| 1 | /* Native support code for HPUX PA-RISC. |
| 2 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1998, 1999 |
| 3 | Free Software Foundation, Inc. |
| 4 | |
| 5 | Contributed by the Center for Software Science at the |
| 6 | University of Utah (pa-gdb-bugs@cs.utah.edu). |
| 7 | |
| 8 | This file is part of GDB. |
| 9 | |
| 10 | This program is free software; you can redistribute it and/or modify |
| 11 | it under the terms of the GNU General Public License as published by |
| 12 | the Free Software Foundation; either version 2 of the License, or |
| 13 | (at your option) any later version. |
| 14 | |
| 15 | This program is distributed in the hope that it will be useful, |
| 16 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 18 | GNU General Public License for more details. |
| 19 | |
| 20 | You should have received a copy of the GNU General Public License |
| 21 | along with this program; if not, write to the Free Software |
| 22 | Foundation, Inc., 59 Temple Place - Suite 330, |
| 23 | Boston, MA 02111-1307, USA. */ |
| 24 | |
| 25 | |
| 26 | #include "defs.h" |
| 27 | #include "inferior.h" |
| 28 | #include "target.h" |
| 29 | #include <sys/ptrace.h> |
| 30 | #include "gdbcore.h" |
| 31 | #include "gdb_wait.h" |
| 32 | #include <signal.h> |
| 33 | |
| 34 | extern CORE_ADDR text_end; |
| 35 | |
| 36 | static void fetch_register (int); |
| 37 | |
| 38 | void |
| 39 | fetch_inferior_registers (regno) |
| 40 | int regno; |
| 41 | { |
| 42 | if (regno == -1) |
| 43 | for (regno = 0; regno < NUM_REGS; regno++) |
| 44 | fetch_register (regno); |
| 45 | else |
| 46 | fetch_register (regno); |
| 47 | } |
| 48 | |
| 49 | /* Our own version of the offsetof macro, since we can't assume ANSI C. */ |
| 50 | #define HPPAH_OFFSETOF(type, member) ((int) (&((type *) 0)->member)) |
| 51 | |
| 52 | /* Store our register values back into the inferior. |
| 53 | If REGNO is -1, do this for all registers. |
| 54 | Otherwise, REGNO specifies which register (so we can save time). */ |
| 55 | |
| 56 | void |
| 57 | store_inferior_registers (regno) |
| 58 | int regno; |
| 59 | { |
| 60 | register unsigned int regaddr; |
| 61 | char buf[80]; |
| 62 | register int i; |
| 63 | unsigned int offset = U_REGS_OFFSET; |
| 64 | int scratch; |
| 65 | |
| 66 | if (regno >= 0) |
| 67 | { |
| 68 | unsigned int addr, len, offset; |
| 69 | |
| 70 | if (CANNOT_STORE_REGISTER (regno)) |
| 71 | return; |
| 72 | |
| 73 | offset = 0; |
| 74 | len = REGISTER_RAW_SIZE (regno); |
| 75 | |
| 76 | /* Requests for register zero actually want the save_state's |
| 77 | ss_flags member. As RM says: "Oh, what a hack!" */ |
| 78 | if (regno == 0) |
| 79 | { |
| 80 | save_state_t ss; |
| 81 | addr = HPPAH_OFFSETOF (save_state_t, ss_flags); |
| 82 | len = sizeof (ss.ss_flags); |
| 83 | |
| 84 | /* Note that ss_flags is always an int, no matter what |
| 85 | REGISTER_RAW_SIZE(0) says. Assuming all HP-UX PA machines |
| 86 | are big-endian, put it at the least significant end of the |
| 87 | value, and zap the rest of the buffer. */ |
| 88 | offset = REGISTER_RAW_SIZE (0) - len; |
| 89 | } |
| 90 | |
| 91 | /* Floating-point registers come from the ss_fpblock area. */ |
| 92 | else if (regno >= FP0_REGNUM) |
| 93 | addr = (HPPAH_OFFSETOF (save_state_t, ss_fpblock) |
| 94 | + (REGISTER_BYTE (regno) - REGISTER_BYTE (FP0_REGNUM))); |
| 95 | |
| 96 | /* Wide registers come from the ss_wide area. |
| 97 | I think it's more PC to test (ss_flags & SS_WIDEREGS) to select |
| 98 | between ss_wide and ss_narrow than to use the raw register size. |
| 99 | But checking ss_flags would require an extra ptrace call for |
| 100 | every register reference. Bleah. */ |
| 101 | else if (len == 8) |
| 102 | addr = (HPPAH_OFFSETOF (save_state_t, ss_wide) |
| 103 | + REGISTER_BYTE (regno)); |
| 104 | |
| 105 | /* Narrow registers come from the ss_narrow area. Note that |
| 106 | ss_narrow starts with gr1, not gr0. */ |
| 107 | else if (len == 4) |
| 108 | addr = (HPPAH_OFFSETOF (save_state_t, ss_narrow) |
| 109 | + (REGISTER_BYTE (regno) - REGISTER_BYTE (1))); |
| 110 | else |
| 111 | internal_error ("hppah-nat.c (write_register): unexpected register size"); |
| 112 | |
| 113 | #ifdef GDB_TARGET_IS_HPPA_20W |
| 114 | /* Unbelieveable. The PC head and tail must be written in 64bit hunks |
| 115 | or we will get an error. Worse yet, the oddball ptrace/ttrace |
| 116 | layering will not allow us to perform a 64bit register store. |
| 117 | |
| 118 | What a crock. */ |
| 119 | if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM && len == 8) |
| 120 | { |
| 121 | CORE_ADDR temp; |
| 122 | |
| 123 | temp = *(CORE_ADDR *)®isters[REGISTER_BYTE (regno)]; |
| 124 | |
| 125 | /* Set the priv level (stored in the low two bits of the PC. */ |
| 126 | temp |= 0x3; |
| 127 | |
| 128 | ttrace_write_reg_64 (inferior_pid, (CORE_ADDR)addr, (CORE_ADDR)&temp); |
| 129 | |
| 130 | /* If we fail to write the PC, give a true error instead of |
| 131 | just a warning. */ |
| 132 | if (errno != 0) |
| 133 | { |
| 134 | char *err = safe_strerror (errno); |
| 135 | char *msg = alloca (strlen (err) + 128); |
| 136 | sprintf (msg, "writing `%s' register: %s", |
| 137 | REGISTER_NAME (regno), err); |
| 138 | perror_with_name (msg); |
| 139 | } |
| 140 | return; |
| 141 | } |
| 142 | |
| 143 | /* Another crock. HPUX complains if you write a nonzero value to |
| 144 | the high part of IPSW. What will it take for HP to catch a |
| 145 | clue about building sensible interfaces? */ |
| 146 | if (regno == IPSW_REGNUM && len == 8) |
| 147 | *(int *)®isters[REGISTER_BYTE (regno)] = 0; |
| 148 | #endif |
| 149 | |
| 150 | for (i = 0; i < len; i += sizeof (int)) |
| 151 | { |
| 152 | errno = 0; |
| 153 | call_ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) addr + i, |
| 154 | *(int *) ®isters[REGISTER_BYTE (regno) + i]); |
| 155 | if (errno != 0) |
| 156 | { |
| 157 | /* Warning, not error, in case we are attached; sometimes |
| 158 | the kernel doesn't let us at the registers. */ |
| 159 | char *err = safe_strerror (errno); |
| 160 | char *msg = alloca (strlen (err) + 128); |
| 161 | sprintf (msg, "writing `%s' register: %s", |
| 162 | REGISTER_NAME (regno), err); |
| 163 | /* If we fail to write the PC, give a true error instead of |
| 164 | just a warning. */ |
| 165 | if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM) |
| 166 | perror_with_name (msg); |
| 167 | else |
| 168 | warning (msg); |
| 169 | return; |
| 170 | } |
| 171 | } |
| 172 | } |
| 173 | else |
| 174 | for (regno = 0; regno < NUM_REGS; regno++) |
| 175 | store_inferior_registers (regno); |
| 176 | } |
| 177 | |
| 178 | |
| 179 | /* Fetch a register's value from the process's U area. */ |
| 180 | static void |
| 181 | fetch_register (regno) |
| 182 | int regno; |
| 183 | { |
| 184 | char buf[MAX_REGISTER_RAW_SIZE]; |
| 185 | unsigned int addr, len, offset; |
| 186 | int i; |
| 187 | |
| 188 | offset = 0; |
| 189 | len = REGISTER_RAW_SIZE (regno); |
| 190 | |
| 191 | /* Requests for register zero actually want the save_state's |
| 192 | ss_flags member. As RM says: "Oh, what a hack!" */ |
| 193 | if (regno == 0) |
| 194 | { |
| 195 | save_state_t ss; |
| 196 | addr = HPPAH_OFFSETOF (save_state_t, ss_flags); |
| 197 | len = sizeof (ss.ss_flags); |
| 198 | |
| 199 | /* Note that ss_flags is always an int, no matter what |
| 200 | REGISTER_RAW_SIZE(0) says. Assuming all HP-UX PA machines |
| 201 | are big-endian, put it at the least significant end of the |
| 202 | value, and zap the rest of the buffer. */ |
| 203 | offset = REGISTER_RAW_SIZE (0) - len; |
| 204 | memset (buf, 0, sizeof (buf)); |
| 205 | } |
| 206 | |
| 207 | /* Floating-point registers come from the ss_fpblock area. */ |
| 208 | else if (regno >= FP0_REGNUM) |
| 209 | addr = (HPPAH_OFFSETOF (save_state_t, ss_fpblock) |
| 210 | + (REGISTER_BYTE (regno) - REGISTER_BYTE (FP0_REGNUM))); |
| 211 | |
| 212 | /* Wide registers come from the ss_wide area. |
| 213 | I think it's more PC to test (ss_flags & SS_WIDEREGS) to select |
| 214 | between ss_wide and ss_narrow than to use the raw register size. |
| 215 | But checking ss_flags would require an extra ptrace call for |
| 216 | every register reference. Bleah. */ |
| 217 | else if (len == 8) |
| 218 | addr = (HPPAH_OFFSETOF (save_state_t, ss_wide) |
| 219 | + REGISTER_BYTE (regno)); |
| 220 | |
| 221 | /* Narrow registers come from the ss_narrow area. Note that |
| 222 | ss_narrow starts with gr1, not gr0. */ |
| 223 | else if (len == 4) |
| 224 | addr = (HPPAH_OFFSETOF (save_state_t, ss_narrow) |
| 225 | + (REGISTER_BYTE (regno) - REGISTER_BYTE (1))); |
| 226 | |
| 227 | else |
| 228 | internal_error ("hppa-nat.c (fetch_register): unexpected register size"); |
| 229 | |
| 230 | for (i = 0; i < len; i += sizeof (int)) |
| 231 | { |
| 232 | errno = 0; |
| 233 | /* Copy an int from the U area to buf. Fill the least |
| 234 | significant end if len != raw_size. */ |
| 235 | * (int *) &buf[offset + i] = |
| 236 | call_ptrace (PT_RUREGS, inferior_pid, |
| 237 | (PTRACE_ARG3_TYPE) addr + i, 0); |
| 238 | if (errno != 0) |
| 239 | { |
| 240 | /* Warning, not error, in case we are attached; sometimes |
| 241 | the kernel doesn't let us at the registers. */ |
| 242 | char *err = safe_strerror (errno); |
| 243 | char *msg = alloca (strlen (err) + 128); |
| 244 | sprintf (msg, "reading `%s' register: %s", |
| 245 | REGISTER_NAME (regno), err); |
| 246 | warning (msg); |
| 247 | return; |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | /* If we're reading an address from the instruction address queue, |
| 252 | mask out the bottom two bits --- they contain the privilege |
| 253 | level. */ |
| 254 | if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM) |
| 255 | buf[len - 1] &= ~0x3; |
| 256 | |
| 257 | supply_register (regno, buf); |
| 258 | } |
| 259 | |
| 260 | |
| 261 | /* Copy LEN bytes to or from inferior's memory starting at MEMADDR |
| 262 | to debugger memory starting at MYADDR. Copy to inferior if |
| 263 | WRITE is nonzero. |
| 264 | |
| 265 | Returns the length copied, which is either the LEN argument or zero. |
| 266 | This xfer function does not do partial moves, since child_ops |
| 267 | doesn't allow memory operations to cross below us in the target stack |
| 268 | anyway. */ |
| 269 | |
| 270 | int |
| 271 | child_xfer_memory (memaddr, myaddr, len, write, target) |
| 272 | CORE_ADDR memaddr; |
| 273 | char *myaddr; |
| 274 | int len; |
| 275 | int write; |
| 276 | struct target_ops *target; /* ignored */ |
| 277 | { |
| 278 | register int i; |
| 279 | /* Round starting address down to longword boundary. */ |
| 280 | register CORE_ADDR addr = memaddr & - (CORE_ADDR)(sizeof (int)); |
| 281 | /* Round ending address up; get number of longwords that makes. */ |
| 282 | register int count |
| 283 | = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int); |
| 284 | |
| 285 | /* Allocate buffer of that many longwords. |
| 286 | Note -- do not use alloca to allocate this buffer since there is no |
| 287 | guarantee of when the buffer will actually be deallocated. |
| 288 | |
| 289 | This routine can be called over and over with the same call chain; |
| 290 | this (in effect) would pile up all those alloca requests until a call |
| 291 | to alloca was made from a point higher than this routine in the |
| 292 | call chain. */ |
| 293 | register int *buffer = (int *) xmalloc (count * sizeof (int)); |
| 294 | |
| 295 | if (write) |
| 296 | { |
| 297 | /* Fill start and end extra bytes of buffer with existing memory data. */ |
| 298 | if (addr != memaddr || len < (int) sizeof (int)) |
| 299 | { |
| 300 | /* Need part of initial word -- fetch it. */ |
| 301 | buffer[0] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, |
| 302 | inferior_pid, (PTRACE_ARG3_TYPE) addr, 0); |
| 303 | } |
| 304 | |
| 305 | if (count > 1) /* FIXME, avoid if even boundary */ |
| 306 | { |
| 307 | buffer[count - 1] |
| 308 | = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, |
| 309 | inferior_pid, |
| 310 | (PTRACE_ARG3_TYPE) (addr |
| 311 | + (count - 1) * sizeof (int)), |
| 312 | 0); |
| 313 | } |
| 314 | |
| 315 | /* Copy data to be written over corresponding part of buffer */ |
| 316 | memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len); |
| 317 | |
| 318 | /* Write the entire buffer. */ |
| 319 | for (i = 0; i < count; i++, addr += sizeof (int)) |
| 320 | { |
| 321 | int pt_status; |
| 322 | int pt_request; |
| 323 | /* The HP-UX kernel crashes if you use PT_WDUSER to write into the |
| 324 | text segment. FIXME -- does it work to write into the data |
| 325 | segment using WIUSER, or do these idiots really expect us to |
| 326 | figure out which segment the address is in, so we can use a |
| 327 | separate system call for it??! */ |
| 328 | errno = 0; |
| 329 | pt_request = (addr < text_end) ? PT_WIUSER : PT_WDUSER; |
| 330 | pt_status = call_ptrace (pt_request, |
| 331 | inferior_pid, |
| 332 | (PTRACE_ARG3_TYPE) addr, |
| 333 | buffer[i]); |
| 334 | |
| 335 | /* Did we fail? Might we've guessed wrong about which |
| 336 | segment this address resides in? Try the other request, |
| 337 | and see if that works... */ |
| 338 | if ((pt_status == -1) && errno) |
| 339 | { |
| 340 | errno = 0; |
| 341 | pt_request = (pt_request == PT_WIUSER) ? PT_WDUSER : PT_WIUSER; |
| 342 | pt_status = call_ptrace (pt_request, |
| 343 | inferior_pid, |
| 344 | (PTRACE_ARG3_TYPE) addr, |
| 345 | buffer[i]); |
| 346 | |
| 347 | /* No, we still fail. Okay, time to punt. */ |
| 348 | if ((pt_status == -1) && errno) |
| 349 | { |
| 350 | free (buffer); |
| 351 | return 0; |
| 352 | } |
| 353 | } |
| 354 | } |
| 355 | } |
| 356 | else |
| 357 | { |
| 358 | /* Read all the longwords */ |
| 359 | for (i = 0; i < count; i++, addr += sizeof (int)) |
| 360 | { |
| 361 | errno = 0; |
| 362 | buffer[i] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, |
| 363 | inferior_pid, (PTRACE_ARG3_TYPE) addr, 0); |
| 364 | if (errno) |
| 365 | { |
| 366 | free (buffer); |
| 367 | return 0; |
| 368 | } |
| 369 | QUIT; |
| 370 | } |
| 371 | |
| 372 | /* Copy appropriate bytes out of the buffer. */ |
| 373 | memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len); |
| 374 | } |
| 375 | free (buffer); |
| 376 | return len; |
| 377 | } |
| 378 | |
| 379 | |
| 380 | void |
| 381 | child_post_follow_inferior_by_clone () |
| 382 | { |
| 383 | int status; |
| 384 | |
| 385 | /* This function is used when following both the parent and child |
| 386 | of a fork. In this case, the debugger clones itself. The original |
| 387 | debugger follows the parent, the clone follows the child. The |
| 388 | original detaches from the child, delivering a SIGSTOP to it to |
| 389 | keep it from running away until the clone can attach itself. |
| 390 | |
| 391 | At this point, the clone has attached to the child. Because of |
| 392 | the SIGSTOP, we must now deliver a SIGCONT to the child, or it |
| 393 | won't behave properly. */ |
| 394 | status = kill (inferior_pid, SIGCONT); |
| 395 | } |
| 396 | |
| 397 | |
| 398 | void |
| 399 | child_post_follow_vfork (parent_pid, followed_parent, child_pid, followed_child) |
| 400 | int parent_pid; |
| 401 | int followed_parent; |
| 402 | int child_pid; |
| 403 | int followed_child; |
| 404 | { |
| 405 | /* Are we a debugger that followed the parent of a vfork? If so, |
| 406 | then recall that the child's vfork event was delivered to us |
| 407 | first. And, that the parent was suspended by the OS until the |
| 408 | child's exec or exit events were received. |
| 409 | |
| 410 | Upon receiving that child vfork, then, we were forced to remove |
| 411 | all breakpoints in the child and continue it so that it could |
| 412 | reach the exec or exit point. |
| 413 | |
| 414 | But also recall that the parent and child of a vfork share the |
| 415 | same address space. Thus, removing bp's in the child also |
| 416 | removed them from the parent. |
| 417 | |
| 418 | Now that the child has safely exec'd or exited, we must restore |
| 419 | the parent's breakpoints before we continue it. Else, we may |
| 420 | cause it run past expected stopping points. */ |
| 421 | if (followed_parent) |
| 422 | { |
| 423 | reattach_breakpoints (parent_pid); |
| 424 | } |
| 425 | |
| 426 | /* Are we a debugger that followed the child of a vfork? If so, |
| 427 | then recall that we don't actually acquire control of the child |
| 428 | until after it has exec'd or exited. */ |
| 429 | if (followed_child) |
| 430 | { |
| 431 | /* If the child has exited, then there's nothing for us to do. |
| 432 | In the case of an exec event, we'll let that be handled by |
| 433 | the normal mechanism that notices and handles exec events, in |
| 434 | resume(). */ |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | /* Format a process id, given PID. Be sure to terminate |
| 439 | this with a null--it's going to be printed via a "%s". */ |
| 440 | char * |
| 441 | child_pid_to_str (pid) |
| 442 | pid_t pid; |
| 443 | { |
| 444 | /* Static because address returned */ |
| 445 | static char buf[30]; |
| 446 | |
| 447 | /* Extra NULLs for paranoia's sake */ |
| 448 | sprintf (buf, "process %d\0\0\0\0", pid); |
| 449 | |
| 450 | return buf; |
| 451 | } |
| 452 | |
| 453 | /* Format a thread id, given TID. Be sure to terminate |
| 454 | this with a null--it's going to be printed via a "%s". |
| 455 | |
| 456 | Note: This is a core-gdb tid, not the actual system tid. |
| 457 | See infttrace.c for details. */ |
| 458 | char * |
| 459 | hppa_tid_to_str (tid) |
| 460 | pid_t tid; |
| 461 | { |
| 462 | /* Static because address returned */ |
| 463 | static char buf[30]; |
| 464 | |
| 465 | /* Extra NULLs for paranoia's sake */ |
| 466 | sprintf (buf, "system thread %d\0\0\0\0", tid); |
| 467 | |
| 468 | return buf; |
| 469 | } |
| 470 | |
| 471 | #if !defined (GDB_NATIVE_HPUX_11) |
| 472 | |
| 473 | /* The following code is a substitute for the infttrace.c versions used |
| 474 | with ttrace() in HPUX 11. */ |
| 475 | |
| 476 | /* This value is an arbitrary integer. */ |
| 477 | #define PT_VERSION 123456 |
| 478 | |
| 479 | /* This semaphore is used to coordinate the child and parent processes |
| 480 | after a fork(), and before an exec() by the child. See |
| 481 | parent_attach_all for details. */ |
| 482 | |
| 483 | typedef struct |
| 484 | { |
| 485 | int parent_channel[2]; /* Parent "talks" to [1], child "listens" to [0] */ |
| 486 | int child_channel[2]; /* Child "talks" to [1], parent "listens" to [0] */ |
| 487 | } |
| 488 | startup_semaphore_t; |
| 489 | |
| 490 | #define SEM_TALK (1) |
| 491 | #define SEM_LISTEN (0) |
| 492 | |
| 493 | static startup_semaphore_t startup_semaphore; |
| 494 | |
| 495 | extern int parent_attach_all (int, PTRACE_ARG3_TYPE, int); |
| 496 | |
| 497 | #ifdef PT_SETTRC |
| 498 | /* This function causes the caller's process to be traced by its |
| 499 | parent. This is intended to be called after GDB forks itself, |
| 500 | and before the child execs the target. |
| 501 | |
| 502 | Note that HP-UX ptrace is rather funky in how this is done. |
| 503 | If the parent wants to get the initial exec event of a child, |
| 504 | it must set the ptrace event mask of the child to include execs. |
| 505 | (The child cannot do this itself.) This must be done after the |
| 506 | child is forked, but before it execs. |
| 507 | |
| 508 | To coordinate the parent and child, we implement a semaphore using |
| 509 | pipes. After SETTRC'ing itself, the child tells the parent that |
| 510 | it is now traceable by the parent, and waits for the parent's |
| 511 | acknowledgement. The parent can then set the child's event mask, |
| 512 | and notify the child that it can now exec. |
| 513 | |
| 514 | (The acknowledgement by parent happens as a result of a call to |
| 515 | child_acknowledge_created_inferior.) */ |
| 516 | |
| 517 | int |
| 518 | parent_attach_all (pid, addr, data) |
| 519 | int pid; |
| 520 | PTRACE_ARG3_TYPE addr; |
| 521 | int data; |
| 522 | { |
| 523 | int pt_status = 0; |
| 524 | |
| 525 | /* We need a memory home for a constant. */ |
| 526 | int tc_magic_child = PT_VERSION; |
| 527 | int tc_magic_parent = 0; |
| 528 | |
| 529 | /* The remainder of this function is only useful for HPUX 10.0 and |
| 530 | later, as it depends upon the ability to request notification |
| 531 | of specific kinds of events by the kernel. */ |
| 532 | #if defined(PT_SET_EVENT_MASK) |
| 533 | |
| 534 | /* Notify the parent that we're potentially ready to exec(). */ |
| 535 | write (startup_semaphore.child_channel[SEM_TALK], |
| 536 | &tc_magic_child, |
| 537 | sizeof (tc_magic_child)); |
| 538 | |
| 539 | /* Wait for acknowledgement from the parent. */ |
| 540 | read (startup_semaphore.parent_channel[SEM_LISTEN], |
| 541 | &tc_magic_parent, |
| 542 | sizeof (tc_magic_parent)); |
| 543 | if (tc_magic_child != tc_magic_parent) |
| 544 | warning ("mismatched semaphore magic"); |
| 545 | |
| 546 | /* Discard our copy of the semaphore. */ |
| 547 | (void) close (startup_semaphore.parent_channel[SEM_LISTEN]); |
| 548 | (void) close (startup_semaphore.parent_channel[SEM_TALK]); |
| 549 | (void) close (startup_semaphore.child_channel[SEM_LISTEN]); |
| 550 | (void) close (startup_semaphore.child_channel[SEM_TALK]); |
| 551 | #endif |
| 552 | |
| 553 | return 0; |
| 554 | } |
| 555 | #endif |
| 556 | |
| 557 | int |
| 558 | hppa_require_attach (pid) |
| 559 | int pid; |
| 560 | { |
| 561 | int pt_status; |
| 562 | CORE_ADDR pc; |
| 563 | CORE_ADDR pc_addr; |
| 564 | unsigned int regs_offset; |
| 565 | |
| 566 | /* Are we already attached? There appears to be no explicit way to |
| 567 | answer this via ptrace, so we try something which should be |
| 568 | innocuous if we are attached. If that fails, then we assume |
| 569 | we're not attached, and so attempt to make it so. */ |
| 570 | |
| 571 | errno = 0; |
| 572 | regs_offset = U_REGS_OFFSET; |
| 573 | pc_addr = register_addr (PC_REGNUM, regs_offset); |
| 574 | pc = call_ptrace (PT_READ_U, pid, (PTRACE_ARG3_TYPE) pc_addr, 0); |
| 575 | |
| 576 | if (errno) |
| 577 | { |
| 578 | errno = 0; |
| 579 | pt_status = call_ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0); |
| 580 | |
| 581 | if (errno) |
| 582 | return -1; |
| 583 | |
| 584 | /* Now we really are attached. */ |
| 585 | errno = 0; |
| 586 | } |
| 587 | attach_flag = 1; |
| 588 | return pid; |
| 589 | } |
| 590 | |
| 591 | int |
| 592 | hppa_require_detach (pid, signal) |
| 593 | int pid; |
| 594 | int signal; |
| 595 | { |
| 596 | errno = 0; |
| 597 | call_ptrace (PT_DETACH, pid, (PTRACE_ARG3_TYPE) 1, signal); |
| 598 | errno = 0; /* Ignore any errors. */ |
| 599 | return pid; |
| 600 | } |
| 601 | |
| 602 | /* Since ptrace doesn't support memory page-protection events, which |
| 603 | are used to implement "hardware" watchpoints on HP-UX, these are |
| 604 | dummy versions, which perform no useful work. */ |
| 605 | |
| 606 | void |
| 607 | hppa_enable_page_protection_events (pid) |
| 608 | int pid; |
| 609 | { |
| 610 | } |
| 611 | |
| 612 | void |
| 613 | hppa_disable_page_protection_events (pid) |
| 614 | int pid; |
| 615 | { |
| 616 | } |
| 617 | |
| 618 | int |
| 619 | hppa_insert_hw_watchpoint (pid, start, len, type) |
| 620 | int pid; |
| 621 | CORE_ADDR start; |
| 622 | LONGEST len; |
| 623 | int type; |
| 624 | { |
| 625 | error ("Hardware watchpoints not implemented on this platform."); |
| 626 | } |
| 627 | |
| 628 | int |
| 629 | hppa_remove_hw_watchpoint (pid, start, len, type) |
| 630 | int pid; |
| 631 | CORE_ADDR start; |
| 632 | LONGEST len; |
| 633 | enum bptype type; |
| 634 | { |
| 635 | error ("Hardware watchpoints not implemented on this platform."); |
| 636 | } |
| 637 | |
| 638 | int |
| 639 | hppa_can_use_hw_watchpoint (type, cnt, ot) |
| 640 | enum bptype type; |
| 641 | int cnt; |
| 642 | enum bptype ot; |
| 643 | { |
| 644 | return 0; |
| 645 | } |
| 646 | |
| 647 | int |
| 648 | hppa_range_profitable_for_hw_watchpoint (pid, start, len) |
| 649 | int pid; |
| 650 | CORE_ADDR start; |
| 651 | LONGEST len; |
| 652 | { |
| 653 | error ("Hardware watchpoints not implemented on this platform."); |
| 654 | } |
| 655 | |
| 656 | char * |
| 657 | hppa_pid_or_tid_to_str (id) |
| 658 | pid_t id; |
| 659 | { |
| 660 | /* In the ptrace world, there are only processes. */ |
| 661 | return child_pid_to_str (id); |
| 662 | } |
| 663 | |
| 664 | /* This function has no meaning in a non-threaded world. Thus, we |
| 665 | return 0 (FALSE). See the use of "hppa_prepare_to_proceed" in |
| 666 | hppa-tdep.c. */ |
| 667 | |
| 668 | pid_t |
| 669 | hppa_switched_threads (pid) |
| 670 | pid_t pid; |
| 671 | { |
| 672 | return (pid_t) 0; |
| 673 | } |
| 674 | |
| 675 | void |
| 676 | hppa_ensure_vforking_parent_remains_stopped (pid) |
| 677 | int pid; |
| 678 | { |
| 679 | /* This assumes that the vforked parent is presently stopped, and |
| 680 | that the vforked child has just delivered its first exec event. |
| 681 | Calling kill() this way will cause the SIGTRAP to be delivered as |
| 682 | soon as the parent is resumed, which happens as soon as the |
| 683 | vforked child is resumed. See wait_for_inferior for the use of |
| 684 | this function. */ |
| 685 | kill (pid, SIGTRAP); |
| 686 | } |
| 687 | |
| 688 | int |
| 689 | hppa_resume_execd_vforking_child_to_get_parent_vfork () |
| 690 | { |
| 691 | return 1; /* Yes, the child must be resumed. */ |
| 692 | } |
| 693 | |
| 694 | void |
| 695 | require_notification_of_events (pid) |
| 696 | int pid; |
| 697 | { |
| 698 | #if defined(PT_SET_EVENT_MASK) |
| 699 | int pt_status; |
| 700 | ptrace_event_t ptrace_events; |
| 701 | int nsigs; |
| 702 | int signum; |
| 703 | |
| 704 | /* Instruct the kernel as to the set of events we wish to be |
| 705 | informed of. (This support does not exist before HPUX 10.0. |
| 706 | We'll assume if PT_SET_EVENT_MASK has not been defined by |
| 707 | <sys/ptrace.h>, then we're being built on pre-10.0.) */ |
| 708 | memset (&ptrace_events, 0, sizeof (ptrace_events)); |
| 709 | |
| 710 | /* Note: By default, all signals are visible to us. If we wish |
| 711 | the kernel to keep certain signals hidden from us, we do it |
| 712 | by calling sigdelset (ptrace_events.pe_signals, signal) for |
| 713 | each such signal here, before doing PT_SET_EVENT_MASK. */ |
| 714 | /* RM: The above comment is no longer true. We start with ignoring |
| 715 | all signals, and then add the ones we are interested in. We could |
| 716 | do it the other way: start by looking at all signals and then |
| 717 | deleting the ones that we aren't interested in, except that |
| 718 | multiple gdb signals may be mapped to the same host signal |
| 719 | (eg. TARGET_SIGNAL_IO and TARGET_SIGNAL_POLL both get mapped to |
| 720 | signal 22 on HPUX 10.20) We want to be notified if we are |
| 721 | interested in either signal. */ |
| 722 | sigfillset (&ptrace_events.pe_signals); |
| 723 | |
| 724 | /* RM: Let's not bother with signals we don't care about */ |
| 725 | nsigs = (int) TARGET_SIGNAL_LAST; |
| 726 | for (signum = nsigs; signum > 0; signum--) |
| 727 | { |
| 728 | if ((signal_stop_state (signum)) || |
| 729 | (signal_print_state (signum)) || |
| 730 | (!signal_pass_state (signum))) |
| 731 | { |
| 732 | if (target_signal_to_host_p (signum)) |
| 733 | sigdelset (&ptrace_events.pe_signals, |
| 734 | target_signal_to_host (signum)); |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | ptrace_events.pe_set_event = 0; |
| 739 | |
| 740 | ptrace_events.pe_set_event |= PTRACE_SIGNAL; |
| 741 | ptrace_events.pe_set_event |= PTRACE_EXEC; |
| 742 | ptrace_events.pe_set_event |= PTRACE_FORK; |
| 743 | ptrace_events.pe_set_event |= PTRACE_VFORK; |
| 744 | /* ??rehrauer: Add this one when we're prepared to catch it... |
| 745 | ptrace_events.pe_set_event |= PTRACE_EXIT; |
| 746 | */ |
| 747 | |
| 748 | errno = 0; |
| 749 | pt_status = call_ptrace (PT_SET_EVENT_MASK, |
| 750 | pid, |
| 751 | (PTRACE_ARG3_TYPE) & ptrace_events, |
| 752 | sizeof (ptrace_events)); |
| 753 | if (errno) |
| 754 | perror_with_name ("ptrace"); |
| 755 | if (pt_status < 0) |
| 756 | return; |
| 757 | #endif |
| 758 | } |
| 759 | |
| 760 | void |
| 761 | require_notification_of_exec_events (pid) |
| 762 | int pid; |
| 763 | { |
| 764 | #if defined(PT_SET_EVENT_MASK) |
| 765 | int pt_status; |
| 766 | ptrace_event_t ptrace_events; |
| 767 | |
| 768 | /* Instruct the kernel as to the set of events we wish to be |
| 769 | informed of. (This support does not exist before HPUX 10.0. |
| 770 | We'll assume if PT_SET_EVENT_MASK has not been defined by |
| 771 | <sys/ptrace.h>, then we're being built on pre-10.0.) */ |
| 772 | memset (&ptrace_events, 0, sizeof (ptrace_events)); |
| 773 | |
| 774 | /* Note: By default, all signals are visible to us. If we wish |
| 775 | the kernel to keep certain signals hidden from us, we do it |
| 776 | by calling sigdelset (ptrace_events.pe_signals, signal) for |
| 777 | each such signal here, before doing PT_SET_EVENT_MASK. */ |
| 778 | sigemptyset (&ptrace_events.pe_signals); |
| 779 | |
| 780 | ptrace_events.pe_set_event = 0; |
| 781 | |
| 782 | ptrace_events.pe_set_event |= PTRACE_EXEC; |
| 783 | /* ??rehrauer: Add this one when we're prepared to catch it... |
| 784 | ptrace_events.pe_set_event |= PTRACE_EXIT; |
| 785 | */ |
| 786 | |
| 787 | errno = 0; |
| 788 | pt_status = call_ptrace (PT_SET_EVENT_MASK, |
| 789 | pid, |
| 790 | (PTRACE_ARG3_TYPE) & ptrace_events, |
| 791 | sizeof (ptrace_events)); |
| 792 | if (errno) |
| 793 | perror_with_name ("ptrace"); |
| 794 | if (pt_status < 0) |
| 795 | return; |
| 796 | #endif |
| 797 | } |
| 798 | |
| 799 | /* This function is called by the parent process, with pid being the |
| 800 | ID of the child process, after the debugger has forked. */ |
| 801 | |
| 802 | void |
| 803 | child_acknowledge_created_inferior (pid) |
| 804 | int pid; |
| 805 | { |
| 806 | /* We need a memory home for a constant. */ |
| 807 | int tc_magic_parent = PT_VERSION; |
| 808 | int tc_magic_child = 0; |
| 809 | |
| 810 | /* The remainder of this function is only useful for HPUX 10.0 and |
| 811 | later, as it depends upon the ability to request notification |
| 812 | of specific kinds of events by the kernel. */ |
| 813 | #if defined(PT_SET_EVENT_MASK) |
| 814 | /* Wait for the child to tell us that it has forked. */ |
| 815 | read (startup_semaphore.child_channel[SEM_LISTEN], |
| 816 | &tc_magic_child, |
| 817 | sizeof (tc_magic_child)); |
| 818 | |
| 819 | /* Notify the child that it can exec. |
| 820 | |
| 821 | In the infttrace.c variant of this function, we set the child's |
| 822 | event mask after the fork but before the exec. In the ptrace |
| 823 | world, it seems we can't set the event mask until after the exec. */ |
| 824 | write (startup_semaphore.parent_channel[SEM_TALK], |
| 825 | &tc_magic_parent, |
| 826 | sizeof (tc_magic_parent)); |
| 827 | |
| 828 | /* We'd better pause a bit before trying to set the event mask, |
| 829 | though, to ensure that the exec has happened. We don't want to |
| 830 | wait() on the child, because that'll screw up the upper layers |
| 831 | of gdb's execution control that expect to see the exec event. |
| 832 | |
| 833 | After an exec, the child is no longer executing gdb code. Hence, |
| 834 | we can't have yet another synchronization via the pipes. We'll |
| 835 | just sleep for a second, and hope that's enough delay... */ |
| 836 | sleep (1); |
| 837 | |
| 838 | /* Instruct the kernel as to the set of events we wish to be |
| 839 | informed of. */ |
| 840 | require_notification_of_exec_events (pid); |
| 841 | |
| 842 | /* Discard our copy of the semaphore. */ |
| 843 | (void) close (startup_semaphore.parent_channel[SEM_LISTEN]); |
| 844 | (void) close (startup_semaphore.parent_channel[SEM_TALK]); |
| 845 | (void) close (startup_semaphore.child_channel[SEM_LISTEN]); |
| 846 | (void) close (startup_semaphore.child_channel[SEM_TALK]); |
| 847 | #endif |
| 848 | } |
| 849 | |
| 850 | void |
| 851 | child_post_startup_inferior (pid) |
| 852 | int pid; |
| 853 | { |
| 854 | require_notification_of_events (pid); |
| 855 | } |
| 856 | |
| 857 | void |
| 858 | child_post_attach (pid) |
| 859 | int pid; |
| 860 | { |
| 861 | require_notification_of_events (pid); |
| 862 | } |
| 863 | |
| 864 | int |
| 865 | child_insert_fork_catchpoint (pid) |
| 866 | int pid; |
| 867 | { |
| 868 | /* This request is only available on HPUX 10.0 and later. */ |
| 869 | #if !defined(PT_SET_EVENT_MASK) |
| 870 | error ("Unable to catch forks prior to HPUX 10.0"); |
| 871 | #else |
| 872 | /* Enable reporting of fork events from the kernel. */ |
| 873 | /* ??rehrauer: For the moment, we're always enabling these events, |
| 874 | and just ignoring them if there's no catchpoint to catch them. */ |
| 875 | return 0; |
| 876 | #endif |
| 877 | } |
| 878 | |
| 879 | int |
| 880 | child_remove_fork_catchpoint (pid) |
| 881 | int pid; |
| 882 | { |
| 883 | /* This request is only available on HPUX 10.0 and later. */ |
| 884 | #if !defined(PT_SET_EVENT_MASK) |
| 885 | error ("Unable to catch forks prior to HPUX 10.0"); |
| 886 | #else |
| 887 | /* Disable reporting of fork events from the kernel. */ |
| 888 | /* ??rehrauer: For the moment, we're always enabling these events, |
| 889 | and just ignoring them if there's no catchpoint to catch them. */ |
| 890 | return 0; |
| 891 | #endif |
| 892 | } |
| 893 | |
| 894 | int |
| 895 | child_insert_vfork_catchpoint (pid) |
| 896 | int pid; |
| 897 | { |
| 898 | /* This request is only available on HPUX 10.0 and later. */ |
| 899 | #if !defined(PT_SET_EVENT_MASK) |
| 900 | error ("Unable to catch vforks prior to HPUX 10.0"); |
| 901 | #else |
| 902 | /* Enable reporting of vfork events from the kernel. */ |
| 903 | /* ??rehrauer: For the moment, we're always enabling these events, |
| 904 | and just ignoring them if there's no catchpoint to catch them. */ |
| 905 | return 0; |
| 906 | #endif |
| 907 | } |
| 908 | |
| 909 | int |
| 910 | child_remove_vfork_catchpoint (pid) |
| 911 | int pid; |
| 912 | { |
| 913 | /* This request is only available on HPUX 10.0 and later. */ |
| 914 | #if !defined(PT_SET_EVENT_MASK) |
| 915 | error ("Unable to catch vforks prior to HPUX 10.0"); |
| 916 | #else |
| 917 | /* Disable reporting of vfork events from the kernel. */ |
| 918 | /* ??rehrauer: For the moment, we're always enabling these events, |
| 919 | and just ignoring them if there's no catchpoint to catch them. */ |
| 920 | return 0; |
| 921 | #endif |
| 922 | } |
| 923 | |
| 924 | int |
| 925 | child_has_forked (pid, childpid) |
| 926 | int pid; |
| 927 | int *childpid; |
| 928 | { |
| 929 | /* This request is only available on HPUX 10.0 and later. */ |
| 930 | #if !defined(PT_GET_PROCESS_STATE) |
| 931 | *childpid = 0; |
| 932 | return 0; |
| 933 | #else |
| 934 | int pt_status; |
| 935 | ptrace_state_t ptrace_state; |
| 936 | |
| 937 | errno = 0; |
| 938 | pt_status = call_ptrace (PT_GET_PROCESS_STATE, |
| 939 | pid, |
| 940 | (PTRACE_ARG3_TYPE) & ptrace_state, |
| 941 | sizeof (ptrace_state)); |
| 942 | if (errno) |
| 943 | perror_with_name ("ptrace"); |
| 944 | if (pt_status < 0) |
| 945 | return 0; |
| 946 | |
| 947 | if (ptrace_state.pe_report_event & PTRACE_FORK) |
| 948 | { |
| 949 | *childpid = ptrace_state.pe_other_pid; |
| 950 | return 1; |
| 951 | } |
| 952 | |
| 953 | return 0; |
| 954 | #endif |
| 955 | } |
| 956 | |
| 957 | int |
| 958 | child_has_vforked (pid, childpid) |
| 959 | int pid; |
| 960 | int *childpid; |
| 961 | { |
| 962 | /* This request is only available on HPUX 10.0 and later. */ |
| 963 | #if !defined(PT_GET_PROCESS_STATE) |
| 964 | *childpid = 0; |
| 965 | return 0; |
| 966 | |
| 967 | #else |
| 968 | int pt_status; |
| 969 | ptrace_state_t ptrace_state; |
| 970 | |
| 971 | errno = 0; |
| 972 | pt_status = call_ptrace (PT_GET_PROCESS_STATE, |
| 973 | pid, |
| 974 | (PTRACE_ARG3_TYPE) & ptrace_state, |
| 975 | sizeof (ptrace_state)); |
| 976 | if (errno) |
| 977 | perror_with_name ("ptrace"); |
| 978 | if (pt_status < 0) |
| 979 | return 0; |
| 980 | |
| 981 | if (ptrace_state.pe_report_event & PTRACE_VFORK) |
| 982 | { |
| 983 | *childpid = ptrace_state.pe_other_pid; |
| 984 | return 1; |
| 985 | } |
| 986 | |
| 987 | return 0; |
| 988 | #endif |
| 989 | } |
| 990 | |
| 991 | int |
| 992 | child_can_follow_vfork_prior_to_exec () |
| 993 | { |
| 994 | /* ptrace doesn't allow this. */ |
| 995 | return 0; |
| 996 | } |
| 997 | |
| 998 | int |
| 999 | child_insert_exec_catchpoint (pid) |
| 1000 | int pid; |
| 1001 | { |
| 1002 | /* This request is only available on HPUX 10.0 and later. */ |
| 1003 | #if !defined(PT_SET_EVENT_MASK) |
| 1004 | error ("Unable to catch execs prior to HPUX 10.0"); |
| 1005 | |
| 1006 | #else |
| 1007 | /* Enable reporting of exec events from the kernel. */ |
| 1008 | /* ??rehrauer: For the moment, we're always enabling these events, |
| 1009 | and just ignoring them if there's no catchpoint to catch them. */ |
| 1010 | return 0; |
| 1011 | #endif |
| 1012 | } |
| 1013 | |
| 1014 | int |
| 1015 | child_remove_exec_catchpoint (pid) |
| 1016 | int pid; |
| 1017 | { |
| 1018 | /* This request is only available on HPUX 10.0 and later. */ |
| 1019 | #if !defined(PT_SET_EVENT_MASK) |
| 1020 | error ("Unable to catch execs prior to HPUX 10.0"); |
| 1021 | |
| 1022 | #else |
| 1023 | /* Disable reporting of exec events from the kernel. */ |
| 1024 | /* ??rehrauer: For the moment, we're always enabling these events, |
| 1025 | and just ignoring them if there's no catchpoint to catch them. */ |
| 1026 | return 0; |
| 1027 | #endif |
| 1028 | } |
| 1029 | |
| 1030 | int |
| 1031 | child_has_execd (pid, execd_pathname) |
| 1032 | int pid; |
| 1033 | char **execd_pathname; |
| 1034 | { |
| 1035 | /* This request is only available on HPUX 10.0 and later. */ |
| 1036 | #if !defined(PT_GET_PROCESS_STATE) |
| 1037 | *execd_pathname = NULL; |
| 1038 | return 0; |
| 1039 | |
| 1040 | #else |
| 1041 | int pt_status; |
| 1042 | ptrace_state_t ptrace_state; |
| 1043 | |
| 1044 | errno = 0; |
| 1045 | pt_status = call_ptrace (PT_GET_PROCESS_STATE, |
| 1046 | pid, |
| 1047 | (PTRACE_ARG3_TYPE) & ptrace_state, |
| 1048 | sizeof (ptrace_state)); |
| 1049 | if (errno) |
| 1050 | perror_with_name ("ptrace"); |
| 1051 | if (pt_status < 0) |
| 1052 | return 0; |
| 1053 | |
| 1054 | if (ptrace_state.pe_report_event & PTRACE_EXEC) |
| 1055 | { |
| 1056 | char *exec_file = target_pid_to_exec_file (pid); |
| 1057 | *execd_pathname = savestring (exec_file, strlen (exec_file)); |
| 1058 | return 1; |
| 1059 | } |
| 1060 | |
| 1061 | return 0; |
| 1062 | #endif |
| 1063 | } |
| 1064 | |
| 1065 | int |
| 1066 | child_reported_exec_events_per_exec_call () |
| 1067 | { |
| 1068 | return 2; /* ptrace reports the event twice per call. */ |
| 1069 | } |
| 1070 | |
| 1071 | int |
| 1072 | child_has_syscall_event (pid, kind, syscall_id) |
| 1073 | int pid; |
| 1074 | enum target_waitkind *kind; |
| 1075 | int *syscall_id; |
| 1076 | { |
| 1077 | /* This request is only available on HPUX 10.30 and later, via |
| 1078 | the ttrace interface. */ |
| 1079 | |
| 1080 | *kind = TARGET_WAITKIND_SPURIOUS; |
| 1081 | *syscall_id = -1; |
| 1082 | return 0; |
| 1083 | } |
| 1084 | |
| 1085 | char * |
| 1086 | child_pid_to_exec_file (pid) |
| 1087 | int pid; |
| 1088 | { |
| 1089 | static char exec_file_buffer[1024]; |
| 1090 | int pt_status; |
| 1091 | CORE_ADDR top_of_stack; |
| 1092 | char four_chars[4]; |
| 1093 | int name_index; |
| 1094 | int i; |
| 1095 | int saved_inferior_pid; |
| 1096 | boolean done; |
| 1097 | |
| 1098 | #ifdef PT_GET_PROCESS_PATHNAME |
| 1099 | /* As of 10.x HP-UX, there's an explicit request to get the pathname. */ |
| 1100 | pt_status = call_ptrace (PT_GET_PROCESS_PATHNAME, |
| 1101 | pid, |
| 1102 | (PTRACE_ARG3_TYPE) exec_file_buffer, |
| 1103 | sizeof (exec_file_buffer) - 1); |
| 1104 | if (pt_status == 0) |
| 1105 | return exec_file_buffer; |
| 1106 | #endif |
| 1107 | |
| 1108 | /* It appears that this request is broken prior to 10.30. |
| 1109 | If it fails, try a really, truly amazingly gross hack |
| 1110 | that DDE uses, of pawing through the process' data |
| 1111 | segment to find the pathname. */ |
| 1112 | |
| 1113 | top_of_stack = 0x7b03a000; |
| 1114 | name_index = 0; |
| 1115 | done = 0; |
| 1116 | |
| 1117 | /* On the chance that pid != inferior_pid, set inferior_pid |
| 1118 | to pid, so that (grrrr!) implicit uses of inferior_pid get |
| 1119 | the right id. */ |
| 1120 | |
| 1121 | saved_inferior_pid = inferior_pid; |
| 1122 | inferior_pid = pid; |
| 1123 | |
| 1124 | /* Try to grab a null-terminated string. */ |
| 1125 | while (!done) |
| 1126 | { |
| 1127 | if (target_read_memory (top_of_stack, four_chars, 4) != 0) |
| 1128 | { |
| 1129 | inferior_pid = saved_inferior_pid; |
| 1130 | return NULL; |
| 1131 | } |
| 1132 | for (i = 0; i < 4; i++) |
| 1133 | { |
| 1134 | exec_file_buffer[name_index++] = four_chars[i]; |
| 1135 | done = (four_chars[i] == '\0'); |
| 1136 | if (done) |
| 1137 | break; |
| 1138 | } |
| 1139 | top_of_stack += 4; |
| 1140 | } |
| 1141 | |
| 1142 | if (exec_file_buffer[0] == '\0') |
| 1143 | { |
| 1144 | inferior_pid = saved_inferior_pid; |
| 1145 | return NULL; |
| 1146 | } |
| 1147 | |
| 1148 | inferior_pid = saved_inferior_pid; |
| 1149 | return exec_file_buffer; |
| 1150 | } |
| 1151 | |
| 1152 | void |
| 1153 | pre_fork_inferior () |
| 1154 | { |
| 1155 | int status; |
| 1156 | |
| 1157 | status = pipe (startup_semaphore.parent_channel); |
| 1158 | if (status < 0) |
| 1159 | { |
| 1160 | warning ("error getting parent pipe for startup semaphore"); |
| 1161 | return; |
| 1162 | } |
| 1163 | |
| 1164 | status = pipe (startup_semaphore.child_channel); |
| 1165 | if (status < 0) |
| 1166 | { |
| 1167 | warning ("error getting child pipe for startup semaphore"); |
| 1168 | return; |
| 1169 | } |
| 1170 | } |
| 1171 | \f |
| 1172 | |
| 1173 | /* Check to see if the given thread is alive. |
| 1174 | |
| 1175 | This is a no-op, as ptrace doesn't support threads, so we just |
| 1176 | return "TRUE". */ |
| 1177 | |
| 1178 | int |
| 1179 | child_thread_alive (pid) |
| 1180 | int pid; |
| 1181 | { |
| 1182 | return 1; |
| 1183 | } |
| 1184 | |
| 1185 | #endif /* ! GDB_NATIVE_HPUX_11 */ |