m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520v:int:frame_red_zone_size
521#
522m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523# On some machines there are bits in addresses which are not really
524# part of the address, but are used by the kernel, the hardware, etc.
525# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526# we get a "real" address such as one would find in a symbol table.
527# This is used only for addresses of instructions, and even then I'm
528# not sure it's used in all contexts. It exists to deal with there
529# being a few stray bits in the PC which would mislead us, not as some
530# sort of generic thing to handle alignment or segmentation (it's
531# possible it should be in TARGET_READ_PC instead).
532f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533# It is not at all clear why gdbarch_smash_text_address is not folded into
534# gdbarch_addr_bits_remove.
535f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537# FIXME/cagney/2001-01-18: This should be split in two. A target method that
538# indicates if the target needs software single step. An ISA method to
539# implement it.
540#
541# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542# breakpoints using the breakpoint system instead of blatting memory directly
543# (as with rs6000).
544#
545# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546# target can single step. If not, then implement single step using breakpoints.
547#
548# A return value of 1 means that the software_single_step breakpoints
549# were inserted; 0 means they were not.
550F:int:software_single_step:struct frame_info *frame:frame
551
552# Return non-zero if the processor is executing a delay slot and a
553# further single-step is needed before the instruction finishes.
554M:int:single_step_through_delay:struct frame_info *frame:frame
555# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556# disassembler. Perhaps objdump can handle it?
557f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562# evaluates non-zero, this is the address where the debugger will place
563# a step-resume breakpoint to get us past the dynamic linker.
564m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565# Some systems also have trampoline code for returning from shared libs.
566f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568# A target might have problems with watchpoints as soon as the stack
569# frame of the current function has been destroyed. This mostly happens
570# as the first action in a funtion's epilogue. in_function_epilogue_p()
571# is defined to return a non-zero value if either the given addr is one
572# instruction after the stack destroying instruction up to the trailing
573# return instruction or if we can figure out that the stack frame has
574# already been invalidated regardless of the value of addr. Targets
575# which don't suffer from that problem could just let this functionality
576# untouched.
577m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578# Given a vector of command-line arguments, return a newly allocated
579# string which, when passed to the create_inferior function, will be
580# parsed (on Unix systems, by the shell) to yield the same vector.
581# This function should call error() if the argument vector is not
582# representable for this target or if this target does not support
583# command-line arguments.
584# ARGC is the number of elements in the vector.
585# ARGV is an array of strings, one per argument.
586m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
587f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
588f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
589v:const char *:name_of_malloc:::"malloc":"malloc"::0:gdbarch->name_of_malloc
590v:int:cannot_step_breakpoint:::0:0::0
591v:int:have_nonsteppable_watchpoint:::0:0::0
592F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
593M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
594M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
595# Is a register in a group
596m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
597# Fetch the pointer to the ith function argument.
598F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
599
600# Return the appropriate register set for a core file section with
601# name SECT_NAME and size SECT_SIZE.
602M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
603
604# Supported register notes in a core file.
605v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
606
607# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
608# core file into buffer READBUF with length LEN.
609M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
610
611# If the elements of C++ vtables are in-place function descriptors rather
612# than normal function pointers (which may point to code or a descriptor),
613# set this to one.
614v:int:vtable_function_descriptors:::0:0::0
615
616# Set if the least significant bit of the delta is used instead of the least
617# significant bit of the pfn for pointers to virtual member functions.
618v:int:vbit_in_delta:::0:0::0
619
620# Advance PC to next instruction in order to skip a permanent breakpoint.
621F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
622
623# The maximum length of an instruction on this architecture.
624V:ULONGEST:max_insn_length:::0:0
625
626# Copy the instruction at FROM to TO, and make any adjustments
627# necessary to single-step it at that address.
628#
629# REGS holds the state the thread's registers will have before
630# executing the copied instruction; the PC in REGS will refer to FROM,
631# not the copy at TO. The caller should update it to point at TO later.
632#
633# Return a pointer to data of the architecture's choice to be passed
634# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
635# the instruction's effects have been completely simulated, with the
636# resulting state written back to REGS.
637#
638# For a general explanation of displaced stepping and how GDB uses it,
639# see the comments in infrun.c.
640#
641# The TO area is only guaranteed to have space for
642# gdbarch_max_insn_length (arch) bytes, so this function must not
643# write more bytes than that to that area.
644#
645# If you do not provide this function, GDB assumes that the
646# architecture does not support displaced stepping.
647#
648# If your architecture doesn't need to adjust instructions before
649# single-stepping them, consider using simple_displaced_step_copy_insn
650# here.
651M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
652
653# Fix up the state resulting from successfully single-stepping a
654# displaced instruction, to give the result we would have gotten from
655# stepping the instruction in its original location.
656#
657# REGS is the register state resulting from single-stepping the
658# displaced instruction.
659#
660# CLOSURE is the result from the matching call to
661# gdbarch_displaced_step_copy_insn.
662#
663# If you provide gdbarch_displaced_step_copy_insn.but not this
664# function, then GDB assumes that no fixup is needed after
665# single-stepping the instruction.
666#
667# For a general explanation of displaced stepping and how GDB uses it,
668# see the comments in infrun.c.
669M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
670
671# Free a closure returned by gdbarch_displaced_step_copy_insn.
672#
673# If you provide gdbarch_displaced_step_copy_insn, you must provide
674# this function as well.
675#
676# If your architecture uses closures that don't need to be freed, then
677# you can use simple_displaced_step_free_closure here.
678#
679# For a general explanation of displaced stepping and how GDB uses it,
680# see the comments in infrun.c.
681m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
682
683# Return the address of an appropriate place to put displaced
684# instructions while we step over them. There need only be one such
685# place, since we're only stepping one thread over a breakpoint at a
686# time.
687#
688# For a general explanation of displaced stepping and how GDB uses it,
689# see the comments in infrun.c.
690m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
691
692# Refresh overlay mapped state for section OSECT.
693F:void:overlay_update:struct obj_section *osect:osect
694
695M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
696
697# Handle special encoding of static variables in stabs debug info.
698F:char *:static_transform_name:char *name:name
699# Set if the address in N_SO or N_FUN stabs may be zero.
700v:int:sofun_address_maybe_missing:::0:0::0
701
702# Signal translation: translate inferior's signal (host's) number into
703# GDB's representation.
704m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
705# Signal translation: translate GDB's signal number into inferior's host
706# signal number.
707m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
708
709# Record architecture-specific information from the symbol table.
710M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
711EOF
712}
713
714#
715# The .log file
716#
717exec > new-gdbarch.log
718function_list | while do_read
719do
720 cat <<EOF
721${class} ${returntype} ${function} ($formal)
722EOF
723 for r in ${read}
724 do
725 eval echo \"\ \ \ \ ${r}=\${${r}}\"
726 done
727 if class_is_predicate_p && fallback_default_p
728 then
729 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
730 kill $$
731 exit 1
732 fi
733 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
734 then
735 echo "Error: postdefault is useless when invalid_p=0" 1>&2
736 kill $$
737 exit 1
738 fi
739 if class_is_multiarch_p
740 then
741 if class_is_predicate_p ; then :
742 elif test "x${predefault}" = "x"
743 then
744 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
745 kill $$
746 exit 1
747 fi
748 fi
749 echo ""
750done
751
752exec 1>&2
753compare_new gdbarch.log
754
755
756copyright ()
757{
758cat <<EOF
759/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
760
761/* Dynamic architecture support for GDB, the GNU debugger.
762
763 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
764 Free Software Foundation, Inc.
765
766 This file is part of GDB.
767
768 This program is free software; you can redistribute it and/or modify
769 it under the terms of the GNU General Public License as published by
770 the Free Software Foundation; either version 3 of the License, or
771 (at your option) any later version.
772
773 This program is distributed in the hope that it will be useful,
774 but WITHOUT ANY WARRANTY; without even the implied warranty of
775 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
776 GNU General Public License for more details.
777
778 You should have received a copy of the GNU General Public License
779 along with this program. If not, see <http://www.gnu.org/licenses/>. */
780
781/* This file was created with the aid of \`\`gdbarch.sh''.
782
783 The Bourne shell script \`\`gdbarch.sh'' creates the files
784 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
785 against the existing \`\`gdbarch.[hc]''. Any differences found
786 being reported.
787
788 If editing this file, please also run gdbarch.sh and merge any
789 changes into that script. Conversely, when making sweeping changes
790 to this file, modifying gdbarch.sh and using its output may prove
791 easier. */
792
793EOF
794}
795
796#
797# The .h file
798#
799
800exec > new-gdbarch.h
801copyright
802cat <<EOF
803#ifndef GDBARCH_H
804#define GDBARCH_H
805
806struct floatformat;
807struct ui_file;
808struct frame_info;
809struct value;
810struct objfile;
811struct obj_section;
812struct minimal_symbol;
813struct regcache;
814struct reggroup;
815struct regset;
816struct disassemble_info;
817struct target_ops;
818struct obstack;
819struct bp_target_info;
820struct target_desc;
821struct displaced_step_closure;
822struct core_regset_section;
823
824extern struct gdbarch *current_gdbarch;
825EOF
826
827# function typedef's
828printf "\n"
829printf "\n"
830printf "/* The following are pre-initialized by GDBARCH. */\n"
831function_list | while do_read
832do
833 if class_is_info_p
834 then
835 printf "\n"
836 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
837 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
838 fi
839done
840
841# function typedef's
842printf "\n"
843printf "\n"
844printf "/* The following are initialized by the target dependent code. */\n"
845function_list | while do_read
846do
847 if [ -n "${comment}" ]
848 then
849 echo "${comment}" | sed \
850 -e '2 s,#,/*,' \
851 -e '3,$ s,#, ,' \
852 -e '$ s,$, */,'
853 fi
854
855 if class_is_predicate_p
856 then
857 printf "\n"
858 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
859 fi
860 if class_is_variable_p
861 then
862 printf "\n"
863 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
864 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
865 fi
866 if class_is_function_p
867 then
868 printf "\n"
869 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
870 then
871 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
872 elif class_is_multiarch_p
873 then
874 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
875 else
876 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
877 fi
878 if [ "x${formal}" = "xvoid" ]
879 then
880 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
881 else
882 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
883 fi
884 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
885 fi
886done
887
888# close it off
889cat <<EOF
890
891extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
892
893
894/* Mechanism for co-ordinating the selection of a specific
895 architecture.
896
897 GDB targets (*-tdep.c) can register an interest in a specific
898 architecture. Other GDB components can register a need to maintain
899 per-architecture data.
900
901 The mechanisms below ensures that there is only a loose connection
902 between the set-architecture command and the various GDB
903 components. Each component can independently register their need
904 to maintain architecture specific data with gdbarch.
905
906 Pragmatics:
907
908 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
909 didn't scale.
910
911 The more traditional mega-struct containing architecture specific
912 data for all the various GDB components was also considered. Since
913 GDB is built from a variable number of (fairly independent)
914 components it was determined that the global aproach was not
915 applicable. */
916
917
918/* Register a new architectural family with GDB.
919
920 Register support for the specified ARCHITECTURE with GDB. When
921 gdbarch determines that the specified architecture has been
922 selected, the corresponding INIT function is called.
923
924 --
925
926 The INIT function takes two parameters: INFO which contains the
927 information available to gdbarch about the (possibly new)
928 architecture; ARCHES which is a list of the previously created
929 \`\`struct gdbarch'' for this architecture.
930
931 The INFO parameter is, as far as possible, be pre-initialized with
932 information obtained from INFO.ABFD or the global defaults.
933
934 The ARCHES parameter is a linked list (sorted most recently used)
935 of all the previously created architures for this architecture
936 family. The (possibly NULL) ARCHES->gdbarch can used to access
937 values from the previously selected architecture for this
938 architecture family. The global \`\`current_gdbarch'' shall not be
939 used.
940
941 The INIT function shall return any of: NULL - indicating that it
942 doesn't recognize the selected architecture; an existing \`\`struct
943 gdbarch'' from the ARCHES list - indicating that the new
944 architecture is just a synonym for an earlier architecture (see
945 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
946 - that describes the selected architecture (see gdbarch_alloc()).
947
948 The DUMP_TDEP function shall print out all target specific values.
949 Care should be taken to ensure that the function works in both the
950 multi-arch and non- multi-arch cases. */
951
952struct gdbarch_list
953{
954 struct gdbarch *gdbarch;
955 struct gdbarch_list *next;
956};
957
958struct gdbarch_info
959{
960 /* Use default: NULL (ZERO). */
961 const struct bfd_arch_info *bfd_arch_info;
962
963 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
964 int byte_order;
965
966 int byte_order_for_code;
967
968 /* Use default: NULL (ZERO). */
969 bfd *abfd;
970
971 /* Use default: NULL (ZERO). */
972 struct gdbarch_tdep_info *tdep_info;
973
974 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
975 enum gdb_osabi osabi;
976
977 /* Use default: NULL (ZERO). */
978 const struct target_desc *target_desc;
979};
980
981typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
982typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
983
984/* DEPRECATED - use gdbarch_register() */
985extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
986
987extern void gdbarch_register (enum bfd_architecture architecture,
988 gdbarch_init_ftype *,
989 gdbarch_dump_tdep_ftype *);
990
991
992/* Return a freshly allocated, NULL terminated, array of the valid
993 architecture names. Since architectures are registered during the
994 _initialize phase this function only returns useful information
995 once initialization has been completed. */
996
997extern const char **gdbarch_printable_names (void);
998
999
1000/* Helper function. Search the list of ARCHES for a GDBARCH that
1001 matches the information provided by INFO. */
1002
1003extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1004
1005
1006/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1007 basic initialization using values obtained from the INFO and TDEP
1008 parameters. set_gdbarch_*() functions are called to complete the
1009 initialization of the object. */
1010
1011extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1012
1013
1014/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1015 It is assumed that the caller freeds the \`\`struct
1016 gdbarch_tdep''. */
1017
1018extern void gdbarch_free (struct gdbarch *);
1019
1020
1021/* Helper function. Allocate memory from the \`\`struct gdbarch''
1022 obstack. The memory is freed when the corresponding architecture
1023 is also freed. */
1024
1025extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1026#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1027#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1028
1029
1030/* Helper function. Force an update of the current architecture.
1031
1032 The actual architecture selected is determined by INFO, \`\`(gdb) set
1033 architecture'' et.al., the existing architecture and BFD's default
1034 architecture. INFO should be initialized to zero and then selected
1035 fields should be updated.
1036
1037 Returns non-zero if the update succeeds */
1038
1039extern int gdbarch_update_p (struct gdbarch_info info);
1040
1041
1042/* Helper function. Find an architecture matching info.
1043
1044 INFO should be initialized using gdbarch_info_init, relevant fields
1045 set, and then finished using gdbarch_info_fill.
1046
1047 Returns the corresponding architecture, or NULL if no matching
1048 architecture was found. "current_gdbarch" is not updated. */
1049
1050extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1051
1052
1053/* Helper function. Set the global "current_gdbarch" to "gdbarch".
1054
1055 FIXME: kettenis/20031124: Of the functions that follow, only
1056 gdbarch_from_bfd is supposed to survive. The others will
1057 dissappear since in the future GDB will (hopefully) be truly
1058 multi-arch. However, for now we're still stuck with the concept of
1059 a single active architecture. */
1060
1061extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1062
1063
1064/* Register per-architecture data-pointer.
1065
1066 Reserve space for a per-architecture data-pointer. An identifier
1067 for the reserved data-pointer is returned. That identifer should
1068 be saved in a local static variable.
1069
1070 Memory for the per-architecture data shall be allocated using
1071 gdbarch_obstack_zalloc. That memory will be deleted when the
1072 corresponding architecture object is deleted.
1073
1074 When a previously created architecture is re-selected, the
1075 per-architecture data-pointer for that previous architecture is
1076 restored. INIT() is not re-called.
1077
1078 Multiple registrarants for any architecture are allowed (and
1079 strongly encouraged). */
1080
1081struct gdbarch_data;
1082
1083typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1084extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1085typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1086extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1087extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1088 struct gdbarch_data *data,
1089 void *pointer);
1090
1091extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1092
1093
1094/* Set the dynamic target-system-dependent parameters (architecture,
1095 byte-order, ...) using information found in the BFD */
1096
1097extern void set_gdbarch_from_file (bfd *);
1098
1099
1100/* Initialize the current architecture to the "first" one we find on
1101 our list. */
1102
1103extern void initialize_current_architecture (void);
1104
1105/* gdbarch trace variable */
1106extern int gdbarch_debug;
1107
1108extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1109
1110#endif
1111EOF
1112exec 1>&2
1113#../move-if-change new-gdbarch.h gdbarch.h
1114compare_new gdbarch.h
1115
1116
1117#
1118# C file
1119#
1120
1121exec > new-gdbarch.c
1122copyright
1123cat <<EOF
1124
1125#include "defs.h"
1126#include "arch-utils.h"
1127
1128#include "gdbcmd.h"
1129#include "inferior.h"
1130#include "symcat.h"
1131
1132#include "floatformat.h"
1133
1134#include "gdb_assert.h"
1135#include "gdb_string.h"
1136#include "reggroups.h"
1137#include "osabi.h"
1138#include "gdb_obstack.h"
1139#include "observer.h"
1140
1141/* Static function declarations */
1142
1143static void alloc_gdbarch_data (struct gdbarch *);
1144
1145/* Non-zero if we want to trace architecture code. */
1146
1147#ifndef GDBARCH_DEBUG
1148#define GDBARCH_DEBUG 0
1149#endif
1150int gdbarch_debug = GDBARCH_DEBUG;
1151static void
1152show_gdbarch_debug (struct ui_file *file, int from_tty,
1153 struct cmd_list_element *c, const char *value)
1154{
1155 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1156}
1157
1158static const char *
1159pformat (const struct floatformat **format)
1160{
1161 if (format == NULL)
1162 return "(null)";
1163 else
1164 /* Just print out one of them - this is only for diagnostics. */
1165 return format[0]->name;
1166}
1167
1168EOF
1169
1170# gdbarch open the gdbarch object
1171printf "\n"
1172printf "/* Maintain the struct gdbarch object */\n"
1173printf "\n"
1174printf "struct gdbarch\n"
1175printf "{\n"
1176printf " /* Has this architecture been fully initialized? */\n"
1177printf " int initialized_p;\n"
1178printf "\n"
1179printf " /* An obstack bound to the lifetime of the architecture. */\n"
1180printf " struct obstack *obstack;\n"
1181printf "\n"
1182printf " /* basic architectural information */\n"
1183function_list | while do_read
1184do
1185 if class_is_info_p
1186 then
1187 printf " ${returntype} ${function};\n"
1188 fi
1189done
1190printf "\n"
1191printf " /* target specific vector. */\n"
1192printf " struct gdbarch_tdep *tdep;\n"
1193printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1194printf "\n"
1195printf " /* per-architecture data-pointers */\n"
1196printf " unsigned nr_data;\n"
1197printf " void **data;\n"
1198printf "\n"
1199printf " /* per-architecture swap-regions */\n"
1200printf " struct gdbarch_swap *swap;\n"
1201printf "\n"
1202cat <<EOF
1203 /* Multi-arch values.
1204
1205 When extending this structure you must:
1206
1207 Add the field below.
1208
1209 Declare set/get functions and define the corresponding
1210 macro in gdbarch.h.
1211
1212 gdbarch_alloc(): If zero/NULL is not a suitable default,
1213 initialize the new field.
1214
1215 verify_gdbarch(): Confirm that the target updated the field
1216 correctly.
1217
1218 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1219 field is dumped out
1220
1221 \`\`startup_gdbarch()'': Append an initial value to the static
1222 variable (base values on the host's c-type system).
1223
1224 get_gdbarch(): Implement the set/get functions (probably using
1225 the macro's as shortcuts).
1226
1227 */
1228
1229EOF
1230function_list | while do_read
1231do
1232 if class_is_variable_p
1233 then
1234 printf " ${returntype} ${function};\n"
1235 elif class_is_function_p
1236 then
1237 printf " gdbarch_${function}_ftype *${function};\n"
1238 fi
1239done
1240printf "};\n"
1241
1242# A pre-initialized vector
1243printf "\n"
1244printf "\n"
1245cat <<EOF
1246/* The default architecture uses host values (for want of a better
1247 choice). */
1248EOF
1249printf "\n"
1250printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1251printf "\n"
1252printf "struct gdbarch startup_gdbarch =\n"
1253printf "{\n"
1254printf " 1, /* Always initialized. */\n"
1255printf " NULL, /* The obstack. */\n"
1256printf " /* basic architecture information */\n"
1257function_list | while do_read
1258do
1259 if class_is_info_p
1260 then
1261 printf " ${staticdefault}, /* ${function} */\n"
1262 fi
1263done
1264cat <<EOF
1265 /* target specific vector and its dump routine */
1266 NULL, NULL,
1267 /*per-architecture data-pointers and swap regions */
1268 0, NULL, NULL,
1269 /* Multi-arch values */
1270EOF
1271function_list | while do_read
1272do
1273 if class_is_function_p || class_is_variable_p
1274 then
1275 printf " ${staticdefault}, /* ${function} */\n"
1276 fi
1277done
1278cat <<EOF
1279 /* startup_gdbarch() */
1280};
1281
1282struct gdbarch *current_gdbarch = &startup_gdbarch;
1283EOF
1284
1285# Create a new gdbarch struct
1286cat <<EOF
1287
1288/* Create a new \`\`struct gdbarch'' based on information provided by
1289 \`\`struct gdbarch_info''. */
1290EOF
1291printf "\n"
1292cat <<EOF
1293struct gdbarch *
1294gdbarch_alloc (const struct gdbarch_info *info,
1295 struct gdbarch_tdep *tdep)
1296{
1297 struct gdbarch *gdbarch;
1298
1299 /* Create an obstack for allocating all the per-architecture memory,
1300 then use that to allocate the architecture vector. */
1301 struct obstack *obstack = XMALLOC (struct obstack);
1302 obstack_init (obstack);
1303 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1304 memset (gdbarch, 0, sizeof (*gdbarch));
1305 gdbarch->obstack = obstack;
1306
1307 alloc_gdbarch_data (gdbarch);
1308
1309 gdbarch->tdep = tdep;
1310EOF
1311printf "\n"
1312function_list | while do_read
1313do
1314 if class_is_info_p
1315 then
1316 printf " gdbarch->${function} = info->${function};\n"
1317 fi
1318done
1319printf "\n"
1320printf " /* Force the explicit initialization of these. */\n"
1321function_list | while do_read
1322do
1323 if class_is_function_p || class_is_variable_p
1324 then
1325 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1326 then
1327 printf " gdbarch->${function} = ${predefault};\n"
1328 fi
1329 fi
1330done
1331cat <<EOF
1332 /* gdbarch_alloc() */
1333
1334 return gdbarch;
1335}
1336EOF
1337
1338# Free a gdbarch struct.
1339printf "\n"
1340printf "\n"
1341cat <<EOF
1342/* Allocate extra space using the per-architecture obstack. */
1343
1344void *
1345gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1346{
1347 void *data = obstack_alloc (arch->obstack, size);
1348 memset (data, 0, size);
1349 return data;
1350}
1351
1352
1353/* Free a gdbarch struct. This should never happen in normal
1354 operation --- once you've created a gdbarch, you keep it around.
1355 However, if an architecture's init function encounters an error
1356 building the structure, it may need to clean up a partially
1357 constructed gdbarch. */
1358
1359void
1360gdbarch_free (struct gdbarch *arch)
1361{
1362 struct obstack *obstack;
1363 gdb_assert (arch != NULL);
1364 gdb_assert (!arch->initialized_p);
1365 obstack = arch->obstack;
1366 obstack_free (obstack, 0); /* Includes the ARCH. */
1367 xfree (obstack);
1368}
1369EOF
1370
1371# verify a new architecture
1372cat <<EOF
1373
1374
1375/* Ensure that all values in a GDBARCH are reasonable. */
1376
1377static void
1378verify_gdbarch (struct gdbarch *gdbarch)
1379{
1380 struct ui_file *log;
1381 struct cleanup *cleanups;
1382 long dummy;
1383 char *buf;
1384 log = mem_fileopen ();
1385 cleanups = make_cleanup_ui_file_delete (log);
1386 /* fundamental */
1387 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1388 fprintf_unfiltered (log, "\n\tbyte-order");
1389 if (gdbarch->bfd_arch_info == NULL)
1390 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1391 /* Check those that need to be defined for the given multi-arch level. */
1392EOF
1393function_list | while do_read
1394do
1395 if class_is_function_p || class_is_variable_p
1396 then
1397 if [ "x${invalid_p}" = "x0" ]
1398 then
1399 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1400 elif class_is_predicate_p
1401 then
1402 printf " /* Skip verify of ${function}, has predicate */\n"
1403 # FIXME: See do_read for potential simplification
1404 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1405 then
1406 printf " if (${invalid_p})\n"
1407 printf " gdbarch->${function} = ${postdefault};\n"
1408 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1409 then
1410 printf " if (gdbarch->${function} == ${predefault})\n"
1411 printf " gdbarch->${function} = ${postdefault};\n"
1412 elif [ -n "${postdefault}" ]
1413 then
1414 printf " if (gdbarch->${function} == 0)\n"
1415 printf " gdbarch->${function} = ${postdefault};\n"
1416 elif [ -n "${invalid_p}" ]
1417 then
1418 printf " if (${invalid_p})\n"
1419 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1420 elif [ -n "${predefault}" ]
1421 then
1422 printf " if (gdbarch->${function} == ${predefault})\n"
1423 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1424 fi
1425 fi
1426done
1427cat <<EOF
1428 buf = ui_file_xstrdup (log, &dummy);
1429 make_cleanup (xfree, buf);
1430 if (strlen (buf) > 0)
1431 internal_error (__FILE__, __LINE__,
1432 _("verify_gdbarch: the following are invalid ...%s"),
1433 buf);
1434 do_cleanups (cleanups);
1435}
1436EOF
1437
1438# dump the structure
1439printf "\n"
1440printf "\n"
1441cat <<EOF
1442/* Print out the details of the current architecture. */
1443
1444void
1445gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1446{
1447 const char *gdb_nm_file = "<not-defined>";
1448#if defined (GDB_NM_FILE)
1449 gdb_nm_file = GDB_NM_FILE;
1450#endif
1451 fprintf_unfiltered (file,
1452 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1453 gdb_nm_file);
1454EOF
1455function_list | sort -t: -k 3 | while do_read
1456do
1457 # First the predicate
1458 if class_is_predicate_p
1459 then
1460 printf " fprintf_unfiltered (file,\n"
1461 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1462 printf " gdbarch_${function}_p (gdbarch));\n"
1463 fi
1464 # Print the corresponding value.
1465 if class_is_function_p
1466 then
1467 printf " fprintf_unfiltered (file,\n"
1468 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1469 printf " (long) gdbarch->${function});\n"
1470 else
1471 # It is a variable
1472 case "${print}:${returntype}" in
1473 :CORE_ADDR )
1474 fmt="0x%s"
1475 print="paddr_nz (gdbarch->${function})"
1476 ;;
1477 :* )
1478 fmt="%s"
1479 print="paddr_d (gdbarch->${function})"
1480 ;;
1481 * )
1482 fmt="%s"
1483 ;;
1484 esac
1485 printf " fprintf_unfiltered (file,\n"
1486 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1487 printf " ${print});\n"
1488 fi
1489done
1490cat <<EOF
1491 if (gdbarch->dump_tdep != NULL)
1492 gdbarch->dump_tdep (gdbarch, file);
1493}
1494EOF
1495
1496
1497# GET/SET
1498printf "\n"
1499cat <<EOF
1500struct gdbarch_tdep *
1501gdbarch_tdep (struct gdbarch *gdbarch)
1502{
1503 if (gdbarch_debug >= 2)
1504 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1505 return gdbarch->tdep;
1506}
1507EOF
1508printf "\n"
1509function_list | while do_read
1510do
1511 if class_is_predicate_p
1512 then
1513 printf "\n"
1514 printf "int\n"
1515 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1516 printf "{\n"
1517 printf " gdb_assert (gdbarch != NULL);\n"
1518 printf " return ${predicate};\n"
1519 printf "}\n"
1520 fi
1521 if class_is_function_p
1522 then
1523 printf "\n"
1524 printf "${returntype}\n"
1525 if [ "x${formal}" = "xvoid" ]
1526 then
1527 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1528 else
1529 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1530 fi
1531 printf "{\n"
1532 printf " gdb_assert (gdbarch != NULL);\n"
1533 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1534 if class_is_predicate_p && test -n "${predefault}"
1535 then
1536 # Allow a call to a function with a predicate.
1537 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1538 fi
1539 printf " if (gdbarch_debug >= 2)\n"
1540 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1541 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1542 then
1543 if class_is_multiarch_p
1544 then
1545 params="gdbarch"
1546 else
1547 params=""
1548 fi
1549 else
1550 if class_is_multiarch_p
1551 then
1552 params="gdbarch, ${actual}"
1553 else
1554 params="${actual}"
1555 fi
1556 fi
1557 if [ "x${returntype}" = "xvoid" ]
1558 then
1559 printf " gdbarch->${function} (${params});\n"
1560 else
1561 printf " return gdbarch->${function} (${params});\n"
1562 fi
1563 printf "}\n"
1564 printf "\n"
1565 printf "void\n"
1566 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1567 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1568 printf "{\n"
1569 printf " gdbarch->${function} = ${function};\n"
1570 printf "}\n"
1571 elif class_is_variable_p
1572 then
1573 printf "\n"
1574 printf "${returntype}\n"
1575 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1576 printf "{\n"
1577 printf " gdb_assert (gdbarch != NULL);\n"
1578 if [ "x${invalid_p}" = "x0" ]
1579 then
1580 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1581 elif [ -n "${invalid_p}" ]
1582 then
1583 printf " /* Check variable is valid. */\n"
1584 printf " gdb_assert (!(${invalid_p}));\n"
1585 elif [ -n "${predefault}" ]
1586 then
1587 printf " /* Check variable changed from pre-default. */\n"
1588 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1589 fi
1590 printf " if (gdbarch_debug >= 2)\n"
1591 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1592 printf " return gdbarch->${function};\n"
1593 printf "}\n"
1594 printf "\n"
1595 printf "void\n"
1596 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1597 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1598 printf "{\n"
1599 printf " gdbarch->${function} = ${function};\n"
1600 printf "}\n"
1601 elif class_is_info_p
1602 then
1603 printf "\n"
1604 printf "${returntype}\n"
1605 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1606 printf "{\n"
1607 printf " gdb_assert (gdbarch != NULL);\n"
1608 printf " if (gdbarch_debug >= 2)\n"
1609 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1610 printf " return gdbarch->${function};\n"
1611 printf "}\n"
1612 fi
1613done
1614
1615# All the trailing guff
1616cat <<EOF
1617
1618
1619/* Keep a registry of per-architecture data-pointers required by GDB
1620 modules. */
1621
1622struct gdbarch_data
1623{
1624 unsigned index;
1625 int init_p;
1626 gdbarch_data_pre_init_ftype *pre_init;
1627 gdbarch_data_post_init_ftype *post_init;
1628};
1629
1630struct gdbarch_data_registration
1631{
1632 struct gdbarch_data *data;
1633 struct gdbarch_data_registration *next;
1634};
1635
1636struct gdbarch_data_registry
1637{
1638 unsigned nr;
1639 struct gdbarch_data_registration *registrations;
1640};
1641
1642struct gdbarch_data_registry gdbarch_data_registry =
1643{
1644 0, NULL,
1645};
1646
1647static struct gdbarch_data *
1648gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1649 gdbarch_data_post_init_ftype *post_init)
1650{
1651 struct gdbarch_data_registration **curr;
1652 /* Append the new registraration. */
1653 for (curr = &gdbarch_data_registry.registrations;
1654 (*curr) != NULL;
1655 curr = &(*curr)->next);
1656 (*curr) = XMALLOC (struct gdbarch_data_registration);
1657 (*curr)->next = NULL;
1658 (*curr)->data = XMALLOC (struct gdbarch_data);
1659 (*curr)->data->index = gdbarch_data_registry.nr++;
1660 (*curr)->data->pre_init = pre_init;
1661 (*curr)->data->post_init = post_init;
1662 (*curr)->data->init_p = 1;
1663 return (*curr)->data;
1664}
1665
1666struct gdbarch_data *
1667gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1668{
1669 return gdbarch_data_register (pre_init, NULL);
1670}
1671
1672struct gdbarch_data *
1673gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1674{
1675 return gdbarch_data_register (NULL, post_init);
1676}
1677
1678/* Create/delete the gdbarch data vector. */
1679
1680static void
1681alloc_gdbarch_data (struct gdbarch *gdbarch)
1682{
1683 gdb_assert (gdbarch->data == NULL);
1684 gdbarch->nr_data = gdbarch_data_registry.nr;
1685 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1686}
1687
1688/* Initialize the current value of the specified per-architecture
1689 data-pointer. */
1690
1691void
1692deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1693 struct gdbarch_data *data,
1694 void *pointer)
1695{
1696 gdb_assert (data->index < gdbarch->nr_data);
1697 gdb_assert (gdbarch->data[data->index] == NULL);
1698 gdb_assert (data->pre_init == NULL);
1699 gdbarch->data[data->index] = pointer;
1700}
1701
1702/* Return the current value of the specified per-architecture
1703 data-pointer. */
1704
1705void *
1706gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1707{
1708 gdb_assert (data->index < gdbarch->nr_data);
1709 if (gdbarch->data[data->index] == NULL)
1710 {
1711 /* The data-pointer isn't initialized, call init() to get a
1712 value. */
1713 if (data->pre_init != NULL)
1714 /* Mid architecture creation: pass just the obstack, and not
1715 the entire architecture, as that way it isn't possible for
1716 pre-init code to refer to undefined architecture
1717 fields. */
1718 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1719 else if (gdbarch->initialized_p
1720 && data->post_init != NULL)
1721 /* Post architecture creation: pass the entire architecture
1722 (as all fields are valid), but be careful to also detect
1723 recursive references. */
1724 {
1725 gdb_assert (data->init_p);
1726 data->init_p = 0;
1727 gdbarch->data[data->index] = data->post_init (gdbarch);
1728 data->init_p = 1;
1729 }
1730 else
1731 /* The architecture initialization hasn't completed - punt -
1732 hope that the caller knows what they are doing. Once
1733 deprecated_set_gdbarch_data has been initialized, this can be
1734 changed to an internal error. */
1735 return NULL;
1736 gdb_assert (gdbarch->data[data->index] != NULL);
1737 }
1738 return gdbarch->data[data->index];
1739}
1740
1741
1742/* Keep a registry of the architectures known by GDB. */
1743
1744struct gdbarch_registration
1745{
1746 enum bfd_architecture bfd_architecture;
1747 gdbarch_init_ftype *init;
1748 gdbarch_dump_tdep_ftype *dump_tdep;
1749 struct gdbarch_list *arches;
1750 struct gdbarch_registration *next;
1751};
1752
1753static struct gdbarch_registration *gdbarch_registry = NULL;
1754
1755static void
1756append_name (const char ***buf, int *nr, const char *name)
1757{
1758 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1759 (*buf)[*nr] = name;
1760 *nr += 1;
1761}
1762
1763const char **
1764gdbarch_printable_names (void)
1765{
1766 /* Accumulate a list of names based on the registed list of
1767 architectures. */
1768 enum bfd_architecture a;
1769 int nr_arches = 0;
1770 const char **arches = NULL;
1771 struct gdbarch_registration *rego;
1772 for (rego = gdbarch_registry;
1773 rego != NULL;
1774 rego = rego->next)
1775 {
1776 const struct bfd_arch_info *ap;
1777 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1778 if (ap == NULL)
1779 internal_error (__FILE__, __LINE__,
1780 _("gdbarch_architecture_names: multi-arch unknown"));
1781 do
1782 {
1783 append_name (&arches, &nr_arches, ap->printable_name);
1784 ap = ap->next;
1785 }
1786 while (ap != NULL);
1787 }
1788 append_name (&arches, &nr_arches, NULL);
1789 return arches;
1790}
1791
1792
1793void
1794gdbarch_register (enum bfd_architecture bfd_architecture,
1795 gdbarch_init_ftype *init,
1796 gdbarch_dump_tdep_ftype *dump_tdep)
1797{
1798 struct gdbarch_registration **curr;
1799 const struct bfd_arch_info *bfd_arch_info;
1800 /* Check that BFD recognizes this architecture */
1801 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1802 if (bfd_arch_info == NULL)
1803 {
1804 internal_error (__FILE__, __LINE__,
1805 _("gdbarch: Attempt to register unknown architecture (%d)"),
1806 bfd_architecture);
1807 }
1808 /* Check that we haven't seen this architecture before */
1809 for (curr = &gdbarch_registry;
1810 (*curr) != NULL;
1811 curr = &(*curr)->next)
1812 {
1813 if (bfd_architecture == (*curr)->bfd_architecture)
1814 internal_error (__FILE__, __LINE__,
1815 _("gdbarch: Duplicate registraration of architecture (%s)"),
1816 bfd_arch_info->printable_name);
1817 }
1818 /* log it */
1819 if (gdbarch_debug)
1820 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1821 bfd_arch_info->printable_name,
1822 (long) init);
1823 /* Append it */
1824 (*curr) = XMALLOC (struct gdbarch_registration);
1825 (*curr)->bfd_architecture = bfd_architecture;
1826 (*curr)->init = init;
1827 (*curr)->dump_tdep = dump_tdep;
1828 (*curr)->arches = NULL;
1829 (*curr)->next = NULL;
1830}
1831
1832void
1833register_gdbarch_init (enum bfd_architecture bfd_architecture,
1834 gdbarch_init_ftype *init)
1835{
1836 gdbarch_register (bfd_architecture, init, NULL);
1837}
1838
1839
1840/* Look for an architecture using gdbarch_info. */
1841
1842struct gdbarch_list *
1843gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1844 const struct gdbarch_info *info)
1845{
1846 for (; arches != NULL; arches = arches->next)
1847 {
1848 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1849 continue;
1850 if (info->byte_order != arches->gdbarch->byte_order)
1851 continue;
1852 if (info->osabi != arches->gdbarch->osabi)
1853 continue;
1854 if (info->target_desc != arches->gdbarch->target_desc)
1855 continue;
1856 return arches;
1857 }
1858 return NULL;
1859}
1860
1861
1862/* Find an architecture that matches the specified INFO. Create a new
1863 architecture if needed. Return that new architecture. Assumes
1864 that there is no current architecture. */
1865
1866static struct gdbarch *
1867find_arch_by_info (struct gdbarch_info info)
1868{
1869 struct gdbarch *new_gdbarch;
1870 struct gdbarch_registration *rego;
1871
1872 /* The existing architecture has been swapped out - all this code
1873 works from a clean slate. */
1874 gdb_assert (current_gdbarch == NULL);
1875
1876 /* Fill in missing parts of the INFO struct using a number of
1877 sources: "set ..."; INFOabfd supplied; and the global
1878 defaults. */
1879 gdbarch_info_fill (&info);
1880
1881 /* Must have found some sort of architecture. */
1882 gdb_assert (info.bfd_arch_info != NULL);
1883
1884 if (gdbarch_debug)
1885 {
1886 fprintf_unfiltered (gdb_stdlog,
1887 "find_arch_by_info: info.bfd_arch_info %s\n",
1888 (info.bfd_arch_info != NULL
1889 ? info.bfd_arch_info->printable_name
1890 : "(null)"));
1891 fprintf_unfiltered (gdb_stdlog,
1892 "find_arch_by_info: info.byte_order %d (%s)\n",
1893 info.byte_order,
1894 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1895 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1896 : "default"));
1897 fprintf_unfiltered (gdb_stdlog,
1898 "find_arch_by_info: info.osabi %d (%s)\n",
1899 info.osabi, gdbarch_osabi_name (info.osabi));
1900 fprintf_unfiltered (gdb_stdlog,
1901 "find_arch_by_info: info.abfd 0x%lx\n",
1902 (long) info.abfd);
1903 fprintf_unfiltered (gdb_stdlog,
1904 "find_arch_by_info: info.tdep_info 0x%lx\n",
1905 (long) info.tdep_info);
1906 }
1907
1908 /* Find the tdep code that knows about this architecture. */
1909 for (rego = gdbarch_registry;
1910 rego != NULL;
1911 rego = rego->next)
1912 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1913 break;
1914 if (rego == NULL)
1915 {
1916 if (gdbarch_debug)
1917 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1918 "No matching architecture\n");
1919 return 0;
1920 }
1921
1922 /* Ask the tdep code for an architecture that matches "info". */
1923 new_gdbarch = rego->init (info, rego->arches);
1924
1925 /* Did the tdep code like it? No. Reject the change and revert to
1926 the old architecture. */
1927 if (new_gdbarch == NULL)
1928 {
1929 if (gdbarch_debug)
1930 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1931 "Target rejected architecture\n");
1932 return NULL;
1933 }
1934
1935 /* Is this a pre-existing architecture (as determined by already
1936 being initialized)? Move it to the front of the architecture
1937 list (keeping the list sorted Most Recently Used). */
1938 if (new_gdbarch->initialized_p)
1939 {
1940 struct gdbarch_list **list;
1941 struct gdbarch_list *this;
1942 if (gdbarch_debug)
1943 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1944 "Previous architecture 0x%08lx (%s) selected\n",
1945 (long) new_gdbarch,
1946 new_gdbarch->bfd_arch_info->printable_name);
1947 /* Find the existing arch in the list. */
1948 for (list = &rego->arches;
1949 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1950 list = &(*list)->next);
1951 /* It had better be in the list of architectures. */
1952 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1953 /* Unlink THIS. */
1954 this = (*list);
1955 (*list) = this->next;
1956 /* Insert THIS at the front. */
1957 this->next = rego->arches;
1958 rego->arches = this;
1959 /* Return it. */
1960 return new_gdbarch;
1961 }
1962
1963 /* It's a new architecture. */
1964 if (gdbarch_debug)
1965 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1966 "New architecture 0x%08lx (%s) selected\n",
1967 (long) new_gdbarch,
1968 new_gdbarch->bfd_arch_info->printable_name);
1969
1970 /* Insert the new architecture into the front of the architecture
1971 list (keep the list sorted Most Recently Used). */
1972 {
1973 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1974 this->next = rego->arches;
1975 this->gdbarch = new_gdbarch;
1976 rego->arches = this;
1977 }
1978
1979 /* Check that the newly installed architecture is valid. Plug in
1980 any post init values. */
1981 new_gdbarch->dump_tdep = rego->dump_tdep;
1982 verify_gdbarch (new_gdbarch);
1983 new_gdbarch->initialized_p = 1;
1984
1985 if (gdbarch_debug)
1986 gdbarch_dump (new_gdbarch, gdb_stdlog);
1987
1988 return new_gdbarch;
1989}
1990
1991struct gdbarch *
1992gdbarch_find_by_info (struct gdbarch_info info)
1993{
1994 struct gdbarch *new_gdbarch;
1995
1996 /* Save the previously selected architecture, setting the global to
1997 NULL. This stops things like gdbarch->init() trying to use the
1998 previous architecture's configuration. The previous architecture
1999 may not even be of the same architecture family. The most recent
2000 architecture of the same family is found at the head of the
2001 rego->arches list. */
2002 struct gdbarch *old_gdbarch = current_gdbarch;
2003 current_gdbarch = NULL;
2004
2005 /* Find the specified architecture. */
2006 new_gdbarch = find_arch_by_info (info);
2007
2008 /* Restore the existing architecture. */
2009 gdb_assert (current_gdbarch == NULL);
2010 current_gdbarch = old_gdbarch;
2011
2012 return new_gdbarch;
2013}
2014
2015/* Make the specified architecture current. */
2016
2017void
2018deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2019{
2020 gdb_assert (new_gdbarch != NULL);
2021 gdb_assert (current_gdbarch != NULL);
2022 gdb_assert (new_gdbarch->initialized_p);
2023 current_gdbarch = new_gdbarch;
2024 observer_notify_architecture_changed (new_gdbarch);
2025 reinit_frame_cache ();
2026}
2027
2028extern void _initialize_gdbarch (void);
2029
2030void
2031_initialize_gdbarch (void)
2032{
2033 struct cmd_list_element *c;
2034
2035 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2036Set architecture debugging."), _("\\
2037Show architecture debugging."), _("\\
2038When non-zero, architecture debugging is enabled."),
2039 NULL,
2040 show_gdbarch_debug,
2041 &setdebuglist, &showdebuglist);
2042}
2043EOF
2044
2045# close things off
2046exec 1>&2
2047#../move-if-change new-gdbarch.c gdbarch.c
2048compare_new gdbarch.c
This page took 0.02981 seconds and 4 git commands to generate.