Remove usage of find_inferior in linux_resume
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
... / ...
CommitLineData
1/* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19#include "server.h"
20#include "linux-low.h"
21#include "nat/linux-osdata.h"
22#include "agent.h"
23#include "tdesc.h"
24#include "rsp-low.h"
25#include "signals-state-save-restore.h"
26#include "nat/linux-nat.h"
27#include "nat/linux-waitpid.h"
28#include "gdb_wait.h"
29#include "nat/gdb_ptrace.h"
30#include "nat/linux-ptrace.h"
31#include "nat/linux-procfs.h"
32#include "nat/linux-personality.h"
33#include <signal.h>
34#include <sys/ioctl.h>
35#include <fcntl.h>
36#include <unistd.h>
37#include <sys/syscall.h>
38#include <sched.h>
39#include <ctype.h>
40#include <pwd.h>
41#include <sys/types.h>
42#include <dirent.h>
43#include <sys/stat.h>
44#include <sys/vfs.h>
45#include <sys/uio.h>
46#include "filestuff.h"
47#include "tracepoint.h"
48#include "hostio.h"
49#include <inttypes.h>
50#include "common-inferior.h"
51#include "nat/fork-inferior.h"
52#include "environ.h"
53#ifndef ELFMAG0
54/* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
55 then ELFMAG0 will have been defined. If it didn't get included by
56 gdb_proc_service.h then including it will likely introduce a duplicate
57 definition of elf_fpregset_t. */
58#include <elf.h>
59#endif
60#include "nat/linux-namespaces.h"
61
62#ifndef SPUFS_MAGIC
63#define SPUFS_MAGIC 0x23c9b64e
64#endif
65
66#ifdef HAVE_PERSONALITY
67# include <sys/personality.h>
68# if !HAVE_DECL_ADDR_NO_RANDOMIZE
69# define ADDR_NO_RANDOMIZE 0x0040000
70# endif
71#endif
72
73#ifndef O_LARGEFILE
74#define O_LARGEFILE 0
75#endif
76
77/* Some targets did not define these ptrace constants from the start,
78 so gdbserver defines them locally here. In the future, these may
79 be removed after they are added to asm/ptrace.h. */
80#if !(defined(PT_TEXT_ADDR) \
81 || defined(PT_DATA_ADDR) \
82 || defined(PT_TEXT_END_ADDR))
83#if defined(__mcoldfire__)
84/* These are still undefined in 3.10 kernels. */
85#define PT_TEXT_ADDR 49*4
86#define PT_DATA_ADDR 50*4
87#define PT_TEXT_END_ADDR 51*4
88/* BFIN already defines these since at least 2.6.32 kernels. */
89#elif defined(BFIN)
90#define PT_TEXT_ADDR 220
91#define PT_TEXT_END_ADDR 224
92#define PT_DATA_ADDR 228
93/* These are still undefined in 3.10 kernels. */
94#elif defined(__TMS320C6X__)
95#define PT_TEXT_ADDR (0x10000*4)
96#define PT_DATA_ADDR (0x10004*4)
97#define PT_TEXT_END_ADDR (0x10008*4)
98#endif
99#endif
100
101#ifdef HAVE_LINUX_BTRACE
102# include "nat/linux-btrace.h"
103# include "btrace-common.h"
104#endif
105
106#ifndef HAVE_ELF32_AUXV_T
107/* Copied from glibc's elf.h. */
108typedef struct
109{
110 uint32_t a_type; /* Entry type */
111 union
112 {
113 uint32_t a_val; /* Integer value */
114 /* We use to have pointer elements added here. We cannot do that,
115 though, since it does not work when using 32-bit definitions
116 on 64-bit platforms and vice versa. */
117 } a_un;
118} Elf32_auxv_t;
119#endif
120
121#ifndef HAVE_ELF64_AUXV_T
122/* Copied from glibc's elf.h. */
123typedef struct
124{
125 uint64_t a_type; /* Entry type */
126 union
127 {
128 uint64_t a_val; /* Integer value */
129 /* We use to have pointer elements added here. We cannot do that,
130 though, since it does not work when using 32-bit definitions
131 on 64-bit platforms and vice versa. */
132 } a_un;
133} Elf64_auxv_t;
134#endif
135
136/* Does the current host support PTRACE_GETREGSET? */
137int have_ptrace_getregset = -1;
138
139/* LWP accessors. */
140
141/* See nat/linux-nat.h. */
142
143ptid_t
144ptid_of_lwp (struct lwp_info *lwp)
145{
146 return ptid_of (get_lwp_thread (lwp));
147}
148
149/* See nat/linux-nat.h. */
150
151void
152lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154{
155 lwp->arch_private = info;
156}
157
158/* See nat/linux-nat.h. */
159
160struct arch_lwp_info *
161lwp_arch_private_info (struct lwp_info *lwp)
162{
163 return lwp->arch_private;
164}
165
166/* See nat/linux-nat.h. */
167
168int
169lwp_is_stopped (struct lwp_info *lwp)
170{
171 return lwp->stopped;
172}
173
174/* See nat/linux-nat.h. */
175
176enum target_stop_reason
177lwp_stop_reason (struct lwp_info *lwp)
178{
179 return lwp->stop_reason;
180}
181
182/* See nat/linux-nat.h. */
183
184int
185lwp_is_stepping (struct lwp_info *lwp)
186{
187 return lwp->stepping;
188}
189
190/* A list of all unknown processes which receive stop signals. Some
191 other process will presumably claim each of these as forked
192 children momentarily. */
193
194struct simple_pid_list
195{
196 /* The process ID. */
197 int pid;
198
199 /* The status as reported by waitpid. */
200 int status;
201
202 /* Next in chain. */
203 struct simple_pid_list *next;
204};
205struct simple_pid_list *stopped_pids;
206
207/* Trivial list manipulation functions to keep track of a list of new
208 stopped processes. */
209
210static void
211add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
212{
213 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
214
215 new_pid->pid = pid;
216 new_pid->status = status;
217 new_pid->next = *listp;
218 *listp = new_pid;
219}
220
221static int
222pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
223{
224 struct simple_pid_list **p;
225
226 for (p = listp; *p != NULL; p = &(*p)->next)
227 if ((*p)->pid == pid)
228 {
229 struct simple_pid_list *next = (*p)->next;
230
231 *statusp = (*p)->status;
232 xfree (*p);
233 *p = next;
234 return 1;
235 }
236 return 0;
237}
238
239enum stopping_threads_kind
240 {
241 /* Not stopping threads presently. */
242 NOT_STOPPING_THREADS,
243
244 /* Stopping threads. */
245 STOPPING_THREADS,
246
247 /* Stopping and suspending threads. */
248 STOPPING_AND_SUSPENDING_THREADS
249 };
250
251/* This is set while stop_all_lwps is in effect. */
252enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
253
254/* FIXME make into a target method? */
255int using_threads = 1;
256
257/* True if we're presently stabilizing threads (moving them out of
258 jump pads). */
259static int stabilizing_threads;
260
261static void linux_resume_one_lwp (struct lwp_info *lwp,
262 int step, int signal, siginfo_t *info);
263static void linux_resume (struct thread_resume *resume_info, size_t n);
264static void stop_all_lwps (int suspend, struct lwp_info *except);
265static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
266static void unsuspend_all_lwps (struct lwp_info *except);
267static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
268 int *wstat, int options);
269static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
270static struct lwp_info *add_lwp (ptid_t ptid);
271static void linux_mourn (struct process_info *process);
272static int linux_stopped_by_watchpoint (void);
273static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
274static int lwp_is_marked_dead (struct lwp_info *lwp);
275static void proceed_all_lwps (void);
276static int finish_step_over (struct lwp_info *lwp);
277static int kill_lwp (unsigned long lwpid, int signo);
278static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
279static void complete_ongoing_step_over (void);
280static int linux_low_ptrace_options (int attached);
281static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
282static int proceed_one_lwp (thread_info *thread, void *except);
283
284/* When the event-loop is doing a step-over, this points at the thread
285 being stepped. */
286ptid_t step_over_bkpt;
287
288/* True if the low target can hardware single-step. */
289
290static int
291can_hardware_single_step (void)
292{
293 if (the_low_target.supports_hardware_single_step != NULL)
294 return the_low_target.supports_hardware_single_step ();
295 else
296 return 0;
297}
298
299/* True if the low target can software single-step. Such targets
300 implement the GET_NEXT_PCS callback. */
301
302static int
303can_software_single_step (void)
304{
305 return (the_low_target.get_next_pcs != NULL);
306}
307
308/* True if the low target supports memory breakpoints. If so, we'll
309 have a GET_PC implementation. */
310
311static int
312supports_breakpoints (void)
313{
314 return (the_low_target.get_pc != NULL);
315}
316
317/* Returns true if this target can support fast tracepoints. This
318 does not mean that the in-process agent has been loaded in the
319 inferior. */
320
321static int
322supports_fast_tracepoints (void)
323{
324 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
325}
326
327/* True if LWP is stopped in its stepping range. */
328
329static int
330lwp_in_step_range (struct lwp_info *lwp)
331{
332 CORE_ADDR pc = lwp->stop_pc;
333
334 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
335}
336
337struct pending_signals
338{
339 int signal;
340 siginfo_t info;
341 struct pending_signals *prev;
342};
343
344/* The read/write ends of the pipe registered as waitable file in the
345 event loop. */
346static int linux_event_pipe[2] = { -1, -1 };
347
348/* True if we're currently in async mode. */
349#define target_is_async_p() (linux_event_pipe[0] != -1)
350
351static void send_sigstop (struct lwp_info *lwp);
352static void wait_for_sigstop (void);
353
354/* Return non-zero if HEADER is a 64-bit ELF file. */
355
356static int
357elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
358{
359 if (header->e_ident[EI_MAG0] == ELFMAG0
360 && header->e_ident[EI_MAG1] == ELFMAG1
361 && header->e_ident[EI_MAG2] == ELFMAG2
362 && header->e_ident[EI_MAG3] == ELFMAG3)
363 {
364 *machine = header->e_machine;
365 return header->e_ident[EI_CLASS] == ELFCLASS64;
366
367 }
368 *machine = EM_NONE;
369 return -1;
370}
371
372/* Return non-zero if FILE is a 64-bit ELF file,
373 zero if the file is not a 64-bit ELF file,
374 and -1 if the file is not accessible or doesn't exist. */
375
376static int
377elf_64_file_p (const char *file, unsigned int *machine)
378{
379 Elf64_Ehdr header;
380 int fd;
381
382 fd = open (file, O_RDONLY);
383 if (fd < 0)
384 return -1;
385
386 if (read (fd, &header, sizeof (header)) != sizeof (header))
387 {
388 close (fd);
389 return 0;
390 }
391 close (fd);
392
393 return elf_64_header_p (&header, machine);
394}
395
396/* Accepts an integer PID; Returns true if the executable PID is
397 running is a 64-bit ELF file.. */
398
399int
400linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
401{
402 char file[PATH_MAX];
403
404 sprintf (file, "/proc/%d/exe", pid);
405 return elf_64_file_p (file, machine);
406}
407
408static void
409delete_lwp (struct lwp_info *lwp)
410{
411 struct thread_info *thr = get_lwp_thread (lwp);
412
413 if (debug_threads)
414 debug_printf ("deleting %ld\n", lwpid_of (thr));
415
416 remove_thread (thr);
417
418 if (the_low_target.delete_thread != NULL)
419 the_low_target.delete_thread (lwp->arch_private);
420 else
421 gdb_assert (lwp->arch_private == NULL);
422
423 free (lwp);
424}
425
426/* Add a process to the common process list, and set its private
427 data. */
428
429static struct process_info *
430linux_add_process (int pid, int attached)
431{
432 struct process_info *proc;
433
434 proc = add_process (pid, attached);
435 proc->priv = XCNEW (struct process_info_private);
436
437 if (the_low_target.new_process != NULL)
438 proc->priv->arch_private = the_low_target.new_process ();
439
440 return proc;
441}
442
443static CORE_ADDR get_pc (struct lwp_info *lwp);
444
445/* Call the target arch_setup function on the current thread. */
446
447static void
448linux_arch_setup (void)
449{
450 the_low_target.arch_setup ();
451}
452
453/* Call the target arch_setup function on THREAD. */
454
455static void
456linux_arch_setup_thread (struct thread_info *thread)
457{
458 struct thread_info *saved_thread;
459
460 saved_thread = current_thread;
461 current_thread = thread;
462
463 linux_arch_setup ();
464
465 current_thread = saved_thread;
466}
467
468/* Handle a GNU/Linux extended wait response. If we see a clone,
469 fork, or vfork event, we need to add the new LWP to our list
470 (and return 0 so as not to report the trap to higher layers).
471 If we see an exec event, we will modify ORIG_EVENT_LWP to point
472 to a new LWP representing the new program. */
473
474static int
475handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
476{
477 struct lwp_info *event_lwp = *orig_event_lwp;
478 int event = linux_ptrace_get_extended_event (wstat);
479 struct thread_info *event_thr = get_lwp_thread (event_lwp);
480 struct lwp_info *new_lwp;
481
482 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
483
484 /* All extended events we currently use are mid-syscall. Only
485 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
486 you have to be using PTRACE_SEIZE to get that. */
487 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
488
489 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
490 || (event == PTRACE_EVENT_CLONE))
491 {
492 ptid_t ptid;
493 unsigned long new_pid;
494 int ret, status;
495
496 /* Get the pid of the new lwp. */
497 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
498 &new_pid);
499
500 /* If we haven't already seen the new PID stop, wait for it now. */
501 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
502 {
503 /* The new child has a pending SIGSTOP. We can't affect it until it
504 hits the SIGSTOP, but we're already attached. */
505
506 ret = my_waitpid (new_pid, &status, __WALL);
507
508 if (ret == -1)
509 perror_with_name ("waiting for new child");
510 else if (ret != new_pid)
511 warning ("wait returned unexpected PID %d", ret);
512 else if (!WIFSTOPPED (status))
513 warning ("wait returned unexpected status 0x%x", status);
514 }
515
516 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
517 {
518 struct process_info *parent_proc;
519 struct process_info *child_proc;
520 struct lwp_info *child_lwp;
521 struct thread_info *child_thr;
522 struct target_desc *tdesc;
523
524 ptid = ptid_build (new_pid, new_pid, 0);
525
526 if (debug_threads)
527 {
528 debug_printf ("HEW: Got fork event from LWP %ld, "
529 "new child is %d\n",
530 ptid_get_lwp (ptid_of (event_thr)),
531 ptid_get_pid (ptid));
532 }
533
534 /* Add the new process to the tables and clone the breakpoint
535 lists of the parent. We need to do this even if the new process
536 will be detached, since we will need the process object and the
537 breakpoints to remove any breakpoints from memory when we
538 detach, and the client side will access registers. */
539 child_proc = linux_add_process (new_pid, 0);
540 gdb_assert (child_proc != NULL);
541 child_lwp = add_lwp (ptid);
542 gdb_assert (child_lwp != NULL);
543 child_lwp->stopped = 1;
544 child_lwp->must_set_ptrace_flags = 1;
545 child_lwp->status_pending_p = 0;
546 child_thr = get_lwp_thread (child_lwp);
547 child_thr->last_resume_kind = resume_stop;
548 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
549
550 /* If we're suspending all threads, leave this one suspended
551 too. If the fork/clone parent is stepping over a breakpoint,
552 all other threads have been suspended already. Leave the
553 child suspended too. */
554 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
555 || event_lwp->bp_reinsert != 0)
556 {
557 if (debug_threads)
558 debug_printf ("HEW: leaving child suspended\n");
559 child_lwp->suspended = 1;
560 }
561
562 parent_proc = get_thread_process (event_thr);
563 child_proc->attached = parent_proc->attached;
564
565 if (event_lwp->bp_reinsert != 0
566 && can_software_single_step ()
567 && event == PTRACE_EVENT_VFORK)
568 {
569 /* If we leave single-step breakpoints there, child will
570 hit it, so uninsert single-step breakpoints from parent
571 (and child). Once vfork child is done, reinsert
572 them back to parent. */
573 uninsert_single_step_breakpoints (event_thr);
574 }
575
576 clone_all_breakpoints (child_thr, event_thr);
577
578 tdesc = allocate_target_description ();
579 copy_target_description (tdesc, parent_proc->tdesc);
580 child_proc->tdesc = tdesc;
581
582 /* Clone arch-specific process data. */
583 if (the_low_target.new_fork != NULL)
584 the_low_target.new_fork (parent_proc, child_proc);
585
586 /* Save fork info in the parent thread. */
587 if (event == PTRACE_EVENT_FORK)
588 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
589 else if (event == PTRACE_EVENT_VFORK)
590 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
591
592 event_lwp->waitstatus.value.related_pid = ptid;
593
594 /* The status_pending field contains bits denoting the
595 extended event, so when the pending event is handled,
596 the handler will look at lwp->waitstatus. */
597 event_lwp->status_pending_p = 1;
598 event_lwp->status_pending = wstat;
599
600 /* Link the threads until the parent event is passed on to
601 higher layers. */
602 event_lwp->fork_relative = child_lwp;
603 child_lwp->fork_relative = event_lwp;
604
605 /* If the parent thread is doing step-over with single-step
606 breakpoints, the list of single-step breakpoints are cloned
607 from the parent's. Remove them from the child process.
608 In case of vfork, we'll reinsert them back once vforked
609 child is done. */
610 if (event_lwp->bp_reinsert != 0
611 && can_software_single_step ())
612 {
613 /* The child process is forked and stopped, so it is safe
614 to access its memory without stopping all other threads
615 from other processes. */
616 delete_single_step_breakpoints (child_thr);
617
618 gdb_assert (has_single_step_breakpoints (event_thr));
619 gdb_assert (!has_single_step_breakpoints (child_thr));
620 }
621
622 /* Report the event. */
623 return 0;
624 }
625
626 if (debug_threads)
627 debug_printf ("HEW: Got clone event "
628 "from LWP %ld, new child is LWP %ld\n",
629 lwpid_of (event_thr), new_pid);
630
631 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
632 new_lwp = add_lwp (ptid);
633
634 /* Either we're going to immediately resume the new thread
635 or leave it stopped. linux_resume_one_lwp is a nop if it
636 thinks the thread is currently running, so set this first
637 before calling linux_resume_one_lwp. */
638 new_lwp->stopped = 1;
639
640 /* If we're suspending all threads, leave this one suspended
641 too. If the fork/clone parent is stepping over a breakpoint,
642 all other threads have been suspended already. Leave the
643 child suspended too. */
644 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
645 || event_lwp->bp_reinsert != 0)
646 new_lwp->suspended = 1;
647
648 /* Normally we will get the pending SIGSTOP. But in some cases
649 we might get another signal delivered to the group first.
650 If we do get another signal, be sure not to lose it. */
651 if (WSTOPSIG (status) != SIGSTOP)
652 {
653 new_lwp->stop_expected = 1;
654 new_lwp->status_pending_p = 1;
655 new_lwp->status_pending = status;
656 }
657 else if (report_thread_events)
658 {
659 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
660 new_lwp->status_pending_p = 1;
661 new_lwp->status_pending = status;
662 }
663
664 thread_db_notice_clone (event_thr, ptid);
665
666 /* Don't report the event. */
667 return 1;
668 }
669 else if (event == PTRACE_EVENT_VFORK_DONE)
670 {
671 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
672
673 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
674 {
675 reinsert_single_step_breakpoints (event_thr);
676
677 gdb_assert (has_single_step_breakpoints (event_thr));
678 }
679
680 /* Report the event. */
681 return 0;
682 }
683 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
684 {
685 struct process_info *proc;
686 std::vector<int> syscalls_to_catch;
687 ptid_t event_ptid;
688 pid_t event_pid;
689
690 if (debug_threads)
691 {
692 debug_printf ("HEW: Got exec event from LWP %ld\n",
693 lwpid_of (event_thr));
694 }
695
696 /* Get the event ptid. */
697 event_ptid = ptid_of (event_thr);
698 event_pid = ptid_get_pid (event_ptid);
699
700 /* Save the syscall list from the execing process. */
701 proc = get_thread_process (event_thr);
702 syscalls_to_catch = std::move (proc->syscalls_to_catch);
703
704 /* Delete the execing process and all its threads. */
705 linux_mourn (proc);
706 current_thread = NULL;
707
708 /* Create a new process/lwp/thread. */
709 proc = linux_add_process (event_pid, 0);
710 event_lwp = add_lwp (event_ptid);
711 event_thr = get_lwp_thread (event_lwp);
712 gdb_assert (current_thread == event_thr);
713 linux_arch_setup_thread (event_thr);
714
715 /* Set the event status. */
716 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
717 event_lwp->waitstatus.value.execd_pathname
718 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
719
720 /* Mark the exec status as pending. */
721 event_lwp->stopped = 1;
722 event_lwp->status_pending_p = 1;
723 event_lwp->status_pending = wstat;
724 event_thr->last_resume_kind = resume_continue;
725 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
726
727 /* Update syscall state in the new lwp, effectively mid-syscall too. */
728 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
729
730 /* Restore the list to catch. Don't rely on the client, which is free
731 to avoid sending a new list when the architecture doesn't change.
732 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
733 proc->syscalls_to_catch = std::move (syscalls_to_catch);
734
735 /* Report the event. */
736 *orig_event_lwp = event_lwp;
737 return 0;
738 }
739
740 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
741}
742
743/* Return the PC as read from the regcache of LWP, without any
744 adjustment. */
745
746static CORE_ADDR
747get_pc (struct lwp_info *lwp)
748{
749 struct thread_info *saved_thread;
750 struct regcache *regcache;
751 CORE_ADDR pc;
752
753 if (the_low_target.get_pc == NULL)
754 return 0;
755
756 saved_thread = current_thread;
757 current_thread = get_lwp_thread (lwp);
758
759 regcache = get_thread_regcache (current_thread, 1);
760 pc = (*the_low_target.get_pc) (regcache);
761
762 if (debug_threads)
763 debug_printf ("pc is 0x%lx\n", (long) pc);
764
765 current_thread = saved_thread;
766 return pc;
767}
768
769/* This function should only be called if LWP got a SYSCALL_SIGTRAP.
770 Fill *SYSNO with the syscall nr trapped. */
771
772static void
773get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
774{
775 struct thread_info *saved_thread;
776 struct regcache *regcache;
777
778 if (the_low_target.get_syscall_trapinfo == NULL)
779 {
780 /* If we cannot get the syscall trapinfo, report an unknown
781 system call number. */
782 *sysno = UNKNOWN_SYSCALL;
783 return;
784 }
785
786 saved_thread = current_thread;
787 current_thread = get_lwp_thread (lwp);
788
789 regcache = get_thread_regcache (current_thread, 1);
790 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
791
792 if (debug_threads)
793 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
794
795 current_thread = saved_thread;
796}
797
798static int check_stopped_by_watchpoint (struct lwp_info *child);
799
800/* Called when the LWP stopped for a signal/trap. If it stopped for a
801 trap check what caused it (breakpoint, watchpoint, trace, etc.),
802 and save the result in the LWP's stop_reason field. If it stopped
803 for a breakpoint, decrement the PC if necessary on the lwp's
804 architecture. Returns true if we now have the LWP's stop PC. */
805
806static int
807save_stop_reason (struct lwp_info *lwp)
808{
809 CORE_ADDR pc;
810 CORE_ADDR sw_breakpoint_pc;
811 struct thread_info *saved_thread;
812#if USE_SIGTRAP_SIGINFO
813 siginfo_t siginfo;
814#endif
815
816 if (the_low_target.get_pc == NULL)
817 return 0;
818
819 pc = get_pc (lwp);
820 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
821
822 /* breakpoint_at reads from the current thread. */
823 saved_thread = current_thread;
824 current_thread = get_lwp_thread (lwp);
825
826#if USE_SIGTRAP_SIGINFO
827 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
828 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
829 {
830 if (siginfo.si_signo == SIGTRAP)
831 {
832 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
833 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
834 {
835 /* The si_code is ambiguous on this arch -- check debug
836 registers. */
837 if (!check_stopped_by_watchpoint (lwp))
838 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
839 }
840 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
841 {
842 /* If we determine the LWP stopped for a SW breakpoint,
843 trust it. Particularly don't check watchpoint
844 registers, because at least on s390, we'd find
845 stopped-by-watchpoint as long as there's a watchpoint
846 set. */
847 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
848 }
849 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
850 {
851 /* This can indicate either a hardware breakpoint or
852 hardware watchpoint. Check debug registers. */
853 if (!check_stopped_by_watchpoint (lwp))
854 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
855 }
856 else if (siginfo.si_code == TRAP_TRACE)
857 {
858 /* We may have single stepped an instruction that
859 triggered a watchpoint. In that case, on some
860 architectures (such as x86), instead of TRAP_HWBKPT,
861 si_code indicates TRAP_TRACE, and we need to check
862 the debug registers separately. */
863 if (!check_stopped_by_watchpoint (lwp))
864 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
865 }
866 }
867 }
868#else
869 /* We may have just stepped a breakpoint instruction. E.g., in
870 non-stop mode, GDB first tells the thread A to step a range, and
871 then the user inserts a breakpoint inside the range. In that
872 case we need to report the breakpoint PC. */
873 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
874 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
875 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
876
877 if (hardware_breakpoint_inserted_here (pc))
878 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
879
880 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
881 check_stopped_by_watchpoint (lwp);
882#endif
883
884 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
885 {
886 if (debug_threads)
887 {
888 struct thread_info *thr = get_lwp_thread (lwp);
889
890 debug_printf ("CSBB: %s stopped by software breakpoint\n",
891 target_pid_to_str (ptid_of (thr)));
892 }
893
894 /* Back up the PC if necessary. */
895 if (pc != sw_breakpoint_pc)
896 {
897 struct regcache *regcache
898 = get_thread_regcache (current_thread, 1);
899 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
900 }
901
902 /* Update this so we record the correct stop PC below. */
903 pc = sw_breakpoint_pc;
904 }
905 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
906 {
907 if (debug_threads)
908 {
909 struct thread_info *thr = get_lwp_thread (lwp);
910
911 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
912 target_pid_to_str (ptid_of (thr)));
913 }
914 }
915 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
916 {
917 if (debug_threads)
918 {
919 struct thread_info *thr = get_lwp_thread (lwp);
920
921 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
922 target_pid_to_str (ptid_of (thr)));
923 }
924 }
925 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
926 {
927 if (debug_threads)
928 {
929 struct thread_info *thr = get_lwp_thread (lwp);
930
931 debug_printf ("CSBB: %s stopped by trace\n",
932 target_pid_to_str (ptid_of (thr)));
933 }
934 }
935
936 lwp->stop_pc = pc;
937 current_thread = saved_thread;
938 return 1;
939}
940
941static struct lwp_info *
942add_lwp (ptid_t ptid)
943{
944 struct lwp_info *lwp;
945
946 lwp = XCNEW (struct lwp_info);
947
948 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
949
950 if (the_low_target.new_thread != NULL)
951 the_low_target.new_thread (lwp);
952
953 lwp->thread = add_thread (ptid, lwp);
954
955 return lwp;
956}
957
958/* Callback to be used when calling fork_inferior, responsible for
959 actually initiating the tracing of the inferior. */
960
961static void
962linux_ptrace_fun ()
963{
964 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
965 (PTRACE_TYPE_ARG4) 0) < 0)
966 trace_start_error_with_name ("ptrace");
967
968 if (setpgid (0, 0) < 0)
969 trace_start_error_with_name ("setpgid");
970
971 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
972 stdout to stderr so that inferior i/o doesn't corrupt the connection.
973 Also, redirect stdin to /dev/null. */
974 if (remote_connection_is_stdio ())
975 {
976 if (close (0) < 0)
977 trace_start_error_with_name ("close");
978 if (open ("/dev/null", O_RDONLY) < 0)
979 trace_start_error_with_name ("open");
980 if (dup2 (2, 1) < 0)
981 trace_start_error_with_name ("dup2");
982 if (write (2, "stdin/stdout redirected\n",
983 sizeof ("stdin/stdout redirected\n") - 1) < 0)
984 {
985 /* Errors ignored. */;
986 }
987 }
988}
989
990/* Start an inferior process and returns its pid.
991 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
992 are its arguments. */
993
994static int
995linux_create_inferior (const char *program,
996 const std::vector<char *> &program_args)
997{
998 struct lwp_info *new_lwp;
999 int pid;
1000 ptid_t ptid;
1001
1002 {
1003 maybe_disable_address_space_randomization restore_personality
1004 (disable_randomization);
1005 std::string str_program_args = stringify_argv (program_args);
1006
1007 pid = fork_inferior (program,
1008 str_program_args.c_str (),
1009 get_environ ()->envp (), linux_ptrace_fun,
1010 NULL, NULL, NULL, NULL);
1011 }
1012
1013 linux_add_process (pid, 0);
1014
1015 ptid = ptid_build (pid, pid, 0);
1016 new_lwp = add_lwp (ptid);
1017 new_lwp->must_set_ptrace_flags = 1;
1018
1019 post_fork_inferior (pid, program);
1020
1021 return pid;
1022}
1023
1024/* Implement the post_create_inferior target_ops method. */
1025
1026static void
1027linux_post_create_inferior (void)
1028{
1029 struct lwp_info *lwp = get_thread_lwp (current_thread);
1030
1031 linux_arch_setup ();
1032
1033 if (lwp->must_set_ptrace_flags)
1034 {
1035 struct process_info *proc = current_process ();
1036 int options = linux_low_ptrace_options (proc->attached);
1037
1038 linux_enable_event_reporting (lwpid_of (current_thread), options);
1039 lwp->must_set_ptrace_flags = 0;
1040 }
1041}
1042
1043/* Attach to an inferior process. Returns 0 on success, ERRNO on
1044 error. */
1045
1046int
1047linux_attach_lwp (ptid_t ptid)
1048{
1049 struct lwp_info *new_lwp;
1050 int lwpid = ptid_get_lwp (ptid);
1051
1052 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1053 != 0)
1054 return errno;
1055
1056 new_lwp = add_lwp (ptid);
1057
1058 /* We need to wait for SIGSTOP before being able to make the next
1059 ptrace call on this LWP. */
1060 new_lwp->must_set_ptrace_flags = 1;
1061
1062 if (linux_proc_pid_is_stopped (lwpid))
1063 {
1064 if (debug_threads)
1065 debug_printf ("Attached to a stopped process\n");
1066
1067 /* The process is definitely stopped. It is in a job control
1068 stop, unless the kernel predates the TASK_STOPPED /
1069 TASK_TRACED distinction, in which case it might be in a
1070 ptrace stop. Make sure it is in a ptrace stop; from there we
1071 can kill it, signal it, et cetera.
1072
1073 First make sure there is a pending SIGSTOP. Since we are
1074 already attached, the process can not transition from stopped
1075 to running without a PTRACE_CONT; so we know this signal will
1076 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1077 probably already in the queue (unless this kernel is old
1078 enough to use TASK_STOPPED for ptrace stops); but since
1079 SIGSTOP is not an RT signal, it can only be queued once. */
1080 kill_lwp (lwpid, SIGSTOP);
1081
1082 /* Finally, resume the stopped process. This will deliver the
1083 SIGSTOP (or a higher priority signal, just like normal
1084 PTRACE_ATTACH), which we'll catch later on. */
1085 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1086 }
1087
1088 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1089 brings it to a halt.
1090
1091 There are several cases to consider here:
1092
1093 1) gdbserver has already attached to the process and is being notified
1094 of a new thread that is being created.
1095 In this case we should ignore that SIGSTOP and resume the
1096 process. This is handled below by setting stop_expected = 1,
1097 and the fact that add_thread sets last_resume_kind ==
1098 resume_continue.
1099
1100 2) This is the first thread (the process thread), and we're attaching
1101 to it via attach_inferior.
1102 In this case we want the process thread to stop.
1103 This is handled by having linux_attach set last_resume_kind ==
1104 resume_stop after we return.
1105
1106 If the pid we are attaching to is also the tgid, we attach to and
1107 stop all the existing threads. Otherwise, we attach to pid and
1108 ignore any other threads in the same group as this pid.
1109
1110 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1111 existing threads.
1112 In this case we want the thread to stop.
1113 FIXME: This case is currently not properly handled.
1114 We should wait for the SIGSTOP but don't. Things work apparently
1115 because enough time passes between when we ptrace (ATTACH) and when
1116 gdb makes the next ptrace call on the thread.
1117
1118 On the other hand, if we are currently trying to stop all threads, we
1119 should treat the new thread as if we had sent it a SIGSTOP. This works
1120 because we are guaranteed that the add_lwp call above added us to the
1121 end of the list, and so the new thread has not yet reached
1122 wait_for_sigstop (but will). */
1123 new_lwp->stop_expected = 1;
1124
1125 return 0;
1126}
1127
1128/* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1129 already attached. Returns true if a new LWP is found, false
1130 otherwise. */
1131
1132static int
1133attach_proc_task_lwp_callback (ptid_t ptid)
1134{
1135 /* Is this a new thread? */
1136 if (find_thread_ptid (ptid) == NULL)
1137 {
1138 int lwpid = ptid_get_lwp (ptid);
1139 int err;
1140
1141 if (debug_threads)
1142 debug_printf ("Found new lwp %d\n", lwpid);
1143
1144 err = linux_attach_lwp (ptid);
1145
1146 /* Be quiet if we simply raced with the thread exiting. EPERM
1147 is returned if the thread's task still exists, and is marked
1148 as exited or zombie, as well as other conditions, so in that
1149 case, confirm the status in /proc/PID/status. */
1150 if (err == ESRCH
1151 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1152 {
1153 if (debug_threads)
1154 {
1155 debug_printf ("Cannot attach to lwp %d: "
1156 "thread is gone (%d: %s)\n",
1157 lwpid, err, strerror (err));
1158 }
1159 }
1160 else if (err != 0)
1161 {
1162 warning (_("Cannot attach to lwp %d: %s"),
1163 lwpid,
1164 linux_ptrace_attach_fail_reason_string (ptid, err));
1165 }
1166
1167 return 1;
1168 }
1169 return 0;
1170}
1171
1172static void async_file_mark (void);
1173
1174/* Attach to PID. If PID is the tgid, attach to it and all
1175 of its threads. */
1176
1177static int
1178linux_attach (unsigned long pid)
1179{
1180 struct process_info *proc;
1181 struct thread_info *initial_thread;
1182 ptid_t ptid = ptid_build (pid, pid, 0);
1183 int err;
1184
1185 /* Attach to PID. We will check for other threads
1186 soon. */
1187 err = linux_attach_lwp (ptid);
1188 if (err != 0)
1189 error ("Cannot attach to process %ld: %s",
1190 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1191
1192 proc = linux_add_process (pid, 1);
1193
1194 /* Don't ignore the initial SIGSTOP if we just attached to this
1195 process. It will be collected by wait shortly. */
1196 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1197 initial_thread->last_resume_kind = resume_stop;
1198
1199 /* We must attach to every LWP. If /proc is mounted, use that to
1200 find them now. On the one hand, the inferior may be using raw
1201 clone instead of using pthreads. On the other hand, even if it
1202 is using pthreads, GDB may not be connected yet (thread_db needs
1203 to do symbol lookups, through qSymbol). Also, thread_db walks
1204 structures in the inferior's address space to find the list of
1205 threads/LWPs, and those structures may well be corrupted. Note
1206 that once thread_db is loaded, we'll still use it to list threads
1207 and associate pthread info with each LWP. */
1208 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1209
1210 /* GDB will shortly read the xml target description for this
1211 process, to figure out the process' architecture. But the target
1212 description is only filled in when the first process/thread in
1213 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1214 that now, otherwise, if GDB is fast enough, it could read the
1215 target description _before_ that initial stop. */
1216 if (non_stop)
1217 {
1218 struct lwp_info *lwp;
1219 int wstat, lwpid;
1220 ptid_t pid_ptid = pid_to_ptid (pid);
1221
1222 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1223 &wstat, __WALL);
1224 gdb_assert (lwpid > 0);
1225
1226 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1227
1228 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1229 {
1230 lwp->status_pending_p = 1;
1231 lwp->status_pending = wstat;
1232 }
1233
1234 initial_thread->last_resume_kind = resume_continue;
1235
1236 async_file_mark ();
1237
1238 gdb_assert (proc->tdesc != NULL);
1239 }
1240
1241 return 0;
1242}
1243
1244static int
1245last_thread_of_process_p (int pid)
1246{
1247 bool seen_one = false;
1248
1249 thread_info *thread = find_thread (pid, [&] (thread_info *thread)
1250 {
1251 if (!seen_one)
1252 {
1253 /* This is the first thread of this process we see. */
1254 seen_one = true;
1255 return false;
1256 }
1257 else
1258 {
1259 /* This is the second thread of this process we see. */
1260 return true;
1261 }
1262 });
1263
1264 return thread == NULL;
1265}
1266
1267/* Kill LWP. */
1268
1269static void
1270linux_kill_one_lwp (struct lwp_info *lwp)
1271{
1272 struct thread_info *thr = get_lwp_thread (lwp);
1273 int pid = lwpid_of (thr);
1274
1275 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1276 there is no signal context, and ptrace(PTRACE_KILL) (or
1277 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1278 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1279 alternative is to kill with SIGKILL. We only need one SIGKILL
1280 per process, not one for each thread. But since we still support
1281 support debugging programs using raw clone without CLONE_THREAD,
1282 we send one for each thread. For years, we used PTRACE_KILL
1283 only, so we're being a bit paranoid about some old kernels where
1284 PTRACE_KILL might work better (dubious if there are any such, but
1285 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1286 second, and so we're fine everywhere. */
1287
1288 errno = 0;
1289 kill_lwp (pid, SIGKILL);
1290 if (debug_threads)
1291 {
1292 int save_errno = errno;
1293
1294 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1295 target_pid_to_str (ptid_of (thr)),
1296 save_errno ? strerror (save_errno) : "OK");
1297 }
1298
1299 errno = 0;
1300 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1301 if (debug_threads)
1302 {
1303 int save_errno = errno;
1304
1305 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1306 target_pid_to_str (ptid_of (thr)),
1307 save_errno ? strerror (save_errno) : "OK");
1308 }
1309}
1310
1311/* Kill LWP and wait for it to die. */
1312
1313static void
1314kill_wait_lwp (struct lwp_info *lwp)
1315{
1316 struct thread_info *thr = get_lwp_thread (lwp);
1317 int pid = ptid_get_pid (ptid_of (thr));
1318 int lwpid = ptid_get_lwp (ptid_of (thr));
1319 int wstat;
1320 int res;
1321
1322 if (debug_threads)
1323 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1324
1325 do
1326 {
1327 linux_kill_one_lwp (lwp);
1328
1329 /* Make sure it died. Notes:
1330
1331 - The loop is most likely unnecessary.
1332
1333 - We don't use linux_wait_for_event as that could delete lwps
1334 while we're iterating over them. We're not interested in
1335 any pending status at this point, only in making sure all
1336 wait status on the kernel side are collected until the
1337 process is reaped.
1338
1339 - We don't use __WALL here as the __WALL emulation relies on
1340 SIGCHLD, and killing a stopped process doesn't generate
1341 one, nor an exit status.
1342 */
1343 res = my_waitpid (lwpid, &wstat, 0);
1344 if (res == -1 && errno == ECHILD)
1345 res = my_waitpid (lwpid, &wstat, __WCLONE);
1346 } while (res > 0 && WIFSTOPPED (wstat));
1347
1348 /* Even if it was stopped, the child may have already disappeared.
1349 E.g., if it was killed by SIGKILL. */
1350 if (res < 0 && errno != ECHILD)
1351 perror_with_name ("kill_wait_lwp");
1352}
1353
1354/* Callback for `for_each_thread'. Kills an lwp of a given process,
1355 except the leader. */
1356
1357static void
1358kill_one_lwp_callback (thread_info *thread, int pid)
1359{
1360 struct lwp_info *lwp = get_thread_lwp (thread);
1361
1362 /* We avoid killing the first thread here, because of a Linux kernel (at
1363 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1364 the children get a chance to be reaped, it will remain a zombie
1365 forever. */
1366
1367 if (lwpid_of (thread) == pid)
1368 {
1369 if (debug_threads)
1370 debug_printf ("lkop: is last of process %s\n",
1371 target_pid_to_str (thread->id));
1372 return;
1373 }
1374
1375 kill_wait_lwp (lwp);
1376}
1377
1378static int
1379linux_kill (int pid)
1380{
1381 struct process_info *process;
1382 struct lwp_info *lwp;
1383
1384 process = find_process_pid (pid);
1385 if (process == NULL)
1386 return -1;
1387
1388 /* If we're killing a running inferior, make sure it is stopped
1389 first, as PTRACE_KILL will not work otherwise. */
1390 stop_all_lwps (0, NULL);
1391
1392 for_each_thread (pid, [&] (thread_info *thread)
1393 {
1394 kill_one_lwp_callback (thread, pid);
1395 });
1396
1397 /* See the comment in linux_kill_one_lwp. We did not kill the first
1398 thread in the list, so do so now. */
1399 lwp = find_lwp_pid (pid_to_ptid (pid));
1400
1401 if (lwp == NULL)
1402 {
1403 if (debug_threads)
1404 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1405 pid);
1406 }
1407 else
1408 kill_wait_lwp (lwp);
1409
1410 the_target->mourn (process);
1411
1412 /* Since we presently can only stop all lwps of all processes, we
1413 need to unstop lwps of other processes. */
1414 unstop_all_lwps (0, NULL);
1415 return 0;
1416}
1417
1418/* Get pending signal of THREAD, for detaching purposes. This is the
1419 signal the thread last stopped for, which we need to deliver to the
1420 thread when detaching, otherwise, it'd be suppressed/lost. */
1421
1422static int
1423get_detach_signal (struct thread_info *thread)
1424{
1425 enum gdb_signal signo = GDB_SIGNAL_0;
1426 int status;
1427 struct lwp_info *lp = get_thread_lwp (thread);
1428
1429 if (lp->status_pending_p)
1430 status = lp->status_pending;
1431 else
1432 {
1433 /* If the thread had been suspended by gdbserver, and it stopped
1434 cleanly, then it'll have stopped with SIGSTOP. But we don't
1435 want to deliver that SIGSTOP. */
1436 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1437 || thread->last_status.value.sig == GDB_SIGNAL_0)
1438 return 0;
1439
1440 /* Otherwise, we may need to deliver the signal we
1441 intercepted. */
1442 status = lp->last_status;
1443 }
1444
1445 if (!WIFSTOPPED (status))
1446 {
1447 if (debug_threads)
1448 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1449 target_pid_to_str (ptid_of (thread)));
1450 return 0;
1451 }
1452
1453 /* Extended wait statuses aren't real SIGTRAPs. */
1454 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1455 {
1456 if (debug_threads)
1457 debug_printf ("GPS: lwp %s had stopped with extended "
1458 "status: no pending signal\n",
1459 target_pid_to_str (ptid_of (thread)));
1460 return 0;
1461 }
1462
1463 signo = gdb_signal_from_host (WSTOPSIG (status));
1464
1465 if (program_signals_p && !program_signals[signo])
1466 {
1467 if (debug_threads)
1468 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1469 target_pid_to_str (ptid_of (thread)),
1470 gdb_signal_to_string (signo));
1471 return 0;
1472 }
1473 else if (!program_signals_p
1474 /* If we have no way to know which signals GDB does not
1475 want to have passed to the program, assume
1476 SIGTRAP/SIGINT, which is GDB's default. */
1477 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1478 {
1479 if (debug_threads)
1480 debug_printf ("GPS: lwp %s had signal %s, "
1481 "but we don't know if we should pass it. "
1482 "Default to not.\n",
1483 target_pid_to_str (ptid_of (thread)),
1484 gdb_signal_to_string (signo));
1485 return 0;
1486 }
1487 else
1488 {
1489 if (debug_threads)
1490 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1491 target_pid_to_str (ptid_of (thread)),
1492 gdb_signal_to_string (signo));
1493
1494 return WSTOPSIG (status);
1495 }
1496}
1497
1498/* Detach from LWP. */
1499
1500static void
1501linux_detach_one_lwp (struct lwp_info *lwp)
1502{
1503 struct thread_info *thread = get_lwp_thread (lwp);
1504 int sig;
1505 int lwpid;
1506
1507 /* If there is a pending SIGSTOP, get rid of it. */
1508 if (lwp->stop_expected)
1509 {
1510 if (debug_threads)
1511 debug_printf ("Sending SIGCONT to %s\n",
1512 target_pid_to_str (ptid_of (thread)));
1513
1514 kill_lwp (lwpid_of (thread), SIGCONT);
1515 lwp->stop_expected = 0;
1516 }
1517
1518 /* Pass on any pending signal for this thread. */
1519 sig = get_detach_signal (thread);
1520
1521 /* Preparing to resume may try to write registers, and fail if the
1522 lwp is zombie. If that happens, ignore the error. We'll handle
1523 it below, when detach fails with ESRCH. */
1524 TRY
1525 {
1526 /* Flush any pending changes to the process's registers. */
1527 regcache_invalidate_thread (thread);
1528
1529 /* Finally, let it resume. */
1530 if (the_low_target.prepare_to_resume != NULL)
1531 the_low_target.prepare_to_resume (lwp);
1532 }
1533 CATCH (ex, RETURN_MASK_ERROR)
1534 {
1535 if (!check_ptrace_stopped_lwp_gone (lwp))
1536 throw_exception (ex);
1537 }
1538 END_CATCH
1539
1540 lwpid = lwpid_of (thread);
1541 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1542 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1543 {
1544 int save_errno = errno;
1545
1546 /* We know the thread exists, so ESRCH must mean the lwp is
1547 zombie. This can happen if one of the already-detached
1548 threads exits the whole thread group. In that case we're
1549 still attached, and must reap the lwp. */
1550 if (save_errno == ESRCH)
1551 {
1552 int ret, status;
1553
1554 ret = my_waitpid (lwpid, &status, __WALL);
1555 if (ret == -1)
1556 {
1557 warning (_("Couldn't reap LWP %d while detaching: %s"),
1558 lwpid, strerror (errno));
1559 }
1560 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1561 {
1562 warning (_("Reaping LWP %d while detaching "
1563 "returned unexpected status 0x%x"),
1564 lwpid, status);
1565 }
1566 }
1567 else
1568 {
1569 error (_("Can't detach %s: %s"),
1570 target_pid_to_str (ptid_of (thread)),
1571 strerror (save_errno));
1572 }
1573 }
1574 else if (debug_threads)
1575 {
1576 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1577 target_pid_to_str (ptid_of (thread)),
1578 strsignal (sig));
1579 }
1580
1581 delete_lwp (lwp);
1582}
1583
1584/* Callback for for_each_thread. Detaches from non-leader threads of a
1585 given process. */
1586
1587static void
1588linux_detach_lwp_callback (thread_info *thread)
1589{
1590 /* We don't actually detach from the thread group leader just yet.
1591 If the thread group exits, we must reap the zombie clone lwps
1592 before we're able to reap the leader. */
1593 if (thread->id.pid () == thread->id.lwp ())
1594 return;
1595
1596 lwp_info *lwp = get_thread_lwp (thread);
1597 linux_detach_one_lwp (lwp);
1598}
1599
1600static int
1601linux_detach (int pid)
1602{
1603 struct process_info *process;
1604 struct lwp_info *main_lwp;
1605
1606 process = find_process_pid (pid);
1607 if (process == NULL)
1608 return -1;
1609
1610 /* As there's a step over already in progress, let it finish first,
1611 otherwise nesting a stabilize_threads operation on top gets real
1612 messy. */
1613 complete_ongoing_step_over ();
1614
1615 /* Stop all threads before detaching. First, ptrace requires that
1616 the thread is stopped to sucessfully detach. Second, thread_db
1617 may need to uninstall thread event breakpoints from memory, which
1618 only works with a stopped process anyway. */
1619 stop_all_lwps (0, NULL);
1620
1621#ifdef USE_THREAD_DB
1622 thread_db_detach (process);
1623#endif
1624
1625 /* Stabilize threads (move out of jump pads). */
1626 stabilize_threads ();
1627
1628 /* Detach from the clone lwps first. If the thread group exits just
1629 while we're detaching, we must reap the clone lwps before we're
1630 able to reap the leader. */
1631 for_each_thread (pid, linux_detach_lwp_callback);
1632
1633 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1634 linux_detach_one_lwp (main_lwp);
1635
1636 the_target->mourn (process);
1637
1638 /* Since we presently can only stop all lwps of all processes, we
1639 need to unstop lwps of other processes. */
1640 unstop_all_lwps (0, NULL);
1641 return 0;
1642}
1643
1644/* Remove all LWPs that belong to process PROC from the lwp list. */
1645
1646static void
1647linux_mourn (struct process_info *process)
1648{
1649 struct process_info_private *priv;
1650
1651#ifdef USE_THREAD_DB
1652 thread_db_mourn (process);
1653#endif
1654
1655 for_each_thread (process->pid, [] (thread_info *thread)
1656 {
1657 delete_lwp (get_thread_lwp (thread));
1658 });
1659
1660 /* Freeing all private data. */
1661 priv = process->priv;
1662 if (the_low_target.delete_process != NULL)
1663 the_low_target.delete_process (priv->arch_private);
1664 else
1665 gdb_assert (priv->arch_private == NULL);
1666 free (priv);
1667 process->priv = NULL;
1668
1669 remove_process (process);
1670}
1671
1672static void
1673linux_join (int pid)
1674{
1675 int status, ret;
1676
1677 do {
1678 ret = my_waitpid (pid, &status, 0);
1679 if (WIFEXITED (status) || WIFSIGNALED (status))
1680 break;
1681 } while (ret != -1 || errno != ECHILD);
1682}
1683
1684/* Return nonzero if the given thread is still alive. */
1685static int
1686linux_thread_alive (ptid_t ptid)
1687{
1688 struct lwp_info *lwp = find_lwp_pid (ptid);
1689
1690 /* We assume we always know if a thread exits. If a whole process
1691 exited but we still haven't been able to report it to GDB, we'll
1692 hold on to the last lwp of the dead process. */
1693 if (lwp != NULL)
1694 return !lwp_is_marked_dead (lwp);
1695 else
1696 return 0;
1697}
1698
1699/* Return 1 if this lwp still has an interesting status pending. If
1700 not (e.g., it had stopped for a breakpoint that is gone), return
1701 false. */
1702
1703static int
1704thread_still_has_status_pending_p (struct thread_info *thread)
1705{
1706 struct lwp_info *lp = get_thread_lwp (thread);
1707
1708 if (!lp->status_pending_p)
1709 return 0;
1710
1711 if (thread->last_resume_kind != resume_stop
1712 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1713 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1714 {
1715 struct thread_info *saved_thread;
1716 CORE_ADDR pc;
1717 int discard = 0;
1718
1719 gdb_assert (lp->last_status != 0);
1720
1721 pc = get_pc (lp);
1722
1723 saved_thread = current_thread;
1724 current_thread = thread;
1725
1726 if (pc != lp->stop_pc)
1727 {
1728 if (debug_threads)
1729 debug_printf ("PC of %ld changed\n",
1730 lwpid_of (thread));
1731 discard = 1;
1732 }
1733
1734#if !USE_SIGTRAP_SIGINFO
1735 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1736 && !(*the_low_target.breakpoint_at) (pc))
1737 {
1738 if (debug_threads)
1739 debug_printf ("previous SW breakpoint of %ld gone\n",
1740 lwpid_of (thread));
1741 discard = 1;
1742 }
1743 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1744 && !hardware_breakpoint_inserted_here (pc))
1745 {
1746 if (debug_threads)
1747 debug_printf ("previous HW breakpoint of %ld gone\n",
1748 lwpid_of (thread));
1749 discard = 1;
1750 }
1751#endif
1752
1753 current_thread = saved_thread;
1754
1755 if (discard)
1756 {
1757 if (debug_threads)
1758 debug_printf ("discarding pending breakpoint status\n");
1759 lp->status_pending_p = 0;
1760 return 0;
1761 }
1762 }
1763
1764 return 1;
1765}
1766
1767/* Returns true if LWP is resumed from the client's perspective. */
1768
1769static int
1770lwp_resumed (struct lwp_info *lwp)
1771{
1772 struct thread_info *thread = get_lwp_thread (lwp);
1773
1774 if (thread->last_resume_kind != resume_stop)
1775 return 1;
1776
1777 /* Did gdb send us a `vCont;t', but we haven't reported the
1778 corresponding stop to gdb yet? If so, the thread is still
1779 resumed/running from gdb's perspective. */
1780 if (thread->last_resume_kind == resume_stop
1781 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1782 return 1;
1783
1784 return 0;
1785}
1786
1787/* Return true if this lwp has an interesting status pending. */
1788static bool
1789status_pending_p_callback (thread_info *thread, ptid_t ptid)
1790{
1791 struct lwp_info *lp = get_thread_lwp (thread);
1792
1793 /* Check if we're only interested in events from a specific process
1794 or a specific LWP. */
1795 if (!thread->id.matches (ptid))
1796 return 0;
1797
1798 if (!lwp_resumed (lp))
1799 return 0;
1800
1801 if (lp->status_pending_p
1802 && !thread_still_has_status_pending_p (thread))
1803 {
1804 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1805 return 0;
1806 }
1807
1808 return lp->status_pending_p;
1809}
1810
1811struct lwp_info *
1812find_lwp_pid (ptid_t ptid)
1813{
1814 thread_info *thread = find_thread ([&] (thread_info *thread)
1815 {
1816 int lwp = ptid.lwp () != 0 ? ptid.lwp () : ptid.pid ();
1817 return thread->id.lwp () == lwp;
1818 });
1819
1820 if (thread == NULL)
1821 return NULL;
1822
1823 return get_thread_lwp (thread);
1824}
1825
1826/* Return the number of known LWPs in the tgid given by PID. */
1827
1828static int
1829num_lwps (int pid)
1830{
1831 int count = 0;
1832
1833 for_each_thread (pid, [&] (thread_info *thread)
1834 {
1835 count++;
1836 });
1837
1838 return count;
1839}
1840
1841/* See nat/linux-nat.h. */
1842
1843struct lwp_info *
1844iterate_over_lwps (ptid_t filter,
1845 iterate_over_lwps_ftype callback,
1846 void *data)
1847{
1848 thread_info *thread = find_thread (filter, [&] (thread_info *thread)
1849 {
1850 lwp_info *lwp = get_thread_lwp (thread);
1851
1852 return callback (lwp, data);
1853 });
1854
1855 if (thread == NULL)
1856 return NULL;
1857
1858 return get_thread_lwp (thread);
1859}
1860
1861/* Detect zombie thread group leaders, and "exit" them. We can't reap
1862 their exits until all other threads in the group have exited. */
1863
1864static void
1865check_zombie_leaders (void)
1866{
1867 for_each_process ([] (process_info *proc) {
1868 pid_t leader_pid = pid_of (proc);
1869 struct lwp_info *leader_lp;
1870
1871 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1872
1873 if (debug_threads)
1874 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1875 "num_lwps=%d, zombie=%d\n",
1876 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1877 linux_proc_pid_is_zombie (leader_pid));
1878
1879 if (leader_lp != NULL && !leader_lp->stopped
1880 /* Check if there are other threads in the group, as we may
1881 have raced with the inferior simply exiting. */
1882 && !last_thread_of_process_p (leader_pid)
1883 && linux_proc_pid_is_zombie (leader_pid))
1884 {
1885 /* A leader zombie can mean one of two things:
1886
1887 - It exited, and there's an exit status pending
1888 available, or only the leader exited (not the whole
1889 program). In the latter case, we can't waitpid the
1890 leader's exit status until all other threads are gone.
1891
1892 - There are 3 or more threads in the group, and a thread
1893 other than the leader exec'd. On an exec, the Linux
1894 kernel destroys all other threads (except the execing
1895 one) in the thread group, and resets the execing thread's
1896 tid to the tgid. No exit notification is sent for the
1897 execing thread -- from the ptracer's perspective, it
1898 appears as though the execing thread just vanishes.
1899 Until we reap all other threads except the leader and the
1900 execing thread, the leader will be zombie, and the
1901 execing thread will be in `D (disc sleep)'. As soon as
1902 all other threads are reaped, the execing thread changes
1903 it's tid to the tgid, and the previous (zombie) leader
1904 vanishes, giving place to the "new" leader. We could try
1905 distinguishing the exit and exec cases, by waiting once
1906 more, and seeing if something comes out, but it doesn't
1907 sound useful. The previous leader _does_ go away, and
1908 we'll re-add the new one once we see the exec event
1909 (which is just the same as what would happen if the
1910 previous leader did exit voluntarily before some other
1911 thread execs). */
1912
1913 if (debug_threads)
1914 debug_printf ("CZL: Thread group leader %d zombie "
1915 "(it exited, or another thread execd).\n",
1916 leader_pid);
1917
1918 delete_lwp (leader_lp);
1919 }
1920 });
1921}
1922
1923/* Callback for `find_thread'. Returns the first LWP that is not
1924 stopped. */
1925
1926static bool
1927not_stopped_callback (thread_info *thread, ptid_t filter)
1928{
1929 if (!thread->id.matches (filter))
1930 return false;
1931
1932 lwp_info *lwp = get_thread_lwp (thread);
1933
1934 return !lwp->stopped;
1935}
1936
1937/* Increment LWP's suspend count. */
1938
1939static void
1940lwp_suspended_inc (struct lwp_info *lwp)
1941{
1942 lwp->suspended++;
1943
1944 if (debug_threads && lwp->suspended > 4)
1945 {
1946 struct thread_info *thread = get_lwp_thread (lwp);
1947
1948 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1949 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1950 }
1951}
1952
1953/* Decrement LWP's suspend count. */
1954
1955static void
1956lwp_suspended_decr (struct lwp_info *lwp)
1957{
1958 lwp->suspended--;
1959
1960 if (lwp->suspended < 0)
1961 {
1962 struct thread_info *thread = get_lwp_thread (lwp);
1963
1964 internal_error (__FILE__, __LINE__,
1965 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1966 lwp->suspended);
1967 }
1968}
1969
1970/* This function should only be called if the LWP got a SIGTRAP.
1971
1972 Handle any tracepoint steps or hits. Return true if a tracepoint
1973 event was handled, 0 otherwise. */
1974
1975static int
1976handle_tracepoints (struct lwp_info *lwp)
1977{
1978 struct thread_info *tinfo = get_lwp_thread (lwp);
1979 int tpoint_related_event = 0;
1980
1981 gdb_assert (lwp->suspended == 0);
1982
1983 /* If this tracepoint hit causes a tracing stop, we'll immediately
1984 uninsert tracepoints. To do this, we temporarily pause all
1985 threads, unpatch away, and then unpause threads. We need to make
1986 sure the unpausing doesn't resume LWP too. */
1987 lwp_suspended_inc (lwp);
1988
1989 /* And we need to be sure that any all-threads-stopping doesn't try
1990 to move threads out of the jump pads, as it could deadlock the
1991 inferior (LWP could be in the jump pad, maybe even holding the
1992 lock.) */
1993
1994 /* Do any necessary step collect actions. */
1995 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1996
1997 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1998
1999 /* See if we just hit a tracepoint and do its main collect
2000 actions. */
2001 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2002
2003 lwp_suspended_decr (lwp);
2004
2005 gdb_assert (lwp->suspended == 0);
2006 gdb_assert (!stabilizing_threads
2007 || (lwp->collecting_fast_tracepoint
2008 != fast_tpoint_collect_result::not_collecting));
2009
2010 if (tpoint_related_event)
2011 {
2012 if (debug_threads)
2013 debug_printf ("got a tracepoint event\n");
2014 return 1;
2015 }
2016
2017 return 0;
2018}
2019
2020/* Convenience wrapper. Returns information about LWP's fast tracepoint
2021 collection status. */
2022
2023static fast_tpoint_collect_result
2024linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2025 struct fast_tpoint_collect_status *status)
2026{
2027 CORE_ADDR thread_area;
2028 struct thread_info *thread = get_lwp_thread (lwp);
2029
2030 if (the_low_target.get_thread_area == NULL)
2031 return fast_tpoint_collect_result::not_collecting;
2032
2033 /* Get the thread area address. This is used to recognize which
2034 thread is which when tracing with the in-process agent library.
2035 We don't read anything from the address, and treat it as opaque;
2036 it's the address itself that we assume is unique per-thread. */
2037 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2038 return fast_tpoint_collect_result::not_collecting;
2039
2040 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2041}
2042
2043/* The reason we resume in the caller, is because we want to be able
2044 to pass lwp->status_pending as WSTAT, and we need to clear
2045 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2046 refuses to resume. */
2047
2048static int
2049maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2050{
2051 struct thread_info *saved_thread;
2052
2053 saved_thread = current_thread;
2054 current_thread = get_lwp_thread (lwp);
2055
2056 if ((wstat == NULL
2057 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2058 && supports_fast_tracepoints ()
2059 && agent_loaded_p ())
2060 {
2061 struct fast_tpoint_collect_status status;
2062
2063 if (debug_threads)
2064 debug_printf ("Checking whether LWP %ld needs to move out of the "
2065 "jump pad.\n",
2066 lwpid_of (current_thread));
2067
2068 fast_tpoint_collect_result r
2069 = linux_fast_tracepoint_collecting (lwp, &status);
2070
2071 if (wstat == NULL
2072 || (WSTOPSIG (*wstat) != SIGILL
2073 && WSTOPSIG (*wstat) != SIGFPE
2074 && WSTOPSIG (*wstat) != SIGSEGV
2075 && WSTOPSIG (*wstat) != SIGBUS))
2076 {
2077 lwp->collecting_fast_tracepoint = r;
2078
2079 if (r != fast_tpoint_collect_result::not_collecting)
2080 {
2081 if (r == fast_tpoint_collect_result::before_insn
2082 && lwp->exit_jump_pad_bkpt == NULL)
2083 {
2084 /* Haven't executed the original instruction yet.
2085 Set breakpoint there, and wait till it's hit,
2086 then single-step until exiting the jump pad. */
2087 lwp->exit_jump_pad_bkpt
2088 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2089 }
2090
2091 if (debug_threads)
2092 debug_printf ("Checking whether LWP %ld needs to move out of "
2093 "the jump pad...it does\n",
2094 lwpid_of (current_thread));
2095 current_thread = saved_thread;
2096
2097 return 1;
2098 }
2099 }
2100 else
2101 {
2102 /* If we get a synchronous signal while collecting, *and*
2103 while executing the (relocated) original instruction,
2104 reset the PC to point at the tpoint address, before
2105 reporting to GDB. Otherwise, it's an IPA lib bug: just
2106 report the signal to GDB, and pray for the best. */
2107
2108 lwp->collecting_fast_tracepoint
2109 = fast_tpoint_collect_result::not_collecting;
2110
2111 if (r != fast_tpoint_collect_result::not_collecting
2112 && (status.adjusted_insn_addr <= lwp->stop_pc
2113 && lwp->stop_pc < status.adjusted_insn_addr_end))
2114 {
2115 siginfo_t info;
2116 struct regcache *regcache;
2117
2118 /* The si_addr on a few signals references the address
2119 of the faulting instruction. Adjust that as
2120 well. */
2121 if ((WSTOPSIG (*wstat) == SIGILL
2122 || WSTOPSIG (*wstat) == SIGFPE
2123 || WSTOPSIG (*wstat) == SIGBUS
2124 || WSTOPSIG (*wstat) == SIGSEGV)
2125 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2126 (PTRACE_TYPE_ARG3) 0, &info) == 0
2127 /* Final check just to make sure we don't clobber
2128 the siginfo of non-kernel-sent signals. */
2129 && (uintptr_t) info.si_addr == lwp->stop_pc)
2130 {
2131 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2132 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2133 (PTRACE_TYPE_ARG3) 0, &info);
2134 }
2135
2136 regcache = get_thread_regcache (current_thread, 1);
2137 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2138 lwp->stop_pc = status.tpoint_addr;
2139
2140 /* Cancel any fast tracepoint lock this thread was
2141 holding. */
2142 force_unlock_trace_buffer ();
2143 }
2144
2145 if (lwp->exit_jump_pad_bkpt != NULL)
2146 {
2147 if (debug_threads)
2148 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2149 "stopping all threads momentarily.\n");
2150
2151 stop_all_lwps (1, lwp);
2152
2153 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2154 lwp->exit_jump_pad_bkpt = NULL;
2155
2156 unstop_all_lwps (1, lwp);
2157
2158 gdb_assert (lwp->suspended >= 0);
2159 }
2160 }
2161 }
2162
2163 if (debug_threads)
2164 debug_printf ("Checking whether LWP %ld needs to move out of the "
2165 "jump pad...no\n",
2166 lwpid_of (current_thread));
2167
2168 current_thread = saved_thread;
2169 return 0;
2170}
2171
2172/* Enqueue one signal in the "signals to report later when out of the
2173 jump pad" list. */
2174
2175static void
2176enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2177{
2178 struct pending_signals *p_sig;
2179 struct thread_info *thread = get_lwp_thread (lwp);
2180
2181 if (debug_threads)
2182 debug_printf ("Deferring signal %d for LWP %ld.\n",
2183 WSTOPSIG (*wstat), lwpid_of (thread));
2184
2185 if (debug_threads)
2186 {
2187 struct pending_signals *sig;
2188
2189 for (sig = lwp->pending_signals_to_report;
2190 sig != NULL;
2191 sig = sig->prev)
2192 debug_printf (" Already queued %d\n",
2193 sig->signal);
2194
2195 debug_printf (" (no more currently queued signals)\n");
2196 }
2197
2198 /* Don't enqueue non-RT signals if they are already in the deferred
2199 queue. (SIGSTOP being the easiest signal to see ending up here
2200 twice) */
2201 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2202 {
2203 struct pending_signals *sig;
2204
2205 for (sig = lwp->pending_signals_to_report;
2206 sig != NULL;
2207 sig = sig->prev)
2208 {
2209 if (sig->signal == WSTOPSIG (*wstat))
2210 {
2211 if (debug_threads)
2212 debug_printf ("Not requeuing already queued non-RT signal %d"
2213 " for LWP %ld\n",
2214 sig->signal,
2215 lwpid_of (thread));
2216 return;
2217 }
2218 }
2219 }
2220
2221 p_sig = XCNEW (struct pending_signals);
2222 p_sig->prev = lwp->pending_signals_to_report;
2223 p_sig->signal = WSTOPSIG (*wstat);
2224
2225 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2226 &p_sig->info);
2227
2228 lwp->pending_signals_to_report = p_sig;
2229}
2230
2231/* Dequeue one signal from the "signals to report later when out of
2232 the jump pad" list. */
2233
2234static int
2235dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2236{
2237 struct thread_info *thread = get_lwp_thread (lwp);
2238
2239 if (lwp->pending_signals_to_report != NULL)
2240 {
2241 struct pending_signals **p_sig;
2242
2243 p_sig = &lwp->pending_signals_to_report;
2244 while ((*p_sig)->prev != NULL)
2245 p_sig = &(*p_sig)->prev;
2246
2247 *wstat = W_STOPCODE ((*p_sig)->signal);
2248 if ((*p_sig)->info.si_signo != 0)
2249 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2250 &(*p_sig)->info);
2251 free (*p_sig);
2252 *p_sig = NULL;
2253
2254 if (debug_threads)
2255 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2256 WSTOPSIG (*wstat), lwpid_of (thread));
2257
2258 if (debug_threads)
2259 {
2260 struct pending_signals *sig;
2261
2262 for (sig = lwp->pending_signals_to_report;
2263 sig != NULL;
2264 sig = sig->prev)
2265 debug_printf (" Still queued %d\n",
2266 sig->signal);
2267
2268 debug_printf (" (no more queued signals)\n");
2269 }
2270
2271 return 1;
2272 }
2273
2274 return 0;
2275}
2276
2277/* Fetch the possibly triggered data watchpoint info and store it in
2278 CHILD.
2279
2280 On some archs, like x86, that use debug registers to set
2281 watchpoints, it's possible that the way to know which watched
2282 address trapped, is to check the register that is used to select
2283 which address to watch. Problem is, between setting the watchpoint
2284 and reading back which data address trapped, the user may change
2285 the set of watchpoints, and, as a consequence, GDB changes the
2286 debug registers in the inferior. To avoid reading back a stale
2287 stopped-data-address when that happens, we cache in LP the fact
2288 that a watchpoint trapped, and the corresponding data address, as
2289 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2290 registers meanwhile, we have the cached data we can rely on. */
2291
2292static int
2293check_stopped_by_watchpoint (struct lwp_info *child)
2294{
2295 if (the_low_target.stopped_by_watchpoint != NULL)
2296 {
2297 struct thread_info *saved_thread;
2298
2299 saved_thread = current_thread;
2300 current_thread = get_lwp_thread (child);
2301
2302 if (the_low_target.stopped_by_watchpoint ())
2303 {
2304 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2305
2306 if (the_low_target.stopped_data_address != NULL)
2307 child->stopped_data_address
2308 = the_low_target.stopped_data_address ();
2309 else
2310 child->stopped_data_address = 0;
2311 }
2312
2313 current_thread = saved_thread;
2314 }
2315
2316 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2317}
2318
2319/* Return the ptrace options that we want to try to enable. */
2320
2321static int
2322linux_low_ptrace_options (int attached)
2323{
2324 int options = 0;
2325
2326 if (!attached)
2327 options |= PTRACE_O_EXITKILL;
2328
2329 if (report_fork_events)
2330 options |= PTRACE_O_TRACEFORK;
2331
2332 if (report_vfork_events)
2333 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2334
2335 if (report_exec_events)
2336 options |= PTRACE_O_TRACEEXEC;
2337
2338 options |= PTRACE_O_TRACESYSGOOD;
2339
2340 return options;
2341}
2342
2343/* Do low-level handling of the event, and check if we should go on
2344 and pass it to caller code. Return the affected lwp if we are, or
2345 NULL otherwise. */
2346
2347static struct lwp_info *
2348linux_low_filter_event (int lwpid, int wstat)
2349{
2350 struct lwp_info *child;
2351 struct thread_info *thread;
2352 int have_stop_pc = 0;
2353
2354 child = find_lwp_pid (pid_to_ptid (lwpid));
2355
2356 /* Check for stop events reported by a process we didn't already
2357 know about - anything not already in our LWP list.
2358
2359 If we're expecting to receive stopped processes after
2360 fork, vfork, and clone events, then we'll just add the
2361 new one to our list and go back to waiting for the event
2362 to be reported - the stopped process might be returned
2363 from waitpid before or after the event is.
2364
2365 But note the case of a non-leader thread exec'ing after the
2366 leader having exited, and gone from our lists (because
2367 check_zombie_leaders deleted it). The non-leader thread
2368 changes its tid to the tgid. */
2369
2370 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2371 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2372 {
2373 ptid_t child_ptid;
2374
2375 /* A multi-thread exec after we had seen the leader exiting. */
2376 if (debug_threads)
2377 {
2378 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2379 "after exec.\n", lwpid);
2380 }
2381
2382 child_ptid = ptid_build (lwpid, lwpid, 0);
2383 child = add_lwp (child_ptid);
2384 child->stopped = 1;
2385 current_thread = child->thread;
2386 }
2387
2388 /* If we didn't find a process, one of two things presumably happened:
2389 - A process we started and then detached from has exited. Ignore it.
2390 - A process we are controlling has forked and the new child's stop
2391 was reported to us by the kernel. Save its PID. */
2392 if (child == NULL && WIFSTOPPED (wstat))
2393 {
2394 add_to_pid_list (&stopped_pids, lwpid, wstat);
2395 return NULL;
2396 }
2397 else if (child == NULL)
2398 return NULL;
2399
2400 thread = get_lwp_thread (child);
2401
2402 child->stopped = 1;
2403
2404 child->last_status = wstat;
2405
2406 /* Check if the thread has exited. */
2407 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2408 {
2409 if (debug_threads)
2410 debug_printf ("LLFE: %d exited.\n", lwpid);
2411
2412 if (finish_step_over (child))
2413 {
2414 /* Unsuspend all other LWPs, and set them back running again. */
2415 unsuspend_all_lwps (child);
2416 }
2417
2418 /* If there is at least one more LWP, then the exit signal was
2419 not the end of the debugged application and should be
2420 ignored, unless GDB wants to hear about thread exits. */
2421 if (report_thread_events
2422 || last_thread_of_process_p (pid_of (thread)))
2423 {
2424 /* Since events are serialized to GDB core, and we can't
2425 report this one right now. Leave the status pending for
2426 the next time we're able to report it. */
2427 mark_lwp_dead (child, wstat);
2428 return child;
2429 }
2430 else
2431 {
2432 delete_lwp (child);
2433 return NULL;
2434 }
2435 }
2436
2437 gdb_assert (WIFSTOPPED (wstat));
2438
2439 if (WIFSTOPPED (wstat))
2440 {
2441 struct process_info *proc;
2442
2443 /* Architecture-specific setup after inferior is running. */
2444 proc = find_process_pid (pid_of (thread));
2445 if (proc->tdesc == NULL)
2446 {
2447 if (proc->attached)
2448 {
2449 /* This needs to happen after we have attached to the
2450 inferior and it is stopped for the first time, but
2451 before we access any inferior registers. */
2452 linux_arch_setup_thread (thread);
2453 }
2454 else
2455 {
2456 /* The process is started, but GDBserver will do
2457 architecture-specific setup after the program stops at
2458 the first instruction. */
2459 child->status_pending_p = 1;
2460 child->status_pending = wstat;
2461 return child;
2462 }
2463 }
2464 }
2465
2466 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2467 {
2468 struct process_info *proc = find_process_pid (pid_of (thread));
2469 int options = linux_low_ptrace_options (proc->attached);
2470
2471 linux_enable_event_reporting (lwpid, options);
2472 child->must_set_ptrace_flags = 0;
2473 }
2474
2475 /* Always update syscall_state, even if it will be filtered later. */
2476 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2477 {
2478 child->syscall_state
2479 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2480 ? TARGET_WAITKIND_SYSCALL_RETURN
2481 : TARGET_WAITKIND_SYSCALL_ENTRY);
2482 }
2483 else
2484 {
2485 /* Almost all other ptrace-stops are known to be outside of system
2486 calls, with further exceptions in handle_extended_wait. */
2487 child->syscall_state = TARGET_WAITKIND_IGNORE;
2488 }
2489
2490 /* Be careful to not overwrite stop_pc until save_stop_reason is
2491 called. */
2492 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2493 && linux_is_extended_waitstatus (wstat))
2494 {
2495 child->stop_pc = get_pc (child);
2496 if (handle_extended_wait (&child, wstat))
2497 {
2498 /* The event has been handled, so just return without
2499 reporting it. */
2500 return NULL;
2501 }
2502 }
2503
2504 if (linux_wstatus_maybe_breakpoint (wstat))
2505 {
2506 if (save_stop_reason (child))
2507 have_stop_pc = 1;
2508 }
2509
2510 if (!have_stop_pc)
2511 child->stop_pc = get_pc (child);
2512
2513 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2514 && child->stop_expected)
2515 {
2516 if (debug_threads)
2517 debug_printf ("Expected stop.\n");
2518 child->stop_expected = 0;
2519
2520 if (thread->last_resume_kind == resume_stop)
2521 {
2522 /* We want to report the stop to the core. Treat the
2523 SIGSTOP as a normal event. */
2524 if (debug_threads)
2525 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2526 target_pid_to_str (ptid_of (thread)));
2527 }
2528 else if (stopping_threads != NOT_STOPPING_THREADS)
2529 {
2530 /* Stopping threads. We don't want this SIGSTOP to end up
2531 pending. */
2532 if (debug_threads)
2533 debug_printf ("LLW: SIGSTOP caught for %s "
2534 "while stopping threads.\n",
2535 target_pid_to_str (ptid_of (thread)));
2536 return NULL;
2537 }
2538 else
2539 {
2540 /* This is a delayed SIGSTOP. Filter out the event. */
2541 if (debug_threads)
2542 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2543 child->stepping ? "step" : "continue",
2544 target_pid_to_str (ptid_of (thread)));
2545
2546 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2547 return NULL;
2548 }
2549 }
2550
2551 child->status_pending_p = 1;
2552 child->status_pending = wstat;
2553 return child;
2554}
2555
2556/* Return true if THREAD is doing hardware single step. */
2557
2558static int
2559maybe_hw_step (struct thread_info *thread)
2560{
2561 if (can_hardware_single_step ())
2562 return 1;
2563 else
2564 {
2565 /* GDBserver must insert single-step breakpoint for software
2566 single step. */
2567 gdb_assert (has_single_step_breakpoints (thread));
2568 return 0;
2569 }
2570}
2571
2572/* Resume LWPs that are currently stopped without any pending status
2573 to report, but are resumed from the core's perspective. */
2574
2575static void
2576resume_stopped_resumed_lwps (thread_info *thread)
2577{
2578 struct lwp_info *lp = get_thread_lwp (thread);
2579
2580 if (lp->stopped
2581 && !lp->suspended
2582 && !lp->status_pending_p
2583 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2584 {
2585 int step = 0;
2586
2587 if (thread->last_resume_kind == resume_step)
2588 step = maybe_hw_step (thread);
2589
2590 if (debug_threads)
2591 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2592 target_pid_to_str (ptid_of (thread)),
2593 paddress (lp->stop_pc),
2594 step);
2595
2596 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2597 }
2598}
2599
2600/* Wait for an event from child(ren) WAIT_PTID, and return any that
2601 match FILTER_PTID (leaving others pending). The PTIDs can be:
2602 minus_one_ptid, to specify any child; a pid PTID, specifying all
2603 lwps of a thread group; or a PTID representing a single lwp. Store
2604 the stop status through the status pointer WSTAT. OPTIONS is
2605 passed to the waitpid call. Return 0 if no event was found and
2606 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2607 was found. Return the PID of the stopped child otherwise. */
2608
2609static int
2610linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2611 int *wstatp, int options)
2612{
2613 struct thread_info *event_thread;
2614 struct lwp_info *event_child, *requested_child;
2615 sigset_t block_mask, prev_mask;
2616
2617 retry:
2618 /* N.B. event_thread points to the thread_info struct that contains
2619 event_child. Keep them in sync. */
2620 event_thread = NULL;
2621 event_child = NULL;
2622 requested_child = NULL;
2623
2624 /* Check for a lwp with a pending status. */
2625
2626 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2627 {
2628 event_thread = find_thread_in_random ([&] (thread_info *thread)
2629 {
2630 return status_pending_p_callback (thread, filter_ptid);
2631 });
2632
2633 if (event_thread != NULL)
2634 event_child = get_thread_lwp (event_thread);
2635 if (debug_threads && event_thread)
2636 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2637 }
2638 else if (!ptid_equal (filter_ptid, null_ptid))
2639 {
2640 requested_child = find_lwp_pid (filter_ptid);
2641
2642 if (stopping_threads == NOT_STOPPING_THREADS
2643 && requested_child->status_pending_p
2644 && (requested_child->collecting_fast_tracepoint
2645 != fast_tpoint_collect_result::not_collecting))
2646 {
2647 enqueue_one_deferred_signal (requested_child,
2648 &requested_child->status_pending);
2649 requested_child->status_pending_p = 0;
2650 requested_child->status_pending = 0;
2651 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2652 }
2653
2654 if (requested_child->suspended
2655 && requested_child->status_pending_p)
2656 {
2657 internal_error (__FILE__, __LINE__,
2658 "requesting an event out of a"
2659 " suspended child?");
2660 }
2661
2662 if (requested_child->status_pending_p)
2663 {
2664 event_child = requested_child;
2665 event_thread = get_lwp_thread (event_child);
2666 }
2667 }
2668
2669 if (event_child != NULL)
2670 {
2671 if (debug_threads)
2672 debug_printf ("Got an event from pending child %ld (%04x)\n",
2673 lwpid_of (event_thread), event_child->status_pending);
2674 *wstatp = event_child->status_pending;
2675 event_child->status_pending_p = 0;
2676 event_child->status_pending = 0;
2677 current_thread = event_thread;
2678 return lwpid_of (event_thread);
2679 }
2680
2681 /* But if we don't find a pending event, we'll have to wait.
2682
2683 We only enter this loop if no process has a pending wait status.
2684 Thus any action taken in response to a wait status inside this
2685 loop is responding as soon as we detect the status, not after any
2686 pending events. */
2687
2688 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2689 all signals while here. */
2690 sigfillset (&block_mask);
2691 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2692
2693 /* Always pull all events out of the kernel. We'll randomly select
2694 an event LWP out of all that have events, to prevent
2695 starvation. */
2696 while (event_child == NULL)
2697 {
2698 pid_t ret = 0;
2699
2700 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2701 quirks:
2702
2703 - If the thread group leader exits while other threads in the
2704 thread group still exist, waitpid(TGID, ...) hangs. That
2705 waitpid won't return an exit status until the other threads
2706 in the group are reaped.
2707
2708 - When a non-leader thread execs, that thread just vanishes
2709 without reporting an exit (so we'd hang if we waited for it
2710 explicitly in that case). The exec event is reported to
2711 the TGID pid. */
2712 errno = 0;
2713 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2714
2715 if (debug_threads)
2716 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2717 ret, errno ? strerror (errno) : "ERRNO-OK");
2718
2719 if (ret > 0)
2720 {
2721 if (debug_threads)
2722 {
2723 debug_printf ("LLW: waitpid %ld received %s\n",
2724 (long) ret, status_to_str (*wstatp));
2725 }
2726
2727 /* Filter all events. IOW, leave all events pending. We'll
2728 randomly select an event LWP out of all that have events
2729 below. */
2730 linux_low_filter_event (ret, *wstatp);
2731 /* Retry until nothing comes out of waitpid. A single
2732 SIGCHLD can indicate more than one child stopped. */
2733 continue;
2734 }
2735
2736 /* Now that we've pulled all events out of the kernel, resume
2737 LWPs that don't have an interesting event to report. */
2738 if (stopping_threads == NOT_STOPPING_THREADS)
2739 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2740
2741 /* ... and find an LWP with a status to report to the core, if
2742 any. */
2743 event_thread = find_thread_in_random ([&] (thread_info *thread)
2744 {
2745 return status_pending_p_callback (thread, filter_ptid);
2746 });
2747
2748 if (event_thread != NULL)
2749 {
2750 event_child = get_thread_lwp (event_thread);
2751 *wstatp = event_child->status_pending;
2752 event_child->status_pending_p = 0;
2753 event_child->status_pending = 0;
2754 break;
2755 }
2756
2757 /* Check for zombie thread group leaders. Those can't be reaped
2758 until all other threads in the thread group are. */
2759 check_zombie_leaders ();
2760
2761 auto not_stopped = [&] (thread_info *thread)
2762 {
2763 return not_stopped_callback (thread, wait_ptid);
2764 };
2765
2766 /* If there are no resumed children left in the set of LWPs we
2767 want to wait for, bail. We can't just block in
2768 waitpid/sigsuspend, because lwps might have been left stopped
2769 in trace-stop state, and we'd be stuck forever waiting for
2770 their status to change (which would only happen if we resumed
2771 them). Even if WNOHANG is set, this return code is preferred
2772 over 0 (below), as it is more detailed. */
2773 if (find_thread (not_stopped) == NULL)
2774 {
2775 if (debug_threads)
2776 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2777 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2778 return -1;
2779 }
2780
2781 /* No interesting event to report to the caller. */
2782 if ((options & WNOHANG))
2783 {
2784 if (debug_threads)
2785 debug_printf ("WNOHANG set, no event found\n");
2786
2787 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2788 return 0;
2789 }
2790
2791 /* Block until we get an event reported with SIGCHLD. */
2792 if (debug_threads)
2793 debug_printf ("sigsuspend'ing\n");
2794
2795 sigsuspend (&prev_mask);
2796 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2797 goto retry;
2798 }
2799
2800 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2801
2802 current_thread = event_thread;
2803
2804 return lwpid_of (event_thread);
2805}
2806
2807/* Wait for an event from child(ren) PTID. PTIDs can be:
2808 minus_one_ptid, to specify any child; a pid PTID, specifying all
2809 lwps of a thread group; or a PTID representing a single lwp. Store
2810 the stop status through the status pointer WSTAT. OPTIONS is
2811 passed to the waitpid call. Return 0 if no event was found and
2812 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2813 was found. Return the PID of the stopped child otherwise. */
2814
2815static int
2816linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2817{
2818 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2819}
2820
2821/* Select one LWP out of those that have events pending. */
2822
2823static void
2824select_event_lwp (struct lwp_info **orig_lp)
2825{
2826 int random_selector;
2827 struct thread_info *event_thread = NULL;
2828
2829 /* In all-stop, give preference to the LWP that is being
2830 single-stepped. There will be at most one, and it's the LWP that
2831 the core is most interested in. If we didn't do this, then we'd
2832 have to handle pending step SIGTRAPs somehow in case the core
2833 later continues the previously-stepped thread, otherwise we'd
2834 report the pending SIGTRAP, and the core, not having stepped the
2835 thread, wouldn't understand what the trap was for, and therefore
2836 would report it to the user as a random signal. */
2837 if (!non_stop)
2838 {
2839 event_thread = find_thread ([] (thread_info *thread)
2840 {
2841 lwp_info *lp = get_thread_lwp (thread);
2842
2843 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2844 && thread->last_resume_kind == resume_step
2845 && lp->status_pending_p);
2846 });
2847
2848 if (event_thread != NULL)
2849 {
2850 if (debug_threads)
2851 debug_printf ("SEL: Select single-step %s\n",
2852 target_pid_to_str (ptid_of (event_thread)));
2853 }
2854 }
2855 if (event_thread == NULL)
2856 {
2857 /* No single-stepping LWP. Select one at random, out of those
2858 which have had events. */
2859
2860 /* First see how many events we have. */
2861 int num_events = 0;
2862 for_each_thread ([&] (thread_info *thread)
2863 {
2864 lwp_info *lp = get_thread_lwp (thread);
2865
2866 /* Count only resumed LWPs that have an event pending. */
2867 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2868 && lp->status_pending_p)
2869 num_events++;
2870 });
2871 gdb_assert (num_events > 0);
2872
2873 /* Now randomly pick a LWP out of those that have had
2874 events. */
2875 random_selector = (int)
2876 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2877
2878 if (debug_threads && num_events > 1)
2879 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2880 num_events, random_selector);
2881
2882 event_thread = find_thread ([&] (thread_info *thread)
2883 {
2884 lwp_info *lp = get_thread_lwp (thread);
2885
2886 /* Select only resumed LWPs that have an event pending. */
2887 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2888 && lp->status_pending_p)
2889 if (random_selector-- == 0)
2890 return true;
2891
2892 return false;
2893 });
2894 }
2895
2896 if (event_thread != NULL)
2897 {
2898 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2899
2900 /* Switch the event LWP. */
2901 *orig_lp = event_lp;
2902 }
2903}
2904
2905/* Decrement the suspend count of all LWPs, except EXCEPT, if non
2906 NULL. */
2907
2908static void
2909unsuspend_all_lwps (struct lwp_info *except)
2910{
2911 for_each_thread ([&] (thread_info *thread)
2912 {
2913 lwp_info *lwp = get_thread_lwp (thread);
2914
2915 if (lwp != except)
2916 lwp_suspended_decr (lwp);
2917 });
2918}
2919
2920static void move_out_of_jump_pad_callback (thread_info *thread);
2921static bool stuck_in_jump_pad_callback (thread_info *thread);
2922static bool lwp_running (thread_info *thread);
2923static ptid_t linux_wait_1 (ptid_t ptid,
2924 struct target_waitstatus *ourstatus,
2925 int target_options);
2926
2927/* Stabilize threads (move out of jump pads).
2928
2929 If a thread is midway collecting a fast tracepoint, we need to
2930 finish the collection and move it out of the jump pad before
2931 reporting the signal.
2932
2933 This avoids recursion while collecting (when a signal arrives
2934 midway, and the signal handler itself collects), which would trash
2935 the trace buffer. In case the user set a breakpoint in a signal
2936 handler, this avoids the backtrace showing the jump pad, etc..
2937 Most importantly, there are certain things we can't do safely if
2938 threads are stopped in a jump pad (or in its callee's). For
2939 example:
2940
2941 - starting a new trace run. A thread still collecting the
2942 previous run, could trash the trace buffer when resumed. The trace
2943 buffer control structures would have been reset but the thread had
2944 no way to tell. The thread could even midway memcpy'ing to the
2945 buffer, which would mean that when resumed, it would clobber the
2946 trace buffer that had been set for a new run.
2947
2948 - we can't rewrite/reuse the jump pads for new tracepoints
2949 safely. Say you do tstart while a thread is stopped midway while
2950 collecting. When the thread is later resumed, it finishes the
2951 collection, and returns to the jump pad, to execute the original
2952 instruction that was under the tracepoint jump at the time the
2953 older run had been started. If the jump pad had been rewritten
2954 since for something else in the new run, the thread would now
2955 execute the wrong / random instructions. */
2956
2957static void
2958linux_stabilize_threads (void)
2959{
2960 thread_info *thread_stuck = find_thread (stuck_in_jump_pad_callback);
2961
2962 if (thread_stuck != NULL)
2963 {
2964 if (debug_threads)
2965 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2966 lwpid_of (thread_stuck));
2967 return;
2968 }
2969
2970 thread_info *saved_thread = current_thread;
2971
2972 stabilizing_threads = 1;
2973
2974 /* Kick 'em all. */
2975 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2976
2977 /* Loop until all are stopped out of the jump pads. */
2978 while (find_thread (lwp_running) != NULL)
2979 {
2980 struct target_waitstatus ourstatus;
2981 struct lwp_info *lwp;
2982 int wstat;
2983
2984 /* Note that we go through the full wait even loop. While
2985 moving threads out of jump pad, we need to be able to step
2986 over internal breakpoints and such. */
2987 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2988
2989 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2990 {
2991 lwp = get_thread_lwp (current_thread);
2992
2993 /* Lock it. */
2994 lwp_suspended_inc (lwp);
2995
2996 if (ourstatus.value.sig != GDB_SIGNAL_0
2997 || current_thread->last_resume_kind == resume_stop)
2998 {
2999 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3000 enqueue_one_deferred_signal (lwp, &wstat);
3001 }
3002 }
3003 }
3004
3005 unsuspend_all_lwps (NULL);
3006
3007 stabilizing_threads = 0;
3008
3009 current_thread = saved_thread;
3010
3011 if (debug_threads)
3012 {
3013 thread_stuck = find_thread (stuck_in_jump_pad_callback);
3014
3015 if (thread_stuck != NULL)
3016 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3017 lwpid_of (thread_stuck));
3018 }
3019}
3020
3021/* Convenience function that is called when the kernel reports an
3022 event that is not passed out to GDB. */
3023
3024static ptid_t
3025ignore_event (struct target_waitstatus *ourstatus)
3026{
3027 /* If we got an event, there may still be others, as a single
3028 SIGCHLD can indicate more than one child stopped. This forces
3029 another target_wait call. */
3030 async_file_mark ();
3031
3032 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3033 return null_ptid;
3034}
3035
3036/* Convenience function that is called when the kernel reports an exit
3037 event. This decides whether to report the event to GDB as a
3038 process exit event, a thread exit event, or to suppress the
3039 event. */
3040
3041static ptid_t
3042filter_exit_event (struct lwp_info *event_child,
3043 struct target_waitstatus *ourstatus)
3044{
3045 struct thread_info *thread = get_lwp_thread (event_child);
3046 ptid_t ptid = ptid_of (thread);
3047
3048 if (!last_thread_of_process_p (pid_of (thread)))
3049 {
3050 if (report_thread_events)
3051 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3052 else
3053 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3054
3055 delete_lwp (event_child);
3056 }
3057 return ptid;
3058}
3059
3060/* Returns 1 if GDB is interested in any event_child syscalls. */
3061
3062static int
3063gdb_catching_syscalls_p (struct lwp_info *event_child)
3064{
3065 struct thread_info *thread = get_lwp_thread (event_child);
3066 struct process_info *proc = get_thread_process (thread);
3067
3068 return !proc->syscalls_to_catch.empty ();
3069}
3070
3071/* Returns 1 if GDB is interested in the event_child syscall.
3072 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3073
3074static int
3075gdb_catch_this_syscall_p (struct lwp_info *event_child)
3076{
3077 int sysno;
3078 struct thread_info *thread = get_lwp_thread (event_child);
3079 struct process_info *proc = get_thread_process (thread);
3080
3081 if (proc->syscalls_to_catch.empty ())
3082 return 0;
3083
3084 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
3085 return 1;
3086
3087 get_syscall_trapinfo (event_child, &sysno);
3088
3089 for (int iter : proc->syscalls_to_catch)
3090 if (iter == sysno)
3091 return 1;
3092
3093 return 0;
3094}
3095
3096/* Wait for process, returns status. */
3097
3098static ptid_t
3099linux_wait_1 (ptid_t ptid,
3100 struct target_waitstatus *ourstatus, int target_options)
3101{
3102 int w;
3103 struct lwp_info *event_child;
3104 int options;
3105 int pid;
3106 int step_over_finished;
3107 int bp_explains_trap;
3108 int maybe_internal_trap;
3109 int report_to_gdb;
3110 int trace_event;
3111 int in_step_range;
3112 int any_resumed;
3113
3114 if (debug_threads)
3115 {
3116 debug_enter ();
3117 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3118 }
3119
3120 /* Translate generic target options into linux options. */
3121 options = __WALL;
3122 if (target_options & TARGET_WNOHANG)
3123 options |= WNOHANG;
3124
3125 bp_explains_trap = 0;
3126 trace_event = 0;
3127 in_step_range = 0;
3128 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3129
3130 auto status_pending_p_any = [&] (thread_info *thread)
3131 {
3132 return status_pending_p_callback (thread, minus_one_ptid);
3133 };
3134
3135 auto not_stopped = [&] (thread_info *thread)
3136 {
3137 return not_stopped_callback (thread, minus_one_ptid);
3138 };
3139
3140 /* Find a resumed LWP, if any. */
3141 if (find_thread (status_pending_p_any) != NULL)
3142 any_resumed = 1;
3143 else if (find_thread (not_stopped) != NULL)
3144 any_resumed = 1;
3145 else
3146 any_resumed = 0;
3147
3148 if (ptid_equal (step_over_bkpt, null_ptid))
3149 pid = linux_wait_for_event (ptid, &w, options);
3150 else
3151 {
3152 if (debug_threads)
3153 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3154 target_pid_to_str (step_over_bkpt));
3155 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3156 }
3157
3158 if (pid == 0 || (pid == -1 && !any_resumed))
3159 {
3160 gdb_assert (target_options & TARGET_WNOHANG);
3161
3162 if (debug_threads)
3163 {
3164 debug_printf ("linux_wait_1 ret = null_ptid, "
3165 "TARGET_WAITKIND_IGNORE\n");
3166 debug_exit ();
3167 }
3168
3169 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3170 return null_ptid;
3171 }
3172 else if (pid == -1)
3173 {
3174 if (debug_threads)
3175 {
3176 debug_printf ("linux_wait_1 ret = null_ptid, "
3177 "TARGET_WAITKIND_NO_RESUMED\n");
3178 debug_exit ();
3179 }
3180
3181 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3182 return null_ptid;
3183 }
3184
3185 event_child = get_thread_lwp (current_thread);
3186
3187 /* linux_wait_for_event only returns an exit status for the last
3188 child of a process. Report it. */
3189 if (WIFEXITED (w) || WIFSIGNALED (w))
3190 {
3191 if (WIFEXITED (w))
3192 {
3193 ourstatus->kind = TARGET_WAITKIND_EXITED;
3194 ourstatus->value.integer = WEXITSTATUS (w);
3195
3196 if (debug_threads)
3197 {
3198 debug_printf ("linux_wait_1 ret = %s, exited with "
3199 "retcode %d\n",
3200 target_pid_to_str (ptid_of (current_thread)),
3201 WEXITSTATUS (w));
3202 debug_exit ();
3203 }
3204 }
3205 else
3206 {
3207 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3208 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3209
3210 if (debug_threads)
3211 {
3212 debug_printf ("linux_wait_1 ret = %s, terminated with "
3213 "signal %d\n",
3214 target_pid_to_str (ptid_of (current_thread)),
3215 WTERMSIG (w));
3216 debug_exit ();
3217 }
3218 }
3219
3220 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3221 return filter_exit_event (event_child, ourstatus);
3222
3223 return ptid_of (current_thread);
3224 }
3225
3226 /* If step-over executes a breakpoint instruction, in the case of a
3227 hardware single step it means a gdb/gdbserver breakpoint had been
3228 planted on top of a permanent breakpoint, in the case of a software
3229 single step it may just mean that gdbserver hit the reinsert breakpoint.
3230 The PC has been adjusted by save_stop_reason to point at
3231 the breakpoint address.
3232 So in the case of the hardware single step advance the PC manually
3233 past the breakpoint and in the case of software single step advance only
3234 if it's not the single_step_breakpoint we are hitting.
3235 This avoids that a program would keep trapping a permanent breakpoint
3236 forever. */
3237 if (!ptid_equal (step_over_bkpt, null_ptid)
3238 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3239 && (event_child->stepping
3240 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3241 {
3242 int increment_pc = 0;
3243 int breakpoint_kind = 0;
3244 CORE_ADDR stop_pc = event_child->stop_pc;
3245
3246 breakpoint_kind =
3247 the_target->breakpoint_kind_from_current_state (&stop_pc);
3248 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3249
3250 if (debug_threads)
3251 {
3252 debug_printf ("step-over for %s executed software breakpoint\n",
3253 target_pid_to_str (ptid_of (current_thread)));
3254 }
3255
3256 if (increment_pc != 0)
3257 {
3258 struct regcache *regcache
3259 = get_thread_regcache (current_thread, 1);
3260
3261 event_child->stop_pc += increment_pc;
3262 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3263
3264 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3265 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3266 }
3267 }
3268
3269 /* If this event was not handled before, and is not a SIGTRAP, we
3270 report it. SIGILL and SIGSEGV are also treated as traps in case
3271 a breakpoint is inserted at the current PC. If this target does
3272 not support internal breakpoints at all, we also report the
3273 SIGTRAP without further processing; it's of no concern to us. */
3274 maybe_internal_trap
3275 = (supports_breakpoints ()
3276 && (WSTOPSIG (w) == SIGTRAP
3277 || ((WSTOPSIG (w) == SIGILL
3278 || WSTOPSIG (w) == SIGSEGV)
3279 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3280
3281 if (maybe_internal_trap)
3282 {
3283 /* Handle anything that requires bookkeeping before deciding to
3284 report the event or continue waiting. */
3285
3286 /* First check if we can explain the SIGTRAP with an internal
3287 breakpoint, or if we should possibly report the event to GDB.
3288 Do this before anything that may remove or insert a
3289 breakpoint. */
3290 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3291
3292 /* We have a SIGTRAP, possibly a step-over dance has just
3293 finished. If so, tweak the state machine accordingly,
3294 reinsert breakpoints and delete any single-step
3295 breakpoints. */
3296 step_over_finished = finish_step_over (event_child);
3297
3298 /* Now invoke the callbacks of any internal breakpoints there. */
3299 check_breakpoints (event_child->stop_pc);
3300
3301 /* Handle tracepoint data collecting. This may overflow the
3302 trace buffer, and cause a tracing stop, removing
3303 breakpoints. */
3304 trace_event = handle_tracepoints (event_child);
3305
3306 if (bp_explains_trap)
3307 {
3308 if (debug_threads)
3309 debug_printf ("Hit a gdbserver breakpoint.\n");
3310 }
3311 }
3312 else
3313 {
3314 /* We have some other signal, possibly a step-over dance was in
3315 progress, and it should be cancelled too. */
3316 step_over_finished = finish_step_over (event_child);
3317 }
3318
3319 /* We have all the data we need. Either report the event to GDB, or
3320 resume threads and keep waiting for more. */
3321
3322 /* If we're collecting a fast tracepoint, finish the collection and
3323 move out of the jump pad before delivering a signal. See
3324 linux_stabilize_threads. */
3325
3326 if (WIFSTOPPED (w)
3327 && WSTOPSIG (w) != SIGTRAP
3328 && supports_fast_tracepoints ()
3329 && agent_loaded_p ())
3330 {
3331 if (debug_threads)
3332 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3333 "to defer or adjust it.\n",
3334 WSTOPSIG (w), lwpid_of (current_thread));
3335
3336 /* Allow debugging the jump pad itself. */
3337 if (current_thread->last_resume_kind != resume_step
3338 && maybe_move_out_of_jump_pad (event_child, &w))
3339 {
3340 enqueue_one_deferred_signal (event_child, &w);
3341
3342 if (debug_threads)
3343 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3344 WSTOPSIG (w), lwpid_of (current_thread));
3345
3346 linux_resume_one_lwp (event_child, 0, 0, NULL);
3347
3348 if (debug_threads)
3349 debug_exit ();
3350 return ignore_event (ourstatus);
3351 }
3352 }
3353
3354 if (event_child->collecting_fast_tracepoint
3355 != fast_tpoint_collect_result::not_collecting)
3356 {
3357 if (debug_threads)
3358 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3359 "Check if we're already there.\n",
3360 lwpid_of (current_thread),
3361 (int) event_child->collecting_fast_tracepoint);
3362
3363 trace_event = 1;
3364
3365 event_child->collecting_fast_tracepoint
3366 = linux_fast_tracepoint_collecting (event_child, NULL);
3367
3368 if (event_child->collecting_fast_tracepoint
3369 != fast_tpoint_collect_result::before_insn)
3370 {
3371 /* No longer need this breakpoint. */
3372 if (event_child->exit_jump_pad_bkpt != NULL)
3373 {
3374 if (debug_threads)
3375 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3376 "stopping all threads momentarily.\n");
3377
3378 /* Other running threads could hit this breakpoint.
3379 We don't handle moribund locations like GDB does,
3380 instead we always pause all threads when removing
3381 breakpoints, so that any step-over or
3382 decr_pc_after_break adjustment is always taken
3383 care of while the breakpoint is still
3384 inserted. */
3385 stop_all_lwps (1, event_child);
3386
3387 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3388 event_child->exit_jump_pad_bkpt = NULL;
3389
3390 unstop_all_lwps (1, event_child);
3391
3392 gdb_assert (event_child->suspended >= 0);
3393 }
3394 }
3395
3396 if (event_child->collecting_fast_tracepoint
3397 == fast_tpoint_collect_result::not_collecting)
3398 {
3399 if (debug_threads)
3400 debug_printf ("fast tracepoint finished "
3401 "collecting successfully.\n");
3402
3403 /* We may have a deferred signal to report. */
3404 if (dequeue_one_deferred_signal (event_child, &w))
3405 {
3406 if (debug_threads)
3407 debug_printf ("dequeued one signal.\n");
3408 }
3409 else
3410 {
3411 if (debug_threads)
3412 debug_printf ("no deferred signals.\n");
3413
3414 if (stabilizing_threads)
3415 {
3416 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3417 ourstatus->value.sig = GDB_SIGNAL_0;
3418
3419 if (debug_threads)
3420 {
3421 debug_printf ("linux_wait_1 ret = %s, stopped "
3422 "while stabilizing threads\n",
3423 target_pid_to_str (ptid_of (current_thread)));
3424 debug_exit ();
3425 }
3426
3427 return ptid_of (current_thread);
3428 }
3429 }
3430 }
3431 }
3432
3433 /* Check whether GDB would be interested in this event. */
3434
3435 /* Check if GDB is interested in this syscall. */
3436 if (WIFSTOPPED (w)
3437 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3438 && !gdb_catch_this_syscall_p (event_child))
3439 {
3440 if (debug_threads)
3441 {
3442 debug_printf ("Ignored syscall for LWP %ld.\n",
3443 lwpid_of (current_thread));
3444 }
3445
3446 linux_resume_one_lwp (event_child, event_child->stepping,
3447 0, NULL);
3448
3449 if (debug_threads)
3450 debug_exit ();
3451 return ignore_event (ourstatus);
3452 }
3453
3454 /* If GDB is not interested in this signal, don't stop other
3455 threads, and don't report it to GDB. Just resume the inferior
3456 right away. We do this for threading-related signals as well as
3457 any that GDB specifically requested we ignore. But never ignore
3458 SIGSTOP if we sent it ourselves, and do not ignore signals when
3459 stepping - they may require special handling to skip the signal
3460 handler. Also never ignore signals that could be caused by a
3461 breakpoint. */
3462 if (WIFSTOPPED (w)
3463 && current_thread->last_resume_kind != resume_step
3464 && (
3465#if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3466 (current_process ()->priv->thread_db != NULL
3467 && (WSTOPSIG (w) == __SIGRTMIN
3468 || WSTOPSIG (w) == __SIGRTMIN + 1))
3469 ||
3470#endif
3471 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3472 && !(WSTOPSIG (w) == SIGSTOP
3473 && current_thread->last_resume_kind == resume_stop)
3474 && !linux_wstatus_maybe_breakpoint (w))))
3475 {
3476 siginfo_t info, *info_p;
3477
3478 if (debug_threads)
3479 debug_printf ("Ignored signal %d for LWP %ld.\n",
3480 WSTOPSIG (w), lwpid_of (current_thread));
3481
3482 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3483 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3484 info_p = &info;
3485 else
3486 info_p = NULL;
3487
3488 if (step_over_finished)
3489 {
3490 /* We cancelled this thread's step-over above. We still
3491 need to unsuspend all other LWPs, and set them back
3492 running again while the signal handler runs. */
3493 unsuspend_all_lwps (event_child);
3494
3495 /* Enqueue the pending signal info so that proceed_all_lwps
3496 doesn't lose it. */
3497 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3498
3499 proceed_all_lwps ();
3500 }
3501 else
3502 {
3503 linux_resume_one_lwp (event_child, event_child->stepping,
3504 WSTOPSIG (w), info_p);
3505 }
3506
3507 if (debug_threads)
3508 debug_exit ();
3509
3510 return ignore_event (ourstatus);
3511 }
3512
3513 /* Note that all addresses are always "out of the step range" when
3514 there's no range to begin with. */
3515 in_step_range = lwp_in_step_range (event_child);
3516
3517 /* If GDB wanted this thread to single step, and the thread is out
3518 of the step range, we always want to report the SIGTRAP, and let
3519 GDB handle it. Watchpoints should always be reported. So should
3520 signals we can't explain. A SIGTRAP we can't explain could be a
3521 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3522 do, we're be able to handle GDB breakpoints on top of internal
3523 breakpoints, by handling the internal breakpoint and still
3524 reporting the event to GDB. If we don't, we're out of luck, GDB
3525 won't see the breakpoint hit. If we see a single-step event but
3526 the thread should be continuing, don't pass the trap to gdb.
3527 That indicates that we had previously finished a single-step but
3528 left the single-step pending -- see
3529 complete_ongoing_step_over. */
3530 report_to_gdb = (!maybe_internal_trap
3531 || (current_thread->last_resume_kind == resume_step
3532 && !in_step_range)
3533 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3534 || (!in_step_range
3535 && !bp_explains_trap
3536 && !trace_event
3537 && !step_over_finished
3538 && !(current_thread->last_resume_kind == resume_continue
3539 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3540 || (gdb_breakpoint_here (event_child->stop_pc)
3541 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3542 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3543 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3544
3545 run_breakpoint_commands (event_child->stop_pc);
3546
3547 /* We found no reason GDB would want us to stop. We either hit one
3548 of our own breakpoints, or finished an internal step GDB
3549 shouldn't know about. */
3550 if (!report_to_gdb)
3551 {
3552 if (debug_threads)
3553 {
3554 if (bp_explains_trap)
3555 debug_printf ("Hit a gdbserver breakpoint.\n");
3556 if (step_over_finished)
3557 debug_printf ("Step-over finished.\n");
3558 if (trace_event)
3559 debug_printf ("Tracepoint event.\n");
3560 if (lwp_in_step_range (event_child))
3561 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3562 paddress (event_child->stop_pc),
3563 paddress (event_child->step_range_start),
3564 paddress (event_child->step_range_end));
3565 }
3566
3567 /* We're not reporting this breakpoint to GDB, so apply the
3568 decr_pc_after_break adjustment to the inferior's regcache
3569 ourselves. */
3570
3571 if (the_low_target.set_pc != NULL)
3572 {
3573 struct regcache *regcache
3574 = get_thread_regcache (current_thread, 1);
3575 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3576 }
3577
3578 if (step_over_finished)
3579 {
3580 /* If we have finished stepping over a breakpoint, we've
3581 stopped and suspended all LWPs momentarily except the
3582 stepping one. This is where we resume them all again.
3583 We're going to keep waiting, so use proceed, which
3584 handles stepping over the next breakpoint. */
3585 unsuspend_all_lwps (event_child);
3586 }
3587 else
3588 {
3589 /* Remove the single-step breakpoints if any. Note that
3590 there isn't single-step breakpoint if we finished stepping
3591 over. */
3592 if (can_software_single_step ()
3593 && has_single_step_breakpoints (current_thread))
3594 {
3595 stop_all_lwps (0, event_child);
3596 delete_single_step_breakpoints (current_thread);
3597 unstop_all_lwps (0, event_child);
3598 }
3599 }
3600
3601 if (debug_threads)
3602 debug_printf ("proceeding all threads.\n");
3603 proceed_all_lwps ();
3604
3605 if (debug_threads)
3606 debug_exit ();
3607
3608 return ignore_event (ourstatus);
3609 }
3610
3611 if (debug_threads)
3612 {
3613 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3614 {
3615 std::string str
3616 = target_waitstatus_to_string (&event_child->waitstatus);
3617
3618 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3619 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3620 }
3621 if (current_thread->last_resume_kind == resume_step)
3622 {
3623 if (event_child->step_range_start == event_child->step_range_end)
3624 debug_printf ("GDB wanted to single-step, reporting event.\n");
3625 else if (!lwp_in_step_range (event_child))
3626 debug_printf ("Out of step range, reporting event.\n");
3627 }
3628 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3629 debug_printf ("Stopped by watchpoint.\n");
3630 else if (gdb_breakpoint_here (event_child->stop_pc))
3631 debug_printf ("Stopped by GDB breakpoint.\n");
3632 if (debug_threads)
3633 debug_printf ("Hit a non-gdbserver trap event.\n");
3634 }
3635
3636 /* Alright, we're going to report a stop. */
3637
3638 /* Remove single-step breakpoints. */
3639 if (can_software_single_step ())
3640 {
3641 /* Remove single-step breakpoints or not. It it is true, stop all
3642 lwps, so that other threads won't hit the breakpoint in the
3643 staled memory. */
3644 int remove_single_step_breakpoints_p = 0;
3645
3646 if (non_stop)
3647 {
3648 remove_single_step_breakpoints_p
3649 = has_single_step_breakpoints (current_thread);
3650 }
3651 else
3652 {
3653 /* In all-stop, a stop reply cancels all previous resume
3654 requests. Delete all single-step breakpoints. */
3655
3656 find_thread ([&] (thread_info *thread) {
3657 if (has_single_step_breakpoints (thread))
3658 {
3659 remove_single_step_breakpoints_p = 1;
3660 return true;
3661 }
3662
3663 return false;
3664 });
3665 }
3666
3667 if (remove_single_step_breakpoints_p)
3668 {
3669 /* If we remove single-step breakpoints from memory, stop all lwps,
3670 so that other threads won't hit the breakpoint in the staled
3671 memory. */
3672 stop_all_lwps (0, event_child);
3673
3674 if (non_stop)
3675 {
3676 gdb_assert (has_single_step_breakpoints (current_thread));
3677 delete_single_step_breakpoints (current_thread);
3678 }
3679 else
3680 {
3681 for_each_thread ([] (thread_info *thread){
3682 if (has_single_step_breakpoints (thread))
3683 delete_single_step_breakpoints (thread);
3684 });
3685 }
3686
3687 unstop_all_lwps (0, event_child);
3688 }
3689 }
3690
3691 if (!stabilizing_threads)
3692 {
3693 /* In all-stop, stop all threads. */
3694 if (!non_stop)
3695 stop_all_lwps (0, NULL);
3696
3697 if (step_over_finished)
3698 {
3699 if (!non_stop)
3700 {
3701 /* If we were doing a step-over, all other threads but
3702 the stepping one had been paused in start_step_over,
3703 with their suspend counts incremented. We don't want
3704 to do a full unstop/unpause, because we're in
3705 all-stop mode (so we want threads stopped), but we
3706 still need to unsuspend the other threads, to
3707 decrement their `suspended' count back. */
3708 unsuspend_all_lwps (event_child);
3709 }
3710 else
3711 {
3712 /* If we just finished a step-over, then all threads had
3713 been momentarily paused. In all-stop, that's fine,
3714 we want threads stopped by now anyway. In non-stop,
3715 we need to re-resume threads that GDB wanted to be
3716 running. */
3717 unstop_all_lwps (1, event_child);
3718 }
3719 }
3720
3721 /* If we're not waiting for a specific LWP, choose an event LWP
3722 from among those that have had events. Giving equal priority
3723 to all LWPs that have had events helps prevent
3724 starvation. */
3725 if (ptid_equal (ptid, minus_one_ptid))
3726 {
3727 event_child->status_pending_p = 1;
3728 event_child->status_pending = w;
3729
3730 select_event_lwp (&event_child);
3731
3732 /* current_thread and event_child must stay in sync. */
3733 current_thread = get_lwp_thread (event_child);
3734
3735 event_child->status_pending_p = 0;
3736 w = event_child->status_pending;
3737 }
3738
3739
3740 /* Stabilize threads (move out of jump pads). */
3741 if (!non_stop)
3742 stabilize_threads ();
3743 }
3744 else
3745 {
3746 /* If we just finished a step-over, then all threads had been
3747 momentarily paused. In all-stop, that's fine, we want
3748 threads stopped by now anyway. In non-stop, we need to
3749 re-resume threads that GDB wanted to be running. */
3750 if (step_over_finished)
3751 unstop_all_lwps (1, event_child);
3752 }
3753
3754 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3755 {
3756 /* If the reported event is an exit, fork, vfork or exec, let
3757 GDB know. */
3758
3759 /* Break the unreported fork relationship chain. */
3760 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3761 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3762 {
3763 event_child->fork_relative->fork_relative = NULL;
3764 event_child->fork_relative = NULL;
3765 }
3766
3767 *ourstatus = event_child->waitstatus;
3768 /* Clear the event lwp's waitstatus since we handled it already. */
3769 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3770 }
3771 else
3772 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3773
3774 /* Now that we've selected our final event LWP, un-adjust its PC if
3775 it was a software breakpoint, and the client doesn't know we can
3776 adjust the breakpoint ourselves. */
3777 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3778 && !swbreak_feature)
3779 {
3780 int decr_pc = the_low_target.decr_pc_after_break;
3781
3782 if (decr_pc != 0)
3783 {
3784 struct regcache *regcache
3785 = get_thread_regcache (current_thread, 1);
3786 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3787 }
3788 }
3789
3790 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3791 {
3792 get_syscall_trapinfo (event_child,
3793 &ourstatus->value.syscall_number);
3794 ourstatus->kind = event_child->syscall_state;
3795 }
3796 else if (current_thread->last_resume_kind == resume_stop
3797 && WSTOPSIG (w) == SIGSTOP)
3798 {
3799 /* A thread that has been requested to stop by GDB with vCont;t,
3800 and it stopped cleanly, so report as SIG0. The use of
3801 SIGSTOP is an implementation detail. */
3802 ourstatus->value.sig = GDB_SIGNAL_0;
3803 }
3804 else if (current_thread->last_resume_kind == resume_stop
3805 && WSTOPSIG (w) != SIGSTOP)
3806 {
3807 /* A thread that has been requested to stop by GDB with vCont;t,
3808 but, it stopped for other reasons. */
3809 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3810 }
3811 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3812 {
3813 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3814 }
3815
3816 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3817
3818 if (debug_threads)
3819 {
3820 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3821 target_pid_to_str (ptid_of (current_thread)),
3822 ourstatus->kind, ourstatus->value.sig);
3823 debug_exit ();
3824 }
3825
3826 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3827 return filter_exit_event (event_child, ourstatus);
3828
3829 return ptid_of (current_thread);
3830}
3831
3832/* Get rid of any pending event in the pipe. */
3833static void
3834async_file_flush (void)
3835{
3836 int ret;
3837 char buf;
3838
3839 do
3840 ret = read (linux_event_pipe[0], &buf, 1);
3841 while (ret >= 0 || (ret == -1 && errno == EINTR));
3842}
3843
3844/* Put something in the pipe, so the event loop wakes up. */
3845static void
3846async_file_mark (void)
3847{
3848 int ret;
3849
3850 async_file_flush ();
3851
3852 do
3853 ret = write (linux_event_pipe[1], "+", 1);
3854 while (ret == 0 || (ret == -1 && errno == EINTR));
3855
3856 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3857 be awakened anyway. */
3858}
3859
3860static ptid_t
3861linux_wait (ptid_t ptid,
3862 struct target_waitstatus *ourstatus, int target_options)
3863{
3864 ptid_t event_ptid;
3865
3866 /* Flush the async file first. */
3867 if (target_is_async_p ())
3868 async_file_flush ();
3869
3870 do
3871 {
3872 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3873 }
3874 while ((target_options & TARGET_WNOHANG) == 0
3875 && ptid_equal (event_ptid, null_ptid)
3876 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3877
3878 /* If at least one stop was reported, there may be more. A single
3879 SIGCHLD can signal more than one child stop. */
3880 if (target_is_async_p ()
3881 && (target_options & TARGET_WNOHANG) != 0
3882 && !ptid_equal (event_ptid, null_ptid))
3883 async_file_mark ();
3884
3885 return event_ptid;
3886}
3887
3888/* Send a signal to an LWP. */
3889
3890static int
3891kill_lwp (unsigned long lwpid, int signo)
3892{
3893 int ret;
3894
3895 errno = 0;
3896 ret = syscall (__NR_tkill, lwpid, signo);
3897 if (errno == ENOSYS)
3898 {
3899 /* If tkill fails, then we are not using nptl threads, a
3900 configuration we no longer support. */
3901 perror_with_name (("tkill"));
3902 }
3903 return ret;
3904}
3905
3906void
3907linux_stop_lwp (struct lwp_info *lwp)
3908{
3909 send_sigstop (lwp);
3910}
3911
3912static void
3913send_sigstop (struct lwp_info *lwp)
3914{
3915 int pid;
3916
3917 pid = lwpid_of (get_lwp_thread (lwp));
3918
3919 /* If we already have a pending stop signal for this process, don't
3920 send another. */
3921 if (lwp->stop_expected)
3922 {
3923 if (debug_threads)
3924 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3925
3926 return;
3927 }
3928
3929 if (debug_threads)
3930 debug_printf ("Sending sigstop to lwp %d\n", pid);
3931
3932 lwp->stop_expected = 1;
3933 kill_lwp (pid, SIGSTOP);
3934}
3935
3936static void
3937send_sigstop (thread_info *thread, lwp_info *except)
3938{
3939 struct lwp_info *lwp = get_thread_lwp (thread);
3940
3941 /* Ignore EXCEPT. */
3942 if (lwp == except)
3943 return;
3944
3945 if (lwp->stopped)
3946 return;
3947
3948 send_sigstop (lwp);
3949}
3950
3951/* Increment the suspend count of an LWP, and stop it, if not stopped
3952 yet. */
3953static void
3954suspend_and_send_sigstop (thread_info *thread, lwp_info *except)
3955{
3956 struct lwp_info *lwp = get_thread_lwp (thread);
3957
3958 /* Ignore EXCEPT. */
3959 if (lwp == except)
3960 return;
3961
3962 lwp_suspended_inc (lwp);
3963
3964 send_sigstop (thread, except);
3965}
3966
3967static void
3968mark_lwp_dead (struct lwp_info *lwp, int wstat)
3969{
3970 /* Store the exit status for later. */
3971 lwp->status_pending_p = 1;
3972 lwp->status_pending = wstat;
3973
3974 /* Store in waitstatus as well, as there's nothing else to process
3975 for this event. */
3976 if (WIFEXITED (wstat))
3977 {
3978 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3979 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3980 }
3981 else if (WIFSIGNALED (wstat))
3982 {
3983 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3984 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3985 }
3986
3987 /* Prevent trying to stop it. */
3988 lwp->stopped = 1;
3989
3990 /* No further stops are expected from a dead lwp. */
3991 lwp->stop_expected = 0;
3992}
3993
3994/* Return true if LWP has exited already, and has a pending exit event
3995 to report to GDB. */
3996
3997static int
3998lwp_is_marked_dead (struct lwp_info *lwp)
3999{
4000 return (lwp->status_pending_p
4001 && (WIFEXITED (lwp->status_pending)
4002 || WIFSIGNALED (lwp->status_pending)));
4003}
4004
4005/* Wait for all children to stop for the SIGSTOPs we just queued. */
4006
4007static void
4008wait_for_sigstop (void)
4009{
4010 struct thread_info *saved_thread;
4011 ptid_t saved_tid;
4012 int wstat;
4013 int ret;
4014
4015 saved_thread = current_thread;
4016 if (saved_thread != NULL)
4017 saved_tid = saved_thread->id;
4018 else
4019 saved_tid = null_ptid; /* avoid bogus unused warning */
4020
4021 if (debug_threads)
4022 debug_printf ("wait_for_sigstop: pulling events\n");
4023
4024 /* Passing NULL_PTID as filter indicates we want all events to be
4025 left pending. Eventually this returns when there are no
4026 unwaited-for children left. */
4027 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4028 &wstat, __WALL);
4029 gdb_assert (ret == -1);
4030
4031 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4032 current_thread = saved_thread;
4033 else
4034 {
4035 if (debug_threads)
4036 debug_printf ("Previously current thread died.\n");
4037
4038 /* We can't change the current inferior behind GDB's back,
4039 otherwise, a subsequent command may apply to the wrong
4040 process. */
4041 current_thread = NULL;
4042 }
4043}
4044
4045/* Returns true if THREAD is stopped in a jump pad, and we can't
4046 move it out, because we need to report the stop event to GDB. For
4047 example, if the user puts a breakpoint in the jump pad, it's
4048 because she wants to debug it. */
4049
4050static bool
4051stuck_in_jump_pad_callback (thread_info *thread)
4052{
4053 struct lwp_info *lwp = get_thread_lwp (thread);
4054
4055 if (lwp->suspended != 0)
4056 {
4057 internal_error (__FILE__, __LINE__,
4058 "LWP %ld is suspended, suspended=%d\n",
4059 lwpid_of (thread), lwp->suspended);
4060 }
4061 gdb_assert (lwp->stopped);
4062
4063 /* Allow debugging the jump pad, gdb_collect, etc.. */
4064 return (supports_fast_tracepoints ()
4065 && agent_loaded_p ()
4066 && (gdb_breakpoint_here (lwp->stop_pc)
4067 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4068 || thread->last_resume_kind == resume_step)
4069 && (linux_fast_tracepoint_collecting (lwp, NULL)
4070 != fast_tpoint_collect_result::not_collecting));
4071}
4072
4073static void
4074move_out_of_jump_pad_callback (thread_info *thread)
4075{
4076 struct thread_info *saved_thread;
4077 struct lwp_info *lwp = get_thread_lwp (thread);
4078 int *wstat;
4079
4080 if (lwp->suspended != 0)
4081 {
4082 internal_error (__FILE__, __LINE__,
4083 "LWP %ld is suspended, suspended=%d\n",
4084 lwpid_of (thread), lwp->suspended);
4085 }
4086 gdb_assert (lwp->stopped);
4087
4088 /* For gdb_breakpoint_here. */
4089 saved_thread = current_thread;
4090 current_thread = thread;
4091
4092 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4093
4094 /* Allow debugging the jump pad, gdb_collect, etc. */
4095 if (!gdb_breakpoint_here (lwp->stop_pc)
4096 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4097 && thread->last_resume_kind != resume_step
4098 && maybe_move_out_of_jump_pad (lwp, wstat))
4099 {
4100 if (debug_threads)
4101 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4102 lwpid_of (thread));
4103
4104 if (wstat)
4105 {
4106 lwp->status_pending_p = 0;
4107 enqueue_one_deferred_signal (lwp, wstat);
4108
4109 if (debug_threads)
4110 debug_printf ("Signal %d for LWP %ld deferred "
4111 "(in jump pad)\n",
4112 WSTOPSIG (*wstat), lwpid_of (thread));
4113 }
4114
4115 linux_resume_one_lwp (lwp, 0, 0, NULL);
4116 }
4117 else
4118 lwp_suspended_inc (lwp);
4119
4120 current_thread = saved_thread;
4121}
4122
4123static bool
4124lwp_running (thread_info *thread)
4125{
4126 struct lwp_info *lwp = get_thread_lwp (thread);
4127
4128 if (lwp_is_marked_dead (lwp))
4129 return false;
4130
4131 return !lwp->stopped;
4132}
4133
4134/* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4135 If SUSPEND, then also increase the suspend count of every LWP,
4136 except EXCEPT. */
4137
4138static void
4139stop_all_lwps (int suspend, struct lwp_info *except)
4140{
4141 /* Should not be called recursively. */
4142 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4143
4144 if (debug_threads)
4145 {
4146 debug_enter ();
4147 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4148 suspend ? "stop-and-suspend" : "stop",
4149 except != NULL
4150 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4151 : "none");
4152 }
4153
4154 stopping_threads = (suspend
4155 ? STOPPING_AND_SUSPENDING_THREADS
4156 : STOPPING_THREADS);
4157
4158 if (suspend)
4159 for_each_thread ([&] (thread_info *thread)
4160 {
4161 suspend_and_send_sigstop (thread, except);
4162 });
4163 else
4164 for_each_thread ([&] (thread_info *thread)
4165 {
4166 send_sigstop (thread, except);
4167 });
4168
4169 wait_for_sigstop ();
4170 stopping_threads = NOT_STOPPING_THREADS;
4171
4172 if (debug_threads)
4173 {
4174 debug_printf ("stop_all_lwps done, setting stopping_threads "
4175 "back to !stopping\n");
4176 debug_exit ();
4177 }
4178}
4179
4180/* Enqueue one signal in the chain of signals which need to be
4181 delivered to this process on next resume. */
4182
4183static void
4184enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4185{
4186 struct pending_signals *p_sig = XNEW (struct pending_signals);
4187
4188 p_sig->prev = lwp->pending_signals;
4189 p_sig->signal = signal;
4190 if (info == NULL)
4191 memset (&p_sig->info, 0, sizeof (siginfo_t));
4192 else
4193 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4194 lwp->pending_signals = p_sig;
4195}
4196
4197/* Install breakpoints for software single stepping. */
4198
4199static void
4200install_software_single_step_breakpoints (struct lwp_info *lwp)
4201{
4202 struct thread_info *thread = get_lwp_thread (lwp);
4203 struct regcache *regcache = get_thread_regcache (thread, 1);
4204 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4205
4206 current_thread = thread;
4207 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4208
4209 for (CORE_ADDR pc : next_pcs)
4210 set_single_step_breakpoint (pc, current_ptid);
4211
4212 do_cleanups (old_chain);
4213}
4214
4215/* Single step via hardware or software single step.
4216 Return 1 if hardware single stepping, 0 if software single stepping
4217 or can't single step. */
4218
4219static int
4220single_step (struct lwp_info* lwp)
4221{
4222 int step = 0;
4223
4224 if (can_hardware_single_step ())
4225 {
4226 step = 1;
4227 }
4228 else if (can_software_single_step ())
4229 {
4230 install_software_single_step_breakpoints (lwp);
4231 step = 0;
4232 }
4233 else
4234 {
4235 if (debug_threads)
4236 debug_printf ("stepping is not implemented on this target");
4237 }
4238
4239 return step;
4240}
4241
4242/* The signal can be delivered to the inferior if we are not trying to
4243 finish a fast tracepoint collect. Since signal can be delivered in
4244 the step-over, the program may go to signal handler and trap again
4245 after return from the signal handler. We can live with the spurious
4246 double traps. */
4247
4248static int
4249lwp_signal_can_be_delivered (struct lwp_info *lwp)
4250{
4251 return (lwp->collecting_fast_tracepoint
4252 == fast_tpoint_collect_result::not_collecting);
4253}
4254
4255/* Resume execution of LWP. If STEP is nonzero, single-step it. If
4256 SIGNAL is nonzero, give it that signal. */
4257
4258static void
4259linux_resume_one_lwp_throw (struct lwp_info *lwp,
4260 int step, int signal, siginfo_t *info)
4261{
4262 struct thread_info *thread = get_lwp_thread (lwp);
4263 struct thread_info *saved_thread;
4264 int ptrace_request;
4265 struct process_info *proc = get_thread_process (thread);
4266
4267 /* Note that target description may not be initialised
4268 (proc->tdesc == NULL) at this point because the program hasn't
4269 stopped at the first instruction yet. It means GDBserver skips
4270 the extra traps from the wrapper program (see option --wrapper).
4271 Code in this function that requires register access should be
4272 guarded by proc->tdesc == NULL or something else. */
4273
4274 if (lwp->stopped == 0)
4275 return;
4276
4277 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4278
4279 fast_tpoint_collect_result fast_tp_collecting
4280 = lwp->collecting_fast_tracepoint;
4281
4282 gdb_assert (!stabilizing_threads
4283 || (fast_tp_collecting
4284 != fast_tpoint_collect_result::not_collecting));
4285
4286 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4287 user used the "jump" command, or "set $pc = foo"). */
4288 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4289 {
4290 /* Collecting 'while-stepping' actions doesn't make sense
4291 anymore. */
4292 release_while_stepping_state_list (thread);
4293 }
4294
4295 /* If we have pending signals or status, and a new signal, enqueue the
4296 signal. Also enqueue the signal if it can't be delivered to the
4297 inferior right now. */
4298 if (signal != 0
4299 && (lwp->status_pending_p
4300 || lwp->pending_signals != NULL
4301 || !lwp_signal_can_be_delivered (lwp)))
4302 {
4303 enqueue_pending_signal (lwp, signal, info);
4304
4305 /* Postpone any pending signal. It was enqueued above. */
4306 signal = 0;
4307 }
4308
4309 if (lwp->status_pending_p)
4310 {
4311 if (debug_threads)
4312 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4313 " has pending status\n",
4314 lwpid_of (thread), step ? "step" : "continue",
4315 lwp->stop_expected ? "expected" : "not expected");
4316 return;
4317 }
4318
4319 saved_thread = current_thread;
4320 current_thread = thread;
4321
4322 /* This bit needs some thinking about. If we get a signal that
4323 we must report while a single-step reinsert is still pending,
4324 we often end up resuming the thread. It might be better to
4325 (ew) allow a stack of pending events; then we could be sure that
4326 the reinsert happened right away and not lose any signals.
4327
4328 Making this stack would also shrink the window in which breakpoints are
4329 uninserted (see comment in linux_wait_for_lwp) but not enough for
4330 complete correctness, so it won't solve that problem. It may be
4331 worthwhile just to solve this one, however. */
4332 if (lwp->bp_reinsert != 0)
4333 {
4334 if (debug_threads)
4335 debug_printf (" pending reinsert at 0x%s\n",
4336 paddress (lwp->bp_reinsert));
4337
4338 if (can_hardware_single_step ())
4339 {
4340 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4341 {
4342 if (step == 0)
4343 warning ("BAD - reinserting but not stepping.");
4344 if (lwp->suspended)
4345 warning ("BAD - reinserting and suspended(%d).",
4346 lwp->suspended);
4347 }
4348 }
4349
4350 step = maybe_hw_step (thread);
4351 }
4352
4353 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4354 {
4355 if (debug_threads)
4356 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4357 " (exit-jump-pad-bkpt)\n",
4358 lwpid_of (thread));
4359 }
4360 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4361 {
4362 if (debug_threads)
4363 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4364 " single-stepping\n",
4365 lwpid_of (thread));
4366
4367 if (can_hardware_single_step ())
4368 step = 1;
4369 else
4370 {
4371 internal_error (__FILE__, __LINE__,
4372 "moving out of jump pad single-stepping"
4373 " not implemented on this target");
4374 }
4375 }
4376
4377 /* If we have while-stepping actions in this thread set it stepping.
4378 If we have a signal to deliver, it may or may not be set to
4379 SIG_IGN, we don't know. Assume so, and allow collecting
4380 while-stepping into a signal handler. A possible smart thing to
4381 do would be to set an internal breakpoint at the signal return
4382 address, continue, and carry on catching this while-stepping
4383 action only when that breakpoint is hit. A future
4384 enhancement. */
4385 if (thread->while_stepping != NULL)
4386 {
4387 if (debug_threads)
4388 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4389 lwpid_of (thread));
4390
4391 step = single_step (lwp);
4392 }
4393
4394 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4395 {
4396 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4397
4398 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4399
4400 if (debug_threads)
4401 {
4402 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4403 (long) lwp->stop_pc);
4404 }
4405 }
4406
4407 /* If we have pending signals, consume one if it can be delivered to
4408 the inferior. */
4409 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4410 {
4411 struct pending_signals **p_sig;
4412
4413 p_sig = &lwp->pending_signals;
4414 while ((*p_sig)->prev != NULL)
4415 p_sig = &(*p_sig)->prev;
4416
4417 signal = (*p_sig)->signal;
4418 if ((*p_sig)->info.si_signo != 0)
4419 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4420 &(*p_sig)->info);
4421
4422 free (*p_sig);
4423 *p_sig = NULL;
4424 }
4425
4426 if (debug_threads)
4427 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4428 lwpid_of (thread), step ? "step" : "continue", signal,
4429 lwp->stop_expected ? "expected" : "not expected");
4430
4431 if (the_low_target.prepare_to_resume != NULL)
4432 the_low_target.prepare_to_resume (lwp);
4433
4434 regcache_invalidate_thread (thread);
4435 errno = 0;
4436 lwp->stepping = step;
4437 if (step)
4438 ptrace_request = PTRACE_SINGLESTEP;
4439 else if (gdb_catching_syscalls_p (lwp))
4440 ptrace_request = PTRACE_SYSCALL;
4441 else
4442 ptrace_request = PTRACE_CONT;
4443 ptrace (ptrace_request,
4444 lwpid_of (thread),
4445 (PTRACE_TYPE_ARG3) 0,
4446 /* Coerce to a uintptr_t first to avoid potential gcc warning
4447 of coercing an 8 byte integer to a 4 byte pointer. */
4448 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4449
4450 current_thread = saved_thread;
4451 if (errno)
4452 perror_with_name ("resuming thread");
4453
4454 /* Successfully resumed. Clear state that no longer makes sense,
4455 and mark the LWP as running. Must not do this before resuming
4456 otherwise if that fails other code will be confused. E.g., we'd
4457 later try to stop the LWP and hang forever waiting for a stop
4458 status. Note that we must not throw after this is cleared,
4459 otherwise handle_zombie_lwp_error would get confused. */
4460 lwp->stopped = 0;
4461 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4462}
4463
4464/* Called when we try to resume a stopped LWP and that errors out. If
4465 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4466 or about to become), discard the error, clear any pending status
4467 the LWP may have, and return true (we'll collect the exit status
4468 soon enough). Otherwise, return false. */
4469
4470static int
4471check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4472{
4473 struct thread_info *thread = get_lwp_thread (lp);
4474
4475 /* If we get an error after resuming the LWP successfully, we'd
4476 confuse !T state for the LWP being gone. */
4477 gdb_assert (lp->stopped);
4478
4479 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4480 because even if ptrace failed with ESRCH, the tracee may be "not
4481 yet fully dead", but already refusing ptrace requests. In that
4482 case the tracee has 'R (Running)' state for a little bit
4483 (observed in Linux 3.18). See also the note on ESRCH in the
4484 ptrace(2) man page. Instead, check whether the LWP has any state
4485 other than ptrace-stopped. */
4486
4487 /* Don't assume anything if /proc/PID/status can't be read. */
4488 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4489 {
4490 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4491 lp->status_pending_p = 0;
4492 return 1;
4493 }
4494 return 0;
4495}
4496
4497/* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4498 disappears while we try to resume it. */
4499
4500static void
4501linux_resume_one_lwp (struct lwp_info *lwp,
4502 int step, int signal, siginfo_t *info)
4503{
4504 TRY
4505 {
4506 linux_resume_one_lwp_throw (lwp, step, signal, info);
4507 }
4508 CATCH (ex, RETURN_MASK_ERROR)
4509 {
4510 if (!check_ptrace_stopped_lwp_gone (lwp))
4511 throw_exception (ex);
4512 }
4513 END_CATCH
4514}
4515
4516/* This function is called once per thread via for_each_thread.
4517 We look up which resume request applies to THREAD and mark it with a
4518 pointer to the appropriate resume request.
4519
4520 This algorithm is O(threads * resume elements), but resume elements
4521 is small (and will remain small at least until GDB supports thread
4522 suspension). */
4523
4524static void
4525linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4526{
4527 struct lwp_info *lwp = get_thread_lwp (thread);
4528
4529 for (int ndx = 0; ndx < n; ndx++)
4530 {
4531 ptid_t ptid = resume[ndx].thread;
4532 if (ptid_equal (ptid, minus_one_ptid)
4533 || ptid == thread->id
4534 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4535 of PID'. */
4536 || (ptid_get_pid (ptid) == pid_of (thread)
4537 && (ptid_is_pid (ptid)
4538 || ptid_get_lwp (ptid) == -1)))
4539 {
4540 if (resume[ndx].kind == resume_stop
4541 && thread->last_resume_kind == resume_stop)
4542 {
4543 if (debug_threads)
4544 debug_printf ("already %s LWP %ld at GDB's request\n",
4545 (thread->last_status.kind
4546 == TARGET_WAITKIND_STOPPED)
4547 ? "stopped"
4548 : "stopping",
4549 lwpid_of (thread));
4550
4551 continue;
4552 }
4553
4554 /* Ignore (wildcard) resume requests for already-resumed
4555 threads. */
4556 if (resume[ndx].kind != resume_stop
4557 && thread->last_resume_kind != resume_stop)
4558 {
4559 if (debug_threads)
4560 debug_printf ("already %s LWP %ld at GDB's request\n",
4561 (thread->last_resume_kind
4562 == resume_step)
4563 ? "stepping"
4564 : "continuing",
4565 lwpid_of (thread));
4566 continue;
4567 }
4568
4569 /* Don't let wildcard resumes resume fork children that GDB
4570 does not yet know are new fork children. */
4571 if (lwp->fork_relative != NULL)
4572 {
4573 struct lwp_info *rel = lwp->fork_relative;
4574
4575 if (rel->status_pending_p
4576 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4577 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4578 {
4579 if (debug_threads)
4580 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4581 lwpid_of (thread));
4582 continue;
4583 }
4584 }
4585
4586 /* If the thread has a pending event that has already been
4587 reported to GDBserver core, but GDB has not pulled the
4588 event out of the vStopped queue yet, likewise, ignore the
4589 (wildcard) resume request. */
4590 if (in_queued_stop_replies (thread->id))
4591 {
4592 if (debug_threads)
4593 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4594 lwpid_of (thread));
4595 continue;
4596 }
4597
4598 lwp->resume = &resume[ndx];
4599 thread->last_resume_kind = lwp->resume->kind;
4600
4601 lwp->step_range_start = lwp->resume->step_range_start;
4602 lwp->step_range_end = lwp->resume->step_range_end;
4603
4604 /* If we had a deferred signal to report, dequeue one now.
4605 This can happen if LWP gets more than one signal while
4606 trying to get out of a jump pad. */
4607 if (lwp->stopped
4608 && !lwp->status_pending_p
4609 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4610 {
4611 lwp->status_pending_p = 1;
4612
4613 if (debug_threads)
4614 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4615 "leaving status pending.\n",
4616 WSTOPSIG (lwp->status_pending),
4617 lwpid_of (thread));
4618 }
4619
4620 return;
4621 }
4622 }
4623
4624 /* No resume action for this thread. */
4625 lwp->resume = NULL;
4626}
4627
4628/* find_inferior callback for linux_resume.
4629 Set *FLAG_P if this lwp has an interesting status pending. */
4630
4631static bool
4632resume_status_pending_p (thread_info *thread)
4633{
4634 struct lwp_info *lwp = get_thread_lwp (thread);
4635
4636 /* LWPs which will not be resumed are not interesting, because
4637 we might not wait for them next time through linux_wait. */
4638 if (lwp->resume == NULL)
4639 return false;
4640
4641 return thread_still_has_status_pending_p (thread);
4642}
4643
4644/* Return 1 if this lwp that GDB wants running is stopped at an
4645 internal breakpoint that we need to step over. It assumes that any
4646 required STOP_PC adjustment has already been propagated to the
4647 inferior's regcache. */
4648
4649static bool
4650need_step_over_p (thread_info *thread)
4651{
4652 struct lwp_info *lwp = get_thread_lwp (thread);
4653 struct thread_info *saved_thread;
4654 CORE_ADDR pc;
4655 struct process_info *proc = get_thread_process (thread);
4656
4657 /* GDBserver is skipping the extra traps from the wrapper program,
4658 don't have to do step over. */
4659 if (proc->tdesc == NULL)
4660 return false;
4661
4662 /* LWPs which will not be resumed are not interesting, because we
4663 might not wait for them next time through linux_wait. */
4664
4665 if (!lwp->stopped)
4666 {
4667 if (debug_threads)
4668 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4669 lwpid_of (thread));
4670 return false;
4671 }
4672
4673 if (thread->last_resume_kind == resume_stop)
4674 {
4675 if (debug_threads)
4676 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4677 " stopped\n",
4678 lwpid_of (thread));
4679 return false;
4680 }
4681
4682 gdb_assert (lwp->suspended >= 0);
4683
4684 if (lwp->suspended)
4685 {
4686 if (debug_threads)
4687 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4688 lwpid_of (thread));
4689 return false;
4690 }
4691
4692 if (lwp->status_pending_p)
4693 {
4694 if (debug_threads)
4695 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4696 " status.\n",
4697 lwpid_of (thread));
4698 return false;
4699 }
4700
4701 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4702 or we have. */
4703 pc = get_pc (lwp);
4704
4705 /* If the PC has changed since we stopped, then don't do anything,
4706 and let the breakpoint/tracepoint be hit. This happens if, for
4707 instance, GDB handled the decr_pc_after_break subtraction itself,
4708 GDB is OOL stepping this thread, or the user has issued a "jump"
4709 command, or poked thread's registers herself. */
4710 if (pc != lwp->stop_pc)
4711 {
4712 if (debug_threads)
4713 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4714 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4715 lwpid_of (thread),
4716 paddress (lwp->stop_pc), paddress (pc));
4717 return false;
4718 }
4719
4720 /* On software single step target, resume the inferior with signal
4721 rather than stepping over. */
4722 if (can_software_single_step ()
4723 && lwp->pending_signals != NULL
4724 && lwp_signal_can_be_delivered (lwp))
4725 {
4726 if (debug_threads)
4727 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4728 " signals.\n",
4729 lwpid_of (thread));
4730
4731 return false;
4732 }
4733
4734 saved_thread = current_thread;
4735 current_thread = thread;
4736
4737 /* We can only step over breakpoints we know about. */
4738 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4739 {
4740 /* Don't step over a breakpoint that GDB expects to hit
4741 though. If the condition is being evaluated on the target's side
4742 and it evaluate to false, step over this breakpoint as well. */
4743 if (gdb_breakpoint_here (pc)
4744 && gdb_condition_true_at_breakpoint (pc)
4745 && gdb_no_commands_at_breakpoint (pc))
4746 {
4747 if (debug_threads)
4748 debug_printf ("Need step over [LWP %ld]? yes, but found"
4749 " GDB breakpoint at 0x%s; skipping step over\n",
4750 lwpid_of (thread), paddress (pc));
4751
4752 current_thread = saved_thread;
4753 return false;
4754 }
4755 else
4756 {
4757 if (debug_threads)
4758 debug_printf ("Need step over [LWP %ld]? yes, "
4759 "found breakpoint at 0x%s\n",
4760 lwpid_of (thread), paddress (pc));
4761
4762 /* We've found an lwp that needs stepping over --- return 1 so
4763 that find_inferior stops looking. */
4764 current_thread = saved_thread;
4765
4766 return true;
4767 }
4768 }
4769
4770 current_thread = saved_thread;
4771
4772 if (debug_threads)
4773 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4774 " at 0x%s\n",
4775 lwpid_of (thread), paddress (pc));
4776
4777 return false;
4778}
4779
4780/* Start a step-over operation on LWP. When LWP stopped at a
4781 breakpoint, to make progress, we need to remove the breakpoint out
4782 of the way. If we let other threads run while we do that, they may
4783 pass by the breakpoint location and miss hitting it. To avoid
4784 that, a step-over momentarily stops all threads while LWP is
4785 single-stepped by either hardware or software while the breakpoint
4786 is temporarily uninserted from the inferior. When the single-step
4787 finishes, we reinsert the breakpoint, and let all threads that are
4788 supposed to be running, run again. */
4789
4790static int
4791start_step_over (struct lwp_info *lwp)
4792{
4793 struct thread_info *thread = get_lwp_thread (lwp);
4794 struct thread_info *saved_thread;
4795 CORE_ADDR pc;
4796 int step;
4797
4798 if (debug_threads)
4799 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4800 lwpid_of (thread));
4801
4802 stop_all_lwps (1, lwp);
4803
4804 if (lwp->suspended != 0)
4805 {
4806 internal_error (__FILE__, __LINE__,
4807 "LWP %ld suspended=%d\n", lwpid_of (thread),
4808 lwp->suspended);
4809 }
4810
4811 if (debug_threads)
4812 debug_printf ("Done stopping all threads for step-over.\n");
4813
4814 /* Note, we should always reach here with an already adjusted PC,
4815 either by GDB (if we're resuming due to GDB's request), or by our
4816 caller, if we just finished handling an internal breakpoint GDB
4817 shouldn't care about. */
4818 pc = get_pc (lwp);
4819
4820 saved_thread = current_thread;
4821 current_thread = thread;
4822
4823 lwp->bp_reinsert = pc;
4824 uninsert_breakpoints_at (pc);
4825 uninsert_fast_tracepoint_jumps_at (pc);
4826
4827 step = single_step (lwp);
4828
4829 current_thread = saved_thread;
4830
4831 linux_resume_one_lwp (lwp, step, 0, NULL);
4832
4833 /* Require next event from this LWP. */
4834 step_over_bkpt = thread->id;
4835 return 1;
4836}
4837
4838/* Finish a step-over. Reinsert the breakpoint we had uninserted in
4839 start_step_over, if still there, and delete any single-step
4840 breakpoints we've set, on non hardware single-step targets. */
4841
4842static int
4843finish_step_over (struct lwp_info *lwp)
4844{
4845 if (lwp->bp_reinsert != 0)
4846 {
4847 struct thread_info *saved_thread = current_thread;
4848
4849 if (debug_threads)
4850 debug_printf ("Finished step over.\n");
4851
4852 current_thread = get_lwp_thread (lwp);
4853
4854 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4855 may be no breakpoint to reinsert there by now. */
4856 reinsert_breakpoints_at (lwp->bp_reinsert);
4857 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4858
4859 lwp->bp_reinsert = 0;
4860
4861 /* Delete any single-step breakpoints. No longer needed. We
4862 don't have to worry about other threads hitting this trap,
4863 and later not being able to explain it, because we were
4864 stepping over a breakpoint, and we hold all threads but
4865 LWP stopped while doing that. */
4866 if (!can_hardware_single_step ())
4867 {
4868 gdb_assert (has_single_step_breakpoints (current_thread));
4869 delete_single_step_breakpoints (current_thread);
4870 }
4871
4872 step_over_bkpt = null_ptid;
4873 current_thread = saved_thread;
4874 return 1;
4875 }
4876 else
4877 return 0;
4878}
4879
4880/* If there's a step over in progress, wait until all threads stop
4881 (that is, until the stepping thread finishes its step), and
4882 unsuspend all lwps. The stepping thread ends with its status
4883 pending, which is processed later when we get back to processing
4884 events. */
4885
4886static void
4887complete_ongoing_step_over (void)
4888{
4889 if (!ptid_equal (step_over_bkpt, null_ptid))
4890 {
4891 struct lwp_info *lwp;
4892 int wstat;
4893 int ret;
4894
4895 if (debug_threads)
4896 debug_printf ("detach: step over in progress, finish it first\n");
4897
4898 /* Passing NULL_PTID as filter indicates we want all events to
4899 be left pending. Eventually this returns when there are no
4900 unwaited-for children left. */
4901 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4902 &wstat, __WALL);
4903 gdb_assert (ret == -1);
4904
4905 lwp = find_lwp_pid (step_over_bkpt);
4906 if (lwp != NULL)
4907 finish_step_over (lwp);
4908 step_over_bkpt = null_ptid;
4909 unsuspend_all_lwps (lwp);
4910 }
4911}
4912
4913/* This function is called once per thread. We check the thread's resume
4914 request, which will tell us whether to resume, step, or leave the thread
4915 stopped; and what signal, if any, it should be sent.
4916
4917 For threads which we aren't explicitly told otherwise, we preserve
4918 the stepping flag; this is used for stepping over gdbserver-placed
4919 breakpoints.
4920
4921 If pending_flags was set in any thread, we queue any needed
4922 signals, since we won't actually resume. We already have a pending
4923 event to report, so we don't need to preserve any step requests;
4924 they should be re-issued if necessary. */
4925
4926static void
4927linux_resume_one_thread (thread_info *thread, bool leave_all_stopped)
4928{
4929 struct lwp_info *lwp = get_thread_lwp (thread);
4930 int leave_pending;
4931
4932 if (lwp->resume == NULL)
4933 return;
4934
4935 if (lwp->resume->kind == resume_stop)
4936 {
4937 if (debug_threads)
4938 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4939
4940 if (!lwp->stopped)
4941 {
4942 if (debug_threads)
4943 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4944
4945 /* Stop the thread, and wait for the event asynchronously,
4946 through the event loop. */
4947 send_sigstop (lwp);
4948 }
4949 else
4950 {
4951 if (debug_threads)
4952 debug_printf ("already stopped LWP %ld\n",
4953 lwpid_of (thread));
4954
4955 /* The LWP may have been stopped in an internal event that
4956 was not meant to be notified back to GDB (e.g., gdbserver
4957 breakpoint), so we should be reporting a stop event in
4958 this case too. */
4959
4960 /* If the thread already has a pending SIGSTOP, this is a
4961 no-op. Otherwise, something later will presumably resume
4962 the thread and this will cause it to cancel any pending
4963 operation, due to last_resume_kind == resume_stop. If
4964 the thread already has a pending status to report, we
4965 will still report it the next time we wait - see
4966 status_pending_p_callback. */
4967
4968 /* If we already have a pending signal to report, then
4969 there's no need to queue a SIGSTOP, as this means we're
4970 midway through moving the LWP out of the jumppad, and we
4971 will report the pending signal as soon as that is
4972 finished. */
4973 if (lwp->pending_signals_to_report == NULL)
4974 send_sigstop (lwp);
4975 }
4976
4977 /* For stop requests, we're done. */
4978 lwp->resume = NULL;
4979 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4980 return;
4981 }
4982
4983 /* If this thread which is about to be resumed has a pending status,
4984 then don't resume it - we can just report the pending status.
4985 Likewise if it is suspended, because e.g., another thread is
4986 stepping past a breakpoint. Make sure to queue any signals that
4987 would otherwise be sent. In all-stop mode, we do this decision
4988 based on if *any* thread has a pending status. If there's a
4989 thread that needs the step-over-breakpoint dance, then don't
4990 resume any other thread but that particular one. */
4991 leave_pending = (lwp->suspended
4992 || lwp->status_pending_p
4993 || leave_all_stopped);
4994
4995 /* If we have a new signal, enqueue the signal. */
4996 if (lwp->resume->sig != 0)
4997 {
4998 siginfo_t info, *info_p;
4999
5000 /* If this is the same signal we were previously stopped by,
5001 make sure to queue its siginfo. */
5002 if (WIFSTOPPED (lwp->last_status)
5003 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5004 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5005 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5006 info_p = &info;
5007 else
5008 info_p = NULL;
5009
5010 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5011 }
5012
5013 if (!leave_pending)
5014 {
5015 if (debug_threads)
5016 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5017
5018 proceed_one_lwp (thread, NULL);
5019 }
5020 else
5021 {
5022 if (debug_threads)
5023 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5024 }
5025
5026 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5027 lwp->resume = NULL;
5028}
5029
5030static void
5031linux_resume (struct thread_resume *resume_info, size_t n)
5032{
5033 struct thread_info *need_step_over = NULL;
5034
5035 if (debug_threads)
5036 {
5037 debug_enter ();
5038 debug_printf ("linux_resume:\n");
5039 }
5040
5041 for_each_thread ([&] (thread_info *thread)
5042 {
5043 linux_set_resume_request (thread, resume_info, n);
5044 });
5045
5046 /* If there is a thread which would otherwise be resumed, which has
5047 a pending status, then don't resume any threads - we can just
5048 report the pending status. Make sure to queue any signals that
5049 would otherwise be sent. In non-stop mode, we'll apply this
5050 logic to each thread individually. We consume all pending events
5051 before considering to start a step-over (in all-stop). */
5052 bool any_pending = false;
5053 if (!non_stop)
5054 any_pending = find_thread (resume_status_pending_p) != NULL;
5055
5056 /* If there is a thread which would otherwise be resumed, which is
5057 stopped at a breakpoint that needs stepping over, then don't
5058 resume any threads - have it step over the breakpoint with all
5059 other threads stopped, then resume all threads again. Make sure
5060 to queue any signals that would otherwise be delivered or
5061 queued. */
5062 if (!any_pending && supports_breakpoints ())
5063 need_step_over = find_thread (need_step_over_p);
5064
5065 bool leave_all_stopped = (need_step_over != NULL || any_pending);
5066
5067 if (debug_threads)
5068 {
5069 if (need_step_over != NULL)
5070 debug_printf ("Not resuming all, need step over\n");
5071 else if (any_pending)
5072 debug_printf ("Not resuming, all-stop and found "
5073 "an LWP with pending status\n");
5074 else
5075 debug_printf ("Resuming, no pending status or step over needed\n");
5076 }
5077
5078 /* Even if we're leaving threads stopped, queue all signals we'd
5079 otherwise deliver. */
5080 for_each_thread ([&] (thread_info *thread)
5081 {
5082 linux_resume_one_thread (thread, leave_all_stopped);
5083 });
5084
5085 if (need_step_over)
5086 start_step_over (get_thread_lwp (need_step_over));
5087
5088 if (debug_threads)
5089 {
5090 debug_printf ("linux_resume done\n");
5091 debug_exit ();
5092 }
5093
5094 /* We may have events that were pending that can/should be sent to
5095 the client now. Trigger a linux_wait call. */
5096 if (target_is_async_p ())
5097 async_file_mark ();
5098}
5099
5100/* This function is called once per thread. We check the thread's
5101 last resume request, which will tell us whether to resume, step, or
5102 leave the thread stopped. Any signal the client requested to be
5103 delivered has already been enqueued at this point.
5104
5105 If any thread that GDB wants running is stopped at an internal
5106 breakpoint that needs stepping over, we start a step-over operation
5107 on that particular thread, and leave all others stopped. */
5108
5109static int
5110proceed_one_lwp (thread_info *thread, void *except)
5111{
5112 struct lwp_info *lwp = get_thread_lwp (thread);
5113 int step;
5114
5115 if (lwp == except)
5116 return 0;
5117
5118 if (debug_threads)
5119 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5120
5121 if (!lwp->stopped)
5122 {
5123 if (debug_threads)
5124 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5125 return 0;
5126 }
5127
5128 if (thread->last_resume_kind == resume_stop
5129 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5130 {
5131 if (debug_threads)
5132 debug_printf (" client wants LWP to remain %ld stopped\n",
5133 lwpid_of (thread));
5134 return 0;
5135 }
5136
5137 if (lwp->status_pending_p)
5138 {
5139 if (debug_threads)
5140 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5141 lwpid_of (thread));
5142 return 0;
5143 }
5144
5145 gdb_assert (lwp->suspended >= 0);
5146
5147 if (lwp->suspended)
5148 {
5149 if (debug_threads)
5150 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5151 return 0;
5152 }
5153
5154 if (thread->last_resume_kind == resume_stop
5155 && lwp->pending_signals_to_report == NULL
5156 && (lwp->collecting_fast_tracepoint
5157 == fast_tpoint_collect_result::not_collecting))
5158 {
5159 /* We haven't reported this LWP as stopped yet (otherwise, the
5160 last_status.kind check above would catch it, and we wouldn't
5161 reach here. This LWP may have been momentarily paused by a
5162 stop_all_lwps call while handling for example, another LWP's
5163 step-over. In that case, the pending expected SIGSTOP signal
5164 that was queued at vCont;t handling time will have already
5165 been consumed by wait_for_sigstop, and so we need to requeue
5166 another one here. Note that if the LWP already has a SIGSTOP
5167 pending, this is a no-op. */
5168
5169 if (debug_threads)
5170 debug_printf ("Client wants LWP %ld to stop. "
5171 "Making sure it has a SIGSTOP pending\n",
5172 lwpid_of (thread));
5173
5174 send_sigstop (lwp);
5175 }
5176
5177 if (thread->last_resume_kind == resume_step)
5178 {
5179 if (debug_threads)
5180 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5181 lwpid_of (thread));
5182
5183 /* If resume_step is requested by GDB, install single-step
5184 breakpoints when the thread is about to be actually resumed if
5185 the single-step breakpoints weren't removed. */
5186 if (can_software_single_step ()
5187 && !has_single_step_breakpoints (thread))
5188 install_software_single_step_breakpoints (lwp);
5189
5190 step = maybe_hw_step (thread);
5191 }
5192 else if (lwp->bp_reinsert != 0)
5193 {
5194 if (debug_threads)
5195 debug_printf (" stepping LWP %ld, reinsert set\n",
5196 lwpid_of (thread));
5197
5198 step = maybe_hw_step (thread);
5199 }
5200 else
5201 step = 0;
5202
5203 linux_resume_one_lwp (lwp, step, 0, NULL);
5204 return 0;
5205}
5206
5207static int
5208unsuspend_and_proceed_one_lwp (thread_info *thread, void *except)
5209{
5210 struct lwp_info *lwp = get_thread_lwp (thread);
5211
5212 if (lwp == except)
5213 return 0;
5214
5215 lwp_suspended_decr (lwp);
5216
5217 return proceed_one_lwp (thread, except);
5218}
5219
5220/* When we finish a step-over, set threads running again. If there's
5221 another thread that may need a step-over, now's the time to start
5222 it. Eventually, we'll move all threads past their breakpoints. */
5223
5224static void
5225proceed_all_lwps (void)
5226{
5227 struct thread_info *need_step_over;
5228
5229 /* If there is a thread which would otherwise be resumed, which is
5230 stopped at a breakpoint that needs stepping over, then don't
5231 resume any threads - have it step over the breakpoint with all
5232 other threads stopped, then resume all threads again. */
5233
5234 if (supports_breakpoints ())
5235 {
5236 need_step_over = find_thread (need_step_over_p);
5237
5238 if (need_step_over != NULL)
5239 {
5240 if (debug_threads)
5241 debug_printf ("proceed_all_lwps: found "
5242 "thread %ld needing a step-over\n",
5243 lwpid_of (need_step_over));
5244
5245 start_step_over (get_thread_lwp (need_step_over));
5246 return;
5247 }
5248 }
5249
5250 if (debug_threads)
5251 debug_printf ("Proceeding, no step-over needed\n");
5252
5253 find_inferior (&all_threads, proceed_one_lwp, NULL);
5254}
5255
5256/* Stopped LWPs that the client wanted to be running, that don't have
5257 pending statuses, are set to run again, except for EXCEPT, if not
5258 NULL. This undoes a stop_all_lwps call. */
5259
5260static void
5261unstop_all_lwps (int unsuspend, struct lwp_info *except)
5262{
5263 if (debug_threads)
5264 {
5265 debug_enter ();
5266 if (except)
5267 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5268 lwpid_of (get_lwp_thread (except)));
5269 else
5270 debug_printf ("unstopping all lwps\n");
5271 }
5272
5273 if (unsuspend)
5274 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5275 else
5276 find_inferior (&all_threads, proceed_one_lwp, except);
5277
5278 if (debug_threads)
5279 {
5280 debug_printf ("unstop_all_lwps done\n");
5281 debug_exit ();
5282 }
5283}
5284
5285
5286#ifdef HAVE_LINUX_REGSETS
5287
5288#define use_linux_regsets 1
5289
5290/* Returns true if REGSET has been disabled. */
5291
5292static int
5293regset_disabled (struct regsets_info *info, struct regset_info *regset)
5294{
5295 return (info->disabled_regsets != NULL
5296 && info->disabled_regsets[regset - info->regsets]);
5297}
5298
5299/* Disable REGSET. */
5300
5301static void
5302disable_regset (struct regsets_info *info, struct regset_info *regset)
5303{
5304 int dr_offset;
5305
5306 dr_offset = regset - info->regsets;
5307 if (info->disabled_regsets == NULL)
5308 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5309 info->disabled_regsets[dr_offset] = 1;
5310}
5311
5312static int
5313regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5314 struct regcache *regcache)
5315{
5316 struct regset_info *regset;
5317 int saw_general_regs = 0;
5318 int pid;
5319 struct iovec iov;
5320
5321 pid = lwpid_of (current_thread);
5322 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5323 {
5324 void *buf, *data;
5325 int nt_type, res;
5326
5327 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5328 continue;
5329
5330 buf = xmalloc (regset->size);
5331
5332 nt_type = regset->nt_type;
5333 if (nt_type)
5334 {
5335 iov.iov_base = buf;
5336 iov.iov_len = regset->size;
5337 data = (void *) &iov;
5338 }
5339 else
5340 data = buf;
5341
5342#ifndef __sparc__
5343 res = ptrace (regset->get_request, pid,
5344 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5345#else
5346 res = ptrace (regset->get_request, pid, data, nt_type);
5347#endif
5348 if (res < 0)
5349 {
5350 if (errno == EIO)
5351 {
5352 /* If we get EIO on a regset, do not try it again for
5353 this process mode. */
5354 disable_regset (regsets_info, regset);
5355 }
5356 else if (errno == ENODATA)
5357 {
5358 /* ENODATA may be returned if the regset is currently
5359 not "active". This can happen in normal operation,
5360 so suppress the warning in this case. */
5361 }
5362 else if (errno == ESRCH)
5363 {
5364 /* At this point, ESRCH should mean the process is
5365 already gone, in which case we simply ignore attempts
5366 to read its registers. */
5367 }
5368 else
5369 {
5370 char s[256];
5371 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5372 pid);
5373 perror (s);
5374 }
5375 }
5376 else
5377 {
5378 if (regset->type == GENERAL_REGS)
5379 saw_general_regs = 1;
5380 regset->store_function (regcache, buf);
5381 }
5382 free (buf);
5383 }
5384 if (saw_general_regs)
5385 return 0;
5386 else
5387 return 1;
5388}
5389
5390static int
5391regsets_store_inferior_registers (struct regsets_info *regsets_info,
5392 struct regcache *regcache)
5393{
5394 struct regset_info *regset;
5395 int saw_general_regs = 0;
5396 int pid;
5397 struct iovec iov;
5398
5399 pid = lwpid_of (current_thread);
5400 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5401 {
5402 void *buf, *data;
5403 int nt_type, res;
5404
5405 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5406 || regset->fill_function == NULL)
5407 continue;
5408
5409 buf = xmalloc (regset->size);
5410
5411 /* First fill the buffer with the current register set contents,
5412 in case there are any items in the kernel's regset that are
5413 not in gdbserver's regcache. */
5414
5415 nt_type = regset->nt_type;
5416 if (nt_type)
5417 {
5418 iov.iov_base = buf;
5419 iov.iov_len = regset->size;
5420 data = (void *) &iov;
5421 }
5422 else
5423 data = buf;
5424
5425#ifndef __sparc__
5426 res = ptrace (regset->get_request, pid,
5427 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5428#else
5429 res = ptrace (regset->get_request, pid, data, nt_type);
5430#endif
5431
5432 if (res == 0)
5433 {
5434 /* Then overlay our cached registers on that. */
5435 regset->fill_function (regcache, buf);
5436
5437 /* Only now do we write the register set. */
5438#ifndef __sparc__
5439 res = ptrace (regset->set_request, pid,
5440 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5441#else
5442 res = ptrace (regset->set_request, pid, data, nt_type);
5443#endif
5444 }
5445
5446 if (res < 0)
5447 {
5448 if (errno == EIO)
5449 {
5450 /* If we get EIO on a regset, do not try it again for
5451 this process mode. */
5452 disable_regset (regsets_info, regset);
5453 }
5454 else if (errno == ESRCH)
5455 {
5456 /* At this point, ESRCH should mean the process is
5457 already gone, in which case we simply ignore attempts
5458 to change its registers. See also the related
5459 comment in linux_resume_one_lwp. */
5460 free (buf);
5461 return 0;
5462 }
5463 else
5464 {
5465 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5466 }
5467 }
5468 else if (regset->type == GENERAL_REGS)
5469 saw_general_regs = 1;
5470 free (buf);
5471 }
5472 if (saw_general_regs)
5473 return 0;
5474 else
5475 return 1;
5476}
5477
5478#else /* !HAVE_LINUX_REGSETS */
5479
5480#define use_linux_regsets 0
5481#define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5482#define regsets_store_inferior_registers(regsets_info, regcache) 1
5483
5484#endif
5485
5486/* Return 1 if register REGNO is supported by one of the regset ptrace
5487 calls or 0 if it has to be transferred individually. */
5488
5489static int
5490linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5491{
5492 unsigned char mask = 1 << (regno % 8);
5493 size_t index = regno / 8;
5494
5495 return (use_linux_regsets
5496 && (regs_info->regset_bitmap == NULL
5497 || (regs_info->regset_bitmap[index] & mask) != 0));
5498}
5499
5500#ifdef HAVE_LINUX_USRREGS
5501
5502static int
5503register_addr (const struct usrregs_info *usrregs, int regnum)
5504{
5505 int addr;
5506
5507 if (regnum < 0 || regnum >= usrregs->num_regs)
5508 error ("Invalid register number %d.", regnum);
5509
5510 addr = usrregs->regmap[regnum];
5511
5512 return addr;
5513}
5514
5515/* Fetch one register. */
5516static void
5517fetch_register (const struct usrregs_info *usrregs,
5518 struct regcache *regcache, int regno)
5519{
5520 CORE_ADDR regaddr;
5521 int i, size;
5522 char *buf;
5523 int pid;
5524
5525 if (regno >= usrregs->num_regs)
5526 return;
5527 if ((*the_low_target.cannot_fetch_register) (regno))
5528 return;
5529
5530 regaddr = register_addr (usrregs, regno);
5531 if (regaddr == -1)
5532 return;
5533
5534 size = ((register_size (regcache->tdesc, regno)
5535 + sizeof (PTRACE_XFER_TYPE) - 1)
5536 & -sizeof (PTRACE_XFER_TYPE));
5537 buf = (char *) alloca (size);
5538
5539 pid = lwpid_of (current_thread);
5540 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5541 {
5542 errno = 0;
5543 *(PTRACE_XFER_TYPE *) (buf + i) =
5544 ptrace (PTRACE_PEEKUSER, pid,
5545 /* Coerce to a uintptr_t first to avoid potential gcc warning
5546 of coercing an 8 byte integer to a 4 byte pointer. */
5547 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5548 regaddr += sizeof (PTRACE_XFER_TYPE);
5549 if (errno != 0)
5550 error ("reading register %d: %s", regno, strerror (errno));
5551 }
5552
5553 if (the_low_target.supply_ptrace_register)
5554 the_low_target.supply_ptrace_register (regcache, regno, buf);
5555 else
5556 supply_register (regcache, regno, buf);
5557}
5558
5559/* Store one register. */
5560static void
5561store_register (const struct usrregs_info *usrregs,
5562 struct regcache *regcache, int regno)
5563{
5564 CORE_ADDR regaddr;
5565 int i, size;
5566 char *buf;
5567 int pid;
5568
5569 if (regno >= usrregs->num_regs)
5570 return;
5571 if ((*the_low_target.cannot_store_register) (regno))
5572 return;
5573
5574 regaddr = register_addr (usrregs, regno);
5575 if (regaddr == -1)
5576 return;
5577
5578 size = ((register_size (regcache->tdesc, regno)
5579 + sizeof (PTRACE_XFER_TYPE) - 1)
5580 & -sizeof (PTRACE_XFER_TYPE));
5581 buf = (char *) alloca (size);
5582 memset (buf, 0, size);
5583
5584 if (the_low_target.collect_ptrace_register)
5585 the_low_target.collect_ptrace_register (regcache, regno, buf);
5586 else
5587 collect_register (regcache, regno, buf);
5588
5589 pid = lwpid_of (current_thread);
5590 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5591 {
5592 errno = 0;
5593 ptrace (PTRACE_POKEUSER, pid,
5594 /* Coerce to a uintptr_t first to avoid potential gcc warning
5595 about coercing an 8 byte integer to a 4 byte pointer. */
5596 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5597 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5598 if (errno != 0)
5599 {
5600 /* At this point, ESRCH should mean the process is
5601 already gone, in which case we simply ignore attempts
5602 to change its registers. See also the related
5603 comment in linux_resume_one_lwp. */
5604 if (errno == ESRCH)
5605 return;
5606
5607 if ((*the_low_target.cannot_store_register) (regno) == 0)
5608 error ("writing register %d: %s", regno, strerror (errno));
5609 }
5610 regaddr += sizeof (PTRACE_XFER_TYPE);
5611 }
5612}
5613
5614/* Fetch all registers, or just one, from the child process.
5615 If REGNO is -1, do this for all registers, skipping any that are
5616 assumed to have been retrieved by regsets_fetch_inferior_registers,
5617 unless ALL is non-zero.
5618 Otherwise, REGNO specifies which register (so we can save time). */
5619static void
5620usr_fetch_inferior_registers (const struct regs_info *regs_info,
5621 struct regcache *regcache, int regno, int all)
5622{
5623 struct usrregs_info *usr = regs_info->usrregs;
5624
5625 if (regno == -1)
5626 {
5627 for (regno = 0; regno < usr->num_regs; regno++)
5628 if (all || !linux_register_in_regsets (regs_info, regno))
5629 fetch_register (usr, regcache, regno);
5630 }
5631 else
5632 fetch_register (usr, regcache, regno);
5633}
5634
5635/* Store our register values back into the inferior.
5636 If REGNO is -1, do this for all registers, skipping any that are
5637 assumed to have been saved by regsets_store_inferior_registers,
5638 unless ALL is non-zero.
5639 Otherwise, REGNO specifies which register (so we can save time). */
5640static void
5641usr_store_inferior_registers (const struct regs_info *regs_info,
5642 struct regcache *regcache, int regno, int all)
5643{
5644 struct usrregs_info *usr = regs_info->usrregs;
5645
5646 if (regno == -1)
5647 {
5648 for (regno = 0; regno < usr->num_regs; regno++)
5649 if (all || !linux_register_in_regsets (regs_info, regno))
5650 store_register (usr, regcache, regno);
5651 }
5652 else
5653 store_register (usr, regcache, regno);
5654}
5655
5656#else /* !HAVE_LINUX_USRREGS */
5657
5658#define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5659#define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5660
5661#endif
5662
5663
5664static void
5665linux_fetch_registers (struct regcache *regcache, int regno)
5666{
5667 int use_regsets;
5668 int all = 0;
5669 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5670
5671 if (regno == -1)
5672 {
5673 if (the_low_target.fetch_register != NULL
5674 && regs_info->usrregs != NULL)
5675 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5676 (*the_low_target.fetch_register) (regcache, regno);
5677
5678 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5679 if (regs_info->usrregs != NULL)
5680 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5681 }
5682 else
5683 {
5684 if (the_low_target.fetch_register != NULL
5685 && (*the_low_target.fetch_register) (regcache, regno))
5686 return;
5687
5688 use_regsets = linux_register_in_regsets (regs_info, regno);
5689 if (use_regsets)
5690 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5691 regcache);
5692 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5693 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5694 }
5695}
5696
5697static void
5698linux_store_registers (struct regcache *regcache, int regno)
5699{
5700 int use_regsets;
5701 int all = 0;
5702 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5703
5704 if (regno == -1)
5705 {
5706 all = regsets_store_inferior_registers (regs_info->regsets_info,
5707 regcache);
5708 if (regs_info->usrregs != NULL)
5709 usr_store_inferior_registers (regs_info, regcache, regno, all);
5710 }
5711 else
5712 {
5713 use_regsets = linux_register_in_regsets (regs_info, regno);
5714 if (use_regsets)
5715 all = regsets_store_inferior_registers (regs_info->regsets_info,
5716 regcache);
5717 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5718 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5719 }
5720}
5721
5722
5723/* Copy LEN bytes from inferior's memory starting at MEMADDR
5724 to debugger memory starting at MYADDR. */
5725
5726static int
5727linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5728{
5729 int pid = lwpid_of (current_thread);
5730 PTRACE_XFER_TYPE *buffer;
5731 CORE_ADDR addr;
5732 int count;
5733 char filename[64];
5734 int i;
5735 int ret;
5736 int fd;
5737
5738 /* Try using /proc. Don't bother for one word. */
5739 if (len >= 3 * sizeof (long))
5740 {
5741 int bytes;
5742
5743 /* We could keep this file open and cache it - possibly one per
5744 thread. That requires some juggling, but is even faster. */
5745 sprintf (filename, "/proc/%d/mem", pid);
5746 fd = open (filename, O_RDONLY | O_LARGEFILE);
5747 if (fd == -1)
5748 goto no_proc;
5749
5750 /* If pread64 is available, use it. It's faster if the kernel
5751 supports it (only one syscall), and it's 64-bit safe even on
5752 32-bit platforms (for instance, SPARC debugging a SPARC64
5753 application). */
5754#ifdef HAVE_PREAD64
5755 bytes = pread64 (fd, myaddr, len, memaddr);
5756#else
5757 bytes = -1;
5758 if (lseek (fd, memaddr, SEEK_SET) != -1)
5759 bytes = read (fd, myaddr, len);
5760#endif
5761
5762 close (fd);
5763 if (bytes == len)
5764 return 0;
5765
5766 /* Some data was read, we'll try to get the rest with ptrace. */
5767 if (bytes > 0)
5768 {
5769 memaddr += bytes;
5770 myaddr += bytes;
5771 len -= bytes;
5772 }
5773 }
5774
5775 no_proc:
5776 /* Round starting address down to longword boundary. */
5777 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5778 /* Round ending address up; get number of longwords that makes. */
5779 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5780 / sizeof (PTRACE_XFER_TYPE));
5781 /* Allocate buffer of that many longwords. */
5782 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5783
5784 /* Read all the longwords */
5785 errno = 0;
5786 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5787 {
5788 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5789 about coercing an 8 byte integer to a 4 byte pointer. */
5790 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5791 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5792 (PTRACE_TYPE_ARG4) 0);
5793 if (errno)
5794 break;
5795 }
5796 ret = errno;
5797
5798 /* Copy appropriate bytes out of the buffer. */
5799 if (i > 0)
5800 {
5801 i *= sizeof (PTRACE_XFER_TYPE);
5802 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5803 memcpy (myaddr,
5804 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5805 i < len ? i : len);
5806 }
5807
5808 return ret;
5809}
5810
5811/* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5812 memory at MEMADDR. On failure (cannot write to the inferior)
5813 returns the value of errno. Always succeeds if LEN is zero. */
5814
5815static int
5816linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5817{
5818 int i;
5819 /* Round starting address down to longword boundary. */
5820 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5821 /* Round ending address up; get number of longwords that makes. */
5822 int count
5823 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5824 / sizeof (PTRACE_XFER_TYPE);
5825
5826 /* Allocate buffer of that many longwords. */
5827 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5828
5829 int pid = lwpid_of (current_thread);
5830
5831 if (len == 0)
5832 {
5833 /* Zero length write always succeeds. */
5834 return 0;
5835 }
5836
5837 if (debug_threads)
5838 {
5839 /* Dump up to four bytes. */
5840 char str[4 * 2 + 1];
5841 char *p = str;
5842 int dump = len < 4 ? len : 4;
5843
5844 for (i = 0; i < dump; i++)
5845 {
5846 sprintf (p, "%02x", myaddr[i]);
5847 p += 2;
5848 }
5849 *p = '\0';
5850
5851 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5852 str, (long) memaddr, pid);
5853 }
5854
5855 /* Fill start and end extra bytes of buffer with existing memory data. */
5856
5857 errno = 0;
5858 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5859 about coercing an 8 byte integer to a 4 byte pointer. */
5860 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5861 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5862 (PTRACE_TYPE_ARG4) 0);
5863 if (errno)
5864 return errno;
5865
5866 if (count > 1)
5867 {
5868 errno = 0;
5869 buffer[count - 1]
5870 = ptrace (PTRACE_PEEKTEXT, pid,
5871 /* Coerce to a uintptr_t first to avoid potential gcc warning
5872 about coercing an 8 byte integer to a 4 byte pointer. */
5873 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5874 * sizeof (PTRACE_XFER_TYPE)),
5875 (PTRACE_TYPE_ARG4) 0);
5876 if (errno)
5877 return errno;
5878 }
5879
5880 /* Copy data to be written over corresponding part of buffer. */
5881
5882 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5883 myaddr, len);
5884
5885 /* Write the entire buffer. */
5886
5887 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5888 {
5889 errno = 0;
5890 ptrace (PTRACE_POKETEXT, pid,
5891 /* Coerce to a uintptr_t first to avoid potential gcc warning
5892 about coercing an 8 byte integer to a 4 byte pointer. */
5893 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5894 (PTRACE_TYPE_ARG4) buffer[i]);
5895 if (errno)
5896 return errno;
5897 }
5898
5899 return 0;
5900}
5901
5902static void
5903linux_look_up_symbols (void)
5904{
5905#ifdef USE_THREAD_DB
5906 struct process_info *proc = current_process ();
5907
5908 if (proc->priv->thread_db != NULL)
5909 return;
5910
5911 thread_db_init ();
5912#endif
5913}
5914
5915static void
5916linux_request_interrupt (void)
5917{
5918 /* Send a SIGINT to the process group. This acts just like the user
5919 typed a ^C on the controlling terminal. */
5920 kill (-signal_pid, SIGINT);
5921}
5922
5923/* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5924 to debugger memory starting at MYADDR. */
5925
5926static int
5927linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5928{
5929 char filename[PATH_MAX];
5930 int fd, n;
5931 int pid = lwpid_of (current_thread);
5932
5933 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5934
5935 fd = open (filename, O_RDONLY);
5936 if (fd < 0)
5937 return -1;
5938
5939 if (offset != (CORE_ADDR) 0
5940 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5941 n = -1;
5942 else
5943 n = read (fd, myaddr, len);
5944
5945 close (fd);
5946
5947 return n;
5948}
5949
5950/* These breakpoint and watchpoint related wrapper functions simply
5951 pass on the function call if the target has registered a
5952 corresponding function. */
5953
5954static int
5955linux_supports_z_point_type (char z_type)
5956{
5957 return (the_low_target.supports_z_point_type != NULL
5958 && the_low_target.supports_z_point_type (z_type));
5959}
5960
5961static int
5962linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5963 int size, struct raw_breakpoint *bp)
5964{
5965 if (type == raw_bkpt_type_sw)
5966 return insert_memory_breakpoint (bp);
5967 else if (the_low_target.insert_point != NULL)
5968 return the_low_target.insert_point (type, addr, size, bp);
5969 else
5970 /* Unsupported (see target.h). */
5971 return 1;
5972}
5973
5974static int
5975linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5976 int size, struct raw_breakpoint *bp)
5977{
5978 if (type == raw_bkpt_type_sw)
5979 return remove_memory_breakpoint (bp);
5980 else if (the_low_target.remove_point != NULL)
5981 return the_low_target.remove_point (type, addr, size, bp);
5982 else
5983 /* Unsupported (see target.h). */
5984 return 1;
5985}
5986
5987/* Implement the to_stopped_by_sw_breakpoint target_ops
5988 method. */
5989
5990static int
5991linux_stopped_by_sw_breakpoint (void)
5992{
5993 struct lwp_info *lwp = get_thread_lwp (current_thread);
5994
5995 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5996}
5997
5998/* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5999 method. */
6000
6001static int
6002linux_supports_stopped_by_sw_breakpoint (void)
6003{
6004 return USE_SIGTRAP_SIGINFO;
6005}
6006
6007/* Implement the to_stopped_by_hw_breakpoint target_ops
6008 method. */
6009
6010static int
6011linux_stopped_by_hw_breakpoint (void)
6012{
6013 struct lwp_info *lwp = get_thread_lwp (current_thread);
6014
6015 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6016}
6017
6018/* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6019 method. */
6020
6021static int
6022linux_supports_stopped_by_hw_breakpoint (void)
6023{
6024 return USE_SIGTRAP_SIGINFO;
6025}
6026
6027/* Implement the supports_hardware_single_step target_ops method. */
6028
6029static int
6030linux_supports_hardware_single_step (void)
6031{
6032 return can_hardware_single_step ();
6033}
6034
6035static int
6036linux_supports_software_single_step (void)
6037{
6038 return can_software_single_step ();
6039}
6040
6041static int
6042linux_stopped_by_watchpoint (void)
6043{
6044 struct lwp_info *lwp = get_thread_lwp (current_thread);
6045
6046 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6047}
6048
6049static CORE_ADDR
6050linux_stopped_data_address (void)
6051{
6052 struct lwp_info *lwp = get_thread_lwp (current_thread);
6053
6054 return lwp->stopped_data_address;
6055}
6056
6057#if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6058 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6059 && defined(PT_TEXT_END_ADDR)
6060
6061/* This is only used for targets that define PT_TEXT_ADDR,
6062 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6063 the target has different ways of acquiring this information, like
6064 loadmaps. */
6065
6066/* Under uClinux, programs are loaded at non-zero offsets, which we need
6067 to tell gdb about. */
6068
6069static int
6070linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6071{
6072 unsigned long text, text_end, data;
6073 int pid = lwpid_of (current_thread);
6074
6075 errno = 0;
6076
6077 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6078 (PTRACE_TYPE_ARG4) 0);
6079 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6080 (PTRACE_TYPE_ARG4) 0);
6081 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6082 (PTRACE_TYPE_ARG4) 0);
6083
6084 if (errno == 0)
6085 {
6086 /* Both text and data offsets produced at compile-time (and so
6087 used by gdb) are relative to the beginning of the program,
6088 with the data segment immediately following the text segment.
6089 However, the actual runtime layout in memory may put the data
6090 somewhere else, so when we send gdb a data base-address, we
6091 use the real data base address and subtract the compile-time
6092 data base-address from it (which is just the length of the
6093 text segment). BSS immediately follows data in both
6094 cases. */
6095 *text_p = text;
6096 *data_p = data - (text_end - text);
6097
6098 return 1;
6099 }
6100 return 0;
6101}
6102#endif
6103
6104static int
6105linux_qxfer_osdata (const char *annex,
6106 unsigned char *readbuf, unsigned const char *writebuf,
6107 CORE_ADDR offset, int len)
6108{
6109 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6110}
6111
6112/* Convert a native/host siginfo object, into/from the siginfo in the
6113 layout of the inferiors' architecture. */
6114
6115static void
6116siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6117{
6118 int done = 0;
6119
6120 if (the_low_target.siginfo_fixup != NULL)
6121 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6122
6123 /* If there was no callback, or the callback didn't do anything,
6124 then just do a straight memcpy. */
6125 if (!done)
6126 {
6127 if (direction == 1)
6128 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6129 else
6130 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6131 }
6132}
6133
6134static int
6135linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6136 unsigned const char *writebuf, CORE_ADDR offset, int len)
6137{
6138 int pid;
6139 siginfo_t siginfo;
6140 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6141
6142 if (current_thread == NULL)
6143 return -1;
6144
6145 pid = lwpid_of (current_thread);
6146
6147 if (debug_threads)
6148 debug_printf ("%s siginfo for lwp %d.\n",
6149 readbuf != NULL ? "Reading" : "Writing",
6150 pid);
6151
6152 if (offset >= sizeof (siginfo))
6153 return -1;
6154
6155 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6156 return -1;
6157
6158 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6159 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6160 inferior with a 64-bit GDBSERVER should look the same as debugging it
6161 with a 32-bit GDBSERVER, we need to convert it. */
6162 siginfo_fixup (&siginfo, inf_siginfo, 0);
6163
6164 if (offset + len > sizeof (siginfo))
6165 len = sizeof (siginfo) - offset;
6166
6167 if (readbuf != NULL)
6168 memcpy (readbuf, inf_siginfo + offset, len);
6169 else
6170 {
6171 memcpy (inf_siginfo + offset, writebuf, len);
6172
6173 /* Convert back to ptrace layout before flushing it out. */
6174 siginfo_fixup (&siginfo, inf_siginfo, 1);
6175
6176 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6177 return -1;
6178 }
6179
6180 return len;
6181}
6182
6183/* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6184 so we notice when children change state; as the handler for the
6185 sigsuspend in my_waitpid. */
6186
6187static void
6188sigchld_handler (int signo)
6189{
6190 int old_errno = errno;
6191
6192 if (debug_threads)
6193 {
6194 do
6195 {
6196 /* fprintf is not async-signal-safe, so call write
6197 directly. */
6198 if (write (2, "sigchld_handler\n",
6199 sizeof ("sigchld_handler\n") - 1) < 0)
6200 break; /* just ignore */
6201 } while (0);
6202 }
6203
6204 if (target_is_async_p ())
6205 async_file_mark (); /* trigger a linux_wait */
6206
6207 errno = old_errno;
6208}
6209
6210static int
6211linux_supports_non_stop (void)
6212{
6213 return 1;
6214}
6215
6216static int
6217linux_async (int enable)
6218{
6219 int previous = target_is_async_p ();
6220
6221 if (debug_threads)
6222 debug_printf ("linux_async (%d), previous=%d\n",
6223 enable, previous);
6224
6225 if (previous != enable)
6226 {
6227 sigset_t mask;
6228 sigemptyset (&mask);
6229 sigaddset (&mask, SIGCHLD);
6230
6231 sigprocmask (SIG_BLOCK, &mask, NULL);
6232
6233 if (enable)
6234 {
6235 if (pipe (linux_event_pipe) == -1)
6236 {
6237 linux_event_pipe[0] = -1;
6238 linux_event_pipe[1] = -1;
6239 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6240
6241 warning ("creating event pipe failed.");
6242 return previous;
6243 }
6244
6245 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6246 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6247
6248 /* Register the event loop handler. */
6249 add_file_handler (linux_event_pipe[0],
6250 handle_target_event, NULL);
6251
6252 /* Always trigger a linux_wait. */
6253 async_file_mark ();
6254 }
6255 else
6256 {
6257 delete_file_handler (linux_event_pipe[0]);
6258
6259 close (linux_event_pipe[0]);
6260 close (linux_event_pipe[1]);
6261 linux_event_pipe[0] = -1;
6262 linux_event_pipe[1] = -1;
6263 }
6264
6265 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6266 }
6267
6268 return previous;
6269}
6270
6271static int
6272linux_start_non_stop (int nonstop)
6273{
6274 /* Register or unregister from event-loop accordingly. */
6275 linux_async (nonstop);
6276
6277 if (target_is_async_p () != (nonstop != 0))
6278 return -1;
6279
6280 return 0;
6281}
6282
6283static int
6284linux_supports_multi_process (void)
6285{
6286 return 1;
6287}
6288
6289/* Check if fork events are supported. */
6290
6291static int
6292linux_supports_fork_events (void)
6293{
6294 return linux_supports_tracefork ();
6295}
6296
6297/* Check if vfork events are supported. */
6298
6299static int
6300linux_supports_vfork_events (void)
6301{
6302 return linux_supports_tracefork ();
6303}
6304
6305/* Check if exec events are supported. */
6306
6307static int
6308linux_supports_exec_events (void)
6309{
6310 return linux_supports_traceexec ();
6311}
6312
6313/* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6314 ptrace flags for all inferiors. This is in case the new GDB connection
6315 doesn't support the same set of events that the previous one did. */
6316
6317static void
6318linux_handle_new_gdb_connection (void)
6319{
6320 /* Request that all the lwps reset their ptrace options. */
6321 for_each_thread ([] (thread_info *thread)
6322 {
6323 struct lwp_info *lwp = get_thread_lwp (thread);
6324
6325 if (!lwp->stopped)
6326 {
6327 /* Stop the lwp so we can modify its ptrace options. */
6328 lwp->must_set_ptrace_flags = 1;
6329 linux_stop_lwp (lwp);
6330 }
6331 else
6332 {
6333 /* Already stopped; go ahead and set the ptrace options. */
6334 struct process_info *proc = find_process_pid (pid_of (thread));
6335 int options = linux_low_ptrace_options (proc->attached);
6336
6337 linux_enable_event_reporting (lwpid_of (thread), options);
6338 lwp->must_set_ptrace_flags = 0;
6339 }
6340 });
6341}
6342
6343static int
6344linux_supports_disable_randomization (void)
6345{
6346#ifdef HAVE_PERSONALITY
6347 return 1;
6348#else
6349 return 0;
6350#endif
6351}
6352
6353static int
6354linux_supports_agent (void)
6355{
6356 return 1;
6357}
6358
6359static int
6360linux_supports_range_stepping (void)
6361{
6362 if (can_software_single_step ())
6363 return 1;
6364 if (*the_low_target.supports_range_stepping == NULL)
6365 return 0;
6366
6367 return (*the_low_target.supports_range_stepping) ();
6368}
6369
6370/* Enumerate spufs IDs for process PID. */
6371static int
6372spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6373{
6374 int pos = 0;
6375 int written = 0;
6376 char path[128];
6377 DIR *dir;
6378 struct dirent *entry;
6379
6380 sprintf (path, "/proc/%ld/fd", pid);
6381 dir = opendir (path);
6382 if (!dir)
6383 return -1;
6384
6385 rewinddir (dir);
6386 while ((entry = readdir (dir)) != NULL)
6387 {
6388 struct stat st;
6389 struct statfs stfs;
6390 int fd;
6391
6392 fd = atoi (entry->d_name);
6393 if (!fd)
6394 continue;
6395
6396 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6397 if (stat (path, &st) != 0)
6398 continue;
6399 if (!S_ISDIR (st.st_mode))
6400 continue;
6401
6402 if (statfs (path, &stfs) != 0)
6403 continue;
6404 if (stfs.f_type != SPUFS_MAGIC)
6405 continue;
6406
6407 if (pos >= offset && pos + 4 <= offset + len)
6408 {
6409 *(unsigned int *)(buf + pos - offset) = fd;
6410 written += 4;
6411 }
6412 pos += 4;
6413 }
6414
6415 closedir (dir);
6416 return written;
6417}
6418
6419/* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6420 object type, using the /proc file system. */
6421static int
6422linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6423 unsigned const char *writebuf,
6424 CORE_ADDR offset, int len)
6425{
6426 long pid = lwpid_of (current_thread);
6427 char buf[128];
6428 int fd = 0;
6429 int ret = 0;
6430
6431 if (!writebuf && !readbuf)
6432 return -1;
6433
6434 if (!*annex)
6435 {
6436 if (!readbuf)
6437 return -1;
6438 else
6439 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6440 }
6441
6442 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6443 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6444 if (fd <= 0)
6445 return -1;
6446
6447 if (offset != 0
6448 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6449 {
6450 close (fd);
6451 return 0;
6452 }
6453
6454 if (writebuf)
6455 ret = write (fd, writebuf, (size_t) len);
6456 else
6457 ret = read (fd, readbuf, (size_t) len);
6458
6459 close (fd);
6460 return ret;
6461}
6462
6463#if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6464struct target_loadseg
6465{
6466 /* Core address to which the segment is mapped. */
6467 Elf32_Addr addr;
6468 /* VMA recorded in the program header. */
6469 Elf32_Addr p_vaddr;
6470 /* Size of this segment in memory. */
6471 Elf32_Word p_memsz;
6472};
6473
6474# if defined PT_GETDSBT
6475struct target_loadmap
6476{
6477 /* Protocol version number, must be zero. */
6478 Elf32_Word version;
6479 /* Pointer to the DSBT table, its size, and the DSBT index. */
6480 unsigned *dsbt_table;
6481 unsigned dsbt_size, dsbt_index;
6482 /* Number of segments in this map. */
6483 Elf32_Word nsegs;
6484 /* The actual memory map. */
6485 struct target_loadseg segs[/*nsegs*/];
6486};
6487# define LINUX_LOADMAP PT_GETDSBT
6488# define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6489# define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6490# else
6491struct target_loadmap
6492{
6493 /* Protocol version number, must be zero. */
6494 Elf32_Half version;
6495 /* Number of segments in this map. */
6496 Elf32_Half nsegs;
6497 /* The actual memory map. */
6498 struct target_loadseg segs[/*nsegs*/];
6499};
6500# define LINUX_LOADMAP PTRACE_GETFDPIC
6501# define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6502# define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6503# endif
6504
6505static int
6506linux_read_loadmap (const char *annex, CORE_ADDR offset,
6507 unsigned char *myaddr, unsigned int len)
6508{
6509 int pid = lwpid_of (current_thread);
6510 int addr = -1;
6511 struct target_loadmap *data = NULL;
6512 unsigned int actual_length, copy_length;
6513
6514 if (strcmp (annex, "exec") == 0)
6515 addr = (int) LINUX_LOADMAP_EXEC;
6516 else if (strcmp (annex, "interp") == 0)
6517 addr = (int) LINUX_LOADMAP_INTERP;
6518 else
6519 return -1;
6520
6521 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6522 return -1;
6523
6524 if (data == NULL)
6525 return -1;
6526
6527 actual_length = sizeof (struct target_loadmap)
6528 + sizeof (struct target_loadseg) * data->nsegs;
6529
6530 if (offset < 0 || offset > actual_length)
6531 return -1;
6532
6533 copy_length = actual_length - offset < len ? actual_length - offset : len;
6534 memcpy (myaddr, (char *) data + offset, copy_length);
6535 return copy_length;
6536}
6537#else
6538# define linux_read_loadmap NULL
6539#endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6540
6541static void
6542linux_process_qsupported (char **features, int count)
6543{
6544 if (the_low_target.process_qsupported != NULL)
6545 the_low_target.process_qsupported (features, count);
6546}
6547
6548static int
6549linux_supports_catch_syscall (void)
6550{
6551 return (the_low_target.get_syscall_trapinfo != NULL
6552 && linux_supports_tracesysgood ());
6553}
6554
6555static int
6556linux_get_ipa_tdesc_idx (void)
6557{
6558 if (the_low_target.get_ipa_tdesc_idx == NULL)
6559 return 0;
6560
6561 return (*the_low_target.get_ipa_tdesc_idx) ();
6562}
6563
6564static int
6565linux_supports_tracepoints (void)
6566{
6567 if (*the_low_target.supports_tracepoints == NULL)
6568 return 0;
6569
6570 return (*the_low_target.supports_tracepoints) ();
6571}
6572
6573static CORE_ADDR
6574linux_read_pc (struct regcache *regcache)
6575{
6576 if (the_low_target.get_pc == NULL)
6577 return 0;
6578
6579 return (*the_low_target.get_pc) (regcache);
6580}
6581
6582static void
6583linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6584{
6585 gdb_assert (the_low_target.set_pc != NULL);
6586
6587 (*the_low_target.set_pc) (regcache, pc);
6588}
6589
6590static int
6591linux_thread_stopped (struct thread_info *thread)
6592{
6593 return get_thread_lwp (thread)->stopped;
6594}
6595
6596/* This exposes stop-all-threads functionality to other modules. */
6597
6598static void
6599linux_pause_all (int freeze)
6600{
6601 stop_all_lwps (freeze, NULL);
6602}
6603
6604/* This exposes unstop-all-threads functionality to other gdbserver
6605 modules. */
6606
6607static void
6608linux_unpause_all (int unfreeze)
6609{
6610 unstop_all_lwps (unfreeze, NULL);
6611}
6612
6613static int
6614linux_prepare_to_access_memory (void)
6615{
6616 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6617 running LWP. */
6618 if (non_stop)
6619 linux_pause_all (1);
6620 return 0;
6621}
6622
6623static void
6624linux_done_accessing_memory (void)
6625{
6626 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6627 running LWP. */
6628 if (non_stop)
6629 linux_unpause_all (1);
6630}
6631
6632static int
6633linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6634 CORE_ADDR collector,
6635 CORE_ADDR lockaddr,
6636 ULONGEST orig_size,
6637 CORE_ADDR *jump_entry,
6638 CORE_ADDR *trampoline,
6639 ULONGEST *trampoline_size,
6640 unsigned char *jjump_pad_insn,
6641 ULONGEST *jjump_pad_insn_size,
6642 CORE_ADDR *adjusted_insn_addr,
6643 CORE_ADDR *adjusted_insn_addr_end,
6644 char *err)
6645{
6646 return (*the_low_target.install_fast_tracepoint_jump_pad)
6647 (tpoint, tpaddr, collector, lockaddr, orig_size,
6648 jump_entry, trampoline, trampoline_size,
6649 jjump_pad_insn, jjump_pad_insn_size,
6650 adjusted_insn_addr, adjusted_insn_addr_end,
6651 err);
6652}
6653
6654static struct emit_ops *
6655linux_emit_ops (void)
6656{
6657 if (the_low_target.emit_ops != NULL)
6658 return (*the_low_target.emit_ops) ();
6659 else
6660 return NULL;
6661}
6662
6663static int
6664linux_get_min_fast_tracepoint_insn_len (void)
6665{
6666 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6667}
6668
6669/* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6670
6671static int
6672get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6673 CORE_ADDR *phdr_memaddr, int *num_phdr)
6674{
6675 char filename[PATH_MAX];
6676 int fd;
6677 const int auxv_size = is_elf64
6678 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6679 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6680
6681 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6682
6683 fd = open (filename, O_RDONLY);
6684 if (fd < 0)
6685 return 1;
6686
6687 *phdr_memaddr = 0;
6688 *num_phdr = 0;
6689 while (read (fd, buf, auxv_size) == auxv_size
6690 && (*phdr_memaddr == 0 || *num_phdr == 0))
6691 {
6692 if (is_elf64)
6693 {
6694 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6695
6696 switch (aux->a_type)
6697 {
6698 case AT_PHDR:
6699 *phdr_memaddr = aux->a_un.a_val;
6700 break;
6701 case AT_PHNUM:
6702 *num_phdr = aux->a_un.a_val;
6703 break;
6704 }
6705 }
6706 else
6707 {
6708 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6709
6710 switch (aux->a_type)
6711 {
6712 case AT_PHDR:
6713 *phdr_memaddr = aux->a_un.a_val;
6714 break;
6715 case AT_PHNUM:
6716 *num_phdr = aux->a_un.a_val;
6717 break;
6718 }
6719 }
6720 }
6721
6722 close (fd);
6723
6724 if (*phdr_memaddr == 0 || *num_phdr == 0)
6725 {
6726 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6727 "phdr_memaddr = %ld, phdr_num = %d",
6728 (long) *phdr_memaddr, *num_phdr);
6729 return 2;
6730 }
6731
6732 return 0;
6733}
6734
6735/* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6736
6737static CORE_ADDR
6738get_dynamic (const int pid, const int is_elf64)
6739{
6740 CORE_ADDR phdr_memaddr, relocation;
6741 int num_phdr, i;
6742 unsigned char *phdr_buf;
6743 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6744
6745 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6746 return 0;
6747
6748 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6749 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6750
6751 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6752 return 0;
6753
6754 /* Compute relocation: it is expected to be 0 for "regular" executables,
6755 non-zero for PIE ones. */
6756 relocation = -1;
6757 for (i = 0; relocation == -1 && i < num_phdr; i++)
6758 if (is_elf64)
6759 {
6760 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6761
6762 if (p->p_type == PT_PHDR)
6763 relocation = phdr_memaddr - p->p_vaddr;
6764 }
6765 else
6766 {
6767 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6768
6769 if (p->p_type == PT_PHDR)
6770 relocation = phdr_memaddr - p->p_vaddr;
6771 }
6772
6773 if (relocation == -1)
6774 {
6775 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6776 any real world executables, including PIE executables, have always
6777 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6778 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6779 or present DT_DEBUG anyway (fpc binaries are statically linked).
6780
6781 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6782
6783 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6784
6785 return 0;
6786 }
6787
6788 for (i = 0; i < num_phdr; i++)
6789 {
6790 if (is_elf64)
6791 {
6792 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6793
6794 if (p->p_type == PT_DYNAMIC)
6795 return p->p_vaddr + relocation;
6796 }
6797 else
6798 {
6799 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6800
6801 if (p->p_type == PT_DYNAMIC)
6802 return p->p_vaddr + relocation;
6803 }
6804 }
6805
6806 return 0;
6807}
6808
6809/* Return &_r_debug in the inferior, or -1 if not present. Return value
6810 can be 0 if the inferior does not yet have the library list initialized.
6811 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6812 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6813
6814static CORE_ADDR
6815get_r_debug (const int pid, const int is_elf64)
6816{
6817 CORE_ADDR dynamic_memaddr;
6818 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6819 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6820 CORE_ADDR map = -1;
6821
6822 dynamic_memaddr = get_dynamic (pid, is_elf64);
6823 if (dynamic_memaddr == 0)
6824 return map;
6825
6826 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6827 {
6828 if (is_elf64)
6829 {
6830 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6831#if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6832 union
6833 {
6834 Elf64_Xword map;
6835 unsigned char buf[sizeof (Elf64_Xword)];
6836 }
6837 rld_map;
6838#endif
6839#ifdef DT_MIPS_RLD_MAP
6840 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6841 {
6842 if (linux_read_memory (dyn->d_un.d_val,
6843 rld_map.buf, sizeof (rld_map.buf)) == 0)
6844 return rld_map.map;
6845 else
6846 break;
6847 }
6848#endif /* DT_MIPS_RLD_MAP */
6849#ifdef DT_MIPS_RLD_MAP_REL
6850 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6851 {
6852 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6853 rld_map.buf, sizeof (rld_map.buf)) == 0)
6854 return rld_map.map;
6855 else
6856 break;
6857 }
6858#endif /* DT_MIPS_RLD_MAP_REL */
6859
6860 if (dyn->d_tag == DT_DEBUG && map == -1)
6861 map = dyn->d_un.d_val;
6862
6863 if (dyn->d_tag == DT_NULL)
6864 break;
6865 }
6866 else
6867 {
6868 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6869#if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6870 union
6871 {
6872 Elf32_Word map;
6873 unsigned char buf[sizeof (Elf32_Word)];
6874 }
6875 rld_map;
6876#endif
6877#ifdef DT_MIPS_RLD_MAP
6878 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6879 {
6880 if (linux_read_memory (dyn->d_un.d_val,
6881 rld_map.buf, sizeof (rld_map.buf)) == 0)
6882 return rld_map.map;
6883 else
6884 break;
6885 }
6886#endif /* DT_MIPS_RLD_MAP */
6887#ifdef DT_MIPS_RLD_MAP_REL
6888 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6889 {
6890 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6891 rld_map.buf, sizeof (rld_map.buf)) == 0)
6892 return rld_map.map;
6893 else
6894 break;
6895 }
6896#endif /* DT_MIPS_RLD_MAP_REL */
6897
6898 if (dyn->d_tag == DT_DEBUG && map == -1)
6899 map = dyn->d_un.d_val;
6900
6901 if (dyn->d_tag == DT_NULL)
6902 break;
6903 }
6904
6905 dynamic_memaddr += dyn_size;
6906 }
6907
6908 return map;
6909}
6910
6911/* Read one pointer from MEMADDR in the inferior. */
6912
6913static int
6914read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6915{
6916 int ret;
6917
6918 /* Go through a union so this works on either big or little endian
6919 hosts, when the inferior's pointer size is smaller than the size
6920 of CORE_ADDR. It is assumed the inferior's endianness is the
6921 same of the superior's. */
6922 union
6923 {
6924 CORE_ADDR core_addr;
6925 unsigned int ui;
6926 unsigned char uc;
6927 } addr;
6928
6929 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6930 if (ret == 0)
6931 {
6932 if (ptr_size == sizeof (CORE_ADDR))
6933 *ptr = addr.core_addr;
6934 else if (ptr_size == sizeof (unsigned int))
6935 *ptr = addr.ui;
6936 else
6937 gdb_assert_not_reached ("unhandled pointer size");
6938 }
6939 return ret;
6940}
6941
6942struct link_map_offsets
6943 {
6944 /* Offset and size of r_debug.r_version. */
6945 int r_version_offset;
6946
6947 /* Offset and size of r_debug.r_map. */
6948 int r_map_offset;
6949
6950 /* Offset to l_addr field in struct link_map. */
6951 int l_addr_offset;
6952
6953 /* Offset to l_name field in struct link_map. */
6954 int l_name_offset;
6955
6956 /* Offset to l_ld field in struct link_map. */
6957 int l_ld_offset;
6958
6959 /* Offset to l_next field in struct link_map. */
6960 int l_next_offset;
6961
6962 /* Offset to l_prev field in struct link_map. */
6963 int l_prev_offset;
6964 };
6965
6966/* Construct qXfer:libraries-svr4:read reply. */
6967
6968static int
6969linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6970 unsigned const char *writebuf,
6971 CORE_ADDR offset, int len)
6972{
6973 char *document;
6974 unsigned document_len;
6975 struct process_info_private *const priv = current_process ()->priv;
6976 char filename[PATH_MAX];
6977 int pid, is_elf64;
6978
6979 static const struct link_map_offsets lmo_32bit_offsets =
6980 {
6981 0, /* r_version offset. */
6982 4, /* r_debug.r_map offset. */
6983 0, /* l_addr offset in link_map. */
6984 4, /* l_name offset in link_map. */
6985 8, /* l_ld offset in link_map. */
6986 12, /* l_next offset in link_map. */
6987 16 /* l_prev offset in link_map. */
6988 };
6989
6990 static const struct link_map_offsets lmo_64bit_offsets =
6991 {
6992 0, /* r_version offset. */
6993 8, /* r_debug.r_map offset. */
6994 0, /* l_addr offset in link_map. */
6995 8, /* l_name offset in link_map. */
6996 16, /* l_ld offset in link_map. */
6997 24, /* l_next offset in link_map. */
6998 32 /* l_prev offset in link_map. */
6999 };
7000 const struct link_map_offsets *lmo;
7001 unsigned int machine;
7002 int ptr_size;
7003 CORE_ADDR lm_addr = 0, lm_prev = 0;
7004 int allocated = 1024;
7005 char *p;
7006 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7007 int header_done = 0;
7008
7009 if (writebuf != NULL)
7010 return -2;
7011 if (readbuf == NULL)
7012 return -1;
7013
7014 pid = lwpid_of (current_thread);
7015 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7016 is_elf64 = elf_64_file_p (filename, &machine);
7017 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7018 ptr_size = is_elf64 ? 8 : 4;
7019
7020 while (annex[0] != '\0')
7021 {
7022 const char *sep;
7023 CORE_ADDR *addrp;
7024 int len;
7025
7026 sep = strchr (annex, '=');
7027 if (sep == NULL)
7028 break;
7029
7030 len = sep - annex;
7031 if (len == 5 && startswith (annex, "start"))
7032 addrp = &lm_addr;
7033 else if (len == 4 && startswith (annex, "prev"))
7034 addrp = &lm_prev;
7035 else
7036 {
7037 annex = strchr (sep, ';');
7038 if (annex == NULL)
7039 break;
7040 annex++;
7041 continue;
7042 }
7043
7044 annex = decode_address_to_semicolon (addrp, sep + 1);
7045 }
7046
7047 if (lm_addr == 0)
7048 {
7049 int r_version = 0;
7050
7051 if (priv->r_debug == 0)
7052 priv->r_debug = get_r_debug (pid, is_elf64);
7053
7054 /* We failed to find DT_DEBUG. Such situation will not change
7055 for this inferior - do not retry it. Report it to GDB as
7056 E01, see for the reasons at the GDB solib-svr4.c side. */
7057 if (priv->r_debug == (CORE_ADDR) -1)
7058 return -1;
7059
7060 if (priv->r_debug != 0)
7061 {
7062 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7063 (unsigned char *) &r_version,
7064 sizeof (r_version)) != 0
7065 || r_version != 1)
7066 {
7067 warning ("unexpected r_debug version %d", r_version);
7068 }
7069 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7070 &lm_addr, ptr_size) != 0)
7071 {
7072 warning ("unable to read r_map from 0x%lx",
7073 (long) priv->r_debug + lmo->r_map_offset);
7074 }
7075 }
7076 }
7077
7078 document = (char *) xmalloc (allocated);
7079 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7080 p = document + strlen (document);
7081
7082 while (lm_addr
7083 && read_one_ptr (lm_addr + lmo->l_name_offset,
7084 &l_name, ptr_size) == 0
7085 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7086 &l_addr, ptr_size) == 0
7087 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7088 &l_ld, ptr_size) == 0
7089 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7090 &l_prev, ptr_size) == 0
7091 && read_one_ptr (lm_addr + lmo->l_next_offset,
7092 &l_next, ptr_size) == 0)
7093 {
7094 unsigned char libname[PATH_MAX];
7095
7096 if (lm_prev != l_prev)
7097 {
7098 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7099 (long) lm_prev, (long) l_prev);
7100 break;
7101 }
7102
7103 /* Ignore the first entry even if it has valid name as the first entry
7104 corresponds to the main executable. The first entry should not be
7105 skipped if the dynamic loader was loaded late by a static executable
7106 (see solib-svr4.c parameter ignore_first). But in such case the main
7107 executable does not have PT_DYNAMIC present and this function already
7108 exited above due to failed get_r_debug. */
7109 if (lm_prev == 0)
7110 {
7111 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7112 p = p + strlen (p);
7113 }
7114 else
7115 {
7116 /* Not checking for error because reading may stop before
7117 we've got PATH_MAX worth of characters. */
7118 libname[0] = '\0';
7119 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7120 libname[sizeof (libname) - 1] = '\0';
7121 if (libname[0] != '\0')
7122 {
7123 /* 6x the size for xml_escape_text below. */
7124 size_t len = 6 * strlen ((char *) libname);
7125
7126 if (!header_done)
7127 {
7128 /* Terminate `<library-list-svr4'. */
7129 *p++ = '>';
7130 header_done = 1;
7131 }
7132
7133 while (allocated < p - document + len + 200)
7134 {
7135 /* Expand to guarantee sufficient storage. */
7136 uintptr_t document_len = p - document;
7137
7138 document = (char *) xrealloc (document, 2 * allocated);
7139 allocated *= 2;
7140 p = document + document_len;
7141 }
7142
7143 std::string name = xml_escape_text ((char *) libname);
7144 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7145 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7146 name.c_str (), (unsigned long) lm_addr,
7147 (unsigned long) l_addr, (unsigned long) l_ld);
7148 }
7149 }
7150
7151 lm_prev = lm_addr;
7152 lm_addr = l_next;
7153 }
7154
7155 if (!header_done)
7156 {
7157 /* Empty list; terminate `<library-list-svr4'. */
7158 strcpy (p, "/>");
7159 }
7160 else
7161 strcpy (p, "</library-list-svr4>");
7162
7163 document_len = strlen (document);
7164 if (offset < document_len)
7165 document_len -= offset;
7166 else
7167 document_len = 0;
7168 if (len > document_len)
7169 len = document_len;
7170
7171 memcpy (readbuf, document + offset, len);
7172 xfree (document);
7173
7174 return len;
7175}
7176
7177#ifdef HAVE_LINUX_BTRACE
7178
7179/* See to_disable_btrace target method. */
7180
7181static int
7182linux_low_disable_btrace (struct btrace_target_info *tinfo)
7183{
7184 enum btrace_error err;
7185
7186 err = linux_disable_btrace (tinfo);
7187 return (err == BTRACE_ERR_NONE ? 0 : -1);
7188}
7189
7190/* Encode an Intel Processor Trace configuration. */
7191
7192static void
7193linux_low_encode_pt_config (struct buffer *buffer,
7194 const struct btrace_data_pt_config *config)
7195{
7196 buffer_grow_str (buffer, "<pt-config>\n");
7197
7198 switch (config->cpu.vendor)
7199 {
7200 case CV_INTEL:
7201 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7202 "model=\"%u\" stepping=\"%u\"/>\n",
7203 config->cpu.family, config->cpu.model,
7204 config->cpu.stepping);
7205 break;
7206
7207 default:
7208 break;
7209 }
7210
7211 buffer_grow_str (buffer, "</pt-config>\n");
7212}
7213
7214/* Encode a raw buffer. */
7215
7216static void
7217linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7218 unsigned int size)
7219{
7220 if (size == 0)
7221 return;
7222
7223 /* We use hex encoding - see common/rsp-low.h. */
7224 buffer_grow_str (buffer, "<raw>\n");
7225
7226 while (size-- > 0)
7227 {
7228 char elem[2];
7229
7230 elem[0] = tohex ((*data >> 4) & 0xf);
7231 elem[1] = tohex (*data++ & 0xf);
7232
7233 buffer_grow (buffer, elem, 2);
7234 }
7235
7236 buffer_grow_str (buffer, "</raw>\n");
7237}
7238
7239/* See to_read_btrace target method. */
7240
7241static int
7242linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7243 enum btrace_read_type type)
7244{
7245 struct btrace_data btrace;
7246 struct btrace_block *block;
7247 enum btrace_error err;
7248 int i;
7249
7250 btrace_data_init (&btrace);
7251
7252 err = linux_read_btrace (&btrace, tinfo, type);
7253 if (err != BTRACE_ERR_NONE)
7254 {
7255 if (err == BTRACE_ERR_OVERFLOW)
7256 buffer_grow_str0 (buffer, "E.Overflow.");
7257 else
7258 buffer_grow_str0 (buffer, "E.Generic Error.");
7259
7260 goto err;
7261 }
7262
7263 switch (btrace.format)
7264 {
7265 case BTRACE_FORMAT_NONE:
7266 buffer_grow_str0 (buffer, "E.No Trace.");
7267 goto err;
7268
7269 case BTRACE_FORMAT_BTS:
7270 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7271 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7272
7273 for (i = 0;
7274 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7275 i++)
7276 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7277 paddress (block->begin), paddress (block->end));
7278
7279 buffer_grow_str0 (buffer, "</btrace>\n");
7280 break;
7281
7282 case BTRACE_FORMAT_PT:
7283 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7284 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7285 buffer_grow_str (buffer, "<pt>\n");
7286
7287 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7288
7289 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7290 btrace.variant.pt.size);
7291
7292 buffer_grow_str (buffer, "</pt>\n");
7293 buffer_grow_str0 (buffer, "</btrace>\n");
7294 break;
7295
7296 default:
7297 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7298 goto err;
7299 }
7300
7301 btrace_data_fini (&btrace);
7302 return 0;
7303
7304err:
7305 btrace_data_fini (&btrace);
7306 return -1;
7307}
7308
7309/* See to_btrace_conf target method. */
7310
7311static int
7312linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7313 struct buffer *buffer)
7314{
7315 const struct btrace_config *conf;
7316
7317 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7318 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7319
7320 conf = linux_btrace_conf (tinfo);
7321 if (conf != NULL)
7322 {
7323 switch (conf->format)
7324 {
7325 case BTRACE_FORMAT_NONE:
7326 break;
7327
7328 case BTRACE_FORMAT_BTS:
7329 buffer_xml_printf (buffer, "<bts");
7330 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7331 buffer_xml_printf (buffer, " />\n");
7332 break;
7333
7334 case BTRACE_FORMAT_PT:
7335 buffer_xml_printf (buffer, "<pt");
7336 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7337 buffer_xml_printf (buffer, "/>\n");
7338 break;
7339 }
7340 }
7341
7342 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7343 return 0;
7344}
7345#endif /* HAVE_LINUX_BTRACE */
7346
7347/* See nat/linux-nat.h. */
7348
7349ptid_t
7350current_lwp_ptid (void)
7351{
7352 return ptid_of (current_thread);
7353}
7354
7355/* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7356
7357static int
7358linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7359{
7360 if (the_low_target.breakpoint_kind_from_pc != NULL)
7361 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7362 else
7363 return default_breakpoint_kind_from_pc (pcptr);
7364}
7365
7366/* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7367
7368static const gdb_byte *
7369linux_sw_breakpoint_from_kind (int kind, int *size)
7370{
7371 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7372
7373 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7374}
7375
7376/* Implementation of the target_ops method
7377 "breakpoint_kind_from_current_state". */
7378
7379static int
7380linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7381{
7382 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7383 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7384 else
7385 return linux_breakpoint_kind_from_pc (pcptr);
7386}
7387
7388/* Default implementation of linux_target_ops method "set_pc" for
7389 32-bit pc register which is literally named "pc". */
7390
7391void
7392linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7393{
7394 uint32_t newpc = pc;
7395
7396 supply_register_by_name (regcache, "pc", &newpc);
7397}
7398
7399/* Default implementation of linux_target_ops method "get_pc" for
7400 32-bit pc register which is literally named "pc". */
7401
7402CORE_ADDR
7403linux_get_pc_32bit (struct regcache *regcache)
7404{
7405 uint32_t pc;
7406
7407 collect_register_by_name (regcache, "pc", &pc);
7408 if (debug_threads)
7409 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7410 return pc;
7411}
7412
7413/* Default implementation of linux_target_ops method "set_pc" for
7414 64-bit pc register which is literally named "pc". */
7415
7416void
7417linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7418{
7419 uint64_t newpc = pc;
7420
7421 supply_register_by_name (regcache, "pc", &newpc);
7422}
7423
7424/* Default implementation of linux_target_ops method "get_pc" for
7425 64-bit pc register which is literally named "pc". */
7426
7427CORE_ADDR
7428linux_get_pc_64bit (struct regcache *regcache)
7429{
7430 uint64_t pc;
7431
7432 collect_register_by_name (regcache, "pc", &pc);
7433 if (debug_threads)
7434 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7435 return pc;
7436}
7437
7438
7439static struct target_ops linux_target_ops = {
7440 linux_create_inferior,
7441 linux_post_create_inferior,
7442 linux_attach,
7443 linux_kill,
7444 linux_detach,
7445 linux_mourn,
7446 linux_join,
7447 linux_thread_alive,
7448 linux_resume,
7449 linux_wait,
7450 linux_fetch_registers,
7451 linux_store_registers,
7452 linux_prepare_to_access_memory,
7453 linux_done_accessing_memory,
7454 linux_read_memory,
7455 linux_write_memory,
7456 linux_look_up_symbols,
7457 linux_request_interrupt,
7458 linux_read_auxv,
7459 linux_supports_z_point_type,
7460 linux_insert_point,
7461 linux_remove_point,
7462 linux_stopped_by_sw_breakpoint,
7463 linux_supports_stopped_by_sw_breakpoint,
7464 linux_stopped_by_hw_breakpoint,
7465 linux_supports_stopped_by_hw_breakpoint,
7466 linux_supports_hardware_single_step,
7467 linux_stopped_by_watchpoint,
7468 linux_stopped_data_address,
7469#if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7470 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7471 && defined(PT_TEXT_END_ADDR)
7472 linux_read_offsets,
7473#else
7474 NULL,
7475#endif
7476#ifdef USE_THREAD_DB
7477 thread_db_get_tls_address,
7478#else
7479 NULL,
7480#endif
7481 linux_qxfer_spu,
7482 hostio_last_error_from_errno,
7483 linux_qxfer_osdata,
7484 linux_xfer_siginfo,
7485 linux_supports_non_stop,
7486 linux_async,
7487 linux_start_non_stop,
7488 linux_supports_multi_process,
7489 linux_supports_fork_events,
7490 linux_supports_vfork_events,
7491 linux_supports_exec_events,
7492 linux_handle_new_gdb_connection,
7493#ifdef USE_THREAD_DB
7494 thread_db_handle_monitor_command,
7495#else
7496 NULL,
7497#endif
7498 linux_common_core_of_thread,
7499 linux_read_loadmap,
7500 linux_process_qsupported,
7501 linux_supports_tracepoints,
7502 linux_read_pc,
7503 linux_write_pc,
7504 linux_thread_stopped,
7505 NULL,
7506 linux_pause_all,
7507 linux_unpause_all,
7508 linux_stabilize_threads,
7509 linux_install_fast_tracepoint_jump_pad,
7510 linux_emit_ops,
7511 linux_supports_disable_randomization,
7512 linux_get_min_fast_tracepoint_insn_len,
7513 linux_qxfer_libraries_svr4,
7514 linux_supports_agent,
7515#ifdef HAVE_LINUX_BTRACE
7516 linux_supports_btrace,
7517 linux_enable_btrace,
7518 linux_low_disable_btrace,
7519 linux_low_read_btrace,
7520 linux_low_btrace_conf,
7521#else
7522 NULL,
7523 NULL,
7524 NULL,
7525 NULL,
7526 NULL,
7527#endif
7528 linux_supports_range_stepping,
7529 linux_proc_pid_to_exec_file,
7530 linux_mntns_open_cloexec,
7531 linux_mntns_unlink,
7532 linux_mntns_readlink,
7533 linux_breakpoint_kind_from_pc,
7534 linux_sw_breakpoint_from_kind,
7535 linux_proc_tid_get_name,
7536 linux_breakpoint_kind_from_current_state,
7537 linux_supports_software_single_step,
7538 linux_supports_catch_syscall,
7539 linux_get_ipa_tdesc_idx,
7540#if USE_THREAD_DB
7541 thread_db_thread_handle,
7542#else
7543 NULL,
7544#endif
7545};
7546
7547#ifdef HAVE_LINUX_REGSETS
7548void
7549initialize_regsets_info (struct regsets_info *info)
7550{
7551 for (info->num_regsets = 0;
7552 info->regsets[info->num_regsets].size >= 0;
7553 info->num_regsets++)
7554 ;
7555}
7556#endif
7557
7558void
7559initialize_low (void)
7560{
7561 struct sigaction sigchld_action;
7562
7563 memset (&sigchld_action, 0, sizeof (sigchld_action));
7564 set_target_ops (&linux_target_ops);
7565
7566 linux_ptrace_init_warnings ();
7567
7568 sigchld_action.sa_handler = sigchld_handler;
7569 sigemptyset (&sigchld_action.sa_mask);
7570 sigchld_action.sa_flags = SA_RESTART;
7571 sigaction (SIGCHLD, &sigchld_action, NULL);
7572
7573 initialize_low_arch ();
7574
7575 linux_check_ptrace_features ();
7576}
This page took 0.052616 seconds and 4 git commands to generate.