Fix comment in field_kind
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
... / ...
CommitLineData
1/* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "opcode/i386.h"
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
25#include "dwarf2-frame.h"
26#include "frame.h"
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "inferior.h"
30#include "infrun.h"
31#include "gdbcmd.h"
32#include "gdbcore.h"
33#include "gdbtypes.h"
34#include "objfiles.h"
35#include "osabi.h"
36#include "regcache.h"
37#include "reggroups.h"
38#include "regset.h"
39#include "symfile.h"
40#include "symtab.h"
41#include "target.h"
42#include "target-float.h"
43#include "value.h"
44#include "dis-asm.h"
45#include "disasm.h"
46#include "remote.h"
47#include "i386-tdep.h"
48#include "i387-tdep.h"
49#include "gdbsupport/x86-xstate.h"
50#include "x86-tdep.h"
51
52#include "record.h"
53#include "record-full.h"
54#include "target-descriptions.h"
55#include "arch/i386.h"
56
57#include "ax.h"
58#include "ax-gdb.h"
59
60#include "stap-probe.h"
61#include "user-regs.h"
62#include "cli/cli-utils.h"
63#include "expression.h"
64#include "parser-defs.h"
65#include <ctype.h>
66#include <algorithm>
67#include <unordered_set>
68
69/* Register names. */
70
71static const char *i386_register_names[] =
72{
73 "eax", "ecx", "edx", "ebx",
74 "esp", "ebp", "esi", "edi",
75 "eip", "eflags", "cs", "ss",
76 "ds", "es", "fs", "gs",
77 "st0", "st1", "st2", "st3",
78 "st4", "st5", "st6", "st7",
79 "fctrl", "fstat", "ftag", "fiseg",
80 "fioff", "foseg", "fooff", "fop",
81 "xmm0", "xmm1", "xmm2", "xmm3",
82 "xmm4", "xmm5", "xmm6", "xmm7",
83 "mxcsr"
84};
85
86static const char *i386_zmm_names[] =
87{
88 "zmm0", "zmm1", "zmm2", "zmm3",
89 "zmm4", "zmm5", "zmm6", "zmm7"
90};
91
92static const char *i386_zmmh_names[] =
93{
94 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
95 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
96};
97
98static const char *i386_k_names[] =
99{
100 "k0", "k1", "k2", "k3",
101 "k4", "k5", "k6", "k7"
102};
103
104static const char *i386_ymm_names[] =
105{
106 "ymm0", "ymm1", "ymm2", "ymm3",
107 "ymm4", "ymm5", "ymm6", "ymm7",
108};
109
110static const char *i386_ymmh_names[] =
111{
112 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
113 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
114};
115
116static const char *i386_mpx_names[] =
117{
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
119};
120
121static const char* i386_pkeys_names[] =
122{
123 "pkru"
124};
125
126/* Register names for MPX pseudo-registers. */
127
128static const char *i386_bnd_names[] =
129{
130 "bnd0", "bnd1", "bnd2", "bnd3"
131};
132
133/* Register names for MMX pseudo-registers. */
134
135static const char *i386_mmx_names[] =
136{
137 "mm0", "mm1", "mm2", "mm3",
138 "mm4", "mm5", "mm6", "mm7"
139};
140
141/* Register names for byte pseudo-registers. */
142
143static const char *i386_byte_names[] =
144{
145 "al", "cl", "dl", "bl",
146 "ah", "ch", "dh", "bh"
147};
148
149/* Register names for word pseudo-registers. */
150
151static const char *i386_word_names[] =
152{
153 "ax", "cx", "dx", "bx",
154 "", "bp", "si", "di"
155};
156
157/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
158 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
159 we have 16 upper ZMM regs that have to be handled differently. */
160
161const int num_lower_zmm_regs = 16;
162
163/* MMX register? */
164
165static int
166i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
167{
168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169 int mm0_regnum = tdep->mm0_regnum;
170
171 if (mm0_regnum < 0)
172 return 0;
173
174 regnum -= mm0_regnum;
175 return regnum >= 0 && regnum < tdep->num_mmx_regs;
176}
177
178/* Byte register? */
179
180int
181i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
182{
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184
185 regnum -= tdep->al_regnum;
186 return regnum >= 0 && regnum < tdep->num_byte_regs;
187}
188
189/* Word register? */
190
191int
192i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
193{
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195
196 regnum -= tdep->ax_regnum;
197 return regnum >= 0 && regnum < tdep->num_word_regs;
198}
199
200/* Dword register? */
201
202int
203i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
204{
205 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
206 int eax_regnum = tdep->eax_regnum;
207
208 if (eax_regnum < 0)
209 return 0;
210
211 regnum -= eax_regnum;
212 return regnum >= 0 && regnum < tdep->num_dword_regs;
213}
214
215/* AVX512 register? */
216
217int
218i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
219{
220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
221 int zmm0h_regnum = tdep->zmm0h_regnum;
222
223 if (zmm0h_regnum < 0)
224 return 0;
225
226 regnum -= zmm0h_regnum;
227 return regnum >= 0 && regnum < tdep->num_zmm_regs;
228}
229
230int
231i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
232{
233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234 int zmm0_regnum = tdep->zmm0_regnum;
235
236 if (zmm0_regnum < 0)
237 return 0;
238
239 regnum -= zmm0_regnum;
240 return regnum >= 0 && regnum < tdep->num_zmm_regs;
241}
242
243int
244i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
245{
246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
247 int k0_regnum = tdep->k0_regnum;
248
249 if (k0_regnum < 0)
250 return 0;
251
252 regnum -= k0_regnum;
253 return regnum >= 0 && regnum < I387_NUM_K_REGS;
254}
255
256static int
257i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
258{
259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
260 int ymm0h_regnum = tdep->ymm0h_regnum;
261
262 if (ymm0h_regnum < 0)
263 return 0;
264
265 regnum -= ymm0h_regnum;
266 return regnum >= 0 && regnum < tdep->num_ymm_regs;
267}
268
269/* AVX register? */
270
271int
272i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
273{
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 int ymm0_regnum = tdep->ymm0_regnum;
276
277 if (ymm0_regnum < 0)
278 return 0;
279
280 regnum -= ymm0_regnum;
281 return regnum >= 0 && regnum < tdep->num_ymm_regs;
282}
283
284static int
285i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
286{
287 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
288 int ymm16h_regnum = tdep->ymm16h_regnum;
289
290 if (ymm16h_regnum < 0)
291 return 0;
292
293 regnum -= ymm16h_regnum;
294 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
295}
296
297int
298i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
299{
300 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
301 int ymm16_regnum = tdep->ymm16_regnum;
302
303 if (ymm16_regnum < 0)
304 return 0;
305
306 regnum -= ymm16_regnum;
307 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
308}
309
310/* BND register? */
311
312int
313i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
314{
315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 int bnd0_regnum = tdep->bnd0_regnum;
317
318 if (bnd0_regnum < 0)
319 return 0;
320
321 regnum -= bnd0_regnum;
322 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
323}
324
325/* SSE register? */
326
327int
328i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
329{
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
332
333 if (num_xmm_regs == 0)
334 return 0;
335
336 regnum -= I387_XMM0_REGNUM (tdep);
337 return regnum >= 0 && regnum < num_xmm_regs;
338}
339
340/* XMM_512 register? */
341
342int
343i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
344{
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
347
348 if (num_xmm_avx512_regs == 0)
349 return 0;
350
351 regnum -= I387_XMM16_REGNUM (tdep);
352 return regnum >= 0 && regnum < num_xmm_avx512_regs;
353}
354
355static int
356i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
357{
358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359
360 if (I387_NUM_XMM_REGS (tdep) == 0)
361 return 0;
362
363 return (regnum == I387_MXCSR_REGNUM (tdep));
364}
365
366/* FP register? */
367
368int
369i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
370{
371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372
373 if (I387_ST0_REGNUM (tdep) < 0)
374 return 0;
375
376 return (I387_ST0_REGNUM (tdep) <= regnum
377 && regnum < I387_FCTRL_REGNUM (tdep));
378}
379
380int
381i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
382{
383 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
384
385 if (I387_ST0_REGNUM (tdep) < 0)
386 return 0;
387
388 return (I387_FCTRL_REGNUM (tdep) <= regnum
389 && regnum < I387_XMM0_REGNUM (tdep));
390}
391
392/* BNDr (raw) register? */
393
394static int
395i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
396{
397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
398
399 if (I387_BND0R_REGNUM (tdep) < 0)
400 return 0;
401
402 regnum -= tdep->bnd0r_regnum;
403 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
404}
405
406/* BND control register? */
407
408static int
409i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
410{
411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
412
413 if (I387_BNDCFGU_REGNUM (tdep) < 0)
414 return 0;
415
416 regnum -= I387_BNDCFGU_REGNUM (tdep);
417 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
418}
419
420/* PKRU register? */
421
422bool
423i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
424{
425 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
426 int pkru_regnum = tdep->pkru_regnum;
427
428 if (pkru_regnum < 0)
429 return false;
430
431 regnum -= pkru_regnum;
432 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
433}
434
435/* Return the name of register REGNUM, or the empty string if it is
436 an anonymous register. */
437
438static const char *
439i386_register_name (struct gdbarch *gdbarch, int regnum)
440{
441 /* Hide the upper YMM registers. */
442 if (i386_ymmh_regnum_p (gdbarch, regnum))
443 return "";
444
445 /* Hide the upper YMM16-31 registers. */
446 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
447 return "";
448
449 /* Hide the upper ZMM registers. */
450 if (i386_zmmh_regnum_p (gdbarch, regnum))
451 return "";
452
453 return tdesc_register_name (gdbarch, regnum);
454}
455
456/* Return the name of register REGNUM. */
457
458const char *
459i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
460{
461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
462 if (i386_bnd_regnum_p (gdbarch, regnum))
463 return i386_bnd_names[regnum - tdep->bnd0_regnum];
464 if (i386_mmx_regnum_p (gdbarch, regnum))
465 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
466 else if (i386_ymm_regnum_p (gdbarch, regnum))
467 return i386_ymm_names[regnum - tdep->ymm0_regnum];
468 else if (i386_zmm_regnum_p (gdbarch, regnum))
469 return i386_zmm_names[regnum - tdep->zmm0_regnum];
470 else if (i386_byte_regnum_p (gdbarch, regnum))
471 return i386_byte_names[regnum - tdep->al_regnum];
472 else if (i386_word_regnum_p (gdbarch, regnum))
473 return i386_word_names[regnum - tdep->ax_regnum];
474
475 internal_error (__FILE__, __LINE__, _("invalid regnum"));
476}
477
478/* Convert a dbx register number REG to the appropriate register
479 number used by GDB. */
480
481static int
482i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
483{
484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
485
486 /* This implements what GCC calls the "default" register map
487 (dbx_register_map[]). */
488
489 if (reg >= 0 && reg <= 7)
490 {
491 /* General-purpose registers. The debug info calls %ebp
492 register 4, and %esp register 5. */
493 if (reg == 4)
494 return 5;
495 else if (reg == 5)
496 return 4;
497 else return reg;
498 }
499 else if (reg >= 12 && reg <= 19)
500 {
501 /* Floating-point registers. */
502 return reg - 12 + I387_ST0_REGNUM (tdep);
503 }
504 else if (reg >= 21 && reg <= 28)
505 {
506 /* SSE registers. */
507 int ymm0_regnum = tdep->ymm0_regnum;
508
509 if (ymm0_regnum >= 0
510 && i386_xmm_regnum_p (gdbarch, reg))
511 return reg - 21 + ymm0_regnum;
512 else
513 return reg - 21 + I387_XMM0_REGNUM (tdep);
514 }
515 else if (reg >= 29 && reg <= 36)
516 {
517 /* MMX registers. */
518 return reg - 29 + I387_MM0_REGNUM (tdep);
519 }
520
521 /* This will hopefully provoke a warning. */
522 return gdbarch_num_cooked_regs (gdbarch);
523}
524
525/* Convert SVR4 DWARF register number REG to the appropriate register number
526 used by GDB. */
527
528static int
529i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
530{
531 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
532
533 /* This implements the GCC register map that tries to be compatible
534 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
535
536 /* The SVR4 register numbering includes %eip and %eflags, and
537 numbers the floating point registers differently. */
538 if (reg >= 0 && reg <= 9)
539 {
540 /* General-purpose registers. */
541 return reg;
542 }
543 else if (reg >= 11 && reg <= 18)
544 {
545 /* Floating-point registers. */
546 return reg - 11 + I387_ST0_REGNUM (tdep);
547 }
548 else if (reg >= 21 && reg <= 36)
549 {
550 /* The SSE and MMX registers have the same numbers as with dbx. */
551 return i386_dbx_reg_to_regnum (gdbarch, reg);
552 }
553
554 switch (reg)
555 {
556 case 37: return I387_FCTRL_REGNUM (tdep);
557 case 38: return I387_FSTAT_REGNUM (tdep);
558 case 39: return I387_MXCSR_REGNUM (tdep);
559 case 40: return I386_ES_REGNUM;
560 case 41: return I386_CS_REGNUM;
561 case 42: return I386_SS_REGNUM;
562 case 43: return I386_DS_REGNUM;
563 case 44: return I386_FS_REGNUM;
564 case 45: return I386_GS_REGNUM;
565 }
566
567 return -1;
568}
569
570/* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
571 num_regs + num_pseudo_regs for other debug formats. */
572
573int
574i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
575{
576 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
577
578 if (regnum == -1)
579 return gdbarch_num_cooked_regs (gdbarch);
580 return regnum;
581}
582
583\f
584
585/* This is the variable that is set with "set disassembly-flavor", and
586 its legitimate values. */
587static const char att_flavor[] = "att";
588static const char intel_flavor[] = "intel";
589static const char *const valid_flavors[] =
590{
591 att_flavor,
592 intel_flavor,
593 NULL
594};
595static const char *disassembly_flavor = att_flavor;
596\f
597
598/* Use the program counter to determine the contents and size of a
599 breakpoint instruction. Return a pointer to a string of bytes that
600 encode a breakpoint instruction, store the length of the string in
601 *LEN and optionally adjust *PC to point to the correct memory
602 location for inserting the breakpoint.
603
604 On the i386 we have a single breakpoint that fits in a single byte
605 and can be inserted anywhere.
606
607 This function is 64-bit safe. */
608
609constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
610
611typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
612
613\f
614/* Displaced instruction handling. */
615
616/* Skip the legacy instruction prefixes in INSN.
617 Not all prefixes are valid for any particular insn
618 but we needn't care, the insn will fault if it's invalid.
619 The result is a pointer to the first opcode byte,
620 or NULL if we run off the end of the buffer. */
621
622static gdb_byte *
623i386_skip_prefixes (gdb_byte *insn, size_t max_len)
624{
625 gdb_byte *end = insn + max_len;
626
627 while (insn < end)
628 {
629 switch (*insn)
630 {
631 case DATA_PREFIX_OPCODE:
632 case ADDR_PREFIX_OPCODE:
633 case CS_PREFIX_OPCODE:
634 case DS_PREFIX_OPCODE:
635 case ES_PREFIX_OPCODE:
636 case FS_PREFIX_OPCODE:
637 case GS_PREFIX_OPCODE:
638 case SS_PREFIX_OPCODE:
639 case LOCK_PREFIX_OPCODE:
640 case REPE_PREFIX_OPCODE:
641 case REPNE_PREFIX_OPCODE:
642 ++insn;
643 continue;
644 default:
645 return insn;
646 }
647 }
648
649 return NULL;
650}
651
652static int
653i386_absolute_jmp_p (const gdb_byte *insn)
654{
655 /* jmp far (absolute address in operand). */
656 if (insn[0] == 0xea)
657 return 1;
658
659 if (insn[0] == 0xff)
660 {
661 /* jump near, absolute indirect (/4). */
662 if ((insn[1] & 0x38) == 0x20)
663 return 1;
664
665 /* jump far, absolute indirect (/5). */
666 if ((insn[1] & 0x38) == 0x28)
667 return 1;
668 }
669
670 return 0;
671}
672
673/* Return non-zero if INSN is a jump, zero otherwise. */
674
675static int
676i386_jmp_p (const gdb_byte *insn)
677{
678 /* jump short, relative. */
679 if (insn[0] == 0xeb)
680 return 1;
681
682 /* jump near, relative. */
683 if (insn[0] == 0xe9)
684 return 1;
685
686 return i386_absolute_jmp_p (insn);
687}
688
689static int
690i386_absolute_call_p (const gdb_byte *insn)
691{
692 /* call far, absolute. */
693 if (insn[0] == 0x9a)
694 return 1;
695
696 if (insn[0] == 0xff)
697 {
698 /* Call near, absolute indirect (/2). */
699 if ((insn[1] & 0x38) == 0x10)
700 return 1;
701
702 /* Call far, absolute indirect (/3). */
703 if ((insn[1] & 0x38) == 0x18)
704 return 1;
705 }
706
707 return 0;
708}
709
710static int
711i386_ret_p (const gdb_byte *insn)
712{
713 switch (insn[0])
714 {
715 case 0xc2: /* ret near, pop N bytes. */
716 case 0xc3: /* ret near */
717 case 0xca: /* ret far, pop N bytes. */
718 case 0xcb: /* ret far */
719 case 0xcf: /* iret */
720 return 1;
721
722 default:
723 return 0;
724 }
725}
726
727static int
728i386_call_p (const gdb_byte *insn)
729{
730 if (i386_absolute_call_p (insn))
731 return 1;
732
733 /* call near, relative. */
734 if (insn[0] == 0xe8)
735 return 1;
736
737 return 0;
738}
739
740/* Return non-zero if INSN is a system call, and set *LENGTHP to its
741 length in bytes. Otherwise, return zero. */
742
743static int
744i386_syscall_p (const gdb_byte *insn, int *lengthp)
745{
746 /* Is it 'int $0x80'? */
747 if ((insn[0] == 0xcd && insn[1] == 0x80)
748 /* Or is it 'sysenter'? */
749 || (insn[0] == 0x0f && insn[1] == 0x34)
750 /* Or is it 'syscall'? */
751 || (insn[0] == 0x0f && insn[1] == 0x05))
752 {
753 *lengthp = 2;
754 return 1;
755 }
756
757 return 0;
758}
759
760/* The gdbarch insn_is_call method. */
761
762static int
763i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
764{
765 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766
767 read_code (addr, buf, I386_MAX_INSN_LEN);
768 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769
770 return i386_call_p (insn);
771}
772
773/* The gdbarch insn_is_ret method. */
774
775static int
776i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
777{
778 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
779
780 read_code (addr, buf, I386_MAX_INSN_LEN);
781 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
782
783 return i386_ret_p (insn);
784}
785
786/* The gdbarch insn_is_jump method. */
787
788static int
789i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
790{
791 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
792
793 read_code (addr, buf, I386_MAX_INSN_LEN);
794 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
795
796 return i386_jmp_p (insn);
797}
798
799/* Some kernels may run one past a syscall insn, so we have to cope. */
800
801struct displaced_step_closure *
802i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
803 CORE_ADDR from, CORE_ADDR to,
804 struct regcache *regs)
805{
806 size_t len = gdbarch_max_insn_length (gdbarch);
807 i386_displaced_step_closure *closure = new i386_displaced_step_closure (len);
808 gdb_byte *buf = closure->buf.data ();
809
810 read_memory (from, buf, len);
811
812 /* GDB may get control back after the insn after the syscall.
813 Presumably this is a kernel bug.
814 If this is a syscall, make sure there's a nop afterwards. */
815 {
816 int syscall_length;
817 gdb_byte *insn;
818
819 insn = i386_skip_prefixes (buf, len);
820 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
821 insn[syscall_length] = NOP_OPCODE;
822 }
823
824 write_memory (to, buf, len);
825
826 if (debug_displaced)
827 {
828 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
829 paddress (gdbarch, from), paddress (gdbarch, to));
830 displaced_step_dump_bytes (gdb_stdlog, buf, len);
831 }
832
833 return closure;
834}
835
836/* Fix up the state of registers and memory after having single-stepped
837 a displaced instruction. */
838
839void
840i386_displaced_step_fixup (struct gdbarch *gdbarch,
841 struct displaced_step_closure *closure_,
842 CORE_ADDR from, CORE_ADDR to,
843 struct regcache *regs)
844{
845 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
846
847 /* The offset we applied to the instruction's address.
848 This could well be negative (when viewed as a signed 32-bit
849 value), but ULONGEST won't reflect that, so take care when
850 applying it. */
851 ULONGEST insn_offset = to - from;
852
853 i386_displaced_step_closure *closure
854 = (i386_displaced_step_closure *) closure_;
855 gdb_byte *insn = closure->buf.data ();
856 /* The start of the insn, needed in case we see some prefixes. */
857 gdb_byte *insn_start = insn;
858
859 if (debug_displaced)
860 fprintf_unfiltered (gdb_stdlog,
861 "displaced: fixup (%s, %s), "
862 "insn = 0x%02x 0x%02x ...\n",
863 paddress (gdbarch, from), paddress (gdbarch, to),
864 insn[0], insn[1]);
865
866 /* The list of issues to contend with here is taken from
867 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
868 Yay for Free Software! */
869
870 /* Relocate the %eip, if necessary. */
871
872 /* The instruction recognizers we use assume any leading prefixes
873 have been skipped. */
874 {
875 /* This is the size of the buffer in closure. */
876 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
877 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
878 /* If there are too many prefixes, just ignore the insn.
879 It will fault when run. */
880 if (opcode != NULL)
881 insn = opcode;
882 }
883
884 /* Except in the case of absolute or indirect jump or call
885 instructions, or a return instruction, the new eip is relative to
886 the displaced instruction; make it relative. Well, signal
887 handler returns don't need relocation either, but we use the
888 value of %eip to recognize those; see below. */
889 if (! i386_absolute_jmp_p (insn)
890 && ! i386_absolute_call_p (insn)
891 && ! i386_ret_p (insn))
892 {
893 ULONGEST orig_eip;
894 int insn_len;
895
896 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
897
898 /* A signal trampoline system call changes the %eip, resuming
899 execution of the main program after the signal handler has
900 returned. That makes them like 'return' instructions; we
901 shouldn't relocate %eip.
902
903 But most system calls don't, and we do need to relocate %eip.
904
905 Our heuristic for distinguishing these cases: if stepping
906 over the system call instruction left control directly after
907 the instruction, the we relocate --- control almost certainly
908 doesn't belong in the displaced copy. Otherwise, we assume
909 the instruction has put control where it belongs, and leave
910 it unrelocated. Goodness help us if there are PC-relative
911 system calls. */
912 if (i386_syscall_p (insn, &insn_len)
913 && orig_eip != to + (insn - insn_start) + insn_len
914 /* GDB can get control back after the insn after the syscall.
915 Presumably this is a kernel bug.
916 i386_displaced_step_copy_insn ensures its a nop,
917 we add one to the length for it. */
918 && orig_eip != to + (insn - insn_start) + insn_len + 1)
919 {
920 if (debug_displaced)
921 fprintf_unfiltered (gdb_stdlog,
922 "displaced: syscall changed %%eip; "
923 "not relocating\n");
924 }
925 else
926 {
927 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
928
929 /* If we just stepped over a breakpoint insn, we don't backup
930 the pc on purpose; this is to match behaviour without
931 stepping. */
932
933 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
934
935 if (debug_displaced)
936 fprintf_unfiltered (gdb_stdlog,
937 "displaced: "
938 "relocated %%eip from %s to %s\n",
939 paddress (gdbarch, orig_eip),
940 paddress (gdbarch, eip));
941 }
942 }
943
944 /* If the instruction was PUSHFL, then the TF bit will be set in the
945 pushed value, and should be cleared. We'll leave this for later,
946 since GDB already messes up the TF flag when stepping over a
947 pushfl. */
948
949 /* If the instruction was a call, the return address now atop the
950 stack is the address following the copied instruction. We need
951 to make it the address following the original instruction. */
952 if (i386_call_p (insn))
953 {
954 ULONGEST esp;
955 ULONGEST retaddr;
956 const ULONGEST retaddr_len = 4;
957
958 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
959 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
960 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
961 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
962
963 if (debug_displaced)
964 fprintf_unfiltered (gdb_stdlog,
965 "displaced: relocated return addr at %s to %s\n",
966 paddress (gdbarch, esp),
967 paddress (gdbarch, retaddr));
968 }
969}
970
971static void
972append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
973{
974 target_write_memory (*to, buf, len);
975 *to += len;
976}
977
978static void
979i386_relocate_instruction (struct gdbarch *gdbarch,
980 CORE_ADDR *to, CORE_ADDR oldloc)
981{
982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
983 gdb_byte buf[I386_MAX_INSN_LEN];
984 int offset = 0, rel32, newrel;
985 int insn_length;
986 gdb_byte *insn = buf;
987
988 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
989
990 insn_length = gdb_buffered_insn_length (gdbarch, insn,
991 I386_MAX_INSN_LEN, oldloc);
992
993 /* Get past the prefixes. */
994 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
995
996 /* Adjust calls with 32-bit relative addresses as push/jump, with
997 the address pushed being the location where the original call in
998 the user program would return to. */
999 if (insn[0] == 0xe8)
1000 {
1001 gdb_byte push_buf[16];
1002 unsigned int ret_addr;
1003
1004 /* Where "ret" in the original code will return to. */
1005 ret_addr = oldloc + insn_length;
1006 push_buf[0] = 0x68; /* pushq $... */
1007 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1008 /* Push the push. */
1009 append_insns (to, 5, push_buf);
1010
1011 /* Convert the relative call to a relative jump. */
1012 insn[0] = 0xe9;
1013
1014 /* Adjust the destination offset. */
1015 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1016 newrel = (oldloc - *to) + rel32;
1017 store_signed_integer (insn + 1, 4, byte_order, newrel);
1018
1019 if (debug_displaced)
1020 fprintf_unfiltered (gdb_stdlog,
1021 "Adjusted insn rel32=%s at %s to"
1022 " rel32=%s at %s\n",
1023 hex_string (rel32), paddress (gdbarch, oldloc),
1024 hex_string (newrel), paddress (gdbarch, *to));
1025
1026 /* Write the adjusted jump into its displaced location. */
1027 append_insns (to, 5, insn);
1028 return;
1029 }
1030
1031 /* Adjust jumps with 32-bit relative addresses. Calls are already
1032 handled above. */
1033 if (insn[0] == 0xe9)
1034 offset = 1;
1035 /* Adjust conditional jumps. */
1036 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1037 offset = 2;
1038
1039 if (offset)
1040 {
1041 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1042 newrel = (oldloc - *to) + rel32;
1043 store_signed_integer (insn + offset, 4, byte_order, newrel);
1044 if (debug_displaced)
1045 fprintf_unfiltered (gdb_stdlog,
1046 "Adjusted insn rel32=%s at %s to"
1047 " rel32=%s at %s\n",
1048 hex_string (rel32), paddress (gdbarch, oldloc),
1049 hex_string (newrel), paddress (gdbarch, *to));
1050 }
1051
1052 /* Write the adjusted instructions into their displaced
1053 location. */
1054 append_insns (to, insn_length, buf);
1055}
1056
1057\f
1058#ifdef I386_REGNO_TO_SYMMETRY
1059#error "The Sequent Symmetry is no longer supported."
1060#endif
1061
1062/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1063 and %esp "belong" to the calling function. Therefore these
1064 registers should be saved if they're going to be modified. */
1065
1066/* The maximum number of saved registers. This should include all
1067 registers mentioned above, and %eip. */
1068#define I386_NUM_SAVED_REGS I386_NUM_GREGS
1069
1070struct i386_frame_cache
1071{
1072 /* Base address. */
1073 CORE_ADDR base;
1074 int base_p;
1075 LONGEST sp_offset;
1076 CORE_ADDR pc;
1077
1078 /* Saved registers. */
1079 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1080 CORE_ADDR saved_sp;
1081 int saved_sp_reg;
1082 int pc_in_eax;
1083
1084 /* Stack space reserved for local variables. */
1085 long locals;
1086};
1087
1088/* Allocate and initialize a frame cache. */
1089
1090static struct i386_frame_cache *
1091i386_alloc_frame_cache (void)
1092{
1093 struct i386_frame_cache *cache;
1094 int i;
1095
1096 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1097
1098 /* Base address. */
1099 cache->base_p = 0;
1100 cache->base = 0;
1101 cache->sp_offset = -4;
1102 cache->pc = 0;
1103
1104 /* Saved registers. We initialize these to -1 since zero is a valid
1105 offset (that's where %ebp is supposed to be stored). */
1106 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1107 cache->saved_regs[i] = -1;
1108 cache->saved_sp = 0;
1109 cache->saved_sp_reg = -1;
1110 cache->pc_in_eax = 0;
1111
1112 /* Frameless until proven otherwise. */
1113 cache->locals = -1;
1114
1115 return cache;
1116}
1117
1118/* If the instruction at PC is a jump, return the address of its
1119 target. Otherwise, return PC. */
1120
1121static CORE_ADDR
1122i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1123{
1124 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1125 gdb_byte op;
1126 long delta = 0;
1127 int data16 = 0;
1128
1129 if (target_read_code (pc, &op, 1))
1130 return pc;
1131
1132 if (op == 0x66)
1133 {
1134 data16 = 1;
1135
1136 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1137 }
1138
1139 switch (op)
1140 {
1141 case 0xe9:
1142 /* Relative jump: if data16 == 0, disp32, else disp16. */
1143 if (data16)
1144 {
1145 delta = read_memory_integer (pc + 2, 2, byte_order);
1146
1147 /* Include the size of the jmp instruction (including the
1148 0x66 prefix). */
1149 delta += 4;
1150 }
1151 else
1152 {
1153 delta = read_memory_integer (pc + 1, 4, byte_order);
1154
1155 /* Include the size of the jmp instruction. */
1156 delta += 5;
1157 }
1158 break;
1159 case 0xeb:
1160 /* Relative jump, disp8 (ignore data16). */
1161 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1162
1163 delta += data16 + 2;
1164 break;
1165 }
1166
1167 return pc + delta;
1168}
1169
1170/* Check whether PC points at a prologue for a function returning a
1171 structure or union. If so, it updates CACHE and returns the
1172 address of the first instruction after the code sequence that
1173 removes the "hidden" argument from the stack or CURRENT_PC,
1174 whichever is smaller. Otherwise, return PC. */
1175
1176static CORE_ADDR
1177i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1178 struct i386_frame_cache *cache)
1179{
1180 /* Functions that return a structure or union start with:
1181
1182 popl %eax 0x58
1183 xchgl %eax, (%esp) 0x87 0x04 0x24
1184 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1185
1186 (the System V compiler puts out the second `xchg' instruction,
1187 and the assembler doesn't try to optimize it, so the 'sib' form
1188 gets generated). This sequence is used to get the address of the
1189 return buffer for a function that returns a structure. */
1190 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1191 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1192 gdb_byte buf[4];
1193 gdb_byte op;
1194
1195 if (current_pc <= pc)
1196 return pc;
1197
1198 if (target_read_code (pc, &op, 1))
1199 return pc;
1200
1201 if (op != 0x58) /* popl %eax */
1202 return pc;
1203
1204 if (target_read_code (pc + 1, buf, 4))
1205 return pc;
1206
1207 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1208 return pc;
1209
1210 if (current_pc == pc)
1211 {
1212 cache->sp_offset += 4;
1213 return current_pc;
1214 }
1215
1216 if (current_pc == pc + 1)
1217 {
1218 cache->pc_in_eax = 1;
1219 return current_pc;
1220 }
1221
1222 if (buf[1] == proto1[1])
1223 return pc + 4;
1224 else
1225 return pc + 5;
1226}
1227
1228static CORE_ADDR
1229i386_skip_probe (CORE_ADDR pc)
1230{
1231 /* A function may start with
1232
1233 pushl constant
1234 call _probe
1235 addl $4, %esp
1236
1237 followed by
1238
1239 pushl %ebp
1240
1241 etc. */
1242 gdb_byte buf[8];
1243 gdb_byte op;
1244
1245 if (target_read_code (pc, &op, 1))
1246 return pc;
1247
1248 if (op == 0x68 || op == 0x6a)
1249 {
1250 int delta;
1251
1252 /* Skip past the `pushl' instruction; it has either a one-byte or a
1253 four-byte operand, depending on the opcode. */
1254 if (op == 0x68)
1255 delta = 5;
1256 else
1257 delta = 2;
1258
1259 /* Read the following 8 bytes, which should be `call _probe' (6
1260 bytes) followed by `addl $4,%esp' (2 bytes). */
1261 read_memory (pc + delta, buf, sizeof (buf));
1262 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1263 pc += delta + sizeof (buf);
1264 }
1265
1266 return pc;
1267}
1268
1269/* GCC 4.1 and later, can put code in the prologue to realign the
1270 stack pointer. Check whether PC points to such code, and update
1271 CACHE accordingly. Return the first instruction after the code
1272 sequence or CURRENT_PC, whichever is smaller. If we don't
1273 recognize the code, return PC. */
1274
1275static CORE_ADDR
1276i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1277 struct i386_frame_cache *cache)
1278{
1279 /* There are 2 code sequences to re-align stack before the frame
1280 gets set up:
1281
1282 1. Use a caller-saved saved register:
1283
1284 leal 4(%esp), %reg
1285 andl $-XXX, %esp
1286 pushl -4(%reg)
1287
1288 2. Use a callee-saved saved register:
1289
1290 pushl %reg
1291 leal 8(%esp), %reg
1292 andl $-XXX, %esp
1293 pushl -4(%reg)
1294
1295 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1296
1297 0x83 0xe4 0xf0 andl $-16, %esp
1298 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1299 */
1300
1301 gdb_byte buf[14];
1302 int reg;
1303 int offset, offset_and;
1304 static int regnums[8] = {
1305 I386_EAX_REGNUM, /* %eax */
1306 I386_ECX_REGNUM, /* %ecx */
1307 I386_EDX_REGNUM, /* %edx */
1308 I386_EBX_REGNUM, /* %ebx */
1309 I386_ESP_REGNUM, /* %esp */
1310 I386_EBP_REGNUM, /* %ebp */
1311 I386_ESI_REGNUM, /* %esi */
1312 I386_EDI_REGNUM /* %edi */
1313 };
1314
1315 if (target_read_code (pc, buf, sizeof buf))
1316 return pc;
1317
1318 /* Check caller-saved saved register. The first instruction has
1319 to be "leal 4(%esp), %reg". */
1320 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1321 {
1322 /* MOD must be binary 10 and R/M must be binary 100. */
1323 if ((buf[1] & 0xc7) != 0x44)
1324 return pc;
1325
1326 /* REG has register number. */
1327 reg = (buf[1] >> 3) & 7;
1328 offset = 4;
1329 }
1330 else
1331 {
1332 /* Check callee-saved saved register. The first instruction
1333 has to be "pushl %reg". */
1334 if ((buf[0] & 0xf8) != 0x50)
1335 return pc;
1336
1337 /* Get register. */
1338 reg = buf[0] & 0x7;
1339
1340 /* The next instruction has to be "leal 8(%esp), %reg". */
1341 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1342 return pc;
1343
1344 /* MOD must be binary 10 and R/M must be binary 100. */
1345 if ((buf[2] & 0xc7) != 0x44)
1346 return pc;
1347
1348 /* REG has register number. Registers in pushl and leal have to
1349 be the same. */
1350 if (reg != ((buf[2] >> 3) & 7))
1351 return pc;
1352
1353 offset = 5;
1354 }
1355
1356 /* Rigister can't be %esp nor %ebp. */
1357 if (reg == 4 || reg == 5)
1358 return pc;
1359
1360 /* The next instruction has to be "andl $-XXX, %esp". */
1361 if (buf[offset + 1] != 0xe4
1362 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1363 return pc;
1364
1365 offset_and = offset;
1366 offset += buf[offset] == 0x81 ? 6 : 3;
1367
1368 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1369 0xfc. REG must be binary 110 and MOD must be binary 01. */
1370 if (buf[offset] != 0xff
1371 || buf[offset + 2] != 0xfc
1372 || (buf[offset + 1] & 0xf8) != 0x70)
1373 return pc;
1374
1375 /* R/M has register. Registers in leal and pushl have to be the
1376 same. */
1377 if (reg != (buf[offset + 1] & 7))
1378 return pc;
1379
1380 if (current_pc > pc + offset_and)
1381 cache->saved_sp_reg = regnums[reg];
1382
1383 return std::min (pc + offset + 3, current_pc);
1384}
1385
1386/* Maximum instruction length we need to handle. */
1387#define I386_MAX_MATCHED_INSN_LEN 6
1388
1389/* Instruction description. */
1390struct i386_insn
1391{
1392 size_t len;
1393 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1394 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1395};
1396
1397/* Return whether instruction at PC matches PATTERN. */
1398
1399static int
1400i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1401{
1402 gdb_byte op;
1403
1404 if (target_read_code (pc, &op, 1))
1405 return 0;
1406
1407 if ((op & pattern.mask[0]) == pattern.insn[0])
1408 {
1409 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1410 int insn_matched = 1;
1411 size_t i;
1412
1413 gdb_assert (pattern.len > 1);
1414 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1415
1416 if (target_read_code (pc + 1, buf, pattern.len - 1))
1417 return 0;
1418
1419 for (i = 1; i < pattern.len; i++)
1420 {
1421 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1422 insn_matched = 0;
1423 }
1424 return insn_matched;
1425 }
1426 return 0;
1427}
1428
1429/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1430 the first instruction description that matches. Otherwise, return
1431 NULL. */
1432
1433static struct i386_insn *
1434i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1435{
1436 struct i386_insn *pattern;
1437
1438 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1439 {
1440 if (i386_match_pattern (pc, *pattern))
1441 return pattern;
1442 }
1443
1444 return NULL;
1445}
1446
1447/* Return whether PC points inside a sequence of instructions that
1448 matches INSN_PATTERNS. */
1449
1450static int
1451i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1452{
1453 CORE_ADDR current_pc;
1454 int ix, i;
1455 struct i386_insn *insn;
1456
1457 insn = i386_match_insn (pc, insn_patterns);
1458 if (insn == NULL)
1459 return 0;
1460
1461 current_pc = pc;
1462 ix = insn - insn_patterns;
1463 for (i = ix - 1; i >= 0; i--)
1464 {
1465 current_pc -= insn_patterns[i].len;
1466
1467 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1468 return 0;
1469 }
1470
1471 current_pc = pc + insn->len;
1472 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1473 {
1474 if (!i386_match_pattern (current_pc, *insn))
1475 return 0;
1476
1477 current_pc += insn->len;
1478 }
1479
1480 return 1;
1481}
1482
1483/* Some special instructions that might be migrated by GCC into the
1484 part of the prologue that sets up the new stack frame. Because the
1485 stack frame hasn't been setup yet, no registers have been saved
1486 yet, and only the scratch registers %eax, %ecx and %edx can be
1487 touched. */
1488
1489struct i386_insn i386_frame_setup_skip_insns[] =
1490{
1491 /* Check for `movb imm8, r' and `movl imm32, r'.
1492
1493 ??? Should we handle 16-bit operand-sizes here? */
1494
1495 /* `movb imm8, %al' and `movb imm8, %ah' */
1496 /* `movb imm8, %cl' and `movb imm8, %ch' */
1497 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1498 /* `movb imm8, %dl' and `movb imm8, %dh' */
1499 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1500 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1501 { 5, { 0xb8 }, { 0xfe } },
1502 /* `movl imm32, %edx' */
1503 { 5, { 0xba }, { 0xff } },
1504
1505 /* Check for `mov imm32, r32'. Note that there is an alternative
1506 encoding for `mov m32, %eax'.
1507
1508 ??? Should we handle SIB addressing here?
1509 ??? Should we handle 16-bit operand-sizes here? */
1510
1511 /* `movl m32, %eax' */
1512 { 5, { 0xa1 }, { 0xff } },
1513 /* `movl m32, %eax' and `mov; m32, %ecx' */
1514 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1515 /* `movl m32, %edx' */
1516 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1517
1518 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1519 Because of the symmetry, there are actually two ways to encode
1520 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1521 opcode bytes 0x31 and 0x33 for `xorl'. */
1522
1523 /* `subl %eax, %eax' */
1524 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1525 /* `subl %ecx, %ecx' */
1526 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1527 /* `subl %edx, %edx' */
1528 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1529 /* `xorl %eax, %eax' */
1530 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1531 /* `xorl %ecx, %ecx' */
1532 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1533 /* `xorl %edx, %edx' */
1534 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1535 { 0 }
1536};
1537
1538
1539/* Check whether PC points to a no-op instruction. */
1540static CORE_ADDR
1541i386_skip_noop (CORE_ADDR pc)
1542{
1543 gdb_byte op;
1544 int check = 1;
1545
1546 if (target_read_code (pc, &op, 1))
1547 return pc;
1548
1549 while (check)
1550 {
1551 check = 0;
1552 /* Ignore `nop' instruction. */
1553 if (op == 0x90)
1554 {
1555 pc += 1;
1556 if (target_read_code (pc, &op, 1))
1557 return pc;
1558 check = 1;
1559 }
1560 /* Ignore no-op instruction `mov %edi, %edi'.
1561 Microsoft system dlls often start with
1562 a `mov %edi,%edi' instruction.
1563 The 5 bytes before the function start are
1564 filled with `nop' instructions.
1565 This pattern can be used for hot-patching:
1566 The `mov %edi, %edi' instruction can be replaced by a
1567 near jump to the location of the 5 `nop' instructions
1568 which can be replaced by a 32-bit jump to anywhere
1569 in the 32-bit address space. */
1570
1571 else if (op == 0x8b)
1572 {
1573 if (target_read_code (pc + 1, &op, 1))
1574 return pc;
1575
1576 if (op == 0xff)
1577 {
1578 pc += 2;
1579 if (target_read_code (pc, &op, 1))
1580 return pc;
1581
1582 check = 1;
1583 }
1584 }
1585 }
1586 return pc;
1587}
1588
1589/* Check whether PC points at a code that sets up a new stack frame.
1590 If so, it updates CACHE and returns the address of the first
1591 instruction after the sequence that sets up the frame or LIMIT,
1592 whichever is smaller. If we don't recognize the code, return PC. */
1593
1594static CORE_ADDR
1595i386_analyze_frame_setup (struct gdbarch *gdbarch,
1596 CORE_ADDR pc, CORE_ADDR limit,
1597 struct i386_frame_cache *cache)
1598{
1599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1600 struct i386_insn *insn;
1601 gdb_byte op;
1602 int skip = 0;
1603
1604 if (limit <= pc)
1605 return limit;
1606
1607 if (target_read_code (pc, &op, 1))
1608 return pc;
1609
1610 if (op == 0x55) /* pushl %ebp */
1611 {
1612 /* Take into account that we've executed the `pushl %ebp' that
1613 starts this instruction sequence. */
1614 cache->saved_regs[I386_EBP_REGNUM] = 0;
1615 cache->sp_offset += 4;
1616 pc++;
1617
1618 /* If that's all, return now. */
1619 if (limit <= pc)
1620 return limit;
1621
1622 /* Check for some special instructions that might be migrated by
1623 GCC into the prologue and skip them. At this point in the
1624 prologue, code should only touch the scratch registers %eax,
1625 %ecx and %edx, so while the number of possibilities is sheer,
1626 it is limited.
1627
1628 Make sure we only skip these instructions if we later see the
1629 `movl %esp, %ebp' that actually sets up the frame. */
1630 while (pc + skip < limit)
1631 {
1632 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1633 if (insn == NULL)
1634 break;
1635
1636 skip += insn->len;
1637 }
1638
1639 /* If that's all, return now. */
1640 if (limit <= pc + skip)
1641 return limit;
1642
1643 if (target_read_code (pc + skip, &op, 1))
1644 return pc + skip;
1645
1646 /* The i386 prologue looks like
1647
1648 push %ebp
1649 mov %esp,%ebp
1650 sub $0x10,%esp
1651
1652 and a different prologue can be generated for atom.
1653
1654 push %ebp
1655 lea (%esp),%ebp
1656 lea -0x10(%esp),%esp
1657
1658 We handle both of them here. */
1659
1660 switch (op)
1661 {
1662 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1663 case 0x8b:
1664 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1665 != 0xec)
1666 return pc;
1667 pc += (skip + 2);
1668 break;
1669 case 0x89:
1670 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1671 != 0xe5)
1672 return pc;
1673 pc += (skip + 2);
1674 break;
1675 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1676 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1677 != 0x242c)
1678 return pc;
1679 pc += (skip + 3);
1680 break;
1681 default:
1682 return pc;
1683 }
1684
1685 /* OK, we actually have a frame. We just don't know how large
1686 it is yet. Set its size to zero. We'll adjust it if
1687 necessary. We also now commit to skipping the special
1688 instructions mentioned before. */
1689 cache->locals = 0;
1690
1691 /* If that's all, return now. */
1692 if (limit <= pc)
1693 return limit;
1694
1695 /* Check for stack adjustment
1696
1697 subl $XXX, %esp
1698 or
1699 lea -XXX(%esp),%esp
1700
1701 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1702 reg, so we don't have to worry about a data16 prefix. */
1703 if (target_read_code (pc, &op, 1))
1704 return pc;
1705 if (op == 0x83)
1706 {
1707 /* `subl' with 8-bit immediate. */
1708 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1709 /* Some instruction starting with 0x83 other than `subl'. */
1710 return pc;
1711
1712 /* `subl' with signed 8-bit immediate (though it wouldn't
1713 make sense to be negative). */
1714 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1715 return pc + 3;
1716 }
1717 else if (op == 0x81)
1718 {
1719 /* Maybe it is `subl' with a 32-bit immediate. */
1720 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1721 /* Some instruction starting with 0x81 other than `subl'. */
1722 return pc;
1723
1724 /* It is `subl' with a 32-bit immediate. */
1725 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1726 return pc + 6;
1727 }
1728 else if (op == 0x8d)
1729 {
1730 /* The ModR/M byte is 0x64. */
1731 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1732 return pc;
1733 /* 'lea' with 8-bit displacement. */
1734 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1735 return pc + 4;
1736 }
1737 else
1738 {
1739 /* Some instruction other than `subl' nor 'lea'. */
1740 return pc;
1741 }
1742 }
1743 else if (op == 0xc8) /* enter */
1744 {
1745 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1746 return pc + 4;
1747 }
1748
1749 return pc;
1750}
1751
1752/* Check whether PC points at code that saves registers on the stack.
1753 If so, it updates CACHE and returns the address of the first
1754 instruction after the register saves or CURRENT_PC, whichever is
1755 smaller. Otherwise, return PC. */
1756
1757static CORE_ADDR
1758i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1759 struct i386_frame_cache *cache)
1760{
1761 CORE_ADDR offset = 0;
1762 gdb_byte op;
1763 int i;
1764
1765 if (cache->locals > 0)
1766 offset -= cache->locals;
1767 for (i = 0; i < 8 && pc < current_pc; i++)
1768 {
1769 if (target_read_code (pc, &op, 1))
1770 return pc;
1771 if (op < 0x50 || op > 0x57)
1772 break;
1773
1774 offset -= 4;
1775 cache->saved_regs[op - 0x50] = offset;
1776 cache->sp_offset += 4;
1777 pc++;
1778 }
1779
1780 return pc;
1781}
1782
1783/* Do a full analysis of the prologue at PC and update CACHE
1784 accordingly. Bail out early if CURRENT_PC is reached. Return the
1785 address where the analysis stopped.
1786
1787 We handle these cases:
1788
1789 The startup sequence can be at the start of the function, or the
1790 function can start with a branch to startup code at the end.
1791
1792 %ebp can be set up with either the 'enter' instruction, or "pushl
1793 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1794 once used in the System V compiler).
1795
1796 Local space is allocated just below the saved %ebp by either the
1797 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1798 16-bit unsigned argument for space to allocate, and the 'addl'
1799 instruction could have either a signed byte, or 32-bit immediate.
1800
1801 Next, the registers used by this function are pushed. With the
1802 System V compiler they will always be in the order: %edi, %esi,
1803 %ebx (and sometimes a harmless bug causes it to also save but not
1804 restore %eax); however, the code below is willing to see the pushes
1805 in any order, and will handle up to 8 of them.
1806
1807 If the setup sequence is at the end of the function, then the next
1808 instruction will be a branch back to the start. */
1809
1810static CORE_ADDR
1811i386_analyze_prologue (struct gdbarch *gdbarch,
1812 CORE_ADDR pc, CORE_ADDR current_pc,
1813 struct i386_frame_cache *cache)
1814{
1815 pc = i386_skip_noop (pc);
1816 pc = i386_follow_jump (gdbarch, pc);
1817 pc = i386_analyze_struct_return (pc, current_pc, cache);
1818 pc = i386_skip_probe (pc);
1819 pc = i386_analyze_stack_align (pc, current_pc, cache);
1820 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1821 return i386_analyze_register_saves (pc, current_pc, cache);
1822}
1823
1824/* Return PC of first real instruction. */
1825
1826static CORE_ADDR
1827i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1828{
1829 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1830
1831 static gdb_byte pic_pat[6] =
1832 {
1833 0xe8, 0, 0, 0, 0, /* call 0x0 */
1834 0x5b, /* popl %ebx */
1835 };
1836 struct i386_frame_cache cache;
1837 CORE_ADDR pc;
1838 gdb_byte op;
1839 int i;
1840 CORE_ADDR func_addr;
1841
1842 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1843 {
1844 CORE_ADDR post_prologue_pc
1845 = skip_prologue_using_sal (gdbarch, func_addr);
1846 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1847
1848 /* Clang always emits a line note before the prologue and another
1849 one after. We trust clang to emit usable line notes. */
1850 if (post_prologue_pc
1851 && (cust != NULL
1852 && COMPUNIT_PRODUCER (cust) != NULL
1853 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1854 return std::max (start_pc, post_prologue_pc);
1855 }
1856
1857 cache.locals = -1;
1858 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1859 if (cache.locals < 0)
1860 return start_pc;
1861
1862 /* Found valid frame setup. */
1863
1864 /* The native cc on SVR4 in -K PIC mode inserts the following code
1865 to get the address of the global offset table (GOT) into register
1866 %ebx:
1867
1868 call 0x0
1869 popl %ebx
1870 movl %ebx,x(%ebp) (optional)
1871 addl y,%ebx
1872
1873 This code is with the rest of the prologue (at the end of the
1874 function), so we have to skip it to get to the first real
1875 instruction at the start of the function. */
1876
1877 for (i = 0; i < 6; i++)
1878 {
1879 if (target_read_code (pc + i, &op, 1))
1880 return pc;
1881
1882 if (pic_pat[i] != op)
1883 break;
1884 }
1885 if (i == 6)
1886 {
1887 int delta = 6;
1888
1889 if (target_read_code (pc + delta, &op, 1))
1890 return pc;
1891
1892 if (op == 0x89) /* movl %ebx, x(%ebp) */
1893 {
1894 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1895
1896 if (op == 0x5d) /* One byte offset from %ebp. */
1897 delta += 3;
1898 else if (op == 0x9d) /* Four byte offset from %ebp. */
1899 delta += 6;
1900 else /* Unexpected instruction. */
1901 delta = 0;
1902
1903 if (target_read_code (pc + delta, &op, 1))
1904 return pc;
1905 }
1906
1907 /* addl y,%ebx */
1908 if (delta > 0 && op == 0x81
1909 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1910 == 0xc3)
1911 {
1912 pc += delta + 6;
1913 }
1914 }
1915
1916 /* If the function starts with a branch (to startup code at the end)
1917 the last instruction should bring us back to the first
1918 instruction of the real code. */
1919 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1920 pc = i386_follow_jump (gdbarch, pc);
1921
1922 return pc;
1923}
1924
1925/* Check that the code pointed to by PC corresponds to a call to
1926 __main, skip it if so. Return PC otherwise. */
1927
1928CORE_ADDR
1929i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1930{
1931 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1932 gdb_byte op;
1933
1934 if (target_read_code (pc, &op, 1))
1935 return pc;
1936 if (op == 0xe8)
1937 {
1938 gdb_byte buf[4];
1939
1940 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1941 {
1942 /* Make sure address is computed correctly as a 32bit
1943 integer even if CORE_ADDR is 64 bit wide. */
1944 struct bound_minimal_symbol s;
1945 CORE_ADDR call_dest;
1946
1947 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1948 call_dest = call_dest & 0xffffffffU;
1949 s = lookup_minimal_symbol_by_pc (call_dest);
1950 if (s.minsym != NULL
1951 && s.minsym->linkage_name () != NULL
1952 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1953 pc += 5;
1954 }
1955 }
1956
1957 return pc;
1958}
1959
1960/* This function is 64-bit safe. */
1961
1962static CORE_ADDR
1963i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1964{
1965 gdb_byte buf[8];
1966
1967 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1968 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1969}
1970\f
1971
1972/* Normal frames. */
1973
1974static void
1975i386_frame_cache_1 (struct frame_info *this_frame,
1976 struct i386_frame_cache *cache)
1977{
1978 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1979 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1980 gdb_byte buf[4];
1981 int i;
1982
1983 cache->pc = get_frame_func (this_frame);
1984
1985 /* In principle, for normal frames, %ebp holds the frame pointer,
1986 which holds the base address for the current stack frame.
1987 However, for functions that don't need it, the frame pointer is
1988 optional. For these "frameless" functions the frame pointer is
1989 actually the frame pointer of the calling frame. Signal
1990 trampolines are just a special case of a "frameless" function.
1991 They (usually) share their frame pointer with the frame that was
1992 in progress when the signal occurred. */
1993
1994 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1995 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1996 if (cache->base == 0)
1997 {
1998 cache->base_p = 1;
1999 return;
2000 }
2001
2002 /* For normal frames, %eip is stored at 4(%ebp). */
2003 cache->saved_regs[I386_EIP_REGNUM] = 4;
2004
2005 if (cache->pc != 0)
2006 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2007 cache);
2008
2009 if (cache->locals < 0)
2010 {
2011 /* We didn't find a valid frame, which means that CACHE->base
2012 currently holds the frame pointer for our calling frame. If
2013 we're at the start of a function, or somewhere half-way its
2014 prologue, the function's frame probably hasn't been fully
2015 setup yet. Try to reconstruct the base address for the stack
2016 frame by looking at the stack pointer. For truly "frameless"
2017 functions this might work too. */
2018
2019 if (cache->saved_sp_reg != -1)
2020 {
2021 /* Saved stack pointer has been saved. */
2022 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2023 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2024
2025 /* We're halfway aligning the stack. */
2026 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2027 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2028
2029 /* This will be added back below. */
2030 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2031 }
2032 else if (cache->pc != 0
2033 || target_read_code (get_frame_pc (this_frame), buf, 1))
2034 {
2035 /* We're in a known function, but did not find a frame
2036 setup. Assume that the function does not use %ebp.
2037 Alternatively, we may have jumped to an invalid
2038 address; in that case there is definitely no new
2039 frame in %ebp. */
2040 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2041 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2042 + cache->sp_offset;
2043 }
2044 else
2045 /* We're in an unknown function. We could not find the start
2046 of the function to analyze the prologue; our best option is
2047 to assume a typical frame layout with the caller's %ebp
2048 saved. */
2049 cache->saved_regs[I386_EBP_REGNUM] = 0;
2050 }
2051
2052 if (cache->saved_sp_reg != -1)
2053 {
2054 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2055 register may be unavailable). */
2056 if (cache->saved_sp == 0
2057 && deprecated_frame_register_read (this_frame,
2058 cache->saved_sp_reg, buf))
2059 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2060 }
2061 /* Now that we have the base address for the stack frame we can
2062 calculate the value of %esp in the calling frame. */
2063 else if (cache->saved_sp == 0)
2064 cache->saved_sp = cache->base + 8;
2065
2066 /* Adjust all the saved registers such that they contain addresses
2067 instead of offsets. */
2068 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2069 if (cache->saved_regs[i] != -1)
2070 cache->saved_regs[i] += cache->base;
2071
2072 cache->base_p = 1;
2073}
2074
2075static struct i386_frame_cache *
2076i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2077{
2078 struct i386_frame_cache *cache;
2079
2080 if (*this_cache)
2081 return (struct i386_frame_cache *) *this_cache;
2082
2083 cache = i386_alloc_frame_cache ();
2084 *this_cache = cache;
2085
2086 try
2087 {
2088 i386_frame_cache_1 (this_frame, cache);
2089 }
2090 catch (const gdb_exception_error &ex)
2091 {
2092 if (ex.error != NOT_AVAILABLE_ERROR)
2093 throw;
2094 }
2095
2096 return cache;
2097}
2098
2099static void
2100i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2101 struct frame_id *this_id)
2102{
2103 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2104
2105 if (!cache->base_p)
2106 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2107 else if (cache->base == 0)
2108 {
2109 /* This marks the outermost frame. */
2110 }
2111 else
2112 {
2113 /* See the end of i386_push_dummy_call. */
2114 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2115 }
2116}
2117
2118static enum unwind_stop_reason
2119i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2120 void **this_cache)
2121{
2122 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2123
2124 if (!cache->base_p)
2125 return UNWIND_UNAVAILABLE;
2126
2127 /* This marks the outermost frame. */
2128 if (cache->base == 0)
2129 return UNWIND_OUTERMOST;
2130
2131 return UNWIND_NO_REASON;
2132}
2133
2134static struct value *
2135i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2136 int regnum)
2137{
2138 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2139
2140 gdb_assert (regnum >= 0);
2141
2142 /* The System V ABI says that:
2143
2144 "The flags register contains the system flags, such as the
2145 direction flag and the carry flag. The direction flag must be
2146 set to the forward (that is, zero) direction before entry and
2147 upon exit from a function. Other user flags have no specified
2148 role in the standard calling sequence and are not preserved."
2149
2150 To guarantee the "upon exit" part of that statement we fake a
2151 saved flags register that has its direction flag cleared.
2152
2153 Note that GCC doesn't seem to rely on the fact that the direction
2154 flag is cleared after a function return; it always explicitly
2155 clears the flag before operations where it matters.
2156
2157 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2158 right thing to do. The way we fake the flags register here makes
2159 it impossible to change it. */
2160
2161 if (regnum == I386_EFLAGS_REGNUM)
2162 {
2163 ULONGEST val;
2164
2165 val = get_frame_register_unsigned (this_frame, regnum);
2166 val &= ~(1 << 10);
2167 return frame_unwind_got_constant (this_frame, regnum, val);
2168 }
2169
2170 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2171 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2172
2173 if (regnum == I386_ESP_REGNUM
2174 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2175 {
2176 /* If the SP has been saved, but we don't know where, then this
2177 means that SAVED_SP_REG register was found unavailable back
2178 when we built the cache. */
2179 if (cache->saved_sp == 0)
2180 return frame_unwind_got_register (this_frame, regnum,
2181 cache->saved_sp_reg);
2182 else
2183 return frame_unwind_got_constant (this_frame, regnum,
2184 cache->saved_sp);
2185 }
2186
2187 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2188 return frame_unwind_got_memory (this_frame, regnum,
2189 cache->saved_regs[regnum]);
2190
2191 return frame_unwind_got_register (this_frame, regnum, regnum);
2192}
2193
2194static const struct frame_unwind i386_frame_unwind =
2195{
2196 NORMAL_FRAME,
2197 i386_frame_unwind_stop_reason,
2198 i386_frame_this_id,
2199 i386_frame_prev_register,
2200 NULL,
2201 default_frame_sniffer
2202};
2203
2204/* Normal frames, but in a function epilogue. */
2205
2206/* Implement the stack_frame_destroyed_p gdbarch method.
2207
2208 The epilogue is defined here as the 'ret' instruction, which will
2209 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2210 the function's stack frame. */
2211
2212static int
2213i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2214{
2215 gdb_byte insn;
2216 struct compunit_symtab *cust;
2217
2218 cust = find_pc_compunit_symtab (pc);
2219 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2220 return 0;
2221
2222 if (target_read_memory (pc, &insn, 1))
2223 return 0; /* Can't read memory at pc. */
2224
2225 if (insn != 0xc3) /* 'ret' instruction. */
2226 return 0;
2227
2228 return 1;
2229}
2230
2231static int
2232i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2233 struct frame_info *this_frame,
2234 void **this_prologue_cache)
2235{
2236 if (frame_relative_level (this_frame) == 0)
2237 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2238 get_frame_pc (this_frame));
2239 else
2240 return 0;
2241}
2242
2243static struct i386_frame_cache *
2244i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2245{
2246 struct i386_frame_cache *cache;
2247 CORE_ADDR sp;
2248
2249 if (*this_cache)
2250 return (struct i386_frame_cache *) *this_cache;
2251
2252 cache = i386_alloc_frame_cache ();
2253 *this_cache = cache;
2254
2255 try
2256 {
2257 cache->pc = get_frame_func (this_frame);
2258
2259 /* At this point the stack looks as if we just entered the
2260 function, with the return address at the top of the
2261 stack. */
2262 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2263 cache->base = sp + cache->sp_offset;
2264 cache->saved_sp = cache->base + 8;
2265 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2266
2267 cache->base_p = 1;
2268 }
2269 catch (const gdb_exception_error &ex)
2270 {
2271 if (ex.error != NOT_AVAILABLE_ERROR)
2272 throw;
2273 }
2274
2275 return cache;
2276}
2277
2278static enum unwind_stop_reason
2279i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2280 void **this_cache)
2281{
2282 struct i386_frame_cache *cache =
2283 i386_epilogue_frame_cache (this_frame, this_cache);
2284
2285 if (!cache->base_p)
2286 return UNWIND_UNAVAILABLE;
2287
2288 return UNWIND_NO_REASON;
2289}
2290
2291static void
2292i386_epilogue_frame_this_id (struct frame_info *this_frame,
2293 void **this_cache,
2294 struct frame_id *this_id)
2295{
2296 struct i386_frame_cache *cache =
2297 i386_epilogue_frame_cache (this_frame, this_cache);
2298
2299 if (!cache->base_p)
2300 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2301 else
2302 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2303}
2304
2305static struct value *
2306i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2307 void **this_cache, int regnum)
2308{
2309 /* Make sure we've initialized the cache. */
2310 i386_epilogue_frame_cache (this_frame, this_cache);
2311
2312 return i386_frame_prev_register (this_frame, this_cache, regnum);
2313}
2314
2315static const struct frame_unwind i386_epilogue_frame_unwind =
2316{
2317 NORMAL_FRAME,
2318 i386_epilogue_frame_unwind_stop_reason,
2319 i386_epilogue_frame_this_id,
2320 i386_epilogue_frame_prev_register,
2321 NULL,
2322 i386_epilogue_frame_sniffer
2323};
2324\f
2325
2326/* Stack-based trampolines. */
2327
2328/* These trampolines are used on cross x86 targets, when taking the
2329 address of a nested function. When executing these trampolines,
2330 no stack frame is set up, so we are in a similar situation as in
2331 epilogues and i386_epilogue_frame_this_id can be re-used. */
2332
2333/* Static chain passed in register. */
2334
2335struct i386_insn i386_tramp_chain_in_reg_insns[] =
2336{
2337 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2338 { 5, { 0xb8 }, { 0xfe } },
2339
2340 /* `jmp imm32' */
2341 { 5, { 0xe9 }, { 0xff } },
2342
2343 {0}
2344};
2345
2346/* Static chain passed on stack (when regparm=3). */
2347
2348struct i386_insn i386_tramp_chain_on_stack_insns[] =
2349{
2350 /* `push imm32' */
2351 { 5, { 0x68 }, { 0xff } },
2352
2353 /* `jmp imm32' */
2354 { 5, { 0xe9 }, { 0xff } },
2355
2356 {0}
2357};
2358
2359/* Return whether PC points inside a stack trampoline. */
2360
2361static int
2362i386_in_stack_tramp_p (CORE_ADDR pc)
2363{
2364 gdb_byte insn;
2365 const char *name;
2366
2367 /* A stack trampoline is detected if no name is associated
2368 to the current pc and if it points inside a trampoline
2369 sequence. */
2370
2371 find_pc_partial_function (pc, &name, NULL, NULL);
2372 if (name)
2373 return 0;
2374
2375 if (target_read_memory (pc, &insn, 1))
2376 return 0;
2377
2378 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2379 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2380 return 0;
2381
2382 return 1;
2383}
2384
2385static int
2386i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2387 struct frame_info *this_frame,
2388 void **this_cache)
2389{
2390 if (frame_relative_level (this_frame) == 0)
2391 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2392 else
2393 return 0;
2394}
2395
2396static const struct frame_unwind i386_stack_tramp_frame_unwind =
2397{
2398 NORMAL_FRAME,
2399 i386_epilogue_frame_unwind_stop_reason,
2400 i386_epilogue_frame_this_id,
2401 i386_epilogue_frame_prev_register,
2402 NULL,
2403 i386_stack_tramp_frame_sniffer
2404};
2405\f
2406/* Generate a bytecode expression to get the value of the saved PC. */
2407
2408static void
2409i386_gen_return_address (struct gdbarch *gdbarch,
2410 struct agent_expr *ax, struct axs_value *value,
2411 CORE_ADDR scope)
2412{
2413 /* The following sequence assumes the traditional use of the base
2414 register. */
2415 ax_reg (ax, I386_EBP_REGNUM);
2416 ax_const_l (ax, 4);
2417 ax_simple (ax, aop_add);
2418 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2419 value->kind = axs_lvalue_memory;
2420}
2421\f
2422
2423/* Signal trampolines. */
2424
2425static struct i386_frame_cache *
2426i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2427{
2428 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2429 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2431 struct i386_frame_cache *cache;
2432 CORE_ADDR addr;
2433 gdb_byte buf[4];
2434
2435 if (*this_cache)
2436 return (struct i386_frame_cache *) *this_cache;
2437
2438 cache = i386_alloc_frame_cache ();
2439
2440 try
2441 {
2442 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2443 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2444
2445 addr = tdep->sigcontext_addr (this_frame);
2446 if (tdep->sc_reg_offset)
2447 {
2448 int i;
2449
2450 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2451
2452 for (i = 0; i < tdep->sc_num_regs; i++)
2453 if (tdep->sc_reg_offset[i] != -1)
2454 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2455 }
2456 else
2457 {
2458 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2459 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2460 }
2461
2462 cache->base_p = 1;
2463 }
2464 catch (const gdb_exception_error &ex)
2465 {
2466 if (ex.error != NOT_AVAILABLE_ERROR)
2467 throw;
2468 }
2469
2470 *this_cache = cache;
2471 return cache;
2472}
2473
2474static enum unwind_stop_reason
2475i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2476 void **this_cache)
2477{
2478 struct i386_frame_cache *cache =
2479 i386_sigtramp_frame_cache (this_frame, this_cache);
2480
2481 if (!cache->base_p)
2482 return UNWIND_UNAVAILABLE;
2483
2484 return UNWIND_NO_REASON;
2485}
2486
2487static void
2488i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2489 struct frame_id *this_id)
2490{
2491 struct i386_frame_cache *cache =
2492 i386_sigtramp_frame_cache (this_frame, this_cache);
2493
2494 if (!cache->base_p)
2495 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2496 else
2497 {
2498 /* See the end of i386_push_dummy_call. */
2499 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2500 }
2501}
2502
2503static struct value *
2504i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2505 void **this_cache, int regnum)
2506{
2507 /* Make sure we've initialized the cache. */
2508 i386_sigtramp_frame_cache (this_frame, this_cache);
2509
2510 return i386_frame_prev_register (this_frame, this_cache, regnum);
2511}
2512
2513static int
2514i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2515 struct frame_info *this_frame,
2516 void **this_prologue_cache)
2517{
2518 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2519
2520 /* We shouldn't even bother if we don't have a sigcontext_addr
2521 handler. */
2522 if (tdep->sigcontext_addr == NULL)
2523 return 0;
2524
2525 if (tdep->sigtramp_p != NULL)
2526 {
2527 if (tdep->sigtramp_p (this_frame))
2528 return 1;
2529 }
2530
2531 if (tdep->sigtramp_start != 0)
2532 {
2533 CORE_ADDR pc = get_frame_pc (this_frame);
2534
2535 gdb_assert (tdep->sigtramp_end != 0);
2536 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2537 return 1;
2538 }
2539
2540 return 0;
2541}
2542
2543static const struct frame_unwind i386_sigtramp_frame_unwind =
2544{
2545 SIGTRAMP_FRAME,
2546 i386_sigtramp_frame_unwind_stop_reason,
2547 i386_sigtramp_frame_this_id,
2548 i386_sigtramp_frame_prev_register,
2549 NULL,
2550 i386_sigtramp_frame_sniffer
2551};
2552\f
2553
2554static CORE_ADDR
2555i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2556{
2557 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2558
2559 return cache->base;
2560}
2561
2562static const struct frame_base i386_frame_base =
2563{
2564 &i386_frame_unwind,
2565 i386_frame_base_address,
2566 i386_frame_base_address,
2567 i386_frame_base_address
2568};
2569
2570static struct frame_id
2571i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2572{
2573 CORE_ADDR fp;
2574
2575 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2576
2577 /* See the end of i386_push_dummy_call. */
2578 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2579}
2580
2581/* _Decimal128 function return values need 16-byte alignment on the
2582 stack. */
2583
2584static CORE_ADDR
2585i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2586{
2587 return sp & -(CORE_ADDR)16;
2588}
2589\f
2590
2591/* Figure out where the longjmp will land. Slurp the args out of the
2592 stack. We expect the first arg to be a pointer to the jmp_buf
2593 structure from which we extract the address that we will land at.
2594 This address is copied into PC. This routine returns non-zero on
2595 success. */
2596
2597static int
2598i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2599{
2600 gdb_byte buf[4];
2601 CORE_ADDR sp, jb_addr;
2602 struct gdbarch *gdbarch = get_frame_arch (frame);
2603 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2604 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2605
2606 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2607 longjmp will land. */
2608 if (jb_pc_offset == -1)
2609 return 0;
2610
2611 get_frame_register (frame, I386_ESP_REGNUM, buf);
2612 sp = extract_unsigned_integer (buf, 4, byte_order);
2613 if (target_read_memory (sp + 4, buf, 4))
2614 return 0;
2615
2616 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2617 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2618 return 0;
2619
2620 *pc = extract_unsigned_integer (buf, 4, byte_order);
2621 return 1;
2622}
2623\f
2624
2625/* Check whether TYPE must be 16-byte-aligned when passed as a
2626 function argument. 16-byte vectors, _Decimal128 and structures or
2627 unions containing such types must be 16-byte-aligned; other
2628 arguments are 4-byte-aligned. */
2629
2630static int
2631i386_16_byte_align_p (struct type *type)
2632{
2633 type = check_typedef (type);
2634 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2635 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2636 && TYPE_LENGTH (type) == 16)
2637 return 1;
2638 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2639 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2640 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2641 || TYPE_CODE (type) == TYPE_CODE_UNION)
2642 {
2643 int i;
2644 for (i = 0; i < TYPE_NFIELDS (type); i++)
2645 {
2646 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2647 return 1;
2648 }
2649 }
2650 return 0;
2651}
2652
2653/* Implementation for set_gdbarch_push_dummy_code. */
2654
2655static CORE_ADDR
2656i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2657 struct value **args, int nargs, struct type *value_type,
2658 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2659 struct regcache *regcache)
2660{
2661 /* Use 0xcc breakpoint - 1 byte. */
2662 *bp_addr = sp - 1;
2663 *real_pc = funaddr;
2664
2665 /* Keep the stack aligned. */
2666 return sp - 16;
2667}
2668
2669static CORE_ADDR
2670i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2671 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2672 struct value **args, CORE_ADDR sp,
2673 function_call_return_method return_method,
2674 CORE_ADDR struct_addr)
2675{
2676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2677 gdb_byte buf[4];
2678 int i;
2679 int write_pass;
2680 int args_space = 0;
2681
2682 /* BND registers can be in arbitrary values at the moment of the
2683 inferior call. This can cause boundary violations that are not
2684 due to a real bug or even desired by the user. The best to be done
2685 is set the BND registers to allow access to the whole memory, INIT
2686 state, before pushing the inferior call. */
2687 i387_reset_bnd_regs (gdbarch, regcache);
2688
2689 /* Determine the total space required for arguments and struct
2690 return address in a first pass (allowing for 16-byte-aligned
2691 arguments), then push arguments in a second pass. */
2692
2693 for (write_pass = 0; write_pass < 2; write_pass++)
2694 {
2695 int args_space_used = 0;
2696
2697 if (return_method == return_method_struct)
2698 {
2699 if (write_pass)
2700 {
2701 /* Push value address. */
2702 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2703 write_memory (sp, buf, 4);
2704 args_space_used += 4;
2705 }
2706 else
2707 args_space += 4;
2708 }
2709
2710 for (i = 0; i < nargs; i++)
2711 {
2712 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2713
2714 if (write_pass)
2715 {
2716 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2717 args_space_used = align_up (args_space_used, 16);
2718
2719 write_memory (sp + args_space_used,
2720 value_contents_all (args[i]), len);
2721 /* The System V ABI says that:
2722
2723 "An argument's size is increased, if necessary, to make it a
2724 multiple of [32-bit] words. This may require tail padding,
2725 depending on the size of the argument."
2726
2727 This makes sure the stack stays word-aligned. */
2728 args_space_used += align_up (len, 4);
2729 }
2730 else
2731 {
2732 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2733 args_space = align_up (args_space, 16);
2734 args_space += align_up (len, 4);
2735 }
2736 }
2737
2738 if (!write_pass)
2739 {
2740 sp -= args_space;
2741
2742 /* The original System V ABI only requires word alignment,
2743 but modern incarnations need 16-byte alignment in order
2744 to support SSE. Since wasting a few bytes here isn't
2745 harmful we unconditionally enforce 16-byte alignment. */
2746 sp &= ~0xf;
2747 }
2748 }
2749
2750 /* Store return address. */
2751 sp -= 4;
2752 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2753 write_memory (sp, buf, 4);
2754
2755 /* Finally, update the stack pointer... */
2756 store_unsigned_integer (buf, 4, byte_order, sp);
2757 regcache->cooked_write (I386_ESP_REGNUM, buf);
2758
2759 /* ...and fake a frame pointer. */
2760 regcache->cooked_write (I386_EBP_REGNUM, buf);
2761
2762 /* MarkK wrote: This "+ 8" is all over the place:
2763 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2764 i386_dummy_id). It's there, since all frame unwinders for
2765 a given target have to agree (within a certain margin) on the
2766 definition of the stack address of a frame. Otherwise frame id
2767 comparison might not work correctly. Since DWARF2/GCC uses the
2768 stack address *before* the function call as a frame's CFA. On
2769 the i386, when %ebp is used as a frame pointer, the offset
2770 between the contents %ebp and the CFA as defined by GCC. */
2771 return sp + 8;
2772}
2773
2774/* These registers are used for returning integers (and on some
2775 targets also for returning `struct' and `union' values when their
2776 size and alignment match an integer type). */
2777#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2778#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2779
2780/* Read, for architecture GDBARCH, a function return value of TYPE
2781 from REGCACHE, and copy that into VALBUF. */
2782
2783static void
2784i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2785 struct regcache *regcache, gdb_byte *valbuf)
2786{
2787 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2788 int len = TYPE_LENGTH (type);
2789 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2790
2791 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2792 {
2793 if (tdep->st0_regnum < 0)
2794 {
2795 warning (_("Cannot find floating-point return value."));
2796 memset (valbuf, 0, len);
2797 return;
2798 }
2799
2800 /* Floating-point return values can be found in %st(0). Convert
2801 its contents to the desired type. This is probably not
2802 exactly how it would happen on the target itself, but it is
2803 the best we can do. */
2804 regcache->raw_read (I386_ST0_REGNUM, buf);
2805 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2806 }
2807 else
2808 {
2809 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2810 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2811
2812 if (len <= low_size)
2813 {
2814 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2815 memcpy (valbuf, buf, len);
2816 }
2817 else if (len <= (low_size + high_size))
2818 {
2819 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2820 memcpy (valbuf, buf, low_size);
2821 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2822 memcpy (valbuf + low_size, buf, len - low_size);
2823 }
2824 else
2825 internal_error (__FILE__, __LINE__,
2826 _("Cannot extract return value of %d bytes long."),
2827 len);
2828 }
2829}
2830
2831/* Write, for architecture GDBARCH, a function return value of TYPE
2832 from VALBUF into REGCACHE. */
2833
2834static void
2835i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2836 struct regcache *regcache, const gdb_byte *valbuf)
2837{
2838 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2839 int len = TYPE_LENGTH (type);
2840
2841 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2842 {
2843 ULONGEST fstat;
2844 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2845
2846 if (tdep->st0_regnum < 0)
2847 {
2848 warning (_("Cannot set floating-point return value."));
2849 return;
2850 }
2851
2852 /* Returning floating-point values is a bit tricky. Apart from
2853 storing the return value in %st(0), we have to simulate the
2854 state of the FPU at function return point. */
2855
2856 /* Convert the value found in VALBUF to the extended
2857 floating-point format used by the FPU. This is probably
2858 not exactly how it would happen on the target itself, but
2859 it is the best we can do. */
2860 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2861 regcache->raw_write (I386_ST0_REGNUM, buf);
2862
2863 /* Set the top of the floating-point register stack to 7. The
2864 actual value doesn't really matter, but 7 is what a normal
2865 function return would end up with if the program started out
2866 with a freshly initialized FPU. */
2867 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2868 fstat |= (7 << 11);
2869 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2870
2871 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2872 the floating-point register stack to 7, the appropriate value
2873 for the tag word is 0x3fff. */
2874 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2875 }
2876 else
2877 {
2878 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2879 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2880
2881 if (len <= low_size)
2882 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2883 else if (len <= (low_size + high_size))
2884 {
2885 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2886 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2887 valbuf + low_size);
2888 }
2889 else
2890 internal_error (__FILE__, __LINE__,
2891 _("Cannot store return value of %d bytes long."), len);
2892 }
2893}
2894\f
2895
2896/* This is the variable that is set with "set struct-convention", and
2897 its legitimate values. */
2898static const char default_struct_convention[] = "default";
2899static const char pcc_struct_convention[] = "pcc";
2900static const char reg_struct_convention[] = "reg";
2901static const char *const valid_conventions[] =
2902{
2903 default_struct_convention,
2904 pcc_struct_convention,
2905 reg_struct_convention,
2906 NULL
2907};
2908static const char *struct_convention = default_struct_convention;
2909
2910/* Return non-zero if TYPE, which is assumed to be a structure,
2911 a union type, or an array type, should be returned in registers
2912 for architecture GDBARCH. */
2913
2914static int
2915i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2916{
2917 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2918 enum type_code code = TYPE_CODE (type);
2919 int len = TYPE_LENGTH (type);
2920
2921 gdb_assert (code == TYPE_CODE_STRUCT
2922 || code == TYPE_CODE_UNION
2923 || code == TYPE_CODE_ARRAY);
2924
2925 if (struct_convention == pcc_struct_convention
2926 || (struct_convention == default_struct_convention
2927 && tdep->struct_return == pcc_struct_return))
2928 return 0;
2929
2930 /* Structures consisting of a single `float', `double' or 'long
2931 double' member are returned in %st(0). */
2932 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2933 {
2934 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2935 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2936 return (len == 4 || len == 8 || len == 12);
2937 }
2938
2939 return (len == 1 || len == 2 || len == 4 || len == 8);
2940}
2941
2942/* Determine, for architecture GDBARCH, how a return value of TYPE
2943 should be returned. If it is supposed to be returned in registers,
2944 and READBUF is non-zero, read the appropriate value from REGCACHE,
2945 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2946 from WRITEBUF into REGCACHE. */
2947
2948static enum return_value_convention
2949i386_return_value (struct gdbarch *gdbarch, struct value *function,
2950 struct type *type, struct regcache *regcache,
2951 gdb_byte *readbuf, const gdb_byte *writebuf)
2952{
2953 enum type_code code = TYPE_CODE (type);
2954
2955 if (((code == TYPE_CODE_STRUCT
2956 || code == TYPE_CODE_UNION
2957 || code == TYPE_CODE_ARRAY)
2958 && !i386_reg_struct_return_p (gdbarch, type))
2959 /* Complex double and long double uses the struct return convention. */
2960 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2961 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2962 /* 128-bit decimal float uses the struct return convention. */
2963 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2964 {
2965 /* The System V ABI says that:
2966
2967 "A function that returns a structure or union also sets %eax
2968 to the value of the original address of the caller's area
2969 before it returns. Thus when the caller receives control
2970 again, the address of the returned object resides in register
2971 %eax and can be used to access the object."
2972
2973 So the ABI guarantees that we can always find the return
2974 value just after the function has returned. */
2975
2976 /* Note that the ABI doesn't mention functions returning arrays,
2977 which is something possible in certain languages such as Ada.
2978 In this case, the value is returned as if it was wrapped in
2979 a record, so the convention applied to records also applies
2980 to arrays. */
2981
2982 if (readbuf)
2983 {
2984 ULONGEST addr;
2985
2986 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2987 read_memory (addr, readbuf, TYPE_LENGTH (type));
2988 }
2989
2990 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2991 }
2992
2993 /* This special case is for structures consisting of a single
2994 `float', `double' or 'long double' member. These structures are
2995 returned in %st(0). For these structures, we call ourselves
2996 recursively, changing TYPE into the type of the first member of
2997 the structure. Since that should work for all structures that
2998 have only one member, we don't bother to check the member's type
2999 here. */
3000 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3001 {
3002 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3003 return i386_return_value (gdbarch, function, type, regcache,
3004 readbuf, writebuf);
3005 }
3006
3007 if (readbuf)
3008 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3009 if (writebuf)
3010 i386_store_return_value (gdbarch, type, regcache, writebuf);
3011
3012 return RETURN_VALUE_REGISTER_CONVENTION;
3013}
3014\f
3015
3016struct type *
3017i387_ext_type (struct gdbarch *gdbarch)
3018{
3019 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3020
3021 if (!tdep->i387_ext_type)
3022 {
3023 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3024 gdb_assert (tdep->i387_ext_type != NULL);
3025 }
3026
3027 return tdep->i387_ext_type;
3028}
3029
3030/* Construct type for pseudo BND registers. We can't use
3031 tdesc_find_type since a complement of one value has to be used
3032 to describe the upper bound. */
3033
3034static struct type *
3035i386_bnd_type (struct gdbarch *gdbarch)
3036{
3037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3038
3039
3040 if (!tdep->i386_bnd_type)
3041 {
3042 struct type *t;
3043 const struct builtin_type *bt = builtin_type (gdbarch);
3044
3045 /* The type we're building is described bellow: */
3046#if 0
3047 struct __bound128
3048 {
3049 void *lbound;
3050 void *ubound; /* One complement of raw ubound field. */
3051 };
3052#endif
3053
3054 t = arch_composite_type (gdbarch,
3055 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3056
3057 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3058 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3059
3060 TYPE_NAME (t) = "builtin_type_bound128";
3061 tdep->i386_bnd_type = t;
3062 }
3063
3064 return tdep->i386_bnd_type;
3065}
3066
3067/* Construct vector type for pseudo ZMM registers. We can't use
3068 tdesc_find_type since ZMM isn't described in target description. */
3069
3070static struct type *
3071i386_zmm_type (struct gdbarch *gdbarch)
3072{
3073 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3074
3075 if (!tdep->i386_zmm_type)
3076 {
3077 const struct builtin_type *bt = builtin_type (gdbarch);
3078
3079 /* The type we're building is this: */
3080#if 0
3081 union __gdb_builtin_type_vec512i
3082 {
3083 int128_t uint128[4];
3084 int64_t v4_int64[8];
3085 int32_t v8_int32[16];
3086 int16_t v16_int16[32];
3087 int8_t v32_int8[64];
3088 double v4_double[8];
3089 float v8_float[16];
3090 };
3091#endif
3092
3093 struct type *t;
3094
3095 t = arch_composite_type (gdbarch,
3096 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3097 append_composite_type_field (t, "v16_float",
3098 init_vector_type (bt->builtin_float, 16));
3099 append_composite_type_field (t, "v8_double",
3100 init_vector_type (bt->builtin_double, 8));
3101 append_composite_type_field (t, "v64_int8",
3102 init_vector_type (bt->builtin_int8, 64));
3103 append_composite_type_field (t, "v32_int16",
3104 init_vector_type (bt->builtin_int16, 32));
3105 append_composite_type_field (t, "v16_int32",
3106 init_vector_type (bt->builtin_int32, 16));
3107 append_composite_type_field (t, "v8_int64",
3108 init_vector_type (bt->builtin_int64, 8));
3109 append_composite_type_field (t, "v4_int128",
3110 init_vector_type (bt->builtin_int128, 4));
3111
3112 TYPE_VECTOR (t) = 1;
3113 TYPE_NAME (t) = "builtin_type_vec512i";
3114 tdep->i386_zmm_type = t;
3115 }
3116
3117 return tdep->i386_zmm_type;
3118}
3119
3120/* Construct vector type for pseudo YMM registers. We can't use
3121 tdesc_find_type since YMM isn't described in target description. */
3122
3123static struct type *
3124i386_ymm_type (struct gdbarch *gdbarch)
3125{
3126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3127
3128 if (!tdep->i386_ymm_type)
3129 {
3130 const struct builtin_type *bt = builtin_type (gdbarch);
3131
3132 /* The type we're building is this: */
3133#if 0
3134 union __gdb_builtin_type_vec256i
3135 {
3136 int128_t uint128[2];
3137 int64_t v2_int64[4];
3138 int32_t v4_int32[8];
3139 int16_t v8_int16[16];
3140 int8_t v16_int8[32];
3141 double v2_double[4];
3142 float v4_float[8];
3143 };
3144#endif
3145
3146 struct type *t;
3147
3148 t = arch_composite_type (gdbarch,
3149 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3150 append_composite_type_field (t, "v8_float",
3151 init_vector_type (bt->builtin_float, 8));
3152 append_composite_type_field (t, "v4_double",
3153 init_vector_type (bt->builtin_double, 4));
3154 append_composite_type_field (t, "v32_int8",
3155 init_vector_type (bt->builtin_int8, 32));
3156 append_composite_type_field (t, "v16_int16",
3157 init_vector_type (bt->builtin_int16, 16));
3158 append_composite_type_field (t, "v8_int32",
3159 init_vector_type (bt->builtin_int32, 8));
3160 append_composite_type_field (t, "v4_int64",
3161 init_vector_type (bt->builtin_int64, 4));
3162 append_composite_type_field (t, "v2_int128",
3163 init_vector_type (bt->builtin_int128, 2));
3164
3165 TYPE_VECTOR (t) = 1;
3166 TYPE_NAME (t) = "builtin_type_vec256i";
3167 tdep->i386_ymm_type = t;
3168 }
3169
3170 return tdep->i386_ymm_type;
3171}
3172
3173/* Construct vector type for MMX registers. */
3174static struct type *
3175i386_mmx_type (struct gdbarch *gdbarch)
3176{
3177 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3178
3179 if (!tdep->i386_mmx_type)
3180 {
3181 const struct builtin_type *bt = builtin_type (gdbarch);
3182
3183 /* The type we're building is this: */
3184#if 0
3185 union __gdb_builtin_type_vec64i
3186 {
3187 int64_t uint64;
3188 int32_t v2_int32[2];
3189 int16_t v4_int16[4];
3190 int8_t v8_int8[8];
3191 };
3192#endif
3193
3194 struct type *t;
3195
3196 t = arch_composite_type (gdbarch,
3197 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3198
3199 append_composite_type_field (t, "uint64", bt->builtin_int64);
3200 append_composite_type_field (t, "v2_int32",
3201 init_vector_type (bt->builtin_int32, 2));
3202 append_composite_type_field (t, "v4_int16",
3203 init_vector_type (bt->builtin_int16, 4));
3204 append_composite_type_field (t, "v8_int8",
3205 init_vector_type (bt->builtin_int8, 8));
3206
3207 TYPE_VECTOR (t) = 1;
3208 TYPE_NAME (t) = "builtin_type_vec64i";
3209 tdep->i386_mmx_type = t;
3210 }
3211
3212 return tdep->i386_mmx_type;
3213}
3214
3215/* Return the GDB type object for the "standard" data type of data in
3216 register REGNUM. */
3217
3218struct type *
3219i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3220{
3221 if (i386_bnd_regnum_p (gdbarch, regnum))
3222 return i386_bnd_type (gdbarch);
3223 if (i386_mmx_regnum_p (gdbarch, regnum))
3224 return i386_mmx_type (gdbarch);
3225 else if (i386_ymm_regnum_p (gdbarch, regnum))
3226 return i386_ymm_type (gdbarch);
3227 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3228 return i386_ymm_type (gdbarch);
3229 else if (i386_zmm_regnum_p (gdbarch, regnum))
3230 return i386_zmm_type (gdbarch);
3231 else
3232 {
3233 const struct builtin_type *bt = builtin_type (gdbarch);
3234 if (i386_byte_regnum_p (gdbarch, regnum))
3235 return bt->builtin_int8;
3236 else if (i386_word_regnum_p (gdbarch, regnum))
3237 return bt->builtin_int16;
3238 else if (i386_dword_regnum_p (gdbarch, regnum))
3239 return bt->builtin_int32;
3240 else if (i386_k_regnum_p (gdbarch, regnum))
3241 return bt->builtin_int64;
3242 }
3243
3244 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3245}
3246
3247/* Map a cooked register onto a raw register or memory. For the i386,
3248 the MMX registers need to be mapped onto floating point registers. */
3249
3250static int
3251i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3252{
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3254 int mmxreg, fpreg;
3255 ULONGEST fstat;
3256 int tos;
3257
3258 mmxreg = regnum - tdep->mm0_regnum;
3259 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3260 tos = (fstat >> 11) & 0x7;
3261 fpreg = (mmxreg + tos) % 8;
3262
3263 return (I387_ST0_REGNUM (tdep) + fpreg);
3264}
3265
3266/* A helper function for us by i386_pseudo_register_read_value and
3267 amd64_pseudo_register_read_value. It does all the work but reads
3268 the data into an already-allocated value. */
3269
3270void
3271i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3272 readable_regcache *regcache,
3273 int regnum,
3274 struct value *result_value)
3275{
3276 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3277 enum register_status status;
3278 gdb_byte *buf = value_contents_raw (result_value);
3279
3280 if (i386_mmx_regnum_p (gdbarch, regnum))
3281 {
3282 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3283
3284 /* Extract (always little endian). */
3285 status = regcache->raw_read (fpnum, raw_buf);
3286 if (status != REG_VALID)
3287 mark_value_bytes_unavailable (result_value, 0,
3288 TYPE_LENGTH (value_type (result_value)));
3289 else
3290 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3291 }
3292 else
3293 {
3294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3295 if (i386_bnd_regnum_p (gdbarch, regnum))
3296 {
3297 regnum -= tdep->bnd0_regnum;
3298
3299 /* Extract (always little endian). Read lower 128bits. */
3300 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3301 raw_buf);
3302 if (status != REG_VALID)
3303 mark_value_bytes_unavailable (result_value, 0, 16);
3304 else
3305 {
3306 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3307 LONGEST upper, lower;
3308 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3309
3310 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3311 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3312 upper = ~upper;
3313
3314 memcpy (buf, &lower, size);
3315 memcpy (buf + size, &upper, size);
3316 }
3317 }
3318 else if (i386_k_regnum_p (gdbarch, regnum))
3319 {
3320 regnum -= tdep->k0_regnum;
3321
3322 /* Extract (always little endian). */
3323 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3324 if (status != REG_VALID)
3325 mark_value_bytes_unavailable (result_value, 0, 8);
3326 else
3327 memcpy (buf, raw_buf, 8);
3328 }
3329 else if (i386_zmm_regnum_p (gdbarch, regnum))
3330 {
3331 regnum -= tdep->zmm0_regnum;
3332
3333 if (regnum < num_lower_zmm_regs)
3334 {
3335 /* Extract (always little endian). Read lower 128bits. */
3336 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3337 raw_buf);
3338 if (status != REG_VALID)
3339 mark_value_bytes_unavailable (result_value, 0, 16);
3340 else
3341 memcpy (buf, raw_buf, 16);
3342
3343 /* Extract (always little endian). Read upper 128bits. */
3344 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3345 raw_buf);
3346 if (status != REG_VALID)
3347 mark_value_bytes_unavailable (result_value, 16, 16);
3348 else
3349 memcpy (buf + 16, raw_buf, 16);
3350 }
3351 else
3352 {
3353 /* Extract (always little endian). Read lower 128bits. */
3354 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3355 - num_lower_zmm_regs,
3356 raw_buf);
3357 if (status != REG_VALID)
3358 mark_value_bytes_unavailable (result_value, 0, 16);
3359 else
3360 memcpy (buf, raw_buf, 16);
3361
3362 /* Extract (always little endian). Read upper 128bits. */
3363 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3364 - num_lower_zmm_regs,
3365 raw_buf);
3366 if (status != REG_VALID)
3367 mark_value_bytes_unavailable (result_value, 16, 16);
3368 else
3369 memcpy (buf + 16, raw_buf, 16);
3370 }
3371
3372 /* Read upper 256bits. */
3373 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3374 raw_buf);
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 32, 32);
3377 else
3378 memcpy (buf + 32, raw_buf, 32);
3379 }
3380 else if (i386_ymm_regnum_p (gdbarch, regnum))
3381 {
3382 regnum -= tdep->ymm0_regnum;
3383
3384 /* Extract (always little endian). Read lower 128bits. */
3385 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3386 raw_buf);
3387 if (status != REG_VALID)
3388 mark_value_bytes_unavailable (result_value, 0, 16);
3389 else
3390 memcpy (buf, raw_buf, 16);
3391 /* Read upper 128bits. */
3392 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3393 raw_buf);
3394 if (status != REG_VALID)
3395 mark_value_bytes_unavailable (result_value, 16, 32);
3396 else
3397 memcpy (buf + 16, raw_buf, 16);
3398 }
3399 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3400 {
3401 regnum -= tdep->ymm16_regnum;
3402 /* Extract (always little endian). Read lower 128bits. */
3403 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3404 raw_buf);
3405 if (status != REG_VALID)
3406 mark_value_bytes_unavailable (result_value, 0, 16);
3407 else
3408 memcpy (buf, raw_buf, 16);
3409 /* Read upper 128bits. */
3410 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3411 raw_buf);
3412 if (status != REG_VALID)
3413 mark_value_bytes_unavailable (result_value, 16, 16);
3414 else
3415 memcpy (buf + 16, raw_buf, 16);
3416 }
3417 else if (i386_word_regnum_p (gdbarch, regnum))
3418 {
3419 int gpnum = regnum - tdep->ax_regnum;
3420
3421 /* Extract (always little endian). */
3422 status = regcache->raw_read (gpnum, raw_buf);
3423 if (status != REG_VALID)
3424 mark_value_bytes_unavailable (result_value, 0,
3425 TYPE_LENGTH (value_type (result_value)));
3426 else
3427 memcpy (buf, raw_buf, 2);
3428 }
3429 else if (i386_byte_regnum_p (gdbarch, regnum))
3430 {
3431 int gpnum = regnum - tdep->al_regnum;
3432
3433 /* Extract (always little endian). We read both lower and
3434 upper registers. */
3435 status = regcache->raw_read (gpnum % 4, raw_buf);
3436 if (status != REG_VALID)
3437 mark_value_bytes_unavailable (result_value, 0,
3438 TYPE_LENGTH (value_type (result_value)));
3439 else if (gpnum >= 4)
3440 memcpy (buf, raw_buf + 1, 1);
3441 else
3442 memcpy (buf, raw_buf, 1);
3443 }
3444 else
3445 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3446 }
3447}
3448
3449static struct value *
3450i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3451 readable_regcache *regcache,
3452 int regnum)
3453{
3454 struct value *result;
3455
3456 result = allocate_value (register_type (gdbarch, regnum));
3457 VALUE_LVAL (result) = lval_register;
3458 VALUE_REGNUM (result) = regnum;
3459
3460 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3461
3462 return result;
3463}
3464
3465void
3466i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3467 int regnum, const gdb_byte *buf)
3468{
3469 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3470
3471 if (i386_mmx_regnum_p (gdbarch, regnum))
3472 {
3473 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3474
3475 /* Read ... */
3476 regcache->raw_read (fpnum, raw_buf);
3477 /* ... Modify ... (always little endian). */
3478 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3479 /* ... Write. */
3480 regcache->raw_write (fpnum, raw_buf);
3481 }
3482 else
3483 {
3484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3485
3486 if (i386_bnd_regnum_p (gdbarch, regnum))
3487 {
3488 ULONGEST upper, lower;
3489 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3490 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3491
3492 /* New values from input value. */
3493 regnum -= tdep->bnd0_regnum;
3494 lower = extract_unsigned_integer (buf, size, byte_order);
3495 upper = extract_unsigned_integer (buf + size, size, byte_order);
3496
3497 /* Fetching register buffer. */
3498 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3499 raw_buf);
3500
3501 upper = ~upper;
3502
3503 /* Set register bits. */
3504 memcpy (raw_buf, &lower, 8);
3505 memcpy (raw_buf + 8, &upper, 8);
3506
3507 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3508 }
3509 else if (i386_k_regnum_p (gdbarch, regnum))
3510 {
3511 regnum -= tdep->k0_regnum;
3512
3513 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3514 }
3515 else if (i386_zmm_regnum_p (gdbarch, regnum))
3516 {
3517 regnum -= tdep->zmm0_regnum;
3518
3519 if (regnum < num_lower_zmm_regs)
3520 {
3521 /* Write lower 128bits. */
3522 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3523 /* Write upper 128bits. */
3524 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3525 }
3526 else
3527 {
3528 /* Write lower 128bits. */
3529 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3530 - num_lower_zmm_regs, buf);
3531 /* Write upper 128bits. */
3532 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3533 - num_lower_zmm_regs, buf + 16);
3534 }
3535 /* Write upper 256bits. */
3536 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3537 }
3538 else if (i386_ymm_regnum_p (gdbarch, regnum))
3539 {
3540 regnum -= tdep->ymm0_regnum;
3541
3542 /* ... Write lower 128bits. */
3543 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3544 /* ... Write upper 128bits. */
3545 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3546 }
3547 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3548 {
3549 regnum -= tdep->ymm16_regnum;
3550
3551 /* ... Write lower 128bits. */
3552 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3553 /* ... Write upper 128bits. */
3554 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3555 }
3556 else if (i386_word_regnum_p (gdbarch, regnum))
3557 {
3558 int gpnum = regnum - tdep->ax_regnum;
3559
3560 /* Read ... */
3561 regcache->raw_read (gpnum, raw_buf);
3562 /* ... Modify ... (always little endian). */
3563 memcpy (raw_buf, buf, 2);
3564 /* ... Write. */
3565 regcache->raw_write (gpnum, raw_buf);
3566 }
3567 else if (i386_byte_regnum_p (gdbarch, regnum))
3568 {
3569 int gpnum = regnum - tdep->al_regnum;
3570
3571 /* Read ... We read both lower and upper registers. */
3572 regcache->raw_read (gpnum % 4, raw_buf);
3573 /* ... Modify ... (always little endian). */
3574 if (gpnum >= 4)
3575 memcpy (raw_buf + 1, buf, 1);
3576 else
3577 memcpy (raw_buf, buf, 1);
3578 /* ... Write. */
3579 regcache->raw_write (gpnum % 4, raw_buf);
3580 }
3581 else
3582 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3583 }
3584}
3585
3586/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3587
3588int
3589i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3590 struct agent_expr *ax, int regnum)
3591{
3592 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3593
3594 if (i386_mmx_regnum_p (gdbarch, regnum))
3595 {
3596 /* MMX to FPU register mapping depends on current TOS. Let's just
3597 not care and collect everything... */
3598 int i;
3599
3600 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3601 for (i = 0; i < 8; i++)
3602 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3603 return 0;
3604 }
3605 else if (i386_bnd_regnum_p (gdbarch, regnum))
3606 {
3607 regnum -= tdep->bnd0_regnum;
3608 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3609 return 0;
3610 }
3611 else if (i386_k_regnum_p (gdbarch, regnum))
3612 {
3613 regnum -= tdep->k0_regnum;
3614 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3615 return 0;
3616 }
3617 else if (i386_zmm_regnum_p (gdbarch, regnum))
3618 {
3619 regnum -= tdep->zmm0_regnum;
3620 if (regnum < num_lower_zmm_regs)
3621 {
3622 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3623 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3624 }
3625 else
3626 {
3627 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3628 - num_lower_zmm_regs);
3629 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3630 - num_lower_zmm_regs);
3631 }
3632 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3633 return 0;
3634 }
3635 else if (i386_ymm_regnum_p (gdbarch, regnum))
3636 {
3637 regnum -= tdep->ymm0_regnum;
3638 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3639 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3640 return 0;
3641 }
3642 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3643 {
3644 regnum -= tdep->ymm16_regnum;
3645 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3646 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3647 return 0;
3648 }
3649 else if (i386_word_regnum_p (gdbarch, regnum))
3650 {
3651 int gpnum = regnum - tdep->ax_regnum;
3652
3653 ax_reg_mask (ax, gpnum);
3654 return 0;
3655 }
3656 else if (i386_byte_regnum_p (gdbarch, regnum))
3657 {
3658 int gpnum = regnum - tdep->al_regnum;
3659
3660 ax_reg_mask (ax, gpnum % 4);
3661 return 0;
3662 }
3663 else
3664 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3665 return 1;
3666}
3667\f
3668
3669/* Return the register number of the register allocated by GCC after
3670 REGNUM, or -1 if there is no such register. */
3671
3672static int
3673i386_next_regnum (int regnum)
3674{
3675 /* GCC allocates the registers in the order:
3676
3677 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3678
3679 Since storing a variable in %esp doesn't make any sense we return
3680 -1 for %ebp and for %esp itself. */
3681 static int next_regnum[] =
3682 {
3683 I386_EDX_REGNUM, /* Slot for %eax. */
3684 I386_EBX_REGNUM, /* Slot for %ecx. */
3685 I386_ECX_REGNUM, /* Slot for %edx. */
3686 I386_ESI_REGNUM, /* Slot for %ebx. */
3687 -1, -1, /* Slots for %esp and %ebp. */
3688 I386_EDI_REGNUM, /* Slot for %esi. */
3689 I386_EBP_REGNUM /* Slot for %edi. */
3690 };
3691
3692 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3693 return next_regnum[regnum];
3694
3695 return -1;
3696}
3697
3698/* Return nonzero if a value of type TYPE stored in register REGNUM
3699 needs any special handling. */
3700
3701static int
3702i386_convert_register_p (struct gdbarch *gdbarch,
3703 int regnum, struct type *type)
3704{
3705 int len = TYPE_LENGTH (type);
3706
3707 /* Values may be spread across multiple registers. Most debugging
3708 formats aren't expressive enough to specify the locations, so
3709 some heuristics is involved. Right now we only handle types that
3710 have a length that is a multiple of the word size, since GCC
3711 doesn't seem to put any other types into registers. */
3712 if (len > 4 && len % 4 == 0)
3713 {
3714 int last_regnum = regnum;
3715
3716 while (len > 4)
3717 {
3718 last_regnum = i386_next_regnum (last_regnum);
3719 len -= 4;
3720 }
3721
3722 if (last_regnum != -1)
3723 return 1;
3724 }
3725
3726 return i387_convert_register_p (gdbarch, regnum, type);
3727}
3728
3729/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3730 return its contents in TO. */
3731
3732static int
3733i386_register_to_value (struct frame_info *frame, int regnum,
3734 struct type *type, gdb_byte *to,
3735 int *optimizedp, int *unavailablep)
3736{
3737 struct gdbarch *gdbarch = get_frame_arch (frame);
3738 int len = TYPE_LENGTH (type);
3739
3740 if (i386_fp_regnum_p (gdbarch, regnum))
3741 return i387_register_to_value (frame, regnum, type, to,
3742 optimizedp, unavailablep);
3743
3744 /* Read a value spread across multiple registers. */
3745
3746 gdb_assert (len > 4 && len % 4 == 0);
3747
3748 while (len > 0)
3749 {
3750 gdb_assert (regnum != -1);
3751 gdb_assert (register_size (gdbarch, regnum) == 4);
3752
3753 if (!get_frame_register_bytes (frame, regnum, 0,
3754 register_size (gdbarch, regnum),
3755 to, optimizedp, unavailablep))
3756 return 0;
3757
3758 regnum = i386_next_regnum (regnum);
3759 len -= 4;
3760 to += 4;
3761 }
3762
3763 *optimizedp = *unavailablep = 0;
3764 return 1;
3765}
3766
3767/* Write the contents FROM of a value of type TYPE into register
3768 REGNUM in frame FRAME. */
3769
3770static void
3771i386_value_to_register (struct frame_info *frame, int regnum,
3772 struct type *type, const gdb_byte *from)
3773{
3774 int len = TYPE_LENGTH (type);
3775
3776 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3777 {
3778 i387_value_to_register (frame, regnum, type, from);
3779 return;
3780 }
3781
3782 /* Write a value spread across multiple registers. */
3783
3784 gdb_assert (len > 4 && len % 4 == 0);
3785
3786 while (len > 0)
3787 {
3788 gdb_assert (regnum != -1);
3789 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3790
3791 put_frame_register (frame, regnum, from);
3792 regnum = i386_next_regnum (regnum);
3793 len -= 4;
3794 from += 4;
3795 }
3796}
3797\f
3798/* Supply register REGNUM from the buffer specified by GREGS and LEN
3799 in the general-purpose register set REGSET to register cache
3800 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3801
3802void
3803i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3804 int regnum, const void *gregs, size_t len)
3805{
3806 struct gdbarch *gdbarch = regcache->arch ();
3807 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3808 const gdb_byte *regs = (const gdb_byte *) gregs;
3809 int i;
3810
3811 gdb_assert (len >= tdep->sizeof_gregset);
3812
3813 for (i = 0; i < tdep->gregset_num_regs; i++)
3814 {
3815 if ((regnum == i || regnum == -1)
3816 && tdep->gregset_reg_offset[i] != -1)
3817 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3818 }
3819}
3820
3821/* Collect register REGNUM from the register cache REGCACHE and store
3822 it in the buffer specified by GREGS and LEN as described by the
3823 general-purpose register set REGSET. If REGNUM is -1, do this for
3824 all registers in REGSET. */
3825
3826static void
3827i386_collect_gregset (const struct regset *regset,
3828 const struct regcache *regcache,
3829 int regnum, void *gregs, size_t len)
3830{
3831 struct gdbarch *gdbarch = regcache->arch ();
3832 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3833 gdb_byte *regs = (gdb_byte *) gregs;
3834 int i;
3835
3836 gdb_assert (len >= tdep->sizeof_gregset);
3837
3838 for (i = 0; i < tdep->gregset_num_regs; i++)
3839 {
3840 if ((regnum == i || regnum == -1)
3841 && tdep->gregset_reg_offset[i] != -1)
3842 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3843 }
3844}
3845
3846/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3847 in the floating-point register set REGSET to register cache
3848 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3849
3850static void
3851i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3852 int regnum, const void *fpregs, size_t len)
3853{
3854 struct gdbarch *gdbarch = regcache->arch ();
3855 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3856
3857 if (len == I387_SIZEOF_FXSAVE)
3858 {
3859 i387_supply_fxsave (regcache, regnum, fpregs);
3860 return;
3861 }
3862
3863 gdb_assert (len >= tdep->sizeof_fpregset);
3864 i387_supply_fsave (regcache, regnum, fpregs);
3865}
3866
3867/* Collect register REGNUM from the register cache REGCACHE and store
3868 it in the buffer specified by FPREGS and LEN as described by the
3869 floating-point register set REGSET. If REGNUM is -1, do this for
3870 all registers in REGSET. */
3871
3872static void
3873i386_collect_fpregset (const struct regset *regset,
3874 const struct regcache *regcache,
3875 int regnum, void *fpregs, size_t len)
3876{
3877 struct gdbarch *gdbarch = regcache->arch ();
3878 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3879
3880 if (len == I387_SIZEOF_FXSAVE)
3881 {
3882 i387_collect_fxsave (regcache, regnum, fpregs);
3883 return;
3884 }
3885
3886 gdb_assert (len >= tdep->sizeof_fpregset);
3887 i387_collect_fsave (regcache, regnum, fpregs);
3888}
3889
3890/* Register set definitions. */
3891
3892const struct regset i386_gregset =
3893 {
3894 NULL, i386_supply_gregset, i386_collect_gregset
3895 };
3896
3897const struct regset i386_fpregset =
3898 {
3899 NULL, i386_supply_fpregset, i386_collect_fpregset
3900 };
3901
3902/* Default iterator over core file register note sections. */
3903
3904void
3905i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3906 iterate_over_regset_sections_cb *cb,
3907 void *cb_data,
3908 const struct regcache *regcache)
3909{
3910 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3911
3912 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3913 cb_data);
3914 if (tdep->sizeof_fpregset)
3915 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3916 NULL, cb_data);
3917}
3918\f
3919
3920/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3921
3922CORE_ADDR
3923i386_pe_skip_trampoline_code (struct frame_info *frame,
3924 CORE_ADDR pc, char *name)
3925{
3926 struct gdbarch *gdbarch = get_frame_arch (frame);
3927 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3928
3929 /* jmp *(dest) */
3930 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3931 {
3932 unsigned long indirect =
3933 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3934 struct minimal_symbol *indsym =
3935 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3936 const char *symname = indsym ? indsym->linkage_name () : 0;
3937
3938 if (symname)
3939 {
3940 if (startswith (symname, "__imp_")
3941 || startswith (symname, "_imp_"))
3942 return name ? 1 :
3943 read_memory_unsigned_integer (indirect, 4, byte_order);
3944 }
3945 }
3946 return 0; /* Not a trampoline. */
3947}
3948\f
3949
3950/* Return whether the THIS_FRAME corresponds to a sigtramp
3951 routine. */
3952
3953int
3954i386_sigtramp_p (struct frame_info *this_frame)
3955{
3956 CORE_ADDR pc = get_frame_pc (this_frame);
3957 const char *name;
3958
3959 find_pc_partial_function (pc, &name, NULL, NULL);
3960 return (name && strcmp ("_sigtramp", name) == 0);
3961}
3962\f
3963
3964/* We have two flavours of disassembly. The machinery on this page
3965 deals with switching between those. */
3966
3967static int
3968i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3969{
3970 gdb_assert (disassembly_flavor == att_flavor
3971 || disassembly_flavor == intel_flavor);
3972
3973 info->disassembler_options = disassembly_flavor;
3974
3975 return default_print_insn (pc, info);
3976}
3977\f
3978
3979/* There are a few i386 architecture variants that differ only
3980 slightly from the generic i386 target. For now, we don't give them
3981 their own source file, but include them here. As a consequence,
3982 they'll always be included. */
3983
3984/* System V Release 4 (SVR4). */
3985
3986/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3987 routine. */
3988
3989static int
3990i386_svr4_sigtramp_p (struct frame_info *this_frame)
3991{
3992 CORE_ADDR pc = get_frame_pc (this_frame);
3993 const char *name;
3994
3995 /* The origin of these symbols is currently unknown. */
3996 find_pc_partial_function (pc, &name, NULL, NULL);
3997 return (name && (strcmp ("_sigreturn", name) == 0
3998 || strcmp ("sigvechandler", name) == 0));
3999}
4000
4001/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4002 address of the associated sigcontext (ucontext) structure. */
4003
4004static CORE_ADDR
4005i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4006{
4007 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4008 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4009 gdb_byte buf[4];
4010 CORE_ADDR sp;
4011
4012 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4013 sp = extract_unsigned_integer (buf, 4, byte_order);
4014
4015 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4016}
4017
4018\f
4019
4020/* Implementation of `gdbarch_stap_is_single_operand', as defined in
4021 gdbarch.h. */
4022
4023int
4024i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4025{
4026 return (*s == '$' /* Literal number. */
4027 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4028 || (*s == '(' && s[1] == '%') /* Register indirection. */
4029 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4030}
4031
4032/* Helper function for i386_stap_parse_special_token.
4033
4034 This function parses operands of the form `-8+3+1(%rbp)', which
4035 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4036
4037 Return true if the operand was parsed successfully, false
4038 otherwise. */
4039
4040static bool
4041i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4042 struct stap_parse_info *p)
4043{
4044 const char *s = p->arg;
4045
4046 if (isdigit (*s) || *s == '-' || *s == '+')
4047 {
4048 bool got_minus[3];
4049 int i;
4050 long displacements[3];
4051 const char *start;
4052 char *regname;
4053 int len;
4054 struct stoken str;
4055 char *endp;
4056
4057 got_minus[0] = false;
4058 if (*s == '+')
4059 ++s;
4060 else if (*s == '-')
4061 {
4062 ++s;
4063 got_minus[0] = true;
4064 }
4065
4066 if (!isdigit ((unsigned char) *s))
4067 return false;
4068
4069 displacements[0] = strtol (s, &endp, 10);
4070 s = endp;
4071
4072 if (*s != '+' && *s != '-')
4073 {
4074 /* We are not dealing with a triplet. */
4075 return false;
4076 }
4077
4078 got_minus[1] = false;
4079 if (*s == '+')
4080 ++s;
4081 else
4082 {
4083 ++s;
4084 got_minus[1] = true;
4085 }
4086
4087 if (!isdigit ((unsigned char) *s))
4088 return false;
4089
4090 displacements[1] = strtol (s, &endp, 10);
4091 s = endp;
4092
4093 if (*s != '+' && *s != '-')
4094 {
4095 /* We are not dealing with a triplet. */
4096 return false;
4097 }
4098
4099 got_minus[2] = false;
4100 if (*s == '+')
4101 ++s;
4102 else
4103 {
4104 ++s;
4105 got_minus[2] = true;
4106 }
4107
4108 if (!isdigit ((unsigned char) *s))
4109 return false;
4110
4111 displacements[2] = strtol (s, &endp, 10);
4112 s = endp;
4113
4114 if (*s != '(' || s[1] != '%')
4115 return false;
4116
4117 s += 2;
4118 start = s;
4119
4120 while (isalnum (*s))
4121 ++s;
4122
4123 if (*s++ != ')')
4124 return false;
4125
4126 len = s - start - 1;
4127 regname = (char *) alloca (len + 1);
4128
4129 strncpy (regname, start, len);
4130 regname[len] = '\0';
4131
4132 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4133 error (_("Invalid register name `%s' on expression `%s'."),
4134 regname, p->saved_arg);
4135
4136 for (i = 0; i < 3; i++)
4137 {
4138 write_exp_elt_opcode (&p->pstate, OP_LONG);
4139 write_exp_elt_type
4140 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4141 write_exp_elt_longcst (&p->pstate, displacements[i]);
4142 write_exp_elt_opcode (&p->pstate, OP_LONG);
4143 if (got_minus[i])
4144 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4145 }
4146
4147 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4148 str.ptr = regname;
4149 str.length = len;
4150 write_exp_string (&p->pstate, str);
4151 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4152
4153 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4154 write_exp_elt_type (&p->pstate,
4155 builtin_type (gdbarch)->builtin_data_ptr);
4156 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4157
4158 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4159 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4160 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4161
4162 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4163 write_exp_elt_type (&p->pstate,
4164 lookup_pointer_type (p->arg_type));
4165 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4166
4167 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4168
4169 p->arg = s;
4170
4171 return true;
4172 }
4173
4174 return false;
4175}
4176
4177/* Helper function for i386_stap_parse_special_token.
4178
4179 This function parses operands of the form `register base +
4180 (register index * size) + offset', as represented in
4181 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4182
4183 Return true if the operand was parsed successfully, false
4184 otherwise. */
4185
4186static bool
4187i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4188 struct stap_parse_info *p)
4189{
4190 const char *s = p->arg;
4191
4192 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4193 {
4194 bool offset_minus = false;
4195 long offset = 0;
4196 bool size_minus = false;
4197 long size = 0;
4198 const char *start;
4199 char *base;
4200 int len_base;
4201 char *index;
4202 int len_index;
4203 struct stoken base_token, index_token;
4204
4205 if (*s == '+')
4206 ++s;
4207 else if (*s == '-')
4208 {
4209 ++s;
4210 offset_minus = true;
4211 }
4212
4213 if (offset_minus && !isdigit (*s))
4214 return false;
4215
4216 if (isdigit (*s))
4217 {
4218 char *endp;
4219
4220 offset = strtol (s, &endp, 10);
4221 s = endp;
4222 }
4223
4224 if (*s != '(' || s[1] != '%')
4225 return false;
4226
4227 s += 2;
4228 start = s;
4229
4230 while (isalnum (*s))
4231 ++s;
4232
4233 if (*s != ',' || s[1] != '%')
4234 return false;
4235
4236 len_base = s - start;
4237 base = (char *) alloca (len_base + 1);
4238 strncpy (base, start, len_base);
4239 base[len_base] = '\0';
4240
4241 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4242 error (_("Invalid register name `%s' on expression `%s'."),
4243 base, p->saved_arg);
4244
4245 s += 2;
4246 start = s;
4247
4248 while (isalnum (*s))
4249 ++s;
4250
4251 len_index = s - start;
4252 index = (char *) alloca (len_index + 1);
4253 strncpy (index, start, len_index);
4254 index[len_index] = '\0';
4255
4256 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4257 error (_("Invalid register name `%s' on expression `%s'."),
4258 index, p->saved_arg);
4259
4260 if (*s != ',' && *s != ')')
4261 return false;
4262
4263 if (*s == ',')
4264 {
4265 char *endp;
4266
4267 ++s;
4268 if (*s == '+')
4269 ++s;
4270 else if (*s == '-')
4271 {
4272 ++s;
4273 size_minus = true;
4274 }
4275
4276 size = strtol (s, &endp, 10);
4277 s = endp;
4278
4279 if (*s != ')')
4280 return false;
4281 }
4282
4283 ++s;
4284
4285 if (offset)
4286 {
4287 write_exp_elt_opcode (&p->pstate, OP_LONG);
4288 write_exp_elt_type (&p->pstate,
4289 builtin_type (gdbarch)->builtin_long);
4290 write_exp_elt_longcst (&p->pstate, offset);
4291 write_exp_elt_opcode (&p->pstate, OP_LONG);
4292 if (offset_minus)
4293 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4294 }
4295
4296 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4297 base_token.ptr = base;
4298 base_token.length = len_base;
4299 write_exp_string (&p->pstate, base_token);
4300 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4301
4302 if (offset)
4303 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4304
4305 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4306 index_token.ptr = index;
4307 index_token.length = len_index;
4308 write_exp_string (&p->pstate, index_token);
4309 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4310
4311 if (size)
4312 {
4313 write_exp_elt_opcode (&p->pstate, OP_LONG);
4314 write_exp_elt_type (&p->pstate,
4315 builtin_type (gdbarch)->builtin_long);
4316 write_exp_elt_longcst (&p->pstate, size);
4317 write_exp_elt_opcode (&p->pstate, OP_LONG);
4318 if (size_minus)
4319 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4320 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4321 }
4322
4323 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4324
4325 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4326 write_exp_elt_type (&p->pstate,
4327 lookup_pointer_type (p->arg_type));
4328 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4329
4330 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4331
4332 p->arg = s;
4333
4334 return true;
4335 }
4336
4337 return false;
4338}
4339
4340/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4341 gdbarch.h. */
4342
4343int
4344i386_stap_parse_special_token (struct gdbarch *gdbarch,
4345 struct stap_parse_info *p)
4346{
4347 /* In order to parse special tokens, we use a state-machine that go
4348 through every known token and try to get a match. */
4349 enum
4350 {
4351 TRIPLET,
4352 THREE_ARG_DISPLACEMENT,
4353 DONE
4354 };
4355 int current_state;
4356
4357 current_state = TRIPLET;
4358
4359 /* The special tokens to be parsed here are:
4360
4361 - `register base + (register index * size) + offset', as represented
4362 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4363
4364 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4365 `*(-8 + 3 - 1 + (void *) $eax)'. */
4366
4367 while (current_state != DONE)
4368 {
4369 switch (current_state)
4370 {
4371 case TRIPLET:
4372 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4373 return 1;
4374 break;
4375
4376 case THREE_ARG_DISPLACEMENT:
4377 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4378 return 1;
4379 break;
4380 }
4381
4382 /* Advancing to the next state. */
4383 ++current_state;
4384 }
4385
4386 return 0;
4387}
4388
4389/* Implementation of 'gdbarch_stap_adjust_register', as defined in
4390 gdbarch.h. */
4391
4392static std::string
4393i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4394 const std::string &regname, int regnum)
4395{
4396 static const std::unordered_set<std::string> reg_assoc
4397 = { "ax", "bx", "cx", "dx",
4398 "si", "di", "bp", "sp" };
4399
4400 /* If we are dealing with a register whose size is less than the size
4401 specified by the "[-]N@" prefix, and it is one of the registers that
4402 we know has an extended variant available, then use the extended
4403 version of the register instead. */
4404 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4405 && reg_assoc.find (regname) != reg_assoc.end ())
4406 return "e" + regname;
4407
4408 /* Otherwise, just use the requested register. */
4409 return regname;
4410}
4411
4412\f
4413
4414/* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4415 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4416
4417static const char *
4418i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4419{
4420 return "(x86_64|i.86)";
4421}
4422
4423\f
4424
4425/* Implement the "in_indirect_branch_thunk" gdbarch function. */
4426
4427static bool
4428i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4429{
4430 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4431 I386_EAX_REGNUM, I386_EIP_REGNUM);
4432}
4433
4434/* Generic ELF. */
4435
4436void
4437i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4438{
4439 static const char *const stap_integer_prefixes[] = { "$", NULL };
4440 static const char *const stap_register_prefixes[] = { "%", NULL };
4441 static const char *const stap_register_indirection_prefixes[] = { "(",
4442 NULL };
4443 static const char *const stap_register_indirection_suffixes[] = { ")",
4444 NULL };
4445
4446 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4447 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4448
4449 /* Registering SystemTap handlers. */
4450 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4451 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4452 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4453 stap_register_indirection_prefixes);
4454 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4455 stap_register_indirection_suffixes);
4456 set_gdbarch_stap_is_single_operand (gdbarch,
4457 i386_stap_is_single_operand);
4458 set_gdbarch_stap_parse_special_token (gdbarch,
4459 i386_stap_parse_special_token);
4460 set_gdbarch_stap_adjust_register (gdbarch,
4461 i386_stap_adjust_register);
4462
4463 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4464 i386_in_indirect_branch_thunk);
4465}
4466
4467/* System V Release 4 (SVR4). */
4468
4469void
4470i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4471{
4472 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4473
4474 /* System V Release 4 uses ELF. */
4475 i386_elf_init_abi (info, gdbarch);
4476
4477 /* System V Release 4 has shared libraries. */
4478 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4479
4480 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4481 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4482 tdep->sc_pc_offset = 36 + 14 * 4;
4483 tdep->sc_sp_offset = 36 + 17 * 4;
4484
4485 tdep->jb_pc_offset = 20;
4486}
4487
4488\f
4489
4490/* i386 register groups. In addition to the normal groups, add "mmx"
4491 and "sse". */
4492
4493static struct reggroup *i386_sse_reggroup;
4494static struct reggroup *i386_mmx_reggroup;
4495
4496static void
4497i386_init_reggroups (void)
4498{
4499 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4500 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4501}
4502
4503static void
4504i386_add_reggroups (struct gdbarch *gdbarch)
4505{
4506 reggroup_add (gdbarch, i386_sse_reggroup);
4507 reggroup_add (gdbarch, i386_mmx_reggroup);
4508 reggroup_add (gdbarch, general_reggroup);
4509 reggroup_add (gdbarch, float_reggroup);
4510 reggroup_add (gdbarch, all_reggroup);
4511 reggroup_add (gdbarch, save_reggroup);
4512 reggroup_add (gdbarch, restore_reggroup);
4513 reggroup_add (gdbarch, vector_reggroup);
4514 reggroup_add (gdbarch, system_reggroup);
4515}
4516
4517int
4518i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4519 struct reggroup *group)
4520{
4521 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4522 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4523 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4524 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4525 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4526 avx512_p, avx_p, sse_p, pkru_regnum_p;
4527
4528 /* Don't include pseudo registers, except for MMX, in any register
4529 groups. */
4530 if (i386_byte_regnum_p (gdbarch, regnum))
4531 return 0;
4532
4533 if (i386_word_regnum_p (gdbarch, regnum))
4534 return 0;
4535
4536 if (i386_dword_regnum_p (gdbarch, regnum))
4537 return 0;
4538
4539 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4540 if (group == i386_mmx_reggroup)
4541 return mmx_regnum_p;
4542
4543 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4544 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4545 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4546 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4547 if (group == i386_sse_reggroup)
4548 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4549
4550 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4551 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4552 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4553
4554 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4555 == X86_XSTATE_AVX_AVX512_MASK);
4556 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4557 == X86_XSTATE_AVX_MASK) && !avx512_p;
4558 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4559 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4560
4561 if (group == vector_reggroup)
4562 return (mmx_regnum_p
4563 || (zmm_regnum_p && avx512_p)
4564 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4565 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4566 || mxcsr_regnum_p);
4567
4568 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4569 || i386_fpc_regnum_p (gdbarch, regnum));
4570 if (group == float_reggroup)
4571 return fp_regnum_p;
4572
4573 /* For "info reg all", don't include upper YMM registers nor XMM
4574 registers when AVX is supported. */
4575 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4576 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4577 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4578 if (group == all_reggroup
4579 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4580 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4581 || ymmh_regnum_p
4582 || ymmh_avx512_regnum_p
4583 || zmmh_regnum_p))
4584 return 0;
4585
4586 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4587 if (group == all_reggroup
4588 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4589 return bnd_regnum_p;
4590
4591 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4592 if (group == all_reggroup
4593 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4594 return 0;
4595
4596 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4597 if (group == all_reggroup
4598 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4599 return mpx_ctrl_regnum_p;
4600
4601 if (group == general_reggroup)
4602 return (!fp_regnum_p
4603 && !mmx_regnum_p
4604 && !mxcsr_regnum_p
4605 && !xmm_regnum_p
4606 && !xmm_avx512_regnum_p
4607 && !ymm_regnum_p
4608 && !ymmh_regnum_p
4609 && !ymm_avx512_regnum_p
4610 && !ymmh_avx512_regnum_p
4611 && !bndr_regnum_p
4612 && !bnd_regnum_p
4613 && !mpx_ctrl_regnum_p
4614 && !zmm_regnum_p
4615 && !zmmh_regnum_p
4616 && !pkru_regnum_p);
4617
4618 return default_register_reggroup_p (gdbarch, regnum, group);
4619}
4620\f
4621
4622/* Get the ARGIth function argument for the current function. */
4623
4624static CORE_ADDR
4625i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4626 struct type *type)
4627{
4628 struct gdbarch *gdbarch = get_frame_arch (frame);
4629 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4630 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4631 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4632}
4633
4634#define PREFIX_REPZ 0x01
4635#define PREFIX_REPNZ 0x02
4636#define PREFIX_LOCK 0x04
4637#define PREFIX_DATA 0x08
4638#define PREFIX_ADDR 0x10
4639
4640/* operand size */
4641enum
4642{
4643 OT_BYTE = 0,
4644 OT_WORD,
4645 OT_LONG,
4646 OT_QUAD,
4647 OT_DQUAD,
4648};
4649
4650/* i386 arith/logic operations */
4651enum
4652{
4653 OP_ADDL,
4654 OP_ORL,
4655 OP_ADCL,
4656 OP_SBBL,
4657 OP_ANDL,
4658 OP_SUBL,
4659 OP_XORL,
4660 OP_CMPL,
4661};
4662
4663struct i386_record_s
4664{
4665 struct gdbarch *gdbarch;
4666 struct regcache *regcache;
4667 CORE_ADDR orig_addr;
4668 CORE_ADDR addr;
4669 int aflag;
4670 int dflag;
4671 int override;
4672 uint8_t modrm;
4673 uint8_t mod, reg, rm;
4674 int ot;
4675 uint8_t rex_x;
4676 uint8_t rex_b;
4677 int rip_offset;
4678 int popl_esp_hack;
4679 const int *regmap;
4680};
4681
4682/* Parse the "modrm" part of the memory address irp->addr points at.
4683 Returns -1 if something goes wrong, 0 otherwise. */
4684
4685static int
4686i386_record_modrm (struct i386_record_s *irp)
4687{
4688 struct gdbarch *gdbarch = irp->gdbarch;
4689
4690 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4691 return -1;
4692
4693 irp->addr++;
4694 irp->mod = (irp->modrm >> 6) & 3;
4695 irp->reg = (irp->modrm >> 3) & 7;
4696 irp->rm = irp->modrm & 7;
4697
4698 return 0;
4699}
4700
4701/* Extract the memory address that the current instruction writes to,
4702 and return it in *ADDR. Return -1 if something goes wrong. */
4703
4704static int
4705i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4706{
4707 struct gdbarch *gdbarch = irp->gdbarch;
4708 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4709 gdb_byte buf[4];
4710 ULONGEST offset64;
4711
4712 *addr = 0;
4713 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4714 {
4715 /* 32/64 bits */
4716 int havesib = 0;
4717 uint8_t scale = 0;
4718 uint8_t byte;
4719 uint8_t index = 0;
4720 uint8_t base = irp->rm;
4721
4722 if (base == 4)
4723 {
4724 havesib = 1;
4725 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4726 return -1;
4727 irp->addr++;
4728 scale = (byte >> 6) & 3;
4729 index = ((byte >> 3) & 7) | irp->rex_x;
4730 base = (byte & 7);
4731 }
4732 base |= irp->rex_b;
4733
4734 switch (irp->mod)
4735 {
4736 case 0:
4737 if ((base & 7) == 5)
4738 {
4739 base = 0xff;
4740 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4741 return -1;
4742 irp->addr += 4;
4743 *addr = extract_signed_integer (buf, 4, byte_order);
4744 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4745 *addr += irp->addr + irp->rip_offset;
4746 }
4747 break;
4748 case 1:
4749 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4750 return -1;
4751 irp->addr++;
4752 *addr = (int8_t) buf[0];
4753 break;
4754 case 2:
4755 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4756 return -1;
4757 *addr = extract_signed_integer (buf, 4, byte_order);
4758 irp->addr += 4;
4759 break;
4760 }
4761
4762 offset64 = 0;
4763 if (base != 0xff)
4764 {
4765 if (base == 4 && irp->popl_esp_hack)
4766 *addr += irp->popl_esp_hack;
4767 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4768 &offset64);
4769 }
4770 if (irp->aflag == 2)
4771 {
4772 *addr += offset64;
4773 }
4774 else
4775 *addr = (uint32_t) (offset64 + *addr);
4776
4777 if (havesib && (index != 4 || scale != 0))
4778 {
4779 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4780 &offset64);
4781 if (irp->aflag == 2)
4782 *addr += offset64 << scale;
4783 else
4784 *addr = (uint32_t) (*addr + (offset64 << scale));
4785 }
4786
4787 if (!irp->aflag)
4788 {
4789 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4790 address from 32-bit to 64-bit. */
4791 *addr = (uint32_t) *addr;
4792 }
4793 }
4794 else
4795 {
4796 /* 16 bits */
4797 switch (irp->mod)
4798 {
4799 case 0:
4800 if (irp->rm == 6)
4801 {
4802 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4803 return -1;
4804 irp->addr += 2;
4805 *addr = extract_signed_integer (buf, 2, byte_order);
4806 irp->rm = 0;
4807 goto no_rm;
4808 }
4809 break;
4810 case 1:
4811 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4812 return -1;
4813 irp->addr++;
4814 *addr = (int8_t) buf[0];
4815 break;
4816 case 2:
4817 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4818 return -1;
4819 irp->addr += 2;
4820 *addr = extract_signed_integer (buf, 2, byte_order);
4821 break;
4822 }
4823
4824 switch (irp->rm)
4825 {
4826 case 0:
4827 regcache_raw_read_unsigned (irp->regcache,
4828 irp->regmap[X86_RECORD_REBX_REGNUM],
4829 &offset64);
4830 *addr = (uint32_t) (*addr + offset64);
4831 regcache_raw_read_unsigned (irp->regcache,
4832 irp->regmap[X86_RECORD_RESI_REGNUM],
4833 &offset64);
4834 *addr = (uint32_t) (*addr + offset64);
4835 break;
4836 case 1:
4837 regcache_raw_read_unsigned (irp->regcache,
4838 irp->regmap[X86_RECORD_REBX_REGNUM],
4839 &offset64);
4840 *addr = (uint32_t) (*addr + offset64);
4841 regcache_raw_read_unsigned (irp->regcache,
4842 irp->regmap[X86_RECORD_REDI_REGNUM],
4843 &offset64);
4844 *addr = (uint32_t) (*addr + offset64);
4845 break;
4846 case 2:
4847 regcache_raw_read_unsigned (irp->regcache,
4848 irp->regmap[X86_RECORD_REBP_REGNUM],
4849 &offset64);
4850 *addr = (uint32_t) (*addr + offset64);
4851 regcache_raw_read_unsigned (irp->regcache,
4852 irp->regmap[X86_RECORD_RESI_REGNUM],
4853 &offset64);
4854 *addr = (uint32_t) (*addr + offset64);
4855 break;
4856 case 3:
4857 regcache_raw_read_unsigned (irp->regcache,
4858 irp->regmap[X86_RECORD_REBP_REGNUM],
4859 &offset64);
4860 *addr = (uint32_t) (*addr + offset64);
4861 regcache_raw_read_unsigned (irp->regcache,
4862 irp->regmap[X86_RECORD_REDI_REGNUM],
4863 &offset64);
4864 *addr = (uint32_t) (*addr + offset64);
4865 break;
4866 case 4:
4867 regcache_raw_read_unsigned (irp->regcache,
4868 irp->regmap[X86_RECORD_RESI_REGNUM],
4869 &offset64);
4870 *addr = (uint32_t) (*addr + offset64);
4871 break;
4872 case 5:
4873 regcache_raw_read_unsigned (irp->regcache,
4874 irp->regmap[X86_RECORD_REDI_REGNUM],
4875 &offset64);
4876 *addr = (uint32_t) (*addr + offset64);
4877 break;
4878 case 6:
4879 regcache_raw_read_unsigned (irp->regcache,
4880 irp->regmap[X86_RECORD_REBP_REGNUM],
4881 &offset64);
4882 *addr = (uint32_t) (*addr + offset64);
4883 break;
4884 case 7:
4885 regcache_raw_read_unsigned (irp->regcache,
4886 irp->regmap[X86_RECORD_REBX_REGNUM],
4887 &offset64);
4888 *addr = (uint32_t) (*addr + offset64);
4889 break;
4890 }
4891 *addr &= 0xffff;
4892 }
4893
4894 no_rm:
4895 return 0;
4896}
4897
4898/* Record the address and contents of the memory that will be changed
4899 by the current instruction. Return -1 if something goes wrong, 0
4900 otherwise. */
4901
4902static int
4903i386_record_lea_modrm (struct i386_record_s *irp)
4904{
4905 struct gdbarch *gdbarch = irp->gdbarch;
4906 uint64_t addr;
4907
4908 if (irp->override >= 0)
4909 {
4910 if (record_full_memory_query)
4911 {
4912 if (yquery (_("\
4913Process record ignores the memory change of instruction at address %s\n\
4914because it can't get the value of the segment register.\n\
4915Do you want to stop the program?"),
4916 paddress (gdbarch, irp->orig_addr)))
4917 return -1;
4918 }
4919
4920 return 0;
4921 }
4922
4923 if (i386_record_lea_modrm_addr (irp, &addr))
4924 return -1;
4925
4926 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4927 return -1;
4928
4929 return 0;
4930}
4931
4932/* Record the effects of a push operation. Return -1 if something
4933 goes wrong, 0 otherwise. */
4934
4935static int
4936i386_record_push (struct i386_record_s *irp, int size)
4937{
4938 ULONGEST addr;
4939
4940 if (record_full_arch_list_add_reg (irp->regcache,
4941 irp->regmap[X86_RECORD_RESP_REGNUM]))
4942 return -1;
4943 regcache_raw_read_unsigned (irp->regcache,
4944 irp->regmap[X86_RECORD_RESP_REGNUM],
4945 &addr);
4946 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4947 return -1;
4948
4949 return 0;
4950}
4951
4952
4953/* Defines contents to record. */
4954#define I386_SAVE_FPU_REGS 0xfffd
4955#define I386_SAVE_FPU_ENV 0xfffe
4956#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4957
4958/* Record the values of the floating point registers which will be
4959 changed by the current instruction. Returns -1 if something is
4960 wrong, 0 otherwise. */
4961
4962static int i386_record_floats (struct gdbarch *gdbarch,
4963 struct i386_record_s *ir,
4964 uint32_t iregnum)
4965{
4966 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4967 int i;
4968
4969 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4970 happen. Currently we store st0-st7 registers, but we need not store all
4971 registers all the time, in future we use ftag register and record only
4972 those who are not marked as an empty. */
4973
4974 if (I386_SAVE_FPU_REGS == iregnum)
4975 {
4976 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4977 {
4978 if (record_full_arch_list_add_reg (ir->regcache, i))
4979 return -1;
4980 }
4981 }
4982 else if (I386_SAVE_FPU_ENV == iregnum)
4983 {
4984 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4985 {
4986 if (record_full_arch_list_add_reg (ir->regcache, i))
4987 return -1;
4988 }
4989 }
4990 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4991 {
4992 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4993 {
4994 if (record_full_arch_list_add_reg (ir->regcache, i))
4995 return -1;
4996 }
4997 }
4998 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4999 (iregnum <= I387_FOP_REGNUM (tdep)))
5000 {
5001 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5002 return -1;
5003 }
5004 else
5005 {
5006 /* Parameter error. */
5007 return -1;
5008 }
5009 if(I386_SAVE_FPU_ENV != iregnum)
5010 {
5011 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5012 {
5013 if (record_full_arch_list_add_reg (ir->regcache, i))
5014 return -1;
5015 }
5016 }
5017 return 0;
5018}
5019
5020/* Parse the current instruction, and record the values of the
5021 registers and memory that will be changed by the current
5022 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5023
5024#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5025 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5026
5027int
5028i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5029 CORE_ADDR input_addr)
5030{
5031 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5032 int prefixes = 0;
5033 int regnum = 0;
5034 uint32_t opcode;
5035 uint8_t opcode8;
5036 ULONGEST addr;
5037 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5038 struct i386_record_s ir;
5039 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5040 uint8_t rex_w = -1;
5041 uint8_t rex_r = 0;
5042
5043 memset (&ir, 0, sizeof (struct i386_record_s));
5044 ir.regcache = regcache;
5045 ir.addr = input_addr;
5046 ir.orig_addr = input_addr;
5047 ir.aflag = 1;
5048 ir.dflag = 1;
5049 ir.override = -1;
5050 ir.popl_esp_hack = 0;
5051 ir.regmap = tdep->record_regmap;
5052 ir.gdbarch = gdbarch;
5053
5054 if (record_debug > 1)
5055 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5056 "addr = %s\n",
5057 paddress (gdbarch, ir.addr));
5058
5059 /* prefixes */
5060 while (1)
5061 {
5062 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5063 return -1;
5064 ir.addr++;
5065 switch (opcode8) /* Instruction prefixes */
5066 {
5067 case REPE_PREFIX_OPCODE:
5068 prefixes |= PREFIX_REPZ;
5069 break;
5070 case REPNE_PREFIX_OPCODE:
5071 prefixes |= PREFIX_REPNZ;
5072 break;
5073 case LOCK_PREFIX_OPCODE:
5074 prefixes |= PREFIX_LOCK;
5075 break;
5076 case CS_PREFIX_OPCODE:
5077 ir.override = X86_RECORD_CS_REGNUM;
5078 break;
5079 case SS_PREFIX_OPCODE:
5080 ir.override = X86_RECORD_SS_REGNUM;
5081 break;
5082 case DS_PREFIX_OPCODE:
5083 ir.override = X86_RECORD_DS_REGNUM;
5084 break;
5085 case ES_PREFIX_OPCODE:
5086 ir.override = X86_RECORD_ES_REGNUM;
5087 break;
5088 case FS_PREFIX_OPCODE:
5089 ir.override = X86_RECORD_FS_REGNUM;
5090 break;
5091 case GS_PREFIX_OPCODE:
5092 ir.override = X86_RECORD_GS_REGNUM;
5093 break;
5094 case DATA_PREFIX_OPCODE:
5095 prefixes |= PREFIX_DATA;
5096 break;
5097 case ADDR_PREFIX_OPCODE:
5098 prefixes |= PREFIX_ADDR;
5099 break;
5100 case 0x40: /* i386 inc %eax */
5101 case 0x41: /* i386 inc %ecx */
5102 case 0x42: /* i386 inc %edx */
5103 case 0x43: /* i386 inc %ebx */
5104 case 0x44: /* i386 inc %esp */
5105 case 0x45: /* i386 inc %ebp */
5106 case 0x46: /* i386 inc %esi */
5107 case 0x47: /* i386 inc %edi */
5108 case 0x48: /* i386 dec %eax */
5109 case 0x49: /* i386 dec %ecx */
5110 case 0x4a: /* i386 dec %edx */
5111 case 0x4b: /* i386 dec %ebx */
5112 case 0x4c: /* i386 dec %esp */
5113 case 0x4d: /* i386 dec %ebp */
5114 case 0x4e: /* i386 dec %esi */
5115 case 0x4f: /* i386 dec %edi */
5116 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5117 {
5118 /* REX */
5119 rex_w = (opcode8 >> 3) & 1;
5120 rex_r = (opcode8 & 0x4) << 1;
5121 ir.rex_x = (opcode8 & 0x2) << 2;
5122 ir.rex_b = (opcode8 & 0x1) << 3;
5123 }
5124 else /* 32 bit target */
5125 goto out_prefixes;
5126 break;
5127 default:
5128 goto out_prefixes;
5129 break;
5130 }
5131 }
5132 out_prefixes:
5133 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5134 {
5135 ir.dflag = 2;
5136 }
5137 else
5138 {
5139 if (prefixes & PREFIX_DATA)
5140 ir.dflag ^= 1;
5141 }
5142 if (prefixes & PREFIX_ADDR)
5143 ir.aflag ^= 1;
5144 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5145 ir.aflag = 2;
5146
5147 /* Now check op code. */
5148 opcode = (uint32_t) opcode8;
5149 reswitch:
5150 switch (opcode)
5151 {
5152 case 0x0f:
5153 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5154 return -1;
5155 ir.addr++;
5156 opcode = (uint32_t) opcode8 | 0x0f00;
5157 goto reswitch;
5158 break;
5159
5160 case 0x00: /* arith & logic */
5161 case 0x01:
5162 case 0x02:
5163 case 0x03:
5164 case 0x04:
5165 case 0x05:
5166 case 0x08:
5167 case 0x09:
5168 case 0x0a:
5169 case 0x0b:
5170 case 0x0c:
5171 case 0x0d:
5172 case 0x10:
5173 case 0x11:
5174 case 0x12:
5175 case 0x13:
5176 case 0x14:
5177 case 0x15:
5178 case 0x18:
5179 case 0x19:
5180 case 0x1a:
5181 case 0x1b:
5182 case 0x1c:
5183 case 0x1d:
5184 case 0x20:
5185 case 0x21:
5186 case 0x22:
5187 case 0x23:
5188 case 0x24:
5189 case 0x25:
5190 case 0x28:
5191 case 0x29:
5192 case 0x2a:
5193 case 0x2b:
5194 case 0x2c:
5195 case 0x2d:
5196 case 0x30:
5197 case 0x31:
5198 case 0x32:
5199 case 0x33:
5200 case 0x34:
5201 case 0x35:
5202 case 0x38:
5203 case 0x39:
5204 case 0x3a:
5205 case 0x3b:
5206 case 0x3c:
5207 case 0x3d:
5208 if (((opcode >> 3) & 7) != OP_CMPL)
5209 {
5210 if ((opcode & 1) == 0)
5211 ir.ot = OT_BYTE;
5212 else
5213 ir.ot = ir.dflag + OT_WORD;
5214
5215 switch ((opcode >> 1) & 3)
5216 {
5217 case 0: /* OP Ev, Gv */
5218 if (i386_record_modrm (&ir))
5219 return -1;
5220 if (ir.mod != 3)
5221 {
5222 if (i386_record_lea_modrm (&ir))
5223 return -1;
5224 }
5225 else
5226 {
5227 ir.rm |= ir.rex_b;
5228 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5229 ir.rm &= 0x3;
5230 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5231 }
5232 break;
5233 case 1: /* OP Gv, Ev */
5234 if (i386_record_modrm (&ir))
5235 return -1;
5236 ir.reg |= rex_r;
5237 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5238 ir.reg &= 0x3;
5239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5240 break;
5241 case 2: /* OP A, Iv */
5242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5243 break;
5244 }
5245 }
5246 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5247 break;
5248
5249 case 0x80: /* GRP1 */
5250 case 0x81:
5251 case 0x82:
5252 case 0x83:
5253 if (i386_record_modrm (&ir))
5254 return -1;
5255
5256 if (ir.reg != OP_CMPL)
5257 {
5258 if ((opcode & 1) == 0)
5259 ir.ot = OT_BYTE;
5260 else
5261 ir.ot = ir.dflag + OT_WORD;
5262
5263 if (ir.mod != 3)
5264 {
5265 if (opcode == 0x83)
5266 ir.rip_offset = 1;
5267 else
5268 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5269 if (i386_record_lea_modrm (&ir))
5270 return -1;
5271 }
5272 else
5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5274 }
5275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5276 break;
5277
5278 case 0x40: /* inc */
5279 case 0x41:
5280 case 0x42:
5281 case 0x43:
5282 case 0x44:
5283 case 0x45:
5284 case 0x46:
5285 case 0x47:
5286
5287 case 0x48: /* dec */
5288 case 0x49:
5289 case 0x4a:
5290 case 0x4b:
5291 case 0x4c:
5292 case 0x4d:
5293 case 0x4e:
5294 case 0x4f:
5295
5296 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5297 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5298 break;
5299
5300 case 0xf6: /* GRP3 */
5301 case 0xf7:
5302 if ((opcode & 1) == 0)
5303 ir.ot = OT_BYTE;
5304 else
5305 ir.ot = ir.dflag + OT_WORD;
5306 if (i386_record_modrm (&ir))
5307 return -1;
5308
5309 if (ir.mod != 3 && ir.reg == 0)
5310 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5311
5312 switch (ir.reg)
5313 {
5314 case 0: /* test */
5315 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5316 break;
5317 case 2: /* not */
5318 case 3: /* neg */
5319 if (ir.mod != 3)
5320 {
5321 if (i386_record_lea_modrm (&ir))
5322 return -1;
5323 }
5324 else
5325 {
5326 ir.rm |= ir.rex_b;
5327 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5328 ir.rm &= 0x3;
5329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5330 }
5331 if (ir.reg == 3) /* neg */
5332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5333 break;
5334 case 4: /* mul */
5335 case 5: /* imul */
5336 case 6: /* div */
5337 case 7: /* idiv */
5338 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5339 if (ir.ot != OT_BYTE)
5340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5342 break;
5343 default:
5344 ir.addr -= 2;
5345 opcode = opcode << 8 | ir.modrm;
5346 goto no_support;
5347 break;
5348 }
5349 break;
5350
5351 case 0xfe: /* GRP4 */
5352 case 0xff: /* GRP5 */
5353 if (i386_record_modrm (&ir))
5354 return -1;
5355 if (ir.reg >= 2 && opcode == 0xfe)
5356 {
5357 ir.addr -= 2;
5358 opcode = opcode << 8 | ir.modrm;
5359 goto no_support;
5360 }
5361 switch (ir.reg)
5362 {
5363 case 0: /* inc */
5364 case 1: /* dec */
5365 if ((opcode & 1) == 0)
5366 ir.ot = OT_BYTE;
5367 else
5368 ir.ot = ir.dflag + OT_WORD;
5369 if (ir.mod != 3)
5370 {
5371 if (i386_record_lea_modrm (&ir))
5372 return -1;
5373 }
5374 else
5375 {
5376 ir.rm |= ir.rex_b;
5377 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5378 ir.rm &= 0x3;
5379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5380 }
5381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5382 break;
5383 case 2: /* call */
5384 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5385 ir.dflag = 2;
5386 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5387 return -1;
5388 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5389 break;
5390 case 3: /* lcall */
5391 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5392 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5393 return -1;
5394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5395 break;
5396 case 4: /* jmp */
5397 case 5: /* ljmp */
5398 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5399 break;
5400 case 6: /* push */
5401 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5402 ir.dflag = 2;
5403 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5404 return -1;
5405 break;
5406 default:
5407 ir.addr -= 2;
5408 opcode = opcode << 8 | ir.modrm;
5409 goto no_support;
5410 break;
5411 }
5412 break;
5413
5414 case 0x84: /* test */
5415 case 0x85:
5416 case 0xa8:
5417 case 0xa9:
5418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5419 break;
5420
5421 case 0x98: /* CWDE/CBW */
5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5423 break;
5424
5425 case 0x99: /* CDQ/CWD */
5426 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5428 break;
5429
5430 case 0x0faf: /* imul */
5431 case 0x69:
5432 case 0x6b:
5433 ir.ot = ir.dflag + OT_WORD;
5434 if (i386_record_modrm (&ir))
5435 return -1;
5436 if (opcode == 0x69)
5437 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5438 else if (opcode == 0x6b)
5439 ir.rip_offset = 1;
5440 ir.reg |= rex_r;
5441 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5442 ir.reg &= 0x3;
5443 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5445 break;
5446
5447 case 0x0fc0: /* xadd */
5448 case 0x0fc1:
5449 if ((opcode & 1) == 0)
5450 ir.ot = OT_BYTE;
5451 else
5452 ir.ot = ir.dflag + OT_WORD;
5453 if (i386_record_modrm (&ir))
5454 return -1;
5455 ir.reg |= rex_r;
5456 if (ir.mod == 3)
5457 {
5458 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5459 ir.reg &= 0x3;
5460 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5461 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5462 ir.rm &= 0x3;
5463 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5464 }
5465 else
5466 {
5467 if (i386_record_lea_modrm (&ir))
5468 return -1;
5469 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5470 ir.reg &= 0x3;
5471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5472 }
5473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5474 break;
5475
5476 case 0x0fb0: /* cmpxchg */
5477 case 0x0fb1:
5478 if ((opcode & 1) == 0)
5479 ir.ot = OT_BYTE;
5480 else
5481 ir.ot = ir.dflag + OT_WORD;
5482 if (i386_record_modrm (&ir))
5483 return -1;
5484 if (ir.mod == 3)
5485 {
5486 ir.reg |= rex_r;
5487 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5488 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5489 ir.reg &= 0x3;
5490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5491 }
5492 else
5493 {
5494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5495 if (i386_record_lea_modrm (&ir))
5496 return -1;
5497 }
5498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5499 break;
5500
5501 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5502 if (i386_record_modrm (&ir))
5503 return -1;
5504 if (ir.mod == 3)
5505 {
5506 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5507 an extended opcode. rdrand has bits 110 (/6) and rdseed
5508 has bits 111 (/7). */
5509 if (ir.reg == 6 || ir.reg == 7)
5510 {
5511 /* The storage register is described by the 3 R/M bits, but the
5512 REX.B prefix may be used to give access to registers
5513 R8~R15. In this case ir.rex_b + R/M will give us the register
5514 in the range R8~R15.
5515
5516 REX.W may also be used to access 64-bit registers, but we
5517 already record entire registers and not just partial bits
5518 of them. */
5519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5520 /* These instructions also set conditional bits. */
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5522 break;
5523 }
5524 else
5525 {
5526 /* We don't handle this particular instruction yet. */
5527 ir.addr -= 2;
5528 opcode = opcode << 8 | ir.modrm;
5529 goto no_support;
5530 }
5531 }
5532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5534 if (i386_record_lea_modrm (&ir))
5535 return -1;
5536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5537 break;
5538
5539 case 0x50: /* push */
5540 case 0x51:
5541 case 0x52:
5542 case 0x53:
5543 case 0x54:
5544 case 0x55:
5545 case 0x56:
5546 case 0x57:
5547 case 0x68:
5548 case 0x6a:
5549 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5550 ir.dflag = 2;
5551 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5552 return -1;
5553 break;
5554
5555 case 0x06: /* push es */
5556 case 0x0e: /* push cs */
5557 case 0x16: /* push ss */
5558 case 0x1e: /* push ds */
5559 if (ir.regmap[X86_RECORD_R8_REGNUM])
5560 {
5561 ir.addr -= 1;
5562 goto no_support;
5563 }
5564 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5565 return -1;
5566 break;
5567
5568 case 0x0fa0: /* push fs */
5569 case 0x0fa8: /* push gs */
5570 if (ir.regmap[X86_RECORD_R8_REGNUM])
5571 {
5572 ir.addr -= 2;
5573 goto no_support;
5574 }
5575 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5576 return -1;
5577 break;
5578
5579 case 0x60: /* pusha */
5580 if (ir.regmap[X86_RECORD_R8_REGNUM])
5581 {
5582 ir.addr -= 1;
5583 goto no_support;
5584 }
5585 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5586 return -1;
5587 break;
5588
5589 case 0x58: /* pop */
5590 case 0x59:
5591 case 0x5a:
5592 case 0x5b:
5593 case 0x5c:
5594 case 0x5d:
5595 case 0x5e:
5596 case 0x5f:
5597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5598 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5599 break;
5600
5601 case 0x61: /* popa */
5602 if (ir.regmap[X86_RECORD_R8_REGNUM])
5603 {
5604 ir.addr -= 1;
5605 goto no_support;
5606 }
5607 for (regnum = X86_RECORD_REAX_REGNUM;
5608 regnum <= X86_RECORD_REDI_REGNUM;
5609 regnum++)
5610 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5611 break;
5612
5613 case 0x8f: /* pop */
5614 if (ir.regmap[X86_RECORD_R8_REGNUM])
5615 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5616 else
5617 ir.ot = ir.dflag + OT_WORD;
5618 if (i386_record_modrm (&ir))
5619 return -1;
5620 if (ir.mod == 3)
5621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5622 else
5623 {
5624 ir.popl_esp_hack = 1 << ir.ot;
5625 if (i386_record_lea_modrm (&ir))
5626 return -1;
5627 }
5628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5629 break;
5630
5631 case 0xc8: /* enter */
5632 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5633 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5634 ir.dflag = 2;
5635 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5636 return -1;
5637 break;
5638
5639 case 0xc9: /* leave */
5640 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5642 break;
5643
5644 case 0x07: /* pop es */
5645 if (ir.regmap[X86_RECORD_R8_REGNUM])
5646 {
5647 ir.addr -= 1;
5648 goto no_support;
5649 }
5650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5653 break;
5654
5655 case 0x17: /* pop ss */
5656 if (ir.regmap[X86_RECORD_R8_REGNUM])
5657 {
5658 ir.addr -= 1;
5659 goto no_support;
5660 }
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5664 break;
5665
5666 case 0x1f: /* pop ds */
5667 if (ir.regmap[X86_RECORD_R8_REGNUM])
5668 {
5669 ir.addr -= 1;
5670 goto no_support;
5671 }
5672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5675 break;
5676
5677 case 0x0fa1: /* pop fs */
5678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5681 break;
5682
5683 case 0x0fa9: /* pop gs */
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5687 break;
5688
5689 case 0x88: /* mov */
5690 case 0x89:
5691 case 0xc6:
5692 case 0xc7:
5693 if ((opcode & 1) == 0)
5694 ir.ot = OT_BYTE;
5695 else
5696 ir.ot = ir.dflag + OT_WORD;
5697
5698 if (i386_record_modrm (&ir))
5699 return -1;
5700
5701 if (ir.mod != 3)
5702 {
5703 if (opcode == 0xc6 || opcode == 0xc7)
5704 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5705 if (i386_record_lea_modrm (&ir))
5706 return -1;
5707 }
5708 else
5709 {
5710 if (opcode == 0xc6 || opcode == 0xc7)
5711 ir.rm |= ir.rex_b;
5712 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5713 ir.rm &= 0x3;
5714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5715 }
5716 break;
5717
5718 case 0x8a: /* mov */
5719 case 0x8b:
5720 if ((opcode & 1) == 0)
5721 ir.ot = OT_BYTE;
5722 else
5723 ir.ot = ir.dflag + OT_WORD;
5724 if (i386_record_modrm (&ir))
5725 return -1;
5726 ir.reg |= rex_r;
5727 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5728 ir.reg &= 0x3;
5729 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5730 break;
5731
5732 case 0x8c: /* mov seg */
5733 if (i386_record_modrm (&ir))
5734 return -1;
5735 if (ir.reg > 5)
5736 {
5737 ir.addr -= 2;
5738 opcode = opcode << 8 | ir.modrm;
5739 goto no_support;
5740 }
5741
5742 if (ir.mod == 3)
5743 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5744 else
5745 {
5746 ir.ot = OT_WORD;
5747 if (i386_record_lea_modrm (&ir))
5748 return -1;
5749 }
5750 break;
5751
5752 case 0x8e: /* mov seg */
5753 if (i386_record_modrm (&ir))
5754 return -1;
5755 switch (ir.reg)
5756 {
5757 case 0:
5758 regnum = X86_RECORD_ES_REGNUM;
5759 break;
5760 case 2:
5761 regnum = X86_RECORD_SS_REGNUM;
5762 break;
5763 case 3:
5764 regnum = X86_RECORD_DS_REGNUM;
5765 break;
5766 case 4:
5767 regnum = X86_RECORD_FS_REGNUM;
5768 break;
5769 case 5:
5770 regnum = X86_RECORD_GS_REGNUM;
5771 break;
5772 default:
5773 ir.addr -= 2;
5774 opcode = opcode << 8 | ir.modrm;
5775 goto no_support;
5776 break;
5777 }
5778 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5780 break;
5781
5782 case 0x0fb6: /* movzbS */
5783 case 0x0fb7: /* movzwS */
5784 case 0x0fbe: /* movsbS */
5785 case 0x0fbf: /* movswS */
5786 if (i386_record_modrm (&ir))
5787 return -1;
5788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5789 break;
5790
5791 case 0x8d: /* lea */
5792 if (i386_record_modrm (&ir))
5793 return -1;
5794 if (ir.mod == 3)
5795 {
5796 ir.addr -= 2;
5797 opcode = opcode << 8 | ir.modrm;
5798 goto no_support;
5799 }
5800 ir.ot = ir.dflag;
5801 ir.reg |= rex_r;
5802 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5803 ir.reg &= 0x3;
5804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5805 break;
5806
5807 case 0xa0: /* mov EAX */
5808 case 0xa1:
5809
5810 case 0xd7: /* xlat */
5811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5812 break;
5813
5814 case 0xa2: /* mov EAX */
5815 case 0xa3:
5816 if (ir.override >= 0)
5817 {
5818 if (record_full_memory_query)
5819 {
5820 if (yquery (_("\
5821Process record ignores the memory change of instruction at address %s\n\
5822because it can't get the value of the segment register.\n\
5823Do you want to stop the program?"),
5824 paddress (gdbarch, ir.orig_addr)))
5825 return -1;
5826 }
5827 }
5828 else
5829 {
5830 if ((opcode & 1) == 0)
5831 ir.ot = OT_BYTE;
5832 else
5833 ir.ot = ir.dflag + OT_WORD;
5834 if (ir.aflag == 2)
5835 {
5836 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5837 return -1;
5838 ir.addr += 8;
5839 addr = extract_unsigned_integer (buf, 8, byte_order);
5840 }
5841 else if (ir.aflag)
5842 {
5843 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5844 return -1;
5845 ir.addr += 4;
5846 addr = extract_unsigned_integer (buf, 4, byte_order);
5847 }
5848 else
5849 {
5850 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5851 return -1;
5852 ir.addr += 2;
5853 addr = extract_unsigned_integer (buf, 2, byte_order);
5854 }
5855 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5856 return -1;
5857 }
5858 break;
5859
5860 case 0xb0: /* mov R, Ib */
5861 case 0xb1:
5862 case 0xb2:
5863 case 0xb3:
5864 case 0xb4:
5865 case 0xb5:
5866 case 0xb6:
5867 case 0xb7:
5868 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5869 ? ((opcode & 0x7) | ir.rex_b)
5870 : ((opcode & 0x7) & 0x3));
5871 break;
5872
5873 case 0xb8: /* mov R, Iv */
5874 case 0xb9:
5875 case 0xba:
5876 case 0xbb:
5877 case 0xbc:
5878 case 0xbd:
5879 case 0xbe:
5880 case 0xbf:
5881 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5882 break;
5883
5884 case 0x91: /* xchg R, EAX */
5885 case 0x92:
5886 case 0x93:
5887 case 0x94:
5888 case 0x95:
5889 case 0x96:
5890 case 0x97:
5891 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5892 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5893 break;
5894
5895 case 0x86: /* xchg Ev, Gv */
5896 case 0x87:
5897 if ((opcode & 1) == 0)
5898 ir.ot = OT_BYTE;
5899 else
5900 ir.ot = ir.dflag + OT_WORD;
5901 if (i386_record_modrm (&ir))
5902 return -1;
5903 if (ir.mod == 3)
5904 {
5905 ir.rm |= ir.rex_b;
5906 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5907 ir.rm &= 0x3;
5908 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5909 }
5910 else
5911 {
5912 if (i386_record_lea_modrm (&ir))
5913 return -1;
5914 }
5915 ir.reg |= rex_r;
5916 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5917 ir.reg &= 0x3;
5918 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5919 break;
5920
5921 case 0xc4: /* les Gv */
5922 case 0xc5: /* lds Gv */
5923 if (ir.regmap[X86_RECORD_R8_REGNUM])
5924 {
5925 ir.addr -= 1;
5926 goto no_support;
5927 }
5928 /* FALLTHROUGH */
5929 case 0x0fb2: /* lss Gv */
5930 case 0x0fb4: /* lfs Gv */
5931 case 0x0fb5: /* lgs Gv */
5932 if (i386_record_modrm (&ir))
5933 return -1;
5934 if (ir.mod == 3)
5935 {
5936 if (opcode > 0xff)
5937 ir.addr -= 3;
5938 else
5939 ir.addr -= 2;
5940 opcode = opcode << 8 | ir.modrm;
5941 goto no_support;
5942 }
5943 switch (opcode)
5944 {
5945 case 0xc4: /* les Gv */
5946 regnum = X86_RECORD_ES_REGNUM;
5947 break;
5948 case 0xc5: /* lds Gv */
5949 regnum = X86_RECORD_DS_REGNUM;
5950 break;
5951 case 0x0fb2: /* lss Gv */
5952 regnum = X86_RECORD_SS_REGNUM;
5953 break;
5954 case 0x0fb4: /* lfs Gv */
5955 regnum = X86_RECORD_FS_REGNUM;
5956 break;
5957 case 0x0fb5: /* lgs Gv */
5958 regnum = X86_RECORD_GS_REGNUM;
5959 break;
5960 }
5961 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5962 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5963 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5964 break;
5965
5966 case 0xc0: /* shifts */
5967 case 0xc1:
5968 case 0xd0:
5969 case 0xd1:
5970 case 0xd2:
5971 case 0xd3:
5972 if ((opcode & 1) == 0)
5973 ir.ot = OT_BYTE;
5974 else
5975 ir.ot = ir.dflag + OT_WORD;
5976 if (i386_record_modrm (&ir))
5977 return -1;
5978 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5979 {
5980 if (i386_record_lea_modrm (&ir))
5981 return -1;
5982 }
5983 else
5984 {
5985 ir.rm |= ir.rex_b;
5986 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5987 ir.rm &= 0x3;
5988 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5989 }
5990 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5991 break;
5992
5993 case 0x0fa4:
5994 case 0x0fa5:
5995 case 0x0fac:
5996 case 0x0fad:
5997 if (i386_record_modrm (&ir))
5998 return -1;
5999 if (ir.mod == 3)
6000 {
6001 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6002 return -1;
6003 }
6004 else
6005 {
6006 if (i386_record_lea_modrm (&ir))
6007 return -1;
6008 }
6009 break;
6010
6011 case 0xd8: /* Floats. */
6012 case 0xd9:
6013 case 0xda:
6014 case 0xdb:
6015 case 0xdc:
6016 case 0xdd:
6017 case 0xde:
6018 case 0xdf:
6019 if (i386_record_modrm (&ir))
6020 return -1;
6021 ir.reg |= ((opcode & 7) << 3);
6022 if (ir.mod != 3)
6023 {
6024 /* Memory. */
6025 uint64_t addr64;
6026
6027 if (i386_record_lea_modrm_addr (&ir, &addr64))
6028 return -1;
6029 switch (ir.reg)
6030 {
6031 case 0x02:
6032 case 0x12:
6033 case 0x22:
6034 case 0x32:
6035 /* For fcom, ficom nothing to do. */
6036 break;
6037 case 0x03:
6038 case 0x13:
6039 case 0x23:
6040 case 0x33:
6041 /* For fcomp, ficomp pop FPU stack, store all. */
6042 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6043 return -1;
6044 break;
6045 case 0x00:
6046 case 0x01:
6047 case 0x04:
6048 case 0x05:
6049 case 0x06:
6050 case 0x07:
6051 case 0x10:
6052 case 0x11:
6053 case 0x14:
6054 case 0x15:
6055 case 0x16:
6056 case 0x17:
6057 case 0x20:
6058 case 0x21:
6059 case 0x24:
6060 case 0x25:
6061 case 0x26:
6062 case 0x27:
6063 case 0x30:
6064 case 0x31:
6065 case 0x34:
6066 case 0x35:
6067 case 0x36:
6068 case 0x37:
6069 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6070 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6071 of code, always affects st(0) register. */
6072 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6073 return -1;
6074 break;
6075 case 0x08:
6076 case 0x0a:
6077 case 0x0b:
6078 case 0x18:
6079 case 0x19:
6080 case 0x1a:
6081 case 0x1b:
6082 case 0x1d:
6083 case 0x28:
6084 case 0x29:
6085 case 0x2a:
6086 case 0x2b:
6087 case 0x38:
6088 case 0x39:
6089 case 0x3a:
6090 case 0x3b:
6091 case 0x3c:
6092 case 0x3d:
6093 switch (ir.reg & 7)
6094 {
6095 case 0:
6096 /* Handling fld, fild. */
6097 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6098 return -1;
6099 break;
6100 case 1:
6101 switch (ir.reg >> 4)
6102 {
6103 case 0:
6104 if (record_full_arch_list_add_mem (addr64, 4))
6105 return -1;
6106 break;
6107 case 2:
6108 if (record_full_arch_list_add_mem (addr64, 8))
6109 return -1;
6110 break;
6111 case 3:
6112 break;
6113 default:
6114 if (record_full_arch_list_add_mem (addr64, 2))
6115 return -1;
6116 break;
6117 }
6118 break;
6119 default:
6120 switch (ir.reg >> 4)
6121 {
6122 case 0:
6123 if (record_full_arch_list_add_mem (addr64, 4))
6124 return -1;
6125 if (3 == (ir.reg & 7))
6126 {
6127 /* For fstp m32fp. */
6128 if (i386_record_floats (gdbarch, &ir,
6129 I386_SAVE_FPU_REGS))
6130 return -1;
6131 }
6132 break;
6133 case 1:
6134 if (record_full_arch_list_add_mem (addr64, 4))
6135 return -1;
6136 if ((3 == (ir.reg & 7))
6137 || (5 == (ir.reg & 7))
6138 || (7 == (ir.reg & 7)))
6139 {
6140 /* For fstp insn. */
6141 if (i386_record_floats (gdbarch, &ir,
6142 I386_SAVE_FPU_REGS))
6143 return -1;
6144 }
6145 break;
6146 case 2:
6147 if (record_full_arch_list_add_mem (addr64, 8))
6148 return -1;
6149 if (3 == (ir.reg & 7))
6150 {
6151 /* For fstp m64fp. */
6152 if (i386_record_floats (gdbarch, &ir,
6153 I386_SAVE_FPU_REGS))
6154 return -1;
6155 }
6156 break;
6157 case 3:
6158 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6159 {
6160 /* For fistp, fbld, fild, fbstp. */
6161 if (i386_record_floats (gdbarch, &ir,
6162 I386_SAVE_FPU_REGS))
6163 return -1;
6164 }
6165 /* Fall through */
6166 default:
6167 if (record_full_arch_list_add_mem (addr64, 2))
6168 return -1;
6169 break;
6170 }
6171 break;
6172 }
6173 break;
6174 case 0x0c:
6175 /* Insn fldenv. */
6176 if (i386_record_floats (gdbarch, &ir,
6177 I386_SAVE_FPU_ENV_REG_STACK))
6178 return -1;
6179 break;
6180 case 0x0d:
6181 /* Insn fldcw. */
6182 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6183 return -1;
6184 break;
6185 case 0x2c:
6186 /* Insn frstor. */
6187 if (i386_record_floats (gdbarch, &ir,
6188 I386_SAVE_FPU_ENV_REG_STACK))
6189 return -1;
6190 break;
6191 case 0x0e:
6192 if (ir.dflag)
6193 {
6194 if (record_full_arch_list_add_mem (addr64, 28))
6195 return -1;
6196 }
6197 else
6198 {
6199 if (record_full_arch_list_add_mem (addr64, 14))
6200 return -1;
6201 }
6202 break;
6203 case 0x0f:
6204 case 0x2f:
6205 if (record_full_arch_list_add_mem (addr64, 2))
6206 return -1;
6207 /* Insn fstp, fbstp. */
6208 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6209 return -1;
6210 break;
6211 case 0x1f:
6212 case 0x3e:
6213 if (record_full_arch_list_add_mem (addr64, 10))
6214 return -1;
6215 break;
6216 case 0x2e:
6217 if (ir.dflag)
6218 {
6219 if (record_full_arch_list_add_mem (addr64, 28))
6220 return -1;
6221 addr64 += 28;
6222 }
6223 else
6224 {
6225 if (record_full_arch_list_add_mem (addr64, 14))
6226 return -1;
6227 addr64 += 14;
6228 }
6229 if (record_full_arch_list_add_mem (addr64, 80))
6230 return -1;
6231 /* Insn fsave. */
6232 if (i386_record_floats (gdbarch, &ir,
6233 I386_SAVE_FPU_ENV_REG_STACK))
6234 return -1;
6235 break;
6236 case 0x3f:
6237 if (record_full_arch_list_add_mem (addr64, 8))
6238 return -1;
6239 /* Insn fistp. */
6240 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6241 return -1;
6242 break;
6243 default:
6244 ir.addr -= 2;
6245 opcode = opcode << 8 | ir.modrm;
6246 goto no_support;
6247 break;
6248 }
6249 }
6250 /* Opcode is an extension of modR/M byte. */
6251 else
6252 {
6253 switch (opcode)
6254 {
6255 case 0xd8:
6256 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6257 return -1;
6258 break;
6259 case 0xd9:
6260 if (0x0c == (ir.modrm >> 4))
6261 {
6262 if ((ir.modrm & 0x0f) <= 7)
6263 {
6264 if (i386_record_floats (gdbarch, &ir,
6265 I386_SAVE_FPU_REGS))
6266 return -1;
6267 }
6268 else
6269 {
6270 if (i386_record_floats (gdbarch, &ir,
6271 I387_ST0_REGNUM (tdep)))
6272 return -1;
6273 /* If only st(0) is changing, then we have already
6274 recorded. */
6275 if ((ir.modrm & 0x0f) - 0x08)
6276 {
6277 if (i386_record_floats (gdbarch, &ir,
6278 I387_ST0_REGNUM (tdep) +
6279 ((ir.modrm & 0x0f) - 0x08)))
6280 return -1;
6281 }
6282 }
6283 }
6284 else
6285 {
6286 switch (ir.modrm)
6287 {
6288 case 0xe0:
6289 case 0xe1:
6290 case 0xf0:
6291 case 0xf5:
6292 case 0xf8:
6293 case 0xfa:
6294 case 0xfc:
6295 case 0xfe:
6296 case 0xff:
6297 if (i386_record_floats (gdbarch, &ir,
6298 I387_ST0_REGNUM (tdep)))
6299 return -1;
6300 break;
6301 case 0xf1:
6302 case 0xf2:
6303 case 0xf3:
6304 case 0xf4:
6305 case 0xf6:
6306 case 0xf7:
6307 case 0xe8:
6308 case 0xe9:
6309 case 0xea:
6310 case 0xeb:
6311 case 0xec:
6312 case 0xed:
6313 case 0xee:
6314 case 0xf9:
6315 case 0xfb:
6316 if (i386_record_floats (gdbarch, &ir,
6317 I386_SAVE_FPU_REGS))
6318 return -1;
6319 break;
6320 case 0xfd:
6321 if (i386_record_floats (gdbarch, &ir,
6322 I387_ST0_REGNUM (tdep)))
6323 return -1;
6324 if (i386_record_floats (gdbarch, &ir,
6325 I387_ST0_REGNUM (tdep) + 1))
6326 return -1;
6327 break;
6328 }
6329 }
6330 break;
6331 case 0xda:
6332 if (0xe9 == ir.modrm)
6333 {
6334 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6335 return -1;
6336 }
6337 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6338 {
6339 if (i386_record_floats (gdbarch, &ir,
6340 I387_ST0_REGNUM (tdep)))
6341 return -1;
6342 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6343 {
6344 if (i386_record_floats (gdbarch, &ir,
6345 I387_ST0_REGNUM (tdep) +
6346 (ir.modrm & 0x0f)))
6347 return -1;
6348 }
6349 else if ((ir.modrm & 0x0f) - 0x08)
6350 {
6351 if (i386_record_floats (gdbarch, &ir,
6352 I387_ST0_REGNUM (tdep) +
6353 ((ir.modrm & 0x0f) - 0x08)))
6354 return -1;
6355 }
6356 }
6357 break;
6358 case 0xdb:
6359 if (0xe3 == ir.modrm)
6360 {
6361 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6362 return -1;
6363 }
6364 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6365 {
6366 if (i386_record_floats (gdbarch, &ir,
6367 I387_ST0_REGNUM (tdep)))
6368 return -1;
6369 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6370 {
6371 if (i386_record_floats (gdbarch, &ir,
6372 I387_ST0_REGNUM (tdep) +
6373 (ir.modrm & 0x0f)))
6374 return -1;
6375 }
6376 else if ((ir.modrm & 0x0f) - 0x08)
6377 {
6378 if (i386_record_floats (gdbarch, &ir,
6379 I387_ST0_REGNUM (tdep) +
6380 ((ir.modrm & 0x0f) - 0x08)))
6381 return -1;
6382 }
6383 }
6384 break;
6385 case 0xdc:
6386 if ((0x0c == ir.modrm >> 4)
6387 || (0x0d == ir.modrm >> 4)
6388 || (0x0f == ir.modrm >> 4))
6389 {
6390 if ((ir.modrm & 0x0f) <= 7)
6391 {
6392 if (i386_record_floats (gdbarch, &ir,
6393 I387_ST0_REGNUM (tdep) +
6394 (ir.modrm & 0x0f)))
6395 return -1;
6396 }
6397 else
6398 {
6399 if (i386_record_floats (gdbarch, &ir,
6400 I387_ST0_REGNUM (tdep) +
6401 ((ir.modrm & 0x0f) - 0x08)))
6402 return -1;
6403 }
6404 }
6405 break;
6406 case 0xdd:
6407 if (0x0c == ir.modrm >> 4)
6408 {
6409 if (i386_record_floats (gdbarch, &ir,
6410 I387_FTAG_REGNUM (tdep)))
6411 return -1;
6412 }
6413 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6414 {
6415 if ((ir.modrm & 0x0f) <= 7)
6416 {
6417 if (i386_record_floats (gdbarch, &ir,
6418 I387_ST0_REGNUM (tdep) +
6419 (ir.modrm & 0x0f)))
6420 return -1;
6421 }
6422 else
6423 {
6424 if (i386_record_floats (gdbarch, &ir,
6425 I386_SAVE_FPU_REGS))
6426 return -1;
6427 }
6428 }
6429 break;
6430 case 0xde:
6431 if ((0x0c == ir.modrm >> 4)
6432 || (0x0e == ir.modrm >> 4)
6433 || (0x0f == ir.modrm >> 4)
6434 || (0xd9 == ir.modrm))
6435 {
6436 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6437 return -1;
6438 }
6439 break;
6440 case 0xdf:
6441 if (0xe0 == ir.modrm)
6442 {
6443 if (record_full_arch_list_add_reg (ir.regcache,
6444 I386_EAX_REGNUM))
6445 return -1;
6446 }
6447 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6448 {
6449 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6450 return -1;
6451 }
6452 break;
6453 }
6454 }
6455 break;
6456 /* string ops */
6457 case 0xa4: /* movsS */
6458 case 0xa5:
6459 case 0xaa: /* stosS */
6460 case 0xab:
6461 case 0x6c: /* insS */
6462 case 0x6d:
6463 regcache_raw_read_unsigned (ir.regcache,
6464 ir.regmap[X86_RECORD_RECX_REGNUM],
6465 &addr);
6466 if (addr)
6467 {
6468 ULONGEST es, ds;
6469
6470 if ((opcode & 1) == 0)
6471 ir.ot = OT_BYTE;
6472 else
6473 ir.ot = ir.dflag + OT_WORD;
6474 regcache_raw_read_unsigned (ir.regcache,
6475 ir.regmap[X86_RECORD_REDI_REGNUM],
6476 &addr);
6477
6478 regcache_raw_read_unsigned (ir.regcache,
6479 ir.regmap[X86_RECORD_ES_REGNUM],
6480 &es);
6481 regcache_raw_read_unsigned (ir.regcache,
6482 ir.regmap[X86_RECORD_DS_REGNUM],
6483 &ds);
6484 if (ir.aflag && (es != ds))
6485 {
6486 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6487 if (record_full_memory_query)
6488 {
6489 if (yquery (_("\
6490Process record ignores the memory change of instruction at address %s\n\
6491because it can't get the value of the segment register.\n\
6492Do you want to stop the program?"),
6493 paddress (gdbarch, ir.orig_addr)))
6494 return -1;
6495 }
6496 }
6497 else
6498 {
6499 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6500 return -1;
6501 }
6502
6503 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6505 if (opcode == 0xa4 || opcode == 0xa5)
6506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6509 }
6510 break;
6511
6512 case 0xa6: /* cmpsS */
6513 case 0xa7:
6514 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6516 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6519 break;
6520
6521 case 0xac: /* lodsS */
6522 case 0xad:
6523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6525 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6528 break;
6529
6530 case 0xae: /* scasS */
6531 case 0xaf:
6532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6533 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6536 break;
6537
6538 case 0x6e: /* outsS */
6539 case 0x6f:
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6541 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6544 break;
6545
6546 case 0xe4: /* port I/O */
6547 case 0xe5:
6548 case 0xec:
6549 case 0xed:
6550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6552 break;
6553
6554 case 0xe6:
6555 case 0xe7:
6556 case 0xee:
6557 case 0xef:
6558 break;
6559
6560 /* control */
6561 case 0xc2: /* ret im */
6562 case 0xc3: /* ret */
6563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6565 break;
6566
6567 case 0xca: /* lret im */
6568 case 0xcb: /* lret */
6569 case 0xcf: /* iret */
6570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6573 break;
6574
6575 case 0xe8: /* call im */
6576 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6577 ir.dflag = 2;
6578 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6579 return -1;
6580 break;
6581
6582 case 0x9a: /* lcall im */
6583 if (ir.regmap[X86_RECORD_R8_REGNUM])
6584 {
6585 ir.addr -= 1;
6586 goto no_support;
6587 }
6588 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6589 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6590 return -1;
6591 break;
6592
6593 case 0xe9: /* jmp im */
6594 case 0xea: /* ljmp im */
6595 case 0xeb: /* jmp Jb */
6596 case 0x70: /* jcc Jb */
6597 case 0x71:
6598 case 0x72:
6599 case 0x73:
6600 case 0x74:
6601 case 0x75:
6602 case 0x76:
6603 case 0x77:
6604 case 0x78:
6605 case 0x79:
6606 case 0x7a:
6607 case 0x7b:
6608 case 0x7c:
6609 case 0x7d:
6610 case 0x7e:
6611 case 0x7f:
6612 case 0x0f80: /* jcc Jv */
6613 case 0x0f81:
6614 case 0x0f82:
6615 case 0x0f83:
6616 case 0x0f84:
6617 case 0x0f85:
6618 case 0x0f86:
6619 case 0x0f87:
6620 case 0x0f88:
6621 case 0x0f89:
6622 case 0x0f8a:
6623 case 0x0f8b:
6624 case 0x0f8c:
6625 case 0x0f8d:
6626 case 0x0f8e:
6627 case 0x0f8f:
6628 break;
6629
6630 case 0x0f90: /* setcc Gv */
6631 case 0x0f91:
6632 case 0x0f92:
6633 case 0x0f93:
6634 case 0x0f94:
6635 case 0x0f95:
6636 case 0x0f96:
6637 case 0x0f97:
6638 case 0x0f98:
6639 case 0x0f99:
6640 case 0x0f9a:
6641 case 0x0f9b:
6642 case 0x0f9c:
6643 case 0x0f9d:
6644 case 0x0f9e:
6645 case 0x0f9f:
6646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6647 ir.ot = OT_BYTE;
6648 if (i386_record_modrm (&ir))
6649 return -1;
6650 if (ir.mod == 3)
6651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6652 : (ir.rm & 0x3));
6653 else
6654 {
6655 if (i386_record_lea_modrm (&ir))
6656 return -1;
6657 }
6658 break;
6659
6660 case 0x0f40: /* cmov Gv, Ev */
6661 case 0x0f41:
6662 case 0x0f42:
6663 case 0x0f43:
6664 case 0x0f44:
6665 case 0x0f45:
6666 case 0x0f46:
6667 case 0x0f47:
6668 case 0x0f48:
6669 case 0x0f49:
6670 case 0x0f4a:
6671 case 0x0f4b:
6672 case 0x0f4c:
6673 case 0x0f4d:
6674 case 0x0f4e:
6675 case 0x0f4f:
6676 if (i386_record_modrm (&ir))
6677 return -1;
6678 ir.reg |= rex_r;
6679 if (ir.dflag == OT_BYTE)
6680 ir.reg &= 0x3;
6681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6682 break;
6683
6684 /* flags */
6685 case 0x9c: /* pushf */
6686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6687 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6688 ir.dflag = 2;
6689 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6690 return -1;
6691 break;
6692
6693 case 0x9d: /* popf */
6694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6696 break;
6697
6698 case 0x9e: /* sahf */
6699 if (ir.regmap[X86_RECORD_R8_REGNUM])
6700 {
6701 ir.addr -= 1;
6702 goto no_support;
6703 }
6704 /* FALLTHROUGH */
6705 case 0xf5: /* cmc */
6706 case 0xf8: /* clc */
6707 case 0xf9: /* stc */
6708 case 0xfc: /* cld */
6709 case 0xfd: /* std */
6710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6711 break;
6712
6713 case 0x9f: /* lahf */
6714 if (ir.regmap[X86_RECORD_R8_REGNUM])
6715 {
6716 ir.addr -= 1;
6717 goto no_support;
6718 }
6719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6721 break;
6722
6723 /* bit operations */
6724 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6725 ir.ot = ir.dflag + OT_WORD;
6726 if (i386_record_modrm (&ir))
6727 return -1;
6728 if (ir.reg < 4)
6729 {
6730 ir.addr -= 2;
6731 opcode = opcode << 8 | ir.modrm;
6732 goto no_support;
6733 }
6734 if (ir.reg != 4)
6735 {
6736 if (ir.mod == 3)
6737 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6738 else
6739 {
6740 if (i386_record_lea_modrm (&ir))
6741 return -1;
6742 }
6743 }
6744 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6745 break;
6746
6747 case 0x0fa3: /* bt Gv, Ev */
6748 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6749 break;
6750
6751 case 0x0fab: /* bts */
6752 case 0x0fb3: /* btr */
6753 case 0x0fbb: /* btc */
6754 ir.ot = ir.dflag + OT_WORD;
6755 if (i386_record_modrm (&ir))
6756 return -1;
6757 if (ir.mod == 3)
6758 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6759 else
6760 {
6761 uint64_t addr64;
6762 if (i386_record_lea_modrm_addr (&ir, &addr64))
6763 return -1;
6764 regcache_raw_read_unsigned (ir.regcache,
6765 ir.regmap[ir.reg | rex_r],
6766 &addr);
6767 switch (ir.dflag)
6768 {
6769 case 0:
6770 addr64 += ((int16_t) addr >> 4) << 4;
6771 break;
6772 case 1:
6773 addr64 += ((int32_t) addr >> 5) << 5;
6774 break;
6775 case 2:
6776 addr64 += ((int64_t) addr >> 6) << 6;
6777 break;
6778 }
6779 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6780 return -1;
6781 if (i386_record_lea_modrm (&ir))
6782 return -1;
6783 }
6784 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6785 break;
6786
6787 case 0x0fbc: /* bsf */
6788 case 0x0fbd: /* bsr */
6789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6791 break;
6792
6793 /* bcd */
6794 case 0x27: /* daa */
6795 case 0x2f: /* das */
6796 case 0x37: /* aaa */
6797 case 0x3f: /* aas */
6798 case 0xd4: /* aam */
6799 case 0xd5: /* aad */
6800 if (ir.regmap[X86_RECORD_R8_REGNUM])
6801 {
6802 ir.addr -= 1;
6803 goto no_support;
6804 }
6805 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6807 break;
6808
6809 /* misc */
6810 case 0x90: /* nop */
6811 if (prefixes & PREFIX_LOCK)
6812 {
6813 ir.addr -= 1;
6814 goto no_support;
6815 }
6816 break;
6817
6818 case 0x9b: /* fwait */
6819 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6820 return -1;
6821 opcode = (uint32_t) opcode8;
6822 ir.addr++;
6823 goto reswitch;
6824 break;
6825
6826 /* XXX */
6827 case 0xcc: /* int3 */
6828 printf_unfiltered (_("Process record does not support instruction "
6829 "int3.\n"));
6830 ir.addr -= 1;
6831 goto no_support;
6832 break;
6833
6834 /* XXX */
6835 case 0xcd: /* int */
6836 {
6837 int ret;
6838 uint8_t interrupt;
6839 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6840 return -1;
6841 ir.addr++;
6842 if (interrupt != 0x80
6843 || tdep->i386_intx80_record == NULL)
6844 {
6845 printf_unfiltered (_("Process record does not support "
6846 "instruction int 0x%02x.\n"),
6847 interrupt);
6848 ir.addr -= 2;
6849 goto no_support;
6850 }
6851 ret = tdep->i386_intx80_record (ir.regcache);
6852 if (ret)
6853 return ret;
6854 }
6855 break;
6856
6857 /* XXX */
6858 case 0xce: /* into */
6859 printf_unfiltered (_("Process record does not support "
6860 "instruction into.\n"));
6861 ir.addr -= 1;
6862 goto no_support;
6863 break;
6864
6865 case 0xfa: /* cli */
6866 case 0xfb: /* sti */
6867 break;
6868
6869 case 0x62: /* bound */
6870 printf_unfiltered (_("Process record does not support "
6871 "instruction bound.\n"));
6872 ir.addr -= 1;
6873 goto no_support;
6874 break;
6875
6876 case 0x0fc8: /* bswap reg */
6877 case 0x0fc9:
6878 case 0x0fca:
6879 case 0x0fcb:
6880 case 0x0fcc:
6881 case 0x0fcd:
6882 case 0x0fce:
6883 case 0x0fcf:
6884 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6885 break;
6886
6887 case 0xd6: /* salc */
6888 if (ir.regmap[X86_RECORD_R8_REGNUM])
6889 {
6890 ir.addr -= 1;
6891 goto no_support;
6892 }
6893 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6895 break;
6896
6897 case 0xe0: /* loopnz */
6898 case 0xe1: /* loopz */
6899 case 0xe2: /* loop */
6900 case 0xe3: /* jecxz */
6901 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6902 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6903 break;
6904
6905 case 0x0f30: /* wrmsr */
6906 printf_unfiltered (_("Process record does not support "
6907 "instruction wrmsr.\n"));
6908 ir.addr -= 2;
6909 goto no_support;
6910 break;
6911
6912 case 0x0f32: /* rdmsr */
6913 printf_unfiltered (_("Process record does not support "
6914 "instruction rdmsr.\n"));
6915 ir.addr -= 2;
6916 goto no_support;
6917 break;
6918
6919 case 0x0f31: /* rdtsc */
6920 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6921 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6922 break;
6923
6924 case 0x0f34: /* sysenter */
6925 {
6926 int ret;
6927 if (ir.regmap[X86_RECORD_R8_REGNUM])
6928 {
6929 ir.addr -= 2;
6930 goto no_support;
6931 }
6932 if (tdep->i386_sysenter_record == NULL)
6933 {
6934 printf_unfiltered (_("Process record does not support "
6935 "instruction sysenter.\n"));
6936 ir.addr -= 2;
6937 goto no_support;
6938 }
6939 ret = tdep->i386_sysenter_record (ir.regcache);
6940 if (ret)
6941 return ret;
6942 }
6943 break;
6944
6945 case 0x0f35: /* sysexit */
6946 printf_unfiltered (_("Process record does not support "
6947 "instruction sysexit.\n"));
6948 ir.addr -= 2;
6949 goto no_support;
6950 break;
6951
6952 case 0x0f05: /* syscall */
6953 {
6954 int ret;
6955 if (tdep->i386_syscall_record == NULL)
6956 {
6957 printf_unfiltered (_("Process record does not support "
6958 "instruction syscall.\n"));
6959 ir.addr -= 2;
6960 goto no_support;
6961 }
6962 ret = tdep->i386_syscall_record (ir.regcache);
6963 if (ret)
6964 return ret;
6965 }
6966 break;
6967
6968 case 0x0f07: /* sysret */
6969 printf_unfiltered (_("Process record does not support "
6970 "instruction sysret.\n"));
6971 ir.addr -= 2;
6972 goto no_support;
6973 break;
6974
6975 case 0x0fa2: /* cpuid */
6976 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6980 break;
6981
6982 case 0xf4: /* hlt */
6983 printf_unfiltered (_("Process record does not support "
6984 "instruction hlt.\n"));
6985 ir.addr -= 1;
6986 goto no_support;
6987 break;
6988
6989 case 0x0f00:
6990 if (i386_record_modrm (&ir))
6991 return -1;
6992 switch (ir.reg)
6993 {
6994 case 0: /* sldt */
6995 case 1: /* str */
6996 if (ir.mod == 3)
6997 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6998 else
6999 {
7000 ir.ot = OT_WORD;
7001 if (i386_record_lea_modrm (&ir))
7002 return -1;
7003 }
7004 break;
7005 case 2: /* lldt */
7006 case 3: /* ltr */
7007 break;
7008 case 4: /* verr */
7009 case 5: /* verw */
7010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7011 break;
7012 default:
7013 ir.addr -= 3;
7014 opcode = opcode << 8 | ir.modrm;
7015 goto no_support;
7016 break;
7017 }
7018 break;
7019
7020 case 0x0f01:
7021 if (i386_record_modrm (&ir))
7022 return -1;
7023 switch (ir.reg)
7024 {
7025 case 0: /* sgdt */
7026 {
7027 uint64_t addr64;
7028
7029 if (ir.mod == 3)
7030 {
7031 ir.addr -= 3;
7032 opcode = opcode << 8 | ir.modrm;
7033 goto no_support;
7034 }
7035 if (ir.override >= 0)
7036 {
7037 if (record_full_memory_query)
7038 {
7039 if (yquery (_("\
7040Process record ignores the memory change of instruction at address %s\n\
7041because it can't get the value of the segment register.\n\
7042Do you want to stop the program?"),
7043 paddress (gdbarch, ir.orig_addr)))
7044 return -1;
7045 }
7046 }
7047 else
7048 {
7049 if (i386_record_lea_modrm_addr (&ir, &addr64))
7050 return -1;
7051 if (record_full_arch_list_add_mem (addr64, 2))
7052 return -1;
7053 addr64 += 2;
7054 if (ir.regmap[X86_RECORD_R8_REGNUM])
7055 {
7056 if (record_full_arch_list_add_mem (addr64, 8))
7057 return -1;
7058 }
7059 else
7060 {
7061 if (record_full_arch_list_add_mem (addr64, 4))
7062 return -1;
7063 }
7064 }
7065 }
7066 break;
7067 case 1:
7068 if (ir.mod == 3)
7069 {
7070 switch (ir.rm)
7071 {
7072 case 0: /* monitor */
7073 break;
7074 case 1: /* mwait */
7075 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7076 break;
7077 default:
7078 ir.addr -= 3;
7079 opcode = opcode << 8 | ir.modrm;
7080 goto no_support;
7081 break;
7082 }
7083 }
7084 else
7085 {
7086 /* sidt */
7087 if (ir.override >= 0)
7088 {
7089 if (record_full_memory_query)
7090 {
7091 if (yquery (_("\
7092Process record ignores the memory change of instruction at address %s\n\
7093because it can't get the value of the segment register.\n\
7094Do you want to stop the program?"),
7095 paddress (gdbarch, ir.orig_addr)))
7096 return -1;
7097 }
7098 }
7099 else
7100 {
7101 uint64_t addr64;
7102
7103 if (i386_record_lea_modrm_addr (&ir, &addr64))
7104 return -1;
7105 if (record_full_arch_list_add_mem (addr64, 2))
7106 return -1;
7107 addr64 += 2;
7108 if (ir.regmap[X86_RECORD_R8_REGNUM])
7109 {
7110 if (record_full_arch_list_add_mem (addr64, 8))
7111 return -1;
7112 }
7113 else
7114 {
7115 if (record_full_arch_list_add_mem (addr64, 4))
7116 return -1;
7117 }
7118 }
7119 }
7120 break;
7121 case 2: /* lgdt */
7122 if (ir.mod == 3)
7123 {
7124 /* xgetbv */
7125 if (ir.rm == 0)
7126 {
7127 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7128 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7129 break;
7130 }
7131 /* xsetbv */
7132 else if (ir.rm == 1)
7133 break;
7134 }
7135 /* Fall through. */
7136 case 3: /* lidt */
7137 if (ir.mod == 3)
7138 {
7139 ir.addr -= 3;
7140 opcode = opcode << 8 | ir.modrm;
7141 goto no_support;
7142 }
7143 break;
7144 case 4: /* smsw */
7145 if (ir.mod == 3)
7146 {
7147 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7148 return -1;
7149 }
7150 else
7151 {
7152 ir.ot = OT_WORD;
7153 if (i386_record_lea_modrm (&ir))
7154 return -1;
7155 }
7156 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7157 break;
7158 case 6: /* lmsw */
7159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7160 break;
7161 case 7: /* invlpg */
7162 if (ir.mod == 3)
7163 {
7164 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7165 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7166 else
7167 {
7168 ir.addr -= 3;
7169 opcode = opcode << 8 | ir.modrm;
7170 goto no_support;
7171 }
7172 }
7173 else
7174 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7175 break;
7176 default:
7177 ir.addr -= 3;
7178 opcode = opcode << 8 | ir.modrm;
7179 goto no_support;
7180 break;
7181 }
7182 break;
7183
7184 case 0x0f08: /* invd */
7185 case 0x0f09: /* wbinvd */
7186 break;
7187
7188 case 0x63: /* arpl */
7189 if (i386_record_modrm (&ir))
7190 return -1;
7191 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7192 {
7193 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7194 ? (ir.reg | rex_r) : ir.rm);
7195 }
7196 else
7197 {
7198 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7199 if (i386_record_lea_modrm (&ir))
7200 return -1;
7201 }
7202 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7203 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7204 break;
7205
7206 case 0x0f02: /* lar */
7207 case 0x0f03: /* lsl */
7208 if (i386_record_modrm (&ir))
7209 return -1;
7210 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7211 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7212 break;
7213
7214 case 0x0f18:
7215 if (i386_record_modrm (&ir))
7216 return -1;
7217 if (ir.mod == 3 && ir.reg == 3)
7218 {
7219 ir.addr -= 3;
7220 opcode = opcode << 8 | ir.modrm;
7221 goto no_support;
7222 }
7223 break;
7224
7225 case 0x0f19:
7226 case 0x0f1a:
7227 case 0x0f1b:
7228 case 0x0f1c:
7229 case 0x0f1d:
7230 case 0x0f1e:
7231 case 0x0f1f:
7232 /* nop (multi byte) */
7233 break;
7234
7235 case 0x0f20: /* mov reg, crN */
7236 case 0x0f22: /* mov crN, reg */
7237 if (i386_record_modrm (&ir))
7238 return -1;
7239 if ((ir.modrm & 0xc0) != 0xc0)
7240 {
7241 ir.addr -= 3;
7242 opcode = opcode << 8 | ir.modrm;
7243 goto no_support;
7244 }
7245 switch (ir.reg)
7246 {
7247 case 0:
7248 case 2:
7249 case 3:
7250 case 4:
7251 case 8:
7252 if (opcode & 2)
7253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7254 else
7255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7256 break;
7257 default:
7258 ir.addr -= 3;
7259 opcode = opcode << 8 | ir.modrm;
7260 goto no_support;
7261 break;
7262 }
7263 break;
7264
7265 case 0x0f21: /* mov reg, drN */
7266 case 0x0f23: /* mov drN, reg */
7267 if (i386_record_modrm (&ir))
7268 return -1;
7269 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7270 || ir.reg == 5 || ir.reg >= 8)
7271 {
7272 ir.addr -= 3;
7273 opcode = opcode << 8 | ir.modrm;
7274 goto no_support;
7275 }
7276 if (opcode & 2)
7277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7278 else
7279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7280 break;
7281
7282 case 0x0f06: /* clts */
7283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7284 break;
7285
7286 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7287
7288 case 0x0f0d: /* 3DNow! prefetch */
7289 break;
7290
7291 case 0x0f0e: /* 3DNow! femms */
7292 case 0x0f77: /* emms */
7293 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7294 goto no_support;
7295 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7296 break;
7297
7298 case 0x0f0f: /* 3DNow! data */
7299 if (i386_record_modrm (&ir))
7300 return -1;
7301 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7302 return -1;
7303 ir.addr++;
7304 switch (opcode8)
7305 {
7306 case 0x0c: /* 3DNow! pi2fw */
7307 case 0x0d: /* 3DNow! pi2fd */
7308 case 0x1c: /* 3DNow! pf2iw */
7309 case 0x1d: /* 3DNow! pf2id */
7310 case 0x8a: /* 3DNow! pfnacc */
7311 case 0x8e: /* 3DNow! pfpnacc */
7312 case 0x90: /* 3DNow! pfcmpge */
7313 case 0x94: /* 3DNow! pfmin */
7314 case 0x96: /* 3DNow! pfrcp */
7315 case 0x97: /* 3DNow! pfrsqrt */
7316 case 0x9a: /* 3DNow! pfsub */
7317 case 0x9e: /* 3DNow! pfadd */
7318 case 0xa0: /* 3DNow! pfcmpgt */
7319 case 0xa4: /* 3DNow! pfmax */
7320 case 0xa6: /* 3DNow! pfrcpit1 */
7321 case 0xa7: /* 3DNow! pfrsqit1 */
7322 case 0xaa: /* 3DNow! pfsubr */
7323 case 0xae: /* 3DNow! pfacc */
7324 case 0xb0: /* 3DNow! pfcmpeq */
7325 case 0xb4: /* 3DNow! pfmul */
7326 case 0xb6: /* 3DNow! pfrcpit2 */
7327 case 0xb7: /* 3DNow! pmulhrw */
7328 case 0xbb: /* 3DNow! pswapd */
7329 case 0xbf: /* 3DNow! pavgusb */
7330 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7331 goto no_support_3dnow_data;
7332 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7333 break;
7334
7335 default:
7336no_support_3dnow_data:
7337 opcode = (opcode << 8) | opcode8;
7338 goto no_support;
7339 break;
7340 }
7341 break;
7342
7343 case 0x0faa: /* rsm */
7344 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7353 break;
7354
7355 case 0x0fae:
7356 if (i386_record_modrm (&ir))
7357 return -1;
7358 switch(ir.reg)
7359 {
7360 case 0: /* fxsave */
7361 {
7362 uint64_t tmpu64;
7363
7364 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7365 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7366 return -1;
7367 if (record_full_arch_list_add_mem (tmpu64, 512))
7368 return -1;
7369 }
7370 break;
7371
7372 case 1: /* fxrstor */
7373 {
7374 int i;
7375
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7377
7378 for (i = I387_MM0_REGNUM (tdep);
7379 i386_mmx_regnum_p (gdbarch, i); i++)
7380 record_full_arch_list_add_reg (ir.regcache, i);
7381
7382 for (i = I387_XMM0_REGNUM (tdep);
7383 i386_xmm_regnum_p (gdbarch, i); i++)
7384 record_full_arch_list_add_reg (ir.regcache, i);
7385
7386 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7387 record_full_arch_list_add_reg (ir.regcache,
7388 I387_MXCSR_REGNUM(tdep));
7389
7390 for (i = I387_ST0_REGNUM (tdep);
7391 i386_fp_regnum_p (gdbarch, i); i++)
7392 record_full_arch_list_add_reg (ir.regcache, i);
7393
7394 for (i = I387_FCTRL_REGNUM (tdep);
7395 i386_fpc_regnum_p (gdbarch, i); i++)
7396 record_full_arch_list_add_reg (ir.regcache, i);
7397 }
7398 break;
7399
7400 case 2: /* ldmxcsr */
7401 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7402 goto no_support;
7403 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7404 break;
7405
7406 case 3: /* stmxcsr */
7407 ir.ot = OT_LONG;
7408 if (i386_record_lea_modrm (&ir))
7409 return -1;
7410 break;
7411
7412 case 5: /* lfence */
7413 case 6: /* mfence */
7414 case 7: /* sfence clflush */
7415 break;
7416
7417 default:
7418 opcode = (opcode << 8) | ir.modrm;
7419 goto no_support;
7420 break;
7421 }
7422 break;
7423
7424 case 0x0fc3: /* movnti */
7425 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7426 if (i386_record_modrm (&ir))
7427 return -1;
7428 if (ir.mod == 3)
7429 goto no_support;
7430 ir.reg |= rex_r;
7431 if (i386_record_lea_modrm (&ir))
7432 return -1;
7433 break;
7434
7435 /* Add prefix to opcode. */
7436 case 0x0f10:
7437 case 0x0f11:
7438 case 0x0f12:
7439 case 0x0f13:
7440 case 0x0f14:
7441 case 0x0f15:
7442 case 0x0f16:
7443 case 0x0f17:
7444 case 0x0f28:
7445 case 0x0f29:
7446 case 0x0f2a:
7447 case 0x0f2b:
7448 case 0x0f2c:
7449 case 0x0f2d:
7450 case 0x0f2e:
7451 case 0x0f2f:
7452 case 0x0f38:
7453 case 0x0f39:
7454 case 0x0f3a:
7455 case 0x0f50:
7456 case 0x0f51:
7457 case 0x0f52:
7458 case 0x0f53:
7459 case 0x0f54:
7460 case 0x0f55:
7461 case 0x0f56:
7462 case 0x0f57:
7463 case 0x0f58:
7464 case 0x0f59:
7465 case 0x0f5a:
7466 case 0x0f5b:
7467 case 0x0f5c:
7468 case 0x0f5d:
7469 case 0x0f5e:
7470 case 0x0f5f:
7471 case 0x0f60:
7472 case 0x0f61:
7473 case 0x0f62:
7474 case 0x0f63:
7475 case 0x0f64:
7476 case 0x0f65:
7477 case 0x0f66:
7478 case 0x0f67:
7479 case 0x0f68:
7480 case 0x0f69:
7481 case 0x0f6a:
7482 case 0x0f6b:
7483 case 0x0f6c:
7484 case 0x0f6d:
7485 case 0x0f6e:
7486 case 0x0f6f:
7487 case 0x0f70:
7488 case 0x0f71:
7489 case 0x0f72:
7490 case 0x0f73:
7491 case 0x0f74:
7492 case 0x0f75:
7493 case 0x0f76:
7494 case 0x0f7c:
7495 case 0x0f7d:
7496 case 0x0f7e:
7497 case 0x0f7f:
7498 case 0x0fb8:
7499 case 0x0fc2:
7500 case 0x0fc4:
7501 case 0x0fc5:
7502 case 0x0fc6:
7503 case 0x0fd0:
7504 case 0x0fd1:
7505 case 0x0fd2:
7506 case 0x0fd3:
7507 case 0x0fd4:
7508 case 0x0fd5:
7509 case 0x0fd6:
7510 case 0x0fd7:
7511 case 0x0fd8:
7512 case 0x0fd9:
7513 case 0x0fda:
7514 case 0x0fdb:
7515 case 0x0fdc:
7516 case 0x0fdd:
7517 case 0x0fde:
7518 case 0x0fdf:
7519 case 0x0fe0:
7520 case 0x0fe1:
7521 case 0x0fe2:
7522 case 0x0fe3:
7523 case 0x0fe4:
7524 case 0x0fe5:
7525 case 0x0fe6:
7526 case 0x0fe7:
7527 case 0x0fe8:
7528 case 0x0fe9:
7529 case 0x0fea:
7530 case 0x0feb:
7531 case 0x0fec:
7532 case 0x0fed:
7533 case 0x0fee:
7534 case 0x0fef:
7535 case 0x0ff0:
7536 case 0x0ff1:
7537 case 0x0ff2:
7538 case 0x0ff3:
7539 case 0x0ff4:
7540 case 0x0ff5:
7541 case 0x0ff6:
7542 case 0x0ff7:
7543 case 0x0ff8:
7544 case 0x0ff9:
7545 case 0x0ffa:
7546 case 0x0ffb:
7547 case 0x0ffc:
7548 case 0x0ffd:
7549 case 0x0ffe:
7550 /* Mask out PREFIX_ADDR. */
7551 switch ((prefixes & ~PREFIX_ADDR))
7552 {
7553 case PREFIX_REPNZ:
7554 opcode |= 0xf20000;
7555 break;
7556 case PREFIX_DATA:
7557 opcode |= 0x660000;
7558 break;
7559 case PREFIX_REPZ:
7560 opcode |= 0xf30000;
7561 break;
7562 }
7563reswitch_prefix_add:
7564 switch (opcode)
7565 {
7566 case 0x0f38:
7567 case 0x660f38:
7568 case 0xf20f38:
7569 case 0x0f3a:
7570 case 0x660f3a:
7571 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7572 return -1;
7573 ir.addr++;
7574 opcode = (uint32_t) opcode8 | opcode << 8;
7575 goto reswitch_prefix_add;
7576 break;
7577
7578 case 0x0f10: /* movups */
7579 case 0x660f10: /* movupd */
7580 case 0xf30f10: /* movss */
7581 case 0xf20f10: /* movsd */
7582 case 0x0f12: /* movlps */
7583 case 0x660f12: /* movlpd */
7584 case 0xf30f12: /* movsldup */
7585 case 0xf20f12: /* movddup */
7586 case 0x0f14: /* unpcklps */
7587 case 0x660f14: /* unpcklpd */
7588 case 0x0f15: /* unpckhps */
7589 case 0x660f15: /* unpckhpd */
7590 case 0x0f16: /* movhps */
7591 case 0x660f16: /* movhpd */
7592 case 0xf30f16: /* movshdup */
7593 case 0x0f28: /* movaps */
7594 case 0x660f28: /* movapd */
7595 case 0x0f2a: /* cvtpi2ps */
7596 case 0x660f2a: /* cvtpi2pd */
7597 case 0xf30f2a: /* cvtsi2ss */
7598 case 0xf20f2a: /* cvtsi2sd */
7599 case 0x0f2c: /* cvttps2pi */
7600 case 0x660f2c: /* cvttpd2pi */
7601 case 0x0f2d: /* cvtps2pi */
7602 case 0x660f2d: /* cvtpd2pi */
7603 case 0x660f3800: /* pshufb */
7604 case 0x660f3801: /* phaddw */
7605 case 0x660f3802: /* phaddd */
7606 case 0x660f3803: /* phaddsw */
7607 case 0x660f3804: /* pmaddubsw */
7608 case 0x660f3805: /* phsubw */
7609 case 0x660f3806: /* phsubd */
7610 case 0x660f3807: /* phsubsw */
7611 case 0x660f3808: /* psignb */
7612 case 0x660f3809: /* psignw */
7613 case 0x660f380a: /* psignd */
7614 case 0x660f380b: /* pmulhrsw */
7615 case 0x660f3810: /* pblendvb */
7616 case 0x660f3814: /* blendvps */
7617 case 0x660f3815: /* blendvpd */
7618 case 0x660f381c: /* pabsb */
7619 case 0x660f381d: /* pabsw */
7620 case 0x660f381e: /* pabsd */
7621 case 0x660f3820: /* pmovsxbw */
7622 case 0x660f3821: /* pmovsxbd */
7623 case 0x660f3822: /* pmovsxbq */
7624 case 0x660f3823: /* pmovsxwd */
7625 case 0x660f3824: /* pmovsxwq */
7626 case 0x660f3825: /* pmovsxdq */
7627 case 0x660f3828: /* pmuldq */
7628 case 0x660f3829: /* pcmpeqq */
7629 case 0x660f382a: /* movntdqa */
7630 case 0x660f3a08: /* roundps */
7631 case 0x660f3a09: /* roundpd */
7632 case 0x660f3a0a: /* roundss */
7633 case 0x660f3a0b: /* roundsd */
7634 case 0x660f3a0c: /* blendps */
7635 case 0x660f3a0d: /* blendpd */
7636 case 0x660f3a0e: /* pblendw */
7637 case 0x660f3a0f: /* palignr */
7638 case 0x660f3a20: /* pinsrb */
7639 case 0x660f3a21: /* insertps */
7640 case 0x660f3a22: /* pinsrd pinsrq */
7641 case 0x660f3a40: /* dpps */
7642 case 0x660f3a41: /* dppd */
7643 case 0x660f3a42: /* mpsadbw */
7644 case 0x660f3a60: /* pcmpestrm */
7645 case 0x660f3a61: /* pcmpestri */
7646 case 0x660f3a62: /* pcmpistrm */
7647 case 0x660f3a63: /* pcmpistri */
7648 case 0x0f51: /* sqrtps */
7649 case 0x660f51: /* sqrtpd */
7650 case 0xf20f51: /* sqrtsd */
7651 case 0xf30f51: /* sqrtss */
7652 case 0x0f52: /* rsqrtps */
7653 case 0xf30f52: /* rsqrtss */
7654 case 0x0f53: /* rcpps */
7655 case 0xf30f53: /* rcpss */
7656 case 0x0f54: /* andps */
7657 case 0x660f54: /* andpd */
7658 case 0x0f55: /* andnps */
7659 case 0x660f55: /* andnpd */
7660 case 0x0f56: /* orps */
7661 case 0x660f56: /* orpd */
7662 case 0x0f57: /* xorps */
7663 case 0x660f57: /* xorpd */
7664 case 0x0f58: /* addps */
7665 case 0x660f58: /* addpd */
7666 case 0xf20f58: /* addsd */
7667 case 0xf30f58: /* addss */
7668 case 0x0f59: /* mulps */
7669 case 0x660f59: /* mulpd */
7670 case 0xf20f59: /* mulsd */
7671 case 0xf30f59: /* mulss */
7672 case 0x0f5a: /* cvtps2pd */
7673 case 0x660f5a: /* cvtpd2ps */
7674 case 0xf20f5a: /* cvtsd2ss */
7675 case 0xf30f5a: /* cvtss2sd */
7676 case 0x0f5b: /* cvtdq2ps */
7677 case 0x660f5b: /* cvtps2dq */
7678 case 0xf30f5b: /* cvttps2dq */
7679 case 0x0f5c: /* subps */
7680 case 0x660f5c: /* subpd */
7681 case 0xf20f5c: /* subsd */
7682 case 0xf30f5c: /* subss */
7683 case 0x0f5d: /* minps */
7684 case 0x660f5d: /* minpd */
7685 case 0xf20f5d: /* minsd */
7686 case 0xf30f5d: /* minss */
7687 case 0x0f5e: /* divps */
7688 case 0x660f5e: /* divpd */
7689 case 0xf20f5e: /* divsd */
7690 case 0xf30f5e: /* divss */
7691 case 0x0f5f: /* maxps */
7692 case 0x660f5f: /* maxpd */
7693 case 0xf20f5f: /* maxsd */
7694 case 0xf30f5f: /* maxss */
7695 case 0x660f60: /* punpcklbw */
7696 case 0x660f61: /* punpcklwd */
7697 case 0x660f62: /* punpckldq */
7698 case 0x660f63: /* packsswb */
7699 case 0x660f64: /* pcmpgtb */
7700 case 0x660f65: /* pcmpgtw */
7701 case 0x660f66: /* pcmpgtd */
7702 case 0x660f67: /* packuswb */
7703 case 0x660f68: /* punpckhbw */
7704 case 0x660f69: /* punpckhwd */
7705 case 0x660f6a: /* punpckhdq */
7706 case 0x660f6b: /* packssdw */
7707 case 0x660f6c: /* punpcklqdq */
7708 case 0x660f6d: /* punpckhqdq */
7709 case 0x660f6e: /* movd */
7710 case 0x660f6f: /* movdqa */
7711 case 0xf30f6f: /* movdqu */
7712 case 0x660f70: /* pshufd */
7713 case 0xf20f70: /* pshuflw */
7714 case 0xf30f70: /* pshufhw */
7715 case 0x660f74: /* pcmpeqb */
7716 case 0x660f75: /* pcmpeqw */
7717 case 0x660f76: /* pcmpeqd */
7718 case 0x660f7c: /* haddpd */
7719 case 0xf20f7c: /* haddps */
7720 case 0x660f7d: /* hsubpd */
7721 case 0xf20f7d: /* hsubps */
7722 case 0xf30f7e: /* movq */
7723 case 0x0fc2: /* cmpps */
7724 case 0x660fc2: /* cmppd */
7725 case 0xf20fc2: /* cmpsd */
7726 case 0xf30fc2: /* cmpss */
7727 case 0x660fc4: /* pinsrw */
7728 case 0x0fc6: /* shufps */
7729 case 0x660fc6: /* shufpd */
7730 case 0x660fd0: /* addsubpd */
7731 case 0xf20fd0: /* addsubps */
7732 case 0x660fd1: /* psrlw */
7733 case 0x660fd2: /* psrld */
7734 case 0x660fd3: /* psrlq */
7735 case 0x660fd4: /* paddq */
7736 case 0x660fd5: /* pmullw */
7737 case 0xf30fd6: /* movq2dq */
7738 case 0x660fd8: /* psubusb */
7739 case 0x660fd9: /* psubusw */
7740 case 0x660fda: /* pminub */
7741 case 0x660fdb: /* pand */
7742 case 0x660fdc: /* paddusb */
7743 case 0x660fdd: /* paddusw */
7744 case 0x660fde: /* pmaxub */
7745 case 0x660fdf: /* pandn */
7746 case 0x660fe0: /* pavgb */
7747 case 0x660fe1: /* psraw */
7748 case 0x660fe2: /* psrad */
7749 case 0x660fe3: /* pavgw */
7750 case 0x660fe4: /* pmulhuw */
7751 case 0x660fe5: /* pmulhw */
7752 case 0x660fe6: /* cvttpd2dq */
7753 case 0xf20fe6: /* cvtpd2dq */
7754 case 0xf30fe6: /* cvtdq2pd */
7755 case 0x660fe8: /* psubsb */
7756 case 0x660fe9: /* psubsw */
7757 case 0x660fea: /* pminsw */
7758 case 0x660feb: /* por */
7759 case 0x660fec: /* paddsb */
7760 case 0x660fed: /* paddsw */
7761 case 0x660fee: /* pmaxsw */
7762 case 0x660fef: /* pxor */
7763 case 0xf20ff0: /* lddqu */
7764 case 0x660ff1: /* psllw */
7765 case 0x660ff2: /* pslld */
7766 case 0x660ff3: /* psllq */
7767 case 0x660ff4: /* pmuludq */
7768 case 0x660ff5: /* pmaddwd */
7769 case 0x660ff6: /* psadbw */
7770 case 0x660ff8: /* psubb */
7771 case 0x660ff9: /* psubw */
7772 case 0x660ffa: /* psubd */
7773 case 0x660ffb: /* psubq */
7774 case 0x660ffc: /* paddb */
7775 case 0x660ffd: /* paddw */
7776 case 0x660ffe: /* paddd */
7777 if (i386_record_modrm (&ir))
7778 return -1;
7779 ir.reg |= rex_r;
7780 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7781 goto no_support;
7782 record_full_arch_list_add_reg (ir.regcache,
7783 I387_XMM0_REGNUM (tdep) + ir.reg);
7784 if ((opcode & 0xfffffffc) == 0x660f3a60)
7785 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7786 break;
7787
7788 case 0x0f11: /* movups */
7789 case 0x660f11: /* movupd */
7790 case 0xf30f11: /* movss */
7791 case 0xf20f11: /* movsd */
7792 case 0x0f13: /* movlps */
7793 case 0x660f13: /* movlpd */
7794 case 0x0f17: /* movhps */
7795 case 0x660f17: /* movhpd */
7796 case 0x0f29: /* movaps */
7797 case 0x660f29: /* movapd */
7798 case 0x660f3a14: /* pextrb */
7799 case 0x660f3a15: /* pextrw */
7800 case 0x660f3a16: /* pextrd pextrq */
7801 case 0x660f3a17: /* extractps */
7802 case 0x660f7f: /* movdqa */
7803 case 0xf30f7f: /* movdqu */
7804 if (i386_record_modrm (&ir))
7805 return -1;
7806 if (ir.mod == 3)
7807 {
7808 if (opcode == 0x0f13 || opcode == 0x660f13
7809 || opcode == 0x0f17 || opcode == 0x660f17)
7810 goto no_support;
7811 ir.rm |= ir.rex_b;
7812 if (!i386_xmm_regnum_p (gdbarch,
7813 I387_XMM0_REGNUM (tdep) + ir.rm))
7814 goto no_support;
7815 record_full_arch_list_add_reg (ir.regcache,
7816 I387_XMM0_REGNUM (tdep) + ir.rm);
7817 }
7818 else
7819 {
7820 switch (opcode)
7821 {
7822 case 0x660f3a14:
7823 ir.ot = OT_BYTE;
7824 break;
7825 case 0x660f3a15:
7826 ir.ot = OT_WORD;
7827 break;
7828 case 0x660f3a16:
7829 ir.ot = OT_LONG;
7830 break;
7831 case 0x660f3a17:
7832 ir.ot = OT_QUAD;
7833 break;
7834 default:
7835 ir.ot = OT_DQUAD;
7836 break;
7837 }
7838 if (i386_record_lea_modrm (&ir))
7839 return -1;
7840 }
7841 break;
7842
7843 case 0x0f2b: /* movntps */
7844 case 0x660f2b: /* movntpd */
7845 case 0x0fe7: /* movntq */
7846 case 0x660fe7: /* movntdq */
7847 if (ir.mod == 3)
7848 goto no_support;
7849 if (opcode == 0x0fe7)
7850 ir.ot = OT_QUAD;
7851 else
7852 ir.ot = OT_DQUAD;
7853 if (i386_record_lea_modrm (&ir))
7854 return -1;
7855 break;
7856
7857 case 0xf30f2c: /* cvttss2si */
7858 case 0xf20f2c: /* cvttsd2si */
7859 case 0xf30f2d: /* cvtss2si */
7860 case 0xf20f2d: /* cvtsd2si */
7861 case 0xf20f38f0: /* crc32 */
7862 case 0xf20f38f1: /* crc32 */
7863 case 0x0f50: /* movmskps */
7864 case 0x660f50: /* movmskpd */
7865 case 0x0fc5: /* pextrw */
7866 case 0x660fc5: /* pextrw */
7867 case 0x0fd7: /* pmovmskb */
7868 case 0x660fd7: /* pmovmskb */
7869 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7870 break;
7871
7872 case 0x0f3800: /* pshufb */
7873 case 0x0f3801: /* phaddw */
7874 case 0x0f3802: /* phaddd */
7875 case 0x0f3803: /* phaddsw */
7876 case 0x0f3804: /* pmaddubsw */
7877 case 0x0f3805: /* phsubw */
7878 case 0x0f3806: /* phsubd */
7879 case 0x0f3807: /* phsubsw */
7880 case 0x0f3808: /* psignb */
7881 case 0x0f3809: /* psignw */
7882 case 0x0f380a: /* psignd */
7883 case 0x0f380b: /* pmulhrsw */
7884 case 0x0f381c: /* pabsb */
7885 case 0x0f381d: /* pabsw */
7886 case 0x0f381e: /* pabsd */
7887 case 0x0f382b: /* packusdw */
7888 case 0x0f3830: /* pmovzxbw */
7889 case 0x0f3831: /* pmovzxbd */
7890 case 0x0f3832: /* pmovzxbq */
7891 case 0x0f3833: /* pmovzxwd */
7892 case 0x0f3834: /* pmovzxwq */
7893 case 0x0f3835: /* pmovzxdq */
7894 case 0x0f3837: /* pcmpgtq */
7895 case 0x0f3838: /* pminsb */
7896 case 0x0f3839: /* pminsd */
7897 case 0x0f383a: /* pminuw */
7898 case 0x0f383b: /* pminud */
7899 case 0x0f383c: /* pmaxsb */
7900 case 0x0f383d: /* pmaxsd */
7901 case 0x0f383e: /* pmaxuw */
7902 case 0x0f383f: /* pmaxud */
7903 case 0x0f3840: /* pmulld */
7904 case 0x0f3841: /* phminposuw */
7905 case 0x0f3a0f: /* palignr */
7906 case 0x0f60: /* punpcklbw */
7907 case 0x0f61: /* punpcklwd */
7908 case 0x0f62: /* punpckldq */
7909 case 0x0f63: /* packsswb */
7910 case 0x0f64: /* pcmpgtb */
7911 case 0x0f65: /* pcmpgtw */
7912 case 0x0f66: /* pcmpgtd */
7913 case 0x0f67: /* packuswb */
7914 case 0x0f68: /* punpckhbw */
7915 case 0x0f69: /* punpckhwd */
7916 case 0x0f6a: /* punpckhdq */
7917 case 0x0f6b: /* packssdw */
7918 case 0x0f6e: /* movd */
7919 case 0x0f6f: /* movq */
7920 case 0x0f70: /* pshufw */
7921 case 0x0f74: /* pcmpeqb */
7922 case 0x0f75: /* pcmpeqw */
7923 case 0x0f76: /* pcmpeqd */
7924 case 0x0fc4: /* pinsrw */
7925 case 0x0fd1: /* psrlw */
7926 case 0x0fd2: /* psrld */
7927 case 0x0fd3: /* psrlq */
7928 case 0x0fd4: /* paddq */
7929 case 0x0fd5: /* pmullw */
7930 case 0xf20fd6: /* movdq2q */
7931 case 0x0fd8: /* psubusb */
7932 case 0x0fd9: /* psubusw */
7933 case 0x0fda: /* pminub */
7934 case 0x0fdb: /* pand */
7935 case 0x0fdc: /* paddusb */
7936 case 0x0fdd: /* paddusw */
7937 case 0x0fde: /* pmaxub */
7938 case 0x0fdf: /* pandn */
7939 case 0x0fe0: /* pavgb */
7940 case 0x0fe1: /* psraw */
7941 case 0x0fe2: /* psrad */
7942 case 0x0fe3: /* pavgw */
7943 case 0x0fe4: /* pmulhuw */
7944 case 0x0fe5: /* pmulhw */
7945 case 0x0fe8: /* psubsb */
7946 case 0x0fe9: /* psubsw */
7947 case 0x0fea: /* pminsw */
7948 case 0x0feb: /* por */
7949 case 0x0fec: /* paddsb */
7950 case 0x0fed: /* paddsw */
7951 case 0x0fee: /* pmaxsw */
7952 case 0x0fef: /* pxor */
7953 case 0x0ff1: /* psllw */
7954 case 0x0ff2: /* pslld */
7955 case 0x0ff3: /* psllq */
7956 case 0x0ff4: /* pmuludq */
7957 case 0x0ff5: /* pmaddwd */
7958 case 0x0ff6: /* psadbw */
7959 case 0x0ff8: /* psubb */
7960 case 0x0ff9: /* psubw */
7961 case 0x0ffa: /* psubd */
7962 case 0x0ffb: /* psubq */
7963 case 0x0ffc: /* paddb */
7964 case 0x0ffd: /* paddw */
7965 case 0x0ffe: /* paddd */
7966 if (i386_record_modrm (&ir))
7967 return -1;
7968 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7969 goto no_support;
7970 record_full_arch_list_add_reg (ir.regcache,
7971 I387_MM0_REGNUM (tdep) + ir.reg);
7972 break;
7973
7974 case 0x0f71: /* psllw */
7975 case 0x0f72: /* pslld */
7976 case 0x0f73: /* psllq */
7977 if (i386_record_modrm (&ir))
7978 return -1;
7979 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7980 goto no_support;
7981 record_full_arch_list_add_reg (ir.regcache,
7982 I387_MM0_REGNUM (tdep) + ir.rm);
7983 break;
7984
7985 case 0x660f71: /* psllw */
7986 case 0x660f72: /* pslld */
7987 case 0x660f73: /* psllq */
7988 if (i386_record_modrm (&ir))
7989 return -1;
7990 ir.rm |= ir.rex_b;
7991 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7992 goto no_support;
7993 record_full_arch_list_add_reg (ir.regcache,
7994 I387_XMM0_REGNUM (tdep) + ir.rm);
7995 break;
7996
7997 case 0x0f7e: /* movd */
7998 case 0x660f7e: /* movd */
7999 if (i386_record_modrm (&ir))
8000 return -1;
8001 if (ir.mod == 3)
8002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8003 else
8004 {
8005 if (ir.dflag == 2)
8006 ir.ot = OT_QUAD;
8007 else
8008 ir.ot = OT_LONG;
8009 if (i386_record_lea_modrm (&ir))
8010 return -1;
8011 }
8012 break;
8013
8014 case 0x0f7f: /* movq */
8015 if (i386_record_modrm (&ir))
8016 return -1;
8017 if (ir.mod == 3)
8018 {
8019 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8020 goto no_support;
8021 record_full_arch_list_add_reg (ir.regcache,
8022 I387_MM0_REGNUM (tdep) + ir.rm);
8023 }
8024 else
8025 {
8026 ir.ot = OT_QUAD;
8027 if (i386_record_lea_modrm (&ir))
8028 return -1;
8029 }
8030 break;
8031
8032 case 0xf30fb8: /* popcnt */
8033 if (i386_record_modrm (&ir))
8034 return -1;
8035 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8036 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8037 break;
8038
8039 case 0x660fd6: /* movq */
8040 if (i386_record_modrm (&ir))
8041 return -1;
8042 if (ir.mod == 3)
8043 {
8044 ir.rm |= ir.rex_b;
8045 if (!i386_xmm_regnum_p (gdbarch,
8046 I387_XMM0_REGNUM (tdep) + ir.rm))
8047 goto no_support;
8048 record_full_arch_list_add_reg (ir.regcache,
8049 I387_XMM0_REGNUM (tdep) + ir.rm);
8050 }
8051 else
8052 {
8053 ir.ot = OT_QUAD;
8054 if (i386_record_lea_modrm (&ir))
8055 return -1;
8056 }
8057 break;
8058
8059 case 0x660f3817: /* ptest */
8060 case 0x0f2e: /* ucomiss */
8061 case 0x660f2e: /* ucomisd */
8062 case 0x0f2f: /* comiss */
8063 case 0x660f2f: /* comisd */
8064 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8065 break;
8066
8067 case 0x0ff7: /* maskmovq */
8068 regcache_raw_read_unsigned (ir.regcache,
8069 ir.regmap[X86_RECORD_REDI_REGNUM],
8070 &addr);
8071 if (record_full_arch_list_add_mem (addr, 64))
8072 return -1;
8073 break;
8074
8075 case 0x660ff7: /* maskmovdqu */
8076 regcache_raw_read_unsigned (ir.regcache,
8077 ir.regmap[X86_RECORD_REDI_REGNUM],
8078 &addr);
8079 if (record_full_arch_list_add_mem (addr, 128))
8080 return -1;
8081 break;
8082
8083 default:
8084 goto no_support;
8085 break;
8086 }
8087 break;
8088
8089 default:
8090 goto no_support;
8091 break;
8092 }
8093
8094 /* In the future, maybe still need to deal with need_dasm. */
8095 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8096 if (record_full_arch_list_add_end ())
8097 return -1;
8098
8099 return 0;
8100
8101 no_support:
8102 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8103 "at address %s.\n"),
8104 (unsigned int) (opcode),
8105 paddress (gdbarch, ir.orig_addr));
8106 return -1;
8107}
8108
8109static const int i386_record_regmap[] =
8110{
8111 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8112 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8113 0, 0, 0, 0, 0, 0, 0, 0,
8114 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8115 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8116};
8117
8118/* Check that the given address appears suitable for a fast
8119 tracepoint, which on x86-64 means that we need an instruction of at
8120 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8121 jump and not have to worry about program jumps to an address in the
8122 middle of the tracepoint jump. On x86, it may be possible to use
8123 4-byte jumps with a 2-byte offset to a trampoline located in the
8124 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8125 of instruction to replace, and 0 if not, plus an explanatory
8126 string. */
8127
8128static int
8129i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8130 std::string *msg)
8131{
8132 int len, jumplen;
8133
8134 /* Ask the target for the minimum instruction length supported. */
8135 jumplen = target_get_min_fast_tracepoint_insn_len ();
8136
8137 if (jumplen < 0)
8138 {
8139 /* If the target does not support the get_min_fast_tracepoint_insn_len
8140 operation, assume that fast tracepoints will always be implemented
8141 using 4-byte relative jumps on both x86 and x86-64. */
8142 jumplen = 5;
8143 }
8144 else if (jumplen == 0)
8145 {
8146 /* If the target does support get_min_fast_tracepoint_insn_len but
8147 returns zero, then the IPA has not loaded yet. In this case,
8148 we optimistically assume that truncated 2-byte relative jumps
8149 will be available on x86, and compensate later if this assumption
8150 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8151 jumps will always be used. */
8152 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8153 }
8154
8155 /* Check for fit. */
8156 len = gdb_insn_length (gdbarch, addr);
8157
8158 if (len < jumplen)
8159 {
8160 /* Return a bit of target-specific detail to add to the caller's
8161 generic failure message. */
8162 if (msg)
8163 *msg = string_printf (_("; instruction is only %d bytes long, "
8164 "need at least %d bytes for the jump"),
8165 len, jumplen);
8166 return 0;
8167 }
8168 else
8169 {
8170 if (msg)
8171 msg->clear ();
8172 return 1;
8173 }
8174}
8175
8176/* Return a floating-point format for a floating-point variable of
8177 length LEN in bits. If non-NULL, NAME is the name of its type.
8178 If no suitable type is found, return NULL. */
8179
8180static const struct floatformat **
8181i386_floatformat_for_type (struct gdbarch *gdbarch,
8182 const char *name, int len)
8183{
8184 if (len == 128 && name)
8185 if (strcmp (name, "__float128") == 0
8186 || strcmp (name, "_Float128") == 0
8187 || strcmp (name, "complex _Float128") == 0
8188 || strcmp (name, "complex(kind=16)") == 0
8189 || strcmp (name, "real(kind=16)") == 0)
8190 return floatformats_ia64_quad;
8191
8192 return default_floatformat_for_type (gdbarch, name, len);
8193}
8194
8195static int
8196i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8197 struct tdesc_arch_data *tdesc_data)
8198{
8199 const struct target_desc *tdesc = tdep->tdesc;
8200 const struct tdesc_feature *feature_core;
8201
8202 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8203 *feature_avx512, *feature_pkeys, *feature_segments;
8204 int i, num_regs, valid_p;
8205
8206 if (! tdesc_has_registers (tdesc))
8207 return 0;
8208
8209 /* Get core registers. */
8210 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8211 if (feature_core == NULL)
8212 return 0;
8213
8214 /* Get SSE registers. */
8215 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8216
8217 /* Try AVX registers. */
8218 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8219
8220 /* Try MPX registers. */
8221 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8222
8223 /* Try AVX512 registers. */
8224 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8225
8226 /* Try segment base registers. */
8227 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8228
8229 /* Try PKEYS */
8230 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8231
8232 valid_p = 1;
8233
8234 /* The XCR0 bits. */
8235 if (feature_avx512)
8236 {
8237 /* AVX512 register description requires AVX register description. */
8238 if (!feature_avx)
8239 return 0;
8240
8241 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8242
8243 /* It may have been set by OSABI initialization function. */
8244 if (tdep->k0_regnum < 0)
8245 {
8246 tdep->k_register_names = i386_k_names;
8247 tdep->k0_regnum = I386_K0_REGNUM;
8248 }
8249
8250 for (i = 0; i < I387_NUM_K_REGS; i++)
8251 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8252 tdep->k0_regnum + i,
8253 i386_k_names[i]);
8254
8255 if (tdep->num_zmm_regs == 0)
8256 {
8257 tdep->zmmh_register_names = i386_zmmh_names;
8258 tdep->num_zmm_regs = 8;
8259 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8260 }
8261
8262 for (i = 0; i < tdep->num_zmm_regs; i++)
8263 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8264 tdep->zmm0h_regnum + i,
8265 tdep->zmmh_register_names[i]);
8266
8267 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8268 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8269 tdep->xmm16_regnum + i,
8270 tdep->xmm_avx512_register_names[i]);
8271
8272 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8273 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8274 tdep->ymm16h_regnum + i,
8275 tdep->ymm16h_register_names[i]);
8276 }
8277 if (feature_avx)
8278 {
8279 /* AVX register description requires SSE register description. */
8280 if (!feature_sse)
8281 return 0;
8282
8283 if (!feature_avx512)
8284 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8285
8286 /* It may have been set by OSABI initialization function. */
8287 if (tdep->num_ymm_regs == 0)
8288 {
8289 tdep->ymmh_register_names = i386_ymmh_names;
8290 tdep->num_ymm_regs = 8;
8291 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8292 }
8293
8294 for (i = 0; i < tdep->num_ymm_regs; i++)
8295 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8296 tdep->ymm0h_regnum + i,
8297 tdep->ymmh_register_names[i]);
8298 }
8299 else if (feature_sse)
8300 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8301 else
8302 {
8303 tdep->xcr0 = X86_XSTATE_X87_MASK;
8304 tdep->num_xmm_regs = 0;
8305 }
8306
8307 num_regs = tdep->num_core_regs;
8308 for (i = 0; i < num_regs; i++)
8309 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8310 tdep->register_names[i]);
8311
8312 if (feature_sse)
8313 {
8314 /* Need to include %mxcsr, so add one. */
8315 num_regs += tdep->num_xmm_regs + 1;
8316 for (; i < num_regs; i++)
8317 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8318 tdep->register_names[i]);
8319 }
8320
8321 if (feature_mpx)
8322 {
8323 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8324
8325 if (tdep->bnd0r_regnum < 0)
8326 {
8327 tdep->mpx_register_names = i386_mpx_names;
8328 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8329 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8330 }
8331
8332 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8333 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8334 I387_BND0R_REGNUM (tdep) + i,
8335 tdep->mpx_register_names[i]);
8336 }
8337
8338 if (feature_segments)
8339 {
8340 if (tdep->fsbase_regnum < 0)
8341 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8342 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8343 tdep->fsbase_regnum, "fs_base");
8344 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8345 tdep->fsbase_regnum + 1, "gs_base");
8346 }
8347
8348 if (feature_pkeys)
8349 {
8350 tdep->xcr0 |= X86_XSTATE_PKRU;
8351 if (tdep->pkru_regnum < 0)
8352 {
8353 tdep->pkeys_register_names = i386_pkeys_names;
8354 tdep->pkru_regnum = I386_PKRU_REGNUM;
8355 tdep->num_pkeys_regs = 1;
8356 }
8357
8358 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8359 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8360 I387_PKRU_REGNUM (tdep) + i,
8361 tdep->pkeys_register_names[i]);
8362 }
8363
8364 return valid_p;
8365}
8366
8367\f
8368
8369/* Implement the type_align gdbarch function. */
8370
8371static ULONGEST
8372i386_type_align (struct gdbarch *gdbarch, struct type *type)
8373{
8374 type = check_typedef (type);
8375
8376 if (gdbarch_ptr_bit (gdbarch) == 32)
8377 {
8378 if ((TYPE_CODE (type) == TYPE_CODE_INT
8379 || TYPE_CODE (type) == TYPE_CODE_FLT)
8380 && TYPE_LENGTH (type) > 4)
8381 return 4;
8382
8383 /* Handle x86's funny long double. */
8384 if (TYPE_CODE (type) == TYPE_CODE_FLT
8385 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8386 return 4;
8387 }
8388
8389 return 0;
8390}
8391
8392\f
8393/* Note: This is called for both i386 and amd64. */
8394
8395static struct gdbarch *
8396i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8397{
8398 struct gdbarch_tdep *tdep;
8399 struct gdbarch *gdbarch;
8400 struct tdesc_arch_data *tdesc_data;
8401 const struct target_desc *tdesc;
8402 int mm0_regnum;
8403 int ymm0_regnum;
8404 int bnd0_regnum;
8405 int num_bnd_cooked;
8406
8407 /* If there is already a candidate, use it. */
8408 arches = gdbarch_list_lookup_by_info (arches, &info);
8409 if (arches != NULL)
8410 return arches->gdbarch;
8411
8412 /* Allocate space for the new architecture. Assume i386 for now. */
8413 tdep = XCNEW (struct gdbarch_tdep);
8414 gdbarch = gdbarch_alloc (&info, tdep);
8415
8416 /* General-purpose registers. */
8417 tdep->gregset_reg_offset = NULL;
8418 tdep->gregset_num_regs = I386_NUM_GREGS;
8419 tdep->sizeof_gregset = 0;
8420
8421 /* Floating-point registers. */
8422 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8423 tdep->fpregset = &i386_fpregset;
8424
8425 /* The default settings include the FPU registers, the MMX registers
8426 and the SSE registers. This can be overridden for a specific ABI
8427 by adjusting the members `st0_regnum', `mm0_regnum' and
8428 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8429 will show up in the output of "info all-registers". */
8430
8431 tdep->st0_regnum = I386_ST0_REGNUM;
8432
8433 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8434 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8435
8436 tdep->jb_pc_offset = -1;
8437 tdep->struct_return = pcc_struct_return;
8438 tdep->sigtramp_start = 0;
8439 tdep->sigtramp_end = 0;
8440 tdep->sigtramp_p = i386_sigtramp_p;
8441 tdep->sigcontext_addr = NULL;
8442 tdep->sc_reg_offset = NULL;
8443 tdep->sc_pc_offset = -1;
8444 tdep->sc_sp_offset = -1;
8445
8446 tdep->xsave_xcr0_offset = -1;
8447
8448 tdep->record_regmap = i386_record_regmap;
8449
8450 set_gdbarch_type_align (gdbarch, i386_type_align);
8451
8452 /* The format used for `long double' on almost all i386 targets is
8453 the i387 extended floating-point format. In fact, of all targets
8454 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8455 on having a `long double' that's not `long' at all. */
8456 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8457
8458 /* Although the i387 extended floating-point has only 80 significant
8459 bits, a `long double' actually takes up 96, probably to enforce
8460 alignment. */
8461 set_gdbarch_long_double_bit (gdbarch, 96);
8462
8463 /* Support for floating-point data type variants. */
8464 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8465
8466 /* Register numbers of various important registers. */
8467 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8468 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8469 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8470 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8471
8472 /* NOTE: kettenis/20040418: GCC does have two possible register
8473 numbering schemes on the i386: dbx and SVR4. These schemes
8474 differ in how they number %ebp, %esp, %eflags, and the
8475 floating-point registers, and are implemented by the arrays
8476 dbx_register_map[] and svr4_dbx_register_map in
8477 gcc/config/i386.c. GCC also defines a third numbering scheme in
8478 gcc/config/i386.c, which it designates as the "default" register
8479 map used in 64bit mode. This last register numbering scheme is
8480 implemented in dbx64_register_map, and is used for AMD64; see
8481 amd64-tdep.c.
8482
8483 Currently, each GCC i386 target always uses the same register
8484 numbering scheme across all its supported debugging formats
8485 i.e. SDB (COFF), stabs and DWARF 2. This is because
8486 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8487 DBX_REGISTER_NUMBER macro which is defined by each target's
8488 respective config header in a manner independent of the requested
8489 output debugging format.
8490
8491 This does not match the arrangement below, which presumes that
8492 the SDB and stabs numbering schemes differ from the DWARF and
8493 DWARF 2 ones. The reason for this arrangement is that it is
8494 likely to get the numbering scheme for the target's
8495 default/native debug format right. For targets where GCC is the
8496 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8497 targets where the native toolchain uses a different numbering
8498 scheme for a particular debug format (stabs-in-ELF on Solaris)
8499 the defaults below will have to be overridden, like
8500 i386_elf_init_abi() does. */
8501
8502 /* Use the dbx register numbering scheme for stabs and COFF. */
8503 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8504 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8505
8506 /* Use the SVR4 register numbering scheme for DWARF 2. */
8507 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8508
8509 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8510 be in use on any of the supported i386 targets. */
8511
8512 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8513
8514 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8515
8516 /* Call dummy code. */
8517 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8518 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8519 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8520 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8521
8522 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8523 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8524 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8525
8526 set_gdbarch_return_value (gdbarch, i386_return_value);
8527
8528 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8529
8530 /* Stack grows downward. */
8531 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8532
8533 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8534 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8535
8536 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8537 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8538
8539 set_gdbarch_frame_args_skip (gdbarch, 8);
8540
8541 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8542
8543 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8544
8545 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8546
8547 /* Add the i386 register groups. */
8548 i386_add_reggroups (gdbarch);
8549 tdep->register_reggroup_p = i386_register_reggroup_p;
8550
8551 /* Helper for function argument information. */
8552 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8553
8554 /* Hook the function epilogue frame unwinder. This unwinder is
8555 appended to the list first, so that it supercedes the DWARF
8556 unwinder in function epilogues (where the DWARF unwinder
8557 currently fails). */
8558 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8559
8560 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8561 to the list before the prologue-based unwinders, so that DWARF
8562 CFI info will be used if it is available. */
8563 dwarf2_append_unwinders (gdbarch);
8564
8565 frame_base_set_default (gdbarch, &i386_frame_base);
8566
8567 /* Pseudo registers may be changed by amd64_init_abi. */
8568 set_gdbarch_pseudo_register_read_value (gdbarch,
8569 i386_pseudo_register_read_value);
8570 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8571 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8572 i386_ax_pseudo_register_collect);
8573
8574 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8575 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8576
8577 /* Override the normal target description method to make the AVX
8578 upper halves anonymous. */
8579 set_gdbarch_register_name (gdbarch, i386_register_name);
8580
8581 /* Even though the default ABI only includes general-purpose registers,
8582 floating-point registers and the SSE registers, we have to leave a
8583 gap for the upper AVX, MPX and AVX512 registers. */
8584 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8585
8586 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8587
8588 /* Get the x86 target description from INFO. */
8589 tdesc = info.target_desc;
8590 if (! tdesc_has_registers (tdesc))
8591 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8592 tdep->tdesc = tdesc;
8593
8594 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8595 tdep->register_names = i386_register_names;
8596
8597 /* No upper YMM registers. */
8598 tdep->ymmh_register_names = NULL;
8599 tdep->ymm0h_regnum = -1;
8600
8601 /* No upper ZMM registers. */
8602 tdep->zmmh_register_names = NULL;
8603 tdep->zmm0h_regnum = -1;
8604
8605 /* No high XMM registers. */
8606 tdep->xmm_avx512_register_names = NULL;
8607 tdep->xmm16_regnum = -1;
8608
8609 /* No upper YMM16-31 registers. */
8610 tdep->ymm16h_register_names = NULL;
8611 tdep->ymm16h_regnum = -1;
8612
8613 tdep->num_byte_regs = 8;
8614 tdep->num_word_regs = 8;
8615 tdep->num_dword_regs = 0;
8616 tdep->num_mmx_regs = 8;
8617 tdep->num_ymm_regs = 0;
8618
8619 /* No MPX registers. */
8620 tdep->bnd0r_regnum = -1;
8621 tdep->bndcfgu_regnum = -1;
8622
8623 /* No AVX512 registers. */
8624 tdep->k0_regnum = -1;
8625 tdep->num_zmm_regs = 0;
8626 tdep->num_ymm_avx512_regs = 0;
8627 tdep->num_xmm_avx512_regs = 0;
8628
8629 /* No PKEYS registers */
8630 tdep->pkru_regnum = -1;
8631 tdep->num_pkeys_regs = 0;
8632
8633 /* No segment base registers. */
8634 tdep->fsbase_regnum = -1;
8635
8636 tdesc_data = tdesc_data_alloc ();
8637
8638 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8639
8640 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8641
8642 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8643 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8644 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8645
8646 /* Hook in ABI-specific overrides, if they have been registered.
8647 Note: If INFO specifies a 64 bit arch, this is where we turn
8648 a 32-bit i386 into a 64-bit amd64. */
8649 info.tdesc_data = tdesc_data;
8650 gdbarch_init_osabi (info, gdbarch);
8651
8652 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8653 {
8654 tdesc_data_cleanup (tdesc_data);
8655 xfree (tdep);
8656 gdbarch_free (gdbarch);
8657 return NULL;
8658 }
8659
8660 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8661
8662 /* Wire in pseudo registers. Number of pseudo registers may be
8663 changed. */
8664 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8665 + tdep->num_word_regs
8666 + tdep->num_dword_regs
8667 + tdep->num_mmx_regs
8668 + tdep->num_ymm_regs
8669 + num_bnd_cooked
8670 + tdep->num_ymm_avx512_regs
8671 + tdep->num_zmm_regs));
8672
8673 /* Target description may be changed. */
8674 tdesc = tdep->tdesc;
8675
8676 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8677
8678 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8679 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8680
8681 /* Make %al the first pseudo-register. */
8682 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8683 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8684
8685 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8686 if (tdep->num_dword_regs)
8687 {
8688 /* Support dword pseudo-register if it hasn't been disabled. */
8689 tdep->eax_regnum = ymm0_regnum;
8690 ymm0_regnum += tdep->num_dword_regs;
8691 }
8692 else
8693 tdep->eax_regnum = -1;
8694
8695 mm0_regnum = ymm0_regnum;
8696 if (tdep->num_ymm_regs)
8697 {
8698 /* Support YMM pseudo-register if it is available. */
8699 tdep->ymm0_regnum = ymm0_regnum;
8700 mm0_regnum += tdep->num_ymm_regs;
8701 }
8702 else
8703 tdep->ymm0_regnum = -1;
8704
8705 if (tdep->num_ymm_avx512_regs)
8706 {
8707 /* Support YMM16-31 pseudo registers if available. */
8708 tdep->ymm16_regnum = mm0_regnum;
8709 mm0_regnum += tdep->num_ymm_avx512_regs;
8710 }
8711 else
8712 tdep->ymm16_regnum = -1;
8713
8714 if (tdep->num_zmm_regs)
8715 {
8716 /* Support ZMM pseudo-register if it is available. */
8717 tdep->zmm0_regnum = mm0_regnum;
8718 mm0_regnum += tdep->num_zmm_regs;
8719 }
8720 else
8721 tdep->zmm0_regnum = -1;
8722
8723 bnd0_regnum = mm0_regnum;
8724 if (tdep->num_mmx_regs != 0)
8725 {
8726 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8727 tdep->mm0_regnum = mm0_regnum;
8728 bnd0_regnum += tdep->num_mmx_regs;
8729 }
8730 else
8731 tdep->mm0_regnum = -1;
8732
8733 if (tdep->bnd0r_regnum > 0)
8734 tdep->bnd0_regnum = bnd0_regnum;
8735 else
8736 tdep-> bnd0_regnum = -1;
8737
8738 /* Hook in the legacy prologue-based unwinders last (fallback). */
8739 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8740 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8741 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8742
8743 /* If we have a register mapping, enable the generic core file
8744 support, unless it has already been enabled. */
8745 if (tdep->gregset_reg_offset
8746 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8747 set_gdbarch_iterate_over_regset_sections
8748 (gdbarch, i386_iterate_over_regset_sections);
8749
8750 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8751 i386_fast_tracepoint_valid_at);
8752
8753 return gdbarch;
8754}
8755
8756\f
8757
8758/* Return the target description for a specified XSAVE feature mask. */
8759
8760const struct target_desc *
8761i386_target_description (uint64_t xcr0, bool segments)
8762{
8763 static target_desc *i386_tdescs \
8764 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8765 target_desc **tdesc;
8766
8767 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8768 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8769 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8770 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8771 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8772 [segments ? 1 : 0];
8773
8774 if (*tdesc == NULL)
8775 *tdesc = i386_create_target_description (xcr0, false, segments);
8776
8777 return *tdesc;
8778}
8779
8780#define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8781
8782/* Find the bound directory base address. */
8783
8784static unsigned long
8785i386_mpx_bd_base (void)
8786{
8787 struct regcache *rcache;
8788 struct gdbarch_tdep *tdep;
8789 ULONGEST ret;
8790 enum register_status regstatus;
8791
8792 rcache = get_current_regcache ();
8793 tdep = gdbarch_tdep (rcache->arch ());
8794
8795 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8796
8797 if (regstatus != REG_VALID)
8798 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8799
8800 return ret & MPX_BASE_MASK;
8801}
8802
8803int
8804i386_mpx_enabled (void)
8805{
8806 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8807 const struct target_desc *tdesc = tdep->tdesc;
8808
8809 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8810}
8811
8812#define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8813#define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8814#define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8815#define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8816
8817/* Find the bound table entry given the pointer location and the base
8818 address of the table. */
8819
8820static CORE_ADDR
8821i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8822{
8823 CORE_ADDR offset1;
8824 CORE_ADDR offset2;
8825 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8826 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8827 CORE_ADDR bd_entry_addr;
8828 CORE_ADDR bt_addr;
8829 CORE_ADDR bd_entry;
8830 struct gdbarch *gdbarch = get_current_arch ();
8831 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8832
8833
8834 if (gdbarch_ptr_bit (gdbarch) == 64)
8835 {
8836 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8837 bd_ptr_r_shift = 20;
8838 bd_ptr_l_shift = 3;
8839 bt_select_r_shift = 3;
8840 bt_select_l_shift = 5;
8841 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8842
8843 if ( sizeof (CORE_ADDR) == 4)
8844 error (_("bound table examination not supported\
8845 for 64-bit process with 32-bit GDB"));
8846 }
8847 else
8848 {
8849 mpx_bd_mask = MPX_BD_MASK_32;
8850 bd_ptr_r_shift = 12;
8851 bd_ptr_l_shift = 2;
8852 bt_select_r_shift = 2;
8853 bt_select_l_shift = 4;
8854 bt_mask = MPX_BT_MASK_32;
8855 }
8856
8857 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8858 bd_entry_addr = bd_base + offset1;
8859 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8860
8861 if ((bd_entry & 0x1) == 0)
8862 error (_("Invalid bounds directory entry at %s."),
8863 paddress (get_current_arch (), bd_entry_addr));
8864
8865 /* Clearing status bit. */
8866 bd_entry--;
8867 bt_addr = bd_entry & ~bt_select_r_shift;
8868 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8869
8870 return bt_addr + offset2;
8871}
8872
8873/* Print routine for the mpx bounds. */
8874
8875static void
8876i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8877{
8878 struct ui_out *uiout = current_uiout;
8879 LONGEST size;
8880 struct gdbarch *gdbarch = get_current_arch ();
8881 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8882 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8883
8884 if (bounds_in_map == 1)
8885 {
8886 uiout->text ("Null bounds on map:");
8887 uiout->text (" pointer value = ");
8888 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8889 uiout->text (".");
8890 uiout->text ("\n");
8891 }
8892 else
8893 {
8894 uiout->text ("{lbound = ");
8895 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8896 uiout->text (", ubound = ");
8897
8898 /* The upper bound is stored in 1's complement. */
8899 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8900 uiout->text ("}: pointer value = ");
8901 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8902
8903 if (gdbarch_ptr_bit (gdbarch) == 64)
8904 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8905 else
8906 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8907
8908 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8909 -1 represents in this sense full memory access, and there is no need
8910 one to the size. */
8911
8912 size = (size > -1 ? size + 1 : size);
8913 uiout->text (", size = ");
8914 uiout->field_string ("size", plongest (size));
8915
8916 uiout->text (", metadata = ");
8917 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8918 uiout->text ("\n");
8919 }
8920}
8921
8922/* Implement the command "show mpx bound". */
8923
8924static void
8925i386_mpx_info_bounds (const char *args, int from_tty)
8926{
8927 CORE_ADDR bd_base = 0;
8928 CORE_ADDR addr;
8929 CORE_ADDR bt_entry_addr = 0;
8930 CORE_ADDR bt_entry[4];
8931 int i;
8932 struct gdbarch *gdbarch = get_current_arch ();
8933 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8934
8935 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8936 || !i386_mpx_enabled ())
8937 {
8938 printf_unfiltered (_("Intel Memory Protection Extensions not "
8939 "supported on this target.\n"));
8940 return;
8941 }
8942
8943 if (args == NULL)
8944 {
8945 printf_unfiltered (_("Address of pointer variable expected.\n"));
8946 return;
8947 }
8948
8949 addr = parse_and_eval_address (args);
8950
8951 bd_base = i386_mpx_bd_base ();
8952 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8953
8954 memset (bt_entry, 0, sizeof (bt_entry));
8955
8956 for (i = 0; i < 4; i++)
8957 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8958 + i * TYPE_LENGTH (data_ptr_type),
8959 data_ptr_type);
8960
8961 i386_mpx_print_bounds (bt_entry);
8962}
8963
8964/* Implement the command "set mpx bound". */
8965
8966static void
8967i386_mpx_set_bounds (const char *args, int from_tty)
8968{
8969 CORE_ADDR bd_base = 0;
8970 CORE_ADDR addr, lower, upper;
8971 CORE_ADDR bt_entry_addr = 0;
8972 CORE_ADDR bt_entry[2];
8973 const char *input = args;
8974 int i;
8975 struct gdbarch *gdbarch = get_current_arch ();
8976 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8977 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8978
8979 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8980 || !i386_mpx_enabled ())
8981 error (_("Intel Memory Protection Extensions not supported\
8982 on this target."));
8983
8984 if (args == NULL)
8985 error (_("Pointer value expected."));
8986
8987 addr = value_as_address (parse_to_comma_and_eval (&input));
8988
8989 if (input[0] == ',')
8990 ++input;
8991 if (input[0] == '\0')
8992 error (_("wrong number of arguments: missing lower and upper bound."));
8993 lower = value_as_address (parse_to_comma_and_eval (&input));
8994
8995 if (input[0] == ',')
8996 ++input;
8997 if (input[0] == '\0')
8998 error (_("Wrong number of arguments; Missing upper bound."));
8999 upper = value_as_address (parse_to_comma_and_eval (&input));
9000
9001 bd_base = i386_mpx_bd_base ();
9002 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9003 for (i = 0; i < 2; i++)
9004 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9005 + i * TYPE_LENGTH (data_ptr_type),
9006 data_ptr_type);
9007 bt_entry[0] = (uint64_t) lower;
9008 bt_entry[1] = ~(uint64_t) upper;
9009
9010 for (i = 0; i < 2; i++)
9011 write_memory_unsigned_integer (bt_entry_addr
9012 + i * TYPE_LENGTH (data_ptr_type),
9013 TYPE_LENGTH (data_ptr_type), byte_order,
9014 bt_entry[i]);
9015}
9016
9017static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9018
9019/* Helper function for the CLI commands. */
9020
9021static void
9022set_mpx_cmd (const char *args, int from_tty)
9023{
9024 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
9025}
9026
9027/* Helper function for the CLI commands. */
9028
9029static void
9030show_mpx_cmd (const char *args, int from_tty)
9031{
9032 cmd_show_list (mpx_show_cmdlist, from_tty, "");
9033}
9034
9035void
9036_initialize_i386_tdep (void)
9037{
9038 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9039
9040 /* Add the variable that controls the disassembly flavor. */
9041 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9042 &disassembly_flavor, _("\
9043Set the disassembly flavor."), _("\
9044Show the disassembly flavor."), _("\
9045The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9046 NULL,
9047 NULL, /* FIXME: i18n: */
9048 &setlist, &showlist);
9049
9050 /* Add the variable that controls the convention for returning
9051 structs. */
9052 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9053 &struct_convention, _("\
9054Set the convention for returning small structs."), _("\
9055Show the convention for returning small structs."), _("\
9056Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9057is \"default\"."),
9058 NULL,
9059 NULL, /* FIXME: i18n: */
9060 &setlist, &showlist);
9061
9062 /* Add "mpx" prefix for the set commands. */
9063
9064 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9065Set Intel Memory Protection Extensions specific variables."),
9066 &mpx_set_cmdlist, "set mpx ",
9067 0 /* allow-unknown */, &setlist);
9068
9069 /* Add "mpx" prefix for the show commands. */
9070
9071 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9072Show Intel Memory Protection Extensions specific variables."),
9073 &mpx_show_cmdlist, "show mpx ",
9074 0 /* allow-unknown */, &showlist);
9075
9076 /* Add "bound" command for the show mpx commands list. */
9077
9078 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9079 "Show the memory bounds for a given array/pointer storage\
9080 in the bound table.",
9081 &mpx_show_cmdlist);
9082
9083 /* Add "bound" command for the set mpx commands list. */
9084
9085 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9086 "Set the memory bounds for a given array/pointer storage\
9087 in the bound table.",
9088 &mpx_set_cmdlist);
9089
9090 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9091 i386_svr4_init_abi);
9092
9093 /* Initialize the i386-specific register groups. */
9094 i386_init_reggroups ();
9095
9096 /* Tell remote stub that we support XML target description. */
9097 register_remote_support_xml ("i386");
9098}
This page took 0.077499 seconds and 4 git commands to generate.