2012-02-02 Pedro Alves <palves@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
... / ...
CommitLineData
1/* Target-dependent code for GNU/Linux i386.
2
3 Copyright (C) 2000-2005, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "gdbcore.h"
22#include "frame.h"
23#include "value.h"
24#include "regcache.h"
25#include "regset.h"
26#include "inferior.h"
27#include "osabi.h"
28#include "reggroups.h"
29#include "dwarf2-frame.h"
30#include "gdb_string.h"
31
32#include "i386-tdep.h"
33#include "i386-linux-tdep.h"
34#include "linux-tdep.h"
35#include "glibc-tdep.h"
36#include "solib-svr4.h"
37#include "symtab.h"
38#include "arch-utils.h"
39#include "xml-syscall.h"
40
41#include "i387-tdep.h"
42#include "i386-xstate.h"
43
44/* The syscall's XML filename for i386. */
45#define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
46
47#include "record.h"
48#include "linux-record.h"
49#include <stdint.h>
50
51#include "features/i386/i386-linux.c"
52#include "features/i386/i386-mmx-linux.c"
53#include "features/i386/i386-avx-linux.c"
54
55/* Supported register note sections. */
56static struct core_regset_section i386_linux_regset_sections[] =
57{
58 { ".reg", 68, "general-purpose" },
59 { ".reg2", 108, "floating-point" },
60 { NULL, 0 }
61};
62
63static struct core_regset_section i386_linux_sse_regset_sections[] =
64{
65 { ".reg", 68, "general-purpose" },
66 { ".reg-xfp", 512, "extended floating-point" },
67 { NULL, 0 }
68};
69
70static struct core_regset_section i386_linux_avx_regset_sections[] =
71{
72 { ".reg", 68, "general-purpose" },
73 { ".reg-xstate", I386_XSTATE_MAX_SIZE, "XSAVE extended state" },
74 { NULL, 0 }
75};
76
77/* Return non-zero, when the register is in the corresponding register
78 group. Put the LINUX_ORIG_EAX register in the system group. */
79static int
80i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
81 struct reggroup *group)
82{
83 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
84 return (group == system_reggroup
85 || group == save_reggroup
86 || group == restore_reggroup);
87 return i386_register_reggroup_p (gdbarch, regnum, group);
88}
89
90\f
91/* Recognizing signal handler frames. */
92
93/* GNU/Linux has two flavors of signals. Normal signal handlers, and
94 "realtime" (RT) signals. The RT signals can provide additional
95 information to the signal handler if the SA_SIGINFO flag is set
96 when establishing a signal handler using `sigaction'. It is not
97 unlikely that future versions of GNU/Linux will support SA_SIGINFO
98 for normal signals too. */
99
100/* When the i386 Linux kernel calls a signal handler and the
101 SA_RESTORER flag isn't set, the return address points to a bit of
102 code on the stack. This function returns whether the PC appears to
103 be within this bit of code.
104
105 The instruction sequence for normal signals is
106 pop %eax
107 mov $0x77, %eax
108 int $0x80
109 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
110
111 Checking for the code sequence should be somewhat reliable, because
112 the effect is to call the system call sigreturn. This is unlikely
113 to occur anywhere other than in a signal trampoline.
114
115 It kind of sucks that we have to read memory from the process in
116 order to identify a signal trampoline, but there doesn't seem to be
117 any other way. Therefore we only do the memory reads if no
118 function name could be identified, which should be the case since
119 the code is on the stack.
120
121 Detection of signal trampolines for handlers that set the
122 SA_RESTORER flag is in general not possible. Unfortunately this is
123 what the GNU C Library has been doing for quite some time now.
124 However, as of version 2.1.2, the GNU C Library uses signal
125 trampolines (named __restore and __restore_rt) that are identical
126 to the ones used by the kernel. Therefore, these trampolines are
127 supported too. */
128
129#define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
130#define LINUX_SIGTRAMP_OFFSET0 0
131#define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
132#define LINUX_SIGTRAMP_OFFSET1 1
133#define LINUX_SIGTRAMP_INSN2 0xcd /* int */
134#define LINUX_SIGTRAMP_OFFSET2 6
135
136static const gdb_byte linux_sigtramp_code[] =
137{
138 LINUX_SIGTRAMP_INSN0, /* pop %eax */
139 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
140 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
141};
142
143#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
144
145/* If THIS_FRAME is a sigtramp routine, return the address of the
146 start of the routine. Otherwise, return 0. */
147
148static CORE_ADDR
149i386_linux_sigtramp_start (struct frame_info *this_frame)
150{
151 CORE_ADDR pc = get_frame_pc (this_frame);
152 gdb_byte buf[LINUX_SIGTRAMP_LEN];
153
154 /* We only recognize a signal trampoline if PC is at the start of
155 one of the three instructions. We optimize for finding the PC at
156 the start, as will be the case when the trampoline is not the
157 first frame on the stack. We assume that in the case where the
158 PC is not at the start of the instruction sequence, there will be
159 a few trailing readable bytes on the stack. */
160
161 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
162 return 0;
163
164 if (buf[0] != LINUX_SIGTRAMP_INSN0)
165 {
166 int adjust;
167
168 switch (buf[0])
169 {
170 case LINUX_SIGTRAMP_INSN1:
171 adjust = LINUX_SIGTRAMP_OFFSET1;
172 break;
173 case LINUX_SIGTRAMP_INSN2:
174 adjust = LINUX_SIGTRAMP_OFFSET2;
175 break;
176 default:
177 return 0;
178 }
179
180 pc -= adjust;
181
182 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
183 return 0;
184 }
185
186 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
187 return 0;
188
189 return pc;
190}
191
192/* This function does the same for RT signals. Here the instruction
193 sequence is
194 mov $0xad, %eax
195 int $0x80
196 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
197
198 The effect is to call the system call rt_sigreturn. */
199
200#define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
201#define LINUX_RT_SIGTRAMP_OFFSET0 0
202#define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
203#define LINUX_RT_SIGTRAMP_OFFSET1 5
204
205static const gdb_byte linux_rt_sigtramp_code[] =
206{
207 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
208 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
209};
210
211#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
212
213/* If THIS_FRAME is an RT sigtramp routine, return the address of the
214 start of the routine. Otherwise, return 0. */
215
216static CORE_ADDR
217i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
218{
219 CORE_ADDR pc = get_frame_pc (this_frame);
220 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
221
222 /* We only recognize a signal trampoline if PC is at the start of
223 one of the two instructions. We optimize for finding the PC at
224 the start, as will be the case when the trampoline is not the
225 first frame on the stack. We assume that in the case where the
226 PC is not at the start of the instruction sequence, there will be
227 a few trailing readable bytes on the stack. */
228
229 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
230 return 0;
231
232 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
233 {
234 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
235 return 0;
236
237 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
238
239 if (!safe_frame_unwind_memory (this_frame, pc, buf,
240 LINUX_RT_SIGTRAMP_LEN))
241 return 0;
242 }
243
244 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
245 return 0;
246
247 return pc;
248}
249
250/* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
251 routine. */
252
253static int
254i386_linux_sigtramp_p (struct frame_info *this_frame)
255{
256 CORE_ADDR pc = get_frame_pc (this_frame);
257 char *name;
258
259 find_pc_partial_function (pc, &name, NULL, NULL);
260
261 /* If we have NAME, we can optimize the search. The trampolines are
262 named __restore and __restore_rt. However, they aren't dynamically
263 exported from the shared C library, so the trampoline may appear to
264 be part of the preceding function. This should always be sigaction,
265 __sigaction, or __libc_sigaction (all aliases to the same function). */
266 if (name == NULL || strstr (name, "sigaction") != NULL)
267 return (i386_linux_sigtramp_start (this_frame) != 0
268 || i386_linux_rt_sigtramp_start (this_frame) != 0);
269
270 return (strcmp ("__restore", name) == 0
271 || strcmp ("__restore_rt", name) == 0);
272}
273
274/* Return one if the PC of THIS_FRAME is in a signal trampoline which
275 may have DWARF-2 CFI. */
276
277static int
278i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
279 struct frame_info *this_frame)
280{
281 CORE_ADDR pc = get_frame_pc (this_frame);
282 char *name;
283
284 find_pc_partial_function (pc, &name, NULL, NULL);
285
286 /* If a vsyscall DSO is in use, the signal trampolines may have these
287 names. */
288 if (name && (strcmp (name, "__kernel_sigreturn") == 0
289 || strcmp (name, "__kernel_rt_sigreturn") == 0))
290 return 1;
291
292 return 0;
293}
294
295/* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
296#define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
297
298/* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
299 address of the associated sigcontext structure. */
300
301static CORE_ADDR
302i386_linux_sigcontext_addr (struct frame_info *this_frame)
303{
304 struct gdbarch *gdbarch = get_frame_arch (this_frame);
305 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
306 CORE_ADDR pc;
307 CORE_ADDR sp;
308 gdb_byte buf[4];
309
310 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
311 sp = extract_unsigned_integer (buf, 4, byte_order);
312
313 pc = i386_linux_sigtramp_start (this_frame);
314 if (pc)
315 {
316 /* The sigcontext structure lives on the stack, right after
317 the signum argument. We determine the address of the
318 sigcontext structure by looking at the frame's stack
319 pointer. Keep in mind that the first instruction of the
320 sigtramp code is "pop %eax". If the PC is after this
321 instruction, adjust the returned value accordingly. */
322 if (pc == get_frame_pc (this_frame))
323 return sp + 4;
324 return sp;
325 }
326
327 pc = i386_linux_rt_sigtramp_start (this_frame);
328 if (pc)
329 {
330 CORE_ADDR ucontext_addr;
331
332 /* The sigcontext structure is part of the user context. A
333 pointer to the user context is passed as the third argument
334 to the signal handler. */
335 read_memory (sp + 8, buf, 4);
336 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
337 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
338 }
339
340 error (_("Couldn't recognize signal trampoline."));
341 return 0;
342}
343
344/* Set the program counter for process PTID to PC. */
345
346static void
347i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
348{
349 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
350
351 /* We must be careful with modifying the program counter. If we
352 just interrupted a system call, the kernel might try to restart
353 it when we resume the inferior. On restarting the system call,
354 the kernel will try backing up the program counter even though it
355 no longer points at the system call. This typically results in a
356 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
357 "orig_eax" pseudo-register.
358
359 Note that "orig_eax" is saved when setting up a dummy call frame.
360 This means that it is properly restored when that frame is
361 popped, and that the interrupted system call will be restarted
362 when we resume the inferior on return from a function call from
363 within GDB. In all other cases the system call will not be
364 restarted. */
365 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
366}
367
368/* Record all registers but IP register for process-record. */
369
370static int
371i386_all_but_ip_registers_record (struct regcache *regcache)
372{
373 if (record_arch_list_add_reg (regcache, I386_EAX_REGNUM))
374 return -1;
375 if (record_arch_list_add_reg (regcache, I386_ECX_REGNUM))
376 return -1;
377 if (record_arch_list_add_reg (regcache, I386_EDX_REGNUM))
378 return -1;
379 if (record_arch_list_add_reg (regcache, I386_EBX_REGNUM))
380 return -1;
381 if (record_arch_list_add_reg (regcache, I386_ESP_REGNUM))
382 return -1;
383 if (record_arch_list_add_reg (regcache, I386_EBP_REGNUM))
384 return -1;
385 if (record_arch_list_add_reg (regcache, I386_ESI_REGNUM))
386 return -1;
387 if (record_arch_list_add_reg (regcache, I386_EDI_REGNUM))
388 return -1;
389 if (record_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
390 return -1;
391
392 return 0;
393}
394
395/* i386_canonicalize_syscall maps from the native i386 Linux set
396 of syscall ids into a canonical set of syscall ids used by
397 process record (a mostly trivial mapping, since the canonical
398 set was originally taken from the i386 set). */
399
400static enum gdb_syscall
401i386_canonicalize_syscall (int syscall)
402{
403 enum { i386_syscall_max = 499 };
404
405 if (syscall <= i386_syscall_max)
406 return syscall;
407 else
408 return -1;
409}
410
411/* Parse the arguments of current system call instruction and record
412 the values of the registers and memory that will be changed into
413 "record_arch_list". This instruction is "int 0x80" (Linux
414 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
415
416 Return -1 if something wrong. */
417
418static struct linux_record_tdep i386_linux_record_tdep;
419
420static int
421i386_linux_intx80_sysenter_record (struct regcache *regcache)
422{
423 int ret;
424 LONGEST syscall_native;
425 enum gdb_syscall syscall_gdb;
426
427 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
428
429 syscall_gdb = i386_canonicalize_syscall (syscall_native);
430
431 if (syscall_gdb < 0)
432 {
433 printf_unfiltered (_("Process record and replay target doesn't "
434 "support syscall number %s\n"),
435 plongest (syscall_native));
436 return -1;
437 }
438
439 if (syscall_gdb == gdb_sys_sigreturn
440 || syscall_gdb == gdb_sys_rt_sigreturn)
441 {
442 if (i386_all_but_ip_registers_record (regcache))
443 return -1;
444 return 0;
445 }
446
447 ret = record_linux_system_call (syscall_gdb, regcache,
448 &i386_linux_record_tdep);
449 if (ret)
450 return ret;
451
452 /* Record the return value of the system call. */
453 if (record_arch_list_add_reg (regcache, I386_EAX_REGNUM))
454 return -1;
455
456 return 0;
457}
458
459#define I386_LINUX_xstate 270
460#define I386_LINUX_frame_size 732
461
462int
463i386_linux_record_signal (struct gdbarch *gdbarch,
464 struct regcache *regcache,
465 enum target_signal signal)
466{
467 ULONGEST esp;
468
469 if (i386_all_but_ip_registers_record (regcache))
470 return -1;
471
472 if (record_arch_list_add_reg (regcache, I386_EIP_REGNUM))
473 return -1;
474
475 /* Record the change in the stack. */
476 regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
477 /* This is for xstate.
478 sp -= sizeof (struct _fpstate); */
479 esp -= I386_LINUX_xstate;
480 /* This is for frame_size.
481 sp -= sizeof (struct rt_sigframe); */
482 esp -= I386_LINUX_frame_size;
483 if (record_arch_list_add_mem (esp,
484 I386_LINUX_xstate + I386_LINUX_frame_size))
485 return -1;
486
487 if (record_arch_list_add_end ())
488 return -1;
489
490 return 0;
491}
492\f
493
494static LONGEST
495i386_linux_get_syscall_number (struct gdbarch *gdbarch,
496 ptid_t ptid)
497{
498 struct regcache *regcache = get_thread_regcache (ptid);
499 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
500 /* The content of a register. */
501 gdb_byte buf[4];
502 /* The result. */
503 LONGEST ret;
504
505 /* Getting the system call number from the register.
506 When dealing with x86 architecture, this information
507 is stored at %eax register. */
508 regcache_cooked_read (regcache, I386_LINUX_ORIG_EAX_REGNUM, buf);
509
510 ret = extract_signed_integer (buf, 4, byte_order);
511
512 return ret;
513}
514
515/* The register sets used in GNU/Linux ELF core-dumps are identical to
516 the register sets in `struct user' that are used for a.out
517 core-dumps. These are also used by ptrace(2). The corresponding
518 types are `elf_gregset_t' for the general-purpose registers (with
519 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
520 for the floating-point registers.
521
522 Those types used to be available under the names `gregset_t' and
523 `fpregset_t' too, and GDB used those names in the past. But those
524 names are now used for the register sets used in the `mcontext_t'
525 type, which have a different size and layout. */
526
527/* Mapping between the general-purpose registers in `struct user'
528 format and GDB's register cache layout. */
529
530/* From <sys/reg.h>. */
531int i386_linux_gregset_reg_offset[] =
532{
533 6 * 4, /* %eax */
534 1 * 4, /* %ecx */
535 2 * 4, /* %edx */
536 0 * 4, /* %ebx */
537 15 * 4, /* %esp */
538 5 * 4, /* %ebp */
539 3 * 4, /* %esi */
540 4 * 4, /* %edi */
541 12 * 4, /* %eip */
542 14 * 4, /* %eflags */
543 13 * 4, /* %cs */
544 16 * 4, /* %ss */
545 7 * 4, /* %ds */
546 8 * 4, /* %es */
547 9 * 4, /* %fs */
548 10 * 4, /* %gs */
549 -1, -1, -1, -1, -1, -1, -1, -1,
550 -1, -1, -1, -1, -1, -1, -1, -1,
551 -1, -1, -1, -1, -1, -1, -1, -1,
552 -1,
553 -1, -1, -1, -1, -1, -1, -1, -1,
554 11 * 4 /* "orig_eax" */
555};
556
557/* Mapping between the general-purpose registers in `struct
558 sigcontext' format and GDB's register cache layout. */
559
560/* From <asm/sigcontext.h>. */
561static int i386_linux_sc_reg_offset[] =
562{
563 11 * 4, /* %eax */
564 10 * 4, /* %ecx */
565 9 * 4, /* %edx */
566 8 * 4, /* %ebx */
567 7 * 4, /* %esp */
568 6 * 4, /* %ebp */
569 5 * 4, /* %esi */
570 4 * 4, /* %edi */
571 14 * 4, /* %eip */
572 16 * 4, /* %eflags */
573 15 * 4, /* %cs */
574 18 * 4, /* %ss */
575 3 * 4, /* %ds */
576 2 * 4, /* %es */
577 1 * 4, /* %fs */
578 0 * 4 /* %gs */
579};
580
581/* Get XSAVE extended state xcr0 from core dump. */
582
583uint64_t
584i386_linux_core_read_xcr0 (struct gdbarch *gdbarch,
585 struct target_ops *target, bfd *abfd)
586{
587 asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
588 uint64_t xcr0;
589
590 if (xstate)
591 {
592 size_t size = bfd_section_size (abfd, xstate);
593
594 /* Check extended state size. */
595 if (size < I386_XSTATE_AVX_SIZE)
596 xcr0 = I386_XSTATE_SSE_MASK;
597 else
598 {
599 char contents[8];
600
601 if (! bfd_get_section_contents (abfd, xstate, contents,
602 I386_LINUX_XSAVE_XCR0_OFFSET,
603 8))
604 {
605 warning (_("Couldn't read `xcr0' bytes from "
606 "`.reg-xstate' section in core file."));
607 return 0;
608 }
609
610 xcr0 = bfd_get_64 (abfd, contents);
611 }
612 }
613 else
614 xcr0 = 0;
615
616 return xcr0;
617}
618
619/* Get Linux/x86 target description from core dump. */
620
621static const struct target_desc *
622i386_linux_core_read_description (struct gdbarch *gdbarch,
623 struct target_ops *target,
624 bfd *abfd)
625{
626 /* Linux/i386. */
627 uint64_t xcr0 = i386_linux_core_read_xcr0 (gdbarch, target, abfd);
628 switch ((xcr0 & I386_XSTATE_AVX_MASK))
629 {
630 case I386_XSTATE_AVX_MASK:
631 return tdesc_i386_avx_linux;
632 case I386_XSTATE_SSE_MASK:
633 return tdesc_i386_linux;
634 case I386_XSTATE_X87_MASK:
635 return tdesc_i386_mmx_linux;
636 default:
637 break;
638 }
639
640 if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
641 return tdesc_i386_linux;
642 else
643 return tdesc_i386_mmx_linux;
644}
645
646static void
647i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
648{
649 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
650 const struct target_desc *tdesc = info.target_desc;
651 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
652 const struct tdesc_feature *feature;
653 int valid_p;
654
655 gdb_assert (tdesc_data);
656
657 linux_init_abi (info, gdbarch);
658
659 /* GNU/Linux uses ELF. */
660 i386_elf_init_abi (info, gdbarch);
661
662 /* Reserve a number for orig_eax. */
663 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
664
665 if (! tdesc_has_registers (tdesc))
666 tdesc = tdesc_i386_linux;
667 tdep->tdesc = tdesc;
668
669 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
670 if (feature == NULL)
671 return;
672
673 valid_p = tdesc_numbered_register (feature, tdesc_data,
674 I386_LINUX_ORIG_EAX_REGNUM,
675 "orig_eax");
676 if (!valid_p)
677 return;
678
679 /* Add the %orig_eax register used for syscall restarting. */
680 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
681
682 tdep->register_reggroup_p = i386_linux_register_reggroup_p;
683
684 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
685 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
686 tdep->sizeof_gregset = 17 * 4;
687
688 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
689
690 tdep->sigtramp_p = i386_linux_sigtramp_p;
691 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
692 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
693 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
694
695 tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
696
697 set_gdbarch_process_record (gdbarch, i386_process_record);
698 set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
699
700 /* Initialize the i386_linux_record_tdep. */
701 /* These values are the size of the type that will be used in a system
702 call. They are obtained from Linux Kernel source. */
703 i386_linux_record_tdep.size_pointer
704 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
705 i386_linux_record_tdep.size__old_kernel_stat = 32;
706 i386_linux_record_tdep.size_tms = 16;
707 i386_linux_record_tdep.size_loff_t = 8;
708 i386_linux_record_tdep.size_flock = 16;
709 i386_linux_record_tdep.size_oldold_utsname = 45;
710 i386_linux_record_tdep.size_ustat = 20;
711 i386_linux_record_tdep.size_old_sigaction = 140;
712 i386_linux_record_tdep.size_old_sigset_t = 128;
713 i386_linux_record_tdep.size_rlimit = 8;
714 i386_linux_record_tdep.size_rusage = 72;
715 i386_linux_record_tdep.size_timeval = 8;
716 i386_linux_record_tdep.size_timezone = 8;
717 i386_linux_record_tdep.size_old_gid_t = 2;
718 i386_linux_record_tdep.size_old_uid_t = 2;
719 i386_linux_record_tdep.size_fd_set = 128;
720 i386_linux_record_tdep.size_dirent = 268;
721 i386_linux_record_tdep.size_dirent64 = 276;
722 i386_linux_record_tdep.size_statfs = 64;
723 i386_linux_record_tdep.size_statfs64 = 84;
724 i386_linux_record_tdep.size_sockaddr = 16;
725 i386_linux_record_tdep.size_int
726 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
727 i386_linux_record_tdep.size_long
728 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
729 i386_linux_record_tdep.size_ulong
730 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
731 i386_linux_record_tdep.size_msghdr = 28;
732 i386_linux_record_tdep.size_itimerval = 16;
733 i386_linux_record_tdep.size_stat = 88;
734 i386_linux_record_tdep.size_old_utsname = 325;
735 i386_linux_record_tdep.size_sysinfo = 64;
736 i386_linux_record_tdep.size_msqid_ds = 88;
737 i386_linux_record_tdep.size_shmid_ds = 84;
738 i386_linux_record_tdep.size_new_utsname = 390;
739 i386_linux_record_tdep.size_timex = 128;
740 i386_linux_record_tdep.size_mem_dqinfo = 24;
741 i386_linux_record_tdep.size_if_dqblk = 68;
742 i386_linux_record_tdep.size_fs_quota_stat = 68;
743 i386_linux_record_tdep.size_timespec = 8;
744 i386_linux_record_tdep.size_pollfd = 8;
745 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
746 i386_linux_record_tdep.size_knfsd_fh = 132;
747 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
748 i386_linux_record_tdep.size_sigaction = 140;
749 i386_linux_record_tdep.size_sigset_t = 8;
750 i386_linux_record_tdep.size_siginfo_t = 128;
751 i386_linux_record_tdep.size_cap_user_data_t = 12;
752 i386_linux_record_tdep.size_stack_t = 12;
753 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
754 i386_linux_record_tdep.size_stat64 = 96;
755 i386_linux_record_tdep.size_gid_t = 2;
756 i386_linux_record_tdep.size_uid_t = 2;
757 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
758 i386_linux_record_tdep.size_flock64 = 24;
759 i386_linux_record_tdep.size_user_desc = 16;
760 i386_linux_record_tdep.size_io_event = 32;
761 i386_linux_record_tdep.size_iocb = 64;
762 i386_linux_record_tdep.size_epoll_event = 12;
763 i386_linux_record_tdep.size_itimerspec
764 = i386_linux_record_tdep.size_timespec * 2;
765 i386_linux_record_tdep.size_mq_attr = 32;
766 i386_linux_record_tdep.size_siginfo = 128;
767 i386_linux_record_tdep.size_termios = 36;
768 i386_linux_record_tdep.size_termios2 = 44;
769 i386_linux_record_tdep.size_pid_t = 4;
770 i386_linux_record_tdep.size_winsize = 8;
771 i386_linux_record_tdep.size_serial_struct = 60;
772 i386_linux_record_tdep.size_serial_icounter_struct = 80;
773 i386_linux_record_tdep.size_hayes_esp_config = 12;
774 i386_linux_record_tdep.size_size_t = 4;
775 i386_linux_record_tdep.size_iovec = 8;
776
777 /* These values are the second argument of system call "sys_ioctl".
778 They are obtained from Linux Kernel source. */
779 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
780 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
781 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
782 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
783 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
784 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
785 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
786 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
787 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
788 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
789 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
790 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
791 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
792 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
793 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
794 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
795 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
796 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
797 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
798 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
799 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
800 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
801 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
802 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
803 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
804 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
805 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
806 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
807 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
808 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
809 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
810 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
811 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
812 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
813 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
814 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
815 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
816 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
817 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
818 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
819 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
820 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
821 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
822 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
823 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
824 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
825 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
826 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
827 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
828 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
829 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
830 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
831 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
832 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
833 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
834 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
835 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
836 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
837 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
838 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
839 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
840 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
841 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
842 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
843 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
844
845 /* These values are the second argument of system call "sys_fcntl"
846 and "sys_fcntl64". They are obtained from Linux Kernel source. */
847 i386_linux_record_tdep.fcntl_F_GETLK = 5;
848 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
849 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
850 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
851
852 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
853 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
854 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
855 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
856 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
857 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
858
859 tdep->i386_intx80_record = i386_linux_intx80_sysenter_record;
860 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_record;
861
862 /* N_FUN symbols in shared libaries have 0 for their values and need
863 to be relocated. */
864 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
865
866 /* GNU/Linux uses SVR4-style shared libraries. */
867 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
868 set_solib_svr4_fetch_link_map_offsets
869 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
870
871 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
872 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
873
874 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
875
876 /* Enable TLS support. */
877 set_gdbarch_fetch_tls_load_module_address (gdbarch,
878 svr4_fetch_objfile_link_map);
879
880 /* Install supported register note sections. */
881 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx"))
882 set_gdbarch_core_regset_sections (gdbarch, i386_linux_avx_regset_sections);
883 else if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse"))
884 set_gdbarch_core_regset_sections (gdbarch, i386_linux_sse_regset_sections);
885 else
886 set_gdbarch_core_regset_sections (gdbarch, i386_linux_regset_sections);
887
888 set_gdbarch_core_read_description (gdbarch,
889 i386_linux_core_read_description);
890
891 /* Displaced stepping. */
892 set_gdbarch_displaced_step_copy_insn (gdbarch,
893 i386_displaced_step_copy_insn);
894 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
895 set_gdbarch_displaced_step_free_closure (gdbarch,
896 simple_displaced_step_free_closure);
897 set_gdbarch_displaced_step_location (gdbarch,
898 displaced_step_at_entry_point);
899
900 /* Functions for 'catch syscall'. */
901 set_xml_syscall_file_name (XML_SYSCALL_FILENAME_I386);
902 set_gdbarch_get_syscall_number (gdbarch,
903 i386_linux_get_syscall_number);
904
905 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
906}
907
908/* Provide a prototype to silence -Wmissing-prototypes. */
909extern void _initialize_i386_linux_tdep (void);
910
911void
912_initialize_i386_linux_tdep (void)
913{
914 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
915 i386_linux_init_abi);
916
917 /* Initialize the Linux target description. */
918 initialize_tdesc_i386_linux ();
919 initialize_tdesc_i386_mmx_linux ();
920 initialize_tdesc_i386_avx_linux ();
921}
This page took 0.029733 seconds and 4 git commands to generate.