bfd/
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
... / ...
CommitLineData
1#!/bin/sh -u
2
3# Architecture commands for GDB, the GNU debugger.
4#
5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6# 2008, 2009, 2010 Free Software Foundation, Inc.
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
12# the Free Software Foundation; either version 3 of the License, or
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
21# along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23# Make certain that the script is not running in an internationalized
24# environment.
25LANG=C ; export LANG
26LC_ALL=C ; export LC_ALL
27
28
29compare_new ()
30{
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47do_read ()
48{
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152}
153
154
155fallback_default_p ()
156{
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159}
160
161class_is_variable_p ()
162{
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167}
168
169class_is_function_p ()
170{
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183}
184
185class_is_predicate_p ()
186{
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191}
192
193class_is_info_p ()
194{
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199}
200
201
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332done
333
334
335function_list ()
336{
337 # See below (DOCO) for description of each field
338 cat <<EOF
339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340#
341i:int:byte_order:::BFD_ENDIAN_BIG
342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343#
344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345#
346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355#
356# Number of bits in a short or unsigned short for the target machine.
357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358# Number of bits in an int or unsigned int for the target machine.
359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360# Number of bits in a long or unsigned long for the target machine.
361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362# Number of bits in a long long or unsigned long long for the target
363# machine.
364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
369# Each format describes both the big and little endian layouts (if
370# useful).
371
372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382# / addr_bit will be set from it.
383#
384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
387#
388# ptr_bit is the size of a pointer on the target
389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390# addr_bit is the size of a target address as represented in gdb
391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392#
393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
394v:int:char_signed:::1:-1:1
395#
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402#
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405#
406v:int:num_regs:::0:-1
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
411v:int:num_pseudo_regs:::0:0::0
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
415# all (-1).
416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425# Convert from an sdb register number to an internal gdb register number.
426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429m:const char *:register_name:int regnr:regnr::0
430
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
434M:struct type *:register_type:int reg_nr:reg_nr
435
436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439# deprecated_fp_regnum.
440v:int:deprecated_fp_regnum:::-1:-1::0
441
442# See gdbint.texinfo. See infcall.c.
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455# setjmp/longjmp support.
456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457#
458v:int:believe_pcc_promotion:::::::
459#
460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468#
469m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489# Return the adjusted address and kind to use for Z0/Z1 packets.
490# KIND is usually the memory length of the breakpoint, but may have a
491# different target-specific meaning.
492m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
493M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
494m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
495m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
496v:CORE_ADDR:decr_pc_after_break:::0:::0
497
498# A function can be addressed by either it's "pointer" (possibly a
499# descriptor address) or "entry point" (first executable instruction).
500# The method "convert_from_func_ptr_addr" converting the former to the
501# latter. gdbarch_deprecated_function_start_offset is being used to implement
502# a simplified subset of that functionality - the function's address
503# corresponds to the "function pointer" and the function's start
504# corresponds to the "function entry point" - and hence is redundant.
505
506v:CORE_ADDR:deprecated_function_start_offset:::0:::0
507
508# Return the remote protocol register number associated with this
509# register. Normally the identity mapping.
510m:int:remote_register_number:int regno:regno::default_remote_register_number::0
511
512# Fetch the target specific address used to represent a load module.
513F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
514#
515v:CORE_ADDR:frame_args_skip:::0:::0
516M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
517M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
518# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
519# frame-base. Enable frame-base before frame-unwind.
520F:int:frame_num_args:struct frame_info *frame:frame
521#
522M:CORE_ADDR:frame_align:CORE_ADDR address:address
523m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
524v:int:frame_red_zone_size
525#
526m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
527# On some machines there are bits in addresses which are not really
528# part of the address, but are used by the kernel, the hardware, etc.
529# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
530# we get a "real" address such as one would find in a symbol table.
531# This is used only for addresses of instructions, and even then I'm
532# not sure it's used in all contexts. It exists to deal with there
533# being a few stray bits in the PC which would mislead us, not as some
534# sort of generic thing to handle alignment or segmentation (it's
535# possible it should be in TARGET_READ_PC instead).
536m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
537# It is not at all clear why gdbarch_smash_text_address is not folded into
538# gdbarch_addr_bits_remove.
539m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
540
541# FIXME/cagney/2001-01-18: This should be split in two. A target method that
542# indicates if the target needs software single step. An ISA method to
543# implement it.
544#
545# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
546# breakpoints using the breakpoint system instead of blatting memory directly
547# (as with rs6000).
548#
549# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
550# target can single step. If not, then implement single step using breakpoints.
551#
552# A return value of 1 means that the software_single_step breakpoints
553# were inserted; 0 means they were not.
554F:int:software_single_step:struct frame_info *frame:frame
555
556# Return non-zero if the processor is executing a delay slot and a
557# further single-step is needed before the instruction finishes.
558M:int:single_step_through_delay:struct frame_info *frame:frame
559# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
560# disassembler. Perhaps objdump can handle it?
561f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
562f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
563
564
565# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
566# evaluates non-zero, this is the address where the debugger will place
567# a step-resume breakpoint to get us past the dynamic linker.
568m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
569# Some systems also have trampoline code for returning from shared libs.
570m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
571
572# A target might have problems with watchpoints as soon as the stack
573# frame of the current function has been destroyed. This mostly happens
574# as the first action in a funtion's epilogue. in_function_epilogue_p()
575# is defined to return a non-zero value if either the given addr is one
576# instruction after the stack destroying instruction up to the trailing
577# return instruction or if we can figure out that the stack frame has
578# already been invalidated regardless of the value of addr. Targets
579# which don't suffer from that problem could just let this functionality
580# untouched.
581m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
582f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
583f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
584v:int:cannot_step_breakpoint:::0:0::0
585v:int:have_nonsteppable_watchpoint:::0:0::0
586F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
587M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
588M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
589# Is a register in a group
590m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
591# Fetch the pointer to the ith function argument.
592F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
593
594# Return the appropriate register set for a core file section with
595# name SECT_NAME and size SECT_SIZE.
596M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
597
598# When creating core dumps, some systems encode the PID in addition
599# to the LWP id in core file register section names. In those cases, the
600# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
601# is set to true for such architectures; false if "XXX" represents an LWP
602# or thread id with no special encoding.
603v:int:core_reg_section_encodes_pid:::0:0::0
604
605# Supported register notes in a core file.
606v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
607
608# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
609# core file into buffer READBUF with length LEN.
610M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
611
612# How the core_stratum layer converts a PTID from a core file to a
613# string.
614M:char *:core_pid_to_str:ptid_t ptid:ptid
615
616# BFD target to use when generating a core file.
617V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
618
619# If the elements of C++ vtables are in-place function descriptors rather
620# than normal function pointers (which may point to code or a descriptor),
621# set this to one.
622v:int:vtable_function_descriptors:::0:0::0
623
624# Set if the least significant bit of the delta is used instead of the least
625# significant bit of the pfn for pointers to virtual member functions.
626v:int:vbit_in_delta:::0:0::0
627
628# Advance PC to next instruction in order to skip a permanent breakpoint.
629F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
630
631# The maximum length of an instruction on this architecture.
632V:ULONGEST:max_insn_length:::0:0
633
634# Copy the instruction at FROM to TO, and make any adjustments
635# necessary to single-step it at that address.
636#
637# REGS holds the state the thread's registers will have before
638# executing the copied instruction; the PC in REGS will refer to FROM,
639# not the copy at TO. The caller should update it to point at TO later.
640#
641# Return a pointer to data of the architecture's choice to be passed
642# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
643# the instruction's effects have been completely simulated, with the
644# resulting state written back to REGS.
645#
646# For a general explanation of displaced stepping and how GDB uses it,
647# see the comments in infrun.c.
648#
649# The TO area is only guaranteed to have space for
650# gdbarch_max_insn_length (arch) bytes, so this function must not
651# write more bytes than that to that area.
652#
653# If you do not provide this function, GDB assumes that the
654# architecture does not support displaced stepping.
655#
656# If your architecture doesn't need to adjust instructions before
657# single-stepping them, consider using simple_displaced_step_copy_insn
658# here.
659M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
660
661# Return true if GDB should use hardware single-stepping to execute
662# the displaced instruction identified by CLOSURE. If false,
663# GDB will simply restart execution at the displaced instruction
664# location, and it is up to the target to ensure GDB will receive
665# control again (e.g. by placing a software breakpoint instruction
666# into the displaced instruction buffer).
667#
668# The default implementation returns false on all targets that
669# provide a gdbarch_software_single_step routine, and true otherwise.
670m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
671
672# Fix up the state resulting from successfully single-stepping a
673# displaced instruction, to give the result we would have gotten from
674# stepping the instruction in its original location.
675#
676# REGS is the register state resulting from single-stepping the
677# displaced instruction.
678#
679# CLOSURE is the result from the matching call to
680# gdbarch_displaced_step_copy_insn.
681#
682# If you provide gdbarch_displaced_step_copy_insn.but not this
683# function, then GDB assumes that no fixup is needed after
684# single-stepping the instruction.
685#
686# For a general explanation of displaced stepping and how GDB uses it,
687# see the comments in infrun.c.
688M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
689
690# Free a closure returned by gdbarch_displaced_step_copy_insn.
691#
692# If you provide gdbarch_displaced_step_copy_insn, you must provide
693# this function as well.
694#
695# If your architecture uses closures that don't need to be freed, then
696# you can use simple_displaced_step_free_closure here.
697#
698# For a general explanation of displaced stepping and how GDB uses it,
699# see the comments in infrun.c.
700m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
701
702# Return the address of an appropriate place to put displaced
703# instructions while we step over them. There need only be one such
704# place, since we're only stepping one thread over a breakpoint at a
705# time.
706#
707# For a general explanation of displaced stepping and how GDB uses it,
708# see the comments in infrun.c.
709m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
710
711# Relocate an instruction to execute at a different address. OLDLOC
712# is the address in the inferior memory where the instruction to
713# relocate is currently at. On input, TO points to the destination
714# where we want the instruction to be copied (and possibly adjusted)
715# to. On output, it points to one past the end of the resulting
716# instruction(s). The effect of executing the instruction at TO shall
717# be the same as if executing it at FROM. For example, call
718# instructions that implicitly push the return address on the stack
719# should be adjusted to return to the instruction after OLDLOC;
720# relative branches, and other PC-relative instructions need the
721# offset adjusted; etc.
722M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
723
724# Refresh overlay mapped state for section OSECT.
725F:void:overlay_update:struct obj_section *osect:osect
726
727M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
728
729# Handle special encoding of static variables in stabs debug info.
730F:char *:static_transform_name:char *name:name
731# Set if the address in N_SO or N_FUN stabs may be zero.
732v:int:sofun_address_maybe_missing:::0:0::0
733
734# Parse the instruction at ADDR storing in the record execution log
735# the registers REGCACHE and memory ranges that will be affected when
736# the instruction executes, along with their current values.
737# Return -1 if something goes wrong, 0 otherwise.
738M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
739
740# Save process state after a signal.
741# Return -1 if something goes wrong, 0 otherwise.
742M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
743
744# Signal translation: translate inferior's signal (host's) number into
745# GDB's representation.
746m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
747# Signal translation: translate GDB's signal number into inferior's host
748# signal number.
749m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
750
751# Extra signal info inspection.
752#
753# Return a type suitable to inspect extra signal information.
754M:struct type *:get_siginfo_type:void:
755
756# Record architecture-specific information from the symbol table.
757M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
758
759# Function for the 'catch syscall' feature.
760
761# Get architecture-specific system calls information from registers.
762M:LONGEST:get_syscall_number:ptid_t ptid:ptid
763
764# True if the list of shared libraries is one and only for all
765# processes, as opposed to a list of shared libraries per inferior.
766# This usually means that all processes, although may or may not share
767# an address space, will see the same set of symbols at the same
768# addresses.
769v:int:has_global_solist:::0:0::0
770
771# On some targets, even though each inferior has its own private
772# address space, the debug interface takes care of making breakpoints
773# visible to all address spaces automatically. For such cases,
774# this property should be set to true.
775v:int:has_global_breakpoints:::0:0::0
776
777# True if inferiors share an address space (e.g., uClinux).
778m:int:has_shared_address_space:void:::default_has_shared_address_space::0
779
780# True if a fast tracepoint can be set at an address.
781m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
782
783# Return the "auto" target charset.
784f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
785# Return the "auto" target wide charset.
786f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
787
788# If non-empty, this is a file extension that will be opened in place
789# of the file extension reported by the shared library list.
790#
791# This is most useful for toolchains that use a post-linker tool,
792# where the names of the files run on the target differ in extension
793# compared to the names of the files GDB should load for debug info.
794v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
795
796# If true, the target OS has DOS-based file system semantics. That
797# is, absolute paths include a drive name, and the backslash is
798# considered a directory separator.
799v:int:has_dos_based_file_system:::0:0::0
800EOF
801}
802
803#
804# The .log file
805#
806exec > new-gdbarch.log
807function_list | while do_read
808do
809 cat <<EOF
810${class} ${returntype} ${function} ($formal)
811EOF
812 for r in ${read}
813 do
814 eval echo \"\ \ \ \ ${r}=\${${r}}\"
815 done
816 if class_is_predicate_p && fallback_default_p
817 then
818 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
819 kill $$
820 exit 1
821 fi
822 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
823 then
824 echo "Error: postdefault is useless when invalid_p=0" 1>&2
825 kill $$
826 exit 1
827 fi
828 if class_is_multiarch_p
829 then
830 if class_is_predicate_p ; then :
831 elif test "x${predefault}" = "x"
832 then
833 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
834 kill $$
835 exit 1
836 fi
837 fi
838 echo ""
839done
840
841exec 1>&2
842compare_new gdbarch.log
843
844
845copyright ()
846{
847cat <<EOF
848/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
849
850/* Dynamic architecture support for GDB, the GNU debugger.
851
852 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
853 2007, 2008, 2009 Free Software Foundation, Inc.
854
855 This file is part of GDB.
856
857 This program is free software; you can redistribute it and/or modify
858 it under the terms of the GNU General Public License as published by
859 the Free Software Foundation; either version 3 of the License, or
860 (at your option) any later version.
861
862 This program is distributed in the hope that it will be useful,
863 but WITHOUT ANY WARRANTY; without even the implied warranty of
864 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
865 GNU General Public License for more details.
866
867 You should have received a copy of the GNU General Public License
868 along with this program. If not, see <http://www.gnu.org/licenses/>. */
869
870/* This file was created with the aid of \`\`gdbarch.sh''.
871
872 The Bourne shell script \`\`gdbarch.sh'' creates the files
873 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
874 against the existing \`\`gdbarch.[hc]''. Any differences found
875 being reported.
876
877 If editing this file, please also run gdbarch.sh and merge any
878 changes into that script. Conversely, when making sweeping changes
879 to this file, modifying gdbarch.sh and using its output may prove
880 easier. */
881
882EOF
883}
884
885#
886# The .h file
887#
888
889exec > new-gdbarch.h
890copyright
891cat <<EOF
892#ifndef GDBARCH_H
893#define GDBARCH_H
894
895struct floatformat;
896struct ui_file;
897struct frame_info;
898struct value;
899struct objfile;
900struct obj_section;
901struct minimal_symbol;
902struct regcache;
903struct reggroup;
904struct regset;
905struct disassemble_info;
906struct target_ops;
907struct obstack;
908struct bp_target_info;
909struct target_desc;
910struct displaced_step_closure;
911struct core_regset_section;
912struct syscall;
913
914/* The architecture associated with the connection to the target.
915
916 The architecture vector provides some information that is really
917 a property of the target: The layout of certain packets, for instance;
918 or the solib_ops vector. Etc. To differentiate architecture accesses
919 to per-target properties from per-thread/per-frame/per-objfile properties,
920 accesses to per-target properties should be made through target_gdbarch.
921
922 Eventually, when support for multiple targets is implemented in
923 GDB, this global should be made target-specific. */
924extern struct gdbarch *target_gdbarch;
925EOF
926
927# function typedef's
928printf "\n"
929printf "\n"
930printf "/* The following are pre-initialized by GDBARCH. */\n"
931function_list | while do_read
932do
933 if class_is_info_p
934 then
935 printf "\n"
936 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
937 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
938 fi
939done
940
941# function typedef's
942printf "\n"
943printf "\n"
944printf "/* The following are initialized by the target dependent code. */\n"
945function_list | while do_read
946do
947 if [ -n "${comment}" ]
948 then
949 echo "${comment}" | sed \
950 -e '2 s,#,/*,' \
951 -e '3,$ s,#, ,' \
952 -e '$ s,$, */,'
953 fi
954
955 if class_is_predicate_p
956 then
957 printf "\n"
958 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
959 fi
960 if class_is_variable_p
961 then
962 printf "\n"
963 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
964 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
965 fi
966 if class_is_function_p
967 then
968 printf "\n"
969 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
970 then
971 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
972 elif class_is_multiarch_p
973 then
974 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
975 else
976 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
977 fi
978 if [ "x${formal}" = "xvoid" ]
979 then
980 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
981 else
982 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
983 fi
984 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
985 fi
986done
987
988# close it off
989cat <<EOF
990
991/* Definition for an unknown syscall, used basically in error-cases. */
992#define UNKNOWN_SYSCALL (-1)
993
994extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
995
996
997/* Mechanism for co-ordinating the selection of a specific
998 architecture.
999
1000 GDB targets (*-tdep.c) can register an interest in a specific
1001 architecture. Other GDB components can register a need to maintain
1002 per-architecture data.
1003
1004 The mechanisms below ensures that there is only a loose connection
1005 between the set-architecture command and the various GDB
1006 components. Each component can independently register their need
1007 to maintain architecture specific data with gdbarch.
1008
1009 Pragmatics:
1010
1011 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1012 didn't scale.
1013
1014 The more traditional mega-struct containing architecture specific
1015 data for all the various GDB components was also considered. Since
1016 GDB is built from a variable number of (fairly independent)
1017 components it was determined that the global aproach was not
1018 applicable. */
1019
1020
1021/* Register a new architectural family with GDB.
1022
1023 Register support for the specified ARCHITECTURE with GDB. When
1024 gdbarch determines that the specified architecture has been
1025 selected, the corresponding INIT function is called.
1026
1027 --
1028
1029 The INIT function takes two parameters: INFO which contains the
1030 information available to gdbarch about the (possibly new)
1031 architecture; ARCHES which is a list of the previously created
1032 \`\`struct gdbarch'' for this architecture.
1033
1034 The INFO parameter is, as far as possible, be pre-initialized with
1035 information obtained from INFO.ABFD or the global defaults.
1036
1037 The ARCHES parameter is a linked list (sorted most recently used)
1038 of all the previously created architures for this architecture
1039 family. The (possibly NULL) ARCHES->gdbarch can used to access
1040 values from the previously selected architecture for this
1041 architecture family.
1042
1043 The INIT function shall return any of: NULL - indicating that it
1044 doesn't recognize the selected architecture; an existing \`\`struct
1045 gdbarch'' from the ARCHES list - indicating that the new
1046 architecture is just a synonym for an earlier architecture (see
1047 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1048 - that describes the selected architecture (see gdbarch_alloc()).
1049
1050 The DUMP_TDEP function shall print out all target specific values.
1051 Care should be taken to ensure that the function works in both the
1052 multi-arch and non- multi-arch cases. */
1053
1054struct gdbarch_list
1055{
1056 struct gdbarch *gdbarch;
1057 struct gdbarch_list *next;
1058};
1059
1060struct gdbarch_info
1061{
1062 /* Use default: NULL (ZERO). */
1063 const struct bfd_arch_info *bfd_arch_info;
1064
1065 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1066 int byte_order;
1067
1068 int byte_order_for_code;
1069
1070 /* Use default: NULL (ZERO). */
1071 bfd *abfd;
1072
1073 /* Use default: NULL (ZERO). */
1074 struct gdbarch_tdep_info *tdep_info;
1075
1076 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1077 enum gdb_osabi osabi;
1078
1079 /* Use default: NULL (ZERO). */
1080 const struct target_desc *target_desc;
1081};
1082
1083typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1084typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1085
1086/* DEPRECATED - use gdbarch_register() */
1087extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1088
1089extern void gdbarch_register (enum bfd_architecture architecture,
1090 gdbarch_init_ftype *,
1091 gdbarch_dump_tdep_ftype *);
1092
1093
1094/* Return a freshly allocated, NULL terminated, array of the valid
1095 architecture names. Since architectures are registered during the
1096 _initialize phase this function only returns useful information
1097 once initialization has been completed. */
1098
1099extern const char **gdbarch_printable_names (void);
1100
1101
1102/* Helper function. Search the list of ARCHES for a GDBARCH that
1103 matches the information provided by INFO. */
1104
1105extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1106
1107
1108/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1109 basic initialization using values obtained from the INFO and TDEP
1110 parameters. set_gdbarch_*() functions are called to complete the
1111 initialization of the object. */
1112
1113extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1114
1115
1116/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1117 It is assumed that the caller freeds the \`\`struct
1118 gdbarch_tdep''. */
1119
1120extern void gdbarch_free (struct gdbarch *);
1121
1122
1123/* Helper function. Allocate memory from the \`\`struct gdbarch''
1124 obstack. The memory is freed when the corresponding architecture
1125 is also freed. */
1126
1127extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1128#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1129#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1130
1131
1132/* Helper function. Force an update of the current architecture.
1133
1134 The actual architecture selected is determined by INFO, \`\`(gdb) set
1135 architecture'' et.al., the existing architecture and BFD's default
1136 architecture. INFO should be initialized to zero and then selected
1137 fields should be updated.
1138
1139 Returns non-zero if the update succeeds */
1140
1141extern int gdbarch_update_p (struct gdbarch_info info);
1142
1143
1144/* Helper function. Find an architecture matching info.
1145
1146 INFO should be initialized using gdbarch_info_init, relevant fields
1147 set, and then finished using gdbarch_info_fill.
1148
1149 Returns the corresponding architecture, or NULL if no matching
1150 architecture was found. */
1151
1152extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1153
1154
1155/* Helper function. Set the global "target_gdbarch" to "gdbarch".
1156
1157 FIXME: kettenis/20031124: Of the functions that follow, only
1158 gdbarch_from_bfd is supposed to survive. The others will
1159 dissappear since in the future GDB will (hopefully) be truly
1160 multi-arch. However, for now we're still stuck with the concept of
1161 a single active architecture. */
1162
1163extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1164
1165
1166/* Register per-architecture data-pointer.
1167
1168 Reserve space for a per-architecture data-pointer. An identifier
1169 for the reserved data-pointer is returned. That identifer should
1170 be saved in a local static variable.
1171
1172 Memory for the per-architecture data shall be allocated using
1173 gdbarch_obstack_zalloc. That memory will be deleted when the
1174 corresponding architecture object is deleted.
1175
1176 When a previously created architecture is re-selected, the
1177 per-architecture data-pointer for that previous architecture is
1178 restored. INIT() is not re-called.
1179
1180 Multiple registrarants for any architecture are allowed (and
1181 strongly encouraged). */
1182
1183struct gdbarch_data;
1184
1185typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1186extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1187typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1188extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1189extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1190 struct gdbarch_data *data,
1191 void *pointer);
1192
1193extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1194
1195
1196/* Set the dynamic target-system-dependent parameters (architecture,
1197 byte-order, ...) using information found in the BFD */
1198
1199extern void set_gdbarch_from_file (bfd *);
1200
1201
1202/* Initialize the current architecture to the "first" one we find on
1203 our list. */
1204
1205extern void initialize_current_architecture (void);
1206
1207/* gdbarch trace variable */
1208extern int gdbarch_debug;
1209
1210extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1211
1212#endif
1213EOF
1214exec 1>&2
1215#../move-if-change new-gdbarch.h gdbarch.h
1216compare_new gdbarch.h
1217
1218
1219#
1220# C file
1221#
1222
1223exec > new-gdbarch.c
1224copyright
1225cat <<EOF
1226
1227#include "defs.h"
1228#include "arch-utils.h"
1229
1230#include "gdbcmd.h"
1231#include "inferior.h"
1232#include "symcat.h"
1233
1234#include "floatformat.h"
1235
1236#include "gdb_assert.h"
1237#include "gdb_string.h"
1238#include "reggroups.h"
1239#include "osabi.h"
1240#include "gdb_obstack.h"
1241#include "observer.h"
1242#include "regcache.h"
1243
1244/* Static function declarations */
1245
1246static void alloc_gdbarch_data (struct gdbarch *);
1247
1248/* Non-zero if we want to trace architecture code. */
1249
1250#ifndef GDBARCH_DEBUG
1251#define GDBARCH_DEBUG 0
1252#endif
1253int gdbarch_debug = GDBARCH_DEBUG;
1254static void
1255show_gdbarch_debug (struct ui_file *file, int from_tty,
1256 struct cmd_list_element *c, const char *value)
1257{
1258 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1259}
1260
1261static const char *
1262pformat (const struct floatformat **format)
1263{
1264 if (format == NULL)
1265 return "(null)";
1266 else
1267 /* Just print out one of them - this is only for diagnostics. */
1268 return format[0]->name;
1269}
1270
1271static const char *
1272pstring (const char *string)
1273{
1274 if (string == NULL)
1275 return "(null)";
1276 return string;
1277}
1278
1279EOF
1280
1281# gdbarch open the gdbarch object
1282printf "\n"
1283printf "/* Maintain the struct gdbarch object */\n"
1284printf "\n"
1285printf "struct gdbarch\n"
1286printf "{\n"
1287printf " /* Has this architecture been fully initialized? */\n"
1288printf " int initialized_p;\n"
1289printf "\n"
1290printf " /* An obstack bound to the lifetime of the architecture. */\n"
1291printf " struct obstack *obstack;\n"
1292printf "\n"
1293printf " /* basic architectural information */\n"
1294function_list | while do_read
1295do
1296 if class_is_info_p
1297 then
1298 printf " ${returntype} ${function};\n"
1299 fi
1300done
1301printf "\n"
1302printf " /* target specific vector. */\n"
1303printf " struct gdbarch_tdep *tdep;\n"
1304printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1305printf "\n"
1306printf " /* per-architecture data-pointers */\n"
1307printf " unsigned nr_data;\n"
1308printf " void **data;\n"
1309printf "\n"
1310printf " /* per-architecture swap-regions */\n"
1311printf " struct gdbarch_swap *swap;\n"
1312printf "\n"
1313cat <<EOF
1314 /* Multi-arch values.
1315
1316 When extending this structure you must:
1317
1318 Add the field below.
1319
1320 Declare set/get functions and define the corresponding
1321 macro in gdbarch.h.
1322
1323 gdbarch_alloc(): If zero/NULL is not a suitable default,
1324 initialize the new field.
1325
1326 verify_gdbarch(): Confirm that the target updated the field
1327 correctly.
1328
1329 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1330 field is dumped out
1331
1332 \`\`startup_gdbarch()'': Append an initial value to the static
1333 variable (base values on the host's c-type system).
1334
1335 get_gdbarch(): Implement the set/get functions (probably using
1336 the macro's as shortcuts).
1337
1338 */
1339
1340EOF
1341function_list | while do_read
1342do
1343 if class_is_variable_p
1344 then
1345 printf " ${returntype} ${function};\n"
1346 elif class_is_function_p
1347 then
1348 printf " gdbarch_${function}_ftype *${function};\n"
1349 fi
1350done
1351printf "};\n"
1352
1353# A pre-initialized vector
1354printf "\n"
1355printf "\n"
1356cat <<EOF
1357/* The default architecture uses host values (for want of a better
1358 choice). */
1359EOF
1360printf "\n"
1361printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1362printf "\n"
1363printf "struct gdbarch startup_gdbarch =\n"
1364printf "{\n"
1365printf " 1, /* Always initialized. */\n"
1366printf " NULL, /* The obstack. */\n"
1367printf " /* basic architecture information */\n"
1368function_list | while do_read
1369do
1370 if class_is_info_p
1371 then
1372 printf " ${staticdefault}, /* ${function} */\n"
1373 fi
1374done
1375cat <<EOF
1376 /* target specific vector and its dump routine */
1377 NULL, NULL,
1378 /*per-architecture data-pointers and swap regions */
1379 0, NULL, NULL,
1380 /* Multi-arch values */
1381EOF
1382function_list | while do_read
1383do
1384 if class_is_function_p || class_is_variable_p
1385 then
1386 printf " ${staticdefault}, /* ${function} */\n"
1387 fi
1388done
1389cat <<EOF
1390 /* startup_gdbarch() */
1391};
1392
1393struct gdbarch *target_gdbarch = &startup_gdbarch;
1394EOF
1395
1396# Create a new gdbarch struct
1397cat <<EOF
1398
1399/* Create a new \`\`struct gdbarch'' based on information provided by
1400 \`\`struct gdbarch_info''. */
1401EOF
1402printf "\n"
1403cat <<EOF
1404struct gdbarch *
1405gdbarch_alloc (const struct gdbarch_info *info,
1406 struct gdbarch_tdep *tdep)
1407{
1408 struct gdbarch *gdbarch;
1409
1410 /* Create an obstack for allocating all the per-architecture memory,
1411 then use that to allocate the architecture vector. */
1412 struct obstack *obstack = XMALLOC (struct obstack);
1413 obstack_init (obstack);
1414 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1415 memset (gdbarch, 0, sizeof (*gdbarch));
1416 gdbarch->obstack = obstack;
1417
1418 alloc_gdbarch_data (gdbarch);
1419
1420 gdbarch->tdep = tdep;
1421EOF
1422printf "\n"
1423function_list | while do_read
1424do
1425 if class_is_info_p
1426 then
1427 printf " gdbarch->${function} = info->${function};\n"
1428 fi
1429done
1430printf "\n"
1431printf " /* Force the explicit initialization of these. */\n"
1432function_list | while do_read
1433do
1434 if class_is_function_p || class_is_variable_p
1435 then
1436 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1437 then
1438 printf " gdbarch->${function} = ${predefault};\n"
1439 fi
1440 fi
1441done
1442cat <<EOF
1443 /* gdbarch_alloc() */
1444
1445 return gdbarch;
1446}
1447EOF
1448
1449# Free a gdbarch struct.
1450printf "\n"
1451printf "\n"
1452cat <<EOF
1453/* Allocate extra space using the per-architecture obstack. */
1454
1455void *
1456gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1457{
1458 void *data = obstack_alloc (arch->obstack, size);
1459
1460 memset (data, 0, size);
1461 return data;
1462}
1463
1464
1465/* Free a gdbarch struct. This should never happen in normal
1466 operation --- once you've created a gdbarch, you keep it around.
1467 However, if an architecture's init function encounters an error
1468 building the structure, it may need to clean up a partially
1469 constructed gdbarch. */
1470
1471void
1472gdbarch_free (struct gdbarch *arch)
1473{
1474 struct obstack *obstack;
1475
1476 gdb_assert (arch != NULL);
1477 gdb_assert (!arch->initialized_p);
1478 obstack = arch->obstack;
1479 obstack_free (obstack, 0); /* Includes the ARCH. */
1480 xfree (obstack);
1481}
1482EOF
1483
1484# verify a new architecture
1485cat <<EOF
1486
1487
1488/* Ensure that all values in a GDBARCH are reasonable. */
1489
1490static void
1491verify_gdbarch (struct gdbarch *gdbarch)
1492{
1493 struct ui_file *log;
1494 struct cleanup *cleanups;
1495 long length;
1496 char *buf;
1497
1498 log = mem_fileopen ();
1499 cleanups = make_cleanup_ui_file_delete (log);
1500 /* fundamental */
1501 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1502 fprintf_unfiltered (log, "\n\tbyte-order");
1503 if (gdbarch->bfd_arch_info == NULL)
1504 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1505 /* Check those that need to be defined for the given multi-arch level. */
1506EOF
1507function_list | while do_read
1508do
1509 if class_is_function_p || class_is_variable_p
1510 then
1511 if [ "x${invalid_p}" = "x0" ]
1512 then
1513 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1514 elif class_is_predicate_p
1515 then
1516 printf " /* Skip verify of ${function}, has predicate */\n"
1517 # FIXME: See do_read for potential simplification
1518 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1519 then
1520 printf " if (${invalid_p})\n"
1521 printf " gdbarch->${function} = ${postdefault};\n"
1522 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1523 then
1524 printf " if (gdbarch->${function} == ${predefault})\n"
1525 printf " gdbarch->${function} = ${postdefault};\n"
1526 elif [ -n "${postdefault}" ]
1527 then
1528 printf " if (gdbarch->${function} == 0)\n"
1529 printf " gdbarch->${function} = ${postdefault};\n"
1530 elif [ -n "${invalid_p}" ]
1531 then
1532 printf " if (${invalid_p})\n"
1533 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1534 elif [ -n "${predefault}" ]
1535 then
1536 printf " if (gdbarch->${function} == ${predefault})\n"
1537 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1538 fi
1539 fi
1540done
1541cat <<EOF
1542 buf = ui_file_xstrdup (log, &length);
1543 make_cleanup (xfree, buf);
1544 if (length > 0)
1545 internal_error (__FILE__, __LINE__,
1546 _("verify_gdbarch: the following are invalid ...%s"),
1547 buf);
1548 do_cleanups (cleanups);
1549}
1550EOF
1551
1552# dump the structure
1553printf "\n"
1554printf "\n"
1555cat <<EOF
1556/* Print out the details of the current architecture. */
1557
1558void
1559gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1560{
1561 const char *gdb_nm_file = "<not-defined>";
1562
1563#if defined (GDB_NM_FILE)
1564 gdb_nm_file = GDB_NM_FILE;
1565#endif
1566 fprintf_unfiltered (file,
1567 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1568 gdb_nm_file);
1569EOF
1570function_list | sort -t: -k 3 | while do_read
1571do
1572 # First the predicate
1573 if class_is_predicate_p
1574 then
1575 printf " fprintf_unfiltered (file,\n"
1576 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1577 printf " gdbarch_${function}_p (gdbarch));\n"
1578 fi
1579 # Print the corresponding value.
1580 if class_is_function_p
1581 then
1582 printf " fprintf_unfiltered (file,\n"
1583 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1584 printf " host_address_to_string (gdbarch->${function}));\n"
1585 else
1586 # It is a variable
1587 case "${print}:${returntype}" in
1588 :CORE_ADDR )
1589 fmt="%s"
1590 print="core_addr_to_string_nz (gdbarch->${function})"
1591 ;;
1592 :* )
1593 fmt="%s"
1594 print="plongest (gdbarch->${function})"
1595 ;;
1596 * )
1597 fmt="%s"
1598 ;;
1599 esac
1600 printf " fprintf_unfiltered (file,\n"
1601 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1602 printf " ${print});\n"
1603 fi
1604done
1605cat <<EOF
1606 if (gdbarch->dump_tdep != NULL)
1607 gdbarch->dump_tdep (gdbarch, file);
1608}
1609EOF
1610
1611
1612# GET/SET
1613printf "\n"
1614cat <<EOF
1615struct gdbarch_tdep *
1616gdbarch_tdep (struct gdbarch *gdbarch)
1617{
1618 if (gdbarch_debug >= 2)
1619 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1620 return gdbarch->tdep;
1621}
1622EOF
1623printf "\n"
1624function_list | while do_read
1625do
1626 if class_is_predicate_p
1627 then
1628 printf "\n"
1629 printf "int\n"
1630 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1631 printf "{\n"
1632 printf " gdb_assert (gdbarch != NULL);\n"
1633 printf " return ${predicate};\n"
1634 printf "}\n"
1635 fi
1636 if class_is_function_p
1637 then
1638 printf "\n"
1639 printf "${returntype}\n"
1640 if [ "x${formal}" = "xvoid" ]
1641 then
1642 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1643 else
1644 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1645 fi
1646 printf "{\n"
1647 printf " gdb_assert (gdbarch != NULL);\n"
1648 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1649 if class_is_predicate_p && test -n "${predefault}"
1650 then
1651 # Allow a call to a function with a predicate.
1652 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1653 fi
1654 printf " if (gdbarch_debug >= 2)\n"
1655 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1656 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1657 then
1658 if class_is_multiarch_p
1659 then
1660 params="gdbarch"
1661 else
1662 params=""
1663 fi
1664 else
1665 if class_is_multiarch_p
1666 then
1667 params="gdbarch, ${actual}"
1668 else
1669 params="${actual}"
1670 fi
1671 fi
1672 if [ "x${returntype}" = "xvoid" ]
1673 then
1674 printf " gdbarch->${function} (${params});\n"
1675 else
1676 printf " return gdbarch->${function} (${params});\n"
1677 fi
1678 printf "}\n"
1679 printf "\n"
1680 printf "void\n"
1681 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1682 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1683 printf "{\n"
1684 printf " gdbarch->${function} = ${function};\n"
1685 printf "}\n"
1686 elif class_is_variable_p
1687 then
1688 printf "\n"
1689 printf "${returntype}\n"
1690 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1691 printf "{\n"
1692 printf " gdb_assert (gdbarch != NULL);\n"
1693 if [ "x${invalid_p}" = "x0" ]
1694 then
1695 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1696 elif [ -n "${invalid_p}" ]
1697 then
1698 printf " /* Check variable is valid. */\n"
1699 printf " gdb_assert (!(${invalid_p}));\n"
1700 elif [ -n "${predefault}" ]
1701 then
1702 printf " /* Check variable changed from pre-default. */\n"
1703 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1704 fi
1705 printf " if (gdbarch_debug >= 2)\n"
1706 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1707 printf " return gdbarch->${function};\n"
1708 printf "}\n"
1709 printf "\n"
1710 printf "void\n"
1711 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1712 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1713 printf "{\n"
1714 printf " gdbarch->${function} = ${function};\n"
1715 printf "}\n"
1716 elif class_is_info_p
1717 then
1718 printf "\n"
1719 printf "${returntype}\n"
1720 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1721 printf "{\n"
1722 printf " gdb_assert (gdbarch != NULL);\n"
1723 printf " if (gdbarch_debug >= 2)\n"
1724 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1725 printf " return gdbarch->${function};\n"
1726 printf "}\n"
1727 fi
1728done
1729
1730# All the trailing guff
1731cat <<EOF
1732
1733
1734/* Keep a registry of per-architecture data-pointers required by GDB
1735 modules. */
1736
1737struct gdbarch_data
1738{
1739 unsigned index;
1740 int init_p;
1741 gdbarch_data_pre_init_ftype *pre_init;
1742 gdbarch_data_post_init_ftype *post_init;
1743};
1744
1745struct gdbarch_data_registration
1746{
1747 struct gdbarch_data *data;
1748 struct gdbarch_data_registration *next;
1749};
1750
1751struct gdbarch_data_registry
1752{
1753 unsigned nr;
1754 struct gdbarch_data_registration *registrations;
1755};
1756
1757struct gdbarch_data_registry gdbarch_data_registry =
1758{
1759 0, NULL,
1760};
1761
1762static struct gdbarch_data *
1763gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1764 gdbarch_data_post_init_ftype *post_init)
1765{
1766 struct gdbarch_data_registration **curr;
1767
1768 /* Append the new registration. */
1769 for (curr = &gdbarch_data_registry.registrations;
1770 (*curr) != NULL;
1771 curr = &(*curr)->next);
1772 (*curr) = XMALLOC (struct gdbarch_data_registration);
1773 (*curr)->next = NULL;
1774 (*curr)->data = XMALLOC (struct gdbarch_data);
1775 (*curr)->data->index = gdbarch_data_registry.nr++;
1776 (*curr)->data->pre_init = pre_init;
1777 (*curr)->data->post_init = post_init;
1778 (*curr)->data->init_p = 1;
1779 return (*curr)->data;
1780}
1781
1782struct gdbarch_data *
1783gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1784{
1785 return gdbarch_data_register (pre_init, NULL);
1786}
1787
1788struct gdbarch_data *
1789gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1790{
1791 return gdbarch_data_register (NULL, post_init);
1792}
1793
1794/* Create/delete the gdbarch data vector. */
1795
1796static void
1797alloc_gdbarch_data (struct gdbarch *gdbarch)
1798{
1799 gdb_assert (gdbarch->data == NULL);
1800 gdbarch->nr_data = gdbarch_data_registry.nr;
1801 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1802}
1803
1804/* Initialize the current value of the specified per-architecture
1805 data-pointer. */
1806
1807void
1808deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1809 struct gdbarch_data *data,
1810 void *pointer)
1811{
1812 gdb_assert (data->index < gdbarch->nr_data);
1813 gdb_assert (gdbarch->data[data->index] == NULL);
1814 gdb_assert (data->pre_init == NULL);
1815 gdbarch->data[data->index] = pointer;
1816}
1817
1818/* Return the current value of the specified per-architecture
1819 data-pointer. */
1820
1821void *
1822gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1823{
1824 gdb_assert (data->index < gdbarch->nr_data);
1825 if (gdbarch->data[data->index] == NULL)
1826 {
1827 /* The data-pointer isn't initialized, call init() to get a
1828 value. */
1829 if (data->pre_init != NULL)
1830 /* Mid architecture creation: pass just the obstack, and not
1831 the entire architecture, as that way it isn't possible for
1832 pre-init code to refer to undefined architecture
1833 fields. */
1834 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1835 else if (gdbarch->initialized_p
1836 && data->post_init != NULL)
1837 /* Post architecture creation: pass the entire architecture
1838 (as all fields are valid), but be careful to also detect
1839 recursive references. */
1840 {
1841 gdb_assert (data->init_p);
1842 data->init_p = 0;
1843 gdbarch->data[data->index] = data->post_init (gdbarch);
1844 data->init_p = 1;
1845 }
1846 else
1847 /* The architecture initialization hasn't completed - punt -
1848 hope that the caller knows what they are doing. Once
1849 deprecated_set_gdbarch_data has been initialized, this can be
1850 changed to an internal error. */
1851 return NULL;
1852 gdb_assert (gdbarch->data[data->index] != NULL);
1853 }
1854 return gdbarch->data[data->index];
1855}
1856
1857
1858/* Keep a registry of the architectures known by GDB. */
1859
1860struct gdbarch_registration
1861{
1862 enum bfd_architecture bfd_architecture;
1863 gdbarch_init_ftype *init;
1864 gdbarch_dump_tdep_ftype *dump_tdep;
1865 struct gdbarch_list *arches;
1866 struct gdbarch_registration *next;
1867};
1868
1869static struct gdbarch_registration *gdbarch_registry = NULL;
1870
1871static void
1872append_name (const char ***buf, int *nr, const char *name)
1873{
1874 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1875 (*buf)[*nr] = name;
1876 *nr += 1;
1877}
1878
1879const char **
1880gdbarch_printable_names (void)
1881{
1882 /* Accumulate a list of names based on the registed list of
1883 architectures. */
1884 int nr_arches = 0;
1885 const char **arches = NULL;
1886 struct gdbarch_registration *rego;
1887
1888 for (rego = gdbarch_registry;
1889 rego != NULL;
1890 rego = rego->next)
1891 {
1892 const struct bfd_arch_info *ap;
1893 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1894 if (ap == NULL)
1895 internal_error (__FILE__, __LINE__,
1896 _("gdbarch_architecture_names: multi-arch unknown"));
1897 do
1898 {
1899 append_name (&arches, &nr_arches, ap->printable_name);
1900 ap = ap->next;
1901 }
1902 while (ap != NULL);
1903 }
1904 append_name (&arches, &nr_arches, NULL);
1905 return arches;
1906}
1907
1908
1909void
1910gdbarch_register (enum bfd_architecture bfd_architecture,
1911 gdbarch_init_ftype *init,
1912 gdbarch_dump_tdep_ftype *dump_tdep)
1913{
1914 struct gdbarch_registration **curr;
1915 const struct bfd_arch_info *bfd_arch_info;
1916
1917 /* Check that BFD recognizes this architecture */
1918 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1919 if (bfd_arch_info == NULL)
1920 {
1921 internal_error (__FILE__, __LINE__,
1922 _("gdbarch: Attempt to register unknown architecture (%d)"),
1923 bfd_architecture);
1924 }
1925 /* Check that we haven't seen this architecture before */
1926 for (curr = &gdbarch_registry;
1927 (*curr) != NULL;
1928 curr = &(*curr)->next)
1929 {
1930 if (bfd_architecture == (*curr)->bfd_architecture)
1931 internal_error (__FILE__, __LINE__,
1932 _("gdbarch: Duplicate registraration of architecture (%s)"),
1933 bfd_arch_info->printable_name);
1934 }
1935 /* log it */
1936 if (gdbarch_debug)
1937 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1938 bfd_arch_info->printable_name,
1939 host_address_to_string (init));
1940 /* Append it */
1941 (*curr) = XMALLOC (struct gdbarch_registration);
1942 (*curr)->bfd_architecture = bfd_architecture;
1943 (*curr)->init = init;
1944 (*curr)->dump_tdep = dump_tdep;
1945 (*curr)->arches = NULL;
1946 (*curr)->next = NULL;
1947}
1948
1949void
1950register_gdbarch_init (enum bfd_architecture bfd_architecture,
1951 gdbarch_init_ftype *init)
1952{
1953 gdbarch_register (bfd_architecture, init, NULL);
1954}
1955
1956
1957/* Look for an architecture using gdbarch_info. */
1958
1959struct gdbarch_list *
1960gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1961 const struct gdbarch_info *info)
1962{
1963 for (; arches != NULL; arches = arches->next)
1964 {
1965 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1966 continue;
1967 if (info->byte_order != arches->gdbarch->byte_order)
1968 continue;
1969 if (info->osabi != arches->gdbarch->osabi)
1970 continue;
1971 if (info->target_desc != arches->gdbarch->target_desc)
1972 continue;
1973 return arches;
1974 }
1975 return NULL;
1976}
1977
1978
1979/* Find an architecture that matches the specified INFO. Create a new
1980 architecture if needed. Return that new architecture. */
1981
1982struct gdbarch *
1983gdbarch_find_by_info (struct gdbarch_info info)
1984{
1985 struct gdbarch *new_gdbarch;
1986 struct gdbarch_registration *rego;
1987
1988 /* Fill in missing parts of the INFO struct using a number of
1989 sources: "set ..."; INFOabfd supplied; and the global
1990 defaults. */
1991 gdbarch_info_fill (&info);
1992
1993 /* Must have found some sort of architecture. */
1994 gdb_assert (info.bfd_arch_info != NULL);
1995
1996 if (gdbarch_debug)
1997 {
1998 fprintf_unfiltered (gdb_stdlog,
1999 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2000 (info.bfd_arch_info != NULL
2001 ? info.bfd_arch_info->printable_name
2002 : "(null)"));
2003 fprintf_unfiltered (gdb_stdlog,
2004 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2005 info.byte_order,
2006 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2007 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2008 : "default"));
2009 fprintf_unfiltered (gdb_stdlog,
2010 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2011 info.osabi, gdbarch_osabi_name (info.osabi));
2012 fprintf_unfiltered (gdb_stdlog,
2013 "gdbarch_find_by_info: info.abfd %s\n",
2014 host_address_to_string (info.abfd));
2015 fprintf_unfiltered (gdb_stdlog,
2016 "gdbarch_find_by_info: info.tdep_info %s\n",
2017 host_address_to_string (info.tdep_info));
2018 }
2019
2020 /* Find the tdep code that knows about this architecture. */
2021 for (rego = gdbarch_registry;
2022 rego != NULL;
2023 rego = rego->next)
2024 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2025 break;
2026 if (rego == NULL)
2027 {
2028 if (gdbarch_debug)
2029 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2030 "No matching architecture\n");
2031 return 0;
2032 }
2033
2034 /* Ask the tdep code for an architecture that matches "info". */
2035 new_gdbarch = rego->init (info, rego->arches);
2036
2037 /* Did the tdep code like it? No. Reject the change and revert to
2038 the old architecture. */
2039 if (new_gdbarch == NULL)
2040 {
2041 if (gdbarch_debug)
2042 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2043 "Target rejected architecture\n");
2044 return NULL;
2045 }
2046
2047 /* Is this a pre-existing architecture (as determined by already
2048 being initialized)? Move it to the front of the architecture
2049 list (keeping the list sorted Most Recently Used). */
2050 if (new_gdbarch->initialized_p)
2051 {
2052 struct gdbarch_list **list;
2053 struct gdbarch_list *this;
2054 if (gdbarch_debug)
2055 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2056 "Previous architecture %s (%s) selected\n",
2057 host_address_to_string (new_gdbarch),
2058 new_gdbarch->bfd_arch_info->printable_name);
2059 /* Find the existing arch in the list. */
2060 for (list = &rego->arches;
2061 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2062 list = &(*list)->next);
2063 /* It had better be in the list of architectures. */
2064 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2065 /* Unlink THIS. */
2066 this = (*list);
2067 (*list) = this->next;
2068 /* Insert THIS at the front. */
2069 this->next = rego->arches;
2070 rego->arches = this;
2071 /* Return it. */
2072 return new_gdbarch;
2073 }
2074
2075 /* It's a new architecture. */
2076 if (gdbarch_debug)
2077 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2078 "New architecture %s (%s) selected\n",
2079 host_address_to_string (new_gdbarch),
2080 new_gdbarch->bfd_arch_info->printable_name);
2081
2082 /* Insert the new architecture into the front of the architecture
2083 list (keep the list sorted Most Recently Used). */
2084 {
2085 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2086 this->next = rego->arches;
2087 this->gdbarch = new_gdbarch;
2088 rego->arches = this;
2089 }
2090
2091 /* Check that the newly installed architecture is valid. Plug in
2092 any post init values. */
2093 new_gdbarch->dump_tdep = rego->dump_tdep;
2094 verify_gdbarch (new_gdbarch);
2095 new_gdbarch->initialized_p = 1;
2096
2097 if (gdbarch_debug)
2098 gdbarch_dump (new_gdbarch, gdb_stdlog);
2099
2100 return new_gdbarch;
2101}
2102
2103/* Make the specified architecture current. */
2104
2105void
2106deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2107{
2108 gdb_assert (new_gdbarch != NULL);
2109 gdb_assert (new_gdbarch->initialized_p);
2110 target_gdbarch = new_gdbarch;
2111 observer_notify_architecture_changed (new_gdbarch);
2112 registers_changed ();
2113}
2114
2115extern void _initialize_gdbarch (void);
2116
2117void
2118_initialize_gdbarch (void)
2119{
2120 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2121Set architecture debugging."), _("\\
2122Show architecture debugging."), _("\\
2123When non-zero, architecture debugging is enabled."),
2124 NULL,
2125 show_gdbarch_debug,
2126 &setdebuglist, &showdebuglist);
2127}
2128EOF
2129
2130# close things off
2131exec 1>&2
2132#../move-if-change new-gdbarch.c gdbarch.c
2133compare_new gdbarch.c
This page took 0.030168 seconds and 4 git commands to generate.