* gdbtypes.c (create_string_type): Receive character type as argument.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
... / ...
CommitLineData
1#!/bin/sh -u
2
3# Architecture commands for GDB, the GNU debugger.
4#
5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6# 2008, 2009 Free Software Foundation, Inc.
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
12# the Free Software Foundation; either version 3 of the License, or
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
21# along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23# Make certain that the script is not running in an internationalized
24# environment.
25LANG=c ; export LANG
26LC_ALL=c ; export LC_ALL
27
28
29compare_new ()
30{
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47do_read ()
48{
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152}
153
154
155fallback_default_p ()
156{
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159}
160
161class_is_variable_p ()
162{
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167}
168
169class_is_function_p ()
170{
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183}
184
185class_is_predicate_p ()
186{
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191}
192
193class_is_info_p ()
194{
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199}
200
201
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332done
333
334
335function_list ()
336{
337 # See below (DOCO) for description of each field
338 cat <<EOF
339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340#
341i:int:byte_order:::BFD_ENDIAN_BIG
342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343#
344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345#
346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355#
356# Number of bits in a short or unsigned short for the target machine.
357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358# Number of bits in an int or unsigned int for the target machine.
359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360# Number of bits in a long or unsigned long for the target machine.
361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362# Number of bits in a long long or unsigned long long for the target
363# machine.
364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
369# Each format describes both the big and little endian layouts (if
370# useful).
371
372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382# / addr_bit will be set from it.
383#
384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
387#
388# ptr_bit is the size of a pointer on the target
389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390# addr_bit is the size of a target address as represented in gdb
391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392#
393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
394v:int:char_signed:::1:-1:1
395#
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402#
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405#
406v:int:num_regs:::0:-1
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
411v:int:num_pseudo_regs:::0:0::0
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
415# all (-1).
416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425# Convert from an sdb register number to an internal gdb register number.
426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429m:const char *:register_name:int regnr:regnr::0
430
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
434M:struct type *:register_type:int reg_nr:reg_nr
435
436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439# deprecated_fp_regnum.
440v:int:deprecated_fp_regnum:::-1:-1::0
441
442# See gdbint.texinfo. See infcall.c.
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455# setjmp/longjmp support.
456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457#
458v:int:believe_pcc_promotion:::::::
459#
460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468#
469f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494# A function can be addressed by either it's "pointer" (possibly a
495# descriptor address) or "entry point" (first executable instruction).
496# The method "convert_from_func_ptr_addr" converting the former to the
497# latter. gdbarch_deprecated_function_start_offset is being used to implement
498# a simplified subset of that functionality - the function's address
499# corresponds to the "function pointer" and the function's start
500# corresponds to the "function entry point" - and hence is redundant.
501
502v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504# Return the remote protocol register number associated with this
505# register. Normally the identity mapping.
506m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508# Fetch the target specific address used to represent a load module.
509F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510#
511v:CORE_ADDR:frame_args_skip:::0:::0
512M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515# frame-base. Enable frame-base before frame-unwind.
516F:int:frame_num_args:struct frame_info *frame:frame
517#
518M:CORE_ADDR:frame_align:CORE_ADDR address:address
519m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520v:int:frame_red_zone_size
521#
522m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523# On some machines there are bits in addresses which are not really
524# part of the address, but are used by the kernel, the hardware, etc.
525# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526# we get a "real" address such as one would find in a symbol table.
527# This is used only for addresses of instructions, and even then I'm
528# not sure it's used in all contexts. It exists to deal with there
529# being a few stray bits in the PC which would mislead us, not as some
530# sort of generic thing to handle alignment or segmentation (it's
531# possible it should be in TARGET_READ_PC instead).
532m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533# It is not at all clear why gdbarch_smash_text_address is not folded into
534# gdbarch_addr_bits_remove.
535m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537# FIXME/cagney/2001-01-18: This should be split in two. A target method that
538# indicates if the target needs software single step. An ISA method to
539# implement it.
540#
541# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542# breakpoints using the breakpoint system instead of blatting memory directly
543# (as with rs6000).
544#
545# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546# target can single step. If not, then implement single step using breakpoints.
547#
548# A return value of 1 means that the software_single_step breakpoints
549# were inserted; 0 means they were not.
550F:int:software_single_step:struct frame_info *frame:frame
551
552# Return non-zero if the processor is executing a delay slot and a
553# further single-step is needed before the instruction finishes.
554M:int:single_step_through_delay:struct frame_info *frame:frame
555# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556# disassembler. Perhaps objdump can handle it?
557f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562# evaluates non-zero, this is the address where the debugger will place
563# a step-resume breakpoint to get us past the dynamic linker.
564m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565# Some systems also have trampoline code for returning from shared libs.
566f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568# A target might have problems with watchpoints as soon as the stack
569# frame of the current function has been destroyed. This mostly happens
570# as the first action in a funtion's epilogue. in_function_epilogue_p()
571# is defined to return a non-zero value if either the given addr is one
572# instruction after the stack destroying instruction up to the trailing
573# return instruction or if we can figure out that the stack frame has
574# already been invalidated regardless of the value of addr. Targets
575# which don't suffer from that problem could just let this functionality
576# untouched.
577m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
580v:int:cannot_step_breakpoint:::0:0::0
581v:int:have_nonsteppable_watchpoint:::0:0::0
582F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
585# Is a register in a group
586m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
587# Fetch the pointer to the ith function argument.
588F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
589
590# Return the appropriate register set for a core file section with
591# name SECT_NAME and size SECT_SIZE.
592M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
593
594# When creating core dumps, some systems encode the PID in addition
595# to the LWP id in core file register section names. In those cases, the
596# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
597# is set to true for such architectures; false if "XXX" represents an LWP
598# or thread id with no special encoding.
599v:int:core_reg_section_encodes_pid:::0:0::0
600
601# Supported register notes in a core file.
602v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
603
604# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605# core file into buffer READBUF with length LEN.
606M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
607
608# How the core_stratum layer converts a PTID from a core file to a
609# string.
610M:char *:core_pid_to_str:ptid_t ptid:ptid
611
612# If the elements of C++ vtables are in-place function descriptors rather
613# than normal function pointers (which may point to code or a descriptor),
614# set this to one.
615v:int:vtable_function_descriptors:::0:0::0
616
617# Set if the least significant bit of the delta is used instead of the least
618# significant bit of the pfn for pointers to virtual member functions.
619v:int:vbit_in_delta:::0:0::0
620
621# Advance PC to next instruction in order to skip a permanent breakpoint.
622F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
623
624# The maximum length of an instruction on this architecture.
625V:ULONGEST:max_insn_length:::0:0
626
627# Copy the instruction at FROM to TO, and make any adjustments
628# necessary to single-step it at that address.
629#
630# REGS holds the state the thread's registers will have before
631# executing the copied instruction; the PC in REGS will refer to FROM,
632# not the copy at TO. The caller should update it to point at TO later.
633#
634# Return a pointer to data of the architecture's choice to be passed
635# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
636# the instruction's effects have been completely simulated, with the
637# resulting state written back to REGS.
638#
639# For a general explanation of displaced stepping and how GDB uses it,
640# see the comments in infrun.c.
641#
642# The TO area is only guaranteed to have space for
643# gdbarch_max_insn_length (arch) bytes, so this function must not
644# write more bytes than that to that area.
645#
646# If you do not provide this function, GDB assumes that the
647# architecture does not support displaced stepping.
648#
649# If your architecture doesn't need to adjust instructions before
650# single-stepping them, consider using simple_displaced_step_copy_insn
651# here.
652M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
653
654# Fix up the state resulting from successfully single-stepping a
655# displaced instruction, to give the result we would have gotten from
656# stepping the instruction in its original location.
657#
658# REGS is the register state resulting from single-stepping the
659# displaced instruction.
660#
661# CLOSURE is the result from the matching call to
662# gdbarch_displaced_step_copy_insn.
663#
664# If you provide gdbarch_displaced_step_copy_insn.but not this
665# function, then GDB assumes that no fixup is needed after
666# single-stepping the instruction.
667#
668# For a general explanation of displaced stepping and how GDB uses it,
669# see the comments in infrun.c.
670M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
671
672# Free a closure returned by gdbarch_displaced_step_copy_insn.
673#
674# If you provide gdbarch_displaced_step_copy_insn, you must provide
675# this function as well.
676#
677# If your architecture uses closures that don't need to be freed, then
678# you can use simple_displaced_step_free_closure here.
679#
680# For a general explanation of displaced stepping and how GDB uses it,
681# see the comments in infrun.c.
682m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
683
684# Return the address of an appropriate place to put displaced
685# instructions while we step over them. There need only be one such
686# place, since we're only stepping one thread over a breakpoint at a
687# time.
688#
689# For a general explanation of displaced stepping and how GDB uses it,
690# see the comments in infrun.c.
691m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
692
693# Refresh overlay mapped state for section OSECT.
694F:void:overlay_update:struct obj_section *osect:osect
695
696M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
697
698# Handle special encoding of static variables in stabs debug info.
699F:char *:static_transform_name:char *name:name
700# Set if the address in N_SO or N_FUN stabs may be zero.
701v:int:sofun_address_maybe_missing:::0:0::0
702
703# Parse the instruction at ADDR storing in the record execution log
704# the registers REGCACHE and memory ranges that will be affected when
705# the instruction executes, along with their current values.
706# Return -1 if something goes wrong, 0 otherwise.
707M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
708
709# Signal translation: translate inferior's signal (host's) number into
710# GDB's representation.
711m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
712# Signal translation: translate GDB's signal number into inferior's host
713# signal number.
714m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
715
716# Extra signal info inspection.
717#
718# Return a type suitable to inspect extra signal information.
719M:struct type *:get_siginfo_type:void:
720
721# Record architecture-specific information from the symbol table.
722M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
723
724# True if the list of shared libraries is one and only for all
725# processes, as opposed to a list of shared libraries per inferior.
726# This usually means that all processes, although may or may not share
727# an address space, will see the same set of symbols at the same
728# addresses.
729v:int:has_global_solist:::0:0::0
730
731# On some targets, even though each inferior has its own private
732# address space, the debug interface takes care of making breakpoints
733# visible to all address spaces automatically. For such cases,
734# this property should be set to true.
735v:int:has_global_breakpoints:::0:0::0
736EOF
737}
738
739#
740# The .log file
741#
742exec > new-gdbarch.log
743function_list | while do_read
744do
745 cat <<EOF
746${class} ${returntype} ${function} ($formal)
747EOF
748 for r in ${read}
749 do
750 eval echo \"\ \ \ \ ${r}=\${${r}}\"
751 done
752 if class_is_predicate_p && fallback_default_p
753 then
754 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
755 kill $$
756 exit 1
757 fi
758 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
759 then
760 echo "Error: postdefault is useless when invalid_p=0" 1>&2
761 kill $$
762 exit 1
763 fi
764 if class_is_multiarch_p
765 then
766 if class_is_predicate_p ; then :
767 elif test "x${predefault}" = "x"
768 then
769 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
770 kill $$
771 exit 1
772 fi
773 fi
774 echo ""
775done
776
777exec 1>&2
778compare_new gdbarch.log
779
780
781copyright ()
782{
783cat <<EOF
784/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
785
786/* Dynamic architecture support for GDB, the GNU debugger.
787
788 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
789 Free Software Foundation, Inc.
790
791 This file is part of GDB.
792
793 This program is free software; you can redistribute it and/or modify
794 it under the terms of the GNU General Public License as published by
795 the Free Software Foundation; either version 3 of the License, or
796 (at your option) any later version.
797
798 This program is distributed in the hope that it will be useful,
799 but WITHOUT ANY WARRANTY; without even the implied warranty of
800 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
801 GNU General Public License for more details.
802
803 You should have received a copy of the GNU General Public License
804 along with this program. If not, see <http://www.gnu.org/licenses/>. */
805
806/* This file was created with the aid of \`\`gdbarch.sh''.
807
808 The Bourne shell script \`\`gdbarch.sh'' creates the files
809 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
810 against the existing \`\`gdbarch.[hc]''. Any differences found
811 being reported.
812
813 If editing this file, please also run gdbarch.sh and merge any
814 changes into that script. Conversely, when making sweeping changes
815 to this file, modifying gdbarch.sh and using its output may prove
816 easier. */
817
818EOF
819}
820
821#
822# The .h file
823#
824
825exec > new-gdbarch.h
826copyright
827cat <<EOF
828#ifndef GDBARCH_H
829#define GDBARCH_H
830
831struct floatformat;
832struct ui_file;
833struct frame_info;
834struct value;
835struct objfile;
836struct obj_section;
837struct minimal_symbol;
838struct regcache;
839struct reggroup;
840struct regset;
841struct disassemble_info;
842struct target_ops;
843struct obstack;
844struct bp_target_info;
845struct target_desc;
846struct displaced_step_closure;
847struct core_regset_section;
848
849extern struct gdbarch *current_gdbarch;
850
851/* The architecture associated with the connection to the target.
852
853 The architecture vector provides some information that is really
854 a property of the target: The layout of certain packets, for instance;
855 or the solib_ops vector. Etc. To differentiate architecture accesses
856 to per-target properties from per-thread/per-frame/per-objfile properties,
857 accesses to per-target properties should be made through target_gdbarch.
858
859 Eventually, when support for multiple targets is implemented in
860 GDB, this global should be made target-specific. */
861extern struct gdbarch *target_gdbarch;
862EOF
863
864# function typedef's
865printf "\n"
866printf "\n"
867printf "/* The following are pre-initialized by GDBARCH. */\n"
868function_list | while do_read
869do
870 if class_is_info_p
871 then
872 printf "\n"
873 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
874 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
875 fi
876done
877
878# function typedef's
879printf "\n"
880printf "\n"
881printf "/* The following are initialized by the target dependent code. */\n"
882function_list | while do_read
883do
884 if [ -n "${comment}" ]
885 then
886 echo "${comment}" | sed \
887 -e '2 s,#,/*,' \
888 -e '3,$ s,#, ,' \
889 -e '$ s,$, */,'
890 fi
891
892 if class_is_predicate_p
893 then
894 printf "\n"
895 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
896 fi
897 if class_is_variable_p
898 then
899 printf "\n"
900 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
901 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
902 fi
903 if class_is_function_p
904 then
905 printf "\n"
906 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
907 then
908 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
909 elif class_is_multiarch_p
910 then
911 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
912 else
913 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
914 fi
915 if [ "x${formal}" = "xvoid" ]
916 then
917 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
918 else
919 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
920 fi
921 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
922 fi
923done
924
925# close it off
926cat <<EOF
927
928extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
929
930
931/* Mechanism for co-ordinating the selection of a specific
932 architecture.
933
934 GDB targets (*-tdep.c) can register an interest in a specific
935 architecture. Other GDB components can register a need to maintain
936 per-architecture data.
937
938 The mechanisms below ensures that there is only a loose connection
939 between the set-architecture command and the various GDB
940 components. Each component can independently register their need
941 to maintain architecture specific data with gdbarch.
942
943 Pragmatics:
944
945 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
946 didn't scale.
947
948 The more traditional mega-struct containing architecture specific
949 data for all the various GDB components was also considered. Since
950 GDB is built from a variable number of (fairly independent)
951 components it was determined that the global aproach was not
952 applicable. */
953
954
955/* Register a new architectural family with GDB.
956
957 Register support for the specified ARCHITECTURE with GDB. When
958 gdbarch determines that the specified architecture has been
959 selected, the corresponding INIT function is called.
960
961 --
962
963 The INIT function takes two parameters: INFO which contains the
964 information available to gdbarch about the (possibly new)
965 architecture; ARCHES which is a list of the previously created
966 \`\`struct gdbarch'' for this architecture.
967
968 The INFO parameter is, as far as possible, be pre-initialized with
969 information obtained from INFO.ABFD or the global defaults.
970
971 The ARCHES parameter is a linked list (sorted most recently used)
972 of all the previously created architures for this architecture
973 family. The (possibly NULL) ARCHES->gdbarch can used to access
974 values from the previously selected architecture for this
975 architecture family. The global \`\`current_gdbarch'' shall not be
976 used.
977
978 The INIT function shall return any of: NULL - indicating that it
979 doesn't recognize the selected architecture; an existing \`\`struct
980 gdbarch'' from the ARCHES list - indicating that the new
981 architecture is just a synonym for an earlier architecture (see
982 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
983 - that describes the selected architecture (see gdbarch_alloc()).
984
985 The DUMP_TDEP function shall print out all target specific values.
986 Care should be taken to ensure that the function works in both the
987 multi-arch and non- multi-arch cases. */
988
989struct gdbarch_list
990{
991 struct gdbarch *gdbarch;
992 struct gdbarch_list *next;
993};
994
995struct gdbarch_info
996{
997 /* Use default: NULL (ZERO). */
998 const struct bfd_arch_info *bfd_arch_info;
999
1000 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1001 int byte_order;
1002
1003 int byte_order_for_code;
1004
1005 /* Use default: NULL (ZERO). */
1006 bfd *abfd;
1007
1008 /* Use default: NULL (ZERO). */
1009 struct gdbarch_tdep_info *tdep_info;
1010
1011 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1012 enum gdb_osabi osabi;
1013
1014 /* Use default: NULL (ZERO). */
1015 const struct target_desc *target_desc;
1016};
1017
1018typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1019typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1020
1021/* DEPRECATED - use gdbarch_register() */
1022extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1023
1024extern void gdbarch_register (enum bfd_architecture architecture,
1025 gdbarch_init_ftype *,
1026 gdbarch_dump_tdep_ftype *);
1027
1028
1029/* Return a freshly allocated, NULL terminated, array of the valid
1030 architecture names. Since architectures are registered during the
1031 _initialize phase this function only returns useful information
1032 once initialization has been completed. */
1033
1034extern const char **gdbarch_printable_names (void);
1035
1036
1037/* Helper function. Search the list of ARCHES for a GDBARCH that
1038 matches the information provided by INFO. */
1039
1040extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1041
1042
1043/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1044 basic initialization using values obtained from the INFO and TDEP
1045 parameters. set_gdbarch_*() functions are called to complete the
1046 initialization of the object. */
1047
1048extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1049
1050
1051/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1052 It is assumed that the caller freeds the \`\`struct
1053 gdbarch_tdep''. */
1054
1055extern void gdbarch_free (struct gdbarch *);
1056
1057
1058/* Helper function. Allocate memory from the \`\`struct gdbarch''
1059 obstack. The memory is freed when the corresponding architecture
1060 is also freed. */
1061
1062extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1063#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1064#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1065
1066
1067/* Helper function. Force an update of the current architecture.
1068
1069 The actual architecture selected is determined by INFO, \`\`(gdb) set
1070 architecture'' et.al., the existing architecture and BFD's default
1071 architecture. INFO should be initialized to zero and then selected
1072 fields should be updated.
1073
1074 Returns non-zero if the update succeeds */
1075
1076extern int gdbarch_update_p (struct gdbarch_info info);
1077
1078
1079/* Helper function. Find an architecture matching info.
1080
1081 INFO should be initialized using gdbarch_info_init, relevant fields
1082 set, and then finished using gdbarch_info_fill.
1083
1084 Returns the corresponding architecture, or NULL if no matching
1085 architecture was found. "current_gdbarch" is not updated. */
1086
1087extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1088
1089
1090/* Helper function. Set the global "current_gdbarch" to "gdbarch".
1091
1092 FIXME: kettenis/20031124: Of the functions that follow, only
1093 gdbarch_from_bfd is supposed to survive. The others will
1094 dissappear since in the future GDB will (hopefully) be truly
1095 multi-arch. However, for now we're still stuck with the concept of
1096 a single active architecture. */
1097
1098extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1099
1100
1101/* Register per-architecture data-pointer.
1102
1103 Reserve space for a per-architecture data-pointer. An identifier
1104 for the reserved data-pointer is returned. That identifer should
1105 be saved in a local static variable.
1106
1107 Memory for the per-architecture data shall be allocated using
1108 gdbarch_obstack_zalloc. That memory will be deleted when the
1109 corresponding architecture object is deleted.
1110
1111 When a previously created architecture is re-selected, the
1112 per-architecture data-pointer for that previous architecture is
1113 restored. INIT() is not re-called.
1114
1115 Multiple registrarants for any architecture are allowed (and
1116 strongly encouraged). */
1117
1118struct gdbarch_data;
1119
1120typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1121extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1122typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1123extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1124extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1125 struct gdbarch_data *data,
1126 void *pointer);
1127
1128extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1129
1130
1131/* Set the dynamic target-system-dependent parameters (architecture,
1132 byte-order, ...) using information found in the BFD */
1133
1134extern void set_gdbarch_from_file (bfd *);
1135
1136
1137/* Initialize the current architecture to the "first" one we find on
1138 our list. */
1139
1140extern void initialize_current_architecture (void);
1141
1142/* gdbarch trace variable */
1143extern int gdbarch_debug;
1144
1145extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1146
1147#endif
1148EOF
1149exec 1>&2
1150#../move-if-change new-gdbarch.h gdbarch.h
1151compare_new gdbarch.h
1152
1153
1154#
1155# C file
1156#
1157
1158exec > new-gdbarch.c
1159copyright
1160cat <<EOF
1161
1162#include "defs.h"
1163#include "arch-utils.h"
1164
1165#include "gdbcmd.h"
1166#include "inferior.h"
1167#include "symcat.h"
1168
1169#include "floatformat.h"
1170
1171#include "gdb_assert.h"
1172#include "gdb_string.h"
1173#include "reggroups.h"
1174#include "osabi.h"
1175#include "gdb_obstack.h"
1176#include "observer.h"
1177#include "regcache.h"
1178
1179/* Static function declarations */
1180
1181static void alloc_gdbarch_data (struct gdbarch *);
1182
1183/* Non-zero if we want to trace architecture code. */
1184
1185#ifndef GDBARCH_DEBUG
1186#define GDBARCH_DEBUG 0
1187#endif
1188int gdbarch_debug = GDBARCH_DEBUG;
1189static void
1190show_gdbarch_debug (struct ui_file *file, int from_tty,
1191 struct cmd_list_element *c, const char *value)
1192{
1193 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1194}
1195
1196static const char *
1197pformat (const struct floatformat **format)
1198{
1199 if (format == NULL)
1200 return "(null)";
1201 else
1202 /* Just print out one of them - this is only for diagnostics. */
1203 return format[0]->name;
1204}
1205
1206EOF
1207
1208# gdbarch open the gdbarch object
1209printf "\n"
1210printf "/* Maintain the struct gdbarch object */\n"
1211printf "\n"
1212printf "struct gdbarch\n"
1213printf "{\n"
1214printf " /* Has this architecture been fully initialized? */\n"
1215printf " int initialized_p;\n"
1216printf "\n"
1217printf " /* An obstack bound to the lifetime of the architecture. */\n"
1218printf " struct obstack *obstack;\n"
1219printf "\n"
1220printf " /* basic architectural information */\n"
1221function_list | while do_read
1222do
1223 if class_is_info_p
1224 then
1225 printf " ${returntype} ${function};\n"
1226 fi
1227done
1228printf "\n"
1229printf " /* target specific vector. */\n"
1230printf " struct gdbarch_tdep *tdep;\n"
1231printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1232printf "\n"
1233printf " /* per-architecture data-pointers */\n"
1234printf " unsigned nr_data;\n"
1235printf " void **data;\n"
1236printf "\n"
1237printf " /* per-architecture swap-regions */\n"
1238printf " struct gdbarch_swap *swap;\n"
1239printf "\n"
1240cat <<EOF
1241 /* Multi-arch values.
1242
1243 When extending this structure you must:
1244
1245 Add the field below.
1246
1247 Declare set/get functions and define the corresponding
1248 macro in gdbarch.h.
1249
1250 gdbarch_alloc(): If zero/NULL is not a suitable default,
1251 initialize the new field.
1252
1253 verify_gdbarch(): Confirm that the target updated the field
1254 correctly.
1255
1256 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1257 field is dumped out
1258
1259 \`\`startup_gdbarch()'': Append an initial value to the static
1260 variable (base values on the host's c-type system).
1261
1262 get_gdbarch(): Implement the set/get functions (probably using
1263 the macro's as shortcuts).
1264
1265 */
1266
1267EOF
1268function_list | while do_read
1269do
1270 if class_is_variable_p
1271 then
1272 printf " ${returntype} ${function};\n"
1273 elif class_is_function_p
1274 then
1275 printf " gdbarch_${function}_ftype *${function};\n"
1276 fi
1277done
1278printf "};\n"
1279
1280# A pre-initialized vector
1281printf "\n"
1282printf "\n"
1283cat <<EOF
1284/* The default architecture uses host values (for want of a better
1285 choice). */
1286EOF
1287printf "\n"
1288printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1289printf "\n"
1290printf "struct gdbarch startup_gdbarch =\n"
1291printf "{\n"
1292printf " 1, /* Always initialized. */\n"
1293printf " NULL, /* The obstack. */\n"
1294printf " /* basic architecture information */\n"
1295function_list | while do_read
1296do
1297 if class_is_info_p
1298 then
1299 printf " ${staticdefault}, /* ${function} */\n"
1300 fi
1301done
1302cat <<EOF
1303 /* target specific vector and its dump routine */
1304 NULL, NULL,
1305 /*per-architecture data-pointers and swap regions */
1306 0, NULL, NULL,
1307 /* Multi-arch values */
1308EOF
1309function_list | while do_read
1310do
1311 if class_is_function_p || class_is_variable_p
1312 then
1313 printf " ${staticdefault}, /* ${function} */\n"
1314 fi
1315done
1316cat <<EOF
1317 /* startup_gdbarch() */
1318};
1319
1320struct gdbarch *current_gdbarch = &startup_gdbarch;
1321struct gdbarch *target_gdbarch = &startup_gdbarch;
1322EOF
1323
1324# Create a new gdbarch struct
1325cat <<EOF
1326
1327/* Create a new \`\`struct gdbarch'' based on information provided by
1328 \`\`struct gdbarch_info''. */
1329EOF
1330printf "\n"
1331cat <<EOF
1332struct gdbarch *
1333gdbarch_alloc (const struct gdbarch_info *info,
1334 struct gdbarch_tdep *tdep)
1335{
1336 struct gdbarch *gdbarch;
1337
1338 /* Create an obstack for allocating all the per-architecture memory,
1339 then use that to allocate the architecture vector. */
1340 struct obstack *obstack = XMALLOC (struct obstack);
1341 obstack_init (obstack);
1342 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1343 memset (gdbarch, 0, sizeof (*gdbarch));
1344 gdbarch->obstack = obstack;
1345
1346 alloc_gdbarch_data (gdbarch);
1347
1348 gdbarch->tdep = tdep;
1349EOF
1350printf "\n"
1351function_list | while do_read
1352do
1353 if class_is_info_p
1354 then
1355 printf " gdbarch->${function} = info->${function};\n"
1356 fi
1357done
1358printf "\n"
1359printf " /* Force the explicit initialization of these. */\n"
1360function_list | while do_read
1361do
1362 if class_is_function_p || class_is_variable_p
1363 then
1364 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1365 then
1366 printf " gdbarch->${function} = ${predefault};\n"
1367 fi
1368 fi
1369done
1370cat <<EOF
1371 /* gdbarch_alloc() */
1372
1373 return gdbarch;
1374}
1375EOF
1376
1377# Free a gdbarch struct.
1378printf "\n"
1379printf "\n"
1380cat <<EOF
1381/* Allocate extra space using the per-architecture obstack. */
1382
1383void *
1384gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1385{
1386 void *data = obstack_alloc (arch->obstack, size);
1387 memset (data, 0, size);
1388 return data;
1389}
1390
1391
1392/* Free a gdbarch struct. This should never happen in normal
1393 operation --- once you've created a gdbarch, you keep it around.
1394 However, if an architecture's init function encounters an error
1395 building the structure, it may need to clean up a partially
1396 constructed gdbarch. */
1397
1398void
1399gdbarch_free (struct gdbarch *arch)
1400{
1401 struct obstack *obstack;
1402 gdb_assert (arch != NULL);
1403 gdb_assert (!arch->initialized_p);
1404 obstack = arch->obstack;
1405 obstack_free (obstack, 0); /* Includes the ARCH. */
1406 xfree (obstack);
1407}
1408EOF
1409
1410# verify a new architecture
1411cat <<EOF
1412
1413
1414/* Ensure that all values in a GDBARCH are reasonable. */
1415
1416static void
1417verify_gdbarch (struct gdbarch *gdbarch)
1418{
1419 struct ui_file *log;
1420 struct cleanup *cleanups;
1421 long dummy;
1422 char *buf;
1423 log = mem_fileopen ();
1424 cleanups = make_cleanup_ui_file_delete (log);
1425 /* fundamental */
1426 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1427 fprintf_unfiltered (log, "\n\tbyte-order");
1428 if (gdbarch->bfd_arch_info == NULL)
1429 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1430 /* Check those that need to be defined for the given multi-arch level. */
1431EOF
1432function_list | while do_read
1433do
1434 if class_is_function_p || class_is_variable_p
1435 then
1436 if [ "x${invalid_p}" = "x0" ]
1437 then
1438 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1439 elif class_is_predicate_p
1440 then
1441 printf " /* Skip verify of ${function}, has predicate */\n"
1442 # FIXME: See do_read for potential simplification
1443 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1444 then
1445 printf " if (${invalid_p})\n"
1446 printf " gdbarch->${function} = ${postdefault};\n"
1447 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1448 then
1449 printf " if (gdbarch->${function} == ${predefault})\n"
1450 printf " gdbarch->${function} = ${postdefault};\n"
1451 elif [ -n "${postdefault}" ]
1452 then
1453 printf " if (gdbarch->${function} == 0)\n"
1454 printf " gdbarch->${function} = ${postdefault};\n"
1455 elif [ -n "${invalid_p}" ]
1456 then
1457 printf " if (${invalid_p})\n"
1458 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1459 elif [ -n "${predefault}" ]
1460 then
1461 printf " if (gdbarch->${function} == ${predefault})\n"
1462 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1463 fi
1464 fi
1465done
1466cat <<EOF
1467 buf = ui_file_xstrdup (log, &dummy);
1468 make_cleanup (xfree, buf);
1469 if (strlen (buf) > 0)
1470 internal_error (__FILE__, __LINE__,
1471 _("verify_gdbarch: the following are invalid ...%s"),
1472 buf);
1473 do_cleanups (cleanups);
1474}
1475EOF
1476
1477# dump the structure
1478printf "\n"
1479printf "\n"
1480cat <<EOF
1481/* Print out the details of the current architecture. */
1482
1483void
1484gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1485{
1486 const char *gdb_nm_file = "<not-defined>";
1487#if defined (GDB_NM_FILE)
1488 gdb_nm_file = GDB_NM_FILE;
1489#endif
1490 fprintf_unfiltered (file,
1491 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1492 gdb_nm_file);
1493EOF
1494function_list | sort -t: -k 3 | while do_read
1495do
1496 # First the predicate
1497 if class_is_predicate_p
1498 then
1499 printf " fprintf_unfiltered (file,\n"
1500 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1501 printf " gdbarch_${function}_p (gdbarch));\n"
1502 fi
1503 # Print the corresponding value.
1504 if class_is_function_p
1505 then
1506 printf " fprintf_unfiltered (file,\n"
1507 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1508 printf " host_address_to_string (gdbarch->${function}));\n"
1509 else
1510 # It is a variable
1511 case "${print}:${returntype}" in
1512 :CORE_ADDR )
1513 fmt="%s"
1514 print="core_addr_to_string_nz (gdbarch->${function})"
1515 ;;
1516 :* )
1517 fmt="%s"
1518 print="plongest (gdbarch->${function})"
1519 ;;
1520 * )
1521 fmt="%s"
1522 ;;
1523 esac
1524 printf " fprintf_unfiltered (file,\n"
1525 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1526 printf " ${print});\n"
1527 fi
1528done
1529cat <<EOF
1530 if (gdbarch->dump_tdep != NULL)
1531 gdbarch->dump_tdep (gdbarch, file);
1532}
1533EOF
1534
1535
1536# GET/SET
1537printf "\n"
1538cat <<EOF
1539struct gdbarch_tdep *
1540gdbarch_tdep (struct gdbarch *gdbarch)
1541{
1542 if (gdbarch_debug >= 2)
1543 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1544 return gdbarch->tdep;
1545}
1546EOF
1547printf "\n"
1548function_list | while do_read
1549do
1550 if class_is_predicate_p
1551 then
1552 printf "\n"
1553 printf "int\n"
1554 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1555 printf "{\n"
1556 printf " gdb_assert (gdbarch != NULL);\n"
1557 printf " return ${predicate};\n"
1558 printf "}\n"
1559 fi
1560 if class_is_function_p
1561 then
1562 printf "\n"
1563 printf "${returntype}\n"
1564 if [ "x${formal}" = "xvoid" ]
1565 then
1566 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1567 else
1568 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1569 fi
1570 printf "{\n"
1571 printf " gdb_assert (gdbarch != NULL);\n"
1572 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1573 if class_is_predicate_p && test -n "${predefault}"
1574 then
1575 # Allow a call to a function with a predicate.
1576 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1577 fi
1578 printf " if (gdbarch_debug >= 2)\n"
1579 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1580 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1581 then
1582 if class_is_multiarch_p
1583 then
1584 params="gdbarch"
1585 else
1586 params=""
1587 fi
1588 else
1589 if class_is_multiarch_p
1590 then
1591 params="gdbarch, ${actual}"
1592 else
1593 params="${actual}"
1594 fi
1595 fi
1596 if [ "x${returntype}" = "xvoid" ]
1597 then
1598 printf " gdbarch->${function} (${params});\n"
1599 else
1600 printf " return gdbarch->${function} (${params});\n"
1601 fi
1602 printf "}\n"
1603 printf "\n"
1604 printf "void\n"
1605 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1606 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1607 printf "{\n"
1608 printf " gdbarch->${function} = ${function};\n"
1609 printf "}\n"
1610 elif class_is_variable_p
1611 then
1612 printf "\n"
1613 printf "${returntype}\n"
1614 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1615 printf "{\n"
1616 printf " gdb_assert (gdbarch != NULL);\n"
1617 if [ "x${invalid_p}" = "x0" ]
1618 then
1619 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1620 elif [ -n "${invalid_p}" ]
1621 then
1622 printf " /* Check variable is valid. */\n"
1623 printf " gdb_assert (!(${invalid_p}));\n"
1624 elif [ -n "${predefault}" ]
1625 then
1626 printf " /* Check variable changed from pre-default. */\n"
1627 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1628 fi
1629 printf " if (gdbarch_debug >= 2)\n"
1630 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1631 printf " return gdbarch->${function};\n"
1632 printf "}\n"
1633 printf "\n"
1634 printf "void\n"
1635 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1636 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1637 printf "{\n"
1638 printf " gdbarch->${function} = ${function};\n"
1639 printf "}\n"
1640 elif class_is_info_p
1641 then
1642 printf "\n"
1643 printf "${returntype}\n"
1644 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1645 printf "{\n"
1646 printf " gdb_assert (gdbarch != NULL);\n"
1647 printf " if (gdbarch_debug >= 2)\n"
1648 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1649 printf " return gdbarch->${function};\n"
1650 printf "}\n"
1651 fi
1652done
1653
1654# All the trailing guff
1655cat <<EOF
1656
1657
1658/* Keep a registry of per-architecture data-pointers required by GDB
1659 modules. */
1660
1661struct gdbarch_data
1662{
1663 unsigned index;
1664 int init_p;
1665 gdbarch_data_pre_init_ftype *pre_init;
1666 gdbarch_data_post_init_ftype *post_init;
1667};
1668
1669struct gdbarch_data_registration
1670{
1671 struct gdbarch_data *data;
1672 struct gdbarch_data_registration *next;
1673};
1674
1675struct gdbarch_data_registry
1676{
1677 unsigned nr;
1678 struct gdbarch_data_registration *registrations;
1679};
1680
1681struct gdbarch_data_registry gdbarch_data_registry =
1682{
1683 0, NULL,
1684};
1685
1686static struct gdbarch_data *
1687gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1688 gdbarch_data_post_init_ftype *post_init)
1689{
1690 struct gdbarch_data_registration **curr;
1691 /* Append the new registraration. */
1692 for (curr = &gdbarch_data_registry.registrations;
1693 (*curr) != NULL;
1694 curr = &(*curr)->next);
1695 (*curr) = XMALLOC (struct gdbarch_data_registration);
1696 (*curr)->next = NULL;
1697 (*curr)->data = XMALLOC (struct gdbarch_data);
1698 (*curr)->data->index = gdbarch_data_registry.nr++;
1699 (*curr)->data->pre_init = pre_init;
1700 (*curr)->data->post_init = post_init;
1701 (*curr)->data->init_p = 1;
1702 return (*curr)->data;
1703}
1704
1705struct gdbarch_data *
1706gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1707{
1708 return gdbarch_data_register (pre_init, NULL);
1709}
1710
1711struct gdbarch_data *
1712gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1713{
1714 return gdbarch_data_register (NULL, post_init);
1715}
1716
1717/* Create/delete the gdbarch data vector. */
1718
1719static void
1720alloc_gdbarch_data (struct gdbarch *gdbarch)
1721{
1722 gdb_assert (gdbarch->data == NULL);
1723 gdbarch->nr_data = gdbarch_data_registry.nr;
1724 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1725}
1726
1727/* Initialize the current value of the specified per-architecture
1728 data-pointer. */
1729
1730void
1731deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1732 struct gdbarch_data *data,
1733 void *pointer)
1734{
1735 gdb_assert (data->index < gdbarch->nr_data);
1736 gdb_assert (gdbarch->data[data->index] == NULL);
1737 gdb_assert (data->pre_init == NULL);
1738 gdbarch->data[data->index] = pointer;
1739}
1740
1741/* Return the current value of the specified per-architecture
1742 data-pointer. */
1743
1744void *
1745gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1746{
1747 gdb_assert (data->index < gdbarch->nr_data);
1748 if (gdbarch->data[data->index] == NULL)
1749 {
1750 /* The data-pointer isn't initialized, call init() to get a
1751 value. */
1752 if (data->pre_init != NULL)
1753 /* Mid architecture creation: pass just the obstack, and not
1754 the entire architecture, as that way it isn't possible for
1755 pre-init code to refer to undefined architecture
1756 fields. */
1757 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1758 else if (gdbarch->initialized_p
1759 && data->post_init != NULL)
1760 /* Post architecture creation: pass the entire architecture
1761 (as all fields are valid), but be careful to also detect
1762 recursive references. */
1763 {
1764 gdb_assert (data->init_p);
1765 data->init_p = 0;
1766 gdbarch->data[data->index] = data->post_init (gdbarch);
1767 data->init_p = 1;
1768 }
1769 else
1770 /* The architecture initialization hasn't completed - punt -
1771 hope that the caller knows what they are doing. Once
1772 deprecated_set_gdbarch_data has been initialized, this can be
1773 changed to an internal error. */
1774 return NULL;
1775 gdb_assert (gdbarch->data[data->index] != NULL);
1776 }
1777 return gdbarch->data[data->index];
1778}
1779
1780
1781/* Keep a registry of the architectures known by GDB. */
1782
1783struct gdbarch_registration
1784{
1785 enum bfd_architecture bfd_architecture;
1786 gdbarch_init_ftype *init;
1787 gdbarch_dump_tdep_ftype *dump_tdep;
1788 struct gdbarch_list *arches;
1789 struct gdbarch_registration *next;
1790};
1791
1792static struct gdbarch_registration *gdbarch_registry = NULL;
1793
1794static void
1795append_name (const char ***buf, int *nr, const char *name)
1796{
1797 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1798 (*buf)[*nr] = name;
1799 *nr += 1;
1800}
1801
1802const char **
1803gdbarch_printable_names (void)
1804{
1805 /* Accumulate a list of names based on the registed list of
1806 architectures. */
1807 enum bfd_architecture a;
1808 int nr_arches = 0;
1809 const char **arches = NULL;
1810 struct gdbarch_registration *rego;
1811 for (rego = gdbarch_registry;
1812 rego != NULL;
1813 rego = rego->next)
1814 {
1815 const struct bfd_arch_info *ap;
1816 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1817 if (ap == NULL)
1818 internal_error (__FILE__, __LINE__,
1819 _("gdbarch_architecture_names: multi-arch unknown"));
1820 do
1821 {
1822 append_name (&arches, &nr_arches, ap->printable_name);
1823 ap = ap->next;
1824 }
1825 while (ap != NULL);
1826 }
1827 append_name (&arches, &nr_arches, NULL);
1828 return arches;
1829}
1830
1831
1832void
1833gdbarch_register (enum bfd_architecture bfd_architecture,
1834 gdbarch_init_ftype *init,
1835 gdbarch_dump_tdep_ftype *dump_tdep)
1836{
1837 struct gdbarch_registration **curr;
1838 const struct bfd_arch_info *bfd_arch_info;
1839 /* Check that BFD recognizes this architecture */
1840 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1841 if (bfd_arch_info == NULL)
1842 {
1843 internal_error (__FILE__, __LINE__,
1844 _("gdbarch: Attempt to register unknown architecture (%d)"),
1845 bfd_architecture);
1846 }
1847 /* Check that we haven't seen this architecture before */
1848 for (curr = &gdbarch_registry;
1849 (*curr) != NULL;
1850 curr = &(*curr)->next)
1851 {
1852 if (bfd_architecture == (*curr)->bfd_architecture)
1853 internal_error (__FILE__, __LINE__,
1854 _("gdbarch: Duplicate registraration of architecture (%s)"),
1855 bfd_arch_info->printable_name);
1856 }
1857 /* log it */
1858 if (gdbarch_debug)
1859 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1860 bfd_arch_info->printable_name,
1861 host_address_to_string (init));
1862 /* Append it */
1863 (*curr) = XMALLOC (struct gdbarch_registration);
1864 (*curr)->bfd_architecture = bfd_architecture;
1865 (*curr)->init = init;
1866 (*curr)->dump_tdep = dump_tdep;
1867 (*curr)->arches = NULL;
1868 (*curr)->next = NULL;
1869}
1870
1871void
1872register_gdbarch_init (enum bfd_architecture bfd_architecture,
1873 gdbarch_init_ftype *init)
1874{
1875 gdbarch_register (bfd_architecture, init, NULL);
1876}
1877
1878
1879/* Look for an architecture using gdbarch_info. */
1880
1881struct gdbarch_list *
1882gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1883 const struct gdbarch_info *info)
1884{
1885 for (; arches != NULL; arches = arches->next)
1886 {
1887 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1888 continue;
1889 if (info->byte_order != arches->gdbarch->byte_order)
1890 continue;
1891 if (info->osabi != arches->gdbarch->osabi)
1892 continue;
1893 if (info->target_desc != arches->gdbarch->target_desc)
1894 continue;
1895 return arches;
1896 }
1897 return NULL;
1898}
1899
1900
1901/* Find an architecture that matches the specified INFO. Create a new
1902 architecture if needed. Return that new architecture. Assumes
1903 that there is no current architecture. */
1904
1905static struct gdbarch *
1906find_arch_by_info (struct gdbarch_info info)
1907{
1908 struct gdbarch *new_gdbarch;
1909 struct gdbarch_registration *rego;
1910
1911 /* The existing architecture has been swapped out - all this code
1912 works from a clean slate. */
1913 gdb_assert (current_gdbarch == NULL);
1914
1915 /* Fill in missing parts of the INFO struct using a number of
1916 sources: "set ..."; INFOabfd supplied; and the global
1917 defaults. */
1918 gdbarch_info_fill (&info);
1919
1920 /* Must have found some sort of architecture. */
1921 gdb_assert (info.bfd_arch_info != NULL);
1922
1923 if (gdbarch_debug)
1924 {
1925 fprintf_unfiltered (gdb_stdlog,
1926 "find_arch_by_info: info.bfd_arch_info %s\n",
1927 (info.bfd_arch_info != NULL
1928 ? info.bfd_arch_info->printable_name
1929 : "(null)"));
1930 fprintf_unfiltered (gdb_stdlog,
1931 "find_arch_by_info: info.byte_order %d (%s)\n",
1932 info.byte_order,
1933 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1934 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1935 : "default"));
1936 fprintf_unfiltered (gdb_stdlog,
1937 "find_arch_by_info: info.osabi %d (%s)\n",
1938 info.osabi, gdbarch_osabi_name (info.osabi));
1939 fprintf_unfiltered (gdb_stdlog,
1940 "find_arch_by_info: info.abfd %s\n",
1941 host_address_to_string (info.abfd));
1942 fprintf_unfiltered (gdb_stdlog,
1943 "find_arch_by_info: info.tdep_info %s\n",
1944 host_address_to_string (info.tdep_info));
1945 }
1946
1947 /* Find the tdep code that knows about this architecture. */
1948 for (rego = gdbarch_registry;
1949 rego != NULL;
1950 rego = rego->next)
1951 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1952 break;
1953 if (rego == NULL)
1954 {
1955 if (gdbarch_debug)
1956 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1957 "No matching architecture\n");
1958 return 0;
1959 }
1960
1961 /* Ask the tdep code for an architecture that matches "info". */
1962 new_gdbarch = rego->init (info, rego->arches);
1963
1964 /* Did the tdep code like it? No. Reject the change and revert to
1965 the old architecture. */
1966 if (new_gdbarch == NULL)
1967 {
1968 if (gdbarch_debug)
1969 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1970 "Target rejected architecture\n");
1971 return NULL;
1972 }
1973
1974 /* Is this a pre-existing architecture (as determined by already
1975 being initialized)? Move it to the front of the architecture
1976 list (keeping the list sorted Most Recently Used). */
1977 if (new_gdbarch->initialized_p)
1978 {
1979 struct gdbarch_list **list;
1980 struct gdbarch_list *this;
1981 if (gdbarch_debug)
1982 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1983 "Previous architecture %s (%s) selected\n",
1984 host_address_to_string (new_gdbarch),
1985 new_gdbarch->bfd_arch_info->printable_name);
1986 /* Find the existing arch in the list. */
1987 for (list = &rego->arches;
1988 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1989 list = &(*list)->next);
1990 /* It had better be in the list of architectures. */
1991 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1992 /* Unlink THIS. */
1993 this = (*list);
1994 (*list) = this->next;
1995 /* Insert THIS at the front. */
1996 this->next = rego->arches;
1997 rego->arches = this;
1998 /* Return it. */
1999 return new_gdbarch;
2000 }
2001
2002 /* It's a new architecture. */
2003 if (gdbarch_debug)
2004 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2005 "New architecture %s (%s) selected\n",
2006 host_address_to_string (new_gdbarch),
2007 new_gdbarch->bfd_arch_info->printable_name);
2008
2009 /* Insert the new architecture into the front of the architecture
2010 list (keep the list sorted Most Recently Used). */
2011 {
2012 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2013 this->next = rego->arches;
2014 this->gdbarch = new_gdbarch;
2015 rego->arches = this;
2016 }
2017
2018 /* Check that the newly installed architecture is valid. Plug in
2019 any post init values. */
2020 new_gdbarch->dump_tdep = rego->dump_tdep;
2021 verify_gdbarch (new_gdbarch);
2022 new_gdbarch->initialized_p = 1;
2023
2024 if (gdbarch_debug)
2025 gdbarch_dump (new_gdbarch, gdb_stdlog);
2026
2027 return new_gdbarch;
2028}
2029
2030struct gdbarch *
2031gdbarch_find_by_info (struct gdbarch_info info)
2032{
2033 struct gdbarch *new_gdbarch;
2034
2035 /* Save the previously selected architecture, setting the global to
2036 NULL. This stops things like gdbarch->init() trying to use the
2037 previous architecture's configuration. The previous architecture
2038 may not even be of the same architecture family. The most recent
2039 architecture of the same family is found at the head of the
2040 rego->arches list. */
2041 struct gdbarch *old_gdbarch = current_gdbarch;
2042 current_gdbarch = NULL;
2043
2044 /* Find the specified architecture. */
2045 new_gdbarch = find_arch_by_info (info);
2046
2047 /* Restore the existing architecture. */
2048 gdb_assert (current_gdbarch == NULL);
2049 current_gdbarch = old_gdbarch;
2050
2051 return new_gdbarch;
2052}
2053
2054/* Make the specified architecture current. */
2055
2056void
2057deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2058{
2059 gdb_assert (new_gdbarch != NULL);
2060 gdb_assert (current_gdbarch != NULL);
2061 gdb_assert (new_gdbarch->initialized_p);
2062 current_gdbarch = new_gdbarch;
2063 target_gdbarch = new_gdbarch;
2064 observer_notify_architecture_changed (new_gdbarch);
2065 registers_changed ();
2066}
2067
2068extern void _initialize_gdbarch (void);
2069
2070void
2071_initialize_gdbarch (void)
2072{
2073 struct cmd_list_element *c;
2074
2075 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2076Set architecture debugging."), _("\\
2077Show architecture debugging."), _("\\
2078When non-zero, architecture debugging is enabled."),
2079 NULL,
2080 show_gdbarch_debug,
2081 &setdebuglist, &showdebuglist);
2082}
2083EOF
2084
2085# close things off
2086exec 1>&2
2087#../move-if-change new-gdbarch.c gdbarch.c
2088compare_new gdbarch.c
This page took 0.030998 seconds and 4 git commands to generate.