MIPS: Keep the ISA bit in compressed code addresses
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
... / ...
CommitLineData
1#!/bin/sh -u
2
3# Architecture commands for GDB, the GNU debugger.
4#
5# Copyright (C) 1998-2014 Free Software Foundation, Inc.
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation; either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22# Make certain that the script is not running in an internationalized
23# environment.
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
26
27
28compare_new ()
29{
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46do_read ()
47{
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154}
155
156
157fallback_default_p ()
158{
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161}
162
163class_is_variable_p ()
164{
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169}
170
171class_is_function_p ()
172{
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185}
186
187class_is_predicate_p ()
188{
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193}
194
195class_is_info_p ()
196{
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201}
202
203
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334done
335
336
337function_list ()
338{
339 # See below (DOCO) for description of each field
340 cat <<EOF
341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342#
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345#
346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347#
348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357#
358# Number of bits in a short or unsigned short for the target machine.
359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360# Number of bits in an int or unsigned int for the target machine.
361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362# Number of bits in a long or unsigned long for the target machine.
363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364# Number of bits in a long long or unsigned long long for the target
365# machine.
366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
374# Each format describes both the big and little endian layouts (if
375# useful).
376
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389# / addr_bit will be set from it.
390#
391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
394#
395# ptr_bit is the size of a pointer on the target
396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397# addr_bit is the size of a target address as represented in gdb
398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399#
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
416v:int:char_signed:::1:-1:1
417#
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424#
425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432#
433v:int:num_regs:::0:-1
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
438v:int:num_pseudo_regs:::0:0::0
439
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
451# all (-1).
452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461# Convert from an sdb register number to an internal gdb register number.
462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465m:const char *:register_name:int regnr:regnr::0
466
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
470M:struct type *:register_type:int reg_nr:reg_nr
471
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474# deprecated_fp_regnum.
475v:int:deprecated_fp_regnum:::-1:-1::0
476
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496#
497v:int:believe_pcc_promotion:::::::
498#
499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502# Construct a value representing the contents of register REGNUM in
503# frame FRAME_ID, interpreted as type TYPE. The routine needs to
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
506m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
507#
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533# On some platforms, a single function may provide multiple entry points,
534# e.g. one that is used for function-pointer calls and a different one
535# that is used for direct function calls.
536# In order to ensure that breakpoints set on the function will trigger
537# no matter via which entry point the function is entered, a platform
538# may provide the skip_entrypoint callback. It is called with IP set
539# to the main entry point of a function (as determined by the symbol table),
540# and should return the address of the innermost entry point, where the
541# actual breakpoint needs to be set. Note that skip_entrypoint is used
542# by GDB common code even when debugging optimized code, where skip_prologue
543# is not used.
544M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548# Return the adjusted address and kind to use for Z0/Z1 packets.
549# KIND is usually the memory length of the breakpoint, but may have a
550# different target-specific meaning.
551m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557# A function can be addressed by either it's "pointer" (possibly a
558# descriptor address) or "entry point" (first executable instruction).
559# The method "convert_from_func_ptr_addr" converting the former to the
560# latter. gdbarch_deprecated_function_start_offset is being used to implement
561# a simplified subset of that functionality - the function's address
562# corresponds to the "function pointer" and the function's start
563# corresponds to the "function entry point" - and hence is redundant.
564
565v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567# Return the remote protocol register number associated with this
568# register. Normally the identity mapping.
569m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571# Fetch the target specific address used to represent a load module.
572F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573#
574v:CORE_ADDR:frame_args_skip:::0:::0
575M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578# frame-base. Enable frame-base before frame-unwind.
579F:int:frame_num_args:struct frame_info *frame:frame
580#
581M:CORE_ADDR:frame_align:CORE_ADDR address:address
582m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583v:int:frame_red_zone_size
584#
585m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586# On some machines there are bits in addresses which are not really
587# part of the address, but are used by the kernel, the hardware, etc.
588# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589# we get a "real" address such as one would find in a symbol table.
590# This is used only for addresses of instructions, and even then I'm
591# not sure it's used in all contexts. It exists to deal with there
592# being a few stray bits in the PC which would mislead us, not as some
593# sort of generic thing to handle alignment or segmentation (it's
594# possible it should be in TARGET_READ_PC instead).
595m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that
598# indicates if the target needs software single step. An ISA method to
599# implement it.
600#
601# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602# breakpoints using the breakpoint system instead of blatting memory directly
603# (as with rs6000).
604#
605# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606# target can single step. If not, then implement single step using breakpoints.
607#
608# A return value of 1 means that the software_single_step breakpoints
609# were inserted; 0 means they were not.
610F:int:software_single_step:struct frame_info *frame:frame
611
612# Return non-zero if the processor is executing a delay slot and a
613# further single-step is needed before the instruction finishes.
614M:int:single_step_through_delay:struct frame_info *frame:frame
615# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616# disassembler. Perhaps objdump can handle it?
617f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622# evaluates non-zero, this is the address where the debugger will place
623# a step-resume breakpoint to get us past the dynamic linker.
624m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625# Some systems also have trampoline code for returning from shared libs.
626m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628# A target might have problems with watchpoints as soon as the stack
629# frame of the current function has been destroyed. This mostly happens
630# as the first action in a funtion's epilogue. in_function_epilogue_p()
631# is defined to return a non-zero value if either the given addr is one
632# instruction after the stack destroying instruction up to the trailing
633# return instruction or if we can figure out that the stack frame has
634# already been invalidated regardless of the value of addr. Targets
635# which don't suffer from that problem could just let this functionality
636# untouched.
637m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638# Process an ELF symbol in the minimal symbol table in a backend-specific
639# way. Normally this hook is supposed to do nothing, however if required,
640# then this hook can be used to apply tranformations to symbols that are
641# considered special in some way. For example the MIPS backend uses it
642# to interpret \`st_other' information to mark compressed code symbols so
643# that they can be treated in the appropriate manner in the processing of
644# the main symbol table and DWARF-2 records.
645F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
646f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
647# Process a symbol in the main symbol table in a backend-specific way.
648# Normally this hook is supposed to do nothing, however if required,
649# then this hook can be used to apply tranformations to symbols that
650# are considered special in some way. This is currently used by the
651# MIPS backend to make sure compressed code symbols have the ISA bit
652# set. This in turn is needed for symbol values seen in GDB to match
653# the values used at the runtime by the program itself, for function
654# and label references.
655f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
656# Adjust the address retrieved from a DWARF-2 record other than a line
657# entry in a backend-specific way. Normally this hook is supposed to
658# return the address passed unchanged, however if that is incorrect for
659# any reason, then this hook can be used to fix the address up in the
660# required manner. This is currently used by the MIPS backend to make
661# sure addresses in FDE, range records, etc. referring to compressed
662# code have the ISA bit set, matching line information and the symbol
663# table.
664f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
665# Adjust the address updated by a line entry in a backend-specific way.
666# Normally this hook is supposed to return the address passed unchanged,
667# however in the case of inconsistencies in these records, this hook can
668# be used to fix them up in the required manner. This is currently used
669# by the MIPS backend to make sure all line addresses in compressed code
670# are presented with the ISA bit set, which is not always the case. This
671# in turn ensures breakpoint addresses are correctly matched against the
672# stop PC.
673f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
674v:int:cannot_step_breakpoint:::0:0::0
675v:int:have_nonsteppable_watchpoint:::0:0::0
676F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
677M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
678
679# Return the appropriate type_flags for the supplied address class.
680# This function should return 1 if the address class was recognized and
681# type_flags was set, zero otherwise.
682M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
683# Is a register in a group
684m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
685# Fetch the pointer to the ith function argument.
686F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
687
688# Iterate over all supported register notes in a core file. For each
689# supported register note section, the iterator must call CB and pass
690# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
691# the supported register note sections based on the current register
692# values. Otherwise it should enumerate all supported register note
693# sections.
694M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
695
696# Create core file notes
697M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
698
699# The elfcore writer hook to use to write Linux prpsinfo notes to core
700# files. Most Linux architectures use the same prpsinfo32 or
701# prpsinfo64 layouts, and so won't need to provide this hook, as we
702# call the Linux generic routines in bfd to write prpsinfo notes by
703# default.
704F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
705
706# Find core file memory regions
707M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
708
709# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
710# core file into buffer READBUF with length LEN. Return the number of bytes read
711# (zero indicates failure).
712# failed, otherwise, return the red length of READBUF.
713M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
714
715# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
716# libraries list from core file into buffer READBUF with length LEN.
717# Return the number of bytes read (zero indicates failure).
718M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
719
720# How the core target converts a PTID from a core file to a string.
721M:char *:core_pid_to_str:ptid_t ptid:ptid
722
723# BFD target to use when generating a core file.
724V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
725
726# If the elements of C++ vtables are in-place function descriptors rather
727# than normal function pointers (which may point to code or a descriptor),
728# set this to one.
729v:int:vtable_function_descriptors:::0:0::0
730
731# Set if the least significant bit of the delta is used instead of the least
732# significant bit of the pfn for pointers to virtual member functions.
733v:int:vbit_in_delta:::0:0::0
734
735# Advance PC to next instruction in order to skip a permanent breakpoint.
736f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
737
738# The maximum length of an instruction on this architecture in bytes.
739V:ULONGEST:max_insn_length:::0:0
740
741# Copy the instruction at FROM to TO, and make any adjustments
742# necessary to single-step it at that address.
743#
744# REGS holds the state the thread's registers will have before
745# executing the copied instruction; the PC in REGS will refer to FROM,
746# not the copy at TO. The caller should update it to point at TO later.
747#
748# Return a pointer to data of the architecture's choice to be passed
749# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
750# the instruction's effects have been completely simulated, with the
751# resulting state written back to REGS.
752#
753# For a general explanation of displaced stepping and how GDB uses it,
754# see the comments in infrun.c.
755#
756# The TO area is only guaranteed to have space for
757# gdbarch_max_insn_length (arch) bytes, so this function must not
758# write more bytes than that to that area.
759#
760# If you do not provide this function, GDB assumes that the
761# architecture does not support displaced stepping.
762#
763# If your architecture doesn't need to adjust instructions before
764# single-stepping them, consider using simple_displaced_step_copy_insn
765# here.
766M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
767
768# Return true if GDB should use hardware single-stepping to execute
769# the displaced instruction identified by CLOSURE. If false,
770# GDB will simply restart execution at the displaced instruction
771# location, and it is up to the target to ensure GDB will receive
772# control again (e.g. by placing a software breakpoint instruction
773# into the displaced instruction buffer).
774#
775# The default implementation returns false on all targets that
776# provide a gdbarch_software_single_step routine, and true otherwise.
777m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
778
779# Fix up the state resulting from successfully single-stepping a
780# displaced instruction, to give the result we would have gotten from
781# stepping the instruction in its original location.
782#
783# REGS is the register state resulting from single-stepping the
784# displaced instruction.
785#
786# CLOSURE is the result from the matching call to
787# gdbarch_displaced_step_copy_insn.
788#
789# If you provide gdbarch_displaced_step_copy_insn.but not this
790# function, then GDB assumes that no fixup is needed after
791# single-stepping the instruction.
792#
793# For a general explanation of displaced stepping and how GDB uses it,
794# see the comments in infrun.c.
795M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
796
797# Free a closure returned by gdbarch_displaced_step_copy_insn.
798#
799# If you provide gdbarch_displaced_step_copy_insn, you must provide
800# this function as well.
801#
802# If your architecture uses closures that don't need to be freed, then
803# you can use simple_displaced_step_free_closure here.
804#
805# For a general explanation of displaced stepping and how GDB uses it,
806# see the comments in infrun.c.
807m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
808
809# Return the address of an appropriate place to put displaced
810# instructions while we step over them. There need only be one such
811# place, since we're only stepping one thread over a breakpoint at a
812# time.
813#
814# For a general explanation of displaced stepping and how GDB uses it,
815# see the comments in infrun.c.
816m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
817
818# Relocate an instruction to execute at a different address. OLDLOC
819# is the address in the inferior memory where the instruction to
820# relocate is currently at. On input, TO points to the destination
821# where we want the instruction to be copied (and possibly adjusted)
822# to. On output, it points to one past the end of the resulting
823# instruction(s). The effect of executing the instruction at TO shall
824# be the same as if executing it at FROM. For example, call
825# instructions that implicitly push the return address on the stack
826# should be adjusted to return to the instruction after OLDLOC;
827# relative branches, and other PC-relative instructions need the
828# offset adjusted; etc.
829M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
830
831# Refresh overlay mapped state for section OSECT.
832F:void:overlay_update:struct obj_section *osect:osect
833
834M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
835
836# Handle special encoding of static variables in stabs debug info.
837F:const char *:static_transform_name:const char *name:name
838# Set if the address in N_SO or N_FUN stabs may be zero.
839v:int:sofun_address_maybe_missing:::0:0::0
840
841# Parse the instruction at ADDR storing in the record execution log
842# the registers REGCACHE and memory ranges that will be affected when
843# the instruction executes, along with their current values.
844# Return -1 if something goes wrong, 0 otherwise.
845M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
846
847# Save process state after a signal.
848# Return -1 if something goes wrong, 0 otherwise.
849M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
850
851# Signal translation: translate inferior's signal (target's) number
852# into GDB's representation. The implementation of this method must
853# be host independent. IOW, don't rely on symbols of the NAT_FILE
854# header (the nm-*.h files), the host <signal.h> header, or similar
855# headers. This is mainly used when cross-debugging core files ---
856# "Live" targets hide the translation behind the target interface
857# (target_wait, target_resume, etc.).
858M:enum gdb_signal:gdb_signal_from_target:int signo:signo
859
860# Signal translation: translate the GDB's internal signal number into
861# the inferior's signal (target's) representation. The implementation
862# of this method must be host independent. IOW, don't rely on symbols
863# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
864# header, or similar headers.
865# Return the target signal number if found, or -1 if the GDB internal
866# signal number is invalid.
867M:int:gdb_signal_to_target:enum gdb_signal signal:signal
868
869# Extra signal info inspection.
870#
871# Return a type suitable to inspect extra signal information.
872M:struct type *:get_siginfo_type:void:
873
874# Record architecture-specific information from the symbol table.
875M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
876
877# Function for the 'catch syscall' feature.
878
879# Get architecture-specific system calls information from registers.
880M:LONGEST:get_syscall_number:ptid_t ptid:ptid
881
882# The filename of the XML syscall for this architecture.
883v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
884
885# Information about system calls from this architecture
886v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
887
888# SystemTap related fields and functions.
889
890# A NULL-terminated array of prefixes used to mark an integer constant
891# on the architecture's assembly.
892# For example, on x86 integer constants are written as:
893#
894# \$10 ;; integer constant 10
895#
896# in this case, this prefix would be the character \`\$\'.
897v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
898
899# A NULL-terminated array of suffixes used to mark an integer constant
900# on the architecture's assembly.
901v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
902
903# A NULL-terminated array of prefixes used to mark a register name on
904# the architecture's assembly.
905# For example, on x86 the register name is written as:
906#
907# \%eax ;; register eax
908#
909# in this case, this prefix would be the character \`\%\'.
910v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
911
912# A NULL-terminated array of suffixes used to mark a register name on
913# the architecture's assembly.
914v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
915
916# A NULL-terminated array of prefixes used to mark a register
917# indirection on the architecture's assembly.
918# For example, on x86 the register indirection is written as:
919#
920# \(\%eax\) ;; indirecting eax
921#
922# in this case, this prefix would be the charater \`\(\'.
923#
924# Please note that we use the indirection prefix also for register
925# displacement, e.g., \`4\(\%eax\)\' on x86.
926v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
927
928# A NULL-terminated array of suffixes used to mark a register
929# indirection on the architecture's assembly.
930# For example, on x86 the register indirection is written as:
931#
932# \(\%eax\) ;; indirecting eax
933#
934# in this case, this prefix would be the charater \`\)\'.
935#
936# Please note that we use the indirection suffix also for register
937# displacement, e.g., \`4\(\%eax\)\' on x86.
938v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
939
940# Prefix(es) used to name a register using GDB's nomenclature.
941#
942# For example, on PPC a register is represented by a number in the assembly
943# language (e.g., \`10\' is the 10th general-purpose register). However,
944# inside GDB this same register has an \`r\' appended to its name, so the 10th
945# register would be represented as \`r10\' internally.
946v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
947
948# Suffix used to name a register using GDB's nomenclature.
949v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
950
951# Check if S is a single operand.
952#
953# Single operands can be:
954# \- Literal integers, e.g. \`\$10\' on x86
955# \- Register access, e.g. \`\%eax\' on x86
956# \- Register indirection, e.g. \`\(\%eax\)\' on x86
957# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
958#
959# This function should check for these patterns on the string
960# and return 1 if some were found, or zero otherwise. Please try to match
961# as much info as you can from the string, i.e., if you have to match
962# something like \`\(\%\', do not match just the \`\(\'.
963M:int:stap_is_single_operand:const char *s:s
964
965# Function used to handle a "special case" in the parser.
966#
967# A "special case" is considered to be an unknown token, i.e., a token
968# that the parser does not know how to parse. A good example of special
969# case would be ARM's register displacement syntax:
970#
971# [R0, #4] ;; displacing R0 by 4
972#
973# Since the parser assumes that a register displacement is of the form:
974#
975# <number> <indirection_prefix> <register_name> <indirection_suffix>
976#
977# it means that it will not be able to recognize and parse this odd syntax.
978# Therefore, we should add a special case function that will handle this token.
979#
980# This function should generate the proper expression form of the expression
981# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
982# and so on). It should also return 1 if the parsing was successful, or zero
983# if the token was not recognized as a special token (in this case, returning
984# zero means that the special parser is deferring the parsing to the generic
985# parser), and should advance the buffer pointer (p->arg).
986M:int:stap_parse_special_token:struct stap_parse_info *p:p
987
988
989# True if the list of shared libraries is one and only for all
990# processes, as opposed to a list of shared libraries per inferior.
991# This usually means that all processes, although may or may not share
992# an address space, will see the same set of symbols at the same
993# addresses.
994v:int:has_global_solist:::0:0::0
995
996# On some targets, even though each inferior has its own private
997# address space, the debug interface takes care of making breakpoints
998# visible to all address spaces automatically. For such cases,
999# this property should be set to true.
1000v:int:has_global_breakpoints:::0:0::0
1001
1002# True if inferiors share an address space (e.g., uClinux).
1003m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1004
1005# True if a fast tracepoint can be set at an address.
1006m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
1007
1008# Return the "auto" target charset.
1009f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1010# Return the "auto" target wide charset.
1011f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1012
1013# If non-empty, this is a file extension that will be opened in place
1014# of the file extension reported by the shared library list.
1015#
1016# This is most useful for toolchains that use a post-linker tool,
1017# where the names of the files run on the target differ in extension
1018# compared to the names of the files GDB should load for debug info.
1019v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1020
1021# If true, the target OS has DOS-based file system semantics. That
1022# is, absolute paths include a drive name, and the backslash is
1023# considered a directory separator.
1024v:int:has_dos_based_file_system:::0:0::0
1025
1026# Generate bytecodes to collect the return address in a frame.
1027# Since the bytecodes run on the target, possibly with GDB not even
1028# connected, the full unwinding machinery is not available, and
1029# typically this function will issue bytecodes for one or more likely
1030# places that the return address may be found.
1031m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1032
1033# Implement the "info proc" command.
1034M:void:info_proc:const char *args, enum info_proc_what what:args, what
1035
1036# Implement the "info proc" command for core files. Noe that there
1037# are two "info_proc"-like methods on gdbarch -- one for core files,
1038# one for live targets.
1039M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1040
1041# Iterate over all objfiles in the order that makes the most sense
1042# for the architecture to make global symbol searches.
1043#
1044# CB is a callback function where OBJFILE is the objfile to be searched,
1045# and CB_DATA a pointer to user-defined data (the same data that is passed
1046# when calling this gdbarch method). The iteration stops if this function
1047# returns nonzero.
1048#
1049# CB_DATA is a pointer to some user-defined data to be passed to
1050# the callback.
1051#
1052# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1053# inspected when the symbol search was requested.
1054m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1055
1056# Ravenscar arch-dependent ops.
1057v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1058
1059# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1060m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1061
1062# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1063m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1064
1065# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1066m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1067
1068# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1069# Return 0 if *READPTR is already at the end of the buffer.
1070# Return -1 if there is insufficient buffer for a whole entry.
1071# Return 1 if an entry was read into *TYPEP and *VALP.
1072M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1073
1074# Find the address range of the current inferior's vsyscall/vDSO, and
1075# write it to *RANGE. If the vsyscall's length can't be determined, a
1076# range with zero length is returned. Returns true if the vsyscall is
1077# found, false otherwise.
1078m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1079EOF
1080}
1081
1082#
1083# The .log file
1084#
1085exec > new-gdbarch.log
1086function_list | while do_read
1087do
1088 cat <<EOF
1089${class} ${returntype} ${function} ($formal)
1090EOF
1091 for r in ${read}
1092 do
1093 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1094 done
1095 if class_is_predicate_p && fallback_default_p
1096 then
1097 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1098 kill $$
1099 exit 1
1100 fi
1101 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1102 then
1103 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1104 kill $$
1105 exit 1
1106 fi
1107 if class_is_multiarch_p
1108 then
1109 if class_is_predicate_p ; then :
1110 elif test "x${predefault}" = "x"
1111 then
1112 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1113 kill $$
1114 exit 1
1115 fi
1116 fi
1117 echo ""
1118done
1119
1120exec 1>&2
1121compare_new gdbarch.log
1122
1123
1124copyright ()
1125{
1126cat <<EOF
1127/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1128/* vi:set ro: */
1129
1130/* Dynamic architecture support for GDB, the GNU debugger.
1131
1132 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1133
1134 This file is part of GDB.
1135
1136 This program is free software; you can redistribute it and/or modify
1137 it under the terms of the GNU General Public License as published by
1138 the Free Software Foundation; either version 3 of the License, or
1139 (at your option) any later version.
1140
1141 This program is distributed in the hope that it will be useful,
1142 but WITHOUT ANY WARRANTY; without even the implied warranty of
1143 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1144 GNU General Public License for more details.
1145
1146 You should have received a copy of the GNU General Public License
1147 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1148
1149/* This file was created with the aid of \`\`gdbarch.sh''.
1150
1151 The Bourne shell script \`\`gdbarch.sh'' creates the files
1152 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1153 against the existing \`\`gdbarch.[hc]''. Any differences found
1154 being reported.
1155
1156 If editing this file, please also run gdbarch.sh and merge any
1157 changes into that script. Conversely, when making sweeping changes
1158 to this file, modifying gdbarch.sh and using its output may prove
1159 easier. */
1160
1161EOF
1162}
1163
1164#
1165# The .h file
1166#
1167
1168exec > new-gdbarch.h
1169copyright
1170cat <<EOF
1171#ifndef GDBARCH_H
1172#define GDBARCH_H
1173
1174#include "frame.h"
1175
1176struct floatformat;
1177struct ui_file;
1178struct value;
1179struct objfile;
1180struct obj_section;
1181struct minimal_symbol;
1182struct regcache;
1183struct reggroup;
1184struct regset;
1185struct disassemble_info;
1186struct target_ops;
1187struct obstack;
1188struct bp_target_info;
1189struct target_desc;
1190struct objfile;
1191struct symbol;
1192struct displaced_step_closure;
1193struct core_regset_section;
1194struct syscall;
1195struct agent_expr;
1196struct axs_value;
1197struct stap_parse_info;
1198struct ravenscar_arch_ops;
1199struct elf_internal_linux_prpsinfo;
1200struct mem_range;
1201struct syscalls_info;
1202
1203/* The architecture associated with the inferior through the
1204 connection to the target.
1205
1206 The architecture vector provides some information that is really a
1207 property of the inferior, accessed through a particular target:
1208 ptrace operations; the layout of certain RSP packets; the solib_ops
1209 vector; etc. To differentiate architecture accesses to
1210 per-inferior/target properties from
1211 per-thread/per-frame/per-objfile properties, accesses to
1212 per-inferior/target properties should be made through this
1213 gdbarch. */
1214
1215/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1216extern struct gdbarch *target_gdbarch (void);
1217
1218/* Callback type for the 'iterate_over_objfiles_in_search_order'
1219 gdbarch method. */
1220
1221typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1222 (struct objfile *objfile, void *cb_data);
1223
1224typedef void (iterate_over_regset_sections_cb)
1225 (const char *sect_name, int size, const struct regset *regset,
1226 const char *human_name, void *cb_data);
1227EOF
1228
1229# function typedef's
1230printf "\n"
1231printf "\n"
1232printf "/* The following are pre-initialized by GDBARCH. */\n"
1233function_list | while do_read
1234do
1235 if class_is_info_p
1236 then
1237 printf "\n"
1238 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1239 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1240 fi
1241done
1242
1243# function typedef's
1244printf "\n"
1245printf "\n"
1246printf "/* The following are initialized by the target dependent code. */\n"
1247function_list | while do_read
1248do
1249 if [ -n "${comment}" ]
1250 then
1251 echo "${comment}" | sed \
1252 -e '2 s,#,/*,' \
1253 -e '3,$ s,#, ,' \
1254 -e '$ s,$, */,'
1255 fi
1256
1257 if class_is_predicate_p
1258 then
1259 printf "\n"
1260 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1261 fi
1262 if class_is_variable_p
1263 then
1264 printf "\n"
1265 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1266 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1267 fi
1268 if class_is_function_p
1269 then
1270 printf "\n"
1271 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1272 then
1273 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1274 elif class_is_multiarch_p
1275 then
1276 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1277 else
1278 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1279 fi
1280 if [ "x${formal}" = "xvoid" ]
1281 then
1282 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1283 else
1284 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1285 fi
1286 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1287 fi
1288done
1289
1290# close it off
1291cat <<EOF
1292
1293/* Definition for an unknown syscall, used basically in error-cases. */
1294#define UNKNOWN_SYSCALL (-1)
1295
1296extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1297
1298
1299/* Mechanism for co-ordinating the selection of a specific
1300 architecture.
1301
1302 GDB targets (*-tdep.c) can register an interest in a specific
1303 architecture. Other GDB components can register a need to maintain
1304 per-architecture data.
1305
1306 The mechanisms below ensures that there is only a loose connection
1307 between the set-architecture command and the various GDB
1308 components. Each component can independently register their need
1309 to maintain architecture specific data with gdbarch.
1310
1311 Pragmatics:
1312
1313 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1314 didn't scale.
1315
1316 The more traditional mega-struct containing architecture specific
1317 data for all the various GDB components was also considered. Since
1318 GDB is built from a variable number of (fairly independent)
1319 components it was determined that the global aproach was not
1320 applicable. */
1321
1322
1323/* Register a new architectural family with GDB.
1324
1325 Register support for the specified ARCHITECTURE with GDB. When
1326 gdbarch determines that the specified architecture has been
1327 selected, the corresponding INIT function is called.
1328
1329 --
1330
1331 The INIT function takes two parameters: INFO which contains the
1332 information available to gdbarch about the (possibly new)
1333 architecture; ARCHES which is a list of the previously created
1334 \`\`struct gdbarch'' for this architecture.
1335
1336 The INFO parameter is, as far as possible, be pre-initialized with
1337 information obtained from INFO.ABFD or the global defaults.
1338
1339 The ARCHES parameter is a linked list (sorted most recently used)
1340 of all the previously created architures for this architecture
1341 family. The (possibly NULL) ARCHES->gdbarch can used to access
1342 values from the previously selected architecture for this
1343 architecture family.
1344
1345 The INIT function shall return any of: NULL - indicating that it
1346 doesn't recognize the selected architecture; an existing \`\`struct
1347 gdbarch'' from the ARCHES list - indicating that the new
1348 architecture is just a synonym for an earlier architecture (see
1349 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1350 - that describes the selected architecture (see gdbarch_alloc()).
1351
1352 The DUMP_TDEP function shall print out all target specific values.
1353 Care should be taken to ensure that the function works in both the
1354 multi-arch and non- multi-arch cases. */
1355
1356struct gdbarch_list
1357{
1358 struct gdbarch *gdbarch;
1359 struct gdbarch_list *next;
1360};
1361
1362struct gdbarch_info
1363{
1364 /* Use default: NULL (ZERO). */
1365 const struct bfd_arch_info *bfd_arch_info;
1366
1367 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1368 enum bfd_endian byte_order;
1369
1370 enum bfd_endian byte_order_for_code;
1371
1372 /* Use default: NULL (ZERO). */
1373 bfd *abfd;
1374
1375 /* Use default: NULL (ZERO). */
1376 struct gdbarch_tdep_info *tdep_info;
1377
1378 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1379 enum gdb_osabi osabi;
1380
1381 /* Use default: NULL (ZERO). */
1382 const struct target_desc *target_desc;
1383};
1384
1385typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1386typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1387
1388/* DEPRECATED - use gdbarch_register() */
1389extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1390
1391extern void gdbarch_register (enum bfd_architecture architecture,
1392 gdbarch_init_ftype *,
1393 gdbarch_dump_tdep_ftype *);
1394
1395
1396/* Return a freshly allocated, NULL terminated, array of the valid
1397 architecture names. Since architectures are registered during the
1398 _initialize phase this function only returns useful information
1399 once initialization has been completed. */
1400
1401extern const char **gdbarch_printable_names (void);
1402
1403
1404/* Helper function. Search the list of ARCHES for a GDBARCH that
1405 matches the information provided by INFO. */
1406
1407extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1408
1409
1410/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1411 basic initialization using values obtained from the INFO and TDEP
1412 parameters. set_gdbarch_*() functions are called to complete the
1413 initialization of the object. */
1414
1415extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1416
1417
1418/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1419 It is assumed that the caller freeds the \`\`struct
1420 gdbarch_tdep''. */
1421
1422extern void gdbarch_free (struct gdbarch *);
1423
1424
1425/* Helper function. Allocate memory from the \`\`struct gdbarch''
1426 obstack. The memory is freed when the corresponding architecture
1427 is also freed. */
1428
1429extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1430#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1431#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1432
1433
1434/* Helper function. Force an update of the current architecture.
1435
1436 The actual architecture selected is determined by INFO, \`\`(gdb) set
1437 architecture'' et.al., the existing architecture and BFD's default
1438 architecture. INFO should be initialized to zero and then selected
1439 fields should be updated.
1440
1441 Returns non-zero if the update succeeds. */
1442
1443extern int gdbarch_update_p (struct gdbarch_info info);
1444
1445
1446/* Helper function. Find an architecture matching info.
1447
1448 INFO should be initialized using gdbarch_info_init, relevant fields
1449 set, and then finished using gdbarch_info_fill.
1450
1451 Returns the corresponding architecture, or NULL if no matching
1452 architecture was found. */
1453
1454extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1455
1456
1457/* Helper function. Set the target gdbarch to "gdbarch". */
1458
1459extern void set_target_gdbarch (struct gdbarch *gdbarch);
1460
1461
1462/* Register per-architecture data-pointer.
1463
1464 Reserve space for a per-architecture data-pointer. An identifier
1465 for the reserved data-pointer is returned. That identifer should
1466 be saved in a local static variable.
1467
1468 Memory for the per-architecture data shall be allocated using
1469 gdbarch_obstack_zalloc. That memory will be deleted when the
1470 corresponding architecture object is deleted.
1471
1472 When a previously created architecture is re-selected, the
1473 per-architecture data-pointer for that previous architecture is
1474 restored. INIT() is not re-called.
1475
1476 Multiple registrarants for any architecture are allowed (and
1477 strongly encouraged). */
1478
1479struct gdbarch_data;
1480
1481typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1482extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1483typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1484extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1485extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1486 struct gdbarch_data *data,
1487 void *pointer);
1488
1489extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1490
1491
1492/* Set the dynamic target-system-dependent parameters (architecture,
1493 byte-order, ...) using information found in the BFD. */
1494
1495extern void set_gdbarch_from_file (bfd *);
1496
1497
1498/* Initialize the current architecture to the "first" one we find on
1499 our list. */
1500
1501extern void initialize_current_architecture (void);
1502
1503/* gdbarch trace variable */
1504extern unsigned int gdbarch_debug;
1505
1506extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1507
1508#endif
1509EOF
1510exec 1>&2
1511#../move-if-change new-gdbarch.h gdbarch.h
1512compare_new gdbarch.h
1513
1514
1515#
1516# C file
1517#
1518
1519exec > new-gdbarch.c
1520copyright
1521cat <<EOF
1522
1523#include "defs.h"
1524#include "arch-utils.h"
1525
1526#include "gdbcmd.h"
1527#include "inferior.h"
1528#include "symcat.h"
1529
1530#include "floatformat.h"
1531#include "reggroups.h"
1532#include "osabi.h"
1533#include "gdb_obstack.h"
1534#include "observer.h"
1535#include "regcache.h"
1536#include "objfiles.h"
1537
1538/* Static function declarations */
1539
1540static void alloc_gdbarch_data (struct gdbarch *);
1541
1542/* Non-zero if we want to trace architecture code. */
1543
1544#ifndef GDBARCH_DEBUG
1545#define GDBARCH_DEBUG 0
1546#endif
1547unsigned int gdbarch_debug = GDBARCH_DEBUG;
1548static void
1549show_gdbarch_debug (struct ui_file *file, int from_tty,
1550 struct cmd_list_element *c, const char *value)
1551{
1552 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1553}
1554
1555static const char *
1556pformat (const struct floatformat **format)
1557{
1558 if (format == NULL)
1559 return "(null)";
1560 else
1561 /* Just print out one of them - this is only for diagnostics. */
1562 return format[0]->name;
1563}
1564
1565static const char *
1566pstring (const char *string)
1567{
1568 if (string == NULL)
1569 return "(null)";
1570 return string;
1571}
1572
1573/* Helper function to print a list of strings, represented as "const
1574 char *const *". The list is printed comma-separated. */
1575
1576static char *
1577pstring_list (const char *const *list)
1578{
1579 static char ret[100];
1580 const char *const *p;
1581 size_t offset = 0;
1582
1583 if (list == NULL)
1584 return "(null)";
1585
1586 ret[0] = '\0';
1587 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1588 {
1589 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1590 offset += 2 + s;
1591 }
1592
1593 if (offset > 0)
1594 {
1595 gdb_assert (offset - 2 < sizeof (ret));
1596 ret[offset - 2] = '\0';
1597 }
1598
1599 return ret;
1600}
1601
1602EOF
1603
1604# gdbarch open the gdbarch object
1605printf "\n"
1606printf "/* Maintain the struct gdbarch object. */\n"
1607printf "\n"
1608printf "struct gdbarch\n"
1609printf "{\n"
1610printf " /* Has this architecture been fully initialized? */\n"
1611printf " int initialized_p;\n"
1612printf "\n"
1613printf " /* An obstack bound to the lifetime of the architecture. */\n"
1614printf " struct obstack *obstack;\n"
1615printf "\n"
1616printf " /* basic architectural information. */\n"
1617function_list | while do_read
1618do
1619 if class_is_info_p
1620 then
1621 printf " ${returntype} ${function};\n"
1622 fi
1623done
1624printf "\n"
1625printf " /* target specific vector. */\n"
1626printf " struct gdbarch_tdep *tdep;\n"
1627printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1628printf "\n"
1629printf " /* per-architecture data-pointers. */\n"
1630printf " unsigned nr_data;\n"
1631printf " void **data;\n"
1632printf "\n"
1633cat <<EOF
1634 /* Multi-arch values.
1635
1636 When extending this structure you must:
1637
1638 Add the field below.
1639
1640 Declare set/get functions and define the corresponding
1641 macro in gdbarch.h.
1642
1643 gdbarch_alloc(): If zero/NULL is not a suitable default,
1644 initialize the new field.
1645
1646 verify_gdbarch(): Confirm that the target updated the field
1647 correctly.
1648
1649 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1650 field is dumped out
1651
1652 get_gdbarch(): Implement the set/get functions (probably using
1653 the macro's as shortcuts).
1654
1655 */
1656
1657EOF
1658function_list | while do_read
1659do
1660 if class_is_variable_p
1661 then
1662 printf " ${returntype} ${function};\n"
1663 elif class_is_function_p
1664 then
1665 printf " gdbarch_${function}_ftype *${function};\n"
1666 fi
1667done
1668printf "};\n"
1669
1670# Create a new gdbarch struct
1671cat <<EOF
1672
1673/* Create a new \`\`struct gdbarch'' based on information provided by
1674 \`\`struct gdbarch_info''. */
1675EOF
1676printf "\n"
1677cat <<EOF
1678struct gdbarch *
1679gdbarch_alloc (const struct gdbarch_info *info,
1680 struct gdbarch_tdep *tdep)
1681{
1682 struct gdbarch *gdbarch;
1683
1684 /* Create an obstack for allocating all the per-architecture memory,
1685 then use that to allocate the architecture vector. */
1686 struct obstack *obstack = XNEW (struct obstack);
1687 obstack_init (obstack);
1688 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1689 memset (gdbarch, 0, sizeof (*gdbarch));
1690 gdbarch->obstack = obstack;
1691
1692 alloc_gdbarch_data (gdbarch);
1693
1694 gdbarch->tdep = tdep;
1695EOF
1696printf "\n"
1697function_list | while do_read
1698do
1699 if class_is_info_p
1700 then
1701 printf " gdbarch->${function} = info->${function};\n"
1702 fi
1703done
1704printf "\n"
1705printf " /* Force the explicit initialization of these. */\n"
1706function_list | while do_read
1707do
1708 if class_is_function_p || class_is_variable_p
1709 then
1710 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1711 then
1712 printf " gdbarch->${function} = ${predefault};\n"
1713 fi
1714 fi
1715done
1716cat <<EOF
1717 /* gdbarch_alloc() */
1718
1719 return gdbarch;
1720}
1721EOF
1722
1723# Free a gdbarch struct.
1724printf "\n"
1725printf "\n"
1726cat <<EOF
1727/* Allocate extra space using the per-architecture obstack. */
1728
1729void *
1730gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1731{
1732 void *data = obstack_alloc (arch->obstack, size);
1733
1734 memset (data, 0, size);
1735 return data;
1736}
1737
1738
1739/* Free a gdbarch struct. This should never happen in normal
1740 operation --- once you've created a gdbarch, you keep it around.
1741 However, if an architecture's init function encounters an error
1742 building the structure, it may need to clean up a partially
1743 constructed gdbarch. */
1744
1745void
1746gdbarch_free (struct gdbarch *arch)
1747{
1748 struct obstack *obstack;
1749
1750 gdb_assert (arch != NULL);
1751 gdb_assert (!arch->initialized_p);
1752 obstack = arch->obstack;
1753 obstack_free (obstack, 0); /* Includes the ARCH. */
1754 xfree (obstack);
1755}
1756EOF
1757
1758# verify a new architecture
1759cat <<EOF
1760
1761
1762/* Ensure that all values in a GDBARCH are reasonable. */
1763
1764static void
1765verify_gdbarch (struct gdbarch *gdbarch)
1766{
1767 struct ui_file *log;
1768 struct cleanup *cleanups;
1769 long length;
1770 char *buf;
1771
1772 log = mem_fileopen ();
1773 cleanups = make_cleanup_ui_file_delete (log);
1774 /* fundamental */
1775 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1776 fprintf_unfiltered (log, "\n\tbyte-order");
1777 if (gdbarch->bfd_arch_info == NULL)
1778 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1779 /* Check those that need to be defined for the given multi-arch level. */
1780EOF
1781function_list | while do_read
1782do
1783 if class_is_function_p || class_is_variable_p
1784 then
1785 if [ "x${invalid_p}" = "x0" ]
1786 then
1787 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1788 elif class_is_predicate_p
1789 then
1790 printf " /* Skip verify of ${function}, has predicate. */\n"
1791 # FIXME: See do_read for potential simplification
1792 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1793 then
1794 printf " if (${invalid_p})\n"
1795 printf " gdbarch->${function} = ${postdefault};\n"
1796 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1797 then
1798 printf " if (gdbarch->${function} == ${predefault})\n"
1799 printf " gdbarch->${function} = ${postdefault};\n"
1800 elif [ -n "${postdefault}" ]
1801 then
1802 printf " if (gdbarch->${function} == 0)\n"
1803 printf " gdbarch->${function} = ${postdefault};\n"
1804 elif [ -n "${invalid_p}" ]
1805 then
1806 printf " if (${invalid_p})\n"
1807 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1808 elif [ -n "${predefault}" ]
1809 then
1810 printf " if (gdbarch->${function} == ${predefault})\n"
1811 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1812 fi
1813 fi
1814done
1815cat <<EOF
1816 buf = ui_file_xstrdup (log, &length);
1817 make_cleanup (xfree, buf);
1818 if (length > 0)
1819 internal_error (__FILE__, __LINE__,
1820 _("verify_gdbarch: the following are invalid ...%s"),
1821 buf);
1822 do_cleanups (cleanups);
1823}
1824EOF
1825
1826# dump the structure
1827printf "\n"
1828printf "\n"
1829cat <<EOF
1830/* Print out the details of the current architecture. */
1831
1832void
1833gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1834{
1835 const char *gdb_nm_file = "<not-defined>";
1836
1837#if defined (GDB_NM_FILE)
1838 gdb_nm_file = GDB_NM_FILE;
1839#endif
1840 fprintf_unfiltered (file,
1841 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1842 gdb_nm_file);
1843EOF
1844function_list | sort -t: -k 3 | while do_read
1845do
1846 # First the predicate
1847 if class_is_predicate_p
1848 then
1849 printf " fprintf_unfiltered (file,\n"
1850 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1851 printf " gdbarch_${function}_p (gdbarch));\n"
1852 fi
1853 # Print the corresponding value.
1854 if class_is_function_p
1855 then
1856 printf " fprintf_unfiltered (file,\n"
1857 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1858 printf " host_address_to_string (gdbarch->${function}));\n"
1859 else
1860 # It is a variable
1861 case "${print}:${returntype}" in
1862 :CORE_ADDR )
1863 fmt="%s"
1864 print="core_addr_to_string_nz (gdbarch->${function})"
1865 ;;
1866 :* )
1867 fmt="%s"
1868 print="plongest (gdbarch->${function})"
1869 ;;
1870 * )
1871 fmt="%s"
1872 ;;
1873 esac
1874 printf " fprintf_unfiltered (file,\n"
1875 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1876 printf " ${print});\n"
1877 fi
1878done
1879cat <<EOF
1880 if (gdbarch->dump_tdep != NULL)
1881 gdbarch->dump_tdep (gdbarch, file);
1882}
1883EOF
1884
1885
1886# GET/SET
1887printf "\n"
1888cat <<EOF
1889struct gdbarch_tdep *
1890gdbarch_tdep (struct gdbarch *gdbarch)
1891{
1892 if (gdbarch_debug >= 2)
1893 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1894 return gdbarch->tdep;
1895}
1896EOF
1897printf "\n"
1898function_list | while do_read
1899do
1900 if class_is_predicate_p
1901 then
1902 printf "\n"
1903 printf "int\n"
1904 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1905 printf "{\n"
1906 printf " gdb_assert (gdbarch != NULL);\n"
1907 printf " return ${predicate};\n"
1908 printf "}\n"
1909 fi
1910 if class_is_function_p
1911 then
1912 printf "\n"
1913 printf "${returntype}\n"
1914 if [ "x${formal}" = "xvoid" ]
1915 then
1916 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1917 else
1918 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1919 fi
1920 printf "{\n"
1921 printf " gdb_assert (gdbarch != NULL);\n"
1922 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1923 if class_is_predicate_p && test -n "${predefault}"
1924 then
1925 # Allow a call to a function with a predicate.
1926 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1927 fi
1928 printf " if (gdbarch_debug >= 2)\n"
1929 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1930 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1931 then
1932 if class_is_multiarch_p
1933 then
1934 params="gdbarch"
1935 else
1936 params=""
1937 fi
1938 else
1939 if class_is_multiarch_p
1940 then
1941 params="gdbarch, ${actual}"
1942 else
1943 params="${actual}"
1944 fi
1945 fi
1946 if [ "x${returntype}" = "xvoid" ]
1947 then
1948 printf " gdbarch->${function} (${params});\n"
1949 else
1950 printf " return gdbarch->${function} (${params});\n"
1951 fi
1952 printf "}\n"
1953 printf "\n"
1954 printf "void\n"
1955 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1956 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1957 printf "{\n"
1958 printf " gdbarch->${function} = ${function};\n"
1959 printf "}\n"
1960 elif class_is_variable_p
1961 then
1962 printf "\n"
1963 printf "${returntype}\n"
1964 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1965 printf "{\n"
1966 printf " gdb_assert (gdbarch != NULL);\n"
1967 if [ "x${invalid_p}" = "x0" ]
1968 then
1969 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1970 elif [ -n "${invalid_p}" ]
1971 then
1972 printf " /* Check variable is valid. */\n"
1973 printf " gdb_assert (!(${invalid_p}));\n"
1974 elif [ -n "${predefault}" ]
1975 then
1976 printf " /* Check variable changed from pre-default. */\n"
1977 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1978 fi
1979 printf " if (gdbarch_debug >= 2)\n"
1980 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1981 printf " return gdbarch->${function};\n"
1982 printf "}\n"
1983 printf "\n"
1984 printf "void\n"
1985 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1986 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1987 printf "{\n"
1988 printf " gdbarch->${function} = ${function};\n"
1989 printf "}\n"
1990 elif class_is_info_p
1991 then
1992 printf "\n"
1993 printf "${returntype}\n"
1994 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1995 printf "{\n"
1996 printf " gdb_assert (gdbarch != NULL);\n"
1997 printf " if (gdbarch_debug >= 2)\n"
1998 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1999 printf " return gdbarch->${function};\n"
2000 printf "}\n"
2001 fi
2002done
2003
2004# All the trailing guff
2005cat <<EOF
2006
2007
2008/* Keep a registry of per-architecture data-pointers required by GDB
2009 modules. */
2010
2011struct gdbarch_data
2012{
2013 unsigned index;
2014 int init_p;
2015 gdbarch_data_pre_init_ftype *pre_init;
2016 gdbarch_data_post_init_ftype *post_init;
2017};
2018
2019struct gdbarch_data_registration
2020{
2021 struct gdbarch_data *data;
2022 struct gdbarch_data_registration *next;
2023};
2024
2025struct gdbarch_data_registry
2026{
2027 unsigned nr;
2028 struct gdbarch_data_registration *registrations;
2029};
2030
2031struct gdbarch_data_registry gdbarch_data_registry =
2032{
2033 0, NULL,
2034};
2035
2036static struct gdbarch_data *
2037gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2038 gdbarch_data_post_init_ftype *post_init)
2039{
2040 struct gdbarch_data_registration **curr;
2041
2042 /* Append the new registration. */
2043 for (curr = &gdbarch_data_registry.registrations;
2044 (*curr) != NULL;
2045 curr = &(*curr)->next);
2046 (*curr) = XNEW (struct gdbarch_data_registration);
2047 (*curr)->next = NULL;
2048 (*curr)->data = XNEW (struct gdbarch_data);
2049 (*curr)->data->index = gdbarch_data_registry.nr++;
2050 (*curr)->data->pre_init = pre_init;
2051 (*curr)->data->post_init = post_init;
2052 (*curr)->data->init_p = 1;
2053 return (*curr)->data;
2054}
2055
2056struct gdbarch_data *
2057gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2058{
2059 return gdbarch_data_register (pre_init, NULL);
2060}
2061
2062struct gdbarch_data *
2063gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2064{
2065 return gdbarch_data_register (NULL, post_init);
2066}
2067
2068/* Create/delete the gdbarch data vector. */
2069
2070static void
2071alloc_gdbarch_data (struct gdbarch *gdbarch)
2072{
2073 gdb_assert (gdbarch->data == NULL);
2074 gdbarch->nr_data = gdbarch_data_registry.nr;
2075 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2076}
2077
2078/* Initialize the current value of the specified per-architecture
2079 data-pointer. */
2080
2081void
2082deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2083 struct gdbarch_data *data,
2084 void *pointer)
2085{
2086 gdb_assert (data->index < gdbarch->nr_data);
2087 gdb_assert (gdbarch->data[data->index] == NULL);
2088 gdb_assert (data->pre_init == NULL);
2089 gdbarch->data[data->index] = pointer;
2090}
2091
2092/* Return the current value of the specified per-architecture
2093 data-pointer. */
2094
2095void *
2096gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2097{
2098 gdb_assert (data->index < gdbarch->nr_data);
2099 if (gdbarch->data[data->index] == NULL)
2100 {
2101 /* The data-pointer isn't initialized, call init() to get a
2102 value. */
2103 if (data->pre_init != NULL)
2104 /* Mid architecture creation: pass just the obstack, and not
2105 the entire architecture, as that way it isn't possible for
2106 pre-init code to refer to undefined architecture
2107 fields. */
2108 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2109 else if (gdbarch->initialized_p
2110 && data->post_init != NULL)
2111 /* Post architecture creation: pass the entire architecture
2112 (as all fields are valid), but be careful to also detect
2113 recursive references. */
2114 {
2115 gdb_assert (data->init_p);
2116 data->init_p = 0;
2117 gdbarch->data[data->index] = data->post_init (gdbarch);
2118 data->init_p = 1;
2119 }
2120 else
2121 /* The architecture initialization hasn't completed - punt -
2122 hope that the caller knows what they are doing. Once
2123 deprecated_set_gdbarch_data has been initialized, this can be
2124 changed to an internal error. */
2125 return NULL;
2126 gdb_assert (gdbarch->data[data->index] != NULL);
2127 }
2128 return gdbarch->data[data->index];
2129}
2130
2131
2132/* Keep a registry of the architectures known by GDB. */
2133
2134struct gdbarch_registration
2135{
2136 enum bfd_architecture bfd_architecture;
2137 gdbarch_init_ftype *init;
2138 gdbarch_dump_tdep_ftype *dump_tdep;
2139 struct gdbarch_list *arches;
2140 struct gdbarch_registration *next;
2141};
2142
2143static struct gdbarch_registration *gdbarch_registry = NULL;
2144
2145static void
2146append_name (const char ***buf, int *nr, const char *name)
2147{
2148 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2149 (*buf)[*nr] = name;
2150 *nr += 1;
2151}
2152
2153const char **
2154gdbarch_printable_names (void)
2155{
2156 /* Accumulate a list of names based on the registed list of
2157 architectures. */
2158 int nr_arches = 0;
2159 const char **arches = NULL;
2160 struct gdbarch_registration *rego;
2161
2162 for (rego = gdbarch_registry;
2163 rego != NULL;
2164 rego = rego->next)
2165 {
2166 const struct bfd_arch_info *ap;
2167 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2168 if (ap == NULL)
2169 internal_error (__FILE__, __LINE__,
2170 _("gdbarch_architecture_names: multi-arch unknown"));
2171 do
2172 {
2173 append_name (&arches, &nr_arches, ap->printable_name);
2174 ap = ap->next;
2175 }
2176 while (ap != NULL);
2177 }
2178 append_name (&arches, &nr_arches, NULL);
2179 return arches;
2180}
2181
2182
2183void
2184gdbarch_register (enum bfd_architecture bfd_architecture,
2185 gdbarch_init_ftype *init,
2186 gdbarch_dump_tdep_ftype *dump_tdep)
2187{
2188 struct gdbarch_registration **curr;
2189 const struct bfd_arch_info *bfd_arch_info;
2190
2191 /* Check that BFD recognizes this architecture */
2192 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2193 if (bfd_arch_info == NULL)
2194 {
2195 internal_error (__FILE__, __LINE__,
2196 _("gdbarch: Attempt to register "
2197 "unknown architecture (%d)"),
2198 bfd_architecture);
2199 }
2200 /* Check that we haven't seen this architecture before. */
2201 for (curr = &gdbarch_registry;
2202 (*curr) != NULL;
2203 curr = &(*curr)->next)
2204 {
2205 if (bfd_architecture == (*curr)->bfd_architecture)
2206 internal_error (__FILE__, __LINE__,
2207 _("gdbarch: Duplicate registration "
2208 "of architecture (%s)"),
2209 bfd_arch_info->printable_name);
2210 }
2211 /* log it */
2212 if (gdbarch_debug)
2213 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2214 bfd_arch_info->printable_name,
2215 host_address_to_string (init));
2216 /* Append it */
2217 (*curr) = XNEW (struct gdbarch_registration);
2218 (*curr)->bfd_architecture = bfd_architecture;
2219 (*curr)->init = init;
2220 (*curr)->dump_tdep = dump_tdep;
2221 (*curr)->arches = NULL;
2222 (*curr)->next = NULL;
2223}
2224
2225void
2226register_gdbarch_init (enum bfd_architecture bfd_architecture,
2227 gdbarch_init_ftype *init)
2228{
2229 gdbarch_register (bfd_architecture, init, NULL);
2230}
2231
2232
2233/* Look for an architecture using gdbarch_info. */
2234
2235struct gdbarch_list *
2236gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2237 const struct gdbarch_info *info)
2238{
2239 for (; arches != NULL; arches = arches->next)
2240 {
2241 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2242 continue;
2243 if (info->byte_order != arches->gdbarch->byte_order)
2244 continue;
2245 if (info->osabi != arches->gdbarch->osabi)
2246 continue;
2247 if (info->target_desc != arches->gdbarch->target_desc)
2248 continue;
2249 return arches;
2250 }
2251 return NULL;
2252}
2253
2254
2255/* Find an architecture that matches the specified INFO. Create a new
2256 architecture if needed. Return that new architecture. */
2257
2258struct gdbarch *
2259gdbarch_find_by_info (struct gdbarch_info info)
2260{
2261 struct gdbarch *new_gdbarch;
2262 struct gdbarch_registration *rego;
2263
2264 /* Fill in missing parts of the INFO struct using a number of
2265 sources: "set ..."; INFOabfd supplied; and the global
2266 defaults. */
2267 gdbarch_info_fill (&info);
2268
2269 /* Must have found some sort of architecture. */
2270 gdb_assert (info.bfd_arch_info != NULL);
2271
2272 if (gdbarch_debug)
2273 {
2274 fprintf_unfiltered (gdb_stdlog,
2275 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2276 (info.bfd_arch_info != NULL
2277 ? info.bfd_arch_info->printable_name
2278 : "(null)"));
2279 fprintf_unfiltered (gdb_stdlog,
2280 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2281 info.byte_order,
2282 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2283 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2284 : "default"));
2285 fprintf_unfiltered (gdb_stdlog,
2286 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2287 info.osabi, gdbarch_osabi_name (info.osabi));
2288 fprintf_unfiltered (gdb_stdlog,
2289 "gdbarch_find_by_info: info.abfd %s\n",
2290 host_address_to_string (info.abfd));
2291 fprintf_unfiltered (gdb_stdlog,
2292 "gdbarch_find_by_info: info.tdep_info %s\n",
2293 host_address_to_string (info.tdep_info));
2294 }
2295
2296 /* Find the tdep code that knows about this architecture. */
2297 for (rego = gdbarch_registry;
2298 rego != NULL;
2299 rego = rego->next)
2300 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2301 break;
2302 if (rego == NULL)
2303 {
2304 if (gdbarch_debug)
2305 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2306 "No matching architecture\n");
2307 return 0;
2308 }
2309
2310 /* Ask the tdep code for an architecture that matches "info". */
2311 new_gdbarch = rego->init (info, rego->arches);
2312
2313 /* Did the tdep code like it? No. Reject the change and revert to
2314 the old architecture. */
2315 if (new_gdbarch == NULL)
2316 {
2317 if (gdbarch_debug)
2318 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2319 "Target rejected architecture\n");
2320 return NULL;
2321 }
2322
2323 /* Is this a pre-existing architecture (as determined by already
2324 being initialized)? Move it to the front of the architecture
2325 list (keeping the list sorted Most Recently Used). */
2326 if (new_gdbarch->initialized_p)
2327 {
2328 struct gdbarch_list **list;
2329 struct gdbarch_list *this;
2330 if (gdbarch_debug)
2331 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2332 "Previous architecture %s (%s) selected\n",
2333 host_address_to_string (new_gdbarch),
2334 new_gdbarch->bfd_arch_info->printable_name);
2335 /* Find the existing arch in the list. */
2336 for (list = &rego->arches;
2337 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2338 list = &(*list)->next);
2339 /* It had better be in the list of architectures. */
2340 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2341 /* Unlink THIS. */
2342 this = (*list);
2343 (*list) = this->next;
2344 /* Insert THIS at the front. */
2345 this->next = rego->arches;
2346 rego->arches = this;
2347 /* Return it. */
2348 return new_gdbarch;
2349 }
2350
2351 /* It's a new architecture. */
2352 if (gdbarch_debug)
2353 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2354 "New architecture %s (%s) selected\n",
2355 host_address_to_string (new_gdbarch),
2356 new_gdbarch->bfd_arch_info->printable_name);
2357
2358 /* Insert the new architecture into the front of the architecture
2359 list (keep the list sorted Most Recently Used). */
2360 {
2361 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2362 this->next = rego->arches;
2363 this->gdbarch = new_gdbarch;
2364 rego->arches = this;
2365 }
2366
2367 /* Check that the newly installed architecture is valid. Plug in
2368 any post init values. */
2369 new_gdbarch->dump_tdep = rego->dump_tdep;
2370 verify_gdbarch (new_gdbarch);
2371 new_gdbarch->initialized_p = 1;
2372
2373 if (gdbarch_debug)
2374 gdbarch_dump (new_gdbarch, gdb_stdlog);
2375
2376 return new_gdbarch;
2377}
2378
2379/* Make the specified architecture current. */
2380
2381void
2382set_target_gdbarch (struct gdbarch *new_gdbarch)
2383{
2384 gdb_assert (new_gdbarch != NULL);
2385 gdb_assert (new_gdbarch->initialized_p);
2386 current_inferior ()->gdbarch = new_gdbarch;
2387 observer_notify_architecture_changed (new_gdbarch);
2388 registers_changed ();
2389}
2390
2391/* Return the current inferior's arch. */
2392
2393struct gdbarch *
2394target_gdbarch (void)
2395{
2396 return current_inferior ()->gdbarch;
2397}
2398
2399extern void _initialize_gdbarch (void);
2400
2401void
2402_initialize_gdbarch (void)
2403{
2404 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2405Set architecture debugging."), _("\\
2406Show architecture debugging."), _("\\
2407When non-zero, architecture debugging is enabled."),
2408 NULL,
2409 show_gdbarch_debug,
2410 &setdebuglist, &showdebuglist);
2411}
2412EOF
2413
2414# close things off
2415exec 1>&2
2416#../move-if-change new-gdbarch.c gdbarch.c
2417compare_new gdbarch.c
This page took 0.032737 seconds and 4 git commands to generate.