* arm-tdep.c (arm_find_mapping_symbol): New function, from
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
... / ...
CommitLineData
1#!/bin/sh -u
2
3# Architecture commands for GDB, the GNU debugger.
4#
5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6# 2008, 2009, 2010 Free Software Foundation, Inc.
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
12# the Free Software Foundation; either version 3 of the License, or
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
21# along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23# Make certain that the script is not running in an internationalized
24# environment.
25LANG=c ; export LANG
26LC_ALL=c ; export LC_ALL
27
28
29compare_new ()
30{
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47do_read ()
48{
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152}
153
154
155fallback_default_p ()
156{
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159}
160
161class_is_variable_p ()
162{
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167}
168
169class_is_function_p ()
170{
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183}
184
185class_is_predicate_p ()
186{
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191}
192
193class_is_info_p ()
194{
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199}
200
201
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332done
333
334
335function_list ()
336{
337 # See below (DOCO) for description of each field
338 cat <<EOF
339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340#
341i:int:byte_order:::BFD_ENDIAN_BIG
342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343#
344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345#
346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355#
356# Number of bits in a short or unsigned short for the target machine.
357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358# Number of bits in an int or unsigned int for the target machine.
359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360# Number of bits in a long or unsigned long for the target machine.
361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362# Number of bits in a long long or unsigned long long for the target
363# machine.
364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
369# Each format describes both the big and little endian layouts (if
370# useful).
371
372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382# / addr_bit will be set from it.
383#
384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
387#
388# ptr_bit is the size of a pointer on the target
389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390# addr_bit is the size of a target address as represented in gdb
391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392#
393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
394v:int:char_signed:::1:-1:1
395#
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402#
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405#
406v:int:num_regs:::0:-1
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
411v:int:num_pseudo_regs:::0:0::0
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
415# all (-1).
416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425# Convert from an sdb register number to an internal gdb register number.
426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429m:const char *:register_name:int regnr:regnr::0
430
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
434M:struct type *:register_type:int reg_nr:reg_nr
435
436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439# deprecated_fp_regnum.
440v:int:deprecated_fp_regnum:::-1:-1::0
441
442# See gdbint.texinfo. See infcall.c.
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455# setjmp/longjmp support.
456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457#
458v:int:believe_pcc_promotion:::::::
459#
460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468#
469m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489# Return the adjusted address and kind to use for Z0/Z1 packets.
490# KIND is usually the memory length of the breakpoint, but may have a
491# different target-specific meaning.
492m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr::default_remote_breakpoint_from_pc:
493M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
494m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
495m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
496v:CORE_ADDR:decr_pc_after_break:::0:::0
497
498# A function can be addressed by either it's "pointer" (possibly a
499# descriptor address) or "entry point" (first executable instruction).
500# The method "convert_from_func_ptr_addr" converting the former to the
501# latter. gdbarch_deprecated_function_start_offset is being used to implement
502# a simplified subset of that functionality - the function's address
503# corresponds to the "function pointer" and the function's start
504# corresponds to the "function entry point" - and hence is redundant.
505
506v:CORE_ADDR:deprecated_function_start_offset:::0:::0
507
508# Return the remote protocol register number associated with this
509# register. Normally the identity mapping.
510m:int:remote_register_number:int regno:regno::default_remote_register_number::0
511
512# Fetch the target specific address used to represent a load module.
513F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
514#
515v:CORE_ADDR:frame_args_skip:::0:::0
516M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
517M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
518# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
519# frame-base. Enable frame-base before frame-unwind.
520F:int:frame_num_args:struct frame_info *frame:frame
521#
522M:CORE_ADDR:frame_align:CORE_ADDR address:address
523m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
524v:int:frame_red_zone_size
525#
526m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
527# On some machines there are bits in addresses which are not really
528# part of the address, but are used by the kernel, the hardware, etc.
529# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
530# we get a "real" address such as one would find in a symbol table.
531# This is used only for addresses of instructions, and even then I'm
532# not sure it's used in all contexts. It exists to deal with there
533# being a few stray bits in the PC which would mislead us, not as some
534# sort of generic thing to handle alignment or segmentation (it's
535# possible it should be in TARGET_READ_PC instead).
536m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
537# It is not at all clear why gdbarch_smash_text_address is not folded into
538# gdbarch_addr_bits_remove.
539m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
540
541# FIXME/cagney/2001-01-18: This should be split in two. A target method that
542# indicates if the target needs software single step. An ISA method to
543# implement it.
544#
545# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
546# breakpoints using the breakpoint system instead of blatting memory directly
547# (as with rs6000).
548#
549# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
550# target can single step. If not, then implement single step using breakpoints.
551#
552# A return value of 1 means that the software_single_step breakpoints
553# were inserted; 0 means they were not.
554F:int:software_single_step:struct frame_info *frame:frame
555
556# Return non-zero if the processor is executing a delay slot and a
557# further single-step is needed before the instruction finishes.
558M:int:single_step_through_delay:struct frame_info *frame:frame
559# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
560# disassembler. Perhaps objdump can handle it?
561f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
562f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
563
564
565# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
566# evaluates non-zero, this is the address where the debugger will place
567# a step-resume breakpoint to get us past the dynamic linker.
568m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
569# Some systems also have trampoline code for returning from shared libs.
570m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
571
572# A target might have problems with watchpoints as soon as the stack
573# frame of the current function has been destroyed. This mostly happens
574# as the first action in a funtion's epilogue. in_function_epilogue_p()
575# is defined to return a non-zero value if either the given addr is one
576# instruction after the stack destroying instruction up to the trailing
577# return instruction or if we can figure out that the stack frame has
578# already been invalidated regardless of the value of addr. Targets
579# which don't suffer from that problem could just let this functionality
580# untouched.
581m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
582f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
583f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
584v:int:cannot_step_breakpoint:::0:0::0
585v:int:have_nonsteppable_watchpoint:::0:0::0
586F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
587M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
588M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
589# Is a register in a group
590m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
591# Fetch the pointer to the ith function argument.
592F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
593
594# Return the appropriate register set for a core file section with
595# name SECT_NAME and size SECT_SIZE.
596M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
597
598# When creating core dumps, some systems encode the PID in addition
599# to the LWP id in core file register section names. In those cases, the
600# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
601# is set to true for such architectures; false if "XXX" represents an LWP
602# or thread id with no special encoding.
603v:int:core_reg_section_encodes_pid:::0:0::0
604
605# Supported register notes in a core file.
606v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
607
608# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
609# core file into buffer READBUF with length LEN.
610M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
611
612# How the core_stratum layer converts a PTID from a core file to a
613# string.
614M:char *:core_pid_to_str:ptid_t ptid:ptid
615
616# BFD target to use when generating a core file.
617V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
618
619# If the elements of C++ vtables are in-place function descriptors rather
620# than normal function pointers (which may point to code or a descriptor),
621# set this to one.
622v:int:vtable_function_descriptors:::0:0::0
623
624# Set if the least significant bit of the delta is used instead of the least
625# significant bit of the pfn for pointers to virtual member functions.
626v:int:vbit_in_delta:::0:0::0
627
628# Advance PC to next instruction in order to skip a permanent breakpoint.
629F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
630
631# The maximum length of an instruction on this architecture.
632V:ULONGEST:max_insn_length:::0:0
633
634# Copy the instruction at FROM to TO, and make any adjustments
635# necessary to single-step it at that address.
636#
637# REGS holds the state the thread's registers will have before
638# executing the copied instruction; the PC in REGS will refer to FROM,
639# not the copy at TO. The caller should update it to point at TO later.
640#
641# Return a pointer to data of the architecture's choice to be passed
642# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
643# the instruction's effects have been completely simulated, with the
644# resulting state written back to REGS.
645#
646# For a general explanation of displaced stepping and how GDB uses it,
647# see the comments in infrun.c.
648#
649# The TO area is only guaranteed to have space for
650# gdbarch_max_insn_length (arch) bytes, so this function must not
651# write more bytes than that to that area.
652#
653# If you do not provide this function, GDB assumes that the
654# architecture does not support displaced stepping.
655#
656# If your architecture doesn't need to adjust instructions before
657# single-stepping them, consider using simple_displaced_step_copy_insn
658# here.
659M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
660
661# Return true if GDB should use hardware single-stepping to execute
662# the displaced instruction identified by CLOSURE. If false,
663# GDB will simply restart execution at the displaced instruction
664# location, and it is up to the target to ensure GDB will receive
665# control again (e.g. by placing a software breakpoint instruction
666# into the displaced instruction buffer).
667#
668# The default implementation returns false on all targets that
669# provide a gdbarch_software_single_step routine, and true otherwise.
670m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
671
672# Fix up the state resulting from successfully single-stepping a
673# displaced instruction, to give the result we would have gotten from
674# stepping the instruction in its original location.
675#
676# REGS is the register state resulting from single-stepping the
677# displaced instruction.
678#
679# CLOSURE is the result from the matching call to
680# gdbarch_displaced_step_copy_insn.
681#
682# If you provide gdbarch_displaced_step_copy_insn.but not this
683# function, then GDB assumes that no fixup is needed after
684# single-stepping the instruction.
685#
686# For a general explanation of displaced stepping and how GDB uses it,
687# see the comments in infrun.c.
688M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
689
690# Free a closure returned by gdbarch_displaced_step_copy_insn.
691#
692# If you provide gdbarch_displaced_step_copy_insn, you must provide
693# this function as well.
694#
695# If your architecture uses closures that don't need to be freed, then
696# you can use simple_displaced_step_free_closure here.
697#
698# For a general explanation of displaced stepping and how GDB uses it,
699# see the comments in infrun.c.
700m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
701
702# Return the address of an appropriate place to put displaced
703# instructions while we step over them. There need only be one such
704# place, since we're only stepping one thread over a breakpoint at a
705# time.
706#
707# For a general explanation of displaced stepping and how GDB uses it,
708# see the comments in infrun.c.
709m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
710
711# Refresh overlay mapped state for section OSECT.
712F:void:overlay_update:struct obj_section *osect:osect
713
714M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
715
716# Handle special encoding of static variables in stabs debug info.
717F:char *:static_transform_name:char *name:name
718# Set if the address in N_SO or N_FUN stabs may be zero.
719v:int:sofun_address_maybe_missing:::0:0::0
720
721# Parse the instruction at ADDR storing in the record execution log
722# the registers REGCACHE and memory ranges that will be affected when
723# the instruction executes, along with their current values.
724# Return -1 if something goes wrong, 0 otherwise.
725M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
726
727# Save process state after a signal.
728# Return -1 if something goes wrong, 0 otherwise.
729M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
730
731# Signal translation: translate inferior's signal (host's) number into
732# GDB's representation.
733m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
734# Signal translation: translate GDB's signal number into inferior's host
735# signal number.
736m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
737
738# Extra signal info inspection.
739#
740# Return a type suitable to inspect extra signal information.
741M:struct type *:get_siginfo_type:void:
742
743# Record architecture-specific information from the symbol table.
744M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
745
746# Function for the 'catch syscall' feature.
747
748# Get architecture-specific system calls information from registers.
749M:LONGEST:get_syscall_number:ptid_t ptid:ptid
750
751# True if the list of shared libraries is one and only for all
752# processes, as opposed to a list of shared libraries per inferior.
753# This usually means that all processes, although may or may not share
754# an address space, will see the same set of symbols at the same
755# addresses.
756v:int:has_global_solist:::0:0::0
757
758# On some targets, even though each inferior has its own private
759# address space, the debug interface takes care of making breakpoints
760# visible to all address spaces automatically. For such cases,
761# this property should be set to true.
762v:int:has_global_breakpoints:::0:0::0
763
764# True if inferiors share an address space (e.g., uClinux).
765m:int:has_shared_address_space:void:::default_has_shared_address_space::0
766
767# True if a fast tracepoint can be set at an address.
768m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
769EOF
770}
771
772#
773# The .log file
774#
775exec > new-gdbarch.log
776function_list | while do_read
777do
778 cat <<EOF
779${class} ${returntype} ${function} ($formal)
780EOF
781 for r in ${read}
782 do
783 eval echo \"\ \ \ \ ${r}=\${${r}}\"
784 done
785 if class_is_predicate_p && fallback_default_p
786 then
787 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
788 kill $$
789 exit 1
790 fi
791 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
792 then
793 echo "Error: postdefault is useless when invalid_p=0" 1>&2
794 kill $$
795 exit 1
796 fi
797 if class_is_multiarch_p
798 then
799 if class_is_predicate_p ; then :
800 elif test "x${predefault}" = "x"
801 then
802 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
803 kill $$
804 exit 1
805 fi
806 fi
807 echo ""
808done
809
810exec 1>&2
811compare_new gdbarch.log
812
813
814copyright ()
815{
816cat <<EOF
817/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
818
819/* Dynamic architecture support for GDB, the GNU debugger.
820
821 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
822 2007, 2008, 2009 Free Software Foundation, Inc.
823
824 This file is part of GDB.
825
826 This program is free software; you can redistribute it and/or modify
827 it under the terms of the GNU General Public License as published by
828 the Free Software Foundation; either version 3 of the License, or
829 (at your option) any later version.
830
831 This program is distributed in the hope that it will be useful,
832 but WITHOUT ANY WARRANTY; without even the implied warranty of
833 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
834 GNU General Public License for more details.
835
836 You should have received a copy of the GNU General Public License
837 along with this program. If not, see <http://www.gnu.org/licenses/>. */
838
839/* This file was created with the aid of \`\`gdbarch.sh''.
840
841 The Bourne shell script \`\`gdbarch.sh'' creates the files
842 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
843 against the existing \`\`gdbarch.[hc]''. Any differences found
844 being reported.
845
846 If editing this file, please also run gdbarch.sh and merge any
847 changes into that script. Conversely, when making sweeping changes
848 to this file, modifying gdbarch.sh and using its output may prove
849 easier. */
850
851EOF
852}
853
854#
855# The .h file
856#
857
858exec > new-gdbarch.h
859copyright
860cat <<EOF
861#ifndef GDBARCH_H
862#define GDBARCH_H
863
864struct floatformat;
865struct ui_file;
866struct frame_info;
867struct value;
868struct objfile;
869struct obj_section;
870struct minimal_symbol;
871struct regcache;
872struct reggroup;
873struct regset;
874struct disassemble_info;
875struct target_ops;
876struct obstack;
877struct bp_target_info;
878struct target_desc;
879struct displaced_step_closure;
880struct core_regset_section;
881struct syscall;
882
883/* The architecture associated with the connection to the target.
884
885 The architecture vector provides some information that is really
886 a property of the target: The layout of certain packets, for instance;
887 or the solib_ops vector. Etc. To differentiate architecture accesses
888 to per-target properties from per-thread/per-frame/per-objfile properties,
889 accesses to per-target properties should be made through target_gdbarch.
890
891 Eventually, when support for multiple targets is implemented in
892 GDB, this global should be made target-specific. */
893extern struct gdbarch *target_gdbarch;
894EOF
895
896# function typedef's
897printf "\n"
898printf "\n"
899printf "/* The following are pre-initialized by GDBARCH. */\n"
900function_list | while do_read
901do
902 if class_is_info_p
903 then
904 printf "\n"
905 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
906 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
907 fi
908done
909
910# function typedef's
911printf "\n"
912printf "\n"
913printf "/* The following are initialized by the target dependent code. */\n"
914function_list | while do_read
915do
916 if [ -n "${comment}" ]
917 then
918 echo "${comment}" | sed \
919 -e '2 s,#,/*,' \
920 -e '3,$ s,#, ,' \
921 -e '$ s,$, */,'
922 fi
923
924 if class_is_predicate_p
925 then
926 printf "\n"
927 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
928 fi
929 if class_is_variable_p
930 then
931 printf "\n"
932 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
933 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
934 fi
935 if class_is_function_p
936 then
937 printf "\n"
938 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
939 then
940 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
941 elif class_is_multiarch_p
942 then
943 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
944 else
945 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
946 fi
947 if [ "x${formal}" = "xvoid" ]
948 then
949 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
950 else
951 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
952 fi
953 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
954 fi
955done
956
957# close it off
958cat <<EOF
959
960/* Definition for an unknown syscall, used basically in error-cases. */
961#define UNKNOWN_SYSCALL (-1)
962
963extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
964
965
966/* Mechanism for co-ordinating the selection of a specific
967 architecture.
968
969 GDB targets (*-tdep.c) can register an interest in a specific
970 architecture. Other GDB components can register a need to maintain
971 per-architecture data.
972
973 The mechanisms below ensures that there is only a loose connection
974 between the set-architecture command and the various GDB
975 components. Each component can independently register their need
976 to maintain architecture specific data with gdbarch.
977
978 Pragmatics:
979
980 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
981 didn't scale.
982
983 The more traditional mega-struct containing architecture specific
984 data for all the various GDB components was also considered. Since
985 GDB is built from a variable number of (fairly independent)
986 components it was determined that the global aproach was not
987 applicable. */
988
989
990/* Register a new architectural family with GDB.
991
992 Register support for the specified ARCHITECTURE with GDB. When
993 gdbarch determines that the specified architecture has been
994 selected, the corresponding INIT function is called.
995
996 --
997
998 The INIT function takes two parameters: INFO which contains the
999 information available to gdbarch about the (possibly new)
1000 architecture; ARCHES which is a list of the previously created
1001 \`\`struct gdbarch'' for this architecture.
1002
1003 The INFO parameter is, as far as possible, be pre-initialized with
1004 information obtained from INFO.ABFD or the global defaults.
1005
1006 The ARCHES parameter is a linked list (sorted most recently used)
1007 of all the previously created architures for this architecture
1008 family. The (possibly NULL) ARCHES->gdbarch can used to access
1009 values from the previously selected architecture for this
1010 architecture family.
1011
1012 The INIT function shall return any of: NULL - indicating that it
1013 doesn't recognize the selected architecture; an existing \`\`struct
1014 gdbarch'' from the ARCHES list - indicating that the new
1015 architecture is just a synonym for an earlier architecture (see
1016 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1017 - that describes the selected architecture (see gdbarch_alloc()).
1018
1019 The DUMP_TDEP function shall print out all target specific values.
1020 Care should be taken to ensure that the function works in both the
1021 multi-arch and non- multi-arch cases. */
1022
1023struct gdbarch_list
1024{
1025 struct gdbarch *gdbarch;
1026 struct gdbarch_list *next;
1027};
1028
1029struct gdbarch_info
1030{
1031 /* Use default: NULL (ZERO). */
1032 const struct bfd_arch_info *bfd_arch_info;
1033
1034 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1035 int byte_order;
1036
1037 int byte_order_for_code;
1038
1039 /* Use default: NULL (ZERO). */
1040 bfd *abfd;
1041
1042 /* Use default: NULL (ZERO). */
1043 struct gdbarch_tdep_info *tdep_info;
1044
1045 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1046 enum gdb_osabi osabi;
1047
1048 /* Use default: NULL (ZERO). */
1049 const struct target_desc *target_desc;
1050};
1051
1052typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1053typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1054
1055/* DEPRECATED - use gdbarch_register() */
1056extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1057
1058extern void gdbarch_register (enum bfd_architecture architecture,
1059 gdbarch_init_ftype *,
1060 gdbarch_dump_tdep_ftype *);
1061
1062
1063/* Return a freshly allocated, NULL terminated, array of the valid
1064 architecture names. Since architectures are registered during the
1065 _initialize phase this function only returns useful information
1066 once initialization has been completed. */
1067
1068extern const char **gdbarch_printable_names (void);
1069
1070
1071/* Helper function. Search the list of ARCHES for a GDBARCH that
1072 matches the information provided by INFO. */
1073
1074extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1075
1076
1077/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1078 basic initialization using values obtained from the INFO and TDEP
1079 parameters. set_gdbarch_*() functions are called to complete the
1080 initialization of the object. */
1081
1082extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1083
1084
1085/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1086 It is assumed that the caller freeds the \`\`struct
1087 gdbarch_tdep''. */
1088
1089extern void gdbarch_free (struct gdbarch *);
1090
1091
1092/* Helper function. Allocate memory from the \`\`struct gdbarch''
1093 obstack. The memory is freed when the corresponding architecture
1094 is also freed. */
1095
1096extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1097#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1098#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1099
1100
1101/* Helper function. Force an update of the current architecture.
1102
1103 The actual architecture selected is determined by INFO, \`\`(gdb) set
1104 architecture'' et.al., the existing architecture and BFD's default
1105 architecture. INFO should be initialized to zero and then selected
1106 fields should be updated.
1107
1108 Returns non-zero if the update succeeds */
1109
1110extern int gdbarch_update_p (struct gdbarch_info info);
1111
1112
1113/* Helper function. Find an architecture matching info.
1114
1115 INFO should be initialized using gdbarch_info_init, relevant fields
1116 set, and then finished using gdbarch_info_fill.
1117
1118 Returns the corresponding architecture, or NULL if no matching
1119 architecture was found. */
1120
1121extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1122
1123
1124/* Helper function. Set the global "target_gdbarch" to "gdbarch".
1125
1126 FIXME: kettenis/20031124: Of the functions that follow, only
1127 gdbarch_from_bfd is supposed to survive. The others will
1128 dissappear since in the future GDB will (hopefully) be truly
1129 multi-arch. However, for now we're still stuck with the concept of
1130 a single active architecture. */
1131
1132extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1133
1134
1135/* Register per-architecture data-pointer.
1136
1137 Reserve space for a per-architecture data-pointer. An identifier
1138 for the reserved data-pointer is returned. That identifer should
1139 be saved in a local static variable.
1140
1141 Memory for the per-architecture data shall be allocated using
1142 gdbarch_obstack_zalloc. That memory will be deleted when the
1143 corresponding architecture object is deleted.
1144
1145 When a previously created architecture is re-selected, the
1146 per-architecture data-pointer for that previous architecture is
1147 restored. INIT() is not re-called.
1148
1149 Multiple registrarants for any architecture are allowed (and
1150 strongly encouraged). */
1151
1152struct gdbarch_data;
1153
1154typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1155extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1156typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1157extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1158extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1159 struct gdbarch_data *data,
1160 void *pointer);
1161
1162extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1163
1164
1165/* Set the dynamic target-system-dependent parameters (architecture,
1166 byte-order, ...) using information found in the BFD */
1167
1168extern void set_gdbarch_from_file (bfd *);
1169
1170
1171/* Initialize the current architecture to the "first" one we find on
1172 our list. */
1173
1174extern void initialize_current_architecture (void);
1175
1176/* gdbarch trace variable */
1177extern int gdbarch_debug;
1178
1179extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1180
1181#endif
1182EOF
1183exec 1>&2
1184#../move-if-change new-gdbarch.h gdbarch.h
1185compare_new gdbarch.h
1186
1187
1188#
1189# C file
1190#
1191
1192exec > new-gdbarch.c
1193copyright
1194cat <<EOF
1195
1196#include "defs.h"
1197#include "arch-utils.h"
1198
1199#include "gdbcmd.h"
1200#include "inferior.h"
1201#include "symcat.h"
1202
1203#include "floatformat.h"
1204
1205#include "gdb_assert.h"
1206#include "gdb_string.h"
1207#include "reggroups.h"
1208#include "osabi.h"
1209#include "gdb_obstack.h"
1210#include "observer.h"
1211#include "regcache.h"
1212
1213/* Static function declarations */
1214
1215static void alloc_gdbarch_data (struct gdbarch *);
1216
1217/* Non-zero if we want to trace architecture code. */
1218
1219#ifndef GDBARCH_DEBUG
1220#define GDBARCH_DEBUG 0
1221#endif
1222int gdbarch_debug = GDBARCH_DEBUG;
1223static void
1224show_gdbarch_debug (struct ui_file *file, int from_tty,
1225 struct cmd_list_element *c, const char *value)
1226{
1227 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1228}
1229
1230static const char *
1231pformat (const struct floatformat **format)
1232{
1233 if (format == NULL)
1234 return "(null)";
1235 else
1236 /* Just print out one of them - this is only for diagnostics. */
1237 return format[0]->name;
1238}
1239
1240EOF
1241
1242# gdbarch open the gdbarch object
1243printf "\n"
1244printf "/* Maintain the struct gdbarch object */\n"
1245printf "\n"
1246printf "struct gdbarch\n"
1247printf "{\n"
1248printf " /* Has this architecture been fully initialized? */\n"
1249printf " int initialized_p;\n"
1250printf "\n"
1251printf " /* An obstack bound to the lifetime of the architecture. */\n"
1252printf " struct obstack *obstack;\n"
1253printf "\n"
1254printf " /* basic architectural information */\n"
1255function_list | while do_read
1256do
1257 if class_is_info_p
1258 then
1259 printf " ${returntype} ${function};\n"
1260 fi
1261done
1262printf "\n"
1263printf " /* target specific vector. */\n"
1264printf " struct gdbarch_tdep *tdep;\n"
1265printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1266printf "\n"
1267printf " /* per-architecture data-pointers */\n"
1268printf " unsigned nr_data;\n"
1269printf " void **data;\n"
1270printf "\n"
1271printf " /* per-architecture swap-regions */\n"
1272printf " struct gdbarch_swap *swap;\n"
1273printf "\n"
1274cat <<EOF
1275 /* Multi-arch values.
1276
1277 When extending this structure you must:
1278
1279 Add the field below.
1280
1281 Declare set/get functions and define the corresponding
1282 macro in gdbarch.h.
1283
1284 gdbarch_alloc(): If zero/NULL is not a suitable default,
1285 initialize the new field.
1286
1287 verify_gdbarch(): Confirm that the target updated the field
1288 correctly.
1289
1290 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1291 field is dumped out
1292
1293 \`\`startup_gdbarch()'': Append an initial value to the static
1294 variable (base values on the host's c-type system).
1295
1296 get_gdbarch(): Implement the set/get functions (probably using
1297 the macro's as shortcuts).
1298
1299 */
1300
1301EOF
1302function_list | while do_read
1303do
1304 if class_is_variable_p
1305 then
1306 printf " ${returntype} ${function};\n"
1307 elif class_is_function_p
1308 then
1309 printf " gdbarch_${function}_ftype *${function};\n"
1310 fi
1311done
1312printf "};\n"
1313
1314# A pre-initialized vector
1315printf "\n"
1316printf "\n"
1317cat <<EOF
1318/* The default architecture uses host values (for want of a better
1319 choice). */
1320EOF
1321printf "\n"
1322printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1323printf "\n"
1324printf "struct gdbarch startup_gdbarch =\n"
1325printf "{\n"
1326printf " 1, /* Always initialized. */\n"
1327printf " NULL, /* The obstack. */\n"
1328printf " /* basic architecture information */\n"
1329function_list | while do_read
1330do
1331 if class_is_info_p
1332 then
1333 printf " ${staticdefault}, /* ${function} */\n"
1334 fi
1335done
1336cat <<EOF
1337 /* target specific vector and its dump routine */
1338 NULL, NULL,
1339 /*per-architecture data-pointers and swap regions */
1340 0, NULL, NULL,
1341 /* Multi-arch values */
1342EOF
1343function_list | while do_read
1344do
1345 if class_is_function_p || class_is_variable_p
1346 then
1347 printf " ${staticdefault}, /* ${function} */\n"
1348 fi
1349done
1350cat <<EOF
1351 /* startup_gdbarch() */
1352};
1353
1354struct gdbarch *target_gdbarch = &startup_gdbarch;
1355EOF
1356
1357# Create a new gdbarch struct
1358cat <<EOF
1359
1360/* Create a new \`\`struct gdbarch'' based on information provided by
1361 \`\`struct gdbarch_info''. */
1362EOF
1363printf "\n"
1364cat <<EOF
1365struct gdbarch *
1366gdbarch_alloc (const struct gdbarch_info *info,
1367 struct gdbarch_tdep *tdep)
1368{
1369 struct gdbarch *gdbarch;
1370
1371 /* Create an obstack for allocating all the per-architecture memory,
1372 then use that to allocate the architecture vector. */
1373 struct obstack *obstack = XMALLOC (struct obstack);
1374 obstack_init (obstack);
1375 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1376 memset (gdbarch, 0, sizeof (*gdbarch));
1377 gdbarch->obstack = obstack;
1378
1379 alloc_gdbarch_data (gdbarch);
1380
1381 gdbarch->tdep = tdep;
1382EOF
1383printf "\n"
1384function_list | while do_read
1385do
1386 if class_is_info_p
1387 then
1388 printf " gdbarch->${function} = info->${function};\n"
1389 fi
1390done
1391printf "\n"
1392printf " /* Force the explicit initialization of these. */\n"
1393function_list | while do_read
1394do
1395 if class_is_function_p || class_is_variable_p
1396 then
1397 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1398 then
1399 printf " gdbarch->${function} = ${predefault};\n"
1400 fi
1401 fi
1402done
1403cat <<EOF
1404 /* gdbarch_alloc() */
1405
1406 return gdbarch;
1407}
1408EOF
1409
1410# Free a gdbarch struct.
1411printf "\n"
1412printf "\n"
1413cat <<EOF
1414/* Allocate extra space using the per-architecture obstack. */
1415
1416void *
1417gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1418{
1419 void *data = obstack_alloc (arch->obstack, size);
1420 memset (data, 0, size);
1421 return data;
1422}
1423
1424
1425/* Free a gdbarch struct. This should never happen in normal
1426 operation --- once you've created a gdbarch, you keep it around.
1427 However, if an architecture's init function encounters an error
1428 building the structure, it may need to clean up a partially
1429 constructed gdbarch. */
1430
1431void
1432gdbarch_free (struct gdbarch *arch)
1433{
1434 struct obstack *obstack;
1435 gdb_assert (arch != NULL);
1436 gdb_assert (!arch->initialized_p);
1437 obstack = arch->obstack;
1438 obstack_free (obstack, 0); /* Includes the ARCH. */
1439 xfree (obstack);
1440}
1441EOF
1442
1443# verify a new architecture
1444cat <<EOF
1445
1446
1447/* Ensure that all values in a GDBARCH are reasonable. */
1448
1449static void
1450verify_gdbarch (struct gdbarch *gdbarch)
1451{
1452 struct ui_file *log;
1453 struct cleanup *cleanups;
1454 long length;
1455 char *buf;
1456 log = mem_fileopen ();
1457 cleanups = make_cleanup_ui_file_delete (log);
1458 /* fundamental */
1459 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1460 fprintf_unfiltered (log, "\n\tbyte-order");
1461 if (gdbarch->bfd_arch_info == NULL)
1462 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1463 /* Check those that need to be defined for the given multi-arch level. */
1464EOF
1465function_list | while do_read
1466do
1467 if class_is_function_p || class_is_variable_p
1468 then
1469 if [ "x${invalid_p}" = "x0" ]
1470 then
1471 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1472 elif class_is_predicate_p
1473 then
1474 printf " /* Skip verify of ${function}, has predicate */\n"
1475 # FIXME: See do_read for potential simplification
1476 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1477 then
1478 printf " if (${invalid_p})\n"
1479 printf " gdbarch->${function} = ${postdefault};\n"
1480 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1481 then
1482 printf " if (gdbarch->${function} == ${predefault})\n"
1483 printf " gdbarch->${function} = ${postdefault};\n"
1484 elif [ -n "${postdefault}" ]
1485 then
1486 printf " if (gdbarch->${function} == 0)\n"
1487 printf " gdbarch->${function} = ${postdefault};\n"
1488 elif [ -n "${invalid_p}" ]
1489 then
1490 printf " if (${invalid_p})\n"
1491 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1492 elif [ -n "${predefault}" ]
1493 then
1494 printf " if (gdbarch->${function} == ${predefault})\n"
1495 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1496 fi
1497 fi
1498done
1499cat <<EOF
1500 buf = ui_file_xstrdup (log, &length);
1501 make_cleanup (xfree, buf);
1502 if (length > 0)
1503 internal_error (__FILE__, __LINE__,
1504 _("verify_gdbarch: the following are invalid ...%s"),
1505 buf);
1506 do_cleanups (cleanups);
1507}
1508EOF
1509
1510# dump the structure
1511printf "\n"
1512printf "\n"
1513cat <<EOF
1514/* Print out the details of the current architecture. */
1515
1516void
1517gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1518{
1519 const char *gdb_nm_file = "<not-defined>";
1520#if defined (GDB_NM_FILE)
1521 gdb_nm_file = GDB_NM_FILE;
1522#endif
1523 fprintf_unfiltered (file,
1524 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1525 gdb_nm_file);
1526EOF
1527function_list | sort -t: -k 3 | while do_read
1528do
1529 # First the predicate
1530 if class_is_predicate_p
1531 then
1532 printf " fprintf_unfiltered (file,\n"
1533 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1534 printf " gdbarch_${function}_p (gdbarch));\n"
1535 fi
1536 # Print the corresponding value.
1537 if class_is_function_p
1538 then
1539 printf " fprintf_unfiltered (file,\n"
1540 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1541 printf " host_address_to_string (gdbarch->${function}));\n"
1542 else
1543 # It is a variable
1544 case "${print}:${returntype}" in
1545 :CORE_ADDR )
1546 fmt="%s"
1547 print="core_addr_to_string_nz (gdbarch->${function})"
1548 ;;
1549 :* )
1550 fmt="%s"
1551 print="plongest (gdbarch->${function})"
1552 ;;
1553 * )
1554 fmt="%s"
1555 ;;
1556 esac
1557 printf " fprintf_unfiltered (file,\n"
1558 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1559 printf " ${print});\n"
1560 fi
1561done
1562cat <<EOF
1563 if (gdbarch->dump_tdep != NULL)
1564 gdbarch->dump_tdep (gdbarch, file);
1565}
1566EOF
1567
1568
1569# GET/SET
1570printf "\n"
1571cat <<EOF
1572struct gdbarch_tdep *
1573gdbarch_tdep (struct gdbarch *gdbarch)
1574{
1575 if (gdbarch_debug >= 2)
1576 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1577 return gdbarch->tdep;
1578}
1579EOF
1580printf "\n"
1581function_list | while do_read
1582do
1583 if class_is_predicate_p
1584 then
1585 printf "\n"
1586 printf "int\n"
1587 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1588 printf "{\n"
1589 printf " gdb_assert (gdbarch != NULL);\n"
1590 printf " return ${predicate};\n"
1591 printf "}\n"
1592 fi
1593 if class_is_function_p
1594 then
1595 printf "\n"
1596 printf "${returntype}\n"
1597 if [ "x${formal}" = "xvoid" ]
1598 then
1599 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1600 else
1601 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1602 fi
1603 printf "{\n"
1604 printf " gdb_assert (gdbarch != NULL);\n"
1605 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1606 if class_is_predicate_p && test -n "${predefault}"
1607 then
1608 # Allow a call to a function with a predicate.
1609 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1610 fi
1611 printf " if (gdbarch_debug >= 2)\n"
1612 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1613 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1614 then
1615 if class_is_multiarch_p
1616 then
1617 params="gdbarch"
1618 else
1619 params=""
1620 fi
1621 else
1622 if class_is_multiarch_p
1623 then
1624 params="gdbarch, ${actual}"
1625 else
1626 params="${actual}"
1627 fi
1628 fi
1629 if [ "x${returntype}" = "xvoid" ]
1630 then
1631 printf " gdbarch->${function} (${params});\n"
1632 else
1633 printf " return gdbarch->${function} (${params});\n"
1634 fi
1635 printf "}\n"
1636 printf "\n"
1637 printf "void\n"
1638 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1639 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1640 printf "{\n"
1641 printf " gdbarch->${function} = ${function};\n"
1642 printf "}\n"
1643 elif class_is_variable_p
1644 then
1645 printf "\n"
1646 printf "${returntype}\n"
1647 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1648 printf "{\n"
1649 printf " gdb_assert (gdbarch != NULL);\n"
1650 if [ "x${invalid_p}" = "x0" ]
1651 then
1652 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1653 elif [ -n "${invalid_p}" ]
1654 then
1655 printf " /* Check variable is valid. */\n"
1656 printf " gdb_assert (!(${invalid_p}));\n"
1657 elif [ -n "${predefault}" ]
1658 then
1659 printf " /* Check variable changed from pre-default. */\n"
1660 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1661 fi
1662 printf " if (gdbarch_debug >= 2)\n"
1663 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1664 printf " return gdbarch->${function};\n"
1665 printf "}\n"
1666 printf "\n"
1667 printf "void\n"
1668 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1669 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1670 printf "{\n"
1671 printf " gdbarch->${function} = ${function};\n"
1672 printf "}\n"
1673 elif class_is_info_p
1674 then
1675 printf "\n"
1676 printf "${returntype}\n"
1677 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1678 printf "{\n"
1679 printf " gdb_assert (gdbarch != NULL);\n"
1680 printf " if (gdbarch_debug >= 2)\n"
1681 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1682 printf " return gdbarch->${function};\n"
1683 printf "}\n"
1684 fi
1685done
1686
1687# All the trailing guff
1688cat <<EOF
1689
1690
1691/* Keep a registry of per-architecture data-pointers required by GDB
1692 modules. */
1693
1694struct gdbarch_data
1695{
1696 unsigned index;
1697 int init_p;
1698 gdbarch_data_pre_init_ftype *pre_init;
1699 gdbarch_data_post_init_ftype *post_init;
1700};
1701
1702struct gdbarch_data_registration
1703{
1704 struct gdbarch_data *data;
1705 struct gdbarch_data_registration *next;
1706};
1707
1708struct gdbarch_data_registry
1709{
1710 unsigned nr;
1711 struct gdbarch_data_registration *registrations;
1712};
1713
1714struct gdbarch_data_registry gdbarch_data_registry =
1715{
1716 0, NULL,
1717};
1718
1719static struct gdbarch_data *
1720gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1721 gdbarch_data_post_init_ftype *post_init)
1722{
1723 struct gdbarch_data_registration **curr;
1724 /* Append the new registraration. */
1725 for (curr = &gdbarch_data_registry.registrations;
1726 (*curr) != NULL;
1727 curr = &(*curr)->next);
1728 (*curr) = XMALLOC (struct gdbarch_data_registration);
1729 (*curr)->next = NULL;
1730 (*curr)->data = XMALLOC (struct gdbarch_data);
1731 (*curr)->data->index = gdbarch_data_registry.nr++;
1732 (*curr)->data->pre_init = pre_init;
1733 (*curr)->data->post_init = post_init;
1734 (*curr)->data->init_p = 1;
1735 return (*curr)->data;
1736}
1737
1738struct gdbarch_data *
1739gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1740{
1741 return gdbarch_data_register (pre_init, NULL);
1742}
1743
1744struct gdbarch_data *
1745gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1746{
1747 return gdbarch_data_register (NULL, post_init);
1748}
1749
1750/* Create/delete the gdbarch data vector. */
1751
1752static void
1753alloc_gdbarch_data (struct gdbarch *gdbarch)
1754{
1755 gdb_assert (gdbarch->data == NULL);
1756 gdbarch->nr_data = gdbarch_data_registry.nr;
1757 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1758}
1759
1760/* Initialize the current value of the specified per-architecture
1761 data-pointer. */
1762
1763void
1764deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1765 struct gdbarch_data *data,
1766 void *pointer)
1767{
1768 gdb_assert (data->index < gdbarch->nr_data);
1769 gdb_assert (gdbarch->data[data->index] == NULL);
1770 gdb_assert (data->pre_init == NULL);
1771 gdbarch->data[data->index] = pointer;
1772}
1773
1774/* Return the current value of the specified per-architecture
1775 data-pointer. */
1776
1777void *
1778gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1779{
1780 gdb_assert (data->index < gdbarch->nr_data);
1781 if (gdbarch->data[data->index] == NULL)
1782 {
1783 /* The data-pointer isn't initialized, call init() to get a
1784 value. */
1785 if (data->pre_init != NULL)
1786 /* Mid architecture creation: pass just the obstack, and not
1787 the entire architecture, as that way it isn't possible for
1788 pre-init code to refer to undefined architecture
1789 fields. */
1790 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1791 else if (gdbarch->initialized_p
1792 && data->post_init != NULL)
1793 /* Post architecture creation: pass the entire architecture
1794 (as all fields are valid), but be careful to also detect
1795 recursive references. */
1796 {
1797 gdb_assert (data->init_p);
1798 data->init_p = 0;
1799 gdbarch->data[data->index] = data->post_init (gdbarch);
1800 data->init_p = 1;
1801 }
1802 else
1803 /* The architecture initialization hasn't completed - punt -
1804 hope that the caller knows what they are doing. Once
1805 deprecated_set_gdbarch_data has been initialized, this can be
1806 changed to an internal error. */
1807 return NULL;
1808 gdb_assert (gdbarch->data[data->index] != NULL);
1809 }
1810 return gdbarch->data[data->index];
1811}
1812
1813
1814/* Keep a registry of the architectures known by GDB. */
1815
1816struct gdbarch_registration
1817{
1818 enum bfd_architecture bfd_architecture;
1819 gdbarch_init_ftype *init;
1820 gdbarch_dump_tdep_ftype *dump_tdep;
1821 struct gdbarch_list *arches;
1822 struct gdbarch_registration *next;
1823};
1824
1825static struct gdbarch_registration *gdbarch_registry = NULL;
1826
1827static void
1828append_name (const char ***buf, int *nr, const char *name)
1829{
1830 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1831 (*buf)[*nr] = name;
1832 *nr += 1;
1833}
1834
1835const char **
1836gdbarch_printable_names (void)
1837{
1838 /* Accumulate a list of names based on the registed list of
1839 architectures. */
1840 enum bfd_architecture a;
1841 int nr_arches = 0;
1842 const char **arches = NULL;
1843 struct gdbarch_registration *rego;
1844 for (rego = gdbarch_registry;
1845 rego != NULL;
1846 rego = rego->next)
1847 {
1848 const struct bfd_arch_info *ap;
1849 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1850 if (ap == NULL)
1851 internal_error (__FILE__, __LINE__,
1852 _("gdbarch_architecture_names: multi-arch unknown"));
1853 do
1854 {
1855 append_name (&arches, &nr_arches, ap->printable_name);
1856 ap = ap->next;
1857 }
1858 while (ap != NULL);
1859 }
1860 append_name (&arches, &nr_arches, NULL);
1861 return arches;
1862}
1863
1864
1865void
1866gdbarch_register (enum bfd_architecture bfd_architecture,
1867 gdbarch_init_ftype *init,
1868 gdbarch_dump_tdep_ftype *dump_tdep)
1869{
1870 struct gdbarch_registration **curr;
1871 const struct bfd_arch_info *bfd_arch_info;
1872 /* Check that BFD recognizes this architecture */
1873 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1874 if (bfd_arch_info == NULL)
1875 {
1876 internal_error (__FILE__, __LINE__,
1877 _("gdbarch: Attempt to register unknown architecture (%d)"),
1878 bfd_architecture);
1879 }
1880 /* Check that we haven't seen this architecture before */
1881 for (curr = &gdbarch_registry;
1882 (*curr) != NULL;
1883 curr = &(*curr)->next)
1884 {
1885 if (bfd_architecture == (*curr)->bfd_architecture)
1886 internal_error (__FILE__, __LINE__,
1887 _("gdbarch: Duplicate registraration of architecture (%s)"),
1888 bfd_arch_info->printable_name);
1889 }
1890 /* log it */
1891 if (gdbarch_debug)
1892 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1893 bfd_arch_info->printable_name,
1894 host_address_to_string (init));
1895 /* Append it */
1896 (*curr) = XMALLOC (struct gdbarch_registration);
1897 (*curr)->bfd_architecture = bfd_architecture;
1898 (*curr)->init = init;
1899 (*curr)->dump_tdep = dump_tdep;
1900 (*curr)->arches = NULL;
1901 (*curr)->next = NULL;
1902}
1903
1904void
1905register_gdbarch_init (enum bfd_architecture bfd_architecture,
1906 gdbarch_init_ftype *init)
1907{
1908 gdbarch_register (bfd_architecture, init, NULL);
1909}
1910
1911
1912/* Look for an architecture using gdbarch_info. */
1913
1914struct gdbarch_list *
1915gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1916 const struct gdbarch_info *info)
1917{
1918 for (; arches != NULL; arches = arches->next)
1919 {
1920 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1921 continue;
1922 if (info->byte_order != arches->gdbarch->byte_order)
1923 continue;
1924 if (info->osabi != arches->gdbarch->osabi)
1925 continue;
1926 if (info->target_desc != arches->gdbarch->target_desc)
1927 continue;
1928 return arches;
1929 }
1930 return NULL;
1931}
1932
1933
1934/* Find an architecture that matches the specified INFO. Create a new
1935 architecture if needed. Return that new architecture. */
1936
1937struct gdbarch *
1938gdbarch_find_by_info (struct gdbarch_info info)
1939{
1940 struct gdbarch *new_gdbarch;
1941 struct gdbarch_registration *rego;
1942
1943 /* Fill in missing parts of the INFO struct using a number of
1944 sources: "set ..."; INFOabfd supplied; and the global
1945 defaults. */
1946 gdbarch_info_fill (&info);
1947
1948 /* Must have found some sort of architecture. */
1949 gdb_assert (info.bfd_arch_info != NULL);
1950
1951 if (gdbarch_debug)
1952 {
1953 fprintf_unfiltered (gdb_stdlog,
1954 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
1955 (info.bfd_arch_info != NULL
1956 ? info.bfd_arch_info->printable_name
1957 : "(null)"));
1958 fprintf_unfiltered (gdb_stdlog,
1959 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
1960 info.byte_order,
1961 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1962 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1963 : "default"));
1964 fprintf_unfiltered (gdb_stdlog,
1965 "gdbarch_find_by_info: info.osabi %d (%s)\n",
1966 info.osabi, gdbarch_osabi_name (info.osabi));
1967 fprintf_unfiltered (gdb_stdlog,
1968 "gdbarch_find_by_info: info.abfd %s\n",
1969 host_address_to_string (info.abfd));
1970 fprintf_unfiltered (gdb_stdlog,
1971 "gdbarch_find_by_info: info.tdep_info %s\n",
1972 host_address_to_string (info.tdep_info));
1973 }
1974
1975 /* Find the tdep code that knows about this architecture. */
1976 for (rego = gdbarch_registry;
1977 rego != NULL;
1978 rego = rego->next)
1979 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1980 break;
1981 if (rego == NULL)
1982 {
1983 if (gdbarch_debug)
1984 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1985 "No matching architecture\n");
1986 return 0;
1987 }
1988
1989 /* Ask the tdep code for an architecture that matches "info". */
1990 new_gdbarch = rego->init (info, rego->arches);
1991
1992 /* Did the tdep code like it? No. Reject the change and revert to
1993 the old architecture. */
1994 if (new_gdbarch == NULL)
1995 {
1996 if (gdbarch_debug)
1997 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1998 "Target rejected architecture\n");
1999 return NULL;
2000 }
2001
2002 /* Is this a pre-existing architecture (as determined by already
2003 being initialized)? Move it to the front of the architecture
2004 list (keeping the list sorted Most Recently Used). */
2005 if (new_gdbarch->initialized_p)
2006 {
2007 struct gdbarch_list **list;
2008 struct gdbarch_list *this;
2009 if (gdbarch_debug)
2010 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2011 "Previous architecture %s (%s) selected\n",
2012 host_address_to_string (new_gdbarch),
2013 new_gdbarch->bfd_arch_info->printable_name);
2014 /* Find the existing arch in the list. */
2015 for (list = &rego->arches;
2016 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2017 list = &(*list)->next);
2018 /* It had better be in the list of architectures. */
2019 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2020 /* Unlink THIS. */
2021 this = (*list);
2022 (*list) = this->next;
2023 /* Insert THIS at the front. */
2024 this->next = rego->arches;
2025 rego->arches = this;
2026 /* Return it. */
2027 return new_gdbarch;
2028 }
2029
2030 /* It's a new architecture. */
2031 if (gdbarch_debug)
2032 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2033 "New architecture %s (%s) selected\n",
2034 host_address_to_string (new_gdbarch),
2035 new_gdbarch->bfd_arch_info->printable_name);
2036
2037 /* Insert the new architecture into the front of the architecture
2038 list (keep the list sorted Most Recently Used). */
2039 {
2040 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2041 this->next = rego->arches;
2042 this->gdbarch = new_gdbarch;
2043 rego->arches = this;
2044 }
2045
2046 /* Check that the newly installed architecture is valid. Plug in
2047 any post init values. */
2048 new_gdbarch->dump_tdep = rego->dump_tdep;
2049 verify_gdbarch (new_gdbarch);
2050 new_gdbarch->initialized_p = 1;
2051
2052 if (gdbarch_debug)
2053 gdbarch_dump (new_gdbarch, gdb_stdlog);
2054
2055 return new_gdbarch;
2056}
2057
2058/* Make the specified architecture current. */
2059
2060void
2061deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2062{
2063 gdb_assert (new_gdbarch != NULL);
2064 gdb_assert (new_gdbarch->initialized_p);
2065 target_gdbarch = new_gdbarch;
2066 observer_notify_architecture_changed (new_gdbarch);
2067 registers_changed ();
2068}
2069
2070extern void _initialize_gdbarch (void);
2071
2072void
2073_initialize_gdbarch (void)
2074{
2075 struct cmd_list_element *c;
2076
2077 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2078Set architecture debugging."), _("\\
2079Show architecture debugging."), _("\\
2080When non-zero, architecture debugging is enabled."),
2081 NULL,
2082 show_gdbarch_debug,
2083 &setdebuglist, &showdebuglist);
2084}
2085EOF
2086
2087# close things off
2088exec 1>&2
2089#../move-if-change new-gdbarch.c gdbarch.c
2090compare_new gdbarch.c
This page took 0.054613 seconds and 4 git commands to generate.