* po/vi.po: Updated Vietnamese translation.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
... / ...
CommitLineData
1/* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "bfd.h"
25#include "symtab.h"
26#include "symfile.h"
27#include "objfiles.h"
28#include "gdbtypes.h"
29#include "expression.h"
30#include "language.h"
31#include "target.h"
32#include "value.h"
33#include "demangle.h"
34#include "complaints.h"
35#include "gdbcmd.h"
36#include "cp-abi.h"
37#include "gdb_assert.h"
38#include "hashtab.h"
39#include "exceptions.h"
40
41/* Initialize BADNESS constants. */
42
43const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
44
45const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
46const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
47
48const struct rank EXACT_MATCH_BADNESS = {0,0};
49
50const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
51const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
52const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
53const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
54const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
55const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
57const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
58const struct rank BASE_CONVERSION_BADNESS = {2,0};
59const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
60const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
61const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
62
63/* Floatformat pairs. */
64const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
65 &floatformat_ieee_half_big,
66 &floatformat_ieee_half_little
67};
68const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_single_big,
70 &floatformat_ieee_single_little
71};
72const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_double_big,
74 &floatformat_ieee_double_little
75};
76const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_littlebyte_bigword
79};
80const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_i387_ext,
82 &floatformat_i387_ext
83};
84const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_m68881_ext,
86 &floatformat_m68881_ext
87};
88const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_arm_ext_big,
90 &floatformat_arm_ext_littlebyte_bigword
91};
92const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_ia64_spill_big,
94 &floatformat_ia64_spill_little
95};
96const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_quad_big,
98 &floatformat_ia64_quad_little
99};
100const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_vax_f,
102 &floatformat_vax_f
103};
104const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_d,
106 &floatformat_vax_d
107};
108const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_ibm_long_double,
110 &floatformat_ibm_long_double
111};
112
113/* Should opaque types be resolved? */
114
115static int opaque_type_resolution = 1;
116
117/* A flag to enable printing of debugging information of C++
118 overloading. */
119
120unsigned int overload_debug = 0;
121
122/* A function to show whether opaque types are resolved. */
123
124static void
125show_opaque_type_resolution (struct ui_file *file, int from_tty,
126 struct cmd_list_element *c,
127 const char *value)
128{
129 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
130 "(if set before loading symbols) is %s.\n"),
131 value);
132}
133
134/* A function to show whether C++ overload debugging is enabled. */
135
136static void
137show_overload_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139{
140 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
141 value);
142}
143
144\f
145/* Allocate a new OBJFILE-associated type structure and fill it
146 with some defaults. Space for the type structure is allocated
147 on the objfile's objfile_obstack. */
148
149struct type *
150alloc_type (struct objfile *objfile)
151{
152 struct type *type;
153
154 gdb_assert (objfile != NULL);
155
156 /* Alloc the structure and start off with all fields zeroed. */
157 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
158 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
159 struct main_type);
160 OBJSTAT (objfile, n_types++);
161
162 TYPE_OBJFILE_OWNED (type) = 1;
163 TYPE_OWNER (type).objfile = objfile;
164
165 /* Initialize the fields that might not be zero. */
166
167 TYPE_CODE (type) = TYPE_CODE_UNDEF;
168 TYPE_VPTR_FIELDNO (type) = -1;
169 TYPE_CHAIN (type) = type; /* Chain back to itself. */
170
171 return type;
172}
173
174/* Allocate a new GDBARCH-associated type structure and fill it
175 with some defaults. Space for the type structure is allocated
176 on the heap. */
177
178struct type *
179alloc_type_arch (struct gdbarch *gdbarch)
180{
181 struct type *type;
182
183 gdb_assert (gdbarch != NULL);
184
185 /* Alloc the structure and start off with all fields zeroed. */
186
187 type = XZALLOC (struct type);
188 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
189
190 TYPE_OBJFILE_OWNED (type) = 0;
191 TYPE_OWNER (type).gdbarch = gdbarch;
192
193 /* Initialize the fields that might not be zero. */
194
195 TYPE_CODE (type) = TYPE_CODE_UNDEF;
196 TYPE_VPTR_FIELDNO (type) = -1;
197 TYPE_CHAIN (type) = type; /* Chain back to itself. */
198
199 return type;
200}
201
202/* If TYPE is objfile-associated, allocate a new type structure
203 associated with the same objfile. If TYPE is gdbarch-associated,
204 allocate a new type structure associated with the same gdbarch. */
205
206struct type *
207alloc_type_copy (const struct type *type)
208{
209 if (TYPE_OBJFILE_OWNED (type))
210 return alloc_type (TYPE_OWNER (type).objfile);
211 else
212 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
213}
214
215/* If TYPE is gdbarch-associated, return that architecture.
216 If TYPE is objfile-associated, return that objfile's architecture. */
217
218struct gdbarch *
219get_type_arch (const struct type *type)
220{
221 if (TYPE_OBJFILE_OWNED (type))
222 return get_objfile_arch (TYPE_OWNER (type).objfile);
223 else
224 return TYPE_OWNER (type).gdbarch;
225}
226
227/* Alloc a new type instance structure, fill it with some defaults,
228 and point it at OLDTYPE. Allocate the new type instance from the
229 same place as OLDTYPE. */
230
231static struct type *
232alloc_type_instance (struct type *oldtype)
233{
234 struct type *type;
235
236 /* Allocate the structure. */
237
238 if (! TYPE_OBJFILE_OWNED (oldtype))
239 type = XZALLOC (struct type);
240 else
241 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
242 struct type);
243
244 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
245
246 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
247
248 return type;
249}
250
251/* Clear all remnants of the previous type at TYPE, in preparation for
252 replacing it with something else. Preserve owner information. */
253
254static void
255smash_type (struct type *type)
256{
257 int objfile_owned = TYPE_OBJFILE_OWNED (type);
258 union type_owner owner = TYPE_OWNER (type);
259
260 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
261
262 /* Restore owner information. */
263 TYPE_OBJFILE_OWNED (type) = objfile_owned;
264 TYPE_OWNER (type) = owner;
265
266 /* For now, delete the rings. */
267 TYPE_CHAIN (type) = type;
268
269 /* For now, leave the pointer/reference types alone. */
270}
271
272/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
273 to a pointer to memory where the pointer type should be stored.
274 If *TYPEPTR is zero, update it to point to the pointer type we return.
275 We allocate new memory if needed. */
276
277struct type *
278make_pointer_type (struct type *type, struct type **typeptr)
279{
280 struct type *ntype; /* New type */
281 struct type *chain;
282
283 ntype = TYPE_POINTER_TYPE (type);
284
285 if (ntype)
286 {
287 if (typeptr == 0)
288 return ntype; /* Don't care about alloc,
289 and have new type. */
290 else if (*typeptr == 0)
291 {
292 *typeptr = ntype; /* Tracking alloc, and have new type. */
293 return ntype;
294 }
295 }
296
297 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
298 {
299 ntype = alloc_type_copy (type);
300 if (typeptr)
301 *typeptr = ntype;
302 }
303 else /* We have storage, but need to reset it. */
304 {
305 ntype = *typeptr;
306 chain = TYPE_CHAIN (ntype);
307 smash_type (ntype);
308 TYPE_CHAIN (ntype) = chain;
309 }
310
311 TYPE_TARGET_TYPE (ntype) = type;
312 TYPE_POINTER_TYPE (type) = ntype;
313
314 /* FIXME! Assumes the machine has only one representation for pointers! */
315
316 TYPE_LENGTH (ntype)
317 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
318 TYPE_CODE (ntype) = TYPE_CODE_PTR;
319
320 /* Mark pointers as unsigned. The target converts between pointers
321 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
322 gdbarch_address_to_pointer. */
323 TYPE_UNSIGNED (ntype) = 1;
324
325 /* Update the length of all the other variants of this type. */
326 chain = TYPE_CHAIN (ntype);
327 while (chain != ntype)
328 {
329 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
330 chain = TYPE_CHAIN (chain);
331 }
332
333 return ntype;
334}
335
336/* Given a type TYPE, return a type of pointers to that type.
337 May need to construct such a type if this is the first use. */
338
339struct type *
340lookup_pointer_type (struct type *type)
341{
342 return make_pointer_type (type, (struct type **) 0);
343}
344
345/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
346 points to a pointer to memory where the reference type should be
347 stored. If *TYPEPTR is zero, update it to point to the reference
348 type we return. We allocate new memory if needed. */
349
350struct type *
351make_reference_type (struct type *type, struct type **typeptr)
352{
353 struct type *ntype; /* New type */
354 struct type *chain;
355
356 ntype = TYPE_REFERENCE_TYPE (type);
357
358 if (ntype)
359 {
360 if (typeptr == 0)
361 return ntype; /* Don't care about alloc,
362 and have new type. */
363 else if (*typeptr == 0)
364 {
365 *typeptr = ntype; /* Tracking alloc, and have new type. */
366 return ntype;
367 }
368 }
369
370 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
371 {
372 ntype = alloc_type_copy (type);
373 if (typeptr)
374 *typeptr = ntype;
375 }
376 else /* We have storage, but need to reset it. */
377 {
378 ntype = *typeptr;
379 chain = TYPE_CHAIN (ntype);
380 smash_type (ntype);
381 TYPE_CHAIN (ntype) = chain;
382 }
383
384 TYPE_TARGET_TYPE (ntype) = type;
385 TYPE_REFERENCE_TYPE (type) = ntype;
386
387 /* FIXME! Assume the machine has only one representation for
388 references, and that it matches the (only) representation for
389 pointers! */
390
391 TYPE_LENGTH (ntype) =
392 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
393 TYPE_CODE (ntype) = TYPE_CODE_REF;
394
395 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
396 TYPE_REFERENCE_TYPE (type) = ntype;
397
398 /* Update the length of all the other variants of this type. */
399 chain = TYPE_CHAIN (ntype);
400 while (chain != ntype)
401 {
402 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
403 chain = TYPE_CHAIN (chain);
404 }
405
406 return ntype;
407}
408
409/* Same as above, but caller doesn't care about memory allocation
410 details. */
411
412struct type *
413lookup_reference_type (struct type *type)
414{
415 return make_reference_type (type, (struct type **) 0);
416}
417
418/* Lookup a function type that returns type TYPE. TYPEPTR, if
419 nonzero, points to a pointer to memory where the function type
420 should be stored. If *TYPEPTR is zero, update it to point to the
421 function type we return. We allocate new memory if needed. */
422
423struct type *
424make_function_type (struct type *type, struct type **typeptr)
425{
426 struct type *ntype; /* New type */
427
428 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
429 {
430 ntype = alloc_type_copy (type);
431 if (typeptr)
432 *typeptr = ntype;
433 }
434 else /* We have storage, but need to reset it. */
435 {
436 ntype = *typeptr;
437 smash_type (ntype);
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
441
442 TYPE_LENGTH (ntype) = 1;
443 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
444
445 INIT_FUNC_SPECIFIC (ntype);
446
447 return ntype;
448}
449
450/* Given a type TYPE, return a type of functions that return that type.
451 May need to construct such a type if this is the first use. */
452
453struct type *
454lookup_function_type (struct type *type)
455{
456 return make_function_type (type, (struct type **) 0);
457}
458
459/* Given a type TYPE and argument types, return the appropriate
460 function type. If the final type in PARAM_TYPES is NULL, make a
461 varargs function. */
462
463struct type *
464lookup_function_type_with_arguments (struct type *type,
465 int nparams,
466 struct type **param_types)
467{
468 struct type *fn = make_function_type (type, (struct type **) 0);
469 int i;
470
471 if (nparams > 0)
472 {
473 if (param_types[nparams - 1] == NULL)
474 {
475 --nparams;
476 TYPE_VARARGS (fn) = 1;
477 }
478 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
479 == TYPE_CODE_VOID)
480 {
481 --nparams;
482 /* Caller should have ensured this. */
483 gdb_assert (nparams == 0);
484 TYPE_PROTOTYPED (fn) = 1;
485 }
486 }
487
488 TYPE_NFIELDS (fn) = nparams;
489 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
490 for (i = 0; i < nparams; ++i)
491 TYPE_FIELD_TYPE (fn, i) = param_types[i];
492
493 return fn;
494}
495
496/* Identify address space identifier by name --
497 return the integer flag defined in gdbtypes.h. */
498
499int
500address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
501{
502 int type_flags;
503
504 /* Check for known address space delimiters. */
505 if (!strcmp (space_identifier, "code"))
506 return TYPE_INSTANCE_FLAG_CODE_SPACE;
507 else if (!strcmp (space_identifier, "data"))
508 return TYPE_INSTANCE_FLAG_DATA_SPACE;
509 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
510 && gdbarch_address_class_name_to_type_flags (gdbarch,
511 space_identifier,
512 &type_flags))
513 return type_flags;
514 else
515 error (_("Unknown address space specifier: \"%s\""), space_identifier);
516}
517
518/* Identify address space identifier by integer flag as defined in
519 gdbtypes.h -- return the string version of the adress space name. */
520
521const char *
522address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
523{
524 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
525 return "code";
526 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
527 return "data";
528 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
529 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
530 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
531 else
532 return NULL;
533}
534
535/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
536
537 If STORAGE is non-NULL, create the new type instance there.
538 STORAGE must be in the same obstack as TYPE. */
539
540static struct type *
541make_qualified_type (struct type *type, int new_flags,
542 struct type *storage)
543{
544 struct type *ntype;
545
546 ntype = type;
547 do
548 {
549 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
550 return ntype;
551 ntype = TYPE_CHAIN (ntype);
552 }
553 while (ntype != type);
554
555 /* Create a new type instance. */
556 if (storage == NULL)
557 ntype = alloc_type_instance (type);
558 else
559 {
560 /* If STORAGE was provided, it had better be in the same objfile
561 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
562 if one objfile is freed and the other kept, we'd have
563 dangling pointers. */
564 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
565
566 ntype = storage;
567 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
568 TYPE_CHAIN (ntype) = ntype;
569 }
570
571 /* Pointers or references to the original type are not relevant to
572 the new type. */
573 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
574 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
575
576 /* Chain the new qualified type to the old type. */
577 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
578 TYPE_CHAIN (type) = ntype;
579
580 /* Now set the instance flags and return the new type. */
581 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
582
583 /* Set length of new type to that of the original type. */
584 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
585
586 return ntype;
587}
588
589/* Make an address-space-delimited variant of a type -- a type that
590 is identical to the one supplied except that it has an address
591 space attribute attached to it (such as "code" or "data").
592
593 The space attributes "code" and "data" are for Harvard
594 architectures. The address space attributes are for architectures
595 which have alternately sized pointers or pointers with alternate
596 representations. */
597
598struct type *
599make_type_with_address_space (struct type *type, int space_flag)
600{
601 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
602 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
603 | TYPE_INSTANCE_FLAG_DATA_SPACE
604 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
605 | space_flag);
606
607 return make_qualified_type (type, new_flags, NULL);
608}
609
610/* Make a "c-v" variant of a type -- a type that is identical to the
611 one supplied except that it may have const or volatile attributes
612 CNST is a flag for setting the const attribute
613 VOLTL is a flag for setting the volatile attribute
614 TYPE is the base type whose variant we are creating.
615
616 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
617 storage to hold the new qualified type; *TYPEPTR and TYPE must be
618 in the same objfile. Otherwise, allocate fresh memory for the new
619 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
620 new type we construct. */
621
622struct type *
623make_cv_type (int cnst, int voltl,
624 struct type *type,
625 struct type **typeptr)
626{
627 struct type *ntype; /* New type */
628
629 int new_flags = (TYPE_INSTANCE_FLAGS (type)
630 & ~(TYPE_INSTANCE_FLAG_CONST
631 | TYPE_INSTANCE_FLAG_VOLATILE));
632
633 if (cnst)
634 new_flags |= TYPE_INSTANCE_FLAG_CONST;
635
636 if (voltl)
637 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
638
639 if (typeptr && *typeptr != NULL)
640 {
641 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
642 a C-V variant chain that threads across objfiles: if one
643 objfile gets freed, then the other has a broken C-V chain.
644
645 This code used to try to copy over the main type from TYPE to
646 *TYPEPTR if they were in different objfiles, but that's
647 wrong, too: TYPE may have a field list or member function
648 lists, which refer to types of their own, etc. etc. The
649 whole shebang would need to be copied over recursively; you
650 can't have inter-objfile pointers. The only thing to do is
651 to leave stub types as stub types, and look them up afresh by
652 name each time you encounter them. */
653 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
654 }
655
656 ntype = make_qualified_type (type, new_flags,
657 typeptr ? *typeptr : NULL);
658
659 if (typeptr != NULL)
660 *typeptr = ntype;
661
662 return ntype;
663}
664
665/* Replace the contents of ntype with the type *type. This changes the
666 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
667 the changes are propogated to all types in the TYPE_CHAIN.
668
669 In order to build recursive types, it's inevitable that we'll need
670 to update types in place --- but this sort of indiscriminate
671 smashing is ugly, and needs to be replaced with something more
672 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
673 clear if more steps are needed. */
674
675void
676replace_type (struct type *ntype, struct type *type)
677{
678 struct type *chain;
679
680 /* These two types had better be in the same objfile. Otherwise,
681 the assignment of one type's main type structure to the other
682 will produce a type with references to objects (names; field
683 lists; etc.) allocated on an objfile other than its own. */
684 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
685
686 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
687
688 /* The type length is not a part of the main type. Update it for
689 each type on the variant chain. */
690 chain = ntype;
691 do
692 {
693 /* Assert that this element of the chain has no address-class bits
694 set in its flags. Such type variants might have type lengths
695 which are supposed to be different from the non-address-class
696 variants. This assertion shouldn't ever be triggered because
697 symbol readers which do construct address-class variants don't
698 call replace_type(). */
699 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
700
701 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
702 chain = TYPE_CHAIN (chain);
703 }
704 while (ntype != chain);
705
706 /* Assert that the two types have equivalent instance qualifiers.
707 This should be true for at least all of our debug readers. */
708 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
709}
710
711/* Implement direct support for MEMBER_TYPE in GNU C++.
712 May need to construct such a type if this is the first use.
713 The TYPE is the type of the member. The DOMAIN is the type
714 of the aggregate that the member belongs to. */
715
716struct type *
717lookup_memberptr_type (struct type *type, struct type *domain)
718{
719 struct type *mtype;
720
721 mtype = alloc_type_copy (type);
722 smash_to_memberptr_type (mtype, domain, type);
723 return mtype;
724}
725
726/* Return a pointer-to-method type, for a method of type TO_TYPE. */
727
728struct type *
729lookup_methodptr_type (struct type *to_type)
730{
731 struct type *mtype;
732
733 mtype = alloc_type_copy (to_type);
734 smash_to_methodptr_type (mtype, to_type);
735 return mtype;
736}
737
738/* Allocate a stub method whose return type is TYPE. This apparently
739 happens for speed of symbol reading, since parsing out the
740 arguments to the method is cpu-intensive, the way we are doing it.
741 So, we will fill in arguments later. This always returns a fresh
742 type. */
743
744struct type *
745allocate_stub_method (struct type *type)
746{
747 struct type *mtype;
748
749 mtype = alloc_type_copy (type);
750 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
751 TYPE_LENGTH (mtype) = 1;
752 TYPE_STUB (mtype) = 1;
753 TYPE_TARGET_TYPE (mtype) = type;
754 /* _DOMAIN_TYPE (mtype) = unknown yet */
755 return mtype;
756}
757
758/* Create a range type using either a blank type supplied in
759 RESULT_TYPE, or creating a new type, inheriting the objfile from
760 INDEX_TYPE.
761
762 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
763 to HIGH_BOUND, inclusive.
764
765 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
766 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
767
768struct type *
769create_range_type (struct type *result_type, struct type *index_type,
770 LONGEST low_bound, LONGEST high_bound)
771{
772 if (result_type == NULL)
773 result_type = alloc_type_copy (index_type);
774 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
775 TYPE_TARGET_TYPE (result_type) = index_type;
776 if (TYPE_STUB (index_type))
777 TYPE_TARGET_STUB (result_type) = 1;
778 else
779 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
780 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
781 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
782 TYPE_LOW_BOUND (result_type) = low_bound;
783 TYPE_HIGH_BOUND (result_type) = high_bound;
784
785 if (low_bound >= 0)
786 TYPE_UNSIGNED (result_type) = 1;
787
788 return result_type;
789}
790
791/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
792 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
793 bounds will fit in LONGEST), or -1 otherwise. */
794
795int
796get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
797{
798 CHECK_TYPEDEF (type);
799 switch (TYPE_CODE (type))
800 {
801 case TYPE_CODE_RANGE:
802 *lowp = TYPE_LOW_BOUND (type);
803 *highp = TYPE_HIGH_BOUND (type);
804 return 1;
805 case TYPE_CODE_ENUM:
806 if (TYPE_NFIELDS (type) > 0)
807 {
808 /* The enums may not be sorted by value, so search all
809 entries. */
810 int i;
811
812 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
813 for (i = 0; i < TYPE_NFIELDS (type); i++)
814 {
815 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
816 *lowp = TYPE_FIELD_ENUMVAL (type, i);
817 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
818 *highp = TYPE_FIELD_ENUMVAL (type, i);
819 }
820
821 /* Set unsigned indicator if warranted. */
822 if (*lowp >= 0)
823 {
824 TYPE_UNSIGNED (type) = 1;
825 }
826 }
827 else
828 {
829 *lowp = 0;
830 *highp = -1;
831 }
832 return 0;
833 case TYPE_CODE_BOOL:
834 *lowp = 0;
835 *highp = 1;
836 return 0;
837 case TYPE_CODE_INT:
838 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
839 return -1;
840 if (!TYPE_UNSIGNED (type))
841 {
842 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
843 *highp = -*lowp - 1;
844 return 0;
845 }
846 /* ... fall through for unsigned ints ... */
847 case TYPE_CODE_CHAR:
848 *lowp = 0;
849 /* This round-about calculation is to avoid shifting by
850 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
851 if TYPE_LENGTH (type) == sizeof (LONGEST). */
852 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
853 *highp = (*highp - 1) | *highp;
854 return 0;
855 default:
856 return -1;
857 }
858}
859
860/* Assuming TYPE is a simple, non-empty array type, compute its upper
861 and lower bound. Save the low bound into LOW_BOUND if not NULL.
862 Save the high bound into HIGH_BOUND if not NULL.
863
864 Return 1 if the operation was successful. Return zero otherwise,
865 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
866
867 We now simply use get_discrete_bounds call to get the values
868 of the low and high bounds.
869 get_discrete_bounds can return three values:
870 1, meaning that index is a range,
871 0, meaning that index is a discrete type,
872 or -1 for failure. */
873
874int
875get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
876{
877 struct type *index = TYPE_INDEX_TYPE (type);
878 LONGEST low = 0;
879 LONGEST high = 0;
880 int res;
881
882 if (index == NULL)
883 return 0;
884
885 res = get_discrete_bounds (index, &low, &high);
886 if (res == -1)
887 return 0;
888
889 /* Check if the array bounds are undefined. */
890 if (res == 1
891 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
892 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
893 return 0;
894
895 if (low_bound)
896 *low_bound = low;
897
898 if (high_bound)
899 *high_bound = high;
900
901 return 1;
902}
903
904/* Create an array type using either a blank type supplied in
905 RESULT_TYPE, or creating a new type, inheriting the objfile from
906 RANGE_TYPE.
907
908 Elements will be of type ELEMENT_TYPE, the indices will be of type
909 RANGE_TYPE.
910
911 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
912 sure it is TYPE_CODE_UNDEF before we bash it into an array
913 type? */
914
915struct type *
916create_array_type (struct type *result_type,
917 struct type *element_type,
918 struct type *range_type)
919{
920 LONGEST low_bound, high_bound;
921
922 if (result_type == NULL)
923 result_type = alloc_type_copy (range_type);
924
925 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
926 TYPE_TARGET_TYPE (result_type) = element_type;
927 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
928 low_bound = high_bound = 0;
929 CHECK_TYPEDEF (element_type);
930 /* Be careful when setting the array length. Ada arrays can be
931 empty arrays with the high_bound being smaller than the low_bound.
932 In such cases, the array length should be zero. */
933 if (high_bound < low_bound)
934 TYPE_LENGTH (result_type) = 0;
935 else
936 TYPE_LENGTH (result_type) =
937 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
938 TYPE_NFIELDS (result_type) = 1;
939 TYPE_FIELDS (result_type) =
940 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
941 TYPE_INDEX_TYPE (result_type) = range_type;
942 TYPE_VPTR_FIELDNO (result_type) = -1;
943
944 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
945 if (TYPE_LENGTH (result_type) == 0)
946 TYPE_TARGET_STUB (result_type) = 1;
947
948 return result_type;
949}
950
951struct type *
952lookup_array_range_type (struct type *element_type,
953 int low_bound, int high_bound)
954{
955 struct gdbarch *gdbarch = get_type_arch (element_type);
956 struct type *index_type = builtin_type (gdbarch)->builtin_int;
957 struct type *range_type
958 = create_range_type (NULL, index_type, low_bound, high_bound);
959
960 return create_array_type (NULL, element_type, range_type);
961}
962
963/* Create a string type using either a blank type supplied in
964 RESULT_TYPE, or creating a new type. String types are similar
965 enough to array of char types that we can use create_array_type to
966 build the basic type and then bash it into a string type.
967
968 For fixed length strings, the range type contains 0 as the lower
969 bound and the length of the string minus one as the upper bound.
970
971 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
972 sure it is TYPE_CODE_UNDEF before we bash it into a string
973 type? */
974
975struct type *
976create_string_type (struct type *result_type,
977 struct type *string_char_type,
978 struct type *range_type)
979{
980 result_type = create_array_type (result_type,
981 string_char_type,
982 range_type);
983 TYPE_CODE (result_type) = TYPE_CODE_STRING;
984 return result_type;
985}
986
987struct type *
988lookup_string_range_type (struct type *string_char_type,
989 int low_bound, int high_bound)
990{
991 struct type *result_type;
992
993 result_type = lookup_array_range_type (string_char_type,
994 low_bound, high_bound);
995 TYPE_CODE (result_type) = TYPE_CODE_STRING;
996 return result_type;
997}
998
999struct type *
1000create_set_type (struct type *result_type, struct type *domain_type)
1001{
1002 if (result_type == NULL)
1003 result_type = alloc_type_copy (domain_type);
1004
1005 TYPE_CODE (result_type) = TYPE_CODE_SET;
1006 TYPE_NFIELDS (result_type) = 1;
1007 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1008
1009 if (!TYPE_STUB (domain_type))
1010 {
1011 LONGEST low_bound, high_bound, bit_length;
1012
1013 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1014 low_bound = high_bound = 0;
1015 bit_length = high_bound - low_bound + 1;
1016 TYPE_LENGTH (result_type)
1017 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1018 if (low_bound >= 0)
1019 TYPE_UNSIGNED (result_type) = 1;
1020 }
1021 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1022
1023 return result_type;
1024}
1025
1026/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1027 and any array types nested inside it. */
1028
1029void
1030make_vector_type (struct type *array_type)
1031{
1032 struct type *inner_array, *elt_type;
1033 int flags;
1034
1035 /* Find the innermost array type, in case the array is
1036 multi-dimensional. */
1037 inner_array = array_type;
1038 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1039 inner_array = TYPE_TARGET_TYPE (inner_array);
1040
1041 elt_type = TYPE_TARGET_TYPE (inner_array);
1042 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1043 {
1044 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1045 elt_type = make_qualified_type (elt_type, flags, NULL);
1046 TYPE_TARGET_TYPE (inner_array) = elt_type;
1047 }
1048
1049 TYPE_VECTOR (array_type) = 1;
1050}
1051
1052struct type *
1053init_vector_type (struct type *elt_type, int n)
1054{
1055 struct type *array_type;
1056
1057 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1058 make_vector_type (array_type);
1059 return array_type;
1060}
1061
1062/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1063 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1064 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1065 TYPE doesn't include the offset (that's the value of the MEMBER
1066 itself), but does include the structure type into which it points
1067 (for some reason).
1068
1069 When "smashing" the type, we preserve the objfile that the old type
1070 pointed to, since we aren't changing where the type is actually
1071 allocated. */
1072
1073void
1074smash_to_memberptr_type (struct type *type, struct type *domain,
1075 struct type *to_type)
1076{
1077 smash_type (type);
1078 TYPE_TARGET_TYPE (type) = to_type;
1079 TYPE_DOMAIN_TYPE (type) = domain;
1080 /* Assume that a data member pointer is the same size as a normal
1081 pointer. */
1082 TYPE_LENGTH (type)
1083 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1084 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1085}
1086
1087/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1088
1089 When "smashing" the type, we preserve the objfile that the old type
1090 pointed to, since we aren't changing where the type is actually
1091 allocated. */
1092
1093void
1094smash_to_methodptr_type (struct type *type, struct type *to_type)
1095{
1096 smash_type (type);
1097 TYPE_TARGET_TYPE (type) = to_type;
1098 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1099 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1100 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1101}
1102
1103/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1104 METHOD just means `function that gets an extra "this" argument'.
1105
1106 When "smashing" the type, we preserve the objfile that the old type
1107 pointed to, since we aren't changing where the type is actually
1108 allocated. */
1109
1110void
1111smash_to_method_type (struct type *type, struct type *domain,
1112 struct type *to_type, struct field *args,
1113 int nargs, int varargs)
1114{
1115 smash_type (type);
1116 TYPE_TARGET_TYPE (type) = to_type;
1117 TYPE_DOMAIN_TYPE (type) = domain;
1118 TYPE_FIELDS (type) = args;
1119 TYPE_NFIELDS (type) = nargs;
1120 if (varargs)
1121 TYPE_VARARGS (type) = 1;
1122 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1123 TYPE_CODE (type) = TYPE_CODE_METHOD;
1124}
1125
1126/* Return a typename for a struct/union/enum type without "struct ",
1127 "union ", or "enum ". If the type has a NULL name, return NULL. */
1128
1129const char *
1130type_name_no_tag (const struct type *type)
1131{
1132 if (TYPE_TAG_NAME (type) != NULL)
1133 return TYPE_TAG_NAME (type);
1134
1135 /* Is there code which expects this to return the name if there is
1136 no tag name? My guess is that this is mainly used for C++ in
1137 cases where the two will always be the same. */
1138 return TYPE_NAME (type);
1139}
1140
1141/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1142 Since GCC PR debug/47510 DWARF provides associated information to detect the
1143 anonymous class linkage name from its typedef.
1144
1145 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1146 apply it itself. */
1147
1148const char *
1149type_name_no_tag_or_error (struct type *type)
1150{
1151 struct type *saved_type = type;
1152 const char *name;
1153 struct objfile *objfile;
1154
1155 CHECK_TYPEDEF (type);
1156
1157 name = type_name_no_tag (type);
1158 if (name != NULL)
1159 return name;
1160
1161 name = type_name_no_tag (saved_type);
1162 objfile = TYPE_OBJFILE (saved_type);
1163 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1164 name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
1165}
1166
1167/* Lookup a typedef or primitive type named NAME, visible in lexical
1168 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1169 suitably defined. */
1170
1171struct type *
1172lookup_typename (const struct language_defn *language,
1173 struct gdbarch *gdbarch, const char *name,
1174 const struct block *block, int noerr)
1175{
1176 struct symbol *sym;
1177 struct type *type;
1178
1179 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1180 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1181 return SYMBOL_TYPE (sym);
1182
1183 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1184 if (type)
1185 return type;
1186
1187 if (noerr)
1188 return NULL;
1189 error (_("No type named %s."), name);
1190}
1191
1192struct type *
1193lookup_unsigned_typename (const struct language_defn *language,
1194 struct gdbarch *gdbarch, const char *name)
1195{
1196 char *uns = alloca (strlen (name) + 10);
1197
1198 strcpy (uns, "unsigned ");
1199 strcpy (uns + 9, name);
1200 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1201}
1202
1203struct type *
1204lookup_signed_typename (const struct language_defn *language,
1205 struct gdbarch *gdbarch, const char *name)
1206{
1207 struct type *t;
1208 char *uns = alloca (strlen (name) + 8);
1209
1210 strcpy (uns, "signed ");
1211 strcpy (uns + 7, name);
1212 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1213 /* If we don't find "signed FOO" just try again with plain "FOO". */
1214 if (t != NULL)
1215 return t;
1216 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1217}
1218
1219/* Lookup a structure type named "struct NAME",
1220 visible in lexical block BLOCK. */
1221
1222struct type *
1223lookup_struct (const char *name, struct block *block)
1224{
1225 struct symbol *sym;
1226
1227 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1228
1229 if (sym == NULL)
1230 {
1231 error (_("No struct type named %s."), name);
1232 }
1233 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1234 {
1235 error (_("This context has class, union or enum %s, not a struct."),
1236 name);
1237 }
1238 return (SYMBOL_TYPE (sym));
1239}
1240
1241/* Lookup a union type named "union NAME",
1242 visible in lexical block BLOCK. */
1243
1244struct type *
1245lookup_union (const char *name, struct block *block)
1246{
1247 struct symbol *sym;
1248 struct type *t;
1249
1250 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1251
1252 if (sym == NULL)
1253 error (_("No union type named %s."), name);
1254
1255 t = SYMBOL_TYPE (sym);
1256
1257 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1258 return t;
1259
1260 /* If we get here, it's not a union. */
1261 error (_("This context has class, struct or enum %s, not a union."),
1262 name);
1263}
1264
1265/* Lookup an enum type named "enum NAME",
1266 visible in lexical block BLOCK. */
1267
1268struct type *
1269lookup_enum (const char *name, struct block *block)
1270{
1271 struct symbol *sym;
1272
1273 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1274 if (sym == NULL)
1275 {
1276 error (_("No enum type named %s."), name);
1277 }
1278 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1279 {
1280 error (_("This context has class, struct or union %s, not an enum."),
1281 name);
1282 }
1283 return (SYMBOL_TYPE (sym));
1284}
1285
1286/* Lookup a template type named "template NAME<TYPE>",
1287 visible in lexical block BLOCK. */
1288
1289struct type *
1290lookup_template_type (char *name, struct type *type,
1291 struct block *block)
1292{
1293 struct symbol *sym;
1294 char *nam = (char *)
1295 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1296
1297 strcpy (nam, name);
1298 strcat (nam, "<");
1299 strcat (nam, TYPE_NAME (type));
1300 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1301
1302 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1303
1304 if (sym == NULL)
1305 {
1306 error (_("No template type named %s."), name);
1307 }
1308 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1309 {
1310 error (_("This context has class, union or enum %s, not a struct."),
1311 name);
1312 }
1313 return (SYMBOL_TYPE (sym));
1314}
1315
1316/* Given a type TYPE, lookup the type of the component of type named
1317 NAME.
1318
1319 TYPE can be either a struct or union, or a pointer or reference to
1320 a struct or union. If it is a pointer or reference, its target
1321 type is automatically used. Thus '.' and '->' are interchangable,
1322 as specified for the definitions of the expression element types
1323 STRUCTOP_STRUCT and STRUCTOP_PTR.
1324
1325 If NOERR is nonzero, return zero if NAME is not suitably defined.
1326 If NAME is the name of a baseclass type, return that type. */
1327
1328struct type *
1329lookup_struct_elt_type (struct type *type, char *name, int noerr)
1330{
1331 int i;
1332 char *typename;
1333
1334 for (;;)
1335 {
1336 CHECK_TYPEDEF (type);
1337 if (TYPE_CODE (type) != TYPE_CODE_PTR
1338 && TYPE_CODE (type) != TYPE_CODE_REF)
1339 break;
1340 type = TYPE_TARGET_TYPE (type);
1341 }
1342
1343 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1344 && TYPE_CODE (type) != TYPE_CODE_UNION)
1345 {
1346 typename = type_to_string (type);
1347 make_cleanup (xfree, typename);
1348 error (_("Type %s is not a structure or union type."), typename);
1349 }
1350
1351#if 0
1352 /* FIXME: This change put in by Michael seems incorrect for the case
1353 where the structure tag name is the same as the member name.
1354 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1355 foo; } bell;" Disabled by fnf. */
1356 {
1357 char *typename;
1358
1359 typename = type_name_no_tag (type);
1360 if (typename != NULL && strcmp (typename, name) == 0)
1361 return type;
1362 }
1363#endif
1364
1365 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1366 {
1367 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1368
1369 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1370 {
1371 return TYPE_FIELD_TYPE (type, i);
1372 }
1373 else if (!t_field_name || *t_field_name == '\0')
1374 {
1375 struct type *subtype
1376 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1377
1378 if (subtype != NULL)
1379 return subtype;
1380 }
1381 }
1382
1383 /* OK, it's not in this class. Recursively check the baseclasses. */
1384 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1385 {
1386 struct type *t;
1387
1388 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1389 if (t != NULL)
1390 {
1391 return t;
1392 }
1393 }
1394
1395 if (noerr)
1396 {
1397 return NULL;
1398 }
1399
1400 typename = type_to_string (type);
1401 make_cleanup (xfree, typename);
1402 error (_("Type %s has no component named %s."), typename, name);
1403}
1404
1405/* Lookup the vptr basetype/fieldno values for TYPE.
1406 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1407 vptr_fieldno. Also, if found and basetype is from the same objfile,
1408 cache the results.
1409 If not found, return -1 and ignore BASETYPEP.
1410 Callers should be aware that in some cases (for example,
1411 the type or one of its baseclasses is a stub type and we are
1412 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1413 this function will not be able to find the
1414 virtual function table pointer, and vptr_fieldno will remain -1 and
1415 vptr_basetype will remain NULL or incomplete. */
1416
1417int
1418get_vptr_fieldno (struct type *type, struct type **basetypep)
1419{
1420 CHECK_TYPEDEF (type);
1421
1422 if (TYPE_VPTR_FIELDNO (type) < 0)
1423 {
1424 int i;
1425
1426 /* We must start at zero in case the first (and only) baseclass
1427 is virtual (and hence we cannot share the table pointer). */
1428 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1429 {
1430 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1431 int fieldno;
1432 struct type *basetype;
1433
1434 fieldno = get_vptr_fieldno (baseclass, &basetype);
1435 if (fieldno >= 0)
1436 {
1437 /* If the type comes from a different objfile we can't cache
1438 it, it may have a different lifetime. PR 2384 */
1439 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1440 {
1441 TYPE_VPTR_FIELDNO (type) = fieldno;
1442 TYPE_VPTR_BASETYPE (type) = basetype;
1443 }
1444 if (basetypep)
1445 *basetypep = basetype;
1446 return fieldno;
1447 }
1448 }
1449
1450 /* Not found. */
1451 return -1;
1452 }
1453 else
1454 {
1455 if (basetypep)
1456 *basetypep = TYPE_VPTR_BASETYPE (type);
1457 return TYPE_VPTR_FIELDNO (type);
1458 }
1459}
1460
1461static void
1462stub_noname_complaint (void)
1463{
1464 complaint (&symfile_complaints, _("stub type has NULL name"));
1465}
1466
1467/* Find the real type of TYPE. This function returns the real type,
1468 after removing all layers of typedefs, and completing opaque or stub
1469 types. Completion changes the TYPE argument, but stripping of
1470 typedefs does not.
1471
1472 Instance flags (e.g. const/volatile) are preserved as typedefs are
1473 stripped. If necessary a new qualified form of the underlying type
1474 is created.
1475
1476 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1477 not been computed and we're either in the middle of reading symbols, or
1478 there was no name for the typedef in the debug info.
1479
1480 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1481 QUITs in the symbol reading code can also throw.
1482 Thus this function can throw an exception.
1483
1484 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1485 the target type.
1486
1487 If this is a stubbed struct (i.e. declared as struct foo *), see if
1488 we can find a full definition in some other file. If so, copy this
1489 definition, so we can use it in future. There used to be a comment
1490 (but not any code) that if we don't find a full definition, we'd
1491 set a flag so we don't spend time in the future checking the same
1492 type. That would be a mistake, though--we might load in more
1493 symbols which contain a full definition for the type. */
1494
1495struct type *
1496check_typedef (struct type *type)
1497{
1498 struct type *orig_type = type;
1499 /* While we're removing typedefs, we don't want to lose qualifiers.
1500 E.g., const/volatile. */
1501 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1502
1503 gdb_assert (type);
1504
1505 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1506 {
1507 if (!TYPE_TARGET_TYPE (type))
1508 {
1509 const char *name;
1510 struct symbol *sym;
1511
1512 /* It is dangerous to call lookup_symbol if we are currently
1513 reading a symtab. Infinite recursion is one danger. */
1514 if (currently_reading_symtab)
1515 return make_qualified_type (type, instance_flags, NULL);
1516
1517 name = type_name_no_tag (type);
1518 /* FIXME: shouldn't we separately check the TYPE_NAME and
1519 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1520 VAR_DOMAIN as appropriate? (this code was written before
1521 TYPE_NAME and TYPE_TAG_NAME were separate). */
1522 if (name == NULL)
1523 {
1524 stub_noname_complaint ();
1525 return make_qualified_type (type, instance_flags, NULL);
1526 }
1527 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1528 if (sym)
1529 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1530 else /* TYPE_CODE_UNDEF */
1531 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1532 }
1533 type = TYPE_TARGET_TYPE (type);
1534
1535 /* Preserve the instance flags as we traverse down the typedef chain.
1536
1537 Handling address spaces/classes is nasty, what do we do if there's a
1538 conflict?
1539 E.g., what if an outer typedef marks the type as class_1 and an inner
1540 typedef marks the type as class_2?
1541 This is the wrong place to do such error checking. We leave it to
1542 the code that created the typedef in the first place to flag the
1543 error. We just pick the outer address space (akin to letting the
1544 outer cast in a chain of casting win), instead of assuming
1545 "it can't happen". */
1546 {
1547 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1548 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1549 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1550 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1551
1552 /* Treat code vs data spaces and address classes separately. */
1553 if ((instance_flags & ALL_SPACES) != 0)
1554 new_instance_flags &= ~ALL_SPACES;
1555 if ((instance_flags & ALL_CLASSES) != 0)
1556 new_instance_flags &= ~ALL_CLASSES;
1557
1558 instance_flags |= new_instance_flags;
1559 }
1560 }
1561
1562 /* If this is a struct/class/union with no fields, then check
1563 whether a full definition exists somewhere else. This is for
1564 systems where a type definition with no fields is issued for such
1565 types, instead of identifying them as stub types in the first
1566 place. */
1567
1568 if (TYPE_IS_OPAQUE (type)
1569 && opaque_type_resolution
1570 && !currently_reading_symtab)
1571 {
1572 const char *name = type_name_no_tag (type);
1573 struct type *newtype;
1574
1575 if (name == NULL)
1576 {
1577 stub_noname_complaint ();
1578 return make_qualified_type (type, instance_flags, NULL);
1579 }
1580 newtype = lookup_transparent_type (name);
1581
1582 if (newtype)
1583 {
1584 /* If the resolved type and the stub are in the same
1585 objfile, then replace the stub type with the real deal.
1586 But if they're in separate objfiles, leave the stub
1587 alone; we'll just look up the transparent type every time
1588 we call check_typedef. We can't create pointers between
1589 types allocated to different objfiles, since they may
1590 have different lifetimes. Trying to copy NEWTYPE over to
1591 TYPE's objfile is pointless, too, since you'll have to
1592 move over any other types NEWTYPE refers to, which could
1593 be an unbounded amount of stuff. */
1594 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1595 type = make_qualified_type (newtype,
1596 TYPE_INSTANCE_FLAGS (type),
1597 type);
1598 else
1599 type = newtype;
1600 }
1601 }
1602 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1603 types. */
1604 else if (TYPE_STUB (type) && !currently_reading_symtab)
1605 {
1606 const char *name = type_name_no_tag (type);
1607 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1608 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1609 as appropriate? (this code was written before TYPE_NAME and
1610 TYPE_TAG_NAME were separate). */
1611 struct symbol *sym;
1612
1613 if (name == NULL)
1614 {
1615 stub_noname_complaint ();
1616 return make_qualified_type (type, instance_flags, NULL);
1617 }
1618 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1619 if (sym)
1620 {
1621 /* Same as above for opaque types, we can replace the stub
1622 with the complete type only if they are in the same
1623 objfile. */
1624 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1625 type = make_qualified_type (SYMBOL_TYPE (sym),
1626 TYPE_INSTANCE_FLAGS (type),
1627 type);
1628 else
1629 type = SYMBOL_TYPE (sym);
1630 }
1631 }
1632
1633 if (TYPE_TARGET_STUB (type))
1634 {
1635 struct type *range_type;
1636 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1637
1638 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1639 {
1640 /* Nothing we can do. */
1641 }
1642 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1643 && TYPE_NFIELDS (type) == 1
1644 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1645 == TYPE_CODE_RANGE))
1646 {
1647 /* Now recompute the length of the array type, based on its
1648 number of elements and the target type's length.
1649 Watch out for Ada null Ada arrays where the high bound
1650 is smaller than the low bound. */
1651 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1652 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1653 ULONGEST len;
1654
1655 if (high_bound < low_bound)
1656 len = 0;
1657 else
1658 {
1659 /* For now, we conservatively take the array length to be 0
1660 if its length exceeds UINT_MAX. The code below assumes
1661 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1662 which is technically not guaranteed by C, but is usually true
1663 (because it would be true if x were unsigned with its
1664 high-order bit on). It uses the fact that
1665 high_bound-low_bound is always representable in
1666 ULONGEST and that if high_bound-low_bound+1 overflows,
1667 it overflows to 0. We must change these tests if we
1668 decide to increase the representation of TYPE_LENGTH
1669 from unsigned int to ULONGEST. */
1670 ULONGEST ulow = low_bound, uhigh = high_bound;
1671 ULONGEST tlen = TYPE_LENGTH (target_type);
1672
1673 len = tlen * (uhigh - ulow + 1);
1674 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1675 || len > UINT_MAX)
1676 len = 0;
1677 }
1678 TYPE_LENGTH (type) = len;
1679 TYPE_TARGET_STUB (type) = 0;
1680 }
1681 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1682 {
1683 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1684 TYPE_TARGET_STUB (type) = 0;
1685 }
1686 }
1687
1688 type = make_qualified_type (type, instance_flags, NULL);
1689
1690 /* Cache TYPE_LENGTH for future use. */
1691 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1692
1693 return type;
1694}
1695
1696/* Parse a type expression in the string [P..P+LENGTH). If an error
1697 occurs, silently return a void type. */
1698
1699static struct type *
1700safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1701{
1702 struct ui_file *saved_gdb_stderr;
1703 struct type *type = NULL; /* Initialize to keep gcc happy. */
1704 volatile struct gdb_exception except;
1705
1706 /* Suppress error messages. */
1707 saved_gdb_stderr = gdb_stderr;
1708 gdb_stderr = ui_file_new ();
1709
1710 /* Call parse_and_eval_type() without fear of longjmp()s. */
1711 TRY_CATCH (except, RETURN_MASK_ERROR)
1712 {
1713 type = parse_and_eval_type (p, length);
1714 }
1715
1716 if (except.reason < 0)
1717 type = builtin_type (gdbarch)->builtin_void;
1718
1719 /* Stop suppressing error messages. */
1720 ui_file_delete (gdb_stderr);
1721 gdb_stderr = saved_gdb_stderr;
1722
1723 return type;
1724}
1725
1726/* Ugly hack to convert method stubs into method types.
1727
1728 He ain't kiddin'. This demangles the name of the method into a
1729 string including argument types, parses out each argument type,
1730 generates a string casting a zero to that type, evaluates the
1731 string, and stuffs the resulting type into an argtype vector!!!
1732 Then it knows the type of the whole function (including argument
1733 types for overloading), which info used to be in the stab's but was
1734 removed to hack back the space required for them. */
1735
1736static void
1737check_stub_method (struct type *type, int method_id, int signature_id)
1738{
1739 struct gdbarch *gdbarch = get_type_arch (type);
1740 struct fn_field *f;
1741 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1742 char *demangled_name = cplus_demangle (mangled_name,
1743 DMGL_PARAMS | DMGL_ANSI);
1744 char *argtypetext, *p;
1745 int depth = 0, argcount = 1;
1746 struct field *argtypes;
1747 struct type *mtype;
1748
1749 /* Make sure we got back a function string that we can use. */
1750 if (demangled_name)
1751 p = strchr (demangled_name, '(');
1752 else
1753 p = NULL;
1754
1755 if (demangled_name == NULL || p == NULL)
1756 error (_("Internal: Cannot demangle mangled name `%s'."),
1757 mangled_name);
1758
1759 /* Now, read in the parameters that define this type. */
1760 p += 1;
1761 argtypetext = p;
1762 while (*p)
1763 {
1764 if (*p == '(' || *p == '<')
1765 {
1766 depth += 1;
1767 }
1768 else if (*p == ')' || *p == '>')
1769 {
1770 depth -= 1;
1771 }
1772 else if (*p == ',' && depth == 0)
1773 {
1774 argcount += 1;
1775 }
1776
1777 p += 1;
1778 }
1779
1780 /* If we read one argument and it was ``void'', don't count it. */
1781 if (strncmp (argtypetext, "(void)", 6) == 0)
1782 argcount -= 1;
1783
1784 /* We need one extra slot, for the THIS pointer. */
1785
1786 argtypes = (struct field *)
1787 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1788 p = argtypetext;
1789
1790 /* Add THIS pointer for non-static methods. */
1791 f = TYPE_FN_FIELDLIST1 (type, method_id);
1792 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1793 argcount = 0;
1794 else
1795 {
1796 argtypes[0].type = lookup_pointer_type (type);
1797 argcount = 1;
1798 }
1799
1800 if (*p != ')') /* () means no args, skip while. */
1801 {
1802 depth = 0;
1803 while (*p)
1804 {
1805 if (depth <= 0 && (*p == ',' || *p == ')'))
1806 {
1807 /* Avoid parsing of ellipsis, they will be handled below.
1808 Also avoid ``void'' as above. */
1809 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1810 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1811 {
1812 argtypes[argcount].type =
1813 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1814 argcount += 1;
1815 }
1816 argtypetext = p + 1;
1817 }
1818
1819 if (*p == '(' || *p == '<')
1820 {
1821 depth += 1;
1822 }
1823 else if (*p == ')' || *p == '>')
1824 {
1825 depth -= 1;
1826 }
1827
1828 p += 1;
1829 }
1830 }
1831
1832 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1833
1834 /* Now update the old "stub" type into a real type. */
1835 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1836 TYPE_DOMAIN_TYPE (mtype) = type;
1837 TYPE_FIELDS (mtype) = argtypes;
1838 TYPE_NFIELDS (mtype) = argcount;
1839 TYPE_STUB (mtype) = 0;
1840 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1841 if (p[-2] == '.')
1842 TYPE_VARARGS (mtype) = 1;
1843
1844 xfree (demangled_name);
1845}
1846
1847/* This is the external interface to check_stub_method, above. This
1848 function unstubs all of the signatures for TYPE's METHOD_ID method
1849 name. After calling this function TYPE_FN_FIELD_STUB will be
1850 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1851 correct.
1852
1853 This function unfortunately can not die until stabs do. */
1854
1855void
1856check_stub_method_group (struct type *type, int method_id)
1857{
1858 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1859 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1860 int j, found_stub = 0;
1861
1862 for (j = 0; j < len; j++)
1863 if (TYPE_FN_FIELD_STUB (f, j))
1864 {
1865 found_stub = 1;
1866 check_stub_method (type, method_id, j);
1867 }
1868
1869 /* GNU v3 methods with incorrect names were corrected when we read
1870 in type information, because it was cheaper to do it then. The
1871 only GNU v2 methods with incorrect method names are operators and
1872 destructors; destructors were also corrected when we read in type
1873 information.
1874
1875 Therefore the only thing we need to handle here are v2 operator
1876 names. */
1877 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1878 {
1879 int ret;
1880 char dem_opname[256];
1881
1882 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1883 method_id),
1884 dem_opname, DMGL_ANSI);
1885 if (!ret)
1886 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1887 method_id),
1888 dem_opname, 0);
1889 if (ret)
1890 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1891 }
1892}
1893
1894/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1895const struct cplus_struct_type cplus_struct_default = { };
1896
1897void
1898allocate_cplus_struct_type (struct type *type)
1899{
1900 if (HAVE_CPLUS_STRUCT (type))
1901 /* Structure was already allocated. Nothing more to do. */
1902 return;
1903
1904 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1905 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1906 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1907 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1908}
1909
1910const struct gnat_aux_type gnat_aux_default =
1911 { NULL };
1912
1913/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1914 and allocate the associated gnat-specific data. The gnat-specific
1915 data is also initialized to gnat_aux_default. */
1916
1917void
1918allocate_gnat_aux_type (struct type *type)
1919{
1920 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1921 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1922 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1923 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1924}
1925
1926/* Helper function to initialize the standard scalar types.
1927
1928 If NAME is non-NULL, then we make a copy of the string pointed
1929 to by name in the objfile_obstack for that objfile, and initialize
1930 the type name to that copy. There are places (mipsread.c in particular),
1931 where init_type is called with a NULL value for NAME). */
1932
1933struct type *
1934init_type (enum type_code code, int length, int flags,
1935 char *name, struct objfile *objfile)
1936{
1937 struct type *type;
1938
1939 type = alloc_type (objfile);
1940 TYPE_CODE (type) = code;
1941 TYPE_LENGTH (type) = length;
1942
1943 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1944 if (flags & TYPE_FLAG_UNSIGNED)
1945 TYPE_UNSIGNED (type) = 1;
1946 if (flags & TYPE_FLAG_NOSIGN)
1947 TYPE_NOSIGN (type) = 1;
1948 if (flags & TYPE_FLAG_STUB)
1949 TYPE_STUB (type) = 1;
1950 if (flags & TYPE_FLAG_TARGET_STUB)
1951 TYPE_TARGET_STUB (type) = 1;
1952 if (flags & TYPE_FLAG_STATIC)
1953 TYPE_STATIC (type) = 1;
1954 if (flags & TYPE_FLAG_PROTOTYPED)
1955 TYPE_PROTOTYPED (type) = 1;
1956 if (flags & TYPE_FLAG_INCOMPLETE)
1957 TYPE_INCOMPLETE (type) = 1;
1958 if (flags & TYPE_FLAG_VARARGS)
1959 TYPE_VARARGS (type) = 1;
1960 if (flags & TYPE_FLAG_VECTOR)
1961 TYPE_VECTOR (type) = 1;
1962 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1963 TYPE_STUB_SUPPORTED (type) = 1;
1964 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1965 TYPE_FIXED_INSTANCE (type) = 1;
1966 if (flags & TYPE_FLAG_GNU_IFUNC)
1967 TYPE_GNU_IFUNC (type) = 1;
1968
1969 if (name)
1970 TYPE_NAME (type) = obsavestring (name, strlen (name),
1971 &objfile->objfile_obstack);
1972
1973 /* C++ fancies. */
1974
1975 if (name && strcmp (name, "char") == 0)
1976 TYPE_NOSIGN (type) = 1;
1977
1978 switch (code)
1979 {
1980 case TYPE_CODE_STRUCT:
1981 case TYPE_CODE_UNION:
1982 case TYPE_CODE_NAMESPACE:
1983 INIT_CPLUS_SPECIFIC (type);
1984 break;
1985 case TYPE_CODE_FLT:
1986 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1987 break;
1988 case TYPE_CODE_FUNC:
1989 INIT_FUNC_SPECIFIC (type);
1990 break;
1991 }
1992 return type;
1993}
1994\f
1995/* Queries on types. */
1996
1997int
1998can_dereference (struct type *t)
1999{
2000 /* FIXME: Should we return true for references as well as
2001 pointers? */
2002 CHECK_TYPEDEF (t);
2003 return
2004 (t != NULL
2005 && TYPE_CODE (t) == TYPE_CODE_PTR
2006 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2007}
2008
2009int
2010is_integral_type (struct type *t)
2011{
2012 CHECK_TYPEDEF (t);
2013 return
2014 ((t != NULL)
2015 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2016 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2017 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2018 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2019 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2020 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2021}
2022
2023/* Return true if TYPE is scalar. */
2024
2025static int
2026is_scalar_type (struct type *type)
2027{
2028 CHECK_TYPEDEF (type);
2029
2030 switch (TYPE_CODE (type))
2031 {
2032 case TYPE_CODE_ARRAY:
2033 case TYPE_CODE_STRUCT:
2034 case TYPE_CODE_UNION:
2035 case TYPE_CODE_SET:
2036 case TYPE_CODE_STRING:
2037 return 0;
2038 default:
2039 return 1;
2040 }
2041}
2042
2043/* Return true if T is scalar, or a composite type which in practice has
2044 the memory layout of a scalar type. E.g., an array or struct with only
2045 one scalar element inside it, or a union with only scalar elements. */
2046
2047int
2048is_scalar_type_recursive (struct type *t)
2049{
2050 CHECK_TYPEDEF (t);
2051
2052 if (is_scalar_type (t))
2053 return 1;
2054 /* Are we dealing with an array or string of known dimensions? */
2055 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2056 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2057 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2058 {
2059 LONGEST low_bound, high_bound;
2060 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2061
2062 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2063
2064 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2065 }
2066 /* Are we dealing with a struct with one element? */
2067 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2068 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2069 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2070 {
2071 int i, n = TYPE_NFIELDS (t);
2072
2073 /* If all elements of the union are scalar, then the union is scalar. */
2074 for (i = 0; i < n; i++)
2075 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2076 return 0;
2077
2078 return 1;
2079 }
2080
2081 return 0;
2082}
2083
2084/* A helper function which returns true if types A and B represent the
2085 "same" class type. This is true if the types have the same main
2086 type, or the same name. */
2087
2088int
2089class_types_same_p (const struct type *a, const struct type *b)
2090{
2091 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2092 || (TYPE_NAME (a) && TYPE_NAME (b)
2093 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2094}
2095
2096/* If BASE is an ancestor of DCLASS return the distance between them.
2097 otherwise return -1;
2098 eg:
2099
2100 class A {};
2101 class B: public A {};
2102 class C: public B {};
2103 class D: C {};
2104
2105 distance_to_ancestor (A, A, 0) = 0
2106 distance_to_ancestor (A, B, 0) = 1
2107 distance_to_ancestor (A, C, 0) = 2
2108 distance_to_ancestor (A, D, 0) = 3
2109
2110 If PUBLIC is 1 then only public ancestors are considered,
2111 and the function returns the distance only if BASE is a public ancestor
2112 of DCLASS.
2113 Eg:
2114
2115 distance_to_ancestor (A, D, 1) = -1. */
2116
2117static int
2118distance_to_ancestor (struct type *base, struct type *dclass, int public)
2119{
2120 int i;
2121 int d;
2122
2123 CHECK_TYPEDEF (base);
2124 CHECK_TYPEDEF (dclass);
2125
2126 if (class_types_same_p (base, dclass))
2127 return 0;
2128
2129 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2130 {
2131 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2132 continue;
2133
2134 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2135 if (d >= 0)
2136 return 1 + d;
2137 }
2138
2139 return -1;
2140}
2141
2142/* Check whether BASE is an ancestor or base class or DCLASS
2143 Return 1 if so, and 0 if not.
2144 Note: If BASE and DCLASS are of the same type, this function
2145 will return 1. So for some class A, is_ancestor (A, A) will
2146 return 1. */
2147
2148int
2149is_ancestor (struct type *base, struct type *dclass)
2150{
2151 return distance_to_ancestor (base, dclass, 0) >= 0;
2152}
2153
2154/* Like is_ancestor, but only returns true when BASE is a public
2155 ancestor of DCLASS. */
2156
2157int
2158is_public_ancestor (struct type *base, struct type *dclass)
2159{
2160 return distance_to_ancestor (base, dclass, 1) >= 0;
2161}
2162
2163/* A helper function for is_unique_ancestor. */
2164
2165static int
2166is_unique_ancestor_worker (struct type *base, struct type *dclass,
2167 int *offset,
2168 const gdb_byte *valaddr, int embedded_offset,
2169 CORE_ADDR address, struct value *val)
2170{
2171 int i, count = 0;
2172
2173 CHECK_TYPEDEF (base);
2174 CHECK_TYPEDEF (dclass);
2175
2176 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2177 {
2178 struct type *iter;
2179 int this_offset;
2180
2181 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2182
2183 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2184 address, val);
2185
2186 if (class_types_same_p (base, iter))
2187 {
2188 /* If this is the first subclass, set *OFFSET and set count
2189 to 1. Otherwise, if this is at the same offset as
2190 previous instances, do nothing. Otherwise, increment
2191 count. */
2192 if (*offset == -1)
2193 {
2194 *offset = this_offset;
2195 count = 1;
2196 }
2197 else if (this_offset == *offset)
2198 {
2199 /* Nothing. */
2200 }
2201 else
2202 ++count;
2203 }
2204 else
2205 count += is_unique_ancestor_worker (base, iter, offset,
2206 valaddr,
2207 embedded_offset + this_offset,
2208 address, val);
2209 }
2210
2211 return count;
2212}
2213
2214/* Like is_ancestor, but only returns true if BASE is a unique base
2215 class of the type of VAL. */
2216
2217int
2218is_unique_ancestor (struct type *base, struct value *val)
2219{
2220 int offset = -1;
2221
2222 return is_unique_ancestor_worker (base, value_type (val), &offset,
2223 value_contents_for_printing (val),
2224 value_embedded_offset (val),
2225 value_address (val), val) == 1;
2226}
2227
2228\f
2229/* Overload resolution. */
2230
2231/* Return the sum of the rank of A with the rank of B. */
2232
2233struct rank
2234sum_ranks (struct rank a, struct rank b)
2235{
2236 struct rank c;
2237 c.rank = a.rank + b.rank;
2238 c.subrank = a.subrank + b.subrank;
2239 return c;
2240}
2241
2242/* Compare rank A and B and return:
2243 0 if a = b
2244 1 if a is better than b
2245 -1 if b is better than a. */
2246
2247int
2248compare_ranks (struct rank a, struct rank b)
2249{
2250 if (a.rank == b.rank)
2251 {
2252 if (a.subrank == b.subrank)
2253 return 0;
2254 if (a.subrank < b.subrank)
2255 return 1;
2256 if (a.subrank > b.subrank)
2257 return -1;
2258 }
2259
2260 if (a.rank < b.rank)
2261 return 1;
2262
2263 /* a.rank > b.rank */
2264 return -1;
2265}
2266
2267/* Functions for overload resolution begin here. */
2268
2269/* Compare two badness vectors A and B and return the result.
2270 0 => A and B are identical
2271 1 => A and B are incomparable
2272 2 => A is better than B
2273 3 => A is worse than B */
2274
2275int
2276compare_badness (struct badness_vector *a, struct badness_vector *b)
2277{
2278 int i;
2279 int tmp;
2280 short found_pos = 0; /* any positives in c? */
2281 short found_neg = 0; /* any negatives in c? */
2282
2283 /* differing lengths => incomparable */
2284 if (a->length != b->length)
2285 return 1;
2286
2287 /* Subtract b from a */
2288 for (i = 0; i < a->length; i++)
2289 {
2290 tmp = compare_ranks (b->rank[i], a->rank[i]);
2291 if (tmp > 0)
2292 found_pos = 1;
2293 else if (tmp < 0)
2294 found_neg = 1;
2295 }
2296
2297 if (found_pos)
2298 {
2299 if (found_neg)
2300 return 1; /* incomparable */
2301 else
2302 return 3; /* A > B */
2303 }
2304 else
2305 /* no positives */
2306 {
2307 if (found_neg)
2308 return 2; /* A < B */
2309 else
2310 return 0; /* A == B */
2311 }
2312}
2313
2314/* Rank a function by comparing its parameter types (PARMS, length
2315 NPARMS), to the types of an argument list (ARGS, length NARGS).
2316 Return a pointer to a badness vector. This has NARGS + 1
2317 entries. */
2318
2319struct badness_vector *
2320rank_function (struct type **parms, int nparms,
2321 struct value **args, int nargs)
2322{
2323 int i;
2324 struct badness_vector *bv;
2325 int min_len = nparms < nargs ? nparms : nargs;
2326
2327 bv = xmalloc (sizeof (struct badness_vector));
2328 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2329 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2330
2331 /* First compare the lengths of the supplied lists.
2332 If there is a mismatch, set it to a high value. */
2333
2334 /* pai/1997-06-03 FIXME: when we have debug info about default
2335 arguments and ellipsis parameter lists, we should consider those
2336 and rank the length-match more finely. */
2337
2338 LENGTH_MATCH (bv) = (nargs != nparms)
2339 ? LENGTH_MISMATCH_BADNESS
2340 : EXACT_MATCH_BADNESS;
2341
2342 /* Now rank all the parameters of the candidate function. */
2343 for (i = 1; i <= min_len; i++)
2344 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2345 args[i - 1]);
2346
2347 /* If more arguments than parameters, add dummy entries. */
2348 for (i = min_len + 1; i <= nargs; i++)
2349 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2350
2351 return bv;
2352}
2353
2354/* Compare the names of two integer types, assuming that any sign
2355 qualifiers have been checked already. We do it this way because
2356 there may be an "int" in the name of one of the types. */
2357
2358static int
2359integer_types_same_name_p (const char *first, const char *second)
2360{
2361 int first_p, second_p;
2362
2363 /* If both are shorts, return 1; if neither is a short, keep
2364 checking. */
2365 first_p = (strstr (first, "short") != NULL);
2366 second_p = (strstr (second, "short") != NULL);
2367 if (first_p && second_p)
2368 return 1;
2369 if (first_p || second_p)
2370 return 0;
2371
2372 /* Likewise for long. */
2373 first_p = (strstr (first, "long") != NULL);
2374 second_p = (strstr (second, "long") != NULL);
2375 if (first_p && second_p)
2376 return 1;
2377 if (first_p || second_p)
2378 return 0;
2379
2380 /* Likewise for char. */
2381 first_p = (strstr (first, "char") != NULL);
2382 second_p = (strstr (second, "char") != NULL);
2383 if (first_p && second_p)
2384 return 1;
2385 if (first_p || second_p)
2386 return 0;
2387
2388 /* They must both be ints. */
2389 return 1;
2390}
2391
2392/* Compares type A to type B returns 1 if the represent the same type
2393 0 otherwise. */
2394
2395static int
2396types_equal (struct type *a, struct type *b)
2397{
2398 /* Identical type pointers. */
2399 /* However, this still doesn't catch all cases of same type for b
2400 and a. The reason is that builtin types are different from
2401 the same ones constructed from the object. */
2402 if (a == b)
2403 return 1;
2404
2405 /* Resolve typedefs */
2406 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2407 a = check_typedef (a);
2408 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2409 b = check_typedef (b);
2410
2411 /* If after resolving typedefs a and b are not of the same type
2412 code then they are not equal. */
2413 if (TYPE_CODE (a) != TYPE_CODE (b))
2414 return 0;
2415
2416 /* If a and b are both pointers types or both reference types then
2417 they are equal of the same type iff the objects they refer to are
2418 of the same type. */
2419 if (TYPE_CODE (a) == TYPE_CODE_PTR
2420 || TYPE_CODE (a) == TYPE_CODE_REF)
2421 return types_equal (TYPE_TARGET_TYPE (a),
2422 TYPE_TARGET_TYPE (b));
2423
2424 /* Well, damnit, if the names are exactly the same, I'll say they
2425 are exactly the same. This happens when we generate method
2426 stubs. The types won't point to the same address, but they
2427 really are the same. */
2428
2429 if (TYPE_NAME (a) && TYPE_NAME (b)
2430 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2431 return 1;
2432
2433 /* Check if identical after resolving typedefs. */
2434 if (a == b)
2435 return 1;
2436
2437 return 0;
2438}
2439
2440/* Compare one type (PARM) for compatibility with another (ARG).
2441 * PARM is intended to be the parameter type of a function; and
2442 * ARG is the supplied argument's type. This function tests if
2443 * the latter can be converted to the former.
2444 * VALUE is the argument's value or NULL if none (or called recursively)
2445 *
2446 * Return 0 if they are identical types;
2447 * Otherwise, return an integer which corresponds to how compatible
2448 * PARM is to ARG. The higher the return value, the worse the match.
2449 * Generally the "bad" conversions are all uniformly assigned a 100. */
2450
2451struct rank
2452rank_one_type (struct type *parm, struct type *arg, struct value *value)
2453{
2454 struct rank rank = {0,0};
2455
2456 if (types_equal (parm, arg))
2457 return EXACT_MATCH_BADNESS;
2458
2459 /* Resolve typedefs */
2460 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2461 parm = check_typedef (parm);
2462 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2463 arg = check_typedef (arg);
2464
2465 /* See through references, since we can almost make non-references
2466 references. */
2467 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2468 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2469 REFERENCE_CONVERSION_BADNESS));
2470 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2471 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2472 REFERENCE_CONVERSION_BADNESS));
2473 if (overload_debug)
2474 /* Debugging only. */
2475 fprintf_filtered (gdb_stderr,
2476 "------ Arg is %s [%d], parm is %s [%d]\n",
2477 TYPE_NAME (arg), TYPE_CODE (arg),
2478 TYPE_NAME (parm), TYPE_CODE (parm));
2479
2480 /* x -> y means arg of type x being supplied for parameter of type y. */
2481
2482 switch (TYPE_CODE (parm))
2483 {
2484 case TYPE_CODE_PTR:
2485 switch (TYPE_CODE (arg))
2486 {
2487 case TYPE_CODE_PTR:
2488
2489 /* Allowed pointer conversions are:
2490 (a) pointer to void-pointer conversion. */
2491 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2492 return VOID_PTR_CONVERSION_BADNESS;
2493
2494 /* (b) pointer to ancestor-pointer conversion. */
2495 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2496 TYPE_TARGET_TYPE (arg),
2497 0);
2498 if (rank.subrank >= 0)
2499 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2500
2501 return INCOMPATIBLE_TYPE_BADNESS;
2502 case TYPE_CODE_ARRAY:
2503 if (types_equal (TYPE_TARGET_TYPE (parm),
2504 TYPE_TARGET_TYPE (arg)))
2505 return EXACT_MATCH_BADNESS;
2506 return INCOMPATIBLE_TYPE_BADNESS;
2507 case TYPE_CODE_FUNC:
2508 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2509 case TYPE_CODE_INT:
2510 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT
2511 && value_as_long (value) == 0)
2512 {
2513 /* Null pointer conversion: allow it to be cast to a pointer.
2514 [4.10.1 of C++ standard draft n3290] */
2515 return NULL_POINTER_CONVERSION_BADNESS;
2516 }
2517 /* fall through */
2518 case TYPE_CODE_ENUM:
2519 case TYPE_CODE_FLAGS:
2520 case TYPE_CODE_CHAR:
2521 case TYPE_CODE_RANGE:
2522 case TYPE_CODE_BOOL:
2523 default:
2524 return INCOMPATIBLE_TYPE_BADNESS;
2525 }
2526 case TYPE_CODE_ARRAY:
2527 switch (TYPE_CODE (arg))
2528 {
2529 case TYPE_CODE_PTR:
2530 case TYPE_CODE_ARRAY:
2531 return rank_one_type (TYPE_TARGET_TYPE (parm),
2532 TYPE_TARGET_TYPE (arg), NULL);
2533 default:
2534 return INCOMPATIBLE_TYPE_BADNESS;
2535 }
2536 case TYPE_CODE_FUNC:
2537 switch (TYPE_CODE (arg))
2538 {
2539 case TYPE_CODE_PTR: /* funcptr -> func */
2540 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
2541 default:
2542 return INCOMPATIBLE_TYPE_BADNESS;
2543 }
2544 case TYPE_CODE_INT:
2545 switch (TYPE_CODE (arg))
2546 {
2547 case TYPE_CODE_INT:
2548 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2549 {
2550 /* Deal with signed, unsigned, and plain chars and
2551 signed and unsigned ints. */
2552 if (TYPE_NOSIGN (parm))
2553 {
2554 /* This case only for character types. */
2555 if (TYPE_NOSIGN (arg))
2556 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
2557 else /* signed/unsigned char -> plain char */
2558 return INTEGER_CONVERSION_BADNESS;
2559 }
2560 else if (TYPE_UNSIGNED (parm))
2561 {
2562 if (TYPE_UNSIGNED (arg))
2563 {
2564 /* unsigned int -> unsigned int, or
2565 unsigned long -> unsigned long */
2566 if (integer_types_same_name_p (TYPE_NAME (parm),
2567 TYPE_NAME (arg)))
2568 return EXACT_MATCH_BADNESS;
2569 else if (integer_types_same_name_p (TYPE_NAME (arg),
2570 "int")
2571 && integer_types_same_name_p (TYPE_NAME (parm),
2572 "long"))
2573 /* unsigned int -> unsigned long */
2574 return INTEGER_PROMOTION_BADNESS;
2575 else
2576 /* unsigned long -> unsigned int */
2577 return INTEGER_CONVERSION_BADNESS;
2578 }
2579 else
2580 {
2581 if (integer_types_same_name_p (TYPE_NAME (arg),
2582 "long")
2583 && integer_types_same_name_p (TYPE_NAME (parm),
2584 "int"))
2585 /* signed long -> unsigned int */
2586 return INTEGER_CONVERSION_BADNESS;
2587 else
2588 /* signed int/long -> unsigned int/long */
2589 return INTEGER_CONVERSION_BADNESS;
2590 }
2591 }
2592 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2593 {
2594 if (integer_types_same_name_p (TYPE_NAME (parm),
2595 TYPE_NAME (arg)))
2596 return EXACT_MATCH_BADNESS;
2597 else if (integer_types_same_name_p (TYPE_NAME (arg),
2598 "int")
2599 && integer_types_same_name_p (TYPE_NAME (parm),
2600 "long"))
2601 return INTEGER_PROMOTION_BADNESS;
2602 else
2603 return INTEGER_CONVERSION_BADNESS;
2604 }
2605 else
2606 return INTEGER_CONVERSION_BADNESS;
2607 }
2608 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2609 return INTEGER_PROMOTION_BADNESS;
2610 else
2611 return INTEGER_CONVERSION_BADNESS;
2612 case TYPE_CODE_ENUM:
2613 case TYPE_CODE_FLAGS:
2614 case TYPE_CODE_CHAR:
2615 case TYPE_CODE_RANGE:
2616 case TYPE_CODE_BOOL:
2617 return INTEGER_PROMOTION_BADNESS;
2618 case TYPE_CODE_FLT:
2619 return INT_FLOAT_CONVERSION_BADNESS;
2620 case TYPE_CODE_PTR:
2621 return NS_POINTER_CONVERSION_BADNESS;
2622 default:
2623 return INCOMPATIBLE_TYPE_BADNESS;
2624 }
2625 break;
2626 case TYPE_CODE_ENUM:
2627 switch (TYPE_CODE (arg))
2628 {
2629 case TYPE_CODE_INT:
2630 case TYPE_CODE_CHAR:
2631 case TYPE_CODE_RANGE:
2632 case TYPE_CODE_BOOL:
2633 case TYPE_CODE_ENUM:
2634 return INTEGER_CONVERSION_BADNESS;
2635 case TYPE_CODE_FLT:
2636 return INT_FLOAT_CONVERSION_BADNESS;
2637 default:
2638 return INCOMPATIBLE_TYPE_BADNESS;
2639 }
2640 break;
2641 case TYPE_CODE_CHAR:
2642 switch (TYPE_CODE (arg))
2643 {
2644 case TYPE_CODE_RANGE:
2645 case TYPE_CODE_BOOL:
2646 case TYPE_CODE_ENUM:
2647 return INTEGER_CONVERSION_BADNESS;
2648 case TYPE_CODE_FLT:
2649 return INT_FLOAT_CONVERSION_BADNESS;
2650 case TYPE_CODE_INT:
2651 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2652 return INTEGER_CONVERSION_BADNESS;
2653 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2654 return INTEGER_PROMOTION_BADNESS;
2655 /* >>> !! else fall through !! <<< */
2656 case TYPE_CODE_CHAR:
2657 /* Deal with signed, unsigned, and plain chars for C++ and
2658 with int cases falling through from previous case. */
2659 if (TYPE_NOSIGN (parm))
2660 {
2661 if (TYPE_NOSIGN (arg))
2662 return EXACT_MATCH_BADNESS;
2663 else
2664 return INTEGER_CONVERSION_BADNESS;
2665 }
2666 else if (TYPE_UNSIGNED (parm))
2667 {
2668 if (TYPE_UNSIGNED (arg))
2669 return EXACT_MATCH_BADNESS;
2670 else
2671 return INTEGER_PROMOTION_BADNESS;
2672 }
2673 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2674 return EXACT_MATCH_BADNESS;
2675 else
2676 return INTEGER_CONVERSION_BADNESS;
2677 default:
2678 return INCOMPATIBLE_TYPE_BADNESS;
2679 }
2680 break;
2681 case TYPE_CODE_RANGE:
2682 switch (TYPE_CODE (arg))
2683 {
2684 case TYPE_CODE_INT:
2685 case TYPE_CODE_CHAR:
2686 case TYPE_CODE_RANGE:
2687 case TYPE_CODE_BOOL:
2688 case TYPE_CODE_ENUM:
2689 return INTEGER_CONVERSION_BADNESS;
2690 case TYPE_CODE_FLT:
2691 return INT_FLOAT_CONVERSION_BADNESS;
2692 default:
2693 return INCOMPATIBLE_TYPE_BADNESS;
2694 }
2695 break;
2696 case TYPE_CODE_BOOL:
2697 switch (TYPE_CODE (arg))
2698 {
2699 case TYPE_CODE_INT:
2700 case TYPE_CODE_CHAR:
2701 case TYPE_CODE_RANGE:
2702 case TYPE_CODE_ENUM:
2703 case TYPE_CODE_FLT:
2704 return INCOMPATIBLE_TYPE_BADNESS;
2705 case TYPE_CODE_PTR:
2706 return BOOL_PTR_CONVERSION_BADNESS;
2707 case TYPE_CODE_BOOL:
2708 return EXACT_MATCH_BADNESS;
2709 default:
2710 return INCOMPATIBLE_TYPE_BADNESS;
2711 }
2712 break;
2713 case TYPE_CODE_FLT:
2714 switch (TYPE_CODE (arg))
2715 {
2716 case TYPE_CODE_FLT:
2717 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2718 return FLOAT_PROMOTION_BADNESS;
2719 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2720 return EXACT_MATCH_BADNESS;
2721 else
2722 return FLOAT_CONVERSION_BADNESS;
2723 case TYPE_CODE_INT:
2724 case TYPE_CODE_BOOL:
2725 case TYPE_CODE_ENUM:
2726 case TYPE_CODE_RANGE:
2727 case TYPE_CODE_CHAR:
2728 return INT_FLOAT_CONVERSION_BADNESS;
2729 default:
2730 return INCOMPATIBLE_TYPE_BADNESS;
2731 }
2732 break;
2733 case TYPE_CODE_COMPLEX:
2734 switch (TYPE_CODE (arg))
2735 { /* Strictly not needed for C++, but... */
2736 case TYPE_CODE_FLT:
2737 return FLOAT_PROMOTION_BADNESS;
2738 case TYPE_CODE_COMPLEX:
2739 return EXACT_MATCH_BADNESS;
2740 default:
2741 return INCOMPATIBLE_TYPE_BADNESS;
2742 }
2743 break;
2744 case TYPE_CODE_STRUCT:
2745 /* currently same as TYPE_CODE_CLASS. */
2746 switch (TYPE_CODE (arg))
2747 {
2748 case TYPE_CODE_STRUCT:
2749 /* Check for derivation */
2750 rank.subrank = distance_to_ancestor (parm, arg, 0);
2751 if (rank.subrank >= 0)
2752 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
2753 /* else fall through */
2754 default:
2755 return INCOMPATIBLE_TYPE_BADNESS;
2756 }
2757 break;
2758 case TYPE_CODE_UNION:
2759 switch (TYPE_CODE (arg))
2760 {
2761 case TYPE_CODE_UNION:
2762 default:
2763 return INCOMPATIBLE_TYPE_BADNESS;
2764 }
2765 break;
2766 case TYPE_CODE_MEMBERPTR:
2767 switch (TYPE_CODE (arg))
2768 {
2769 default:
2770 return INCOMPATIBLE_TYPE_BADNESS;
2771 }
2772 break;
2773 case TYPE_CODE_METHOD:
2774 switch (TYPE_CODE (arg))
2775 {
2776
2777 default:
2778 return INCOMPATIBLE_TYPE_BADNESS;
2779 }
2780 break;
2781 case TYPE_CODE_REF:
2782 switch (TYPE_CODE (arg))
2783 {
2784
2785 default:
2786 return INCOMPATIBLE_TYPE_BADNESS;
2787 }
2788
2789 break;
2790 case TYPE_CODE_SET:
2791 switch (TYPE_CODE (arg))
2792 {
2793 /* Not in C++ */
2794 case TYPE_CODE_SET:
2795 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2796 TYPE_FIELD_TYPE (arg, 0), NULL);
2797 default:
2798 return INCOMPATIBLE_TYPE_BADNESS;
2799 }
2800 break;
2801 case TYPE_CODE_VOID:
2802 default:
2803 return INCOMPATIBLE_TYPE_BADNESS;
2804 } /* switch (TYPE_CODE (arg)) */
2805}
2806
2807/* End of functions for overload resolution. */
2808\f
2809/* Routines to pretty-print types. */
2810
2811static void
2812print_bit_vector (B_TYPE *bits, int nbits)
2813{
2814 int bitno;
2815
2816 for (bitno = 0; bitno < nbits; bitno++)
2817 {
2818 if ((bitno % 8) == 0)
2819 {
2820 puts_filtered (" ");
2821 }
2822 if (B_TST (bits, bitno))
2823 printf_filtered (("1"));
2824 else
2825 printf_filtered (("0"));
2826 }
2827}
2828
2829/* Note the first arg should be the "this" pointer, we may not want to
2830 include it since we may get into a infinitely recursive
2831 situation. */
2832
2833static void
2834print_arg_types (struct field *args, int nargs, int spaces)
2835{
2836 if (args != NULL)
2837 {
2838 int i;
2839
2840 for (i = 0; i < nargs; i++)
2841 recursive_dump_type (args[i].type, spaces + 2);
2842 }
2843}
2844
2845int
2846field_is_static (struct field *f)
2847{
2848 /* "static" fields are the fields whose location is not relative
2849 to the address of the enclosing struct. It would be nice to
2850 have a dedicated flag that would be set for static fields when
2851 the type is being created. But in practice, checking the field
2852 loc_kind should give us an accurate answer. */
2853 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2854 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2855}
2856
2857static void
2858dump_fn_fieldlists (struct type *type, int spaces)
2859{
2860 int method_idx;
2861 int overload_idx;
2862 struct fn_field *f;
2863
2864 printfi_filtered (spaces, "fn_fieldlists ");
2865 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2866 printf_filtered ("\n");
2867 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2868 {
2869 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2870 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2871 method_idx,
2872 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2873 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2874 gdb_stdout);
2875 printf_filtered (_(") length %d\n"),
2876 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2877 for (overload_idx = 0;
2878 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2879 overload_idx++)
2880 {
2881 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2882 overload_idx,
2883 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2884 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2885 gdb_stdout);
2886 printf_filtered (")\n");
2887 printfi_filtered (spaces + 8, "type ");
2888 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2889 gdb_stdout);
2890 printf_filtered ("\n");
2891
2892 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2893 spaces + 8 + 2);
2894
2895 printfi_filtered (spaces + 8, "args ");
2896 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2897 gdb_stdout);
2898 printf_filtered ("\n");
2899
2900 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2901 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2902 overload_idx)),
2903 spaces);
2904 printfi_filtered (spaces + 8, "fcontext ");
2905 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2906 gdb_stdout);
2907 printf_filtered ("\n");
2908
2909 printfi_filtered (spaces + 8, "is_const %d\n",
2910 TYPE_FN_FIELD_CONST (f, overload_idx));
2911 printfi_filtered (spaces + 8, "is_volatile %d\n",
2912 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2913 printfi_filtered (spaces + 8, "is_private %d\n",
2914 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2915 printfi_filtered (spaces + 8, "is_protected %d\n",
2916 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2917 printfi_filtered (spaces + 8, "is_stub %d\n",
2918 TYPE_FN_FIELD_STUB (f, overload_idx));
2919 printfi_filtered (spaces + 8, "voffset %u\n",
2920 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2921 }
2922 }
2923}
2924
2925static void
2926print_cplus_stuff (struct type *type, int spaces)
2927{
2928 printfi_filtered (spaces, "n_baseclasses %d\n",
2929 TYPE_N_BASECLASSES (type));
2930 printfi_filtered (spaces, "nfn_fields %d\n",
2931 TYPE_NFN_FIELDS (type));
2932 if (TYPE_N_BASECLASSES (type) > 0)
2933 {
2934 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2935 TYPE_N_BASECLASSES (type));
2936 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2937 gdb_stdout);
2938 printf_filtered (")");
2939
2940 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2941 TYPE_N_BASECLASSES (type));
2942 puts_filtered ("\n");
2943 }
2944 if (TYPE_NFIELDS (type) > 0)
2945 {
2946 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2947 {
2948 printfi_filtered (spaces,
2949 "private_field_bits (%d bits at *",
2950 TYPE_NFIELDS (type));
2951 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2952 gdb_stdout);
2953 printf_filtered (")");
2954 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2955 TYPE_NFIELDS (type));
2956 puts_filtered ("\n");
2957 }
2958 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2959 {
2960 printfi_filtered (spaces,
2961 "protected_field_bits (%d bits at *",
2962 TYPE_NFIELDS (type));
2963 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2964 gdb_stdout);
2965 printf_filtered (")");
2966 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2967 TYPE_NFIELDS (type));
2968 puts_filtered ("\n");
2969 }
2970 }
2971 if (TYPE_NFN_FIELDS (type) > 0)
2972 {
2973 dump_fn_fieldlists (type, spaces);
2974 }
2975}
2976
2977/* Print the contents of the TYPE's type_specific union, assuming that
2978 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2979
2980static void
2981print_gnat_stuff (struct type *type, int spaces)
2982{
2983 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2984
2985 recursive_dump_type (descriptive_type, spaces + 2);
2986}
2987
2988static struct obstack dont_print_type_obstack;
2989
2990void
2991recursive_dump_type (struct type *type, int spaces)
2992{
2993 int idx;
2994
2995 if (spaces == 0)
2996 obstack_begin (&dont_print_type_obstack, 0);
2997
2998 if (TYPE_NFIELDS (type) > 0
2999 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3000 {
3001 struct type **first_dont_print
3002 = (struct type **) obstack_base (&dont_print_type_obstack);
3003
3004 int i = (struct type **)
3005 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3006
3007 while (--i >= 0)
3008 {
3009 if (type == first_dont_print[i])
3010 {
3011 printfi_filtered (spaces, "type node ");
3012 gdb_print_host_address (type, gdb_stdout);
3013 printf_filtered (_(" <same as already seen type>\n"));
3014 return;
3015 }
3016 }
3017
3018 obstack_ptr_grow (&dont_print_type_obstack, type);
3019 }
3020
3021 printfi_filtered (spaces, "type node ");
3022 gdb_print_host_address (type, gdb_stdout);
3023 printf_filtered ("\n");
3024 printfi_filtered (spaces, "name '%s' (",
3025 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3026 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3027 printf_filtered (")\n");
3028 printfi_filtered (spaces, "tagname '%s' (",
3029 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3030 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3031 printf_filtered (")\n");
3032 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3033 switch (TYPE_CODE (type))
3034 {
3035 case TYPE_CODE_UNDEF:
3036 printf_filtered ("(TYPE_CODE_UNDEF)");
3037 break;
3038 case TYPE_CODE_PTR:
3039 printf_filtered ("(TYPE_CODE_PTR)");
3040 break;
3041 case TYPE_CODE_ARRAY:
3042 printf_filtered ("(TYPE_CODE_ARRAY)");
3043 break;
3044 case TYPE_CODE_STRUCT:
3045 printf_filtered ("(TYPE_CODE_STRUCT)");
3046 break;
3047 case TYPE_CODE_UNION:
3048 printf_filtered ("(TYPE_CODE_UNION)");
3049 break;
3050 case TYPE_CODE_ENUM:
3051 printf_filtered ("(TYPE_CODE_ENUM)");
3052 break;
3053 case TYPE_CODE_FLAGS:
3054 printf_filtered ("(TYPE_CODE_FLAGS)");
3055 break;
3056 case TYPE_CODE_FUNC:
3057 printf_filtered ("(TYPE_CODE_FUNC)");
3058 break;
3059 case TYPE_CODE_INT:
3060 printf_filtered ("(TYPE_CODE_INT)");
3061 break;
3062 case TYPE_CODE_FLT:
3063 printf_filtered ("(TYPE_CODE_FLT)");
3064 break;
3065 case TYPE_CODE_VOID:
3066 printf_filtered ("(TYPE_CODE_VOID)");
3067 break;
3068 case TYPE_CODE_SET:
3069 printf_filtered ("(TYPE_CODE_SET)");
3070 break;
3071 case TYPE_CODE_RANGE:
3072 printf_filtered ("(TYPE_CODE_RANGE)");
3073 break;
3074 case TYPE_CODE_STRING:
3075 printf_filtered ("(TYPE_CODE_STRING)");
3076 break;
3077 case TYPE_CODE_ERROR:
3078 printf_filtered ("(TYPE_CODE_ERROR)");
3079 break;
3080 case TYPE_CODE_MEMBERPTR:
3081 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3082 break;
3083 case TYPE_CODE_METHODPTR:
3084 printf_filtered ("(TYPE_CODE_METHODPTR)");
3085 break;
3086 case TYPE_CODE_METHOD:
3087 printf_filtered ("(TYPE_CODE_METHOD)");
3088 break;
3089 case TYPE_CODE_REF:
3090 printf_filtered ("(TYPE_CODE_REF)");
3091 break;
3092 case TYPE_CODE_CHAR:
3093 printf_filtered ("(TYPE_CODE_CHAR)");
3094 break;
3095 case TYPE_CODE_BOOL:
3096 printf_filtered ("(TYPE_CODE_BOOL)");
3097 break;
3098 case TYPE_CODE_COMPLEX:
3099 printf_filtered ("(TYPE_CODE_COMPLEX)");
3100 break;
3101 case TYPE_CODE_TYPEDEF:
3102 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3103 break;
3104 case TYPE_CODE_NAMESPACE:
3105 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3106 break;
3107 default:
3108 printf_filtered ("(UNKNOWN TYPE CODE)");
3109 break;
3110 }
3111 puts_filtered ("\n");
3112 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3113 if (TYPE_OBJFILE_OWNED (type))
3114 {
3115 printfi_filtered (spaces, "objfile ");
3116 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3117 }
3118 else
3119 {
3120 printfi_filtered (spaces, "gdbarch ");
3121 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3122 }
3123 printf_filtered ("\n");
3124 printfi_filtered (spaces, "target_type ");
3125 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3126 printf_filtered ("\n");
3127 if (TYPE_TARGET_TYPE (type) != NULL)
3128 {
3129 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3130 }
3131 printfi_filtered (spaces, "pointer_type ");
3132 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3133 printf_filtered ("\n");
3134 printfi_filtered (spaces, "reference_type ");
3135 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3136 printf_filtered ("\n");
3137 printfi_filtered (spaces, "type_chain ");
3138 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3139 printf_filtered ("\n");
3140 printfi_filtered (spaces, "instance_flags 0x%x",
3141 TYPE_INSTANCE_FLAGS (type));
3142 if (TYPE_CONST (type))
3143 {
3144 puts_filtered (" TYPE_FLAG_CONST");
3145 }
3146 if (TYPE_VOLATILE (type))
3147 {
3148 puts_filtered (" TYPE_FLAG_VOLATILE");
3149 }
3150 if (TYPE_CODE_SPACE (type))
3151 {
3152 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3153 }
3154 if (TYPE_DATA_SPACE (type))
3155 {
3156 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3157 }
3158 if (TYPE_ADDRESS_CLASS_1 (type))
3159 {
3160 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3161 }
3162 if (TYPE_ADDRESS_CLASS_2 (type))
3163 {
3164 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3165 }
3166 puts_filtered ("\n");
3167
3168 printfi_filtered (spaces, "flags");
3169 if (TYPE_UNSIGNED (type))
3170 {
3171 puts_filtered (" TYPE_FLAG_UNSIGNED");
3172 }
3173 if (TYPE_NOSIGN (type))
3174 {
3175 puts_filtered (" TYPE_FLAG_NOSIGN");
3176 }
3177 if (TYPE_STUB (type))
3178 {
3179 puts_filtered (" TYPE_FLAG_STUB");
3180 }
3181 if (TYPE_TARGET_STUB (type))
3182 {
3183 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3184 }
3185 if (TYPE_STATIC (type))
3186 {
3187 puts_filtered (" TYPE_FLAG_STATIC");
3188 }
3189 if (TYPE_PROTOTYPED (type))
3190 {
3191 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3192 }
3193 if (TYPE_INCOMPLETE (type))
3194 {
3195 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3196 }
3197 if (TYPE_VARARGS (type))
3198 {
3199 puts_filtered (" TYPE_FLAG_VARARGS");
3200 }
3201 /* This is used for things like AltiVec registers on ppc. Gcc emits
3202 an attribute for the array type, which tells whether or not we
3203 have a vector, instead of a regular array. */
3204 if (TYPE_VECTOR (type))
3205 {
3206 puts_filtered (" TYPE_FLAG_VECTOR");
3207 }
3208 if (TYPE_FIXED_INSTANCE (type))
3209 {
3210 puts_filtered (" TYPE_FIXED_INSTANCE");
3211 }
3212 if (TYPE_STUB_SUPPORTED (type))
3213 {
3214 puts_filtered (" TYPE_STUB_SUPPORTED");
3215 }
3216 if (TYPE_NOTTEXT (type))
3217 {
3218 puts_filtered (" TYPE_NOTTEXT");
3219 }
3220 puts_filtered ("\n");
3221 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3222 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3223 puts_filtered ("\n");
3224 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3225 {
3226 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3227 printfi_filtered (spaces + 2,
3228 "[%d] enumval %s type ",
3229 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3230 else
3231 printfi_filtered (spaces + 2,
3232 "[%d] bitpos %d bitsize %d type ",
3233 idx, TYPE_FIELD_BITPOS (type, idx),
3234 TYPE_FIELD_BITSIZE (type, idx));
3235 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3236 printf_filtered (" name '%s' (",
3237 TYPE_FIELD_NAME (type, idx) != NULL
3238 ? TYPE_FIELD_NAME (type, idx)
3239 : "<NULL>");
3240 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3241 printf_filtered (")\n");
3242 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3243 {
3244 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3245 }
3246 }
3247 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3248 {
3249 printfi_filtered (spaces, "low %s%s high %s%s\n",
3250 plongest (TYPE_LOW_BOUND (type)),
3251 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3252 plongest (TYPE_HIGH_BOUND (type)),
3253 TYPE_HIGH_BOUND_UNDEFINED (type)
3254 ? " (undefined)" : "");
3255 }
3256 printfi_filtered (spaces, "vptr_basetype ");
3257 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3258 puts_filtered ("\n");
3259 if (TYPE_VPTR_BASETYPE (type) != NULL)
3260 {
3261 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3262 }
3263 printfi_filtered (spaces, "vptr_fieldno %d\n",
3264 TYPE_VPTR_FIELDNO (type));
3265
3266 switch (TYPE_SPECIFIC_FIELD (type))
3267 {
3268 case TYPE_SPECIFIC_CPLUS_STUFF:
3269 printfi_filtered (spaces, "cplus_stuff ");
3270 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3271 gdb_stdout);
3272 puts_filtered ("\n");
3273 print_cplus_stuff (type, spaces);
3274 break;
3275
3276 case TYPE_SPECIFIC_GNAT_STUFF:
3277 printfi_filtered (spaces, "gnat_stuff ");
3278 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3279 puts_filtered ("\n");
3280 print_gnat_stuff (type, spaces);
3281 break;
3282
3283 case TYPE_SPECIFIC_FLOATFORMAT:
3284 printfi_filtered (spaces, "floatformat ");
3285 if (TYPE_FLOATFORMAT (type) == NULL)
3286 puts_filtered ("(null)");
3287 else
3288 {
3289 puts_filtered ("{ ");
3290 if (TYPE_FLOATFORMAT (type)[0] == NULL
3291 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3292 puts_filtered ("(null)");
3293 else
3294 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3295
3296 puts_filtered (", ");
3297 if (TYPE_FLOATFORMAT (type)[1] == NULL
3298 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3299 puts_filtered ("(null)");
3300 else
3301 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3302
3303 puts_filtered (" }");
3304 }
3305 puts_filtered ("\n");
3306 break;
3307
3308 case TYPE_SPECIFIC_FUNC:
3309 printfi_filtered (spaces, "calling_convention %d\n",
3310 TYPE_CALLING_CONVENTION (type));
3311 /* tail_call_list is not printed. */
3312 break;
3313 }
3314
3315 if (spaces == 0)
3316 obstack_free (&dont_print_type_obstack, NULL);
3317}
3318\f
3319/* Trivial helpers for the libiberty hash table, for mapping one
3320 type to another. */
3321
3322struct type_pair
3323{
3324 struct type *old, *new;
3325};
3326
3327static hashval_t
3328type_pair_hash (const void *item)
3329{
3330 const struct type_pair *pair = item;
3331
3332 return htab_hash_pointer (pair->old);
3333}
3334
3335static int
3336type_pair_eq (const void *item_lhs, const void *item_rhs)
3337{
3338 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3339
3340 return lhs->old == rhs->old;
3341}
3342
3343/* Allocate the hash table used by copy_type_recursive to walk
3344 types without duplicates. We use OBJFILE's obstack, because
3345 OBJFILE is about to be deleted. */
3346
3347htab_t
3348create_copied_types_hash (struct objfile *objfile)
3349{
3350 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3351 NULL, &objfile->objfile_obstack,
3352 hashtab_obstack_allocate,
3353 dummy_obstack_deallocate);
3354}
3355
3356/* Recursively copy (deep copy) TYPE, if it is associated with
3357 OBJFILE. Return a new type allocated using malloc, a saved type if
3358 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3359 not associated with OBJFILE. */
3360
3361struct type *
3362copy_type_recursive (struct objfile *objfile,
3363 struct type *type,
3364 htab_t copied_types)
3365{
3366 struct type_pair *stored, pair;
3367 void **slot;
3368 struct type *new_type;
3369
3370 if (! TYPE_OBJFILE_OWNED (type))
3371 return type;
3372
3373 /* This type shouldn't be pointing to any types in other objfiles;
3374 if it did, the type might disappear unexpectedly. */
3375 gdb_assert (TYPE_OBJFILE (type) == objfile);
3376
3377 pair.old = type;
3378 slot = htab_find_slot (copied_types, &pair, INSERT);
3379 if (*slot != NULL)
3380 return ((struct type_pair *) *slot)->new;
3381
3382 new_type = alloc_type_arch (get_type_arch (type));
3383
3384 /* We must add the new type to the hash table immediately, in case
3385 we encounter this type again during a recursive call below. */
3386 stored
3387 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3388 stored->old = type;
3389 stored->new = new_type;
3390 *slot = stored;
3391
3392 /* Copy the common fields of types. For the main type, we simply
3393 copy the entire thing and then update specific fields as needed. */
3394 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3395 TYPE_OBJFILE_OWNED (new_type) = 0;
3396 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3397
3398 if (TYPE_NAME (type))
3399 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3400 if (TYPE_TAG_NAME (type))
3401 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3402
3403 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3404 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3405
3406 /* Copy the fields. */
3407 if (TYPE_NFIELDS (type))
3408 {
3409 int i, nfields;
3410
3411 nfields = TYPE_NFIELDS (type);
3412 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3413 for (i = 0; i < nfields; i++)
3414 {
3415 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3416 TYPE_FIELD_ARTIFICIAL (type, i);
3417 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3418 if (TYPE_FIELD_TYPE (type, i))
3419 TYPE_FIELD_TYPE (new_type, i)
3420 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3421 copied_types);
3422 if (TYPE_FIELD_NAME (type, i))
3423 TYPE_FIELD_NAME (new_type, i) =
3424 xstrdup (TYPE_FIELD_NAME (type, i));
3425 switch (TYPE_FIELD_LOC_KIND (type, i))
3426 {
3427 case FIELD_LOC_KIND_BITPOS:
3428 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3429 TYPE_FIELD_BITPOS (type, i));
3430 break;
3431 case FIELD_LOC_KIND_ENUMVAL:
3432 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3433 TYPE_FIELD_ENUMVAL (type, i));
3434 break;
3435 case FIELD_LOC_KIND_PHYSADDR:
3436 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3437 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3438 break;
3439 case FIELD_LOC_KIND_PHYSNAME:
3440 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3441 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3442 i)));
3443 break;
3444 default:
3445 internal_error (__FILE__, __LINE__,
3446 _("Unexpected type field location kind: %d"),
3447 TYPE_FIELD_LOC_KIND (type, i));
3448 }
3449 }
3450 }
3451
3452 /* For range types, copy the bounds information. */
3453 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3454 {
3455 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3456 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3457 }
3458
3459 /* Copy pointers to other types. */
3460 if (TYPE_TARGET_TYPE (type))
3461 TYPE_TARGET_TYPE (new_type) =
3462 copy_type_recursive (objfile,
3463 TYPE_TARGET_TYPE (type),
3464 copied_types);
3465 if (TYPE_VPTR_BASETYPE (type))
3466 TYPE_VPTR_BASETYPE (new_type) =
3467 copy_type_recursive (objfile,
3468 TYPE_VPTR_BASETYPE (type),
3469 copied_types);
3470 /* Maybe copy the type_specific bits.
3471
3472 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3473 base classes and methods. There's no fundamental reason why we
3474 can't, but at the moment it is not needed. */
3475
3476 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3477 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3478 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3479 || TYPE_CODE (type) == TYPE_CODE_UNION
3480 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3481 INIT_CPLUS_SPECIFIC (new_type);
3482
3483 return new_type;
3484}
3485
3486/* Make a copy of the given TYPE, except that the pointer & reference
3487 types are not preserved.
3488
3489 This function assumes that the given type has an associated objfile.
3490 This objfile is used to allocate the new type. */
3491
3492struct type *
3493copy_type (const struct type *type)
3494{
3495 struct type *new_type;
3496
3497 gdb_assert (TYPE_OBJFILE_OWNED (type));
3498
3499 new_type = alloc_type_copy (type);
3500 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3501 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3502 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3503 sizeof (struct main_type));
3504
3505 return new_type;
3506}
3507\f
3508/* Helper functions to initialize architecture-specific types. */
3509
3510/* Allocate a type structure associated with GDBARCH and set its
3511 CODE, LENGTH, and NAME fields. */
3512
3513struct type *
3514arch_type (struct gdbarch *gdbarch,
3515 enum type_code code, int length, char *name)
3516{
3517 struct type *type;
3518
3519 type = alloc_type_arch (gdbarch);
3520 TYPE_CODE (type) = code;
3521 TYPE_LENGTH (type) = length;
3522
3523 if (name)
3524 TYPE_NAME (type) = xstrdup (name);
3525
3526 return type;
3527}
3528
3529/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3530 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3531 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3532
3533struct type *
3534arch_integer_type (struct gdbarch *gdbarch,
3535 int bit, int unsigned_p, char *name)
3536{
3537 struct type *t;
3538
3539 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3540 if (unsigned_p)
3541 TYPE_UNSIGNED (t) = 1;
3542 if (name && strcmp (name, "char") == 0)
3543 TYPE_NOSIGN (t) = 1;
3544
3545 return t;
3546}
3547
3548/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3549 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3550 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3551
3552struct type *
3553arch_character_type (struct gdbarch *gdbarch,
3554 int bit, int unsigned_p, char *name)
3555{
3556 struct type *t;
3557
3558 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3559 if (unsigned_p)
3560 TYPE_UNSIGNED (t) = 1;
3561
3562 return t;
3563}
3564
3565/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3566 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3567 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3568
3569struct type *
3570arch_boolean_type (struct gdbarch *gdbarch,
3571 int bit, int unsigned_p, char *name)
3572{
3573 struct type *t;
3574
3575 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3576 if (unsigned_p)
3577 TYPE_UNSIGNED (t) = 1;
3578
3579 return t;
3580}
3581
3582/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3583 BIT is the type size in bits; if BIT equals -1, the size is
3584 determined by the floatformat. NAME is the type name. Set the
3585 TYPE_FLOATFORMAT from FLOATFORMATS. */
3586
3587struct type *
3588arch_float_type (struct gdbarch *gdbarch,
3589 int bit, char *name, const struct floatformat **floatformats)
3590{
3591 struct type *t;
3592
3593 if (bit == -1)
3594 {
3595 gdb_assert (floatformats != NULL);
3596 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3597 bit = floatformats[0]->totalsize;
3598 }
3599 gdb_assert (bit >= 0);
3600
3601 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3602 TYPE_FLOATFORMAT (t) = floatformats;
3603 return t;
3604}
3605
3606/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3607 NAME is the type name. TARGET_TYPE is the component float type. */
3608
3609struct type *
3610arch_complex_type (struct gdbarch *gdbarch,
3611 char *name, struct type *target_type)
3612{
3613 struct type *t;
3614
3615 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3616 2 * TYPE_LENGTH (target_type), name);
3617 TYPE_TARGET_TYPE (t) = target_type;
3618 return t;
3619}
3620
3621/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3622 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3623
3624struct type *
3625arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3626{
3627 int nfields = length * TARGET_CHAR_BIT;
3628 struct type *type;
3629
3630 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3631 TYPE_UNSIGNED (type) = 1;
3632 TYPE_NFIELDS (type) = nfields;
3633 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3634
3635 return type;
3636}
3637
3638/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3639 position BITPOS is called NAME. */
3640
3641void
3642append_flags_type_flag (struct type *type, int bitpos, char *name)
3643{
3644 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3645 gdb_assert (bitpos < TYPE_NFIELDS (type));
3646 gdb_assert (bitpos >= 0);
3647
3648 if (name)
3649 {
3650 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3651 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
3652 }
3653 else
3654 {
3655 /* Don't show this field to the user. */
3656 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
3657 }
3658}
3659
3660/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3661 specified by CODE) associated with GDBARCH. NAME is the type name. */
3662
3663struct type *
3664arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3665{
3666 struct type *t;
3667
3668 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3669 t = arch_type (gdbarch, code, 0, NULL);
3670 TYPE_TAG_NAME (t) = name;
3671 INIT_CPLUS_SPECIFIC (t);
3672 return t;
3673}
3674
3675/* Add new field with name NAME and type FIELD to composite type T.
3676 Do not set the field's position or adjust the type's length;
3677 the caller should do so. Return the new field. */
3678
3679struct field *
3680append_composite_type_field_raw (struct type *t, char *name,
3681 struct type *field)
3682{
3683 struct field *f;
3684
3685 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3686 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3687 sizeof (struct field) * TYPE_NFIELDS (t));
3688 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3689 memset (f, 0, sizeof f[0]);
3690 FIELD_TYPE (f[0]) = field;
3691 FIELD_NAME (f[0]) = name;
3692 return f;
3693}
3694
3695/* Add new field with name NAME and type FIELD to composite type T.
3696 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3697
3698void
3699append_composite_type_field_aligned (struct type *t, char *name,
3700 struct type *field, int alignment)
3701{
3702 struct field *f = append_composite_type_field_raw (t, name, field);
3703
3704 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3705 {
3706 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3707 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3708 }
3709 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3710 {
3711 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3712 if (TYPE_NFIELDS (t) > 1)
3713 {
3714 SET_FIELD_BITPOS (f[0],
3715 (FIELD_BITPOS (f[-1])
3716 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3717 * TARGET_CHAR_BIT)));
3718
3719 if (alignment)
3720 {
3721 int left;
3722
3723 alignment *= TARGET_CHAR_BIT;
3724 left = FIELD_BITPOS (f[0]) % alignment;
3725
3726 if (left)
3727 {
3728 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
3729 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
3730 }
3731 }
3732 }
3733 }
3734}
3735
3736/* Add new field with name NAME and type FIELD to composite type T. */
3737
3738void
3739append_composite_type_field (struct type *t, char *name,
3740 struct type *field)
3741{
3742 append_composite_type_field_aligned (t, name, field, 0);
3743}
3744
3745static struct gdbarch_data *gdbtypes_data;
3746
3747const struct builtin_type *
3748builtin_type (struct gdbarch *gdbarch)
3749{
3750 return gdbarch_data (gdbarch, gdbtypes_data);
3751}
3752
3753static void *
3754gdbtypes_post_init (struct gdbarch *gdbarch)
3755{
3756 struct builtin_type *builtin_type
3757 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3758
3759 /* Basic types. */
3760 builtin_type->builtin_void
3761 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3762 builtin_type->builtin_char
3763 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3764 !gdbarch_char_signed (gdbarch), "char");
3765 builtin_type->builtin_signed_char
3766 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3767 0, "signed char");
3768 builtin_type->builtin_unsigned_char
3769 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3770 1, "unsigned char");
3771 builtin_type->builtin_short
3772 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3773 0, "short");
3774 builtin_type->builtin_unsigned_short
3775 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3776 1, "unsigned short");
3777 builtin_type->builtin_int
3778 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3779 0, "int");
3780 builtin_type->builtin_unsigned_int
3781 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3782 1, "unsigned int");
3783 builtin_type->builtin_long
3784 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3785 0, "long");
3786 builtin_type->builtin_unsigned_long
3787 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3788 1, "unsigned long");
3789 builtin_type->builtin_long_long
3790 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3791 0, "long long");
3792 builtin_type->builtin_unsigned_long_long
3793 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3794 1, "unsigned long long");
3795 builtin_type->builtin_float
3796 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3797 "float", gdbarch_float_format (gdbarch));
3798 builtin_type->builtin_double
3799 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3800 "double", gdbarch_double_format (gdbarch));
3801 builtin_type->builtin_long_double
3802 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3803 "long double", gdbarch_long_double_format (gdbarch));
3804 builtin_type->builtin_complex
3805 = arch_complex_type (gdbarch, "complex",
3806 builtin_type->builtin_float);
3807 builtin_type->builtin_double_complex
3808 = arch_complex_type (gdbarch, "double complex",
3809 builtin_type->builtin_double);
3810 builtin_type->builtin_string
3811 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3812 builtin_type->builtin_bool
3813 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3814
3815 /* The following three are about decimal floating point types, which
3816 are 32-bits, 64-bits and 128-bits respectively. */
3817 builtin_type->builtin_decfloat
3818 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3819 builtin_type->builtin_decdouble
3820 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3821 builtin_type->builtin_declong
3822 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3823
3824 /* "True" character types. */
3825 builtin_type->builtin_true_char
3826 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3827 builtin_type->builtin_true_unsigned_char
3828 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3829
3830 /* Fixed-size integer types. */
3831 builtin_type->builtin_int0
3832 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3833 builtin_type->builtin_int8
3834 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3835 builtin_type->builtin_uint8
3836 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3837 builtin_type->builtin_int16
3838 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3839 builtin_type->builtin_uint16
3840 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3841 builtin_type->builtin_int32
3842 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3843 builtin_type->builtin_uint32
3844 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3845 builtin_type->builtin_int64
3846 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3847 builtin_type->builtin_uint64
3848 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3849 builtin_type->builtin_int128
3850 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3851 builtin_type->builtin_uint128
3852 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3853 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3854 TYPE_INSTANCE_FLAG_NOTTEXT;
3855 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3856 TYPE_INSTANCE_FLAG_NOTTEXT;
3857
3858 /* Wide character types. */
3859 builtin_type->builtin_char16
3860 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3861 builtin_type->builtin_char32
3862 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3863
3864
3865 /* Default data/code pointer types. */
3866 builtin_type->builtin_data_ptr
3867 = lookup_pointer_type (builtin_type->builtin_void);
3868 builtin_type->builtin_func_ptr
3869 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3870 builtin_type->builtin_func_func
3871 = lookup_function_type (builtin_type->builtin_func_ptr);
3872
3873 /* This type represents a GDB internal function. */
3874 builtin_type->internal_fn
3875 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3876 "<internal function>");
3877
3878 return builtin_type;
3879}
3880
3881/* This set of objfile-based types is intended to be used by symbol
3882 readers as basic types. */
3883
3884static const struct objfile_data *objfile_type_data;
3885
3886const struct objfile_type *
3887objfile_type (struct objfile *objfile)
3888{
3889 struct gdbarch *gdbarch;
3890 struct objfile_type *objfile_type
3891 = objfile_data (objfile, objfile_type_data);
3892
3893 if (objfile_type)
3894 return objfile_type;
3895
3896 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3897 1, struct objfile_type);
3898
3899 /* Use the objfile architecture to determine basic type properties. */
3900 gdbarch = get_objfile_arch (objfile);
3901
3902 /* Basic types. */
3903 objfile_type->builtin_void
3904 = init_type (TYPE_CODE_VOID, 1,
3905 0,
3906 "void", objfile);
3907
3908 objfile_type->builtin_char
3909 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3910 (TYPE_FLAG_NOSIGN
3911 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3912 "char", objfile);
3913 objfile_type->builtin_signed_char
3914 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3915 0,
3916 "signed char", objfile);
3917 objfile_type->builtin_unsigned_char
3918 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3919 TYPE_FLAG_UNSIGNED,
3920 "unsigned char", objfile);
3921 objfile_type->builtin_short
3922 = init_type (TYPE_CODE_INT,
3923 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3924 0, "short", objfile);
3925 objfile_type->builtin_unsigned_short
3926 = init_type (TYPE_CODE_INT,
3927 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3928 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3929 objfile_type->builtin_int
3930 = init_type (TYPE_CODE_INT,
3931 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3932 0, "int", objfile);
3933 objfile_type->builtin_unsigned_int
3934 = init_type (TYPE_CODE_INT,
3935 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3936 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3937 objfile_type->builtin_long
3938 = init_type (TYPE_CODE_INT,
3939 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3940 0, "long", objfile);
3941 objfile_type->builtin_unsigned_long
3942 = init_type (TYPE_CODE_INT,
3943 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3944 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3945 objfile_type->builtin_long_long
3946 = init_type (TYPE_CODE_INT,
3947 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3948 0, "long long", objfile);
3949 objfile_type->builtin_unsigned_long_long
3950 = init_type (TYPE_CODE_INT,
3951 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3952 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3953
3954 objfile_type->builtin_float
3955 = init_type (TYPE_CODE_FLT,
3956 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3957 0, "float", objfile);
3958 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3959 = gdbarch_float_format (gdbarch);
3960 objfile_type->builtin_double
3961 = init_type (TYPE_CODE_FLT,
3962 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3963 0, "double", objfile);
3964 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3965 = gdbarch_double_format (gdbarch);
3966 objfile_type->builtin_long_double
3967 = init_type (TYPE_CODE_FLT,
3968 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3969 0, "long double", objfile);
3970 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3971 = gdbarch_long_double_format (gdbarch);
3972
3973 /* This type represents a type that was unrecognized in symbol read-in. */
3974 objfile_type->builtin_error
3975 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3976
3977 /* The following set of types is used for symbols with no
3978 debug information. */
3979 objfile_type->nodebug_text_symbol
3980 = init_type (TYPE_CODE_FUNC, 1, 0,
3981 "<text variable, no debug info>", objfile);
3982 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3983 = objfile_type->builtin_int;
3984 objfile_type->nodebug_text_gnu_ifunc_symbol
3985 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
3986 "<text gnu-indirect-function variable, no debug info>",
3987 objfile);
3988 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
3989 = objfile_type->nodebug_text_symbol;
3990 objfile_type->nodebug_got_plt_symbol
3991 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
3992 "<text from jump slot in .got.plt, no debug info>",
3993 objfile);
3994 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
3995 = objfile_type->nodebug_text_symbol;
3996 objfile_type->nodebug_data_symbol
3997 = init_type (TYPE_CODE_INT,
3998 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3999 "<data variable, no debug info>", objfile);
4000 objfile_type->nodebug_unknown_symbol
4001 = init_type (TYPE_CODE_INT, 1, 0,
4002 "<variable (not text or data), no debug info>", objfile);
4003 objfile_type->nodebug_tls_symbol
4004 = init_type (TYPE_CODE_INT,
4005 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4006 "<thread local variable, no debug info>", objfile);
4007
4008 /* NOTE: on some targets, addresses and pointers are not necessarily
4009 the same --- for example, on the D10V, pointers are 16 bits long,
4010 but addresses are 32 bits long. See doc/gdbint.texinfo,
4011 ``Pointers Are Not Always Addresses''.
4012
4013 The upshot is:
4014 - gdb's `struct type' always describes the target's
4015 representation.
4016 - gdb's `struct value' objects should always hold values in
4017 target form.
4018 - gdb's CORE_ADDR values are addresses in the unified virtual
4019 address space that the assembler and linker work with. Thus,
4020 since target_read_memory takes a CORE_ADDR as an argument, it
4021 can access any memory on the target, even if the processor has
4022 separate code and data address spaces.
4023
4024 So, for example:
4025 - If v is a value holding a D10V code pointer, its contents are
4026 in target form: a big-endian address left-shifted two bits.
4027 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
4028 sizeof (void *) == 2 on the target.
4029
4030 In this context, objfile_type->builtin_core_addr is a bit odd:
4031 it's a target type for a value the target will never see. It's
4032 only used to hold the values of (typeless) linker symbols, which
4033 are indeed in the unified virtual address space. */
4034
4035 objfile_type->builtin_core_addr
4036 = init_type (TYPE_CODE_INT,
4037 gdbarch_addr_bit (gdbarch) / 8,
4038 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4039
4040 set_objfile_data (objfile, objfile_type_data, objfile_type);
4041 return objfile_type;
4042}
4043
4044extern initialize_file_ftype _initialize_gdbtypes;
4045
4046void
4047_initialize_gdbtypes (void)
4048{
4049 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4050 objfile_type_data = register_objfile_data ();
4051
4052 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4053 _("Set debugging of C++ overloading."),
4054 _("Show debugging of C++ overloading."),
4055 _("When enabled, ranking of the "
4056 "functions is displayed."),
4057 NULL,
4058 show_overload_debug,
4059 &setdebuglist, &showdebuglist);
4060
4061 /* Add user knob for controlling resolution of opaque types. */
4062 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4063 &opaque_type_resolution,
4064 _("Set resolution of opaque struct/class/union"
4065 " types (if set before loading symbols)."),
4066 _("Show resolution of opaque struct/class/union"
4067 " types (if set before loading symbols)."),
4068 NULL, NULL,
4069 show_opaque_type_resolution,
4070 &setlist, &showlist);
4071}
This page took 0.03502 seconds and 4 git commands to generate.