| 1 | /* Target-dependent code for the HP PA-RISC architecture. |
| 2 | |
| 3 | Copyright (C) 1986-2020 Free Software Foundation, Inc. |
| 4 | |
| 5 | Contributed by the Center for Software Science at the |
| 6 | University of Utah (pa-gdb-bugs@cs.utah.edu). |
| 7 | |
| 8 | This file is part of GDB. |
| 9 | |
| 10 | This program is free software; you can redistribute it and/or modify |
| 11 | it under the terms of the GNU General Public License as published by |
| 12 | the Free Software Foundation; either version 3 of the License, or |
| 13 | (at your option) any later version. |
| 14 | |
| 15 | This program is distributed in the hope that it will be useful, |
| 16 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 18 | GNU General Public License for more details. |
| 19 | |
| 20 | You should have received a copy of the GNU General Public License |
| 21 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| 22 | |
| 23 | #include "defs.h" |
| 24 | #include "bfd.h" |
| 25 | #include "inferior.h" |
| 26 | #include "regcache.h" |
| 27 | #include "completer.h" |
| 28 | #include "osabi.h" |
| 29 | #include "arch-utils.h" |
| 30 | /* For argument passing to the inferior. */ |
| 31 | #include "symtab.h" |
| 32 | #include "dis-asm.h" |
| 33 | #include "trad-frame.h" |
| 34 | #include "frame-unwind.h" |
| 35 | #include "frame-base.h" |
| 36 | |
| 37 | #include "gdbcore.h" |
| 38 | #include "gdbcmd.h" |
| 39 | #include "gdbtypes.h" |
| 40 | #include "objfiles.h" |
| 41 | #include "hppa-tdep.h" |
| 42 | #include <algorithm> |
| 43 | |
| 44 | static bool hppa_debug = false; |
| 45 | |
| 46 | /* Some local constants. */ |
| 47 | static const int hppa32_num_regs = 128; |
| 48 | static const int hppa64_num_regs = 96; |
| 49 | |
| 50 | /* We use the objfile->obj_private pointer for two things: |
| 51 | * 1. An unwind table; |
| 52 | * |
| 53 | * 2. A pointer to any associated shared library object. |
| 54 | * |
| 55 | * #defines are used to help refer to these objects. |
| 56 | */ |
| 57 | |
| 58 | /* Info about the unwind table associated with an object file. |
| 59 | * This is hung off of the "objfile->obj_private" pointer, and |
| 60 | * is allocated in the objfile's psymbol obstack. This allows |
| 61 | * us to have unique unwind info for each executable and shared |
| 62 | * library that we are debugging. |
| 63 | */ |
| 64 | struct hppa_unwind_info |
| 65 | { |
| 66 | struct unwind_table_entry *table; /* Pointer to unwind info */ |
| 67 | struct unwind_table_entry *cache; /* Pointer to last entry we found */ |
| 68 | int last; /* Index of last entry */ |
| 69 | }; |
| 70 | |
| 71 | struct hppa_objfile_private |
| 72 | { |
| 73 | struct hppa_unwind_info *unwind_info; /* a pointer */ |
| 74 | struct so_list *so_info; /* a pointer */ |
| 75 | CORE_ADDR dp; |
| 76 | |
| 77 | int dummy_call_sequence_reg; |
| 78 | CORE_ADDR dummy_call_sequence_addr; |
| 79 | }; |
| 80 | |
| 81 | /* hppa-specific object data -- unwind and solib info. |
| 82 | TODO/maybe: think about splitting this into two parts; the unwind data is |
| 83 | common to all hppa targets, but is only used in this file; we can register |
| 84 | that separately and make this static. The solib data is probably hpux- |
| 85 | specific, so we can create a separate extern objfile_data that is registered |
| 86 | by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */ |
| 87 | static const struct objfile_key<hppa_objfile_private, |
| 88 | gdb::noop_deleter<hppa_objfile_private>> |
| 89 | hppa_objfile_priv_data; |
| 90 | |
| 91 | /* Get at various relevant fields of an instruction word. */ |
| 92 | #define MASK_5 0x1f |
| 93 | #define MASK_11 0x7ff |
| 94 | #define MASK_14 0x3fff |
| 95 | #define MASK_21 0x1fffff |
| 96 | |
| 97 | /* Sizes (in bytes) of the native unwind entries. */ |
| 98 | #define UNWIND_ENTRY_SIZE 16 |
| 99 | #define STUB_UNWIND_ENTRY_SIZE 8 |
| 100 | |
| 101 | /* Routines to extract various sized constants out of hppa |
| 102 | instructions. */ |
| 103 | |
| 104 | /* This assumes that no garbage lies outside of the lower bits of |
| 105 | value. */ |
| 106 | |
| 107 | static int |
| 108 | hppa_sign_extend (unsigned val, unsigned bits) |
| 109 | { |
| 110 | return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val); |
| 111 | } |
| 112 | |
| 113 | /* For many immediate values the sign bit is the low bit! */ |
| 114 | |
| 115 | static int |
| 116 | hppa_low_hppa_sign_extend (unsigned val, unsigned bits) |
| 117 | { |
| 118 | return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1); |
| 119 | } |
| 120 | |
| 121 | /* Extract the bits at positions between FROM and TO, using HP's numbering |
| 122 | (MSB = 0). */ |
| 123 | |
| 124 | int |
| 125 | hppa_get_field (unsigned word, int from, int to) |
| 126 | { |
| 127 | return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1)); |
| 128 | } |
| 129 | |
| 130 | /* Extract the immediate field from a ld{bhw}s instruction. */ |
| 131 | |
| 132 | int |
| 133 | hppa_extract_5_load (unsigned word) |
| 134 | { |
| 135 | return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5); |
| 136 | } |
| 137 | |
| 138 | /* Extract the immediate field from a break instruction. */ |
| 139 | |
| 140 | unsigned |
| 141 | hppa_extract_5r_store (unsigned word) |
| 142 | { |
| 143 | return (word & MASK_5); |
| 144 | } |
| 145 | |
| 146 | /* Extract the immediate field from a {sr}sm instruction. */ |
| 147 | |
| 148 | unsigned |
| 149 | hppa_extract_5R_store (unsigned word) |
| 150 | { |
| 151 | return (word >> 16 & MASK_5); |
| 152 | } |
| 153 | |
| 154 | /* Extract a 14 bit immediate field. */ |
| 155 | |
| 156 | int |
| 157 | hppa_extract_14 (unsigned word) |
| 158 | { |
| 159 | return hppa_low_hppa_sign_extend (word & MASK_14, 14); |
| 160 | } |
| 161 | |
| 162 | /* Extract a 21 bit constant. */ |
| 163 | |
| 164 | int |
| 165 | hppa_extract_21 (unsigned word) |
| 166 | { |
| 167 | int val; |
| 168 | |
| 169 | word &= MASK_21; |
| 170 | word <<= 11; |
| 171 | val = hppa_get_field (word, 20, 20); |
| 172 | val <<= 11; |
| 173 | val |= hppa_get_field (word, 9, 19); |
| 174 | val <<= 2; |
| 175 | val |= hppa_get_field (word, 5, 6); |
| 176 | val <<= 5; |
| 177 | val |= hppa_get_field (word, 0, 4); |
| 178 | val <<= 2; |
| 179 | val |= hppa_get_field (word, 7, 8); |
| 180 | return hppa_sign_extend (val, 21) << 11; |
| 181 | } |
| 182 | |
| 183 | /* extract a 17 bit constant from branch instructions, returning the |
| 184 | 19 bit signed value. */ |
| 185 | |
| 186 | int |
| 187 | hppa_extract_17 (unsigned word) |
| 188 | { |
| 189 | return hppa_sign_extend (hppa_get_field (word, 19, 28) | |
| 190 | hppa_get_field (word, 29, 29) << 10 | |
| 191 | hppa_get_field (word, 11, 15) << 11 | |
| 192 | (word & 0x1) << 16, 17) << 2; |
| 193 | } |
| 194 | |
| 195 | CORE_ADDR |
| 196 | hppa_symbol_address(const char *sym) |
| 197 | { |
| 198 | struct bound_minimal_symbol minsym; |
| 199 | |
| 200 | minsym = lookup_minimal_symbol (sym, NULL, NULL); |
| 201 | if (minsym.minsym) |
| 202 | return BMSYMBOL_VALUE_ADDRESS (minsym); |
| 203 | else |
| 204 | return (CORE_ADDR)-1; |
| 205 | } |
| 206 | |
| 207 | static struct hppa_objfile_private * |
| 208 | hppa_init_objfile_priv_data (struct objfile *objfile) |
| 209 | { |
| 210 | hppa_objfile_private *priv |
| 211 | = OBSTACK_ZALLOC (&objfile->objfile_obstack, hppa_objfile_private); |
| 212 | |
| 213 | hppa_objfile_priv_data.set (objfile, priv); |
| 214 | |
| 215 | return priv; |
| 216 | } |
| 217 | \f |
| 218 | |
| 219 | /* Compare the start address for two unwind entries returning 1 if |
| 220 | the first address is larger than the second, -1 if the second is |
| 221 | larger than the first, and zero if they are equal. */ |
| 222 | |
| 223 | static int |
| 224 | compare_unwind_entries (const void *arg1, const void *arg2) |
| 225 | { |
| 226 | const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1; |
| 227 | const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2; |
| 228 | |
| 229 | if (a->region_start > b->region_start) |
| 230 | return 1; |
| 231 | else if (a->region_start < b->region_start) |
| 232 | return -1; |
| 233 | else |
| 234 | return 0; |
| 235 | } |
| 236 | |
| 237 | static void |
| 238 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *data) |
| 239 | { |
| 240 | if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
| 241 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
| 242 | { |
| 243 | bfd_vma value = section->vma - section->filepos; |
| 244 | CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data; |
| 245 | |
| 246 | if (value < *low_text_segment_address) |
| 247 | *low_text_segment_address = value; |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | static void |
| 252 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
| 253 | asection *section, unsigned int entries, |
| 254 | size_t size, CORE_ADDR text_offset) |
| 255 | { |
| 256 | /* We will read the unwind entries into temporary memory, then |
| 257 | fill in the actual unwind table. */ |
| 258 | |
| 259 | if (size > 0) |
| 260 | { |
| 261 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| 262 | unsigned long tmp; |
| 263 | unsigned i; |
| 264 | char *buf = (char *) alloca (size); |
| 265 | CORE_ADDR low_text_segment_address; |
| 266 | |
| 267 | /* For ELF targets, then unwinds are supposed to |
| 268 | be segment relative offsets instead of absolute addresses. |
| 269 | |
| 270 | Note that when loading a shared library (text_offset != 0) the |
| 271 | unwinds are already relative to the text_offset that will be |
| 272 | passed in. */ |
| 273 | if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0) |
| 274 | { |
| 275 | low_text_segment_address = -1; |
| 276 | |
| 277 | bfd_map_over_sections (objfile->obfd, |
| 278 | record_text_segment_lowaddr, |
| 279 | &low_text_segment_address); |
| 280 | |
| 281 | text_offset = low_text_segment_address; |
| 282 | } |
| 283 | else if (gdbarch_tdep (gdbarch)->solib_get_text_base) |
| 284 | { |
| 285 | text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile); |
| 286 | } |
| 287 | |
| 288 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
| 289 | |
| 290 | /* Now internalize the information being careful to handle host/target |
| 291 | endian issues. */ |
| 292 | for (i = 0; i < entries; i++) |
| 293 | { |
| 294 | table[i].region_start = bfd_get_32 (objfile->obfd, |
| 295 | (bfd_byte *) buf); |
| 296 | table[i].region_start += text_offset; |
| 297 | buf += 4; |
| 298 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
| 299 | table[i].region_end += text_offset; |
| 300 | buf += 4; |
| 301 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
| 302 | buf += 4; |
| 303 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; |
| 304 | table[i].Millicode = (tmp >> 30) & 0x1; |
| 305 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; |
| 306 | table[i].Region_description = (tmp >> 27) & 0x3; |
| 307 | table[i].reserved = (tmp >> 26) & 0x1; |
| 308 | table[i].Entry_SR = (tmp >> 25) & 0x1; |
| 309 | table[i].Entry_FR = (tmp >> 21) & 0xf; |
| 310 | table[i].Entry_GR = (tmp >> 16) & 0x1f; |
| 311 | table[i].Args_stored = (tmp >> 15) & 0x1; |
| 312 | table[i].Variable_Frame = (tmp >> 14) & 0x1; |
| 313 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; |
| 314 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; |
| 315 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; |
| 316 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; |
| 317 | table[i].sr4export = (tmp >> 9) & 0x1; |
| 318 | table[i].cxx_info = (tmp >> 8) & 0x1; |
| 319 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; |
| 320 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; |
| 321 | table[i].reserved1 = (tmp >> 5) & 0x1; |
| 322 | table[i].Save_SP = (tmp >> 4) & 0x1; |
| 323 | table[i].Save_RP = (tmp >> 3) & 0x1; |
| 324 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; |
| 325 | table[i].save_r19 = (tmp >> 1) & 0x1; |
| 326 | table[i].Cleanup_defined = tmp & 0x1; |
| 327 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
| 328 | buf += 4; |
| 329 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; |
| 330 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; |
| 331 | table[i].Large_frame = (tmp >> 29) & 0x1; |
| 332 | table[i].alloca_frame = (tmp >> 28) & 0x1; |
| 333 | table[i].reserved2 = (tmp >> 27) & 0x1; |
| 334 | table[i].Total_frame_size = tmp & 0x7ffffff; |
| 335 | |
| 336 | /* Stub unwinds are handled elsewhere. */ |
| 337 | table[i].stub_unwind.stub_type = 0; |
| 338 | table[i].stub_unwind.padding = 0; |
| 339 | } |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of |
| 344 | the object file. This info is used mainly by find_unwind_entry() to find |
| 345 | out the stack frame size and frame pointer used by procedures. We put |
| 346 | everything on the psymbol obstack in the objfile so that it automatically |
| 347 | gets freed when the objfile is destroyed. */ |
| 348 | |
| 349 | static void |
| 350 | read_unwind_info (struct objfile *objfile) |
| 351 | { |
| 352 | asection *unwind_sec, *stub_unwind_sec; |
| 353 | size_t unwind_size, stub_unwind_size, total_size; |
| 354 | unsigned index, unwind_entries; |
| 355 | unsigned stub_entries, total_entries; |
| 356 | CORE_ADDR text_offset; |
| 357 | struct hppa_unwind_info *ui; |
| 358 | struct hppa_objfile_private *obj_private; |
| 359 | |
| 360 | text_offset = objfile->text_section_offset (); |
| 361 | ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack, |
| 362 | sizeof (struct hppa_unwind_info)); |
| 363 | |
| 364 | ui->table = NULL; |
| 365 | ui->cache = NULL; |
| 366 | ui->last = -1; |
| 367 | |
| 368 | /* For reasons unknown the HP PA64 tools generate multiple unwinder |
| 369 | sections in a single executable. So we just iterate over every |
| 370 | section in the BFD looking for unwinder sections instead of trying |
| 371 | to do a lookup with bfd_get_section_by_name. |
| 372 | |
| 373 | First determine the total size of the unwind tables so that we |
| 374 | can allocate memory in a nice big hunk. */ |
| 375 | total_entries = 0; |
| 376 | for (unwind_sec = objfile->obfd->sections; |
| 377 | unwind_sec; |
| 378 | unwind_sec = unwind_sec->next) |
| 379 | { |
| 380 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
| 381 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) |
| 382 | { |
| 383 | unwind_size = bfd_section_size (unwind_sec); |
| 384 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; |
| 385 | |
| 386 | total_entries += unwind_entries; |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | /* Now compute the size of the stub unwinds. Note the ELF tools do not |
| 391 | use stub unwinds at the current time. */ |
| 392 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); |
| 393 | |
| 394 | if (stub_unwind_sec) |
| 395 | { |
| 396 | stub_unwind_size = bfd_section_size (stub_unwind_sec); |
| 397 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; |
| 398 | } |
| 399 | else |
| 400 | { |
| 401 | stub_unwind_size = 0; |
| 402 | stub_entries = 0; |
| 403 | } |
| 404 | |
| 405 | /* Compute total number of unwind entries and their total size. */ |
| 406 | total_entries += stub_entries; |
| 407 | total_size = total_entries * sizeof (struct unwind_table_entry); |
| 408 | |
| 409 | /* Allocate memory for the unwind table. */ |
| 410 | ui->table = (struct unwind_table_entry *) |
| 411 | obstack_alloc (&objfile->objfile_obstack, total_size); |
| 412 | ui->last = total_entries - 1; |
| 413 | |
| 414 | /* Now read in each unwind section and internalize the standard unwind |
| 415 | entries. */ |
| 416 | index = 0; |
| 417 | for (unwind_sec = objfile->obfd->sections; |
| 418 | unwind_sec; |
| 419 | unwind_sec = unwind_sec->next) |
| 420 | { |
| 421 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
| 422 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) |
| 423 | { |
| 424 | unwind_size = bfd_section_size (unwind_sec); |
| 425 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; |
| 426 | |
| 427 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, |
| 428 | unwind_entries, unwind_size, text_offset); |
| 429 | index += unwind_entries; |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | /* Now read in and internalize the stub unwind entries. */ |
| 434 | if (stub_unwind_size > 0) |
| 435 | { |
| 436 | unsigned int i; |
| 437 | char *buf = (char *) alloca (stub_unwind_size); |
| 438 | |
| 439 | /* Read in the stub unwind entries. */ |
| 440 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, |
| 441 | 0, stub_unwind_size); |
| 442 | |
| 443 | /* Now convert them into regular unwind entries. */ |
| 444 | for (i = 0; i < stub_entries; i++, index++) |
| 445 | { |
| 446 | /* Clear out the next unwind entry. */ |
| 447 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); |
| 448 | |
| 449 | /* Convert offset & size into region_start and region_end. |
| 450 | Stuff away the stub type into "reserved" fields. */ |
| 451 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, |
| 452 | (bfd_byte *) buf); |
| 453 | ui->table[index].region_start += text_offset; |
| 454 | buf += 4; |
| 455 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, |
| 456 | (bfd_byte *) buf); |
| 457 | buf += 2; |
| 458 | ui->table[index].region_end |
| 459 | = ui->table[index].region_start + 4 * |
| 460 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); |
| 461 | buf += 2; |
| 462 | } |
| 463 | |
| 464 | } |
| 465 | |
| 466 | /* Unwind table needs to be kept sorted. */ |
| 467 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), |
| 468 | compare_unwind_entries); |
| 469 | |
| 470 | /* Keep a pointer to the unwind information. */ |
| 471 | obj_private = hppa_objfile_priv_data.get (objfile); |
| 472 | if (obj_private == NULL) |
| 473 | obj_private = hppa_init_objfile_priv_data (objfile); |
| 474 | |
| 475 | obj_private->unwind_info = ui; |
| 476 | } |
| 477 | |
| 478 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all |
| 479 | of the objfiles seeking the unwind table entry for this PC. Each objfile |
| 480 | contains a sorted list of struct unwind_table_entry. Since we do a binary |
| 481 | search of the unwind tables, we depend upon them to be sorted. */ |
| 482 | |
| 483 | struct unwind_table_entry * |
| 484 | find_unwind_entry (CORE_ADDR pc) |
| 485 | { |
| 486 | int first, middle, last; |
| 487 | struct hppa_objfile_private *priv; |
| 488 | |
| 489 | if (hppa_debug) |
| 490 | fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ", |
| 491 | hex_string (pc)); |
| 492 | |
| 493 | /* A function at address 0? Not in HP-UX! */ |
| 494 | if (pc == (CORE_ADDR) 0) |
| 495 | { |
| 496 | if (hppa_debug) |
| 497 | fprintf_unfiltered (gdb_stdlog, "NULL }\n"); |
| 498 | return NULL; |
| 499 | } |
| 500 | |
| 501 | for (objfile *objfile : current_program_space->objfiles ()) |
| 502 | { |
| 503 | struct hppa_unwind_info *ui; |
| 504 | ui = NULL; |
| 505 | priv = hppa_objfile_priv_data.get (objfile); |
| 506 | if (priv) |
| 507 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; |
| 508 | |
| 509 | if (!ui) |
| 510 | { |
| 511 | read_unwind_info (objfile); |
| 512 | priv = hppa_objfile_priv_data.get (objfile); |
| 513 | if (priv == NULL) |
| 514 | error (_("Internal error reading unwind information.")); |
| 515 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; |
| 516 | } |
| 517 | |
| 518 | /* First, check the cache. */ |
| 519 | |
| 520 | if (ui->cache |
| 521 | && pc >= ui->cache->region_start |
| 522 | && pc <= ui->cache->region_end) |
| 523 | { |
| 524 | if (hppa_debug) |
| 525 | fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n", |
| 526 | hex_string ((uintptr_t) ui->cache)); |
| 527 | return ui->cache; |
| 528 | } |
| 529 | |
| 530 | /* Not in the cache, do a binary search. */ |
| 531 | |
| 532 | first = 0; |
| 533 | last = ui->last; |
| 534 | |
| 535 | while (first <= last) |
| 536 | { |
| 537 | middle = (first + last) / 2; |
| 538 | if (pc >= ui->table[middle].region_start |
| 539 | && pc <= ui->table[middle].region_end) |
| 540 | { |
| 541 | ui->cache = &ui->table[middle]; |
| 542 | if (hppa_debug) |
| 543 | fprintf_unfiltered (gdb_stdlog, "%s }\n", |
| 544 | hex_string ((uintptr_t) ui->cache)); |
| 545 | return &ui->table[middle]; |
| 546 | } |
| 547 | |
| 548 | if (pc < ui->table[middle].region_start) |
| 549 | last = middle - 1; |
| 550 | else |
| 551 | first = middle + 1; |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | if (hppa_debug) |
| 556 | fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n"); |
| 557 | |
| 558 | return NULL; |
| 559 | } |
| 560 | |
| 561 | /* Implement the stack_frame_destroyed_p gdbarch method. |
| 562 | |
| 563 | The epilogue is defined here as the area either on the `bv' instruction |
| 564 | itself or an instruction which destroys the function's stack frame. |
| 565 | |
| 566 | We do not assume that the epilogue is at the end of a function as we can |
| 567 | also have return sequences in the middle of a function. */ |
| 568 | |
| 569 | static int |
| 570 | hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
| 571 | { |
| 572 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 573 | unsigned long status; |
| 574 | unsigned int inst; |
| 575 | gdb_byte buf[4]; |
| 576 | |
| 577 | status = target_read_memory (pc, buf, 4); |
| 578 | if (status != 0) |
| 579 | return 0; |
| 580 | |
| 581 | inst = extract_unsigned_integer (buf, 4, byte_order); |
| 582 | |
| 583 | /* The most common way to perform a stack adjustment ldo X(sp),sp |
| 584 | We are destroying a stack frame if the offset is negative. */ |
| 585 | if ((inst & 0xffffc000) == 0x37de0000 |
| 586 | && hppa_extract_14 (inst) < 0) |
| 587 | return 1; |
| 588 | |
| 589 | /* ldw,mb D(sp),X or ldd,mb D(sp),X */ |
| 590 | if (((inst & 0x0fc010e0) == 0x0fc010e0 |
| 591 | || (inst & 0x0fc010e0) == 0x0fc010e0) |
| 592 | && hppa_extract_14 (inst) < 0) |
| 593 | return 1; |
| 594 | |
| 595 | /* bv %r0(%rp) or bv,n %r0(%rp) */ |
| 596 | if (inst == 0xe840c000 || inst == 0xe840c002) |
| 597 | return 1; |
| 598 | |
| 599 | return 0; |
| 600 | } |
| 601 | |
| 602 | constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04}; |
| 603 | |
| 604 | typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint; |
| 605 | |
| 606 | /* Return the name of a register. */ |
| 607 | |
| 608 | static const char * |
| 609 | hppa32_register_name (struct gdbarch *gdbarch, int i) |
| 610 | { |
| 611 | static const char *names[] = { |
| 612 | "flags", "r1", "rp", "r3", |
| 613 | "r4", "r5", "r6", "r7", |
| 614 | "r8", "r9", "r10", "r11", |
| 615 | "r12", "r13", "r14", "r15", |
| 616 | "r16", "r17", "r18", "r19", |
| 617 | "r20", "r21", "r22", "r23", |
| 618 | "r24", "r25", "r26", "dp", |
| 619 | "ret0", "ret1", "sp", "r31", |
| 620 | "sar", "pcoqh", "pcsqh", "pcoqt", |
| 621 | "pcsqt", "eiem", "iir", "isr", |
| 622 | "ior", "ipsw", "goto", "sr4", |
| 623 | "sr0", "sr1", "sr2", "sr3", |
| 624 | "sr5", "sr6", "sr7", "cr0", |
| 625 | "cr8", "cr9", "ccr", "cr12", |
| 626 | "cr13", "cr24", "cr25", "cr26", |
| 627 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", |
| 628 | "fpsr", "fpe1", "fpe2", "fpe3", |
| 629 | "fpe4", "fpe5", "fpe6", "fpe7", |
| 630 | "fr4", "fr4R", "fr5", "fr5R", |
| 631 | "fr6", "fr6R", "fr7", "fr7R", |
| 632 | "fr8", "fr8R", "fr9", "fr9R", |
| 633 | "fr10", "fr10R", "fr11", "fr11R", |
| 634 | "fr12", "fr12R", "fr13", "fr13R", |
| 635 | "fr14", "fr14R", "fr15", "fr15R", |
| 636 | "fr16", "fr16R", "fr17", "fr17R", |
| 637 | "fr18", "fr18R", "fr19", "fr19R", |
| 638 | "fr20", "fr20R", "fr21", "fr21R", |
| 639 | "fr22", "fr22R", "fr23", "fr23R", |
| 640 | "fr24", "fr24R", "fr25", "fr25R", |
| 641 | "fr26", "fr26R", "fr27", "fr27R", |
| 642 | "fr28", "fr28R", "fr29", "fr29R", |
| 643 | "fr30", "fr30R", "fr31", "fr31R" |
| 644 | }; |
| 645 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) |
| 646 | return NULL; |
| 647 | else |
| 648 | return names[i]; |
| 649 | } |
| 650 | |
| 651 | static const char * |
| 652 | hppa64_register_name (struct gdbarch *gdbarch, int i) |
| 653 | { |
| 654 | static const char *names[] = { |
| 655 | "flags", "r1", "rp", "r3", |
| 656 | "r4", "r5", "r6", "r7", |
| 657 | "r8", "r9", "r10", "r11", |
| 658 | "r12", "r13", "r14", "r15", |
| 659 | "r16", "r17", "r18", "r19", |
| 660 | "r20", "r21", "r22", "r23", |
| 661 | "r24", "r25", "r26", "dp", |
| 662 | "ret0", "ret1", "sp", "r31", |
| 663 | "sar", "pcoqh", "pcsqh", "pcoqt", |
| 664 | "pcsqt", "eiem", "iir", "isr", |
| 665 | "ior", "ipsw", "goto", "sr4", |
| 666 | "sr0", "sr1", "sr2", "sr3", |
| 667 | "sr5", "sr6", "sr7", "cr0", |
| 668 | "cr8", "cr9", "ccr", "cr12", |
| 669 | "cr13", "cr24", "cr25", "cr26", |
| 670 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", |
| 671 | "fpsr", "fpe1", "fpe2", "fpe3", |
| 672 | "fr4", "fr5", "fr6", "fr7", |
| 673 | "fr8", "fr9", "fr10", "fr11", |
| 674 | "fr12", "fr13", "fr14", "fr15", |
| 675 | "fr16", "fr17", "fr18", "fr19", |
| 676 | "fr20", "fr21", "fr22", "fr23", |
| 677 | "fr24", "fr25", "fr26", "fr27", |
| 678 | "fr28", "fr29", "fr30", "fr31" |
| 679 | }; |
| 680 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) |
| 681 | return NULL; |
| 682 | else |
| 683 | return names[i]; |
| 684 | } |
| 685 | |
| 686 | /* Map dwarf DBX register numbers to GDB register numbers. */ |
| 687 | static int |
| 688 | hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
| 689 | { |
| 690 | /* The general registers and the sar are the same in both sets. */ |
| 691 | if (reg >= 0 && reg <= 32) |
| 692 | return reg; |
| 693 | |
| 694 | /* fr4-fr31 are mapped from 72 in steps of 2. */ |
| 695 | if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1)) |
| 696 | return HPPA64_FP4_REGNUM + (reg - 72) / 2; |
| 697 | |
| 698 | return -1; |
| 699 | } |
| 700 | |
| 701 | /* This function pushes a stack frame with arguments as part of the |
| 702 | inferior function calling mechanism. |
| 703 | |
| 704 | This is the version of the function for the 32-bit PA machines, in |
| 705 | which later arguments appear at lower addresses. (The stack always |
| 706 | grows towards higher addresses.) |
| 707 | |
| 708 | We simply allocate the appropriate amount of stack space and put |
| 709 | arguments into their proper slots. */ |
| 710 | |
| 711 | static CORE_ADDR |
| 712 | hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| 713 | struct regcache *regcache, CORE_ADDR bp_addr, |
| 714 | int nargs, struct value **args, CORE_ADDR sp, |
| 715 | function_call_return_method return_method, |
| 716 | CORE_ADDR struct_addr) |
| 717 | { |
| 718 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 719 | |
| 720 | /* Stack base address at which any pass-by-reference parameters are |
| 721 | stored. */ |
| 722 | CORE_ADDR struct_end = 0; |
| 723 | /* Stack base address at which the first parameter is stored. */ |
| 724 | CORE_ADDR param_end = 0; |
| 725 | |
| 726 | /* Two passes. First pass computes the location of everything, |
| 727 | second pass writes the bytes out. */ |
| 728 | int write_pass; |
| 729 | |
| 730 | /* Global pointer (r19) of the function we are trying to call. */ |
| 731 | CORE_ADDR gp; |
| 732 | |
| 733 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 734 | |
| 735 | for (write_pass = 0; write_pass < 2; write_pass++) |
| 736 | { |
| 737 | CORE_ADDR struct_ptr = 0; |
| 738 | /* The first parameter goes into sp-36, each stack slot is 4-bytes. |
| 739 | struct_ptr is adjusted for each argument below, so the first |
| 740 | argument will end up at sp-36. */ |
| 741 | CORE_ADDR param_ptr = 32; |
| 742 | int i; |
| 743 | int small_struct = 0; |
| 744 | |
| 745 | for (i = 0; i < nargs; i++) |
| 746 | { |
| 747 | struct value *arg = args[i]; |
| 748 | struct type *type = check_typedef (value_type (arg)); |
| 749 | /* The corresponding parameter that is pushed onto the |
| 750 | stack, and [possibly] passed in a register. */ |
| 751 | gdb_byte param_val[8]; |
| 752 | int param_len; |
| 753 | memset (param_val, 0, sizeof param_val); |
| 754 | if (TYPE_LENGTH (type) > 8) |
| 755 | { |
| 756 | /* Large parameter, pass by reference. Store the value |
| 757 | in "struct" area and then pass its address. */ |
| 758 | param_len = 4; |
| 759 | struct_ptr += align_up (TYPE_LENGTH (type), 8); |
| 760 | if (write_pass) |
| 761 | write_memory (struct_end - struct_ptr, value_contents (arg), |
| 762 | TYPE_LENGTH (type)); |
| 763 | store_unsigned_integer (param_val, 4, byte_order, |
| 764 | struct_end - struct_ptr); |
| 765 | } |
| 766 | else if (TYPE_CODE (type) == TYPE_CODE_INT |
| 767 | || TYPE_CODE (type) == TYPE_CODE_ENUM) |
| 768 | { |
| 769 | /* Integer value store, right aligned. "unpack_long" |
| 770 | takes care of any sign-extension problems. */ |
| 771 | param_len = align_up (TYPE_LENGTH (type), 4); |
| 772 | store_unsigned_integer (param_val, param_len, byte_order, |
| 773 | unpack_long (type, |
| 774 | value_contents (arg))); |
| 775 | } |
| 776 | else if (TYPE_CODE (type) == TYPE_CODE_FLT) |
| 777 | { |
| 778 | /* Floating point value store, right aligned. */ |
| 779 | param_len = align_up (TYPE_LENGTH (type), 4); |
| 780 | memcpy (param_val, value_contents (arg), param_len); |
| 781 | } |
| 782 | else |
| 783 | { |
| 784 | param_len = align_up (TYPE_LENGTH (type), 4); |
| 785 | |
| 786 | /* Small struct value are stored right-aligned. */ |
| 787 | memcpy (param_val + param_len - TYPE_LENGTH (type), |
| 788 | value_contents (arg), TYPE_LENGTH (type)); |
| 789 | |
| 790 | /* Structures of size 5, 6 and 7 bytes are special in that |
| 791 | the higher-ordered word is stored in the lower-ordered |
| 792 | argument, and even though it is a 8-byte quantity the |
| 793 | registers need not be 8-byte aligned. */ |
| 794 | if (param_len > 4 && param_len < 8) |
| 795 | small_struct = 1; |
| 796 | } |
| 797 | |
| 798 | param_ptr += param_len; |
| 799 | if (param_len == 8 && !small_struct) |
| 800 | param_ptr = align_up (param_ptr, 8); |
| 801 | |
| 802 | /* First 4 non-FP arguments are passed in gr26-gr23. |
| 803 | First 4 32-bit FP arguments are passed in fr4L-fr7L. |
| 804 | First 2 64-bit FP arguments are passed in fr5 and fr7. |
| 805 | |
| 806 | The rest go on the stack, starting at sp-36, towards lower |
| 807 | addresses. 8-byte arguments must be aligned to a 8-byte |
| 808 | stack boundary. */ |
| 809 | if (write_pass) |
| 810 | { |
| 811 | write_memory (param_end - param_ptr, param_val, param_len); |
| 812 | |
| 813 | /* There are some cases when we don't know the type |
| 814 | expected by the callee (e.g. for variadic functions), so |
| 815 | pass the parameters in both general and fp regs. */ |
| 816 | if (param_ptr <= 48) |
| 817 | { |
| 818 | int grreg = 26 - (param_ptr - 36) / 4; |
| 819 | int fpLreg = 72 + (param_ptr - 36) / 4 * 2; |
| 820 | int fpreg = 74 + (param_ptr - 32) / 8 * 4; |
| 821 | |
| 822 | regcache->cooked_write (grreg, param_val); |
| 823 | regcache->cooked_write (fpLreg, param_val); |
| 824 | |
| 825 | if (param_len > 4) |
| 826 | { |
| 827 | regcache->cooked_write (grreg + 1, param_val + 4); |
| 828 | |
| 829 | regcache->cooked_write (fpreg, param_val); |
| 830 | regcache->cooked_write (fpreg + 1, param_val + 4); |
| 831 | } |
| 832 | } |
| 833 | } |
| 834 | } |
| 835 | |
| 836 | /* Update the various stack pointers. */ |
| 837 | if (!write_pass) |
| 838 | { |
| 839 | struct_end = sp + align_up (struct_ptr, 64); |
| 840 | /* PARAM_PTR already accounts for all the arguments passed |
| 841 | by the user. However, the ABI mandates minimum stack |
| 842 | space allocations for outgoing arguments. The ABI also |
| 843 | mandates minimum stack alignments which we must |
| 844 | preserve. */ |
| 845 | param_end = struct_end + align_up (param_ptr, 64); |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | /* If a structure has to be returned, set up register 28 to hold its |
| 850 | address. */ |
| 851 | if (return_method == return_method_struct) |
| 852 | regcache_cooked_write_unsigned (regcache, 28, struct_addr); |
| 853 | |
| 854 | gp = tdep->find_global_pointer (gdbarch, function); |
| 855 | |
| 856 | if (gp != 0) |
| 857 | regcache_cooked_write_unsigned (regcache, 19, gp); |
| 858 | |
| 859 | /* Set the return address. */ |
| 860 | if (!gdbarch_push_dummy_code_p (gdbarch)) |
| 861 | regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); |
| 862 | |
| 863 | /* Update the Stack Pointer. */ |
| 864 | regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end); |
| 865 | |
| 866 | return param_end; |
| 867 | } |
| 868 | |
| 869 | /* The 64-bit PA-RISC calling conventions are documented in "64-Bit |
| 870 | Runtime Architecture for PA-RISC 2.0", which is distributed as part |
| 871 | as of the HP-UX Software Transition Kit (STK). This implementation |
| 872 | is based on version 3.3, dated October 6, 1997. */ |
| 873 | |
| 874 | /* Check whether TYPE is an "Integral or Pointer Scalar Type". */ |
| 875 | |
| 876 | static int |
| 877 | hppa64_integral_or_pointer_p (const struct type *type) |
| 878 | { |
| 879 | switch (TYPE_CODE (type)) |
| 880 | { |
| 881 | case TYPE_CODE_INT: |
| 882 | case TYPE_CODE_BOOL: |
| 883 | case TYPE_CODE_CHAR: |
| 884 | case TYPE_CODE_ENUM: |
| 885 | case TYPE_CODE_RANGE: |
| 886 | { |
| 887 | int len = TYPE_LENGTH (type); |
| 888 | return (len == 1 || len == 2 || len == 4 || len == 8); |
| 889 | } |
| 890 | case TYPE_CODE_PTR: |
| 891 | case TYPE_CODE_REF: |
| 892 | case TYPE_CODE_RVALUE_REF: |
| 893 | return (TYPE_LENGTH (type) == 8); |
| 894 | default: |
| 895 | break; |
| 896 | } |
| 897 | |
| 898 | return 0; |
| 899 | } |
| 900 | |
| 901 | /* Check whether TYPE is a "Floating Scalar Type". */ |
| 902 | |
| 903 | static int |
| 904 | hppa64_floating_p (const struct type *type) |
| 905 | { |
| 906 | switch (TYPE_CODE (type)) |
| 907 | { |
| 908 | case TYPE_CODE_FLT: |
| 909 | { |
| 910 | int len = TYPE_LENGTH (type); |
| 911 | return (len == 4 || len == 8 || len == 16); |
| 912 | } |
| 913 | default: |
| 914 | break; |
| 915 | } |
| 916 | |
| 917 | return 0; |
| 918 | } |
| 919 | |
| 920 | /* If CODE points to a function entry address, try to look up the corresponding |
| 921 | function descriptor and return its address instead. If CODE is not a |
| 922 | function entry address, then just return it unchanged. */ |
| 923 | static CORE_ADDR |
| 924 | hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code) |
| 925 | { |
| 926 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 927 | struct obj_section *sec, *opd; |
| 928 | |
| 929 | sec = find_pc_section (code); |
| 930 | |
| 931 | if (!sec) |
| 932 | return code; |
| 933 | |
| 934 | /* If CODE is in a data section, assume it's already a fptr. */ |
| 935 | if (!(sec->the_bfd_section->flags & SEC_CODE)) |
| 936 | return code; |
| 937 | |
| 938 | ALL_OBJFILE_OSECTIONS (sec->objfile, opd) |
| 939 | { |
| 940 | if (strcmp (opd->the_bfd_section->name, ".opd") == 0) |
| 941 | break; |
| 942 | } |
| 943 | |
| 944 | if (opd < sec->objfile->sections_end) |
| 945 | { |
| 946 | CORE_ADDR addr; |
| 947 | |
| 948 | for (addr = obj_section_addr (opd); |
| 949 | addr < obj_section_endaddr (opd); |
| 950 | addr += 2 * 8) |
| 951 | { |
| 952 | ULONGEST opdaddr; |
| 953 | gdb_byte tmp[8]; |
| 954 | |
| 955 | if (target_read_memory (addr, tmp, sizeof (tmp))) |
| 956 | break; |
| 957 | opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order); |
| 958 | |
| 959 | if (opdaddr == code) |
| 960 | return addr - 16; |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | return code; |
| 965 | } |
| 966 | |
| 967 | static CORE_ADDR |
| 968 | hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| 969 | struct regcache *regcache, CORE_ADDR bp_addr, |
| 970 | int nargs, struct value **args, CORE_ADDR sp, |
| 971 | function_call_return_method return_method, |
| 972 | CORE_ADDR struct_addr) |
| 973 | { |
| 974 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 975 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 976 | int i, offset = 0; |
| 977 | CORE_ADDR gp; |
| 978 | |
| 979 | /* "The outgoing parameter area [...] must be aligned at a 16-byte |
| 980 | boundary." */ |
| 981 | sp = align_up (sp, 16); |
| 982 | |
| 983 | for (i = 0; i < nargs; i++) |
| 984 | { |
| 985 | struct value *arg = args[i]; |
| 986 | struct type *type = value_type (arg); |
| 987 | int len = TYPE_LENGTH (type); |
| 988 | const bfd_byte *valbuf; |
| 989 | bfd_byte fptrbuf[8]; |
| 990 | int regnum; |
| 991 | |
| 992 | /* "Each parameter begins on a 64-bit (8-byte) boundary." */ |
| 993 | offset = align_up (offset, 8); |
| 994 | |
| 995 | if (hppa64_integral_or_pointer_p (type)) |
| 996 | { |
| 997 | /* "Integral scalar parameters smaller than 64 bits are |
| 998 | padded on the left (i.e., the value is in the |
| 999 | least-significant bits of the 64-bit storage unit, and |
| 1000 | the high-order bits are undefined)." Therefore we can |
| 1001 | safely sign-extend them. */ |
| 1002 | if (len < 8) |
| 1003 | { |
| 1004 | arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg); |
| 1005 | len = 8; |
| 1006 | } |
| 1007 | } |
| 1008 | else if (hppa64_floating_p (type)) |
| 1009 | { |
| 1010 | if (len > 8) |
| 1011 | { |
| 1012 | /* "Quad-precision (128-bit) floating-point scalar |
| 1013 | parameters are aligned on a 16-byte boundary." */ |
| 1014 | offset = align_up (offset, 16); |
| 1015 | |
| 1016 | /* "Double-extended- and quad-precision floating-point |
| 1017 | parameters within the first 64 bytes of the parameter |
| 1018 | list are always passed in general registers." */ |
| 1019 | } |
| 1020 | else |
| 1021 | { |
| 1022 | if (len == 4) |
| 1023 | { |
| 1024 | /* "Single-precision (32-bit) floating-point scalar |
| 1025 | parameters are padded on the left with 32 bits of |
| 1026 | garbage (i.e., the floating-point value is in the |
| 1027 | least-significant 32 bits of a 64-bit storage |
| 1028 | unit)." */ |
| 1029 | offset += 4; |
| 1030 | } |
| 1031 | |
| 1032 | /* "Single- and double-precision floating-point |
| 1033 | parameters in this area are passed according to the |
| 1034 | available formal parameter information in a function |
| 1035 | prototype. [...] If no prototype is in scope, |
| 1036 | floating-point parameters must be passed both in the |
| 1037 | corresponding general registers and in the |
| 1038 | corresponding floating-point registers." */ |
| 1039 | regnum = HPPA64_FP4_REGNUM + offset / 8; |
| 1040 | |
| 1041 | if (regnum < HPPA64_FP4_REGNUM + 8) |
| 1042 | { |
| 1043 | /* "Single-precision floating-point parameters, when |
| 1044 | passed in floating-point registers, are passed in |
| 1045 | the right halves of the floating point registers; |
| 1046 | the left halves are unused." */ |
| 1047 | regcache->cooked_write_part (regnum, offset % 8, len, |
| 1048 | value_contents (arg)); |
| 1049 | } |
| 1050 | } |
| 1051 | } |
| 1052 | else |
| 1053 | { |
| 1054 | if (len > 8) |
| 1055 | { |
| 1056 | /* "Aggregates larger than 8 bytes are aligned on a |
| 1057 | 16-byte boundary, possibly leaving an unused argument |
| 1058 | slot, which is filled with garbage. If necessary, |
| 1059 | they are padded on the right (with garbage), to a |
| 1060 | multiple of 8 bytes." */ |
| 1061 | offset = align_up (offset, 16); |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | /* If we are passing a function pointer, make sure we pass a function |
| 1066 | descriptor instead of the function entry address. */ |
| 1067 | if (TYPE_CODE (type) == TYPE_CODE_PTR |
| 1068 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) |
| 1069 | { |
| 1070 | ULONGEST codeptr, fptr; |
| 1071 | |
| 1072 | codeptr = unpack_long (type, value_contents (arg)); |
| 1073 | fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr); |
| 1074 | store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order, |
| 1075 | fptr); |
| 1076 | valbuf = fptrbuf; |
| 1077 | } |
| 1078 | else |
| 1079 | { |
| 1080 | valbuf = value_contents (arg); |
| 1081 | } |
| 1082 | |
| 1083 | /* Always store the argument in memory. */ |
| 1084 | write_memory (sp + offset, valbuf, len); |
| 1085 | |
| 1086 | regnum = HPPA_ARG0_REGNUM - offset / 8; |
| 1087 | while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0) |
| 1088 | { |
| 1089 | regcache->cooked_write_part (regnum, offset % 8, std::min (len, 8), |
| 1090 | valbuf); |
| 1091 | offset += std::min (len, 8); |
| 1092 | valbuf += std::min (len, 8); |
| 1093 | len -= std::min (len, 8); |
| 1094 | regnum--; |
| 1095 | } |
| 1096 | |
| 1097 | offset += len; |
| 1098 | } |
| 1099 | |
| 1100 | /* Set up GR29 (%ret1) to hold the argument pointer (ap). */ |
| 1101 | regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64); |
| 1102 | |
| 1103 | /* Allocate the outgoing parameter area. Make sure the outgoing |
| 1104 | parameter area is multiple of 16 bytes in length. */ |
| 1105 | sp += std::max (align_up (offset, 16), (ULONGEST) 64); |
| 1106 | |
| 1107 | /* Allocate 32-bytes of scratch space. The documentation doesn't |
| 1108 | mention this, but it seems to be needed. */ |
| 1109 | sp += 32; |
| 1110 | |
| 1111 | /* Allocate the frame marker area. */ |
| 1112 | sp += 16; |
| 1113 | |
| 1114 | /* If a structure has to be returned, set up GR 28 (%ret0) to hold |
| 1115 | its address. */ |
| 1116 | if (return_method == return_method_struct) |
| 1117 | regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr); |
| 1118 | |
| 1119 | /* Set up GR27 (%dp) to hold the global pointer (gp). */ |
| 1120 | gp = tdep->find_global_pointer (gdbarch, function); |
| 1121 | if (gp != 0) |
| 1122 | regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp); |
| 1123 | |
| 1124 | /* Set up GR2 (%rp) to hold the return pointer (rp). */ |
| 1125 | if (!gdbarch_push_dummy_code_p (gdbarch)) |
| 1126 | regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); |
| 1127 | |
| 1128 | /* Set up GR30 to hold the stack pointer (sp). */ |
| 1129 | regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp); |
| 1130 | |
| 1131 | return sp; |
| 1132 | } |
| 1133 | \f |
| 1134 | |
| 1135 | /* Handle 32/64-bit struct return conventions. */ |
| 1136 | |
| 1137 | static enum return_value_convention |
| 1138 | hppa32_return_value (struct gdbarch *gdbarch, struct value *function, |
| 1139 | struct type *type, struct regcache *regcache, |
| 1140 | gdb_byte *readbuf, const gdb_byte *writebuf) |
| 1141 | { |
| 1142 | if (TYPE_LENGTH (type) <= 2 * 4) |
| 1143 | { |
| 1144 | /* The value always lives in the right hand end of the register |
| 1145 | (or register pair)? */ |
| 1146 | int b; |
| 1147 | int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28; |
| 1148 | int part = TYPE_LENGTH (type) % 4; |
| 1149 | /* The left hand register contains only part of the value, |
| 1150 | transfer that first so that the rest can be xfered as entire |
| 1151 | 4-byte registers. */ |
| 1152 | if (part > 0) |
| 1153 | { |
| 1154 | if (readbuf != NULL) |
| 1155 | regcache->cooked_read_part (reg, 4 - part, part, readbuf); |
| 1156 | if (writebuf != NULL) |
| 1157 | regcache->cooked_write_part (reg, 4 - part, part, writebuf); |
| 1158 | reg++; |
| 1159 | } |
| 1160 | /* Now transfer the remaining register values. */ |
| 1161 | for (b = part; b < TYPE_LENGTH (type); b += 4) |
| 1162 | { |
| 1163 | if (readbuf != NULL) |
| 1164 | regcache->cooked_read (reg, readbuf + b); |
| 1165 | if (writebuf != NULL) |
| 1166 | regcache->cooked_write (reg, writebuf + b); |
| 1167 | reg++; |
| 1168 | } |
| 1169 | return RETURN_VALUE_REGISTER_CONVENTION; |
| 1170 | } |
| 1171 | else |
| 1172 | return RETURN_VALUE_STRUCT_CONVENTION; |
| 1173 | } |
| 1174 | |
| 1175 | static enum return_value_convention |
| 1176 | hppa64_return_value (struct gdbarch *gdbarch, struct value *function, |
| 1177 | struct type *type, struct regcache *regcache, |
| 1178 | gdb_byte *readbuf, const gdb_byte *writebuf) |
| 1179 | { |
| 1180 | int len = TYPE_LENGTH (type); |
| 1181 | int regnum, offset; |
| 1182 | |
| 1183 | if (len > 16) |
| 1184 | { |
| 1185 | /* All return values larger than 128 bits must be aggregate |
| 1186 | return values. */ |
| 1187 | gdb_assert (!hppa64_integral_or_pointer_p (type)); |
| 1188 | gdb_assert (!hppa64_floating_p (type)); |
| 1189 | |
| 1190 | /* "Aggregate return values larger than 128 bits are returned in |
| 1191 | a buffer allocated by the caller. The address of the buffer |
| 1192 | must be passed in GR 28." */ |
| 1193 | return RETURN_VALUE_STRUCT_CONVENTION; |
| 1194 | } |
| 1195 | |
| 1196 | if (hppa64_integral_or_pointer_p (type)) |
| 1197 | { |
| 1198 | /* "Integral return values are returned in GR 28. Values |
| 1199 | smaller than 64 bits are padded on the left (with garbage)." */ |
| 1200 | regnum = HPPA_RET0_REGNUM; |
| 1201 | offset = 8 - len; |
| 1202 | } |
| 1203 | else if (hppa64_floating_p (type)) |
| 1204 | { |
| 1205 | if (len > 8) |
| 1206 | { |
| 1207 | /* "Double-extended- and quad-precision floating-point |
| 1208 | values are returned in GRs 28 and 29. The sign, |
| 1209 | exponent, and most-significant bits of the mantissa are |
| 1210 | returned in GR 28; the least-significant bits of the |
| 1211 | mantissa are passed in GR 29. For double-extended |
| 1212 | precision values, GR 29 is padded on the right with 48 |
| 1213 | bits of garbage." */ |
| 1214 | regnum = HPPA_RET0_REGNUM; |
| 1215 | offset = 0; |
| 1216 | } |
| 1217 | else |
| 1218 | { |
| 1219 | /* "Single-precision and double-precision floating-point |
| 1220 | return values are returned in FR 4R (single precision) or |
| 1221 | FR 4 (double-precision)." */ |
| 1222 | regnum = HPPA64_FP4_REGNUM; |
| 1223 | offset = 8 - len; |
| 1224 | } |
| 1225 | } |
| 1226 | else |
| 1227 | { |
| 1228 | /* "Aggregate return values up to 64 bits in size are returned |
| 1229 | in GR 28. Aggregates smaller than 64 bits are left aligned |
| 1230 | in the register; the pad bits on the right are undefined." |
| 1231 | |
| 1232 | "Aggregate return values between 65 and 128 bits are returned |
| 1233 | in GRs 28 and 29. The first 64 bits are placed in GR 28, and |
| 1234 | the remaining bits are placed, left aligned, in GR 29. The |
| 1235 | pad bits on the right of GR 29 (if any) are undefined." */ |
| 1236 | regnum = HPPA_RET0_REGNUM; |
| 1237 | offset = 0; |
| 1238 | } |
| 1239 | |
| 1240 | if (readbuf) |
| 1241 | { |
| 1242 | while (len > 0) |
| 1243 | { |
| 1244 | regcache->cooked_read_part (regnum, offset, std::min (len, 8), |
| 1245 | readbuf); |
| 1246 | readbuf += std::min (len, 8); |
| 1247 | len -= std::min (len, 8); |
| 1248 | regnum++; |
| 1249 | } |
| 1250 | } |
| 1251 | |
| 1252 | if (writebuf) |
| 1253 | { |
| 1254 | while (len > 0) |
| 1255 | { |
| 1256 | regcache->cooked_write_part (regnum, offset, std::min (len, 8), |
| 1257 | writebuf); |
| 1258 | writebuf += std::min (len, 8); |
| 1259 | len -= std::min (len, 8); |
| 1260 | regnum++; |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | return RETURN_VALUE_REGISTER_CONVENTION; |
| 1265 | } |
| 1266 | \f |
| 1267 | |
| 1268 | static CORE_ADDR |
| 1269 | hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, |
| 1270 | struct target_ops *targ) |
| 1271 | { |
| 1272 | if (addr & 2) |
| 1273 | { |
| 1274 | struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; |
| 1275 | CORE_ADDR plabel = addr & ~3; |
| 1276 | return read_memory_typed_address (plabel, func_ptr_type); |
| 1277 | } |
| 1278 | |
| 1279 | return addr; |
| 1280 | } |
| 1281 | |
| 1282 | static CORE_ADDR |
| 1283 | hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
| 1284 | { |
| 1285 | /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_ |
| 1286 | and not _bit_)! */ |
| 1287 | return align_up (addr, 64); |
| 1288 | } |
| 1289 | |
| 1290 | /* Force all frames to 16-byte alignment. Better safe than sorry. */ |
| 1291 | |
| 1292 | static CORE_ADDR |
| 1293 | hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
| 1294 | { |
| 1295 | /* Just always 16-byte align. */ |
| 1296 | return align_up (addr, 16); |
| 1297 | } |
| 1298 | |
| 1299 | static CORE_ADDR |
| 1300 | hppa_read_pc (readable_regcache *regcache) |
| 1301 | { |
| 1302 | ULONGEST ipsw; |
| 1303 | ULONGEST pc; |
| 1304 | |
| 1305 | regcache->cooked_read (HPPA_IPSW_REGNUM, &ipsw); |
| 1306 | regcache->cooked_read (HPPA_PCOQ_HEAD_REGNUM, &pc); |
| 1307 | |
| 1308 | /* If the current instruction is nullified, then we are effectively |
| 1309 | still executing the previous instruction. Pretend we are still |
| 1310 | there. This is needed when single stepping; if the nullified |
| 1311 | instruction is on a different line, we don't want GDB to think |
| 1312 | we've stepped onto that line. */ |
| 1313 | if (ipsw & 0x00200000) |
| 1314 | pc -= 4; |
| 1315 | |
| 1316 | return pc & ~0x3; |
| 1317 | } |
| 1318 | |
| 1319 | void |
| 1320 | hppa_write_pc (struct regcache *regcache, CORE_ADDR pc) |
| 1321 | { |
| 1322 | regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc); |
| 1323 | regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4); |
| 1324 | } |
| 1325 | |
| 1326 | /* For the given instruction (INST), return any adjustment it makes |
| 1327 | to the stack pointer or zero for no adjustment. |
| 1328 | |
| 1329 | This only handles instructions commonly found in prologues. */ |
| 1330 | |
| 1331 | static int |
| 1332 | prologue_inst_adjust_sp (unsigned long inst) |
| 1333 | { |
| 1334 | /* This must persist across calls. */ |
| 1335 | static int save_high21; |
| 1336 | |
| 1337 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ |
| 1338 | if ((inst & 0xffffc000) == 0x37de0000) |
| 1339 | return hppa_extract_14 (inst); |
| 1340 | |
| 1341 | /* stwm X,D(sp) */ |
| 1342 | if ((inst & 0xffe00000) == 0x6fc00000) |
| 1343 | return hppa_extract_14 (inst); |
| 1344 | |
| 1345 | /* std,ma X,D(sp) */ |
| 1346 | if ((inst & 0xffe00008) == 0x73c00008) |
| 1347 | return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3); |
| 1348 | |
| 1349 | /* addil high21,%r30; ldo low11,(%r1),%r30) |
| 1350 | save high bits in save_high21 for later use. */ |
| 1351 | if ((inst & 0xffe00000) == 0x2bc00000) |
| 1352 | { |
| 1353 | save_high21 = hppa_extract_21 (inst); |
| 1354 | return 0; |
| 1355 | } |
| 1356 | |
| 1357 | if ((inst & 0xffff0000) == 0x343e0000) |
| 1358 | return save_high21 + hppa_extract_14 (inst); |
| 1359 | |
| 1360 | /* fstws as used by the HP compilers. */ |
| 1361 | if ((inst & 0xffffffe0) == 0x2fd01220) |
| 1362 | return hppa_extract_5_load (inst); |
| 1363 | |
| 1364 | /* No adjustment. */ |
| 1365 | return 0; |
| 1366 | } |
| 1367 | |
| 1368 | /* Return nonzero if INST is a branch of some kind, else return zero. */ |
| 1369 | |
| 1370 | static int |
| 1371 | is_branch (unsigned long inst) |
| 1372 | { |
| 1373 | switch (inst >> 26) |
| 1374 | { |
| 1375 | case 0x20: |
| 1376 | case 0x21: |
| 1377 | case 0x22: |
| 1378 | case 0x23: |
| 1379 | case 0x27: |
| 1380 | case 0x28: |
| 1381 | case 0x29: |
| 1382 | case 0x2a: |
| 1383 | case 0x2b: |
| 1384 | case 0x2f: |
| 1385 | case 0x30: |
| 1386 | case 0x31: |
| 1387 | case 0x32: |
| 1388 | case 0x33: |
| 1389 | case 0x38: |
| 1390 | case 0x39: |
| 1391 | case 0x3a: |
| 1392 | case 0x3b: |
| 1393 | return 1; |
| 1394 | |
| 1395 | default: |
| 1396 | return 0; |
| 1397 | } |
| 1398 | } |
| 1399 | |
| 1400 | /* Return the register number for a GR which is saved by INST or |
| 1401 | zero if INST does not save a GR. |
| 1402 | |
| 1403 | Referenced from: |
| 1404 | |
| 1405 | parisc 1.1: |
| 1406 | https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf |
| 1407 | |
| 1408 | parisc 2.0: |
| 1409 | https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf |
| 1410 | |
| 1411 | According to Table 6-5 of Chapter 6 (Memory Reference Instructions) |
| 1412 | on page 106 in parisc 2.0, all instructions for storing values from |
| 1413 | the general registers are: |
| 1414 | |
| 1415 | Store: stb, sth, stw, std (according to Chapter 7, they |
| 1416 | are only in both "inst >> 26" and "inst >> 6". |
| 1417 | Store Absolute: stwa, stda (according to Chapter 7, they are only |
| 1418 | in "inst >> 6". |
| 1419 | Store Bytes: stby, stdby (according to Chapter 7, they are |
| 1420 | only in "inst >> 6"). |
| 1421 | |
| 1422 | For (inst >> 26), according to Chapter 7: |
| 1423 | |
| 1424 | The effective memory reference address is formed by the addition |
| 1425 | of an immediate displacement to a base value. |
| 1426 | |
| 1427 | - stb: 0x18, store a byte from a general register. |
| 1428 | |
| 1429 | - sth: 0x19, store a halfword from a general register. |
| 1430 | |
| 1431 | - stw: 0x1a, store a word from a general register. |
| 1432 | |
| 1433 | - stwm: 0x1b, store a word from a general register and perform base |
| 1434 | register modification (2.0 will still treat it as stw). |
| 1435 | |
| 1436 | - std: 0x1c, store a doubleword from a general register (2.0 only). |
| 1437 | |
| 1438 | - stw: 0x1f, store a word from a general register (2.0 only). |
| 1439 | |
| 1440 | For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7: |
| 1441 | |
| 1442 | The effective memory reference address is formed by the addition |
| 1443 | of an index value to a base value specified in the instruction. |
| 1444 | |
| 1445 | - stb: 0x08, store a byte from a general register (1.1 calls stbs). |
| 1446 | |
| 1447 | - sth: 0x09, store a halfword from a general register (1.1 calls |
| 1448 | sths). |
| 1449 | |
| 1450 | - stw: 0x0a, store a word from a general register (1.1 calls stws). |
| 1451 | |
| 1452 | - std: 0x0b: store a doubleword from a general register (2.0 only) |
| 1453 | |
| 1454 | Implement fast byte moves (stores) to unaligned word or doubleword |
| 1455 | destination. |
| 1456 | |
| 1457 | - stby: 0x0c, for unaligned word (1.1 calls stbys). |
| 1458 | |
| 1459 | - stdby: 0x0d for unaligned doubleword (2.0 only). |
| 1460 | |
| 1461 | Store a word or doubleword using an absolute memory address formed |
| 1462 | using short or long displacement or indexed |
| 1463 | |
| 1464 | - stwa: 0x0e, store a word from a general register to an absolute |
| 1465 | address (1.0 calls stwas). |
| 1466 | |
| 1467 | - stda: 0x0f, store a doubleword from a general register to an |
| 1468 | absolute address (2.0 only). */ |
| 1469 | |
| 1470 | static int |
| 1471 | inst_saves_gr (unsigned long inst) |
| 1472 | { |
| 1473 | switch ((inst >> 26) & 0x0f) |
| 1474 | { |
| 1475 | case 0x03: |
| 1476 | switch ((inst >> 6) & 0x0f) |
| 1477 | { |
| 1478 | case 0x08: |
| 1479 | case 0x09: |
| 1480 | case 0x0a: |
| 1481 | case 0x0b: |
| 1482 | case 0x0c: |
| 1483 | case 0x0d: |
| 1484 | case 0x0e: |
| 1485 | case 0x0f: |
| 1486 | return hppa_extract_5R_store (inst); |
| 1487 | default: |
| 1488 | return 0; |
| 1489 | } |
| 1490 | case 0x18: |
| 1491 | case 0x19: |
| 1492 | case 0x1a: |
| 1493 | case 0x1b: |
| 1494 | case 0x1c: |
| 1495 | /* no 0x1d or 0x1e -- according to parisc 2.0 document */ |
| 1496 | case 0x1f: |
| 1497 | return hppa_extract_5R_store (inst); |
| 1498 | default: |
| 1499 | return 0; |
| 1500 | } |
| 1501 | } |
| 1502 | |
| 1503 | /* Return the register number for a FR which is saved by INST or |
| 1504 | zero it INST does not save a FR. |
| 1505 | |
| 1506 | Note we only care about full 64bit register stores (that's the only |
| 1507 | kind of stores the prologue will use). |
| 1508 | |
| 1509 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ |
| 1510 | |
| 1511 | static int |
| 1512 | inst_saves_fr (unsigned long inst) |
| 1513 | { |
| 1514 | /* Is this an FSTD? */ |
| 1515 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
| 1516 | return hppa_extract_5r_store (inst); |
| 1517 | if ((inst & 0xfc000002) == 0x70000002) |
| 1518 | return hppa_extract_5R_store (inst); |
| 1519 | /* Is this an FSTW? */ |
| 1520 | if ((inst & 0xfc00df80) == 0x24001200) |
| 1521 | return hppa_extract_5r_store (inst); |
| 1522 | if ((inst & 0xfc000002) == 0x7c000000) |
| 1523 | return hppa_extract_5R_store (inst); |
| 1524 | return 0; |
| 1525 | } |
| 1526 | |
| 1527 | /* Advance PC across any function entry prologue instructions |
| 1528 | to reach some "real" code. |
| 1529 | |
| 1530 | Use information in the unwind table to determine what exactly should |
| 1531 | be in the prologue. */ |
| 1532 | |
| 1533 | |
| 1534 | static CORE_ADDR |
| 1535 | skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc, |
| 1536 | int stop_before_branch) |
| 1537 | { |
| 1538 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 1539 | gdb_byte buf[4]; |
| 1540 | CORE_ADDR orig_pc = pc; |
| 1541 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; |
| 1542 | unsigned long args_stored, status, i, restart_gr, restart_fr; |
| 1543 | struct unwind_table_entry *u; |
| 1544 | int final_iteration; |
| 1545 | |
| 1546 | restart_gr = 0; |
| 1547 | restart_fr = 0; |
| 1548 | |
| 1549 | restart: |
| 1550 | u = find_unwind_entry (pc); |
| 1551 | if (!u) |
| 1552 | return pc; |
| 1553 | |
| 1554 | /* If we are not at the beginning of a function, then return now. */ |
| 1555 | if ((pc & ~0x3) != u->region_start) |
| 1556 | return pc; |
| 1557 | |
| 1558 | /* This is how much of a frame adjustment we need to account for. */ |
| 1559 | stack_remaining = u->Total_frame_size << 3; |
| 1560 | |
| 1561 | /* Magic register saves we want to know about. */ |
| 1562 | save_rp = u->Save_RP; |
| 1563 | save_sp = u->Save_SP; |
| 1564 | |
| 1565 | /* An indication that args may be stored into the stack. Unfortunately |
| 1566 | the HPUX compilers tend to set this in cases where no args were |
| 1567 | stored too!. */ |
| 1568 | args_stored = 1; |
| 1569 | |
| 1570 | /* Turn the Entry_GR field into a bitmask. */ |
| 1571 | save_gr = 0; |
| 1572 | for (i = 3; i < u->Entry_GR + 3; i++) |
| 1573 | { |
| 1574 | /* Frame pointer gets saved into a special location. */ |
| 1575 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
| 1576 | continue; |
| 1577 | |
| 1578 | save_gr |= (1 << i); |
| 1579 | } |
| 1580 | save_gr &= ~restart_gr; |
| 1581 | |
| 1582 | /* Turn the Entry_FR field into a bitmask too. */ |
| 1583 | save_fr = 0; |
| 1584 | for (i = 12; i < u->Entry_FR + 12; i++) |
| 1585 | save_fr |= (1 << i); |
| 1586 | save_fr &= ~restart_fr; |
| 1587 | |
| 1588 | final_iteration = 0; |
| 1589 | |
| 1590 | /* Loop until we find everything of interest or hit a branch. |
| 1591 | |
| 1592 | For unoptimized GCC code and for any HP CC code this will never ever |
| 1593 | examine any user instructions. |
| 1594 | |
| 1595 | For optimized GCC code we're faced with problems. GCC will schedule |
| 1596 | its prologue and make prologue instructions available for delay slot |
| 1597 | filling. The end result is user code gets mixed in with the prologue |
| 1598 | and a prologue instruction may be in the delay slot of the first branch |
| 1599 | or call. |
| 1600 | |
| 1601 | Some unexpected things are expected with debugging optimized code, so |
| 1602 | we allow this routine to walk past user instructions in optimized |
| 1603 | GCC code. */ |
| 1604 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 |
| 1605 | || args_stored) |
| 1606 | { |
| 1607 | unsigned int reg_num; |
| 1608 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; |
| 1609 | unsigned long old_save_rp, old_save_sp, next_inst; |
| 1610 | |
| 1611 | /* Save copies of all the triggers so we can compare them later |
| 1612 | (only for HPC). */ |
| 1613 | old_save_gr = save_gr; |
| 1614 | old_save_fr = save_fr; |
| 1615 | old_save_rp = save_rp; |
| 1616 | old_save_sp = save_sp; |
| 1617 | old_stack_remaining = stack_remaining; |
| 1618 | |
| 1619 | status = target_read_memory (pc, buf, 4); |
| 1620 | inst = extract_unsigned_integer (buf, 4, byte_order); |
| 1621 | |
| 1622 | /* Yow! */ |
| 1623 | if (status != 0) |
| 1624 | return pc; |
| 1625 | |
| 1626 | /* Note the interesting effects of this instruction. */ |
| 1627 | stack_remaining -= prologue_inst_adjust_sp (inst); |
| 1628 | |
| 1629 | /* There are limited ways to store the return pointer into the |
| 1630 | stack. */ |
| 1631 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1) |
| 1632 | save_rp = 0; |
| 1633 | |
| 1634 | /* These are the only ways we save SP into the stack. At this time |
| 1635 | the HP compilers never bother to save SP into the stack. */ |
| 1636 | if ((inst & 0xffffc000) == 0x6fc10000 |
| 1637 | || (inst & 0xffffc00c) == 0x73c10008) |
| 1638 | save_sp = 0; |
| 1639 | |
| 1640 | /* Are we loading some register with an offset from the argument |
| 1641 | pointer? */ |
| 1642 | if ((inst & 0xffe00000) == 0x37a00000 |
| 1643 | || (inst & 0xffffffe0) == 0x081d0240) |
| 1644 | { |
| 1645 | pc += 4; |
| 1646 | continue; |
| 1647 | } |
| 1648 | |
| 1649 | /* Account for general and floating-point register saves. */ |
| 1650 | reg_num = inst_saves_gr (inst); |
| 1651 | save_gr &= ~(1 << reg_num); |
| 1652 | |
| 1653 | /* Ugh. Also account for argument stores into the stack. |
| 1654 | Unfortunately args_stored only tells us that some arguments |
| 1655 | where stored into the stack. Not how many or what kind! |
| 1656 | |
| 1657 | This is a kludge as on the HP compiler sets this bit and it |
| 1658 | never does prologue scheduling. So once we see one, skip past |
| 1659 | all of them. We have similar code for the fp arg stores below. |
| 1660 | |
| 1661 | FIXME. Can still die if we have a mix of GR and FR argument |
| 1662 | stores! */ |
| 1663 | if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) |
| 1664 | && reg_num <= 26) |
| 1665 | { |
| 1666 | while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) |
| 1667 | && reg_num <= 26) |
| 1668 | { |
| 1669 | pc += 4; |
| 1670 | status = target_read_memory (pc, buf, 4); |
| 1671 | inst = extract_unsigned_integer (buf, 4, byte_order); |
| 1672 | if (status != 0) |
| 1673 | return pc; |
| 1674 | reg_num = inst_saves_gr (inst); |
| 1675 | } |
| 1676 | args_stored = 0; |
| 1677 | continue; |
| 1678 | } |
| 1679 | |
| 1680 | reg_num = inst_saves_fr (inst); |
| 1681 | save_fr &= ~(1 << reg_num); |
| 1682 | |
| 1683 | status = target_read_memory (pc + 4, buf, 4); |
| 1684 | next_inst = extract_unsigned_integer (buf, 4, byte_order); |
| 1685 | |
| 1686 | /* Yow! */ |
| 1687 | if (status != 0) |
| 1688 | return pc; |
| 1689 | |
| 1690 | /* We've got to be read to handle the ldo before the fp register |
| 1691 | save. */ |
| 1692 | if ((inst & 0xfc000000) == 0x34000000 |
| 1693 | && inst_saves_fr (next_inst) >= 4 |
| 1694 | && inst_saves_fr (next_inst) |
| 1695 | <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
| 1696 | { |
| 1697 | /* So we drop into the code below in a reasonable state. */ |
| 1698 | reg_num = inst_saves_fr (next_inst); |
| 1699 | pc -= 4; |
| 1700 | } |
| 1701 | |
| 1702 | /* Ugh. Also account for argument stores into the stack. |
| 1703 | This is a kludge as on the HP compiler sets this bit and it |
| 1704 | never does prologue scheduling. So once we see one, skip past |
| 1705 | all of them. */ |
| 1706 | if (reg_num >= 4 |
| 1707 | && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
| 1708 | { |
| 1709 | while (reg_num >= 4 |
| 1710 | && reg_num |
| 1711 | <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
| 1712 | { |
| 1713 | pc += 8; |
| 1714 | status = target_read_memory (pc, buf, 4); |
| 1715 | inst = extract_unsigned_integer (buf, 4, byte_order); |
| 1716 | if (status != 0) |
| 1717 | return pc; |
| 1718 | if ((inst & 0xfc000000) != 0x34000000) |
| 1719 | break; |
| 1720 | status = target_read_memory (pc + 4, buf, 4); |
| 1721 | next_inst = extract_unsigned_integer (buf, 4, byte_order); |
| 1722 | if (status != 0) |
| 1723 | return pc; |
| 1724 | reg_num = inst_saves_fr (next_inst); |
| 1725 | } |
| 1726 | args_stored = 0; |
| 1727 | continue; |
| 1728 | } |
| 1729 | |
| 1730 | /* Quit if we hit any kind of branch. This can happen if a prologue |
| 1731 | instruction is in the delay slot of the first call/branch. */ |
| 1732 | if (is_branch (inst) && stop_before_branch) |
| 1733 | break; |
| 1734 | |
| 1735 | /* What a crock. The HP compilers set args_stored even if no |
| 1736 | arguments were stored into the stack (boo hiss). This could |
| 1737 | cause this code to then skip a bunch of user insns (up to the |
| 1738 | first branch). |
| 1739 | |
| 1740 | To combat this we try to identify when args_stored was bogusly |
| 1741 | set and clear it. We only do this when args_stored is nonzero, |
| 1742 | all other resources are accounted for, and nothing changed on |
| 1743 | this pass. */ |
| 1744 | if (args_stored |
| 1745 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
| 1746 | && old_save_gr == save_gr && old_save_fr == save_fr |
| 1747 | && old_save_rp == save_rp && old_save_sp == save_sp |
| 1748 | && old_stack_remaining == stack_remaining) |
| 1749 | break; |
| 1750 | |
| 1751 | /* Bump the PC. */ |
| 1752 | pc += 4; |
| 1753 | |
| 1754 | /* !stop_before_branch, so also look at the insn in the delay slot |
| 1755 | of the branch. */ |
| 1756 | if (final_iteration) |
| 1757 | break; |
| 1758 | if (is_branch (inst)) |
| 1759 | final_iteration = 1; |
| 1760 | } |
| 1761 | |
| 1762 | /* We've got a tentative location for the end of the prologue. However |
| 1763 | because of limitations in the unwind descriptor mechanism we may |
| 1764 | have went too far into user code looking for the save of a register |
| 1765 | that does not exist. So, if there registers we expected to be saved |
| 1766 | but never were, mask them out and restart. |
| 1767 | |
| 1768 | This should only happen in optimized code, and should be very rare. */ |
| 1769 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
| 1770 | { |
| 1771 | pc = orig_pc; |
| 1772 | restart_gr = save_gr; |
| 1773 | restart_fr = save_fr; |
| 1774 | goto restart; |
| 1775 | } |
| 1776 | |
| 1777 | return pc; |
| 1778 | } |
| 1779 | |
| 1780 | |
| 1781 | /* Return the address of the PC after the last prologue instruction if |
| 1782 | we can determine it from the debug symbols. Else return zero. */ |
| 1783 | |
| 1784 | static CORE_ADDR |
| 1785 | after_prologue (CORE_ADDR pc) |
| 1786 | { |
| 1787 | struct symtab_and_line sal; |
| 1788 | CORE_ADDR func_addr, func_end; |
| 1789 | |
| 1790 | /* If we can not find the symbol in the partial symbol table, then |
| 1791 | there is no hope we can determine the function's start address |
| 1792 | with this code. */ |
| 1793 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
| 1794 | return 0; |
| 1795 | |
| 1796 | /* Get the line associated with FUNC_ADDR. */ |
| 1797 | sal = find_pc_line (func_addr, 0); |
| 1798 | |
| 1799 | /* There are only two cases to consider. First, the end of the source line |
| 1800 | is within the function bounds. In that case we return the end of the |
| 1801 | source line. Second is the end of the source line extends beyond the |
| 1802 | bounds of the current function. We need to use the slow code to |
| 1803 | examine instructions in that case. |
| 1804 | |
| 1805 | Anything else is simply a bug elsewhere. Fixing it here is absolutely |
| 1806 | the wrong thing to do. In fact, it should be entirely possible for this |
| 1807 | function to always return zero since the slow instruction scanning code |
| 1808 | is supposed to *always* work. If it does not, then it is a bug. */ |
| 1809 | if (sal.end < func_end) |
| 1810 | return sal.end; |
| 1811 | else |
| 1812 | return 0; |
| 1813 | } |
| 1814 | |
| 1815 | /* To skip prologues, I use this predicate. Returns either PC itself |
| 1816 | if the code at PC does not look like a function prologue; otherwise |
| 1817 | returns an address that (if we're lucky) follows the prologue. |
| 1818 | |
| 1819 | hppa_skip_prologue is called by gdb to place a breakpoint in a function. |
| 1820 | It doesn't necessarily skips all the insns in the prologue. In fact |
| 1821 | we might not want to skip all the insns because a prologue insn may |
| 1822 | appear in the delay slot of the first branch, and we don't want to |
| 1823 | skip over the branch in that case. */ |
| 1824 | |
| 1825 | static CORE_ADDR |
| 1826 | hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| 1827 | { |
| 1828 | CORE_ADDR post_prologue_pc; |
| 1829 | |
| 1830 | /* See if we can determine the end of the prologue via the symbol table. |
| 1831 | If so, then return either PC, or the PC after the prologue, whichever |
| 1832 | is greater. */ |
| 1833 | |
| 1834 | post_prologue_pc = after_prologue (pc); |
| 1835 | |
| 1836 | /* If after_prologue returned a useful address, then use it. Else |
| 1837 | fall back on the instruction skipping code. |
| 1838 | |
| 1839 | Some folks have claimed this causes problems because the breakpoint |
| 1840 | may be the first instruction of the prologue. If that happens, then |
| 1841 | the instruction skipping code has a bug that needs to be fixed. */ |
| 1842 | if (post_prologue_pc != 0) |
| 1843 | return std::max (pc, post_prologue_pc); |
| 1844 | else |
| 1845 | return (skip_prologue_hard_way (gdbarch, pc, 1)); |
| 1846 | } |
| 1847 | |
| 1848 | /* Return an unwind entry that falls within the frame's code block. */ |
| 1849 | |
| 1850 | static struct unwind_table_entry * |
| 1851 | hppa_find_unwind_entry_in_block (struct frame_info *this_frame) |
| 1852 | { |
| 1853 | CORE_ADDR pc = get_frame_address_in_block (this_frame); |
| 1854 | |
| 1855 | /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the |
| 1856 | result of get_frame_address_in_block implies a problem. |
| 1857 | The bits should have been removed earlier, before the return |
| 1858 | value of gdbarch_unwind_pc. That might be happening already; |
| 1859 | if it isn't, it should be fixed. Then this call can be |
| 1860 | removed. */ |
| 1861 | pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc); |
| 1862 | return find_unwind_entry (pc); |
| 1863 | } |
| 1864 | |
| 1865 | struct hppa_frame_cache |
| 1866 | { |
| 1867 | CORE_ADDR base; |
| 1868 | struct trad_frame_saved_reg *saved_regs; |
| 1869 | }; |
| 1870 | |
| 1871 | static struct hppa_frame_cache * |
| 1872 | hppa_frame_cache (struct frame_info *this_frame, void **this_cache) |
| 1873 | { |
| 1874 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| 1875 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 1876 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| 1877 | struct hppa_frame_cache *cache; |
| 1878 | long saved_gr_mask; |
| 1879 | long saved_fr_mask; |
| 1880 | long frame_size; |
| 1881 | struct unwind_table_entry *u; |
| 1882 | CORE_ADDR prologue_end; |
| 1883 | int fp_in_r1 = 0; |
| 1884 | int i; |
| 1885 | |
| 1886 | if (hppa_debug) |
| 1887 | fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ", |
| 1888 | frame_relative_level(this_frame)); |
| 1889 | |
| 1890 | if ((*this_cache) != NULL) |
| 1891 | { |
| 1892 | if (hppa_debug) |
| 1893 | fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }", |
| 1894 | paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base)); |
| 1895 | return (struct hppa_frame_cache *) (*this_cache); |
| 1896 | } |
| 1897 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
| 1898 | (*this_cache) = cache; |
| 1899 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| 1900 | |
| 1901 | /* Yow! */ |
| 1902 | u = hppa_find_unwind_entry_in_block (this_frame); |
| 1903 | if (!u) |
| 1904 | { |
| 1905 | if (hppa_debug) |
| 1906 | fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }"); |
| 1907 | return (struct hppa_frame_cache *) (*this_cache); |
| 1908 | } |
| 1909 | |
| 1910 | /* Turn the Entry_GR field into a bitmask. */ |
| 1911 | saved_gr_mask = 0; |
| 1912 | for (i = 3; i < u->Entry_GR + 3; i++) |
| 1913 | { |
| 1914 | /* Frame pointer gets saved into a special location. */ |
| 1915 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
| 1916 | continue; |
| 1917 | |
| 1918 | saved_gr_mask |= (1 << i); |
| 1919 | } |
| 1920 | |
| 1921 | /* Turn the Entry_FR field into a bitmask too. */ |
| 1922 | saved_fr_mask = 0; |
| 1923 | for (i = 12; i < u->Entry_FR + 12; i++) |
| 1924 | saved_fr_mask |= (1 << i); |
| 1925 | |
| 1926 | /* Loop until we find everything of interest or hit a branch. |
| 1927 | |
| 1928 | For unoptimized GCC code and for any HP CC code this will never ever |
| 1929 | examine any user instructions. |
| 1930 | |
| 1931 | For optimized GCC code we're faced with problems. GCC will schedule |
| 1932 | its prologue and make prologue instructions available for delay slot |
| 1933 | filling. The end result is user code gets mixed in with the prologue |
| 1934 | and a prologue instruction may be in the delay slot of the first branch |
| 1935 | or call. |
| 1936 | |
| 1937 | Some unexpected things are expected with debugging optimized code, so |
| 1938 | we allow this routine to walk past user instructions in optimized |
| 1939 | GCC code. */ |
| 1940 | { |
| 1941 | int final_iteration = 0; |
| 1942 | CORE_ADDR pc, start_pc, end_pc; |
| 1943 | int looking_for_sp = u->Save_SP; |
| 1944 | int looking_for_rp = u->Save_RP; |
| 1945 | int fp_loc = -1; |
| 1946 | |
| 1947 | /* We have to use skip_prologue_hard_way instead of just |
| 1948 | skip_prologue_using_sal, in case we stepped into a function without |
| 1949 | symbol information. hppa_skip_prologue also bounds the returned |
| 1950 | pc by the passed in pc, so it will not return a pc in the next |
| 1951 | function. |
| 1952 | |
| 1953 | We used to call hppa_skip_prologue to find the end of the prologue, |
| 1954 | but if some non-prologue instructions get scheduled into the prologue, |
| 1955 | and the program is compiled with debug information, the "easy" way |
| 1956 | in hppa_skip_prologue will return a prologue end that is too early |
| 1957 | for us to notice any potential frame adjustments. */ |
| 1958 | |
| 1959 | /* We used to use get_frame_func to locate the beginning of the |
| 1960 | function to pass to skip_prologue. However, when objects are |
| 1961 | compiled without debug symbols, get_frame_func can return the wrong |
| 1962 | function (or 0). We can do better than that by using unwind records. |
| 1963 | This only works if the Region_description of the unwind record |
| 1964 | indicates that it includes the entry point of the function. |
| 1965 | HP compilers sometimes generate unwind records for regions that |
| 1966 | do not include the entry or exit point of a function. GNU tools |
| 1967 | do not do this. */ |
| 1968 | |
| 1969 | if ((u->Region_description & 0x2) == 0) |
| 1970 | start_pc = u->region_start; |
| 1971 | else |
| 1972 | start_pc = get_frame_func (this_frame); |
| 1973 | |
| 1974 | prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0); |
| 1975 | end_pc = get_frame_pc (this_frame); |
| 1976 | |
| 1977 | if (prologue_end != 0 && end_pc > prologue_end) |
| 1978 | end_pc = prologue_end; |
| 1979 | |
| 1980 | frame_size = 0; |
| 1981 | |
| 1982 | for (pc = start_pc; |
| 1983 | ((saved_gr_mask || saved_fr_mask |
| 1984 | || looking_for_sp || looking_for_rp |
| 1985 | || frame_size < (u->Total_frame_size << 3)) |
| 1986 | && pc < end_pc); |
| 1987 | pc += 4) |
| 1988 | { |
| 1989 | int reg; |
| 1990 | gdb_byte buf4[4]; |
| 1991 | long inst; |
| 1992 | |
| 1993 | if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4)) |
| 1994 | { |
| 1995 | error (_("Cannot read instruction at %s."), |
| 1996 | paddress (gdbarch, pc)); |
| 1997 | return (struct hppa_frame_cache *) (*this_cache); |
| 1998 | } |
| 1999 | |
| 2000 | inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order); |
| 2001 | |
| 2002 | /* Note the interesting effects of this instruction. */ |
| 2003 | frame_size += prologue_inst_adjust_sp (inst); |
| 2004 | |
| 2005 | /* There are limited ways to store the return pointer into the |
| 2006 | stack. */ |
| 2007 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ |
| 2008 | { |
| 2009 | looking_for_rp = 0; |
| 2010 | cache->saved_regs[HPPA_RP_REGNUM].addr = -20; |
| 2011 | } |
| 2012 | else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */ |
| 2013 | { |
| 2014 | looking_for_rp = 0; |
| 2015 | cache->saved_regs[HPPA_RP_REGNUM].addr = -24; |
| 2016 | } |
| 2017 | else if (inst == 0x0fc212c1 |
| 2018 | || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ |
| 2019 | { |
| 2020 | looking_for_rp = 0; |
| 2021 | cache->saved_regs[HPPA_RP_REGNUM].addr = -16; |
| 2022 | } |
| 2023 | |
| 2024 | /* Check to see if we saved SP into the stack. This also |
| 2025 | happens to indicate the location of the saved frame |
| 2026 | pointer. */ |
| 2027 | if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ |
| 2028 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ |
| 2029 | { |
| 2030 | looking_for_sp = 0; |
| 2031 | cache->saved_regs[HPPA_FP_REGNUM].addr = 0; |
| 2032 | } |
| 2033 | else if (inst == 0x08030241) /* copy %r3, %r1 */ |
| 2034 | { |
| 2035 | fp_in_r1 = 1; |
| 2036 | } |
| 2037 | |
| 2038 | /* Account for general and floating-point register saves. */ |
| 2039 | reg = inst_saves_gr (inst); |
| 2040 | if (reg >= 3 && reg <= 18 |
| 2041 | && (!u->Save_SP || reg != HPPA_FP_REGNUM)) |
| 2042 | { |
| 2043 | saved_gr_mask &= ~(1 << reg); |
| 2044 | if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0) |
| 2045 | /* stwm with a positive displacement is a _post_ |
| 2046 | _modify_. */ |
| 2047 | cache->saved_regs[reg].addr = 0; |
| 2048 | else if ((inst & 0xfc00000c) == 0x70000008) |
| 2049 | /* A std has explicit post_modify forms. */ |
| 2050 | cache->saved_regs[reg].addr = 0; |
| 2051 | else |
| 2052 | { |
| 2053 | CORE_ADDR offset; |
| 2054 | |
| 2055 | if ((inst >> 26) == 0x1c) |
| 2056 | offset = (inst & 0x1 ? -(1 << 13) : 0) |
| 2057 | | (((inst >> 4) & 0x3ff) << 3); |
| 2058 | else if ((inst >> 26) == 0x03) |
| 2059 | offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5); |
| 2060 | else |
| 2061 | offset = hppa_extract_14 (inst); |
| 2062 | |
| 2063 | /* Handle code with and without frame pointers. */ |
| 2064 | if (u->Save_SP) |
| 2065 | cache->saved_regs[reg].addr = offset; |
| 2066 | else |
| 2067 | cache->saved_regs[reg].addr |
| 2068 | = (u->Total_frame_size << 3) + offset; |
| 2069 | } |
| 2070 | } |
| 2071 | |
| 2072 | /* GCC handles callee saved FP regs a little differently. |
| 2073 | |
| 2074 | It emits an instruction to put the value of the start of |
| 2075 | the FP store area into %r1. It then uses fstds,ma with a |
| 2076 | basereg of %r1 for the stores. |
| 2077 | |
| 2078 | HP CC emits them at the current stack pointer modifying the |
| 2079 | stack pointer as it stores each register. */ |
| 2080 | |
| 2081 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ |
| 2082 | if ((inst & 0xffffc000) == 0x34610000 |
| 2083 | || (inst & 0xffffc000) == 0x37c10000) |
| 2084 | fp_loc = hppa_extract_14 (inst); |
| 2085 | |
| 2086 | reg = inst_saves_fr (inst); |
| 2087 | if (reg >= 12 && reg <= 21) |
| 2088 | { |
| 2089 | /* Note +4 braindamage below is necessary because the FP |
| 2090 | status registers are internally 8 registers rather than |
| 2091 | the expected 4 registers. */ |
| 2092 | saved_fr_mask &= ~(1 << reg); |
| 2093 | if (fp_loc == -1) |
| 2094 | { |
| 2095 | /* 1st HP CC FP register store. After this |
| 2096 | instruction we've set enough state that the GCC and |
| 2097 | HPCC code are both handled in the same manner. */ |
| 2098 | cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0; |
| 2099 | fp_loc = 8; |
| 2100 | } |
| 2101 | else |
| 2102 | { |
| 2103 | cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc; |
| 2104 | fp_loc += 8; |
| 2105 | } |
| 2106 | } |
| 2107 | |
| 2108 | /* Quit if we hit any kind of branch the previous iteration. */ |
| 2109 | if (final_iteration) |
| 2110 | break; |
| 2111 | /* We want to look precisely one instruction beyond the branch |
| 2112 | if we have not found everything yet. */ |
| 2113 | if (is_branch (inst)) |
| 2114 | final_iteration = 1; |
| 2115 | } |
| 2116 | } |
| 2117 | |
| 2118 | { |
| 2119 | /* The frame base always represents the value of %sp at entry to |
| 2120 | the current function (and is thus equivalent to the "saved" |
| 2121 | stack pointer. */ |
| 2122 | CORE_ADDR this_sp = get_frame_register_unsigned (this_frame, |
| 2123 | HPPA_SP_REGNUM); |
| 2124 | CORE_ADDR fp; |
| 2125 | |
| 2126 | if (hppa_debug) |
| 2127 | fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, " |
| 2128 | "prologue_end=%s) ", |
| 2129 | paddress (gdbarch, this_sp), |
| 2130 | paddress (gdbarch, get_frame_pc (this_frame)), |
| 2131 | paddress (gdbarch, prologue_end)); |
| 2132 | |
| 2133 | /* Check to see if a frame pointer is available, and use it for |
| 2134 | frame unwinding if it is. |
| 2135 | |
| 2136 | There are some situations where we need to rely on the frame |
| 2137 | pointer to do stack unwinding. For example, if a function calls |
| 2138 | alloca (), the stack pointer can get adjusted inside the body of |
| 2139 | the function. In this case, the ABI requires that the compiler |
| 2140 | maintain a frame pointer for the function. |
| 2141 | |
| 2142 | The unwind record has a flag (alloca_frame) that indicates that |
| 2143 | a function has a variable frame; unfortunately, gcc/binutils |
| 2144 | does not set this flag. Instead, whenever a frame pointer is used |
| 2145 | and saved on the stack, the Save_SP flag is set. We use this to |
| 2146 | decide whether to use the frame pointer for unwinding. |
| 2147 | |
| 2148 | TODO: For the HP compiler, maybe we should use the alloca_frame flag |
| 2149 | instead of Save_SP. */ |
| 2150 | |
| 2151 | fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM); |
| 2152 | |
| 2153 | if (u->alloca_frame) |
| 2154 | fp -= u->Total_frame_size << 3; |
| 2155 | |
| 2156 | if (get_frame_pc (this_frame) >= prologue_end |
| 2157 | && (u->Save_SP || u->alloca_frame) && fp != 0) |
| 2158 | { |
| 2159 | cache->base = fp; |
| 2160 | |
| 2161 | if (hppa_debug) |
| 2162 | fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]", |
| 2163 | paddress (gdbarch, cache->base)); |
| 2164 | } |
| 2165 | else if (u->Save_SP |
| 2166 | && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM)) |
| 2167 | { |
| 2168 | /* Both we're expecting the SP to be saved and the SP has been |
| 2169 | saved. The entry SP value is saved at this frame's SP |
| 2170 | address. */ |
| 2171 | cache->base = read_memory_integer (this_sp, word_size, byte_order); |
| 2172 | |
| 2173 | if (hppa_debug) |
| 2174 | fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]", |
| 2175 | paddress (gdbarch, cache->base)); |
| 2176 | } |
| 2177 | else |
| 2178 | { |
| 2179 | /* The prologue has been slowly allocating stack space. Adjust |
| 2180 | the SP back. */ |
| 2181 | cache->base = this_sp - frame_size; |
| 2182 | if (hppa_debug) |
| 2183 | fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]", |
| 2184 | paddress (gdbarch, cache->base)); |
| 2185 | |
| 2186 | } |
| 2187 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); |
| 2188 | } |
| 2189 | |
| 2190 | /* The PC is found in the "return register", "Millicode" uses "r31" |
| 2191 | as the return register while normal code uses "rp". */ |
| 2192 | if (u->Millicode) |
| 2193 | { |
| 2194 | if (trad_frame_addr_p (cache->saved_regs, 31)) |
| 2195 | { |
| 2196 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31]; |
| 2197 | if (hppa_debug) |
| 2198 | fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } "); |
| 2199 | } |
| 2200 | else |
| 2201 | { |
| 2202 | ULONGEST r31 = get_frame_register_unsigned (this_frame, 31); |
| 2203 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31); |
| 2204 | if (hppa_debug) |
| 2205 | fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } "); |
| 2206 | } |
| 2207 | } |
| 2208 | else |
| 2209 | { |
| 2210 | if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) |
| 2211 | { |
| 2212 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = |
| 2213 | cache->saved_regs[HPPA_RP_REGNUM]; |
| 2214 | if (hppa_debug) |
| 2215 | fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } "); |
| 2216 | } |
| 2217 | else |
| 2218 | { |
| 2219 | ULONGEST rp = get_frame_register_unsigned (this_frame, |
| 2220 | HPPA_RP_REGNUM); |
| 2221 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); |
| 2222 | if (hppa_debug) |
| 2223 | fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } "); |
| 2224 | } |
| 2225 | } |
| 2226 | |
| 2227 | /* If Save_SP is set, then we expect the frame pointer to be saved in the |
| 2228 | frame. However, there is a one-insn window where we haven't saved it |
| 2229 | yet, but we've already clobbered it. Detect this case and fix it up. |
| 2230 | |
| 2231 | The prologue sequence for frame-pointer functions is: |
| 2232 | 0: stw %rp, -20(%sp) |
| 2233 | 4: copy %r3, %r1 |
| 2234 | 8: copy %sp, %r3 |
| 2235 | c: stw,ma %r1, XX(%sp) |
| 2236 | |
| 2237 | So if we are at offset c, the r3 value that we want is not yet saved |
| 2238 | on the stack, but it's been overwritten. The prologue analyzer will |
| 2239 | set fp_in_r1 when it sees the copy insn so we know to get the value |
| 2240 | from r1 instead. */ |
| 2241 | if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM) |
| 2242 | && fp_in_r1) |
| 2243 | { |
| 2244 | ULONGEST r1 = get_frame_register_unsigned (this_frame, 1); |
| 2245 | trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1); |
| 2246 | } |
| 2247 | |
| 2248 | { |
| 2249 | /* Convert all the offsets into addresses. */ |
| 2250 | int reg; |
| 2251 | for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++) |
| 2252 | { |
| 2253 | if (trad_frame_addr_p (cache->saved_regs, reg)) |
| 2254 | cache->saved_regs[reg].addr += cache->base; |
| 2255 | } |
| 2256 | } |
| 2257 | |
| 2258 | { |
| 2259 | struct gdbarch_tdep *tdep; |
| 2260 | |
| 2261 | tdep = gdbarch_tdep (gdbarch); |
| 2262 | |
| 2263 | if (tdep->unwind_adjust_stub) |
| 2264 | tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs); |
| 2265 | } |
| 2266 | |
| 2267 | if (hppa_debug) |
| 2268 | fprintf_unfiltered (gdb_stdlog, "base=%s }", |
| 2269 | paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base)); |
| 2270 | return (struct hppa_frame_cache *) (*this_cache); |
| 2271 | } |
| 2272 | |
| 2273 | static void |
| 2274 | hppa_frame_this_id (struct frame_info *this_frame, void **this_cache, |
| 2275 | struct frame_id *this_id) |
| 2276 | { |
| 2277 | struct hppa_frame_cache *info; |
| 2278 | struct unwind_table_entry *u; |
| 2279 | |
| 2280 | info = hppa_frame_cache (this_frame, this_cache); |
| 2281 | u = hppa_find_unwind_entry_in_block (this_frame); |
| 2282 | |
| 2283 | (*this_id) = frame_id_build (info->base, u->region_start); |
| 2284 | } |
| 2285 | |
| 2286 | static struct value * |
| 2287 | hppa_frame_prev_register (struct frame_info *this_frame, |
| 2288 | void **this_cache, int regnum) |
| 2289 | { |
| 2290 | struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache); |
| 2291 | |
| 2292 | return hppa_frame_prev_register_helper (this_frame, |
| 2293 | info->saved_regs, regnum); |
| 2294 | } |
| 2295 | |
| 2296 | static int |
| 2297 | hppa_frame_unwind_sniffer (const struct frame_unwind *self, |
| 2298 | struct frame_info *this_frame, void **this_cache) |
| 2299 | { |
| 2300 | if (hppa_find_unwind_entry_in_block (this_frame)) |
| 2301 | return 1; |
| 2302 | |
| 2303 | return 0; |
| 2304 | } |
| 2305 | |
| 2306 | static const struct frame_unwind hppa_frame_unwind = |
| 2307 | { |
| 2308 | NORMAL_FRAME, |
| 2309 | default_frame_unwind_stop_reason, |
| 2310 | hppa_frame_this_id, |
| 2311 | hppa_frame_prev_register, |
| 2312 | NULL, |
| 2313 | hppa_frame_unwind_sniffer |
| 2314 | }; |
| 2315 | |
| 2316 | /* This is a generic fallback frame unwinder that kicks in if we fail all |
| 2317 | the other ones. Normally we would expect the stub and regular unwinder |
| 2318 | to work, but in some cases we might hit a function that just doesn't |
| 2319 | have any unwind information available. In this case we try to do |
| 2320 | unwinding solely based on code reading. This is obviously going to be |
| 2321 | slow, so only use this as a last resort. Currently this will only |
| 2322 | identify the stack and pc for the frame. */ |
| 2323 | |
| 2324 | static struct hppa_frame_cache * |
| 2325 | hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache) |
| 2326 | { |
| 2327 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| 2328 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 2329 | struct hppa_frame_cache *cache; |
| 2330 | unsigned int frame_size = 0; |
| 2331 | int found_rp = 0; |
| 2332 | CORE_ADDR start_pc; |
| 2333 | |
| 2334 | if (hppa_debug) |
| 2335 | fprintf_unfiltered (gdb_stdlog, |
| 2336 | "{ hppa_fallback_frame_cache (frame=%d) -> ", |
| 2337 | frame_relative_level (this_frame)); |
| 2338 | |
| 2339 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
| 2340 | (*this_cache) = cache; |
| 2341 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| 2342 | |
| 2343 | start_pc = get_frame_func (this_frame); |
| 2344 | if (start_pc) |
| 2345 | { |
| 2346 | CORE_ADDR cur_pc = get_frame_pc (this_frame); |
| 2347 | CORE_ADDR pc; |
| 2348 | |
| 2349 | for (pc = start_pc; pc < cur_pc; pc += 4) |
| 2350 | { |
| 2351 | unsigned int insn; |
| 2352 | |
| 2353 | insn = read_memory_unsigned_integer (pc, 4, byte_order); |
| 2354 | frame_size += prologue_inst_adjust_sp (insn); |
| 2355 | |
| 2356 | /* There are limited ways to store the return pointer into the |
| 2357 | stack. */ |
| 2358 | if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ |
| 2359 | { |
| 2360 | cache->saved_regs[HPPA_RP_REGNUM].addr = -20; |
| 2361 | found_rp = 1; |
| 2362 | } |
| 2363 | else if (insn == 0x0fc212c1 |
| 2364 | || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ |
| 2365 | { |
| 2366 | cache->saved_regs[HPPA_RP_REGNUM].addr = -16; |
| 2367 | found_rp = 1; |
| 2368 | } |
| 2369 | } |
| 2370 | } |
| 2371 | |
| 2372 | if (hppa_debug) |
| 2373 | fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n", |
| 2374 | frame_size, found_rp); |
| 2375 | |
| 2376 | cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
| 2377 | cache->base -= frame_size; |
| 2378 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); |
| 2379 | |
| 2380 | if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) |
| 2381 | { |
| 2382 | cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base; |
| 2383 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = |
| 2384 | cache->saved_regs[HPPA_RP_REGNUM]; |
| 2385 | } |
| 2386 | else |
| 2387 | { |
| 2388 | ULONGEST rp; |
| 2389 | rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM); |
| 2390 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); |
| 2391 | } |
| 2392 | |
| 2393 | return cache; |
| 2394 | } |
| 2395 | |
| 2396 | static void |
| 2397 | hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache, |
| 2398 | struct frame_id *this_id) |
| 2399 | { |
| 2400 | struct hppa_frame_cache *info = |
| 2401 | hppa_fallback_frame_cache (this_frame, this_cache); |
| 2402 | |
| 2403 | (*this_id) = frame_id_build (info->base, get_frame_func (this_frame)); |
| 2404 | } |
| 2405 | |
| 2406 | static struct value * |
| 2407 | hppa_fallback_frame_prev_register (struct frame_info *this_frame, |
| 2408 | void **this_cache, int regnum) |
| 2409 | { |
| 2410 | struct hppa_frame_cache *info |
| 2411 | = hppa_fallback_frame_cache (this_frame, this_cache); |
| 2412 | |
| 2413 | return hppa_frame_prev_register_helper (this_frame, |
| 2414 | info->saved_regs, regnum); |
| 2415 | } |
| 2416 | |
| 2417 | static const struct frame_unwind hppa_fallback_frame_unwind = |
| 2418 | { |
| 2419 | NORMAL_FRAME, |
| 2420 | default_frame_unwind_stop_reason, |
| 2421 | hppa_fallback_frame_this_id, |
| 2422 | hppa_fallback_frame_prev_register, |
| 2423 | NULL, |
| 2424 | default_frame_sniffer |
| 2425 | }; |
| 2426 | |
| 2427 | /* Stub frames, used for all kinds of call stubs. */ |
| 2428 | struct hppa_stub_unwind_cache |
| 2429 | { |
| 2430 | CORE_ADDR base; |
| 2431 | struct trad_frame_saved_reg *saved_regs; |
| 2432 | }; |
| 2433 | |
| 2434 | static struct hppa_stub_unwind_cache * |
| 2435 | hppa_stub_frame_unwind_cache (struct frame_info *this_frame, |
| 2436 | void **this_cache) |
| 2437 | { |
| 2438 | struct hppa_stub_unwind_cache *info; |
| 2439 | |
| 2440 | if (*this_cache) |
| 2441 | return (struct hppa_stub_unwind_cache *) *this_cache; |
| 2442 | |
| 2443 | info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache); |
| 2444 | *this_cache = info; |
| 2445 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| 2446 | |
| 2447 | info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
| 2448 | |
| 2449 | /* By default we assume that stubs do not change the rp. */ |
| 2450 | info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM; |
| 2451 | |
| 2452 | return info; |
| 2453 | } |
| 2454 | |
| 2455 | static void |
| 2456 | hppa_stub_frame_this_id (struct frame_info *this_frame, |
| 2457 | void **this_prologue_cache, |
| 2458 | struct frame_id *this_id) |
| 2459 | { |
| 2460 | struct hppa_stub_unwind_cache *info |
| 2461 | = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
| 2462 | |
| 2463 | if (info) |
| 2464 | *this_id = frame_id_build (info->base, get_frame_func (this_frame)); |
| 2465 | } |
| 2466 | |
| 2467 | static struct value * |
| 2468 | hppa_stub_frame_prev_register (struct frame_info *this_frame, |
| 2469 | void **this_prologue_cache, int regnum) |
| 2470 | { |
| 2471 | struct hppa_stub_unwind_cache *info |
| 2472 | = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
| 2473 | |
| 2474 | if (info == NULL) |
| 2475 | error (_("Requesting registers from null frame.")); |
| 2476 | |
| 2477 | return hppa_frame_prev_register_helper (this_frame, |
| 2478 | info->saved_regs, regnum); |
| 2479 | } |
| 2480 | |
| 2481 | static int |
| 2482 | hppa_stub_unwind_sniffer (const struct frame_unwind *self, |
| 2483 | struct frame_info *this_frame, |
| 2484 | void **this_cache) |
| 2485 | { |
| 2486 | CORE_ADDR pc = get_frame_address_in_block (this_frame); |
| 2487 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| 2488 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 2489 | |
| 2490 | if (pc == 0 |
| 2491 | || (tdep->in_solib_call_trampoline != NULL |
| 2492 | && tdep->in_solib_call_trampoline (gdbarch, pc)) |
| 2493 | || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL)) |
| 2494 | return 1; |
| 2495 | return 0; |
| 2496 | } |
| 2497 | |
| 2498 | static const struct frame_unwind hppa_stub_frame_unwind = { |
| 2499 | NORMAL_FRAME, |
| 2500 | default_frame_unwind_stop_reason, |
| 2501 | hppa_stub_frame_this_id, |
| 2502 | hppa_stub_frame_prev_register, |
| 2503 | NULL, |
| 2504 | hppa_stub_unwind_sniffer |
| 2505 | }; |
| 2506 | |
| 2507 | CORE_ADDR |
| 2508 | hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
| 2509 | { |
| 2510 | ULONGEST ipsw; |
| 2511 | CORE_ADDR pc; |
| 2512 | |
| 2513 | ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM); |
| 2514 | pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM); |
| 2515 | |
| 2516 | /* If the current instruction is nullified, then we are effectively |
| 2517 | still executing the previous instruction. Pretend we are still |
| 2518 | there. This is needed when single stepping; if the nullified |
| 2519 | instruction is on a different line, we don't want GDB to think |
| 2520 | we've stepped onto that line. */ |
| 2521 | if (ipsw & 0x00200000) |
| 2522 | pc -= 4; |
| 2523 | |
| 2524 | return pc & ~0x3; |
| 2525 | } |
| 2526 | |
| 2527 | /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE. |
| 2528 | Return NULL if no such symbol was found. */ |
| 2529 | |
| 2530 | struct bound_minimal_symbol |
| 2531 | hppa_lookup_stub_minimal_symbol (const char *name, |
| 2532 | enum unwind_stub_types stub_type) |
| 2533 | { |
| 2534 | struct bound_minimal_symbol result = { NULL, NULL }; |
| 2535 | |
| 2536 | for (objfile *objfile : current_program_space->objfiles ()) |
| 2537 | { |
| 2538 | for (minimal_symbol *msym : objfile->msymbols ()) |
| 2539 | { |
| 2540 | if (strcmp (msym->linkage_name (), name) == 0) |
| 2541 | { |
| 2542 | struct unwind_table_entry *u; |
| 2543 | |
| 2544 | u = find_unwind_entry (MSYMBOL_VALUE (msym)); |
| 2545 | if (u != NULL && u->stub_unwind.stub_type == stub_type) |
| 2546 | { |
| 2547 | result.objfile = objfile; |
| 2548 | result.minsym = msym; |
| 2549 | return result; |
| 2550 | } |
| 2551 | } |
| 2552 | } |
| 2553 | } |
| 2554 | |
| 2555 | return result; |
| 2556 | } |
| 2557 | |
| 2558 | static void |
| 2559 | unwind_command (const char *exp, int from_tty) |
| 2560 | { |
| 2561 | CORE_ADDR address; |
| 2562 | struct unwind_table_entry *u; |
| 2563 | |
| 2564 | /* If we have an expression, evaluate it and use it as the address. */ |
| 2565 | |
| 2566 | if (exp != 0 && *exp != 0) |
| 2567 | address = parse_and_eval_address (exp); |
| 2568 | else |
| 2569 | return; |
| 2570 | |
| 2571 | u = find_unwind_entry (address); |
| 2572 | |
| 2573 | if (!u) |
| 2574 | { |
| 2575 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); |
| 2576 | return; |
| 2577 | } |
| 2578 | |
| 2579 | printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u)); |
| 2580 | |
| 2581 | printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start)); |
| 2582 | |
| 2583 | printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end)); |
| 2584 | |
| 2585 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
| 2586 | |
| 2587 | printf_unfiltered ("\n\tflags ="); |
| 2588 | pif (Cannot_unwind); |
| 2589 | pif (Millicode); |
| 2590 | pif (Millicode_save_sr0); |
| 2591 | pif (Entry_SR); |
| 2592 | pif (Args_stored); |
| 2593 | pif (Variable_Frame); |
| 2594 | pif (Separate_Package_Body); |
| 2595 | pif (Frame_Extension_Millicode); |
| 2596 | pif (Stack_Overflow_Check); |
| 2597 | pif (Two_Instruction_SP_Increment); |
| 2598 | pif (sr4export); |
| 2599 | pif (cxx_info); |
| 2600 | pif (cxx_try_catch); |
| 2601 | pif (sched_entry_seq); |
| 2602 | pif (Save_SP); |
| 2603 | pif (Save_RP); |
| 2604 | pif (Save_MRP_in_frame); |
| 2605 | pif (save_r19); |
| 2606 | pif (Cleanup_defined); |
| 2607 | pif (MPE_XL_interrupt_marker); |
| 2608 | pif (HP_UX_interrupt_marker); |
| 2609 | pif (Large_frame); |
| 2610 | pif (alloca_frame); |
| 2611 | |
| 2612 | putchar_unfiltered ('\n'); |
| 2613 | |
| 2614 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
| 2615 | |
| 2616 | pin (Region_description); |
| 2617 | pin (Entry_FR); |
| 2618 | pin (Entry_GR); |
| 2619 | pin (Total_frame_size); |
| 2620 | |
| 2621 | if (u->stub_unwind.stub_type) |
| 2622 | { |
| 2623 | printf_unfiltered ("\tstub type = "); |
| 2624 | switch (u->stub_unwind.stub_type) |
| 2625 | { |
| 2626 | case LONG_BRANCH: |
| 2627 | printf_unfiltered ("long branch\n"); |
| 2628 | break; |
| 2629 | case PARAMETER_RELOCATION: |
| 2630 | printf_unfiltered ("parameter relocation\n"); |
| 2631 | break; |
| 2632 | case EXPORT: |
| 2633 | printf_unfiltered ("export\n"); |
| 2634 | break; |
| 2635 | case IMPORT: |
| 2636 | printf_unfiltered ("import\n"); |
| 2637 | break; |
| 2638 | case IMPORT_SHLIB: |
| 2639 | printf_unfiltered ("import shlib\n"); |
| 2640 | break; |
| 2641 | default: |
| 2642 | printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type); |
| 2643 | } |
| 2644 | } |
| 2645 | } |
| 2646 | |
| 2647 | /* Return the GDB type object for the "standard" data type of data in |
| 2648 | register REGNUM. */ |
| 2649 | |
| 2650 | static struct type * |
| 2651 | hppa32_register_type (struct gdbarch *gdbarch, int regnum) |
| 2652 | { |
| 2653 | if (regnum < HPPA_FP4_REGNUM) |
| 2654 | return builtin_type (gdbarch)->builtin_uint32; |
| 2655 | else |
| 2656 | return builtin_type (gdbarch)->builtin_float; |
| 2657 | } |
| 2658 | |
| 2659 | static struct type * |
| 2660 | hppa64_register_type (struct gdbarch *gdbarch, int regnum) |
| 2661 | { |
| 2662 | if (regnum < HPPA64_FP4_REGNUM) |
| 2663 | return builtin_type (gdbarch)->builtin_uint64; |
| 2664 | else |
| 2665 | return builtin_type (gdbarch)->builtin_double; |
| 2666 | } |
| 2667 | |
| 2668 | /* Return non-zero if REGNUM is not a register available to the user |
| 2669 | through ptrace/ttrace. */ |
| 2670 | |
| 2671 | static int |
| 2672 | hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum) |
| 2673 | { |
| 2674 | return (regnum == 0 |
| 2675 | || regnum == HPPA_PCSQ_HEAD_REGNUM |
| 2676 | || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) |
| 2677 | || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM)); |
| 2678 | } |
| 2679 | |
| 2680 | static int |
| 2681 | hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) |
| 2682 | { |
| 2683 | /* cr26 and cr27 are readable (but not writable) from userspace. */ |
| 2684 | if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) |
| 2685 | return 0; |
| 2686 | else |
| 2687 | return hppa32_cannot_store_register (gdbarch, regnum); |
| 2688 | } |
| 2689 | |
| 2690 | static int |
| 2691 | hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum) |
| 2692 | { |
| 2693 | return (regnum == 0 |
| 2694 | || regnum == HPPA_PCSQ_HEAD_REGNUM |
| 2695 | || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) |
| 2696 | || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM)); |
| 2697 | } |
| 2698 | |
| 2699 | static int |
| 2700 | hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) |
| 2701 | { |
| 2702 | /* cr26 and cr27 are readable (but not writable) from userspace. */ |
| 2703 | if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) |
| 2704 | return 0; |
| 2705 | else |
| 2706 | return hppa64_cannot_store_register (gdbarch, regnum); |
| 2707 | } |
| 2708 | |
| 2709 | static CORE_ADDR |
| 2710 | hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr) |
| 2711 | { |
| 2712 | /* The low two bits of the PC on the PA contain the privilege level. |
| 2713 | Some genius implementing a (non-GCC) compiler apparently decided |
| 2714 | this means that "addresses" in a text section therefore include a |
| 2715 | privilege level, and thus symbol tables should contain these bits. |
| 2716 | This seems like a bonehead thing to do--anyway, it seems to work |
| 2717 | for our purposes to just ignore those bits. */ |
| 2718 | |
| 2719 | return (addr &= ~0x3); |
| 2720 | } |
| 2721 | |
| 2722 | /* Get the ARGIth function argument for the current function. */ |
| 2723 | |
| 2724 | static CORE_ADDR |
| 2725 | hppa_fetch_pointer_argument (struct frame_info *frame, int argi, |
| 2726 | struct type *type) |
| 2727 | { |
| 2728 | return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi); |
| 2729 | } |
| 2730 | |
| 2731 | static enum register_status |
| 2732 | hppa_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
| 2733 | int regnum, gdb_byte *buf) |
| 2734 | { |
| 2735 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 2736 | ULONGEST tmp; |
| 2737 | enum register_status status; |
| 2738 | |
| 2739 | status = regcache->raw_read (regnum, &tmp); |
| 2740 | if (status == REG_VALID) |
| 2741 | { |
| 2742 | if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM) |
| 2743 | tmp &= ~0x3; |
| 2744 | store_unsigned_integer (buf, sizeof tmp, byte_order, tmp); |
| 2745 | } |
| 2746 | return status; |
| 2747 | } |
| 2748 | |
| 2749 | static CORE_ADDR |
| 2750 | hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function) |
| 2751 | { |
| 2752 | return 0; |
| 2753 | } |
| 2754 | |
| 2755 | struct value * |
| 2756 | hppa_frame_prev_register_helper (struct frame_info *this_frame, |
| 2757 | struct trad_frame_saved_reg saved_regs[], |
| 2758 | int regnum) |
| 2759 | { |
| 2760 | struct gdbarch *arch = get_frame_arch (this_frame); |
| 2761 | enum bfd_endian byte_order = gdbarch_byte_order (arch); |
| 2762 | |
| 2763 | if (regnum == HPPA_PCOQ_TAIL_REGNUM) |
| 2764 | { |
| 2765 | int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM); |
| 2766 | CORE_ADDR pc; |
| 2767 | struct value *pcoq_val = |
| 2768 | trad_frame_get_prev_register (this_frame, saved_regs, |
| 2769 | HPPA_PCOQ_HEAD_REGNUM); |
| 2770 | |
| 2771 | pc = extract_unsigned_integer (value_contents_all (pcoq_val), |
| 2772 | size, byte_order); |
| 2773 | return frame_unwind_got_constant (this_frame, regnum, pc + 4); |
| 2774 | } |
| 2775 | |
| 2776 | return trad_frame_get_prev_register (this_frame, saved_regs, regnum); |
| 2777 | } |
| 2778 | \f |
| 2779 | |
| 2780 | /* An instruction to match. */ |
| 2781 | struct insn_pattern |
| 2782 | { |
| 2783 | unsigned int data; /* See if it matches this.... */ |
| 2784 | unsigned int mask; /* ... with this mask. */ |
| 2785 | }; |
| 2786 | |
| 2787 | /* See bfd/elf32-hppa.c */ |
| 2788 | static struct insn_pattern hppa_long_branch_stub[] = { |
| 2789 | /* ldil LR'xxx,%r1 */ |
| 2790 | { 0x20200000, 0xffe00000 }, |
| 2791 | /* be,n RR'xxx(%sr4,%r1) */ |
| 2792 | { 0xe0202002, 0xffe02002 }, |
| 2793 | { 0, 0 } |
| 2794 | }; |
| 2795 | |
| 2796 | static struct insn_pattern hppa_long_branch_pic_stub[] = { |
| 2797 | /* b,l .+8, %r1 */ |
| 2798 | { 0xe8200000, 0xffe00000 }, |
| 2799 | /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */ |
| 2800 | { 0x28200000, 0xffe00000 }, |
| 2801 | /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */ |
| 2802 | { 0xe0202002, 0xffe02002 }, |
| 2803 | { 0, 0 } |
| 2804 | }; |
| 2805 | |
| 2806 | static struct insn_pattern hppa_import_stub[] = { |
| 2807 | /* addil LR'xxx, %dp */ |
| 2808 | { 0x2b600000, 0xffe00000 }, |
| 2809 | /* ldw RR'xxx(%r1), %r21 */ |
| 2810 | { 0x48350000, 0xffffb000 }, |
| 2811 | /* bv %r0(%r21) */ |
| 2812 | { 0xeaa0c000, 0xffffffff }, |
| 2813 | /* ldw RR'xxx+4(%r1), %r19 */ |
| 2814 | { 0x48330000, 0xffffb000 }, |
| 2815 | { 0, 0 } |
| 2816 | }; |
| 2817 | |
| 2818 | static struct insn_pattern hppa_import_pic_stub[] = { |
| 2819 | /* addil LR'xxx,%r19 */ |
| 2820 | { 0x2a600000, 0xffe00000 }, |
| 2821 | /* ldw RR'xxx(%r1),%r21 */ |
| 2822 | { 0x48350000, 0xffffb000 }, |
| 2823 | /* bv %r0(%r21) */ |
| 2824 | { 0xeaa0c000, 0xffffffff }, |
| 2825 | /* ldw RR'xxx+4(%r1),%r19 */ |
| 2826 | { 0x48330000, 0xffffb000 }, |
| 2827 | { 0, 0 }, |
| 2828 | }; |
| 2829 | |
| 2830 | static struct insn_pattern hppa_plt_stub[] = { |
| 2831 | /* b,l 1b, %r20 - 1b is 3 insns before here */ |
| 2832 | { 0xea9f1fdd, 0xffffffff }, |
| 2833 | /* depi 0,31,2,%r20 */ |
| 2834 | { 0xd6801c1e, 0xffffffff }, |
| 2835 | { 0, 0 } |
| 2836 | }; |
| 2837 | |
| 2838 | /* Maximum number of instructions on the patterns above. */ |
| 2839 | #define HPPA_MAX_INSN_PATTERN_LEN 4 |
| 2840 | |
| 2841 | /* Return non-zero if the instructions at PC match the series |
| 2842 | described in PATTERN, or zero otherwise. PATTERN is an array of |
| 2843 | 'struct insn_pattern' objects, terminated by an entry whose mask is |
| 2844 | zero. |
| 2845 | |
| 2846 | When the match is successful, fill INSN[i] with what PATTERN[i] |
| 2847 | matched. */ |
| 2848 | |
| 2849 | static int |
| 2850 | hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc, |
| 2851 | struct insn_pattern *pattern, unsigned int *insn) |
| 2852 | { |
| 2853 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 2854 | CORE_ADDR npc = pc; |
| 2855 | int i; |
| 2856 | |
| 2857 | for (i = 0; pattern[i].mask; i++) |
| 2858 | { |
| 2859 | gdb_byte buf[HPPA_INSN_SIZE]; |
| 2860 | |
| 2861 | target_read_memory (npc, buf, HPPA_INSN_SIZE); |
| 2862 | insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order); |
| 2863 | if ((insn[i] & pattern[i].mask) == pattern[i].data) |
| 2864 | npc += 4; |
| 2865 | else |
| 2866 | return 0; |
| 2867 | } |
| 2868 | |
| 2869 | return 1; |
| 2870 | } |
| 2871 | |
| 2872 | /* This relaxed version of the instruction matcher allows us to match |
| 2873 | from somewhere inside the pattern, by looking backwards in the |
| 2874 | instruction scheme. */ |
| 2875 | |
| 2876 | static int |
| 2877 | hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc, |
| 2878 | struct insn_pattern *pattern, unsigned int *insn) |
| 2879 | { |
| 2880 | int offset, len = 0; |
| 2881 | |
| 2882 | while (pattern[len].mask) |
| 2883 | len++; |
| 2884 | |
| 2885 | for (offset = 0; offset < len; offset++) |
| 2886 | if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE, |
| 2887 | pattern, insn)) |
| 2888 | return 1; |
| 2889 | |
| 2890 | return 0; |
| 2891 | } |
| 2892 | |
| 2893 | static int |
| 2894 | hppa_in_dyncall (CORE_ADDR pc) |
| 2895 | { |
| 2896 | struct unwind_table_entry *u; |
| 2897 | |
| 2898 | u = find_unwind_entry (hppa_symbol_address ("$$dyncall")); |
| 2899 | if (!u) |
| 2900 | return 0; |
| 2901 | |
| 2902 | return (pc >= u->region_start && pc <= u->region_end); |
| 2903 | } |
| 2904 | |
| 2905 | int |
| 2906 | hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc) |
| 2907 | { |
| 2908 | unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; |
| 2909 | struct unwind_table_entry *u; |
| 2910 | |
| 2911 | if (in_plt_section (pc) || hppa_in_dyncall (pc)) |
| 2912 | return 1; |
| 2913 | |
| 2914 | /* The GNU toolchain produces linker stubs without unwind |
| 2915 | information. Since the pattern matching for linker stubs can be |
| 2916 | quite slow, so bail out if we do have an unwind entry. */ |
| 2917 | |
| 2918 | u = find_unwind_entry (pc); |
| 2919 | if (u != NULL) |
| 2920 | return 0; |
| 2921 | |
| 2922 | return |
| 2923 | (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn) |
| 2924 | || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn) |
| 2925 | || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn) |
| 2926 | || hppa_match_insns_relaxed (gdbarch, pc, |
| 2927 | hppa_long_branch_pic_stub, insn)); |
| 2928 | } |
| 2929 | |
| 2930 | /* This code skips several kind of "trampolines" used on PA-RISC |
| 2931 | systems: $$dyncall, import stubs and PLT stubs. */ |
| 2932 | |
| 2933 | CORE_ADDR |
| 2934 | hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) |
| 2935 | { |
| 2936 | struct gdbarch *gdbarch = get_frame_arch (frame); |
| 2937 | struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; |
| 2938 | |
| 2939 | unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; |
| 2940 | int dp_rel; |
| 2941 | |
| 2942 | /* $$dyncall handles both PLABELs and direct addresses. */ |
| 2943 | if (hppa_in_dyncall (pc)) |
| 2944 | { |
| 2945 | pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22); |
| 2946 | |
| 2947 | /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */ |
| 2948 | if (pc & 0x2) |
| 2949 | pc = read_memory_typed_address (pc & ~0x3, func_ptr_type); |
| 2950 | |
| 2951 | return pc; |
| 2952 | } |
| 2953 | |
| 2954 | dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn); |
| 2955 | if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn)) |
| 2956 | { |
| 2957 | /* Extract the target address from the addil/ldw sequence. */ |
| 2958 | pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]); |
| 2959 | |
| 2960 | if (dp_rel) |
| 2961 | pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM); |
| 2962 | else |
| 2963 | pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19); |
| 2964 | |
| 2965 | /* fallthrough */ |
| 2966 | } |
| 2967 | |
| 2968 | if (in_plt_section (pc)) |
| 2969 | { |
| 2970 | pc = read_memory_typed_address (pc, func_ptr_type); |
| 2971 | |
| 2972 | /* If the PLT slot has not yet been resolved, the target will be |
| 2973 | the PLT stub. */ |
| 2974 | if (in_plt_section (pc)) |
| 2975 | { |
| 2976 | /* Sanity check: are we pointing to the PLT stub? */ |
| 2977 | if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn)) |
| 2978 | { |
| 2979 | warning (_("Cannot resolve PLT stub at %s."), |
| 2980 | paddress (gdbarch, pc)); |
| 2981 | return 0; |
| 2982 | } |
| 2983 | |
| 2984 | /* This should point to the fixup routine. */ |
| 2985 | pc = read_memory_typed_address (pc + 8, func_ptr_type); |
| 2986 | } |
| 2987 | } |
| 2988 | |
| 2989 | return pc; |
| 2990 | } |
| 2991 | \f |
| 2992 | |
| 2993 | /* Here is a table of C type sizes on hppa with various compiles |
| 2994 | and options. I measured this on PA 9000/800 with HP-UX 11.11 |
| 2995 | and these compilers: |
| 2996 | |
| 2997 | /usr/ccs/bin/cc HP92453-01 A.11.01.21 |
| 2998 | /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP |
| 2999 | /opt/aCC/bin/aCC B3910B A.03.45 |
| 3000 | gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11 |
| 3001 | |
| 3002 | cc : 1 2 4 4 8 : 4 8 -- : 4 4 |
| 3003 | ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 |
| 3004 | ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 |
| 3005 | ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 |
| 3006 | acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 |
| 3007 | acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 |
| 3008 | acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 |
| 3009 | gcc : 1 2 4 4 8 : 4 8 16 : 4 4 |
| 3010 | |
| 3011 | Each line is: |
| 3012 | |
| 3013 | compiler and options |
| 3014 | char, short, int, long, long long |
| 3015 | float, double, long double |
| 3016 | char *, void (*)() |
| 3017 | |
| 3018 | So all these compilers use either ILP32 or LP64 model. |
| 3019 | TODO: gcc has more options so it needs more investigation. |
| 3020 | |
| 3021 | For floating point types, see: |
| 3022 | |
| 3023 | http://docs.hp.com/hpux/pdf/B3906-90006.pdf |
| 3024 | HP-UX floating-point guide, hpux 11.00 |
| 3025 | |
| 3026 | -- chastain 2003-12-18 */ |
| 3027 | |
| 3028 | static struct gdbarch * |
| 3029 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
| 3030 | { |
| 3031 | struct gdbarch_tdep *tdep; |
| 3032 | struct gdbarch *gdbarch; |
| 3033 | |
| 3034 | /* find a candidate among the list of pre-declared architectures. */ |
| 3035 | arches = gdbarch_list_lookup_by_info (arches, &info); |
| 3036 | if (arches != NULL) |
| 3037 | return (arches->gdbarch); |
| 3038 | |
| 3039 | /* If none found, then allocate and initialize one. */ |
| 3040 | tdep = XCNEW (struct gdbarch_tdep); |
| 3041 | gdbarch = gdbarch_alloc (&info, tdep); |
| 3042 | |
| 3043 | /* Determine from the bfd_arch_info structure if we are dealing with |
| 3044 | a 32 or 64 bits architecture. If the bfd_arch_info is not available, |
| 3045 | then default to a 32bit machine. */ |
| 3046 | if (info.bfd_arch_info != NULL) |
| 3047 | tdep->bytes_per_address = |
| 3048 | info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte; |
| 3049 | else |
| 3050 | tdep->bytes_per_address = 4; |
| 3051 | |
| 3052 | tdep->find_global_pointer = hppa_find_global_pointer; |
| 3053 | |
| 3054 | /* Some parts of the gdbarch vector depend on whether we are running |
| 3055 | on a 32 bits or 64 bits target. */ |
| 3056 | switch (tdep->bytes_per_address) |
| 3057 | { |
| 3058 | case 4: |
| 3059 | set_gdbarch_num_regs (gdbarch, hppa32_num_regs); |
| 3060 | set_gdbarch_register_name (gdbarch, hppa32_register_name); |
| 3061 | set_gdbarch_register_type (gdbarch, hppa32_register_type); |
| 3062 | set_gdbarch_cannot_store_register (gdbarch, |
| 3063 | hppa32_cannot_store_register); |
| 3064 | set_gdbarch_cannot_fetch_register (gdbarch, |
| 3065 | hppa32_cannot_fetch_register); |
| 3066 | break; |
| 3067 | case 8: |
| 3068 | set_gdbarch_num_regs (gdbarch, hppa64_num_regs); |
| 3069 | set_gdbarch_register_name (gdbarch, hppa64_register_name); |
| 3070 | set_gdbarch_register_type (gdbarch, hppa64_register_type); |
| 3071 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum); |
| 3072 | set_gdbarch_cannot_store_register (gdbarch, |
| 3073 | hppa64_cannot_store_register); |
| 3074 | set_gdbarch_cannot_fetch_register (gdbarch, |
| 3075 | hppa64_cannot_fetch_register); |
| 3076 | break; |
| 3077 | default: |
| 3078 | internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"), |
| 3079 | tdep->bytes_per_address); |
| 3080 | } |
| 3081 | |
| 3082 | set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
| 3083 | set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
| 3084 | |
| 3085 | /* The following gdbarch vector elements are the same in both ILP32 |
| 3086 | and LP64, but might show differences some day. */ |
| 3087 | set_gdbarch_long_long_bit (gdbarch, 64); |
| 3088 | set_gdbarch_long_double_bit (gdbarch, 128); |
| 3089 | set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad); |
| 3090 | |
| 3091 | /* The following gdbarch vector elements do not depend on the address |
| 3092 | size, or in any other gdbarch element previously set. */ |
| 3093 | set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); |
| 3094 | set_gdbarch_stack_frame_destroyed_p (gdbarch, |
| 3095 | hppa_stack_frame_destroyed_p); |
| 3096 | set_gdbarch_inner_than (gdbarch, core_addr_greaterthan); |
| 3097 | set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM); |
| 3098 | set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM); |
| 3099 | set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove); |
| 3100 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); |
| 3101 | set_gdbarch_read_pc (gdbarch, hppa_read_pc); |
| 3102 | set_gdbarch_write_pc (gdbarch, hppa_write_pc); |
| 3103 | |
| 3104 | /* Helper for function argument information. */ |
| 3105 | set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument); |
| 3106 | |
| 3107 | /* When a hardware watchpoint triggers, we'll move the inferior past |
| 3108 | it by removing all eventpoints; stepping past the instruction |
| 3109 | that caused the trigger; reinserting eventpoints; and checking |
| 3110 | whether any watched location changed. */ |
| 3111 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); |
| 3112 | |
| 3113 | /* Inferior function call methods. */ |
| 3114 | switch (tdep->bytes_per_address) |
| 3115 | { |
| 3116 | case 4: |
| 3117 | set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call); |
| 3118 | set_gdbarch_frame_align (gdbarch, hppa32_frame_align); |
| 3119 | set_gdbarch_convert_from_func_ptr_addr |
| 3120 | (gdbarch, hppa32_convert_from_func_ptr_addr); |
| 3121 | break; |
| 3122 | case 8: |
| 3123 | set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call); |
| 3124 | set_gdbarch_frame_align (gdbarch, hppa64_frame_align); |
| 3125 | break; |
| 3126 | default: |
| 3127 | internal_error (__FILE__, __LINE__, _("bad switch")); |
| 3128 | } |
| 3129 | |
| 3130 | /* Struct return methods. */ |
| 3131 | switch (tdep->bytes_per_address) |
| 3132 | { |
| 3133 | case 4: |
| 3134 | set_gdbarch_return_value (gdbarch, hppa32_return_value); |
| 3135 | break; |
| 3136 | case 8: |
| 3137 | set_gdbarch_return_value (gdbarch, hppa64_return_value); |
| 3138 | break; |
| 3139 | default: |
| 3140 | internal_error (__FILE__, __LINE__, _("bad switch")); |
| 3141 | } |
| 3142 | |
| 3143 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc); |
| 3144 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind); |
| 3145 | set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read); |
| 3146 | |
| 3147 | /* Frame unwind methods. */ |
| 3148 | set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc); |
| 3149 | |
| 3150 | /* Hook in ABI-specific overrides, if they have been registered. */ |
| 3151 | gdbarch_init_osabi (info, gdbarch); |
| 3152 | |
| 3153 | /* Hook in the default unwinders. */ |
| 3154 | frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind); |
| 3155 | frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind); |
| 3156 | frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind); |
| 3157 | |
| 3158 | return gdbarch; |
| 3159 | } |
| 3160 | |
| 3161 | static void |
| 3162 | hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
| 3163 | { |
| 3164 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 3165 | |
| 3166 | fprintf_unfiltered (file, "bytes_per_address = %d\n", |
| 3167 | tdep->bytes_per_address); |
| 3168 | fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no"); |
| 3169 | } |
| 3170 | |
| 3171 | void _initialize_hppa_tdep (); |
| 3172 | void |
| 3173 | _initialize_hppa_tdep () |
| 3174 | { |
| 3175 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); |
| 3176 | |
| 3177 | add_cmd ("unwind", class_maintenance, unwind_command, |
| 3178 | _("Print unwind table entry at given address."), |
| 3179 | &maintenanceprintlist); |
| 3180 | |
| 3181 | /* Debug this files internals. */ |
| 3182 | add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\ |
| 3183 | Set whether hppa target specific debugging information should be displayed."), |
| 3184 | _("\ |
| 3185 | Show whether hppa target specific debugging information is displayed."), _("\ |
| 3186 | This flag controls whether hppa target specific debugging information is\n\ |
| 3187 | displayed. This information is particularly useful for debugging frame\n\ |
| 3188 | unwinding problems."), |
| 3189 | NULL, |
| 3190 | NULL, /* FIXME: i18n: hppa debug flag is %s. */ |
| 3191 | &setdebuglist, &showdebuglist); |
| 3192 | } |