Add myself to gdb MAINTAINERS
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
... / ...
CommitLineData
1/* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19#include "server.h"
20#include "linux-low.h"
21#include "nat/linux-osdata.h"
22#include "agent.h"
23#include "tdesc.h"
24#include "rsp-low.h"
25
26#include "nat/linux-nat.h"
27#include "nat/linux-waitpid.h"
28#include "gdb_wait.h"
29#include "nat/gdb_ptrace.h"
30#include "nat/linux-ptrace.h"
31#include "nat/linux-procfs.h"
32#include "nat/linux-personality.h"
33#include <signal.h>
34#include <sys/ioctl.h>
35#include <fcntl.h>
36#include <unistd.h>
37#include <sys/syscall.h>
38#include <sched.h>
39#include <ctype.h>
40#include <pwd.h>
41#include <sys/types.h>
42#include <dirent.h>
43#include <sys/stat.h>
44#include <sys/vfs.h>
45#include <sys/uio.h>
46#include "filestuff.h"
47#include "tracepoint.h"
48#include "hostio.h"
49#ifndef ELFMAG0
50/* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
51 then ELFMAG0 will have been defined. If it didn't get included by
52 gdb_proc_service.h then including it will likely introduce a duplicate
53 definition of elf_fpregset_t. */
54#include <elf.h>
55#endif
56#include "nat/linux-namespaces.h"
57
58#ifndef SPUFS_MAGIC
59#define SPUFS_MAGIC 0x23c9b64e
60#endif
61
62#ifdef HAVE_PERSONALITY
63# include <sys/personality.h>
64# if !HAVE_DECL_ADDR_NO_RANDOMIZE
65# define ADDR_NO_RANDOMIZE 0x0040000
66# endif
67#endif
68
69#ifndef O_LARGEFILE
70#define O_LARGEFILE 0
71#endif
72
73#ifndef W_STOPCODE
74#define W_STOPCODE(sig) ((sig) << 8 | 0x7f)
75#endif
76
77/* This is the kernel's hard limit. Not to be confused with
78 SIGRTMIN. */
79#ifndef __SIGRTMIN
80#define __SIGRTMIN 32
81#endif
82
83/* Some targets did not define these ptrace constants from the start,
84 so gdbserver defines them locally here. In the future, these may
85 be removed after they are added to asm/ptrace.h. */
86#if !(defined(PT_TEXT_ADDR) \
87 || defined(PT_DATA_ADDR) \
88 || defined(PT_TEXT_END_ADDR))
89#if defined(__mcoldfire__)
90/* These are still undefined in 3.10 kernels. */
91#define PT_TEXT_ADDR 49*4
92#define PT_DATA_ADDR 50*4
93#define PT_TEXT_END_ADDR 51*4
94/* BFIN already defines these since at least 2.6.32 kernels. */
95#elif defined(BFIN)
96#define PT_TEXT_ADDR 220
97#define PT_TEXT_END_ADDR 224
98#define PT_DATA_ADDR 228
99/* These are still undefined in 3.10 kernels. */
100#elif defined(__TMS320C6X__)
101#define PT_TEXT_ADDR (0x10000*4)
102#define PT_DATA_ADDR (0x10004*4)
103#define PT_TEXT_END_ADDR (0x10008*4)
104#endif
105#endif
106
107#ifdef HAVE_LINUX_BTRACE
108# include "nat/linux-btrace.h"
109# include "btrace-common.h"
110#endif
111
112#ifndef HAVE_ELF32_AUXV_T
113/* Copied from glibc's elf.h. */
114typedef struct
115{
116 uint32_t a_type; /* Entry type */
117 union
118 {
119 uint32_t a_val; /* Integer value */
120 /* We use to have pointer elements added here. We cannot do that,
121 though, since it does not work when using 32-bit definitions
122 on 64-bit platforms and vice versa. */
123 } a_un;
124} Elf32_auxv_t;
125#endif
126
127#ifndef HAVE_ELF64_AUXV_T
128/* Copied from glibc's elf.h. */
129typedef struct
130{
131 uint64_t a_type; /* Entry type */
132 union
133 {
134 uint64_t a_val; /* Integer value */
135 /* We use to have pointer elements added here. We cannot do that,
136 though, since it does not work when using 32-bit definitions
137 on 64-bit platforms and vice versa. */
138 } a_un;
139} Elf64_auxv_t;
140#endif
141
142/* Does the current host support PTRACE_GETREGSET? */
143int have_ptrace_getregset = -1;
144
145/* LWP accessors. */
146
147/* See nat/linux-nat.h. */
148
149ptid_t
150ptid_of_lwp (struct lwp_info *lwp)
151{
152 return ptid_of (get_lwp_thread (lwp));
153}
154
155/* See nat/linux-nat.h. */
156
157void
158lwp_set_arch_private_info (struct lwp_info *lwp,
159 struct arch_lwp_info *info)
160{
161 lwp->arch_private = info;
162}
163
164/* See nat/linux-nat.h. */
165
166struct arch_lwp_info *
167lwp_arch_private_info (struct lwp_info *lwp)
168{
169 return lwp->arch_private;
170}
171
172/* See nat/linux-nat.h. */
173
174int
175lwp_is_stopped (struct lwp_info *lwp)
176{
177 return lwp->stopped;
178}
179
180/* See nat/linux-nat.h. */
181
182enum target_stop_reason
183lwp_stop_reason (struct lwp_info *lwp)
184{
185 return lwp->stop_reason;
186}
187
188/* A list of all unknown processes which receive stop signals. Some
189 other process will presumably claim each of these as forked
190 children momentarily. */
191
192struct simple_pid_list
193{
194 /* The process ID. */
195 int pid;
196
197 /* The status as reported by waitpid. */
198 int status;
199
200 /* Next in chain. */
201 struct simple_pid_list *next;
202};
203struct simple_pid_list *stopped_pids;
204
205/* Trivial list manipulation functions to keep track of a list of new
206 stopped processes. */
207
208static void
209add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
210{
211 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
212
213 new_pid->pid = pid;
214 new_pid->status = status;
215 new_pid->next = *listp;
216 *listp = new_pid;
217}
218
219static int
220pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
221{
222 struct simple_pid_list **p;
223
224 for (p = listp; *p != NULL; p = &(*p)->next)
225 if ((*p)->pid == pid)
226 {
227 struct simple_pid_list *next = (*p)->next;
228
229 *statusp = (*p)->status;
230 xfree (*p);
231 *p = next;
232 return 1;
233 }
234 return 0;
235}
236
237enum stopping_threads_kind
238 {
239 /* Not stopping threads presently. */
240 NOT_STOPPING_THREADS,
241
242 /* Stopping threads. */
243 STOPPING_THREADS,
244
245 /* Stopping and suspending threads. */
246 STOPPING_AND_SUSPENDING_THREADS
247 };
248
249/* This is set while stop_all_lwps is in effect. */
250enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
251
252/* FIXME make into a target method? */
253int using_threads = 1;
254
255/* True if we're presently stabilizing threads (moving them out of
256 jump pads). */
257static int stabilizing_threads;
258
259static void linux_resume_one_lwp (struct lwp_info *lwp,
260 int step, int signal, siginfo_t *info);
261static void linux_resume (struct thread_resume *resume_info, size_t n);
262static void stop_all_lwps (int suspend, struct lwp_info *except);
263static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
264static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
265 int *wstat, int options);
266static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
267static struct lwp_info *add_lwp (ptid_t ptid);
268static int linux_stopped_by_watchpoint (void);
269static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
270static int lwp_is_marked_dead (struct lwp_info *lwp);
271static void proceed_all_lwps (void);
272static int finish_step_over (struct lwp_info *lwp);
273static int kill_lwp (unsigned long lwpid, int signo);
274static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
275static void complete_ongoing_step_over (void);
276
277/* When the event-loop is doing a step-over, this points at the thread
278 being stepped. */
279ptid_t step_over_bkpt;
280
281/* True if the low target can hardware single-step. Such targets
282 don't need a BREAKPOINT_REINSERT_ADDR callback. */
283
284static int
285can_hardware_single_step (void)
286{
287 return (the_low_target.breakpoint_reinsert_addr == NULL);
288}
289
290/* True if the low target supports memory breakpoints. If so, we'll
291 have a GET_PC implementation. */
292
293static int
294supports_breakpoints (void)
295{
296 return (the_low_target.get_pc != NULL);
297}
298
299/* Returns true if this target can support fast tracepoints. This
300 does not mean that the in-process agent has been loaded in the
301 inferior. */
302
303static int
304supports_fast_tracepoints (void)
305{
306 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
307}
308
309/* True if LWP is stopped in its stepping range. */
310
311static int
312lwp_in_step_range (struct lwp_info *lwp)
313{
314 CORE_ADDR pc = lwp->stop_pc;
315
316 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
317}
318
319struct pending_signals
320{
321 int signal;
322 siginfo_t info;
323 struct pending_signals *prev;
324};
325
326/* The read/write ends of the pipe registered as waitable file in the
327 event loop. */
328static int linux_event_pipe[2] = { -1, -1 };
329
330/* True if we're currently in async mode. */
331#define target_is_async_p() (linux_event_pipe[0] != -1)
332
333static void send_sigstop (struct lwp_info *lwp);
334static void wait_for_sigstop (void);
335
336/* Return non-zero if HEADER is a 64-bit ELF file. */
337
338static int
339elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
340{
341 if (header->e_ident[EI_MAG0] == ELFMAG0
342 && header->e_ident[EI_MAG1] == ELFMAG1
343 && header->e_ident[EI_MAG2] == ELFMAG2
344 && header->e_ident[EI_MAG3] == ELFMAG3)
345 {
346 *machine = header->e_machine;
347 return header->e_ident[EI_CLASS] == ELFCLASS64;
348
349 }
350 *machine = EM_NONE;
351 return -1;
352}
353
354/* Return non-zero if FILE is a 64-bit ELF file,
355 zero if the file is not a 64-bit ELF file,
356 and -1 if the file is not accessible or doesn't exist. */
357
358static int
359elf_64_file_p (const char *file, unsigned int *machine)
360{
361 Elf64_Ehdr header;
362 int fd;
363
364 fd = open (file, O_RDONLY);
365 if (fd < 0)
366 return -1;
367
368 if (read (fd, &header, sizeof (header)) != sizeof (header))
369 {
370 close (fd);
371 return 0;
372 }
373 close (fd);
374
375 return elf_64_header_p (&header, machine);
376}
377
378/* Accepts an integer PID; Returns true if the executable PID is
379 running is a 64-bit ELF file.. */
380
381int
382linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
383{
384 char file[PATH_MAX];
385
386 sprintf (file, "/proc/%d/exe", pid);
387 return elf_64_file_p (file, machine);
388}
389
390static void
391delete_lwp (struct lwp_info *lwp)
392{
393 struct thread_info *thr = get_lwp_thread (lwp);
394
395 if (debug_threads)
396 debug_printf ("deleting %ld\n", lwpid_of (thr));
397
398 remove_thread (thr);
399 free (lwp->arch_private);
400 free (lwp);
401}
402
403/* Add a process to the common process list, and set its private
404 data. */
405
406static struct process_info *
407linux_add_process (int pid, int attached)
408{
409 struct process_info *proc;
410
411 proc = add_process (pid, attached);
412 proc->priv = xcalloc (1, sizeof (*proc->priv));
413
414 if (the_low_target.new_process != NULL)
415 proc->priv->arch_private = the_low_target.new_process ();
416
417 return proc;
418}
419
420static CORE_ADDR get_pc (struct lwp_info *lwp);
421
422/* Handle a GNU/Linux extended wait response. If we see a clone
423 event, we need to add the new LWP to our list (and return 0 so as
424 not to report the trap to higher layers). */
425
426static int
427handle_extended_wait (struct lwp_info *event_lwp, int wstat)
428{
429 int event = linux_ptrace_get_extended_event (wstat);
430 struct thread_info *event_thr = get_lwp_thread (event_lwp);
431 struct lwp_info *new_lwp;
432
433 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
434 || (event == PTRACE_EVENT_CLONE))
435 {
436 ptid_t ptid;
437 unsigned long new_pid;
438 int ret, status;
439
440 /* Get the pid of the new lwp. */
441 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
442 &new_pid);
443
444 /* If we haven't already seen the new PID stop, wait for it now. */
445 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
446 {
447 /* The new child has a pending SIGSTOP. We can't affect it until it
448 hits the SIGSTOP, but we're already attached. */
449
450 ret = my_waitpid (new_pid, &status, __WALL);
451
452 if (ret == -1)
453 perror_with_name ("waiting for new child");
454 else if (ret != new_pid)
455 warning ("wait returned unexpected PID %d", ret);
456 else if (!WIFSTOPPED (status))
457 warning ("wait returned unexpected status 0x%x", status);
458 }
459
460 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
461 {
462 struct process_info *parent_proc;
463 struct process_info *child_proc;
464 struct lwp_info *child_lwp;
465 struct thread_info *child_thr;
466 struct target_desc *tdesc;
467
468 ptid = ptid_build (new_pid, new_pid, 0);
469
470 if (debug_threads)
471 {
472 debug_printf ("HEW: Got fork event from LWP %ld, "
473 "new child is %d\n",
474 ptid_get_lwp (ptid_of (event_thr)),
475 ptid_get_pid (ptid));
476 }
477
478 /* Add the new process to the tables and clone the breakpoint
479 lists of the parent. We need to do this even if the new process
480 will be detached, since we will need the process object and the
481 breakpoints to remove any breakpoints from memory when we
482 detach, and the client side will access registers. */
483 child_proc = linux_add_process (new_pid, 0);
484 gdb_assert (child_proc != NULL);
485 child_lwp = add_lwp (ptid);
486 gdb_assert (child_lwp != NULL);
487 child_lwp->stopped = 1;
488 child_lwp->must_set_ptrace_flags = 1;
489 child_lwp->status_pending_p = 0;
490 child_thr = get_lwp_thread (child_lwp);
491 child_thr->last_resume_kind = resume_stop;
492 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
493
494 /* If we're suspending all threads, leave this one suspended
495 too. */
496 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
497 {
498 if (debug_threads)
499 debug_printf ("HEW: leaving child suspended\n");
500 child_lwp->suspended = 1;
501 }
502
503 parent_proc = get_thread_process (event_thr);
504 child_proc->attached = parent_proc->attached;
505 clone_all_breakpoints (&child_proc->breakpoints,
506 &child_proc->raw_breakpoints,
507 parent_proc->breakpoints);
508
509 tdesc = xmalloc (sizeof (struct target_desc));
510 copy_target_description (tdesc, parent_proc->tdesc);
511 child_proc->tdesc = tdesc;
512
513 /* Clone arch-specific process data. */
514 if (the_low_target.new_fork != NULL)
515 the_low_target.new_fork (parent_proc, child_proc);
516
517 /* Save fork info in the parent thread. */
518 if (event == PTRACE_EVENT_FORK)
519 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
520 else if (event == PTRACE_EVENT_VFORK)
521 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
522
523 event_lwp->waitstatus.value.related_pid = ptid;
524
525 /* The status_pending field contains bits denoting the
526 extended event, so when the pending event is handled,
527 the handler will look at lwp->waitstatus. */
528 event_lwp->status_pending_p = 1;
529 event_lwp->status_pending = wstat;
530
531 /* Report the event. */
532 return 0;
533 }
534
535 if (debug_threads)
536 debug_printf ("HEW: Got clone event "
537 "from LWP %ld, new child is LWP %ld\n",
538 lwpid_of (event_thr), new_pid);
539
540 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
541 new_lwp = add_lwp (ptid);
542
543 /* Either we're going to immediately resume the new thread
544 or leave it stopped. linux_resume_one_lwp is a nop if it
545 thinks the thread is currently running, so set this first
546 before calling linux_resume_one_lwp. */
547 new_lwp->stopped = 1;
548
549 /* If we're suspending all threads, leave this one suspended
550 too. */
551 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
552 new_lwp->suspended = 1;
553
554 /* Normally we will get the pending SIGSTOP. But in some cases
555 we might get another signal delivered to the group first.
556 If we do get another signal, be sure not to lose it. */
557 if (WSTOPSIG (status) != SIGSTOP)
558 {
559 new_lwp->stop_expected = 1;
560 new_lwp->status_pending_p = 1;
561 new_lwp->status_pending = status;
562 }
563
564 /* Don't report the event. */
565 return 1;
566 }
567 else if (event == PTRACE_EVENT_VFORK_DONE)
568 {
569 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
570
571 /* Report the event. */
572 return 0;
573 }
574
575 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
576}
577
578/* Return the PC as read from the regcache of LWP, without any
579 adjustment. */
580
581static CORE_ADDR
582get_pc (struct lwp_info *lwp)
583{
584 struct thread_info *saved_thread;
585 struct regcache *regcache;
586 CORE_ADDR pc;
587
588 if (the_low_target.get_pc == NULL)
589 return 0;
590
591 saved_thread = current_thread;
592 current_thread = get_lwp_thread (lwp);
593
594 regcache = get_thread_regcache (current_thread, 1);
595 pc = (*the_low_target.get_pc) (regcache);
596
597 if (debug_threads)
598 debug_printf ("pc is 0x%lx\n", (long) pc);
599
600 current_thread = saved_thread;
601 return pc;
602}
603
604/* This function should only be called if LWP got a SIGTRAP.
605 The SIGTRAP could mean several things.
606
607 On i386, where decr_pc_after_break is non-zero:
608
609 If we were single-stepping this process using PTRACE_SINGLESTEP, we
610 will get only the one SIGTRAP. The value of $eip will be the next
611 instruction. If the instruction we stepped over was a breakpoint,
612 we need to decrement the PC.
613
614 If we continue the process using PTRACE_CONT, we will get a
615 SIGTRAP when we hit a breakpoint. The value of $eip will be
616 the instruction after the breakpoint (i.e. needs to be
617 decremented). If we report the SIGTRAP to GDB, we must also
618 report the undecremented PC. If the breakpoint is removed, we
619 must resume at the decremented PC.
620
621 On a non-decr_pc_after_break machine with hardware or kernel
622 single-step:
623
624 If we either single-step a breakpoint instruction, or continue and
625 hit a breakpoint instruction, our PC will point at the breakpoint
626 instruction. */
627
628static int
629check_stopped_by_breakpoint (struct lwp_info *lwp)
630{
631 CORE_ADDR pc;
632 CORE_ADDR sw_breakpoint_pc;
633 struct thread_info *saved_thread;
634#if USE_SIGTRAP_SIGINFO
635 siginfo_t siginfo;
636#endif
637
638 if (the_low_target.get_pc == NULL)
639 return 0;
640
641 pc = get_pc (lwp);
642 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
643
644 /* breakpoint_at reads from the current thread. */
645 saved_thread = current_thread;
646 current_thread = get_lwp_thread (lwp);
647
648#if USE_SIGTRAP_SIGINFO
649 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
650 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
651 {
652 if (siginfo.si_signo == SIGTRAP)
653 {
654 if (siginfo.si_code == GDB_ARCH_TRAP_BRKPT)
655 {
656 if (debug_threads)
657 {
658 struct thread_info *thr = get_lwp_thread (lwp);
659
660 debug_printf ("CSBB: %s stopped by software breakpoint\n",
661 target_pid_to_str (ptid_of (thr)));
662 }
663
664 /* Back up the PC if necessary. */
665 if (pc != sw_breakpoint_pc)
666 {
667 struct regcache *regcache
668 = get_thread_regcache (current_thread, 1);
669 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
670 }
671
672 lwp->stop_pc = sw_breakpoint_pc;
673 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
674 current_thread = saved_thread;
675 return 1;
676 }
677 else if (siginfo.si_code == TRAP_HWBKPT)
678 {
679 if (debug_threads)
680 {
681 struct thread_info *thr = get_lwp_thread (lwp);
682
683 debug_printf ("CSBB: %s stopped by hardware "
684 "breakpoint/watchpoint\n",
685 target_pid_to_str (ptid_of (thr)));
686 }
687
688 lwp->stop_pc = pc;
689 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
690 current_thread = saved_thread;
691 return 1;
692 }
693 else if (siginfo.si_code == TRAP_TRACE)
694 {
695 if (debug_threads)
696 {
697 struct thread_info *thr = get_lwp_thread (lwp);
698
699 debug_printf ("CSBB: %s stopped by trace\n",
700 target_pid_to_str (ptid_of (thr)));
701 }
702
703 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
704 }
705 }
706 }
707#else
708 /* We may have just stepped a breakpoint instruction. E.g., in
709 non-stop mode, GDB first tells the thread A to step a range, and
710 then the user inserts a breakpoint inside the range. In that
711 case we need to report the breakpoint PC. */
712 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
713 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
714 {
715 if (debug_threads)
716 {
717 struct thread_info *thr = get_lwp_thread (lwp);
718
719 debug_printf ("CSBB: %s stopped by software breakpoint\n",
720 target_pid_to_str (ptid_of (thr)));
721 }
722
723 /* Back up the PC if necessary. */
724 if (pc != sw_breakpoint_pc)
725 {
726 struct regcache *regcache
727 = get_thread_regcache (current_thread, 1);
728 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
729 }
730
731 lwp->stop_pc = sw_breakpoint_pc;
732 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
733 current_thread = saved_thread;
734 return 1;
735 }
736
737 if (hardware_breakpoint_inserted_here (pc))
738 {
739 if (debug_threads)
740 {
741 struct thread_info *thr = get_lwp_thread (lwp);
742
743 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
744 target_pid_to_str (ptid_of (thr)));
745 }
746
747 lwp->stop_pc = pc;
748 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
749 current_thread = saved_thread;
750 return 1;
751 }
752#endif
753
754 current_thread = saved_thread;
755 return 0;
756}
757
758static struct lwp_info *
759add_lwp (ptid_t ptid)
760{
761 struct lwp_info *lwp;
762
763 lwp = (struct lwp_info *) xcalloc (1, sizeof (*lwp));
764
765 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
766
767 if (the_low_target.new_thread != NULL)
768 the_low_target.new_thread (lwp);
769
770 lwp->thread = add_thread (ptid, lwp);
771
772 return lwp;
773}
774
775/* Start an inferior process and returns its pid.
776 ALLARGS is a vector of program-name and args. */
777
778static int
779linux_create_inferior (char *program, char **allargs)
780{
781 struct lwp_info *new_lwp;
782 int pid;
783 ptid_t ptid;
784 struct cleanup *restore_personality
785 = maybe_disable_address_space_randomization (disable_randomization);
786
787#if defined(__UCLIBC__) && defined(HAS_NOMMU)
788 pid = vfork ();
789#else
790 pid = fork ();
791#endif
792 if (pid < 0)
793 perror_with_name ("fork");
794
795 if (pid == 0)
796 {
797 close_most_fds ();
798 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
799
800#ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
801 signal (__SIGRTMIN + 1, SIG_DFL);
802#endif
803
804 setpgid (0, 0);
805
806 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
807 stdout to stderr so that inferior i/o doesn't corrupt the connection.
808 Also, redirect stdin to /dev/null. */
809 if (remote_connection_is_stdio ())
810 {
811 close (0);
812 open ("/dev/null", O_RDONLY);
813 dup2 (2, 1);
814 if (write (2, "stdin/stdout redirected\n",
815 sizeof ("stdin/stdout redirected\n") - 1) < 0)
816 {
817 /* Errors ignored. */;
818 }
819 }
820
821 execv (program, allargs);
822 if (errno == ENOENT)
823 execvp (program, allargs);
824
825 fprintf (stderr, "Cannot exec %s: %s.\n", program,
826 strerror (errno));
827 fflush (stderr);
828 _exit (0177);
829 }
830
831 do_cleanups (restore_personality);
832
833 linux_add_process (pid, 0);
834
835 ptid = ptid_build (pid, pid, 0);
836 new_lwp = add_lwp (ptid);
837 new_lwp->must_set_ptrace_flags = 1;
838
839 return pid;
840}
841
842/* Implement the arch_setup target_ops method. */
843
844static void
845linux_arch_setup (void)
846{
847 the_low_target.arch_setup ();
848}
849
850/* Attach to an inferior process. Returns 0 on success, ERRNO on
851 error. */
852
853int
854linux_attach_lwp (ptid_t ptid)
855{
856 struct lwp_info *new_lwp;
857 int lwpid = ptid_get_lwp (ptid);
858
859 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
860 != 0)
861 return errno;
862
863 new_lwp = add_lwp (ptid);
864
865 /* We need to wait for SIGSTOP before being able to make the next
866 ptrace call on this LWP. */
867 new_lwp->must_set_ptrace_flags = 1;
868
869 if (linux_proc_pid_is_stopped (lwpid))
870 {
871 if (debug_threads)
872 debug_printf ("Attached to a stopped process\n");
873
874 /* The process is definitely stopped. It is in a job control
875 stop, unless the kernel predates the TASK_STOPPED /
876 TASK_TRACED distinction, in which case it might be in a
877 ptrace stop. Make sure it is in a ptrace stop; from there we
878 can kill it, signal it, et cetera.
879
880 First make sure there is a pending SIGSTOP. Since we are
881 already attached, the process can not transition from stopped
882 to running without a PTRACE_CONT; so we know this signal will
883 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
884 probably already in the queue (unless this kernel is old
885 enough to use TASK_STOPPED for ptrace stops); but since
886 SIGSTOP is not an RT signal, it can only be queued once. */
887 kill_lwp (lwpid, SIGSTOP);
888
889 /* Finally, resume the stopped process. This will deliver the
890 SIGSTOP (or a higher priority signal, just like normal
891 PTRACE_ATTACH), which we'll catch later on. */
892 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
893 }
894
895 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
896 brings it to a halt.
897
898 There are several cases to consider here:
899
900 1) gdbserver has already attached to the process and is being notified
901 of a new thread that is being created.
902 In this case we should ignore that SIGSTOP and resume the
903 process. This is handled below by setting stop_expected = 1,
904 and the fact that add_thread sets last_resume_kind ==
905 resume_continue.
906
907 2) This is the first thread (the process thread), and we're attaching
908 to it via attach_inferior.
909 In this case we want the process thread to stop.
910 This is handled by having linux_attach set last_resume_kind ==
911 resume_stop after we return.
912
913 If the pid we are attaching to is also the tgid, we attach to and
914 stop all the existing threads. Otherwise, we attach to pid and
915 ignore any other threads in the same group as this pid.
916
917 3) GDB is connecting to gdbserver and is requesting an enumeration of all
918 existing threads.
919 In this case we want the thread to stop.
920 FIXME: This case is currently not properly handled.
921 We should wait for the SIGSTOP but don't. Things work apparently
922 because enough time passes between when we ptrace (ATTACH) and when
923 gdb makes the next ptrace call on the thread.
924
925 On the other hand, if we are currently trying to stop all threads, we
926 should treat the new thread as if we had sent it a SIGSTOP. This works
927 because we are guaranteed that the add_lwp call above added us to the
928 end of the list, and so the new thread has not yet reached
929 wait_for_sigstop (but will). */
930 new_lwp->stop_expected = 1;
931
932 return 0;
933}
934
935/* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
936 already attached. Returns true if a new LWP is found, false
937 otherwise. */
938
939static int
940attach_proc_task_lwp_callback (ptid_t ptid)
941{
942 /* Is this a new thread? */
943 if (find_thread_ptid (ptid) == NULL)
944 {
945 int lwpid = ptid_get_lwp (ptid);
946 int err;
947
948 if (debug_threads)
949 debug_printf ("Found new lwp %d\n", lwpid);
950
951 err = linux_attach_lwp (ptid);
952
953 /* Be quiet if we simply raced with the thread exiting. EPERM
954 is returned if the thread's task still exists, and is marked
955 as exited or zombie, as well as other conditions, so in that
956 case, confirm the status in /proc/PID/status. */
957 if (err == ESRCH
958 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
959 {
960 if (debug_threads)
961 {
962 debug_printf ("Cannot attach to lwp %d: "
963 "thread is gone (%d: %s)\n",
964 lwpid, err, strerror (err));
965 }
966 }
967 else if (err != 0)
968 {
969 warning (_("Cannot attach to lwp %d: %s"),
970 lwpid,
971 linux_ptrace_attach_fail_reason_string (ptid, err));
972 }
973
974 return 1;
975 }
976 return 0;
977}
978
979/* Attach to PID. If PID is the tgid, attach to it and all
980 of its threads. */
981
982static int
983linux_attach (unsigned long pid)
984{
985 ptid_t ptid = ptid_build (pid, pid, 0);
986 int err;
987
988 /* Attach to PID. We will check for other threads
989 soon. */
990 err = linux_attach_lwp (ptid);
991 if (err != 0)
992 error ("Cannot attach to process %ld: %s",
993 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
994
995 linux_add_process (pid, 1);
996
997 if (!non_stop)
998 {
999 struct thread_info *thread;
1000
1001 /* Don't ignore the initial SIGSTOP if we just attached to this
1002 process. It will be collected by wait shortly. */
1003 thread = find_thread_ptid (ptid_build (pid, pid, 0));
1004 thread->last_resume_kind = resume_stop;
1005 }
1006
1007 /* We must attach to every LWP. If /proc is mounted, use that to
1008 find them now. On the one hand, the inferior may be using raw
1009 clone instead of using pthreads. On the other hand, even if it
1010 is using pthreads, GDB may not be connected yet (thread_db needs
1011 to do symbol lookups, through qSymbol). Also, thread_db walks
1012 structures in the inferior's address space to find the list of
1013 threads/LWPs, and those structures may well be corrupted. Note
1014 that once thread_db is loaded, we'll still use it to list threads
1015 and associate pthread info with each LWP. */
1016 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1017 return 0;
1018}
1019
1020struct counter
1021{
1022 int pid;
1023 int count;
1024};
1025
1026static int
1027second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1028{
1029 struct counter *counter = args;
1030
1031 if (ptid_get_pid (entry->id) == counter->pid)
1032 {
1033 if (++counter->count > 1)
1034 return 1;
1035 }
1036
1037 return 0;
1038}
1039
1040static int
1041last_thread_of_process_p (int pid)
1042{
1043 struct counter counter = { pid , 0 };
1044
1045 return (find_inferior (&all_threads,
1046 second_thread_of_pid_p, &counter) == NULL);
1047}
1048
1049/* Kill LWP. */
1050
1051static void
1052linux_kill_one_lwp (struct lwp_info *lwp)
1053{
1054 struct thread_info *thr = get_lwp_thread (lwp);
1055 int pid = lwpid_of (thr);
1056
1057 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1058 there is no signal context, and ptrace(PTRACE_KILL) (or
1059 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1060 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1061 alternative is to kill with SIGKILL. We only need one SIGKILL
1062 per process, not one for each thread. But since we still support
1063 linuxthreads, and we also support debugging programs using raw
1064 clone without CLONE_THREAD, we send one for each thread. For
1065 years, we used PTRACE_KILL only, so we're being a bit paranoid
1066 about some old kernels where PTRACE_KILL might work better
1067 (dubious if there are any such, but that's why it's paranoia), so
1068 we try SIGKILL first, PTRACE_KILL second, and so we're fine
1069 everywhere. */
1070
1071 errno = 0;
1072 kill_lwp (pid, SIGKILL);
1073 if (debug_threads)
1074 {
1075 int save_errno = errno;
1076
1077 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1078 target_pid_to_str (ptid_of (thr)),
1079 save_errno ? strerror (save_errno) : "OK");
1080 }
1081
1082 errno = 0;
1083 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1084 if (debug_threads)
1085 {
1086 int save_errno = errno;
1087
1088 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1089 target_pid_to_str (ptid_of (thr)),
1090 save_errno ? strerror (save_errno) : "OK");
1091 }
1092}
1093
1094/* Kill LWP and wait for it to die. */
1095
1096static void
1097kill_wait_lwp (struct lwp_info *lwp)
1098{
1099 struct thread_info *thr = get_lwp_thread (lwp);
1100 int pid = ptid_get_pid (ptid_of (thr));
1101 int lwpid = ptid_get_lwp (ptid_of (thr));
1102 int wstat;
1103 int res;
1104
1105 if (debug_threads)
1106 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1107
1108 do
1109 {
1110 linux_kill_one_lwp (lwp);
1111
1112 /* Make sure it died. Notes:
1113
1114 - The loop is most likely unnecessary.
1115
1116 - We don't use linux_wait_for_event as that could delete lwps
1117 while we're iterating over them. We're not interested in
1118 any pending status at this point, only in making sure all
1119 wait status on the kernel side are collected until the
1120 process is reaped.
1121
1122 - We don't use __WALL here as the __WALL emulation relies on
1123 SIGCHLD, and killing a stopped process doesn't generate
1124 one, nor an exit status.
1125 */
1126 res = my_waitpid (lwpid, &wstat, 0);
1127 if (res == -1 && errno == ECHILD)
1128 res = my_waitpid (lwpid, &wstat, __WCLONE);
1129 } while (res > 0 && WIFSTOPPED (wstat));
1130
1131 /* Even if it was stopped, the child may have already disappeared.
1132 E.g., if it was killed by SIGKILL. */
1133 if (res < 0 && errno != ECHILD)
1134 perror_with_name ("kill_wait_lwp");
1135}
1136
1137/* Callback for `find_inferior'. Kills an lwp of a given process,
1138 except the leader. */
1139
1140static int
1141kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1142{
1143 struct thread_info *thread = (struct thread_info *) entry;
1144 struct lwp_info *lwp = get_thread_lwp (thread);
1145 int pid = * (int *) args;
1146
1147 if (ptid_get_pid (entry->id) != pid)
1148 return 0;
1149
1150 /* We avoid killing the first thread here, because of a Linux kernel (at
1151 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1152 the children get a chance to be reaped, it will remain a zombie
1153 forever. */
1154
1155 if (lwpid_of (thread) == pid)
1156 {
1157 if (debug_threads)
1158 debug_printf ("lkop: is last of process %s\n",
1159 target_pid_to_str (entry->id));
1160 return 0;
1161 }
1162
1163 kill_wait_lwp (lwp);
1164 return 0;
1165}
1166
1167static int
1168linux_kill (int pid)
1169{
1170 struct process_info *process;
1171 struct lwp_info *lwp;
1172
1173 process = find_process_pid (pid);
1174 if (process == NULL)
1175 return -1;
1176
1177 /* If we're killing a running inferior, make sure it is stopped
1178 first, as PTRACE_KILL will not work otherwise. */
1179 stop_all_lwps (0, NULL);
1180
1181 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1182
1183 /* See the comment in linux_kill_one_lwp. We did not kill the first
1184 thread in the list, so do so now. */
1185 lwp = find_lwp_pid (pid_to_ptid (pid));
1186
1187 if (lwp == NULL)
1188 {
1189 if (debug_threads)
1190 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1191 pid);
1192 }
1193 else
1194 kill_wait_lwp (lwp);
1195
1196 the_target->mourn (process);
1197
1198 /* Since we presently can only stop all lwps of all processes, we
1199 need to unstop lwps of other processes. */
1200 unstop_all_lwps (0, NULL);
1201 return 0;
1202}
1203
1204/* Get pending signal of THREAD, for detaching purposes. This is the
1205 signal the thread last stopped for, which we need to deliver to the
1206 thread when detaching, otherwise, it'd be suppressed/lost. */
1207
1208static int
1209get_detach_signal (struct thread_info *thread)
1210{
1211 enum gdb_signal signo = GDB_SIGNAL_0;
1212 int status;
1213 struct lwp_info *lp = get_thread_lwp (thread);
1214
1215 if (lp->status_pending_p)
1216 status = lp->status_pending;
1217 else
1218 {
1219 /* If the thread had been suspended by gdbserver, and it stopped
1220 cleanly, then it'll have stopped with SIGSTOP. But we don't
1221 want to deliver that SIGSTOP. */
1222 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1223 || thread->last_status.value.sig == GDB_SIGNAL_0)
1224 return 0;
1225
1226 /* Otherwise, we may need to deliver the signal we
1227 intercepted. */
1228 status = lp->last_status;
1229 }
1230
1231 if (!WIFSTOPPED (status))
1232 {
1233 if (debug_threads)
1234 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1235 target_pid_to_str (ptid_of (thread)));
1236 return 0;
1237 }
1238
1239 /* Extended wait statuses aren't real SIGTRAPs. */
1240 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1241 {
1242 if (debug_threads)
1243 debug_printf ("GPS: lwp %s had stopped with extended "
1244 "status: no pending signal\n",
1245 target_pid_to_str (ptid_of (thread)));
1246 return 0;
1247 }
1248
1249 signo = gdb_signal_from_host (WSTOPSIG (status));
1250
1251 if (program_signals_p && !program_signals[signo])
1252 {
1253 if (debug_threads)
1254 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1255 target_pid_to_str (ptid_of (thread)),
1256 gdb_signal_to_string (signo));
1257 return 0;
1258 }
1259 else if (!program_signals_p
1260 /* If we have no way to know which signals GDB does not
1261 want to have passed to the program, assume
1262 SIGTRAP/SIGINT, which is GDB's default. */
1263 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1264 {
1265 if (debug_threads)
1266 debug_printf ("GPS: lwp %s had signal %s, "
1267 "but we don't know if we should pass it. "
1268 "Default to not.\n",
1269 target_pid_to_str (ptid_of (thread)),
1270 gdb_signal_to_string (signo));
1271 return 0;
1272 }
1273 else
1274 {
1275 if (debug_threads)
1276 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1277 target_pid_to_str (ptid_of (thread)),
1278 gdb_signal_to_string (signo));
1279
1280 return WSTOPSIG (status);
1281 }
1282}
1283
1284static int
1285linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1286{
1287 struct thread_info *thread = (struct thread_info *) entry;
1288 struct lwp_info *lwp = get_thread_lwp (thread);
1289 int pid = * (int *) args;
1290 int sig;
1291
1292 if (ptid_get_pid (entry->id) != pid)
1293 return 0;
1294
1295 /* If there is a pending SIGSTOP, get rid of it. */
1296 if (lwp->stop_expected)
1297 {
1298 if (debug_threads)
1299 debug_printf ("Sending SIGCONT to %s\n",
1300 target_pid_to_str (ptid_of (thread)));
1301
1302 kill_lwp (lwpid_of (thread), SIGCONT);
1303 lwp->stop_expected = 0;
1304 }
1305
1306 /* Flush any pending changes to the process's registers. */
1307 regcache_invalidate_thread (thread);
1308
1309 /* Pass on any pending signal for this thread. */
1310 sig = get_detach_signal (thread);
1311
1312 /* Finally, let it resume. */
1313 if (the_low_target.prepare_to_resume != NULL)
1314 the_low_target.prepare_to_resume (lwp);
1315 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1316 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1317 error (_("Can't detach %s: %s"),
1318 target_pid_to_str (ptid_of (thread)),
1319 strerror (errno));
1320
1321 delete_lwp (lwp);
1322 return 0;
1323}
1324
1325static int
1326linux_detach (int pid)
1327{
1328 struct process_info *process;
1329
1330 process = find_process_pid (pid);
1331 if (process == NULL)
1332 return -1;
1333
1334 /* As there's a step over already in progress, let it finish first,
1335 otherwise nesting a stabilize_threads operation on top gets real
1336 messy. */
1337 complete_ongoing_step_over ();
1338
1339 /* Stop all threads before detaching. First, ptrace requires that
1340 the thread is stopped to sucessfully detach. Second, thread_db
1341 may need to uninstall thread event breakpoints from memory, which
1342 only works with a stopped process anyway. */
1343 stop_all_lwps (0, NULL);
1344
1345#ifdef USE_THREAD_DB
1346 thread_db_detach (process);
1347#endif
1348
1349 /* Stabilize threads (move out of jump pads). */
1350 stabilize_threads ();
1351
1352 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1353
1354 the_target->mourn (process);
1355
1356 /* Since we presently can only stop all lwps of all processes, we
1357 need to unstop lwps of other processes. */
1358 unstop_all_lwps (0, NULL);
1359 return 0;
1360}
1361
1362/* Remove all LWPs that belong to process PROC from the lwp list. */
1363
1364static int
1365delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1366{
1367 struct thread_info *thread = (struct thread_info *) entry;
1368 struct lwp_info *lwp = get_thread_lwp (thread);
1369 struct process_info *process = proc;
1370
1371 if (pid_of (thread) == pid_of (process))
1372 delete_lwp (lwp);
1373
1374 return 0;
1375}
1376
1377static void
1378linux_mourn (struct process_info *process)
1379{
1380 struct process_info_private *priv;
1381
1382#ifdef USE_THREAD_DB
1383 thread_db_mourn (process);
1384#endif
1385
1386 find_inferior (&all_threads, delete_lwp_callback, process);
1387
1388 /* Freeing all private data. */
1389 priv = process->priv;
1390 free (priv->arch_private);
1391 free (priv);
1392 process->priv = NULL;
1393
1394 remove_process (process);
1395}
1396
1397static void
1398linux_join (int pid)
1399{
1400 int status, ret;
1401
1402 do {
1403 ret = my_waitpid (pid, &status, 0);
1404 if (WIFEXITED (status) || WIFSIGNALED (status))
1405 break;
1406 } while (ret != -1 || errno != ECHILD);
1407}
1408
1409/* Return nonzero if the given thread is still alive. */
1410static int
1411linux_thread_alive (ptid_t ptid)
1412{
1413 struct lwp_info *lwp = find_lwp_pid (ptid);
1414
1415 /* We assume we always know if a thread exits. If a whole process
1416 exited but we still haven't been able to report it to GDB, we'll
1417 hold on to the last lwp of the dead process. */
1418 if (lwp != NULL)
1419 return !lwp_is_marked_dead (lwp);
1420 else
1421 return 0;
1422}
1423
1424/* Return 1 if this lwp still has an interesting status pending. If
1425 not (e.g., it had stopped for a breakpoint that is gone), return
1426 false. */
1427
1428static int
1429thread_still_has_status_pending_p (struct thread_info *thread)
1430{
1431 struct lwp_info *lp = get_thread_lwp (thread);
1432
1433 if (!lp->status_pending_p)
1434 return 0;
1435
1436 /* If we got a `vCont;t', but we haven't reported a stop yet, do
1437 report any status pending the LWP may have. */
1438 if (thread->last_resume_kind == resume_stop
1439 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
1440 return 0;
1441
1442 if (thread->last_resume_kind != resume_stop
1443 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1444 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1445 {
1446 struct thread_info *saved_thread;
1447 CORE_ADDR pc;
1448 int discard = 0;
1449
1450 gdb_assert (lp->last_status != 0);
1451
1452 pc = get_pc (lp);
1453
1454 saved_thread = current_thread;
1455 current_thread = thread;
1456
1457 if (pc != lp->stop_pc)
1458 {
1459 if (debug_threads)
1460 debug_printf ("PC of %ld changed\n",
1461 lwpid_of (thread));
1462 discard = 1;
1463 }
1464
1465#if !USE_SIGTRAP_SIGINFO
1466 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1467 && !(*the_low_target.breakpoint_at) (pc))
1468 {
1469 if (debug_threads)
1470 debug_printf ("previous SW breakpoint of %ld gone\n",
1471 lwpid_of (thread));
1472 discard = 1;
1473 }
1474 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1475 && !hardware_breakpoint_inserted_here (pc))
1476 {
1477 if (debug_threads)
1478 debug_printf ("previous HW breakpoint of %ld gone\n",
1479 lwpid_of (thread));
1480 discard = 1;
1481 }
1482#endif
1483
1484 current_thread = saved_thread;
1485
1486 if (discard)
1487 {
1488 if (debug_threads)
1489 debug_printf ("discarding pending breakpoint status\n");
1490 lp->status_pending_p = 0;
1491 return 0;
1492 }
1493 }
1494
1495 return 1;
1496}
1497
1498/* Return 1 if this lwp has an interesting status pending. */
1499static int
1500status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1501{
1502 struct thread_info *thread = (struct thread_info *) entry;
1503 struct lwp_info *lp = get_thread_lwp (thread);
1504 ptid_t ptid = * (ptid_t *) arg;
1505
1506 /* Check if we're only interested in events from a specific process
1507 or a specific LWP. */
1508 if (!ptid_match (ptid_of (thread), ptid))
1509 return 0;
1510
1511 if (lp->status_pending_p
1512 && !thread_still_has_status_pending_p (thread))
1513 {
1514 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1515 return 0;
1516 }
1517
1518 return lp->status_pending_p;
1519}
1520
1521static int
1522same_lwp (struct inferior_list_entry *entry, void *data)
1523{
1524 ptid_t ptid = *(ptid_t *) data;
1525 int lwp;
1526
1527 if (ptid_get_lwp (ptid) != 0)
1528 lwp = ptid_get_lwp (ptid);
1529 else
1530 lwp = ptid_get_pid (ptid);
1531
1532 if (ptid_get_lwp (entry->id) == lwp)
1533 return 1;
1534
1535 return 0;
1536}
1537
1538struct lwp_info *
1539find_lwp_pid (ptid_t ptid)
1540{
1541 struct inferior_list_entry *thread
1542 = find_inferior (&all_threads, same_lwp, &ptid);
1543
1544 if (thread == NULL)
1545 return NULL;
1546
1547 return get_thread_lwp ((struct thread_info *) thread);
1548}
1549
1550/* Return the number of known LWPs in the tgid given by PID. */
1551
1552static int
1553num_lwps (int pid)
1554{
1555 struct inferior_list_entry *inf, *tmp;
1556 int count = 0;
1557
1558 ALL_INFERIORS (&all_threads, inf, tmp)
1559 {
1560 if (ptid_get_pid (inf->id) == pid)
1561 count++;
1562 }
1563
1564 return count;
1565}
1566
1567/* The arguments passed to iterate_over_lwps. */
1568
1569struct iterate_over_lwps_args
1570{
1571 /* The FILTER argument passed to iterate_over_lwps. */
1572 ptid_t filter;
1573
1574 /* The CALLBACK argument passed to iterate_over_lwps. */
1575 iterate_over_lwps_ftype *callback;
1576
1577 /* The DATA argument passed to iterate_over_lwps. */
1578 void *data;
1579};
1580
1581/* Callback for find_inferior used by iterate_over_lwps to filter
1582 calls to the callback supplied to that function. Returning a
1583 nonzero value causes find_inferiors to stop iterating and return
1584 the current inferior_list_entry. Returning zero indicates that
1585 find_inferiors should continue iterating. */
1586
1587static int
1588iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1589{
1590 struct iterate_over_lwps_args *args
1591 = (struct iterate_over_lwps_args *) args_p;
1592
1593 if (ptid_match (entry->id, args->filter))
1594 {
1595 struct thread_info *thr = (struct thread_info *) entry;
1596 struct lwp_info *lwp = get_thread_lwp (thr);
1597
1598 return (*args->callback) (lwp, args->data);
1599 }
1600
1601 return 0;
1602}
1603
1604/* See nat/linux-nat.h. */
1605
1606struct lwp_info *
1607iterate_over_lwps (ptid_t filter,
1608 iterate_over_lwps_ftype callback,
1609 void *data)
1610{
1611 struct iterate_over_lwps_args args = {filter, callback, data};
1612 struct inferior_list_entry *entry;
1613
1614 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1615 if (entry == NULL)
1616 return NULL;
1617
1618 return get_thread_lwp ((struct thread_info *) entry);
1619}
1620
1621/* Detect zombie thread group leaders, and "exit" them. We can't reap
1622 their exits until all other threads in the group have exited. */
1623
1624static void
1625check_zombie_leaders (void)
1626{
1627 struct process_info *proc, *tmp;
1628
1629 ALL_PROCESSES (proc, tmp)
1630 {
1631 pid_t leader_pid = pid_of (proc);
1632 struct lwp_info *leader_lp;
1633
1634 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1635
1636 if (debug_threads)
1637 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1638 "num_lwps=%d, zombie=%d\n",
1639 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1640 linux_proc_pid_is_zombie (leader_pid));
1641
1642 if (leader_lp != NULL
1643 /* Check if there are other threads in the group, as we may
1644 have raced with the inferior simply exiting. */
1645 && !last_thread_of_process_p (leader_pid)
1646 && linux_proc_pid_is_zombie (leader_pid))
1647 {
1648 /* A leader zombie can mean one of two things:
1649
1650 - It exited, and there's an exit status pending
1651 available, or only the leader exited (not the whole
1652 program). In the latter case, we can't waitpid the
1653 leader's exit status until all other threads are gone.
1654
1655 - There are 3 or more threads in the group, and a thread
1656 other than the leader exec'd. On an exec, the Linux
1657 kernel destroys all other threads (except the execing
1658 one) in the thread group, and resets the execing thread's
1659 tid to the tgid. No exit notification is sent for the
1660 execing thread -- from the ptracer's perspective, it
1661 appears as though the execing thread just vanishes.
1662 Until we reap all other threads except the leader and the
1663 execing thread, the leader will be zombie, and the
1664 execing thread will be in `D (disc sleep)'. As soon as
1665 all other threads are reaped, the execing thread changes
1666 it's tid to the tgid, and the previous (zombie) leader
1667 vanishes, giving place to the "new" leader. We could try
1668 distinguishing the exit and exec cases, by waiting once
1669 more, and seeing if something comes out, but it doesn't
1670 sound useful. The previous leader _does_ go away, and
1671 we'll re-add the new one once we see the exec event
1672 (which is just the same as what would happen if the
1673 previous leader did exit voluntarily before some other
1674 thread execs). */
1675
1676 if (debug_threads)
1677 fprintf (stderr,
1678 "CZL: Thread group leader %d zombie "
1679 "(it exited, or another thread execd).\n",
1680 leader_pid);
1681
1682 delete_lwp (leader_lp);
1683 }
1684 }
1685}
1686
1687/* Callback for `find_inferior'. Returns the first LWP that is not
1688 stopped. ARG is a PTID filter. */
1689
1690static int
1691not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1692{
1693 struct thread_info *thr = (struct thread_info *) entry;
1694 struct lwp_info *lwp;
1695 ptid_t filter = *(ptid_t *) arg;
1696
1697 if (!ptid_match (ptid_of (thr), filter))
1698 return 0;
1699
1700 lwp = get_thread_lwp (thr);
1701 if (!lwp->stopped)
1702 return 1;
1703
1704 return 0;
1705}
1706
1707/* Increment LWP's suspend count. */
1708
1709static void
1710lwp_suspended_inc (struct lwp_info *lwp)
1711{
1712 lwp->suspended++;
1713
1714 if (debug_threads && lwp->suspended > 4)
1715 {
1716 struct thread_info *thread = get_lwp_thread (lwp);
1717
1718 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1719 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1720 }
1721}
1722
1723/* Decrement LWP's suspend count. */
1724
1725static void
1726lwp_suspended_decr (struct lwp_info *lwp)
1727{
1728 lwp->suspended--;
1729
1730 if (lwp->suspended < 0)
1731 {
1732 struct thread_info *thread = get_lwp_thread (lwp);
1733
1734 internal_error (__FILE__, __LINE__,
1735 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1736 lwp->suspended);
1737 }
1738}
1739
1740/* This function should only be called if the LWP got a SIGTRAP.
1741
1742 Handle any tracepoint steps or hits. Return true if a tracepoint
1743 event was handled, 0 otherwise. */
1744
1745static int
1746handle_tracepoints (struct lwp_info *lwp)
1747{
1748 struct thread_info *tinfo = get_lwp_thread (lwp);
1749 int tpoint_related_event = 0;
1750
1751 gdb_assert (lwp->suspended == 0);
1752
1753 /* If this tracepoint hit causes a tracing stop, we'll immediately
1754 uninsert tracepoints. To do this, we temporarily pause all
1755 threads, unpatch away, and then unpause threads. We need to make
1756 sure the unpausing doesn't resume LWP too. */
1757 lwp_suspended_inc (lwp);
1758
1759 /* And we need to be sure that any all-threads-stopping doesn't try
1760 to move threads out of the jump pads, as it could deadlock the
1761 inferior (LWP could be in the jump pad, maybe even holding the
1762 lock.) */
1763
1764 /* Do any necessary step collect actions. */
1765 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1766
1767 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1768
1769 /* See if we just hit a tracepoint and do its main collect
1770 actions. */
1771 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1772
1773 lwp_suspended_decr (lwp);
1774
1775 gdb_assert (lwp->suspended == 0);
1776 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1777
1778 if (tpoint_related_event)
1779 {
1780 if (debug_threads)
1781 debug_printf ("got a tracepoint event\n");
1782 return 1;
1783 }
1784
1785 return 0;
1786}
1787
1788/* Convenience wrapper. Returns true if LWP is presently collecting a
1789 fast tracepoint. */
1790
1791static int
1792linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1793 struct fast_tpoint_collect_status *status)
1794{
1795 CORE_ADDR thread_area;
1796 struct thread_info *thread = get_lwp_thread (lwp);
1797
1798 if (the_low_target.get_thread_area == NULL)
1799 return 0;
1800
1801 /* Get the thread area address. This is used to recognize which
1802 thread is which when tracing with the in-process agent library.
1803 We don't read anything from the address, and treat it as opaque;
1804 it's the address itself that we assume is unique per-thread. */
1805 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1806 return 0;
1807
1808 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1809}
1810
1811/* The reason we resume in the caller, is because we want to be able
1812 to pass lwp->status_pending as WSTAT, and we need to clear
1813 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1814 refuses to resume. */
1815
1816static int
1817maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1818{
1819 struct thread_info *saved_thread;
1820
1821 saved_thread = current_thread;
1822 current_thread = get_lwp_thread (lwp);
1823
1824 if ((wstat == NULL
1825 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1826 && supports_fast_tracepoints ()
1827 && agent_loaded_p ())
1828 {
1829 struct fast_tpoint_collect_status status;
1830 int r;
1831
1832 if (debug_threads)
1833 debug_printf ("Checking whether LWP %ld needs to move out of the "
1834 "jump pad.\n",
1835 lwpid_of (current_thread));
1836
1837 r = linux_fast_tracepoint_collecting (lwp, &status);
1838
1839 if (wstat == NULL
1840 || (WSTOPSIG (*wstat) != SIGILL
1841 && WSTOPSIG (*wstat) != SIGFPE
1842 && WSTOPSIG (*wstat) != SIGSEGV
1843 && WSTOPSIG (*wstat) != SIGBUS))
1844 {
1845 lwp->collecting_fast_tracepoint = r;
1846
1847 if (r != 0)
1848 {
1849 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1850 {
1851 /* Haven't executed the original instruction yet.
1852 Set breakpoint there, and wait till it's hit,
1853 then single-step until exiting the jump pad. */
1854 lwp->exit_jump_pad_bkpt
1855 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1856 }
1857
1858 if (debug_threads)
1859 debug_printf ("Checking whether LWP %ld needs to move out of "
1860 "the jump pad...it does\n",
1861 lwpid_of (current_thread));
1862 current_thread = saved_thread;
1863
1864 return 1;
1865 }
1866 }
1867 else
1868 {
1869 /* If we get a synchronous signal while collecting, *and*
1870 while executing the (relocated) original instruction,
1871 reset the PC to point at the tpoint address, before
1872 reporting to GDB. Otherwise, it's an IPA lib bug: just
1873 report the signal to GDB, and pray for the best. */
1874
1875 lwp->collecting_fast_tracepoint = 0;
1876
1877 if (r != 0
1878 && (status.adjusted_insn_addr <= lwp->stop_pc
1879 && lwp->stop_pc < status.adjusted_insn_addr_end))
1880 {
1881 siginfo_t info;
1882 struct regcache *regcache;
1883
1884 /* The si_addr on a few signals references the address
1885 of the faulting instruction. Adjust that as
1886 well. */
1887 if ((WSTOPSIG (*wstat) == SIGILL
1888 || WSTOPSIG (*wstat) == SIGFPE
1889 || WSTOPSIG (*wstat) == SIGBUS
1890 || WSTOPSIG (*wstat) == SIGSEGV)
1891 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
1892 (PTRACE_TYPE_ARG3) 0, &info) == 0
1893 /* Final check just to make sure we don't clobber
1894 the siginfo of non-kernel-sent signals. */
1895 && (uintptr_t) info.si_addr == lwp->stop_pc)
1896 {
1897 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
1898 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
1899 (PTRACE_TYPE_ARG3) 0, &info);
1900 }
1901
1902 regcache = get_thread_regcache (current_thread, 1);
1903 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
1904 lwp->stop_pc = status.tpoint_addr;
1905
1906 /* Cancel any fast tracepoint lock this thread was
1907 holding. */
1908 force_unlock_trace_buffer ();
1909 }
1910
1911 if (lwp->exit_jump_pad_bkpt != NULL)
1912 {
1913 if (debug_threads)
1914 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
1915 "stopping all threads momentarily.\n");
1916
1917 stop_all_lwps (1, lwp);
1918
1919 delete_breakpoint (lwp->exit_jump_pad_bkpt);
1920 lwp->exit_jump_pad_bkpt = NULL;
1921
1922 unstop_all_lwps (1, lwp);
1923
1924 gdb_assert (lwp->suspended >= 0);
1925 }
1926 }
1927 }
1928
1929 if (debug_threads)
1930 debug_printf ("Checking whether LWP %ld needs to move out of the "
1931 "jump pad...no\n",
1932 lwpid_of (current_thread));
1933
1934 current_thread = saved_thread;
1935 return 0;
1936}
1937
1938/* Enqueue one signal in the "signals to report later when out of the
1939 jump pad" list. */
1940
1941static void
1942enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1943{
1944 struct pending_signals *p_sig;
1945 struct thread_info *thread = get_lwp_thread (lwp);
1946
1947 if (debug_threads)
1948 debug_printf ("Deferring signal %d for LWP %ld.\n",
1949 WSTOPSIG (*wstat), lwpid_of (thread));
1950
1951 if (debug_threads)
1952 {
1953 struct pending_signals *sig;
1954
1955 for (sig = lwp->pending_signals_to_report;
1956 sig != NULL;
1957 sig = sig->prev)
1958 debug_printf (" Already queued %d\n",
1959 sig->signal);
1960
1961 debug_printf (" (no more currently queued signals)\n");
1962 }
1963
1964 /* Don't enqueue non-RT signals if they are already in the deferred
1965 queue. (SIGSTOP being the easiest signal to see ending up here
1966 twice) */
1967 if (WSTOPSIG (*wstat) < __SIGRTMIN)
1968 {
1969 struct pending_signals *sig;
1970
1971 for (sig = lwp->pending_signals_to_report;
1972 sig != NULL;
1973 sig = sig->prev)
1974 {
1975 if (sig->signal == WSTOPSIG (*wstat))
1976 {
1977 if (debug_threads)
1978 debug_printf ("Not requeuing already queued non-RT signal %d"
1979 " for LWP %ld\n",
1980 sig->signal,
1981 lwpid_of (thread));
1982 return;
1983 }
1984 }
1985 }
1986
1987 p_sig = xmalloc (sizeof (*p_sig));
1988 p_sig->prev = lwp->pending_signals_to_report;
1989 p_sig->signal = WSTOPSIG (*wstat);
1990 memset (&p_sig->info, 0, sizeof (siginfo_t));
1991 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1992 &p_sig->info);
1993
1994 lwp->pending_signals_to_report = p_sig;
1995}
1996
1997/* Dequeue one signal from the "signals to report later when out of
1998 the jump pad" list. */
1999
2000static int
2001dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2002{
2003 struct thread_info *thread = get_lwp_thread (lwp);
2004
2005 if (lwp->pending_signals_to_report != NULL)
2006 {
2007 struct pending_signals **p_sig;
2008
2009 p_sig = &lwp->pending_signals_to_report;
2010 while ((*p_sig)->prev != NULL)
2011 p_sig = &(*p_sig)->prev;
2012
2013 *wstat = W_STOPCODE ((*p_sig)->signal);
2014 if ((*p_sig)->info.si_signo != 0)
2015 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2016 &(*p_sig)->info);
2017 free (*p_sig);
2018 *p_sig = NULL;
2019
2020 if (debug_threads)
2021 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2022 WSTOPSIG (*wstat), lwpid_of (thread));
2023
2024 if (debug_threads)
2025 {
2026 struct pending_signals *sig;
2027
2028 for (sig = lwp->pending_signals_to_report;
2029 sig != NULL;
2030 sig = sig->prev)
2031 debug_printf (" Still queued %d\n",
2032 sig->signal);
2033
2034 debug_printf (" (no more queued signals)\n");
2035 }
2036
2037 return 1;
2038 }
2039
2040 return 0;
2041}
2042
2043/* Fetch the possibly triggered data watchpoint info and store it in
2044 CHILD.
2045
2046 On some archs, like x86, that use debug registers to set
2047 watchpoints, it's possible that the way to know which watched
2048 address trapped, is to check the register that is used to select
2049 which address to watch. Problem is, between setting the watchpoint
2050 and reading back which data address trapped, the user may change
2051 the set of watchpoints, and, as a consequence, GDB changes the
2052 debug registers in the inferior. To avoid reading back a stale
2053 stopped-data-address when that happens, we cache in LP the fact
2054 that a watchpoint trapped, and the corresponding data address, as
2055 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2056 registers meanwhile, we have the cached data we can rely on. */
2057
2058static int
2059check_stopped_by_watchpoint (struct lwp_info *child)
2060{
2061 if (the_low_target.stopped_by_watchpoint != NULL)
2062 {
2063 struct thread_info *saved_thread;
2064
2065 saved_thread = current_thread;
2066 current_thread = get_lwp_thread (child);
2067
2068 if (the_low_target.stopped_by_watchpoint ())
2069 {
2070 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2071
2072 if (the_low_target.stopped_data_address != NULL)
2073 child->stopped_data_address
2074 = the_low_target.stopped_data_address ();
2075 else
2076 child->stopped_data_address = 0;
2077 }
2078
2079 current_thread = saved_thread;
2080 }
2081
2082 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2083}
2084
2085/* Return the ptrace options that we want to try to enable. */
2086
2087static int
2088linux_low_ptrace_options (int attached)
2089{
2090 int options = 0;
2091
2092 if (!attached)
2093 options |= PTRACE_O_EXITKILL;
2094
2095 if (report_fork_events)
2096 options |= PTRACE_O_TRACEFORK;
2097
2098 if (report_vfork_events)
2099 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2100
2101 return options;
2102}
2103
2104/* Do low-level handling of the event, and check if we should go on
2105 and pass it to caller code. Return the affected lwp if we are, or
2106 NULL otherwise. */
2107
2108static struct lwp_info *
2109linux_low_filter_event (int lwpid, int wstat)
2110{
2111 struct lwp_info *child;
2112 struct thread_info *thread;
2113 int have_stop_pc = 0;
2114
2115 child = find_lwp_pid (pid_to_ptid (lwpid));
2116
2117 /* If we didn't find a process, one of two things presumably happened:
2118 - A process we started and then detached from has exited. Ignore it.
2119 - A process we are controlling has forked and the new child's stop
2120 was reported to us by the kernel. Save its PID. */
2121 if (child == NULL && WIFSTOPPED (wstat))
2122 {
2123 add_to_pid_list (&stopped_pids, lwpid, wstat);
2124 return NULL;
2125 }
2126 else if (child == NULL)
2127 return NULL;
2128
2129 thread = get_lwp_thread (child);
2130
2131 child->stopped = 1;
2132
2133 child->last_status = wstat;
2134
2135 /* Check if the thread has exited. */
2136 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2137 {
2138 if (debug_threads)
2139 debug_printf ("LLFE: %d exited.\n", lwpid);
2140 if (num_lwps (pid_of (thread)) > 1)
2141 {
2142
2143 /* If there is at least one more LWP, then the exit signal was
2144 not the end of the debugged application and should be
2145 ignored. */
2146 delete_lwp (child);
2147 return NULL;
2148 }
2149 else
2150 {
2151 /* This was the last lwp in the process. Since events are
2152 serialized to GDB core, and we can't report this one
2153 right now, but GDB core and the other target layers will
2154 want to be notified about the exit code/signal, leave the
2155 status pending for the next time we're able to report
2156 it. */
2157 mark_lwp_dead (child, wstat);
2158 return child;
2159 }
2160 }
2161
2162 gdb_assert (WIFSTOPPED (wstat));
2163
2164 if (WIFSTOPPED (wstat))
2165 {
2166 struct process_info *proc;
2167
2168 /* Architecture-specific setup after inferior is running. */
2169 proc = find_process_pid (pid_of (thread));
2170 if (proc->tdesc == NULL)
2171 {
2172 if (proc->attached)
2173 {
2174 struct thread_info *saved_thread;
2175
2176 /* This needs to happen after we have attached to the
2177 inferior and it is stopped for the first time, but
2178 before we access any inferior registers. */
2179 saved_thread = current_thread;
2180 current_thread = thread;
2181
2182 the_low_target.arch_setup ();
2183
2184 current_thread = saved_thread;
2185 }
2186 else
2187 {
2188 /* The process is started, but GDBserver will do
2189 architecture-specific setup after the program stops at
2190 the first instruction. */
2191 child->status_pending_p = 1;
2192 child->status_pending = wstat;
2193 return child;
2194 }
2195 }
2196 }
2197
2198 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2199 {
2200 struct process_info *proc = find_process_pid (pid_of (thread));
2201 int options = linux_low_ptrace_options (proc->attached);
2202
2203 linux_enable_event_reporting (lwpid, options);
2204 child->must_set_ptrace_flags = 0;
2205 }
2206
2207 /* Be careful to not overwrite stop_pc until
2208 check_stopped_by_breakpoint is called. */
2209 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2210 && linux_is_extended_waitstatus (wstat))
2211 {
2212 child->stop_pc = get_pc (child);
2213 if (handle_extended_wait (child, wstat))
2214 {
2215 /* The event has been handled, so just return without
2216 reporting it. */
2217 return NULL;
2218 }
2219 }
2220
2221 /* Check first whether this was a SW/HW breakpoint before checking
2222 watchpoints, because at least s390 can't tell the data address of
2223 hardware watchpoint hits, and returns stopped-by-watchpoint as
2224 long as there's a watchpoint set. */
2225 if (WIFSTOPPED (wstat) && linux_wstatus_maybe_breakpoint (wstat))
2226 {
2227 if (check_stopped_by_breakpoint (child))
2228 have_stop_pc = 1;
2229 }
2230
2231 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2232 or hardware watchpoint. Check which is which if we got
2233 TARGET_STOPPED_BY_HW_BREAKPOINT. Likewise, we may have single
2234 stepped an instruction that triggered a watchpoint. In that
2235 case, on some architectures (such as x86), instead of
2236 TRAP_HWBKPT, si_code indicates TRAP_TRACE, and we need to check
2237 the debug registers separately. */
2238 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2239 && child->stop_reason != TARGET_STOPPED_BY_SW_BREAKPOINT)
2240 check_stopped_by_watchpoint (child);
2241
2242 if (!have_stop_pc)
2243 child->stop_pc = get_pc (child);
2244
2245 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2246 && child->stop_expected)
2247 {
2248 if (debug_threads)
2249 debug_printf ("Expected stop.\n");
2250 child->stop_expected = 0;
2251
2252 if (thread->last_resume_kind == resume_stop)
2253 {
2254 /* We want to report the stop to the core. Treat the
2255 SIGSTOP as a normal event. */
2256 if (debug_threads)
2257 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2258 target_pid_to_str (ptid_of (thread)));
2259 }
2260 else if (stopping_threads != NOT_STOPPING_THREADS)
2261 {
2262 /* Stopping threads. We don't want this SIGSTOP to end up
2263 pending. */
2264 if (debug_threads)
2265 debug_printf ("LLW: SIGSTOP caught for %s "
2266 "while stopping threads.\n",
2267 target_pid_to_str (ptid_of (thread)));
2268 return NULL;
2269 }
2270 else
2271 {
2272 /* This is a delayed SIGSTOP. Filter out the event. */
2273 if (debug_threads)
2274 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2275 child->stepping ? "step" : "continue",
2276 target_pid_to_str (ptid_of (thread)));
2277
2278 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2279 return NULL;
2280 }
2281 }
2282
2283 child->status_pending_p = 1;
2284 child->status_pending = wstat;
2285 return child;
2286}
2287
2288/* Resume LWPs that are currently stopped without any pending status
2289 to report, but are resumed from the core's perspective. */
2290
2291static void
2292resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2293{
2294 struct thread_info *thread = (struct thread_info *) entry;
2295 struct lwp_info *lp = get_thread_lwp (thread);
2296
2297 if (lp->stopped
2298 && !lp->suspended
2299 && !lp->status_pending_p
2300 && thread->last_resume_kind != resume_stop
2301 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2302 {
2303 int step = thread->last_resume_kind == resume_step;
2304
2305 if (debug_threads)
2306 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2307 target_pid_to_str (ptid_of (thread)),
2308 paddress (lp->stop_pc),
2309 step);
2310
2311 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2312 }
2313}
2314
2315/* Wait for an event from child(ren) WAIT_PTID, and return any that
2316 match FILTER_PTID (leaving others pending). The PTIDs can be:
2317 minus_one_ptid, to specify any child; a pid PTID, specifying all
2318 lwps of a thread group; or a PTID representing a single lwp. Store
2319 the stop status through the status pointer WSTAT. OPTIONS is
2320 passed to the waitpid call. Return 0 if no event was found and
2321 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2322 was found. Return the PID of the stopped child otherwise. */
2323
2324static int
2325linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2326 int *wstatp, int options)
2327{
2328 struct thread_info *event_thread;
2329 struct lwp_info *event_child, *requested_child;
2330 sigset_t block_mask, prev_mask;
2331
2332 retry:
2333 /* N.B. event_thread points to the thread_info struct that contains
2334 event_child. Keep them in sync. */
2335 event_thread = NULL;
2336 event_child = NULL;
2337 requested_child = NULL;
2338
2339 /* Check for a lwp with a pending status. */
2340
2341 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2342 {
2343 event_thread = (struct thread_info *)
2344 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2345 if (event_thread != NULL)
2346 event_child = get_thread_lwp (event_thread);
2347 if (debug_threads && event_thread)
2348 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2349 }
2350 else if (!ptid_equal (filter_ptid, null_ptid))
2351 {
2352 requested_child = find_lwp_pid (filter_ptid);
2353
2354 if (stopping_threads == NOT_STOPPING_THREADS
2355 && requested_child->status_pending_p
2356 && requested_child->collecting_fast_tracepoint)
2357 {
2358 enqueue_one_deferred_signal (requested_child,
2359 &requested_child->status_pending);
2360 requested_child->status_pending_p = 0;
2361 requested_child->status_pending = 0;
2362 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2363 }
2364
2365 if (requested_child->suspended
2366 && requested_child->status_pending_p)
2367 {
2368 internal_error (__FILE__, __LINE__,
2369 "requesting an event out of a"
2370 " suspended child?");
2371 }
2372
2373 if (requested_child->status_pending_p)
2374 {
2375 event_child = requested_child;
2376 event_thread = get_lwp_thread (event_child);
2377 }
2378 }
2379
2380 if (event_child != NULL)
2381 {
2382 if (debug_threads)
2383 debug_printf ("Got an event from pending child %ld (%04x)\n",
2384 lwpid_of (event_thread), event_child->status_pending);
2385 *wstatp = event_child->status_pending;
2386 event_child->status_pending_p = 0;
2387 event_child->status_pending = 0;
2388 current_thread = event_thread;
2389 return lwpid_of (event_thread);
2390 }
2391
2392 /* But if we don't find a pending event, we'll have to wait.
2393
2394 We only enter this loop if no process has a pending wait status.
2395 Thus any action taken in response to a wait status inside this
2396 loop is responding as soon as we detect the status, not after any
2397 pending events. */
2398
2399 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2400 all signals while here. */
2401 sigfillset (&block_mask);
2402 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2403
2404 /* Always pull all events out of the kernel. We'll randomly select
2405 an event LWP out of all that have events, to prevent
2406 starvation. */
2407 while (event_child == NULL)
2408 {
2409 pid_t ret = 0;
2410
2411 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2412 quirks:
2413
2414 - If the thread group leader exits while other threads in the
2415 thread group still exist, waitpid(TGID, ...) hangs. That
2416 waitpid won't return an exit status until the other threads
2417 in the group are reaped.
2418
2419 - When a non-leader thread execs, that thread just vanishes
2420 without reporting an exit (so we'd hang if we waited for it
2421 explicitly in that case). The exec event is reported to
2422 the TGID pid (although we don't currently enable exec
2423 events). */
2424 errno = 0;
2425 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2426
2427 if (debug_threads)
2428 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2429 ret, errno ? strerror (errno) : "ERRNO-OK");
2430
2431 if (ret > 0)
2432 {
2433 if (debug_threads)
2434 {
2435 debug_printf ("LLW: waitpid %ld received %s\n",
2436 (long) ret, status_to_str (*wstatp));
2437 }
2438
2439 /* Filter all events. IOW, leave all events pending. We'll
2440 randomly select an event LWP out of all that have events
2441 below. */
2442 linux_low_filter_event (ret, *wstatp);
2443 /* Retry until nothing comes out of waitpid. A single
2444 SIGCHLD can indicate more than one child stopped. */
2445 continue;
2446 }
2447
2448 /* Now that we've pulled all events out of the kernel, resume
2449 LWPs that don't have an interesting event to report. */
2450 if (stopping_threads == NOT_STOPPING_THREADS)
2451 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2452
2453 /* ... and find an LWP with a status to report to the core, if
2454 any. */
2455 event_thread = (struct thread_info *)
2456 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2457 if (event_thread != NULL)
2458 {
2459 event_child = get_thread_lwp (event_thread);
2460 *wstatp = event_child->status_pending;
2461 event_child->status_pending_p = 0;
2462 event_child->status_pending = 0;
2463 break;
2464 }
2465
2466 /* Check for zombie thread group leaders. Those can't be reaped
2467 until all other threads in the thread group are. */
2468 check_zombie_leaders ();
2469
2470 /* If there are no resumed children left in the set of LWPs we
2471 want to wait for, bail. We can't just block in
2472 waitpid/sigsuspend, because lwps might have been left stopped
2473 in trace-stop state, and we'd be stuck forever waiting for
2474 their status to change (which would only happen if we resumed
2475 them). Even if WNOHANG is set, this return code is preferred
2476 over 0 (below), as it is more detailed. */
2477 if ((find_inferior (&all_threads,
2478 not_stopped_callback,
2479 &wait_ptid) == NULL))
2480 {
2481 if (debug_threads)
2482 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2483 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2484 return -1;
2485 }
2486
2487 /* No interesting event to report to the caller. */
2488 if ((options & WNOHANG))
2489 {
2490 if (debug_threads)
2491 debug_printf ("WNOHANG set, no event found\n");
2492
2493 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2494 return 0;
2495 }
2496
2497 /* Block until we get an event reported with SIGCHLD. */
2498 if (debug_threads)
2499 debug_printf ("sigsuspend'ing\n");
2500
2501 sigsuspend (&prev_mask);
2502 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2503 goto retry;
2504 }
2505
2506 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2507
2508 current_thread = event_thread;
2509
2510 /* Check for thread exit. */
2511 if (! WIFSTOPPED (*wstatp))
2512 {
2513 gdb_assert (last_thread_of_process_p (pid_of (event_thread)));
2514
2515 if (debug_threads)
2516 debug_printf ("LWP %d is the last lwp of process. "
2517 "Process %ld exiting.\n",
2518 pid_of (event_thread), lwpid_of (event_thread));
2519 return lwpid_of (event_thread);
2520 }
2521
2522 return lwpid_of (event_thread);
2523}
2524
2525/* Wait for an event from child(ren) PTID. PTIDs can be:
2526 minus_one_ptid, to specify any child; a pid PTID, specifying all
2527 lwps of a thread group; or a PTID representing a single lwp. Store
2528 the stop status through the status pointer WSTAT. OPTIONS is
2529 passed to the waitpid call. Return 0 if no event was found and
2530 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2531 was found. Return the PID of the stopped child otherwise. */
2532
2533static int
2534linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2535{
2536 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2537}
2538
2539/* Count the LWP's that have had events. */
2540
2541static int
2542count_events_callback (struct inferior_list_entry *entry, void *data)
2543{
2544 struct thread_info *thread = (struct thread_info *) entry;
2545 struct lwp_info *lp = get_thread_lwp (thread);
2546 int *count = data;
2547
2548 gdb_assert (count != NULL);
2549
2550 /* Count only resumed LWPs that have an event pending. */
2551 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2552 && lp->status_pending_p)
2553 (*count)++;
2554
2555 return 0;
2556}
2557
2558/* Select the LWP (if any) that is currently being single-stepped. */
2559
2560static int
2561select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2562{
2563 struct thread_info *thread = (struct thread_info *) entry;
2564 struct lwp_info *lp = get_thread_lwp (thread);
2565
2566 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2567 && thread->last_resume_kind == resume_step
2568 && lp->status_pending_p)
2569 return 1;
2570 else
2571 return 0;
2572}
2573
2574/* Select the Nth LWP that has had an event. */
2575
2576static int
2577select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2578{
2579 struct thread_info *thread = (struct thread_info *) entry;
2580 struct lwp_info *lp = get_thread_lwp (thread);
2581 int *selector = data;
2582
2583 gdb_assert (selector != NULL);
2584
2585 /* Select only resumed LWPs that have an event pending. */
2586 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2587 && lp->status_pending_p)
2588 if ((*selector)-- == 0)
2589 return 1;
2590
2591 return 0;
2592}
2593
2594/* Select one LWP out of those that have events pending. */
2595
2596static void
2597select_event_lwp (struct lwp_info **orig_lp)
2598{
2599 int num_events = 0;
2600 int random_selector;
2601 struct thread_info *event_thread = NULL;
2602
2603 /* In all-stop, give preference to the LWP that is being
2604 single-stepped. There will be at most one, and it's the LWP that
2605 the core is most interested in. If we didn't do this, then we'd
2606 have to handle pending step SIGTRAPs somehow in case the core
2607 later continues the previously-stepped thread, otherwise we'd
2608 report the pending SIGTRAP, and the core, not having stepped the
2609 thread, wouldn't understand what the trap was for, and therefore
2610 would report it to the user as a random signal. */
2611 if (!non_stop)
2612 {
2613 event_thread
2614 = (struct thread_info *) find_inferior (&all_threads,
2615 select_singlestep_lwp_callback,
2616 NULL);
2617 if (event_thread != NULL)
2618 {
2619 if (debug_threads)
2620 debug_printf ("SEL: Select single-step %s\n",
2621 target_pid_to_str (ptid_of (event_thread)));
2622 }
2623 }
2624 if (event_thread == NULL)
2625 {
2626 /* No single-stepping LWP. Select one at random, out of those
2627 which have had events. */
2628
2629 /* First see how many events we have. */
2630 find_inferior (&all_threads, count_events_callback, &num_events);
2631 gdb_assert (num_events > 0);
2632
2633 /* Now randomly pick a LWP out of those that have had
2634 events. */
2635 random_selector = (int)
2636 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2637
2638 if (debug_threads && num_events > 1)
2639 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2640 num_events, random_selector);
2641
2642 event_thread
2643 = (struct thread_info *) find_inferior (&all_threads,
2644 select_event_lwp_callback,
2645 &random_selector);
2646 }
2647
2648 if (event_thread != NULL)
2649 {
2650 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2651
2652 /* Switch the event LWP. */
2653 *orig_lp = event_lp;
2654 }
2655}
2656
2657/* Decrement the suspend count of an LWP. */
2658
2659static int
2660unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2661{
2662 struct thread_info *thread = (struct thread_info *) entry;
2663 struct lwp_info *lwp = get_thread_lwp (thread);
2664
2665 /* Ignore EXCEPT. */
2666 if (lwp == except)
2667 return 0;
2668
2669 lwp_suspended_decr (lwp);
2670 return 0;
2671}
2672
2673/* Decrement the suspend count of all LWPs, except EXCEPT, if non
2674 NULL. */
2675
2676static void
2677unsuspend_all_lwps (struct lwp_info *except)
2678{
2679 find_inferior (&all_threads, unsuspend_one_lwp, except);
2680}
2681
2682static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2683static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2684 void *data);
2685static int lwp_running (struct inferior_list_entry *entry, void *data);
2686static ptid_t linux_wait_1 (ptid_t ptid,
2687 struct target_waitstatus *ourstatus,
2688 int target_options);
2689
2690/* Stabilize threads (move out of jump pads).
2691
2692 If a thread is midway collecting a fast tracepoint, we need to
2693 finish the collection and move it out of the jump pad before
2694 reporting the signal.
2695
2696 This avoids recursion while collecting (when a signal arrives
2697 midway, and the signal handler itself collects), which would trash
2698 the trace buffer. In case the user set a breakpoint in a signal
2699 handler, this avoids the backtrace showing the jump pad, etc..
2700 Most importantly, there are certain things we can't do safely if
2701 threads are stopped in a jump pad (or in its callee's). For
2702 example:
2703
2704 - starting a new trace run. A thread still collecting the
2705 previous run, could trash the trace buffer when resumed. The trace
2706 buffer control structures would have been reset but the thread had
2707 no way to tell. The thread could even midway memcpy'ing to the
2708 buffer, which would mean that when resumed, it would clobber the
2709 trace buffer that had been set for a new run.
2710
2711 - we can't rewrite/reuse the jump pads for new tracepoints
2712 safely. Say you do tstart while a thread is stopped midway while
2713 collecting. When the thread is later resumed, it finishes the
2714 collection, and returns to the jump pad, to execute the original
2715 instruction that was under the tracepoint jump at the time the
2716 older run had been started. If the jump pad had been rewritten
2717 since for something else in the new run, the thread would now
2718 execute the wrong / random instructions. */
2719
2720static void
2721linux_stabilize_threads (void)
2722{
2723 struct thread_info *saved_thread;
2724 struct thread_info *thread_stuck;
2725
2726 thread_stuck
2727 = (struct thread_info *) find_inferior (&all_threads,
2728 stuck_in_jump_pad_callback,
2729 NULL);
2730 if (thread_stuck != NULL)
2731 {
2732 if (debug_threads)
2733 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2734 lwpid_of (thread_stuck));
2735 return;
2736 }
2737
2738 saved_thread = current_thread;
2739
2740 stabilizing_threads = 1;
2741
2742 /* Kick 'em all. */
2743 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2744
2745 /* Loop until all are stopped out of the jump pads. */
2746 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2747 {
2748 struct target_waitstatus ourstatus;
2749 struct lwp_info *lwp;
2750 int wstat;
2751
2752 /* Note that we go through the full wait even loop. While
2753 moving threads out of jump pad, we need to be able to step
2754 over internal breakpoints and such. */
2755 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2756
2757 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2758 {
2759 lwp = get_thread_lwp (current_thread);
2760
2761 /* Lock it. */
2762 lwp_suspended_inc (lwp);
2763
2764 if (ourstatus.value.sig != GDB_SIGNAL_0
2765 || current_thread->last_resume_kind == resume_stop)
2766 {
2767 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2768 enqueue_one_deferred_signal (lwp, &wstat);
2769 }
2770 }
2771 }
2772
2773 find_inferior (&all_threads, unsuspend_one_lwp, NULL);
2774
2775 stabilizing_threads = 0;
2776
2777 current_thread = saved_thread;
2778
2779 if (debug_threads)
2780 {
2781 thread_stuck
2782 = (struct thread_info *) find_inferior (&all_threads,
2783 stuck_in_jump_pad_callback,
2784 NULL);
2785 if (thread_stuck != NULL)
2786 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2787 lwpid_of (thread_stuck));
2788 }
2789}
2790
2791static void async_file_mark (void);
2792
2793/* Convenience function that is called when the kernel reports an
2794 event that is not passed out to GDB. */
2795
2796static ptid_t
2797ignore_event (struct target_waitstatus *ourstatus)
2798{
2799 /* If we got an event, there may still be others, as a single
2800 SIGCHLD can indicate more than one child stopped. This forces
2801 another target_wait call. */
2802 async_file_mark ();
2803
2804 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2805 return null_ptid;
2806}
2807
2808/* Wait for process, returns status. */
2809
2810static ptid_t
2811linux_wait_1 (ptid_t ptid,
2812 struct target_waitstatus *ourstatus, int target_options)
2813{
2814 int w;
2815 struct lwp_info *event_child;
2816 int options;
2817 int pid;
2818 int step_over_finished;
2819 int bp_explains_trap;
2820 int maybe_internal_trap;
2821 int report_to_gdb;
2822 int trace_event;
2823 int in_step_range;
2824
2825 if (debug_threads)
2826 {
2827 debug_enter ();
2828 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
2829 }
2830
2831 /* Translate generic target options into linux options. */
2832 options = __WALL;
2833 if (target_options & TARGET_WNOHANG)
2834 options |= WNOHANG;
2835
2836 bp_explains_trap = 0;
2837 trace_event = 0;
2838 in_step_range = 0;
2839 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2840
2841 if (ptid_equal (step_over_bkpt, null_ptid))
2842 pid = linux_wait_for_event (ptid, &w, options);
2843 else
2844 {
2845 if (debug_threads)
2846 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
2847 target_pid_to_str (step_over_bkpt));
2848 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2849 }
2850
2851 if (pid == 0)
2852 {
2853 gdb_assert (target_options & TARGET_WNOHANG);
2854
2855 if (debug_threads)
2856 {
2857 debug_printf ("linux_wait_1 ret = null_ptid, "
2858 "TARGET_WAITKIND_IGNORE\n");
2859 debug_exit ();
2860 }
2861
2862 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2863 return null_ptid;
2864 }
2865 else if (pid == -1)
2866 {
2867 if (debug_threads)
2868 {
2869 debug_printf ("linux_wait_1 ret = null_ptid, "
2870 "TARGET_WAITKIND_NO_RESUMED\n");
2871 debug_exit ();
2872 }
2873
2874 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
2875 return null_ptid;
2876 }
2877
2878 event_child = get_thread_lwp (current_thread);
2879
2880 /* linux_wait_for_event only returns an exit status for the last
2881 child of a process. Report it. */
2882 if (WIFEXITED (w) || WIFSIGNALED (w))
2883 {
2884 if (WIFEXITED (w))
2885 {
2886 ourstatus->kind = TARGET_WAITKIND_EXITED;
2887 ourstatus->value.integer = WEXITSTATUS (w);
2888
2889 if (debug_threads)
2890 {
2891 debug_printf ("linux_wait_1 ret = %s, exited with "
2892 "retcode %d\n",
2893 target_pid_to_str (ptid_of (current_thread)),
2894 WEXITSTATUS (w));
2895 debug_exit ();
2896 }
2897 }
2898 else
2899 {
2900 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2901 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
2902
2903 if (debug_threads)
2904 {
2905 debug_printf ("linux_wait_1 ret = %s, terminated with "
2906 "signal %d\n",
2907 target_pid_to_str (ptid_of (current_thread)),
2908 WTERMSIG (w));
2909 debug_exit ();
2910 }
2911 }
2912
2913 return ptid_of (current_thread);
2914 }
2915
2916 /* If step-over executes a breakpoint instruction, it means a
2917 gdb/gdbserver breakpoint had been planted on top of a permanent
2918 breakpoint. The PC has been adjusted by
2919 check_stopped_by_breakpoint to point at the breakpoint address.
2920 Advance the PC manually past the breakpoint, otherwise the
2921 program would keep trapping the permanent breakpoint forever. */
2922 if (!ptid_equal (step_over_bkpt, null_ptid)
2923 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2924 {
2925 unsigned int increment_pc = the_low_target.breakpoint_len;
2926
2927 if (debug_threads)
2928 {
2929 debug_printf ("step-over for %s executed software breakpoint\n",
2930 target_pid_to_str (ptid_of (current_thread)));
2931 }
2932
2933 if (increment_pc != 0)
2934 {
2935 struct regcache *regcache
2936 = get_thread_regcache (current_thread, 1);
2937
2938 event_child->stop_pc += increment_pc;
2939 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
2940
2941 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
2942 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
2943 }
2944 }
2945
2946 /* If this event was not handled before, and is not a SIGTRAP, we
2947 report it. SIGILL and SIGSEGV are also treated as traps in case
2948 a breakpoint is inserted at the current PC. If this target does
2949 not support internal breakpoints at all, we also report the
2950 SIGTRAP without further processing; it's of no concern to us. */
2951 maybe_internal_trap
2952 = (supports_breakpoints ()
2953 && (WSTOPSIG (w) == SIGTRAP
2954 || ((WSTOPSIG (w) == SIGILL
2955 || WSTOPSIG (w) == SIGSEGV)
2956 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
2957
2958 if (maybe_internal_trap)
2959 {
2960 /* Handle anything that requires bookkeeping before deciding to
2961 report the event or continue waiting. */
2962
2963 /* First check if we can explain the SIGTRAP with an internal
2964 breakpoint, or if we should possibly report the event to GDB.
2965 Do this before anything that may remove or insert a
2966 breakpoint. */
2967 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
2968
2969 /* We have a SIGTRAP, possibly a step-over dance has just
2970 finished. If so, tweak the state machine accordingly,
2971 reinsert breakpoints and delete any reinsert (software
2972 single-step) breakpoints. */
2973 step_over_finished = finish_step_over (event_child);
2974
2975 /* Now invoke the callbacks of any internal breakpoints there. */
2976 check_breakpoints (event_child->stop_pc);
2977
2978 /* Handle tracepoint data collecting. This may overflow the
2979 trace buffer, and cause a tracing stop, removing
2980 breakpoints. */
2981 trace_event = handle_tracepoints (event_child);
2982
2983 if (bp_explains_trap)
2984 {
2985 /* If we stepped or ran into an internal breakpoint, we've
2986 already handled it. So next time we resume (from this
2987 PC), we should step over it. */
2988 if (debug_threads)
2989 debug_printf ("Hit a gdbserver breakpoint.\n");
2990
2991 if (breakpoint_here (event_child->stop_pc))
2992 event_child->need_step_over = 1;
2993 }
2994 }
2995 else
2996 {
2997 /* We have some other signal, possibly a step-over dance was in
2998 progress, and it should be cancelled too. */
2999 step_over_finished = finish_step_over (event_child);
3000 }
3001
3002 /* We have all the data we need. Either report the event to GDB, or
3003 resume threads and keep waiting for more. */
3004
3005 /* If we're collecting a fast tracepoint, finish the collection and
3006 move out of the jump pad before delivering a signal. See
3007 linux_stabilize_threads. */
3008
3009 if (WIFSTOPPED (w)
3010 && WSTOPSIG (w) != SIGTRAP
3011 && supports_fast_tracepoints ()
3012 && agent_loaded_p ())
3013 {
3014 if (debug_threads)
3015 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3016 "to defer or adjust it.\n",
3017 WSTOPSIG (w), lwpid_of (current_thread));
3018
3019 /* Allow debugging the jump pad itself. */
3020 if (current_thread->last_resume_kind != resume_step
3021 && maybe_move_out_of_jump_pad (event_child, &w))
3022 {
3023 enqueue_one_deferred_signal (event_child, &w);
3024
3025 if (debug_threads)
3026 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3027 WSTOPSIG (w), lwpid_of (current_thread));
3028
3029 linux_resume_one_lwp (event_child, 0, 0, NULL);
3030
3031 return ignore_event (ourstatus);
3032 }
3033 }
3034
3035 if (event_child->collecting_fast_tracepoint)
3036 {
3037 if (debug_threads)
3038 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3039 "Check if we're already there.\n",
3040 lwpid_of (current_thread),
3041 event_child->collecting_fast_tracepoint);
3042
3043 trace_event = 1;
3044
3045 event_child->collecting_fast_tracepoint
3046 = linux_fast_tracepoint_collecting (event_child, NULL);
3047
3048 if (event_child->collecting_fast_tracepoint != 1)
3049 {
3050 /* No longer need this breakpoint. */
3051 if (event_child->exit_jump_pad_bkpt != NULL)
3052 {
3053 if (debug_threads)
3054 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3055 "stopping all threads momentarily.\n");
3056
3057 /* Other running threads could hit this breakpoint.
3058 We don't handle moribund locations like GDB does,
3059 instead we always pause all threads when removing
3060 breakpoints, so that any step-over or
3061 decr_pc_after_break adjustment is always taken
3062 care of while the breakpoint is still
3063 inserted. */
3064 stop_all_lwps (1, event_child);
3065
3066 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3067 event_child->exit_jump_pad_bkpt = NULL;
3068
3069 unstop_all_lwps (1, event_child);
3070
3071 gdb_assert (event_child->suspended >= 0);
3072 }
3073 }
3074
3075 if (event_child->collecting_fast_tracepoint == 0)
3076 {
3077 if (debug_threads)
3078 debug_printf ("fast tracepoint finished "
3079 "collecting successfully.\n");
3080
3081 /* We may have a deferred signal to report. */
3082 if (dequeue_one_deferred_signal (event_child, &w))
3083 {
3084 if (debug_threads)
3085 debug_printf ("dequeued one signal.\n");
3086 }
3087 else
3088 {
3089 if (debug_threads)
3090 debug_printf ("no deferred signals.\n");
3091
3092 if (stabilizing_threads)
3093 {
3094 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3095 ourstatus->value.sig = GDB_SIGNAL_0;
3096
3097 if (debug_threads)
3098 {
3099 debug_printf ("linux_wait_1 ret = %s, stopped "
3100 "while stabilizing threads\n",
3101 target_pid_to_str (ptid_of (current_thread)));
3102 debug_exit ();
3103 }
3104
3105 return ptid_of (current_thread);
3106 }
3107 }
3108 }
3109 }
3110
3111 /* Check whether GDB would be interested in this event. */
3112
3113 /* If GDB is not interested in this signal, don't stop other
3114 threads, and don't report it to GDB. Just resume the inferior
3115 right away. We do this for threading-related signals as well as
3116 any that GDB specifically requested we ignore. But never ignore
3117 SIGSTOP if we sent it ourselves, and do not ignore signals when
3118 stepping - they may require special handling to skip the signal
3119 handler. Also never ignore signals that could be caused by a
3120 breakpoint. */
3121 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
3122 thread library? */
3123 if (WIFSTOPPED (w)
3124 && current_thread->last_resume_kind != resume_step
3125 && (
3126#if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3127 (current_process ()->priv->thread_db != NULL
3128 && (WSTOPSIG (w) == __SIGRTMIN
3129 || WSTOPSIG (w) == __SIGRTMIN + 1))
3130 ||
3131#endif
3132 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3133 && !(WSTOPSIG (w) == SIGSTOP
3134 && current_thread->last_resume_kind == resume_stop)
3135 && !linux_wstatus_maybe_breakpoint (w))))
3136 {
3137 siginfo_t info, *info_p;
3138
3139 if (debug_threads)
3140 debug_printf ("Ignored signal %d for LWP %ld.\n",
3141 WSTOPSIG (w), lwpid_of (current_thread));
3142
3143 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3144 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3145 info_p = &info;
3146 else
3147 info_p = NULL;
3148
3149 if (step_over_finished)
3150 {
3151 /* We cancelled this thread's step-over above. We still
3152 need to unsuspend all other LWPs, and set them back
3153 running again while the signal handler runs. */
3154 unsuspend_all_lwps (event_child);
3155
3156 /* Enqueue the pending signal info so that proceed_all_lwps
3157 doesn't lose it. */
3158 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3159
3160 proceed_all_lwps ();
3161 }
3162 else
3163 {
3164 linux_resume_one_lwp (event_child, event_child->stepping,
3165 WSTOPSIG (w), info_p);
3166 }
3167 return ignore_event (ourstatus);
3168 }
3169
3170 /* Note that all addresses are always "out of the step range" when
3171 there's no range to begin with. */
3172 in_step_range = lwp_in_step_range (event_child);
3173
3174 /* If GDB wanted this thread to single step, and the thread is out
3175 of the step range, we always want to report the SIGTRAP, and let
3176 GDB handle it. Watchpoints should always be reported. So should
3177 signals we can't explain. A SIGTRAP we can't explain could be a
3178 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3179 do, we're be able to handle GDB breakpoints on top of internal
3180 breakpoints, by handling the internal breakpoint and still
3181 reporting the event to GDB. If we don't, we're out of luck, GDB
3182 won't see the breakpoint hit. If we see a single-step event but
3183 the thread should be continuing, don't pass the trap to gdb.
3184 That indicates that we had previously finished a single-step but
3185 left the single-step pending -- see
3186 complete_ongoing_step_over. */
3187 report_to_gdb = (!maybe_internal_trap
3188 || (current_thread->last_resume_kind == resume_step
3189 && !in_step_range)
3190 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3191 || (!in_step_range
3192 && !bp_explains_trap
3193 && !trace_event
3194 && !step_over_finished
3195 && !(current_thread->last_resume_kind == resume_continue
3196 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3197 || (gdb_breakpoint_here (event_child->stop_pc)
3198 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3199 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3200 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3201
3202 run_breakpoint_commands (event_child->stop_pc);
3203
3204 /* We found no reason GDB would want us to stop. We either hit one
3205 of our own breakpoints, or finished an internal step GDB
3206 shouldn't know about. */
3207 if (!report_to_gdb)
3208 {
3209 if (debug_threads)
3210 {
3211 if (bp_explains_trap)
3212 debug_printf ("Hit a gdbserver breakpoint.\n");
3213 if (step_over_finished)
3214 debug_printf ("Step-over finished.\n");
3215 if (trace_event)
3216 debug_printf ("Tracepoint event.\n");
3217 if (lwp_in_step_range (event_child))
3218 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3219 paddress (event_child->stop_pc),
3220 paddress (event_child->step_range_start),
3221 paddress (event_child->step_range_end));
3222 }
3223
3224 /* We're not reporting this breakpoint to GDB, so apply the
3225 decr_pc_after_break adjustment to the inferior's regcache
3226 ourselves. */
3227
3228 if (the_low_target.set_pc != NULL)
3229 {
3230 struct regcache *regcache
3231 = get_thread_regcache (current_thread, 1);
3232 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3233 }
3234
3235 /* We may have finished stepping over a breakpoint. If so,
3236 we've stopped and suspended all LWPs momentarily except the
3237 stepping one. This is where we resume them all again. We're
3238 going to keep waiting, so use proceed, which handles stepping
3239 over the next breakpoint. */
3240 if (debug_threads)
3241 debug_printf ("proceeding all threads.\n");
3242
3243 if (step_over_finished)
3244 unsuspend_all_lwps (event_child);
3245
3246 proceed_all_lwps ();
3247 return ignore_event (ourstatus);
3248 }
3249
3250 if (debug_threads)
3251 {
3252 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3253 {
3254 char *str;
3255
3256 str = target_waitstatus_to_string (&event_child->waitstatus);
3257 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3258 lwpid_of (get_lwp_thread (event_child)), str);
3259 xfree (str);
3260 }
3261 if (current_thread->last_resume_kind == resume_step)
3262 {
3263 if (event_child->step_range_start == event_child->step_range_end)
3264 debug_printf ("GDB wanted to single-step, reporting event.\n");
3265 else if (!lwp_in_step_range (event_child))
3266 debug_printf ("Out of step range, reporting event.\n");
3267 }
3268 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3269 debug_printf ("Stopped by watchpoint.\n");
3270 else if (gdb_breakpoint_here (event_child->stop_pc))
3271 debug_printf ("Stopped by GDB breakpoint.\n");
3272 if (debug_threads)
3273 debug_printf ("Hit a non-gdbserver trap event.\n");
3274 }
3275
3276 /* Alright, we're going to report a stop. */
3277
3278 if (!stabilizing_threads)
3279 {
3280 /* In all-stop, stop all threads. */
3281 if (!non_stop)
3282 stop_all_lwps (0, NULL);
3283
3284 /* If we're not waiting for a specific LWP, choose an event LWP
3285 from among those that have had events. Giving equal priority
3286 to all LWPs that have had events helps prevent
3287 starvation. */
3288 if (ptid_equal (ptid, minus_one_ptid))
3289 {
3290 event_child->status_pending_p = 1;
3291 event_child->status_pending = w;
3292
3293 select_event_lwp (&event_child);
3294
3295 /* current_thread and event_child must stay in sync. */
3296 current_thread = get_lwp_thread (event_child);
3297
3298 event_child->status_pending_p = 0;
3299 w = event_child->status_pending;
3300 }
3301
3302 if (step_over_finished)
3303 {
3304 if (!non_stop)
3305 {
3306 /* If we were doing a step-over, all other threads but
3307 the stepping one had been paused in start_step_over,
3308 with their suspend counts incremented. We don't want
3309 to do a full unstop/unpause, because we're in
3310 all-stop mode (so we want threads stopped), but we
3311 still need to unsuspend the other threads, to
3312 decrement their `suspended' count back. */
3313 unsuspend_all_lwps (event_child);
3314 }
3315 else
3316 {
3317 /* If we just finished a step-over, then all threads had
3318 been momentarily paused. In all-stop, that's fine,
3319 we want threads stopped by now anyway. In non-stop,
3320 we need to re-resume threads that GDB wanted to be
3321 running. */
3322 unstop_all_lwps (1, event_child);
3323 }
3324 }
3325
3326 /* Stabilize threads (move out of jump pads). */
3327 if (!non_stop)
3328 stabilize_threads ();
3329 }
3330 else
3331 {
3332 /* If we just finished a step-over, then all threads had been
3333 momentarily paused. In all-stop, that's fine, we want
3334 threads stopped by now anyway. In non-stop, we need to
3335 re-resume threads that GDB wanted to be running. */
3336 if (step_over_finished)
3337 unstop_all_lwps (1, event_child);
3338 }
3339
3340 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3341 {
3342 /* If the reported event is an exit, fork, vfork or exec, let
3343 GDB know. */
3344 *ourstatus = event_child->waitstatus;
3345 /* Clear the event lwp's waitstatus since we handled it already. */
3346 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3347 }
3348 else
3349 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3350
3351 /* Now that we've selected our final event LWP, un-adjust its PC if
3352 it was a software breakpoint, and the client doesn't know we can
3353 adjust the breakpoint ourselves. */
3354 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3355 && !swbreak_feature)
3356 {
3357 int decr_pc = the_low_target.decr_pc_after_break;
3358
3359 if (decr_pc != 0)
3360 {
3361 struct regcache *regcache
3362 = get_thread_regcache (current_thread, 1);
3363 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3364 }
3365 }
3366
3367 if (current_thread->last_resume_kind == resume_stop
3368 && WSTOPSIG (w) == SIGSTOP)
3369 {
3370 /* A thread that has been requested to stop by GDB with vCont;t,
3371 and it stopped cleanly, so report as SIG0. The use of
3372 SIGSTOP is an implementation detail. */
3373 ourstatus->value.sig = GDB_SIGNAL_0;
3374 }
3375 else if (current_thread->last_resume_kind == resume_stop
3376 && WSTOPSIG (w) != SIGSTOP)
3377 {
3378 /* A thread that has been requested to stop by GDB with vCont;t,
3379 but, it stopped for other reasons. */
3380 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3381 }
3382 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3383 {
3384 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3385 }
3386
3387 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3388
3389 if (debug_threads)
3390 {
3391 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3392 target_pid_to_str (ptid_of (current_thread)),
3393 ourstatus->kind, ourstatus->value.sig);
3394 debug_exit ();
3395 }
3396
3397 return ptid_of (current_thread);
3398}
3399
3400/* Get rid of any pending event in the pipe. */
3401static void
3402async_file_flush (void)
3403{
3404 int ret;
3405 char buf;
3406
3407 do
3408 ret = read (linux_event_pipe[0], &buf, 1);
3409 while (ret >= 0 || (ret == -1 && errno == EINTR));
3410}
3411
3412/* Put something in the pipe, so the event loop wakes up. */
3413static void
3414async_file_mark (void)
3415{
3416 int ret;
3417
3418 async_file_flush ();
3419
3420 do
3421 ret = write (linux_event_pipe[1], "+", 1);
3422 while (ret == 0 || (ret == -1 && errno == EINTR));
3423
3424 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3425 be awakened anyway. */
3426}
3427
3428static ptid_t
3429linux_wait (ptid_t ptid,
3430 struct target_waitstatus *ourstatus, int target_options)
3431{
3432 ptid_t event_ptid;
3433
3434 /* Flush the async file first. */
3435 if (target_is_async_p ())
3436 async_file_flush ();
3437
3438 do
3439 {
3440 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3441 }
3442 while ((target_options & TARGET_WNOHANG) == 0
3443 && ptid_equal (event_ptid, null_ptid)
3444 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3445
3446 /* If at least one stop was reported, there may be more. A single
3447 SIGCHLD can signal more than one child stop. */
3448 if (target_is_async_p ()
3449 && (target_options & TARGET_WNOHANG) != 0
3450 && !ptid_equal (event_ptid, null_ptid))
3451 async_file_mark ();
3452
3453 return event_ptid;
3454}
3455
3456/* Send a signal to an LWP. */
3457
3458static int
3459kill_lwp (unsigned long lwpid, int signo)
3460{
3461 /* Use tkill, if possible, in case we are using nptl threads. If tkill
3462 fails, then we are not using nptl threads and we should be using kill. */
3463
3464#ifdef __NR_tkill
3465 {
3466 static int tkill_failed;
3467
3468 if (!tkill_failed)
3469 {
3470 int ret;
3471
3472 errno = 0;
3473 ret = syscall (__NR_tkill, lwpid, signo);
3474 if (errno != ENOSYS)
3475 return ret;
3476 tkill_failed = 1;
3477 }
3478 }
3479#endif
3480
3481 return kill (lwpid, signo);
3482}
3483
3484void
3485linux_stop_lwp (struct lwp_info *lwp)
3486{
3487 send_sigstop (lwp);
3488}
3489
3490static void
3491send_sigstop (struct lwp_info *lwp)
3492{
3493 int pid;
3494
3495 pid = lwpid_of (get_lwp_thread (lwp));
3496
3497 /* If we already have a pending stop signal for this process, don't
3498 send another. */
3499 if (lwp->stop_expected)
3500 {
3501 if (debug_threads)
3502 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3503
3504 return;
3505 }
3506
3507 if (debug_threads)
3508 debug_printf ("Sending sigstop to lwp %d\n", pid);
3509
3510 lwp->stop_expected = 1;
3511 kill_lwp (pid, SIGSTOP);
3512}
3513
3514static int
3515send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3516{
3517 struct thread_info *thread = (struct thread_info *) entry;
3518 struct lwp_info *lwp = get_thread_lwp (thread);
3519
3520 /* Ignore EXCEPT. */
3521 if (lwp == except)
3522 return 0;
3523
3524 if (lwp->stopped)
3525 return 0;
3526
3527 send_sigstop (lwp);
3528 return 0;
3529}
3530
3531/* Increment the suspend count of an LWP, and stop it, if not stopped
3532 yet. */
3533static int
3534suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3535 void *except)
3536{
3537 struct thread_info *thread = (struct thread_info *) entry;
3538 struct lwp_info *lwp = get_thread_lwp (thread);
3539
3540 /* Ignore EXCEPT. */
3541 if (lwp == except)
3542 return 0;
3543
3544 lwp_suspended_inc (lwp);
3545
3546 return send_sigstop_callback (entry, except);
3547}
3548
3549static void
3550mark_lwp_dead (struct lwp_info *lwp, int wstat)
3551{
3552 /* Store the exit status for later. */
3553 lwp->status_pending_p = 1;
3554 lwp->status_pending = wstat;
3555
3556 /* Store in waitstatus as well, as there's nothing else to process
3557 for this event. */
3558 if (WIFEXITED (wstat))
3559 {
3560 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3561 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3562 }
3563 else if (WIFSIGNALED (wstat))
3564 {
3565 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3566 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3567 }
3568
3569 /* Prevent trying to stop it. */
3570 lwp->stopped = 1;
3571
3572 /* No further stops are expected from a dead lwp. */
3573 lwp->stop_expected = 0;
3574}
3575
3576/* Return true if LWP has exited already, and has a pending exit event
3577 to report to GDB. */
3578
3579static int
3580lwp_is_marked_dead (struct lwp_info *lwp)
3581{
3582 return (lwp->status_pending_p
3583 && (WIFEXITED (lwp->status_pending)
3584 || WIFSIGNALED (lwp->status_pending)));
3585}
3586
3587/* Wait for all children to stop for the SIGSTOPs we just queued. */
3588
3589static void
3590wait_for_sigstop (void)
3591{
3592 struct thread_info *saved_thread;
3593 ptid_t saved_tid;
3594 int wstat;
3595 int ret;
3596
3597 saved_thread = current_thread;
3598 if (saved_thread != NULL)
3599 saved_tid = saved_thread->entry.id;
3600 else
3601 saved_tid = null_ptid; /* avoid bogus unused warning */
3602
3603 if (debug_threads)
3604 debug_printf ("wait_for_sigstop: pulling events\n");
3605
3606 /* Passing NULL_PTID as filter indicates we want all events to be
3607 left pending. Eventually this returns when there are no
3608 unwaited-for children left. */
3609 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3610 &wstat, __WALL);
3611 gdb_assert (ret == -1);
3612
3613 if (saved_thread == NULL || linux_thread_alive (saved_tid))
3614 current_thread = saved_thread;
3615 else
3616 {
3617 if (debug_threads)
3618 debug_printf ("Previously current thread died.\n");
3619
3620 if (non_stop)
3621 {
3622 /* We can't change the current inferior behind GDB's back,
3623 otherwise, a subsequent command may apply to the wrong
3624 process. */
3625 current_thread = NULL;
3626 }
3627 else
3628 {
3629 /* Set a valid thread as current. */
3630 set_desired_thread (0);
3631 }
3632 }
3633}
3634
3635/* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3636 move it out, because we need to report the stop event to GDB. For
3637 example, if the user puts a breakpoint in the jump pad, it's
3638 because she wants to debug it. */
3639
3640static int
3641stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3642{
3643 struct thread_info *thread = (struct thread_info *) entry;
3644 struct lwp_info *lwp = get_thread_lwp (thread);
3645
3646 if (lwp->suspended != 0)
3647 {
3648 internal_error (__FILE__, __LINE__,
3649 "LWP %ld is suspended, suspended=%d\n",
3650 lwpid_of (thread), lwp->suspended);
3651 }
3652 gdb_assert (lwp->stopped);
3653
3654 /* Allow debugging the jump pad, gdb_collect, etc.. */
3655 return (supports_fast_tracepoints ()
3656 && agent_loaded_p ()
3657 && (gdb_breakpoint_here (lwp->stop_pc)
3658 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3659 || thread->last_resume_kind == resume_step)
3660 && linux_fast_tracepoint_collecting (lwp, NULL));
3661}
3662
3663static void
3664move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3665{
3666 struct thread_info *thread = (struct thread_info *) entry;
3667 struct thread_info *saved_thread;
3668 struct lwp_info *lwp = get_thread_lwp (thread);
3669 int *wstat;
3670
3671 if (lwp->suspended != 0)
3672 {
3673 internal_error (__FILE__, __LINE__,
3674 "LWP %ld is suspended, suspended=%d\n",
3675 lwpid_of (thread), lwp->suspended);
3676 }
3677 gdb_assert (lwp->stopped);
3678
3679 /* For gdb_breakpoint_here. */
3680 saved_thread = current_thread;
3681 current_thread = thread;
3682
3683 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3684
3685 /* Allow debugging the jump pad, gdb_collect, etc. */
3686 if (!gdb_breakpoint_here (lwp->stop_pc)
3687 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3688 && thread->last_resume_kind != resume_step
3689 && maybe_move_out_of_jump_pad (lwp, wstat))
3690 {
3691 if (debug_threads)
3692 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3693 lwpid_of (thread));
3694
3695 if (wstat)
3696 {
3697 lwp->status_pending_p = 0;
3698 enqueue_one_deferred_signal (lwp, wstat);
3699
3700 if (debug_threads)
3701 debug_printf ("Signal %d for LWP %ld deferred "
3702 "(in jump pad)\n",
3703 WSTOPSIG (*wstat), lwpid_of (thread));
3704 }
3705
3706 linux_resume_one_lwp (lwp, 0, 0, NULL);
3707 }
3708 else
3709 lwp_suspended_inc (lwp);
3710
3711 current_thread = saved_thread;
3712}
3713
3714static int
3715lwp_running (struct inferior_list_entry *entry, void *data)
3716{
3717 struct thread_info *thread = (struct thread_info *) entry;
3718 struct lwp_info *lwp = get_thread_lwp (thread);
3719
3720 if (lwp_is_marked_dead (lwp))
3721 return 0;
3722 if (lwp->stopped)
3723 return 0;
3724 return 1;
3725}
3726
3727/* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
3728 If SUSPEND, then also increase the suspend count of every LWP,
3729 except EXCEPT. */
3730
3731static void
3732stop_all_lwps (int suspend, struct lwp_info *except)
3733{
3734 /* Should not be called recursively. */
3735 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3736
3737 if (debug_threads)
3738 {
3739 debug_enter ();
3740 debug_printf ("stop_all_lwps (%s, except=%s)\n",
3741 suspend ? "stop-and-suspend" : "stop",
3742 except != NULL
3743 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
3744 : "none");
3745 }
3746
3747 stopping_threads = (suspend
3748 ? STOPPING_AND_SUSPENDING_THREADS
3749 : STOPPING_THREADS);
3750
3751 if (suspend)
3752 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
3753 else
3754 find_inferior (&all_threads, send_sigstop_callback, except);
3755 wait_for_sigstop ();
3756 stopping_threads = NOT_STOPPING_THREADS;
3757
3758 if (debug_threads)
3759 {
3760 debug_printf ("stop_all_lwps done, setting stopping_threads "
3761 "back to !stopping\n");
3762 debug_exit ();
3763 }
3764}
3765
3766/* Enqueue one signal in the chain of signals which need to be
3767 delivered to this process on next resume. */
3768
3769static void
3770enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
3771{
3772 struct pending_signals *p_sig;
3773
3774 p_sig = xmalloc (sizeof (*p_sig));
3775 p_sig->prev = lwp->pending_signals;
3776 p_sig->signal = signal;
3777 if (info == NULL)
3778 memset (&p_sig->info, 0, sizeof (siginfo_t));
3779 else
3780 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3781 lwp->pending_signals = p_sig;
3782}
3783
3784/* Resume execution of LWP. If STEP is nonzero, single-step it. If
3785 SIGNAL is nonzero, give it that signal. */
3786
3787static void
3788linux_resume_one_lwp_throw (struct lwp_info *lwp,
3789 int step, int signal, siginfo_t *info)
3790{
3791 struct thread_info *thread = get_lwp_thread (lwp);
3792 struct thread_info *saved_thread;
3793 int fast_tp_collecting;
3794 struct process_info *proc = get_thread_process (thread);
3795
3796 /* Note that target description may not be initialised
3797 (proc->tdesc == NULL) at this point because the program hasn't
3798 stopped at the first instruction yet. It means GDBserver skips
3799 the extra traps from the wrapper program (see option --wrapper).
3800 Code in this function that requires register access should be
3801 guarded by proc->tdesc == NULL or something else. */
3802
3803 if (lwp->stopped == 0)
3804 return;
3805
3806 fast_tp_collecting = lwp->collecting_fast_tracepoint;
3807
3808 gdb_assert (!stabilizing_threads || fast_tp_collecting);
3809
3810 /* Cancel actions that rely on GDB not changing the PC (e.g., the
3811 user used the "jump" command, or "set $pc = foo"). */
3812 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
3813 {
3814 /* Collecting 'while-stepping' actions doesn't make sense
3815 anymore. */
3816 release_while_stepping_state_list (thread);
3817 }
3818
3819 /* If we have pending signals or status, and a new signal, enqueue the
3820 signal. Also enqueue the signal if we are waiting to reinsert a
3821 breakpoint; it will be picked up again below. */
3822 if (signal != 0
3823 && (lwp->status_pending_p
3824 || lwp->pending_signals != NULL
3825 || lwp->bp_reinsert != 0
3826 || fast_tp_collecting))
3827 {
3828 struct pending_signals *p_sig;
3829 p_sig = xmalloc (sizeof (*p_sig));
3830 p_sig->prev = lwp->pending_signals;
3831 p_sig->signal = signal;
3832 if (info == NULL)
3833 memset (&p_sig->info, 0, sizeof (siginfo_t));
3834 else
3835 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3836 lwp->pending_signals = p_sig;
3837 }
3838
3839 if (lwp->status_pending_p)
3840 {
3841 if (debug_threads)
3842 debug_printf ("Not resuming lwp %ld (%s, signal %d, stop %s);"
3843 " has pending status\n",
3844 lwpid_of (thread), step ? "step" : "continue", signal,
3845 lwp->stop_expected ? "expected" : "not expected");
3846 return;
3847 }
3848
3849 saved_thread = current_thread;
3850 current_thread = thread;
3851
3852 if (debug_threads)
3853 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
3854 lwpid_of (thread), step ? "step" : "continue", signal,
3855 lwp->stop_expected ? "expected" : "not expected");
3856
3857 /* This bit needs some thinking about. If we get a signal that
3858 we must report while a single-step reinsert is still pending,
3859 we often end up resuming the thread. It might be better to
3860 (ew) allow a stack of pending events; then we could be sure that
3861 the reinsert happened right away and not lose any signals.
3862
3863 Making this stack would also shrink the window in which breakpoints are
3864 uninserted (see comment in linux_wait_for_lwp) but not enough for
3865 complete correctness, so it won't solve that problem. It may be
3866 worthwhile just to solve this one, however. */
3867 if (lwp->bp_reinsert != 0)
3868 {
3869 if (debug_threads)
3870 debug_printf (" pending reinsert at 0x%s\n",
3871 paddress (lwp->bp_reinsert));
3872
3873 if (can_hardware_single_step ())
3874 {
3875 if (fast_tp_collecting == 0)
3876 {
3877 if (step == 0)
3878 fprintf (stderr, "BAD - reinserting but not stepping.\n");
3879 if (lwp->suspended)
3880 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
3881 lwp->suspended);
3882 }
3883
3884 step = 1;
3885 }
3886
3887 /* Postpone any pending signal. It was enqueued above. */
3888 signal = 0;
3889 }
3890
3891 if (fast_tp_collecting == 1)
3892 {
3893 if (debug_threads)
3894 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3895 " (exit-jump-pad-bkpt)\n",
3896 lwpid_of (thread));
3897
3898 /* Postpone any pending signal. It was enqueued above. */
3899 signal = 0;
3900 }
3901 else if (fast_tp_collecting == 2)
3902 {
3903 if (debug_threads)
3904 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3905 " single-stepping\n",
3906 lwpid_of (thread));
3907
3908 if (can_hardware_single_step ())
3909 step = 1;
3910 else
3911 {
3912 internal_error (__FILE__, __LINE__,
3913 "moving out of jump pad single-stepping"
3914 " not implemented on this target");
3915 }
3916
3917 /* Postpone any pending signal. It was enqueued above. */
3918 signal = 0;
3919 }
3920
3921 /* If we have while-stepping actions in this thread set it stepping.
3922 If we have a signal to deliver, it may or may not be set to
3923 SIG_IGN, we don't know. Assume so, and allow collecting
3924 while-stepping into a signal handler. A possible smart thing to
3925 do would be to set an internal breakpoint at the signal return
3926 address, continue, and carry on catching this while-stepping
3927 action only when that breakpoint is hit. A future
3928 enhancement. */
3929 if (thread->while_stepping != NULL
3930 && can_hardware_single_step ())
3931 {
3932 if (debug_threads)
3933 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
3934 lwpid_of (thread));
3935 step = 1;
3936 }
3937
3938 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
3939 {
3940 struct regcache *regcache = get_thread_regcache (current_thread, 1);
3941
3942 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
3943
3944 if (debug_threads)
3945 {
3946 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
3947 (long) lwp->stop_pc);
3948 }
3949 }
3950
3951 /* If we have pending signals, consume one unless we are trying to
3952 reinsert a breakpoint or we're trying to finish a fast tracepoint
3953 collect. */
3954 if (lwp->pending_signals != NULL
3955 && lwp->bp_reinsert == 0
3956 && fast_tp_collecting == 0)
3957 {
3958 struct pending_signals **p_sig;
3959
3960 p_sig = &lwp->pending_signals;
3961 while ((*p_sig)->prev != NULL)
3962 p_sig = &(*p_sig)->prev;
3963
3964 signal = (*p_sig)->signal;
3965 if ((*p_sig)->info.si_signo != 0)
3966 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
3967 &(*p_sig)->info);
3968
3969 free (*p_sig);
3970 *p_sig = NULL;
3971 }
3972
3973 if (the_low_target.prepare_to_resume != NULL)
3974 the_low_target.prepare_to_resume (lwp);
3975
3976 regcache_invalidate_thread (thread);
3977 errno = 0;
3978 lwp->stepping = step;
3979 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (thread),
3980 (PTRACE_TYPE_ARG3) 0,
3981 /* Coerce to a uintptr_t first to avoid potential gcc warning
3982 of coercing an 8 byte integer to a 4 byte pointer. */
3983 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
3984
3985 current_thread = saved_thread;
3986 if (errno)
3987 perror_with_name ("resuming thread");
3988
3989 /* Successfully resumed. Clear state that no longer makes sense,
3990 and mark the LWP as running. Must not do this before resuming
3991 otherwise if that fails other code will be confused. E.g., we'd
3992 later try to stop the LWP and hang forever waiting for a stop
3993 status. Note that we must not throw after this is cleared,
3994 otherwise handle_zombie_lwp_error would get confused. */
3995 lwp->stopped = 0;
3996 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3997}
3998
3999/* Called when we try to resume a stopped LWP and that errors out. If
4000 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4001 or about to become), discard the error, clear any pending status
4002 the LWP may have, and return true (we'll collect the exit status
4003 soon enough). Otherwise, return false. */
4004
4005static int
4006check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4007{
4008 struct thread_info *thread = get_lwp_thread (lp);
4009
4010 /* If we get an error after resuming the LWP successfully, we'd
4011 confuse !T state for the LWP being gone. */
4012 gdb_assert (lp->stopped);
4013
4014 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4015 because even if ptrace failed with ESRCH, the tracee may be "not
4016 yet fully dead", but already refusing ptrace requests. In that
4017 case the tracee has 'R (Running)' state for a little bit
4018 (observed in Linux 3.18). See also the note on ESRCH in the
4019 ptrace(2) man page. Instead, check whether the LWP has any state
4020 other than ptrace-stopped. */
4021
4022 /* Don't assume anything if /proc/PID/status can't be read. */
4023 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4024 {
4025 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4026 lp->status_pending_p = 0;
4027 return 1;
4028 }
4029 return 0;
4030}
4031
4032/* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4033 disappears while we try to resume it. */
4034
4035static void
4036linux_resume_one_lwp (struct lwp_info *lwp,
4037 int step, int signal, siginfo_t *info)
4038{
4039 TRY
4040 {
4041 linux_resume_one_lwp_throw (lwp, step, signal, info);
4042 }
4043 CATCH (ex, RETURN_MASK_ERROR)
4044 {
4045 if (!check_ptrace_stopped_lwp_gone (lwp))
4046 throw_exception (ex);
4047 }
4048 END_CATCH
4049}
4050
4051struct thread_resume_array
4052{
4053 struct thread_resume *resume;
4054 size_t n;
4055};
4056
4057/* This function is called once per thread via find_inferior.
4058 ARG is a pointer to a thread_resume_array struct.
4059 We look up the thread specified by ENTRY in ARG, and mark the thread
4060 with a pointer to the appropriate resume request.
4061
4062 This algorithm is O(threads * resume elements), but resume elements
4063 is small (and will remain small at least until GDB supports thread
4064 suspension). */
4065
4066static int
4067linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4068{
4069 struct thread_info *thread = (struct thread_info *) entry;
4070 struct lwp_info *lwp = get_thread_lwp (thread);
4071 int ndx;
4072 struct thread_resume_array *r;
4073
4074 r = arg;
4075
4076 for (ndx = 0; ndx < r->n; ndx++)
4077 {
4078 ptid_t ptid = r->resume[ndx].thread;
4079 if (ptid_equal (ptid, minus_one_ptid)
4080 || ptid_equal (ptid, entry->id)
4081 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4082 of PID'. */
4083 || (ptid_get_pid (ptid) == pid_of (thread)
4084 && (ptid_is_pid (ptid)
4085 || ptid_get_lwp (ptid) == -1)))
4086 {
4087 if (r->resume[ndx].kind == resume_stop
4088 && thread->last_resume_kind == resume_stop)
4089 {
4090 if (debug_threads)
4091 debug_printf ("already %s LWP %ld at GDB's request\n",
4092 (thread->last_status.kind
4093 == TARGET_WAITKIND_STOPPED)
4094 ? "stopped"
4095 : "stopping",
4096 lwpid_of (thread));
4097
4098 continue;
4099 }
4100
4101 lwp->resume = &r->resume[ndx];
4102 thread->last_resume_kind = lwp->resume->kind;
4103
4104 lwp->step_range_start = lwp->resume->step_range_start;
4105 lwp->step_range_end = lwp->resume->step_range_end;
4106
4107 /* If we had a deferred signal to report, dequeue one now.
4108 This can happen if LWP gets more than one signal while
4109 trying to get out of a jump pad. */
4110 if (lwp->stopped
4111 && !lwp->status_pending_p
4112 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4113 {
4114 lwp->status_pending_p = 1;
4115
4116 if (debug_threads)
4117 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4118 "leaving status pending.\n",
4119 WSTOPSIG (lwp->status_pending),
4120 lwpid_of (thread));
4121 }
4122
4123 return 0;
4124 }
4125 }
4126
4127 /* No resume action for this thread. */
4128 lwp->resume = NULL;
4129
4130 return 0;
4131}
4132
4133/* find_inferior callback for linux_resume.
4134 Set *FLAG_P if this lwp has an interesting status pending. */
4135
4136static int
4137resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4138{
4139 struct thread_info *thread = (struct thread_info *) entry;
4140 struct lwp_info *lwp = get_thread_lwp (thread);
4141
4142 /* LWPs which will not be resumed are not interesting, because
4143 we might not wait for them next time through linux_wait. */
4144 if (lwp->resume == NULL)
4145 return 0;
4146
4147 if (thread_still_has_status_pending_p (thread))
4148 * (int *) flag_p = 1;
4149
4150 return 0;
4151}
4152
4153/* Return 1 if this lwp that GDB wants running is stopped at an
4154 internal breakpoint that we need to step over. It assumes that any
4155 required STOP_PC adjustment has already been propagated to the
4156 inferior's regcache. */
4157
4158static int
4159need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4160{
4161 struct thread_info *thread = (struct thread_info *) entry;
4162 struct lwp_info *lwp = get_thread_lwp (thread);
4163 struct thread_info *saved_thread;
4164 CORE_ADDR pc;
4165 struct process_info *proc = get_thread_process (thread);
4166
4167 /* GDBserver is skipping the extra traps from the wrapper program,
4168 don't have to do step over. */
4169 if (proc->tdesc == NULL)
4170 return 0;
4171
4172 /* LWPs which will not be resumed are not interesting, because we
4173 might not wait for them next time through linux_wait. */
4174
4175 if (!lwp->stopped)
4176 {
4177 if (debug_threads)
4178 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4179 lwpid_of (thread));
4180 return 0;
4181 }
4182
4183 if (thread->last_resume_kind == resume_stop)
4184 {
4185 if (debug_threads)
4186 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4187 " stopped\n",
4188 lwpid_of (thread));
4189 return 0;
4190 }
4191
4192 gdb_assert (lwp->suspended >= 0);
4193
4194 if (lwp->suspended)
4195 {
4196 if (debug_threads)
4197 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4198 lwpid_of (thread));
4199 return 0;
4200 }
4201
4202 if (!lwp->need_step_over)
4203 {
4204 if (debug_threads)
4205 debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
4206 }
4207
4208 if (lwp->status_pending_p)
4209 {
4210 if (debug_threads)
4211 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4212 " status.\n",
4213 lwpid_of (thread));
4214 return 0;
4215 }
4216
4217 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4218 or we have. */
4219 pc = get_pc (lwp);
4220
4221 /* If the PC has changed since we stopped, then don't do anything,
4222 and let the breakpoint/tracepoint be hit. This happens if, for
4223 instance, GDB handled the decr_pc_after_break subtraction itself,
4224 GDB is OOL stepping this thread, or the user has issued a "jump"
4225 command, or poked thread's registers herself. */
4226 if (pc != lwp->stop_pc)
4227 {
4228 if (debug_threads)
4229 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4230 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4231 lwpid_of (thread),
4232 paddress (lwp->stop_pc), paddress (pc));
4233
4234 lwp->need_step_over = 0;
4235 return 0;
4236 }
4237
4238 saved_thread = current_thread;
4239 current_thread = thread;
4240
4241 /* We can only step over breakpoints we know about. */
4242 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4243 {
4244 /* Don't step over a breakpoint that GDB expects to hit
4245 though. If the condition is being evaluated on the target's side
4246 and it evaluate to false, step over this breakpoint as well. */
4247 if (gdb_breakpoint_here (pc)
4248 && gdb_condition_true_at_breakpoint (pc)
4249 && gdb_no_commands_at_breakpoint (pc))
4250 {
4251 if (debug_threads)
4252 debug_printf ("Need step over [LWP %ld]? yes, but found"
4253 " GDB breakpoint at 0x%s; skipping step over\n",
4254 lwpid_of (thread), paddress (pc));
4255
4256 current_thread = saved_thread;
4257 return 0;
4258 }
4259 else
4260 {
4261 if (debug_threads)
4262 debug_printf ("Need step over [LWP %ld]? yes, "
4263 "found breakpoint at 0x%s\n",
4264 lwpid_of (thread), paddress (pc));
4265
4266 /* We've found an lwp that needs stepping over --- return 1 so
4267 that find_inferior stops looking. */
4268 current_thread = saved_thread;
4269
4270 /* If the step over is cancelled, this is set again. */
4271 lwp->need_step_over = 0;
4272 return 1;
4273 }
4274 }
4275
4276 current_thread = saved_thread;
4277
4278 if (debug_threads)
4279 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4280 " at 0x%s\n",
4281 lwpid_of (thread), paddress (pc));
4282
4283 return 0;
4284}
4285
4286/* Start a step-over operation on LWP. When LWP stopped at a
4287 breakpoint, to make progress, we need to remove the breakpoint out
4288 of the way. If we let other threads run while we do that, they may
4289 pass by the breakpoint location and miss hitting it. To avoid
4290 that, a step-over momentarily stops all threads while LWP is
4291 single-stepped while the breakpoint is temporarily uninserted from
4292 the inferior. When the single-step finishes, we reinsert the
4293 breakpoint, and let all threads that are supposed to be running,
4294 run again.
4295
4296 On targets that don't support hardware single-step, we don't
4297 currently support full software single-stepping. Instead, we only
4298 support stepping over the thread event breakpoint, by asking the
4299 low target where to place a reinsert breakpoint. Since this
4300 routine assumes the breakpoint being stepped over is a thread event
4301 breakpoint, it usually assumes the return address of the current
4302 function is a good enough place to set the reinsert breakpoint. */
4303
4304static int
4305start_step_over (struct lwp_info *lwp)
4306{
4307 struct thread_info *thread = get_lwp_thread (lwp);
4308 struct thread_info *saved_thread;
4309 CORE_ADDR pc;
4310 int step;
4311
4312 if (debug_threads)
4313 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4314 lwpid_of (thread));
4315
4316 stop_all_lwps (1, lwp);
4317
4318 if (lwp->suspended != 0)
4319 {
4320 internal_error (__FILE__, __LINE__,
4321 "LWP %ld suspended=%d\n", lwpid_of (thread),
4322 lwp->suspended);
4323 }
4324
4325 if (debug_threads)
4326 debug_printf ("Done stopping all threads for step-over.\n");
4327
4328 /* Note, we should always reach here with an already adjusted PC,
4329 either by GDB (if we're resuming due to GDB's request), or by our
4330 caller, if we just finished handling an internal breakpoint GDB
4331 shouldn't care about. */
4332 pc = get_pc (lwp);
4333
4334 saved_thread = current_thread;
4335 current_thread = thread;
4336
4337 lwp->bp_reinsert = pc;
4338 uninsert_breakpoints_at (pc);
4339 uninsert_fast_tracepoint_jumps_at (pc);
4340
4341 if (can_hardware_single_step ())
4342 {
4343 step = 1;
4344 }
4345 else
4346 {
4347 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
4348 set_reinsert_breakpoint (raddr);
4349 step = 0;
4350 }
4351
4352 current_thread = saved_thread;
4353
4354 linux_resume_one_lwp (lwp, step, 0, NULL);
4355
4356 /* Require next event from this LWP. */
4357 step_over_bkpt = thread->entry.id;
4358 return 1;
4359}
4360
4361/* Finish a step-over. Reinsert the breakpoint we had uninserted in
4362 start_step_over, if still there, and delete any reinsert
4363 breakpoints we've set, on non hardware single-step targets. */
4364
4365static int
4366finish_step_over (struct lwp_info *lwp)
4367{
4368 if (lwp->bp_reinsert != 0)
4369 {
4370 if (debug_threads)
4371 debug_printf ("Finished step over.\n");
4372
4373 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4374 may be no breakpoint to reinsert there by now. */
4375 reinsert_breakpoints_at (lwp->bp_reinsert);
4376 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4377
4378 lwp->bp_reinsert = 0;
4379
4380 /* Delete any software-single-step reinsert breakpoints. No
4381 longer needed. We don't have to worry about other threads
4382 hitting this trap, and later not being able to explain it,
4383 because we were stepping over a breakpoint, and we hold all
4384 threads but LWP stopped while doing that. */
4385 if (!can_hardware_single_step ())
4386 delete_reinsert_breakpoints ();
4387
4388 step_over_bkpt = null_ptid;
4389 return 1;
4390 }
4391 else
4392 return 0;
4393}
4394
4395/* If there's a step over in progress, wait until all threads stop
4396 (that is, until the stepping thread finishes its step), and
4397 unsuspend all lwps. The stepping thread ends with its status
4398 pending, which is processed later when we get back to processing
4399 events. */
4400
4401static void
4402complete_ongoing_step_over (void)
4403{
4404 if (!ptid_equal (step_over_bkpt, null_ptid))
4405 {
4406 struct lwp_info *lwp;
4407 int wstat;
4408 int ret;
4409
4410 if (debug_threads)
4411 debug_printf ("detach: step over in progress, finish it first\n");
4412
4413 /* Passing NULL_PTID as filter indicates we want all events to
4414 be left pending. Eventually this returns when there are no
4415 unwaited-for children left. */
4416 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4417 &wstat, __WALL);
4418 gdb_assert (ret == -1);
4419
4420 lwp = find_lwp_pid (step_over_bkpt);
4421 if (lwp != NULL)
4422 finish_step_over (lwp);
4423 step_over_bkpt = null_ptid;
4424 unsuspend_all_lwps (lwp);
4425 }
4426}
4427
4428/* This function is called once per thread. We check the thread's resume
4429 request, which will tell us whether to resume, step, or leave the thread
4430 stopped; and what signal, if any, it should be sent.
4431
4432 For threads which we aren't explicitly told otherwise, we preserve
4433 the stepping flag; this is used for stepping over gdbserver-placed
4434 breakpoints.
4435
4436 If pending_flags was set in any thread, we queue any needed
4437 signals, since we won't actually resume. We already have a pending
4438 event to report, so we don't need to preserve any step requests;
4439 they should be re-issued if necessary. */
4440
4441static int
4442linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
4443{
4444 struct thread_info *thread = (struct thread_info *) entry;
4445 struct lwp_info *lwp = get_thread_lwp (thread);
4446 int step;
4447 int leave_all_stopped = * (int *) arg;
4448 int leave_pending;
4449
4450 if (lwp->resume == NULL)
4451 return 0;
4452
4453 if (lwp->resume->kind == resume_stop)
4454 {
4455 if (debug_threads)
4456 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4457
4458 if (!lwp->stopped)
4459 {
4460 if (debug_threads)
4461 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4462
4463 /* Stop the thread, and wait for the event asynchronously,
4464 through the event loop. */
4465 send_sigstop (lwp);
4466 }
4467 else
4468 {
4469 if (debug_threads)
4470 debug_printf ("already stopped LWP %ld\n",
4471 lwpid_of (thread));
4472
4473 /* The LWP may have been stopped in an internal event that
4474 was not meant to be notified back to GDB (e.g., gdbserver
4475 breakpoint), so we should be reporting a stop event in
4476 this case too. */
4477
4478 /* If the thread already has a pending SIGSTOP, this is a
4479 no-op. Otherwise, something later will presumably resume
4480 the thread and this will cause it to cancel any pending
4481 operation, due to last_resume_kind == resume_stop. If
4482 the thread already has a pending status to report, we
4483 will still report it the next time we wait - see
4484 status_pending_p_callback. */
4485
4486 /* If we already have a pending signal to report, then
4487 there's no need to queue a SIGSTOP, as this means we're
4488 midway through moving the LWP out of the jumppad, and we
4489 will report the pending signal as soon as that is
4490 finished. */
4491 if (lwp->pending_signals_to_report == NULL)
4492 send_sigstop (lwp);
4493 }
4494
4495 /* For stop requests, we're done. */
4496 lwp->resume = NULL;
4497 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4498 return 0;
4499 }
4500
4501 /* If this thread which is about to be resumed has a pending status,
4502 then don't resume it - we can just report the pending status.
4503 Likewise if it is suspended, because e.g., another thread is
4504 stepping past a breakpoint. Make sure to queue any signals that
4505 would otherwise be sent. In all-stop mode, we do this decision
4506 based on if *any* thread has a pending status. If there's a
4507 thread that needs the step-over-breakpoint dance, then don't
4508 resume any other thread but that particular one. */
4509 leave_pending = (lwp->suspended
4510 || lwp->status_pending_p
4511 || leave_all_stopped);
4512
4513 if (!leave_pending)
4514 {
4515 if (debug_threads)
4516 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4517
4518 step = (lwp->resume->kind == resume_step);
4519 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
4520 }
4521 else
4522 {
4523 if (debug_threads)
4524 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4525
4526 /* If we have a new signal, enqueue the signal. */
4527 if (lwp->resume->sig != 0)
4528 {
4529 struct pending_signals *p_sig;
4530 p_sig = xmalloc (sizeof (*p_sig));
4531 p_sig->prev = lwp->pending_signals;
4532 p_sig->signal = lwp->resume->sig;
4533 memset (&p_sig->info, 0, sizeof (siginfo_t));
4534
4535 /* If this is the same signal we were previously stopped by,
4536 make sure to queue its siginfo. We can ignore the return
4537 value of ptrace; if it fails, we'll skip
4538 PTRACE_SETSIGINFO. */
4539 if (WIFSTOPPED (lwp->last_status)
4540 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
4541 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4542 &p_sig->info);
4543
4544 lwp->pending_signals = p_sig;
4545 }
4546 }
4547
4548 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4549 lwp->resume = NULL;
4550 return 0;
4551}
4552
4553static void
4554linux_resume (struct thread_resume *resume_info, size_t n)
4555{
4556 struct thread_resume_array array = { resume_info, n };
4557 struct thread_info *need_step_over = NULL;
4558 int any_pending;
4559 int leave_all_stopped;
4560
4561 if (debug_threads)
4562 {
4563 debug_enter ();
4564 debug_printf ("linux_resume:\n");
4565 }
4566
4567 find_inferior (&all_threads, linux_set_resume_request, &array);
4568
4569 /* If there is a thread which would otherwise be resumed, which has
4570 a pending status, then don't resume any threads - we can just
4571 report the pending status. Make sure to queue any signals that
4572 would otherwise be sent. In non-stop mode, we'll apply this
4573 logic to each thread individually. We consume all pending events
4574 before considering to start a step-over (in all-stop). */
4575 any_pending = 0;
4576 if (!non_stop)
4577 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
4578
4579 /* If there is a thread which would otherwise be resumed, which is
4580 stopped at a breakpoint that needs stepping over, then don't
4581 resume any threads - have it step over the breakpoint with all
4582 other threads stopped, then resume all threads again. Make sure
4583 to queue any signals that would otherwise be delivered or
4584 queued. */
4585 if (!any_pending && supports_breakpoints ())
4586 need_step_over
4587 = (struct thread_info *) find_inferior (&all_threads,
4588 need_step_over_p, NULL);
4589
4590 leave_all_stopped = (need_step_over != NULL || any_pending);
4591
4592 if (debug_threads)
4593 {
4594 if (need_step_over != NULL)
4595 debug_printf ("Not resuming all, need step over\n");
4596 else if (any_pending)
4597 debug_printf ("Not resuming, all-stop and found "
4598 "an LWP with pending status\n");
4599 else
4600 debug_printf ("Resuming, no pending status or step over needed\n");
4601 }
4602
4603 /* Even if we're leaving threads stopped, queue all signals we'd
4604 otherwise deliver. */
4605 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4606
4607 if (need_step_over)
4608 start_step_over (get_thread_lwp (need_step_over));
4609
4610 if (debug_threads)
4611 {
4612 debug_printf ("linux_resume done\n");
4613 debug_exit ();
4614 }
4615}
4616
4617/* This function is called once per thread. We check the thread's
4618 last resume request, which will tell us whether to resume, step, or
4619 leave the thread stopped. Any signal the client requested to be
4620 delivered has already been enqueued at this point.
4621
4622 If any thread that GDB wants running is stopped at an internal
4623 breakpoint that needs stepping over, we start a step-over operation
4624 on that particular thread, and leave all others stopped. */
4625
4626static int
4627proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4628{
4629 struct thread_info *thread = (struct thread_info *) entry;
4630 struct lwp_info *lwp = get_thread_lwp (thread);
4631 int step;
4632
4633 if (lwp == except)
4634 return 0;
4635
4636 if (debug_threads)
4637 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4638
4639 if (!lwp->stopped)
4640 {
4641 if (debug_threads)
4642 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4643 return 0;
4644 }
4645
4646 if (thread->last_resume_kind == resume_stop
4647 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4648 {
4649 if (debug_threads)
4650 debug_printf (" client wants LWP to remain %ld stopped\n",
4651 lwpid_of (thread));
4652 return 0;
4653 }
4654
4655 if (lwp->status_pending_p)
4656 {
4657 if (debug_threads)
4658 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4659 lwpid_of (thread));
4660 return 0;
4661 }
4662
4663 gdb_assert (lwp->suspended >= 0);
4664
4665 if (lwp->suspended)
4666 {
4667 if (debug_threads)
4668 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4669 return 0;
4670 }
4671
4672 if (thread->last_resume_kind == resume_stop
4673 && lwp->pending_signals_to_report == NULL
4674 && lwp->collecting_fast_tracepoint == 0)
4675 {
4676 /* We haven't reported this LWP as stopped yet (otherwise, the
4677 last_status.kind check above would catch it, and we wouldn't
4678 reach here. This LWP may have been momentarily paused by a
4679 stop_all_lwps call while handling for example, another LWP's
4680 step-over. In that case, the pending expected SIGSTOP signal
4681 that was queued at vCont;t handling time will have already
4682 been consumed by wait_for_sigstop, and so we need to requeue
4683 another one here. Note that if the LWP already has a SIGSTOP
4684 pending, this is a no-op. */
4685
4686 if (debug_threads)
4687 debug_printf ("Client wants LWP %ld to stop. "
4688 "Making sure it has a SIGSTOP pending\n",
4689 lwpid_of (thread));
4690
4691 send_sigstop (lwp);
4692 }
4693
4694 if (thread->last_resume_kind == resume_step)
4695 {
4696 if (debug_threads)
4697 debug_printf (" stepping LWP %ld, client wants it stepping\n",
4698 lwpid_of (thread));
4699 step = 1;
4700 }
4701 else if (lwp->bp_reinsert != 0)
4702 {
4703 if (debug_threads)
4704 debug_printf (" stepping LWP %ld, reinsert set\n",
4705 lwpid_of (thread));
4706 step = 1;
4707 }
4708 else
4709 step = 0;
4710
4711 linux_resume_one_lwp (lwp, step, 0, NULL);
4712 return 0;
4713}
4714
4715static int
4716unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4717{
4718 struct thread_info *thread = (struct thread_info *) entry;
4719 struct lwp_info *lwp = get_thread_lwp (thread);
4720
4721 if (lwp == except)
4722 return 0;
4723
4724 lwp_suspended_decr (lwp);
4725
4726 return proceed_one_lwp (entry, except);
4727}
4728
4729/* When we finish a step-over, set threads running again. If there's
4730 another thread that may need a step-over, now's the time to start
4731 it. Eventually, we'll move all threads past their breakpoints. */
4732
4733static void
4734proceed_all_lwps (void)
4735{
4736 struct thread_info *need_step_over;
4737
4738 /* If there is a thread which would otherwise be resumed, which is
4739 stopped at a breakpoint that needs stepping over, then don't
4740 resume any threads - have it step over the breakpoint with all
4741 other threads stopped, then resume all threads again. */
4742
4743 if (supports_breakpoints ())
4744 {
4745 need_step_over
4746 = (struct thread_info *) find_inferior (&all_threads,
4747 need_step_over_p, NULL);
4748
4749 if (need_step_over != NULL)
4750 {
4751 if (debug_threads)
4752 debug_printf ("proceed_all_lwps: found "
4753 "thread %ld needing a step-over\n",
4754 lwpid_of (need_step_over));
4755
4756 start_step_over (get_thread_lwp (need_step_over));
4757 return;
4758 }
4759 }
4760
4761 if (debug_threads)
4762 debug_printf ("Proceeding, no step-over needed\n");
4763
4764 find_inferior (&all_threads, proceed_one_lwp, NULL);
4765}
4766
4767/* Stopped LWPs that the client wanted to be running, that don't have
4768 pending statuses, are set to run again, except for EXCEPT, if not
4769 NULL. This undoes a stop_all_lwps call. */
4770
4771static void
4772unstop_all_lwps (int unsuspend, struct lwp_info *except)
4773{
4774 if (debug_threads)
4775 {
4776 debug_enter ();
4777 if (except)
4778 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
4779 lwpid_of (get_lwp_thread (except)));
4780 else
4781 debug_printf ("unstopping all lwps\n");
4782 }
4783
4784 if (unsuspend)
4785 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
4786 else
4787 find_inferior (&all_threads, proceed_one_lwp, except);
4788
4789 if (debug_threads)
4790 {
4791 debug_printf ("unstop_all_lwps done\n");
4792 debug_exit ();
4793 }
4794}
4795
4796
4797#ifdef HAVE_LINUX_REGSETS
4798
4799#define use_linux_regsets 1
4800
4801/* Returns true if REGSET has been disabled. */
4802
4803static int
4804regset_disabled (struct regsets_info *info, struct regset_info *regset)
4805{
4806 return (info->disabled_regsets != NULL
4807 && info->disabled_regsets[regset - info->regsets]);
4808}
4809
4810/* Disable REGSET. */
4811
4812static void
4813disable_regset (struct regsets_info *info, struct regset_info *regset)
4814{
4815 int dr_offset;
4816
4817 dr_offset = regset - info->regsets;
4818 if (info->disabled_regsets == NULL)
4819 info->disabled_regsets = xcalloc (1, info->num_regsets);
4820 info->disabled_regsets[dr_offset] = 1;
4821}
4822
4823static int
4824regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
4825 struct regcache *regcache)
4826{
4827 struct regset_info *regset;
4828 int saw_general_regs = 0;
4829 int pid;
4830 struct iovec iov;
4831
4832 pid = lwpid_of (current_thread);
4833 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
4834 {
4835 void *buf, *data;
4836 int nt_type, res;
4837
4838 if (regset->size == 0 || regset_disabled (regsets_info, regset))
4839 continue;
4840
4841 buf = xmalloc (regset->size);
4842
4843 nt_type = regset->nt_type;
4844 if (nt_type)
4845 {
4846 iov.iov_base = buf;
4847 iov.iov_len = regset->size;
4848 data = (void *) &iov;
4849 }
4850 else
4851 data = buf;
4852
4853#ifndef __sparc__
4854 res = ptrace (regset->get_request, pid,
4855 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4856#else
4857 res = ptrace (regset->get_request, pid, data, nt_type);
4858#endif
4859 if (res < 0)
4860 {
4861 if (errno == EIO)
4862 {
4863 /* If we get EIO on a regset, do not try it again for
4864 this process mode. */
4865 disable_regset (regsets_info, regset);
4866 }
4867 else if (errno == ENODATA)
4868 {
4869 /* ENODATA may be returned if the regset is currently
4870 not "active". This can happen in normal operation,
4871 so suppress the warning in this case. */
4872 }
4873 else
4874 {
4875 char s[256];
4876 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
4877 pid);
4878 perror (s);
4879 }
4880 }
4881 else
4882 {
4883 if (regset->type == GENERAL_REGS)
4884 saw_general_regs = 1;
4885 regset->store_function (regcache, buf);
4886 }
4887 free (buf);
4888 }
4889 if (saw_general_regs)
4890 return 0;
4891 else
4892 return 1;
4893}
4894
4895static int
4896regsets_store_inferior_registers (struct regsets_info *regsets_info,
4897 struct regcache *regcache)
4898{
4899 struct regset_info *regset;
4900 int saw_general_regs = 0;
4901 int pid;
4902 struct iovec iov;
4903
4904 pid = lwpid_of (current_thread);
4905 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
4906 {
4907 void *buf, *data;
4908 int nt_type, res;
4909
4910 if (regset->size == 0 || regset_disabled (regsets_info, regset)
4911 || regset->fill_function == NULL)
4912 continue;
4913
4914 buf = xmalloc (regset->size);
4915
4916 /* First fill the buffer with the current register set contents,
4917 in case there are any items in the kernel's regset that are
4918 not in gdbserver's regcache. */
4919
4920 nt_type = regset->nt_type;
4921 if (nt_type)
4922 {
4923 iov.iov_base = buf;
4924 iov.iov_len = regset->size;
4925 data = (void *) &iov;
4926 }
4927 else
4928 data = buf;
4929
4930#ifndef __sparc__
4931 res = ptrace (regset->get_request, pid,
4932 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4933#else
4934 res = ptrace (regset->get_request, pid, data, nt_type);
4935#endif
4936
4937 if (res == 0)
4938 {
4939 /* Then overlay our cached registers on that. */
4940 regset->fill_function (regcache, buf);
4941
4942 /* Only now do we write the register set. */
4943#ifndef __sparc__
4944 res = ptrace (regset->set_request, pid,
4945 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4946#else
4947 res = ptrace (regset->set_request, pid, data, nt_type);
4948#endif
4949 }
4950
4951 if (res < 0)
4952 {
4953 if (errno == EIO)
4954 {
4955 /* If we get EIO on a regset, do not try it again for
4956 this process mode. */
4957 disable_regset (regsets_info, regset);
4958 }
4959 else if (errno == ESRCH)
4960 {
4961 /* At this point, ESRCH should mean the process is
4962 already gone, in which case we simply ignore attempts
4963 to change its registers. See also the related
4964 comment in linux_resume_one_lwp. */
4965 free (buf);
4966 return 0;
4967 }
4968 else
4969 {
4970 perror ("Warning: ptrace(regsets_store_inferior_registers)");
4971 }
4972 }
4973 else if (regset->type == GENERAL_REGS)
4974 saw_general_regs = 1;
4975 free (buf);
4976 }
4977 if (saw_general_regs)
4978 return 0;
4979 else
4980 return 1;
4981}
4982
4983#else /* !HAVE_LINUX_REGSETS */
4984
4985#define use_linux_regsets 0
4986#define regsets_fetch_inferior_registers(regsets_info, regcache) 1
4987#define regsets_store_inferior_registers(regsets_info, regcache) 1
4988
4989#endif
4990
4991/* Return 1 if register REGNO is supported by one of the regset ptrace
4992 calls or 0 if it has to be transferred individually. */
4993
4994static int
4995linux_register_in_regsets (const struct regs_info *regs_info, int regno)
4996{
4997 unsigned char mask = 1 << (regno % 8);
4998 size_t index = regno / 8;
4999
5000 return (use_linux_regsets
5001 && (regs_info->regset_bitmap == NULL
5002 || (regs_info->regset_bitmap[index] & mask) != 0));
5003}
5004
5005#ifdef HAVE_LINUX_USRREGS
5006
5007int
5008register_addr (const struct usrregs_info *usrregs, int regnum)
5009{
5010 int addr;
5011
5012 if (regnum < 0 || regnum >= usrregs->num_regs)
5013 error ("Invalid register number %d.", regnum);
5014
5015 addr = usrregs->regmap[regnum];
5016
5017 return addr;
5018}
5019
5020/* Fetch one register. */
5021static void
5022fetch_register (const struct usrregs_info *usrregs,
5023 struct regcache *regcache, int regno)
5024{
5025 CORE_ADDR regaddr;
5026 int i, size;
5027 char *buf;
5028 int pid;
5029
5030 if (regno >= usrregs->num_regs)
5031 return;
5032 if ((*the_low_target.cannot_fetch_register) (regno))
5033 return;
5034
5035 regaddr = register_addr (usrregs, regno);
5036 if (regaddr == -1)
5037 return;
5038
5039 size = ((register_size (regcache->tdesc, regno)
5040 + sizeof (PTRACE_XFER_TYPE) - 1)
5041 & -sizeof (PTRACE_XFER_TYPE));
5042 buf = alloca (size);
5043
5044 pid = lwpid_of (current_thread);
5045 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5046 {
5047 errno = 0;
5048 *(PTRACE_XFER_TYPE *) (buf + i) =
5049 ptrace (PTRACE_PEEKUSER, pid,
5050 /* Coerce to a uintptr_t first to avoid potential gcc warning
5051 of coercing an 8 byte integer to a 4 byte pointer. */
5052 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5053 regaddr += sizeof (PTRACE_XFER_TYPE);
5054 if (errno != 0)
5055 error ("reading register %d: %s", regno, strerror (errno));
5056 }
5057
5058 if (the_low_target.supply_ptrace_register)
5059 the_low_target.supply_ptrace_register (regcache, regno, buf);
5060 else
5061 supply_register (regcache, regno, buf);
5062}
5063
5064/* Store one register. */
5065static void
5066store_register (const struct usrregs_info *usrregs,
5067 struct regcache *regcache, int regno)
5068{
5069 CORE_ADDR regaddr;
5070 int i, size;
5071 char *buf;
5072 int pid;
5073
5074 if (regno >= usrregs->num_regs)
5075 return;
5076 if ((*the_low_target.cannot_store_register) (regno))
5077 return;
5078
5079 regaddr = register_addr (usrregs, regno);
5080 if (regaddr == -1)
5081 return;
5082
5083 size = ((register_size (regcache->tdesc, regno)
5084 + sizeof (PTRACE_XFER_TYPE) - 1)
5085 & -sizeof (PTRACE_XFER_TYPE));
5086 buf = alloca (size);
5087 memset (buf, 0, size);
5088
5089 if (the_low_target.collect_ptrace_register)
5090 the_low_target.collect_ptrace_register (regcache, regno, buf);
5091 else
5092 collect_register (regcache, regno, buf);
5093
5094 pid = lwpid_of (current_thread);
5095 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5096 {
5097 errno = 0;
5098 ptrace (PTRACE_POKEUSER, pid,
5099 /* Coerce to a uintptr_t first to avoid potential gcc warning
5100 about coercing an 8 byte integer to a 4 byte pointer. */
5101 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5102 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5103 if (errno != 0)
5104 {
5105 /* At this point, ESRCH should mean the process is
5106 already gone, in which case we simply ignore attempts
5107 to change its registers. See also the related
5108 comment in linux_resume_one_lwp. */
5109 if (errno == ESRCH)
5110 return;
5111
5112 if ((*the_low_target.cannot_store_register) (regno) == 0)
5113 error ("writing register %d: %s", regno, strerror (errno));
5114 }
5115 regaddr += sizeof (PTRACE_XFER_TYPE);
5116 }
5117}
5118
5119/* Fetch all registers, or just one, from the child process.
5120 If REGNO is -1, do this for all registers, skipping any that are
5121 assumed to have been retrieved by regsets_fetch_inferior_registers,
5122 unless ALL is non-zero.
5123 Otherwise, REGNO specifies which register (so we can save time). */
5124static void
5125usr_fetch_inferior_registers (const struct regs_info *regs_info,
5126 struct regcache *regcache, int regno, int all)
5127{
5128 struct usrregs_info *usr = regs_info->usrregs;
5129
5130 if (regno == -1)
5131 {
5132 for (regno = 0; regno < usr->num_regs; regno++)
5133 if (all || !linux_register_in_regsets (regs_info, regno))
5134 fetch_register (usr, regcache, regno);
5135 }
5136 else
5137 fetch_register (usr, regcache, regno);
5138}
5139
5140/* Store our register values back into the inferior.
5141 If REGNO is -1, do this for all registers, skipping any that are
5142 assumed to have been saved by regsets_store_inferior_registers,
5143 unless ALL is non-zero.
5144 Otherwise, REGNO specifies which register (so we can save time). */
5145static void
5146usr_store_inferior_registers (const struct regs_info *regs_info,
5147 struct regcache *regcache, int regno, int all)
5148{
5149 struct usrregs_info *usr = regs_info->usrregs;
5150
5151 if (regno == -1)
5152 {
5153 for (regno = 0; regno < usr->num_regs; regno++)
5154 if (all || !linux_register_in_regsets (regs_info, regno))
5155 store_register (usr, regcache, regno);
5156 }
5157 else
5158 store_register (usr, regcache, regno);
5159}
5160
5161#else /* !HAVE_LINUX_USRREGS */
5162
5163#define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5164#define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5165
5166#endif
5167
5168
5169void
5170linux_fetch_registers (struct regcache *regcache, int regno)
5171{
5172 int use_regsets;
5173 int all = 0;
5174 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5175
5176 if (regno == -1)
5177 {
5178 if (the_low_target.fetch_register != NULL
5179 && regs_info->usrregs != NULL)
5180 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5181 (*the_low_target.fetch_register) (regcache, regno);
5182
5183 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5184 if (regs_info->usrregs != NULL)
5185 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5186 }
5187 else
5188 {
5189 if (the_low_target.fetch_register != NULL
5190 && (*the_low_target.fetch_register) (regcache, regno))
5191 return;
5192
5193 use_regsets = linux_register_in_regsets (regs_info, regno);
5194 if (use_regsets)
5195 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5196 regcache);
5197 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5198 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5199 }
5200}
5201
5202void
5203linux_store_registers (struct regcache *regcache, int regno)
5204{
5205 int use_regsets;
5206 int all = 0;
5207 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5208
5209 if (regno == -1)
5210 {
5211 all = regsets_store_inferior_registers (regs_info->regsets_info,
5212 regcache);
5213 if (regs_info->usrregs != NULL)
5214 usr_store_inferior_registers (regs_info, regcache, regno, all);
5215 }
5216 else
5217 {
5218 use_regsets = linux_register_in_regsets (regs_info, regno);
5219 if (use_regsets)
5220 all = regsets_store_inferior_registers (regs_info->regsets_info,
5221 regcache);
5222 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5223 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5224 }
5225}
5226
5227
5228/* Copy LEN bytes from inferior's memory starting at MEMADDR
5229 to debugger memory starting at MYADDR. */
5230
5231static int
5232linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5233{
5234 int pid = lwpid_of (current_thread);
5235 register PTRACE_XFER_TYPE *buffer;
5236 register CORE_ADDR addr;
5237 register int count;
5238 char filename[64];
5239 register int i;
5240 int ret;
5241 int fd;
5242
5243 /* Try using /proc. Don't bother for one word. */
5244 if (len >= 3 * sizeof (long))
5245 {
5246 int bytes;
5247
5248 /* We could keep this file open and cache it - possibly one per
5249 thread. That requires some juggling, but is even faster. */
5250 sprintf (filename, "/proc/%d/mem", pid);
5251 fd = open (filename, O_RDONLY | O_LARGEFILE);
5252 if (fd == -1)
5253 goto no_proc;
5254
5255 /* If pread64 is available, use it. It's faster if the kernel
5256 supports it (only one syscall), and it's 64-bit safe even on
5257 32-bit platforms (for instance, SPARC debugging a SPARC64
5258 application). */
5259#ifdef HAVE_PREAD64
5260 bytes = pread64 (fd, myaddr, len, memaddr);
5261#else
5262 bytes = -1;
5263 if (lseek (fd, memaddr, SEEK_SET) != -1)
5264 bytes = read (fd, myaddr, len);
5265#endif
5266
5267 close (fd);
5268 if (bytes == len)
5269 return 0;
5270
5271 /* Some data was read, we'll try to get the rest with ptrace. */
5272 if (bytes > 0)
5273 {
5274 memaddr += bytes;
5275 myaddr += bytes;
5276 len -= bytes;
5277 }
5278 }
5279
5280 no_proc:
5281 /* Round starting address down to longword boundary. */
5282 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5283 /* Round ending address up; get number of longwords that makes. */
5284 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5285 / sizeof (PTRACE_XFER_TYPE));
5286 /* Allocate buffer of that many longwords. */
5287 buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
5288
5289 /* Read all the longwords */
5290 errno = 0;
5291 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5292 {
5293 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5294 about coercing an 8 byte integer to a 4 byte pointer. */
5295 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5296 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5297 (PTRACE_TYPE_ARG4) 0);
5298 if (errno)
5299 break;
5300 }
5301 ret = errno;
5302
5303 /* Copy appropriate bytes out of the buffer. */
5304 if (i > 0)
5305 {
5306 i *= sizeof (PTRACE_XFER_TYPE);
5307 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5308 memcpy (myaddr,
5309 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5310 i < len ? i : len);
5311 }
5312
5313 return ret;
5314}
5315
5316/* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5317 memory at MEMADDR. On failure (cannot write to the inferior)
5318 returns the value of errno. Always succeeds if LEN is zero. */
5319
5320static int
5321linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5322{
5323 register int i;
5324 /* Round starting address down to longword boundary. */
5325 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5326 /* Round ending address up; get number of longwords that makes. */
5327 register int count
5328 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5329 / sizeof (PTRACE_XFER_TYPE);
5330
5331 /* Allocate buffer of that many longwords. */
5332 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *)
5333 alloca (count * sizeof (PTRACE_XFER_TYPE));
5334
5335 int pid = lwpid_of (current_thread);
5336
5337 if (len == 0)
5338 {
5339 /* Zero length write always succeeds. */
5340 return 0;
5341 }
5342
5343 if (debug_threads)
5344 {
5345 /* Dump up to four bytes. */
5346 char str[4 * 2 + 1];
5347 char *p = str;
5348 int dump = len < 4 ? len : 4;
5349
5350 for (i = 0; i < dump; i++)
5351 {
5352 sprintf (p, "%02x", myaddr[i]);
5353 p += 2;
5354 }
5355 *p = '\0';
5356
5357 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5358 str, (long) memaddr, pid);
5359 }
5360
5361 /* Fill start and end extra bytes of buffer with existing memory data. */
5362
5363 errno = 0;
5364 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5365 about coercing an 8 byte integer to a 4 byte pointer. */
5366 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5367 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5368 (PTRACE_TYPE_ARG4) 0);
5369 if (errno)
5370 return errno;
5371
5372 if (count > 1)
5373 {
5374 errno = 0;
5375 buffer[count - 1]
5376 = ptrace (PTRACE_PEEKTEXT, pid,
5377 /* Coerce to a uintptr_t first to avoid potential gcc warning
5378 about coercing an 8 byte integer to a 4 byte pointer. */
5379 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5380 * sizeof (PTRACE_XFER_TYPE)),
5381 (PTRACE_TYPE_ARG4) 0);
5382 if (errno)
5383 return errno;
5384 }
5385
5386 /* Copy data to be written over corresponding part of buffer. */
5387
5388 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5389 myaddr, len);
5390
5391 /* Write the entire buffer. */
5392
5393 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5394 {
5395 errno = 0;
5396 ptrace (PTRACE_POKETEXT, pid,
5397 /* Coerce to a uintptr_t first to avoid potential gcc warning
5398 about coercing an 8 byte integer to a 4 byte pointer. */
5399 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5400 (PTRACE_TYPE_ARG4) buffer[i]);
5401 if (errno)
5402 return errno;
5403 }
5404
5405 return 0;
5406}
5407
5408static void
5409linux_look_up_symbols (void)
5410{
5411#ifdef USE_THREAD_DB
5412 struct process_info *proc = current_process ();
5413
5414 if (proc->priv->thread_db != NULL)
5415 return;
5416
5417 /* If the kernel supports tracing clones, then we don't need to
5418 use the magic thread event breakpoint to learn about
5419 threads. */
5420 thread_db_init (!linux_supports_traceclone ());
5421#endif
5422}
5423
5424static void
5425linux_request_interrupt (void)
5426{
5427 extern unsigned long signal_pid;
5428
5429 /* Send a SIGINT to the process group. This acts just like the user
5430 typed a ^C on the controlling terminal. */
5431 kill (-signal_pid, SIGINT);
5432}
5433
5434/* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5435 to debugger memory starting at MYADDR. */
5436
5437static int
5438linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5439{
5440 char filename[PATH_MAX];
5441 int fd, n;
5442 int pid = lwpid_of (current_thread);
5443
5444 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5445
5446 fd = open (filename, O_RDONLY);
5447 if (fd < 0)
5448 return -1;
5449
5450 if (offset != (CORE_ADDR) 0
5451 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5452 n = -1;
5453 else
5454 n = read (fd, myaddr, len);
5455
5456 close (fd);
5457
5458 return n;
5459}
5460
5461/* These breakpoint and watchpoint related wrapper functions simply
5462 pass on the function call if the target has registered a
5463 corresponding function. */
5464
5465static int
5466linux_supports_z_point_type (char z_type)
5467{
5468 return (the_low_target.supports_z_point_type != NULL
5469 && the_low_target.supports_z_point_type (z_type));
5470}
5471
5472static int
5473linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5474 int size, struct raw_breakpoint *bp)
5475{
5476 if (type == raw_bkpt_type_sw)
5477 return insert_memory_breakpoint (bp);
5478 else if (the_low_target.insert_point != NULL)
5479 return the_low_target.insert_point (type, addr, size, bp);
5480 else
5481 /* Unsupported (see target.h). */
5482 return 1;
5483}
5484
5485static int
5486linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5487 int size, struct raw_breakpoint *bp)
5488{
5489 if (type == raw_bkpt_type_sw)
5490 return remove_memory_breakpoint (bp);
5491 else if (the_low_target.remove_point != NULL)
5492 return the_low_target.remove_point (type, addr, size, bp);
5493 else
5494 /* Unsupported (see target.h). */
5495 return 1;
5496}
5497
5498/* Implement the to_stopped_by_sw_breakpoint target_ops
5499 method. */
5500
5501static int
5502linux_stopped_by_sw_breakpoint (void)
5503{
5504 struct lwp_info *lwp = get_thread_lwp (current_thread);
5505
5506 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5507}
5508
5509/* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5510 method. */
5511
5512static int
5513linux_supports_stopped_by_sw_breakpoint (void)
5514{
5515 return USE_SIGTRAP_SIGINFO;
5516}
5517
5518/* Implement the to_stopped_by_hw_breakpoint target_ops
5519 method. */
5520
5521static int
5522linux_stopped_by_hw_breakpoint (void)
5523{
5524 struct lwp_info *lwp = get_thread_lwp (current_thread);
5525
5526 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5527}
5528
5529/* Implement the to_supports_stopped_by_hw_breakpoint target_ops
5530 method. */
5531
5532static int
5533linux_supports_stopped_by_hw_breakpoint (void)
5534{
5535 return USE_SIGTRAP_SIGINFO;
5536}
5537
5538/* Implement the supports_conditional_breakpoints target_ops
5539 method. */
5540
5541static int
5542linux_supports_conditional_breakpoints (void)
5543{
5544 /* GDBserver needs to step over the breakpoint if the condition is
5545 false. GDBserver software single step is too simple, so disable
5546 conditional breakpoints if the target doesn't have hardware single
5547 step. */
5548 return can_hardware_single_step ();
5549}
5550
5551static int
5552linux_stopped_by_watchpoint (void)
5553{
5554 struct lwp_info *lwp = get_thread_lwp (current_thread);
5555
5556 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5557}
5558
5559static CORE_ADDR
5560linux_stopped_data_address (void)
5561{
5562 struct lwp_info *lwp = get_thread_lwp (current_thread);
5563
5564 return lwp->stopped_data_address;
5565}
5566
5567#if defined(__UCLIBC__) && defined(HAS_NOMMU) \
5568 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
5569 && defined(PT_TEXT_END_ADDR)
5570
5571/* This is only used for targets that define PT_TEXT_ADDR,
5572 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5573 the target has different ways of acquiring this information, like
5574 loadmaps. */
5575
5576/* Under uClinux, programs are loaded at non-zero offsets, which we need
5577 to tell gdb about. */
5578
5579static int
5580linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5581{
5582 unsigned long text, text_end, data;
5583 int pid = lwpid_of (current_thread);
5584
5585 errno = 0;
5586
5587 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5588 (PTRACE_TYPE_ARG4) 0);
5589 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5590 (PTRACE_TYPE_ARG4) 0);
5591 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5592 (PTRACE_TYPE_ARG4) 0);
5593
5594 if (errno == 0)
5595 {
5596 /* Both text and data offsets produced at compile-time (and so
5597 used by gdb) are relative to the beginning of the program,
5598 with the data segment immediately following the text segment.
5599 However, the actual runtime layout in memory may put the data
5600 somewhere else, so when we send gdb a data base-address, we
5601 use the real data base address and subtract the compile-time
5602 data base-address from it (which is just the length of the
5603 text segment). BSS immediately follows data in both
5604 cases. */
5605 *text_p = text;
5606 *data_p = data - (text_end - text);
5607
5608 return 1;
5609 }
5610 return 0;
5611}
5612#endif
5613
5614static int
5615linux_qxfer_osdata (const char *annex,
5616 unsigned char *readbuf, unsigned const char *writebuf,
5617 CORE_ADDR offset, int len)
5618{
5619 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5620}
5621
5622/* Convert a native/host siginfo object, into/from the siginfo in the
5623 layout of the inferiors' architecture. */
5624
5625static void
5626siginfo_fixup (siginfo_t *siginfo, void *inf_siginfo, int direction)
5627{
5628 int done = 0;
5629
5630 if (the_low_target.siginfo_fixup != NULL)
5631 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
5632
5633 /* If there was no callback, or the callback didn't do anything,
5634 then just do a straight memcpy. */
5635 if (!done)
5636 {
5637 if (direction == 1)
5638 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5639 else
5640 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5641 }
5642}
5643
5644static int
5645linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
5646 unsigned const char *writebuf, CORE_ADDR offset, int len)
5647{
5648 int pid;
5649 siginfo_t siginfo;
5650 char inf_siginfo[sizeof (siginfo_t)];
5651
5652 if (current_thread == NULL)
5653 return -1;
5654
5655 pid = lwpid_of (current_thread);
5656
5657 if (debug_threads)
5658 debug_printf ("%s siginfo for lwp %d.\n",
5659 readbuf != NULL ? "Reading" : "Writing",
5660 pid);
5661
5662 if (offset >= sizeof (siginfo))
5663 return -1;
5664
5665 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5666 return -1;
5667
5668 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5669 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5670 inferior with a 64-bit GDBSERVER should look the same as debugging it
5671 with a 32-bit GDBSERVER, we need to convert it. */
5672 siginfo_fixup (&siginfo, inf_siginfo, 0);
5673
5674 if (offset + len > sizeof (siginfo))
5675 len = sizeof (siginfo) - offset;
5676
5677 if (readbuf != NULL)
5678 memcpy (readbuf, inf_siginfo + offset, len);
5679 else
5680 {
5681 memcpy (inf_siginfo + offset, writebuf, len);
5682
5683 /* Convert back to ptrace layout before flushing it out. */
5684 siginfo_fixup (&siginfo, inf_siginfo, 1);
5685
5686 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5687 return -1;
5688 }
5689
5690 return len;
5691}
5692
5693/* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5694 so we notice when children change state; as the handler for the
5695 sigsuspend in my_waitpid. */
5696
5697static void
5698sigchld_handler (int signo)
5699{
5700 int old_errno = errno;
5701
5702 if (debug_threads)
5703 {
5704 do
5705 {
5706 /* fprintf is not async-signal-safe, so call write
5707 directly. */
5708 if (write (2, "sigchld_handler\n",
5709 sizeof ("sigchld_handler\n") - 1) < 0)
5710 break; /* just ignore */
5711 } while (0);
5712 }
5713
5714 if (target_is_async_p ())
5715 async_file_mark (); /* trigger a linux_wait */
5716
5717 errno = old_errno;
5718}
5719
5720static int
5721linux_supports_non_stop (void)
5722{
5723 return 1;
5724}
5725
5726static int
5727linux_async (int enable)
5728{
5729 int previous = target_is_async_p ();
5730
5731 if (debug_threads)
5732 debug_printf ("linux_async (%d), previous=%d\n",
5733 enable, previous);
5734
5735 if (previous != enable)
5736 {
5737 sigset_t mask;
5738 sigemptyset (&mask);
5739 sigaddset (&mask, SIGCHLD);
5740
5741 sigprocmask (SIG_BLOCK, &mask, NULL);
5742
5743 if (enable)
5744 {
5745 if (pipe (linux_event_pipe) == -1)
5746 {
5747 linux_event_pipe[0] = -1;
5748 linux_event_pipe[1] = -1;
5749 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5750
5751 warning ("creating event pipe failed.");
5752 return previous;
5753 }
5754
5755 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
5756 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
5757
5758 /* Register the event loop handler. */
5759 add_file_handler (linux_event_pipe[0],
5760 handle_target_event, NULL);
5761
5762 /* Always trigger a linux_wait. */
5763 async_file_mark ();
5764 }
5765 else
5766 {
5767 delete_file_handler (linux_event_pipe[0]);
5768
5769 close (linux_event_pipe[0]);
5770 close (linux_event_pipe[1]);
5771 linux_event_pipe[0] = -1;
5772 linux_event_pipe[1] = -1;
5773 }
5774
5775 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5776 }
5777
5778 return previous;
5779}
5780
5781static int
5782linux_start_non_stop (int nonstop)
5783{
5784 /* Register or unregister from event-loop accordingly. */
5785 linux_async (nonstop);
5786
5787 if (target_is_async_p () != (nonstop != 0))
5788 return -1;
5789
5790 return 0;
5791}
5792
5793static int
5794linux_supports_multi_process (void)
5795{
5796 return 1;
5797}
5798
5799/* Check if fork events are supported. */
5800
5801static int
5802linux_supports_fork_events (void)
5803{
5804 return linux_supports_tracefork ();
5805}
5806
5807/* Check if vfork events are supported. */
5808
5809static int
5810linux_supports_vfork_events (void)
5811{
5812 return linux_supports_tracefork ();
5813}
5814
5815/* Callback for 'find_inferior'. Set the (possibly changed) ptrace
5816 options for the specified lwp. */
5817
5818static int
5819reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
5820 void *args)
5821{
5822 struct thread_info *thread = (struct thread_info *) entry;
5823 struct lwp_info *lwp = get_thread_lwp (thread);
5824
5825 if (!lwp->stopped)
5826 {
5827 /* Stop the lwp so we can modify its ptrace options. */
5828 lwp->must_set_ptrace_flags = 1;
5829 linux_stop_lwp (lwp);
5830 }
5831 else
5832 {
5833 /* Already stopped; go ahead and set the ptrace options. */
5834 struct process_info *proc = find_process_pid (pid_of (thread));
5835 int options = linux_low_ptrace_options (proc->attached);
5836
5837 linux_enable_event_reporting (lwpid_of (thread), options);
5838 lwp->must_set_ptrace_flags = 0;
5839 }
5840
5841 return 0;
5842}
5843
5844/* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
5845 ptrace flags for all inferiors. This is in case the new GDB connection
5846 doesn't support the same set of events that the previous one did. */
5847
5848static void
5849linux_handle_new_gdb_connection (void)
5850{
5851 pid_t pid;
5852
5853 /* Request that all the lwps reset their ptrace options. */
5854 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
5855}
5856
5857static int
5858linux_supports_disable_randomization (void)
5859{
5860#ifdef HAVE_PERSONALITY
5861 return 1;
5862#else
5863 return 0;
5864#endif
5865}
5866
5867static int
5868linux_supports_agent (void)
5869{
5870 return 1;
5871}
5872
5873static int
5874linux_supports_range_stepping (void)
5875{
5876 if (*the_low_target.supports_range_stepping == NULL)
5877 return 0;
5878
5879 return (*the_low_target.supports_range_stepping) ();
5880}
5881
5882/* Enumerate spufs IDs for process PID. */
5883static int
5884spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
5885{
5886 int pos = 0;
5887 int written = 0;
5888 char path[128];
5889 DIR *dir;
5890 struct dirent *entry;
5891
5892 sprintf (path, "/proc/%ld/fd", pid);
5893 dir = opendir (path);
5894 if (!dir)
5895 return -1;
5896
5897 rewinddir (dir);
5898 while ((entry = readdir (dir)) != NULL)
5899 {
5900 struct stat st;
5901 struct statfs stfs;
5902 int fd;
5903
5904 fd = atoi (entry->d_name);
5905 if (!fd)
5906 continue;
5907
5908 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
5909 if (stat (path, &st) != 0)
5910 continue;
5911 if (!S_ISDIR (st.st_mode))
5912 continue;
5913
5914 if (statfs (path, &stfs) != 0)
5915 continue;
5916 if (stfs.f_type != SPUFS_MAGIC)
5917 continue;
5918
5919 if (pos >= offset && pos + 4 <= offset + len)
5920 {
5921 *(unsigned int *)(buf + pos - offset) = fd;
5922 written += 4;
5923 }
5924 pos += 4;
5925 }
5926
5927 closedir (dir);
5928 return written;
5929}
5930
5931/* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
5932 object type, using the /proc file system. */
5933static int
5934linux_qxfer_spu (const char *annex, unsigned char *readbuf,
5935 unsigned const char *writebuf,
5936 CORE_ADDR offset, int len)
5937{
5938 long pid = lwpid_of (current_thread);
5939 char buf[128];
5940 int fd = 0;
5941 int ret = 0;
5942
5943 if (!writebuf && !readbuf)
5944 return -1;
5945
5946 if (!*annex)
5947 {
5948 if (!readbuf)
5949 return -1;
5950 else
5951 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5952 }
5953
5954 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
5955 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5956 if (fd <= 0)
5957 return -1;
5958
5959 if (offset != 0
5960 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5961 {
5962 close (fd);
5963 return 0;
5964 }
5965
5966 if (writebuf)
5967 ret = write (fd, writebuf, (size_t) len);
5968 else
5969 ret = read (fd, readbuf, (size_t) len);
5970
5971 close (fd);
5972 return ret;
5973}
5974
5975#if defined PT_GETDSBT || defined PTRACE_GETFDPIC
5976struct target_loadseg
5977{
5978 /* Core address to which the segment is mapped. */
5979 Elf32_Addr addr;
5980 /* VMA recorded in the program header. */
5981 Elf32_Addr p_vaddr;
5982 /* Size of this segment in memory. */
5983 Elf32_Word p_memsz;
5984};
5985
5986# if defined PT_GETDSBT
5987struct target_loadmap
5988{
5989 /* Protocol version number, must be zero. */
5990 Elf32_Word version;
5991 /* Pointer to the DSBT table, its size, and the DSBT index. */
5992 unsigned *dsbt_table;
5993 unsigned dsbt_size, dsbt_index;
5994 /* Number of segments in this map. */
5995 Elf32_Word nsegs;
5996 /* The actual memory map. */
5997 struct target_loadseg segs[/*nsegs*/];
5998};
5999# define LINUX_LOADMAP PT_GETDSBT
6000# define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6001# define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6002# else
6003struct target_loadmap
6004{
6005 /* Protocol version number, must be zero. */
6006 Elf32_Half version;
6007 /* Number of segments in this map. */
6008 Elf32_Half nsegs;
6009 /* The actual memory map. */
6010 struct target_loadseg segs[/*nsegs*/];
6011};
6012# define LINUX_LOADMAP PTRACE_GETFDPIC
6013# define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6014# define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6015# endif
6016
6017static int
6018linux_read_loadmap (const char *annex, CORE_ADDR offset,
6019 unsigned char *myaddr, unsigned int len)
6020{
6021 int pid = lwpid_of (current_thread);
6022 int addr = -1;
6023 struct target_loadmap *data = NULL;
6024 unsigned int actual_length, copy_length;
6025
6026 if (strcmp (annex, "exec") == 0)
6027 addr = (int) LINUX_LOADMAP_EXEC;
6028 else if (strcmp (annex, "interp") == 0)
6029 addr = (int) LINUX_LOADMAP_INTERP;
6030 else
6031 return -1;
6032
6033 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6034 return -1;
6035
6036 if (data == NULL)
6037 return -1;
6038
6039 actual_length = sizeof (struct target_loadmap)
6040 + sizeof (struct target_loadseg) * data->nsegs;
6041
6042 if (offset < 0 || offset > actual_length)
6043 return -1;
6044
6045 copy_length = actual_length - offset < len ? actual_length - offset : len;
6046 memcpy (myaddr, (char *) data + offset, copy_length);
6047 return copy_length;
6048}
6049#else
6050# define linux_read_loadmap NULL
6051#endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6052
6053static void
6054linux_process_qsupported (const char *query)
6055{
6056 if (the_low_target.process_qsupported != NULL)
6057 the_low_target.process_qsupported (query);
6058}
6059
6060static int
6061linux_supports_tracepoints (void)
6062{
6063 if (*the_low_target.supports_tracepoints == NULL)
6064 return 0;
6065
6066 return (*the_low_target.supports_tracepoints) ();
6067}
6068
6069static CORE_ADDR
6070linux_read_pc (struct regcache *regcache)
6071{
6072 if (the_low_target.get_pc == NULL)
6073 return 0;
6074
6075 return (*the_low_target.get_pc) (regcache);
6076}
6077
6078static void
6079linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6080{
6081 gdb_assert (the_low_target.set_pc != NULL);
6082
6083 (*the_low_target.set_pc) (regcache, pc);
6084}
6085
6086static int
6087linux_thread_stopped (struct thread_info *thread)
6088{
6089 return get_thread_lwp (thread)->stopped;
6090}
6091
6092/* This exposes stop-all-threads functionality to other modules. */
6093
6094static void
6095linux_pause_all (int freeze)
6096{
6097 stop_all_lwps (freeze, NULL);
6098}
6099
6100/* This exposes unstop-all-threads functionality to other gdbserver
6101 modules. */
6102
6103static void
6104linux_unpause_all (int unfreeze)
6105{
6106 unstop_all_lwps (unfreeze, NULL);
6107}
6108
6109static int
6110linux_prepare_to_access_memory (void)
6111{
6112 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6113 running LWP. */
6114 if (non_stop)
6115 linux_pause_all (1);
6116 return 0;
6117}
6118
6119static void
6120linux_done_accessing_memory (void)
6121{
6122 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6123 running LWP. */
6124 if (non_stop)
6125 linux_unpause_all (1);
6126}
6127
6128static int
6129linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6130 CORE_ADDR collector,
6131 CORE_ADDR lockaddr,
6132 ULONGEST orig_size,
6133 CORE_ADDR *jump_entry,
6134 CORE_ADDR *trampoline,
6135 ULONGEST *trampoline_size,
6136 unsigned char *jjump_pad_insn,
6137 ULONGEST *jjump_pad_insn_size,
6138 CORE_ADDR *adjusted_insn_addr,
6139 CORE_ADDR *adjusted_insn_addr_end,
6140 char *err)
6141{
6142 return (*the_low_target.install_fast_tracepoint_jump_pad)
6143 (tpoint, tpaddr, collector, lockaddr, orig_size,
6144 jump_entry, trampoline, trampoline_size,
6145 jjump_pad_insn, jjump_pad_insn_size,
6146 adjusted_insn_addr, adjusted_insn_addr_end,
6147 err);
6148}
6149
6150static struct emit_ops *
6151linux_emit_ops (void)
6152{
6153 if (the_low_target.emit_ops != NULL)
6154 return (*the_low_target.emit_ops) ();
6155 else
6156 return NULL;
6157}
6158
6159static int
6160linux_get_min_fast_tracepoint_insn_len (void)
6161{
6162 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6163}
6164
6165/* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6166
6167static int
6168get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6169 CORE_ADDR *phdr_memaddr, int *num_phdr)
6170{
6171 char filename[PATH_MAX];
6172 int fd;
6173 const int auxv_size = is_elf64
6174 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6175 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6176
6177 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6178
6179 fd = open (filename, O_RDONLY);
6180 if (fd < 0)
6181 return 1;
6182
6183 *phdr_memaddr = 0;
6184 *num_phdr = 0;
6185 while (read (fd, buf, auxv_size) == auxv_size
6186 && (*phdr_memaddr == 0 || *num_phdr == 0))
6187 {
6188 if (is_elf64)
6189 {
6190 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6191
6192 switch (aux->a_type)
6193 {
6194 case AT_PHDR:
6195 *phdr_memaddr = aux->a_un.a_val;
6196 break;
6197 case AT_PHNUM:
6198 *num_phdr = aux->a_un.a_val;
6199 break;
6200 }
6201 }
6202 else
6203 {
6204 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6205
6206 switch (aux->a_type)
6207 {
6208 case AT_PHDR:
6209 *phdr_memaddr = aux->a_un.a_val;
6210 break;
6211 case AT_PHNUM:
6212 *num_phdr = aux->a_un.a_val;
6213 break;
6214 }
6215 }
6216 }
6217
6218 close (fd);
6219
6220 if (*phdr_memaddr == 0 || *num_phdr == 0)
6221 {
6222 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6223 "phdr_memaddr = %ld, phdr_num = %d",
6224 (long) *phdr_memaddr, *num_phdr);
6225 return 2;
6226 }
6227
6228 return 0;
6229}
6230
6231/* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6232
6233static CORE_ADDR
6234get_dynamic (const int pid, const int is_elf64)
6235{
6236 CORE_ADDR phdr_memaddr, relocation;
6237 int num_phdr, i;
6238 unsigned char *phdr_buf;
6239 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6240
6241 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6242 return 0;
6243
6244 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6245 phdr_buf = alloca (num_phdr * phdr_size);
6246
6247 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6248 return 0;
6249
6250 /* Compute relocation: it is expected to be 0 for "regular" executables,
6251 non-zero for PIE ones. */
6252 relocation = -1;
6253 for (i = 0; relocation == -1 && i < num_phdr; i++)
6254 if (is_elf64)
6255 {
6256 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6257
6258 if (p->p_type == PT_PHDR)
6259 relocation = phdr_memaddr - p->p_vaddr;
6260 }
6261 else
6262 {
6263 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6264
6265 if (p->p_type == PT_PHDR)
6266 relocation = phdr_memaddr - p->p_vaddr;
6267 }
6268
6269 if (relocation == -1)
6270 {
6271 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6272 any real world executables, including PIE executables, have always
6273 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6274 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6275 or present DT_DEBUG anyway (fpc binaries are statically linked).
6276
6277 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6278
6279 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6280
6281 return 0;
6282 }
6283
6284 for (i = 0; i < num_phdr; i++)
6285 {
6286 if (is_elf64)
6287 {
6288 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6289
6290 if (p->p_type == PT_DYNAMIC)
6291 return p->p_vaddr + relocation;
6292 }
6293 else
6294 {
6295 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6296
6297 if (p->p_type == PT_DYNAMIC)
6298 return p->p_vaddr + relocation;
6299 }
6300 }
6301
6302 return 0;
6303}
6304
6305/* Return &_r_debug in the inferior, or -1 if not present. Return value
6306 can be 0 if the inferior does not yet have the library list initialized.
6307 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6308 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6309
6310static CORE_ADDR
6311get_r_debug (const int pid, const int is_elf64)
6312{
6313 CORE_ADDR dynamic_memaddr;
6314 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6315 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6316 CORE_ADDR map = -1;
6317
6318 dynamic_memaddr = get_dynamic (pid, is_elf64);
6319 if (dynamic_memaddr == 0)
6320 return map;
6321
6322 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6323 {
6324 if (is_elf64)
6325 {
6326 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6327#ifdef DT_MIPS_RLD_MAP
6328 union
6329 {
6330 Elf64_Xword map;
6331 unsigned char buf[sizeof (Elf64_Xword)];
6332 }
6333 rld_map;
6334
6335 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6336 {
6337 if (linux_read_memory (dyn->d_un.d_val,
6338 rld_map.buf, sizeof (rld_map.buf)) == 0)
6339 return rld_map.map;
6340 else
6341 break;
6342 }
6343#endif /* DT_MIPS_RLD_MAP */
6344
6345 if (dyn->d_tag == DT_DEBUG && map == -1)
6346 map = dyn->d_un.d_val;
6347
6348 if (dyn->d_tag == DT_NULL)
6349 break;
6350 }
6351 else
6352 {
6353 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6354#ifdef DT_MIPS_RLD_MAP
6355 union
6356 {
6357 Elf32_Word map;
6358 unsigned char buf[sizeof (Elf32_Word)];
6359 }
6360 rld_map;
6361
6362 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6363 {
6364 if (linux_read_memory (dyn->d_un.d_val,
6365 rld_map.buf, sizeof (rld_map.buf)) == 0)
6366 return rld_map.map;
6367 else
6368 break;
6369 }
6370#endif /* DT_MIPS_RLD_MAP */
6371
6372 if (dyn->d_tag == DT_DEBUG && map == -1)
6373 map = dyn->d_un.d_val;
6374
6375 if (dyn->d_tag == DT_NULL)
6376 break;
6377 }
6378
6379 dynamic_memaddr += dyn_size;
6380 }
6381
6382 return map;
6383}
6384
6385/* Read one pointer from MEMADDR in the inferior. */
6386
6387static int
6388read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6389{
6390 int ret;
6391
6392 /* Go through a union so this works on either big or little endian
6393 hosts, when the inferior's pointer size is smaller than the size
6394 of CORE_ADDR. It is assumed the inferior's endianness is the
6395 same of the superior's. */
6396 union
6397 {
6398 CORE_ADDR core_addr;
6399 unsigned int ui;
6400 unsigned char uc;
6401 } addr;
6402
6403 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6404 if (ret == 0)
6405 {
6406 if (ptr_size == sizeof (CORE_ADDR))
6407 *ptr = addr.core_addr;
6408 else if (ptr_size == sizeof (unsigned int))
6409 *ptr = addr.ui;
6410 else
6411 gdb_assert_not_reached ("unhandled pointer size");
6412 }
6413 return ret;
6414}
6415
6416struct link_map_offsets
6417 {
6418 /* Offset and size of r_debug.r_version. */
6419 int r_version_offset;
6420
6421 /* Offset and size of r_debug.r_map. */
6422 int r_map_offset;
6423
6424 /* Offset to l_addr field in struct link_map. */
6425 int l_addr_offset;
6426
6427 /* Offset to l_name field in struct link_map. */
6428 int l_name_offset;
6429
6430 /* Offset to l_ld field in struct link_map. */
6431 int l_ld_offset;
6432
6433 /* Offset to l_next field in struct link_map. */
6434 int l_next_offset;
6435
6436 /* Offset to l_prev field in struct link_map. */
6437 int l_prev_offset;
6438 };
6439
6440/* Construct qXfer:libraries-svr4:read reply. */
6441
6442static int
6443linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6444 unsigned const char *writebuf,
6445 CORE_ADDR offset, int len)
6446{
6447 char *document;
6448 unsigned document_len;
6449 struct process_info_private *const priv = current_process ()->priv;
6450 char filename[PATH_MAX];
6451 int pid, is_elf64;
6452
6453 static const struct link_map_offsets lmo_32bit_offsets =
6454 {
6455 0, /* r_version offset. */
6456 4, /* r_debug.r_map offset. */
6457 0, /* l_addr offset in link_map. */
6458 4, /* l_name offset in link_map. */
6459 8, /* l_ld offset in link_map. */
6460 12, /* l_next offset in link_map. */
6461 16 /* l_prev offset in link_map. */
6462 };
6463
6464 static const struct link_map_offsets lmo_64bit_offsets =
6465 {
6466 0, /* r_version offset. */
6467 8, /* r_debug.r_map offset. */
6468 0, /* l_addr offset in link_map. */
6469 8, /* l_name offset in link_map. */
6470 16, /* l_ld offset in link_map. */
6471 24, /* l_next offset in link_map. */
6472 32 /* l_prev offset in link_map. */
6473 };
6474 const struct link_map_offsets *lmo;
6475 unsigned int machine;
6476 int ptr_size;
6477 CORE_ADDR lm_addr = 0, lm_prev = 0;
6478 int allocated = 1024;
6479 char *p;
6480 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6481 int header_done = 0;
6482
6483 if (writebuf != NULL)
6484 return -2;
6485 if (readbuf == NULL)
6486 return -1;
6487
6488 pid = lwpid_of (current_thread);
6489 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6490 is_elf64 = elf_64_file_p (filename, &machine);
6491 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6492 ptr_size = is_elf64 ? 8 : 4;
6493
6494 while (annex[0] != '\0')
6495 {
6496 const char *sep;
6497 CORE_ADDR *addrp;
6498 int len;
6499
6500 sep = strchr (annex, '=');
6501 if (sep == NULL)
6502 break;
6503
6504 len = sep - annex;
6505 if (len == 5 && startswith (annex, "start"))
6506 addrp = &lm_addr;
6507 else if (len == 4 && startswith (annex, "prev"))
6508 addrp = &lm_prev;
6509 else
6510 {
6511 annex = strchr (sep, ';');
6512 if (annex == NULL)
6513 break;
6514 annex++;
6515 continue;
6516 }
6517
6518 annex = decode_address_to_semicolon (addrp, sep + 1);
6519 }
6520
6521 if (lm_addr == 0)
6522 {
6523 int r_version = 0;
6524
6525 if (priv->r_debug == 0)
6526 priv->r_debug = get_r_debug (pid, is_elf64);
6527
6528 /* We failed to find DT_DEBUG. Such situation will not change
6529 for this inferior - do not retry it. Report it to GDB as
6530 E01, see for the reasons at the GDB solib-svr4.c side. */
6531 if (priv->r_debug == (CORE_ADDR) -1)
6532 return -1;
6533
6534 if (priv->r_debug != 0)
6535 {
6536 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6537 (unsigned char *) &r_version,
6538 sizeof (r_version)) != 0
6539 || r_version != 1)
6540 {
6541 warning ("unexpected r_debug version %d", r_version);
6542 }
6543 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6544 &lm_addr, ptr_size) != 0)
6545 {
6546 warning ("unable to read r_map from 0x%lx",
6547 (long) priv->r_debug + lmo->r_map_offset);
6548 }
6549 }
6550 }
6551
6552 document = xmalloc (allocated);
6553 strcpy (document, "<library-list-svr4 version=\"1.0\"");
6554 p = document + strlen (document);
6555
6556 while (lm_addr
6557 && read_one_ptr (lm_addr + lmo->l_name_offset,
6558 &l_name, ptr_size) == 0
6559 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6560 &l_addr, ptr_size) == 0
6561 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6562 &l_ld, ptr_size) == 0
6563 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6564 &l_prev, ptr_size) == 0
6565 && read_one_ptr (lm_addr + lmo->l_next_offset,
6566 &l_next, ptr_size) == 0)
6567 {
6568 unsigned char libname[PATH_MAX];
6569
6570 if (lm_prev != l_prev)
6571 {
6572 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6573 (long) lm_prev, (long) l_prev);
6574 break;
6575 }
6576
6577 /* Ignore the first entry even if it has valid name as the first entry
6578 corresponds to the main executable. The first entry should not be
6579 skipped if the dynamic loader was loaded late by a static executable
6580 (see solib-svr4.c parameter ignore_first). But in such case the main
6581 executable does not have PT_DYNAMIC present and this function already
6582 exited above due to failed get_r_debug. */
6583 if (lm_prev == 0)
6584 {
6585 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6586 p = p + strlen (p);
6587 }
6588 else
6589 {
6590 /* Not checking for error because reading may stop before
6591 we've got PATH_MAX worth of characters. */
6592 libname[0] = '\0';
6593 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6594 libname[sizeof (libname) - 1] = '\0';
6595 if (libname[0] != '\0')
6596 {
6597 /* 6x the size for xml_escape_text below. */
6598 size_t len = 6 * strlen ((char *) libname);
6599 char *name;
6600
6601 if (!header_done)
6602 {
6603 /* Terminate `<library-list-svr4'. */
6604 *p++ = '>';
6605 header_done = 1;
6606 }
6607
6608 while (allocated < p - document + len + 200)
6609 {
6610 /* Expand to guarantee sufficient storage. */
6611 uintptr_t document_len = p - document;
6612
6613 document = xrealloc (document, 2 * allocated);
6614 allocated *= 2;
6615 p = document + document_len;
6616 }
6617
6618 name = xml_escape_text ((char *) libname);
6619 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
6620 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
6621 name, (unsigned long) lm_addr,
6622 (unsigned long) l_addr, (unsigned long) l_ld);
6623 free (name);
6624 }
6625 }
6626
6627 lm_prev = lm_addr;
6628 lm_addr = l_next;
6629 }
6630
6631 if (!header_done)
6632 {
6633 /* Empty list; terminate `<library-list-svr4'. */
6634 strcpy (p, "/>");
6635 }
6636 else
6637 strcpy (p, "</library-list-svr4>");
6638
6639 document_len = strlen (document);
6640 if (offset < document_len)
6641 document_len -= offset;
6642 else
6643 document_len = 0;
6644 if (len > document_len)
6645 len = document_len;
6646
6647 memcpy (readbuf, document + offset, len);
6648 xfree (document);
6649
6650 return len;
6651}
6652
6653#ifdef HAVE_LINUX_BTRACE
6654
6655/* See to_enable_btrace target method. */
6656
6657static struct btrace_target_info *
6658linux_low_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
6659{
6660 struct btrace_target_info *tinfo;
6661
6662 tinfo = linux_enable_btrace (ptid, conf);
6663
6664 if (tinfo != NULL && tinfo->ptr_bits == 0)
6665 {
6666 struct thread_info *thread = find_thread_ptid (ptid);
6667 struct regcache *regcache = get_thread_regcache (thread, 0);
6668
6669 tinfo->ptr_bits = register_size (regcache->tdesc, 0) * 8;
6670 }
6671
6672 return tinfo;
6673}
6674
6675/* See to_disable_btrace target method. */
6676
6677static int
6678linux_low_disable_btrace (struct btrace_target_info *tinfo)
6679{
6680 enum btrace_error err;
6681
6682 err = linux_disable_btrace (tinfo);
6683 return (err == BTRACE_ERR_NONE ? 0 : -1);
6684}
6685
6686/* Encode an Intel(R) Processor Trace configuration. */
6687
6688static void
6689linux_low_encode_pt_config (struct buffer *buffer,
6690 const struct btrace_data_pt_config *config)
6691{
6692 buffer_grow_str (buffer, "<pt-config>\n");
6693
6694 switch (config->cpu.vendor)
6695 {
6696 case CV_INTEL:
6697 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
6698 "model=\"%u\" stepping=\"%u\"/>\n",
6699 config->cpu.family, config->cpu.model,
6700 config->cpu.stepping);
6701 break;
6702
6703 default:
6704 break;
6705 }
6706
6707 buffer_grow_str (buffer, "</pt-config>\n");
6708}
6709
6710/* Encode a raw buffer. */
6711
6712static void
6713linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
6714 unsigned int size)
6715{
6716 if (size == 0)
6717 return;
6718
6719 /* We use hex encoding - see common/rsp-low.h. */
6720 buffer_grow_str (buffer, "<raw>\n");
6721
6722 while (size-- > 0)
6723 {
6724 char elem[2];
6725
6726 elem[0] = tohex ((*data >> 4) & 0xf);
6727 elem[1] = tohex (*data++ & 0xf);
6728
6729 buffer_grow (buffer, elem, 2);
6730 }
6731
6732 buffer_grow_str (buffer, "</raw>\n");
6733}
6734
6735/* See to_read_btrace target method. */
6736
6737static int
6738linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
6739 int type)
6740{
6741 struct btrace_data btrace;
6742 struct btrace_block *block;
6743 enum btrace_error err;
6744 int i;
6745
6746 btrace_data_init (&btrace);
6747
6748 err = linux_read_btrace (&btrace, tinfo, type);
6749 if (err != BTRACE_ERR_NONE)
6750 {
6751 if (err == BTRACE_ERR_OVERFLOW)
6752 buffer_grow_str0 (buffer, "E.Overflow.");
6753 else
6754 buffer_grow_str0 (buffer, "E.Generic Error.");
6755
6756 goto err;
6757 }
6758
6759 switch (btrace.format)
6760 {
6761 case BTRACE_FORMAT_NONE:
6762 buffer_grow_str0 (buffer, "E.No Trace.");
6763 goto err;
6764
6765 case BTRACE_FORMAT_BTS:
6766 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6767 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6768
6769 for (i = 0;
6770 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
6771 i++)
6772 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
6773 paddress (block->begin), paddress (block->end));
6774
6775 buffer_grow_str0 (buffer, "</btrace>\n");
6776 break;
6777
6778 case BTRACE_FORMAT_PT:
6779 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6780 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6781 buffer_grow_str (buffer, "<pt>\n");
6782
6783 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
6784
6785 linux_low_encode_raw (buffer, btrace.variant.pt.data,
6786 btrace.variant.pt.size);
6787
6788 buffer_grow_str (buffer, "</pt>\n");
6789 buffer_grow_str0 (buffer, "</btrace>\n");
6790 break;
6791
6792 default:
6793 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
6794 goto err;
6795 }
6796
6797 btrace_data_fini (&btrace);
6798 return 0;
6799
6800err:
6801 btrace_data_fini (&btrace);
6802 return -1;
6803}
6804
6805/* See to_btrace_conf target method. */
6806
6807static int
6808linux_low_btrace_conf (const struct btrace_target_info *tinfo,
6809 struct buffer *buffer)
6810{
6811 const struct btrace_config *conf;
6812
6813 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
6814 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
6815
6816 conf = linux_btrace_conf (tinfo);
6817 if (conf != NULL)
6818 {
6819 switch (conf->format)
6820 {
6821 case BTRACE_FORMAT_NONE:
6822 break;
6823
6824 case BTRACE_FORMAT_BTS:
6825 buffer_xml_printf (buffer, "<bts");
6826 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
6827 buffer_xml_printf (buffer, " />\n");
6828 break;
6829
6830 case BTRACE_FORMAT_PT:
6831 buffer_xml_printf (buffer, "<pt");
6832 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
6833 buffer_xml_printf (buffer, "/>\n");
6834 break;
6835 }
6836 }
6837
6838 buffer_grow_str0 (buffer, "</btrace-conf>\n");
6839 return 0;
6840}
6841#endif /* HAVE_LINUX_BTRACE */
6842
6843/* See nat/linux-nat.h. */
6844
6845ptid_t
6846current_lwp_ptid (void)
6847{
6848 return ptid_of (current_thread);
6849}
6850
6851static struct target_ops linux_target_ops = {
6852 linux_create_inferior,
6853 linux_arch_setup,
6854 linux_attach,
6855 linux_kill,
6856 linux_detach,
6857 linux_mourn,
6858 linux_join,
6859 linux_thread_alive,
6860 linux_resume,
6861 linux_wait,
6862 linux_fetch_registers,
6863 linux_store_registers,
6864 linux_prepare_to_access_memory,
6865 linux_done_accessing_memory,
6866 linux_read_memory,
6867 linux_write_memory,
6868 linux_look_up_symbols,
6869 linux_request_interrupt,
6870 linux_read_auxv,
6871 linux_supports_z_point_type,
6872 linux_insert_point,
6873 linux_remove_point,
6874 linux_stopped_by_sw_breakpoint,
6875 linux_supports_stopped_by_sw_breakpoint,
6876 linux_stopped_by_hw_breakpoint,
6877 linux_supports_stopped_by_hw_breakpoint,
6878 linux_supports_conditional_breakpoints,
6879 linux_stopped_by_watchpoint,
6880 linux_stopped_data_address,
6881#if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6882 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6883 && defined(PT_TEXT_END_ADDR)
6884 linux_read_offsets,
6885#else
6886 NULL,
6887#endif
6888#ifdef USE_THREAD_DB
6889 thread_db_get_tls_address,
6890#else
6891 NULL,
6892#endif
6893 linux_qxfer_spu,
6894 hostio_last_error_from_errno,
6895 linux_qxfer_osdata,
6896 linux_xfer_siginfo,
6897 linux_supports_non_stop,
6898 linux_async,
6899 linux_start_non_stop,
6900 linux_supports_multi_process,
6901 linux_supports_fork_events,
6902 linux_supports_vfork_events,
6903 linux_handle_new_gdb_connection,
6904#ifdef USE_THREAD_DB
6905 thread_db_handle_monitor_command,
6906#else
6907 NULL,
6908#endif
6909 linux_common_core_of_thread,
6910 linux_read_loadmap,
6911 linux_process_qsupported,
6912 linux_supports_tracepoints,
6913 linux_read_pc,
6914 linux_write_pc,
6915 linux_thread_stopped,
6916 NULL,
6917 linux_pause_all,
6918 linux_unpause_all,
6919 linux_stabilize_threads,
6920 linux_install_fast_tracepoint_jump_pad,
6921 linux_emit_ops,
6922 linux_supports_disable_randomization,
6923 linux_get_min_fast_tracepoint_insn_len,
6924 linux_qxfer_libraries_svr4,
6925 linux_supports_agent,
6926#ifdef HAVE_LINUX_BTRACE
6927 linux_supports_btrace,
6928 linux_low_enable_btrace,
6929 linux_low_disable_btrace,
6930 linux_low_read_btrace,
6931 linux_low_btrace_conf,
6932#else
6933 NULL,
6934 NULL,
6935 NULL,
6936 NULL,
6937 NULL,
6938#endif
6939 linux_supports_range_stepping,
6940 linux_proc_pid_to_exec_file,
6941 linux_mntns_open_cloexec,
6942 linux_mntns_unlink,
6943 linux_mntns_readlink,
6944};
6945
6946static void
6947linux_init_signals ()
6948{
6949 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
6950 to find what the cancel signal actually is. */
6951#ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
6952 signal (__SIGRTMIN+1, SIG_IGN);
6953#endif
6954}
6955
6956#ifdef HAVE_LINUX_REGSETS
6957void
6958initialize_regsets_info (struct regsets_info *info)
6959{
6960 for (info->num_regsets = 0;
6961 info->regsets[info->num_regsets].size >= 0;
6962 info->num_regsets++)
6963 ;
6964}
6965#endif
6966
6967void
6968initialize_low (void)
6969{
6970 struct sigaction sigchld_action;
6971 memset (&sigchld_action, 0, sizeof (sigchld_action));
6972 set_target_ops (&linux_target_ops);
6973 set_breakpoint_data (the_low_target.breakpoint,
6974 the_low_target.breakpoint_len);
6975 linux_init_signals ();
6976 linux_ptrace_init_warnings ();
6977
6978 sigchld_action.sa_handler = sigchld_handler;
6979 sigemptyset (&sigchld_action.sa_mask);
6980 sigchld_action.sa_flags = SA_RESTART;
6981 sigaction (SIGCHLD, &sigchld_action, NULL);
6982
6983 initialize_low_arch ();
6984
6985 linux_check_ptrace_features ();
6986}
This page took 0.054153 seconds and 4 git commands to generate.