* sparc-tdep.c (SPARC_F0_REGNUM, SPARC_F1_REGNUM, SPARC_O0_REGNUM,
[deliverable/binutils-gdb.git] / gdb / i386-linux-nat.c
... / ...
CommitLineData
1/* Native-dependent code for GNU/Linux x86.
2
3 Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22#include "defs.h"
23#include "inferior.h"
24#include "gdbcore.h"
25#include "regcache.h"
26
27#include "gdb_assert.h"
28#include "gdb_string.h"
29#include <sys/ptrace.h>
30#include <sys/user.h>
31#include <sys/procfs.h>
32
33#ifdef HAVE_SYS_REG_H
34#include <sys/reg.h>
35#endif
36
37#ifndef ORIG_EAX
38#define ORIG_EAX -1
39#endif
40
41#ifdef HAVE_SYS_DEBUGREG_H
42#include <sys/debugreg.h>
43#endif
44
45#ifndef DR_FIRSTADDR
46#define DR_FIRSTADDR 0
47#endif
48
49#ifndef DR_LASTADDR
50#define DR_LASTADDR 3
51#endif
52
53#ifndef DR_STATUS
54#define DR_STATUS 6
55#endif
56
57#ifndef DR_CONTROL
58#define DR_CONTROL 7
59#endif
60
61/* Prototypes for supply_gregset etc. */
62#include "gregset.h"
63
64/* Prototypes for i387_supply_fsave etc. */
65#include "i387-tdep.h"
66
67/* Defines for XMM0_REGNUM etc. */
68#include "i386-tdep.h"
69
70/* Defines I386_LINUX_ORIG_EAX_REGNUM. */
71#include "i386-linux-tdep.h"
72
73/* Prototypes for local functions. */
74static void dummy_sse_values (void);
75\f
76
77/* The register sets used in GNU/Linux ELF core-dumps are identical to
78 the register sets in `struct user' that is used for a.out
79 core-dumps, and is also used by `ptrace'. The corresponding types
80 are `elf_gregset_t' for the general-purpose registers (with
81 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
82 for the floating-point registers.
83
84 Those types used to be available under the names `gregset_t' and
85 `fpregset_t' too, and this file used those names in the past. But
86 those names are now used for the register sets used in the
87 `mcontext_t' type, and have a different size and layout. */
88
89/* Mapping between the general-purpose registers in `struct user'
90 format and GDB's register array layout. */
91static int regmap[] =
92{
93 EAX, ECX, EDX, EBX,
94 UESP, EBP, ESI, EDI,
95 EIP, EFL, CS, SS,
96 DS, ES, FS, GS,
97 -1, -1, -1, -1, /* st0, st1, st2, st3 */
98 -1, -1, -1, -1, /* st4, st5, st6, st7 */
99 -1, -1, -1, -1, /* fctrl, fstat, ftag, fiseg */
100 -1, -1, -1, -1, /* fioff, foseg, fooff, fop */
101 -1, -1, -1, -1, /* xmm0, xmm1, xmm2, xmm3 */
102 -1, -1, -1, -1, /* xmm4, xmm5, xmm6, xmm6 */
103 -1, /* mxcsr */
104 ORIG_EAX
105};
106
107/* Which ptrace request retrieves which registers?
108 These apply to the corresponding SET requests as well. */
109
110#define GETREGS_SUPPLIES(regno) \
111 ((0 <= (regno) && (regno) <= 15) || (regno) == I386_LINUX_ORIG_EAX_REGNUM)
112
113#define GETFPREGS_SUPPLIES(regno) \
114 (FP0_REGNUM <= (regno) && (regno) <= LAST_FPU_CTRL_REGNUM)
115
116#define GETFPXREGS_SUPPLIES(regno) \
117 (FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
118
119/* Does the current host support the GETREGS request? */
120int have_ptrace_getregs =
121#ifdef HAVE_PTRACE_GETREGS
122 1
123#else
124 0
125#endif
126;
127
128/* Does the current host support the GETFPXREGS request? The header
129 file may or may not define it, and even if it is defined, the
130 kernel will return EIO if it's running on a pre-SSE processor.
131
132 My instinct is to attach this to some architecture- or
133 target-specific data structure, but really, a particular GDB
134 process can only run on top of one kernel at a time. So it's okay
135 for this to be a simple variable. */
136int have_ptrace_getfpxregs =
137#ifdef HAVE_PTRACE_GETFPXREGS
138 1
139#else
140 0
141#endif
142;
143\f
144
145/* Support for the user struct. */
146
147/* Return the address of register REGNUM. BLOCKEND is the value of
148 u.u_ar0, which should point to the registers. */
149
150CORE_ADDR
151register_u_addr (CORE_ADDR blockend, int regnum)
152{
153 return (blockend + 4 * regmap[regnum]);
154}
155
156/* Return the size of the user struct. */
157
158int
159kernel_u_size (void)
160{
161 return (sizeof (struct user));
162}
163\f
164
165/* Accessing registers through the U area, one at a time. */
166
167/* Fetch one register. */
168
169static void
170fetch_register (int regno)
171{
172 int tid;
173 int val;
174
175 gdb_assert (!have_ptrace_getregs);
176 if (cannot_fetch_register (regno))
177 {
178 supply_register (regno, NULL);
179 return;
180 }
181
182 /* GNU/Linux LWP ID's are process ID's. */
183 tid = TIDGET (inferior_ptid);
184 if (tid == 0)
185 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
186
187 errno = 0;
188 val = ptrace (PTRACE_PEEKUSER, tid, register_addr (regno, 0), 0);
189 if (errno != 0)
190 error ("Couldn't read register %s (#%d): %s.", REGISTER_NAME (regno),
191 regno, safe_strerror (errno));
192
193 supply_register (regno, &val);
194}
195
196/* Store one register. */
197
198static void
199store_register (int regno)
200{
201 int tid;
202 int val;
203
204 gdb_assert (!have_ptrace_getregs);
205 if (cannot_store_register (regno))
206 return;
207
208 /* GNU/Linux LWP ID's are process ID's. */
209 tid = TIDGET (inferior_ptid);
210 if (tid == 0)
211 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
212
213 errno = 0;
214 regcache_collect (regno, &val);
215 ptrace (PTRACE_POKEUSER, tid, register_addr (regno, 0), val);
216 if (errno != 0)
217 error ("Couldn't write register %s (#%d): %s.", REGISTER_NAME (regno),
218 regno, safe_strerror (errno));
219}
220\f
221
222/* Transfering the general-purpose registers between GDB, inferiors
223 and core files. */
224
225/* Fill GDB's register array with the general-purpose register values
226 in *GREGSETP. */
227
228void
229supply_gregset (elf_gregset_t *gregsetp)
230{
231 elf_greg_t *regp = (elf_greg_t *) gregsetp;
232 int i;
233
234 for (i = 0; i < I386_NUM_GREGS; i++)
235 supply_register (i, regp + regmap[i]);
236
237 if (I386_LINUX_ORIG_EAX_REGNUM < NUM_REGS)
238 supply_register (I386_LINUX_ORIG_EAX_REGNUM, regp + ORIG_EAX);
239}
240
241/* Fill register REGNO (if it is a general-purpose register) in
242 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
243 do this for all registers. */
244
245void
246fill_gregset (elf_gregset_t *gregsetp, int regno)
247{
248 elf_greg_t *regp = (elf_greg_t *) gregsetp;
249 int i;
250
251 for (i = 0; i < I386_NUM_GREGS; i++)
252 if (regno == -1 || regno == i)
253 regcache_collect (i, regp + regmap[i]);
254
255 if ((regno == -1 || regno == I386_LINUX_ORIG_EAX_REGNUM)
256 && I386_LINUX_ORIG_EAX_REGNUM < NUM_REGS)
257 regcache_collect (I386_LINUX_ORIG_EAX_REGNUM, regp + ORIG_EAX);
258}
259
260#ifdef HAVE_PTRACE_GETREGS
261
262/* Fetch all general-purpose registers from process/thread TID and
263 store their values in GDB's register array. */
264
265static void
266fetch_regs (int tid)
267{
268 elf_gregset_t regs;
269
270 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
271 {
272 if (errno == EIO)
273 {
274 /* The kernel we're running on doesn't support the GETREGS
275 request. Reset `have_ptrace_getregs'. */
276 have_ptrace_getregs = 0;
277 return;
278 }
279
280 perror_with_name ("Couldn't get registers");
281 }
282
283 supply_gregset (&regs);
284}
285
286/* Store all valid general-purpose registers in GDB's register array
287 into the process/thread specified by TID. */
288
289static void
290store_regs (int tid, int regno)
291{
292 elf_gregset_t regs;
293
294 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
295 perror_with_name ("Couldn't get registers");
296
297 fill_gregset (&regs, regno);
298
299 if (ptrace (PTRACE_SETREGS, tid, 0, (int) &regs) < 0)
300 perror_with_name ("Couldn't write registers");
301}
302
303#else
304
305static void fetch_regs (int tid) {}
306static void store_regs (int tid, int regno) {}
307
308#endif
309\f
310
311/* Transfering floating-point registers between GDB, inferiors and cores. */
312
313/* Fill GDB's register array with the floating-point register values in
314 *FPREGSETP. */
315
316void
317supply_fpregset (elf_fpregset_t *fpregsetp)
318{
319 i387_supply_fsave ((char *) fpregsetp);
320 dummy_sse_values ();
321}
322
323/* Fill register REGNO (if it is a floating-point register) in
324 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
325 do this for all registers. */
326
327void
328fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
329{
330 i387_fill_fsave ((char *) fpregsetp, regno);
331}
332
333#ifdef HAVE_PTRACE_GETREGS
334
335/* Fetch all floating-point registers from process/thread TID and store
336 thier values in GDB's register array. */
337
338static void
339fetch_fpregs (int tid)
340{
341 elf_fpregset_t fpregs;
342
343 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
344 perror_with_name ("Couldn't get floating point status");
345
346 supply_fpregset (&fpregs);
347}
348
349/* Store all valid floating-point registers in GDB's register array
350 into the process/thread specified by TID. */
351
352static void
353store_fpregs (int tid, int regno)
354{
355 elf_fpregset_t fpregs;
356
357 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
358 perror_with_name ("Couldn't get floating point status");
359
360 fill_fpregset (&fpregs, regno);
361
362 if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
363 perror_with_name ("Couldn't write floating point status");
364}
365
366#else
367
368static void fetch_fpregs (int tid) {}
369static void store_fpregs (int tid, int regno) {}
370
371#endif
372\f
373
374/* Transfering floating-point and SSE registers to and from GDB. */
375
376#ifdef HAVE_PTRACE_GETFPXREGS
377
378/* Fill GDB's register array with the floating-point and SSE register
379 values in *FPXREGSETP. */
380
381void
382supply_fpxregset (elf_fpxregset_t *fpxregsetp)
383{
384 i387_supply_fxsave ((char *) fpxregsetp);
385}
386
387/* Fill register REGNO (if it is a floating-point or SSE register) in
388 *FPXREGSETP with the value in GDB's register array. If REGNO is
389 -1, do this for all registers. */
390
391void
392fill_fpxregset (elf_fpxregset_t *fpxregsetp, int regno)
393{
394 i387_fill_fxsave ((char *) fpxregsetp, regno);
395}
396
397/* Fetch all registers covered by the PTRACE_GETFPXREGS request from
398 process/thread TID and store their values in GDB's register array.
399 Return non-zero if successful, zero otherwise. */
400
401static int
402fetch_fpxregs (int tid)
403{
404 elf_fpxregset_t fpxregs;
405
406 if (! have_ptrace_getfpxregs)
407 return 0;
408
409 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
410 {
411 if (errno == EIO)
412 {
413 have_ptrace_getfpxregs = 0;
414 return 0;
415 }
416
417 perror_with_name ("Couldn't read floating-point and SSE registers");
418 }
419
420 supply_fpxregset (&fpxregs);
421 return 1;
422}
423
424/* Store all valid registers in GDB's register array covered by the
425 PTRACE_SETFPXREGS request into the process/thread specified by TID.
426 Return non-zero if successful, zero otherwise. */
427
428static int
429store_fpxregs (int tid, int regno)
430{
431 elf_fpxregset_t fpxregs;
432
433 if (! have_ptrace_getfpxregs)
434 return 0;
435
436 if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
437 {
438 if (errno == EIO)
439 {
440 have_ptrace_getfpxregs = 0;
441 return 0;
442 }
443
444 perror_with_name ("Couldn't read floating-point and SSE registers");
445 }
446
447 fill_fpxregset (&fpxregs, regno);
448
449 if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
450 perror_with_name ("Couldn't write floating-point and SSE registers");
451
452 return 1;
453}
454
455/* Fill the XMM registers in the register array with dummy values. For
456 cases where we don't have access to the XMM registers. I think
457 this is cleaner than printing a warning. For a cleaner solution,
458 we should gdbarchify the i386 family. */
459
460static void
461dummy_sse_values (void)
462{
463 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
464 /* C doesn't have a syntax for NaN's, so write it out as an array of
465 longs. */
466 static long dummy[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
467 static long mxcsr = 0x1f80;
468 int reg;
469
470 for (reg = 0; reg < tdep->num_xmm_regs; reg++)
471 supply_register (XMM0_REGNUM + reg, (char *) dummy);
472 if (tdep->num_xmm_regs > 0)
473 supply_register (MXCSR_REGNUM, (char *) &mxcsr);
474}
475
476#else
477
478static int fetch_fpxregs (int tid) { return 0; }
479static int store_fpxregs (int tid, int regno) { return 0; }
480static void dummy_sse_values (void) {}
481
482#endif /* HAVE_PTRACE_GETFPXREGS */
483\f
484
485/* Transferring arbitrary registers between GDB and inferior. */
486
487/* Check if register REGNO in the child process is accessible.
488 If we are accessing registers directly via the U area, only the
489 general-purpose registers are available.
490 All registers should be accessible if we have GETREGS support. */
491
492int
493cannot_fetch_register (int regno)
494{
495 gdb_assert (regno >= 0 && regno < NUM_REGS);
496 return (!have_ptrace_getregs && regmap[regno] == -1);
497}
498
499int
500cannot_store_register (int regno)
501{
502 gdb_assert (regno >= 0 && regno < NUM_REGS);
503 return (!have_ptrace_getregs && regmap[regno] == -1);
504}
505
506/* Fetch register REGNO from the child process. If REGNO is -1, do
507 this for all registers (including the floating point and SSE
508 registers). */
509
510void
511fetch_inferior_registers (int regno)
512{
513 int tid;
514
515 /* Use the old method of peeking around in `struct user' if the
516 GETREGS request isn't available. */
517 if (!have_ptrace_getregs)
518 {
519 int i;
520
521 for (i = 0; i < NUM_REGS; i++)
522 if (regno == -1 || regno == i)
523 fetch_register (i);
524
525 return;
526 }
527
528 /* GNU/Linux LWP ID's are process ID's. */
529 tid = TIDGET (inferior_ptid);
530 if (tid == 0)
531 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
532
533 /* Use the PTRACE_GETFPXREGS request whenever possible, since it
534 transfers more registers in one system call, and we'll cache the
535 results. But remember that fetch_fpxregs can fail, and return
536 zero. */
537 if (regno == -1)
538 {
539 fetch_regs (tid);
540
541 /* The call above might reset `have_ptrace_getregs'. */
542 if (!have_ptrace_getregs)
543 {
544 fetch_inferior_registers (regno);
545 return;
546 }
547
548 if (fetch_fpxregs (tid))
549 return;
550 fetch_fpregs (tid);
551 return;
552 }
553
554 if (GETREGS_SUPPLIES (regno))
555 {
556 fetch_regs (tid);
557 return;
558 }
559
560 if (GETFPXREGS_SUPPLIES (regno))
561 {
562 if (fetch_fpxregs (tid))
563 return;
564
565 /* Either our processor or our kernel doesn't support the SSE
566 registers, so read the FP registers in the traditional way,
567 and fill the SSE registers with dummy values. It would be
568 more graceful to handle differences in the register set using
569 gdbarch. Until then, this will at least make things work
570 plausibly. */
571 fetch_fpregs (tid);
572 return;
573 }
574
575 internal_error (__FILE__, __LINE__,
576 "Got request for bad register number %d.", regno);
577}
578
579/* Store register REGNO back into the child process. If REGNO is -1,
580 do this for all registers (including the floating point and SSE
581 registers). */
582void
583store_inferior_registers (int regno)
584{
585 int tid;
586
587 /* Use the old method of poking around in `struct user' if the
588 SETREGS request isn't available. */
589 if (!have_ptrace_getregs)
590 {
591 int i;
592
593 for (i = 0; i < NUM_REGS; i++)
594 if (regno == -1 || regno == i)
595 store_register (i);
596
597 return;
598 }
599
600 /* GNU/Linux LWP ID's are process ID's. */
601 tid = TIDGET (inferior_ptid);
602 if (tid == 0)
603 tid = PIDGET (inferior_ptid); /* Not a threaded program. */
604
605 /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
606 transfers more registers in one system call. But remember that
607 store_fpxregs can fail, and return zero. */
608 if (regno == -1)
609 {
610 store_regs (tid, regno);
611 if (store_fpxregs (tid, regno))
612 return;
613 store_fpregs (tid, regno);
614 return;
615 }
616
617 if (GETREGS_SUPPLIES (regno))
618 {
619 store_regs (tid, regno);
620 return;
621 }
622
623 if (GETFPXREGS_SUPPLIES (regno))
624 {
625 if (store_fpxregs (tid, regno))
626 return;
627
628 /* Either our processor or our kernel doesn't support the SSE
629 registers, so just write the FP registers in the traditional
630 way. */
631 store_fpregs (tid, regno);
632 return;
633 }
634
635 internal_error (__FILE__, __LINE__,
636 "Got request to store bad register number %d.", regno);
637}
638\f
639
640static unsigned long
641i386_linux_dr_get (int regnum)
642{
643 int tid;
644 unsigned long value;
645
646 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
647 multi-threaded processes here. For now, pretend there is just
648 one thread. */
649 tid = PIDGET (inferior_ptid);
650
651 /* FIXME: kettenis/2001-03-27: Calling perror_with_name if the
652 ptrace call fails breaks debugging remote targets. The correct
653 way to fix this is to add the hardware breakpoint and watchpoint
654 stuff to the target vectore. For now, just return zero if the
655 ptrace call fails. */
656 errno = 0;
657 value = ptrace (PTRACE_PEEKUSER, tid,
658 offsetof (struct user, u_debugreg[regnum]), 0);
659 if (errno != 0)
660#if 0
661 perror_with_name ("Couldn't read debug register");
662#else
663 return 0;
664#endif
665
666 return value;
667}
668
669static void
670i386_linux_dr_set (int regnum, unsigned long value)
671{
672 int tid;
673
674 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
675 multi-threaded processes here. For now, pretend there is just
676 one thread. */
677 tid = PIDGET (inferior_ptid);
678
679 errno = 0;
680 ptrace (PTRACE_POKEUSER, tid,
681 offsetof (struct user, u_debugreg[regnum]), value);
682 if (errno != 0)
683 perror_with_name ("Couldn't write debug register");
684}
685
686void
687i386_linux_dr_set_control (unsigned long control)
688{
689 i386_linux_dr_set (DR_CONTROL, control);
690}
691
692void
693i386_linux_dr_set_addr (int regnum, CORE_ADDR addr)
694{
695 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
696
697 i386_linux_dr_set (DR_FIRSTADDR + regnum, addr);
698}
699
700void
701i386_linux_dr_reset_addr (int regnum)
702{
703 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
704
705 i386_linux_dr_set (DR_FIRSTADDR + regnum, 0L);
706}
707
708unsigned long
709i386_linux_dr_get_status (void)
710{
711 return i386_linux_dr_get (DR_STATUS);
712}
713\f
714
715/* Interpreting register set info found in core files. */
716
717/* Provide registers to GDB from a core file.
718
719 (We can't use the generic version of this function in
720 core-regset.c, because GNU/Linux has *three* different kinds of
721 register set notes. core-regset.c would have to call
722 supply_fpxregset, which most platforms don't have.)
723
724 CORE_REG_SECT points to an array of bytes, which are the contents
725 of a `note' from a core file which BFD thinks might contain
726 register contents. CORE_REG_SIZE is its size.
727
728 WHICH says which register set corelow suspects this is:
729 0 --- the general-purpose register set, in elf_gregset_t format
730 2 --- the floating-point register set, in elf_fpregset_t format
731 3 --- the extended floating-point register set, in elf_fpxregset_t format
732
733 REG_ADDR isn't used on GNU/Linux. */
734
735static void
736fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
737 int which, CORE_ADDR reg_addr)
738{
739 elf_gregset_t gregset;
740 elf_fpregset_t fpregset;
741
742 switch (which)
743 {
744 case 0:
745 if (core_reg_size != sizeof (gregset))
746 warning ("Wrong size gregset in core file.");
747 else
748 {
749 memcpy (&gregset, core_reg_sect, sizeof (gregset));
750 supply_gregset (&gregset);
751 }
752 break;
753
754 case 2:
755 if (core_reg_size != sizeof (fpregset))
756 warning ("Wrong size fpregset in core file.");
757 else
758 {
759 memcpy (&fpregset, core_reg_sect, sizeof (fpregset));
760 supply_fpregset (&fpregset);
761 }
762 break;
763
764#ifdef HAVE_PTRACE_GETFPXREGS
765 {
766 elf_fpxregset_t fpxregset;
767
768 case 3:
769 if (core_reg_size != sizeof (fpxregset))
770 warning ("Wrong size fpxregset in core file.");
771 else
772 {
773 memcpy (&fpxregset, core_reg_sect, sizeof (fpxregset));
774 supply_fpxregset (&fpxregset);
775 }
776 break;
777 }
778#endif
779
780 default:
781 /* We've covered all the kinds of registers we know about here,
782 so this must be something we wouldn't know what to do with
783 anyway. Just ignore it. */
784 break;
785 }
786}
787\f
788
789/* The instruction for a GNU/Linux system call is:
790 int $0x80
791 or 0xcd 0x80. */
792
793static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
794
795#define LINUX_SYSCALL_LEN (sizeof linux_syscall)
796
797/* The system call number is stored in the %eax register. */
798#define LINUX_SYSCALL_REGNUM 0 /* %eax */
799
800/* We are specifically interested in the sigreturn and rt_sigreturn
801 system calls. */
802
803#ifndef SYS_sigreturn
804#define SYS_sigreturn 0x77
805#endif
806#ifndef SYS_rt_sigreturn
807#define SYS_rt_sigreturn 0xad
808#endif
809
810/* Offset to saved processor flags, from <asm/sigcontext.h>. */
811#define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
812
813/* Resume execution of the inferior process.
814 If STEP is nonzero, single-step it.
815 If SIGNAL is nonzero, give it that signal. */
816
817void
818child_resume (ptid_t ptid, int step, enum target_signal signal)
819{
820 int pid = PIDGET (ptid);
821
822 int request = PTRACE_CONT;
823
824 if (pid == -1)
825 /* Resume all threads. */
826 /* I think this only gets used in the non-threaded case, where "resume
827 all threads" and "resume inferior_ptid" are the same. */
828 pid = PIDGET (inferior_ptid);
829
830 if (step)
831 {
832 CORE_ADDR pc = read_pc_pid (pid_to_ptid (pid));
833 unsigned char buf[LINUX_SYSCALL_LEN];
834
835 request = PTRACE_SINGLESTEP;
836
837 /* Returning from a signal trampoline is done by calling a
838 special system call (sigreturn or rt_sigreturn, see
839 i386-linux-tdep.c for more information). This system call
840 restores the registers that were saved when the signal was
841 raised, including %eflags. That means that single-stepping
842 won't work. Instead, we'll have to modify the signal context
843 that's about to be restored, and set the trace flag there. */
844
845 /* First check if PC is at a system call. */
846 if (read_memory_nobpt (pc, (char *) buf, LINUX_SYSCALL_LEN) == 0
847 && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
848 {
849 int syscall = read_register_pid (LINUX_SYSCALL_REGNUM,
850 pid_to_ptid (pid));
851
852 /* Then check the system call number. */
853 if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
854 {
855 CORE_ADDR sp = read_register (SP_REGNUM);
856 CORE_ADDR addr = sp;
857 unsigned long int eflags;
858
859 if (syscall == SYS_rt_sigreturn)
860 addr = read_memory_integer (sp + 8, 4) + 20;
861
862 /* Set the trace flag in the context that's about to be
863 restored. */
864 addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
865 read_memory (addr, (char *) &eflags, 4);
866 eflags |= 0x0100;
867 write_memory (addr, (char *) &eflags, 4);
868 }
869 }
870 }
871
872 if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
873 perror_with_name ("ptrace");
874}
875\f
876
877/* Register that we are able to handle GNU/Linux ELF core file
878 formats. */
879
880static struct core_fns linux_elf_core_fns =
881{
882 bfd_target_elf_flavour, /* core_flavour */
883 default_check_format, /* check_format */
884 default_core_sniffer, /* core_sniffer */
885 fetch_core_registers, /* core_read_registers */
886 NULL /* next */
887};
888
889void
890_initialize_i386_linux_nat (void)
891{
892 add_core_fns (&linux_elf_core_fns);
893}
This page took 0.030503 seconds and 4 git commands to generate.