gdbserver: Add debug-file option
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
... / ...
CommitLineData
1/* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2019 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19#include "server.h"
20#include "linux-low.h"
21#include "nat/linux-osdata.h"
22#include "common/agent.h"
23#include "tdesc.h"
24#include "common/rsp-low.h"
25#include "common/signals-state-save-restore.h"
26#include "nat/linux-nat.h"
27#include "nat/linux-waitpid.h"
28#include "common/gdb_wait.h"
29#include "nat/gdb_ptrace.h"
30#include "nat/linux-ptrace.h"
31#include "nat/linux-procfs.h"
32#include "nat/linux-personality.h"
33#include <signal.h>
34#include <sys/ioctl.h>
35#include <fcntl.h>
36#include <unistd.h>
37#include <sys/syscall.h>
38#include <sched.h>
39#include <ctype.h>
40#include <pwd.h>
41#include <sys/types.h>
42#include <dirent.h>
43#include <sys/stat.h>
44#include <sys/vfs.h>
45#include <sys/uio.h>
46#include "common/filestuff.h"
47#include "tracepoint.h"
48#include "hostio.h"
49#include <inttypes.h>
50#include "common/common-inferior.h"
51#include "nat/fork-inferior.h"
52#include "common/environ.h"
53#include "common/scoped_restore.h"
54#ifndef ELFMAG0
55/* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
56 then ELFMAG0 will have been defined. If it didn't get included by
57 gdb_proc_service.h then including it will likely introduce a duplicate
58 definition of elf_fpregset_t. */
59#include <elf.h>
60#endif
61#include "nat/linux-namespaces.h"
62
63#ifndef SPUFS_MAGIC
64#define SPUFS_MAGIC 0x23c9b64e
65#endif
66
67#ifdef HAVE_PERSONALITY
68# include <sys/personality.h>
69# if !HAVE_DECL_ADDR_NO_RANDOMIZE
70# define ADDR_NO_RANDOMIZE 0x0040000
71# endif
72#endif
73
74#ifndef O_LARGEFILE
75#define O_LARGEFILE 0
76#endif
77
78#ifndef AT_HWCAP2
79#define AT_HWCAP2 26
80#endif
81
82/* Some targets did not define these ptrace constants from the start,
83 so gdbserver defines them locally here. In the future, these may
84 be removed after they are added to asm/ptrace.h. */
85#if !(defined(PT_TEXT_ADDR) \
86 || defined(PT_DATA_ADDR) \
87 || defined(PT_TEXT_END_ADDR))
88#if defined(__mcoldfire__)
89/* These are still undefined in 3.10 kernels. */
90#define PT_TEXT_ADDR 49*4
91#define PT_DATA_ADDR 50*4
92#define PT_TEXT_END_ADDR 51*4
93/* BFIN already defines these since at least 2.6.32 kernels. */
94#elif defined(BFIN)
95#define PT_TEXT_ADDR 220
96#define PT_TEXT_END_ADDR 224
97#define PT_DATA_ADDR 228
98/* These are still undefined in 3.10 kernels. */
99#elif defined(__TMS320C6X__)
100#define PT_TEXT_ADDR (0x10000*4)
101#define PT_DATA_ADDR (0x10004*4)
102#define PT_TEXT_END_ADDR (0x10008*4)
103#endif
104#endif
105
106#ifdef HAVE_LINUX_BTRACE
107# include "nat/linux-btrace.h"
108# include "common/btrace-common.h"
109#endif
110
111#ifndef HAVE_ELF32_AUXV_T
112/* Copied from glibc's elf.h. */
113typedef struct
114{
115 uint32_t a_type; /* Entry type */
116 union
117 {
118 uint32_t a_val; /* Integer value */
119 /* We use to have pointer elements added here. We cannot do that,
120 though, since it does not work when using 32-bit definitions
121 on 64-bit platforms and vice versa. */
122 } a_un;
123} Elf32_auxv_t;
124#endif
125
126#ifndef HAVE_ELF64_AUXV_T
127/* Copied from glibc's elf.h. */
128typedef struct
129{
130 uint64_t a_type; /* Entry type */
131 union
132 {
133 uint64_t a_val; /* Integer value */
134 /* We use to have pointer elements added here. We cannot do that,
135 though, since it does not work when using 32-bit definitions
136 on 64-bit platforms and vice versa. */
137 } a_un;
138} Elf64_auxv_t;
139#endif
140
141/* Does the current host support PTRACE_GETREGSET? */
142int have_ptrace_getregset = -1;
143
144/* LWP accessors. */
145
146/* See nat/linux-nat.h. */
147
148ptid_t
149ptid_of_lwp (struct lwp_info *lwp)
150{
151 return ptid_of (get_lwp_thread (lwp));
152}
153
154/* See nat/linux-nat.h. */
155
156void
157lwp_set_arch_private_info (struct lwp_info *lwp,
158 struct arch_lwp_info *info)
159{
160 lwp->arch_private = info;
161}
162
163/* See nat/linux-nat.h. */
164
165struct arch_lwp_info *
166lwp_arch_private_info (struct lwp_info *lwp)
167{
168 return lwp->arch_private;
169}
170
171/* See nat/linux-nat.h. */
172
173int
174lwp_is_stopped (struct lwp_info *lwp)
175{
176 return lwp->stopped;
177}
178
179/* See nat/linux-nat.h. */
180
181enum target_stop_reason
182lwp_stop_reason (struct lwp_info *lwp)
183{
184 return lwp->stop_reason;
185}
186
187/* See nat/linux-nat.h. */
188
189int
190lwp_is_stepping (struct lwp_info *lwp)
191{
192 return lwp->stepping;
193}
194
195/* A list of all unknown processes which receive stop signals. Some
196 other process will presumably claim each of these as forked
197 children momentarily. */
198
199struct simple_pid_list
200{
201 /* The process ID. */
202 int pid;
203
204 /* The status as reported by waitpid. */
205 int status;
206
207 /* Next in chain. */
208 struct simple_pid_list *next;
209};
210struct simple_pid_list *stopped_pids;
211
212/* Trivial list manipulation functions to keep track of a list of new
213 stopped processes. */
214
215static void
216add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
217{
218 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
219
220 new_pid->pid = pid;
221 new_pid->status = status;
222 new_pid->next = *listp;
223 *listp = new_pid;
224}
225
226static int
227pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
228{
229 struct simple_pid_list **p;
230
231 for (p = listp; *p != NULL; p = &(*p)->next)
232 if ((*p)->pid == pid)
233 {
234 struct simple_pid_list *next = (*p)->next;
235
236 *statusp = (*p)->status;
237 xfree (*p);
238 *p = next;
239 return 1;
240 }
241 return 0;
242}
243
244enum stopping_threads_kind
245 {
246 /* Not stopping threads presently. */
247 NOT_STOPPING_THREADS,
248
249 /* Stopping threads. */
250 STOPPING_THREADS,
251
252 /* Stopping and suspending threads. */
253 STOPPING_AND_SUSPENDING_THREADS
254 };
255
256/* This is set while stop_all_lwps is in effect. */
257enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
258
259/* FIXME make into a target method? */
260int using_threads = 1;
261
262/* True if we're presently stabilizing threads (moving them out of
263 jump pads). */
264static int stabilizing_threads;
265
266static void linux_resume_one_lwp (struct lwp_info *lwp,
267 int step, int signal, siginfo_t *info);
268static void linux_resume (struct thread_resume *resume_info, size_t n);
269static void stop_all_lwps (int suspend, struct lwp_info *except);
270static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
271static void unsuspend_all_lwps (struct lwp_info *except);
272static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
273 int *wstat, int options);
274static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
275static struct lwp_info *add_lwp (ptid_t ptid);
276static void linux_mourn (struct process_info *process);
277static int linux_stopped_by_watchpoint (void);
278static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
279static int lwp_is_marked_dead (struct lwp_info *lwp);
280static void proceed_all_lwps (void);
281static int finish_step_over (struct lwp_info *lwp);
282static int kill_lwp (unsigned long lwpid, int signo);
283static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
284static void complete_ongoing_step_over (void);
285static int linux_low_ptrace_options (int attached);
286static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
287static void proceed_one_lwp (thread_info *thread, lwp_info *except);
288
289/* When the event-loop is doing a step-over, this points at the thread
290 being stepped. */
291ptid_t step_over_bkpt;
292
293/* True if the low target can hardware single-step. */
294
295static int
296can_hardware_single_step (void)
297{
298 if (the_low_target.supports_hardware_single_step != NULL)
299 return the_low_target.supports_hardware_single_step ();
300 else
301 return 0;
302}
303
304/* True if the low target can software single-step. Such targets
305 implement the GET_NEXT_PCS callback. */
306
307static int
308can_software_single_step (void)
309{
310 return (the_low_target.get_next_pcs != NULL);
311}
312
313/* True if the low target supports memory breakpoints. If so, we'll
314 have a GET_PC implementation. */
315
316static int
317supports_breakpoints (void)
318{
319 return (the_low_target.get_pc != NULL);
320}
321
322/* Returns true if this target can support fast tracepoints. This
323 does not mean that the in-process agent has been loaded in the
324 inferior. */
325
326static int
327supports_fast_tracepoints (void)
328{
329 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
330}
331
332/* True if LWP is stopped in its stepping range. */
333
334static int
335lwp_in_step_range (struct lwp_info *lwp)
336{
337 CORE_ADDR pc = lwp->stop_pc;
338
339 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
340}
341
342struct pending_signals
343{
344 int signal;
345 siginfo_t info;
346 struct pending_signals *prev;
347};
348
349/* The read/write ends of the pipe registered as waitable file in the
350 event loop. */
351static int linux_event_pipe[2] = { -1, -1 };
352
353/* True if we're currently in async mode. */
354#define target_is_async_p() (linux_event_pipe[0] != -1)
355
356static void send_sigstop (struct lwp_info *lwp);
357static void wait_for_sigstop (void);
358
359/* Return non-zero if HEADER is a 64-bit ELF file. */
360
361static int
362elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
363{
364 if (header->e_ident[EI_MAG0] == ELFMAG0
365 && header->e_ident[EI_MAG1] == ELFMAG1
366 && header->e_ident[EI_MAG2] == ELFMAG2
367 && header->e_ident[EI_MAG3] == ELFMAG3)
368 {
369 *machine = header->e_machine;
370 return header->e_ident[EI_CLASS] == ELFCLASS64;
371
372 }
373 *machine = EM_NONE;
374 return -1;
375}
376
377/* Return non-zero if FILE is a 64-bit ELF file,
378 zero if the file is not a 64-bit ELF file,
379 and -1 if the file is not accessible or doesn't exist. */
380
381static int
382elf_64_file_p (const char *file, unsigned int *machine)
383{
384 Elf64_Ehdr header;
385 int fd;
386
387 fd = open (file, O_RDONLY);
388 if (fd < 0)
389 return -1;
390
391 if (read (fd, &header, sizeof (header)) != sizeof (header))
392 {
393 close (fd);
394 return 0;
395 }
396 close (fd);
397
398 return elf_64_header_p (&header, machine);
399}
400
401/* Accepts an integer PID; Returns true if the executable PID is
402 running is a 64-bit ELF file.. */
403
404int
405linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
406{
407 char file[PATH_MAX];
408
409 sprintf (file, "/proc/%d/exe", pid);
410 return elf_64_file_p (file, machine);
411}
412
413static void
414delete_lwp (struct lwp_info *lwp)
415{
416 struct thread_info *thr = get_lwp_thread (lwp);
417
418 if (debug_threads)
419 debug_printf ("deleting %ld\n", lwpid_of (thr));
420
421 remove_thread (thr);
422
423 if (the_low_target.delete_thread != NULL)
424 the_low_target.delete_thread (lwp->arch_private);
425 else
426 gdb_assert (lwp->arch_private == NULL);
427
428 free (lwp);
429}
430
431/* Add a process to the common process list, and set its private
432 data. */
433
434static struct process_info *
435linux_add_process (int pid, int attached)
436{
437 struct process_info *proc;
438
439 proc = add_process (pid, attached);
440 proc->priv = XCNEW (struct process_info_private);
441
442 if (the_low_target.new_process != NULL)
443 proc->priv->arch_private = the_low_target.new_process ();
444
445 return proc;
446}
447
448static CORE_ADDR get_pc (struct lwp_info *lwp);
449
450/* Call the target arch_setup function on the current thread. */
451
452static void
453linux_arch_setup (void)
454{
455 the_low_target.arch_setup ();
456}
457
458/* Call the target arch_setup function on THREAD. */
459
460static void
461linux_arch_setup_thread (struct thread_info *thread)
462{
463 struct thread_info *saved_thread;
464
465 saved_thread = current_thread;
466 current_thread = thread;
467
468 linux_arch_setup ();
469
470 current_thread = saved_thread;
471}
472
473/* Handle a GNU/Linux extended wait response. If we see a clone,
474 fork, or vfork event, we need to add the new LWP to our list
475 (and return 0 so as not to report the trap to higher layers).
476 If we see an exec event, we will modify ORIG_EVENT_LWP to point
477 to a new LWP representing the new program. */
478
479static int
480handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
481{
482 client_state &cs = get_client_state ();
483 struct lwp_info *event_lwp = *orig_event_lwp;
484 int event = linux_ptrace_get_extended_event (wstat);
485 struct thread_info *event_thr = get_lwp_thread (event_lwp);
486 struct lwp_info *new_lwp;
487
488 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
489
490 /* All extended events we currently use are mid-syscall. Only
491 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
492 you have to be using PTRACE_SEIZE to get that. */
493 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
494
495 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
496 || (event == PTRACE_EVENT_CLONE))
497 {
498 ptid_t ptid;
499 unsigned long new_pid;
500 int ret, status;
501
502 /* Get the pid of the new lwp. */
503 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
504 &new_pid);
505
506 /* If we haven't already seen the new PID stop, wait for it now. */
507 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
508 {
509 /* The new child has a pending SIGSTOP. We can't affect it until it
510 hits the SIGSTOP, but we're already attached. */
511
512 ret = my_waitpid (new_pid, &status, __WALL);
513
514 if (ret == -1)
515 perror_with_name ("waiting for new child");
516 else if (ret != new_pid)
517 warning ("wait returned unexpected PID %d", ret);
518 else if (!WIFSTOPPED (status))
519 warning ("wait returned unexpected status 0x%x", status);
520 }
521
522 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
523 {
524 struct process_info *parent_proc;
525 struct process_info *child_proc;
526 struct lwp_info *child_lwp;
527 struct thread_info *child_thr;
528 struct target_desc *tdesc;
529
530 ptid = ptid_t (new_pid, new_pid, 0);
531
532 if (debug_threads)
533 {
534 debug_printf ("HEW: Got fork event from LWP %ld, "
535 "new child is %d\n",
536 ptid_of (event_thr).lwp (),
537 ptid.pid ());
538 }
539
540 /* Add the new process to the tables and clone the breakpoint
541 lists of the parent. We need to do this even if the new process
542 will be detached, since we will need the process object and the
543 breakpoints to remove any breakpoints from memory when we
544 detach, and the client side will access registers. */
545 child_proc = linux_add_process (new_pid, 0);
546 gdb_assert (child_proc != NULL);
547 child_lwp = add_lwp (ptid);
548 gdb_assert (child_lwp != NULL);
549 child_lwp->stopped = 1;
550 child_lwp->must_set_ptrace_flags = 1;
551 child_lwp->status_pending_p = 0;
552 child_thr = get_lwp_thread (child_lwp);
553 child_thr->last_resume_kind = resume_stop;
554 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
555
556 /* If we're suspending all threads, leave this one suspended
557 too. If the fork/clone parent is stepping over a breakpoint,
558 all other threads have been suspended already. Leave the
559 child suspended too. */
560 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
561 || event_lwp->bp_reinsert != 0)
562 {
563 if (debug_threads)
564 debug_printf ("HEW: leaving child suspended\n");
565 child_lwp->suspended = 1;
566 }
567
568 parent_proc = get_thread_process (event_thr);
569 child_proc->attached = parent_proc->attached;
570
571 if (event_lwp->bp_reinsert != 0
572 && can_software_single_step ()
573 && event == PTRACE_EVENT_VFORK)
574 {
575 /* If we leave single-step breakpoints there, child will
576 hit it, so uninsert single-step breakpoints from parent
577 (and child). Once vfork child is done, reinsert
578 them back to parent. */
579 uninsert_single_step_breakpoints (event_thr);
580 }
581
582 clone_all_breakpoints (child_thr, event_thr);
583
584 tdesc = allocate_target_description ();
585 copy_target_description (tdesc, parent_proc->tdesc);
586 child_proc->tdesc = tdesc;
587
588 /* Clone arch-specific process data. */
589 if (the_low_target.new_fork != NULL)
590 the_low_target.new_fork (parent_proc, child_proc);
591
592 /* Save fork info in the parent thread. */
593 if (event == PTRACE_EVENT_FORK)
594 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
595 else if (event == PTRACE_EVENT_VFORK)
596 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
597
598 event_lwp->waitstatus.value.related_pid = ptid;
599
600 /* The status_pending field contains bits denoting the
601 extended event, so when the pending event is handled,
602 the handler will look at lwp->waitstatus. */
603 event_lwp->status_pending_p = 1;
604 event_lwp->status_pending = wstat;
605
606 /* Link the threads until the parent event is passed on to
607 higher layers. */
608 event_lwp->fork_relative = child_lwp;
609 child_lwp->fork_relative = event_lwp;
610
611 /* If the parent thread is doing step-over with single-step
612 breakpoints, the list of single-step breakpoints are cloned
613 from the parent's. Remove them from the child process.
614 In case of vfork, we'll reinsert them back once vforked
615 child is done. */
616 if (event_lwp->bp_reinsert != 0
617 && can_software_single_step ())
618 {
619 /* The child process is forked and stopped, so it is safe
620 to access its memory without stopping all other threads
621 from other processes. */
622 delete_single_step_breakpoints (child_thr);
623
624 gdb_assert (has_single_step_breakpoints (event_thr));
625 gdb_assert (!has_single_step_breakpoints (child_thr));
626 }
627
628 /* Report the event. */
629 return 0;
630 }
631
632 if (debug_threads)
633 debug_printf ("HEW: Got clone event "
634 "from LWP %ld, new child is LWP %ld\n",
635 lwpid_of (event_thr), new_pid);
636
637 ptid = ptid_t (pid_of (event_thr), new_pid, 0);
638 new_lwp = add_lwp (ptid);
639
640 /* Either we're going to immediately resume the new thread
641 or leave it stopped. linux_resume_one_lwp is a nop if it
642 thinks the thread is currently running, so set this first
643 before calling linux_resume_one_lwp. */
644 new_lwp->stopped = 1;
645
646 /* If we're suspending all threads, leave this one suspended
647 too. If the fork/clone parent is stepping over a breakpoint,
648 all other threads have been suspended already. Leave the
649 child suspended too. */
650 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
651 || event_lwp->bp_reinsert != 0)
652 new_lwp->suspended = 1;
653
654 /* Normally we will get the pending SIGSTOP. But in some cases
655 we might get another signal delivered to the group first.
656 If we do get another signal, be sure not to lose it. */
657 if (WSTOPSIG (status) != SIGSTOP)
658 {
659 new_lwp->stop_expected = 1;
660 new_lwp->status_pending_p = 1;
661 new_lwp->status_pending = status;
662 }
663 else if (cs.report_thread_events)
664 {
665 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
666 new_lwp->status_pending_p = 1;
667 new_lwp->status_pending = status;
668 }
669
670#ifdef USE_THREAD_DB
671 thread_db_notice_clone (event_thr, ptid);
672#endif
673
674 /* Don't report the event. */
675 return 1;
676 }
677 else if (event == PTRACE_EVENT_VFORK_DONE)
678 {
679 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
680
681 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
682 {
683 reinsert_single_step_breakpoints (event_thr);
684
685 gdb_assert (has_single_step_breakpoints (event_thr));
686 }
687
688 /* Report the event. */
689 return 0;
690 }
691 else if (event == PTRACE_EVENT_EXEC && cs.report_exec_events)
692 {
693 struct process_info *proc;
694 std::vector<int> syscalls_to_catch;
695 ptid_t event_ptid;
696 pid_t event_pid;
697
698 if (debug_threads)
699 {
700 debug_printf ("HEW: Got exec event from LWP %ld\n",
701 lwpid_of (event_thr));
702 }
703
704 /* Get the event ptid. */
705 event_ptid = ptid_of (event_thr);
706 event_pid = event_ptid.pid ();
707
708 /* Save the syscall list from the execing process. */
709 proc = get_thread_process (event_thr);
710 syscalls_to_catch = std::move (proc->syscalls_to_catch);
711
712 /* Delete the execing process and all its threads. */
713 linux_mourn (proc);
714 current_thread = NULL;
715
716 /* Create a new process/lwp/thread. */
717 proc = linux_add_process (event_pid, 0);
718 event_lwp = add_lwp (event_ptid);
719 event_thr = get_lwp_thread (event_lwp);
720 gdb_assert (current_thread == event_thr);
721 linux_arch_setup_thread (event_thr);
722
723 /* Set the event status. */
724 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
725 event_lwp->waitstatus.value.execd_pathname
726 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
727
728 /* Mark the exec status as pending. */
729 event_lwp->stopped = 1;
730 event_lwp->status_pending_p = 1;
731 event_lwp->status_pending = wstat;
732 event_thr->last_resume_kind = resume_continue;
733 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
734
735 /* Update syscall state in the new lwp, effectively mid-syscall too. */
736 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
737
738 /* Restore the list to catch. Don't rely on the client, which is free
739 to avoid sending a new list when the architecture doesn't change.
740 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
741 proc->syscalls_to_catch = std::move (syscalls_to_catch);
742
743 /* Report the event. */
744 *orig_event_lwp = event_lwp;
745 return 0;
746 }
747
748 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
749}
750
751/* Return the PC as read from the regcache of LWP, without any
752 adjustment. */
753
754static CORE_ADDR
755get_pc (struct lwp_info *lwp)
756{
757 struct thread_info *saved_thread;
758 struct regcache *regcache;
759 CORE_ADDR pc;
760
761 if (the_low_target.get_pc == NULL)
762 return 0;
763
764 saved_thread = current_thread;
765 current_thread = get_lwp_thread (lwp);
766
767 regcache = get_thread_regcache (current_thread, 1);
768 pc = (*the_low_target.get_pc) (regcache);
769
770 if (debug_threads)
771 debug_printf ("pc is 0x%lx\n", (long) pc);
772
773 current_thread = saved_thread;
774 return pc;
775}
776
777/* This function should only be called if LWP got a SYSCALL_SIGTRAP.
778 Fill *SYSNO with the syscall nr trapped. */
779
780static void
781get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
782{
783 struct thread_info *saved_thread;
784 struct regcache *regcache;
785
786 if (the_low_target.get_syscall_trapinfo == NULL)
787 {
788 /* If we cannot get the syscall trapinfo, report an unknown
789 system call number. */
790 *sysno = UNKNOWN_SYSCALL;
791 return;
792 }
793
794 saved_thread = current_thread;
795 current_thread = get_lwp_thread (lwp);
796
797 regcache = get_thread_regcache (current_thread, 1);
798 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
799
800 if (debug_threads)
801 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
802
803 current_thread = saved_thread;
804}
805
806static int check_stopped_by_watchpoint (struct lwp_info *child);
807
808/* Called when the LWP stopped for a signal/trap. If it stopped for a
809 trap check what caused it (breakpoint, watchpoint, trace, etc.),
810 and save the result in the LWP's stop_reason field. If it stopped
811 for a breakpoint, decrement the PC if necessary on the lwp's
812 architecture. Returns true if we now have the LWP's stop PC. */
813
814static int
815save_stop_reason (struct lwp_info *lwp)
816{
817 CORE_ADDR pc;
818 CORE_ADDR sw_breakpoint_pc;
819 struct thread_info *saved_thread;
820#if USE_SIGTRAP_SIGINFO
821 siginfo_t siginfo;
822#endif
823
824 if (the_low_target.get_pc == NULL)
825 return 0;
826
827 pc = get_pc (lwp);
828 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
829
830 /* breakpoint_at reads from the current thread. */
831 saved_thread = current_thread;
832 current_thread = get_lwp_thread (lwp);
833
834#if USE_SIGTRAP_SIGINFO
835 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
836 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
837 {
838 if (siginfo.si_signo == SIGTRAP)
839 {
840 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
841 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
842 {
843 /* The si_code is ambiguous on this arch -- check debug
844 registers. */
845 if (!check_stopped_by_watchpoint (lwp))
846 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
847 }
848 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
849 {
850 /* If we determine the LWP stopped for a SW breakpoint,
851 trust it. Particularly don't check watchpoint
852 registers, because at least on s390, we'd find
853 stopped-by-watchpoint as long as there's a watchpoint
854 set. */
855 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
856 }
857 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
858 {
859 /* This can indicate either a hardware breakpoint or
860 hardware watchpoint. Check debug registers. */
861 if (!check_stopped_by_watchpoint (lwp))
862 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
863 }
864 else if (siginfo.si_code == TRAP_TRACE)
865 {
866 /* We may have single stepped an instruction that
867 triggered a watchpoint. In that case, on some
868 architectures (such as x86), instead of TRAP_HWBKPT,
869 si_code indicates TRAP_TRACE, and we need to check
870 the debug registers separately. */
871 if (!check_stopped_by_watchpoint (lwp))
872 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
873 }
874 }
875 }
876#else
877 /* We may have just stepped a breakpoint instruction. E.g., in
878 non-stop mode, GDB first tells the thread A to step a range, and
879 then the user inserts a breakpoint inside the range. In that
880 case we need to report the breakpoint PC. */
881 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
882 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
883 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
884
885 if (hardware_breakpoint_inserted_here (pc))
886 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
887
888 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
889 check_stopped_by_watchpoint (lwp);
890#endif
891
892 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
893 {
894 if (debug_threads)
895 {
896 struct thread_info *thr = get_lwp_thread (lwp);
897
898 debug_printf ("CSBB: %s stopped by software breakpoint\n",
899 target_pid_to_str (ptid_of (thr)));
900 }
901
902 /* Back up the PC if necessary. */
903 if (pc != sw_breakpoint_pc)
904 {
905 struct regcache *regcache
906 = get_thread_regcache (current_thread, 1);
907 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
908 }
909
910 /* Update this so we record the correct stop PC below. */
911 pc = sw_breakpoint_pc;
912 }
913 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
914 {
915 if (debug_threads)
916 {
917 struct thread_info *thr = get_lwp_thread (lwp);
918
919 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
920 target_pid_to_str (ptid_of (thr)));
921 }
922 }
923 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
924 {
925 if (debug_threads)
926 {
927 struct thread_info *thr = get_lwp_thread (lwp);
928
929 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
930 target_pid_to_str (ptid_of (thr)));
931 }
932 }
933 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
934 {
935 if (debug_threads)
936 {
937 struct thread_info *thr = get_lwp_thread (lwp);
938
939 debug_printf ("CSBB: %s stopped by trace\n",
940 target_pid_to_str (ptid_of (thr)));
941 }
942 }
943
944 lwp->stop_pc = pc;
945 current_thread = saved_thread;
946 return 1;
947}
948
949static struct lwp_info *
950add_lwp (ptid_t ptid)
951{
952 struct lwp_info *lwp;
953
954 lwp = XCNEW (struct lwp_info);
955
956 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
957
958 lwp->thread = add_thread (ptid, lwp);
959
960 if (the_low_target.new_thread != NULL)
961 the_low_target.new_thread (lwp);
962
963 return lwp;
964}
965
966/* Callback to be used when calling fork_inferior, responsible for
967 actually initiating the tracing of the inferior. */
968
969static void
970linux_ptrace_fun ()
971{
972 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
973 (PTRACE_TYPE_ARG4) 0) < 0)
974 trace_start_error_with_name ("ptrace");
975
976 if (setpgid (0, 0) < 0)
977 trace_start_error_with_name ("setpgid");
978
979 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
980 stdout to stderr so that inferior i/o doesn't corrupt the connection.
981 Also, redirect stdin to /dev/null. */
982 if (remote_connection_is_stdio ())
983 {
984 if (close (0) < 0)
985 trace_start_error_with_name ("close");
986 if (open ("/dev/null", O_RDONLY) < 0)
987 trace_start_error_with_name ("open");
988 if (dup2 (2, 1) < 0)
989 trace_start_error_with_name ("dup2");
990 if (write (2, "stdin/stdout redirected\n",
991 sizeof ("stdin/stdout redirected\n") - 1) < 0)
992 {
993 /* Errors ignored. */;
994 }
995 }
996}
997
998/* Start an inferior process and returns its pid.
999 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
1000 are its arguments. */
1001
1002static int
1003linux_create_inferior (const char *program,
1004 const std::vector<char *> &program_args)
1005{
1006 client_state &cs = get_client_state ();
1007 struct lwp_info *new_lwp;
1008 int pid;
1009 ptid_t ptid;
1010
1011 {
1012 maybe_disable_address_space_randomization restore_personality
1013 (cs.disable_randomization);
1014 std::string str_program_args = stringify_argv (program_args);
1015
1016 pid = fork_inferior (program,
1017 str_program_args.c_str (),
1018 get_environ ()->envp (), linux_ptrace_fun,
1019 NULL, NULL, NULL, NULL);
1020 }
1021
1022 linux_add_process (pid, 0);
1023
1024 ptid = ptid_t (pid, pid, 0);
1025 new_lwp = add_lwp (ptid);
1026 new_lwp->must_set_ptrace_flags = 1;
1027
1028 post_fork_inferior (pid, program);
1029
1030 return pid;
1031}
1032
1033/* Implement the post_create_inferior target_ops method. */
1034
1035static void
1036linux_post_create_inferior (void)
1037{
1038 struct lwp_info *lwp = get_thread_lwp (current_thread);
1039
1040 linux_arch_setup ();
1041
1042 if (lwp->must_set_ptrace_flags)
1043 {
1044 struct process_info *proc = current_process ();
1045 int options = linux_low_ptrace_options (proc->attached);
1046
1047 linux_enable_event_reporting (lwpid_of (current_thread), options);
1048 lwp->must_set_ptrace_flags = 0;
1049 }
1050}
1051
1052/* Attach to an inferior process. Returns 0 on success, ERRNO on
1053 error. */
1054
1055int
1056linux_attach_lwp (ptid_t ptid)
1057{
1058 struct lwp_info *new_lwp;
1059 int lwpid = ptid.lwp ();
1060
1061 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1062 != 0)
1063 return errno;
1064
1065 new_lwp = add_lwp (ptid);
1066
1067 /* We need to wait for SIGSTOP before being able to make the next
1068 ptrace call on this LWP. */
1069 new_lwp->must_set_ptrace_flags = 1;
1070
1071 if (linux_proc_pid_is_stopped (lwpid))
1072 {
1073 if (debug_threads)
1074 debug_printf ("Attached to a stopped process\n");
1075
1076 /* The process is definitely stopped. It is in a job control
1077 stop, unless the kernel predates the TASK_STOPPED /
1078 TASK_TRACED distinction, in which case it might be in a
1079 ptrace stop. Make sure it is in a ptrace stop; from there we
1080 can kill it, signal it, et cetera.
1081
1082 First make sure there is a pending SIGSTOP. Since we are
1083 already attached, the process can not transition from stopped
1084 to running without a PTRACE_CONT; so we know this signal will
1085 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1086 probably already in the queue (unless this kernel is old
1087 enough to use TASK_STOPPED for ptrace stops); but since
1088 SIGSTOP is not an RT signal, it can only be queued once. */
1089 kill_lwp (lwpid, SIGSTOP);
1090
1091 /* Finally, resume the stopped process. This will deliver the
1092 SIGSTOP (or a higher priority signal, just like normal
1093 PTRACE_ATTACH), which we'll catch later on. */
1094 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1095 }
1096
1097 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1098 brings it to a halt.
1099
1100 There are several cases to consider here:
1101
1102 1) gdbserver has already attached to the process and is being notified
1103 of a new thread that is being created.
1104 In this case we should ignore that SIGSTOP and resume the
1105 process. This is handled below by setting stop_expected = 1,
1106 and the fact that add_thread sets last_resume_kind ==
1107 resume_continue.
1108
1109 2) This is the first thread (the process thread), and we're attaching
1110 to it via attach_inferior.
1111 In this case we want the process thread to stop.
1112 This is handled by having linux_attach set last_resume_kind ==
1113 resume_stop after we return.
1114
1115 If the pid we are attaching to is also the tgid, we attach to and
1116 stop all the existing threads. Otherwise, we attach to pid and
1117 ignore any other threads in the same group as this pid.
1118
1119 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1120 existing threads.
1121 In this case we want the thread to stop.
1122 FIXME: This case is currently not properly handled.
1123 We should wait for the SIGSTOP but don't. Things work apparently
1124 because enough time passes between when we ptrace (ATTACH) and when
1125 gdb makes the next ptrace call on the thread.
1126
1127 On the other hand, if we are currently trying to stop all threads, we
1128 should treat the new thread as if we had sent it a SIGSTOP. This works
1129 because we are guaranteed that the add_lwp call above added us to the
1130 end of the list, and so the new thread has not yet reached
1131 wait_for_sigstop (but will). */
1132 new_lwp->stop_expected = 1;
1133
1134 return 0;
1135}
1136
1137/* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1138 already attached. Returns true if a new LWP is found, false
1139 otherwise. */
1140
1141static int
1142attach_proc_task_lwp_callback (ptid_t ptid)
1143{
1144 /* Is this a new thread? */
1145 if (find_thread_ptid (ptid) == NULL)
1146 {
1147 int lwpid = ptid.lwp ();
1148 int err;
1149
1150 if (debug_threads)
1151 debug_printf ("Found new lwp %d\n", lwpid);
1152
1153 err = linux_attach_lwp (ptid);
1154
1155 /* Be quiet if we simply raced with the thread exiting. EPERM
1156 is returned if the thread's task still exists, and is marked
1157 as exited or zombie, as well as other conditions, so in that
1158 case, confirm the status in /proc/PID/status. */
1159 if (err == ESRCH
1160 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1161 {
1162 if (debug_threads)
1163 {
1164 debug_printf ("Cannot attach to lwp %d: "
1165 "thread is gone (%d: %s)\n",
1166 lwpid, err, strerror (err));
1167 }
1168 }
1169 else if (err != 0)
1170 {
1171 std::string reason
1172 = linux_ptrace_attach_fail_reason_string (ptid, err);
1173
1174 warning (_("Cannot attach to lwp %d: %s"), lwpid, reason.c_str ());
1175 }
1176
1177 return 1;
1178 }
1179 return 0;
1180}
1181
1182static void async_file_mark (void);
1183
1184/* Attach to PID. If PID is the tgid, attach to it and all
1185 of its threads. */
1186
1187static int
1188linux_attach (unsigned long pid)
1189{
1190 struct process_info *proc;
1191 struct thread_info *initial_thread;
1192 ptid_t ptid = ptid_t (pid, pid, 0);
1193 int err;
1194
1195 proc = linux_add_process (pid, 1);
1196
1197 /* Attach to PID. We will check for other threads
1198 soon. */
1199 err = linux_attach_lwp (ptid);
1200 if (err != 0)
1201 {
1202 remove_process (proc);
1203
1204 std::string reason = linux_ptrace_attach_fail_reason_string (ptid, err);
1205 error ("Cannot attach to process %ld: %s", pid, reason.c_str ());
1206 }
1207
1208 /* Don't ignore the initial SIGSTOP if we just attached to this
1209 process. It will be collected by wait shortly. */
1210 initial_thread = find_thread_ptid (ptid_t (pid, pid, 0));
1211 initial_thread->last_resume_kind = resume_stop;
1212
1213 /* We must attach to every LWP. If /proc is mounted, use that to
1214 find them now. On the one hand, the inferior may be using raw
1215 clone instead of using pthreads. On the other hand, even if it
1216 is using pthreads, GDB may not be connected yet (thread_db needs
1217 to do symbol lookups, through qSymbol). Also, thread_db walks
1218 structures in the inferior's address space to find the list of
1219 threads/LWPs, and those structures may well be corrupted. Note
1220 that once thread_db is loaded, we'll still use it to list threads
1221 and associate pthread info with each LWP. */
1222 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1223
1224 /* GDB will shortly read the xml target description for this
1225 process, to figure out the process' architecture. But the target
1226 description is only filled in when the first process/thread in
1227 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1228 that now, otherwise, if GDB is fast enough, it could read the
1229 target description _before_ that initial stop. */
1230 if (non_stop)
1231 {
1232 struct lwp_info *lwp;
1233 int wstat, lwpid;
1234 ptid_t pid_ptid = ptid_t (pid);
1235
1236 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1237 &wstat, __WALL);
1238 gdb_assert (lwpid > 0);
1239
1240 lwp = find_lwp_pid (ptid_t (lwpid));
1241
1242 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1243 {
1244 lwp->status_pending_p = 1;
1245 lwp->status_pending = wstat;
1246 }
1247
1248 initial_thread->last_resume_kind = resume_continue;
1249
1250 async_file_mark ();
1251
1252 gdb_assert (proc->tdesc != NULL);
1253 }
1254
1255 return 0;
1256}
1257
1258static int
1259last_thread_of_process_p (int pid)
1260{
1261 bool seen_one = false;
1262
1263 thread_info *thread = find_thread (pid, [&] (thread_info *thr_arg)
1264 {
1265 if (!seen_one)
1266 {
1267 /* This is the first thread of this process we see. */
1268 seen_one = true;
1269 return false;
1270 }
1271 else
1272 {
1273 /* This is the second thread of this process we see. */
1274 return true;
1275 }
1276 });
1277
1278 return thread == NULL;
1279}
1280
1281/* Kill LWP. */
1282
1283static void
1284linux_kill_one_lwp (struct lwp_info *lwp)
1285{
1286 struct thread_info *thr = get_lwp_thread (lwp);
1287 int pid = lwpid_of (thr);
1288
1289 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1290 there is no signal context, and ptrace(PTRACE_KILL) (or
1291 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1292 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1293 alternative is to kill with SIGKILL. We only need one SIGKILL
1294 per process, not one for each thread. But since we still support
1295 support debugging programs using raw clone without CLONE_THREAD,
1296 we send one for each thread. For years, we used PTRACE_KILL
1297 only, so we're being a bit paranoid about some old kernels where
1298 PTRACE_KILL might work better (dubious if there are any such, but
1299 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1300 second, and so we're fine everywhere. */
1301
1302 errno = 0;
1303 kill_lwp (pid, SIGKILL);
1304 if (debug_threads)
1305 {
1306 int save_errno = errno;
1307
1308 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1309 target_pid_to_str (ptid_of (thr)),
1310 save_errno ? strerror (save_errno) : "OK");
1311 }
1312
1313 errno = 0;
1314 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1315 if (debug_threads)
1316 {
1317 int save_errno = errno;
1318
1319 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1320 target_pid_to_str (ptid_of (thr)),
1321 save_errno ? strerror (save_errno) : "OK");
1322 }
1323}
1324
1325/* Kill LWP and wait for it to die. */
1326
1327static void
1328kill_wait_lwp (struct lwp_info *lwp)
1329{
1330 struct thread_info *thr = get_lwp_thread (lwp);
1331 int pid = ptid_of (thr).pid ();
1332 int lwpid = ptid_of (thr).lwp ();
1333 int wstat;
1334 int res;
1335
1336 if (debug_threads)
1337 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1338
1339 do
1340 {
1341 linux_kill_one_lwp (lwp);
1342
1343 /* Make sure it died. Notes:
1344
1345 - The loop is most likely unnecessary.
1346
1347 - We don't use linux_wait_for_event as that could delete lwps
1348 while we're iterating over them. We're not interested in
1349 any pending status at this point, only in making sure all
1350 wait status on the kernel side are collected until the
1351 process is reaped.
1352
1353 - We don't use __WALL here as the __WALL emulation relies on
1354 SIGCHLD, and killing a stopped process doesn't generate
1355 one, nor an exit status.
1356 */
1357 res = my_waitpid (lwpid, &wstat, 0);
1358 if (res == -1 && errno == ECHILD)
1359 res = my_waitpid (lwpid, &wstat, __WCLONE);
1360 } while (res > 0 && WIFSTOPPED (wstat));
1361
1362 /* Even if it was stopped, the child may have already disappeared.
1363 E.g., if it was killed by SIGKILL. */
1364 if (res < 0 && errno != ECHILD)
1365 perror_with_name ("kill_wait_lwp");
1366}
1367
1368/* Callback for `for_each_thread'. Kills an lwp of a given process,
1369 except the leader. */
1370
1371static void
1372kill_one_lwp_callback (thread_info *thread, int pid)
1373{
1374 struct lwp_info *lwp = get_thread_lwp (thread);
1375
1376 /* We avoid killing the first thread here, because of a Linux kernel (at
1377 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1378 the children get a chance to be reaped, it will remain a zombie
1379 forever. */
1380
1381 if (lwpid_of (thread) == pid)
1382 {
1383 if (debug_threads)
1384 debug_printf ("lkop: is last of process %s\n",
1385 target_pid_to_str (thread->id));
1386 return;
1387 }
1388
1389 kill_wait_lwp (lwp);
1390}
1391
1392static int
1393linux_kill (process_info *process)
1394{
1395 int pid = process->pid;
1396
1397 /* If we're killing a running inferior, make sure it is stopped
1398 first, as PTRACE_KILL will not work otherwise. */
1399 stop_all_lwps (0, NULL);
1400
1401 for_each_thread (pid, [&] (thread_info *thread)
1402 {
1403 kill_one_lwp_callback (thread, pid);
1404 });
1405
1406 /* See the comment in linux_kill_one_lwp. We did not kill the first
1407 thread in the list, so do so now. */
1408 lwp_info *lwp = find_lwp_pid (ptid_t (pid));
1409
1410 if (lwp == NULL)
1411 {
1412 if (debug_threads)
1413 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1414 pid);
1415 }
1416 else
1417 kill_wait_lwp (lwp);
1418
1419 the_target->mourn (process);
1420
1421 /* Since we presently can only stop all lwps of all processes, we
1422 need to unstop lwps of other processes. */
1423 unstop_all_lwps (0, NULL);
1424 return 0;
1425}
1426
1427/* Get pending signal of THREAD, for detaching purposes. This is the
1428 signal the thread last stopped for, which we need to deliver to the
1429 thread when detaching, otherwise, it'd be suppressed/lost. */
1430
1431static int
1432get_detach_signal (struct thread_info *thread)
1433{
1434 client_state &cs = get_client_state ();
1435 enum gdb_signal signo = GDB_SIGNAL_0;
1436 int status;
1437 struct lwp_info *lp = get_thread_lwp (thread);
1438
1439 if (lp->status_pending_p)
1440 status = lp->status_pending;
1441 else
1442 {
1443 /* If the thread had been suspended by gdbserver, and it stopped
1444 cleanly, then it'll have stopped with SIGSTOP. But we don't
1445 want to deliver that SIGSTOP. */
1446 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1447 || thread->last_status.value.sig == GDB_SIGNAL_0)
1448 return 0;
1449
1450 /* Otherwise, we may need to deliver the signal we
1451 intercepted. */
1452 status = lp->last_status;
1453 }
1454
1455 if (!WIFSTOPPED (status))
1456 {
1457 if (debug_threads)
1458 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1459 target_pid_to_str (ptid_of (thread)));
1460 return 0;
1461 }
1462
1463 /* Extended wait statuses aren't real SIGTRAPs. */
1464 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1465 {
1466 if (debug_threads)
1467 debug_printf ("GPS: lwp %s had stopped with extended "
1468 "status: no pending signal\n",
1469 target_pid_to_str (ptid_of (thread)));
1470 return 0;
1471 }
1472
1473 signo = gdb_signal_from_host (WSTOPSIG (status));
1474
1475 if (cs.program_signals_p && !cs.program_signals[signo])
1476 {
1477 if (debug_threads)
1478 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1479 target_pid_to_str (ptid_of (thread)),
1480 gdb_signal_to_string (signo));
1481 return 0;
1482 }
1483 else if (!cs.program_signals_p
1484 /* If we have no way to know which signals GDB does not
1485 want to have passed to the program, assume
1486 SIGTRAP/SIGINT, which is GDB's default. */
1487 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1488 {
1489 if (debug_threads)
1490 debug_printf ("GPS: lwp %s had signal %s, "
1491 "but we don't know if we should pass it. "
1492 "Default to not.\n",
1493 target_pid_to_str (ptid_of (thread)),
1494 gdb_signal_to_string (signo));
1495 return 0;
1496 }
1497 else
1498 {
1499 if (debug_threads)
1500 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1501 target_pid_to_str (ptid_of (thread)),
1502 gdb_signal_to_string (signo));
1503
1504 return WSTOPSIG (status);
1505 }
1506}
1507
1508/* Detach from LWP. */
1509
1510static void
1511linux_detach_one_lwp (struct lwp_info *lwp)
1512{
1513 struct thread_info *thread = get_lwp_thread (lwp);
1514 int sig;
1515 int lwpid;
1516
1517 /* If there is a pending SIGSTOP, get rid of it. */
1518 if (lwp->stop_expected)
1519 {
1520 if (debug_threads)
1521 debug_printf ("Sending SIGCONT to %s\n",
1522 target_pid_to_str (ptid_of (thread)));
1523
1524 kill_lwp (lwpid_of (thread), SIGCONT);
1525 lwp->stop_expected = 0;
1526 }
1527
1528 /* Pass on any pending signal for this thread. */
1529 sig = get_detach_signal (thread);
1530
1531 /* Preparing to resume may try to write registers, and fail if the
1532 lwp is zombie. If that happens, ignore the error. We'll handle
1533 it below, when detach fails with ESRCH. */
1534 try
1535 {
1536 /* Flush any pending changes to the process's registers. */
1537 regcache_invalidate_thread (thread);
1538
1539 /* Finally, let it resume. */
1540 if (the_low_target.prepare_to_resume != NULL)
1541 the_low_target.prepare_to_resume (lwp);
1542 }
1543 catch (const gdb_exception_error &ex)
1544 {
1545 if (!check_ptrace_stopped_lwp_gone (lwp))
1546 throw;
1547 }
1548
1549 lwpid = lwpid_of (thread);
1550 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1551 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1552 {
1553 int save_errno = errno;
1554
1555 /* We know the thread exists, so ESRCH must mean the lwp is
1556 zombie. This can happen if one of the already-detached
1557 threads exits the whole thread group. In that case we're
1558 still attached, and must reap the lwp. */
1559 if (save_errno == ESRCH)
1560 {
1561 int ret, status;
1562
1563 ret = my_waitpid (lwpid, &status, __WALL);
1564 if (ret == -1)
1565 {
1566 warning (_("Couldn't reap LWP %d while detaching: %s"),
1567 lwpid, strerror (errno));
1568 }
1569 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1570 {
1571 warning (_("Reaping LWP %d while detaching "
1572 "returned unexpected status 0x%x"),
1573 lwpid, status);
1574 }
1575 }
1576 else
1577 {
1578 error (_("Can't detach %s: %s"),
1579 target_pid_to_str (ptid_of (thread)),
1580 strerror (save_errno));
1581 }
1582 }
1583 else if (debug_threads)
1584 {
1585 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1586 target_pid_to_str (ptid_of (thread)),
1587 strsignal (sig));
1588 }
1589
1590 delete_lwp (lwp);
1591}
1592
1593/* Callback for for_each_thread. Detaches from non-leader threads of a
1594 given process. */
1595
1596static void
1597linux_detach_lwp_callback (thread_info *thread)
1598{
1599 /* We don't actually detach from the thread group leader just yet.
1600 If the thread group exits, we must reap the zombie clone lwps
1601 before we're able to reap the leader. */
1602 if (thread->id.pid () == thread->id.lwp ())
1603 return;
1604
1605 lwp_info *lwp = get_thread_lwp (thread);
1606 linux_detach_one_lwp (lwp);
1607}
1608
1609static int
1610linux_detach (process_info *process)
1611{
1612 struct lwp_info *main_lwp;
1613
1614 /* As there's a step over already in progress, let it finish first,
1615 otherwise nesting a stabilize_threads operation on top gets real
1616 messy. */
1617 complete_ongoing_step_over ();
1618
1619 /* Stop all threads before detaching. First, ptrace requires that
1620 the thread is stopped to sucessfully detach. Second, thread_db
1621 may need to uninstall thread event breakpoints from memory, which
1622 only works with a stopped process anyway. */
1623 stop_all_lwps (0, NULL);
1624
1625#ifdef USE_THREAD_DB
1626 thread_db_detach (process);
1627#endif
1628
1629 /* Stabilize threads (move out of jump pads). */
1630 stabilize_threads ();
1631
1632 /* Detach from the clone lwps first. If the thread group exits just
1633 while we're detaching, we must reap the clone lwps before we're
1634 able to reap the leader. */
1635 for_each_thread (process->pid, linux_detach_lwp_callback);
1636
1637 main_lwp = find_lwp_pid (ptid_t (process->pid));
1638 linux_detach_one_lwp (main_lwp);
1639
1640 the_target->mourn (process);
1641
1642 /* Since we presently can only stop all lwps of all processes, we
1643 need to unstop lwps of other processes. */
1644 unstop_all_lwps (0, NULL);
1645 return 0;
1646}
1647
1648/* Remove all LWPs that belong to process PROC from the lwp list. */
1649
1650static void
1651linux_mourn (struct process_info *process)
1652{
1653 struct process_info_private *priv;
1654
1655#ifdef USE_THREAD_DB
1656 thread_db_mourn (process);
1657#endif
1658
1659 for_each_thread (process->pid, [] (thread_info *thread)
1660 {
1661 delete_lwp (get_thread_lwp (thread));
1662 });
1663
1664 /* Freeing all private data. */
1665 priv = process->priv;
1666 if (the_low_target.delete_process != NULL)
1667 the_low_target.delete_process (priv->arch_private);
1668 else
1669 gdb_assert (priv->arch_private == NULL);
1670 free (priv);
1671 process->priv = NULL;
1672
1673 remove_process (process);
1674}
1675
1676static void
1677linux_join (int pid)
1678{
1679 int status, ret;
1680
1681 do {
1682 ret = my_waitpid (pid, &status, 0);
1683 if (WIFEXITED (status) || WIFSIGNALED (status))
1684 break;
1685 } while (ret != -1 || errno != ECHILD);
1686}
1687
1688/* Return nonzero if the given thread is still alive. */
1689static int
1690linux_thread_alive (ptid_t ptid)
1691{
1692 struct lwp_info *lwp = find_lwp_pid (ptid);
1693
1694 /* We assume we always know if a thread exits. If a whole process
1695 exited but we still haven't been able to report it to GDB, we'll
1696 hold on to the last lwp of the dead process. */
1697 if (lwp != NULL)
1698 return !lwp_is_marked_dead (lwp);
1699 else
1700 return 0;
1701}
1702
1703/* Return 1 if this lwp still has an interesting status pending. If
1704 not (e.g., it had stopped for a breakpoint that is gone), return
1705 false. */
1706
1707static int
1708thread_still_has_status_pending_p (struct thread_info *thread)
1709{
1710 struct lwp_info *lp = get_thread_lwp (thread);
1711
1712 if (!lp->status_pending_p)
1713 return 0;
1714
1715 if (thread->last_resume_kind != resume_stop
1716 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1717 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1718 {
1719 struct thread_info *saved_thread;
1720 CORE_ADDR pc;
1721 int discard = 0;
1722
1723 gdb_assert (lp->last_status != 0);
1724
1725 pc = get_pc (lp);
1726
1727 saved_thread = current_thread;
1728 current_thread = thread;
1729
1730 if (pc != lp->stop_pc)
1731 {
1732 if (debug_threads)
1733 debug_printf ("PC of %ld changed\n",
1734 lwpid_of (thread));
1735 discard = 1;
1736 }
1737
1738#if !USE_SIGTRAP_SIGINFO
1739 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1740 && !(*the_low_target.breakpoint_at) (pc))
1741 {
1742 if (debug_threads)
1743 debug_printf ("previous SW breakpoint of %ld gone\n",
1744 lwpid_of (thread));
1745 discard = 1;
1746 }
1747 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1748 && !hardware_breakpoint_inserted_here (pc))
1749 {
1750 if (debug_threads)
1751 debug_printf ("previous HW breakpoint of %ld gone\n",
1752 lwpid_of (thread));
1753 discard = 1;
1754 }
1755#endif
1756
1757 current_thread = saved_thread;
1758
1759 if (discard)
1760 {
1761 if (debug_threads)
1762 debug_printf ("discarding pending breakpoint status\n");
1763 lp->status_pending_p = 0;
1764 return 0;
1765 }
1766 }
1767
1768 return 1;
1769}
1770
1771/* Returns true if LWP is resumed from the client's perspective. */
1772
1773static int
1774lwp_resumed (struct lwp_info *lwp)
1775{
1776 struct thread_info *thread = get_lwp_thread (lwp);
1777
1778 if (thread->last_resume_kind != resume_stop)
1779 return 1;
1780
1781 /* Did gdb send us a `vCont;t', but we haven't reported the
1782 corresponding stop to gdb yet? If so, the thread is still
1783 resumed/running from gdb's perspective. */
1784 if (thread->last_resume_kind == resume_stop
1785 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1786 return 1;
1787
1788 return 0;
1789}
1790
1791/* Return true if this lwp has an interesting status pending. */
1792static bool
1793status_pending_p_callback (thread_info *thread, ptid_t ptid)
1794{
1795 struct lwp_info *lp = get_thread_lwp (thread);
1796
1797 /* Check if we're only interested in events from a specific process
1798 or a specific LWP. */
1799 if (!thread->id.matches (ptid))
1800 return 0;
1801
1802 if (!lwp_resumed (lp))
1803 return 0;
1804
1805 if (lp->status_pending_p
1806 && !thread_still_has_status_pending_p (thread))
1807 {
1808 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1809 return 0;
1810 }
1811
1812 return lp->status_pending_p;
1813}
1814
1815struct lwp_info *
1816find_lwp_pid (ptid_t ptid)
1817{
1818 thread_info *thread = find_thread ([&] (thread_info *thr_arg)
1819 {
1820 int lwp = ptid.lwp () != 0 ? ptid.lwp () : ptid.pid ();
1821 return thr_arg->id.lwp () == lwp;
1822 });
1823
1824 if (thread == NULL)
1825 return NULL;
1826
1827 return get_thread_lwp (thread);
1828}
1829
1830/* Return the number of known LWPs in the tgid given by PID. */
1831
1832static int
1833num_lwps (int pid)
1834{
1835 int count = 0;
1836
1837 for_each_thread (pid, [&] (thread_info *thread)
1838 {
1839 count++;
1840 });
1841
1842 return count;
1843}
1844
1845/* See nat/linux-nat.h. */
1846
1847struct lwp_info *
1848iterate_over_lwps (ptid_t filter,
1849 gdb::function_view<iterate_over_lwps_ftype> callback)
1850{
1851 thread_info *thread = find_thread (filter, [&] (thread_info *thr_arg)
1852 {
1853 lwp_info *lwp = get_thread_lwp (thr_arg);
1854
1855 return callback (lwp);
1856 });
1857
1858 if (thread == NULL)
1859 return NULL;
1860
1861 return get_thread_lwp (thread);
1862}
1863
1864/* Detect zombie thread group leaders, and "exit" them. We can't reap
1865 their exits until all other threads in the group have exited. */
1866
1867static void
1868check_zombie_leaders (void)
1869{
1870 for_each_process ([] (process_info *proc) {
1871 pid_t leader_pid = pid_of (proc);
1872 struct lwp_info *leader_lp;
1873
1874 leader_lp = find_lwp_pid (ptid_t (leader_pid));
1875
1876 if (debug_threads)
1877 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1878 "num_lwps=%d, zombie=%d\n",
1879 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1880 linux_proc_pid_is_zombie (leader_pid));
1881
1882 if (leader_lp != NULL && !leader_lp->stopped
1883 /* Check if there are other threads in the group, as we may
1884 have raced with the inferior simply exiting. */
1885 && !last_thread_of_process_p (leader_pid)
1886 && linux_proc_pid_is_zombie (leader_pid))
1887 {
1888 /* A leader zombie can mean one of two things:
1889
1890 - It exited, and there's an exit status pending
1891 available, or only the leader exited (not the whole
1892 program). In the latter case, we can't waitpid the
1893 leader's exit status until all other threads are gone.
1894
1895 - There are 3 or more threads in the group, and a thread
1896 other than the leader exec'd. On an exec, the Linux
1897 kernel destroys all other threads (except the execing
1898 one) in the thread group, and resets the execing thread's
1899 tid to the tgid. No exit notification is sent for the
1900 execing thread -- from the ptracer's perspective, it
1901 appears as though the execing thread just vanishes.
1902 Until we reap all other threads except the leader and the
1903 execing thread, the leader will be zombie, and the
1904 execing thread will be in `D (disc sleep)'. As soon as
1905 all other threads are reaped, the execing thread changes
1906 it's tid to the tgid, and the previous (zombie) leader
1907 vanishes, giving place to the "new" leader. We could try
1908 distinguishing the exit and exec cases, by waiting once
1909 more, and seeing if something comes out, but it doesn't
1910 sound useful. The previous leader _does_ go away, and
1911 we'll re-add the new one once we see the exec event
1912 (which is just the same as what would happen if the
1913 previous leader did exit voluntarily before some other
1914 thread execs). */
1915
1916 if (debug_threads)
1917 debug_printf ("CZL: Thread group leader %d zombie "
1918 "(it exited, or another thread execd).\n",
1919 leader_pid);
1920
1921 delete_lwp (leader_lp);
1922 }
1923 });
1924}
1925
1926/* Callback for `find_thread'. Returns the first LWP that is not
1927 stopped. */
1928
1929static bool
1930not_stopped_callback (thread_info *thread, ptid_t filter)
1931{
1932 if (!thread->id.matches (filter))
1933 return false;
1934
1935 lwp_info *lwp = get_thread_lwp (thread);
1936
1937 return !lwp->stopped;
1938}
1939
1940/* Increment LWP's suspend count. */
1941
1942static void
1943lwp_suspended_inc (struct lwp_info *lwp)
1944{
1945 lwp->suspended++;
1946
1947 if (debug_threads && lwp->suspended > 4)
1948 {
1949 struct thread_info *thread = get_lwp_thread (lwp);
1950
1951 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1952 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1953 }
1954}
1955
1956/* Decrement LWP's suspend count. */
1957
1958static void
1959lwp_suspended_decr (struct lwp_info *lwp)
1960{
1961 lwp->suspended--;
1962
1963 if (lwp->suspended < 0)
1964 {
1965 struct thread_info *thread = get_lwp_thread (lwp);
1966
1967 internal_error (__FILE__, __LINE__,
1968 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1969 lwp->suspended);
1970 }
1971}
1972
1973/* This function should only be called if the LWP got a SIGTRAP.
1974
1975 Handle any tracepoint steps or hits. Return true if a tracepoint
1976 event was handled, 0 otherwise. */
1977
1978static int
1979handle_tracepoints (struct lwp_info *lwp)
1980{
1981 struct thread_info *tinfo = get_lwp_thread (lwp);
1982 int tpoint_related_event = 0;
1983
1984 gdb_assert (lwp->suspended == 0);
1985
1986 /* If this tracepoint hit causes a tracing stop, we'll immediately
1987 uninsert tracepoints. To do this, we temporarily pause all
1988 threads, unpatch away, and then unpause threads. We need to make
1989 sure the unpausing doesn't resume LWP too. */
1990 lwp_suspended_inc (lwp);
1991
1992 /* And we need to be sure that any all-threads-stopping doesn't try
1993 to move threads out of the jump pads, as it could deadlock the
1994 inferior (LWP could be in the jump pad, maybe even holding the
1995 lock.) */
1996
1997 /* Do any necessary step collect actions. */
1998 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1999
2000 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
2001
2002 /* See if we just hit a tracepoint and do its main collect
2003 actions. */
2004 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2005
2006 lwp_suspended_decr (lwp);
2007
2008 gdb_assert (lwp->suspended == 0);
2009 gdb_assert (!stabilizing_threads
2010 || (lwp->collecting_fast_tracepoint
2011 != fast_tpoint_collect_result::not_collecting));
2012
2013 if (tpoint_related_event)
2014 {
2015 if (debug_threads)
2016 debug_printf ("got a tracepoint event\n");
2017 return 1;
2018 }
2019
2020 return 0;
2021}
2022
2023/* Convenience wrapper. Returns information about LWP's fast tracepoint
2024 collection status. */
2025
2026static fast_tpoint_collect_result
2027linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2028 struct fast_tpoint_collect_status *status)
2029{
2030 CORE_ADDR thread_area;
2031 struct thread_info *thread = get_lwp_thread (lwp);
2032
2033 if (the_low_target.get_thread_area == NULL)
2034 return fast_tpoint_collect_result::not_collecting;
2035
2036 /* Get the thread area address. This is used to recognize which
2037 thread is which when tracing with the in-process agent library.
2038 We don't read anything from the address, and treat it as opaque;
2039 it's the address itself that we assume is unique per-thread. */
2040 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2041 return fast_tpoint_collect_result::not_collecting;
2042
2043 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2044}
2045
2046/* The reason we resume in the caller, is because we want to be able
2047 to pass lwp->status_pending as WSTAT, and we need to clear
2048 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2049 refuses to resume. */
2050
2051static int
2052maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2053{
2054 struct thread_info *saved_thread;
2055
2056 saved_thread = current_thread;
2057 current_thread = get_lwp_thread (lwp);
2058
2059 if ((wstat == NULL
2060 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2061 && supports_fast_tracepoints ()
2062 && agent_loaded_p ())
2063 {
2064 struct fast_tpoint_collect_status status;
2065
2066 if (debug_threads)
2067 debug_printf ("Checking whether LWP %ld needs to move out of the "
2068 "jump pad.\n",
2069 lwpid_of (current_thread));
2070
2071 fast_tpoint_collect_result r
2072 = linux_fast_tracepoint_collecting (lwp, &status);
2073
2074 if (wstat == NULL
2075 || (WSTOPSIG (*wstat) != SIGILL
2076 && WSTOPSIG (*wstat) != SIGFPE
2077 && WSTOPSIG (*wstat) != SIGSEGV
2078 && WSTOPSIG (*wstat) != SIGBUS))
2079 {
2080 lwp->collecting_fast_tracepoint = r;
2081
2082 if (r != fast_tpoint_collect_result::not_collecting)
2083 {
2084 if (r == fast_tpoint_collect_result::before_insn
2085 && lwp->exit_jump_pad_bkpt == NULL)
2086 {
2087 /* Haven't executed the original instruction yet.
2088 Set breakpoint there, and wait till it's hit,
2089 then single-step until exiting the jump pad. */
2090 lwp->exit_jump_pad_bkpt
2091 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2092 }
2093
2094 if (debug_threads)
2095 debug_printf ("Checking whether LWP %ld needs to move out of "
2096 "the jump pad...it does\n",
2097 lwpid_of (current_thread));
2098 current_thread = saved_thread;
2099
2100 return 1;
2101 }
2102 }
2103 else
2104 {
2105 /* If we get a synchronous signal while collecting, *and*
2106 while executing the (relocated) original instruction,
2107 reset the PC to point at the tpoint address, before
2108 reporting to GDB. Otherwise, it's an IPA lib bug: just
2109 report the signal to GDB, and pray for the best. */
2110
2111 lwp->collecting_fast_tracepoint
2112 = fast_tpoint_collect_result::not_collecting;
2113
2114 if (r != fast_tpoint_collect_result::not_collecting
2115 && (status.adjusted_insn_addr <= lwp->stop_pc
2116 && lwp->stop_pc < status.adjusted_insn_addr_end))
2117 {
2118 siginfo_t info;
2119 struct regcache *regcache;
2120
2121 /* The si_addr on a few signals references the address
2122 of the faulting instruction. Adjust that as
2123 well. */
2124 if ((WSTOPSIG (*wstat) == SIGILL
2125 || WSTOPSIG (*wstat) == SIGFPE
2126 || WSTOPSIG (*wstat) == SIGBUS
2127 || WSTOPSIG (*wstat) == SIGSEGV)
2128 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2129 (PTRACE_TYPE_ARG3) 0, &info) == 0
2130 /* Final check just to make sure we don't clobber
2131 the siginfo of non-kernel-sent signals. */
2132 && (uintptr_t) info.si_addr == lwp->stop_pc)
2133 {
2134 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2135 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2136 (PTRACE_TYPE_ARG3) 0, &info);
2137 }
2138
2139 regcache = get_thread_regcache (current_thread, 1);
2140 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2141 lwp->stop_pc = status.tpoint_addr;
2142
2143 /* Cancel any fast tracepoint lock this thread was
2144 holding. */
2145 force_unlock_trace_buffer ();
2146 }
2147
2148 if (lwp->exit_jump_pad_bkpt != NULL)
2149 {
2150 if (debug_threads)
2151 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2152 "stopping all threads momentarily.\n");
2153
2154 stop_all_lwps (1, lwp);
2155
2156 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2157 lwp->exit_jump_pad_bkpt = NULL;
2158
2159 unstop_all_lwps (1, lwp);
2160
2161 gdb_assert (lwp->suspended >= 0);
2162 }
2163 }
2164 }
2165
2166 if (debug_threads)
2167 debug_printf ("Checking whether LWP %ld needs to move out of the "
2168 "jump pad...no\n",
2169 lwpid_of (current_thread));
2170
2171 current_thread = saved_thread;
2172 return 0;
2173}
2174
2175/* Enqueue one signal in the "signals to report later when out of the
2176 jump pad" list. */
2177
2178static void
2179enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2180{
2181 struct pending_signals *p_sig;
2182 struct thread_info *thread = get_lwp_thread (lwp);
2183
2184 if (debug_threads)
2185 debug_printf ("Deferring signal %d for LWP %ld.\n",
2186 WSTOPSIG (*wstat), lwpid_of (thread));
2187
2188 if (debug_threads)
2189 {
2190 struct pending_signals *sig;
2191
2192 for (sig = lwp->pending_signals_to_report;
2193 sig != NULL;
2194 sig = sig->prev)
2195 debug_printf (" Already queued %d\n",
2196 sig->signal);
2197
2198 debug_printf (" (no more currently queued signals)\n");
2199 }
2200
2201 /* Don't enqueue non-RT signals if they are already in the deferred
2202 queue. (SIGSTOP being the easiest signal to see ending up here
2203 twice) */
2204 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2205 {
2206 struct pending_signals *sig;
2207
2208 for (sig = lwp->pending_signals_to_report;
2209 sig != NULL;
2210 sig = sig->prev)
2211 {
2212 if (sig->signal == WSTOPSIG (*wstat))
2213 {
2214 if (debug_threads)
2215 debug_printf ("Not requeuing already queued non-RT signal %d"
2216 " for LWP %ld\n",
2217 sig->signal,
2218 lwpid_of (thread));
2219 return;
2220 }
2221 }
2222 }
2223
2224 p_sig = XCNEW (struct pending_signals);
2225 p_sig->prev = lwp->pending_signals_to_report;
2226 p_sig->signal = WSTOPSIG (*wstat);
2227
2228 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2229 &p_sig->info);
2230
2231 lwp->pending_signals_to_report = p_sig;
2232}
2233
2234/* Dequeue one signal from the "signals to report later when out of
2235 the jump pad" list. */
2236
2237static int
2238dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2239{
2240 struct thread_info *thread = get_lwp_thread (lwp);
2241
2242 if (lwp->pending_signals_to_report != NULL)
2243 {
2244 struct pending_signals **p_sig;
2245
2246 p_sig = &lwp->pending_signals_to_report;
2247 while ((*p_sig)->prev != NULL)
2248 p_sig = &(*p_sig)->prev;
2249
2250 *wstat = W_STOPCODE ((*p_sig)->signal);
2251 if ((*p_sig)->info.si_signo != 0)
2252 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2253 &(*p_sig)->info);
2254 free (*p_sig);
2255 *p_sig = NULL;
2256
2257 if (debug_threads)
2258 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2259 WSTOPSIG (*wstat), lwpid_of (thread));
2260
2261 if (debug_threads)
2262 {
2263 struct pending_signals *sig;
2264
2265 for (sig = lwp->pending_signals_to_report;
2266 sig != NULL;
2267 sig = sig->prev)
2268 debug_printf (" Still queued %d\n",
2269 sig->signal);
2270
2271 debug_printf (" (no more queued signals)\n");
2272 }
2273
2274 return 1;
2275 }
2276
2277 return 0;
2278}
2279
2280/* Fetch the possibly triggered data watchpoint info and store it in
2281 CHILD.
2282
2283 On some archs, like x86, that use debug registers to set
2284 watchpoints, it's possible that the way to know which watched
2285 address trapped, is to check the register that is used to select
2286 which address to watch. Problem is, between setting the watchpoint
2287 and reading back which data address trapped, the user may change
2288 the set of watchpoints, and, as a consequence, GDB changes the
2289 debug registers in the inferior. To avoid reading back a stale
2290 stopped-data-address when that happens, we cache in LP the fact
2291 that a watchpoint trapped, and the corresponding data address, as
2292 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2293 registers meanwhile, we have the cached data we can rely on. */
2294
2295static int
2296check_stopped_by_watchpoint (struct lwp_info *child)
2297{
2298 if (the_low_target.stopped_by_watchpoint != NULL)
2299 {
2300 struct thread_info *saved_thread;
2301
2302 saved_thread = current_thread;
2303 current_thread = get_lwp_thread (child);
2304
2305 if (the_low_target.stopped_by_watchpoint ())
2306 {
2307 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2308
2309 if (the_low_target.stopped_data_address != NULL)
2310 child->stopped_data_address
2311 = the_low_target.stopped_data_address ();
2312 else
2313 child->stopped_data_address = 0;
2314 }
2315
2316 current_thread = saved_thread;
2317 }
2318
2319 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2320}
2321
2322/* Return the ptrace options that we want to try to enable. */
2323
2324static int
2325linux_low_ptrace_options (int attached)
2326{
2327 client_state &cs = get_client_state ();
2328 int options = 0;
2329
2330 if (!attached)
2331 options |= PTRACE_O_EXITKILL;
2332
2333 if (cs.report_fork_events)
2334 options |= PTRACE_O_TRACEFORK;
2335
2336 if (cs.report_vfork_events)
2337 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2338
2339 if (cs.report_exec_events)
2340 options |= PTRACE_O_TRACEEXEC;
2341
2342 options |= PTRACE_O_TRACESYSGOOD;
2343
2344 return options;
2345}
2346
2347/* Do low-level handling of the event, and check if we should go on
2348 and pass it to caller code. Return the affected lwp if we are, or
2349 NULL otherwise. */
2350
2351static struct lwp_info *
2352linux_low_filter_event (int lwpid, int wstat)
2353{
2354 client_state &cs = get_client_state ();
2355 struct lwp_info *child;
2356 struct thread_info *thread;
2357 int have_stop_pc = 0;
2358
2359 child = find_lwp_pid (ptid_t (lwpid));
2360
2361 /* Check for stop events reported by a process we didn't already
2362 know about - anything not already in our LWP list.
2363
2364 If we're expecting to receive stopped processes after
2365 fork, vfork, and clone events, then we'll just add the
2366 new one to our list and go back to waiting for the event
2367 to be reported - the stopped process might be returned
2368 from waitpid before or after the event is.
2369
2370 But note the case of a non-leader thread exec'ing after the
2371 leader having exited, and gone from our lists (because
2372 check_zombie_leaders deleted it). The non-leader thread
2373 changes its tid to the tgid. */
2374
2375 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2376 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2377 {
2378 ptid_t child_ptid;
2379
2380 /* A multi-thread exec after we had seen the leader exiting. */
2381 if (debug_threads)
2382 {
2383 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2384 "after exec.\n", lwpid);
2385 }
2386
2387 child_ptid = ptid_t (lwpid, lwpid, 0);
2388 child = add_lwp (child_ptid);
2389 child->stopped = 1;
2390 current_thread = child->thread;
2391 }
2392
2393 /* If we didn't find a process, one of two things presumably happened:
2394 - A process we started and then detached from has exited. Ignore it.
2395 - A process we are controlling has forked and the new child's stop
2396 was reported to us by the kernel. Save its PID. */
2397 if (child == NULL && WIFSTOPPED (wstat))
2398 {
2399 add_to_pid_list (&stopped_pids, lwpid, wstat);
2400 return NULL;
2401 }
2402 else if (child == NULL)
2403 return NULL;
2404
2405 thread = get_lwp_thread (child);
2406
2407 child->stopped = 1;
2408
2409 child->last_status = wstat;
2410
2411 /* Check if the thread has exited. */
2412 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2413 {
2414 if (debug_threads)
2415 debug_printf ("LLFE: %d exited.\n", lwpid);
2416
2417 if (finish_step_over (child))
2418 {
2419 /* Unsuspend all other LWPs, and set them back running again. */
2420 unsuspend_all_lwps (child);
2421 }
2422
2423 /* If there is at least one more LWP, then the exit signal was
2424 not the end of the debugged application and should be
2425 ignored, unless GDB wants to hear about thread exits. */
2426 if (cs.report_thread_events
2427 || last_thread_of_process_p (pid_of (thread)))
2428 {
2429 /* Since events are serialized to GDB core, and we can't
2430 report this one right now. Leave the status pending for
2431 the next time we're able to report it. */
2432 mark_lwp_dead (child, wstat);
2433 return child;
2434 }
2435 else
2436 {
2437 delete_lwp (child);
2438 return NULL;
2439 }
2440 }
2441
2442 gdb_assert (WIFSTOPPED (wstat));
2443
2444 if (WIFSTOPPED (wstat))
2445 {
2446 struct process_info *proc;
2447
2448 /* Architecture-specific setup after inferior is running. */
2449 proc = find_process_pid (pid_of (thread));
2450 if (proc->tdesc == NULL)
2451 {
2452 if (proc->attached)
2453 {
2454 /* This needs to happen after we have attached to the
2455 inferior and it is stopped for the first time, but
2456 before we access any inferior registers. */
2457 linux_arch_setup_thread (thread);
2458 }
2459 else
2460 {
2461 /* The process is started, but GDBserver will do
2462 architecture-specific setup after the program stops at
2463 the first instruction. */
2464 child->status_pending_p = 1;
2465 child->status_pending = wstat;
2466 return child;
2467 }
2468 }
2469 }
2470
2471 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2472 {
2473 struct process_info *proc = find_process_pid (pid_of (thread));
2474 int options = linux_low_ptrace_options (proc->attached);
2475
2476 linux_enable_event_reporting (lwpid, options);
2477 child->must_set_ptrace_flags = 0;
2478 }
2479
2480 /* Always update syscall_state, even if it will be filtered later. */
2481 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2482 {
2483 child->syscall_state
2484 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2485 ? TARGET_WAITKIND_SYSCALL_RETURN
2486 : TARGET_WAITKIND_SYSCALL_ENTRY);
2487 }
2488 else
2489 {
2490 /* Almost all other ptrace-stops are known to be outside of system
2491 calls, with further exceptions in handle_extended_wait. */
2492 child->syscall_state = TARGET_WAITKIND_IGNORE;
2493 }
2494
2495 /* Be careful to not overwrite stop_pc until save_stop_reason is
2496 called. */
2497 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2498 && linux_is_extended_waitstatus (wstat))
2499 {
2500 child->stop_pc = get_pc (child);
2501 if (handle_extended_wait (&child, wstat))
2502 {
2503 /* The event has been handled, so just return without
2504 reporting it. */
2505 return NULL;
2506 }
2507 }
2508
2509 if (linux_wstatus_maybe_breakpoint (wstat))
2510 {
2511 if (save_stop_reason (child))
2512 have_stop_pc = 1;
2513 }
2514
2515 if (!have_stop_pc)
2516 child->stop_pc = get_pc (child);
2517
2518 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2519 && child->stop_expected)
2520 {
2521 if (debug_threads)
2522 debug_printf ("Expected stop.\n");
2523 child->stop_expected = 0;
2524
2525 if (thread->last_resume_kind == resume_stop)
2526 {
2527 /* We want to report the stop to the core. Treat the
2528 SIGSTOP as a normal event. */
2529 if (debug_threads)
2530 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2531 target_pid_to_str (ptid_of (thread)));
2532 }
2533 else if (stopping_threads != NOT_STOPPING_THREADS)
2534 {
2535 /* Stopping threads. We don't want this SIGSTOP to end up
2536 pending. */
2537 if (debug_threads)
2538 debug_printf ("LLW: SIGSTOP caught for %s "
2539 "while stopping threads.\n",
2540 target_pid_to_str (ptid_of (thread)));
2541 return NULL;
2542 }
2543 else
2544 {
2545 /* This is a delayed SIGSTOP. Filter out the event. */
2546 if (debug_threads)
2547 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2548 child->stepping ? "step" : "continue",
2549 target_pid_to_str (ptid_of (thread)));
2550
2551 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2552 return NULL;
2553 }
2554 }
2555
2556 child->status_pending_p = 1;
2557 child->status_pending = wstat;
2558 return child;
2559}
2560
2561/* Return true if THREAD is doing hardware single step. */
2562
2563static int
2564maybe_hw_step (struct thread_info *thread)
2565{
2566 if (can_hardware_single_step ())
2567 return 1;
2568 else
2569 {
2570 /* GDBserver must insert single-step breakpoint for software
2571 single step. */
2572 gdb_assert (has_single_step_breakpoints (thread));
2573 return 0;
2574 }
2575}
2576
2577/* Resume LWPs that are currently stopped without any pending status
2578 to report, but are resumed from the core's perspective. */
2579
2580static void
2581resume_stopped_resumed_lwps (thread_info *thread)
2582{
2583 struct lwp_info *lp = get_thread_lwp (thread);
2584
2585 if (lp->stopped
2586 && !lp->suspended
2587 && !lp->status_pending_p
2588 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2589 {
2590 int step = 0;
2591
2592 if (thread->last_resume_kind == resume_step)
2593 step = maybe_hw_step (thread);
2594
2595 if (debug_threads)
2596 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2597 target_pid_to_str (ptid_of (thread)),
2598 paddress (lp->stop_pc),
2599 step);
2600
2601 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2602 }
2603}
2604
2605/* Wait for an event from child(ren) WAIT_PTID, and return any that
2606 match FILTER_PTID (leaving others pending). The PTIDs can be:
2607 minus_one_ptid, to specify any child; a pid PTID, specifying all
2608 lwps of a thread group; or a PTID representing a single lwp. Store
2609 the stop status through the status pointer WSTAT. OPTIONS is
2610 passed to the waitpid call. Return 0 if no event was found and
2611 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2612 was found. Return the PID of the stopped child otherwise. */
2613
2614static int
2615linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2616 int *wstatp, int options)
2617{
2618 struct thread_info *event_thread;
2619 struct lwp_info *event_child, *requested_child;
2620 sigset_t block_mask, prev_mask;
2621
2622 retry:
2623 /* N.B. event_thread points to the thread_info struct that contains
2624 event_child. Keep them in sync. */
2625 event_thread = NULL;
2626 event_child = NULL;
2627 requested_child = NULL;
2628
2629 /* Check for a lwp with a pending status. */
2630
2631 if (filter_ptid == minus_one_ptid || filter_ptid.is_pid ())
2632 {
2633 event_thread = find_thread_in_random ([&] (thread_info *thread)
2634 {
2635 return status_pending_p_callback (thread, filter_ptid);
2636 });
2637
2638 if (event_thread != NULL)
2639 event_child = get_thread_lwp (event_thread);
2640 if (debug_threads && event_thread)
2641 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2642 }
2643 else if (filter_ptid != null_ptid)
2644 {
2645 requested_child = find_lwp_pid (filter_ptid);
2646
2647 if (stopping_threads == NOT_STOPPING_THREADS
2648 && requested_child->status_pending_p
2649 && (requested_child->collecting_fast_tracepoint
2650 != fast_tpoint_collect_result::not_collecting))
2651 {
2652 enqueue_one_deferred_signal (requested_child,
2653 &requested_child->status_pending);
2654 requested_child->status_pending_p = 0;
2655 requested_child->status_pending = 0;
2656 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2657 }
2658
2659 if (requested_child->suspended
2660 && requested_child->status_pending_p)
2661 {
2662 internal_error (__FILE__, __LINE__,
2663 "requesting an event out of a"
2664 " suspended child?");
2665 }
2666
2667 if (requested_child->status_pending_p)
2668 {
2669 event_child = requested_child;
2670 event_thread = get_lwp_thread (event_child);
2671 }
2672 }
2673
2674 if (event_child != NULL)
2675 {
2676 if (debug_threads)
2677 debug_printf ("Got an event from pending child %ld (%04x)\n",
2678 lwpid_of (event_thread), event_child->status_pending);
2679 *wstatp = event_child->status_pending;
2680 event_child->status_pending_p = 0;
2681 event_child->status_pending = 0;
2682 current_thread = event_thread;
2683 return lwpid_of (event_thread);
2684 }
2685
2686 /* But if we don't find a pending event, we'll have to wait.
2687
2688 We only enter this loop if no process has a pending wait status.
2689 Thus any action taken in response to a wait status inside this
2690 loop is responding as soon as we detect the status, not after any
2691 pending events. */
2692
2693 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2694 all signals while here. */
2695 sigfillset (&block_mask);
2696 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2697
2698 /* Always pull all events out of the kernel. We'll randomly select
2699 an event LWP out of all that have events, to prevent
2700 starvation. */
2701 while (event_child == NULL)
2702 {
2703 pid_t ret = 0;
2704
2705 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2706 quirks:
2707
2708 - If the thread group leader exits while other threads in the
2709 thread group still exist, waitpid(TGID, ...) hangs. That
2710 waitpid won't return an exit status until the other threads
2711 in the group are reaped.
2712
2713 - When a non-leader thread execs, that thread just vanishes
2714 without reporting an exit (so we'd hang if we waited for it
2715 explicitly in that case). The exec event is reported to
2716 the TGID pid. */
2717 errno = 0;
2718 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2719
2720 if (debug_threads)
2721 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2722 ret, errno ? strerror (errno) : "ERRNO-OK");
2723
2724 if (ret > 0)
2725 {
2726 if (debug_threads)
2727 {
2728 debug_printf ("LLW: waitpid %ld received %s\n",
2729 (long) ret, status_to_str (*wstatp));
2730 }
2731
2732 /* Filter all events. IOW, leave all events pending. We'll
2733 randomly select an event LWP out of all that have events
2734 below. */
2735 linux_low_filter_event (ret, *wstatp);
2736 /* Retry until nothing comes out of waitpid. A single
2737 SIGCHLD can indicate more than one child stopped. */
2738 continue;
2739 }
2740
2741 /* Now that we've pulled all events out of the kernel, resume
2742 LWPs that don't have an interesting event to report. */
2743 if (stopping_threads == NOT_STOPPING_THREADS)
2744 for_each_thread (resume_stopped_resumed_lwps);
2745
2746 /* ... and find an LWP with a status to report to the core, if
2747 any. */
2748 event_thread = find_thread_in_random ([&] (thread_info *thread)
2749 {
2750 return status_pending_p_callback (thread, filter_ptid);
2751 });
2752
2753 if (event_thread != NULL)
2754 {
2755 event_child = get_thread_lwp (event_thread);
2756 *wstatp = event_child->status_pending;
2757 event_child->status_pending_p = 0;
2758 event_child->status_pending = 0;
2759 break;
2760 }
2761
2762 /* Check for zombie thread group leaders. Those can't be reaped
2763 until all other threads in the thread group are. */
2764 check_zombie_leaders ();
2765
2766 auto not_stopped = [&] (thread_info *thread)
2767 {
2768 return not_stopped_callback (thread, wait_ptid);
2769 };
2770
2771 /* If there are no resumed children left in the set of LWPs we
2772 want to wait for, bail. We can't just block in
2773 waitpid/sigsuspend, because lwps might have been left stopped
2774 in trace-stop state, and we'd be stuck forever waiting for
2775 their status to change (which would only happen if we resumed
2776 them). Even if WNOHANG is set, this return code is preferred
2777 over 0 (below), as it is more detailed. */
2778 if (find_thread (not_stopped) == NULL)
2779 {
2780 if (debug_threads)
2781 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2782 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2783 return -1;
2784 }
2785
2786 /* No interesting event to report to the caller. */
2787 if ((options & WNOHANG))
2788 {
2789 if (debug_threads)
2790 debug_printf ("WNOHANG set, no event found\n");
2791
2792 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2793 return 0;
2794 }
2795
2796 /* Block until we get an event reported with SIGCHLD. */
2797 if (debug_threads)
2798 debug_printf ("sigsuspend'ing\n");
2799
2800 sigsuspend (&prev_mask);
2801 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2802 goto retry;
2803 }
2804
2805 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2806
2807 current_thread = event_thread;
2808
2809 return lwpid_of (event_thread);
2810}
2811
2812/* Wait for an event from child(ren) PTID. PTIDs can be:
2813 minus_one_ptid, to specify any child; a pid PTID, specifying all
2814 lwps of a thread group; or a PTID representing a single lwp. Store
2815 the stop status through the status pointer WSTAT. OPTIONS is
2816 passed to the waitpid call. Return 0 if no event was found and
2817 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2818 was found. Return the PID of the stopped child otherwise. */
2819
2820static int
2821linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2822{
2823 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2824}
2825
2826/* Select one LWP out of those that have events pending. */
2827
2828static void
2829select_event_lwp (struct lwp_info **orig_lp)
2830{
2831 struct thread_info *event_thread = NULL;
2832
2833 /* In all-stop, give preference to the LWP that is being
2834 single-stepped. There will be at most one, and it's the LWP that
2835 the core is most interested in. If we didn't do this, then we'd
2836 have to handle pending step SIGTRAPs somehow in case the core
2837 later continues the previously-stepped thread, otherwise we'd
2838 report the pending SIGTRAP, and the core, not having stepped the
2839 thread, wouldn't understand what the trap was for, and therefore
2840 would report it to the user as a random signal. */
2841 if (!non_stop)
2842 {
2843 event_thread = find_thread ([] (thread_info *thread)
2844 {
2845 lwp_info *lp = get_thread_lwp (thread);
2846
2847 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2848 && thread->last_resume_kind == resume_step
2849 && lp->status_pending_p);
2850 });
2851
2852 if (event_thread != NULL)
2853 {
2854 if (debug_threads)
2855 debug_printf ("SEL: Select single-step %s\n",
2856 target_pid_to_str (ptid_of (event_thread)));
2857 }
2858 }
2859 if (event_thread == NULL)
2860 {
2861 /* No single-stepping LWP. Select one at random, out of those
2862 which have had events. */
2863
2864 event_thread = find_thread_in_random ([&] (thread_info *thread)
2865 {
2866 lwp_info *lp = get_thread_lwp (thread);
2867
2868 /* Only resumed LWPs that have an event pending. */
2869 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2870 && lp->status_pending_p);
2871 });
2872 }
2873
2874 if (event_thread != NULL)
2875 {
2876 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2877
2878 /* Switch the event LWP. */
2879 *orig_lp = event_lp;
2880 }
2881}
2882
2883/* Decrement the suspend count of all LWPs, except EXCEPT, if non
2884 NULL. */
2885
2886static void
2887unsuspend_all_lwps (struct lwp_info *except)
2888{
2889 for_each_thread ([&] (thread_info *thread)
2890 {
2891 lwp_info *lwp = get_thread_lwp (thread);
2892
2893 if (lwp != except)
2894 lwp_suspended_decr (lwp);
2895 });
2896}
2897
2898static void move_out_of_jump_pad_callback (thread_info *thread);
2899static bool stuck_in_jump_pad_callback (thread_info *thread);
2900static bool lwp_running (thread_info *thread);
2901static ptid_t linux_wait_1 (ptid_t ptid,
2902 struct target_waitstatus *ourstatus,
2903 int target_options);
2904
2905/* Stabilize threads (move out of jump pads).
2906
2907 If a thread is midway collecting a fast tracepoint, we need to
2908 finish the collection and move it out of the jump pad before
2909 reporting the signal.
2910
2911 This avoids recursion while collecting (when a signal arrives
2912 midway, and the signal handler itself collects), which would trash
2913 the trace buffer. In case the user set a breakpoint in a signal
2914 handler, this avoids the backtrace showing the jump pad, etc..
2915 Most importantly, there are certain things we can't do safely if
2916 threads are stopped in a jump pad (or in its callee's). For
2917 example:
2918
2919 - starting a new trace run. A thread still collecting the
2920 previous run, could trash the trace buffer when resumed. The trace
2921 buffer control structures would have been reset but the thread had
2922 no way to tell. The thread could even midway memcpy'ing to the
2923 buffer, which would mean that when resumed, it would clobber the
2924 trace buffer that had been set for a new run.
2925
2926 - we can't rewrite/reuse the jump pads for new tracepoints
2927 safely. Say you do tstart while a thread is stopped midway while
2928 collecting. When the thread is later resumed, it finishes the
2929 collection, and returns to the jump pad, to execute the original
2930 instruction that was under the tracepoint jump at the time the
2931 older run had been started. If the jump pad had been rewritten
2932 since for something else in the new run, the thread would now
2933 execute the wrong / random instructions. */
2934
2935static void
2936linux_stabilize_threads (void)
2937{
2938 thread_info *thread_stuck = find_thread (stuck_in_jump_pad_callback);
2939
2940 if (thread_stuck != NULL)
2941 {
2942 if (debug_threads)
2943 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2944 lwpid_of (thread_stuck));
2945 return;
2946 }
2947
2948 thread_info *saved_thread = current_thread;
2949
2950 stabilizing_threads = 1;
2951
2952 /* Kick 'em all. */
2953 for_each_thread (move_out_of_jump_pad_callback);
2954
2955 /* Loop until all are stopped out of the jump pads. */
2956 while (find_thread (lwp_running) != NULL)
2957 {
2958 struct target_waitstatus ourstatus;
2959 struct lwp_info *lwp;
2960 int wstat;
2961
2962 /* Note that we go through the full wait even loop. While
2963 moving threads out of jump pad, we need to be able to step
2964 over internal breakpoints and such. */
2965 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2966
2967 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2968 {
2969 lwp = get_thread_lwp (current_thread);
2970
2971 /* Lock it. */
2972 lwp_suspended_inc (lwp);
2973
2974 if (ourstatus.value.sig != GDB_SIGNAL_0
2975 || current_thread->last_resume_kind == resume_stop)
2976 {
2977 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2978 enqueue_one_deferred_signal (lwp, &wstat);
2979 }
2980 }
2981 }
2982
2983 unsuspend_all_lwps (NULL);
2984
2985 stabilizing_threads = 0;
2986
2987 current_thread = saved_thread;
2988
2989 if (debug_threads)
2990 {
2991 thread_stuck = find_thread (stuck_in_jump_pad_callback);
2992
2993 if (thread_stuck != NULL)
2994 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2995 lwpid_of (thread_stuck));
2996 }
2997}
2998
2999/* Convenience function that is called when the kernel reports an
3000 event that is not passed out to GDB. */
3001
3002static ptid_t
3003ignore_event (struct target_waitstatus *ourstatus)
3004{
3005 /* If we got an event, there may still be others, as a single
3006 SIGCHLD can indicate more than one child stopped. This forces
3007 another target_wait call. */
3008 async_file_mark ();
3009
3010 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3011 return null_ptid;
3012}
3013
3014/* Convenience function that is called when the kernel reports an exit
3015 event. This decides whether to report the event to GDB as a
3016 process exit event, a thread exit event, or to suppress the
3017 event. */
3018
3019static ptid_t
3020filter_exit_event (struct lwp_info *event_child,
3021 struct target_waitstatus *ourstatus)
3022{
3023 client_state &cs = get_client_state ();
3024 struct thread_info *thread = get_lwp_thread (event_child);
3025 ptid_t ptid = ptid_of (thread);
3026
3027 if (!last_thread_of_process_p (pid_of (thread)))
3028 {
3029 if (cs.report_thread_events)
3030 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3031 else
3032 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3033
3034 delete_lwp (event_child);
3035 }
3036 return ptid;
3037}
3038
3039/* Returns 1 if GDB is interested in any event_child syscalls. */
3040
3041static int
3042gdb_catching_syscalls_p (struct lwp_info *event_child)
3043{
3044 struct thread_info *thread = get_lwp_thread (event_child);
3045 struct process_info *proc = get_thread_process (thread);
3046
3047 return !proc->syscalls_to_catch.empty ();
3048}
3049
3050/* Returns 1 if GDB is interested in the event_child syscall.
3051 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3052
3053static int
3054gdb_catch_this_syscall_p (struct lwp_info *event_child)
3055{
3056 int sysno;
3057 struct thread_info *thread = get_lwp_thread (event_child);
3058 struct process_info *proc = get_thread_process (thread);
3059
3060 if (proc->syscalls_to_catch.empty ())
3061 return 0;
3062
3063 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
3064 return 1;
3065
3066 get_syscall_trapinfo (event_child, &sysno);
3067
3068 for (int iter : proc->syscalls_to_catch)
3069 if (iter == sysno)
3070 return 1;
3071
3072 return 0;
3073}
3074
3075/* Wait for process, returns status. */
3076
3077static ptid_t
3078linux_wait_1 (ptid_t ptid,
3079 struct target_waitstatus *ourstatus, int target_options)
3080{
3081 client_state &cs = get_client_state ();
3082 int w;
3083 struct lwp_info *event_child;
3084 int options;
3085 int pid;
3086 int step_over_finished;
3087 int bp_explains_trap;
3088 int maybe_internal_trap;
3089 int report_to_gdb;
3090 int trace_event;
3091 int in_step_range;
3092 int any_resumed;
3093
3094 if (debug_threads)
3095 {
3096 debug_enter ();
3097 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3098 }
3099
3100 /* Translate generic target options into linux options. */
3101 options = __WALL;
3102 if (target_options & TARGET_WNOHANG)
3103 options |= WNOHANG;
3104
3105 bp_explains_trap = 0;
3106 trace_event = 0;
3107 in_step_range = 0;
3108 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3109
3110 auto status_pending_p_any = [&] (thread_info *thread)
3111 {
3112 return status_pending_p_callback (thread, minus_one_ptid);
3113 };
3114
3115 auto not_stopped = [&] (thread_info *thread)
3116 {
3117 return not_stopped_callback (thread, minus_one_ptid);
3118 };
3119
3120 /* Find a resumed LWP, if any. */
3121 if (find_thread (status_pending_p_any) != NULL)
3122 any_resumed = 1;
3123 else if (find_thread (not_stopped) != NULL)
3124 any_resumed = 1;
3125 else
3126 any_resumed = 0;
3127
3128 if (step_over_bkpt == null_ptid)
3129 pid = linux_wait_for_event (ptid, &w, options);
3130 else
3131 {
3132 if (debug_threads)
3133 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3134 target_pid_to_str (step_over_bkpt));
3135 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3136 }
3137
3138 if (pid == 0 || (pid == -1 && !any_resumed))
3139 {
3140 gdb_assert (target_options & TARGET_WNOHANG);
3141
3142 if (debug_threads)
3143 {
3144 debug_printf ("linux_wait_1 ret = null_ptid, "
3145 "TARGET_WAITKIND_IGNORE\n");
3146 debug_exit ();
3147 }
3148
3149 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3150 return null_ptid;
3151 }
3152 else if (pid == -1)
3153 {
3154 if (debug_threads)
3155 {
3156 debug_printf ("linux_wait_1 ret = null_ptid, "
3157 "TARGET_WAITKIND_NO_RESUMED\n");
3158 debug_exit ();
3159 }
3160
3161 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3162 return null_ptid;
3163 }
3164
3165 event_child = get_thread_lwp (current_thread);
3166
3167 /* linux_wait_for_event only returns an exit status for the last
3168 child of a process. Report it. */
3169 if (WIFEXITED (w) || WIFSIGNALED (w))
3170 {
3171 if (WIFEXITED (w))
3172 {
3173 ourstatus->kind = TARGET_WAITKIND_EXITED;
3174 ourstatus->value.integer = WEXITSTATUS (w);
3175
3176 if (debug_threads)
3177 {
3178 debug_printf ("linux_wait_1 ret = %s, exited with "
3179 "retcode %d\n",
3180 target_pid_to_str (ptid_of (current_thread)),
3181 WEXITSTATUS (w));
3182 debug_exit ();
3183 }
3184 }
3185 else
3186 {
3187 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3188 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3189
3190 if (debug_threads)
3191 {
3192 debug_printf ("linux_wait_1 ret = %s, terminated with "
3193 "signal %d\n",
3194 target_pid_to_str (ptid_of (current_thread)),
3195 WTERMSIG (w));
3196 debug_exit ();
3197 }
3198 }
3199
3200 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3201 return filter_exit_event (event_child, ourstatus);
3202
3203 return ptid_of (current_thread);
3204 }
3205
3206 /* If step-over executes a breakpoint instruction, in the case of a
3207 hardware single step it means a gdb/gdbserver breakpoint had been
3208 planted on top of a permanent breakpoint, in the case of a software
3209 single step it may just mean that gdbserver hit the reinsert breakpoint.
3210 The PC has been adjusted by save_stop_reason to point at
3211 the breakpoint address.
3212 So in the case of the hardware single step advance the PC manually
3213 past the breakpoint and in the case of software single step advance only
3214 if it's not the single_step_breakpoint we are hitting.
3215 This avoids that a program would keep trapping a permanent breakpoint
3216 forever. */
3217 if (step_over_bkpt != null_ptid
3218 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3219 && (event_child->stepping
3220 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3221 {
3222 int increment_pc = 0;
3223 int breakpoint_kind = 0;
3224 CORE_ADDR stop_pc = event_child->stop_pc;
3225
3226 breakpoint_kind =
3227 the_target->breakpoint_kind_from_current_state (&stop_pc);
3228 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3229
3230 if (debug_threads)
3231 {
3232 debug_printf ("step-over for %s executed software breakpoint\n",
3233 target_pid_to_str (ptid_of (current_thread)));
3234 }
3235
3236 if (increment_pc != 0)
3237 {
3238 struct regcache *regcache
3239 = get_thread_regcache (current_thread, 1);
3240
3241 event_child->stop_pc += increment_pc;
3242 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3243
3244 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3245 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3246 }
3247 }
3248
3249 /* If this event was not handled before, and is not a SIGTRAP, we
3250 report it. SIGILL and SIGSEGV are also treated as traps in case
3251 a breakpoint is inserted at the current PC. If this target does
3252 not support internal breakpoints at all, we also report the
3253 SIGTRAP without further processing; it's of no concern to us. */
3254 maybe_internal_trap
3255 = (supports_breakpoints ()
3256 && (WSTOPSIG (w) == SIGTRAP
3257 || ((WSTOPSIG (w) == SIGILL
3258 || WSTOPSIG (w) == SIGSEGV)
3259 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3260
3261 if (maybe_internal_trap)
3262 {
3263 /* Handle anything that requires bookkeeping before deciding to
3264 report the event or continue waiting. */
3265
3266 /* First check if we can explain the SIGTRAP with an internal
3267 breakpoint, or if we should possibly report the event to GDB.
3268 Do this before anything that may remove or insert a
3269 breakpoint. */
3270 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3271
3272 /* We have a SIGTRAP, possibly a step-over dance has just
3273 finished. If so, tweak the state machine accordingly,
3274 reinsert breakpoints and delete any single-step
3275 breakpoints. */
3276 step_over_finished = finish_step_over (event_child);
3277
3278 /* Now invoke the callbacks of any internal breakpoints there. */
3279 check_breakpoints (event_child->stop_pc);
3280
3281 /* Handle tracepoint data collecting. This may overflow the
3282 trace buffer, and cause a tracing stop, removing
3283 breakpoints. */
3284 trace_event = handle_tracepoints (event_child);
3285
3286 if (bp_explains_trap)
3287 {
3288 if (debug_threads)
3289 debug_printf ("Hit a gdbserver breakpoint.\n");
3290 }
3291 }
3292 else
3293 {
3294 /* We have some other signal, possibly a step-over dance was in
3295 progress, and it should be cancelled too. */
3296 step_over_finished = finish_step_over (event_child);
3297 }
3298
3299 /* We have all the data we need. Either report the event to GDB, or
3300 resume threads and keep waiting for more. */
3301
3302 /* If we're collecting a fast tracepoint, finish the collection and
3303 move out of the jump pad before delivering a signal. See
3304 linux_stabilize_threads. */
3305
3306 if (WIFSTOPPED (w)
3307 && WSTOPSIG (w) != SIGTRAP
3308 && supports_fast_tracepoints ()
3309 && agent_loaded_p ())
3310 {
3311 if (debug_threads)
3312 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3313 "to defer or adjust it.\n",
3314 WSTOPSIG (w), lwpid_of (current_thread));
3315
3316 /* Allow debugging the jump pad itself. */
3317 if (current_thread->last_resume_kind != resume_step
3318 && maybe_move_out_of_jump_pad (event_child, &w))
3319 {
3320 enqueue_one_deferred_signal (event_child, &w);
3321
3322 if (debug_threads)
3323 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3324 WSTOPSIG (w), lwpid_of (current_thread));
3325
3326 linux_resume_one_lwp (event_child, 0, 0, NULL);
3327
3328 if (debug_threads)
3329 debug_exit ();
3330 return ignore_event (ourstatus);
3331 }
3332 }
3333
3334 if (event_child->collecting_fast_tracepoint
3335 != fast_tpoint_collect_result::not_collecting)
3336 {
3337 if (debug_threads)
3338 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3339 "Check if we're already there.\n",
3340 lwpid_of (current_thread),
3341 (int) event_child->collecting_fast_tracepoint);
3342
3343 trace_event = 1;
3344
3345 event_child->collecting_fast_tracepoint
3346 = linux_fast_tracepoint_collecting (event_child, NULL);
3347
3348 if (event_child->collecting_fast_tracepoint
3349 != fast_tpoint_collect_result::before_insn)
3350 {
3351 /* No longer need this breakpoint. */
3352 if (event_child->exit_jump_pad_bkpt != NULL)
3353 {
3354 if (debug_threads)
3355 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3356 "stopping all threads momentarily.\n");
3357
3358 /* Other running threads could hit this breakpoint.
3359 We don't handle moribund locations like GDB does,
3360 instead we always pause all threads when removing
3361 breakpoints, so that any step-over or
3362 decr_pc_after_break adjustment is always taken
3363 care of while the breakpoint is still
3364 inserted. */
3365 stop_all_lwps (1, event_child);
3366
3367 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3368 event_child->exit_jump_pad_bkpt = NULL;
3369
3370 unstop_all_lwps (1, event_child);
3371
3372 gdb_assert (event_child->suspended >= 0);
3373 }
3374 }
3375
3376 if (event_child->collecting_fast_tracepoint
3377 == fast_tpoint_collect_result::not_collecting)
3378 {
3379 if (debug_threads)
3380 debug_printf ("fast tracepoint finished "
3381 "collecting successfully.\n");
3382
3383 /* We may have a deferred signal to report. */
3384 if (dequeue_one_deferred_signal (event_child, &w))
3385 {
3386 if (debug_threads)
3387 debug_printf ("dequeued one signal.\n");
3388 }
3389 else
3390 {
3391 if (debug_threads)
3392 debug_printf ("no deferred signals.\n");
3393
3394 if (stabilizing_threads)
3395 {
3396 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3397 ourstatus->value.sig = GDB_SIGNAL_0;
3398
3399 if (debug_threads)
3400 {
3401 debug_printf ("linux_wait_1 ret = %s, stopped "
3402 "while stabilizing threads\n",
3403 target_pid_to_str (ptid_of (current_thread)));
3404 debug_exit ();
3405 }
3406
3407 return ptid_of (current_thread);
3408 }
3409 }
3410 }
3411 }
3412
3413 /* Check whether GDB would be interested in this event. */
3414
3415 /* Check if GDB is interested in this syscall. */
3416 if (WIFSTOPPED (w)
3417 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3418 && !gdb_catch_this_syscall_p (event_child))
3419 {
3420 if (debug_threads)
3421 {
3422 debug_printf ("Ignored syscall for LWP %ld.\n",
3423 lwpid_of (current_thread));
3424 }
3425
3426 linux_resume_one_lwp (event_child, event_child->stepping,
3427 0, NULL);
3428
3429 if (debug_threads)
3430 debug_exit ();
3431 return ignore_event (ourstatus);
3432 }
3433
3434 /* If GDB is not interested in this signal, don't stop other
3435 threads, and don't report it to GDB. Just resume the inferior
3436 right away. We do this for threading-related signals as well as
3437 any that GDB specifically requested we ignore. But never ignore
3438 SIGSTOP if we sent it ourselves, and do not ignore signals when
3439 stepping - they may require special handling to skip the signal
3440 handler. Also never ignore signals that could be caused by a
3441 breakpoint. */
3442 if (WIFSTOPPED (w)
3443 && current_thread->last_resume_kind != resume_step
3444 && (
3445#if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3446 (current_process ()->priv->thread_db != NULL
3447 && (WSTOPSIG (w) == __SIGRTMIN
3448 || WSTOPSIG (w) == __SIGRTMIN + 1))
3449 ||
3450#endif
3451 (cs.pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3452 && !(WSTOPSIG (w) == SIGSTOP
3453 && current_thread->last_resume_kind == resume_stop)
3454 && !linux_wstatus_maybe_breakpoint (w))))
3455 {
3456 siginfo_t info, *info_p;
3457
3458 if (debug_threads)
3459 debug_printf ("Ignored signal %d for LWP %ld.\n",
3460 WSTOPSIG (w), lwpid_of (current_thread));
3461
3462 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3463 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3464 info_p = &info;
3465 else
3466 info_p = NULL;
3467
3468 if (step_over_finished)
3469 {
3470 /* We cancelled this thread's step-over above. We still
3471 need to unsuspend all other LWPs, and set them back
3472 running again while the signal handler runs. */
3473 unsuspend_all_lwps (event_child);
3474
3475 /* Enqueue the pending signal info so that proceed_all_lwps
3476 doesn't lose it. */
3477 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3478
3479 proceed_all_lwps ();
3480 }
3481 else
3482 {
3483 linux_resume_one_lwp (event_child, event_child->stepping,
3484 WSTOPSIG (w), info_p);
3485 }
3486
3487 if (debug_threads)
3488 debug_exit ();
3489
3490 return ignore_event (ourstatus);
3491 }
3492
3493 /* Note that all addresses are always "out of the step range" when
3494 there's no range to begin with. */
3495 in_step_range = lwp_in_step_range (event_child);
3496
3497 /* If GDB wanted this thread to single step, and the thread is out
3498 of the step range, we always want to report the SIGTRAP, and let
3499 GDB handle it. Watchpoints should always be reported. So should
3500 signals we can't explain. A SIGTRAP we can't explain could be a
3501 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3502 do, we're be able to handle GDB breakpoints on top of internal
3503 breakpoints, by handling the internal breakpoint and still
3504 reporting the event to GDB. If we don't, we're out of luck, GDB
3505 won't see the breakpoint hit. If we see a single-step event but
3506 the thread should be continuing, don't pass the trap to gdb.
3507 That indicates that we had previously finished a single-step but
3508 left the single-step pending -- see
3509 complete_ongoing_step_over. */
3510 report_to_gdb = (!maybe_internal_trap
3511 || (current_thread->last_resume_kind == resume_step
3512 && !in_step_range)
3513 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3514 || (!in_step_range
3515 && !bp_explains_trap
3516 && !trace_event
3517 && !step_over_finished
3518 && !(current_thread->last_resume_kind == resume_continue
3519 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3520 || (gdb_breakpoint_here (event_child->stop_pc)
3521 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3522 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3523 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3524
3525 run_breakpoint_commands (event_child->stop_pc);
3526
3527 /* We found no reason GDB would want us to stop. We either hit one
3528 of our own breakpoints, or finished an internal step GDB
3529 shouldn't know about. */
3530 if (!report_to_gdb)
3531 {
3532 if (debug_threads)
3533 {
3534 if (bp_explains_trap)
3535 debug_printf ("Hit a gdbserver breakpoint.\n");
3536 if (step_over_finished)
3537 debug_printf ("Step-over finished.\n");
3538 if (trace_event)
3539 debug_printf ("Tracepoint event.\n");
3540 if (lwp_in_step_range (event_child))
3541 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3542 paddress (event_child->stop_pc),
3543 paddress (event_child->step_range_start),
3544 paddress (event_child->step_range_end));
3545 }
3546
3547 /* We're not reporting this breakpoint to GDB, so apply the
3548 decr_pc_after_break adjustment to the inferior's regcache
3549 ourselves. */
3550
3551 if (the_low_target.set_pc != NULL)
3552 {
3553 struct regcache *regcache
3554 = get_thread_regcache (current_thread, 1);
3555 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3556 }
3557
3558 if (step_over_finished)
3559 {
3560 /* If we have finished stepping over a breakpoint, we've
3561 stopped and suspended all LWPs momentarily except the
3562 stepping one. This is where we resume them all again.
3563 We're going to keep waiting, so use proceed, which
3564 handles stepping over the next breakpoint. */
3565 unsuspend_all_lwps (event_child);
3566 }
3567 else
3568 {
3569 /* Remove the single-step breakpoints if any. Note that
3570 there isn't single-step breakpoint if we finished stepping
3571 over. */
3572 if (can_software_single_step ()
3573 && has_single_step_breakpoints (current_thread))
3574 {
3575 stop_all_lwps (0, event_child);
3576 delete_single_step_breakpoints (current_thread);
3577 unstop_all_lwps (0, event_child);
3578 }
3579 }
3580
3581 if (debug_threads)
3582 debug_printf ("proceeding all threads.\n");
3583 proceed_all_lwps ();
3584
3585 if (debug_threads)
3586 debug_exit ();
3587
3588 return ignore_event (ourstatus);
3589 }
3590
3591 if (debug_threads)
3592 {
3593 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3594 {
3595 std::string str
3596 = target_waitstatus_to_string (&event_child->waitstatus);
3597
3598 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3599 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3600 }
3601 if (current_thread->last_resume_kind == resume_step)
3602 {
3603 if (event_child->step_range_start == event_child->step_range_end)
3604 debug_printf ("GDB wanted to single-step, reporting event.\n");
3605 else if (!lwp_in_step_range (event_child))
3606 debug_printf ("Out of step range, reporting event.\n");
3607 }
3608 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3609 debug_printf ("Stopped by watchpoint.\n");
3610 else if (gdb_breakpoint_here (event_child->stop_pc))
3611 debug_printf ("Stopped by GDB breakpoint.\n");
3612 if (debug_threads)
3613 debug_printf ("Hit a non-gdbserver trap event.\n");
3614 }
3615
3616 /* Alright, we're going to report a stop. */
3617
3618 /* Remove single-step breakpoints. */
3619 if (can_software_single_step ())
3620 {
3621 /* Remove single-step breakpoints or not. It it is true, stop all
3622 lwps, so that other threads won't hit the breakpoint in the
3623 staled memory. */
3624 int remove_single_step_breakpoints_p = 0;
3625
3626 if (non_stop)
3627 {
3628 remove_single_step_breakpoints_p
3629 = has_single_step_breakpoints (current_thread);
3630 }
3631 else
3632 {
3633 /* In all-stop, a stop reply cancels all previous resume
3634 requests. Delete all single-step breakpoints. */
3635
3636 find_thread ([&] (thread_info *thread) {
3637 if (has_single_step_breakpoints (thread))
3638 {
3639 remove_single_step_breakpoints_p = 1;
3640 return true;
3641 }
3642
3643 return false;
3644 });
3645 }
3646
3647 if (remove_single_step_breakpoints_p)
3648 {
3649 /* If we remove single-step breakpoints from memory, stop all lwps,
3650 so that other threads won't hit the breakpoint in the staled
3651 memory. */
3652 stop_all_lwps (0, event_child);
3653
3654 if (non_stop)
3655 {
3656 gdb_assert (has_single_step_breakpoints (current_thread));
3657 delete_single_step_breakpoints (current_thread);
3658 }
3659 else
3660 {
3661 for_each_thread ([] (thread_info *thread){
3662 if (has_single_step_breakpoints (thread))
3663 delete_single_step_breakpoints (thread);
3664 });
3665 }
3666
3667 unstop_all_lwps (0, event_child);
3668 }
3669 }
3670
3671 if (!stabilizing_threads)
3672 {
3673 /* In all-stop, stop all threads. */
3674 if (!non_stop)
3675 stop_all_lwps (0, NULL);
3676
3677 if (step_over_finished)
3678 {
3679 if (!non_stop)
3680 {
3681 /* If we were doing a step-over, all other threads but
3682 the stepping one had been paused in start_step_over,
3683 with their suspend counts incremented. We don't want
3684 to do a full unstop/unpause, because we're in
3685 all-stop mode (so we want threads stopped), but we
3686 still need to unsuspend the other threads, to
3687 decrement their `suspended' count back. */
3688 unsuspend_all_lwps (event_child);
3689 }
3690 else
3691 {
3692 /* If we just finished a step-over, then all threads had
3693 been momentarily paused. In all-stop, that's fine,
3694 we want threads stopped by now anyway. In non-stop,
3695 we need to re-resume threads that GDB wanted to be
3696 running. */
3697 unstop_all_lwps (1, event_child);
3698 }
3699 }
3700
3701 /* If we're not waiting for a specific LWP, choose an event LWP
3702 from among those that have had events. Giving equal priority
3703 to all LWPs that have had events helps prevent
3704 starvation. */
3705 if (ptid == minus_one_ptid)
3706 {
3707 event_child->status_pending_p = 1;
3708 event_child->status_pending = w;
3709
3710 select_event_lwp (&event_child);
3711
3712 /* current_thread and event_child must stay in sync. */
3713 current_thread = get_lwp_thread (event_child);
3714
3715 event_child->status_pending_p = 0;
3716 w = event_child->status_pending;
3717 }
3718
3719
3720 /* Stabilize threads (move out of jump pads). */
3721 if (!non_stop)
3722 stabilize_threads ();
3723 }
3724 else
3725 {
3726 /* If we just finished a step-over, then all threads had been
3727 momentarily paused. In all-stop, that's fine, we want
3728 threads stopped by now anyway. In non-stop, we need to
3729 re-resume threads that GDB wanted to be running. */
3730 if (step_over_finished)
3731 unstop_all_lwps (1, event_child);
3732 }
3733
3734 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3735 {
3736 /* If the reported event is an exit, fork, vfork or exec, let
3737 GDB know. */
3738
3739 /* Break the unreported fork relationship chain. */
3740 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3741 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3742 {
3743 event_child->fork_relative->fork_relative = NULL;
3744 event_child->fork_relative = NULL;
3745 }
3746
3747 *ourstatus = event_child->waitstatus;
3748 /* Clear the event lwp's waitstatus since we handled it already. */
3749 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3750 }
3751 else
3752 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3753
3754 /* Now that we've selected our final event LWP, un-adjust its PC if
3755 it was a software breakpoint, and the client doesn't know we can
3756 adjust the breakpoint ourselves. */
3757 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3758 && !cs.swbreak_feature)
3759 {
3760 int decr_pc = the_low_target.decr_pc_after_break;
3761
3762 if (decr_pc != 0)
3763 {
3764 struct regcache *regcache
3765 = get_thread_regcache (current_thread, 1);
3766 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3767 }
3768 }
3769
3770 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3771 {
3772 get_syscall_trapinfo (event_child,
3773 &ourstatus->value.syscall_number);
3774 ourstatus->kind = event_child->syscall_state;
3775 }
3776 else if (current_thread->last_resume_kind == resume_stop
3777 && WSTOPSIG (w) == SIGSTOP)
3778 {
3779 /* A thread that has been requested to stop by GDB with vCont;t,
3780 and it stopped cleanly, so report as SIG0. The use of
3781 SIGSTOP is an implementation detail. */
3782 ourstatus->value.sig = GDB_SIGNAL_0;
3783 }
3784 else if (current_thread->last_resume_kind == resume_stop
3785 && WSTOPSIG (w) != SIGSTOP)
3786 {
3787 /* A thread that has been requested to stop by GDB with vCont;t,
3788 but, it stopped for other reasons. */
3789 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3790 }
3791 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3792 {
3793 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3794 }
3795
3796 gdb_assert (step_over_bkpt == null_ptid);
3797
3798 if (debug_threads)
3799 {
3800 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3801 target_pid_to_str (ptid_of (current_thread)),
3802 ourstatus->kind, ourstatus->value.sig);
3803 debug_exit ();
3804 }
3805
3806 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3807 return filter_exit_event (event_child, ourstatus);
3808
3809 return ptid_of (current_thread);
3810}
3811
3812/* Get rid of any pending event in the pipe. */
3813static void
3814async_file_flush (void)
3815{
3816 int ret;
3817 char buf;
3818
3819 do
3820 ret = read (linux_event_pipe[0], &buf, 1);
3821 while (ret >= 0 || (ret == -1 && errno == EINTR));
3822}
3823
3824/* Put something in the pipe, so the event loop wakes up. */
3825static void
3826async_file_mark (void)
3827{
3828 int ret;
3829
3830 async_file_flush ();
3831
3832 do
3833 ret = write (linux_event_pipe[1], "+", 1);
3834 while (ret == 0 || (ret == -1 && errno == EINTR));
3835
3836 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3837 be awakened anyway. */
3838}
3839
3840static ptid_t
3841linux_wait (ptid_t ptid,
3842 struct target_waitstatus *ourstatus, int target_options)
3843{
3844 ptid_t event_ptid;
3845
3846 /* Flush the async file first. */
3847 if (target_is_async_p ())
3848 async_file_flush ();
3849
3850 do
3851 {
3852 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3853 }
3854 while ((target_options & TARGET_WNOHANG) == 0
3855 && event_ptid == null_ptid
3856 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3857
3858 /* If at least one stop was reported, there may be more. A single
3859 SIGCHLD can signal more than one child stop. */
3860 if (target_is_async_p ()
3861 && (target_options & TARGET_WNOHANG) != 0
3862 && event_ptid != null_ptid)
3863 async_file_mark ();
3864
3865 return event_ptid;
3866}
3867
3868/* Send a signal to an LWP. */
3869
3870static int
3871kill_lwp (unsigned long lwpid, int signo)
3872{
3873 int ret;
3874
3875 errno = 0;
3876 ret = syscall (__NR_tkill, lwpid, signo);
3877 if (errno == ENOSYS)
3878 {
3879 /* If tkill fails, then we are not using nptl threads, a
3880 configuration we no longer support. */
3881 perror_with_name (("tkill"));
3882 }
3883 return ret;
3884}
3885
3886void
3887linux_stop_lwp (struct lwp_info *lwp)
3888{
3889 send_sigstop (lwp);
3890}
3891
3892static void
3893send_sigstop (struct lwp_info *lwp)
3894{
3895 int pid;
3896
3897 pid = lwpid_of (get_lwp_thread (lwp));
3898
3899 /* If we already have a pending stop signal for this process, don't
3900 send another. */
3901 if (lwp->stop_expected)
3902 {
3903 if (debug_threads)
3904 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3905
3906 return;
3907 }
3908
3909 if (debug_threads)
3910 debug_printf ("Sending sigstop to lwp %d\n", pid);
3911
3912 lwp->stop_expected = 1;
3913 kill_lwp (pid, SIGSTOP);
3914}
3915
3916static void
3917send_sigstop (thread_info *thread, lwp_info *except)
3918{
3919 struct lwp_info *lwp = get_thread_lwp (thread);
3920
3921 /* Ignore EXCEPT. */
3922 if (lwp == except)
3923 return;
3924
3925 if (lwp->stopped)
3926 return;
3927
3928 send_sigstop (lwp);
3929}
3930
3931/* Increment the suspend count of an LWP, and stop it, if not stopped
3932 yet. */
3933static void
3934suspend_and_send_sigstop (thread_info *thread, lwp_info *except)
3935{
3936 struct lwp_info *lwp = get_thread_lwp (thread);
3937
3938 /* Ignore EXCEPT. */
3939 if (lwp == except)
3940 return;
3941
3942 lwp_suspended_inc (lwp);
3943
3944 send_sigstop (thread, except);
3945}
3946
3947static void
3948mark_lwp_dead (struct lwp_info *lwp, int wstat)
3949{
3950 /* Store the exit status for later. */
3951 lwp->status_pending_p = 1;
3952 lwp->status_pending = wstat;
3953
3954 /* Store in waitstatus as well, as there's nothing else to process
3955 for this event. */
3956 if (WIFEXITED (wstat))
3957 {
3958 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3959 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3960 }
3961 else if (WIFSIGNALED (wstat))
3962 {
3963 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3964 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3965 }
3966
3967 /* Prevent trying to stop it. */
3968 lwp->stopped = 1;
3969
3970 /* No further stops are expected from a dead lwp. */
3971 lwp->stop_expected = 0;
3972}
3973
3974/* Return true if LWP has exited already, and has a pending exit event
3975 to report to GDB. */
3976
3977static int
3978lwp_is_marked_dead (struct lwp_info *lwp)
3979{
3980 return (lwp->status_pending_p
3981 && (WIFEXITED (lwp->status_pending)
3982 || WIFSIGNALED (lwp->status_pending)));
3983}
3984
3985/* Wait for all children to stop for the SIGSTOPs we just queued. */
3986
3987static void
3988wait_for_sigstop (void)
3989{
3990 struct thread_info *saved_thread;
3991 ptid_t saved_tid;
3992 int wstat;
3993 int ret;
3994
3995 saved_thread = current_thread;
3996 if (saved_thread != NULL)
3997 saved_tid = saved_thread->id;
3998 else
3999 saved_tid = null_ptid; /* avoid bogus unused warning */
4000
4001 if (debug_threads)
4002 debug_printf ("wait_for_sigstop: pulling events\n");
4003
4004 /* Passing NULL_PTID as filter indicates we want all events to be
4005 left pending. Eventually this returns when there are no
4006 unwaited-for children left. */
4007 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4008 &wstat, __WALL);
4009 gdb_assert (ret == -1);
4010
4011 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4012 current_thread = saved_thread;
4013 else
4014 {
4015 if (debug_threads)
4016 debug_printf ("Previously current thread died.\n");
4017
4018 /* We can't change the current inferior behind GDB's back,
4019 otherwise, a subsequent command may apply to the wrong
4020 process. */
4021 current_thread = NULL;
4022 }
4023}
4024
4025/* Returns true if THREAD is stopped in a jump pad, and we can't
4026 move it out, because we need to report the stop event to GDB. For
4027 example, if the user puts a breakpoint in the jump pad, it's
4028 because she wants to debug it. */
4029
4030static bool
4031stuck_in_jump_pad_callback (thread_info *thread)
4032{
4033 struct lwp_info *lwp = get_thread_lwp (thread);
4034
4035 if (lwp->suspended != 0)
4036 {
4037 internal_error (__FILE__, __LINE__,
4038 "LWP %ld is suspended, suspended=%d\n",
4039 lwpid_of (thread), lwp->suspended);
4040 }
4041 gdb_assert (lwp->stopped);
4042
4043 /* Allow debugging the jump pad, gdb_collect, etc.. */
4044 return (supports_fast_tracepoints ()
4045 && agent_loaded_p ()
4046 && (gdb_breakpoint_here (lwp->stop_pc)
4047 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4048 || thread->last_resume_kind == resume_step)
4049 && (linux_fast_tracepoint_collecting (lwp, NULL)
4050 != fast_tpoint_collect_result::not_collecting));
4051}
4052
4053static void
4054move_out_of_jump_pad_callback (thread_info *thread)
4055{
4056 struct thread_info *saved_thread;
4057 struct lwp_info *lwp = get_thread_lwp (thread);
4058 int *wstat;
4059
4060 if (lwp->suspended != 0)
4061 {
4062 internal_error (__FILE__, __LINE__,
4063 "LWP %ld is suspended, suspended=%d\n",
4064 lwpid_of (thread), lwp->suspended);
4065 }
4066 gdb_assert (lwp->stopped);
4067
4068 /* For gdb_breakpoint_here. */
4069 saved_thread = current_thread;
4070 current_thread = thread;
4071
4072 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4073
4074 /* Allow debugging the jump pad, gdb_collect, etc. */
4075 if (!gdb_breakpoint_here (lwp->stop_pc)
4076 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4077 && thread->last_resume_kind != resume_step
4078 && maybe_move_out_of_jump_pad (lwp, wstat))
4079 {
4080 if (debug_threads)
4081 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4082 lwpid_of (thread));
4083
4084 if (wstat)
4085 {
4086 lwp->status_pending_p = 0;
4087 enqueue_one_deferred_signal (lwp, wstat);
4088
4089 if (debug_threads)
4090 debug_printf ("Signal %d for LWP %ld deferred "
4091 "(in jump pad)\n",
4092 WSTOPSIG (*wstat), lwpid_of (thread));
4093 }
4094
4095 linux_resume_one_lwp (lwp, 0, 0, NULL);
4096 }
4097 else
4098 lwp_suspended_inc (lwp);
4099
4100 current_thread = saved_thread;
4101}
4102
4103static bool
4104lwp_running (thread_info *thread)
4105{
4106 struct lwp_info *lwp = get_thread_lwp (thread);
4107
4108 if (lwp_is_marked_dead (lwp))
4109 return false;
4110
4111 return !lwp->stopped;
4112}
4113
4114/* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4115 If SUSPEND, then also increase the suspend count of every LWP,
4116 except EXCEPT. */
4117
4118static void
4119stop_all_lwps (int suspend, struct lwp_info *except)
4120{
4121 /* Should not be called recursively. */
4122 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4123
4124 if (debug_threads)
4125 {
4126 debug_enter ();
4127 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4128 suspend ? "stop-and-suspend" : "stop",
4129 except != NULL
4130 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4131 : "none");
4132 }
4133
4134 stopping_threads = (suspend
4135 ? STOPPING_AND_SUSPENDING_THREADS
4136 : STOPPING_THREADS);
4137
4138 if (suspend)
4139 for_each_thread ([&] (thread_info *thread)
4140 {
4141 suspend_and_send_sigstop (thread, except);
4142 });
4143 else
4144 for_each_thread ([&] (thread_info *thread)
4145 {
4146 send_sigstop (thread, except);
4147 });
4148
4149 wait_for_sigstop ();
4150 stopping_threads = NOT_STOPPING_THREADS;
4151
4152 if (debug_threads)
4153 {
4154 debug_printf ("stop_all_lwps done, setting stopping_threads "
4155 "back to !stopping\n");
4156 debug_exit ();
4157 }
4158}
4159
4160/* Enqueue one signal in the chain of signals which need to be
4161 delivered to this process on next resume. */
4162
4163static void
4164enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4165{
4166 struct pending_signals *p_sig = XNEW (struct pending_signals);
4167
4168 p_sig->prev = lwp->pending_signals;
4169 p_sig->signal = signal;
4170 if (info == NULL)
4171 memset (&p_sig->info, 0, sizeof (siginfo_t));
4172 else
4173 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4174 lwp->pending_signals = p_sig;
4175}
4176
4177/* Install breakpoints for software single stepping. */
4178
4179static void
4180install_software_single_step_breakpoints (struct lwp_info *lwp)
4181{
4182 struct thread_info *thread = get_lwp_thread (lwp);
4183 struct regcache *regcache = get_thread_regcache (thread, 1);
4184
4185 scoped_restore save_current_thread = make_scoped_restore (&current_thread);
4186
4187 current_thread = thread;
4188 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4189
4190 for (CORE_ADDR pc : next_pcs)
4191 set_single_step_breakpoint (pc, current_ptid);
4192}
4193
4194/* Single step via hardware or software single step.
4195 Return 1 if hardware single stepping, 0 if software single stepping
4196 or can't single step. */
4197
4198static int
4199single_step (struct lwp_info* lwp)
4200{
4201 int step = 0;
4202
4203 if (can_hardware_single_step ())
4204 {
4205 step = 1;
4206 }
4207 else if (can_software_single_step ())
4208 {
4209 install_software_single_step_breakpoints (lwp);
4210 step = 0;
4211 }
4212 else
4213 {
4214 if (debug_threads)
4215 debug_printf ("stepping is not implemented on this target");
4216 }
4217
4218 return step;
4219}
4220
4221/* The signal can be delivered to the inferior if we are not trying to
4222 finish a fast tracepoint collect. Since signal can be delivered in
4223 the step-over, the program may go to signal handler and trap again
4224 after return from the signal handler. We can live with the spurious
4225 double traps. */
4226
4227static int
4228lwp_signal_can_be_delivered (struct lwp_info *lwp)
4229{
4230 return (lwp->collecting_fast_tracepoint
4231 == fast_tpoint_collect_result::not_collecting);
4232}
4233
4234/* Resume execution of LWP. If STEP is nonzero, single-step it. If
4235 SIGNAL is nonzero, give it that signal. */
4236
4237static void
4238linux_resume_one_lwp_throw (struct lwp_info *lwp,
4239 int step, int signal, siginfo_t *info)
4240{
4241 struct thread_info *thread = get_lwp_thread (lwp);
4242 struct thread_info *saved_thread;
4243 int ptrace_request;
4244 struct process_info *proc = get_thread_process (thread);
4245
4246 /* Note that target description may not be initialised
4247 (proc->tdesc == NULL) at this point because the program hasn't
4248 stopped at the first instruction yet. It means GDBserver skips
4249 the extra traps from the wrapper program (see option --wrapper).
4250 Code in this function that requires register access should be
4251 guarded by proc->tdesc == NULL or something else. */
4252
4253 if (lwp->stopped == 0)
4254 return;
4255
4256 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4257
4258 fast_tpoint_collect_result fast_tp_collecting
4259 = lwp->collecting_fast_tracepoint;
4260
4261 gdb_assert (!stabilizing_threads
4262 || (fast_tp_collecting
4263 != fast_tpoint_collect_result::not_collecting));
4264
4265 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4266 user used the "jump" command, or "set $pc = foo"). */
4267 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4268 {
4269 /* Collecting 'while-stepping' actions doesn't make sense
4270 anymore. */
4271 release_while_stepping_state_list (thread);
4272 }
4273
4274 /* If we have pending signals or status, and a new signal, enqueue the
4275 signal. Also enqueue the signal if it can't be delivered to the
4276 inferior right now. */
4277 if (signal != 0
4278 && (lwp->status_pending_p
4279 || lwp->pending_signals != NULL
4280 || !lwp_signal_can_be_delivered (lwp)))
4281 {
4282 enqueue_pending_signal (lwp, signal, info);
4283
4284 /* Postpone any pending signal. It was enqueued above. */
4285 signal = 0;
4286 }
4287
4288 if (lwp->status_pending_p)
4289 {
4290 if (debug_threads)
4291 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4292 " has pending status\n",
4293 lwpid_of (thread), step ? "step" : "continue",
4294 lwp->stop_expected ? "expected" : "not expected");
4295 return;
4296 }
4297
4298 saved_thread = current_thread;
4299 current_thread = thread;
4300
4301 /* This bit needs some thinking about. If we get a signal that
4302 we must report while a single-step reinsert is still pending,
4303 we often end up resuming the thread. It might be better to
4304 (ew) allow a stack of pending events; then we could be sure that
4305 the reinsert happened right away and not lose any signals.
4306
4307 Making this stack would also shrink the window in which breakpoints are
4308 uninserted (see comment in linux_wait_for_lwp) but not enough for
4309 complete correctness, so it won't solve that problem. It may be
4310 worthwhile just to solve this one, however. */
4311 if (lwp->bp_reinsert != 0)
4312 {
4313 if (debug_threads)
4314 debug_printf (" pending reinsert at 0x%s\n",
4315 paddress (lwp->bp_reinsert));
4316
4317 if (can_hardware_single_step ())
4318 {
4319 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4320 {
4321 if (step == 0)
4322 warning ("BAD - reinserting but not stepping.");
4323 if (lwp->suspended)
4324 warning ("BAD - reinserting and suspended(%d).",
4325 lwp->suspended);
4326 }
4327 }
4328
4329 step = maybe_hw_step (thread);
4330 }
4331
4332 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4333 {
4334 if (debug_threads)
4335 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4336 " (exit-jump-pad-bkpt)\n",
4337 lwpid_of (thread));
4338 }
4339 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4340 {
4341 if (debug_threads)
4342 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4343 " single-stepping\n",
4344 lwpid_of (thread));
4345
4346 if (can_hardware_single_step ())
4347 step = 1;
4348 else
4349 {
4350 internal_error (__FILE__, __LINE__,
4351 "moving out of jump pad single-stepping"
4352 " not implemented on this target");
4353 }
4354 }
4355
4356 /* If we have while-stepping actions in this thread set it stepping.
4357 If we have a signal to deliver, it may or may not be set to
4358 SIG_IGN, we don't know. Assume so, and allow collecting
4359 while-stepping into a signal handler. A possible smart thing to
4360 do would be to set an internal breakpoint at the signal return
4361 address, continue, and carry on catching this while-stepping
4362 action only when that breakpoint is hit. A future
4363 enhancement. */
4364 if (thread->while_stepping != NULL)
4365 {
4366 if (debug_threads)
4367 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4368 lwpid_of (thread));
4369
4370 step = single_step (lwp);
4371 }
4372
4373 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4374 {
4375 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4376
4377 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4378
4379 if (debug_threads)
4380 {
4381 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4382 (long) lwp->stop_pc);
4383 }
4384 }
4385
4386 /* If we have pending signals, consume one if it can be delivered to
4387 the inferior. */
4388 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4389 {
4390 struct pending_signals **p_sig;
4391
4392 p_sig = &lwp->pending_signals;
4393 while ((*p_sig)->prev != NULL)
4394 p_sig = &(*p_sig)->prev;
4395
4396 signal = (*p_sig)->signal;
4397 if ((*p_sig)->info.si_signo != 0)
4398 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4399 &(*p_sig)->info);
4400
4401 free (*p_sig);
4402 *p_sig = NULL;
4403 }
4404
4405 if (debug_threads)
4406 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4407 lwpid_of (thread), step ? "step" : "continue", signal,
4408 lwp->stop_expected ? "expected" : "not expected");
4409
4410 if (the_low_target.prepare_to_resume != NULL)
4411 the_low_target.prepare_to_resume (lwp);
4412
4413 regcache_invalidate_thread (thread);
4414 errno = 0;
4415 lwp->stepping = step;
4416 if (step)
4417 ptrace_request = PTRACE_SINGLESTEP;
4418 else if (gdb_catching_syscalls_p (lwp))
4419 ptrace_request = PTRACE_SYSCALL;
4420 else
4421 ptrace_request = PTRACE_CONT;
4422 ptrace (ptrace_request,
4423 lwpid_of (thread),
4424 (PTRACE_TYPE_ARG3) 0,
4425 /* Coerce to a uintptr_t first to avoid potential gcc warning
4426 of coercing an 8 byte integer to a 4 byte pointer. */
4427 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4428
4429 current_thread = saved_thread;
4430 if (errno)
4431 perror_with_name ("resuming thread");
4432
4433 /* Successfully resumed. Clear state that no longer makes sense,
4434 and mark the LWP as running. Must not do this before resuming
4435 otherwise if that fails other code will be confused. E.g., we'd
4436 later try to stop the LWP and hang forever waiting for a stop
4437 status. Note that we must not throw after this is cleared,
4438 otherwise handle_zombie_lwp_error would get confused. */
4439 lwp->stopped = 0;
4440 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4441}
4442
4443/* Called when we try to resume a stopped LWP and that errors out. If
4444 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4445 or about to become), discard the error, clear any pending status
4446 the LWP may have, and return true (we'll collect the exit status
4447 soon enough). Otherwise, return false. */
4448
4449static int
4450check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4451{
4452 struct thread_info *thread = get_lwp_thread (lp);
4453
4454 /* If we get an error after resuming the LWP successfully, we'd
4455 confuse !T state for the LWP being gone. */
4456 gdb_assert (lp->stopped);
4457
4458 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4459 because even if ptrace failed with ESRCH, the tracee may be "not
4460 yet fully dead", but already refusing ptrace requests. In that
4461 case the tracee has 'R (Running)' state for a little bit
4462 (observed in Linux 3.18). See also the note on ESRCH in the
4463 ptrace(2) man page. Instead, check whether the LWP has any state
4464 other than ptrace-stopped. */
4465
4466 /* Don't assume anything if /proc/PID/status can't be read. */
4467 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4468 {
4469 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4470 lp->status_pending_p = 0;
4471 return 1;
4472 }
4473 return 0;
4474}
4475
4476/* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4477 disappears while we try to resume it. */
4478
4479static void
4480linux_resume_one_lwp (struct lwp_info *lwp,
4481 int step, int signal, siginfo_t *info)
4482{
4483 try
4484 {
4485 linux_resume_one_lwp_throw (lwp, step, signal, info);
4486 }
4487 catch (const gdb_exception_error &ex)
4488 {
4489 if (!check_ptrace_stopped_lwp_gone (lwp))
4490 throw;
4491 }
4492}
4493
4494/* This function is called once per thread via for_each_thread.
4495 We look up which resume request applies to THREAD and mark it with a
4496 pointer to the appropriate resume request.
4497
4498 This algorithm is O(threads * resume elements), but resume elements
4499 is small (and will remain small at least until GDB supports thread
4500 suspension). */
4501
4502static void
4503linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4504{
4505 struct lwp_info *lwp = get_thread_lwp (thread);
4506
4507 for (int ndx = 0; ndx < n; ndx++)
4508 {
4509 ptid_t ptid = resume[ndx].thread;
4510 if (ptid == minus_one_ptid
4511 || ptid == thread->id
4512 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4513 of PID'. */
4514 || (ptid.pid () == pid_of (thread)
4515 && (ptid.is_pid ()
4516 || ptid.lwp () == -1)))
4517 {
4518 if (resume[ndx].kind == resume_stop
4519 && thread->last_resume_kind == resume_stop)
4520 {
4521 if (debug_threads)
4522 debug_printf ("already %s LWP %ld at GDB's request\n",
4523 (thread->last_status.kind
4524 == TARGET_WAITKIND_STOPPED)
4525 ? "stopped"
4526 : "stopping",
4527 lwpid_of (thread));
4528
4529 continue;
4530 }
4531
4532 /* Ignore (wildcard) resume requests for already-resumed
4533 threads. */
4534 if (resume[ndx].kind != resume_stop
4535 && thread->last_resume_kind != resume_stop)
4536 {
4537 if (debug_threads)
4538 debug_printf ("already %s LWP %ld at GDB's request\n",
4539 (thread->last_resume_kind
4540 == resume_step)
4541 ? "stepping"
4542 : "continuing",
4543 lwpid_of (thread));
4544 continue;
4545 }
4546
4547 /* Don't let wildcard resumes resume fork children that GDB
4548 does not yet know are new fork children. */
4549 if (lwp->fork_relative != NULL)
4550 {
4551 struct lwp_info *rel = lwp->fork_relative;
4552
4553 if (rel->status_pending_p
4554 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4555 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4556 {
4557 if (debug_threads)
4558 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4559 lwpid_of (thread));
4560 continue;
4561 }
4562 }
4563
4564 /* If the thread has a pending event that has already been
4565 reported to GDBserver core, but GDB has not pulled the
4566 event out of the vStopped queue yet, likewise, ignore the
4567 (wildcard) resume request. */
4568 if (in_queued_stop_replies (thread->id))
4569 {
4570 if (debug_threads)
4571 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4572 lwpid_of (thread));
4573 continue;
4574 }
4575
4576 lwp->resume = &resume[ndx];
4577 thread->last_resume_kind = lwp->resume->kind;
4578
4579 lwp->step_range_start = lwp->resume->step_range_start;
4580 lwp->step_range_end = lwp->resume->step_range_end;
4581
4582 /* If we had a deferred signal to report, dequeue one now.
4583 This can happen if LWP gets more than one signal while
4584 trying to get out of a jump pad. */
4585 if (lwp->stopped
4586 && !lwp->status_pending_p
4587 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4588 {
4589 lwp->status_pending_p = 1;
4590
4591 if (debug_threads)
4592 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4593 "leaving status pending.\n",
4594 WSTOPSIG (lwp->status_pending),
4595 lwpid_of (thread));
4596 }
4597
4598 return;
4599 }
4600 }
4601
4602 /* No resume action for this thread. */
4603 lwp->resume = NULL;
4604}
4605
4606/* find_thread callback for linux_resume. Return true if this lwp has an
4607 interesting status pending. */
4608
4609static bool
4610resume_status_pending_p (thread_info *thread)
4611{
4612 struct lwp_info *lwp = get_thread_lwp (thread);
4613
4614 /* LWPs which will not be resumed are not interesting, because
4615 we might not wait for them next time through linux_wait. */
4616 if (lwp->resume == NULL)
4617 return false;
4618
4619 return thread_still_has_status_pending_p (thread);
4620}
4621
4622/* Return 1 if this lwp that GDB wants running is stopped at an
4623 internal breakpoint that we need to step over. It assumes that any
4624 required STOP_PC adjustment has already been propagated to the
4625 inferior's regcache. */
4626
4627static bool
4628need_step_over_p (thread_info *thread)
4629{
4630 struct lwp_info *lwp = get_thread_lwp (thread);
4631 struct thread_info *saved_thread;
4632 CORE_ADDR pc;
4633 struct process_info *proc = get_thread_process (thread);
4634
4635 /* GDBserver is skipping the extra traps from the wrapper program,
4636 don't have to do step over. */
4637 if (proc->tdesc == NULL)
4638 return false;
4639
4640 /* LWPs which will not be resumed are not interesting, because we
4641 might not wait for them next time through linux_wait. */
4642
4643 if (!lwp->stopped)
4644 {
4645 if (debug_threads)
4646 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4647 lwpid_of (thread));
4648 return false;
4649 }
4650
4651 if (thread->last_resume_kind == resume_stop)
4652 {
4653 if (debug_threads)
4654 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4655 " stopped\n",
4656 lwpid_of (thread));
4657 return false;
4658 }
4659
4660 gdb_assert (lwp->suspended >= 0);
4661
4662 if (lwp->suspended)
4663 {
4664 if (debug_threads)
4665 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4666 lwpid_of (thread));
4667 return false;
4668 }
4669
4670 if (lwp->status_pending_p)
4671 {
4672 if (debug_threads)
4673 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4674 " status.\n",
4675 lwpid_of (thread));
4676 return false;
4677 }
4678
4679 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4680 or we have. */
4681 pc = get_pc (lwp);
4682
4683 /* If the PC has changed since we stopped, then don't do anything,
4684 and let the breakpoint/tracepoint be hit. This happens if, for
4685 instance, GDB handled the decr_pc_after_break subtraction itself,
4686 GDB is OOL stepping this thread, or the user has issued a "jump"
4687 command, or poked thread's registers herself. */
4688 if (pc != lwp->stop_pc)
4689 {
4690 if (debug_threads)
4691 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4692 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4693 lwpid_of (thread),
4694 paddress (lwp->stop_pc), paddress (pc));
4695 return false;
4696 }
4697
4698 /* On software single step target, resume the inferior with signal
4699 rather than stepping over. */
4700 if (can_software_single_step ()
4701 && lwp->pending_signals != NULL
4702 && lwp_signal_can_be_delivered (lwp))
4703 {
4704 if (debug_threads)
4705 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4706 " signals.\n",
4707 lwpid_of (thread));
4708
4709 return false;
4710 }
4711
4712 saved_thread = current_thread;
4713 current_thread = thread;
4714
4715 /* We can only step over breakpoints we know about. */
4716 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4717 {
4718 /* Don't step over a breakpoint that GDB expects to hit
4719 though. If the condition is being evaluated on the target's side
4720 and it evaluate to false, step over this breakpoint as well. */
4721 if (gdb_breakpoint_here (pc)
4722 && gdb_condition_true_at_breakpoint (pc)
4723 && gdb_no_commands_at_breakpoint (pc))
4724 {
4725 if (debug_threads)
4726 debug_printf ("Need step over [LWP %ld]? yes, but found"
4727 " GDB breakpoint at 0x%s; skipping step over\n",
4728 lwpid_of (thread), paddress (pc));
4729
4730 current_thread = saved_thread;
4731 return false;
4732 }
4733 else
4734 {
4735 if (debug_threads)
4736 debug_printf ("Need step over [LWP %ld]? yes, "
4737 "found breakpoint at 0x%s\n",
4738 lwpid_of (thread), paddress (pc));
4739
4740 /* We've found an lwp that needs stepping over --- return 1 so
4741 that find_thread stops looking. */
4742 current_thread = saved_thread;
4743
4744 return true;
4745 }
4746 }
4747
4748 current_thread = saved_thread;
4749
4750 if (debug_threads)
4751 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4752 " at 0x%s\n",
4753 lwpid_of (thread), paddress (pc));
4754
4755 return false;
4756}
4757
4758/* Start a step-over operation on LWP. When LWP stopped at a
4759 breakpoint, to make progress, we need to remove the breakpoint out
4760 of the way. If we let other threads run while we do that, they may
4761 pass by the breakpoint location and miss hitting it. To avoid
4762 that, a step-over momentarily stops all threads while LWP is
4763 single-stepped by either hardware or software while the breakpoint
4764 is temporarily uninserted from the inferior. When the single-step
4765 finishes, we reinsert the breakpoint, and let all threads that are
4766 supposed to be running, run again. */
4767
4768static int
4769start_step_over (struct lwp_info *lwp)
4770{
4771 struct thread_info *thread = get_lwp_thread (lwp);
4772 struct thread_info *saved_thread;
4773 CORE_ADDR pc;
4774 int step;
4775
4776 if (debug_threads)
4777 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4778 lwpid_of (thread));
4779
4780 stop_all_lwps (1, lwp);
4781
4782 if (lwp->suspended != 0)
4783 {
4784 internal_error (__FILE__, __LINE__,
4785 "LWP %ld suspended=%d\n", lwpid_of (thread),
4786 lwp->suspended);
4787 }
4788
4789 if (debug_threads)
4790 debug_printf ("Done stopping all threads for step-over.\n");
4791
4792 /* Note, we should always reach here with an already adjusted PC,
4793 either by GDB (if we're resuming due to GDB's request), or by our
4794 caller, if we just finished handling an internal breakpoint GDB
4795 shouldn't care about. */
4796 pc = get_pc (lwp);
4797
4798 saved_thread = current_thread;
4799 current_thread = thread;
4800
4801 lwp->bp_reinsert = pc;
4802 uninsert_breakpoints_at (pc);
4803 uninsert_fast_tracepoint_jumps_at (pc);
4804
4805 step = single_step (lwp);
4806
4807 current_thread = saved_thread;
4808
4809 linux_resume_one_lwp (lwp, step, 0, NULL);
4810
4811 /* Require next event from this LWP. */
4812 step_over_bkpt = thread->id;
4813 return 1;
4814}
4815
4816/* Finish a step-over. Reinsert the breakpoint we had uninserted in
4817 start_step_over, if still there, and delete any single-step
4818 breakpoints we've set, on non hardware single-step targets. */
4819
4820static int
4821finish_step_over (struct lwp_info *lwp)
4822{
4823 if (lwp->bp_reinsert != 0)
4824 {
4825 struct thread_info *saved_thread = current_thread;
4826
4827 if (debug_threads)
4828 debug_printf ("Finished step over.\n");
4829
4830 current_thread = get_lwp_thread (lwp);
4831
4832 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4833 may be no breakpoint to reinsert there by now. */
4834 reinsert_breakpoints_at (lwp->bp_reinsert);
4835 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4836
4837 lwp->bp_reinsert = 0;
4838
4839 /* Delete any single-step breakpoints. No longer needed. We
4840 don't have to worry about other threads hitting this trap,
4841 and later not being able to explain it, because we were
4842 stepping over a breakpoint, and we hold all threads but
4843 LWP stopped while doing that. */
4844 if (!can_hardware_single_step ())
4845 {
4846 gdb_assert (has_single_step_breakpoints (current_thread));
4847 delete_single_step_breakpoints (current_thread);
4848 }
4849
4850 step_over_bkpt = null_ptid;
4851 current_thread = saved_thread;
4852 return 1;
4853 }
4854 else
4855 return 0;
4856}
4857
4858/* If there's a step over in progress, wait until all threads stop
4859 (that is, until the stepping thread finishes its step), and
4860 unsuspend all lwps. The stepping thread ends with its status
4861 pending, which is processed later when we get back to processing
4862 events. */
4863
4864static void
4865complete_ongoing_step_over (void)
4866{
4867 if (step_over_bkpt != null_ptid)
4868 {
4869 struct lwp_info *lwp;
4870 int wstat;
4871 int ret;
4872
4873 if (debug_threads)
4874 debug_printf ("detach: step over in progress, finish it first\n");
4875
4876 /* Passing NULL_PTID as filter indicates we want all events to
4877 be left pending. Eventually this returns when there are no
4878 unwaited-for children left. */
4879 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4880 &wstat, __WALL);
4881 gdb_assert (ret == -1);
4882
4883 lwp = find_lwp_pid (step_over_bkpt);
4884 if (lwp != NULL)
4885 finish_step_over (lwp);
4886 step_over_bkpt = null_ptid;
4887 unsuspend_all_lwps (lwp);
4888 }
4889}
4890
4891/* This function is called once per thread. We check the thread's resume
4892 request, which will tell us whether to resume, step, or leave the thread
4893 stopped; and what signal, if any, it should be sent.
4894
4895 For threads which we aren't explicitly told otherwise, we preserve
4896 the stepping flag; this is used for stepping over gdbserver-placed
4897 breakpoints.
4898
4899 If pending_flags was set in any thread, we queue any needed
4900 signals, since we won't actually resume. We already have a pending
4901 event to report, so we don't need to preserve any step requests;
4902 they should be re-issued if necessary. */
4903
4904static void
4905linux_resume_one_thread (thread_info *thread, bool leave_all_stopped)
4906{
4907 struct lwp_info *lwp = get_thread_lwp (thread);
4908 int leave_pending;
4909
4910 if (lwp->resume == NULL)
4911 return;
4912
4913 if (lwp->resume->kind == resume_stop)
4914 {
4915 if (debug_threads)
4916 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4917
4918 if (!lwp->stopped)
4919 {
4920 if (debug_threads)
4921 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4922
4923 /* Stop the thread, and wait for the event asynchronously,
4924 through the event loop. */
4925 send_sigstop (lwp);
4926 }
4927 else
4928 {
4929 if (debug_threads)
4930 debug_printf ("already stopped LWP %ld\n",
4931 lwpid_of (thread));
4932
4933 /* The LWP may have been stopped in an internal event that
4934 was not meant to be notified back to GDB (e.g., gdbserver
4935 breakpoint), so we should be reporting a stop event in
4936 this case too. */
4937
4938 /* If the thread already has a pending SIGSTOP, this is a
4939 no-op. Otherwise, something later will presumably resume
4940 the thread and this will cause it to cancel any pending
4941 operation, due to last_resume_kind == resume_stop. If
4942 the thread already has a pending status to report, we
4943 will still report it the next time we wait - see
4944 status_pending_p_callback. */
4945
4946 /* If we already have a pending signal to report, then
4947 there's no need to queue a SIGSTOP, as this means we're
4948 midway through moving the LWP out of the jumppad, and we
4949 will report the pending signal as soon as that is
4950 finished. */
4951 if (lwp->pending_signals_to_report == NULL)
4952 send_sigstop (lwp);
4953 }
4954
4955 /* For stop requests, we're done. */
4956 lwp->resume = NULL;
4957 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4958 return;
4959 }
4960
4961 /* If this thread which is about to be resumed has a pending status,
4962 then don't resume it - we can just report the pending status.
4963 Likewise if it is suspended, because e.g., another thread is
4964 stepping past a breakpoint. Make sure to queue any signals that
4965 would otherwise be sent. In all-stop mode, we do this decision
4966 based on if *any* thread has a pending status. If there's a
4967 thread that needs the step-over-breakpoint dance, then don't
4968 resume any other thread but that particular one. */
4969 leave_pending = (lwp->suspended
4970 || lwp->status_pending_p
4971 || leave_all_stopped);
4972
4973 /* If we have a new signal, enqueue the signal. */
4974 if (lwp->resume->sig != 0)
4975 {
4976 siginfo_t info, *info_p;
4977
4978 /* If this is the same signal we were previously stopped by,
4979 make sure to queue its siginfo. */
4980 if (WIFSTOPPED (lwp->last_status)
4981 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
4982 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
4983 (PTRACE_TYPE_ARG3) 0, &info) == 0)
4984 info_p = &info;
4985 else
4986 info_p = NULL;
4987
4988 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
4989 }
4990
4991 if (!leave_pending)
4992 {
4993 if (debug_threads)
4994 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4995
4996 proceed_one_lwp (thread, NULL);
4997 }
4998 else
4999 {
5000 if (debug_threads)
5001 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5002 }
5003
5004 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5005 lwp->resume = NULL;
5006}
5007
5008static void
5009linux_resume (struct thread_resume *resume_info, size_t n)
5010{
5011 struct thread_info *need_step_over = NULL;
5012
5013 if (debug_threads)
5014 {
5015 debug_enter ();
5016 debug_printf ("linux_resume:\n");
5017 }
5018
5019 for_each_thread ([&] (thread_info *thread)
5020 {
5021 linux_set_resume_request (thread, resume_info, n);
5022 });
5023
5024 /* If there is a thread which would otherwise be resumed, which has
5025 a pending status, then don't resume any threads - we can just
5026 report the pending status. Make sure to queue any signals that
5027 would otherwise be sent. In non-stop mode, we'll apply this
5028 logic to each thread individually. We consume all pending events
5029 before considering to start a step-over (in all-stop). */
5030 bool any_pending = false;
5031 if (!non_stop)
5032 any_pending = find_thread (resume_status_pending_p) != NULL;
5033
5034 /* If there is a thread which would otherwise be resumed, which is
5035 stopped at a breakpoint that needs stepping over, then don't
5036 resume any threads - have it step over the breakpoint with all
5037 other threads stopped, then resume all threads again. Make sure
5038 to queue any signals that would otherwise be delivered or
5039 queued. */
5040 if (!any_pending && supports_breakpoints ())
5041 need_step_over = find_thread (need_step_over_p);
5042
5043 bool leave_all_stopped = (need_step_over != NULL || any_pending);
5044
5045 if (debug_threads)
5046 {
5047 if (need_step_over != NULL)
5048 debug_printf ("Not resuming all, need step over\n");
5049 else if (any_pending)
5050 debug_printf ("Not resuming, all-stop and found "
5051 "an LWP with pending status\n");
5052 else
5053 debug_printf ("Resuming, no pending status or step over needed\n");
5054 }
5055
5056 /* Even if we're leaving threads stopped, queue all signals we'd
5057 otherwise deliver. */
5058 for_each_thread ([&] (thread_info *thread)
5059 {
5060 linux_resume_one_thread (thread, leave_all_stopped);
5061 });
5062
5063 if (need_step_over)
5064 start_step_over (get_thread_lwp (need_step_over));
5065
5066 if (debug_threads)
5067 {
5068 debug_printf ("linux_resume done\n");
5069 debug_exit ();
5070 }
5071
5072 /* We may have events that were pending that can/should be sent to
5073 the client now. Trigger a linux_wait call. */
5074 if (target_is_async_p ())
5075 async_file_mark ();
5076}
5077
5078/* This function is called once per thread. We check the thread's
5079 last resume request, which will tell us whether to resume, step, or
5080 leave the thread stopped. Any signal the client requested to be
5081 delivered has already been enqueued at this point.
5082
5083 If any thread that GDB wants running is stopped at an internal
5084 breakpoint that needs stepping over, we start a step-over operation
5085 on that particular thread, and leave all others stopped. */
5086
5087static void
5088proceed_one_lwp (thread_info *thread, lwp_info *except)
5089{
5090 struct lwp_info *lwp = get_thread_lwp (thread);
5091 int step;
5092
5093 if (lwp == except)
5094 return;
5095
5096 if (debug_threads)
5097 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5098
5099 if (!lwp->stopped)
5100 {
5101 if (debug_threads)
5102 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5103 return;
5104 }
5105
5106 if (thread->last_resume_kind == resume_stop
5107 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5108 {
5109 if (debug_threads)
5110 debug_printf (" client wants LWP to remain %ld stopped\n",
5111 lwpid_of (thread));
5112 return;
5113 }
5114
5115 if (lwp->status_pending_p)
5116 {
5117 if (debug_threads)
5118 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5119 lwpid_of (thread));
5120 return;
5121 }
5122
5123 gdb_assert (lwp->suspended >= 0);
5124
5125 if (lwp->suspended)
5126 {
5127 if (debug_threads)
5128 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5129 return;
5130 }
5131
5132 if (thread->last_resume_kind == resume_stop
5133 && lwp->pending_signals_to_report == NULL
5134 && (lwp->collecting_fast_tracepoint
5135 == fast_tpoint_collect_result::not_collecting))
5136 {
5137 /* We haven't reported this LWP as stopped yet (otherwise, the
5138 last_status.kind check above would catch it, and we wouldn't
5139 reach here. This LWP may have been momentarily paused by a
5140 stop_all_lwps call while handling for example, another LWP's
5141 step-over. In that case, the pending expected SIGSTOP signal
5142 that was queued at vCont;t handling time will have already
5143 been consumed by wait_for_sigstop, and so we need to requeue
5144 another one here. Note that if the LWP already has a SIGSTOP
5145 pending, this is a no-op. */
5146
5147 if (debug_threads)
5148 debug_printf ("Client wants LWP %ld to stop. "
5149 "Making sure it has a SIGSTOP pending\n",
5150 lwpid_of (thread));
5151
5152 send_sigstop (lwp);
5153 }
5154
5155 if (thread->last_resume_kind == resume_step)
5156 {
5157 if (debug_threads)
5158 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5159 lwpid_of (thread));
5160
5161 /* If resume_step is requested by GDB, install single-step
5162 breakpoints when the thread is about to be actually resumed if
5163 the single-step breakpoints weren't removed. */
5164 if (can_software_single_step ()
5165 && !has_single_step_breakpoints (thread))
5166 install_software_single_step_breakpoints (lwp);
5167
5168 step = maybe_hw_step (thread);
5169 }
5170 else if (lwp->bp_reinsert != 0)
5171 {
5172 if (debug_threads)
5173 debug_printf (" stepping LWP %ld, reinsert set\n",
5174 lwpid_of (thread));
5175
5176 step = maybe_hw_step (thread);
5177 }
5178 else
5179 step = 0;
5180
5181 linux_resume_one_lwp (lwp, step, 0, NULL);
5182}
5183
5184static void
5185unsuspend_and_proceed_one_lwp (thread_info *thread, lwp_info *except)
5186{
5187 struct lwp_info *lwp = get_thread_lwp (thread);
5188
5189 if (lwp == except)
5190 return;
5191
5192 lwp_suspended_decr (lwp);
5193
5194 proceed_one_lwp (thread, except);
5195}
5196
5197/* When we finish a step-over, set threads running again. If there's
5198 another thread that may need a step-over, now's the time to start
5199 it. Eventually, we'll move all threads past their breakpoints. */
5200
5201static void
5202proceed_all_lwps (void)
5203{
5204 struct thread_info *need_step_over;
5205
5206 /* If there is a thread which would otherwise be resumed, which is
5207 stopped at a breakpoint that needs stepping over, then don't
5208 resume any threads - have it step over the breakpoint with all
5209 other threads stopped, then resume all threads again. */
5210
5211 if (supports_breakpoints ())
5212 {
5213 need_step_over = find_thread (need_step_over_p);
5214
5215 if (need_step_over != NULL)
5216 {
5217 if (debug_threads)
5218 debug_printf ("proceed_all_lwps: found "
5219 "thread %ld needing a step-over\n",
5220 lwpid_of (need_step_over));
5221
5222 start_step_over (get_thread_lwp (need_step_over));
5223 return;
5224 }
5225 }
5226
5227 if (debug_threads)
5228 debug_printf ("Proceeding, no step-over needed\n");
5229
5230 for_each_thread ([] (thread_info *thread)
5231 {
5232 proceed_one_lwp (thread, NULL);
5233 });
5234}
5235
5236/* Stopped LWPs that the client wanted to be running, that don't have
5237 pending statuses, are set to run again, except for EXCEPT, if not
5238 NULL. This undoes a stop_all_lwps call. */
5239
5240static void
5241unstop_all_lwps (int unsuspend, struct lwp_info *except)
5242{
5243 if (debug_threads)
5244 {
5245 debug_enter ();
5246 if (except)
5247 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5248 lwpid_of (get_lwp_thread (except)));
5249 else
5250 debug_printf ("unstopping all lwps\n");
5251 }
5252
5253 if (unsuspend)
5254 for_each_thread ([&] (thread_info *thread)
5255 {
5256 unsuspend_and_proceed_one_lwp (thread, except);
5257 });
5258 else
5259 for_each_thread ([&] (thread_info *thread)
5260 {
5261 proceed_one_lwp (thread, except);
5262 });
5263
5264 if (debug_threads)
5265 {
5266 debug_printf ("unstop_all_lwps done\n");
5267 debug_exit ();
5268 }
5269}
5270
5271
5272#ifdef HAVE_LINUX_REGSETS
5273
5274#define use_linux_regsets 1
5275
5276/* Returns true if REGSET has been disabled. */
5277
5278static int
5279regset_disabled (struct regsets_info *info, struct regset_info *regset)
5280{
5281 return (info->disabled_regsets != NULL
5282 && info->disabled_regsets[regset - info->regsets]);
5283}
5284
5285/* Disable REGSET. */
5286
5287static void
5288disable_regset (struct regsets_info *info, struct regset_info *regset)
5289{
5290 int dr_offset;
5291
5292 dr_offset = regset - info->regsets;
5293 if (info->disabled_regsets == NULL)
5294 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5295 info->disabled_regsets[dr_offset] = 1;
5296}
5297
5298static int
5299regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5300 struct regcache *regcache)
5301{
5302 struct regset_info *regset;
5303 int saw_general_regs = 0;
5304 int pid;
5305 struct iovec iov;
5306
5307 pid = lwpid_of (current_thread);
5308 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5309 {
5310 void *buf, *data;
5311 int nt_type, res;
5312
5313 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5314 continue;
5315
5316 buf = xmalloc (regset->size);
5317
5318 nt_type = regset->nt_type;
5319 if (nt_type)
5320 {
5321 iov.iov_base = buf;
5322 iov.iov_len = regset->size;
5323 data = (void *) &iov;
5324 }
5325 else
5326 data = buf;
5327
5328#ifndef __sparc__
5329 res = ptrace (regset->get_request, pid,
5330 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5331#else
5332 res = ptrace (regset->get_request, pid, data, nt_type);
5333#endif
5334 if (res < 0)
5335 {
5336 if (errno == EIO
5337 || (errno == EINVAL && regset->type == OPTIONAL_REGS))
5338 {
5339 /* If we get EIO on a regset, or an EINVAL and the regset is
5340 optional, do not try it again for this process mode. */
5341 disable_regset (regsets_info, regset);
5342 }
5343 else if (errno == ENODATA)
5344 {
5345 /* ENODATA may be returned if the regset is currently
5346 not "active". This can happen in normal operation,
5347 so suppress the warning in this case. */
5348 }
5349 else if (errno == ESRCH)
5350 {
5351 /* At this point, ESRCH should mean the process is
5352 already gone, in which case we simply ignore attempts
5353 to read its registers. */
5354 }
5355 else
5356 {
5357 char s[256];
5358 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5359 pid);
5360 perror (s);
5361 }
5362 }
5363 else
5364 {
5365 if (regset->type == GENERAL_REGS)
5366 saw_general_regs = 1;
5367 regset->store_function (regcache, buf);
5368 }
5369 free (buf);
5370 }
5371 if (saw_general_regs)
5372 return 0;
5373 else
5374 return 1;
5375}
5376
5377static int
5378regsets_store_inferior_registers (struct regsets_info *regsets_info,
5379 struct regcache *regcache)
5380{
5381 struct regset_info *regset;
5382 int saw_general_regs = 0;
5383 int pid;
5384 struct iovec iov;
5385
5386 pid = lwpid_of (current_thread);
5387 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5388 {
5389 void *buf, *data;
5390 int nt_type, res;
5391
5392 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5393 || regset->fill_function == NULL)
5394 continue;
5395
5396 buf = xmalloc (regset->size);
5397
5398 /* First fill the buffer with the current register set contents,
5399 in case there are any items in the kernel's regset that are
5400 not in gdbserver's regcache. */
5401
5402 nt_type = regset->nt_type;
5403 if (nt_type)
5404 {
5405 iov.iov_base = buf;
5406 iov.iov_len = regset->size;
5407 data = (void *) &iov;
5408 }
5409 else
5410 data = buf;
5411
5412#ifndef __sparc__
5413 res = ptrace (regset->get_request, pid,
5414 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5415#else
5416 res = ptrace (regset->get_request, pid, data, nt_type);
5417#endif
5418
5419 if (res == 0)
5420 {
5421 /* Then overlay our cached registers on that. */
5422 regset->fill_function (regcache, buf);
5423
5424 /* Only now do we write the register set. */
5425#ifndef __sparc__
5426 res = ptrace (regset->set_request, pid,
5427 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5428#else
5429 res = ptrace (regset->set_request, pid, data, nt_type);
5430#endif
5431 }
5432
5433 if (res < 0)
5434 {
5435 if (errno == EIO
5436 || (errno == EINVAL && regset->type == OPTIONAL_REGS))
5437 {
5438 /* If we get EIO on a regset, or an EINVAL and the regset is
5439 optional, do not try it again for this process mode. */
5440 disable_regset (regsets_info, regset);
5441 }
5442 else if (errno == ESRCH)
5443 {
5444 /* At this point, ESRCH should mean the process is
5445 already gone, in which case we simply ignore attempts
5446 to change its registers. See also the related
5447 comment in linux_resume_one_lwp. */
5448 free (buf);
5449 return 0;
5450 }
5451 else
5452 {
5453 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5454 }
5455 }
5456 else if (regset->type == GENERAL_REGS)
5457 saw_general_regs = 1;
5458 free (buf);
5459 }
5460 if (saw_general_regs)
5461 return 0;
5462 else
5463 return 1;
5464}
5465
5466#else /* !HAVE_LINUX_REGSETS */
5467
5468#define use_linux_regsets 0
5469#define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5470#define regsets_store_inferior_registers(regsets_info, regcache) 1
5471
5472#endif
5473
5474/* Return 1 if register REGNO is supported by one of the regset ptrace
5475 calls or 0 if it has to be transferred individually. */
5476
5477static int
5478linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5479{
5480 unsigned char mask = 1 << (regno % 8);
5481 size_t index = regno / 8;
5482
5483 return (use_linux_regsets
5484 && (regs_info->regset_bitmap == NULL
5485 || (regs_info->regset_bitmap[index] & mask) != 0));
5486}
5487
5488#ifdef HAVE_LINUX_USRREGS
5489
5490static int
5491register_addr (const struct usrregs_info *usrregs, int regnum)
5492{
5493 int addr;
5494
5495 if (regnum < 0 || regnum >= usrregs->num_regs)
5496 error ("Invalid register number %d.", regnum);
5497
5498 addr = usrregs->regmap[regnum];
5499
5500 return addr;
5501}
5502
5503/* Fetch one register. */
5504static void
5505fetch_register (const struct usrregs_info *usrregs,
5506 struct regcache *regcache, int regno)
5507{
5508 CORE_ADDR regaddr;
5509 int i, size;
5510 char *buf;
5511 int pid;
5512
5513 if (regno >= usrregs->num_regs)
5514 return;
5515 if ((*the_low_target.cannot_fetch_register) (regno))
5516 return;
5517
5518 regaddr = register_addr (usrregs, regno);
5519 if (regaddr == -1)
5520 return;
5521
5522 size = ((register_size (regcache->tdesc, regno)
5523 + sizeof (PTRACE_XFER_TYPE) - 1)
5524 & -sizeof (PTRACE_XFER_TYPE));
5525 buf = (char *) alloca (size);
5526
5527 pid = lwpid_of (current_thread);
5528 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5529 {
5530 errno = 0;
5531 *(PTRACE_XFER_TYPE *) (buf + i) =
5532 ptrace (PTRACE_PEEKUSER, pid,
5533 /* Coerce to a uintptr_t first to avoid potential gcc warning
5534 of coercing an 8 byte integer to a 4 byte pointer. */
5535 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5536 regaddr += sizeof (PTRACE_XFER_TYPE);
5537 if (errno != 0)
5538 {
5539 /* Mark register REGNO unavailable. */
5540 supply_register (regcache, regno, NULL);
5541 return;
5542 }
5543 }
5544
5545 if (the_low_target.supply_ptrace_register)
5546 the_low_target.supply_ptrace_register (regcache, regno, buf);
5547 else
5548 supply_register (regcache, regno, buf);
5549}
5550
5551/* Store one register. */
5552static void
5553store_register (const struct usrregs_info *usrregs,
5554 struct regcache *regcache, int regno)
5555{
5556 CORE_ADDR regaddr;
5557 int i, size;
5558 char *buf;
5559 int pid;
5560
5561 if (regno >= usrregs->num_regs)
5562 return;
5563 if ((*the_low_target.cannot_store_register) (regno))
5564 return;
5565
5566 regaddr = register_addr (usrregs, regno);
5567 if (regaddr == -1)
5568 return;
5569
5570 size = ((register_size (regcache->tdesc, regno)
5571 + sizeof (PTRACE_XFER_TYPE) - 1)
5572 & -sizeof (PTRACE_XFER_TYPE));
5573 buf = (char *) alloca (size);
5574 memset (buf, 0, size);
5575
5576 if (the_low_target.collect_ptrace_register)
5577 the_low_target.collect_ptrace_register (regcache, regno, buf);
5578 else
5579 collect_register (regcache, regno, buf);
5580
5581 pid = lwpid_of (current_thread);
5582 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5583 {
5584 errno = 0;
5585 ptrace (PTRACE_POKEUSER, pid,
5586 /* Coerce to a uintptr_t first to avoid potential gcc warning
5587 about coercing an 8 byte integer to a 4 byte pointer. */
5588 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5589 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5590 if (errno != 0)
5591 {
5592 /* At this point, ESRCH should mean the process is
5593 already gone, in which case we simply ignore attempts
5594 to change its registers. See also the related
5595 comment in linux_resume_one_lwp. */
5596 if (errno == ESRCH)
5597 return;
5598
5599 if ((*the_low_target.cannot_store_register) (regno) == 0)
5600 error ("writing register %d: %s", regno, strerror (errno));
5601 }
5602 regaddr += sizeof (PTRACE_XFER_TYPE);
5603 }
5604}
5605
5606/* Fetch all registers, or just one, from the child process.
5607 If REGNO is -1, do this for all registers, skipping any that are
5608 assumed to have been retrieved by regsets_fetch_inferior_registers,
5609 unless ALL is non-zero.
5610 Otherwise, REGNO specifies which register (so we can save time). */
5611static void
5612usr_fetch_inferior_registers (const struct regs_info *regs_info,
5613 struct regcache *regcache, int regno, int all)
5614{
5615 struct usrregs_info *usr = regs_info->usrregs;
5616
5617 if (regno == -1)
5618 {
5619 for (regno = 0; regno < usr->num_regs; regno++)
5620 if (all || !linux_register_in_regsets (regs_info, regno))
5621 fetch_register (usr, regcache, regno);
5622 }
5623 else
5624 fetch_register (usr, regcache, regno);
5625}
5626
5627/* Store our register values back into the inferior.
5628 If REGNO is -1, do this for all registers, skipping any that are
5629 assumed to have been saved by regsets_store_inferior_registers,
5630 unless ALL is non-zero.
5631 Otherwise, REGNO specifies which register (so we can save time). */
5632static void
5633usr_store_inferior_registers (const struct regs_info *regs_info,
5634 struct regcache *regcache, int regno, int all)
5635{
5636 struct usrregs_info *usr = regs_info->usrregs;
5637
5638 if (regno == -1)
5639 {
5640 for (regno = 0; regno < usr->num_regs; regno++)
5641 if (all || !linux_register_in_regsets (regs_info, regno))
5642 store_register (usr, regcache, regno);
5643 }
5644 else
5645 store_register (usr, regcache, regno);
5646}
5647
5648#else /* !HAVE_LINUX_USRREGS */
5649
5650#define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5651#define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5652
5653#endif
5654
5655
5656static void
5657linux_fetch_registers (struct regcache *regcache, int regno)
5658{
5659 int use_regsets;
5660 int all = 0;
5661 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5662
5663 if (regno == -1)
5664 {
5665 if (the_low_target.fetch_register != NULL
5666 && regs_info->usrregs != NULL)
5667 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5668 (*the_low_target.fetch_register) (regcache, regno);
5669
5670 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5671 if (regs_info->usrregs != NULL)
5672 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5673 }
5674 else
5675 {
5676 if (the_low_target.fetch_register != NULL
5677 && (*the_low_target.fetch_register) (regcache, regno))
5678 return;
5679
5680 use_regsets = linux_register_in_regsets (regs_info, regno);
5681 if (use_regsets)
5682 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5683 regcache);
5684 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5685 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5686 }
5687}
5688
5689static void
5690linux_store_registers (struct regcache *regcache, int regno)
5691{
5692 int use_regsets;
5693 int all = 0;
5694 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5695
5696 if (regno == -1)
5697 {
5698 all = regsets_store_inferior_registers (regs_info->regsets_info,
5699 regcache);
5700 if (regs_info->usrregs != NULL)
5701 usr_store_inferior_registers (regs_info, regcache, regno, all);
5702 }
5703 else
5704 {
5705 use_regsets = linux_register_in_regsets (regs_info, regno);
5706 if (use_regsets)
5707 all = regsets_store_inferior_registers (regs_info->regsets_info,
5708 regcache);
5709 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5710 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5711 }
5712}
5713
5714
5715/* Copy LEN bytes from inferior's memory starting at MEMADDR
5716 to debugger memory starting at MYADDR. */
5717
5718static int
5719linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5720{
5721 int pid = lwpid_of (current_thread);
5722 PTRACE_XFER_TYPE *buffer;
5723 CORE_ADDR addr;
5724 int count;
5725 char filename[64];
5726 int i;
5727 int ret;
5728 int fd;
5729
5730 /* Try using /proc. Don't bother for one word. */
5731 if (len >= 3 * sizeof (long))
5732 {
5733 int bytes;
5734
5735 /* We could keep this file open and cache it - possibly one per
5736 thread. That requires some juggling, but is even faster. */
5737 sprintf (filename, "/proc/%d/mem", pid);
5738 fd = open (filename, O_RDONLY | O_LARGEFILE);
5739 if (fd == -1)
5740 goto no_proc;
5741
5742 /* If pread64 is available, use it. It's faster if the kernel
5743 supports it (only one syscall), and it's 64-bit safe even on
5744 32-bit platforms (for instance, SPARC debugging a SPARC64
5745 application). */
5746#ifdef HAVE_PREAD64
5747 bytes = pread64 (fd, myaddr, len, memaddr);
5748#else
5749 bytes = -1;
5750 if (lseek (fd, memaddr, SEEK_SET) != -1)
5751 bytes = read (fd, myaddr, len);
5752#endif
5753
5754 close (fd);
5755 if (bytes == len)
5756 return 0;
5757
5758 /* Some data was read, we'll try to get the rest with ptrace. */
5759 if (bytes > 0)
5760 {
5761 memaddr += bytes;
5762 myaddr += bytes;
5763 len -= bytes;
5764 }
5765 }
5766
5767 no_proc:
5768 /* Round starting address down to longword boundary. */
5769 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5770 /* Round ending address up; get number of longwords that makes. */
5771 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5772 / sizeof (PTRACE_XFER_TYPE));
5773 /* Allocate buffer of that many longwords. */
5774 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5775
5776 /* Read all the longwords */
5777 errno = 0;
5778 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5779 {
5780 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5781 about coercing an 8 byte integer to a 4 byte pointer. */
5782 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5783 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5784 (PTRACE_TYPE_ARG4) 0);
5785 if (errno)
5786 break;
5787 }
5788 ret = errno;
5789
5790 /* Copy appropriate bytes out of the buffer. */
5791 if (i > 0)
5792 {
5793 i *= sizeof (PTRACE_XFER_TYPE);
5794 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5795 memcpy (myaddr,
5796 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5797 i < len ? i : len);
5798 }
5799
5800 return ret;
5801}
5802
5803/* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5804 memory at MEMADDR. On failure (cannot write to the inferior)
5805 returns the value of errno. Always succeeds if LEN is zero. */
5806
5807static int
5808linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5809{
5810 int i;
5811 /* Round starting address down to longword boundary. */
5812 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5813 /* Round ending address up; get number of longwords that makes. */
5814 int count
5815 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5816 / sizeof (PTRACE_XFER_TYPE);
5817
5818 /* Allocate buffer of that many longwords. */
5819 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5820
5821 int pid = lwpid_of (current_thread);
5822
5823 if (len == 0)
5824 {
5825 /* Zero length write always succeeds. */
5826 return 0;
5827 }
5828
5829 if (debug_threads)
5830 {
5831 /* Dump up to four bytes. */
5832 char str[4 * 2 + 1];
5833 char *p = str;
5834 int dump = len < 4 ? len : 4;
5835
5836 for (i = 0; i < dump; i++)
5837 {
5838 sprintf (p, "%02x", myaddr[i]);
5839 p += 2;
5840 }
5841 *p = '\0';
5842
5843 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5844 str, (long) memaddr, pid);
5845 }
5846
5847 /* Fill start and end extra bytes of buffer with existing memory data. */
5848
5849 errno = 0;
5850 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5851 about coercing an 8 byte integer to a 4 byte pointer. */
5852 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5853 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5854 (PTRACE_TYPE_ARG4) 0);
5855 if (errno)
5856 return errno;
5857
5858 if (count > 1)
5859 {
5860 errno = 0;
5861 buffer[count - 1]
5862 = ptrace (PTRACE_PEEKTEXT, pid,
5863 /* Coerce to a uintptr_t first to avoid potential gcc warning
5864 about coercing an 8 byte integer to a 4 byte pointer. */
5865 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5866 * sizeof (PTRACE_XFER_TYPE)),
5867 (PTRACE_TYPE_ARG4) 0);
5868 if (errno)
5869 return errno;
5870 }
5871
5872 /* Copy data to be written over corresponding part of buffer. */
5873
5874 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5875 myaddr, len);
5876
5877 /* Write the entire buffer. */
5878
5879 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5880 {
5881 errno = 0;
5882 ptrace (PTRACE_POKETEXT, pid,
5883 /* Coerce to a uintptr_t first to avoid potential gcc warning
5884 about coercing an 8 byte integer to a 4 byte pointer. */
5885 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5886 (PTRACE_TYPE_ARG4) buffer[i]);
5887 if (errno)
5888 return errno;
5889 }
5890
5891 return 0;
5892}
5893
5894static void
5895linux_look_up_symbols (void)
5896{
5897#ifdef USE_THREAD_DB
5898 struct process_info *proc = current_process ();
5899
5900 if (proc->priv->thread_db != NULL)
5901 return;
5902
5903 thread_db_init ();
5904#endif
5905}
5906
5907static void
5908linux_request_interrupt (void)
5909{
5910 /* Send a SIGINT to the process group. This acts just like the user
5911 typed a ^C on the controlling terminal. */
5912 kill (-signal_pid, SIGINT);
5913}
5914
5915/* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5916 to debugger memory starting at MYADDR. */
5917
5918static int
5919linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5920{
5921 char filename[PATH_MAX];
5922 int fd, n;
5923 int pid = lwpid_of (current_thread);
5924
5925 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5926
5927 fd = open (filename, O_RDONLY);
5928 if (fd < 0)
5929 return -1;
5930
5931 if (offset != (CORE_ADDR) 0
5932 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5933 n = -1;
5934 else
5935 n = read (fd, myaddr, len);
5936
5937 close (fd);
5938
5939 return n;
5940}
5941
5942/* These breakpoint and watchpoint related wrapper functions simply
5943 pass on the function call if the target has registered a
5944 corresponding function. */
5945
5946static int
5947linux_supports_z_point_type (char z_type)
5948{
5949 return (the_low_target.supports_z_point_type != NULL
5950 && the_low_target.supports_z_point_type (z_type));
5951}
5952
5953static int
5954linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5955 int size, struct raw_breakpoint *bp)
5956{
5957 if (type == raw_bkpt_type_sw)
5958 return insert_memory_breakpoint (bp);
5959 else if (the_low_target.insert_point != NULL)
5960 return the_low_target.insert_point (type, addr, size, bp);
5961 else
5962 /* Unsupported (see target.h). */
5963 return 1;
5964}
5965
5966static int
5967linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5968 int size, struct raw_breakpoint *bp)
5969{
5970 if (type == raw_bkpt_type_sw)
5971 return remove_memory_breakpoint (bp);
5972 else if (the_low_target.remove_point != NULL)
5973 return the_low_target.remove_point (type, addr, size, bp);
5974 else
5975 /* Unsupported (see target.h). */
5976 return 1;
5977}
5978
5979/* Implement the to_stopped_by_sw_breakpoint target_ops
5980 method. */
5981
5982static int
5983linux_stopped_by_sw_breakpoint (void)
5984{
5985 struct lwp_info *lwp = get_thread_lwp (current_thread);
5986
5987 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5988}
5989
5990/* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5991 method. */
5992
5993static int
5994linux_supports_stopped_by_sw_breakpoint (void)
5995{
5996 return USE_SIGTRAP_SIGINFO;
5997}
5998
5999/* Implement the to_stopped_by_hw_breakpoint target_ops
6000 method. */
6001
6002static int
6003linux_stopped_by_hw_breakpoint (void)
6004{
6005 struct lwp_info *lwp = get_thread_lwp (current_thread);
6006
6007 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6008}
6009
6010/* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6011 method. */
6012
6013static int
6014linux_supports_stopped_by_hw_breakpoint (void)
6015{
6016 return USE_SIGTRAP_SIGINFO;
6017}
6018
6019/* Implement the supports_hardware_single_step target_ops method. */
6020
6021static int
6022linux_supports_hardware_single_step (void)
6023{
6024 return can_hardware_single_step ();
6025}
6026
6027static int
6028linux_supports_software_single_step (void)
6029{
6030 return can_software_single_step ();
6031}
6032
6033static int
6034linux_stopped_by_watchpoint (void)
6035{
6036 struct lwp_info *lwp = get_thread_lwp (current_thread);
6037
6038 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6039}
6040
6041static CORE_ADDR
6042linux_stopped_data_address (void)
6043{
6044 struct lwp_info *lwp = get_thread_lwp (current_thread);
6045
6046 return lwp->stopped_data_address;
6047}
6048
6049#if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6050 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6051 && defined(PT_TEXT_END_ADDR)
6052
6053/* This is only used for targets that define PT_TEXT_ADDR,
6054 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6055 the target has different ways of acquiring this information, like
6056 loadmaps. */
6057
6058/* Under uClinux, programs are loaded at non-zero offsets, which we need
6059 to tell gdb about. */
6060
6061static int
6062linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6063{
6064 unsigned long text, text_end, data;
6065 int pid = lwpid_of (current_thread);
6066
6067 errno = 0;
6068
6069 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6070 (PTRACE_TYPE_ARG4) 0);
6071 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6072 (PTRACE_TYPE_ARG4) 0);
6073 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6074 (PTRACE_TYPE_ARG4) 0);
6075
6076 if (errno == 0)
6077 {
6078 /* Both text and data offsets produced at compile-time (and so
6079 used by gdb) are relative to the beginning of the program,
6080 with the data segment immediately following the text segment.
6081 However, the actual runtime layout in memory may put the data
6082 somewhere else, so when we send gdb a data base-address, we
6083 use the real data base address and subtract the compile-time
6084 data base-address from it (which is just the length of the
6085 text segment). BSS immediately follows data in both
6086 cases. */
6087 *text_p = text;
6088 *data_p = data - (text_end - text);
6089
6090 return 1;
6091 }
6092 return 0;
6093}
6094#endif
6095
6096static int
6097linux_qxfer_osdata (const char *annex,
6098 unsigned char *readbuf, unsigned const char *writebuf,
6099 CORE_ADDR offset, int len)
6100{
6101 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6102}
6103
6104/* Convert a native/host siginfo object, into/from the siginfo in the
6105 layout of the inferiors' architecture. */
6106
6107static void
6108siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6109{
6110 int done = 0;
6111
6112 if (the_low_target.siginfo_fixup != NULL)
6113 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6114
6115 /* If there was no callback, or the callback didn't do anything,
6116 then just do a straight memcpy. */
6117 if (!done)
6118 {
6119 if (direction == 1)
6120 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6121 else
6122 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6123 }
6124}
6125
6126static int
6127linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6128 unsigned const char *writebuf, CORE_ADDR offset, int len)
6129{
6130 int pid;
6131 siginfo_t siginfo;
6132 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6133
6134 if (current_thread == NULL)
6135 return -1;
6136
6137 pid = lwpid_of (current_thread);
6138
6139 if (debug_threads)
6140 debug_printf ("%s siginfo for lwp %d.\n",
6141 readbuf != NULL ? "Reading" : "Writing",
6142 pid);
6143
6144 if (offset >= sizeof (siginfo))
6145 return -1;
6146
6147 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6148 return -1;
6149
6150 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6151 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6152 inferior with a 64-bit GDBSERVER should look the same as debugging it
6153 with a 32-bit GDBSERVER, we need to convert it. */
6154 siginfo_fixup (&siginfo, inf_siginfo, 0);
6155
6156 if (offset + len > sizeof (siginfo))
6157 len = sizeof (siginfo) - offset;
6158
6159 if (readbuf != NULL)
6160 memcpy (readbuf, inf_siginfo + offset, len);
6161 else
6162 {
6163 memcpy (inf_siginfo + offset, writebuf, len);
6164
6165 /* Convert back to ptrace layout before flushing it out. */
6166 siginfo_fixup (&siginfo, inf_siginfo, 1);
6167
6168 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6169 return -1;
6170 }
6171
6172 return len;
6173}
6174
6175/* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6176 so we notice when children change state; as the handler for the
6177 sigsuspend in my_waitpid. */
6178
6179static void
6180sigchld_handler (int signo)
6181{
6182 int old_errno = errno;
6183
6184 if (debug_threads)
6185 {
6186 do
6187 {
6188 /* fprintf is not async-signal-safe, so call write
6189 directly. */
6190 if (write (2, "sigchld_handler\n",
6191 sizeof ("sigchld_handler\n") - 1) < 0)
6192 break; /* just ignore */
6193 } while (0);
6194 }
6195
6196 if (target_is_async_p ())
6197 async_file_mark (); /* trigger a linux_wait */
6198
6199 errno = old_errno;
6200}
6201
6202static int
6203linux_supports_non_stop (void)
6204{
6205 return 1;
6206}
6207
6208static int
6209linux_async (int enable)
6210{
6211 int previous = target_is_async_p ();
6212
6213 if (debug_threads)
6214 debug_printf ("linux_async (%d), previous=%d\n",
6215 enable, previous);
6216
6217 if (previous != enable)
6218 {
6219 sigset_t mask;
6220 sigemptyset (&mask);
6221 sigaddset (&mask, SIGCHLD);
6222
6223 sigprocmask (SIG_BLOCK, &mask, NULL);
6224
6225 if (enable)
6226 {
6227 if (pipe (linux_event_pipe) == -1)
6228 {
6229 linux_event_pipe[0] = -1;
6230 linux_event_pipe[1] = -1;
6231 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6232
6233 warning ("creating event pipe failed.");
6234 return previous;
6235 }
6236
6237 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6238 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6239
6240 /* Register the event loop handler. */
6241 add_file_handler (linux_event_pipe[0],
6242 handle_target_event, NULL);
6243
6244 /* Always trigger a linux_wait. */
6245 async_file_mark ();
6246 }
6247 else
6248 {
6249 delete_file_handler (linux_event_pipe[0]);
6250
6251 close (linux_event_pipe[0]);
6252 close (linux_event_pipe[1]);
6253 linux_event_pipe[0] = -1;
6254 linux_event_pipe[1] = -1;
6255 }
6256
6257 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6258 }
6259
6260 return previous;
6261}
6262
6263static int
6264linux_start_non_stop (int nonstop)
6265{
6266 /* Register or unregister from event-loop accordingly. */
6267 linux_async (nonstop);
6268
6269 if (target_is_async_p () != (nonstop != 0))
6270 return -1;
6271
6272 return 0;
6273}
6274
6275static int
6276linux_supports_multi_process (void)
6277{
6278 return 1;
6279}
6280
6281/* Check if fork events are supported. */
6282
6283static int
6284linux_supports_fork_events (void)
6285{
6286 return linux_supports_tracefork ();
6287}
6288
6289/* Check if vfork events are supported. */
6290
6291static int
6292linux_supports_vfork_events (void)
6293{
6294 return linux_supports_tracefork ();
6295}
6296
6297/* Check if exec events are supported. */
6298
6299static int
6300linux_supports_exec_events (void)
6301{
6302 return linux_supports_traceexec ();
6303}
6304
6305/* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6306 ptrace flags for all inferiors. This is in case the new GDB connection
6307 doesn't support the same set of events that the previous one did. */
6308
6309static void
6310linux_handle_new_gdb_connection (void)
6311{
6312 /* Request that all the lwps reset their ptrace options. */
6313 for_each_thread ([] (thread_info *thread)
6314 {
6315 struct lwp_info *lwp = get_thread_lwp (thread);
6316
6317 if (!lwp->stopped)
6318 {
6319 /* Stop the lwp so we can modify its ptrace options. */
6320 lwp->must_set_ptrace_flags = 1;
6321 linux_stop_lwp (lwp);
6322 }
6323 else
6324 {
6325 /* Already stopped; go ahead and set the ptrace options. */
6326 struct process_info *proc = find_process_pid (pid_of (thread));
6327 int options = linux_low_ptrace_options (proc->attached);
6328
6329 linux_enable_event_reporting (lwpid_of (thread), options);
6330 lwp->must_set_ptrace_flags = 0;
6331 }
6332 });
6333}
6334
6335static int
6336linux_supports_disable_randomization (void)
6337{
6338#ifdef HAVE_PERSONALITY
6339 return 1;
6340#else
6341 return 0;
6342#endif
6343}
6344
6345static int
6346linux_supports_agent (void)
6347{
6348 return 1;
6349}
6350
6351static int
6352linux_supports_range_stepping (void)
6353{
6354 if (can_software_single_step ())
6355 return 1;
6356 if (*the_low_target.supports_range_stepping == NULL)
6357 return 0;
6358
6359 return (*the_low_target.supports_range_stepping) ();
6360}
6361
6362/* Enumerate spufs IDs for process PID. */
6363static int
6364spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6365{
6366 int pos = 0;
6367 int written = 0;
6368 char path[128];
6369 DIR *dir;
6370 struct dirent *entry;
6371
6372 sprintf (path, "/proc/%ld/fd", pid);
6373 dir = opendir (path);
6374 if (!dir)
6375 return -1;
6376
6377 rewinddir (dir);
6378 while ((entry = readdir (dir)) != NULL)
6379 {
6380 struct stat st;
6381 struct statfs stfs;
6382 int fd;
6383
6384 fd = atoi (entry->d_name);
6385 if (!fd)
6386 continue;
6387
6388 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6389 if (stat (path, &st) != 0)
6390 continue;
6391 if (!S_ISDIR (st.st_mode))
6392 continue;
6393
6394 if (statfs (path, &stfs) != 0)
6395 continue;
6396 if (stfs.f_type != SPUFS_MAGIC)
6397 continue;
6398
6399 if (pos >= offset && pos + 4 <= offset + len)
6400 {
6401 *(unsigned int *)(buf + pos - offset) = fd;
6402 written += 4;
6403 }
6404 pos += 4;
6405 }
6406
6407 closedir (dir);
6408 return written;
6409}
6410
6411/* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6412 object type, using the /proc file system. */
6413static int
6414linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6415 unsigned const char *writebuf,
6416 CORE_ADDR offset, int len)
6417{
6418 long pid = lwpid_of (current_thread);
6419 char buf[128];
6420 int fd = 0;
6421 int ret = 0;
6422
6423 if (!writebuf && !readbuf)
6424 return -1;
6425
6426 if (!*annex)
6427 {
6428 if (!readbuf)
6429 return -1;
6430 else
6431 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6432 }
6433
6434 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6435 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6436 if (fd <= 0)
6437 return -1;
6438
6439 if (offset != 0
6440 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6441 {
6442 close (fd);
6443 return 0;
6444 }
6445
6446 if (writebuf)
6447 ret = write (fd, writebuf, (size_t) len);
6448 else
6449 ret = read (fd, readbuf, (size_t) len);
6450
6451 close (fd);
6452 return ret;
6453}
6454
6455#if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6456struct target_loadseg
6457{
6458 /* Core address to which the segment is mapped. */
6459 Elf32_Addr addr;
6460 /* VMA recorded in the program header. */
6461 Elf32_Addr p_vaddr;
6462 /* Size of this segment in memory. */
6463 Elf32_Word p_memsz;
6464};
6465
6466# if defined PT_GETDSBT
6467struct target_loadmap
6468{
6469 /* Protocol version number, must be zero. */
6470 Elf32_Word version;
6471 /* Pointer to the DSBT table, its size, and the DSBT index. */
6472 unsigned *dsbt_table;
6473 unsigned dsbt_size, dsbt_index;
6474 /* Number of segments in this map. */
6475 Elf32_Word nsegs;
6476 /* The actual memory map. */
6477 struct target_loadseg segs[/*nsegs*/];
6478};
6479# define LINUX_LOADMAP PT_GETDSBT
6480# define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6481# define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6482# else
6483struct target_loadmap
6484{
6485 /* Protocol version number, must be zero. */
6486 Elf32_Half version;
6487 /* Number of segments in this map. */
6488 Elf32_Half nsegs;
6489 /* The actual memory map. */
6490 struct target_loadseg segs[/*nsegs*/];
6491};
6492# define LINUX_LOADMAP PTRACE_GETFDPIC
6493# define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6494# define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6495# endif
6496
6497static int
6498linux_read_loadmap (const char *annex, CORE_ADDR offset,
6499 unsigned char *myaddr, unsigned int len)
6500{
6501 int pid = lwpid_of (current_thread);
6502 int addr = -1;
6503 struct target_loadmap *data = NULL;
6504 unsigned int actual_length, copy_length;
6505
6506 if (strcmp (annex, "exec") == 0)
6507 addr = (int) LINUX_LOADMAP_EXEC;
6508 else if (strcmp (annex, "interp") == 0)
6509 addr = (int) LINUX_LOADMAP_INTERP;
6510 else
6511 return -1;
6512
6513 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6514 return -1;
6515
6516 if (data == NULL)
6517 return -1;
6518
6519 actual_length = sizeof (struct target_loadmap)
6520 + sizeof (struct target_loadseg) * data->nsegs;
6521
6522 if (offset < 0 || offset > actual_length)
6523 return -1;
6524
6525 copy_length = actual_length - offset < len ? actual_length - offset : len;
6526 memcpy (myaddr, (char *) data + offset, copy_length);
6527 return copy_length;
6528}
6529#else
6530# define linux_read_loadmap NULL
6531#endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6532
6533static void
6534linux_process_qsupported (char **features, int count)
6535{
6536 if (the_low_target.process_qsupported != NULL)
6537 the_low_target.process_qsupported (features, count);
6538}
6539
6540static int
6541linux_supports_catch_syscall (void)
6542{
6543 return (the_low_target.get_syscall_trapinfo != NULL
6544 && linux_supports_tracesysgood ());
6545}
6546
6547static int
6548linux_get_ipa_tdesc_idx (void)
6549{
6550 if (the_low_target.get_ipa_tdesc_idx == NULL)
6551 return 0;
6552
6553 return (*the_low_target.get_ipa_tdesc_idx) ();
6554}
6555
6556static int
6557linux_supports_tracepoints (void)
6558{
6559 if (*the_low_target.supports_tracepoints == NULL)
6560 return 0;
6561
6562 return (*the_low_target.supports_tracepoints) ();
6563}
6564
6565static CORE_ADDR
6566linux_read_pc (struct regcache *regcache)
6567{
6568 if (the_low_target.get_pc == NULL)
6569 return 0;
6570
6571 return (*the_low_target.get_pc) (regcache);
6572}
6573
6574static void
6575linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6576{
6577 gdb_assert (the_low_target.set_pc != NULL);
6578
6579 (*the_low_target.set_pc) (regcache, pc);
6580}
6581
6582static int
6583linux_thread_stopped (struct thread_info *thread)
6584{
6585 return get_thread_lwp (thread)->stopped;
6586}
6587
6588/* This exposes stop-all-threads functionality to other modules. */
6589
6590static void
6591linux_pause_all (int freeze)
6592{
6593 stop_all_lwps (freeze, NULL);
6594}
6595
6596/* This exposes unstop-all-threads functionality to other gdbserver
6597 modules. */
6598
6599static void
6600linux_unpause_all (int unfreeze)
6601{
6602 unstop_all_lwps (unfreeze, NULL);
6603}
6604
6605static int
6606linux_prepare_to_access_memory (void)
6607{
6608 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6609 running LWP. */
6610 if (non_stop)
6611 linux_pause_all (1);
6612 return 0;
6613}
6614
6615static void
6616linux_done_accessing_memory (void)
6617{
6618 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6619 running LWP. */
6620 if (non_stop)
6621 linux_unpause_all (1);
6622}
6623
6624static int
6625linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6626 CORE_ADDR collector,
6627 CORE_ADDR lockaddr,
6628 ULONGEST orig_size,
6629 CORE_ADDR *jump_entry,
6630 CORE_ADDR *trampoline,
6631 ULONGEST *trampoline_size,
6632 unsigned char *jjump_pad_insn,
6633 ULONGEST *jjump_pad_insn_size,
6634 CORE_ADDR *adjusted_insn_addr,
6635 CORE_ADDR *adjusted_insn_addr_end,
6636 char *err)
6637{
6638 return (*the_low_target.install_fast_tracepoint_jump_pad)
6639 (tpoint, tpaddr, collector, lockaddr, orig_size,
6640 jump_entry, trampoline, trampoline_size,
6641 jjump_pad_insn, jjump_pad_insn_size,
6642 adjusted_insn_addr, adjusted_insn_addr_end,
6643 err);
6644}
6645
6646static struct emit_ops *
6647linux_emit_ops (void)
6648{
6649 if (the_low_target.emit_ops != NULL)
6650 return (*the_low_target.emit_ops) ();
6651 else
6652 return NULL;
6653}
6654
6655static int
6656linux_get_min_fast_tracepoint_insn_len (void)
6657{
6658 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6659}
6660
6661/* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6662
6663static int
6664get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6665 CORE_ADDR *phdr_memaddr, int *num_phdr)
6666{
6667 char filename[PATH_MAX];
6668 int fd;
6669 const int auxv_size = is_elf64
6670 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6671 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6672
6673 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6674
6675 fd = open (filename, O_RDONLY);
6676 if (fd < 0)
6677 return 1;
6678
6679 *phdr_memaddr = 0;
6680 *num_phdr = 0;
6681 while (read (fd, buf, auxv_size) == auxv_size
6682 && (*phdr_memaddr == 0 || *num_phdr == 0))
6683 {
6684 if (is_elf64)
6685 {
6686 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6687
6688 switch (aux->a_type)
6689 {
6690 case AT_PHDR:
6691 *phdr_memaddr = aux->a_un.a_val;
6692 break;
6693 case AT_PHNUM:
6694 *num_phdr = aux->a_un.a_val;
6695 break;
6696 }
6697 }
6698 else
6699 {
6700 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6701
6702 switch (aux->a_type)
6703 {
6704 case AT_PHDR:
6705 *phdr_memaddr = aux->a_un.a_val;
6706 break;
6707 case AT_PHNUM:
6708 *num_phdr = aux->a_un.a_val;
6709 break;
6710 }
6711 }
6712 }
6713
6714 close (fd);
6715
6716 if (*phdr_memaddr == 0 || *num_phdr == 0)
6717 {
6718 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6719 "phdr_memaddr = %ld, phdr_num = %d",
6720 (long) *phdr_memaddr, *num_phdr);
6721 return 2;
6722 }
6723
6724 return 0;
6725}
6726
6727/* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6728
6729static CORE_ADDR
6730get_dynamic (const int pid, const int is_elf64)
6731{
6732 CORE_ADDR phdr_memaddr, relocation;
6733 int num_phdr, i;
6734 unsigned char *phdr_buf;
6735 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6736
6737 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6738 return 0;
6739
6740 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6741 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6742
6743 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6744 return 0;
6745
6746 /* Compute relocation: it is expected to be 0 for "regular" executables,
6747 non-zero for PIE ones. */
6748 relocation = -1;
6749 for (i = 0; relocation == -1 && i < num_phdr; i++)
6750 if (is_elf64)
6751 {
6752 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6753
6754 if (p->p_type == PT_PHDR)
6755 relocation = phdr_memaddr - p->p_vaddr;
6756 }
6757 else
6758 {
6759 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6760
6761 if (p->p_type == PT_PHDR)
6762 relocation = phdr_memaddr - p->p_vaddr;
6763 }
6764
6765 if (relocation == -1)
6766 {
6767 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6768 any real world executables, including PIE executables, have always
6769 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6770 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6771 or present DT_DEBUG anyway (fpc binaries are statically linked).
6772
6773 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6774
6775 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6776
6777 return 0;
6778 }
6779
6780 for (i = 0; i < num_phdr; i++)
6781 {
6782 if (is_elf64)
6783 {
6784 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6785
6786 if (p->p_type == PT_DYNAMIC)
6787 return p->p_vaddr + relocation;
6788 }
6789 else
6790 {
6791 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6792
6793 if (p->p_type == PT_DYNAMIC)
6794 return p->p_vaddr + relocation;
6795 }
6796 }
6797
6798 return 0;
6799}
6800
6801/* Return &_r_debug in the inferior, or -1 if not present. Return value
6802 can be 0 if the inferior does not yet have the library list initialized.
6803 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6804 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6805
6806static CORE_ADDR
6807get_r_debug (const int pid, const int is_elf64)
6808{
6809 CORE_ADDR dynamic_memaddr;
6810 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6811 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6812 CORE_ADDR map = -1;
6813
6814 dynamic_memaddr = get_dynamic (pid, is_elf64);
6815 if (dynamic_memaddr == 0)
6816 return map;
6817
6818 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6819 {
6820 if (is_elf64)
6821 {
6822 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6823#if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6824 union
6825 {
6826 Elf64_Xword map;
6827 unsigned char buf[sizeof (Elf64_Xword)];
6828 }
6829 rld_map;
6830#endif
6831#ifdef DT_MIPS_RLD_MAP
6832 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6833 {
6834 if (linux_read_memory (dyn->d_un.d_val,
6835 rld_map.buf, sizeof (rld_map.buf)) == 0)
6836 return rld_map.map;
6837 else
6838 break;
6839 }
6840#endif /* DT_MIPS_RLD_MAP */
6841#ifdef DT_MIPS_RLD_MAP_REL
6842 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6843 {
6844 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6845 rld_map.buf, sizeof (rld_map.buf)) == 0)
6846 return rld_map.map;
6847 else
6848 break;
6849 }
6850#endif /* DT_MIPS_RLD_MAP_REL */
6851
6852 if (dyn->d_tag == DT_DEBUG && map == -1)
6853 map = dyn->d_un.d_val;
6854
6855 if (dyn->d_tag == DT_NULL)
6856 break;
6857 }
6858 else
6859 {
6860 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6861#if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6862 union
6863 {
6864 Elf32_Word map;
6865 unsigned char buf[sizeof (Elf32_Word)];
6866 }
6867 rld_map;
6868#endif
6869#ifdef DT_MIPS_RLD_MAP
6870 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6871 {
6872 if (linux_read_memory (dyn->d_un.d_val,
6873 rld_map.buf, sizeof (rld_map.buf)) == 0)
6874 return rld_map.map;
6875 else
6876 break;
6877 }
6878#endif /* DT_MIPS_RLD_MAP */
6879#ifdef DT_MIPS_RLD_MAP_REL
6880 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6881 {
6882 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6883 rld_map.buf, sizeof (rld_map.buf)) == 0)
6884 return rld_map.map;
6885 else
6886 break;
6887 }
6888#endif /* DT_MIPS_RLD_MAP_REL */
6889
6890 if (dyn->d_tag == DT_DEBUG && map == -1)
6891 map = dyn->d_un.d_val;
6892
6893 if (dyn->d_tag == DT_NULL)
6894 break;
6895 }
6896
6897 dynamic_memaddr += dyn_size;
6898 }
6899
6900 return map;
6901}
6902
6903/* Read one pointer from MEMADDR in the inferior. */
6904
6905static int
6906read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6907{
6908 int ret;
6909
6910 /* Go through a union so this works on either big or little endian
6911 hosts, when the inferior's pointer size is smaller than the size
6912 of CORE_ADDR. It is assumed the inferior's endianness is the
6913 same of the superior's. */
6914 union
6915 {
6916 CORE_ADDR core_addr;
6917 unsigned int ui;
6918 unsigned char uc;
6919 } addr;
6920
6921 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6922 if (ret == 0)
6923 {
6924 if (ptr_size == sizeof (CORE_ADDR))
6925 *ptr = addr.core_addr;
6926 else if (ptr_size == sizeof (unsigned int))
6927 *ptr = addr.ui;
6928 else
6929 gdb_assert_not_reached ("unhandled pointer size");
6930 }
6931 return ret;
6932}
6933
6934struct link_map_offsets
6935 {
6936 /* Offset and size of r_debug.r_version. */
6937 int r_version_offset;
6938
6939 /* Offset and size of r_debug.r_map. */
6940 int r_map_offset;
6941
6942 /* Offset to l_addr field in struct link_map. */
6943 int l_addr_offset;
6944
6945 /* Offset to l_name field in struct link_map. */
6946 int l_name_offset;
6947
6948 /* Offset to l_ld field in struct link_map. */
6949 int l_ld_offset;
6950
6951 /* Offset to l_next field in struct link_map. */
6952 int l_next_offset;
6953
6954 /* Offset to l_prev field in struct link_map. */
6955 int l_prev_offset;
6956 };
6957
6958/* Construct qXfer:libraries-svr4:read reply. */
6959
6960static int
6961linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6962 unsigned const char *writebuf,
6963 CORE_ADDR offset, int len)
6964{
6965 struct process_info_private *const priv = current_process ()->priv;
6966 char filename[PATH_MAX];
6967 int pid, is_elf64;
6968
6969 static const struct link_map_offsets lmo_32bit_offsets =
6970 {
6971 0, /* r_version offset. */
6972 4, /* r_debug.r_map offset. */
6973 0, /* l_addr offset in link_map. */
6974 4, /* l_name offset in link_map. */
6975 8, /* l_ld offset in link_map. */
6976 12, /* l_next offset in link_map. */
6977 16 /* l_prev offset in link_map. */
6978 };
6979
6980 static const struct link_map_offsets lmo_64bit_offsets =
6981 {
6982 0, /* r_version offset. */
6983 8, /* r_debug.r_map offset. */
6984 0, /* l_addr offset in link_map. */
6985 8, /* l_name offset in link_map. */
6986 16, /* l_ld offset in link_map. */
6987 24, /* l_next offset in link_map. */
6988 32 /* l_prev offset in link_map. */
6989 };
6990 const struct link_map_offsets *lmo;
6991 unsigned int machine;
6992 int ptr_size;
6993 CORE_ADDR lm_addr = 0, lm_prev = 0;
6994 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6995 int header_done = 0;
6996
6997 if (writebuf != NULL)
6998 return -2;
6999 if (readbuf == NULL)
7000 return -1;
7001
7002 pid = lwpid_of (current_thread);
7003 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7004 is_elf64 = elf_64_file_p (filename, &machine);
7005 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7006 ptr_size = is_elf64 ? 8 : 4;
7007
7008 while (annex[0] != '\0')
7009 {
7010 const char *sep;
7011 CORE_ADDR *addrp;
7012 int name_len;
7013
7014 sep = strchr (annex, '=');
7015 if (sep == NULL)
7016 break;
7017
7018 name_len = sep - annex;
7019 if (name_len == 5 && startswith (annex, "start"))
7020 addrp = &lm_addr;
7021 else if (name_len == 4 && startswith (annex, "prev"))
7022 addrp = &lm_prev;
7023 else
7024 {
7025 annex = strchr (sep, ';');
7026 if (annex == NULL)
7027 break;
7028 annex++;
7029 continue;
7030 }
7031
7032 annex = decode_address_to_semicolon (addrp, sep + 1);
7033 }
7034
7035 if (lm_addr == 0)
7036 {
7037 int r_version = 0;
7038
7039 if (priv->r_debug == 0)
7040 priv->r_debug = get_r_debug (pid, is_elf64);
7041
7042 /* We failed to find DT_DEBUG. Such situation will not change
7043 for this inferior - do not retry it. Report it to GDB as
7044 E01, see for the reasons at the GDB solib-svr4.c side. */
7045 if (priv->r_debug == (CORE_ADDR) -1)
7046 return -1;
7047
7048 if (priv->r_debug != 0)
7049 {
7050 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7051 (unsigned char *) &r_version,
7052 sizeof (r_version)) != 0
7053 || r_version != 1)
7054 {
7055 warning ("unexpected r_debug version %d", r_version);
7056 }
7057 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7058 &lm_addr, ptr_size) != 0)
7059 {
7060 warning ("unable to read r_map from 0x%lx",
7061 (long) priv->r_debug + lmo->r_map_offset);
7062 }
7063 }
7064 }
7065
7066 std::string document = "<library-list-svr4 version=\"1.0\"";
7067
7068 while (lm_addr
7069 && read_one_ptr (lm_addr + lmo->l_name_offset,
7070 &l_name, ptr_size) == 0
7071 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7072 &l_addr, ptr_size) == 0
7073 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7074 &l_ld, ptr_size) == 0
7075 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7076 &l_prev, ptr_size) == 0
7077 && read_one_ptr (lm_addr + lmo->l_next_offset,
7078 &l_next, ptr_size) == 0)
7079 {
7080 unsigned char libname[PATH_MAX];
7081
7082 if (lm_prev != l_prev)
7083 {
7084 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7085 (long) lm_prev, (long) l_prev);
7086 break;
7087 }
7088
7089 /* Ignore the first entry even if it has valid name as the first entry
7090 corresponds to the main executable. The first entry should not be
7091 skipped if the dynamic loader was loaded late by a static executable
7092 (see solib-svr4.c parameter ignore_first). But in such case the main
7093 executable does not have PT_DYNAMIC present and this function already
7094 exited above due to failed get_r_debug. */
7095 if (lm_prev == 0)
7096 string_appendf (document, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7097 else
7098 {
7099 /* Not checking for error because reading may stop before
7100 we've got PATH_MAX worth of characters. */
7101 libname[0] = '\0';
7102 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7103 libname[sizeof (libname) - 1] = '\0';
7104 if (libname[0] != '\0')
7105 {
7106 if (!header_done)
7107 {
7108 /* Terminate `<library-list-svr4'. */
7109 document += '>';
7110 header_done = 1;
7111 }
7112
7113 string_appendf (document, "<library name=\"");
7114 xml_escape_text_append (&document, (char *) libname);
7115 string_appendf (document, "\" lm=\"0x%lx\" "
7116 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7117 (unsigned long) lm_addr, (unsigned long) l_addr,
7118 (unsigned long) l_ld);
7119 }
7120 }
7121
7122 lm_prev = lm_addr;
7123 lm_addr = l_next;
7124 }
7125
7126 if (!header_done)
7127 {
7128 /* Empty list; terminate `<library-list-svr4'. */
7129 document += "/>";
7130 }
7131 else
7132 document += "</library-list-svr4>";
7133
7134 int document_len = document.length ();
7135 if (offset < document_len)
7136 document_len -= offset;
7137 else
7138 document_len = 0;
7139 if (len > document_len)
7140 len = document_len;
7141
7142 memcpy (readbuf, document.data () + offset, len);
7143
7144 return len;
7145}
7146
7147#ifdef HAVE_LINUX_BTRACE
7148
7149/* See to_disable_btrace target method. */
7150
7151static int
7152linux_low_disable_btrace (struct btrace_target_info *tinfo)
7153{
7154 enum btrace_error err;
7155
7156 err = linux_disable_btrace (tinfo);
7157 return (err == BTRACE_ERR_NONE ? 0 : -1);
7158}
7159
7160/* Encode an Intel Processor Trace configuration. */
7161
7162static void
7163linux_low_encode_pt_config (struct buffer *buffer,
7164 const struct btrace_data_pt_config *config)
7165{
7166 buffer_grow_str (buffer, "<pt-config>\n");
7167
7168 switch (config->cpu.vendor)
7169 {
7170 case CV_INTEL:
7171 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7172 "model=\"%u\" stepping=\"%u\"/>\n",
7173 config->cpu.family, config->cpu.model,
7174 config->cpu.stepping);
7175 break;
7176
7177 default:
7178 break;
7179 }
7180
7181 buffer_grow_str (buffer, "</pt-config>\n");
7182}
7183
7184/* Encode a raw buffer. */
7185
7186static void
7187linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7188 unsigned int size)
7189{
7190 if (size == 0)
7191 return;
7192
7193 /* We use hex encoding - see common/rsp-low.h. */
7194 buffer_grow_str (buffer, "<raw>\n");
7195
7196 while (size-- > 0)
7197 {
7198 char elem[2];
7199
7200 elem[0] = tohex ((*data >> 4) & 0xf);
7201 elem[1] = tohex (*data++ & 0xf);
7202
7203 buffer_grow (buffer, elem, 2);
7204 }
7205
7206 buffer_grow_str (buffer, "</raw>\n");
7207}
7208
7209/* See to_read_btrace target method. */
7210
7211static int
7212linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7213 enum btrace_read_type type)
7214{
7215 struct btrace_data btrace;
7216 struct btrace_block *block;
7217 enum btrace_error err;
7218 int i;
7219
7220 err = linux_read_btrace (&btrace, tinfo, type);
7221 if (err != BTRACE_ERR_NONE)
7222 {
7223 if (err == BTRACE_ERR_OVERFLOW)
7224 buffer_grow_str0 (buffer, "E.Overflow.");
7225 else
7226 buffer_grow_str0 (buffer, "E.Generic Error.");
7227
7228 return -1;
7229 }
7230
7231 switch (btrace.format)
7232 {
7233 case BTRACE_FORMAT_NONE:
7234 buffer_grow_str0 (buffer, "E.No Trace.");
7235 return -1;
7236
7237 case BTRACE_FORMAT_BTS:
7238 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7239 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7240
7241 for (i = 0;
7242 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7243 i++)
7244 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7245 paddress (block->begin), paddress (block->end));
7246
7247 buffer_grow_str0 (buffer, "</btrace>\n");
7248 break;
7249
7250 case BTRACE_FORMAT_PT:
7251 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7252 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7253 buffer_grow_str (buffer, "<pt>\n");
7254
7255 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7256
7257 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7258 btrace.variant.pt.size);
7259
7260 buffer_grow_str (buffer, "</pt>\n");
7261 buffer_grow_str0 (buffer, "</btrace>\n");
7262 break;
7263
7264 default:
7265 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7266 return -1;
7267 }
7268
7269 return 0;
7270}
7271
7272/* See to_btrace_conf target method. */
7273
7274static int
7275linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7276 struct buffer *buffer)
7277{
7278 const struct btrace_config *conf;
7279
7280 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7281 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7282
7283 conf = linux_btrace_conf (tinfo);
7284 if (conf != NULL)
7285 {
7286 switch (conf->format)
7287 {
7288 case BTRACE_FORMAT_NONE:
7289 break;
7290
7291 case BTRACE_FORMAT_BTS:
7292 buffer_xml_printf (buffer, "<bts");
7293 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7294 buffer_xml_printf (buffer, " />\n");
7295 break;
7296
7297 case BTRACE_FORMAT_PT:
7298 buffer_xml_printf (buffer, "<pt");
7299 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7300 buffer_xml_printf (buffer, "/>\n");
7301 break;
7302 }
7303 }
7304
7305 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7306 return 0;
7307}
7308#endif /* HAVE_LINUX_BTRACE */
7309
7310/* See nat/linux-nat.h. */
7311
7312ptid_t
7313current_lwp_ptid (void)
7314{
7315 return ptid_of (current_thread);
7316}
7317
7318/* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7319
7320static int
7321linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7322{
7323 if (the_low_target.breakpoint_kind_from_pc != NULL)
7324 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7325 else
7326 return default_breakpoint_kind_from_pc (pcptr);
7327}
7328
7329/* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7330
7331static const gdb_byte *
7332linux_sw_breakpoint_from_kind (int kind, int *size)
7333{
7334 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7335
7336 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7337}
7338
7339/* Implementation of the target_ops method
7340 "breakpoint_kind_from_current_state". */
7341
7342static int
7343linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7344{
7345 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7346 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7347 else
7348 return linux_breakpoint_kind_from_pc (pcptr);
7349}
7350
7351/* Default implementation of linux_target_ops method "set_pc" for
7352 32-bit pc register which is literally named "pc". */
7353
7354void
7355linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7356{
7357 uint32_t newpc = pc;
7358
7359 supply_register_by_name (regcache, "pc", &newpc);
7360}
7361
7362/* Default implementation of linux_target_ops method "get_pc" for
7363 32-bit pc register which is literally named "pc". */
7364
7365CORE_ADDR
7366linux_get_pc_32bit (struct regcache *regcache)
7367{
7368 uint32_t pc;
7369
7370 collect_register_by_name (regcache, "pc", &pc);
7371 if (debug_threads)
7372 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7373 return pc;
7374}
7375
7376/* Default implementation of linux_target_ops method "set_pc" for
7377 64-bit pc register which is literally named "pc". */
7378
7379void
7380linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7381{
7382 uint64_t newpc = pc;
7383
7384 supply_register_by_name (regcache, "pc", &newpc);
7385}
7386
7387/* Default implementation of linux_target_ops method "get_pc" for
7388 64-bit pc register which is literally named "pc". */
7389
7390CORE_ADDR
7391linux_get_pc_64bit (struct regcache *regcache)
7392{
7393 uint64_t pc;
7394
7395 collect_register_by_name (regcache, "pc", &pc);
7396 if (debug_threads)
7397 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7398 return pc;
7399}
7400
7401/* See linux-low.h. */
7402
7403int
7404linux_get_auxv (int wordsize, CORE_ADDR match, CORE_ADDR *valp)
7405{
7406 gdb_byte *data = (gdb_byte *) alloca (2 * wordsize);
7407 int offset = 0;
7408
7409 gdb_assert (wordsize == 4 || wordsize == 8);
7410
7411 while ((*the_target->read_auxv) (offset, data, 2 * wordsize) == 2 * wordsize)
7412 {
7413 if (wordsize == 4)
7414 {
7415 uint32_t *data_p = (uint32_t *) data;
7416 if (data_p[0] == match)
7417 {
7418 *valp = data_p[1];
7419 return 1;
7420 }
7421 }
7422 else
7423 {
7424 uint64_t *data_p = (uint64_t *) data;
7425 if (data_p[0] == match)
7426 {
7427 *valp = data_p[1];
7428 return 1;
7429 }
7430 }
7431
7432 offset += 2 * wordsize;
7433 }
7434
7435 return 0;
7436}
7437
7438/* See linux-low.h. */
7439
7440CORE_ADDR
7441linux_get_hwcap (int wordsize)
7442{
7443 CORE_ADDR hwcap = 0;
7444 linux_get_auxv (wordsize, AT_HWCAP, &hwcap);
7445 return hwcap;
7446}
7447
7448/* See linux-low.h. */
7449
7450CORE_ADDR
7451linux_get_hwcap2 (int wordsize)
7452{
7453 CORE_ADDR hwcap2 = 0;
7454 linux_get_auxv (wordsize, AT_HWCAP2, &hwcap2);
7455 return hwcap2;
7456}
7457
7458static struct target_ops linux_target_ops = {
7459 linux_create_inferior,
7460 linux_post_create_inferior,
7461 linux_attach,
7462 linux_kill,
7463 linux_detach,
7464 linux_mourn,
7465 linux_join,
7466 linux_thread_alive,
7467 linux_resume,
7468 linux_wait,
7469 linux_fetch_registers,
7470 linux_store_registers,
7471 linux_prepare_to_access_memory,
7472 linux_done_accessing_memory,
7473 linux_read_memory,
7474 linux_write_memory,
7475 linux_look_up_symbols,
7476 linux_request_interrupt,
7477 linux_read_auxv,
7478 linux_supports_z_point_type,
7479 linux_insert_point,
7480 linux_remove_point,
7481 linux_stopped_by_sw_breakpoint,
7482 linux_supports_stopped_by_sw_breakpoint,
7483 linux_stopped_by_hw_breakpoint,
7484 linux_supports_stopped_by_hw_breakpoint,
7485 linux_supports_hardware_single_step,
7486 linux_stopped_by_watchpoint,
7487 linux_stopped_data_address,
7488#if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7489 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7490 && defined(PT_TEXT_END_ADDR)
7491 linux_read_offsets,
7492#else
7493 NULL,
7494#endif
7495#ifdef USE_THREAD_DB
7496 thread_db_get_tls_address,
7497#else
7498 NULL,
7499#endif
7500 linux_qxfer_spu,
7501 hostio_last_error_from_errno,
7502 linux_qxfer_osdata,
7503 linux_xfer_siginfo,
7504 linux_supports_non_stop,
7505 linux_async,
7506 linux_start_non_stop,
7507 linux_supports_multi_process,
7508 linux_supports_fork_events,
7509 linux_supports_vfork_events,
7510 linux_supports_exec_events,
7511 linux_handle_new_gdb_connection,
7512#ifdef USE_THREAD_DB
7513 thread_db_handle_monitor_command,
7514#else
7515 NULL,
7516#endif
7517 linux_common_core_of_thread,
7518 linux_read_loadmap,
7519 linux_process_qsupported,
7520 linux_supports_tracepoints,
7521 linux_read_pc,
7522 linux_write_pc,
7523 linux_thread_stopped,
7524 NULL,
7525 linux_pause_all,
7526 linux_unpause_all,
7527 linux_stabilize_threads,
7528 linux_install_fast_tracepoint_jump_pad,
7529 linux_emit_ops,
7530 linux_supports_disable_randomization,
7531 linux_get_min_fast_tracepoint_insn_len,
7532 linux_qxfer_libraries_svr4,
7533 linux_supports_agent,
7534#ifdef HAVE_LINUX_BTRACE
7535 linux_enable_btrace,
7536 linux_low_disable_btrace,
7537 linux_low_read_btrace,
7538 linux_low_btrace_conf,
7539#else
7540 NULL,
7541 NULL,
7542 NULL,
7543 NULL,
7544#endif
7545 linux_supports_range_stepping,
7546 linux_proc_pid_to_exec_file,
7547 linux_mntns_open_cloexec,
7548 linux_mntns_unlink,
7549 linux_mntns_readlink,
7550 linux_breakpoint_kind_from_pc,
7551 linux_sw_breakpoint_from_kind,
7552 linux_proc_tid_get_name,
7553 linux_breakpoint_kind_from_current_state,
7554 linux_supports_software_single_step,
7555 linux_supports_catch_syscall,
7556 linux_get_ipa_tdesc_idx,
7557#if USE_THREAD_DB
7558 thread_db_thread_handle,
7559#else
7560 NULL,
7561#endif
7562};
7563
7564#ifdef HAVE_LINUX_REGSETS
7565void
7566initialize_regsets_info (struct regsets_info *info)
7567{
7568 for (info->num_regsets = 0;
7569 info->regsets[info->num_regsets].size >= 0;
7570 info->num_regsets++)
7571 ;
7572}
7573#endif
7574
7575void
7576initialize_low (void)
7577{
7578 struct sigaction sigchld_action;
7579
7580 memset (&sigchld_action, 0, sizeof (sigchld_action));
7581 set_target_ops (&linux_target_ops);
7582
7583 linux_ptrace_init_warnings ();
7584 linux_proc_init_warnings ();
7585
7586 sigchld_action.sa_handler = sigchld_handler;
7587 sigemptyset (&sigchld_action.sa_mask);
7588 sigchld_action.sa_flags = SA_RESTART;
7589 sigaction (SIGCHLD, &sigchld_action, NULL);
7590
7591 initialize_low_arch ();
7592
7593 linux_check_ptrace_features ();
7594}
This page took 0.070176 seconds and 4 git commands to generate.