* ld-elfcomm/elfcomm.exp: Add appropriate emulation option
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
... / ...
CommitLineData
1/* Target-dependent code for GNU/Linux i386.
2
3 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "gdbcore.h"
23#include "frame.h"
24#include "value.h"
25#include "regcache.h"
26#include "inferior.h"
27#include "osabi.h"
28#include "reggroups.h"
29#include "dwarf2-frame.h"
30#include "gdb_string.h"
31
32#include "i386-tdep.h"
33#include "i386-linux-tdep.h"
34#include "linux-tdep.h"
35#include "glibc-tdep.h"
36#include "solib-svr4.h"
37#include "symtab.h"
38#include "arch-utils.h"
39#include "regset.h"
40
41#include "record.h"
42#include "linux-record.h"
43#include <stdint.h>
44
45/* Supported register note sections. */
46static struct core_regset_section i386_linux_regset_sections[] =
47{
48 { ".reg", 144 },
49 { ".reg2", 108 },
50 { ".reg-xfp", 512 },
51 { NULL, 0 }
52};
53
54/* Return the name of register REG. */
55
56static const char *
57i386_linux_register_name (struct gdbarch *gdbarch, int reg)
58{
59 /* Deal with the extra "orig_eax" pseudo register. */
60 if (reg == I386_LINUX_ORIG_EAX_REGNUM)
61 return "orig_eax";
62
63 return i386_register_name (gdbarch, reg);
64}
65
66/* Return non-zero, when the register is in the corresponding register
67 group. Put the LINUX_ORIG_EAX register in the system group. */
68static int
69i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
70 struct reggroup *group)
71{
72 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
73 return (group == system_reggroup
74 || group == save_reggroup
75 || group == restore_reggroup);
76 return i386_register_reggroup_p (gdbarch, regnum, group);
77}
78
79\f
80/* Recognizing signal handler frames. */
81
82/* GNU/Linux has two flavors of signals. Normal signal handlers, and
83 "realtime" (RT) signals. The RT signals can provide additional
84 information to the signal handler if the SA_SIGINFO flag is set
85 when establishing a signal handler using `sigaction'. It is not
86 unlikely that future versions of GNU/Linux will support SA_SIGINFO
87 for normal signals too. */
88
89/* When the i386 Linux kernel calls a signal handler and the
90 SA_RESTORER flag isn't set, the return address points to a bit of
91 code on the stack. This function returns whether the PC appears to
92 be within this bit of code.
93
94 The instruction sequence for normal signals is
95 pop %eax
96 mov $0x77, %eax
97 int $0x80
98 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
99
100 Checking for the code sequence should be somewhat reliable, because
101 the effect is to call the system call sigreturn. This is unlikely
102 to occur anywhere other than in a signal trampoline.
103
104 It kind of sucks that we have to read memory from the process in
105 order to identify a signal trampoline, but there doesn't seem to be
106 any other way. Therefore we only do the memory reads if no
107 function name could be identified, which should be the case since
108 the code is on the stack.
109
110 Detection of signal trampolines for handlers that set the
111 SA_RESTORER flag is in general not possible. Unfortunately this is
112 what the GNU C Library has been doing for quite some time now.
113 However, as of version 2.1.2, the GNU C Library uses signal
114 trampolines (named __restore and __restore_rt) that are identical
115 to the ones used by the kernel. Therefore, these trampolines are
116 supported too. */
117
118#define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
119#define LINUX_SIGTRAMP_OFFSET0 0
120#define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
121#define LINUX_SIGTRAMP_OFFSET1 1
122#define LINUX_SIGTRAMP_INSN2 0xcd /* int */
123#define LINUX_SIGTRAMP_OFFSET2 6
124
125static const gdb_byte linux_sigtramp_code[] =
126{
127 LINUX_SIGTRAMP_INSN0, /* pop %eax */
128 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
129 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
130};
131
132#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
133
134/* If THIS_FRAME is a sigtramp routine, return the address of the
135 start of the routine. Otherwise, return 0. */
136
137static CORE_ADDR
138i386_linux_sigtramp_start (struct frame_info *this_frame)
139{
140 CORE_ADDR pc = get_frame_pc (this_frame);
141 gdb_byte buf[LINUX_SIGTRAMP_LEN];
142
143 /* We only recognize a signal trampoline if PC is at the start of
144 one of the three instructions. We optimize for finding the PC at
145 the start, as will be the case when the trampoline is not the
146 first frame on the stack. We assume that in the case where the
147 PC is not at the start of the instruction sequence, there will be
148 a few trailing readable bytes on the stack. */
149
150 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
151 return 0;
152
153 if (buf[0] != LINUX_SIGTRAMP_INSN0)
154 {
155 int adjust;
156
157 switch (buf[0])
158 {
159 case LINUX_SIGTRAMP_INSN1:
160 adjust = LINUX_SIGTRAMP_OFFSET1;
161 break;
162 case LINUX_SIGTRAMP_INSN2:
163 adjust = LINUX_SIGTRAMP_OFFSET2;
164 break;
165 default:
166 return 0;
167 }
168
169 pc -= adjust;
170
171 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
172 return 0;
173 }
174
175 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
176 return 0;
177
178 return pc;
179}
180
181/* This function does the same for RT signals. Here the instruction
182 sequence is
183 mov $0xad, %eax
184 int $0x80
185 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
186
187 The effect is to call the system call rt_sigreturn. */
188
189#define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
190#define LINUX_RT_SIGTRAMP_OFFSET0 0
191#define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
192#define LINUX_RT_SIGTRAMP_OFFSET1 5
193
194static const gdb_byte linux_rt_sigtramp_code[] =
195{
196 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
197 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
198};
199
200#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
201
202/* If THIS_FRAME is an RT sigtramp routine, return the address of the
203 start of the routine. Otherwise, return 0. */
204
205static CORE_ADDR
206i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
207{
208 CORE_ADDR pc = get_frame_pc (this_frame);
209 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
210
211 /* We only recognize a signal trampoline if PC is at the start of
212 one of the two instructions. We optimize for finding the PC at
213 the start, as will be the case when the trampoline is not the
214 first frame on the stack. We assume that in the case where the
215 PC is not at the start of the instruction sequence, there will be
216 a few trailing readable bytes on the stack. */
217
218 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
219 return 0;
220
221 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
222 {
223 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
224 return 0;
225
226 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
227
228 if (!safe_frame_unwind_memory (this_frame, pc, buf,
229 LINUX_RT_SIGTRAMP_LEN))
230 return 0;
231 }
232
233 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
234 return 0;
235
236 return pc;
237}
238
239/* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
240 routine. */
241
242static int
243i386_linux_sigtramp_p (struct frame_info *this_frame)
244{
245 CORE_ADDR pc = get_frame_pc (this_frame);
246 char *name;
247
248 find_pc_partial_function (pc, &name, NULL, NULL);
249
250 /* If we have NAME, we can optimize the search. The trampolines are
251 named __restore and __restore_rt. However, they aren't dynamically
252 exported from the shared C library, so the trampoline may appear to
253 be part of the preceding function. This should always be sigaction,
254 __sigaction, or __libc_sigaction (all aliases to the same function). */
255 if (name == NULL || strstr (name, "sigaction") != NULL)
256 return (i386_linux_sigtramp_start (this_frame) != 0
257 || i386_linux_rt_sigtramp_start (this_frame) != 0);
258
259 return (strcmp ("__restore", name) == 0
260 || strcmp ("__restore_rt", name) == 0);
261}
262
263/* Return one if the PC of THIS_FRAME is in a signal trampoline which
264 may have DWARF-2 CFI. */
265
266static int
267i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
268 struct frame_info *this_frame)
269{
270 CORE_ADDR pc = get_frame_pc (this_frame);
271 char *name;
272
273 find_pc_partial_function (pc, &name, NULL, NULL);
274
275 /* If a vsyscall DSO is in use, the signal trampolines may have these
276 names. */
277 if (name && (strcmp (name, "__kernel_sigreturn") == 0
278 || strcmp (name, "__kernel_rt_sigreturn") == 0))
279 return 1;
280
281 return 0;
282}
283
284/* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
285#define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
286
287/* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
288 address of the associated sigcontext structure. */
289
290static CORE_ADDR
291i386_linux_sigcontext_addr (struct frame_info *this_frame)
292{
293 struct gdbarch *gdbarch = get_frame_arch (this_frame);
294 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
295 CORE_ADDR pc;
296 CORE_ADDR sp;
297 gdb_byte buf[4];
298
299 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
300 sp = extract_unsigned_integer (buf, 4, byte_order);
301
302 pc = i386_linux_sigtramp_start (this_frame);
303 if (pc)
304 {
305 /* The sigcontext structure lives on the stack, right after
306 the signum argument. We determine the address of the
307 sigcontext structure by looking at the frame's stack
308 pointer. Keep in mind that the first instruction of the
309 sigtramp code is "pop %eax". If the PC is after this
310 instruction, adjust the returned value accordingly. */
311 if (pc == get_frame_pc (this_frame))
312 return sp + 4;
313 return sp;
314 }
315
316 pc = i386_linux_rt_sigtramp_start (this_frame);
317 if (pc)
318 {
319 CORE_ADDR ucontext_addr;
320
321 /* The sigcontext structure is part of the user context. A
322 pointer to the user context is passed as the third argument
323 to the signal handler. */
324 read_memory (sp + 8, buf, 4);
325 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
326 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
327 }
328
329 error (_("Couldn't recognize signal trampoline."));
330 return 0;
331}
332
333/* Set the program counter for process PTID to PC. */
334
335static void
336i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
337{
338 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
339
340 /* We must be careful with modifying the program counter. If we
341 just interrupted a system call, the kernel might try to restart
342 it when we resume the inferior. On restarting the system call,
343 the kernel will try backing up the program counter even though it
344 no longer points at the system call. This typically results in a
345 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
346 "orig_eax" pseudo-register.
347
348 Note that "orig_eax" is saved when setting up a dummy call frame.
349 This means that it is properly restored when that frame is
350 popped, and that the interrupted system call will be restarted
351 when we resume the inferior on return from a function call from
352 within GDB. In all other cases the system call will not be
353 restarted. */
354 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
355}
356
357static struct linux_record_tdep i386_linux_record_tdep;
358
359/* i386_canonicalize_syscall maps from the native i386 Linux set
360 of syscall ids into a canonical set of syscall ids used by
361 process record (a mostly trivial mapping, since the canonical
362 set was originally taken from the i386 set). */
363
364static enum gdb_syscall
365i386_canonicalize_syscall (int syscall)
366{
367 enum { i386_syscall_max = 499 };
368
369 if (syscall <= i386_syscall_max)
370 return syscall;
371 else
372 return -1;
373}
374
375/* Parse the arguments of current system call instruction and record
376 the values of the registers and memory that will be changed into
377 "record_arch_list". This instruction is "int 0x80" (Linux
378 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
379
380 Return -1 if something wrong. */
381
382static int
383i386_linux_intx80_sysenter_record (struct regcache *regcache)
384{
385 int ret;
386 LONGEST syscall_native;
387 enum gdb_syscall syscall_gdb;
388
389 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
390
391 syscall_gdb = i386_canonicalize_syscall (syscall_native);
392
393 if (syscall_gdb < 0)
394 {
395 printf_unfiltered (_("Process record and replay target doesn't "
396 "support syscall number %s\n"),
397 plongest (syscall_native));
398 return -1;
399 }
400
401 ret = record_linux_system_call (syscall_gdb, regcache,
402 &i386_linux_record_tdep);
403 if (ret)
404 return ret;
405
406 /* Record the return value of the system call. */
407 if (record_arch_list_add_reg (regcache, I386_EAX_REGNUM))
408 return -1;
409
410 return 0;
411}
412\f
413
414/* The register sets used in GNU/Linux ELF core-dumps are identical to
415 the register sets in `struct user' that are used for a.out
416 core-dumps. These are also used by ptrace(2). The corresponding
417 types are `elf_gregset_t' for the general-purpose registers (with
418 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
419 for the floating-point registers.
420
421 Those types used to be available under the names `gregset_t' and
422 `fpregset_t' too, and GDB used those names in the past. But those
423 names are now used for the register sets used in the `mcontext_t'
424 type, which have a different size and layout. */
425
426/* Mapping between the general-purpose registers in `struct user'
427 format and GDB's register cache layout. */
428
429/* From <sys/reg.h>. */
430static int i386_linux_gregset_reg_offset[] =
431{
432 6 * 4, /* %eax */
433 1 * 4, /* %ecx */
434 2 * 4, /* %edx */
435 0 * 4, /* %ebx */
436 15 * 4, /* %esp */
437 5 * 4, /* %ebp */
438 3 * 4, /* %esi */
439 4 * 4, /* %edi */
440 12 * 4, /* %eip */
441 14 * 4, /* %eflags */
442 13 * 4, /* %cs */
443 16 * 4, /* %ss */
444 7 * 4, /* %ds */
445 8 * 4, /* %es */
446 9 * 4, /* %fs */
447 10 * 4, /* %gs */
448 -1, -1, -1, -1, -1, -1, -1, -1,
449 -1, -1, -1, -1, -1, -1, -1, -1,
450 -1, -1, -1, -1, -1, -1, -1, -1,
451 -1,
452 11 * 4 /* "orig_eax" */
453};
454
455/* Mapping between the general-purpose registers in `struct
456 sigcontext' format and GDB's register cache layout. */
457
458/* From <asm/sigcontext.h>. */
459static int i386_linux_sc_reg_offset[] =
460{
461 11 * 4, /* %eax */
462 10 * 4, /* %ecx */
463 9 * 4, /* %edx */
464 8 * 4, /* %ebx */
465 7 * 4, /* %esp */
466 6 * 4, /* %ebp */
467 5 * 4, /* %esi */
468 4 * 4, /* %edi */
469 14 * 4, /* %eip */
470 16 * 4, /* %eflags */
471 15 * 4, /* %cs */
472 18 * 4, /* %ss */
473 3 * 4, /* %ds */
474 2 * 4, /* %es */
475 1 * 4, /* %fs */
476 0 * 4 /* %gs */
477};
478
479static void
480i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
481{
482 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
483
484 /* GNU/Linux uses ELF. */
485 i386_elf_init_abi (info, gdbarch);
486
487 /* Since we have the extra "orig_eax" register on GNU/Linux, we have
488 to adjust a few things. */
489
490 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
491 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
492 set_gdbarch_register_name (gdbarch, i386_linux_register_name);
493 set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);
494
495 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
496 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
497 tdep->sizeof_gregset = 17 * 4;
498
499 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
500
501 tdep->sigtramp_p = i386_linux_sigtramp_p;
502 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
503 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
504 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
505
506 set_gdbarch_process_record (gdbarch, i386_process_record);
507
508 /* Initialize the i386_linux_record_tdep. */
509 /* These values are the size of the type that will be used in a system
510 call. They are obtained from Linux Kernel source. */
511 i386_linux_record_tdep.size_pointer
512 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
513 i386_linux_record_tdep.size__old_kernel_stat = 32;
514 i386_linux_record_tdep.size_tms = 16;
515 i386_linux_record_tdep.size_loff_t = 8;
516 i386_linux_record_tdep.size_flock = 16;
517 i386_linux_record_tdep.size_oldold_utsname = 45;
518 i386_linux_record_tdep.size_ustat = 20;
519 i386_linux_record_tdep.size_old_sigaction = 140;
520 i386_linux_record_tdep.size_old_sigset_t = 128;
521 i386_linux_record_tdep.size_rlimit = 8;
522 i386_linux_record_tdep.size_rusage = 72;
523 i386_linux_record_tdep.size_timeval = 8;
524 i386_linux_record_tdep.size_timezone = 8;
525 i386_linux_record_tdep.size_old_gid_t = 2;
526 i386_linux_record_tdep.size_old_uid_t = 2;
527 i386_linux_record_tdep.size_fd_set = 128;
528 i386_linux_record_tdep.size_dirent = 268;
529 i386_linux_record_tdep.size_dirent64 = 276;
530 i386_linux_record_tdep.size_statfs = 64;
531 i386_linux_record_tdep.size_statfs64 = 84;
532 i386_linux_record_tdep.size_sockaddr = 16;
533 i386_linux_record_tdep.size_int
534 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
535 i386_linux_record_tdep.size_long
536 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
537 i386_linux_record_tdep.size_ulong
538 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
539 i386_linux_record_tdep.size_msghdr = 28;
540 i386_linux_record_tdep.size_itimerval = 16;
541 i386_linux_record_tdep.size_stat = 88;
542 i386_linux_record_tdep.size_old_utsname = 325;
543 i386_linux_record_tdep.size_sysinfo = 64;
544 i386_linux_record_tdep.size_msqid_ds = 88;
545 i386_linux_record_tdep.size_shmid_ds = 84;
546 i386_linux_record_tdep.size_new_utsname = 390;
547 i386_linux_record_tdep.size_timex = 128;
548 i386_linux_record_tdep.size_mem_dqinfo = 24;
549 i386_linux_record_tdep.size_if_dqblk = 68;
550 i386_linux_record_tdep.size_fs_quota_stat = 68;
551 i386_linux_record_tdep.size_timespec = 8;
552 i386_linux_record_tdep.size_pollfd = 8;
553 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
554 i386_linux_record_tdep.size_knfsd_fh = 132;
555 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
556 i386_linux_record_tdep.size_sigaction = 140;
557 i386_linux_record_tdep.size_sigset_t = 8;
558 i386_linux_record_tdep.size_siginfo_t = 128;
559 i386_linux_record_tdep.size_cap_user_data_t = 12;
560 i386_linux_record_tdep.size_stack_t = 12;
561 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
562 i386_linux_record_tdep.size_stat64 = 96;
563 i386_linux_record_tdep.size_gid_t = 2;
564 i386_linux_record_tdep.size_uid_t = 2;
565 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
566 i386_linux_record_tdep.size_flock64 = 24;
567 i386_linux_record_tdep.size_user_desc = 16;
568 i386_linux_record_tdep.size_io_event = 32;
569 i386_linux_record_tdep.size_iocb = 64;
570 i386_linux_record_tdep.size_epoll_event = 12;
571 i386_linux_record_tdep.size_itimerspec
572 = i386_linux_record_tdep.size_timespec * 2;
573 i386_linux_record_tdep.size_mq_attr = 32;
574 i386_linux_record_tdep.size_siginfo = 128;
575 i386_linux_record_tdep.size_termios = 36;
576 i386_linux_record_tdep.size_termios2 = 44;
577 i386_linux_record_tdep.size_pid_t = 4;
578 i386_linux_record_tdep.size_winsize = 8;
579 i386_linux_record_tdep.size_serial_struct = 60;
580 i386_linux_record_tdep.size_serial_icounter_struct = 80;
581 i386_linux_record_tdep.size_hayes_esp_config = 12;
582 i386_linux_record_tdep.size_size_t = 4;
583 i386_linux_record_tdep.size_iovec = 8;
584
585 /* These values are the second argument of system call "sys_ioctl".
586 They are obtained from Linux Kernel source. */
587 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
588 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
589 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
590 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
591 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
592 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
593 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
594 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
595 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
596 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
597 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
598 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
599 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
600 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
601 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
602 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
603 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
604 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
605 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
606 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
607 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
608 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
609 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
610 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
611 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
612 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
613 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
614 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
615 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
616 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
617 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
618 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
619 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
620 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
621 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
622 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
623 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
624 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
625 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
626 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
627 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
628 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
629 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
630 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
631 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
632 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
633 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
634 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
635 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
636 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
637 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
638 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
639 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
640 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
641 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
642 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
643 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
644 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
645 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
646 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
647 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
648 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
649 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
650 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
651 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
652
653 /* These values are the second argument of system call "sys_fcntl"
654 and "sys_fcntl64". They are obtained from Linux Kernel source. */
655 i386_linux_record_tdep.fcntl_F_GETLK = 5;
656 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
657 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
658 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
659
660 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
661 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
662 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
663 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
664 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
665 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
666
667 tdep->i386_intx80_record = i386_linux_intx80_sysenter_record;
668 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_record;
669
670 /* N_FUN symbols in shared libaries have 0 for their values and need
671 to be relocated. */
672 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
673
674 /* GNU/Linux uses SVR4-style shared libraries. */
675 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
676 set_solib_svr4_fetch_link_map_offsets
677 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
678
679 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
680 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
681
682 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
683
684 /* Enable TLS support. */
685 set_gdbarch_fetch_tls_load_module_address (gdbarch,
686 svr4_fetch_objfile_link_map);
687
688 /* Install supported register note sections. */
689 set_gdbarch_core_regset_sections (gdbarch, i386_linux_regset_sections);
690
691 /* Displaced stepping. */
692 set_gdbarch_displaced_step_copy_insn (gdbarch,
693 simple_displaced_step_copy_insn);
694 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
695 set_gdbarch_displaced_step_free_closure (gdbarch,
696 simple_displaced_step_free_closure);
697 set_gdbarch_displaced_step_location (gdbarch,
698 displaced_step_at_entry_point);
699
700 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
701}
702
703/* Provide a prototype to silence -Wmissing-prototypes. */
704extern void _initialize_i386_linux_tdep (void);
705
706void
707_initialize_i386_linux_tdep (void)
708{
709 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
710 i386_linux_init_abi);
711}
This page took 0.027997 seconds and 4 git commands to generate.