Add MI "-break-insert --qualified"
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
... / ...
CommitLineData
1/* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
35#include "cp-abi.h"
36#include "hashtab.h"
37#include "cp-support.h"
38#include "bcache.h"
39#include "dwarf2/loc.h"
40#include "gdbcore.h"
41#include "floatformat.h"
42#include <algorithm>
43
44/* Initialize BADNESS constants. */
45
46const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56const struct rank CV_CONVERSION_BADNESS = {1, 0};
57const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62const struct rank BASE_CONVERSION_BADNESS = {2,0};
63const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
65const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
66const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
67const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
68
69/* Floatformat pairs. */
70const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73};
74const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77};
78const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81};
82const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85};
86const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89};
90const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93};
94const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97};
98const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101};
102const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105};
106const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109};
110const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113};
114const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
117};
118const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
119 &floatformat_bfloat16_big,
120 &floatformat_bfloat16_little
121};
122
123/* Should opaque types be resolved? */
124
125static bool opaque_type_resolution = true;
126
127/* See gdbtypes.h. */
128
129unsigned int overload_debug = 0;
130
131/* A flag to enable strict type checking. */
132
133static bool strict_type_checking = true;
134
135/* A function to show whether opaque types are resolved. */
136
137static void
138show_opaque_type_resolution (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c,
140 const char *value)
141{
142 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
143 "(if set before loading symbols) is %s.\n"),
144 value);
145}
146
147/* A function to show whether C++ overload debugging is enabled. */
148
149static void
150show_overload_debug (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152{
153 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
154 value);
155}
156
157/* A function to show the status of strict type checking. */
158
159static void
160show_strict_type_checking (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
164}
165
166\f
167/* Allocate a new OBJFILE-associated type structure and fill it
168 with some defaults. Space for the type structure is allocated
169 on the objfile's objfile_obstack. */
170
171struct type *
172alloc_type (struct objfile *objfile)
173{
174 struct type *type;
175
176 gdb_assert (objfile != NULL);
177
178 /* Alloc the structure and start off with all fields zeroed. */
179 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
180 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
181 struct main_type);
182 OBJSTAT (objfile, n_types++);
183
184 TYPE_OBJFILE_OWNED (type) = 1;
185 TYPE_OWNER (type).objfile = objfile;
186
187 /* Initialize the fields that might not be zero. */
188
189 type->set_code (TYPE_CODE_UNDEF);
190 TYPE_CHAIN (type) = type; /* Chain back to itself. */
191
192 return type;
193}
194
195/* Allocate a new GDBARCH-associated type structure and fill it
196 with some defaults. Space for the type structure is allocated
197 on the obstack associated with GDBARCH. */
198
199struct type *
200alloc_type_arch (struct gdbarch *gdbarch)
201{
202 struct type *type;
203
204 gdb_assert (gdbarch != NULL);
205
206 /* Alloc the structure and start off with all fields zeroed. */
207
208 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
209 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
210
211 TYPE_OBJFILE_OWNED (type) = 0;
212 TYPE_OWNER (type).gdbarch = gdbarch;
213
214 /* Initialize the fields that might not be zero. */
215
216 type->set_code (TYPE_CODE_UNDEF);
217 TYPE_CHAIN (type) = type; /* Chain back to itself. */
218
219 return type;
220}
221
222/* If TYPE is objfile-associated, allocate a new type structure
223 associated with the same objfile. If TYPE is gdbarch-associated,
224 allocate a new type structure associated with the same gdbarch. */
225
226struct type *
227alloc_type_copy (const struct type *type)
228{
229 if (TYPE_OBJFILE_OWNED (type))
230 return alloc_type (TYPE_OWNER (type).objfile);
231 else
232 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
233}
234
235/* If TYPE is gdbarch-associated, return that architecture.
236 If TYPE is objfile-associated, return that objfile's architecture. */
237
238struct gdbarch *
239get_type_arch (const struct type *type)
240{
241 struct gdbarch *arch;
242
243 if (TYPE_OBJFILE_OWNED (type))
244 arch = TYPE_OWNER (type).objfile->arch ();
245 else
246 arch = TYPE_OWNER (type).gdbarch;
247
248 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
249 a gdbarch, however, this is very rare, and even then, in most cases
250 that get_type_arch is called, we assume that a non-NULL value is
251 returned. */
252 gdb_assert (arch != NULL);
253 return arch;
254}
255
256/* See gdbtypes.h. */
257
258struct type *
259get_target_type (struct type *type)
260{
261 if (type != NULL)
262 {
263 type = TYPE_TARGET_TYPE (type);
264 if (type != NULL)
265 type = check_typedef (type);
266 }
267
268 return type;
269}
270
271/* See gdbtypes.h. */
272
273unsigned int
274type_length_units (struct type *type)
275{
276 struct gdbarch *arch = get_type_arch (type);
277 int unit_size = gdbarch_addressable_memory_unit_size (arch);
278
279 return TYPE_LENGTH (type) / unit_size;
280}
281
282/* Alloc a new type instance structure, fill it with some defaults,
283 and point it at OLDTYPE. Allocate the new type instance from the
284 same place as OLDTYPE. */
285
286static struct type *
287alloc_type_instance (struct type *oldtype)
288{
289 struct type *type;
290
291 /* Allocate the structure. */
292
293 if (! TYPE_OBJFILE_OWNED (oldtype))
294 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
295 else
296 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
297 struct type);
298
299 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
300
301 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
302
303 return type;
304}
305
306/* Clear all remnants of the previous type at TYPE, in preparation for
307 replacing it with something else. Preserve owner information. */
308
309static void
310smash_type (struct type *type)
311{
312 int objfile_owned = TYPE_OBJFILE_OWNED (type);
313 union type_owner owner = TYPE_OWNER (type);
314
315 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
316
317 /* Restore owner information. */
318 TYPE_OBJFILE_OWNED (type) = objfile_owned;
319 TYPE_OWNER (type) = owner;
320
321 /* For now, delete the rings. */
322 TYPE_CHAIN (type) = type;
323
324 /* For now, leave the pointer/reference types alone. */
325}
326
327/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
328 to a pointer to memory where the pointer type should be stored.
329 If *TYPEPTR is zero, update it to point to the pointer type we return.
330 We allocate new memory if needed. */
331
332struct type *
333make_pointer_type (struct type *type, struct type **typeptr)
334{
335 struct type *ntype; /* New type */
336 struct type *chain;
337
338 ntype = TYPE_POINTER_TYPE (type);
339
340 if (ntype)
341 {
342 if (typeptr == 0)
343 return ntype; /* Don't care about alloc,
344 and have new type. */
345 else if (*typeptr == 0)
346 {
347 *typeptr = ntype; /* Tracking alloc, and have new type. */
348 return ntype;
349 }
350 }
351
352 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
353 {
354 ntype = alloc_type_copy (type);
355 if (typeptr)
356 *typeptr = ntype;
357 }
358 else /* We have storage, but need to reset it. */
359 {
360 ntype = *typeptr;
361 chain = TYPE_CHAIN (ntype);
362 smash_type (ntype);
363 TYPE_CHAIN (ntype) = chain;
364 }
365
366 TYPE_TARGET_TYPE (ntype) = type;
367 TYPE_POINTER_TYPE (type) = ntype;
368
369 /* FIXME! Assumes the machine has only one representation for pointers! */
370
371 TYPE_LENGTH (ntype)
372 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
373 ntype->set_code (TYPE_CODE_PTR);
374
375 /* Mark pointers as unsigned. The target converts between pointers
376 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
377 gdbarch_address_to_pointer. */
378 TYPE_UNSIGNED (ntype) = 1;
379
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
383 {
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
386 }
387
388 return ntype;
389}
390
391/* Given a type TYPE, return a type of pointers to that type.
392 May need to construct such a type if this is the first use. */
393
394struct type *
395lookup_pointer_type (struct type *type)
396{
397 return make_pointer_type (type, (struct type **) 0);
398}
399
400/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
401 points to a pointer to memory where the reference type should be
402 stored. If *TYPEPTR is zero, update it to point to the reference
403 type we return. We allocate new memory if needed. REFCODE denotes
404 the kind of reference type to lookup (lvalue or rvalue reference). */
405
406struct type *
407make_reference_type (struct type *type, struct type **typeptr,
408 enum type_code refcode)
409{
410 struct type *ntype; /* New type */
411 struct type **reftype;
412 struct type *chain;
413
414 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
415
416 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
417 : TYPE_RVALUE_REFERENCE_TYPE (type));
418
419 if (ntype)
420 {
421 if (typeptr == 0)
422 return ntype; /* Don't care about alloc,
423 and have new type. */
424 else if (*typeptr == 0)
425 {
426 *typeptr = ntype; /* Tracking alloc, and have new type. */
427 return ntype;
428 }
429 }
430
431 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
432 {
433 ntype = alloc_type_copy (type);
434 if (typeptr)
435 *typeptr = ntype;
436 }
437 else /* We have storage, but need to reset it. */
438 {
439 ntype = *typeptr;
440 chain = TYPE_CHAIN (ntype);
441 smash_type (ntype);
442 TYPE_CHAIN (ntype) = chain;
443 }
444
445 TYPE_TARGET_TYPE (ntype) = type;
446 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
447 : &TYPE_RVALUE_REFERENCE_TYPE (type));
448
449 *reftype = ntype;
450
451 /* FIXME! Assume the machine has only one representation for
452 references, and that it matches the (only) representation for
453 pointers! */
454
455 TYPE_LENGTH (ntype) =
456 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
457 ntype->set_code (refcode);
458
459 *reftype = ntype;
460
461 /* Update the length of all the other variants of this type. */
462 chain = TYPE_CHAIN (ntype);
463 while (chain != ntype)
464 {
465 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
466 chain = TYPE_CHAIN (chain);
467 }
468
469 return ntype;
470}
471
472/* Same as above, but caller doesn't care about memory allocation
473 details. */
474
475struct type *
476lookup_reference_type (struct type *type, enum type_code refcode)
477{
478 return make_reference_type (type, (struct type **) 0, refcode);
479}
480
481/* Lookup the lvalue reference type for the type TYPE. */
482
483struct type *
484lookup_lvalue_reference_type (struct type *type)
485{
486 return lookup_reference_type (type, TYPE_CODE_REF);
487}
488
489/* Lookup the rvalue reference type for the type TYPE. */
490
491struct type *
492lookup_rvalue_reference_type (struct type *type)
493{
494 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
495}
496
497/* Lookup a function type that returns type TYPE. TYPEPTR, if
498 nonzero, points to a pointer to memory where the function type
499 should be stored. If *TYPEPTR is zero, update it to point to the
500 function type we return. We allocate new memory if needed. */
501
502struct type *
503make_function_type (struct type *type, struct type **typeptr)
504{
505 struct type *ntype; /* New type */
506
507 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
508 {
509 ntype = alloc_type_copy (type);
510 if (typeptr)
511 *typeptr = ntype;
512 }
513 else /* We have storage, but need to reset it. */
514 {
515 ntype = *typeptr;
516 smash_type (ntype);
517 }
518
519 TYPE_TARGET_TYPE (ntype) = type;
520
521 TYPE_LENGTH (ntype) = 1;
522 ntype->set_code (TYPE_CODE_FUNC);
523
524 INIT_FUNC_SPECIFIC (ntype);
525
526 return ntype;
527}
528
529/* Given a type TYPE, return a type of functions that return that type.
530 May need to construct such a type if this is the first use. */
531
532struct type *
533lookup_function_type (struct type *type)
534{
535 return make_function_type (type, (struct type **) 0);
536}
537
538/* Given a type TYPE and argument types, return the appropriate
539 function type. If the final type in PARAM_TYPES is NULL, make a
540 varargs function. */
541
542struct type *
543lookup_function_type_with_arguments (struct type *type,
544 int nparams,
545 struct type **param_types)
546{
547 struct type *fn = make_function_type (type, (struct type **) 0);
548 int i;
549
550 if (nparams > 0)
551 {
552 if (param_types[nparams - 1] == NULL)
553 {
554 --nparams;
555 TYPE_VARARGS (fn) = 1;
556 }
557 else if (check_typedef (param_types[nparams - 1])->code ()
558 == TYPE_CODE_VOID)
559 {
560 --nparams;
561 /* Caller should have ensured this. */
562 gdb_assert (nparams == 0);
563 TYPE_PROTOTYPED (fn) = 1;
564 }
565 else
566 TYPE_PROTOTYPED (fn) = 1;
567 }
568
569 fn->set_num_fields (nparams);
570 fn->set_fields
571 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
572 for (i = 0; i < nparams; ++i)
573 fn->field (i).set_type (param_types[i]);
574
575 return fn;
576}
577
578/* Identify address space identifier by name --
579 return the integer flag defined in gdbtypes.h. */
580
581int
582address_space_name_to_int (struct gdbarch *gdbarch,
583 const char *space_identifier)
584{
585 int type_flags;
586
587 /* Check for known address space delimiters. */
588 if (!strcmp (space_identifier, "code"))
589 return TYPE_INSTANCE_FLAG_CODE_SPACE;
590 else if (!strcmp (space_identifier, "data"))
591 return TYPE_INSTANCE_FLAG_DATA_SPACE;
592 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
593 && gdbarch_address_class_name_to_type_flags (gdbarch,
594 space_identifier,
595 &type_flags))
596 return type_flags;
597 else
598 error (_("Unknown address space specifier: \"%s\""), space_identifier);
599}
600
601/* Identify address space identifier by integer flag as defined in
602 gdbtypes.h -- return the string version of the adress space name. */
603
604const char *
605address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
606{
607 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
608 return "code";
609 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
610 return "data";
611 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
612 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
613 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
614 else
615 return NULL;
616}
617
618/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
619
620 If STORAGE is non-NULL, create the new type instance there.
621 STORAGE must be in the same obstack as TYPE. */
622
623static struct type *
624make_qualified_type (struct type *type, int new_flags,
625 struct type *storage)
626{
627 struct type *ntype;
628
629 ntype = type;
630 do
631 {
632 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
633 return ntype;
634 ntype = TYPE_CHAIN (ntype);
635 }
636 while (ntype != type);
637
638 /* Create a new type instance. */
639 if (storage == NULL)
640 ntype = alloc_type_instance (type);
641 else
642 {
643 /* If STORAGE was provided, it had better be in the same objfile
644 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
645 if one objfile is freed and the other kept, we'd have
646 dangling pointers. */
647 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
648
649 ntype = storage;
650 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
651 TYPE_CHAIN (ntype) = ntype;
652 }
653
654 /* Pointers or references to the original type are not relevant to
655 the new type. */
656 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
657 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
658
659 /* Chain the new qualified type to the old type. */
660 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
661 TYPE_CHAIN (type) = ntype;
662
663 /* Now set the instance flags and return the new type. */
664 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
665
666 /* Set length of new type to that of the original type. */
667 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
668
669 return ntype;
670}
671
672/* Make an address-space-delimited variant of a type -- a type that
673 is identical to the one supplied except that it has an address
674 space attribute attached to it (such as "code" or "data").
675
676 The space attributes "code" and "data" are for Harvard
677 architectures. The address space attributes are for architectures
678 which have alternately sized pointers or pointers with alternate
679 representations. */
680
681struct type *
682make_type_with_address_space (struct type *type, int space_flag)
683{
684 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
685 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
686 | TYPE_INSTANCE_FLAG_DATA_SPACE
687 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
688 | space_flag);
689
690 return make_qualified_type (type, new_flags, NULL);
691}
692
693/* Make a "c-v" variant of a type -- a type that is identical to the
694 one supplied except that it may have const or volatile attributes
695 CNST is a flag for setting the const attribute
696 VOLTL is a flag for setting the volatile attribute
697 TYPE is the base type whose variant we are creating.
698
699 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
700 storage to hold the new qualified type; *TYPEPTR and TYPE must be
701 in the same objfile. Otherwise, allocate fresh memory for the new
702 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
703 new type we construct. */
704
705struct type *
706make_cv_type (int cnst, int voltl,
707 struct type *type,
708 struct type **typeptr)
709{
710 struct type *ntype; /* New type */
711
712 int new_flags = (TYPE_INSTANCE_FLAGS (type)
713 & ~(TYPE_INSTANCE_FLAG_CONST
714 | TYPE_INSTANCE_FLAG_VOLATILE));
715
716 if (cnst)
717 new_flags |= TYPE_INSTANCE_FLAG_CONST;
718
719 if (voltl)
720 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
721
722 if (typeptr && *typeptr != NULL)
723 {
724 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
725 a C-V variant chain that threads across objfiles: if one
726 objfile gets freed, then the other has a broken C-V chain.
727
728 This code used to try to copy over the main type from TYPE to
729 *TYPEPTR if they were in different objfiles, but that's
730 wrong, too: TYPE may have a field list or member function
731 lists, which refer to types of their own, etc. etc. The
732 whole shebang would need to be copied over recursively; you
733 can't have inter-objfile pointers. The only thing to do is
734 to leave stub types as stub types, and look them up afresh by
735 name each time you encounter them. */
736 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
737 }
738
739 ntype = make_qualified_type (type, new_flags,
740 typeptr ? *typeptr : NULL);
741
742 if (typeptr != NULL)
743 *typeptr = ntype;
744
745 return ntype;
746}
747
748/* Make a 'restrict'-qualified version of TYPE. */
749
750struct type *
751make_restrict_type (struct type *type)
752{
753 return make_qualified_type (type,
754 (TYPE_INSTANCE_FLAGS (type)
755 | TYPE_INSTANCE_FLAG_RESTRICT),
756 NULL);
757}
758
759/* Make a type without const, volatile, or restrict. */
760
761struct type *
762make_unqualified_type (struct type *type)
763{
764 return make_qualified_type (type,
765 (TYPE_INSTANCE_FLAGS (type)
766 & ~(TYPE_INSTANCE_FLAG_CONST
767 | TYPE_INSTANCE_FLAG_VOLATILE
768 | TYPE_INSTANCE_FLAG_RESTRICT)),
769 NULL);
770}
771
772/* Make a '_Atomic'-qualified version of TYPE. */
773
774struct type *
775make_atomic_type (struct type *type)
776{
777 return make_qualified_type (type,
778 (TYPE_INSTANCE_FLAGS (type)
779 | TYPE_INSTANCE_FLAG_ATOMIC),
780 NULL);
781}
782
783/* Replace the contents of ntype with the type *type. This changes the
784 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
785 the changes are propogated to all types in the TYPE_CHAIN.
786
787 In order to build recursive types, it's inevitable that we'll need
788 to update types in place --- but this sort of indiscriminate
789 smashing is ugly, and needs to be replaced with something more
790 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
791 clear if more steps are needed. */
792
793void
794replace_type (struct type *ntype, struct type *type)
795{
796 struct type *chain;
797
798 /* These two types had better be in the same objfile. Otherwise,
799 the assignment of one type's main type structure to the other
800 will produce a type with references to objects (names; field
801 lists; etc.) allocated on an objfile other than its own. */
802 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
803
804 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
805
806 /* The type length is not a part of the main type. Update it for
807 each type on the variant chain. */
808 chain = ntype;
809 do
810 {
811 /* Assert that this element of the chain has no address-class bits
812 set in its flags. Such type variants might have type lengths
813 which are supposed to be different from the non-address-class
814 variants. This assertion shouldn't ever be triggered because
815 symbol readers which do construct address-class variants don't
816 call replace_type(). */
817 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
818
819 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
820 chain = TYPE_CHAIN (chain);
821 }
822 while (ntype != chain);
823
824 /* Assert that the two types have equivalent instance qualifiers.
825 This should be true for at least all of our debug readers. */
826 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
827}
828
829/* Implement direct support for MEMBER_TYPE in GNU C++.
830 May need to construct such a type if this is the first use.
831 The TYPE is the type of the member. The DOMAIN is the type
832 of the aggregate that the member belongs to. */
833
834struct type *
835lookup_memberptr_type (struct type *type, struct type *domain)
836{
837 struct type *mtype;
838
839 mtype = alloc_type_copy (type);
840 smash_to_memberptr_type (mtype, domain, type);
841 return mtype;
842}
843
844/* Return a pointer-to-method type, for a method of type TO_TYPE. */
845
846struct type *
847lookup_methodptr_type (struct type *to_type)
848{
849 struct type *mtype;
850
851 mtype = alloc_type_copy (to_type);
852 smash_to_methodptr_type (mtype, to_type);
853 return mtype;
854}
855
856/* Allocate a stub method whose return type is TYPE. This apparently
857 happens for speed of symbol reading, since parsing out the
858 arguments to the method is cpu-intensive, the way we are doing it.
859 So, we will fill in arguments later. This always returns a fresh
860 type. */
861
862struct type *
863allocate_stub_method (struct type *type)
864{
865 struct type *mtype;
866
867 mtype = alloc_type_copy (type);
868 mtype->set_code (TYPE_CODE_METHOD);
869 TYPE_LENGTH (mtype) = 1;
870 TYPE_STUB (mtype) = 1;
871 TYPE_TARGET_TYPE (mtype) = type;
872 /* TYPE_SELF_TYPE (mtype) = unknown yet */
873 return mtype;
874}
875
876/* See gdbtypes.h. */
877
878bool
879operator== (const dynamic_prop &l, const dynamic_prop &r)
880{
881 if (l.kind () != r.kind ())
882 return false;
883
884 switch (l.kind ())
885 {
886 case PROP_UNDEFINED:
887 return true;
888 case PROP_CONST:
889 return l.const_val () == r.const_val ();
890 case PROP_ADDR_OFFSET:
891 case PROP_LOCEXPR:
892 case PROP_LOCLIST:
893 return l.baton () == r.baton ();
894 case PROP_VARIANT_PARTS:
895 return l.variant_parts () == r.variant_parts ();
896 case PROP_TYPE:
897 return l.original_type () == r.original_type ();
898 }
899
900 gdb_assert_not_reached ("unhandled dynamic_prop kind");
901}
902
903/* See gdbtypes.h. */
904
905bool
906operator== (const range_bounds &l, const range_bounds &r)
907{
908#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
909
910 return (FIELD_EQ (low)
911 && FIELD_EQ (high)
912 && FIELD_EQ (flag_upper_bound_is_count)
913 && FIELD_EQ (flag_bound_evaluated)
914 && FIELD_EQ (bias));
915
916#undef FIELD_EQ
917}
918
919/* Create a range type with a dynamic range from LOW_BOUND to
920 HIGH_BOUND, inclusive. See create_range_type for further details. */
921
922struct type *
923create_range_type (struct type *result_type, struct type *index_type,
924 const struct dynamic_prop *low_bound,
925 const struct dynamic_prop *high_bound,
926 LONGEST bias)
927{
928 /* The INDEX_TYPE should be a type capable of holding the upper and lower
929 bounds, as such a zero sized, or void type makes no sense. */
930 gdb_assert (index_type->code () != TYPE_CODE_VOID);
931 gdb_assert (TYPE_LENGTH (index_type) > 0);
932
933 if (result_type == NULL)
934 result_type = alloc_type_copy (index_type);
935 result_type->set_code (TYPE_CODE_RANGE);
936 TYPE_TARGET_TYPE (result_type) = index_type;
937 if (TYPE_STUB (index_type))
938 TYPE_TARGET_STUB (result_type) = 1;
939 else
940 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
941
942 range_bounds *bounds
943 = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
944 bounds->low = *low_bound;
945 bounds->high = *high_bound;
946 bounds->bias = bias;
947 bounds->stride.set_const_val (0);
948
949 result_type->set_bounds (bounds);
950
951 if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
952 TYPE_UNSIGNED (result_type) = 1;
953
954 /* Ada allows the declaration of range types whose upper bound is
955 less than the lower bound, so checking the lower bound is not
956 enough. Make sure we do not mark a range type whose upper bound
957 is negative as unsigned. */
958 if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
959 TYPE_UNSIGNED (result_type) = 0;
960
961 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
962 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
963
964 return result_type;
965}
966
967/* See gdbtypes.h. */
968
969struct type *
970create_range_type_with_stride (struct type *result_type,
971 struct type *index_type,
972 const struct dynamic_prop *low_bound,
973 const struct dynamic_prop *high_bound,
974 LONGEST bias,
975 const struct dynamic_prop *stride,
976 bool byte_stride_p)
977{
978 result_type = create_range_type (result_type, index_type, low_bound,
979 high_bound, bias);
980
981 gdb_assert (stride != nullptr);
982 result_type->bounds ()->stride = *stride;
983 result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
984
985 return result_type;
986}
987
988
989
990/* Create a range type using either a blank type supplied in
991 RESULT_TYPE, or creating a new type, inheriting the objfile from
992 INDEX_TYPE.
993
994 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
995 to HIGH_BOUND, inclusive.
996
997 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
998 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
999
1000struct type *
1001create_static_range_type (struct type *result_type, struct type *index_type,
1002 LONGEST low_bound, LONGEST high_bound)
1003{
1004 struct dynamic_prop low, high;
1005
1006 low.set_const_val (low_bound);
1007 high.set_const_val (high_bound);
1008
1009 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1010
1011 return result_type;
1012}
1013
1014/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1015 are static, otherwise returns 0. */
1016
1017static bool
1018has_static_range (const struct range_bounds *bounds)
1019{
1020 /* If the range doesn't have a defined stride then its stride field will
1021 be initialized to the constant 0. */
1022 return (bounds->low.kind () == PROP_CONST
1023 && bounds->high.kind () == PROP_CONST
1024 && bounds->stride.kind () == PROP_CONST);
1025}
1026
1027
1028/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1029 TYPE.
1030
1031 Return 1 if type is a range type with two defined, constant bounds.
1032 Else, return 0 if it is discrete (and bounds will fit in LONGEST).
1033 Else, return -1. */
1034
1035int
1036get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1037{
1038 type = check_typedef (type);
1039 switch (type->code ())
1040 {
1041 case TYPE_CODE_RANGE:
1042 /* This function currently only works for ranges with two defined,
1043 constant bounds. */
1044 if (type->bounds ()->low.kind () != PROP_CONST
1045 || type->bounds ()->high.kind () != PROP_CONST)
1046 return -1;
1047
1048 *lowp = type->bounds ()->low.const_val ();
1049 *highp = type->bounds ()->high.const_val ();
1050
1051 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1052 {
1053 if (!discrete_position (TYPE_TARGET_TYPE (type), *lowp, lowp)
1054 || ! discrete_position (TYPE_TARGET_TYPE (type), *highp, highp))
1055 return 0;
1056 }
1057 return 1;
1058 case TYPE_CODE_ENUM:
1059 if (type->num_fields () > 0)
1060 {
1061 /* The enums may not be sorted by value, so search all
1062 entries. */
1063 int i;
1064
1065 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1066 for (i = 0; i < type->num_fields (); i++)
1067 {
1068 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1069 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1070 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1071 *highp = TYPE_FIELD_ENUMVAL (type, i);
1072 }
1073
1074 /* Set unsigned indicator if warranted. */
1075 if (*lowp >= 0)
1076 {
1077 TYPE_UNSIGNED (type) = 1;
1078 }
1079 }
1080 else
1081 {
1082 *lowp = 0;
1083 *highp = -1;
1084 }
1085 return 0;
1086 case TYPE_CODE_BOOL:
1087 *lowp = 0;
1088 *highp = 1;
1089 return 0;
1090 case TYPE_CODE_INT:
1091 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1092 return -1;
1093 if (!TYPE_UNSIGNED (type))
1094 {
1095 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1096 *highp = -*lowp - 1;
1097 return 0;
1098 }
1099 /* fall through */
1100 case TYPE_CODE_CHAR:
1101 *lowp = 0;
1102 /* This round-about calculation is to avoid shifting by
1103 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1104 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1105 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1106 *highp = (*highp - 1) | *highp;
1107 return 0;
1108 default:
1109 return -1;
1110 }
1111}
1112
1113/* Assuming TYPE is a simple, non-empty array type, compute its upper
1114 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1115 Save the high bound into HIGH_BOUND if not NULL.
1116
1117 Return 1 if the operation was successful. Return zero otherwise,
1118 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
1119
1120int
1121get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1122{
1123 struct type *index = type->index_type ();
1124 LONGEST low = 0;
1125 LONGEST high = 0;
1126 int res;
1127
1128 if (index == NULL)
1129 return 0;
1130
1131 res = get_discrete_bounds (index, &low, &high);
1132 if (res == -1)
1133 return 0;
1134
1135 if (low_bound)
1136 *low_bound = low;
1137
1138 if (high_bound)
1139 *high_bound = high;
1140
1141 return 1;
1142}
1143
1144/* Assuming that TYPE is a discrete type and VAL is a valid integer
1145 representation of a value of this type, save the corresponding
1146 position number in POS.
1147
1148 Its differs from VAL only in the case of enumeration types. In
1149 this case, the position number of the value of the first listed
1150 enumeration literal is zero; the position number of the value of
1151 each subsequent enumeration literal is one more than that of its
1152 predecessor in the list.
1153
1154 Return 1 if the operation was successful. Return zero otherwise,
1155 in which case the value of POS is unmodified.
1156*/
1157
1158int
1159discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1160{
1161 if (type->code () == TYPE_CODE_RANGE)
1162 type = TYPE_TARGET_TYPE (type);
1163
1164 if (type->code () == TYPE_CODE_ENUM)
1165 {
1166 int i;
1167
1168 for (i = 0; i < type->num_fields (); i += 1)
1169 {
1170 if (val == TYPE_FIELD_ENUMVAL (type, i))
1171 {
1172 *pos = i;
1173 return 1;
1174 }
1175 }
1176 /* Invalid enumeration value. */
1177 return 0;
1178 }
1179 else
1180 {
1181 *pos = val;
1182 return 1;
1183 }
1184}
1185
1186/* If the array TYPE has static bounds calculate and update its
1187 size, then return true. Otherwise return false and leave TYPE
1188 unchanged. */
1189
1190static bool
1191update_static_array_size (struct type *type)
1192{
1193 gdb_assert (type->code () == TYPE_CODE_ARRAY);
1194
1195 struct type *range_type = type->index_type ();
1196
1197 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
1198 && has_static_range (range_type->bounds ())
1199 && (!type_not_associated (type)
1200 && !type_not_allocated (type)))
1201 {
1202 LONGEST low_bound, high_bound;
1203 int stride;
1204 struct type *element_type;
1205
1206 /* If the array itself doesn't provide a stride value then take
1207 whatever stride the range provides. Don't update BIT_STRIDE as
1208 we don't want to place the stride value from the range into this
1209 arrays bit size field. */
1210 stride = TYPE_FIELD_BITSIZE (type, 0);
1211 if (stride == 0)
1212 stride = range_type->bit_stride ();
1213
1214 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1215 low_bound = high_bound = 0;
1216 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1217 /* Be careful when setting the array length. Ada arrays can be
1218 empty arrays with the high_bound being smaller than the low_bound.
1219 In such cases, the array length should be zero. */
1220 if (high_bound < low_bound)
1221 TYPE_LENGTH (type) = 0;
1222 else if (stride != 0)
1223 {
1224 /* Ensure that the type length is always positive, even in the
1225 case where (for example in Fortran) we have a negative
1226 stride. It is possible to have a single element array with a
1227 negative stride in Fortran (this doesn't mean anything
1228 special, it's still just a single element array) so do
1229 consider that case when touching this code. */
1230 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1231 TYPE_LENGTH (type)
1232 = ((std::abs (stride) * element_count) + 7) / 8;
1233 }
1234 else
1235 TYPE_LENGTH (type) =
1236 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1237
1238 return true;
1239 }
1240
1241 return false;
1242}
1243
1244/* Create an array type using either a blank type supplied in
1245 RESULT_TYPE, or creating a new type, inheriting the objfile from
1246 RANGE_TYPE.
1247
1248 Elements will be of type ELEMENT_TYPE, the indices will be of type
1249 RANGE_TYPE.
1250
1251 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1252 This byte stride property is added to the resulting array type
1253 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1254 argument can only be used to create types that are objfile-owned
1255 (see add_dyn_prop), meaning that either this function must be called
1256 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1257
1258 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1259 If BIT_STRIDE is not zero, build a packed array type whose element
1260 size is BIT_STRIDE. Otherwise, ignore this parameter.
1261
1262 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1263 sure it is TYPE_CODE_UNDEF before we bash it into an array
1264 type? */
1265
1266struct type *
1267create_array_type_with_stride (struct type *result_type,
1268 struct type *element_type,
1269 struct type *range_type,
1270 struct dynamic_prop *byte_stride_prop,
1271 unsigned int bit_stride)
1272{
1273 if (byte_stride_prop != NULL
1274 && byte_stride_prop->kind () == PROP_CONST)
1275 {
1276 /* The byte stride is actually not dynamic. Pretend we were
1277 called with bit_stride set instead of byte_stride_prop.
1278 This will give us the same result type, while avoiding
1279 the need to handle this as a special case. */
1280 bit_stride = byte_stride_prop->const_val () * 8;
1281 byte_stride_prop = NULL;
1282 }
1283
1284 if (result_type == NULL)
1285 result_type = alloc_type_copy (range_type);
1286
1287 result_type->set_code (TYPE_CODE_ARRAY);
1288 TYPE_TARGET_TYPE (result_type) = element_type;
1289
1290 result_type->set_num_fields (1);
1291 result_type->set_fields
1292 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1293 result_type->set_index_type (range_type);
1294 if (byte_stride_prop != NULL)
1295 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
1296 else if (bit_stride > 0)
1297 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1298
1299 if (!update_static_array_size (result_type))
1300 {
1301 /* This type is dynamic and its length needs to be computed
1302 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1303 undefined by setting it to zero. Although we are not expected
1304 to trust TYPE_LENGTH in this case, setting the size to zero
1305 allows us to avoid allocating objects of random sizes in case
1306 we accidently do. */
1307 TYPE_LENGTH (result_type) = 0;
1308 }
1309
1310 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1311 if (TYPE_LENGTH (result_type) == 0)
1312 TYPE_TARGET_STUB (result_type) = 1;
1313
1314 return result_type;
1315}
1316
1317/* Same as create_array_type_with_stride but with no bit_stride
1318 (BIT_STRIDE = 0), thus building an unpacked array. */
1319
1320struct type *
1321create_array_type (struct type *result_type,
1322 struct type *element_type,
1323 struct type *range_type)
1324{
1325 return create_array_type_with_stride (result_type, element_type,
1326 range_type, NULL, 0);
1327}
1328
1329struct type *
1330lookup_array_range_type (struct type *element_type,
1331 LONGEST low_bound, LONGEST high_bound)
1332{
1333 struct type *index_type;
1334 struct type *range_type;
1335
1336 if (TYPE_OBJFILE_OWNED (element_type))
1337 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1338 else
1339 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1340 range_type = create_static_range_type (NULL, index_type,
1341 low_bound, high_bound);
1342
1343 return create_array_type (NULL, element_type, range_type);
1344}
1345
1346/* Create a string type using either a blank type supplied in
1347 RESULT_TYPE, or creating a new type. String types are similar
1348 enough to array of char types that we can use create_array_type to
1349 build the basic type and then bash it into a string type.
1350
1351 For fixed length strings, the range type contains 0 as the lower
1352 bound and the length of the string minus one as the upper bound.
1353
1354 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1355 sure it is TYPE_CODE_UNDEF before we bash it into a string
1356 type? */
1357
1358struct type *
1359create_string_type (struct type *result_type,
1360 struct type *string_char_type,
1361 struct type *range_type)
1362{
1363 result_type = create_array_type (result_type,
1364 string_char_type,
1365 range_type);
1366 result_type->set_code (TYPE_CODE_STRING);
1367 return result_type;
1368}
1369
1370struct type *
1371lookup_string_range_type (struct type *string_char_type,
1372 LONGEST low_bound, LONGEST high_bound)
1373{
1374 struct type *result_type;
1375
1376 result_type = lookup_array_range_type (string_char_type,
1377 low_bound, high_bound);
1378 result_type->set_code (TYPE_CODE_STRING);
1379 return result_type;
1380}
1381
1382struct type *
1383create_set_type (struct type *result_type, struct type *domain_type)
1384{
1385 if (result_type == NULL)
1386 result_type = alloc_type_copy (domain_type);
1387
1388 result_type->set_code (TYPE_CODE_SET);
1389 result_type->set_num_fields (1);
1390 result_type->set_fields
1391 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1392
1393 if (!TYPE_STUB (domain_type))
1394 {
1395 LONGEST low_bound, high_bound, bit_length;
1396
1397 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1398 low_bound = high_bound = 0;
1399 bit_length = high_bound - low_bound + 1;
1400 TYPE_LENGTH (result_type)
1401 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1402 if (low_bound >= 0)
1403 TYPE_UNSIGNED (result_type) = 1;
1404 }
1405 result_type->field (0).set_type (domain_type);
1406
1407 return result_type;
1408}
1409
1410/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1411 and any array types nested inside it. */
1412
1413void
1414make_vector_type (struct type *array_type)
1415{
1416 struct type *inner_array, *elt_type;
1417 int flags;
1418
1419 /* Find the innermost array type, in case the array is
1420 multi-dimensional. */
1421 inner_array = array_type;
1422 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
1423 inner_array = TYPE_TARGET_TYPE (inner_array);
1424
1425 elt_type = TYPE_TARGET_TYPE (inner_array);
1426 if (elt_type->code () == TYPE_CODE_INT)
1427 {
1428 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1429 elt_type = make_qualified_type (elt_type, flags, NULL);
1430 TYPE_TARGET_TYPE (inner_array) = elt_type;
1431 }
1432
1433 TYPE_VECTOR (array_type) = 1;
1434}
1435
1436struct type *
1437init_vector_type (struct type *elt_type, int n)
1438{
1439 struct type *array_type;
1440
1441 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1442 make_vector_type (array_type);
1443 return array_type;
1444}
1445
1446/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1447 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1448 confusing. "self" is a common enough replacement for "this".
1449 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1450 TYPE_CODE_METHOD. */
1451
1452struct type *
1453internal_type_self_type (struct type *type)
1454{
1455 switch (type->code ())
1456 {
1457 case TYPE_CODE_METHODPTR:
1458 case TYPE_CODE_MEMBERPTR:
1459 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1460 return NULL;
1461 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1462 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1463 case TYPE_CODE_METHOD:
1464 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1465 return NULL;
1466 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1467 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1468 default:
1469 gdb_assert_not_reached ("bad type");
1470 }
1471}
1472
1473/* Set the type of the class that TYPE belongs to.
1474 In c++ this is the class of "this".
1475 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1476 TYPE_CODE_METHOD. */
1477
1478void
1479set_type_self_type (struct type *type, struct type *self_type)
1480{
1481 switch (type->code ())
1482 {
1483 case TYPE_CODE_METHODPTR:
1484 case TYPE_CODE_MEMBERPTR:
1485 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1486 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1487 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1488 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1489 break;
1490 case TYPE_CODE_METHOD:
1491 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1492 INIT_FUNC_SPECIFIC (type);
1493 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1494 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1495 break;
1496 default:
1497 gdb_assert_not_reached ("bad type");
1498 }
1499}
1500
1501/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1502 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1503 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1504 TYPE doesn't include the offset (that's the value of the MEMBER
1505 itself), but does include the structure type into which it points
1506 (for some reason).
1507
1508 When "smashing" the type, we preserve the objfile that the old type
1509 pointed to, since we aren't changing where the type is actually
1510 allocated. */
1511
1512void
1513smash_to_memberptr_type (struct type *type, struct type *self_type,
1514 struct type *to_type)
1515{
1516 smash_type (type);
1517 type->set_code (TYPE_CODE_MEMBERPTR);
1518 TYPE_TARGET_TYPE (type) = to_type;
1519 set_type_self_type (type, self_type);
1520 /* Assume that a data member pointer is the same size as a normal
1521 pointer. */
1522 TYPE_LENGTH (type)
1523 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1524}
1525
1526/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1527
1528 When "smashing" the type, we preserve the objfile that the old type
1529 pointed to, since we aren't changing where the type is actually
1530 allocated. */
1531
1532void
1533smash_to_methodptr_type (struct type *type, struct type *to_type)
1534{
1535 smash_type (type);
1536 type->set_code (TYPE_CODE_METHODPTR);
1537 TYPE_TARGET_TYPE (type) = to_type;
1538 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1539 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1540}
1541
1542/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1543 METHOD just means `function that gets an extra "this" argument'.
1544
1545 When "smashing" the type, we preserve the objfile that the old type
1546 pointed to, since we aren't changing where the type is actually
1547 allocated. */
1548
1549void
1550smash_to_method_type (struct type *type, struct type *self_type,
1551 struct type *to_type, struct field *args,
1552 int nargs, int varargs)
1553{
1554 smash_type (type);
1555 type->set_code (TYPE_CODE_METHOD);
1556 TYPE_TARGET_TYPE (type) = to_type;
1557 set_type_self_type (type, self_type);
1558 type->set_fields (args);
1559 type->set_num_fields (nargs);
1560 if (varargs)
1561 TYPE_VARARGS (type) = 1;
1562 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1563}
1564
1565/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1566 Since GCC PR debug/47510 DWARF provides associated information to detect the
1567 anonymous class linkage name from its typedef.
1568
1569 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1570 apply it itself. */
1571
1572const char *
1573type_name_or_error (struct type *type)
1574{
1575 struct type *saved_type = type;
1576 const char *name;
1577 struct objfile *objfile;
1578
1579 type = check_typedef (type);
1580
1581 name = type->name ();
1582 if (name != NULL)
1583 return name;
1584
1585 name = saved_type->name ();
1586 objfile = TYPE_OBJFILE (saved_type);
1587 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1588 name ? name : "<anonymous>",
1589 objfile ? objfile_name (objfile) : "<arch>");
1590}
1591
1592/* Lookup a typedef or primitive type named NAME, visible in lexical
1593 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1594 suitably defined. */
1595
1596struct type *
1597lookup_typename (const struct language_defn *language,
1598 const char *name,
1599 const struct block *block, int noerr)
1600{
1601 struct symbol *sym;
1602
1603 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1604 language->la_language, NULL).symbol;
1605 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1606 return SYMBOL_TYPE (sym);
1607
1608 if (noerr)
1609 return NULL;
1610 error (_("No type named %s."), name);
1611}
1612
1613struct type *
1614lookup_unsigned_typename (const struct language_defn *language,
1615 const char *name)
1616{
1617 char *uns = (char *) alloca (strlen (name) + 10);
1618
1619 strcpy (uns, "unsigned ");
1620 strcpy (uns + 9, name);
1621 return lookup_typename (language, uns, NULL, 0);
1622}
1623
1624struct type *
1625lookup_signed_typename (const struct language_defn *language, const char *name)
1626{
1627 struct type *t;
1628 char *uns = (char *) alloca (strlen (name) + 8);
1629
1630 strcpy (uns, "signed ");
1631 strcpy (uns + 7, name);
1632 t = lookup_typename (language, uns, NULL, 1);
1633 /* If we don't find "signed FOO" just try again with plain "FOO". */
1634 if (t != NULL)
1635 return t;
1636 return lookup_typename (language, name, NULL, 0);
1637}
1638
1639/* Lookup a structure type named "struct NAME",
1640 visible in lexical block BLOCK. */
1641
1642struct type *
1643lookup_struct (const char *name, const struct block *block)
1644{
1645 struct symbol *sym;
1646
1647 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1648
1649 if (sym == NULL)
1650 {
1651 error (_("No struct type named %s."), name);
1652 }
1653 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1654 {
1655 error (_("This context has class, union or enum %s, not a struct."),
1656 name);
1657 }
1658 return (SYMBOL_TYPE (sym));
1659}
1660
1661/* Lookup a union type named "union NAME",
1662 visible in lexical block BLOCK. */
1663
1664struct type *
1665lookup_union (const char *name, const struct block *block)
1666{
1667 struct symbol *sym;
1668 struct type *t;
1669
1670 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1671
1672 if (sym == NULL)
1673 error (_("No union type named %s."), name);
1674
1675 t = SYMBOL_TYPE (sym);
1676
1677 if (t->code () == TYPE_CODE_UNION)
1678 return t;
1679
1680 /* If we get here, it's not a union. */
1681 error (_("This context has class, struct or enum %s, not a union."),
1682 name);
1683}
1684
1685/* Lookup an enum type named "enum NAME",
1686 visible in lexical block BLOCK. */
1687
1688struct type *
1689lookup_enum (const char *name, const struct block *block)
1690{
1691 struct symbol *sym;
1692
1693 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1694 if (sym == NULL)
1695 {
1696 error (_("No enum type named %s."), name);
1697 }
1698 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
1699 {
1700 error (_("This context has class, struct or union %s, not an enum."),
1701 name);
1702 }
1703 return (SYMBOL_TYPE (sym));
1704}
1705
1706/* Lookup a template type named "template NAME<TYPE>",
1707 visible in lexical block BLOCK. */
1708
1709struct type *
1710lookup_template_type (const char *name, struct type *type,
1711 const struct block *block)
1712{
1713 struct symbol *sym;
1714 char *nam = (char *)
1715 alloca (strlen (name) + strlen (type->name ()) + 4);
1716
1717 strcpy (nam, name);
1718 strcat (nam, "<");
1719 strcat (nam, type->name ());
1720 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1721
1722 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1723
1724 if (sym == NULL)
1725 {
1726 error (_("No template type named %s."), name);
1727 }
1728 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1729 {
1730 error (_("This context has class, union or enum %s, not a struct."),
1731 name);
1732 }
1733 return (SYMBOL_TYPE (sym));
1734}
1735
1736/* See gdbtypes.h. */
1737
1738struct_elt
1739lookup_struct_elt (struct type *type, const char *name, int noerr)
1740{
1741 int i;
1742
1743 for (;;)
1744 {
1745 type = check_typedef (type);
1746 if (type->code () != TYPE_CODE_PTR
1747 && type->code () != TYPE_CODE_REF)
1748 break;
1749 type = TYPE_TARGET_TYPE (type);
1750 }
1751
1752 if (type->code () != TYPE_CODE_STRUCT
1753 && type->code () != TYPE_CODE_UNION)
1754 {
1755 std::string type_name = type_to_string (type);
1756 error (_("Type %s is not a structure or union type."),
1757 type_name.c_str ());
1758 }
1759
1760 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1761 {
1762 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1763
1764 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1765 {
1766 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
1767 }
1768 else if (!t_field_name || *t_field_name == '\0')
1769 {
1770 struct_elt elt
1771 = lookup_struct_elt (type->field (i).type (), name, 1);
1772 if (elt.field != NULL)
1773 {
1774 elt.offset += TYPE_FIELD_BITPOS (type, i);
1775 return elt;
1776 }
1777 }
1778 }
1779
1780 /* OK, it's not in this class. Recursively check the baseclasses. */
1781 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1782 {
1783 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1784 if (elt.field != NULL)
1785 return elt;
1786 }
1787
1788 if (noerr)
1789 return {nullptr, 0};
1790
1791 std::string type_name = type_to_string (type);
1792 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1793}
1794
1795/* See gdbtypes.h. */
1796
1797struct type *
1798lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1799{
1800 struct_elt elt = lookup_struct_elt (type, name, noerr);
1801 if (elt.field != NULL)
1802 return elt.field->type ();
1803 else
1804 return NULL;
1805}
1806
1807/* Store in *MAX the largest number representable by unsigned integer type
1808 TYPE. */
1809
1810void
1811get_unsigned_type_max (struct type *type, ULONGEST *max)
1812{
1813 unsigned int n;
1814
1815 type = check_typedef (type);
1816 gdb_assert (type->code () == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1817 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1818
1819 /* Written this way to avoid overflow. */
1820 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1821 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1822}
1823
1824/* Store in *MIN, *MAX the smallest and largest numbers representable by
1825 signed integer type TYPE. */
1826
1827void
1828get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1829{
1830 unsigned int n;
1831
1832 type = check_typedef (type);
1833 gdb_assert (type->code () == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1834 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1835
1836 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1837 *min = -((ULONGEST) 1 << (n - 1));
1838 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1839}
1840
1841/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1842 cplus_stuff.vptr_fieldno.
1843
1844 cplus_stuff is initialized to cplus_struct_default which does not
1845 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1846 designated initializers). We cope with that here. */
1847
1848int
1849internal_type_vptr_fieldno (struct type *type)
1850{
1851 type = check_typedef (type);
1852 gdb_assert (type->code () == TYPE_CODE_STRUCT
1853 || type->code () == TYPE_CODE_UNION);
1854 if (!HAVE_CPLUS_STRUCT (type))
1855 return -1;
1856 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1857}
1858
1859/* Set the value of cplus_stuff.vptr_fieldno. */
1860
1861void
1862set_type_vptr_fieldno (struct type *type, int fieldno)
1863{
1864 type = check_typedef (type);
1865 gdb_assert (type->code () == TYPE_CODE_STRUCT
1866 || type->code () == TYPE_CODE_UNION);
1867 if (!HAVE_CPLUS_STRUCT (type))
1868 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1869 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1870}
1871
1872/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1873 cplus_stuff.vptr_basetype. */
1874
1875struct type *
1876internal_type_vptr_basetype (struct type *type)
1877{
1878 type = check_typedef (type);
1879 gdb_assert (type->code () == TYPE_CODE_STRUCT
1880 || type->code () == TYPE_CODE_UNION);
1881 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1882 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1883}
1884
1885/* Set the value of cplus_stuff.vptr_basetype. */
1886
1887void
1888set_type_vptr_basetype (struct type *type, struct type *basetype)
1889{
1890 type = check_typedef (type);
1891 gdb_assert (type->code () == TYPE_CODE_STRUCT
1892 || type->code () == TYPE_CODE_UNION);
1893 if (!HAVE_CPLUS_STRUCT (type))
1894 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1895 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1896}
1897
1898/* Lookup the vptr basetype/fieldno values for TYPE.
1899 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1900 vptr_fieldno. Also, if found and basetype is from the same objfile,
1901 cache the results.
1902 If not found, return -1 and ignore BASETYPEP.
1903 Callers should be aware that in some cases (for example,
1904 the type or one of its baseclasses is a stub type and we are
1905 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1906 this function will not be able to find the
1907 virtual function table pointer, and vptr_fieldno will remain -1 and
1908 vptr_basetype will remain NULL or incomplete. */
1909
1910int
1911get_vptr_fieldno (struct type *type, struct type **basetypep)
1912{
1913 type = check_typedef (type);
1914
1915 if (TYPE_VPTR_FIELDNO (type) < 0)
1916 {
1917 int i;
1918
1919 /* We must start at zero in case the first (and only) baseclass
1920 is virtual (and hence we cannot share the table pointer). */
1921 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1922 {
1923 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1924 int fieldno;
1925 struct type *basetype;
1926
1927 fieldno = get_vptr_fieldno (baseclass, &basetype);
1928 if (fieldno >= 0)
1929 {
1930 /* If the type comes from a different objfile we can't cache
1931 it, it may have a different lifetime. PR 2384 */
1932 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1933 {
1934 set_type_vptr_fieldno (type, fieldno);
1935 set_type_vptr_basetype (type, basetype);
1936 }
1937 if (basetypep)
1938 *basetypep = basetype;
1939 return fieldno;
1940 }
1941 }
1942
1943 /* Not found. */
1944 return -1;
1945 }
1946 else
1947 {
1948 if (basetypep)
1949 *basetypep = TYPE_VPTR_BASETYPE (type);
1950 return TYPE_VPTR_FIELDNO (type);
1951 }
1952}
1953
1954static void
1955stub_noname_complaint (void)
1956{
1957 complaint (_("stub type has NULL name"));
1958}
1959
1960/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1961 attached to it, and that property has a non-constant value. */
1962
1963static int
1964array_type_has_dynamic_stride (struct type *type)
1965{
1966 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
1967
1968 return (prop != NULL && prop->kind () != PROP_CONST);
1969}
1970
1971/* Worker for is_dynamic_type. */
1972
1973static int
1974is_dynamic_type_internal (struct type *type, int top_level)
1975{
1976 type = check_typedef (type);
1977
1978 /* We only want to recognize references at the outermost level. */
1979 if (top_level && type->code () == TYPE_CODE_REF)
1980 type = check_typedef (TYPE_TARGET_TYPE (type));
1981
1982 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1983 dynamic, even if the type itself is statically defined.
1984 From a user's point of view, this may appear counter-intuitive;
1985 but it makes sense in this context, because the point is to determine
1986 whether any part of the type needs to be resolved before it can
1987 be exploited. */
1988 if (TYPE_DATA_LOCATION (type) != NULL
1989 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1990 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1991 return 1;
1992
1993 if (TYPE_ASSOCIATED_PROP (type))
1994 return 1;
1995
1996 if (TYPE_ALLOCATED_PROP (type))
1997 return 1;
1998
1999 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2000 if (prop != nullptr && prop->kind () != PROP_TYPE)
2001 return 1;
2002
2003 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2004 return 1;
2005
2006 switch (type->code ())
2007 {
2008 case TYPE_CODE_RANGE:
2009 {
2010 /* A range type is obviously dynamic if it has at least one
2011 dynamic bound. But also consider the range type to be
2012 dynamic when its subtype is dynamic, even if the bounds
2013 of the range type are static. It allows us to assume that
2014 the subtype of a static range type is also static. */
2015 return (!has_static_range (type->bounds ())
2016 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
2017 }
2018
2019 case TYPE_CODE_STRING:
2020 /* Strings are very much like an array of characters, and can be
2021 treated as one here. */
2022 case TYPE_CODE_ARRAY:
2023 {
2024 gdb_assert (type->num_fields () == 1);
2025
2026 /* The array is dynamic if either the bounds are dynamic... */
2027 if (is_dynamic_type_internal (type->index_type (), 0))
2028 return 1;
2029 /* ... or the elements it contains have a dynamic contents... */
2030 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2031 return 1;
2032 /* ... or if it has a dynamic stride... */
2033 if (array_type_has_dynamic_stride (type))
2034 return 1;
2035 return 0;
2036 }
2037
2038 case TYPE_CODE_STRUCT:
2039 case TYPE_CODE_UNION:
2040 {
2041 int i;
2042
2043 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2044
2045 for (i = 0; i < type->num_fields (); ++i)
2046 {
2047 /* Static fields can be ignored here. */
2048 if (field_is_static (&type->field (i)))
2049 continue;
2050 /* If the field has dynamic type, then so does TYPE. */
2051 if (is_dynamic_type_internal (type->field (i).type (), 0))
2052 return 1;
2053 /* If the field is at a fixed offset, then it is not
2054 dynamic. */
2055 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2056 continue;
2057 /* Do not consider C++ virtual base types to be dynamic
2058 due to the field's offset being dynamic; these are
2059 handled via other means. */
2060 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2061 continue;
2062 return 1;
2063 }
2064 }
2065 break;
2066 }
2067
2068 return 0;
2069}
2070
2071/* See gdbtypes.h. */
2072
2073int
2074is_dynamic_type (struct type *type)
2075{
2076 return is_dynamic_type_internal (type, 1);
2077}
2078
2079static struct type *resolve_dynamic_type_internal
2080 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2081
2082/* Given a dynamic range type (dyn_range_type) and a stack of
2083 struct property_addr_info elements, return a static version
2084 of that type. */
2085
2086static struct type *
2087resolve_dynamic_range (struct type *dyn_range_type,
2088 struct property_addr_info *addr_stack)
2089{
2090 CORE_ADDR value;
2091 struct type *static_range_type, *static_target_type;
2092 struct dynamic_prop low_bound, high_bound, stride;
2093
2094 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
2095
2096 const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
2097 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2098 low_bound.set_const_val (value);
2099 else
2100 low_bound.set_undefined ();
2101
2102 prop = &dyn_range_type->bounds ()->high;
2103 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2104 {
2105 high_bound.set_const_val (value);
2106
2107 if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
2108 high_bound.set_const_val
2109 (low_bound.const_val () + high_bound.const_val () - 1);
2110 }
2111 else
2112 high_bound.set_undefined ();
2113
2114 bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
2115 prop = &dyn_range_type->bounds ()->stride;
2116 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2117 {
2118 stride.set_const_val (value);
2119
2120 /* If we have a bit stride that is not an exact number of bytes then
2121 I really don't think this is going to work with current GDB, the
2122 array indexing code in GDB seems to be pretty heavily tied to byte
2123 offsets right now. Assuming 8 bits in a byte. */
2124 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2125 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2126 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2127 error (_("bit strides that are not a multiple of the byte size "
2128 "are currently not supported"));
2129 }
2130 else
2131 {
2132 stride.set_undefined ();
2133 byte_stride_p = true;
2134 }
2135
2136 static_target_type
2137 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2138 addr_stack, 0);
2139 LONGEST bias = dyn_range_type->bounds ()->bias;
2140 static_range_type = create_range_type_with_stride
2141 (copy_type (dyn_range_type), static_target_type,
2142 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2143 static_range_type->bounds ()->flag_bound_evaluated = 1;
2144 return static_range_type;
2145}
2146
2147/* Resolves dynamic bound values of an array or string type TYPE to static
2148 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2149 needed during the dynamic resolution. */
2150
2151static struct type *
2152resolve_dynamic_array_or_string (struct type *type,
2153 struct property_addr_info *addr_stack)
2154{
2155 CORE_ADDR value;
2156 struct type *elt_type;
2157 struct type *range_type;
2158 struct type *ary_dim;
2159 struct dynamic_prop *prop;
2160 unsigned int bit_stride = 0;
2161
2162 /* For dynamic type resolution strings can be treated like arrays of
2163 characters. */
2164 gdb_assert (type->code () == TYPE_CODE_ARRAY
2165 || type->code () == TYPE_CODE_STRING);
2166
2167 type = copy_type (type);
2168
2169 elt_type = type;
2170 range_type = check_typedef (elt_type->index_type ());
2171 range_type = resolve_dynamic_range (range_type, addr_stack);
2172
2173 /* Resolve allocated/associated here before creating a new array type, which
2174 will update the length of the array accordingly. */
2175 prop = TYPE_ALLOCATED_PROP (type);
2176 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2177 prop->set_const_val (value);
2178
2179 prop = TYPE_ASSOCIATED_PROP (type);
2180 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2181 prop->set_const_val (value);
2182
2183 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2184
2185 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
2186 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2187 else
2188 elt_type = TYPE_TARGET_TYPE (type);
2189
2190 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2191 if (prop != NULL)
2192 {
2193 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2194 {
2195 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
2196 bit_stride = (unsigned int) (value * 8);
2197 }
2198 else
2199 {
2200 /* Could be a bug in our code, but it could also happen
2201 if the DWARF info is not correct. Issue a warning,
2202 and assume no byte/bit stride (leave bit_stride = 0). */
2203 warning (_("cannot determine array stride for type %s"),
2204 type->name () ? type->name () : "<no name>");
2205 }
2206 }
2207 else
2208 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2209
2210 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2211 bit_stride);
2212}
2213
2214/* Resolve dynamic bounds of members of the union TYPE to static
2215 bounds. ADDR_STACK is a stack of struct property_addr_info
2216 to be used if needed during the dynamic resolution. */
2217
2218static struct type *
2219resolve_dynamic_union (struct type *type,
2220 struct property_addr_info *addr_stack)
2221{
2222 struct type *resolved_type;
2223 int i;
2224 unsigned int max_len = 0;
2225
2226 gdb_assert (type->code () == TYPE_CODE_UNION);
2227
2228 resolved_type = copy_type (type);
2229 resolved_type->set_fields
2230 ((struct field *)
2231 TYPE_ALLOC (resolved_type,
2232 resolved_type->num_fields () * sizeof (struct field)));
2233 memcpy (resolved_type->fields (),
2234 type->fields (),
2235 resolved_type->num_fields () * sizeof (struct field));
2236 for (i = 0; i < resolved_type->num_fields (); ++i)
2237 {
2238 struct type *t;
2239
2240 if (field_is_static (&type->field (i)))
2241 continue;
2242
2243 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
2244 addr_stack, 0);
2245 resolved_type->field (i).set_type (t);
2246
2247 struct type *real_type = check_typedef (t);
2248 if (TYPE_LENGTH (real_type) > max_len)
2249 max_len = TYPE_LENGTH (real_type);
2250 }
2251
2252 TYPE_LENGTH (resolved_type) = max_len;
2253 return resolved_type;
2254}
2255
2256/* See gdbtypes.h. */
2257
2258bool
2259variant::matches (ULONGEST value, bool is_unsigned) const
2260{
2261 for (const discriminant_range &range : discriminants)
2262 if (range.contains (value, is_unsigned))
2263 return true;
2264 return false;
2265}
2266
2267static void
2268compute_variant_fields_inner (struct type *type,
2269 struct property_addr_info *addr_stack,
2270 const variant_part &part,
2271 std::vector<bool> &flags);
2272
2273/* A helper function to determine which variant fields will be active.
2274 This handles both the variant's direct fields, and any variant
2275 parts embedded in this variant. TYPE is the type we're examining.
2276 ADDR_STACK holds information about the concrete object. VARIANT is
2277 the current variant to be handled. FLAGS is where the results are
2278 stored -- this function sets the Nth element in FLAGS if the
2279 corresponding field is enabled. ENABLED is whether this variant is
2280 enabled or not. */
2281
2282static void
2283compute_variant_fields_recurse (struct type *type,
2284 struct property_addr_info *addr_stack,
2285 const variant &variant,
2286 std::vector<bool> &flags,
2287 bool enabled)
2288{
2289 for (int field = variant.first_field; field < variant.last_field; ++field)
2290 flags[field] = enabled;
2291
2292 for (const variant_part &new_part : variant.parts)
2293 {
2294 if (enabled)
2295 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2296 else
2297 {
2298 for (const auto &sub_variant : new_part.variants)
2299 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2300 flags, enabled);
2301 }
2302 }
2303}
2304
2305/* A helper function to determine which variant fields will be active.
2306 This evaluates the discriminant, decides which variant (if any) is
2307 active, and then updates FLAGS to reflect which fields should be
2308 available. TYPE is the type we're examining. ADDR_STACK holds
2309 information about the concrete object. VARIANT is the current
2310 variant to be handled. FLAGS is where the results are stored --
2311 this function sets the Nth element in FLAGS if the corresponding
2312 field is enabled. */
2313
2314static void
2315compute_variant_fields_inner (struct type *type,
2316 struct property_addr_info *addr_stack,
2317 const variant_part &part,
2318 std::vector<bool> &flags)
2319{
2320 /* Evaluate the discriminant. */
2321 gdb::optional<ULONGEST> discr_value;
2322 if (part.discriminant_index != -1)
2323 {
2324 int idx = part.discriminant_index;
2325
2326 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2327 error (_("Cannot determine struct field location"
2328 " (invalid location kind)"));
2329
2330 if (addr_stack->valaddr.data () != NULL)
2331 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2332 idx);
2333 else
2334 {
2335 CORE_ADDR addr = (addr_stack->addr
2336 + (TYPE_FIELD_BITPOS (type, idx)
2337 / TARGET_CHAR_BIT));
2338
2339 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2340 LONGEST size = bitsize / 8;
2341 if (size == 0)
2342 size = TYPE_LENGTH (type->field (idx).type ());
2343
2344 gdb_byte bits[sizeof (ULONGEST)];
2345 read_memory (addr, bits, size);
2346
2347 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2348 % TARGET_CHAR_BIT);
2349
2350 discr_value = unpack_bits_as_long (type->field (idx).type (),
2351 bits, bitpos, bitsize);
2352 }
2353 }
2354
2355 /* Go through each variant and see which applies. */
2356 const variant *default_variant = nullptr;
2357 const variant *applied_variant = nullptr;
2358 for (const auto &variant : part.variants)
2359 {
2360 if (variant.is_default ())
2361 default_variant = &variant;
2362 else if (discr_value.has_value ()
2363 && variant.matches (*discr_value, part.is_unsigned))
2364 {
2365 applied_variant = &variant;
2366 break;
2367 }
2368 }
2369 if (applied_variant == nullptr)
2370 applied_variant = default_variant;
2371
2372 for (const auto &variant : part.variants)
2373 compute_variant_fields_recurse (type, addr_stack, variant,
2374 flags, applied_variant == &variant);
2375}
2376
2377/* Determine which variant fields are available in TYPE. The enabled
2378 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2379 about the concrete object. PARTS describes the top-level variant
2380 parts for this type. */
2381
2382static void
2383compute_variant_fields (struct type *type,
2384 struct type *resolved_type,
2385 struct property_addr_info *addr_stack,
2386 const gdb::array_view<variant_part> &parts)
2387{
2388 /* Assume all fields are included by default. */
2389 std::vector<bool> flags (resolved_type->num_fields (), true);
2390
2391 /* Now disable fields based on the variants that control them. */
2392 for (const auto &part : parts)
2393 compute_variant_fields_inner (type, addr_stack, part, flags);
2394
2395 resolved_type->set_num_fields
2396 (std::count (flags.begin (), flags.end (), true));
2397 resolved_type->set_fields
2398 ((struct field *)
2399 TYPE_ALLOC (resolved_type,
2400 resolved_type->num_fields () * sizeof (struct field)));
2401
2402 int out = 0;
2403 for (int i = 0; i < type->num_fields (); ++i)
2404 {
2405 if (!flags[i])
2406 continue;
2407
2408 resolved_type->field (out) = type->field (i);
2409 ++out;
2410 }
2411}
2412
2413/* Resolve dynamic bounds of members of the struct TYPE to static
2414 bounds. ADDR_STACK is a stack of struct property_addr_info to
2415 be used if needed during the dynamic resolution. */
2416
2417static struct type *
2418resolve_dynamic_struct (struct type *type,
2419 struct property_addr_info *addr_stack)
2420{
2421 struct type *resolved_type;
2422 int i;
2423 unsigned resolved_type_bit_length = 0;
2424
2425 gdb_assert (type->code () == TYPE_CODE_STRUCT);
2426 gdb_assert (type->num_fields () > 0);
2427
2428 resolved_type = copy_type (type);
2429
2430 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2431 if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
2432 {
2433 compute_variant_fields (type, resolved_type, addr_stack,
2434 *variant_prop->variant_parts ());
2435 /* We want to leave the property attached, so that the Rust code
2436 can tell whether the type was originally an enum. */
2437 variant_prop->set_original_type (type);
2438 }
2439 else
2440 {
2441 resolved_type->set_fields
2442 ((struct field *)
2443 TYPE_ALLOC (resolved_type,
2444 resolved_type->num_fields () * sizeof (struct field)));
2445 memcpy (resolved_type->fields (),
2446 type->fields (),
2447 resolved_type->num_fields () * sizeof (struct field));
2448 }
2449
2450 for (i = 0; i < resolved_type->num_fields (); ++i)
2451 {
2452 unsigned new_bit_length;
2453 struct property_addr_info pinfo;
2454
2455 if (field_is_static (&resolved_type->field (i)))
2456 continue;
2457
2458 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2459 {
2460 struct dwarf2_property_baton baton;
2461 baton.property_type
2462 = lookup_pointer_type (resolved_type->field (i).type ());
2463 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2464
2465 struct dynamic_prop prop;
2466 prop.set_locexpr (&baton);
2467
2468 CORE_ADDR addr;
2469 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2470 true))
2471 SET_FIELD_BITPOS (resolved_type->field (i),
2472 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2473 }
2474
2475 /* As we know this field is not a static field, the field's
2476 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2477 this is the case, but only trigger a simple error rather
2478 than an internal error if that fails. While failing
2479 that verification indicates a bug in our code, the error
2480 is not severe enough to suggest to the user he stops
2481 his debugging session because of it. */
2482 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2483 error (_("Cannot determine struct field location"
2484 " (invalid location kind)"));
2485
2486 pinfo.type = check_typedef (resolved_type->field (i).type ());
2487 pinfo.valaddr = addr_stack->valaddr;
2488 pinfo.addr
2489 = (addr_stack->addr
2490 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2491 pinfo.next = addr_stack;
2492
2493 resolved_type->field (i).set_type
2494 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
2495 &pinfo, 0));
2496 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2497 == FIELD_LOC_KIND_BITPOS);
2498
2499 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2500 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2501 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2502 else
2503 {
2504 struct type *real_type
2505 = check_typedef (resolved_type->field (i).type ());
2506
2507 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2508 }
2509
2510 /* Normally, we would use the position and size of the last field
2511 to determine the size of the enclosing structure. But GCC seems
2512 to be encoding the position of some fields incorrectly when
2513 the struct contains a dynamic field that is not placed last.
2514 So we compute the struct size based on the field that has
2515 the highest position + size - probably the best we can do. */
2516 if (new_bit_length > resolved_type_bit_length)
2517 resolved_type_bit_length = new_bit_length;
2518 }
2519
2520 /* The length of a type won't change for fortran, but it does for C and Ada.
2521 For fortran the size of dynamic fields might change over time but not the
2522 type length of the structure. If we adapt it, we run into problems
2523 when calculating the element offset for arrays of structs. */
2524 if (current_language->la_language != language_fortran)
2525 TYPE_LENGTH (resolved_type)
2526 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2527
2528 /* The Ada language uses this field as a cache for static fixed types: reset
2529 it as RESOLVED_TYPE must have its own static fixed type. */
2530 TYPE_TARGET_TYPE (resolved_type) = NULL;
2531
2532 return resolved_type;
2533}
2534
2535/* Worker for resolved_dynamic_type. */
2536
2537static struct type *
2538resolve_dynamic_type_internal (struct type *type,
2539 struct property_addr_info *addr_stack,
2540 int top_level)
2541{
2542 struct type *real_type = check_typedef (type);
2543 struct type *resolved_type = nullptr;
2544 struct dynamic_prop *prop;
2545 CORE_ADDR value;
2546
2547 if (!is_dynamic_type_internal (real_type, top_level))
2548 return type;
2549
2550 gdb::optional<CORE_ADDR> type_length;
2551 prop = TYPE_DYNAMIC_LENGTH (type);
2552 if (prop != NULL
2553 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2554 type_length = value;
2555
2556 if (type->code () == TYPE_CODE_TYPEDEF)
2557 {
2558 resolved_type = copy_type (type);
2559 TYPE_TARGET_TYPE (resolved_type)
2560 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2561 top_level);
2562 }
2563 else
2564 {
2565 /* Before trying to resolve TYPE, make sure it is not a stub. */
2566 type = real_type;
2567
2568 switch (type->code ())
2569 {
2570 case TYPE_CODE_REF:
2571 {
2572 struct property_addr_info pinfo;
2573
2574 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2575 pinfo.valaddr = {};
2576 if (addr_stack->valaddr.data () != NULL)
2577 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2578 type);
2579 else
2580 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2581 pinfo.next = addr_stack;
2582
2583 resolved_type = copy_type (type);
2584 TYPE_TARGET_TYPE (resolved_type)
2585 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2586 &pinfo, top_level);
2587 break;
2588 }
2589
2590 case TYPE_CODE_STRING:
2591 /* Strings are very much like an array of characters, and can be
2592 treated as one here. */
2593 case TYPE_CODE_ARRAY:
2594 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2595 break;
2596
2597 case TYPE_CODE_RANGE:
2598 resolved_type = resolve_dynamic_range (type, addr_stack);
2599 break;
2600
2601 case TYPE_CODE_UNION:
2602 resolved_type = resolve_dynamic_union (type, addr_stack);
2603 break;
2604
2605 case TYPE_CODE_STRUCT:
2606 resolved_type = resolve_dynamic_struct (type, addr_stack);
2607 break;
2608 }
2609 }
2610
2611 if (resolved_type == nullptr)
2612 return type;
2613
2614 if (type_length.has_value ())
2615 {
2616 TYPE_LENGTH (resolved_type) = *type_length;
2617 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
2618 }
2619
2620 /* Resolve data_location attribute. */
2621 prop = TYPE_DATA_LOCATION (resolved_type);
2622 if (prop != NULL
2623 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2624 prop->set_const_val (value);
2625
2626 return resolved_type;
2627}
2628
2629/* See gdbtypes.h */
2630
2631struct type *
2632resolve_dynamic_type (struct type *type,
2633 gdb::array_view<const gdb_byte> valaddr,
2634 CORE_ADDR addr)
2635{
2636 struct property_addr_info pinfo
2637 = {check_typedef (type), valaddr, addr, NULL};
2638
2639 return resolve_dynamic_type_internal (type, &pinfo, 1);
2640}
2641
2642/* See gdbtypes.h */
2643
2644dynamic_prop *
2645type::dyn_prop (dynamic_prop_node_kind prop_kind) const
2646{
2647 dynamic_prop_list *node = this->main_type->dyn_prop_list;
2648
2649 while (node != NULL)
2650 {
2651 if (node->prop_kind == prop_kind)
2652 return &node->prop;
2653 node = node->next;
2654 }
2655 return NULL;
2656}
2657
2658/* See gdbtypes.h */
2659
2660void
2661type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
2662{
2663 struct dynamic_prop_list *temp;
2664
2665 gdb_assert (TYPE_OBJFILE_OWNED (this));
2666
2667 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
2668 struct dynamic_prop_list);
2669 temp->prop_kind = prop_kind;
2670 temp->prop = prop;
2671 temp->next = this->main_type->dyn_prop_list;
2672
2673 this->main_type->dyn_prop_list = temp;
2674}
2675
2676/* See gdbtypes.h. */
2677
2678void
2679type::remove_dyn_prop (dynamic_prop_node_kind kind)
2680{
2681 struct dynamic_prop_list *prev_node, *curr_node;
2682
2683 curr_node = this->main_type->dyn_prop_list;
2684 prev_node = NULL;
2685
2686 while (NULL != curr_node)
2687 {
2688 if (curr_node->prop_kind == kind)
2689 {
2690 /* Update the linked list but don't free anything.
2691 The property was allocated on objstack and it is not known
2692 if we are on top of it. Nevertheless, everything is released
2693 when the complete objstack is freed. */
2694 if (NULL == prev_node)
2695 this->main_type->dyn_prop_list = curr_node->next;
2696 else
2697 prev_node->next = curr_node->next;
2698
2699 return;
2700 }
2701
2702 prev_node = curr_node;
2703 curr_node = curr_node->next;
2704 }
2705}
2706
2707/* Find the real type of TYPE. This function returns the real type,
2708 after removing all layers of typedefs, and completing opaque or stub
2709 types. Completion changes the TYPE argument, but stripping of
2710 typedefs does not.
2711
2712 Instance flags (e.g. const/volatile) are preserved as typedefs are
2713 stripped. If necessary a new qualified form of the underlying type
2714 is created.
2715
2716 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2717 not been computed and we're either in the middle of reading symbols, or
2718 there was no name for the typedef in the debug info.
2719
2720 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2721 QUITs in the symbol reading code can also throw.
2722 Thus this function can throw an exception.
2723
2724 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2725 the target type.
2726
2727 If this is a stubbed struct (i.e. declared as struct foo *), see if
2728 we can find a full definition in some other file. If so, copy this
2729 definition, so we can use it in future. There used to be a comment
2730 (but not any code) that if we don't find a full definition, we'd
2731 set a flag so we don't spend time in the future checking the same
2732 type. That would be a mistake, though--we might load in more
2733 symbols which contain a full definition for the type. */
2734
2735struct type *
2736check_typedef (struct type *type)
2737{
2738 struct type *orig_type = type;
2739 /* While we're removing typedefs, we don't want to lose qualifiers.
2740 E.g., const/volatile. */
2741 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2742
2743 gdb_assert (type);
2744
2745 while (type->code () == TYPE_CODE_TYPEDEF)
2746 {
2747 if (!TYPE_TARGET_TYPE (type))
2748 {
2749 const char *name;
2750 struct symbol *sym;
2751
2752 /* It is dangerous to call lookup_symbol if we are currently
2753 reading a symtab. Infinite recursion is one danger. */
2754 if (currently_reading_symtab)
2755 return make_qualified_type (type, instance_flags, NULL);
2756
2757 name = type->name ();
2758 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2759 VAR_DOMAIN as appropriate? */
2760 if (name == NULL)
2761 {
2762 stub_noname_complaint ();
2763 return make_qualified_type (type, instance_flags, NULL);
2764 }
2765 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2766 if (sym)
2767 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2768 else /* TYPE_CODE_UNDEF */
2769 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2770 }
2771 type = TYPE_TARGET_TYPE (type);
2772
2773 /* Preserve the instance flags as we traverse down the typedef chain.
2774
2775 Handling address spaces/classes is nasty, what do we do if there's a
2776 conflict?
2777 E.g., what if an outer typedef marks the type as class_1 and an inner
2778 typedef marks the type as class_2?
2779 This is the wrong place to do such error checking. We leave it to
2780 the code that created the typedef in the first place to flag the
2781 error. We just pick the outer address space (akin to letting the
2782 outer cast in a chain of casting win), instead of assuming
2783 "it can't happen". */
2784 {
2785 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2786 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2787 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2788 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2789
2790 /* Treat code vs data spaces and address classes separately. */
2791 if ((instance_flags & ALL_SPACES) != 0)
2792 new_instance_flags &= ~ALL_SPACES;
2793 if ((instance_flags & ALL_CLASSES) != 0)
2794 new_instance_flags &= ~ALL_CLASSES;
2795
2796 instance_flags |= new_instance_flags;
2797 }
2798 }
2799
2800 /* If this is a struct/class/union with no fields, then check
2801 whether a full definition exists somewhere else. This is for
2802 systems where a type definition with no fields is issued for such
2803 types, instead of identifying them as stub types in the first
2804 place. */
2805
2806 if (TYPE_IS_OPAQUE (type)
2807 && opaque_type_resolution
2808 && !currently_reading_symtab)
2809 {
2810 const char *name = type->name ();
2811 struct type *newtype;
2812
2813 if (name == NULL)
2814 {
2815 stub_noname_complaint ();
2816 return make_qualified_type (type, instance_flags, NULL);
2817 }
2818 newtype = lookup_transparent_type (name);
2819
2820 if (newtype)
2821 {
2822 /* If the resolved type and the stub are in the same
2823 objfile, then replace the stub type with the real deal.
2824 But if they're in separate objfiles, leave the stub
2825 alone; we'll just look up the transparent type every time
2826 we call check_typedef. We can't create pointers between
2827 types allocated to different objfiles, since they may
2828 have different lifetimes. Trying to copy NEWTYPE over to
2829 TYPE's objfile is pointless, too, since you'll have to
2830 move over any other types NEWTYPE refers to, which could
2831 be an unbounded amount of stuff. */
2832 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2833 type = make_qualified_type (newtype,
2834 TYPE_INSTANCE_FLAGS (type),
2835 type);
2836 else
2837 type = newtype;
2838 }
2839 }
2840 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2841 types. */
2842 else if (TYPE_STUB (type) && !currently_reading_symtab)
2843 {
2844 const char *name = type->name ();
2845 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2846 as appropriate? */
2847 struct symbol *sym;
2848
2849 if (name == NULL)
2850 {
2851 stub_noname_complaint ();
2852 return make_qualified_type (type, instance_flags, NULL);
2853 }
2854 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2855 if (sym)
2856 {
2857 /* Same as above for opaque types, we can replace the stub
2858 with the complete type only if they are in the same
2859 objfile. */
2860 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
2861 type = make_qualified_type (SYMBOL_TYPE (sym),
2862 TYPE_INSTANCE_FLAGS (type),
2863 type);
2864 else
2865 type = SYMBOL_TYPE (sym);
2866 }
2867 }
2868
2869 if (TYPE_TARGET_STUB (type))
2870 {
2871 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2872
2873 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2874 {
2875 /* Nothing we can do. */
2876 }
2877 else if (type->code () == TYPE_CODE_RANGE)
2878 {
2879 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2880 TYPE_TARGET_STUB (type) = 0;
2881 }
2882 else if (type->code () == TYPE_CODE_ARRAY
2883 && update_static_array_size (type))
2884 TYPE_TARGET_STUB (type) = 0;
2885 }
2886
2887 type = make_qualified_type (type, instance_flags, NULL);
2888
2889 /* Cache TYPE_LENGTH for future use. */
2890 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2891
2892 return type;
2893}
2894
2895/* Parse a type expression in the string [P..P+LENGTH). If an error
2896 occurs, silently return a void type. */
2897
2898static struct type *
2899safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2900{
2901 struct ui_file *saved_gdb_stderr;
2902 struct type *type = NULL; /* Initialize to keep gcc happy. */
2903
2904 /* Suppress error messages. */
2905 saved_gdb_stderr = gdb_stderr;
2906 gdb_stderr = &null_stream;
2907
2908 /* Call parse_and_eval_type() without fear of longjmp()s. */
2909 try
2910 {
2911 type = parse_and_eval_type (p, length);
2912 }
2913 catch (const gdb_exception_error &except)
2914 {
2915 type = builtin_type (gdbarch)->builtin_void;
2916 }
2917
2918 /* Stop suppressing error messages. */
2919 gdb_stderr = saved_gdb_stderr;
2920
2921 return type;
2922}
2923
2924/* Ugly hack to convert method stubs into method types.
2925
2926 He ain't kiddin'. This demangles the name of the method into a
2927 string including argument types, parses out each argument type,
2928 generates a string casting a zero to that type, evaluates the
2929 string, and stuffs the resulting type into an argtype vector!!!
2930 Then it knows the type of the whole function (including argument
2931 types for overloading), which info used to be in the stab's but was
2932 removed to hack back the space required for them. */
2933
2934static void
2935check_stub_method (struct type *type, int method_id, int signature_id)
2936{
2937 struct gdbarch *gdbarch = get_type_arch (type);
2938 struct fn_field *f;
2939 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2940 char *demangled_name = gdb_demangle (mangled_name,
2941 DMGL_PARAMS | DMGL_ANSI);
2942 char *argtypetext, *p;
2943 int depth = 0, argcount = 1;
2944 struct field *argtypes;
2945 struct type *mtype;
2946
2947 /* Make sure we got back a function string that we can use. */
2948 if (demangled_name)
2949 p = strchr (demangled_name, '(');
2950 else
2951 p = NULL;
2952
2953 if (demangled_name == NULL || p == NULL)
2954 error (_("Internal: Cannot demangle mangled name `%s'."),
2955 mangled_name);
2956
2957 /* Now, read in the parameters that define this type. */
2958 p += 1;
2959 argtypetext = p;
2960 while (*p)
2961 {
2962 if (*p == '(' || *p == '<')
2963 {
2964 depth += 1;
2965 }
2966 else if (*p == ')' || *p == '>')
2967 {
2968 depth -= 1;
2969 }
2970 else if (*p == ',' && depth == 0)
2971 {
2972 argcount += 1;
2973 }
2974
2975 p += 1;
2976 }
2977
2978 /* If we read one argument and it was ``void'', don't count it. */
2979 if (startswith (argtypetext, "(void)"))
2980 argcount -= 1;
2981
2982 /* We need one extra slot, for the THIS pointer. */
2983
2984 argtypes = (struct field *)
2985 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2986 p = argtypetext;
2987
2988 /* Add THIS pointer for non-static methods. */
2989 f = TYPE_FN_FIELDLIST1 (type, method_id);
2990 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2991 argcount = 0;
2992 else
2993 {
2994 argtypes[0].set_type (lookup_pointer_type (type));
2995 argcount = 1;
2996 }
2997
2998 if (*p != ')') /* () means no args, skip while. */
2999 {
3000 depth = 0;
3001 while (*p)
3002 {
3003 if (depth <= 0 && (*p == ',' || *p == ')'))
3004 {
3005 /* Avoid parsing of ellipsis, they will be handled below.
3006 Also avoid ``void'' as above. */
3007 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3008 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3009 {
3010 argtypes[argcount].set_type
3011 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
3012 argcount += 1;
3013 }
3014 argtypetext = p + 1;
3015 }
3016
3017 if (*p == '(' || *p == '<')
3018 {
3019 depth += 1;
3020 }
3021 else if (*p == ')' || *p == '>')
3022 {
3023 depth -= 1;
3024 }
3025
3026 p += 1;
3027 }
3028 }
3029
3030 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3031
3032 /* Now update the old "stub" type into a real type. */
3033 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3034 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3035 We want a method (TYPE_CODE_METHOD). */
3036 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3037 argtypes, argcount, p[-2] == '.');
3038 TYPE_STUB (mtype) = 0;
3039 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3040
3041 xfree (demangled_name);
3042}
3043
3044/* This is the external interface to check_stub_method, above. This
3045 function unstubs all of the signatures for TYPE's METHOD_ID method
3046 name. After calling this function TYPE_FN_FIELD_STUB will be
3047 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3048 correct.
3049
3050 This function unfortunately can not die until stabs do. */
3051
3052void
3053check_stub_method_group (struct type *type, int method_id)
3054{
3055 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3056 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3057
3058 for (int j = 0; j < len; j++)
3059 {
3060 if (TYPE_FN_FIELD_STUB (f, j))
3061 check_stub_method (type, method_id, j);
3062 }
3063}
3064
3065/* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3066const struct cplus_struct_type cplus_struct_default = { };
3067
3068void
3069allocate_cplus_struct_type (struct type *type)
3070{
3071 if (HAVE_CPLUS_STRUCT (type))
3072 /* Structure was already allocated. Nothing more to do. */
3073 return;
3074
3075 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3076 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3077 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3078 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3079 set_type_vptr_fieldno (type, -1);
3080}
3081
3082const struct gnat_aux_type gnat_aux_default =
3083 { NULL };
3084
3085/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3086 and allocate the associated gnat-specific data. The gnat-specific
3087 data is also initialized to gnat_aux_default. */
3088
3089void
3090allocate_gnat_aux_type (struct type *type)
3091{
3092 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3093 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3094 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3095 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3096}
3097
3098/* Helper function to initialize a newly allocated type. Set type code
3099 to CODE and initialize the type-specific fields accordingly. */
3100
3101static void
3102set_type_code (struct type *type, enum type_code code)
3103{
3104 type->set_code (code);
3105
3106 switch (code)
3107 {
3108 case TYPE_CODE_STRUCT:
3109 case TYPE_CODE_UNION:
3110 case TYPE_CODE_NAMESPACE:
3111 INIT_CPLUS_SPECIFIC (type);
3112 break;
3113 case TYPE_CODE_FLT:
3114 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3115 break;
3116 case TYPE_CODE_FUNC:
3117 INIT_FUNC_SPECIFIC (type);
3118 break;
3119 }
3120}
3121
3122/* Helper function to verify floating-point format and size.
3123 BIT is the type size in bits; if BIT equals -1, the size is
3124 determined by the floatformat. Returns size to be used. */
3125
3126static int
3127verify_floatformat (int bit, const struct floatformat *floatformat)
3128{
3129 gdb_assert (floatformat != NULL);
3130
3131 if (bit == -1)
3132 bit = floatformat->totalsize;
3133
3134 gdb_assert (bit >= 0);
3135 gdb_assert (bit >= floatformat->totalsize);
3136
3137 return bit;
3138}
3139
3140/* Return the floating-point format for a floating-point variable of
3141 type TYPE. */
3142
3143const struct floatformat *
3144floatformat_from_type (const struct type *type)
3145{
3146 gdb_assert (type->code () == TYPE_CODE_FLT);
3147 gdb_assert (TYPE_FLOATFORMAT (type));
3148 return TYPE_FLOATFORMAT (type);
3149}
3150
3151/* Helper function to initialize the standard scalar types.
3152
3153 If NAME is non-NULL, then it is used to initialize the type name.
3154 Note that NAME is not copied; it is required to have a lifetime at
3155 least as long as OBJFILE. */
3156
3157struct type *
3158init_type (struct objfile *objfile, enum type_code code, int bit,
3159 const char *name)
3160{
3161 struct type *type;
3162
3163 type = alloc_type (objfile);
3164 set_type_code (type, code);
3165 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3166 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3167 type->set_name (name);
3168
3169 return type;
3170}
3171
3172/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3173 to use with variables that have no debug info. NAME is the type
3174 name. */
3175
3176static struct type *
3177init_nodebug_var_type (struct objfile *objfile, const char *name)
3178{
3179 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3180}
3181
3182/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3183 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3184 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3185
3186struct type *
3187init_integer_type (struct objfile *objfile,
3188 int bit, int unsigned_p, const char *name)
3189{
3190 struct type *t;
3191
3192 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3193 if (unsigned_p)
3194 TYPE_UNSIGNED (t) = 1;
3195
3196 return t;
3197}
3198
3199/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3200 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3201 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3202
3203struct type *
3204init_character_type (struct objfile *objfile,
3205 int bit, int unsigned_p, const char *name)
3206{
3207 struct type *t;
3208
3209 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3210 if (unsigned_p)
3211 TYPE_UNSIGNED (t) = 1;
3212
3213 return t;
3214}
3215
3216/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3217 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3218 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3219
3220struct type *
3221init_boolean_type (struct objfile *objfile,
3222 int bit, int unsigned_p, const char *name)
3223{
3224 struct type *t;
3225
3226 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3227 if (unsigned_p)
3228 TYPE_UNSIGNED (t) = 1;
3229
3230 return t;
3231}
3232
3233/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3234 BIT is the type size in bits; if BIT equals -1, the size is
3235 determined by the floatformat. NAME is the type name. Set the
3236 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3237 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3238 order of the objfile's architecture is used. */
3239
3240struct type *
3241init_float_type (struct objfile *objfile,
3242 int bit, const char *name,
3243 const struct floatformat **floatformats,
3244 enum bfd_endian byte_order)
3245{
3246 if (byte_order == BFD_ENDIAN_UNKNOWN)
3247 {
3248 struct gdbarch *gdbarch = objfile->arch ();
3249 byte_order = gdbarch_byte_order (gdbarch);
3250 }
3251 const struct floatformat *fmt = floatformats[byte_order];
3252 struct type *t;
3253
3254 bit = verify_floatformat (bit, fmt);
3255 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3256 TYPE_FLOATFORMAT (t) = fmt;
3257
3258 return t;
3259}
3260
3261/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3262 BIT is the type size in bits. NAME is the type name. */
3263
3264struct type *
3265init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3266{
3267 struct type *t;
3268
3269 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3270 return t;
3271}
3272
3273/* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3274 name. TARGET_TYPE is the component type. */
3275
3276struct type *
3277init_complex_type (const char *name, struct type *target_type)
3278{
3279 struct type *t;
3280
3281 gdb_assert (target_type->code () == TYPE_CODE_INT
3282 || target_type->code () == TYPE_CODE_FLT);
3283
3284 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3285 {
3286 if (name == nullptr)
3287 {
3288 char *new_name
3289 = (char *) TYPE_ALLOC (target_type,
3290 strlen (target_type->name ())
3291 + strlen ("_Complex ") + 1);
3292 strcpy (new_name, "_Complex ");
3293 strcat (new_name, target_type->name ());
3294 name = new_name;
3295 }
3296
3297 t = alloc_type_copy (target_type);
3298 set_type_code (t, TYPE_CODE_COMPLEX);
3299 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3300 t->set_name (name);
3301
3302 TYPE_TARGET_TYPE (t) = target_type;
3303 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3304 }
3305
3306 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3307}
3308
3309/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3310 BIT is the pointer type size in bits. NAME is the type name.
3311 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3312 TYPE_UNSIGNED flag. */
3313
3314struct type *
3315init_pointer_type (struct objfile *objfile,
3316 int bit, const char *name, struct type *target_type)
3317{
3318 struct type *t;
3319
3320 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3321 TYPE_TARGET_TYPE (t) = target_type;
3322 TYPE_UNSIGNED (t) = 1;
3323 return t;
3324}
3325
3326/* See gdbtypes.h. */
3327
3328unsigned
3329type_raw_align (struct type *type)
3330{
3331 if (type->align_log2 != 0)
3332 return 1 << (type->align_log2 - 1);
3333 return 0;
3334}
3335
3336/* See gdbtypes.h. */
3337
3338unsigned
3339type_align (struct type *type)
3340{
3341 /* Check alignment provided in the debug information. */
3342 unsigned raw_align = type_raw_align (type);
3343 if (raw_align != 0)
3344 return raw_align;
3345
3346 /* Allow the architecture to provide an alignment. */
3347 struct gdbarch *arch = get_type_arch (type);
3348 ULONGEST align = gdbarch_type_align (arch, type);
3349 if (align != 0)
3350 return align;
3351
3352 switch (type->code ())
3353 {
3354 case TYPE_CODE_PTR:
3355 case TYPE_CODE_FUNC:
3356 case TYPE_CODE_FLAGS:
3357 case TYPE_CODE_INT:
3358 case TYPE_CODE_RANGE:
3359 case TYPE_CODE_FLT:
3360 case TYPE_CODE_ENUM:
3361 case TYPE_CODE_REF:
3362 case TYPE_CODE_RVALUE_REF:
3363 case TYPE_CODE_CHAR:
3364 case TYPE_CODE_BOOL:
3365 case TYPE_CODE_DECFLOAT:
3366 case TYPE_CODE_METHODPTR:
3367 case TYPE_CODE_MEMBERPTR:
3368 align = type_length_units (check_typedef (type));
3369 break;
3370
3371 case TYPE_CODE_ARRAY:
3372 case TYPE_CODE_COMPLEX:
3373 case TYPE_CODE_TYPEDEF:
3374 align = type_align (TYPE_TARGET_TYPE (type));
3375 break;
3376
3377 case TYPE_CODE_STRUCT:
3378 case TYPE_CODE_UNION:
3379 {
3380 int number_of_non_static_fields = 0;
3381 for (unsigned i = 0; i < type->num_fields (); ++i)
3382 {
3383 if (!field_is_static (&type->field (i)))
3384 {
3385 number_of_non_static_fields++;
3386 ULONGEST f_align = type_align (type->field (i).type ());
3387 if (f_align == 0)
3388 {
3389 /* Don't pretend we know something we don't. */
3390 align = 0;
3391 break;
3392 }
3393 if (f_align > align)
3394 align = f_align;
3395 }
3396 }
3397 /* A struct with no fields, or with only static fields has an
3398 alignment of 1. */
3399 if (number_of_non_static_fields == 0)
3400 align = 1;
3401 }
3402 break;
3403
3404 case TYPE_CODE_SET:
3405 case TYPE_CODE_STRING:
3406 /* Not sure what to do here, and these can't appear in C or C++
3407 anyway. */
3408 break;
3409
3410 case TYPE_CODE_VOID:
3411 align = 1;
3412 break;
3413
3414 case TYPE_CODE_ERROR:
3415 case TYPE_CODE_METHOD:
3416 default:
3417 break;
3418 }
3419
3420 if ((align & (align - 1)) != 0)
3421 {
3422 /* Not a power of 2, so pass. */
3423 align = 0;
3424 }
3425
3426 return align;
3427}
3428
3429/* See gdbtypes.h. */
3430
3431bool
3432set_type_align (struct type *type, ULONGEST align)
3433{
3434 /* Must be a power of 2. Zero is ok. */
3435 gdb_assert ((align & (align - 1)) == 0);
3436
3437 unsigned result = 0;
3438 while (align != 0)
3439 {
3440 ++result;
3441 align >>= 1;
3442 }
3443
3444 if (result >= (1 << TYPE_ALIGN_BITS))
3445 return false;
3446
3447 type->align_log2 = result;
3448 return true;
3449}
3450
3451\f
3452/* Queries on types. */
3453
3454int
3455can_dereference (struct type *t)
3456{
3457 /* FIXME: Should we return true for references as well as
3458 pointers? */
3459 t = check_typedef (t);
3460 return
3461 (t != NULL
3462 && t->code () == TYPE_CODE_PTR
3463 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
3464}
3465
3466int
3467is_integral_type (struct type *t)
3468{
3469 t = check_typedef (t);
3470 return
3471 ((t != NULL)
3472 && ((t->code () == TYPE_CODE_INT)
3473 || (t->code () == TYPE_CODE_ENUM)
3474 || (t->code () == TYPE_CODE_FLAGS)
3475 || (t->code () == TYPE_CODE_CHAR)
3476 || (t->code () == TYPE_CODE_RANGE)
3477 || (t->code () == TYPE_CODE_BOOL)));
3478}
3479
3480int
3481is_floating_type (struct type *t)
3482{
3483 t = check_typedef (t);
3484 return
3485 ((t != NULL)
3486 && ((t->code () == TYPE_CODE_FLT)
3487 || (t->code () == TYPE_CODE_DECFLOAT)));
3488}
3489
3490/* Return true if TYPE is scalar. */
3491
3492int
3493is_scalar_type (struct type *type)
3494{
3495 type = check_typedef (type);
3496
3497 switch (type->code ())
3498 {
3499 case TYPE_CODE_ARRAY:
3500 case TYPE_CODE_STRUCT:
3501 case TYPE_CODE_UNION:
3502 case TYPE_CODE_SET:
3503 case TYPE_CODE_STRING:
3504 return 0;
3505 default:
3506 return 1;
3507 }
3508}
3509
3510/* Return true if T is scalar, or a composite type which in practice has
3511 the memory layout of a scalar type. E.g., an array or struct with only
3512 one scalar element inside it, or a union with only scalar elements. */
3513
3514int
3515is_scalar_type_recursive (struct type *t)
3516{
3517 t = check_typedef (t);
3518
3519 if (is_scalar_type (t))
3520 return 1;
3521 /* Are we dealing with an array or string of known dimensions? */
3522 else if ((t->code () == TYPE_CODE_ARRAY
3523 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3524 && t->index_type ()->code () == TYPE_CODE_RANGE)
3525 {
3526 LONGEST low_bound, high_bound;
3527 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3528
3529 get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
3530
3531 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3532 }
3533 /* Are we dealing with a struct with one element? */
3534 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
3535 return is_scalar_type_recursive (t->field (0).type ());
3536 else if (t->code () == TYPE_CODE_UNION)
3537 {
3538 int i, n = t->num_fields ();
3539
3540 /* If all elements of the union are scalar, then the union is scalar. */
3541 for (i = 0; i < n; i++)
3542 if (!is_scalar_type_recursive (t->field (i).type ()))
3543 return 0;
3544
3545 return 1;
3546 }
3547
3548 return 0;
3549}
3550
3551/* Return true is T is a class or a union. False otherwise. */
3552
3553int
3554class_or_union_p (const struct type *t)
3555{
3556 return (t->code () == TYPE_CODE_STRUCT
3557 || t->code () == TYPE_CODE_UNION);
3558}
3559
3560/* A helper function which returns true if types A and B represent the
3561 "same" class type. This is true if the types have the same main
3562 type, or the same name. */
3563
3564int
3565class_types_same_p (const struct type *a, const struct type *b)
3566{
3567 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3568 || (a->name () && b->name ()
3569 && !strcmp (a->name (), b->name ())));
3570}
3571
3572/* If BASE is an ancestor of DCLASS return the distance between them.
3573 otherwise return -1;
3574 eg:
3575
3576 class A {};
3577 class B: public A {};
3578 class C: public B {};
3579 class D: C {};
3580
3581 distance_to_ancestor (A, A, 0) = 0
3582 distance_to_ancestor (A, B, 0) = 1
3583 distance_to_ancestor (A, C, 0) = 2
3584 distance_to_ancestor (A, D, 0) = 3
3585
3586 If PUBLIC is 1 then only public ancestors are considered,
3587 and the function returns the distance only if BASE is a public ancestor
3588 of DCLASS.
3589 Eg:
3590
3591 distance_to_ancestor (A, D, 1) = -1. */
3592
3593static int
3594distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3595{
3596 int i;
3597 int d;
3598
3599 base = check_typedef (base);
3600 dclass = check_typedef (dclass);
3601
3602 if (class_types_same_p (base, dclass))
3603 return 0;
3604
3605 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3606 {
3607 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3608 continue;
3609
3610 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3611 if (d >= 0)
3612 return 1 + d;
3613 }
3614
3615 return -1;
3616}
3617
3618/* Check whether BASE is an ancestor or base class or DCLASS
3619 Return 1 if so, and 0 if not.
3620 Note: If BASE and DCLASS are of the same type, this function
3621 will return 1. So for some class A, is_ancestor (A, A) will
3622 return 1. */
3623
3624int
3625is_ancestor (struct type *base, struct type *dclass)
3626{
3627 return distance_to_ancestor (base, dclass, 0) >= 0;
3628}
3629
3630/* Like is_ancestor, but only returns true when BASE is a public
3631 ancestor of DCLASS. */
3632
3633int
3634is_public_ancestor (struct type *base, struct type *dclass)
3635{
3636 return distance_to_ancestor (base, dclass, 1) >= 0;
3637}
3638
3639/* A helper function for is_unique_ancestor. */
3640
3641static int
3642is_unique_ancestor_worker (struct type *base, struct type *dclass,
3643 int *offset,
3644 const gdb_byte *valaddr, int embedded_offset,
3645 CORE_ADDR address, struct value *val)
3646{
3647 int i, count = 0;
3648
3649 base = check_typedef (base);
3650 dclass = check_typedef (dclass);
3651
3652 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3653 {
3654 struct type *iter;
3655 int this_offset;
3656
3657 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3658
3659 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3660 address, val);
3661
3662 if (class_types_same_p (base, iter))
3663 {
3664 /* If this is the first subclass, set *OFFSET and set count
3665 to 1. Otherwise, if this is at the same offset as
3666 previous instances, do nothing. Otherwise, increment
3667 count. */
3668 if (*offset == -1)
3669 {
3670 *offset = this_offset;
3671 count = 1;
3672 }
3673 else if (this_offset == *offset)
3674 {
3675 /* Nothing. */
3676 }
3677 else
3678 ++count;
3679 }
3680 else
3681 count += is_unique_ancestor_worker (base, iter, offset,
3682 valaddr,
3683 embedded_offset + this_offset,
3684 address, val);
3685 }
3686
3687 return count;
3688}
3689
3690/* Like is_ancestor, but only returns true if BASE is a unique base
3691 class of the type of VAL. */
3692
3693int
3694is_unique_ancestor (struct type *base, struct value *val)
3695{
3696 int offset = -1;
3697
3698 return is_unique_ancestor_worker (base, value_type (val), &offset,
3699 value_contents_for_printing (val),
3700 value_embedded_offset (val),
3701 value_address (val), val) == 1;
3702}
3703
3704/* See gdbtypes.h. */
3705
3706enum bfd_endian
3707type_byte_order (const struct type *type)
3708{
3709 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3710 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3711 {
3712 if (byteorder == BFD_ENDIAN_BIG)
3713 return BFD_ENDIAN_LITTLE;
3714 else
3715 {
3716 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3717 return BFD_ENDIAN_BIG;
3718 }
3719 }
3720
3721 return byteorder;
3722}
3723
3724\f
3725/* Overload resolution. */
3726
3727/* Return the sum of the rank of A with the rank of B. */
3728
3729struct rank
3730sum_ranks (struct rank a, struct rank b)
3731{
3732 struct rank c;
3733 c.rank = a.rank + b.rank;
3734 c.subrank = a.subrank + b.subrank;
3735 return c;
3736}
3737
3738/* Compare rank A and B and return:
3739 0 if a = b
3740 1 if a is better than b
3741 -1 if b is better than a. */
3742
3743int
3744compare_ranks (struct rank a, struct rank b)
3745{
3746 if (a.rank == b.rank)
3747 {
3748 if (a.subrank == b.subrank)
3749 return 0;
3750 if (a.subrank < b.subrank)
3751 return 1;
3752 if (a.subrank > b.subrank)
3753 return -1;
3754 }
3755
3756 if (a.rank < b.rank)
3757 return 1;
3758
3759 /* a.rank > b.rank */
3760 return -1;
3761}
3762
3763/* Functions for overload resolution begin here. */
3764
3765/* Compare two badness vectors A and B and return the result.
3766 0 => A and B are identical
3767 1 => A and B are incomparable
3768 2 => A is better than B
3769 3 => A is worse than B */
3770
3771int
3772compare_badness (const badness_vector &a, const badness_vector &b)
3773{
3774 int i;
3775 int tmp;
3776 short found_pos = 0; /* any positives in c? */
3777 short found_neg = 0; /* any negatives in c? */
3778
3779 /* differing sizes => incomparable */
3780 if (a.size () != b.size ())
3781 return 1;
3782
3783 /* Subtract b from a */
3784 for (i = 0; i < a.size (); i++)
3785 {
3786 tmp = compare_ranks (b[i], a[i]);
3787 if (tmp > 0)
3788 found_pos = 1;
3789 else if (tmp < 0)
3790 found_neg = 1;
3791 }
3792
3793 if (found_pos)
3794 {
3795 if (found_neg)
3796 return 1; /* incomparable */
3797 else
3798 return 3; /* A > B */
3799 }
3800 else
3801 /* no positives */
3802 {
3803 if (found_neg)
3804 return 2; /* A < B */
3805 else
3806 return 0; /* A == B */
3807 }
3808}
3809
3810/* Rank a function by comparing its parameter types (PARMS), to the
3811 types of an argument list (ARGS). Return the badness vector. This
3812 has ARGS.size() + 1 entries. */
3813
3814badness_vector
3815rank_function (gdb::array_view<type *> parms,
3816 gdb::array_view<value *> args)
3817{
3818 /* add 1 for the length-match rank. */
3819 badness_vector bv;
3820 bv.reserve (1 + args.size ());
3821
3822 /* First compare the lengths of the supplied lists.
3823 If there is a mismatch, set it to a high value. */
3824
3825 /* pai/1997-06-03 FIXME: when we have debug info about default
3826 arguments and ellipsis parameter lists, we should consider those
3827 and rank the length-match more finely. */
3828
3829 bv.push_back ((args.size () != parms.size ())
3830 ? LENGTH_MISMATCH_BADNESS
3831 : EXACT_MATCH_BADNESS);
3832
3833 /* Now rank all the parameters of the candidate function. */
3834 size_t min_len = std::min (parms.size (), args.size ());
3835
3836 for (size_t i = 0; i < min_len; i++)
3837 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3838 args[i]));
3839
3840 /* If more arguments than parameters, add dummy entries. */
3841 for (size_t i = min_len; i < args.size (); i++)
3842 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3843
3844 return bv;
3845}
3846
3847/* Compare the names of two integer types, assuming that any sign
3848 qualifiers have been checked already. We do it this way because
3849 there may be an "int" in the name of one of the types. */
3850
3851static int
3852integer_types_same_name_p (const char *first, const char *second)
3853{
3854 int first_p, second_p;
3855
3856 /* If both are shorts, return 1; if neither is a short, keep
3857 checking. */
3858 first_p = (strstr (first, "short") != NULL);
3859 second_p = (strstr (second, "short") != NULL);
3860 if (first_p && second_p)
3861 return 1;
3862 if (first_p || second_p)
3863 return 0;
3864
3865 /* Likewise for long. */
3866 first_p = (strstr (first, "long") != NULL);
3867 second_p = (strstr (second, "long") != NULL);
3868 if (first_p && second_p)
3869 return 1;
3870 if (first_p || second_p)
3871 return 0;
3872
3873 /* Likewise for char. */
3874 first_p = (strstr (first, "char") != NULL);
3875 second_p = (strstr (second, "char") != NULL);
3876 if (first_p && second_p)
3877 return 1;
3878 if (first_p || second_p)
3879 return 0;
3880
3881 /* They must both be ints. */
3882 return 1;
3883}
3884
3885/* Compares type A to type B. Returns true if they represent the same
3886 type, false otherwise. */
3887
3888bool
3889types_equal (struct type *a, struct type *b)
3890{
3891 /* Identical type pointers. */
3892 /* However, this still doesn't catch all cases of same type for b
3893 and a. The reason is that builtin types are different from
3894 the same ones constructed from the object. */
3895 if (a == b)
3896 return true;
3897
3898 /* Resolve typedefs */
3899 if (a->code () == TYPE_CODE_TYPEDEF)
3900 a = check_typedef (a);
3901 if (b->code () == TYPE_CODE_TYPEDEF)
3902 b = check_typedef (b);
3903
3904 /* If after resolving typedefs a and b are not of the same type
3905 code then they are not equal. */
3906 if (a->code () != b->code ())
3907 return false;
3908
3909 /* If a and b are both pointers types or both reference types then
3910 they are equal of the same type iff the objects they refer to are
3911 of the same type. */
3912 if (a->code () == TYPE_CODE_PTR
3913 || a->code () == TYPE_CODE_REF)
3914 return types_equal (TYPE_TARGET_TYPE (a),
3915 TYPE_TARGET_TYPE (b));
3916
3917 /* Well, damnit, if the names are exactly the same, I'll say they
3918 are exactly the same. This happens when we generate method
3919 stubs. The types won't point to the same address, but they
3920 really are the same. */
3921
3922 if (a->name () && b->name ()
3923 && strcmp (a->name (), b->name ()) == 0)
3924 return true;
3925
3926 /* Check if identical after resolving typedefs. */
3927 if (a == b)
3928 return true;
3929
3930 /* Two function types are equal if their argument and return types
3931 are equal. */
3932 if (a->code () == TYPE_CODE_FUNC)
3933 {
3934 int i;
3935
3936 if (a->num_fields () != b->num_fields ())
3937 return false;
3938
3939 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3940 return false;
3941
3942 for (i = 0; i < a->num_fields (); ++i)
3943 if (!types_equal (a->field (i).type (), b->field (i).type ()))
3944 return false;
3945
3946 return true;
3947 }
3948
3949 return false;
3950}
3951\f
3952/* Deep comparison of types. */
3953
3954/* An entry in the type-equality bcache. */
3955
3956struct type_equality_entry
3957{
3958 type_equality_entry (struct type *t1, struct type *t2)
3959 : type1 (t1),
3960 type2 (t2)
3961 {
3962 }
3963
3964 struct type *type1, *type2;
3965};
3966
3967/* A helper function to compare two strings. Returns true if they are
3968 the same, false otherwise. Handles NULLs properly. */
3969
3970static bool
3971compare_maybe_null_strings (const char *s, const char *t)
3972{
3973 if (s == NULL || t == NULL)
3974 return s == t;
3975 return strcmp (s, t) == 0;
3976}
3977
3978/* A helper function for check_types_worklist that checks two types for
3979 "deep" equality. Returns true if the types are considered the
3980 same, false otherwise. */
3981
3982static bool
3983check_types_equal (struct type *type1, struct type *type2,
3984 std::vector<type_equality_entry> *worklist)
3985{
3986 type1 = check_typedef (type1);
3987 type2 = check_typedef (type2);
3988
3989 if (type1 == type2)
3990 return true;
3991
3992 if (type1->code () != type2->code ()
3993 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3994 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3995 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3996 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
3997 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3998 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3999 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4000 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
4001 || type1->num_fields () != type2->num_fields ())
4002 return false;
4003
4004 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4005 return false;
4006 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4007 return false;
4008
4009 if (type1->code () == TYPE_CODE_RANGE)
4010 {
4011 if (*type1->bounds () != *type2->bounds ())
4012 return false;
4013 }
4014 else
4015 {
4016 int i;
4017
4018 for (i = 0; i < type1->num_fields (); ++i)
4019 {
4020 const struct field *field1 = &type1->field (i);
4021 const struct field *field2 = &type2->field (i);
4022
4023 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4024 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4025 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4026 return false;
4027 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4028 FIELD_NAME (*field2)))
4029 return false;
4030 switch (FIELD_LOC_KIND (*field1))
4031 {
4032 case FIELD_LOC_KIND_BITPOS:
4033 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4034 return false;
4035 break;
4036 case FIELD_LOC_KIND_ENUMVAL:
4037 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4038 return false;
4039 break;
4040 case FIELD_LOC_KIND_PHYSADDR:
4041 if (FIELD_STATIC_PHYSADDR (*field1)
4042 != FIELD_STATIC_PHYSADDR (*field2))
4043 return false;
4044 break;
4045 case FIELD_LOC_KIND_PHYSNAME:
4046 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4047 FIELD_STATIC_PHYSNAME (*field2)))
4048 return false;
4049 break;
4050 case FIELD_LOC_KIND_DWARF_BLOCK:
4051 {
4052 struct dwarf2_locexpr_baton *block1, *block2;
4053
4054 block1 = FIELD_DWARF_BLOCK (*field1);
4055 block2 = FIELD_DWARF_BLOCK (*field2);
4056 if (block1->per_cu != block2->per_cu
4057 || block1->size != block2->size
4058 || memcmp (block1->data, block2->data, block1->size) != 0)
4059 return false;
4060 }
4061 break;
4062 default:
4063 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4064 "%d by check_types_equal"),
4065 FIELD_LOC_KIND (*field1));
4066 }
4067
4068 worklist->emplace_back (field1->type (), field2->type ());
4069 }
4070 }
4071
4072 if (TYPE_TARGET_TYPE (type1) != NULL)
4073 {
4074 if (TYPE_TARGET_TYPE (type2) == NULL)
4075 return false;
4076
4077 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4078 TYPE_TARGET_TYPE (type2));
4079 }
4080 else if (TYPE_TARGET_TYPE (type2) != NULL)
4081 return false;
4082
4083 return true;
4084}
4085
4086/* Check types on a worklist for equality. Returns false if any pair
4087 is not equal, true if they are all considered equal. */
4088
4089static bool
4090check_types_worklist (std::vector<type_equality_entry> *worklist,
4091 gdb::bcache *cache)
4092{
4093 while (!worklist->empty ())
4094 {
4095 bool added;
4096
4097 struct type_equality_entry entry = std::move (worklist->back ());
4098 worklist->pop_back ();
4099
4100 /* If the type pair has already been visited, we know it is
4101 ok. */
4102 cache->insert (&entry, sizeof (entry), &added);
4103 if (!added)
4104 continue;
4105
4106 if (!check_types_equal (entry.type1, entry.type2, worklist))
4107 return false;
4108 }
4109
4110 return true;
4111}
4112
4113/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4114 "deep comparison". Otherwise return false. */
4115
4116bool
4117types_deeply_equal (struct type *type1, struct type *type2)
4118{
4119 std::vector<type_equality_entry> worklist;
4120
4121 gdb_assert (type1 != NULL && type2 != NULL);
4122
4123 /* Early exit for the simple case. */
4124 if (type1 == type2)
4125 return true;
4126
4127 gdb::bcache cache (nullptr, nullptr);
4128 worklist.emplace_back (type1, type2);
4129 return check_types_worklist (&worklist, &cache);
4130}
4131
4132/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4133 Otherwise return one. */
4134
4135int
4136type_not_allocated (const struct type *type)
4137{
4138 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4139
4140 return (prop != nullptr && prop->kind () == PROP_CONST
4141 && prop->const_val () == 0);
4142}
4143
4144/* Associated status of type TYPE. Return zero if type TYPE is associated.
4145 Otherwise return one. */
4146
4147int
4148type_not_associated (const struct type *type)
4149{
4150 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4151
4152 return (prop != nullptr && prop->kind () == PROP_CONST
4153 && prop->const_val () == 0);
4154}
4155
4156/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4157
4158static struct rank
4159rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4160{
4161 struct rank rank = {0,0};
4162
4163 switch (arg->code ())
4164 {
4165 case TYPE_CODE_PTR:
4166
4167 /* Allowed pointer conversions are:
4168 (a) pointer to void-pointer conversion. */
4169 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
4170 return VOID_PTR_CONVERSION_BADNESS;
4171
4172 /* (b) pointer to ancestor-pointer conversion. */
4173 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4174 TYPE_TARGET_TYPE (arg),
4175 0);
4176 if (rank.subrank >= 0)
4177 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4178
4179 return INCOMPATIBLE_TYPE_BADNESS;
4180 case TYPE_CODE_ARRAY:
4181 {
4182 struct type *t1 = TYPE_TARGET_TYPE (parm);
4183 struct type *t2 = TYPE_TARGET_TYPE (arg);
4184
4185 if (types_equal (t1, t2))
4186 {
4187 /* Make sure they are CV equal. */
4188 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4189 rank.subrank |= CV_CONVERSION_CONST;
4190 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4191 rank.subrank |= CV_CONVERSION_VOLATILE;
4192 if (rank.subrank != 0)
4193 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4194 return EXACT_MATCH_BADNESS;
4195 }
4196 return INCOMPATIBLE_TYPE_BADNESS;
4197 }
4198 case TYPE_CODE_FUNC:
4199 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4200 case TYPE_CODE_INT:
4201 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
4202 {
4203 if (value_as_long (value) == 0)
4204 {
4205 /* Null pointer conversion: allow it to be cast to a pointer.
4206 [4.10.1 of C++ standard draft n3290] */
4207 return NULL_POINTER_CONVERSION_BADNESS;
4208 }
4209 else
4210 {
4211 /* If type checking is disabled, allow the conversion. */
4212 if (!strict_type_checking)
4213 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4214 }
4215 }
4216 /* fall through */
4217 case TYPE_CODE_ENUM:
4218 case TYPE_CODE_FLAGS:
4219 case TYPE_CODE_CHAR:
4220 case TYPE_CODE_RANGE:
4221 case TYPE_CODE_BOOL:
4222 default:
4223 return INCOMPATIBLE_TYPE_BADNESS;
4224 }
4225}
4226
4227/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4228
4229static struct rank
4230rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4231{
4232 switch (arg->code ())
4233 {
4234 case TYPE_CODE_PTR:
4235 case TYPE_CODE_ARRAY:
4236 return rank_one_type (TYPE_TARGET_TYPE (parm),
4237 TYPE_TARGET_TYPE (arg), NULL);
4238 default:
4239 return INCOMPATIBLE_TYPE_BADNESS;
4240 }
4241}
4242
4243/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4244
4245static struct rank
4246rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4247{
4248 switch (arg->code ())
4249 {
4250 case TYPE_CODE_PTR: /* funcptr -> func */
4251 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4252 default:
4253 return INCOMPATIBLE_TYPE_BADNESS;
4254 }
4255}
4256
4257/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4258
4259static struct rank
4260rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4261{
4262 switch (arg->code ())
4263 {
4264 case TYPE_CODE_INT:
4265 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4266 {
4267 /* Deal with signed, unsigned, and plain chars and
4268 signed and unsigned ints. */
4269 if (TYPE_NOSIGN (parm))
4270 {
4271 /* This case only for character types. */
4272 if (TYPE_NOSIGN (arg))
4273 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4274 else /* signed/unsigned char -> plain char */
4275 return INTEGER_CONVERSION_BADNESS;
4276 }
4277 else if (TYPE_UNSIGNED (parm))
4278 {
4279 if (TYPE_UNSIGNED (arg))
4280 {
4281 /* unsigned int -> unsigned int, or
4282 unsigned long -> unsigned long */
4283 if (integer_types_same_name_p (parm->name (),
4284 arg->name ()))
4285 return EXACT_MATCH_BADNESS;
4286 else if (integer_types_same_name_p (arg->name (),
4287 "int")
4288 && integer_types_same_name_p (parm->name (),
4289 "long"))
4290 /* unsigned int -> unsigned long */
4291 return INTEGER_PROMOTION_BADNESS;
4292 else
4293 /* unsigned long -> unsigned int */
4294 return INTEGER_CONVERSION_BADNESS;
4295 }
4296 else
4297 {
4298 if (integer_types_same_name_p (arg->name (),
4299 "long")
4300 && integer_types_same_name_p (parm->name (),
4301 "int"))
4302 /* signed long -> unsigned int */
4303 return INTEGER_CONVERSION_BADNESS;
4304 else
4305 /* signed int/long -> unsigned int/long */
4306 return INTEGER_CONVERSION_BADNESS;
4307 }
4308 }
4309 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4310 {
4311 if (integer_types_same_name_p (parm->name (),
4312 arg->name ()))
4313 return EXACT_MATCH_BADNESS;
4314 else if (integer_types_same_name_p (arg->name (),
4315 "int")
4316 && integer_types_same_name_p (parm->name (),
4317 "long"))
4318 return INTEGER_PROMOTION_BADNESS;
4319 else
4320 return INTEGER_CONVERSION_BADNESS;
4321 }
4322 else
4323 return INTEGER_CONVERSION_BADNESS;
4324 }
4325 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4326 return INTEGER_PROMOTION_BADNESS;
4327 else
4328 return INTEGER_CONVERSION_BADNESS;
4329 case TYPE_CODE_ENUM:
4330 case TYPE_CODE_FLAGS:
4331 case TYPE_CODE_CHAR:
4332 case TYPE_CODE_RANGE:
4333 case TYPE_CODE_BOOL:
4334 if (TYPE_DECLARED_CLASS (arg))
4335 return INCOMPATIBLE_TYPE_BADNESS;
4336 return INTEGER_PROMOTION_BADNESS;
4337 case TYPE_CODE_FLT:
4338 return INT_FLOAT_CONVERSION_BADNESS;
4339 case TYPE_CODE_PTR:
4340 return NS_POINTER_CONVERSION_BADNESS;
4341 default:
4342 return INCOMPATIBLE_TYPE_BADNESS;
4343 }
4344}
4345
4346/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4347
4348static struct rank
4349rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4350{
4351 switch (arg->code ())
4352 {
4353 case TYPE_CODE_INT:
4354 case TYPE_CODE_CHAR:
4355 case TYPE_CODE_RANGE:
4356 case TYPE_CODE_BOOL:
4357 case TYPE_CODE_ENUM:
4358 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4359 return INCOMPATIBLE_TYPE_BADNESS;
4360 return INTEGER_CONVERSION_BADNESS;
4361 case TYPE_CODE_FLT:
4362 return INT_FLOAT_CONVERSION_BADNESS;
4363 default:
4364 return INCOMPATIBLE_TYPE_BADNESS;
4365 }
4366}
4367
4368/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4369
4370static struct rank
4371rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4372{
4373 switch (arg->code ())
4374 {
4375 case TYPE_CODE_RANGE:
4376 case TYPE_CODE_BOOL:
4377 case TYPE_CODE_ENUM:
4378 if (TYPE_DECLARED_CLASS (arg))
4379 return INCOMPATIBLE_TYPE_BADNESS;
4380 return INTEGER_CONVERSION_BADNESS;
4381 case TYPE_CODE_FLT:
4382 return INT_FLOAT_CONVERSION_BADNESS;
4383 case TYPE_CODE_INT:
4384 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4385 return INTEGER_CONVERSION_BADNESS;
4386 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4387 return INTEGER_PROMOTION_BADNESS;
4388 /* fall through */
4389 case TYPE_CODE_CHAR:
4390 /* Deal with signed, unsigned, and plain chars for C++ and
4391 with int cases falling through from previous case. */
4392 if (TYPE_NOSIGN (parm))
4393 {
4394 if (TYPE_NOSIGN (arg))
4395 return EXACT_MATCH_BADNESS;
4396 else
4397 return INTEGER_CONVERSION_BADNESS;
4398 }
4399 else if (TYPE_UNSIGNED (parm))
4400 {
4401 if (TYPE_UNSIGNED (arg))
4402 return EXACT_MATCH_BADNESS;
4403 else
4404 return INTEGER_PROMOTION_BADNESS;
4405 }
4406 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4407 return EXACT_MATCH_BADNESS;
4408 else
4409 return INTEGER_CONVERSION_BADNESS;
4410 default:
4411 return INCOMPATIBLE_TYPE_BADNESS;
4412 }
4413}
4414
4415/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4416
4417static struct rank
4418rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4419{
4420 switch (arg->code ())
4421 {
4422 case TYPE_CODE_INT:
4423 case TYPE_CODE_CHAR:
4424 case TYPE_CODE_RANGE:
4425 case TYPE_CODE_BOOL:
4426 case TYPE_CODE_ENUM:
4427 return INTEGER_CONVERSION_BADNESS;
4428 case TYPE_CODE_FLT:
4429 return INT_FLOAT_CONVERSION_BADNESS;
4430 default:
4431 return INCOMPATIBLE_TYPE_BADNESS;
4432 }
4433}
4434
4435/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4436
4437static struct rank
4438rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4439{
4440 switch (arg->code ())
4441 {
4442 /* n3290 draft, section 4.12.1 (conv.bool):
4443
4444 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4445 pointer to member type can be converted to a prvalue of type
4446 bool. A zero value, null pointer value, or null member pointer
4447 value is converted to false; any other value is converted to
4448 true. A prvalue of type std::nullptr_t can be converted to a
4449 prvalue of type bool; the resulting value is false." */
4450 case TYPE_CODE_INT:
4451 case TYPE_CODE_CHAR:
4452 case TYPE_CODE_ENUM:
4453 case TYPE_CODE_FLT:
4454 case TYPE_CODE_MEMBERPTR:
4455 case TYPE_CODE_PTR:
4456 return BOOL_CONVERSION_BADNESS;
4457 case TYPE_CODE_RANGE:
4458 return INCOMPATIBLE_TYPE_BADNESS;
4459 case TYPE_CODE_BOOL:
4460 return EXACT_MATCH_BADNESS;
4461 default:
4462 return INCOMPATIBLE_TYPE_BADNESS;
4463 }
4464}
4465
4466/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4467
4468static struct rank
4469rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4470{
4471 switch (arg->code ())
4472 {
4473 case TYPE_CODE_FLT:
4474 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4475 return FLOAT_PROMOTION_BADNESS;
4476 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4477 return EXACT_MATCH_BADNESS;
4478 else
4479 return FLOAT_CONVERSION_BADNESS;
4480 case TYPE_CODE_INT:
4481 case TYPE_CODE_BOOL:
4482 case TYPE_CODE_ENUM:
4483 case TYPE_CODE_RANGE:
4484 case TYPE_CODE_CHAR:
4485 return INT_FLOAT_CONVERSION_BADNESS;
4486 default:
4487 return INCOMPATIBLE_TYPE_BADNESS;
4488 }
4489}
4490
4491/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4492
4493static struct rank
4494rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4495{
4496 switch (arg->code ())
4497 { /* Strictly not needed for C++, but... */
4498 case TYPE_CODE_FLT:
4499 return FLOAT_PROMOTION_BADNESS;
4500 case TYPE_CODE_COMPLEX:
4501 return EXACT_MATCH_BADNESS;
4502 default:
4503 return INCOMPATIBLE_TYPE_BADNESS;
4504 }
4505}
4506
4507/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4508
4509static struct rank
4510rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4511{
4512 struct rank rank = {0, 0};
4513
4514 switch (arg->code ())
4515 {
4516 case TYPE_CODE_STRUCT:
4517 /* Check for derivation */
4518 rank.subrank = distance_to_ancestor (parm, arg, 0);
4519 if (rank.subrank >= 0)
4520 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4521 /* fall through */
4522 default:
4523 return INCOMPATIBLE_TYPE_BADNESS;
4524 }
4525}
4526
4527/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4528
4529static struct rank
4530rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4531{
4532 switch (arg->code ())
4533 {
4534 /* Not in C++ */
4535 case TYPE_CODE_SET:
4536 return rank_one_type (parm->field (0).type (),
4537 arg->field (0).type (), NULL);
4538 default:
4539 return INCOMPATIBLE_TYPE_BADNESS;
4540 }
4541}
4542
4543/* Compare one type (PARM) for compatibility with another (ARG).
4544 * PARM is intended to be the parameter type of a function; and
4545 * ARG is the supplied argument's type. This function tests if
4546 * the latter can be converted to the former.
4547 * VALUE is the argument's value or NULL if none (or called recursively)
4548 *
4549 * Return 0 if they are identical types;
4550 * Otherwise, return an integer which corresponds to how compatible
4551 * PARM is to ARG. The higher the return value, the worse the match.
4552 * Generally the "bad" conversions are all uniformly assigned a 100. */
4553
4554struct rank
4555rank_one_type (struct type *parm, struct type *arg, struct value *value)
4556{
4557 struct rank rank = {0,0};
4558
4559 /* Resolve typedefs */
4560 if (parm->code () == TYPE_CODE_TYPEDEF)
4561 parm = check_typedef (parm);
4562 if (arg->code () == TYPE_CODE_TYPEDEF)
4563 arg = check_typedef (arg);
4564
4565 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4566 {
4567 if (VALUE_LVAL (value) == not_lval)
4568 {
4569 /* Rvalues should preferably bind to rvalue references or const
4570 lvalue references. */
4571 if (parm->code () == TYPE_CODE_RVALUE_REF)
4572 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4573 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4574 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4575 else
4576 return INCOMPATIBLE_TYPE_BADNESS;
4577 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4578 }
4579 else
4580 {
4581 /* It's illegal to pass an lvalue as an rvalue. */
4582 if (parm->code () == TYPE_CODE_RVALUE_REF)
4583 return INCOMPATIBLE_TYPE_BADNESS;
4584 }
4585 }
4586
4587 if (types_equal (parm, arg))
4588 {
4589 struct type *t1 = parm;
4590 struct type *t2 = arg;
4591
4592 /* For pointers and references, compare target type. */
4593 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4594 {
4595 t1 = TYPE_TARGET_TYPE (parm);
4596 t2 = TYPE_TARGET_TYPE (arg);
4597 }
4598
4599 /* Make sure they are CV equal, too. */
4600 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4601 rank.subrank |= CV_CONVERSION_CONST;
4602 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4603 rank.subrank |= CV_CONVERSION_VOLATILE;
4604 if (rank.subrank != 0)
4605 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4606 return EXACT_MATCH_BADNESS;
4607 }
4608
4609 /* See through references, since we can almost make non-references
4610 references. */
4611
4612 if (TYPE_IS_REFERENCE (arg))
4613 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4614 REFERENCE_SEE_THROUGH_BADNESS));
4615 if (TYPE_IS_REFERENCE (parm))
4616 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4617 REFERENCE_SEE_THROUGH_BADNESS));
4618 if (overload_debug)
4619 /* Debugging only. */
4620 fprintf_filtered (gdb_stderr,
4621 "------ Arg is %s [%d], parm is %s [%d]\n",
4622 arg->name (), arg->code (),
4623 parm->name (), parm->code ());
4624
4625 /* x -> y means arg of type x being supplied for parameter of type y. */
4626
4627 switch (parm->code ())
4628 {
4629 case TYPE_CODE_PTR:
4630 return rank_one_type_parm_ptr (parm, arg, value);
4631 case TYPE_CODE_ARRAY:
4632 return rank_one_type_parm_array (parm, arg, value);
4633 case TYPE_CODE_FUNC:
4634 return rank_one_type_parm_func (parm, arg, value);
4635 case TYPE_CODE_INT:
4636 return rank_one_type_parm_int (parm, arg, value);
4637 case TYPE_CODE_ENUM:
4638 return rank_one_type_parm_enum (parm, arg, value);
4639 case TYPE_CODE_CHAR:
4640 return rank_one_type_parm_char (parm, arg, value);
4641 case TYPE_CODE_RANGE:
4642 return rank_one_type_parm_range (parm, arg, value);
4643 case TYPE_CODE_BOOL:
4644 return rank_one_type_parm_bool (parm, arg, value);
4645 case TYPE_CODE_FLT:
4646 return rank_one_type_parm_float (parm, arg, value);
4647 case TYPE_CODE_COMPLEX:
4648 return rank_one_type_parm_complex (parm, arg, value);
4649 case TYPE_CODE_STRUCT:
4650 return rank_one_type_parm_struct (parm, arg, value);
4651 case TYPE_CODE_SET:
4652 return rank_one_type_parm_set (parm, arg, value);
4653 default:
4654 return INCOMPATIBLE_TYPE_BADNESS;
4655 } /* switch (arg->code ()) */
4656}
4657
4658/* End of functions for overload resolution. */
4659\f
4660/* Routines to pretty-print types. */
4661
4662static void
4663print_bit_vector (B_TYPE *bits, int nbits)
4664{
4665 int bitno;
4666
4667 for (bitno = 0; bitno < nbits; bitno++)
4668 {
4669 if ((bitno % 8) == 0)
4670 {
4671 puts_filtered (" ");
4672 }
4673 if (B_TST (bits, bitno))
4674 printf_filtered (("1"));
4675 else
4676 printf_filtered (("0"));
4677 }
4678}
4679
4680/* Note the first arg should be the "this" pointer, we may not want to
4681 include it since we may get into a infinitely recursive
4682 situation. */
4683
4684static void
4685print_args (struct field *args, int nargs, int spaces)
4686{
4687 if (args != NULL)
4688 {
4689 int i;
4690
4691 for (i = 0; i < nargs; i++)
4692 {
4693 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4694 args[i].name != NULL ? args[i].name : "<NULL>");
4695 recursive_dump_type (args[i].type (), spaces + 2);
4696 }
4697 }
4698}
4699
4700int
4701field_is_static (struct field *f)
4702{
4703 /* "static" fields are the fields whose location is not relative
4704 to the address of the enclosing struct. It would be nice to
4705 have a dedicated flag that would be set for static fields when
4706 the type is being created. But in practice, checking the field
4707 loc_kind should give us an accurate answer. */
4708 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4709 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4710}
4711
4712static void
4713dump_fn_fieldlists (struct type *type, int spaces)
4714{
4715 int method_idx;
4716 int overload_idx;
4717 struct fn_field *f;
4718
4719 printfi_filtered (spaces, "fn_fieldlists ");
4720 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4721 printf_filtered ("\n");
4722 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4723 {
4724 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4725 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4726 method_idx,
4727 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4728 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4729 gdb_stdout);
4730 printf_filtered (_(") length %d\n"),
4731 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4732 for (overload_idx = 0;
4733 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4734 overload_idx++)
4735 {
4736 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4737 overload_idx,
4738 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4739 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4740 gdb_stdout);
4741 printf_filtered (")\n");
4742 printfi_filtered (spaces + 8, "type ");
4743 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4744 gdb_stdout);
4745 printf_filtered ("\n");
4746
4747 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4748 spaces + 8 + 2);
4749
4750 printfi_filtered (spaces + 8, "args ");
4751 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4752 gdb_stdout);
4753 printf_filtered ("\n");
4754 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4755 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4756 spaces + 8 + 2);
4757 printfi_filtered (spaces + 8, "fcontext ");
4758 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4759 gdb_stdout);
4760 printf_filtered ("\n");
4761
4762 printfi_filtered (spaces + 8, "is_const %d\n",
4763 TYPE_FN_FIELD_CONST (f, overload_idx));
4764 printfi_filtered (spaces + 8, "is_volatile %d\n",
4765 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4766 printfi_filtered (spaces + 8, "is_private %d\n",
4767 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4768 printfi_filtered (spaces + 8, "is_protected %d\n",
4769 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4770 printfi_filtered (spaces + 8, "is_stub %d\n",
4771 TYPE_FN_FIELD_STUB (f, overload_idx));
4772 printfi_filtered (spaces + 8, "defaulted %d\n",
4773 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4774 printfi_filtered (spaces + 8, "is_deleted %d\n",
4775 TYPE_FN_FIELD_DELETED (f, overload_idx));
4776 printfi_filtered (spaces + 8, "voffset %u\n",
4777 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4778 }
4779 }
4780}
4781
4782static void
4783print_cplus_stuff (struct type *type, int spaces)
4784{
4785 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4786 printfi_filtered (spaces, "vptr_basetype ");
4787 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4788 puts_filtered ("\n");
4789 if (TYPE_VPTR_BASETYPE (type) != NULL)
4790 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4791
4792 printfi_filtered (spaces, "n_baseclasses %d\n",
4793 TYPE_N_BASECLASSES (type));
4794 printfi_filtered (spaces, "nfn_fields %d\n",
4795 TYPE_NFN_FIELDS (type));
4796 if (TYPE_N_BASECLASSES (type) > 0)
4797 {
4798 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4799 TYPE_N_BASECLASSES (type));
4800 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4801 gdb_stdout);
4802 printf_filtered (")");
4803
4804 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4805 TYPE_N_BASECLASSES (type));
4806 puts_filtered ("\n");
4807 }
4808 if (type->num_fields () > 0)
4809 {
4810 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4811 {
4812 printfi_filtered (spaces,
4813 "private_field_bits (%d bits at *",
4814 type->num_fields ());
4815 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4816 gdb_stdout);
4817 printf_filtered (")");
4818 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4819 type->num_fields ());
4820 puts_filtered ("\n");
4821 }
4822 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4823 {
4824 printfi_filtered (spaces,
4825 "protected_field_bits (%d bits at *",
4826 type->num_fields ());
4827 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4828 gdb_stdout);
4829 printf_filtered (")");
4830 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4831 type->num_fields ());
4832 puts_filtered ("\n");
4833 }
4834 }
4835 if (TYPE_NFN_FIELDS (type) > 0)
4836 {
4837 dump_fn_fieldlists (type, spaces);
4838 }
4839
4840 printfi_filtered (spaces, "calling_convention %d\n",
4841 TYPE_CPLUS_CALLING_CONVENTION (type));
4842}
4843
4844/* Print the contents of the TYPE's type_specific union, assuming that
4845 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4846
4847static void
4848print_gnat_stuff (struct type *type, int spaces)
4849{
4850 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4851
4852 if (descriptive_type == NULL)
4853 printfi_filtered (spaces + 2, "no descriptive type\n");
4854 else
4855 {
4856 printfi_filtered (spaces + 2, "descriptive type\n");
4857 recursive_dump_type (descriptive_type, spaces + 4);
4858 }
4859}
4860
4861static struct obstack dont_print_type_obstack;
4862
4863/* Print the dynamic_prop PROP. */
4864
4865static void
4866dump_dynamic_prop (dynamic_prop const& prop)
4867{
4868 switch (prop.kind ())
4869 {
4870 case PROP_CONST:
4871 printf_filtered ("%s", plongest (prop.const_val ()));
4872 break;
4873 case PROP_UNDEFINED:
4874 printf_filtered ("(undefined)");
4875 break;
4876 case PROP_LOCEXPR:
4877 case PROP_LOCLIST:
4878 printf_filtered ("(dynamic)");
4879 break;
4880 default:
4881 gdb_assert_not_reached ("unhandled prop kind");
4882 break;
4883 }
4884}
4885
4886void
4887recursive_dump_type (struct type *type, int spaces)
4888{
4889 int idx;
4890
4891 if (spaces == 0)
4892 obstack_begin (&dont_print_type_obstack, 0);
4893
4894 if (type->num_fields () > 0
4895 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4896 {
4897 struct type **first_dont_print
4898 = (struct type **) obstack_base (&dont_print_type_obstack);
4899
4900 int i = (struct type **)
4901 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4902
4903 while (--i >= 0)
4904 {
4905 if (type == first_dont_print[i])
4906 {
4907 printfi_filtered (spaces, "type node ");
4908 gdb_print_host_address (type, gdb_stdout);
4909 printf_filtered (_(" <same as already seen type>\n"));
4910 return;
4911 }
4912 }
4913
4914 obstack_ptr_grow (&dont_print_type_obstack, type);
4915 }
4916
4917 printfi_filtered (spaces, "type node ");
4918 gdb_print_host_address (type, gdb_stdout);
4919 printf_filtered ("\n");
4920 printfi_filtered (spaces, "name '%s' (",
4921 type->name () ? type->name () : "<NULL>");
4922 gdb_print_host_address (type->name (), gdb_stdout);
4923 printf_filtered (")\n");
4924 printfi_filtered (spaces, "code 0x%x ", type->code ());
4925 switch (type->code ())
4926 {
4927 case TYPE_CODE_UNDEF:
4928 printf_filtered ("(TYPE_CODE_UNDEF)");
4929 break;
4930 case TYPE_CODE_PTR:
4931 printf_filtered ("(TYPE_CODE_PTR)");
4932 break;
4933 case TYPE_CODE_ARRAY:
4934 printf_filtered ("(TYPE_CODE_ARRAY)");
4935 break;
4936 case TYPE_CODE_STRUCT:
4937 printf_filtered ("(TYPE_CODE_STRUCT)");
4938 break;
4939 case TYPE_CODE_UNION:
4940 printf_filtered ("(TYPE_CODE_UNION)");
4941 break;
4942 case TYPE_CODE_ENUM:
4943 printf_filtered ("(TYPE_CODE_ENUM)");
4944 break;
4945 case TYPE_CODE_FLAGS:
4946 printf_filtered ("(TYPE_CODE_FLAGS)");
4947 break;
4948 case TYPE_CODE_FUNC:
4949 printf_filtered ("(TYPE_CODE_FUNC)");
4950 break;
4951 case TYPE_CODE_INT:
4952 printf_filtered ("(TYPE_CODE_INT)");
4953 break;
4954 case TYPE_CODE_FLT:
4955 printf_filtered ("(TYPE_CODE_FLT)");
4956 break;
4957 case TYPE_CODE_VOID:
4958 printf_filtered ("(TYPE_CODE_VOID)");
4959 break;
4960 case TYPE_CODE_SET:
4961 printf_filtered ("(TYPE_CODE_SET)");
4962 break;
4963 case TYPE_CODE_RANGE:
4964 printf_filtered ("(TYPE_CODE_RANGE)");
4965 break;
4966 case TYPE_CODE_STRING:
4967 printf_filtered ("(TYPE_CODE_STRING)");
4968 break;
4969 case TYPE_CODE_ERROR:
4970 printf_filtered ("(TYPE_CODE_ERROR)");
4971 break;
4972 case TYPE_CODE_MEMBERPTR:
4973 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4974 break;
4975 case TYPE_CODE_METHODPTR:
4976 printf_filtered ("(TYPE_CODE_METHODPTR)");
4977 break;
4978 case TYPE_CODE_METHOD:
4979 printf_filtered ("(TYPE_CODE_METHOD)");
4980 break;
4981 case TYPE_CODE_REF:
4982 printf_filtered ("(TYPE_CODE_REF)");
4983 break;
4984 case TYPE_CODE_CHAR:
4985 printf_filtered ("(TYPE_CODE_CHAR)");
4986 break;
4987 case TYPE_CODE_BOOL:
4988 printf_filtered ("(TYPE_CODE_BOOL)");
4989 break;
4990 case TYPE_CODE_COMPLEX:
4991 printf_filtered ("(TYPE_CODE_COMPLEX)");
4992 break;
4993 case TYPE_CODE_TYPEDEF:
4994 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4995 break;
4996 case TYPE_CODE_NAMESPACE:
4997 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4998 break;
4999 default:
5000 printf_filtered ("(UNKNOWN TYPE CODE)");
5001 break;
5002 }
5003 puts_filtered ("\n");
5004 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
5005 if (TYPE_OBJFILE_OWNED (type))
5006 {
5007 printfi_filtered (spaces, "objfile ");
5008 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
5009 }
5010 else
5011 {
5012 printfi_filtered (spaces, "gdbarch ");
5013 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5014 }
5015 printf_filtered ("\n");
5016 printfi_filtered (spaces, "target_type ");
5017 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
5018 printf_filtered ("\n");
5019 if (TYPE_TARGET_TYPE (type) != NULL)
5020 {
5021 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5022 }
5023 printfi_filtered (spaces, "pointer_type ");
5024 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
5025 printf_filtered ("\n");
5026 printfi_filtered (spaces, "reference_type ");
5027 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5028 printf_filtered ("\n");
5029 printfi_filtered (spaces, "type_chain ");
5030 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5031 printf_filtered ("\n");
5032 printfi_filtered (spaces, "instance_flags 0x%x",
5033 TYPE_INSTANCE_FLAGS (type));
5034 if (TYPE_CONST (type))
5035 {
5036 puts_filtered (" TYPE_CONST");
5037 }
5038 if (TYPE_VOLATILE (type))
5039 {
5040 puts_filtered (" TYPE_VOLATILE");
5041 }
5042 if (TYPE_CODE_SPACE (type))
5043 {
5044 puts_filtered (" TYPE_CODE_SPACE");
5045 }
5046 if (TYPE_DATA_SPACE (type))
5047 {
5048 puts_filtered (" TYPE_DATA_SPACE");
5049 }
5050 if (TYPE_ADDRESS_CLASS_1 (type))
5051 {
5052 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5053 }
5054 if (TYPE_ADDRESS_CLASS_2 (type))
5055 {
5056 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5057 }
5058 if (TYPE_RESTRICT (type))
5059 {
5060 puts_filtered (" TYPE_RESTRICT");
5061 }
5062 if (TYPE_ATOMIC (type))
5063 {
5064 puts_filtered (" TYPE_ATOMIC");
5065 }
5066 puts_filtered ("\n");
5067
5068 printfi_filtered (spaces, "flags");
5069 if (TYPE_UNSIGNED (type))
5070 {
5071 puts_filtered (" TYPE_UNSIGNED");
5072 }
5073 if (TYPE_NOSIGN (type))
5074 {
5075 puts_filtered (" TYPE_NOSIGN");
5076 }
5077 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5078 {
5079 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5080 }
5081 if (TYPE_STUB (type))
5082 {
5083 puts_filtered (" TYPE_STUB");
5084 }
5085 if (TYPE_TARGET_STUB (type))
5086 {
5087 puts_filtered (" TYPE_TARGET_STUB");
5088 }
5089 if (TYPE_PROTOTYPED (type))
5090 {
5091 puts_filtered (" TYPE_PROTOTYPED");
5092 }
5093 if (TYPE_VARARGS (type))
5094 {
5095 puts_filtered (" TYPE_VARARGS");
5096 }
5097 /* This is used for things like AltiVec registers on ppc. Gcc emits
5098 an attribute for the array type, which tells whether or not we
5099 have a vector, instead of a regular array. */
5100 if (TYPE_VECTOR (type))
5101 {
5102 puts_filtered (" TYPE_VECTOR");
5103 }
5104 if (TYPE_FIXED_INSTANCE (type))
5105 {
5106 puts_filtered (" TYPE_FIXED_INSTANCE");
5107 }
5108 if (TYPE_STUB_SUPPORTED (type))
5109 {
5110 puts_filtered (" TYPE_STUB_SUPPORTED");
5111 }
5112 if (TYPE_NOTTEXT (type))
5113 {
5114 puts_filtered (" TYPE_NOTTEXT");
5115 }
5116 puts_filtered ("\n");
5117 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
5118 gdb_print_host_address (type->fields (), gdb_stdout);
5119 puts_filtered ("\n");
5120 for (idx = 0; idx < type->num_fields (); idx++)
5121 {
5122 if (type->code () == TYPE_CODE_ENUM)
5123 printfi_filtered (spaces + 2,
5124 "[%d] enumval %s type ",
5125 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5126 else
5127 printfi_filtered (spaces + 2,
5128 "[%d] bitpos %s bitsize %d type ",
5129 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5130 TYPE_FIELD_BITSIZE (type, idx));
5131 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
5132 printf_filtered (" name '%s' (",
5133 TYPE_FIELD_NAME (type, idx) != NULL
5134 ? TYPE_FIELD_NAME (type, idx)
5135 : "<NULL>");
5136 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5137 printf_filtered (")\n");
5138 if (type->field (idx).type () != NULL)
5139 {
5140 recursive_dump_type (type->field (idx).type (), spaces + 4);
5141 }
5142 }
5143 if (type->code () == TYPE_CODE_RANGE)
5144 {
5145 printfi_filtered (spaces, "low ");
5146 dump_dynamic_prop (type->bounds ()->low);
5147 printf_filtered (" high ");
5148 dump_dynamic_prop (type->bounds ()->high);
5149 printf_filtered ("\n");
5150 }
5151
5152 switch (TYPE_SPECIFIC_FIELD (type))
5153 {
5154 case TYPE_SPECIFIC_CPLUS_STUFF:
5155 printfi_filtered (spaces, "cplus_stuff ");
5156 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5157 gdb_stdout);
5158 puts_filtered ("\n");
5159 print_cplus_stuff (type, spaces);
5160 break;
5161
5162 case TYPE_SPECIFIC_GNAT_STUFF:
5163 printfi_filtered (spaces, "gnat_stuff ");
5164 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5165 puts_filtered ("\n");
5166 print_gnat_stuff (type, spaces);
5167 break;
5168
5169 case TYPE_SPECIFIC_FLOATFORMAT:
5170 printfi_filtered (spaces, "floatformat ");
5171 if (TYPE_FLOATFORMAT (type) == NULL
5172 || TYPE_FLOATFORMAT (type)->name == NULL)
5173 puts_filtered ("(null)");
5174 else
5175 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5176 puts_filtered ("\n");
5177 break;
5178
5179 case TYPE_SPECIFIC_FUNC:
5180 printfi_filtered (spaces, "calling_convention %d\n",
5181 TYPE_CALLING_CONVENTION (type));
5182 /* tail_call_list is not printed. */
5183 break;
5184
5185 case TYPE_SPECIFIC_SELF_TYPE:
5186 printfi_filtered (spaces, "self_type ");
5187 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5188 puts_filtered ("\n");
5189 break;
5190 }
5191
5192 if (spaces == 0)
5193 obstack_free (&dont_print_type_obstack, NULL);
5194}
5195\f
5196/* Trivial helpers for the libiberty hash table, for mapping one
5197 type to another. */
5198
5199struct type_pair : public allocate_on_obstack
5200{
5201 type_pair (struct type *old_, struct type *newobj_)
5202 : old (old_), newobj (newobj_)
5203 {}
5204
5205 struct type * const old, * const newobj;
5206};
5207
5208static hashval_t
5209type_pair_hash (const void *item)
5210{
5211 const struct type_pair *pair = (const struct type_pair *) item;
5212
5213 return htab_hash_pointer (pair->old);
5214}
5215
5216static int
5217type_pair_eq (const void *item_lhs, const void *item_rhs)
5218{
5219 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5220 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5221
5222 return lhs->old == rhs->old;
5223}
5224
5225/* Allocate the hash table used by copy_type_recursive to walk
5226 types without duplicates. We use OBJFILE's obstack, because
5227 OBJFILE is about to be deleted. */
5228
5229htab_t
5230create_copied_types_hash (struct objfile *objfile)
5231{
5232 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5233 NULL, &objfile->objfile_obstack,
5234 hashtab_obstack_allocate,
5235 dummy_obstack_deallocate);
5236}
5237
5238/* Recursively copy (deep copy) a dynamic attribute list of a type. */
5239
5240static struct dynamic_prop_list *
5241copy_dynamic_prop_list (struct obstack *objfile_obstack,
5242 struct dynamic_prop_list *list)
5243{
5244 struct dynamic_prop_list *copy = list;
5245 struct dynamic_prop_list **node_ptr = &copy;
5246
5247 while (*node_ptr != NULL)
5248 {
5249 struct dynamic_prop_list *node_copy;
5250
5251 node_copy = ((struct dynamic_prop_list *)
5252 obstack_copy (objfile_obstack, *node_ptr,
5253 sizeof (struct dynamic_prop_list)));
5254 node_copy->prop = (*node_ptr)->prop;
5255 *node_ptr = node_copy;
5256
5257 node_ptr = &node_copy->next;
5258 }
5259
5260 return copy;
5261}
5262
5263/* Recursively copy (deep copy) TYPE, if it is associated with
5264 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5265 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5266 it is not associated with OBJFILE. */
5267
5268struct type *
5269copy_type_recursive (struct objfile *objfile,
5270 struct type *type,
5271 htab_t copied_types)
5272{
5273 void **slot;
5274 struct type *new_type;
5275
5276 if (! TYPE_OBJFILE_OWNED (type))
5277 return type;
5278
5279 /* This type shouldn't be pointing to any types in other objfiles;
5280 if it did, the type might disappear unexpectedly. */
5281 gdb_assert (TYPE_OBJFILE (type) == objfile);
5282
5283 struct type_pair pair (type, nullptr);
5284
5285 slot = htab_find_slot (copied_types, &pair, INSERT);
5286 if (*slot != NULL)
5287 return ((struct type_pair *) *slot)->newobj;
5288
5289 new_type = alloc_type_arch (get_type_arch (type));
5290
5291 /* We must add the new type to the hash table immediately, in case
5292 we encounter this type again during a recursive call below. */
5293 struct type_pair *stored
5294 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5295
5296 *slot = stored;
5297
5298 /* Copy the common fields of types. For the main type, we simply
5299 copy the entire thing and then update specific fields as needed. */
5300 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5301 TYPE_OBJFILE_OWNED (new_type) = 0;
5302 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5303
5304 if (type->name ())
5305 new_type->set_name (xstrdup (type->name ()));
5306
5307 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5308 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5309
5310 /* Copy the fields. */
5311 if (type->num_fields ())
5312 {
5313 int i, nfields;
5314
5315 nfields = type->num_fields ();
5316 new_type->set_fields
5317 ((struct field *)
5318 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5319
5320 for (i = 0; i < nfields; i++)
5321 {
5322 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5323 TYPE_FIELD_ARTIFICIAL (type, i);
5324 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5325 if (type->field (i).type ())
5326 new_type->field (i).set_type
5327 (copy_type_recursive (objfile, type->field (i).type (),
5328 copied_types));
5329 if (TYPE_FIELD_NAME (type, i))
5330 TYPE_FIELD_NAME (new_type, i) =
5331 xstrdup (TYPE_FIELD_NAME (type, i));
5332 switch (TYPE_FIELD_LOC_KIND (type, i))
5333 {
5334 case FIELD_LOC_KIND_BITPOS:
5335 SET_FIELD_BITPOS (new_type->field (i),
5336 TYPE_FIELD_BITPOS (type, i));
5337 break;
5338 case FIELD_LOC_KIND_ENUMVAL:
5339 SET_FIELD_ENUMVAL (new_type->field (i),
5340 TYPE_FIELD_ENUMVAL (type, i));
5341 break;
5342 case FIELD_LOC_KIND_PHYSADDR:
5343 SET_FIELD_PHYSADDR (new_type->field (i),
5344 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5345 break;
5346 case FIELD_LOC_KIND_PHYSNAME:
5347 SET_FIELD_PHYSNAME (new_type->field (i),
5348 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5349 i)));
5350 break;
5351 default:
5352 internal_error (__FILE__, __LINE__,
5353 _("Unexpected type field location kind: %d"),
5354 TYPE_FIELD_LOC_KIND (type, i));
5355 }
5356 }
5357 }
5358
5359 /* For range types, copy the bounds information. */
5360 if (type->code () == TYPE_CODE_RANGE)
5361 {
5362 range_bounds *bounds
5363 = ((struct range_bounds *) TYPE_ALLOC
5364 (new_type, sizeof (struct range_bounds)));
5365
5366 *bounds = *type->bounds ();
5367 new_type->set_bounds (bounds);
5368 }
5369
5370 if (type->main_type->dyn_prop_list != NULL)
5371 new_type->main_type->dyn_prop_list
5372 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5373 type->main_type->dyn_prop_list);
5374
5375
5376 /* Copy pointers to other types. */
5377 if (TYPE_TARGET_TYPE (type))
5378 TYPE_TARGET_TYPE (new_type) =
5379 copy_type_recursive (objfile,
5380 TYPE_TARGET_TYPE (type),
5381 copied_types);
5382
5383 /* Maybe copy the type_specific bits.
5384
5385 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5386 base classes and methods. There's no fundamental reason why we
5387 can't, but at the moment it is not needed. */
5388
5389 switch (TYPE_SPECIFIC_FIELD (type))
5390 {
5391 case TYPE_SPECIFIC_NONE:
5392 break;
5393 case TYPE_SPECIFIC_FUNC:
5394 INIT_FUNC_SPECIFIC (new_type);
5395 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5396 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5397 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5398 break;
5399 case TYPE_SPECIFIC_FLOATFORMAT:
5400 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5401 break;
5402 case TYPE_SPECIFIC_CPLUS_STUFF:
5403 INIT_CPLUS_SPECIFIC (new_type);
5404 break;
5405 case TYPE_SPECIFIC_GNAT_STUFF:
5406 INIT_GNAT_SPECIFIC (new_type);
5407 break;
5408 case TYPE_SPECIFIC_SELF_TYPE:
5409 set_type_self_type (new_type,
5410 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5411 copied_types));
5412 break;
5413 default:
5414 gdb_assert_not_reached ("bad type_specific_kind");
5415 }
5416
5417 return new_type;
5418}
5419
5420/* Make a copy of the given TYPE, except that the pointer & reference
5421 types are not preserved.
5422
5423 This function assumes that the given type has an associated objfile.
5424 This objfile is used to allocate the new type. */
5425
5426struct type *
5427copy_type (const struct type *type)
5428{
5429 struct type *new_type;
5430
5431 gdb_assert (TYPE_OBJFILE_OWNED (type));
5432
5433 new_type = alloc_type_copy (type);
5434 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5435 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5436 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5437 sizeof (struct main_type));
5438 if (type->main_type->dyn_prop_list != NULL)
5439 new_type->main_type->dyn_prop_list
5440 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5441 type->main_type->dyn_prop_list);
5442
5443 return new_type;
5444}
5445\f
5446/* Helper functions to initialize architecture-specific types. */
5447
5448/* Allocate a type structure associated with GDBARCH and set its
5449 CODE, LENGTH, and NAME fields. */
5450
5451struct type *
5452arch_type (struct gdbarch *gdbarch,
5453 enum type_code code, int bit, const char *name)
5454{
5455 struct type *type;
5456
5457 type = alloc_type_arch (gdbarch);
5458 set_type_code (type, code);
5459 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5460 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5461
5462 if (name)
5463 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
5464
5465 return type;
5466}
5467
5468/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5469 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5470 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5471
5472struct type *
5473arch_integer_type (struct gdbarch *gdbarch,
5474 int bit, int unsigned_p, const char *name)
5475{
5476 struct type *t;
5477
5478 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5479 if (unsigned_p)
5480 TYPE_UNSIGNED (t) = 1;
5481
5482 return t;
5483}
5484
5485/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5486 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5487 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5488
5489struct type *
5490arch_character_type (struct gdbarch *gdbarch,
5491 int bit, int unsigned_p, const char *name)
5492{
5493 struct type *t;
5494
5495 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5496 if (unsigned_p)
5497 TYPE_UNSIGNED (t) = 1;
5498
5499 return t;
5500}
5501
5502/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5503 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5504 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5505
5506struct type *
5507arch_boolean_type (struct gdbarch *gdbarch,
5508 int bit, int unsigned_p, const char *name)
5509{
5510 struct type *t;
5511
5512 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5513 if (unsigned_p)
5514 TYPE_UNSIGNED (t) = 1;
5515
5516 return t;
5517}
5518
5519/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5520 BIT is the type size in bits; if BIT equals -1, the size is
5521 determined by the floatformat. NAME is the type name. Set the
5522 TYPE_FLOATFORMAT from FLOATFORMATS. */
5523
5524struct type *
5525arch_float_type (struct gdbarch *gdbarch,
5526 int bit, const char *name,
5527 const struct floatformat **floatformats)
5528{
5529 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5530 struct type *t;
5531
5532 bit = verify_floatformat (bit, fmt);
5533 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5534 TYPE_FLOATFORMAT (t) = fmt;
5535
5536 return t;
5537}
5538
5539/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5540 BIT is the type size in bits. NAME is the type name. */
5541
5542struct type *
5543arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5544{
5545 struct type *t;
5546
5547 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5548 return t;
5549}
5550
5551/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5552 BIT is the pointer type size in bits. NAME is the type name.
5553 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5554 TYPE_UNSIGNED flag. */
5555
5556struct type *
5557arch_pointer_type (struct gdbarch *gdbarch,
5558 int bit, const char *name, struct type *target_type)
5559{
5560 struct type *t;
5561
5562 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5563 TYPE_TARGET_TYPE (t) = target_type;
5564 TYPE_UNSIGNED (t) = 1;
5565 return t;
5566}
5567
5568/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5569 NAME is the type name. BIT is the size of the flag word in bits. */
5570
5571struct type *
5572arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5573{
5574 struct type *type;
5575
5576 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5577 TYPE_UNSIGNED (type) = 1;
5578 type->set_num_fields (0);
5579 /* Pre-allocate enough space assuming every field is one bit. */
5580 type->set_fields
5581 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
5582
5583 return type;
5584}
5585
5586/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5587 position BITPOS is called NAME. Pass NAME as "" for fields that
5588 should not be printed. */
5589
5590void
5591append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5592 struct type *field_type, const char *name)
5593{
5594 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5595 int field_nr = type->num_fields ();
5596
5597 gdb_assert (type->code () == TYPE_CODE_FLAGS);
5598 gdb_assert (type->num_fields () + 1 <= type_bitsize);
5599 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5600 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5601 gdb_assert (name != NULL);
5602
5603 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5604 type->field (field_nr).set_type (field_type);
5605 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
5606 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5607 type->set_num_fields (type->num_fields () + 1);
5608}
5609
5610/* Special version of append_flags_type_field to add a flag field.
5611 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5612 position BITPOS is called NAME. */
5613
5614void
5615append_flags_type_flag (struct type *type, int bitpos, const char *name)
5616{
5617 struct gdbarch *gdbarch = get_type_arch (type);
5618
5619 append_flags_type_field (type, bitpos, 1,
5620 builtin_type (gdbarch)->builtin_bool,
5621 name);
5622}
5623
5624/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5625 specified by CODE) associated with GDBARCH. NAME is the type name. */
5626
5627struct type *
5628arch_composite_type (struct gdbarch *gdbarch, const char *name,
5629 enum type_code code)
5630{
5631 struct type *t;
5632
5633 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5634 t = arch_type (gdbarch, code, 0, NULL);
5635 t->set_name (name);
5636 INIT_CPLUS_SPECIFIC (t);
5637 return t;
5638}
5639
5640/* Add new field with name NAME and type FIELD to composite type T.
5641 Do not set the field's position or adjust the type's length;
5642 the caller should do so. Return the new field. */
5643
5644struct field *
5645append_composite_type_field_raw (struct type *t, const char *name,
5646 struct type *field)
5647{
5648 struct field *f;
5649
5650 t->set_num_fields (t->num_fields () + 1);
5651 t->set_fields (XRESIZEVEC (struct field, t->fields (),
5652 t->num_fields ()));
5653 f = &t->field (t->num_fields () - 1);
5654 memset (f, 0, sizeof f[0]);
5655 f[0].set_type (field);
5656 FIELD_NAME (f[0]) = name;
5657 return f;
5658}
5659
5660/* Add new field with name NAME and type FIELD to composite type T.
5661 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5662
5663void
5664append_composite_type_field_aligned (struct type *t, const char *name,
5665 struct type *field, int alignment)
5666{
5667 struct field *f = append_composite_type_field_raw (t, name, field);
5668
5669 if (t->code () == TYPE_CODE_UNION)
5670 {
5671 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5672 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5673 }
5674 else if (t->code () == TYPE_CODE_STRUCT)
5675 {
5676 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5677 if (t->num_fields () > 1)
5678 {
5679 SET_FIELD_BITPOS (f[0],
5680 (FIELD_BITPOS (f[-1])
5681 + (TYPE_LENGTH (f[-1].type ())
5682 * TARGET_CHAR_BIT)));
5683
5684 if (alignment)
5685 {
5686 int left;
5687
5688 alignment *= TARGET_CHAR_BIT;
5689 left = FIELD_BITPOS (f[0]) % alignment;
5690
5691 if (left)
5692 {
5693 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5694 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5695 }
5696 }
5697 }
5698 }
5699}
5700
5701/* Add new field with name NAME and type FIELD to composite type T. */
5702
5703void
5704append_composite_type_field (struct type *t, const char *name,
5705 struct type *field)
5706{
5707 append_composite_type_field_aligned (t, name, field, 0);
5708}
5709
5710static struct gdbarch_data *gdbtypes_data;
5711
5712const struct builtin_type *
5713builtin_type (struct gdbarch *gdbarch)
5714{
5715 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5716}
5717
5718static void *
5719gdbtypes_post_init (struct gdbarch *gdbarch)
5720{
5721 struct builtin_type *builtin_type
5722 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5723
5724 /* Basic types. */
5725 builtin_type->builtin_void
5726 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5727 builtin_type->builtin_char
5728 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5729 !gdbarch_char_signed (gdbarch), "char");
5730 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5731 builtin_type->builtin_signed_char
5732 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5733 0, "signed char");
5734 builtin_type->builtin_unsigned_char
5735 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5736 1, "unsigned char");
5737 builtin_type->builtin_short
5738 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5739 0, "short");
5740 builtin_type->builtin_unsigned_short
5741 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5742 1, "unsigned short");
5743 builtin_type->builtin_int
5744 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5745 0, "int");
5746 builtin_type->builtin_unsigned_int
5747 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5748 1, "unsigned int");
5749 builtin_type->builtin_long
5750 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5751 0, "long");
5752 builtin_type->builtin_unsigned_long
5753 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5754 1, "unsigned long");
5755 builtin_type->builtin_long_long
5756 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5757 0, "long long");
5758 builtin_type->builtin_unsigned_long_long
5759 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5760 1, "unsigned long long");
5761 builtin_type->builtin_half
5762 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5763 "half", gdbarch_half_format (gdbarch));
5764 builtin_type->builtin_float
5765 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5766 "float", gdbarch_float_format (gdbarch));
5767 builtin_type->builtin_bfloat16
5768 = arch_float_type (gdbarch, gdbarch_bfloat16_bit (gdbarch),
5769 "bfloat16", gdbarch_bfloat16_format (gdbarch));
5770 builtin_type->builtin_double
5771 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5772 "double", gdbarch_double_format (gdbarch));
5773 builtin_type->builtin_long_double
5774 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5775 "long double", gdbarch_long_double_format (gdbarch));
5776 builtin_type->builtin_complex
5777 = init_complex_type ("complex", builtin_type->builtin_float);
5778 builtin_type->builtin_double_complex
5779 = init_complex_type ("double complex", builtin_type->builtin_double);
5780 builtin_type->builtin_string
5781 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5782 builtin_type->builtin_bool
5783 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5784
5785 /* The following three are about decimal floating point types, which
5786 are 32-bits, 64-bits and 128-bits respectively. */
5787 builtin_type->builtin_decfloat
5788 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5789 builtin_type->builtin_decdouble
5790 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5791 builtin_type->builtin_declong
5792 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5793
5794 /* "True" character types. */
5795 builtin_type->builtin_true_char
5796 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5797 builtin_type->builtin_true_unsigned_char
5798 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5799
5800 /* Fixed-size integer types. */
5801 builtin_type->builtin_int0
5802 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5803 builtin_type->builtin_int8
5804 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5805 builtin_type->builtin_uint8
5806 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5807 builtin_type->builtin_int16
5808 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5809 builtin_type->builtin_uint16
5810 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5811 builtin_type->builtin_int24
5812 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5813 builtin_type->builtin_uint24
5814 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5815 builtin_type->builtin_int32
5816 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5817 builtin_type->builtin_uint32
5818 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5819 builtin_type->builtin_int64
5820 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5821 builtin_type->builtin_uint64
5822 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5823 builtin_type->builtin_int128
5824 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5825 builtin_type->builtin_uint128
5826 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5827 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5828 TYPE_INSTANCE_FLAG_NOTTEXT;
5829 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5830 TYPE_INSTANCE_FLAG_NOTTEXT;
5831
5832 /* Wide character types. */
5833 builtin_type->builtin_char16
5834 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5835 builtin_type->builtin_char32
5836 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5837 builtin_type->builtin_wchar
5838 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5839 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5840
5841 /* Default data/code pointer types. */
5842 builtin_type->builtin_data_ptr
5843 = lookup_pointer_type (builtin_type->builtin_void);
5844 builtin_type->builtin_func_ptr
5845 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5846 builtin_type->builtin_func_func
5847 = lookup_function_type (builtin_type->builtin_func_ptr);
5848
5849 /* This type represents a GDB internal function. */
5850 builtin_type->internal_fn
5851 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5852 "<internal function>");
5853
5854 /* This type represents an xmethod. */
5855 builtin_type->xmethod
5856 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5857
5858 return builtin_type;
5859}
5860
5861/* This set of objfile-based types is intended to be used by symbol
5862 readers as basic types. */
5863
5864static const struct objfile_key<struct objfile_type,
5865 gdb::noop_deleter<struct objfile_type>>
5866 objfile_type_data;
5867
5868const struct objfile_type *
5869objfile_type (struct objfile *objfile)
5870{
5871 struct gdbarch *gdbarch;
5872 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5873
5874 if (objfile_type)
5875 return objfile_type;
5876
5877 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5878 1, struct objfile_type);
5879
5880 /* Use the objfile architecture to determine basic type properties. */
5881 gdbarch = objfile->arch ();
5882
5883 /* Basic types. */
5884 objfile_type->builtin_void
5885 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5886 objfile_type->builtin_char
5887 = init_integer_type (objfile, TARGET_CHAR_BIT,
5888 !gdbarch_char_signed (gdbarch), "char");
5889 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5890 objfile_type->builtin_signed_char
5891 = init_integer_type (objfile, TARGET_CHAR_BIT,
5892 0, "signed char");
5893 objfile_type->builtin_unsigned_char
5894 = init_integer_type (objfile, TARGET_CHAR_BIT,
5895 1, "unsigned char");
5896 objfile_type->builtin_short
5897 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5898 0, "short");
5899 objfile_type->builtin_unsigned_short
5900 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5901 1, "unsigned short");
5902 objfile_type->builtin_int
5903 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5904 0, "int");
5905 objfile_type->builtin_unsigned_int
5906 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5907 1, "unsigned int");
5908 objfile_type->builtin_long
5909 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5910 0, "long");
5911 objfile_type->builtin_unsigned_long
5912 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5913 1, "unsigned long");
5914 objfile_type->builtin_long_long
5915 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5916 0, "long long");
5917 objfile_type->builtin_unsigned_long_long
5918 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5919 1, "unsigned long long");
5920 objfile_type->builtin_float
5921 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5922 "float", gdbarch_float_format (gdbarch));
5923 objfile_type->builtin_double
5924 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5925 "double", gdbarch_double_format (gdbarch));
5926 objfile_type->builtin_long_double
5927 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5928 "long double", gdbarch_long_double_format (gdbarch));
5929
5930 /* This type represents a type that was unrecognized in symbol read-in. */
5931 objfile_type->builtin_error
5932 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5933
5934 /* The following set of types is used for symbols with no
5935 debug information. */
5936 objfile_type->nodebug_text_symbol
5937 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5938 "<text variable, no debug info>");
5939 objfile_type->nodebug_text_gnu_ifunc_symbol
5940 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5941 "<text gnu-indirect-function variable, no debug info>");
5942 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5943 objfile_type->nodebug_got_plt_symbol
5944 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5945 "<text from jump slot in .got.plt, no debug info>",
5946 objfile_type->nodebug_text_symbol);
5947 objfile_type->nodebug_data_symbol
5948 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5949 objfile_type->nodebug_unknown_symbol
5950 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5951 objfile_type->nodebug_tls_symbol
5952 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5953
5954 /* NOTE: on some targets, addresses and pointers are not necessarily
5955 the same.
5956
5957 The upshot is:
5958 - gdb's `struct type' always describes the target's
5959 representation.
5960 - gdb's `struct value' objects should always hold values in
5961 target form.
5962 - gdb's CORE_ADDR values are addresses in the unified virtual
5963 address space that the assembler and linker work with. Thus,
5964 since target_read_memory takes a CORE_ADDR as an argument, it
5965 can access any memory on the target, even if the processor has
5966 separate code and data address spaces.
5967
5968 In this context, objfile_type->builtin_core_addr is a bit odd:
5969 it's a target type for a value the target will never see. It's
5970 only used to hold the values of (typeless) linker symbols, which
5971 are indeed in the unified virtual address space. */
5972
5973 objfile_type->builtin_core_addr
5974 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5975 "__CORE_ADDR");
5976
5977 objfile_type_data.set (objfile, objfile_type);
5978 return objfile_type;
5979}
5980
5981void _initialize_gdbtypes ();
5982void
5983_initialize_gdbtypes ()
5984{
5985 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5986
5987 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5988 _("Set debugging of C++ overloading."),
5989 _("Show debugging of C++ overloading."),
5990 _("When enabled, ranking of the "
5991 "functions is displayed."),
5992 NULL,
5993 show_overload_debug,
5994 &setdebuglist, &showdebuglist);
5995
5996 /* Add user knob for controlling resolution of opaque types. */
5997 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5998 &opaque_type_resolution,
5999 _("Set resolution of opaque struct/class/union"
6000 " types (if set before loading symbols)."),
6001 _("Show resolution of opaque struct/class/union"
6002 " types (if set before loading symbols)."),
6003 NULL, NULL,
6004 show_opaque_type_resolution,
6005 &setlist, &showlist);
6006
6007 /* Add an option to permit non-strict type checking. */
6008 add_setshow_boolean_cmd ("type", class_support,
6009 &strict_type_checking,
6010 _("Set strict type checking."),
6011 _("Show strict type checking."),
6012 NULL, NULL,
6013 show_strict_type_checking,
6014 &setchecklist, &showchecklist);
6015}
This page took 0.041693 seconds and 4 git commands to generate.