Fix s390 GNU/Linux build
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
... / ...
CommitLineData
1#!/bin/sh -u
2
3# Architecture commands for GDB, the GNU debugger.
4#
5# Copyright (C) 1998-2018 Free Software Foundation, Inc.
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation; either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22# Make certain that the script is not running in an internationalized
23# environment.
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
26
27
28compare_new ()
29{
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46do_read ()
47{
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
71
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154}
155
156
157fallback_default_p ()
158{
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161}
162
163class_is_variable_p ()
164{
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169}
170
171class_is_function_p ()
172{
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185}
186
187class_is_predicate_p ()
188{
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193}
194
195class_is_info_p ()
196{
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201}
202
203
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334done
335
336
337function_list ()
338{
339 # See below (DOCO) for description of each field
340 cat <<EOF
341i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
342#
343i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
345#
346i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
347#
348i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
353
354# Number of bits in a short or unsigned short for the target machine.
355v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
356# Number of bits in an int or unsigned int for the target machine.
357v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
358# Number of bits in a long or unsigned long for the target machine.
359v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
360# Number of bits in a long long or unsigned long long for the target
361# machine.
362v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
363
364# The ABI default bit-size and format for "half", "float", "double", and
365# "long double". These bit/format pairs should eventually be combined
366# into a single object. For the moment, just initialize them as a pair.
367# Each format describes both the big and little endian layouts (if
368# useful).
369
370v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
371v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
372v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
373v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
374v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
375v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
376v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
377v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
378
379# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
380# starting with C++11.
381v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
382# One if \`wchar_t' is signed, zero if unsigned.
383v;int;wchar_signed;;;1;-1;1
384
385# Returns the floating-point format to be used for values of length LENGTH.
386# NAME, if non-NULL, is the type name, which may be used to distinguish
387# different target formats of the same length.
388m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
389
390# For most targets, a pointer on the target and its representation as an
391# address in GDB have the same size and "look the same". For such a
392# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
393# / addr_bit will be set from it.
394#
395# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
396# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
397# gdbarch_address_to_pointer as well.
398#
399# ptr_bit is the size of a pointer on the target
400v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
401# addr_bit is the size of a target address as represented in gdb
402v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
403#
404# dwarf2_addr_size is the target address size as used in the Dwarf debug
405# info. For .debug_frame FDEs, this is supposed to be the target address
406# size from the associated CU header, and which is equivalent to the
407# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
408# Unfortunately there is no good way to determine this value. Therefore
409# dwarf2_addr_size simply defaults to the target pointer size.
410#
411# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
412# defined using the target's pointer size so far.
413#
414# Note that dwarf2_addr_size only needs to be redefined by a target if the
415# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
416# and if Dwarf versions < 4 need to be supported.
417v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
418#
419# One if \`char' acts like \`signed char', zero if \`unsigned char'.
420v;int;char_signed;;;1;-1;1
421#
422F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
423F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
424# Function for getting target's idea of a frame pointer. FIXME: GDB's
425# whole scheme for dealing with "frames" and "frame pointers" needs a
426# serious shakedown.
427m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
428#
429M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
430# Read a register into a new struct value. If the register is wholly
431# or partly unavailable, this should call mark_value_bytes_unavailable
432# as appropriate. If this is defined, then pseudo_register_read will
433# never be called.
434M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
435M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
436#
437v;int;num_regs;;;0;-1
438# This macro gives the number of pseudo-registers that live in the
439# register namespace but do not get fetched or stored on the target.
440# These pseudo-registers may be aliases for other registers,
441# combinations of other registers, or they may be computed by GDB.
442v;int;num_pseudo_regs;;;0;0;;0
443
444# Assemble agent expression bytecode to collect pseudo-register REG.
445# Return -1 if something goes wrong, 0 otherwise.
446M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
447
448# Assemble agent expression bytecode to push the value of pseudo-register
449# REG on the interpreter stack.
450# Return -1 if something goes wrong, 0 otherwise.
451M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
452
453# Some targets/architectures can do extra processing/display of
454# segmentation faults. E.g., Intel MPX boundary faults.
455# Call the architecture dependent function to handle the fault.
456# UIOUT is the output stream where the handler will place information.
457M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
458
459# GDB's standard (or well known) register numbers. These can map onto
460# a real register or a pseudo (computed) register or not be defined at
461# all (-1).
462# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
463v;int;sp_regnum;;;-1;-1;;0
464v;int;pc_regnum;;;-1;-1;;0
465v;int;ps_regnum;;;-1;-1;;0
466v;int;fp0_regnum;;;0;-1;;0
467# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
468m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
469# Provide a default mapping from a ecoff register number to a gdb REGNUM.
470m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
471# Convert from an sdb register number to an internal gdb register number.
472m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
473# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
474# Return -1 for bad REGNUM. Note: Several targets get this wrong.
475m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
476m;const char *;register_name;int regnr;regnr;;0
477
478# Return the type of a register specified by the architecture. Only
479# the register cache should call this function directly; others should
480# use "register_type".
481M;struct type *;register_type;int reg_nr;reg_nr
482
483M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
484# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
485# deprecated_fp_regnum.
486v;int;deprecated_fp_regnum;;;-1;-1;;0
487
488M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
489v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
490M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
491
492# Return true if the code of FRAME is writable.
493m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
494
495m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
496m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
497M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
498# MAP a GDB RAW register number onto a simulator register number. See
499# also include/...-sim.h.
500m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
501m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
502m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
503
504# Determine the address where a longjmp will land and save this address
505# in PC. Return nonzero on success.
506#
507# FRAME corresponds to the longjmp frame.
508F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
509
510#
511v;int;believe_pcc_promotion;;;;;;;
512#
513m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
514f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
515f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
516# Construct a value representing the contents of register REGNUM in
517# frame FRAME_ID, interpreted as type TYPE. The routine needs to
518# allocate and return a struct value with all value attributes
519# (but not the value contents) filled in.
520m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
521#
522m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
523m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
524M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
525
526# Return the return-value convention that will be used by FUNCTION
527# to return a value of type VALTYPE. FUNCTION may be NULL in which
528# case the return convention is computed based only on VALTYPE.
529#
530# If READBUF is not NULL, extract the return value and save it in this buffer.
531#
532# If WRITEBUF is not NULL, it contains a return value which will be
533# stored into the appropriate register. This can be used when we want
534# to force the value returned by a function (see the "return" command
535# for instance).
536M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
537
538# Return true if the return value of function is stored in the first hidden
539# parameter. In theory, this feature should be language-dependent, specified
540# by language and its ABI, such as C++. Unfortunately, compiler may
541# implement it to a target-dependent feature. So that we need such hook here
542# to be aware of this in GDB.
543m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
544
545m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
546M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
547# On some platforms, a single function may provide multiple entry points,
548# e.g. one that is used for function-pointer calls and a different one
549# that is used for direct function calls.
550# In order to ensure that breakpoints set on the function will trigger
551# no matter via which entry point the function is entered, a platform
552# may provide the skip_entrypoint callback. It is called with IP set
553# to the main entry point of a function (as determined by the symbol table),
554# and should return the address of the innermost entry point, where the
555# actual breakpoint needs to be set. Note that skip_entrypoint is used
556# by GDB common code even when debugging optimized code, where skip_prologue
557# is not used.
558M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
559
560f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
561m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
562
563# Return the breakpoint kind for this target based on *PCPTR.
564m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
565
566# Return the software breakpoint from KIND. KIND can have target
567# specific meaning like the Z0 kind parameter.
568# SIZE is set to the software breakpoint's length in memory.
569m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
570
571# Return the breakpoint kind for this target based on the current
572# processor state (e.g. the current instruction mode on ARM) and the
573# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
574m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
575
576M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
577m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
578m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
579v;CORE_ADDR;decr_pc_after_break;;;0;;;0
580
581# A function can be addressed by either it's "pointer" (possibly a
582# descriptor address) or "entry point" (first executable instruction).
583# The method "convert_from_func_ptr_addr" converting the former to the
584# latter. gdbarch_deprecated_function_start_offset is being used to implement
585# a simplified subset of that functionality - the function's address
586# corresponds to the "function pointer" and the function's start
587# corresponds to the "function entry point" - and hence is redundant.
588
589v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
590
591# Return the remote protocol register number associated with this
592# register. Normally the identity mapping.
593m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
594
595# Fetch the target specific address used to represent a load module.
596F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
597#
598v;CORE_ADDR;frame_args_skip;;;0;;;0
599M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
600M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
601# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
602# frame-base. Enable frame-base before frame-unwind.
603F;int;frame_num_args;struct frame_info *frame;frame
604#
605M;CORE_ADDR;frame_align;CORE_ADDR address;address
606m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
607v;int;frame_red_zone_size
608#
609m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
610# On some machines there are bits in addresses which are not really
611# part of the address, but are used by the kernel, the hardware, etc.
612# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
613# we get a "real" address such as one would find in a symbol table.
614# This is used only for addresses of instructions, and even then I'm
615# not sure it's used in all contexts. It exists to deal with there
616# being a few stray bits in the PC which would mislead us, not as some
617# sort of generic thing to handle alignment or segmentation (it's
618# possible it should be in TARGET_READ_PC instead).
619m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
620
621# On some machines, not all bits of an address word are significant.
622# For example, on AArch64, the top bits of an address known as the "tag"
623# are ignored by the kernel, the hardware, etc. and can be regarded as
624# additional data associated with the address.
625v;int;significant_addr_bit;;;;;gdbarch_addr_bit (gdbarch);
626
627# FIXME/cagney/2001-01-18: This should be split in two. A target method that
628# indicates if the target needs software single step. An ISA method to
629# implement it.
630#
631# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
632# target can single step. If not, then implement single step using breakpoints.
633#
634# Return a vector of addresses on which the software single step
635# breakpoints should be inserted. NULL means software single step is
636# not used.
637# Multiple breakpoints may be inserted for some instructions such as
638# conditional branch. However, each implementation must always evaluate
639# the condition and only put the breakpoint at the branch destination if
640# the condition is true, so that we ensure forward progress when stepping
641# past a conditional branch to self.
642F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
643
644# Return non-zero if the processor is executing a delay slot and a
645# further single-step is needed before the instruction finishes.
646M;int;single_step_through_delay;struct frame_info *frame;frame
647# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
648# disassembler. Perhaps objdump can handle it?
649f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
650f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
651
652
653# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
654# evaluates non-zero, this is the address where the debugger will place
655# a step-resume breakpoint to get us past the dynamic linker.
656m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
657# Some systems also have trampoline code for returning from shared libs.
658m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
659
660# Return true if PC lies inside an indirect branch thunk.
661m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
662
663# A target might have problems with watchpoints as soon as the stack
664# frame of the current function has been destroyed. This mostly happens
665# as the first action in a function's epilogue. stack_frame_destroyed_p()
666# is defined to return a non-zero value if either the given addr is one
667# instruction after the stack destroying instruction up to the trailing
668# return instruction or if we can figure out that the stack frame has
669# already been invalidated regardless of the value of addr. Targets
670# which don't suffer from that problem could just let this functionality
671# untouched.
672m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
673# Process an ELF symbol in the minimal symbol table in a backend-specific
674# way. Normally this hook is supposed to do nothing, however if required,
675# then this hook can be used to apply tranformations to symbols that are
676# considered special in some way. For example the MIPS backend uses it
677# to interpret \`st_other' information to mark compressed code symbols so
678# that they can be treated in the appropriate manner in the processing of
679# the main symbol table and DWARF-2 records.
680F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
681f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
682# Process a symbol in the main symbol table in a backend-specific way.
683# Normally this hook is supposed to do nothing, however if required,
684# then this hook can be used to apply tranformations to symbols that
685# are considered special in some way. This is currently used by the
686# MIPS backend to make sure compressed code symbols have the ISA bit
687# set. This in turn is needed for symbol values seen in GDB to match
688# the values used at the runtime by the program itself, for function
689# and label references.
690f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
691# Adjust the address retrieved from a DWARF-2 record other than a line
692# entry in a backend-specific way. Normally this hook is supposed to
693# return the address passed unchanged, however if that is incorrect for
694# any reason, then this hook can be used to fix the address up in the
695# required manner. This is currently used by the MIPS backend to make
696# sure addresses in FDE, range records, etc. referring to compressed
697# code have the ISA bit set, matching line information and the symbol
698# table.
699f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
700# Adjust the address updated by a line entry in a backend-specific way.
701# Normally this hook is supposed to return the address passed unchanged,
702# however in the case of inconsistencies in these records, this hook can
703# be used to fix them up in the required manner. This is currently used
704# by the MIPS backend to make sure all line addresses in compressed code
705# are presented with the ISA bit set, which is not always the case. This
706# in turn ensures breakpoint addresses are correctly matched against the
707# stop PC.
708f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
709v;int;cannot_step_breakpoint;;;0;0;;0
710v;int;have_nonsteppable_watchpoint;;;0;0;;0
711F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
712M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
713# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
714# FS are passed from the generic execute_cfa_program function.
715m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
716
717# Return the appropriate type_flags for the supplied address class.
718# This function should return 1 if the address class was recognized and
719# type_flags was set, zero otherwise.
720M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
721# Is a register in a group
722m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
723# Fetch the pointer to the ith function argument.
724F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
725
726# Iterate over all supported register notes in a core file. For each
727# supported register note section, the iterator must call CB and pass
728# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
729# the supported register note sections based on the current register
730# values. Otherwise it should enumerate all supported register note
731# sections.
732M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
733
734# Create core file notes
735M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
736
737# Find core file memory regions
738M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
739
740# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
741# core file into buffer READBUF with length LEN. Return the number of bytes read
742# (zero indicates failure).
743# failed, otherwise, return the red length of READBUF.
744M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
745
746# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
747# libraries list from core file into buffer READBUF with length LEN.
748# Return the number of bytes read (zero indicates failure).
749M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
750
751# How the core target converts a PTID from a core file to a string.
752M;const char *;core_pid_to_str;ptid_t ptid;ptid
753
754# How the core target extracts the name of a thread from a core file.
755M;const char *;core_thread_name;struct thread_info *thr;thr
756
757# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
758# from core file into buffer READBUF with length LEN. Return the number
759# of bytes read (zero indicates EOF, a negative value indicates failure).
760M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
761
762# BFD target to use when generating a core file.
763V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
764
765# If the elements of C++ vtables are in-place function descriptors rather
766# than normal function pointers (which may point to code or a descriptor),
767# set this to one.
768v;int;vtable_function_descriptors;;;0;0;;0
769
770# Set if the least significant bit of the delta is used instead of the least
771# significant bit of the pfn for pointers to virtual member functions.
772v;int;vbit_in_delta;;;0;0;;0
773
774# Advance PC to next instruction in order to skip a permanent breakpoint.
775f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
776
777# The maximum length of an instruction on this architecture in bytes.
778V;ULONGEST;max_insn_length;;;0;0
779
780# Copy the instruction at FROM to TO, and make any adjustments
781# necessary to single-step it at that address.
782#
783# REGS holds the state the thread's registers will have before
784# executing the copied instruction; the PC in REGS will refer to FROM,
785# not the copy at TO. The caller should update it to point at TO later.
786#
787# Return a pointer to data of the architecture's choice to be passed
788# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
789# the instruction's effects have been completely simulated, with the
790# resulting state written back to REGS.
791#
792# For a general explanation of displaced stepping and how GDB uses it,
793# see the comments in infrun.c.
794#
795# The TO area is only guaranteed to have space for
796# gdbarch_max_insn_length (arch) bytes, so this function must not
797# write more bytes than that to that area.
798#
799# If you do not provide this function, GDB assumes that the
800# architecture does not support displaced stepping.
801#
802# If the instruction cannot execute out of line, return NULL. The
803# core falls back to stepping past the instruction in-line instead in
804# that case.
805M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
806
807# Return true if GDB should use hardware single-stepping to execute
808# the displaced instruction identified by CLOSURE. If false,
809# GDB will simply restart execution at the displaced instruction
810# location, and it is up to the target to ensure GDB will receive
811# control again (e.g. by placing a software breakpoint instruction
812# into the displaced instruction buffer).
813#
814# The default implementation returns false on all targets that
815# provide a gdbarch_software_single_step routine, and true otherwise.
816m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
817
818# Fix up the state resulting from successfully single-stepping a
819# displaced instruction, to give the result we would have gotten from
820# stepping the instruction in its original location.
821#
822# REGS is the register state resulting from single-stepping the
823# displaced instruction.
824#
825# CLOSURE is the result from the matching call to
826# gdbarch_displaced_step_copy_insn.
827#
828# If you provide gdbarch_displaced_step_copy_insn.but not this
829# function, then GDB assumes that no fixup is needed after
830# single-stepping the instruction.
831#
832# For a general explanation of displaced stepping and how GDB uses it,
833# see the comments in infrun.c.
834M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
835
836# Return the address of an appropriate place to put displaced
837# instructions while we step over them. There need only be one such
838# place, since we're only stepping one thread over a breakpoint at a
839# time.
840#
841# For a general explanation of displaced stepping and how GDB uses it,
842# see the comments in infrun.c.
843m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
844
845# Relocate an instruction to execute at a different address. OLDLOC
846# is the address in the inferior memory where the instruction to
847# relocate is currently at. On input, TO points to the destination
848# where we want the instruction to be copied (and possibly adjusted)
849# to. On output, it points to one past the end of the resulting
850# instruction(s). The effect of executing the instruction at TO shall
851# be the same as if executing it at FROM. For example, call
852# instructions that implicitly push the return address on the stack
853# should be adjusted to return to the instruction after OLDLOC;
854# relative branches, and other PC-relative instructions need the
855# offset adjusted; etc.
856M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
857
858# Refresh overlay mapped state for section OSECT.
859F;void;overlay_update;struct obj_section *osect;osect
860
861M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
862
863# Handle special encoding of static variables in stabs debug info.
864F;const char *;static_transform_name;const char *name;name
865# Set if the address in N_SO or N_FUN stabs may be zero.
866v;int;sofun_address_maybe_missing;;;0;0;;0
867
868# Parse the instruction at ADDR storing in the record execution log
869# the registers REGCACHE and memory ranges that will be affected when
870# the instruction executes, along with their current values.
871# Return -1 if something goes wrong, 0 otherwise.
872M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
873
874# Save process state after a signal.
875# Return -1 if something goes wrong, 0 otherwise.
876M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
877
878# Signal translation: translate inferior's signal (target's) number
879# into GDB's representation. The implementation of this method must
880# be host independent. IOW, don't rely on symbols of the NAT_FILE
881# header (the nm-*.h files), the host <signal.h> header, or similar
882# headers. This is mainly used when cross-debugging core files ---
883# "Live" targets hide the translation behind the target interface
884# (target_wait, target_resume, etc.).
885M;enum gdb_signal;gdb_signal_from_target;int signo;signo
886
887# Signal translation: translate the GDB's internal signal number into
888# the inferior's signal (target's) representation. The implementation
889# of this method must be host independent. IOW, don't rely on symbols
890# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
891# header, or similar headers.
892# Return the target signal number if found, or -1 if the GDB internal
893# signal number is invalid.
894M;int;gdb_signal_to_target;enum gdb_signal signal;signal
895
896# Extra signal info inspection.
897#
898# Return a type suitable to inspect extra signal information.
899M;struct type *;get_siginfo_type;void;
900
901# Record architecture-specific information from the symbol table.
902M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
903
904# Function for the 'catch syscall' feature.
905
906# Get architecture-specific system calls information from registers.
907M;LONGEST;get_syscall_number;ptid_t ptid;ptid
908
909# The filename of the XML syscall for this architecture.
910v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
911
912# Information about system calls from this architecture
913v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
914
915# SystemTap related fields and functions.
916
917# A NULL-terminated array of prefixes used to mark an integer constant
918# on the architecture's assembly.
919# For example, on x86 integer constants are written as:
920#
921# \$10 ;; integer constant 10
922#
923# in this case, this prefix would be the character \`\$\'.
924v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
925
926# A NULL-terminated array of suffixes used to mark an integer constant
927# on the architecture's assembly.
928v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
929
930# A NULL-terminated array of prefixes used to mark a register name on
931# the architecture's assembly.
932# For example, on x86 the register name is written as:
933#
934# \%eax ;; register eax
935#
936# in this case, this prefix would be the character \`\%\'.
937v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
938
939# A NULL-terminated array of suffixes used to mark a register name on
940# the architecture's assembly.
941v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
942
943# A NULL-terminated array of prefixes used to mark a register
944# indirection on the architecture's assembly.
945# For example, on x86 the register indirection is written as:
946#
947# \(\%eax\) ;; indirecting eax
948#
949# in this case, this prefix would be the charater \`\(\'.
950#
951# Please note that we use the indirection prefix also for register
952# displacement, e.g., \`4\(\%eax\)\' on x86.
953v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
954
955# A NULL-terminated array of suffixes used to mark a register
956# indirection on the architecture's assembly.
957# For example, on x86 the register indirection is written as:
958#
959# \(\%eax\) ;; indirecting eax
960#
961# in this case, this prefix would be the charater \`\)\'.
962#
963# Please note that we use the indirection suffix also for register
964# displacement, e.g., \`4\(\%eax\)\' on x86.
965v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
966
967# Prefix(es) used to name a register using GDB's nomenclature.
968#
969# For example, on PPC a register is represented by a number in the assembly
970# language (e.g., \`10\' is the 10th general-purpose register). However,
971# inside GDB this same register has an \`r\' appended to its name, so the 10th
972# register would be represented as \`r10\' internally.
973v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
974
975# Suffix used to name a register using GDB's nomenclature.
976v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
977
978# Check if S is a single operand.
979#
980# Single operands can be:
981# \- Literal integers, e.g. \`\$10\' on x86
982# \- Register access, e.g. \`\%eax\' on x86
983# \- Register indirection, e.g. \`\(\%eax\)\' on x86
984# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
985#
986# This function should check for these patterns on the string
987# and return 1 if some were found, or zero otherwise. Please try to match
988# as much info as you can from the string, i.e., if you have to match
989# something like \`\(\%\', do not match just the \`\(\'.
990M;int;stap_is_single_operand;const char *s;s
991
992# Function used to handle a "special case" in the parser.
993#
994# A "special case" is considered to be an unknown token, i.e., a token
995# that the parser does not know how to parse. A good example of special
996# case would be ARM's register displacement syntax:
997#
998# [R0, #4] ;; displacing R0 by 4
999#
1000# Since the parser assumes that a register displacement is of the form:
1001#
1002# <number> <indirection_prefix> <register_name> <indirection_suffix>
1003#
1004# it means that it will not be able to recognize and parse this odd syntax.
1005# Therefore, we should add a special case function that will handle this token.
1006#
1007# This function should generate the proper expression form of the expression
1008# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1009# and so on). It should also return 1 if the parsing was successful, or zero
1010# if the token was not recognized as a special token (in this case, returning
1011# zero means that the special parser is deferring the parsing to the generic
1012# parser), and should advance the buffer pointer (p->arg).
1013M;int;stap_parse_special_token;struct stap_parse_info *p;p
1014
1015# DTrace related functions.
1016
1017# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1018# NARG must be >= 0.
1019M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
1020
1021# True if the given ADDR does not contain the instruction sequence
1022# corresponding to a disabled DTrace is-enabled probe.
1023M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1024
1025# Enable a DTrace is-enabled probe at ADDR.
1026M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1027
1028# Disable a DTrace is-enabled probe at ADDR.
1029M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1030
1031# True if the list of shared libraries is one and only for all
1032# processes, as opposed to a list of shared libraries per inferior.
1033# This usually means that all processes, although may or may not share
1034# an address space, will see the same set of symbols at the same
1035# addresses.
1036v;int;has_global_solist;;;0;0;;0
1037
1038# On some targets, even though each inferior has its own private
1039# address space, the debug interface takes care of making breakpoints
1040# visible to all address spaces automatically. For such cases,
1041# this property should be set to true.
1042v;int;has_global_breakpoints;;;0;0;;0
1043
1044# True if inferiors share an address space (e.g., uClinux).
1045m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1046
1047# True if a fast tracepoint can be set at an address.
1048m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1049
1050# Guess register state based on tracepoint location. Used for tracepoints
1051# where no registers have been collected, but there's only one location,
1052# allowing us to guess the PC value, and perhaps some other registers.
1053# On entry, regcache has all registers marked as unavailable.
1054m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1055
1056# Return the "auto" target charset.
1057f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1058# Return the "auto" target wide charset.
1059f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1060
1061# If non-empty, this is a file extension that will be opened in place
1062# of the file extension reported by the shared library list.
1063#
1064# This is most useful for toolchains that use a post-linker tool,
1065# where the names of the files run on the target differ in extension
1066# compared to the names of the files GDB should load for debug info.
1067v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1068
1069# If true, the target OS has DOS-based file system semantics. That
1070# is, absolute paths include a drive name, and the backslash is
1071# considered a directory separator.
1072v;int;has_dos_based_file_system;;;0;0;;0
1073
1074# Generate bytecodes to collect the return address in a frame.
1075# Since the bytecodes run on the target, possibly with GDB not even
1076# connected, the full unwinding machinery is not available, and
1077# typically this function will issue bytecodes for one or more likely
1078# places that the return address may be found.
1079m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1080
1081# Implement the "info proc" command.
1082M;void;info_proc;const char *args, enum info_proc_what what;args, what
1083
1084# Implement the "info proc" command for core files. Noe that there
1085# are two "info_proc"-like methods on gdbarch -- one for core files,
1086# one for live targets.
1087M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1088
1089# Iterate over all objfiles in the order that makes the most sense
1090# for the architecture to make global symbol searches.
1091#
1092# CB is a callback function where OBJFILE is the objfile to be searched,
1093# and CB_DATA a pointer to user-defined data (the same data that is passed
1094# when calling this gdbarch method). The iteration stops if this function
1095# returns nonzero.
1096#
1097# CB_DATA is a pointer to some user-defined data to be passed to
1098# the callback.
1099#
1100# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1101# inspected when the symbol search was requested.
1102m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1103
1104# Ravenscar arch-dependent ops.
1105v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1106
1107# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1108m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1109
1110# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1111m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1112
1113# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1114m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1115
1116# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1117# Return 0 if *READPTR is already at the end of the buffer.
1118# Return -1 if there is insufficient buffer for a whole entry.
1119# Return 1 if an entry was read into *TYPEP and *VALP.
1120M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1121
1122# Print the description of a single auxv entry described by TYPE and VAL
1123# to FILE.
1124m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1125
1126# Find the address range of the current inferior's vsyscall/vDSO, and
1127# write it to *RANGE. If the vsyscall's length can't be determined, a
1128# range with zero length is returned. Returns true if the vsyscall is
1129# found, false otherwise.
1130m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1131
1132# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1133# PROT has GDB_MMAP_PROT_* bitmask format.
1134# Throw an error if it is not possible. Returned address is always valid.
1135f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1136
1137# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1138# Print a warning if it is not possible.
1139f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1140
1141# Return string (caller has to use xfree for it) with options for GCC
1142# to produce code for this target, typically "-m64", "-m32" or "-m31".
1143# These options are put before CU's DW_AT_producer compilation options so that
1144# they can override it. Method may also return NULL.
1145m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
1146
1147# Return a regular expression that matches names used by this
1148# architecture in GNU configury triplets. The result is statically
1149# allocated and must not be freed. The default implementation simply
1150# returns the BFD architecture name, which is correct in nearly every
1151# case.
1152m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1153
1154# Return the size in 8-bit bytes of an addressable memory unit on this
1155# architecture. This corresponds to the number of 8-bit bytes associated to
1156# each address in memory.
1157m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1158
1159# Functions for allowing a target to modify its disassembler options.
1160v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1161v;const disasm_options_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1162
1163# Type alignment.
1164m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1165
1166EOF
1167}
1168
1169#
1170# The .log file
1171#
1172exec > new-gdbarch.log
1173function_list | while do_read
1174do
1175 cat <<EOF
1176${class} ${returntype} ${function} ($formal)
1177EOF
1178 for r in ${read}
1179 do
1180 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1181 done
1182 if class_is_predicate_p && fallback_default_p
1183 then
1184 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1185 kill $$
1186 exit 1
1187 fi
1188 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1189 then
1190 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1191 kill $$
1192 exit 1
1193 fi
1194 if class_is_multiarch_p
1195 then
1196 if class_is_predicate_p ; then :
1197 elif test "x${predefault}" = "x"
1198 then
1199 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1200 kill $$
1201 exit 1
1202 fi
1203 fi
1204 echo ""
1205done
1206
1207exec 1>&2
1208compare_new gdbarch.log
1209
1210
1211copyright ()
1212{
1213cat <<EOF
1214/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1215/* vi:set ro: */
1216
1217/* Dynamic architecture support for GDB, the GNU debugger.
1218
1219 Copyright (C) 1998-2018 Free Software Foundation, Inc.
1220
1221 This file is part of GDB.
1222
1223 This program is free software; you can redistribute it and/or modify
1224 it under the terms of the GNU General Public License as published by
1225 the Free Software Foundation; either version 3 of the License, or
1226 (at your option) any later version.
1227
1228 This program is distributed in the hope that it will be useful,
1229 but WITHOUT ANY WARRANTY; without even the implied warranty of
1230 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1231 GNU General Public License for more details.
1232
1233 You should have received a copy of the GNU General Public License
1234 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1235
1236/* This file was created with the aid of \`\`gdbarch.sh''.
1237
1238 The Bourne shell script \`\`gdbarch.sh'' creates the files
1239 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1240 against the existing \`\`gdbarch.[hc]''. Any differences found
1241 being reported.
1242
1243 If editing this file, please also run gdbarch.sh and merge any
1244 changes into that script. Conversely, when making sweeping changes
1245 to this file, modifying gdbarch.sh and using its output may prove
1246 easier. */
1247
1248EOF
1249}
1250
1251#
1252# The .h file
1253#
1254
1255exec > new-gdbarch.h
1256copyright
1257cat <<EOF
1258#ifndef GDBARCH_H
1259#define GDBARCH_H
1260
1261#include <vector>
1262#include "frame.h"
1263#include "dis-asm.h"
1264
1265struct floatformat;
1266struct ui_file;
1267struct value;
1268struct objfile;
1269struct obj_section;
1270struct minimal_symbol;
1271struct regcache;
1272struct reggroup;
1273struct regset;
1274struct disassemble_info;
1275struct target_ops;
1276struct obstack;
1277struct bp_target_info;
1278struct target_desc;
1279struct symbol;
1280struct displaced_step_closure;
1281struct syscall;
1282struct agent_expr;
1283struct axs_value;
1284struct stap_parse_info;
1285struct parser_state;
1286struct ravenscar_arch_ops;
1287struct mem_range;
1288struct syscalls_info;
1289struct thread_info;
1290struct ui_out;
1291
1292#include "regcache.h"
1293
1294/* The architecture associated with the inferior through the
1295 connection to the target.
1296
1297 The architecture vector provides some information that is really a
1298 property of the inferior, accessed through a particular target:
1299 ptrace operations; the layout of certain RSP packets; the solib_ops
1300 vector; etc. To differentiate architecture accesses to
1301 per-inferior/target properties from
1302 per-thread/per-frame/per-objfile properties, accesses to
1303 per-inferior/target properties should be made through this
1304 gdbarch. */
1305
1306/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1307extern struct gdbarch *target_gdbarch (void);
1308
1309/* Callback type for the 'iterate_over_objfiles_in_search_order'
1310 gdbarch method. */
1311
1312typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1313 (struct objfile *objfile, void *cb_data);
1314
1315/* Callback type for regset section iterators. The callback usually
1316 invokes the REGSET's supply or collect method, to which it must
1317 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1318 section name, and HUMAN_NAME is used for diagnostic messages.
1319 CB_DATA should have been passed unchanged through the iterator. */
1320
1321typedef void (iterate_over_regset_sections_cb)
1322 (const char *sect_name, int size, const struct regset *regset,
1323 const char *human_name, void *cb_data);
1324EOF
1325
1326# function typedef's
1327printf "\n"
1328printf "\n"
1329printf "/* The following are pre-initialized by GDBARCH. */\n"
1330function_list | while do_read
1331do
1332 if class_is_info_p
1333 then
1334 printf "\n"
1335 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1336 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1337 fi
1338done
1339
1340# function typedef's
1341printf "\n"
1342printf "\n"
1343printf "/* The following are initialized by the target dependent code. */\n"
1344function_list | while do_read
1345do
1346 if [ -n "${comment}" ]
1347 then
1348 echo "${comment}" | sed \
1349 -e '2 s,#,/*,' \
1350 -e '3,$ s,#, ,' \
1351 -e '$ s,$, */,'
1352 fi
1353
1354 if class_is_predicate_p
1355 then
1356 printf "\n"
1357 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1358 fi
1359 if class_is_variable_p
1360 then
1361 printf "\n"
1362 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1363 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1364 fi
1365 if class_is_function_p
1366 then
1367 printf "\n"
1368 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1369 then
1370 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1371 elif class_is_multiarch_p
1372 then
1373 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1374 else
1375 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1376 fi
1377 if [ "x${formal}" = "xvoid" ]
1378 then
1379 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1380 else
1381 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1382 fi
1383 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1384 fi
1385done
1386
1387# close it off
1388cat <<EOF
1389
1390/* Definition for an unknown syscall, used basically in error-cases. */
1391#define UNKNOWN_SYSCALL (-1)
1392
1393extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1394
1395
1396/* Mechanism for co-ordinating the selection of a specific
1397 architecture.
1398
1399 GDB targets (*-tdep.c) can register an interest in a specific
1400 architecture. Other GDB components can register a need to maintain
1401 per-architecture data.
1402
1403 The mechanisms below ensures that there is only a loose connection
1404 between the set-architecture command and the various GDB
1405 components. Each component can independently register their need
1406 to maintain architecture specific data with gdbarch.
1407
1408 Pragmatics:
1409
1410 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1411 didn't scale.
1412
1413 The more traditional mega-struct containing architecture specific
1414 data for all the various GDB components was also considered. Since
1415 GDB is built from a variable number of (fairly independent)
1416 components it was determined that the global aproach was not
1417 applicable. */
1418
1419
1420/* Register a new architectural family with GDB.
1421
1422 Register support for the specified ARCHITECTURE with GDB. When
1423 gdbarch determines that the specified architecture has been
1424 selected, the corresponding INIT function is called.
1425
1426 --
1427
1428 The INIT function takes two parameters: INFO which contains the
1429 information available to gdbarch about the (possibly new)
1430 architecture; ARCHES which is a list of the previously created
1431 \`\`struct gdbarch'' for this architecture.
1432
1433 The INFO parameter is, as far as possible, be pre-initialized with
1434 information obtained from INFO.ABFD or the global defaults.
1435
1436 The ARCHES parameter is a linked list (sorted most recently used)
1437 of all the previously created architures for this architecture
1438 family. The (possibly NULL) ARCHES->gdbarch can used to access
1439 values from the previously selected architecture for this
1440 architecture family.
1441
1442 The INIT function shall return any of: NULL - indicating that it
1443 doesn't recognize the selected architecture; an existing \`\`struct
1444 gdbarch'' from the ARCHES list - indicating that the new
1445 architecture is just a synonym for an earlier architecture (see
1446 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1447 - that describes the selected architecture (see gdbarch_alloc()).
1448
1449 The DUMP_TDEP function shall print out all target specific values.
1450 Care should be taken to ensure that the function works in both the
1451 multi-arch and non- multi-arch cases. */
1452
1453struct gdbarch_list
1454{
1455 struct gdbarch *gdbarch;
1456 struct gdbarch_list *next;
1457};
1458
1459struct gdbarch_info
1460{
1461 /* Use default: NULL (ZERO). */
1462 const struct bfd_arch_info *bfd_arch_info;
1463
1464 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1465 enum bfd_endian byte_order;
1466
1467 enum bfd_endian byte_order_for_code;
1468
1469 /* Use default: NULL (ZERO). */
1470 bfd *abfd;
1471
1472 /* Use default: NULL (ZERO). */
1473 union
1474 {
1475 /* Architecture-specific information. The generic form for targets
1476 that have extra requirements. */
1477 struct gdbarch_tdep_info *tdep_info;
1478
1479 /* Architecture-specific target description data. Numerous targets
1480 need only this, so give them an easy way to hold it. */
1481 struct tdesc_arch_data *tdesc_data;
1482
1483 /* SPU file system ID. This is a single integer, so using the
1484 generic form would only complicate code. Other targets may
1485 reuse this member if suitable. */
1486 int *id;
1487 };
1488
1489 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1490 enum gdb_osabi osabi;
1491
1492 /* Use default: NULL (ZERO). */
1493 const struct target_desc *target_desc;
1494};
1495
1496typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1497typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1498
1499/* DEPRECATED - use gdbarch_register() */
1500extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1501
1502extern void gdbarch_register (enum bfd_architecture architecture,
1503 gdbarch_init_ftype *,
1504 gdbarch_dump_tdep_ftype *);
1505
1506
1507/* Return a freshly allocated, NULL terminated, array of the valid
1508 architecture names. Since architectures are registered during the
1509 _initialize phase this function only returns useful information
1510 once initialization has been completed. */
1511
1512extern const char **gdbarch_printable_names (void);
1513
1514
1515/* Helper function. Search the list of ARCHES for a GDBARCH that
1516 matches the information provided by INFO. */
1517
1518extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1519
1520
1521/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1522 basic initialization using values obtained from the INFO and TDEP
1523 parameters. set_gdbarch_*() functions are called to complete the
1524 initialization of the object. */
1525
1526extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1527
1528
1529/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1530 It is assumed that the caller freeds the \`\`struct
1531 gdbarch_tdep''. */
1532
1533extern void gdbarch_free (struct gdbarch *);
1534
1535
1536/* Helper function. Allocate memory from the \`\`struct gdbarch''
1537 obstack. The memory is freed when the corresponding architecture
1538 is also freed. */
1539
1540extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1541#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1542#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1543
1544/* Duplicate STRING, returning an equivalent string that's allocated on the
1545 obstack associated with GDBARCH. The string is freed when the corresponding
1546 architecture is also freed. */
1547
1548extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1549
1550/* Helper function. Force an update of the current architecture.
1551
1552 The actual architecture selected is determined by INFO, \`\`(gdb) set
1553 architecture'' et.al., the existing architecture and BFD's default
1554 architecture. INFO should be initialized to zero and then selected
1555 fields should be updated.
1556
1557 Returns non-zero if the update succeeds. */
1558
1559extern int gdbarch_update_p (struct gdbarch_info info);
1560
1561
1562/* Helper function. Find an architecture matching info.
1563
1564 INFO should be initialized using gdbarch_info_init, relevant fields
1565 set, and then finished using gdbarch_info_fill.
1566
1567 Returns the corresponding architecture, or NULL if no matching
1568 architecture was found. */
1569
1570extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1571
1572
1573/* Helper function. Set the target gdbarch to "gdbarch". */
1574
1575extern void set_target_gdbarch (struct gdbarch *gdbarch);
1576
1577
1578/* Register per-architecture data-pointer.
1579
1580 Reserve space for a per-architecture data-pointer. An identifier
1581 for the reserved data-pointer is returned. That identifer should
1582 be saved in a local static variable.
1583
1584 Memory for the per-architecture data shall be allocated using
1585 gdbarch_obstack_zalloc. That memory will be deleted when the
1586 corresponding architecture object is deleted.
1587
1588 When a previously created architecture is re-selected, the
1589 per-architecture data-pointer for that previous architecture is
1590 restored. INIT() is not re-called.
1591
1592 Multiple registrarants for any architecture are allowed (and
1593 strongly encouraged). */
1594
1595struct gdbarch_data;
1596
1597typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1598extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1599typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1600extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1601extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1602 struct gdbarch_data *data,
1603 void *pointer);
1604
1605extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1606
1607
1608/* Set the dynamic target-system-dependent parameters (architecture,
1609 byte-order, ...) using information found in the BFD. */
1610
1611extern void set_gdbarch_from_file (bfd *);
1612
1613
1614/* Initialize the current architecture to the "first" one we find on
1615 our list. */
1616
1617extern void initialize_current_architecture (void);
1618
1619/* gdbarch trace variable */
1620extern unsigned int gdbarch_debug;
1621
1622extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1623
1624#endif
1625EOF
1626exec 1>&2
1627#../move-if-change new-gdbarch.h gdbarch.h
1628compare_new gdbarch.h
1629
1630
1631#
1632# C file
1633#
1634
1635exec > new-gdbarch.c
1636copyright
1637cat <<EOF
1638
1639#include "defs.h"
1640#include "arch-utils.h"
1641
1642#include "gdbcmd.h"
1643#include "inferior.h"
1644#include "symcat.h"
1645
1646#include "floatformat.h"
1647#include "reggroups.h"
1648#include "osabi.h"
1649#include "gdb_obstack.h"
1650#include "observable.h"
1651#include "regcache.h"
1652#include "objfiles.h"
1653#include "auxv.h"
1654
1655/* Static function declarations */
1656
1657static void alloc_gdbarch_data (struct gdbarch *);
1658
1659/* Non-zero if we want to trace architecture code. */
1660
1661#ifndef GDBARCH_DEBUG
1662#define GDBARCH_DEBUG 0
1663#endif
1664unsigned int gdbarch_debug = GDBARCH_DEBUG;
1665static void
1666show_gdbarch_debug (struct ui_file *file, int from_tty,
1667 struct cmd_list_element *c, const char *value)
1668{
1669 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1670}
1671
1672static const char *
1673pformat (const struct floatformat **format)
1674{
1675 if (format == NULL)
1676 return "(null)";
1677 else
1678 /* Just print out one of them - this is only for diagnostics. */
1679 return format[0]->name;
1680}
1681
1682static const char *
1683pstring (const char *string)
1684{
1685 if (string == NULL)
1686 return "(null)";
1687 return string;
1688}
1689
1690static const char *
1691pstring_ptr (char **string)
1692{
1693 if (string == NULL || *string == NULL)
1694 return "(null)";
1695 return *string;
1696}
1697
1698/* Helper function to print a list of strings, represented as "const
1699 char *const *". The list is printed comma-separated. */
1700
1701static const char *
1702pstring_list (const char *const *list)
1703{
1704 static char ret[100];
1705 const char *const *p;
1706 size_t offset = 0;
1707
1708 if (list == NULL)
1709 return "(null)";
1710
1711 ret[0] = '\0';
1712 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1713 {
1714 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1715 offset += 2 + s;
1716 }
1717
1718 if (offset > 0)
1719 {
1720 gdb_assert (offset - 2 < sizeof (ret));
1721 ret[offset - 2] = '\0';
1722 }
1723
1724 return ret;
1725}
1726
1727EOF
1728
1729# gdbarch open the gdbarch object
1730printf "\n"
1731printf "/* Maintain the struct gdbarch object. */\n"
1732printf "\n"
1733printf "struct gdbarch\n"
1734printf "{\n"
1735printf " /* Has this architecture been fully initialized? */\n"
1736printf " int initialized_p;\n"
1737printf "\n"
1738printf " /* An obstack bound to the lifetime of the architecture. */\n"
1739printf " struct obstack *obstack;\n"
1740printf "\n"
1741printf " /* basic architectural information. */\n"
1742function_list | while do_read
1743do
1744 if class_is_info_p
1745 then
1746 printf " ${returntype} ${function};\n"
1747 fi
1748done
1749printf "\n"
1750printf " /* target specific vector. */\n"
1751printf " struct gdbarch_tdep *tdep;\n"
1752printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1753printf "\n"
1754printf " /* per-architecture data-pointers. */\n"
1755printf " unsigned nr_data;\n"
1756printf " void **data;\n"
1757printf "\n"
1758cat <<EOF
1759 /* Multi-arch values.
1760
1761 When extending this structure you must:
1762
1763 Add the field below.
1764
1765 Declare set/get functions and define the corresponding
1766 macro in gdbarch.h.
1767
1768 gdbarch_alloc(): If zero/NULL is not a suitable default,
1769 initialize the new field.
1770
1771 verify_gdbarch(): Confirm that the target updated the field
1772 correctly.
1773
1774 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1775 field is dumped out
1776
1777 get_gdbarch(): Implement the set/get functions (probably using
1778 the macro's as shortcuts).
1779
1780 */
1781
1782EOF
1783function_list | while do_read
1784do
1785 if class_is_variable_p
1786 then
1787 printf " ${returntype} ${function};\n"
1788 elif class_is_function_p
1789 then
1790 printf " gdbarch_${function}_ftype *${function};\n"
1791 fi
1792done
1793printf "};\n"
1794
1795# Create a new gdbarch struct
1796cat <<EOF
1797
1798/* Create a new \`\`struct gdbarch'' based on information provided by
1799 \`\`struct gdbarch_info''. */
1800EOF
1801printf "\n"
1802cat <<EOF
1803struct gdbarch *
1804gdbarch_alloc (const struct gdbarch_info *info,
1805 struct gdbarch_tdep *tdep)
1806{
1807 struct gdbarch *gdbarch;
1808
1809 /* Create an obstack for allocating all the per-architecture memory,
1810 then use that to allocate the architecture vector. */
1811 struct obstack *obstack = XNEW (struct obstack);
1812 obstack_init (obstack);
1813 gdbarch = XOBNEW (obstack, struct gdbarch);
1814 memset (gdbarch, 0, sizeof (*gdbarch));
1815 gdbarch->obstack = obstack;
1816
1817 alloc_gdbarch_data (gdbarch);
1818
1819 gdbarch->tdep = tdep;
1820EOF
1821printf "\n"
1822function_list | while do_read
1823do
1824 if class_is_info_p
1825 then
1826 printf " gdbarch->${function} = info->${function};\n"
1827 fi
1828done
1829printf "\n"
1830printf " /* Force the explicit initialization of these. */\n"
1831function_list | while do_read
1832do
1833 if class_is_function_p || class_is_variable_p
1834 then
1835 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1836 then
1837 printf " gdbarch->${function} = ${predefault};\n"
1838 fi
1839 fi
1840done
1841cat <<EOF
1842 /* gdbarch_alloc() */
1843
1844 return gdbarch;
1845}
1846EOF
1847
1848# Free a gdbarch struct.
1849printf "\n"
1850printf "\n"
1851cat <<EOF
1852/* Allocate extra space using the per-architecture obstack. */
1853
1854void *
1855gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1856{
1857 void *data = obstack_alloc (arch->obstack, size);
1858
1859 memset (data, 0, size);
1860 return data;
1861}
1862
1863/* See gdbarch.h. */
1864
1865char *
1866gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1867{
1868 return obstack_strdup (arch->obstack, string);
1869}
1870
1871
1872/* Free a gdbarch struct. This should never happen in normal
1873 operation --- once you've created a gdbarch, you keep it around.
1874 However, if an architecture's init function encounters an error
1875 building the structure, it may need to clean up a partially
1876 constructed gdbarch. */
1877
1878void
1879gdbarch_free (struct gdbarch *arch)
1880{
1881 struct obstack *obstack;
1882
1883 gdb_assert (arch != NULL);
1884 gdb_assert (!arch->initialized_p);
1885 obstack = arch->obstack;
1886 obstack_free (obstack, 0); /* Includes the ARCH. */
1887 xfree (obstack);
1888}
1889EOF
1890
1891# verify a new architecture
1892cat <<EOF
1893
1894
1895/* Ensure that all values in a GDBARCH are reasonable. */
1896
1897static void
1898verify_gdbarch (struct gdbarch *gdbarch)
1899{
1900 string_file log;
1901
1902 /* fundamental */
1903 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1904 log.puts ("\n\tbyte-order");
1905 if (gdbarch->bfd_arch_info == NULL)
1906 log.puts ("\n\tbfd_arch_info");
1907 /* Check those that need to be defined for the given multi-arch level. */
1908EOF
1909function_list | while do_read
1910do
1911 if class_is_function_p || class_is_variable_p
1912 then
1913 if [ "x${invalid_p}" = "x0" ]
1914 then
1915 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1916 elif class_is_predicate_p
1917 then
1918 printf " /* Skip verify of ${function}, has predicate. */\n"
1919 # FIXME: See do_read for potential simplification
1920 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1921 then
1922 printf " if (${invalid_p})\n"
1923 printf " gdbarch->${function} = ${postdefault};\n"
1924 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1925 then
1926 printf " if (gdbarch->${function} == ${predefault})\n"
1927 printf " gdbarch->${function} = ${postdefault};\n"
1928 elif [ -n "${postdefault}" ]
1929 then
1930 printf " if (gdbarch->${function} == 0)\n"
1931 printf " gdbarch->${function} = ${postdefault};\n"
1932 elif [ -n "${invalid_p}" ]
1933 then
1934 printf " if (${invalid_p})\n"
1935 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1936 elif [ -n "${predefault}" ]
1937 then
1938 printf " if (gdbarch->${function} == ${predefault})\n"
1939 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1940 fi
1941 fi
1942done
1943cat <<EOF
1944 if (!log.empty ())
1945 internal_error (__FILE__, __LINE__,
1946 _("verify_gdbarch: the following are invalid ...%s"),
1947 log.c_str ());
1948}
1949EOF
1950
1951# dump the structure
1952printf "\n"
1953printf "\n"
1954cat <<EOF
1955/* Print out the details of the current architecture. */
1956
1957void
1958gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1959{
1960 const char *gdb_nm_file = "<not-defined>";
1961
1962#if defined (GDB_NM_FILE)
1963 gdb_nm_file = GDB_NM_FILE;
1964#endif
1965 fprintf_unfiltered (file,
1966 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1967 gdb_nm_file);
1968EOF
1969function_list | sort '-t;' -k 3 | while do_read
1970do
1971 # First the predicate
1972 if class_is_predicate_p
1973 then
1974 printf " fprintf_unfiltered (file,\n"
1975 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1976 printf " gdbarch_${function}_p (gdbarch));\n"
1977 fi
1978 # Print the corresponding value.
1979 if class_is_function_p
1980 then
1981 printf " fprintf_unfiltered (file,\n"
1982 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1983 printf " host_address_to_string (gdbarch->${function}));\n"
1984 else
1985 # It is a variable
1986 case "${print}:${returntype}" in
1987 :CORE_ADDR )
1988 fmt="%s"
1989 print="core_addr_to_string_nz (gdbarch->${function})"
1990 ;;
1991 :* )
1992 fmt="%s"
1993 print="plongest (gdbarch->${function})"
1994 ;;
1995 * )
1996 fmt="%s"
1997 ;;
1998 esac
1999 printf " fprintf_unfiltered (file,\n"
2000 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
2001 printf " ${print});\n"
2002 fi
2003done
2004cat <<EOF
2005 if (gdbarch->dump_tdep != NULL)
2006 gdbarch->dump_tdep (gdbarch, file);
2007}
2008EOF
2009
2010
2011# GET/SET
2012printf "\n"
2013cat <<EOF
2014struct gdbarch_tdep *
2015gdbarch_tdep (struct gdbarch *gdbarch)
2016{
2017 if (gdbarch_debug >= 2)
2018 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2019 return gdbarch->tdep;
2020}
2021EOF
2022printf "\n"
2023function_list | while do_read
2024do
2025 if class_is_predicate_p
2026 then
2027 printf "\n"
2028 printf "int\n"
2029 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2030 printf "{\n"
2031 printf " gdb_assert (gdbarch != NULL);\n"
2032 printf " return ${predicate};\n"
2033 printf "}\n"
2034 fi
2035 if class_is_function_p
2036 then
2037 printf "\n"
2038 printf "${returntype}\n"
2039 if [ "x${formal}" = "xvoid" ]
2040 then
2041 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2042 else
2043 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2044 fi
2045 printf "{\n"
2046 printf " gdb_assert (gdbarch != NULL);\n"
2047 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2048 if class_is_predicate_p && test -n "${predefault}"
2049 then
2050 # Allow a call to a function with a predicate.
2051 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2052 fi
2053 printf " if (gdbarch_debug >= 2)\n"
2054 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2055 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2056 then
2057 if class_is_multiarch_p
2058 then
2059 params="gdbarch"
2060 else
2061 params=""
2062 fi
2063 else
2064 if class_is_multiarch_p
2065 then
2066 params="gdbarch, ${actual}"
2067 else
2068 params="${actual}"
2069 fi
2070 fi
2071 if [ "x${returntype}" = "xvoid" ]
2072 then
2073 printf " gdbarch->${function} (${params});\n"
2074 else
2075 printf " return gdbarch->${function} (${params});\n"
2076 fi
2077 printf "}\n"
2078 printf "\n"
2079 printf "void\n"
2080 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2081 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2082 printf "{\n"
2083 printf " gdbarch->${function} = ${function};\n"
2084 printf "}\n"
2085 elif class_is_variable_p
2086 then
2087 printf "\n"
2088 printf "${returntype}\n"
2089 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2090 printf "{\n"
2091 printf " gdb_assert (gdbarch != NULL);\n"
2092 if [ "x${invalid_p}" = "x0" ]
2093 then
2094 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2095 elif [ -n "${invalid_p}" ]
2096 then
2097 printf " /* Check variable is valid. */\n"
2098 printf " gdb_assert (!(${invalid_p}));\n"
2099 elif [ -n "${predefault}" ]
2100 then
2101 printf " /* Check variable changed from pre-default. */\n"
2102 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2103 fi
2104 printf " if (gdbarch_debug >= 2)\n"
2105 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2106 printf " return gdbarch->${function};\n"
2107 printf "}\n"
2108 printf "\n"
2109 printf "void\n"
2110 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2111 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2112 printf "{\n"
2113 printf " gdbarch->${function} = ${function};\n"
2114 printf "}\n"
2115 elif class_is_info_p
2116 then
2117 printf "\n"
2118 printf "${returntype}\n"
2119 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2120 printf "{\n"
2121 printf " gdb_assert (gdbarch != NULL);\n"
2122 printf " if (gdbarch_debug >= 2)\n"
2123 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2124 printf " return gdbarch->${function};\n"
2125 printf "}\n"
2126 fi
2127done
2128
2129# All the trailing guff
2130cat <<EOF
2131
2132
2133/* Keep a registry of per-architecture data-pointers required by GDB
2134 modules. */
2135
2136struct gdbarch_data
2137{
2138 unsigned index;
2139 int init_p;
2140 gdbarch_data_pre_init_ftype *pre_init;
2141 gdbarch_data_post_init_ftype *post_init;
2142};
2143
2144struct gdbarch_data_registration
2145{
2146 struct gdbarch_data *data;
2147 struct gdbarch_data_registration *next;
2148};
2149
2150struct gdbarch_data_registry
2151{
2152 unsigned nr;
2153 struct gdbarch_data_registration *registrations;
2154};
2155
2156struct gdbarch_data_registry gdbarch_data_registry =
2157{
2158 0, NULL,
2159};
2160
2161static struct gdbarch_data *
2162gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2163 gdbarch_data_post_init_ftype *post_init)
2164{
2165 struct gdbarch_data_registration **curr;
2166
2167 /* Append the new registration. */
2168 for (curr = &gdbarch_data_registry.registrations;
2169 (*curr) != NULL;
2170 curr = &(*curr)->next);
2171 (*curr) = XNEW (struct gdbarch_data_registration);
2172 (*curr)->next = NULL;
2173 (*curr)->data = XNEW (struct gdbarch_data);
2174 (*curr)->data->index = gdbarch_data_registry.nr++;
2175 (*curr)->data->pre_init = pre_init;
2176 (*curr)->data->post_init = post_init;
2177 (*curr)->data->init_p = 1;
2178 return (*curr)->data;
2179}
2180
2181struct gdbarch_data *
2182gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2183{
2184 return gdbarch_data_register (pre_init, NULL);
2185}
2186
2187struct gdbarch_data *
2188gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2189{
2190 return gdbarch_data_register (NULL, post_init);
2191}
2192
2193/* Create/delete the gdbarch data vector. */
2194
2195static void
2196alloc_gdbarch_data (struct gdbarch *gdbarch)
2197{
2198 gdb_assert (gdbarch->data == NULL);
2199 gdbarch->nr_data = gdbarch_data_registry.nr;
2200 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2201}
2202
2203/* Initialize the current value of the specified per-architecture
2204 data-pointer. */
2205
2206void
2207deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2208 struct gdbarch_data *data,
2209 void *pointer)
2210{
2211 gdb_assert (data->index < gdbarch->nr_data);
2212 gdb_assert (gdbarch->data[data->index] == NULL);
2213 gdb_assert (data->pre_init == NULL);
2214 gdbarch->data[data->index] = pointer;
2215}
2216
2217/* Return the current value of the specified per-architecture
2218 data-pointer. */
2219
2220void *
2221gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2222{
2223 gdb_assert (data->index < gdbarch->nr_data);
2224 if (gdbarch->data[data->index] == NULL)
2225 {
2226 /* The data-pointer isn't initialized, call init() to get a
2227 value. */
2228 if (data->pre_init != NULL)
2229 /* Mid architecture creation: pass just the obstack, and not
2230 the entire architecture, as that way it isn't possible for
2231 pre-init code to refer to undefined architecture
2232 fields. */
2233 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2234 else if (gdbarch->initialized_p
2235 && data->post_init != NULL)
2236 /* Post architecture creation: pass the entire architecture
2237 (as all fields are valid), but be careful to also detect
2238 recursive references. */
2239 {
2240 gdb_assert (data->init_p);
2241 data->init_p = 0;
2242 gdbarch->data[data->index] = data->post_init (gdbarch);
2243 data->init_p = 1;
2244 }
2245 else
2246 /* The architecture initialization hasn't completed - punt -
2247 hope that the caller knows what they are doing. Once
2248 deprecated_set_gdbarch_data has been initialized, this can be
2249 changed to an internal error. */
2250 return NULL;
2251 gdb_assert (gdbarch->data[data->index] != NULL);
2252 }
2253 return gdbarch->data[data->index];
2254}
2255
2256
2257/* Keep a registry of the architectures known by GDB. */
2258
2259struct gdbarch_registration
2260{
2261 enum bfd_architecture bfd_architecture;
2262 gdbarch_init_ftype *init;
2263 gdbarch_dump_tdep_ftype *dump_tdep;
2264 struct gdbarch_list *arches;
2265 struct gdbarch_registration *next;
2266};
2267
2268static struct gdbarch_registration *gdbarch_registry = NULL;
2269
2270static void
2271append_name (const char ***buf, int *nr, const char *name)
2272{
2273 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2274 (*buf)[*nr] = name;
2275 *nr += 1;
2276}
2277
2278const char **
2279gdbarch_printable_names (void)
2280{
2281 /* Accumulate a list of names based on the registed list of
2282 architectures. */
2283 int nr_arches = 0;
2284 const char **arches = NULL;
2285 struct gdbarch_registration *rego;
2286
2287 for (rego = gdbarch_registry;
2288 rego != NULL;
2289 rego = rego->next)
2290 {
2291 const struct bfd_arch_info *ap;
2292 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2293 if (ap == NULL)
2294 internal_error (__FILE__, __LINE__,
2295 _("gdbarch_architecture_names: multi-arch unknown"));
2296 do
2297 {
2298 append_name (&arches, &nr_arches, ap->printable_name);
2299 ap = ap->next;
2300 }
2301 while (ap != NULL);
2302 }
2303 append_name (&arches, &nr_arches, NULL);
2304 return arches;
2305}
2306
2307
2308void
2309gdbarch_register (enum bfd_architecture bfd_architecture,
2310 gdbarch_init_ftype *init,
2311 gdbarch_dump_tdep_ftype *dump_tdep)
2312{
2313 struct gdbarch_registration **curr;
2314 const struct bfd_arch_info *bfd_arch_info;
2315
2316 /* Check that BFD recognizes this architecture */
2317 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2318 if (bfd_arch_info == NULL)
2319 {
2320 internal_error (__FILE__, __LINE__,
2321 _("gdbarch: Attempt to register "
2322 "unknown architecture (%d)"),
2323 bfd_architecture);
2324 }
2325 /* Check that we haven't seen this architecture before. */
2326 for (curr = &gdbarch_registry;
2327 (*curr) != NULL;
2328 curr = &(*curr)->next)
2329 {
2330 if (bfd_architecture == (*curr)->bfd_architecture)
2331 internal_error (__FILE__, __LINE__,
2332 _("gdbarch: Duplicate registration "
2333 "of architecture (%s)"),
2334 bfd_arch_info->printable_name);
2335 }
2336 /* log it */
2337 if (gdbarch_debug)
2338 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2339 bfd_arch_info->printable_name,
2340 host_address_to_string (init));
2341 /* Append it */
2342 (*curr) = XNEW (struct gdbarch_registration);
2343 (*curr)->bfd_architecture = bfd_architecture;
2344 (*curr)->init = init;
2345 (*curr)->dump_tdep = dump_tdep;
2346 (*curr)->arches = NULL;
2347 (*curr)->next = NULL;
2348}
2349
2350void
2351register_gdbarch_init (enum bfd_architecture bfd_architecture,
2352 gdbarch_init_ftype *init)
2353{
2354 gdbarch_register (bfd_architecture, init, NULL);
2355}
2356
2357
2358/* Look for an architecture using gdbarch_info. */
2359
2360struct gdbarch_list *
2361gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2362 const struct gdbarch_info *info)
2363{
2364 for (; arches != NULL; arches = arches->next)
2365 {
2366 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2367 continue;
2368 if (info->byte_order != arches->gdbarch->byte_order)
2369 continue;
2370 if (info->osabi != arches->gdbarch->osabi)
2371 continue;
2372 if (info->target_desc != arches->gdbarch->target_desc)
2373 continue;
2374 return arches;
2375 }
2376 return NULL;
2377}
2378
2379
2380/* Find an architecture that matches the specified INFO. Create a new
2381 architecture if needed. Return that new architecture. */
2382
2383struct gdbarch *
2384gdbarch_find_by_info (struct gdbarch_info info)
2385{
2386 struct gdbarch *new_gdbarch;
2387 struct gdbarch_registration *rego;
2388
2389 /* Fill in missing parts of the INFO struct using a number of
2390 sources: "set ..."; INFOabfd supplied; and the global
2391 defaults. */
2392 gdbarch_info_fill (&info);
2393
2394 /* Must have found some sort of architecture. */
2395 gdb_assert (info.bfd_arch_info != NULL);
2396
2397 if (gdbarch_debug)
2398 {
2399 fprintf_unfiltered (gdb_stdlog,
2400 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2401 (info.bfd_arch_info != NULL
2402 ? info.bfd_arch_info->printable_name
2403 : "(null)"));
2404 fprintf_unfiltered (gdb_stdlog,
2405 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2406 info.byte_order,
2407 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2408 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2409 : "default"));
2410 fprintf_unfiltered (gdb_stdlog,
2411 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2412 info.osabi, gdbarch_osabi_name (info.osabi));
2413 fprintf_unfiltered (gdb_stdlog,
2414 "gdbarch_find_by_info: info.abfd %s\n",
2415 host_address_to_string (info.abfd));
2416 fprintf_unfiltered (gdb_stdlog,
2417 "gdbarch_find_by_info: info.tdep_info %s\n",
2418 host_address_to_string (info.tdep_info));
2419 }
2420
2421 /* Find the tdep code that knows about this architecture. */
2422 for (rego = gdbarch_registry;
2423 rego != NULL;
2424 rego = rego->next)
2425 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2426 break;
2427 if (rego == NULL)
2428 {
2429 if (gdbarch_debug)
2430 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2431 "No matching architecture\n");
2432 return 0;
2433 }
2434
2435 /* Ask the tdep code for an architecture that matches "info". */
2436 new_gdbarch = rego->init (info, rego->arches);
2437
2438 /* Did the tdep code like it? No. Reject the change and revert to
2439 the old architecture. */
2440 if (new_gdbarch == NULL)
2441 {
2442 if (gdbarch_debug)
2443 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2444 "Target rejected architecture\n");
2445 return NULL;
2446 }
2447
2448 /* Is this a pre-existing architecture (as determined by already
2449 being initialized)? Move it to the front of the architecture
2450 list (keeping the list sorted Most Recently Used). */
2451 if (new_gdbarch->initialized_p)
2452 {
2453 struct gdbarch_list **list;
2454 struct gdbarch_list *self;
2455 if (gdbarch_debug)
2456 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2457 "Previous architecture %s (%s) selected\n",
2458 host_address_to_string (new_gdbarch),
2459 new_gdbarch->bfd_arch_info->printable_name);
2460 /* Find the existing arch in the list. */
2461 for (list = &rego->arches;
2462 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2463 list = &(*list)->next);
2464 /* It had better be in the list of architectures. */
2465 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2466 /* Unlink SELF. */
2467 self = (*list);
2468 (*list) = self->next;
2469 /* Insert SELF at the front. */
2470 self->next = rego->arches;
2471 rego->arches = self;
2472 /* Return it. */
2473 return new_gdbarch;
2474 }
2475
2476 /* It's a new architecture. */
2477 if (gdbarch_debug)
2478 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2479 "New architecture %s (%s) selected\n",
2480 host_address_to_string (new_gdbarch),
2481 new_gdbarch->bfd_arch_info->printable_name);
2482
2483 /* Insert the new architecture into the front of the architecture
2484 list (keep the list sorted Most Recently Used). */
2485 {
2486 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2487 self->next = rego->arches;
2488 self->gdbarch = new_gdbarch;
2489 rego->arches = self;
2490 }
2491
2492 /* Check that the newly installed architecture is valid. Plug in
2493 any post init values. */
2494 new_gdbarch->dump_tdep = rego->dump_tdep;
2495 verify_gdbarch (new_gdbarch);
2496 new_gdbarch->initialized_p = 1;
2497
2498 if (gdbarch_debug)
2499 gdbarch_dump (new_gdbarch, gdb_stdlog);
2500
2501 return new_gdbarch;
2502}
2503
2504/* Make the specified architecture current. */
2505
2506void
2507set_target_gdbarch (struct gdbarch *new_gdbarch)
2508{
2509 gdb_assert (new_gdbarch != NULL);
2510 gdb_assert (new_gdbarch->initialized_p);
2511 current_inferior ()->gdbarch = new_gdbarch;
2512 gdb::observers::architecture_changed.notify (new_gdbarch);
2513 registers_changed ();
2514}
2515
2516/* Return the current inferior's arch. */
2517
2518struct gdbarch *
2519target_gdbarch (void)
2520{
2521 return current_inferior ()->gdbarch;
2522}
2523
2524void
2525_initialize_gdbarch (void)
2526{
2527 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2528Set architecture debugging."), _("\\
2529Show architecture debugging."), _("\\
2530When non-zero, architecture debugging is enabled."),
2531 NULL,
2532 show_gdbarch_debug,
2533 &setdebuglist, &showdebuglist);
2534}
2535EOF
2536
2537# close things off
2538exec 1>&2
2539#../move-if-change new-gdbarch.c gdbarch.c
2540compare_new gdbarch.c
This page took 0.030916 seconds and 4 git commands to generate.