| 1 | /* Intel 386 target-dependent stuff. |
| 2 | |
| 3 | Copyright (C) 1988-2019 Free Software Foundation, Inc. |
| 4 | |
| 5 | This file is part of GDB. |
| 6 | |
| 7 | This program is free software; you can redistribute it and/or modify |
| 8 | it under the terms of the GNU General Public License as published by |
| 9 | the Free Software Foundation; either version 3 of the License, or |
| 10 | (at your option) any later version. |
| 11 | |
| 12 | This program is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | GNU General Public License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU General Public License |
| 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #include "defs.h" |
| 21 | #include "opcode/i386.h" |
| 22 | #include "arch-utils.h" |
| 23 | #include "command.h" |
| 24 | #include "dummy-frame.h" |
| 25 | #include "dwarf2-frame.h" |
| 26 | #include "frame.h" |
| 27 | #include "frame-base.h" |
| 28 | #include "frame-unwind.h" |
| 29 | #include "inferior.h" |
| 30 | #include "infrun.h" |
| 31 | #include "gdbcmd.h" |
| 32 | #include "gdbcore.h" |
| 33 | #include "gdbtypes.h" |
| 34 | #include "objfiles.h" |
| 35 | #include "osabi.h" |
| 36 | #include "regcache.h" |
| 37 | #include "reggroups.h" |
| 38 | #include "regset.h" |
| 39 | #include "symfile.h" |
| 40 | #include "symtab.h" |
| 41 | #include "target.h" |
| 42 | #include "target-float.h" |
| 43 | #include "value.h" |
| 44 | #include "dis-asm.h" |
| 45 | #include "disasm.h" |
| 46 | #include "remote.h" |
| 47 | #include "i386-tdep.h" |
| 48 | #include "i387-tdep.h" |
| 49 | #include "gdbsupport/x86-xstate.h" |
| 50 | #include "x86-tdep.h" |
| 51 | |
| 52 | #include "record.h" |
| 53 | #include "record-full.h" |
| 54 | #include "target-descriptions.h" |
| 55 | #include "arch/i386.h" |
| 56 | |
| 57 | #include "ax.h" |
| 58 | #include "ax-gdb.h" |
| 59 | |
| 60 | #include "stap-probe.h" |
| 61 | #include "user-regs.h" |
| 62 | #include "cli/cli-utils.h" |
| 63 | #include "expression.h" |
| 64 | #include "parser-defs.h" |
| 65 | #include <ctype.h> |
| 66 | #include <algorithm> |
| 67 | #include <unordered_set> |
| 68 | |
| 69 | /* Register names. */ |
| 70 | |
| 71 | static const char *i386_register_names[] = |
| 72 | { |
| 73 | "eax", "ecx", "edx", "ebx", |
| 74 | "esp", "ebp", "esi", "edi", |
| 75 | "eip", "eflags", "cs", "ss", |
| 76 | "ds", "es", "fs", "gs", |
| 77 | "st0", "st1", "st2", "st3", |
| 78 | "st4", "st5", "st6", "st7", |
| 79 | "fctrl", "fstat", "ftag", "fiseg", |
| 80 | "fioff", "foseg", "fooff", "fop", |
| 81 | "xmm0", "xmm1", "xmm2", "xmm3", |
| 82 | "xmm4", "xmm5", "xmm6", "xmm7", |
| 83 | "mxcsr" |
| 84 | }; |
| 85 | |
| 86 | static const char *i386_zmm_names[] = |
| 87 | { |
| 88 | "zmm0", "zmm1", "zmm2", "zmm3", |
| 89 | "zmm4", "zmm5", "zmm6", "zmm7" |
| 90 | }; |
| 91 | |
| 92 | static const char *i386_zmmh_names[] = |
| 93 | { |
| 94 | "zmm0h", "zmm1h", "zmm2h", "zmm3h", |
| 95 | "zmm4h", "zmm5h", "zmm6h", "zmm7h" |
| 96 | }; |
| 97 | |
| 98 | static const char *i386_k_names[] = |
| 99 | { |
| 100 | "k0", "k1", "k2", "k3", |
| 101 | "k4", "k5", "k6", "k7" |
| 102 | }; |
| 103 | |
| 104 | static const char *i386_ymm_names[] = |
| 105 | { |
| 106 | "ymm0", "ymm1", "ymm2", "ymm3", |
| 107 | "ymm4", "ymm5", "ymm6", "ymm7", |
| 108 | }; |
| 109 | |
| 110 | static const char *i386_ymmh_names[] = |
| 111 | { |
| 112 | "ymm0h", "ymm1h", "ymm2h", "ymm3h", |
| 113 | "ymm4h", "ymm5h", "ymm6h", "ymm7h", |
| 114 | }; |
| 115 | |
| 116 | static const char *i386_mpx_names[] = |
| 117 | { |
| 118 | "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus" |
| 119 | }; |
| 120 | |
| 121 | static const char* i386_pkeys_names[] = |
| 122 | { |
| 123 | "pkru" |
| 124 | }; |
| 125 | |
| 126 | /* Register names for MPX pseudo-registers. */ |
| 127 | |
| 128 | static const char *i386_bnd_names[] = |
| 129 | { |
| 130 | "bnd0", "bnd1", "bnd2", "bnd3" |
| 131 | }; |
| 132 | |
| 133 | /* Register names for MMX pseudo-registers. */ |
| 134 | |
| 135 | static const char *i386_mmx_names[] = |
| 136 | { |
| 137 | "mm0", "mm1", "mm2", "mm3", |
| 138 | "mm4", "mm5", "mm6", "mm7" |
| 139 | }; |
| 140 | |
| 141 | /* Register names for byte pseudo-registers. */ |
| 142 | |
| 143 | static const char *i386_byte_names[] = |
| 144 | { |
| 145 | "al", "cl", "dl", "bl", |
| 146 | "ah", "ch", "dh", "bh" |
| 147 | }; |
| 148 | |
| 149 | /* Register names for word pseudo-registers. */ |
| 150 | |
| 151 | static const char *i386_word_names[] = |
| 152 | { |
| 153 | "ax", "cx", "dx", "bx", |
| 154 | "", "bp", "si", "di" |
| 155 | }; |
| 156 | |
| 157 | /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have |
| 158 | 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition, |
| 159 | we have 16 upper ZMM regs that have to be handled differently. */ |
| 160 | |
| 161 | const int num_lower_zmm_regs = 16; |
| 162 | |
| 163 | /* MMX register? */ |
| 164 | |
| 165 | static int |
| 166 | i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 167 | { |
| 168 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 169 | int mm0_regnum = tdep->mm0_regnum; |
| 170 | |
| 171 | if (mm0_regnum < 0) |
| 172 | return 0; |
| 173 | |
| 174 | regnum -= mm0_regnum; |
| 175 | return regnum >= 0 && regnum < tdep->num_mmx_regs; |
| 176 | } |
| 177 | |
| 178 | /* Byte register? */ |
| 179 | |
| 180 | int |
| 181 | i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 182 | { |
| 183 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 184 | |
| 185 | regnum -= tdep->al_regnum; |
| 186 | return regnum >= 0 && regnum < tdep->num_byte_regs; |
| 187 | } |
| 188 | |
| 189 | /* Word register? */ |
| 190 | |
| 191 | int |
| 192 | i386_word_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 193 | { |
| 194 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 195 | |
| 196 | regnum -= tdep->ax_regnum; |
| 197 | return regnum >= 0 && regnum < tdep->num_word_regs; |
| 198 | } |
| 199 | |
| 200 | /* Dword register? */ |
| 201 | |
| 202 | int |
| 203 | i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 204 | { |
| 205 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 206 | int eax_regnum = tdep->eax_regnum; |
| 207 | |
| 208 | if (eax_regnum < 0) |
| 209 | return 0; |
| 210 | |
| 211 | regnum -= eax_regnum; |
| 212 | return regnum >= 0 && regnum < tdep->num_dword_regs; |
| 213 | } |
| 214 | |
| 215 | /* AVX512 register? */ |
| 216 | |
| 217 | int |
| 218 | i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 219 | { |
| 220 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 221 | int zmm0h_regnum = tdep->zmm0h_regnum; |
| 222 | |
| 223 | if (zmm0h_regnum < 0) |
| 224 | return 0; |
| 225 | |
| 226 | regnum -= zmm0h_regnum; |
| 227 | return regnum >= 0 && regnum < tdep->num_zmm_regs; |
| 228 | } |
| 229 | |
| 230 | int |
| 231 | i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 232 | { |
| 233 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 234 | int zmm0_regnum = tdep->zmm0_regnum; |
| 235 | |
| 236 | if (zmm0_regnum < 0) |
| 237 | return 0; |
| 238 | |
| 239 | regnum -= zmm0_regnum; |
| 240 | return regnum >= 0 && regnum < tdep->num_zmm_regs; |
| 241 | } |
| 242 | |
| 243 | int |
| 244 | i386_k_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 245 | { |
| 246 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 247 | int k0_regnum = tdep->k0_regnum; |
| 248 | |
| 249 | if (k0_regnum < 0) |
| 250 | return 0; |
| 251 | |
| 252 | regnum -= k0_regnum; |
| 253 | return regnum >= 0 && regnum < I387_NUM_K_REGS; |
| 254 | } |
| 255 | |
| 256 | static int |
| 257 | i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 258 | { |
| 259 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 260 | int ymm0h_regnum = tdep->ymm0h_regnum; |
| 261 | |
| 262 | if (ymm0h_regnum < 0) |
| 263 | return 0; |
| 264 | |
| 265 | regnum -= ymm0h_regnum; |
| 266 | return regnum >= 0 && regnum < tdep->num_ymm_regs; |
| 267 | } |
| 268 | |
| 269 | /* AVX register? */ |
| 270 | |
| 271 | int |
| 272 | i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 273 | { |
| 274 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 275 | int ymm0_regnum = tdep->ymm0_regnum; |
| 276 | |
| 277 | if (ymm0_regnum < 0) |
| 278 | return 0; |
| 279 | |
| 280 | regnum -= ymm0_regnum; |
| 281 | return regnum >= 0 && regnum < tdep->num_ymm_regs; |
| 282 | } |
| 283 | |
| 284 | static int |
| 285 | i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 286 | { |
| 287 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 288 | int ymm16h_regnum = tdep->ymm16h_regnum; |
| 289 | |
| 290 | if (ymm16h_regnum < 0) |
| 291 | return 0; |
| 292 | |
| 293 | regnum -= ymm16h_regnum; |
| 294 | return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs; |
| 295 | } |
| 296 | |
| 297 | int |
| 298 | i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 299 | { |
| 300 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 301 | int ymm16_regnum = tdep->ymm16_regnum; |
| 302 | |
| 303 | if (ymm16_regnum < 0) |
| 304 | return 0; |
| 305 | |
| 306 | regnum -= ymm16_regnum; |
| 307 | return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs; |
| 308 | } |
| 309 | |
| 310 | /* BND register? */ |
| 311 | |
| 312 | int |
| 313 | i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 314 | { |
| 315 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 316 | int bnd0_regnum = tdep->bnd0_regnum; |
| 317 | |
| 318 | if (bnd0_regnum < 0) |
| 319 | return 0; |
| 320 | |
| 321 | regnum -= bnd0_regnum; |
| 322 | return regnum >= 0 && regnum < I387_NUM_BND_REGS; |
| 323 | } |
| 324 | |
| 325 | /* SSE register? */ |
| 326 | |
| 327 | int |
| 328 | i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 329 | { |
| 330 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 331 | int num_xmm_regs = I387_NUM_XMM_REGS (tdep); |
| 332 | |
| 333 | if (num_xmm_regs == 0) |
| 334 | return 0; |
| 335 | |
| 336 | regnum -= I387_XMM0_REGNUM (tdep); |
| 337 | return regnum >= 0 && regnum < num_xmm_regs; |
| 338 | } |
| 339 | |
| 340 | /* XMM_512 register? */ |
| 341 | |
| 342 | int |
| 343 | i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 344 | { |
| 345 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 346 | int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep); |
| 347 | |
| 348 | if (num_xmm_avx512_regs == 0) |
| 349 | return 0; |
| 350 | |
| 351 | regnum -= I387_XMM16_REGNUM (tdep); |
| 352 | return regnum >= 0 && regnum < num_xmm_avx512_regs; |
| 353 | } |
| 354 | |
| 355 | static int |
| 356 | i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 357 | { |
| 358 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 359 | |
| 360 | if (I387_NUM_XMM_REGS (tdep) == 0) |
| 361 | return 0; |
| 362 | |
| 363 | return (regnum == I387_MXCSR_REGNUM (tdep)); |
| 364 | } |
| 365 | |
| 366 | /* FP register? */ |
| 367 | |
| 368 | int |
| 369 | i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 370 | { |
| 371 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 372 | |
| 373 | if (I387_ST0_REGNUM (tdep) < 0) |
| 374 | return 0; |
| 375 | |
| 376 | return (I387_ST0_REGNUM (tdep) <= regnum |
| 377 | && regnum < I387_FCTRL_REGNUM (tdep)); |
| 378 | } |
| 379 | |
| 380 | int |
| 381 | i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 382 | { |
| 383 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 384 | |
| 385 | if (I387_ST0_REGNUM (tdep) < 0) |
| 386 | return 0; |
| 387 | |
| 388 | return (I387_FCTRL_REGNUM (tdep) <= regnum |
| 389 | && regnum < I387_XMM0_REGNUM (tdep)); |
| 390 | } |
| 391 | |
| 392 | /* BNDr (raw) register? */ |
| 393 | |
| 394 | static int |
| 395 | i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 396 | { |
| 397 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 398 | |
| 399 | if (I387_BND0R_REGNUM (tdep) < 0) |
| 400 | return 0; |
| 401 | |
| 402 | regnum -= tdep->bnd0r_regnum; |
| 403 | return regnum >= 0 && regnum < I387_NUM_BND_REGS; |
| 404 | } |
| 405 | |
| 406 | /* BND control register? */ |
| 407 | |
| 408 | static int |
| 409 | i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 410 | { |
| 411 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 412 | |
| 413 | if (I387_BNDCFGU_REGNUM (tdep) < 0) |
| 414 | return 0; |
| 415 | |
| 416 | regnum -= I387_BNDCFGU_REGNUM (tdep); |
| 417 | return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS; |
| 418 | } |
| 419 | |
| 420 | /* PKRU register? */ |
| 421 | |
| 422 | bool |
| 423 | i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum) |
| 424 | { |
| 425 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 426 | int pkru_regnum = tdep->pkru_regnum; |
| 427 | |
| 428 | if (pkru_regnum < 0) |
| 429 | return false; |
| 430 | |
| 431 | regnum -= pkru_regnum; |
| 432 | return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS; |
| 433 | } |
| 434 | |
| 435 | /* Return the name of register REGNUM, or the empty string if it is |
| 436 | an anonymous register. */ |
| 437 | |
| 438 | static const char * |
| 439 | i386_register_name (struct gdbarch *gdbarch, int regnum) |
| 440 | { |
| 441 | /* Hide the upper YMM registers. */ |
| 442 | if (i386_ymmh_regnum_p (gdbarch, regnum)) |
| 443 | return ""; |
| 444 | |
| 445 | /* Hide the upper YMM16-31 registers. */ |
| 446 | if (i386_ymmh_avx512_regnum_p (gdbarch, regnum)) |
| 447 | return ""; |
| 448 | |
| 449 | /* Hide the upper ZMM registers. */ |
| 450 | if (i386_zmmh_regnum_p (gdbarch, regnum)) |
| 451 | return ""; |
| 452 | |
| 453 | return tdesc_register_name (gdbarch, regnum); |
| 454 | } |
| 455 | |
| 456 | /* Return the name of register REGNUM. */ |
| 457 | |
| 458 | const char * |
| 459 | i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum) |
| 460 | { |
| 461 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 462 | if (i386_bnd_regnum_p (gdbarch, regnum)) |
| 463 | return i386_bnd_names[regnum - tdep->bnd0_regnum]; |
| 464 | if (i386_mmx_regnum_p (gdbarch, regnum)) |
| 465 | return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)]; |
| 466 | else if (i386_ymm_regnum_p (gdbarch, regnum)) |
| 467 | return i386_ymm_names[regnum - tdep->ymm0_regnum]; |
| 468 | else if (i386_zmm_regnum_p (gdbarch, regnum)) |
| 469 | return i386_zmm_names[regnum - tdep->zmm0_regnum]; |
| 470 | else if (i386_byte_regnum_p (gdbarch, regnum)) |
| 471 | return i386_byte_names[regnum - tdep->al_regnum]; |
| 472 | else if (i386_word_regnum_p (gdbarch, regnum)) |
| 473 | return i386_word_names[regnum - tdep->ax_regnum]; |
| 474 | |
| 475 | internal_error (__FILE__, __LINE__, _("invalid regnum")); |
| 476 | } |
| 477 | |
| 478 | /* Convert a dbx register number REG to the appropriate register |
| 479 | number used by GDB. */ |
| 480 | |
| 481 | static int |
| 482 | i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
| 483 | { |
| 484 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 485 | |
| 486 | /* This implements what GCC calls the "default" register map |
| 487 | (dbx_register_map[]). */ |
| 488 | |
| 489 | if (reg >= 0 && reg <= 7) |
| 490 | { |
| 491 | /* General-purpose registers. The debug info calls %ebp |
| 492 | register 4, and %esp register 5. */ |
| 493 | if (reg == 4) |
| 494 | return 5; |
| 495 | else if (reg == 5) |
| 496 | return 4; |
| 497 | else return reg; |
| 498 | } |
| 499 | else if (reg >= 12 && reg <= 19) |
| 500 | { |
| 501 | /* Floating-point registers. */ |
| 502 | return reg - 12 + I387_ST0_REGNUM (tdep); |
| 503 | } |
| 504 | else if (reg >= 21 && reg <= 28) |
| 505 | { |
| 506 | /* SSE registers. */ |
| 507 | int ymm0_regnum = tdep->ymm0_regnum; |
| 508 | |
| 509 | if (ymm0_regnum >= 0 |
| 510 | && i386_xmm_regnum_p (gdbarch, reg)) |
| 511 | return reg - 21 + ymm0_regnum; |
| 512 | else |
| 513 | return reg - 21 + I387_XMM0_REGNUM (tdep); |
| 514 | } |
| 515 | else if (reg >= 29 && reg <= 36) |
| 516 | { |
| 517 | /* MMX registers. */ |
| 518 | return reg - 29 + I387_MM0_REGNUM (tdep); |
| 519 | } |
| 520 | |
| 521 | /* This will hopefully provoke a warning. */ |
| 522 | return gdbarch_num_cooked_regs (gdbarch); |
| 523 | } |
| 524 | |
| 525 | /* Convert SVR4 DWARF register number REG to the appropriate register number |
| 526 | used by GDB. */ |
| 527 | |
| 528 | static int |
| 529 | i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
| 530 | { |
| 531 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 532 | |
| 533 | /* This implements the GCC register map that tries to be compatible |
| 534 | with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */ |
| 535 | |
| 536 | /* The SVR4 register numbering includes %eip and %eflags, and |
| 537 | numbers the floating point registers differently. */ |
| 538 | if (reg >= 0 && reg <= 9) |
| 539 | { |
| 540 | /* General-purpose registers. */ |
| 541 | return reg; |
| 542 | } |
| 543 | else if (reg >= 11 && reg <= 18) |
| 544 | { |
| 545 | /* Floating-point registers. */ |
| 546 | return reg - 11 + I387_ST0_REGNUM (tdep); |
| 547 | } |
| 548 | else if (reg >= 21 && reg <= 36) |
| 549 | { |
| 550 | /* The SSE and MMX registers have the same numbers as with dbx. */ |
| 551 | return i386_dbx_reg_to_regnum (gdbarch, reg); |
| 552 | } |
| 553 | |
| 554 | switch (reg) |
| 555 | { |
| 556 | case 37: return I387_FCTRL_REGNUM (tdep); |
| 557 | case 38: return I387_FSTAT_REGNUM (tdep); |
| 558 | case 39: return I387_MXCSR_REGNUM (tdep); |
| 559 | case 40: return I386_ES_REGNUM; |
| 560 | case 41: return I386_CS_REGNUM; |
| 561 | case 42: return I386_SS_REGNUM; |
| 562 | case 43: return I386_DS_REGNUM; |
| 563 | case 44: return I386_FS_REGNUM; |
| 564 | case 45: return I386_GS_REGNUM; |
| 565 | } |
| 566 | |
| 567 | return -1; |
| 568 | } |
| 569 | |
| 570 | /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return |
| 571 | num_regs + num_pseudo_regs for other debug formats. */ |
| 572 | |
| 573 | int |
| 574 | i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
| 575 | { |
| 576 | int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg); |
| 577 | |
| 578 | if (regnum == -1) |
| 579 | return gdbarch_num_cooked_regs (gdbarch); |
| 580 | return regnum; |
| 581 | } |
| 582 | |
| 583 | \f |
| 584 | |
| 585 | /* This is the variable that is set with "set disassembly-flavor", and |
| 586 | its legitimate values. */ |
| 587 | static const char att_flavor[] = "att"; |
| 588 | static const char intel_flavor[] = "intel"; |
| 589 | static const char *const valid_flavors[] = |
| 590 | { |
| 591 | att_flavor, |
| 592 | intel_flavor, |
| 593 | NULL |
| 594 | }; |
| 595 | static const char *disassembly_flavor = att_flavor; |
| 596 | \f |
| 597 | |
| 598 | /* Use the program counter to determine the contents and size of a |
| 599 | breakpoint instruction. Return a pointer to a string of bytes that |
| 600 | encode a breakpoint instruction, store the length of the string in |
| 601 | *LEN and optionally adjust *PC to point to the correct memory |
| 602 | location for inserting the breakpoint. |
| 603 | |
| 604 | On the i386 we have a single breakpoint that fits in a single byte |
| 605 | and can be inserted anywhere. |
| 606 | |
| 607 | This function is 64-bit safe. */ |
| 608 | |
| 609 | constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */ |
| 610 | |
| 611 | typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint; |
| 612 | |
| 613 | \f |
| 614 | /* Displaced instruction handling. */ |
| 615 | |
| 616 | /* Skip the legacy instruction prefixes in INSN. |
| 617 | Not all prefixes are valid for any particular insn |
| 618 | but we needn't care, the insn will fault if it's invalid. |
| 619 | The result is a pointer to the first opcode byte, |
| 620 | or NULL if we run off the end of the buffer. */ |
| 621 | |
| 622 | static gdb_byte * |
| 623 | i386_skip_prefixes (gdb_byte *insn, size_t max_len) |
| 624 | { |
| 625 | gdb_byte *end = insn + max_len; |
| 626 | |
| 627 | while (insn < end) |
| 628 | { |
| 629 | switch (*insn) |
| 630 | { |
| 631 | case DATA_PREFIX_OPCODE: |
| 632 | case ADDR_PREFIX_OPCODE: |
| 633 | case CS_PREFIX_OPCODE: |
| 634 | case DS_PREFIX_OPCODE: |
| 635 | case ES_PREFIX_OPCODE: |
| 636 | case FS_PREFIX_OPCODE: |
| 637 | case GS_PREFIX_OPCODE: |
| 638 | case SS_PREFIX_OPCODE: |
| 639 | case LOCK_PREFIX_OPCODE: |
| 640 | case REPE_PREFIX_OPCODE: |
| 641 | case REPNE_PREFIX_OPCODE: |
| 642 | ++insn; |
| 643 | continue; |
| 644 | default: |
| 645 | return insn; |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | return NULL; |
| 650 | } |
| 651 | |
| 652 | static int |
| 653 | i386_absolute_jmp_p (const gdb_byte *insn) |
| 654 | { |
| 655 | /* jmp far (absolute address in operand). */ |
| 656 | if (insn[0] == 0xea) |
| 657 | return 1; |
| 658 | |
| 659 | if (insn[0] == 0xff) |
| 660 | { |
| 661 | /* jump near, absolute indirect (/4). */ |
| 662 | if ((insn[1] & 0x38) == 0x20) |
| 663 | return 1; |
| 664 | |
| 665 | /* jump far, absolute indirect (/5). */ |
| 666 | if ((insn[1] & 0x38) == 0x28) |
| 667 | return 1; |
| 668 | } |
| 669 | |
| 670 | return 0; |
| 671 | } |
| 672 | |
| 673 | /* Return non-zero if INSN is a jump, zero otherwise. */ |
| 674 | |
| 675 | static int |
| 676 | i386_jmp_p (const gdb_byte *insn) |
| 677 | { |
| 678 | /* jump short, relative. */ |
| 679 | if (insn[0] == 0xeb) |
| 680 | return 1; |
| 681 | |
| 682 | /* jump near, relative. */ |
| 683 | if (insn[0] == 0xe9) |
| 684 | return 1; |
| 685 | |
| 686 | return i386_absolute_jmp_p (insn); |
| 687 | } |
| 688 | |
| 689 | static int |
| 690 | i386_absolute_call_p (const gdb_byte *insn) |
| 691 | { |
| 692 | /* call far, absolute. */ |
| 693 | if (insn[0] == 0x9a) |
| 694 | return 1; |
| 695 | |
| 696 | if (insn[0] == 0xff) |
| 697 | { |
| 698 | /* Call near, absolute indirect (/2). */ |
| 699 | if ((insn[1] & 0x38) == 0x10) |
| 700 | return 1; |
| 701 | |
| 702 | /* Call far, absolute indirect (/3). */ |
| 703 | if ((insn[1] & 0x38) == 0x18) |
| 704 | return 1; |
| 705 | } |
| 706 | |
| 707 | return 0; |
| 708 | } |
| 709 | |
| 710 | static int |
| 711 | i386_ret_p (const gdb_byte *insn) |
| 712 | { |
| 713 | switch (insn[0]) |
| 714 | { |
| 715 | case 0xc2: /* ret near, pop N bytes. */ |
| 716 | case 0xc3: /* ret near */ |
| 717 | case 0xca: /* ret far, pop N bytes. */ |
| 718 | case 0xcb: /* ret far */ |
| 719 | case 0xcf: /* iret */ |
| 720 | return 1; |
| 721 | |
| 722 | default: |
| 723 | return 0; |
| 724 | } |
| 725 | } |
| 726 | |
| 727 | static int |
| 728 | i386_call_p (const gdb_byte *insn) |
| 729 | { |
| 730 | if (i386_absolute_call_p (insn)) |
| 731 | return 1; |
| 732 | |
| 733 | /* call near, relative. */ |
| 734 | if (insn[0] == 0xe8) |
| 735 | return 1; |
| 736 | |
| 737 | return 0; |
| 738 | } |
| 739 | |
| 740 | /* Return non-zero if INSN is a system call, and set *LENGTHP to its |
| 741 | length in bytes. Otherwise, return zero. */ |
| 742 | |
| 743 | static int |
| 744 | i386_syscall_p (const gdb_byte *insn, int *lengthp) |
| 745 | { |
| 746 | /* Is it 'int $0x80'? */ |
| 747 | if ((insn[0] == 0xcd && insn[1] == 0x80) |
| 748 | /* Or is it 'sysenter'? */ |
| 749 | || (insn[0] == 0x0f && insn[1] == 0x34) |
| 750 | /* Or is it 'syscall'? */ |
| 751 | || (insn[0] == 0x0f && insn[1] == 0x05)) |
| 752 | { |
| 753 | *lengthp = 2; |
| 754 | return 1; |
| 755 | } |
| 756 | |
| 757 | return 0; |
| 758 | } |
| 759 | |
| 760 | /* The gdbarch insn_is_call method. */ |
| 761 | |
| 762 | static int |
| 763 | i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr) |
| 764 | { |
| 765 | gdb_byte buf[I386_MAX_INSN_LEN], *insn; |
| 766 | |
| 767 | read_code (addr, buf, I386_MAX_INSN_LEN); |
| 768 | insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN); |
| 769 | |
| 770 | return i386_call_p (insn); |
| 771 | } |
| 772 | |
| 773 | /* The gdbarch insn_is_ret method. */ |
| 774 | |
| 775 | static int |
| 776 | i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr) |
| 777 | { |
| 778 | gdb_byte buf[I386_MAX_INSN_LEN], *insn; |
| 779 | |
| 780 | read_code (addr, buf, I386_MAX_INSN_LEN); |
| 781 | insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN); |
| 782 | |
| 783 | return i386_ret_p (insn); |
| 784 | } |
| 785 | |
| 786 | /* The gdbarch insn_is_jump method. */ |
| 787 | |
| 788 | static int |
| 789 | i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr) |
| 790 | { |
| 791 | gdb_byte buf[I386_MAX_INSN_LEN], *insn; |
| 792 | |
| 793 | read_code (addr, buf, I386_MAX_INSN_LEN); |
| 794 | insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN); |
| 795 | |
| 796 | return i386_jmp_p (insn); |
| 797 | } |
| 798 | |
| 799 | /* Some kernels may run one past a syscall insn, so we have to cope. */ |
| 800 | |
| 801 | struct displaced_step_closure * |
| 802 | i386_displaced_step_copy_insn (struct gdbarch *gdbarch, |
| 803 | CORE_ADDR from, CORE_ADDR to, |
| 804 | struct regcache *regs) |
| 805 | { |
| 806 | size_t len = gdbarch_max_insn_length (gdbarch); |
| 807 | i386_displaced_step_closure *closure = new i386_displaced_step_closure (len); |
| 808 | gdb_byte *buf = closure->buf.data (); |
| 809 | |
| 810 | read_memory (from, buf, len); |
| 811 | |
| 812 | /* GDB may get control back after the insn after the syscall. |
| 813 | Presumably this is a kernel bug. |
| 814 | If this is a syscall, make sure there's a nop afterwards. */ |
| 815 | { |
| 816 | int syscall_length; |
| 817 | gdb_byte *insn; |
| 818 | |
| 819 | insn = i386_skip_prefixes (buf, len); |
| 820 | if (insn != NULL && i386_syscall_p (insn, &syscall_length)) |
| 821 | insn[syscall_length] = NOP_OPCODE; |
| 822 | } |
| 823 | |
| 824 | write_memory (to, buf, len); |
| 825 | |
| 826 | if (debug_displaced) |
| 827 | { |
| 828 | fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", |
| 829 | paddress (gdbarch, from), paddress (gdbarch, to)); |
| 830 | displaced_step_dump_bytes (gdb_stdlog, buf, len); |
| 831 | } |
| 832 | |
| 833 | return closure; |
| 834 | } |
| 835 | |
| 836 | /* Fix up the state of registers and memory after having single-stepped |
| 837 | a displaced instruction. */ |
| 838 | |
| 839 | void |
| 840 | i386_displaced_step_fixup (struct gdbarch *gdbarch, |
| 841 | struct displaced_step_closure *closure_, |
| 842 | CORE_ADDR from, CORE_ADDR to, |
| 843 | struct regcache *regs) |
| 844 | { |
| 845 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 846 | |
| 847 | /* The offset we applied to the instruction's address. |
| 848 | This could well be negative (when viewed as a signed 32-bit |
| 849 | value), but ULONGEST won't reflect that, so take care when |
| 850 | applying it. */ |
| 851 | ULONGEST insn_offset = to - from; |
| 852 | |
| 853 | i386_displaced_step_closure *closure |
| 854 | = (i386_displaced_step_closure *) closure_; |
| 855 | gdb_byte *insn = closure->buf.data (); |
| 856 | /* The start of the insn, needed in case we see some prefixes. */ |
| 857 | gdb_byte *insn_start = insn; |
| 858 | |
| 859 | if (debug_displaced) |
| 860 | fprintf_unfiltered (gdb_stdlog, |
| 861 | "displaced: fixup (%s, %s), " |
| 862 | "insn = 0x%02x 0x%02x ...\n", |
| 863 | paddress (gdbarch, from), paddress (gdbarch, to), |
| 864 | insn[0], insn[1]); |
| 865 | |
| 866 | /* The list of issues to contend with here is taken from |
| 867 | resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20. |
| 868 | Yay for Free Software! */ |
| 869 | |
| 870 | /* Relocate the %eip, if necessary. */ |
| 871 | |
| 872 | /* The instruction recognizers we use assume any leading prefixes |
| 873 | have been skipped. */ |
| 874 | { |
| 875 | /* This is the size of the buffer in closure. */ |
| 876 | size_t max_insn_len = gdbarch_max_insn_length (gdbarch); |
| 877 | gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len); |
| 878 | /* If there are too many prefixes, just ignore the insn. |
| 879 | It will fault when run. */ |
| 880 | if (opcode != NULL) |
| 881 | insn = opcode; |
| 882 | } |
| 883 | |
| 884 | /* Except in the case of absolute or indirect jump or call |
| 885 | instructions, or a return instruction, the new eip is relative to |
| 886 | the displaced instruction; make it relative. Well, signal |
| 887 | handler returns don't need relocation either, but we use the |
| 888 | value of %eip to recognize those; see below. */ |
| 889 | if (! i386_absolute_jmp_p (insn) |
| 890 | && ! i386_absolute_call_p (insn) |
| 891 | && ! i386_ret_p (insn)) |
| 892 | { |
| 893 | ULONGEST orig_eip; |
| 894 | int insn_len; |
| 895 | |
| 896 | regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip); |
| 897 | |
| 898 | /* A signal trampoline system call changes the %eip, resuming |
| 899 | execution of the main program after the signal handler has |
| 900 | returned. That makes them like 'return' instructions; we |
| 901 | shouldn't relocate %eip. |
| 902 | |
| 903 | But most system calls don't, and we do need to relocate %eip. |
| 904 | |
| 905 | Our heuristic for distinguishing these cases: if stepping |
| 906 | over the system call instruction left control directly after |
| 907 | the instruction, the we relocate --- control almost certainly |
| 908 | doesn't belong in the displaced copy. Otherwise, we assume |
| 909 | the instruction has put control where it belongs, and leave |
| 910 | it unrelocated. Goodness help us if there are PC-relative |
| 911 | system calls. */ |
| 912 | if (i386_syscall_p (insn, &insn_len) |
| 913 | && orig_eip != to + (insn - insn_start) + insn_len |
| 914 | /* GDB can get control back after the insn after the syscall. |
| 915 | Presumably this is a kernel bug. |
| 916 | i386_displaced_step_copy_insn ensures its a nop, |
| 917 | we add one to the length for it. */ |
| 918 | && orig_eip != to + (insn - insn_start) + insn_len + 1) |
| 919 | { |
| 920 | if (debug_displaced) |
| 921 | fprintf_unfiltered (gdb_stdlog, |
| 922 | "displaced: syscall changed %%eip; " |
| 923 | "not relocating\n"); |
| 924 | } |
| 925 | else |
| 926 | { |
| 927 | ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL; |
| 928 | |
| 929 | /* If we just stepped over a breakpoint insn, we don't backup |
| 930 | the pc on purpose; this is to match behaviour without |
| 931 | stepping. */ |
| 932 | |
| 933 | regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip); |
| 934 | |
| 935 | if (debug_displaced) |
| 936 | fprintf_unfiltered (gdb_stdlog, |
| 937 | "displaced: " |
| 938 | "relocated %%eip from %s to %s\n", |
| 939 | paddress (gdbarch, orig_eip), |
| 940 | paddress (gdbarch, eip)); |
| 941 | } |
| 942 | } |
| 943 | |
| 944 | /* If the instruction was PUSHFL, then the TF bit will be set in the |
| 945 | pushed value, and should be cleared. We'll leave this for later, |
| 946 | since GDB already messes up the TF flag when stepping over a |
| 947 | pushfl. */ |
| 948 | |
| 949 | /* If the instruction was a call, the return address now atop the |
| 950 | stack is the address following the copied instruction. We need |
| 951 | to make it the address following the original instruction. */ |
| 952 | if (i386_call_p (insn)) |
| 953 | { |
| 954 | ULONGEST esp; |
| 955 | ULONGEST retaddr; |
| 956 | const ULONGEST retaddr_len = 4; |
| 957 | |
| 958 | regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp); |
| 959 | retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order); |
| 960 | retaddr = (retaddr - insn_offset) & 0xffffffffUL; |
| 961 | write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr); |
| 962 | |
| 963 | if (debug_displaced) |
| 964 | fprintf_unfiltered (gdb_stdlog, |
| 965 | "displaced: relocated return addr at %s to %s\n", |
| 966 | paddress (gdbarch, esp), |
| 967 | paddress (gdbarch, retaddr)); |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | static void |
| 972 | append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf) |
| 973 | { |
| 974 | target_write_memory (*to, buf, len); |
| 975 | *to += len; |
| 976 | } |
| 977 | |
| 978 | static void |
| 979 | i386_relocate_instruction (struct gdbarch *gdbarch, |
| 980 | CORE_ADDR *to, CORE_ADDR oldloc) |
| 981 | { |
| 982 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 983 | gdb_byte buf[I386_MAX_INSN_LEN]; |
| 984 | int offset = 0, rel32, newrel; |
| 985 | int insn_length; |
| 986 | gdb_byte *insn = buf; |
| 987 | |
| 988 | read_memory (oldloc, buf, I386_MAX_INSN_LEN); |
| 989 | |
| 990 | insn_length = gdb_buffered_insn_length (gdbarch, insn, |
| 991 | I386_MAX_INSN_LEN, oldloc); |
| 992 | |
| 993 | /* Get past the prefixes. */ |
| 994 | insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN); |
| 995 | |
| 996 | /* Adjust calls with 32-bit relative addresses as push/jump, with |
| 997 | the address pushed being the location where the original call in |
| 998 | the user program would return to. */ |
| 999 | if (insn[0] == 0xe8) |
| 1000 | { |
| 1001 | gdb_byte push_buf[16]; |
| 1002 | unsigned int ret_addr; |
| 1003 | |
| 1004 | /* Where "ret" in the original code will return to. */ |
| 1005 | ret_addr = oldloc + insn_length; |
| 1006 | push_buf[0] = 0x68; /* pushq $... */ |
| 1007 | store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr); |
| 1008 | /* Push the push. */ |
| 1009 | append_insns (to, 5, push_buf); |
| 1010 | |
| 1011 | /* Convert the relative call to a relative jump. */ |
| 1012 | insn[0] = 0xe9; |
| 1013 | |
| 1014 | /* Adjust the destination offset. */ |
| 1015 | rel32 = extract_signed_integer (insn + 1, 4, byte_order); |
| 1016 | newrel = (oldloc - *to) + rel32; |
| 1017 | store_signed_integer (insn + 1, 4, byte_order, newrel); |
| 1018 | |
| 1019 | if (debug_displaced) |
| 1020 | fprintf_unfiltered (gdb_stdlog, |
| 1021 | "Adjusted insn rel32=%s at %s to" |
| 1022 | " rel32=%s at %s\n", |
| 1023 | hex_string (rel32), paddress (gdbarch, oldloc), |
| 1024 | hex_string (newrel), paddress (gdbarch, *to)); |
| 1025 | |
| 1026 | /* Write the adjusted jump into its displaced location. */ |
| 1027 | append_insns (to, 5, insn); |
| 1028 | return; |
| 1029 | } |
| 1030 | |
| 1031 | /* Adjust jumps with 32-bit relative addresses. Calls are already |
| 1032 | handled above. */ |
| 1033 | if (insn[0] == 0xe9) |
| 1034 | offset = 1; |
| 1035 | /* Adjust conditional jumps. */ |
| 1036 | else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80) |
| 1037 | offset = 2; |
| 1038 | |
| 1039 | if (offset) |
| 1040 | { |
| 1041 | rel32 = extract_signed_integer (insn + offset, 4, byte_order); |
| 1042 | newrel = (oldloc - *to) + rel32; |
| 1043 | store_signed_integer (insn + offset, 4, byte_order, newrel); |
| 1044 | if (debug_displaced) |
| 1045 | fprintf_unfiltered (gdb_stdlog, |
| 1046 | "Adjusted insn rel32=%s at %s to" |
| 1047 | " rel32=%s at %s\n", |
| 1048 | hex_string (rel32), paddress (gdbarch, oldloc), |
| 1049 | hex_string (newrel), paddress (gdbarch, *to)); |
| 1050 | } |
| 1051 | |
| 1052 | /* Write the adjusted instructions into their displaced |
| 1053 | location. */ |
| 1054 | append_insns (to, insn_length, buf); |
| 1055 | } |
| 1056 | |
| 1057 | \f |
| 1058 | #ifdef I386_REGNO_TO_SYMMETRY |
| 1059 | #error "The Sequent Symmetry is no longer supported." |
| 1060 | #endif |
| 1061 | |
| 1062 | /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi |
| 1063 | and %esp "belong" to the calling function. Therefore these |
| 1064 | registers should be saved if they're going to be modified. */ |
| 1065 | |
| 1066 | /* The maximum number of saved registers. This should include all |
| 1067 | registers mentioned above, and %eip. */ |
| 1068 | #define I386_NUM_SAVED_REGS I386_NUM_GREGS |
| 1069 | |
| 1070 | struct i386_frame_cache |
| 1071 | { |
| 1072 | /* Base address. */ |
| 1073 | CORE_ADDR base; |
| 1074 | int base_p; |
| 1075 | LONGEST sp_offset; |
| 1076 | CORE_ADDR pc; |
| 1077 | |
| 1078 | /* Saved registers. */ |
| 1079 | CORE_ADDR saved_regs[I386_NUM_SAVED_REGS]; |
| 1080 | CORE_ADDR saved_sp; |
| 1081 | int saved_sp_reg; |
| 1082 | int pc_in_eax; |
| 1083 | |
| 1084 | /* Stack space reserved for local variables. */ |
| 1085 | long locals; |
| 1086 | }; |
| 1087 | |
| 1088 | /* Allocate and initialize a frame cache. */ |
| 1089 | |
| 1090 | static struct i386_frame_cache * |
| 1091 | i386_alloc_frame_cache (void) |
| 1092 | { |
| 1093 | struct i386_frame_cache *cache; |
| 1094 | int i; |
| 1095 | |
| 1096 | cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache); |
| 1097 | |
| 1098 | /* Base address. */ |
| 1099 | cache->base_p = 0; |
| 1100 | cache->base = 0; |
| 1101 | cache->sp_offset = -4; |
| 1102 | cache->pc = 0; |
| 1103 | |
| 1104 | /* Saved registers. We initialize these to -1 since zero is a valid |
| 1105 | offset (that's where %ebp is supposed to be stored). */ |
| 1106 | for (i = 0; i < I386_NUM_SAVED_REGS; i++) |
| 1107 | cache->saved_regs[i] = -1; |
| 1108 | cache->saved_sp = 0; |
| 1109 | cache->saved_sp_reg = -1; |
| 1110 | cache->pc_in_eax = 0; |
| 1111 | |
| 1112 | /* Frameless until proven otherwise. */ |
| 1113 | cache->locals = -1; |
| 1114 | |
| 1115 | return cache; |
| 1116 | } |
| 1117 | |
| 1118 | /* If the instruction at PC is a jump, return the address of its |
| 1119 | target. Otherwise, return PC. */ |
| 1120 | |
| 1121 | static CORE_ADDR |
| 1122 | i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc) |
| 1123 | { |
| 1124 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 1125 | gdb_byte op; |
| 1126 | long delta = 0; |
| 1127 | int data16 = 0; |
| 1128 | |
| 1129 | if (target_read_code (pc, &op, 1)) |
| 1130 | return pc; |
| 1131 | |
| 1132 | if (op == 0x66) |
| 1133 | { |
| 1134 | data16 = 1; |
| 1135 | |
| 1136 | op = read_code_unsigned_integer (pc + 1, 1, byte_order); |
| 1137 | } |
| 1138 | |
| 1139 | switch (op) |
| 1140 | { |
| 1141 | case 0xe9: |
| 1142 | /* Relative jump: if data16 == 0, disp32, else disp16. */ |
| 1143 | if (data16) |
| 1144 | { |
| 1145 | delta = read_memory_integer (pc + 2, 2, byte_order); |
| 1146 | |
| 1147 | /* Include the size of the jmp instruction (including the |
| 1148 | 0x66 prefix). */ |
| 1149 | delta += 4; |
| 1150 | } |
| 1151 | else |
| 1152 | { |
| 1153 | delta = read_memory_integer (pc + 1, 4, byte_order); |
| 1154 | |
| 1155 | /* Include the size of the jmp instruction. */ |
| 1156 | delta += 5; |
| 1157 | } |
| 1158 | break; |
| 1159 | case 0xeb: |
| 1160 | /* Relative jump, disp8 (ignore data16). */ |
| 1161 | delta = read_memory_integer (pc + data16 + 1, 1, byte_order); |
| 1162 | |
| 1163 | delta += data16 + 2; |
| 1164 | break; |
| 1165 | } |
| 1166 | |
| 1167 | return pc + delta; |
| 1168 | } |
| 1169 | |
| 1170 | /* Check whether PC points at a prologue for a function returning a |
| 1171 | structure or union. If so, it updates CACHE and returns the |
| 1172 | address of the first instruction after the code sequence that |
| 1173 | removes the "hidden" argument from the stack or CURRENT_PC, |
| 1174 | whichever is smaller. Otherwise, return PC. */ |
| 1175 | |
| 1176 | static CORE_ADDR |
| 1177 | i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc, |
| 1178 | struct i386_frame_cache *cache) |
| 1179 | { |
| 1180 | /* Functions that return a structure or union start with: |
| 1181 | |
| 1182 | popl %eax 0x58 |
| 1183 | xchgl %eax, (%esp) 0x87 0x04 0x24 |
| 1184 | or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00 |
| 1185 | |
| 1186 | (the System V compiler puts out the second `xchg' instruction, |
| 1187 | and the assembler doesn't try to optimize it, so the 'sib' form |
| 1188 | gets generated). This sequence is used to get the address of the |
| 1189 | return buffer for a function that returns a structure. */ |
| 1190 | static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 }; |
| 1191 | static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 }; |
| 1192 | gdb_byte buf[4]; |
| 1193 | gdb_byte op; |
| 1194 | |
| 1195 | if (current_pc <= pc) |
| 1196 | return pc; |
| 1197 | |
| 1198 | if (target_read_code (pc, &op, 1)) |
| 1199 | return pc; |
| 1200 | |
| 1201 | if (op != 0x58) /* popl %eax */ |
| 1202 | return pc; |
| 1203 | |
| 1204 | if (target_read_code (pc + 1, buf, 4)) |
| 1205 | return pc; |
| 1206 | |
| 1207 | if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0) |
| 1208 | return pc; |
| 1209 | |
| 1210 | if (current_pc == pc) |
| 1211 | { |
| 1212 | cache->sp_offset += 4; |
| 1213 | return current_pc; |
| 1214 | } |
| 1215 | |
| 1216 | if (current_pc == pc + 1) |
| 1217 | { |
| 1218 | cache->pc_in_eax = 1; |
| 1219 | return current_pc; |
| 1220 | } |
| 1221 | |
| 1222 | if (buf[1] == proto1[1]) |
| 1223 | return pc + 4; |
| 1224 | else |
| 1225 | return pc + 5; |
| 1226 | } |
| 1227 | |
| 1228 | static CORE_ADDR |
| 1229 | i386_skip_probe (CORE_ADDR pc) |
| 1230 | { |
| 1231 | /* A function may start with |
| 1232 | |
| 1233 | pushl constant |
| 1234 | call _probe |
| 1235 | addl $4, %esp |
| 1236 | |
| 1237 | followed by |
| 1238 | |
| 1239 | pushl %ebp |
| 1240 | |
| 1241 | etc. */ |
| 1242 | gdb_byte buf[8]; |
| 1243 | gdb_byte op; |
| 1244 | |
| 1245 | if (target_read_code (pc, &op, 1)) |
| 1246 | return pc; |
| 1247 | |
| 1248 | if (op == 0x68 || op == 0x6a) |
| 1249 | { |
| 1250 | int delta; |
| 1251 | |
| 1252 | /* Skip past the `pushl' instruction; it has either a one-byte or a |
| 1253 | four-byte operand, depending on the opcode. */ |
| 1254 | if (op == 0x68) |
| 1255 | delta = 5; |
| 1256 | else |
| 1257 | delta = 2; |
| 1258 | |
| 1259 | /* Read the following 8 bytes, which should be `call _probe' (6 |
| 1260 | bytes) followed by `addl $4,%esp' (2 bytes). */ |
| 1261 | read_memory (pc + delta, buf, sizeof (buf)); |
| 1262 | if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4) |
| 1263 | pc += delta + sizeof (buf); |
| 1264 | } |
| 1265 | |
| 1266 | return pc; |
| 1267 | } |
| 1268 | |
| 1269 | /* GCC 4.1 and later, can put code in the prologue to realign the |
| 1270 | stack pointer. Check whether PC points to such code, and update |
| 1271 | CACHE accordingly. Return the first instruction after the code |
| 1272 | sequence or CURRENT_PC, whichever is smaller. If we don't |
| 1273 | recognize the code, return PC. */ |
| 1274 | |
| 1275 | static CORE_ADDR |
| 1276 | i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, |
| 1277 | struct i386_frame_cache *cache) |
| 1278 | { |
| 1279 | /* There are 2 code sequences to re-align stack before the frame |
| 1280 | gets set up: |
| 1281 | |
| 1282 | 1. Use a caller-saved saved register: |
| 1283 | |
| 1284 | leal 4(%esp), %reg |
| 1285 | andl $-XXX, %esp |
| 1286 | pushl -4(%reg) |
| 1287 | |
| 1288 | 2. Use a callee-saved saved register: |
| 1289 | |
| 1290 | pushl %reg |
| 1291 | leal 8(%esp), %reg |
| 1292 | andl $-XXX, %esp |
| 1293 | pushl -4(%reg) |
| 1294 | |
| 1295 | "andl $-XXX, %esp" can be either 3 bytes or 6 bytes: |
| 1296 | |
| 1297 | 0x83 0xe4 0xf0 andl $-16, %esp |
| 1298 | 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp |
| 1299 | */ |
| 1300 | |
| 1301 | gdb_byte buf[14]; |
| 1302 | int reg; |
| 1303 | int offset, offset_and; |
| 1304 | static int regnums[8] = { |
| 1305 | I386_EAX_REGNUM, /* %eax */ |
| 1306 | I386_ECX_REGNUM, /* %ecx */ |
| 1307 | I386_EDX_REGNUM, /* %edx */ |
| 1308 | I386_EBX_REGNUM, /* %ebx */ |
| 1309 | I386_ESP_REGNUM, /* %esp */ |
| 1310 | I386_EBP_REGNUM, /* %ebp */ |
| 1311 | I386_ESI_REGNUM, /* %esi */ |
| 1312 | I386_EDI_REGNUM /* %edi */ |
| 1313 | }; |
| 1314 | |
| 1315 | if (target_read_code (pc, buf, sizeof buf)) |
| 1316 | return pc; |
| 1317 | |
| 1318 | /* Check caller-saved saved register. The first instruction has |
| 1319 | to be "leal 4(%esp), %reg". */ |
| 1320 | if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4) |
| 1321 | { |
| 1322 | /* MOD must be binary 10 and R/M must be binary 100. */ |
| 1323 | if ((buf[1] & 0xc7) != 0x44) |
| 1324 | return pc; |
| 1325 | |
| 1326 | /* REG has register number. */ |
| 1327 | reg = (buf[1] >> 3) & 7; |
| 1328 | offset = 4; |
| 1329 | } |
| 1330 | else |
| 1331 | { |
| 1332 | /* Check callee-saved saved register. The first instruction |
| 1333 | has to be "pushl %reg". */ |
| 1334 | if ((buf[0] & 0xf8) != 0x50) |
| 1335 | return pc; |
| 1336 | |
| 1337 | /* Get register. */ |
| 1338 | reg = buf[0] & 0x7; |
| 1339 | |
| 1340 | /* The next instruction has to be "leal 8(%esp), %reg". */ |
| 1341 | if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8) |
| 1342 | return pc; |
| 1343 | |
| 1344 | /* MOD must be binary 10 and R/M must be binary 100. */ |
| 1345 | if ((buf[2] & 0xc7) != 0x44) |
| 1346 | return pc; |
| 1347 | |
| 1348 | /* REG has register number. Registers in pushl and leal have to |
| 1349 | be the same. */ |
| 1350 | if (reg != ((buf[2] >> 3) & 7)) |
| 1351 | return pc; |
| 1352 | |
| 1353 | offset = 5; |
| 1354 | } |
| 1355 | |
| 1356 | /* Rigister can't be %esp nor %ebp. */ |
| 1357 | if (reg == 4 || reg == 5) |
| 1358 | return pc; |
| 1359 | |
| 1360 | /* The next instruction has to be "andl $-XXX, %esp". */ |
| 1361 | if (buf[offset + 1] != 0xe4 |
| 1362 | || (buf[offset] != 0x81 && buf[offset] != 0x83)) |
| 1363 | return pc; |
| 1364 | |
| 1365 | offset_and = offset; |
| 1366 | offset += buf[offset] == 0x81 ? 6 : 3; |
| 1367 | |
| 1368 | /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is |
| 1369 | 0xfc. REG must be binary 110 and MOD must be binary 01. */ |
| 1370 | if (buf[offset] != 0xff |
| 1371 | || buf[offset + 2] != 0xfc |
| 1372 | || (buf[offset + 1] & 0xf8) != 0x70) |
| 1373 | return pc; |
| 1374 | |
| 1375 | /* R/M has register. Registers in leal and pushl have to be the |
| 1376 | same. */ |
| 1377 | if (reg != (buf[offset + 1] & 7)) |
| 1378 | return pc; |
| 1379 | |
| 1380 | if (current_pc > pc + offset_and) |
| 1381 | cache->saved_sp_reg = regnums[reg]; |
| 1382 | |
| 1383 | return std::min (pc + offset + 3, current_pc); |
| 1384 | } |
| 1385 | |
| 1386 | /* Maximum instruction length we need to handle. */ |
| 1387 | #define I386_MAX_MATCHED_INSN_LEN 6 |
| 1388 | |
| 1389 | /* Instruction description. */ |
| 1390 | struct i386_insn |
| 1391 | { |
| 1392 | size_t len; |
| 1393 | gdb_byte insn[I386_MAX_MATCHED_INSN_LEN]; |
| 1394 | gdb_byte mask[I386_MAX_MATCHED_INSN_LEN]; |
| 1395 | }; |
| 1396 | |
| 1397 | /* Return whether instruction at PC matches PATTERN. */ |
| 1398 | |
| 1399 | static int |
| 1400 | i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern) |
| 1401 | { |
| 1402 | gdb_byte op; |
| 1403 | |
| 1404 | if (target_read_code (pc, &op, 1)) |
| 1405 | return 0; |
| 1406 | |
| 1407 | if ((op & pattern.mask[0]) == pattern.insn[0]) |
| 1408 | { |
| 1409 | gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1]; |
| 1410 | int insn_matched = 1; |
| 1411 | size_t i; |
| 1412 | |
| 1413 | gdb_assert (pattern.len > 1); |
| 1414 | gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN); |
| 1415 | |
| 1416 | if (target_read_code (pc + 1, buf, pattern.len - 1)) |
| 1417 | return 0; |
| 1418 | |
| 1419 | for (i = 1; i < pattern.len; i++) |
| 1420 | { |
| 1421 | if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i]) |
| 1422 | insn_matched = 0; |
| 1423 | } |
| 1424 | return insn_matched; |
| 1425 | } |
| 1426 | return 0; |
| 1427 | } |
| 1428 | |
| 1429 | /* Search for the instruction at PC in the list INSN_PATTERNS. Return |
| 1430 | the first instruction description that matches. Otherwise, return |
| 1431 | NULL. */ |
| 1432 | |
| 1433 | static struct i386_insn * |
| 1434 | i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns) |
| 1435 | { |
| 1436 | struct i386_insn *pattern; |
| 1437 | |
| 1438 | for (pattern = insn_patterns; pattern->len > 0; pattern++) |
| 1439 | { |
| 1440 | if (i386_match_pattern (pc, *pattern)) |
| 1441 | return pattern; |
| 1442 | } |
| 1443 | |
| 1444 | return NULL; |
| 1445 | } |
| 1446 | |
| 1447 | /* Return whether PC points inside a sequence of instructions that |
| 1448 | matches INSN_PATTERNS. */ |
| 1449 | |
| 1450 | static int |
| 1451 | i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns) |
| 1452 | { |
| 1453 | CORE_ADDR current_pc; |
| 1454 | int ix, i; |
| 1455 | struct i386_insn *insn; |
| 1456 | |
| 1457 | insn = i386_match_insn (pc, insn_patterns); |
| 1458 | if (insn == NULL) |
| 1459 | return 0; |
| 1460 | |
| 1461 | current_pc = pc; |
| 1462 | ix = insn - insn_patterns; |
| 1463 | for (i = ix - 1; i >= 0; i--) |
| 1464 | { |
| 1465 | current_pc -= insn_patterns[i].len; |
| 1466 | |
| 1467 | if (!i386_match_pattern (current_pc, insn_patterns[i])) |
| 1468 | return 0; |
| 1469 | } |
| 1470 | |
| 1471 | current_pc = pc + insn->len; |
| 1472 | for (insn = insn_patterns + ix + 1; insn->len > 0; insn++) |
| 1473 | { |
| 1474 | if (!i386_match_pattern (current_pc, *insn)) |
| 1475 | return 0; |
| 1476 | |
| 1477 | current_pc += insn->len; |
| 1478 | } |
| 1479 | |
| 1480 | return 1; |
| 1481 | } |
| 1482 | |
| 1483 | /* Some special instructions that might be migrated by GCC into the |
| 1484 | part of the prologue that sets up the new stack frame. Because the |
| 1485 | stack frame hasn't been setup yet, no registers have been saved |
| 1486 | yet, and only the scratch registers %eax, %ecx and %edx can be |
| 1487 | touched. */ |
| 1488 | |
| 1489 | struct i386_insn i386_frame_setup_skip_insns[] = |
| 1490 | { |
| 1491 | /* Check for `movb imm8, r' and `movl imm32, r'. |
| 1492 | |
| 1493 | ??? Should we handle 16-bit operand-sizes here? */ |
| 1494 | |
| 1495 | /* `movb imm8, %al' and `movb imm8, %ah' */ |
| 1496 | /* `movb imm8, %cl' and `movb imm8, %ch' */ |
| 1497 | { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } }, |
| 1498 | /* `movb imm8, %dl' and `movb imm8, %dh' */ |
| 1499 | { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } }, |
| 1500 | /* `movl imm32, %eax' and `movl imm32, %ecx' */ |
| 1501 | { 5, { 0xb8 }, { 0xfe } }, |
| 1502 | /* `movl imm32, %edx' */ |
| 1503 | { 5, { 0xba }, { 0xff } }, |
| 1504 | |
| 1505 | /* Check for `mov imm32, r32'. Note that there is an alternative |
| 1506 | encoding for `mov m32, %eax'. |
| 1507 | |
| 1508 | ??? Should we handle SIB addressing here? |
| 1509 | ??? Should we handle 16-bit operand-sizes here? */ |
| 1510 | |
| 1511 | /* `movl m32, %eax' */ |
| 1512 | { 5, { 0xa1 }, { 0xff } }, |
| 1513 | /* `movl m32, %eax' and `mov; m32, %ecx' */ |
| 1514 | { 6, { 0x89, 0x05 }, {0xff, 0xf7 } }, |
| 1515 | /* `movl m32, %edx' */ |
| 1516 | { 6, { 0x89, 0x15 }, {0xff, 0xff } }, |
| 1517 | |
| 1518 | /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'. |
| 1519 | Because of the symmetry, there are actually two ways to encode |
| 1520 | these instructions; opcode bytes 0x29 and 0x2b for `subl' and |
| 1521 | opcode bytes 0x31 and 0x33 for `xorl'. */ |
| 1522 | |
| 1523 | /* `subl %eax, %eax' */ |
| 1524 | { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } }, |
| 1525 | /* `subl %ecx, %ecx' */ |
| 1526 | { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } }, |
| 1527 | /* `subl %edx, %edx' */ |
| 1528 | { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } }, |
| 1529 | /* `xorl %eax, %eax' */ |
| 1530 | { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } }, |
| 1531 | /* `xorl %ecx, %ecx' */ |
| 1532 | { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } }, |
| 1533 | /* `xorl %edx, %edx' */ |
| 1534 | { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } }, |
| 1535 | { 0 } |
| 1536 | }; |
| 1537 | |
| 1538 | |
| 1539 | /* Check whether PC points to a no-op instruction. */ |
| 1540 | static CORE_ADDR |
| 1541 | i386_skip_noop (CORE_ADDR pc) |
| 1542 | { |
| 1543 | gdb_byte op; |
| 1544 | int check = 1; |
| 1545 | |
| 1546 | if (target_read_code (pc, &op, 1)) |
| 1547 | return pc; |
| 1548 | |
| 1549 | while (check) |
| 1550 | { |
| 1551 | check = 0; |
| 1552 | /* Ignore `nop' instruction. */ |
| 1553 | if (op == 0x90) |
| 1554 | { |
| 1555 | pc += 1; |
| 1556 | if (target_read_code (pc, &op, 1)) |
| 1557 | return pc; |
| 1558 | check = 1; |
| 1559 | } |
| 1560 | /* Ignore no-op instruction `mov %edi, %edi'. |
| 1561 | Microsoft system dlls often start with |
| 1562 | a `mov %edi,%edi' instruction. |
| 1563 | The 5 bytes before the function start are |
| 1564 | filled with `nop' instructions. |
| 1565 | This pattern can be used for hot-patching: |
| 1566 | The `mov %edi, %edi' instruction can be replaced by a |
| 1567 | near jump to the location of the 5 `nop' instructions |
| 1568 | which can be replaced by a 32-bit jump to anywhere |
| 1569 | in the 32-bit address space. */ |
| 1570 | |
| 1571 | else if (op == 0x8b) |
| 1572 | { |
| 1573 | if (target_read_code (pc + 1, &op, 1)) |
| 1574 | return pc; |
| 1575 | |
| 1576 | if (op == 0xff) |
| 1577 | { |
| 1578 | pc += 2; |
| 1579 | if (target_read_code (pc, &op, 1)) |
| 1580 | return pc; |
| 1581 | |
| 1582 | check = 1; |
| 1583 | } |
| 1584 | } |
| 1585 | } |
| 1586 | return pc; |
| 1587 | } |
| 1588 | |
| 1589 | /* Check whether PC points at a code that sets up a new stack frame. |
| 1590 | If so, it updates CACHE and returns the address of the first |
| 1591 | instruction after the sequence that sets up the frame or LIMIT, |
| 1592 | whichever is smaller. If we don't recognize the code, return PC. */ |
| 1593 | |
| 1594 | static CORE_ADDR |
| 1595 | i386_analyze_frame_setup (struct gdbarch *gdbarch, |
| 1596 | CORE_ADDR pc, CORE_ADDR limit, |
| 1597 | struct i386_frame_cache *cache) |
| 1598 | { |
| 1599 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 1600 | struct i386_insn *insn; |
| 1601 | gdb_byte op; |
| 1602 | int skip = 0; |
| 1603 | |
| 1604 | if (limit <= pc) |
| 1605 | return limit; |
| 1606 | |
| 1607 | if (target_read_code (pc, &op, 1)) |
| 1608 | return pc; |
| 1609 | |
| 1610 | if (op == 0x55) /* pushl %ebp */ |
| 1611 | { |
| 1612 | /* Take into account that we've executed the `pushl %ebp' that |
| 1613 | starts this instruction sequence. */ |
| 1614 | cache->saved_regs[I386_EBP_REGNUM] = 0; |
| 1615 | cache->sp_offset += 4; |
| 1616 | pc++; |
| 1617 | |
| 1618 | /* If that's all, return now. */ |
| 1619 | if (limit <= pc) |
| 1620 | return limit; |
| 1621 | |
| 1622 | /* Check for some special instructions that might be migrated by |
| 1623 | GCC into the prologue and skip them. At this point in the |
| 1624 | prologue, code should only touch the scratch registers %eax, |
| 1625 | %ecx and %edx, so while the number of possibilities is sheer, |
| 1626 | it is limited. |
| 1627 | |
| 1628 | Make sure we only skip these instructions if we later see the |
| 1629 | `movl %esp, %ebp' that actually sets up the frame. */ |
| 1630 | while (pc + skip < limit) |
| 1631 | { |
| 1632 | insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns); |
| 1633 | if (insn == NULL) |
| 1634 | break; |
| 1635 | |
| 1636 | skip += insn->len; |
| 1637 | } |
| 1638 | |
| 1639 | /* If that's all, return now. */ |
| 1640 | if (limit <= pc + skip) |
| 1641 | return limit; |
| 1642 | |
| 1643 | if (target_read_code (pc + skip, &op, 1)) |
| 1644 | return pc + skip; |
| 1645 | |
| 1646 | /* The i386 prologue looks like |
| 1647 | |
| 1648 | push %ebp |
| 1649 | mov %esp,%ebp |
| 1650 | sub $0x10,%esp |
| 1651 | |
| 1652 | and a different prologue can be generated for atom. |
| 1653 | |
| 1654 | push %ebp |
| 1655 | lea (%esp),%ebp |
| 1656 | lea -0x10(%esp),%esp |
| 1657 | |
| 1658 | We handle both of them here. */ |
| 1659 | |
| 1660 | switch (op) |
| 1661 | { |
| 1662 | /* Check for `movl %esp, %ebp' -- can be written in two ways. */ |
| 1663 | case 0x8b: |
| 1664 | if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order) |
| 1665 | != 0xec) |
| 1666 | return pc; |
| 1667 | pc += (skip + 2); |
| 1668 | break; |
| 1669 | case 0x89: |
| 1670 | if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order) |
| 1671 | != 0xe5) |
| 1672 | return pc; |
| 1673 | pc += (skip + 2); |
| 1674 | break; |
| 1675 | case 0x8d: /* Check for 'lea (%ebp), %ebp'. */ |
| 1676 | if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order) |
| 1677 | != 0x242c) |
| 1678 | return pc; |
| 1679 | pc += (skip + 3); |
| 1680 | break; |
| 1681 | default: |
| 1682 | return pc; |
| 1683 | } |
| 1684 | |
| 1685 | /* OK, we actually have a frame. We just don't know how large |
| 1686 | it is yet. Set its size to zero. We'll adjust it if |
| 1687 | necessary. We also now commit to skipping the special |
| 1688 | instructions mentioned before. */ |
| 1689 | cache->locals = 0; |
| 1690 | |
| 1691 | /* If that's all, return now. */ |
| 1692 | if (limit <= pc) |
| 1693 | return limit; |
| 1694 | |
| 1695 | /* Check for stack adjustment |
| 1696 | |
| 1697 | subl $XXX, %esp |
| 1698 | or |
| 1699 | lea -XXX(%esp),%esp |
| 1700 | |
| 1701 | NOTE: You can't subtract a 16-bit immediate from a 32-bit |
| 1702 | reg, so we don't have to worry about a data16 prefix. */ |
| 1703 | if (target_read_code (pc, &op, 1)) |
| 1704 | return pc; |
| 1705 | if (op == 0x83) |
| 1706 | { |
| 1707 | /* `subl' with 8-bit immediate. */ |
| 1708 | if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec) |
| 1709 | /* Some instruction starting with 0x83 other than `subl'. */ |
| 1710 | return pc; |
| 1711 | |
| 1712 | /* `subl' with signed 8-bit immediate (though it wouldn't |
| 1713 | make sense to be negative). */ |
| 1714 | cache->locals = read_code_integer (pc + 2, 1, byte_order); |
| 1715 | return pc + 3; |
| 1716 | } |
| 1717 | else if (op == 0x81) |
| 1718 | { |
| 1719 | /* Maybe it is `subl' with a 32-bit immediate. */ |
| 1720 | if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec) |
| 1721 | /* Some instruction starting with 0x81 other than `subl'. */ |
| 1722 | return pc; |
| 1723 | |
| 1724 | /* It is `subl' with a 32-bit immediate. */ |
| 1725 | cache->locals = read_code_integer (pc + 2, 4, byte_order); |
| 1726 | return pc + 6; |
| 1727 | } |
| 1728 | else if (op == 0x8d) |
| 1729 | { |
| 1730 | /* The ModR/M byte is 0x64. */ |
| 1731 | if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64) |
| 1732 | return pc; |
| 1733 | /* 'lea' with 8-bit displacement. */ |
| 1734 | cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order); |
| 1735 | return pc + 4; |
| 1736 | } |
| 1737 | else |
| 1738 | { |
| 1739 | /* Some instruction other than `subl' nor 'lea'. */ |
| 1740 | return pc; |
| 1741 | } |
| 1742 | } |
| 1743 | else if (op == 0xc8) /* enter */ |
| 1744 | { |
| 1745 | cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order); |
| 1746 | return pc + 4; |
| 1747 | } |
| 1748 | |
| 1749 | return pc; |
| 1750 | } |
| 1751 | |
| 1752 | /* Check whether PC points at code that saves registers on the stack. |
| 1753 | If so, it updates CACHE and returns the address of the first |
| 1754 | instruction after the register saves or CURRENT_PC, whichever is |
| 1755 | smaller. Otherwise, return PC. */ |
| 1756 | |
| 1757 | static CORE_ADDR |
| 1758 | i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc, |
| 1759 | struct i386_frame_cache *cache) |
| 1760 | { |
| 1761 | CORE_ADDR offset = 0; |
| 1762 | gdb_byte op; |
| 1763 | int i; |
| 1764 | |
| 1765 | if (cache->locals > 0) |
| 1766 | offset -= cache->locals; |
| 1767 | for (i = 0; i < 8 && pc < current_pc; i++) |
| 1768 | { |
| 1769 | if (target_read_code (pc, &op, 1)) |
| 1770 | return pc; |
| 1771 | if (op < 0x50 || op > 0x57) |
| 1772 | break; |
| 1773 | |
| 1774 | offset -= 4; |
| 1775 | cache->saved_regs[op - 0x50] = offset; |
| 1776 | cache->sp_offset += 4; |
| 1777 | pc++; |
| 1778 | } |
| 1779 | |
| 1780 | return pc; |
| 1781 | } |
| 1782 | |
| 1783 | /* Do a full analysis of the prologue at PC and update CACHE |
| 1784 | accordingly. Bail out early if CURRENT_PC is reached. Return the |
| 1785 | address where the analysis stopped. |
| 1786 | |
| 1787 | We handle these cases: |
| 1788 | |
| 1789 | The startup sequence can be at the start of the function, or the |
| 1790 | function can start with a branch to startup code at the end. |
| 1791 | |
| 1792 | %ebp can be set up with either the 'enter' instruction, or "pushl |
| 1793 | %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was |
| 1794 | once used in the System V compiler). |
| 1795 | |
| 1796 | Local space is allocated just below the saved %ebp by either the |
| 1797 | 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a |
| 1798 | 16-bit unsigned argument for space to allocate, and the 'addl' |
| 1799 | instruction could have either a signed byte, or 32-bit immediate. |
| 1800 | |
| 1801 | Next, the registers used by this function are pushed. With the |
| 1802 | System V compiler they will always be in the order: %edi, %esi, |
| 1803 | %ebx (and sometimes a harmless bug causes it to also save but not |
| 1804 | restore %eax); however, the code below is willing to see the pushes |
| 1805 | in any order, and will handle up to 8 of them. |
| 1806 | |
| 1807 | If the setup sequence is at the end of the function, then the next |
| 1808 | instruction will be a branch back to the start. */ |
| 1809 | |
| 1810 | static CORE_ADDR |
| 1811 | i386_analyze_prologue (struct gdbarch *gdbarch, |
| 1812 | CORE_ADDR pc, CORE_ADDR current_pc, |
| 1813 | struct i386_frame_cache *cache) |
| 1814 | { |
| 1815 | pc = i386_skip_noop (pc); |
| 1816 | pc = i386_follow_jump (gdbarch, pc); |
| 1817 | pc = i386_analyze_struct_return (pc, current_pc, cache); |
| 1818 | pc = i386_skip_probe (pc); |
| 1819 | pc = i386_analyze_stack_align (pc, current_pc, cache); |
| 1820 | pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache); |
| 1821 | return i386_analyze_register_saves (pc, current_pc, cache); |
| 1822 | } |
| 1823 | |
| 1824 | /* Return PC of first real instruction. */ |
| 1825 | |
| 1826 | static CORE_ADDR |
| 1827 | i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) |
| 1828 | { |
| 1829 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 1830 | |
| 1831 | static gdb_byte pic_pat[6] = |
| 1832 | { |
| 1833 | 0xe8, 0, 0, 0, 0, /* call 0x0 */ |
| 1834 | 0x5b, /* popl %ebx */ |
| 1835 | }; |
| 1836 | struct i386_frame_cache cache; |
| 1837 | CORE_ADDR pc; |
| 1838 | gdb_byte op; |
| 1839 | int i; |
| 1840 | CORE_ADDR func_addr; |
| 1841 | |
| 1842 | if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL)) |
| 1843 | { |
| 1844 | CORE_ADDR post_prologue_pc |
| 1845 | = skip_prologue_using_sal (gdbarch, func_addr); |
| 1846 | struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr); |
| 1847 | |
| 1848 | /* Clang always emits a line note before the prologue and another |
| 1849 | one after. We trust clang to emit usable line notes. */ |
| 1850 | if (post_prologue_pc |
| 1851 | && (cust != NULL |
| 1852 | && COMPUNIT_PRODUCER (cust) != NULL |
| 1853 | && startswith (COMPUNIT_PRODUCER (cust), "clang "))) |
| 1854 | return std::max (start_pc, post_prologue_pc); |
| 1855 | } |
| 1856 | |
| 1857 | cache.locals = -1; |
| 1858 | pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache); |
| 1859 | if (cache.locals < 0) |
| 1860 | return start_pc; |
| 1861 | |
| 1862 | /* Found valid frame setup. */ |
| 1863 | |
| 1864 | /* The native cc on SVR4 in -K PIC mode inserts the following code |
| 1865 | to get the address of the global offset table (GOT) into register |
| 1866 | %ebx: |
| 1867 | |
| 1868 | call 0x0 |
| 1869 | popl %ebx |
| 1870 | movl %ebx,x(%ebp) (optional) |
| 1871 | addl y,%ebx |
| 1872 | |
| 1873 | This code is with the rest of the prologue (at the end of the |
| 1874 | function), so we have to skip it to get to the first real |
| 1875 | instruction at the start of the function. */ |
| 1876 | |
| 1877 | for (i = 0; i < 6; i++) |
| 1878 | { |
| 1879 | if (target_read_code (pc + i, &op, 1)) |
| 1880 | return pc; |
| 1881 | |
| 1882 | if (pic_pat[i] != op) |
| 1883 | break; |
| 1884 | } |
| 1885 | if (i == 6) |
| 1886 | { |
| 1887 | int delta = 6; |
| 1888 | |
| 1889 | if (target_read_code (pc + delta, &op, 1)) |
| 1890 | return pc; |
| 1891 | |
| 1892 | if (op == 0x89) /* movl %ebx, x(%ebp) */ |
| 1893 | { |
| 1894 | op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order); |
| 1895 | |
| 1896 | if (op == 0x5d) /* One byte offset from %ebp. */ |
| 1897 | delta += 3; |
| 1898 | else if (op == 0x9d) /* Four byte offset from %ebp. */ |
| 1899 | delta += 6; |
| 1900 | else /* Unexpected instruction. */ |
| 1901 | delta = 0; |
| 1902 | |
| 1903 | if (target_read_code (pc + delta, &op, 1)) |
| 1904 | return pc; |
| 1905 | } |
| 1906 | |
| 1907 | /* addl y,%ebx */ |
| 1908 | if (delta > 0 && op == 0x81 |
| 1909 | && read_code_unsigned_integer (pc + delta + 1, 1, byte_order) |
| 1910 | == 0xc3) |
| 1911 | { |
| 1912 | pc += delta + 6; |
| 1913 | } |
| 1914 | } |
| 1915 | |
| 1916 | /* If the function starts with a branch (to startup code at the end) |
| 1917 | the last instruction should bring us back to the first |
| 1918 | instruction of the real code. */ |
| 1919 | if (i386_follow_jump (gdbarch, start_pc) != start_pc) |
| 1920 | pc = i386_follow_jump (gdbarch, pc); |
| 1921 | |
| 1922 | return pc; |
| 1923 | } |
| 1924 | |
| 1925 | /* Check that the code pointed to by PC corresponds to a call to |
| 1926 | __main, skip it if so. Return PC otherwise. */ |
| 1927 | |
| 1928 | CORE_ADDR |
| 1929 | i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| 1930 | { |
| 1931 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 1932 | gdb_byte op; |
| 1933 | |
| 1934 | if (target_read_code (pc, &op, 1)) |
| 1935 | return pc; |
| 1936 | if (op == 0xe8) |
| 1937 | { |
| 1938 | gdb_byte buf[4]; |
| 1939 | |
| 1940 | if (target_read_code (pc + 1, buf, sizeof buf) == 0) |
| 1941 | { |
| 1942 | /* Make sure address is computed correctly as a 32bit |
| 1943 | integer even if CORE_ADDR is 64 bit wide. */ |
| 1944 | struct bound_minimal_symbol s; |
| 1945 | CORE_ADDR call_dest; |
| 1946 | |
| 1947 | call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order); |
| 1948 | call_dest = call_dest & 0xffffffffU; |
| 1949 | s = lookup_minimal_symbol_by_pc (call_dest); |
| 1950 | if (s.minsym != NULL |
| 1951 | && s.minsym->linkage_name () != NULL |
| 1952 | && strcmp (s.minsym->linkage_name (), "__main") == 0) |
| 1953 | pc += 5; |
| 1954 | } |
| 1955 | } |
| 1956 | |
| 1957 | return pc; |
| 1958 | } |
| 1959 | |
| 1960 | /* This function is 64-bit safe. */ |
| 1961 | |
| 1962 | static CORE_ADDR |
| 1963 | i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
| 1964 | { |
| 1965 | gdb_byte buf[8]; |
| 1966 | |
| 1967 | frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf); |
| 1968 | return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr); |
| 1969 | } |
| 1970 | \f |
| 1971 | |
| 1972 | /* Normal frames. */ |
| 1973 | |
| 1974 | static void |
| 1975 | i386_frame_cache_1 (struct frame_info *this_frame, |
| 1976 | struct i386_frame_cache *cache) |
| 1977 | { |
| 1978 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| 1979 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 1980 | gdb_byte buf[4]; |
| 1981 | int i; |
| 1982 | |
| 1983 | cache->pc = get_frame_func (this_frame); |
| 1984 | |
| 1985 | /* In principle, for normal frames, %ebp holds the frame pointer, |
| 1986 | which holds the base address for the current stack frame. |
| 1987 | However, for functions that don't need it, the frame pointer is |
| 1988 | optional. For these "frameless" functions the frame pointer is |
| 1989 | actually the frame pointer of the calling frame. Signal |
| 1990 | trampolines are just a special case of a "frameless" function. |
| 1991 | They (usually) share their frame pointer with the frame that was |
| 1992 | in progress when the signal occurred. */ |
| 1993 | |
| 1994 | get_frame_register (this_frame, I386_EBP_REGNUM, buf); |
| 1995 | cache->base = extract_unsigned_integer (buf, 4, byte_order); |
| 1996 | if (cache->base == 0) |
| 1997 | { |
| 1998 | cache->base_p = 1; |
| 1999 | return; |
| 2000 | } |
| 2001 | |
| 2002 | /* For normal frames, %eip is stored at 4(%ebp). */ |
| 2003 | cache->saved_regs[I386_EIP_REGNUM] = 4; |
| 2004 | |
| 2005 | if (cache->pc != 0) |
| 2006 | i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame), |
| 2007 | cache); |
| 2008 | |
| 2009 | if (cache->locals < 0) |
| 2010 | { |
| 2011 | /* We didn't find a valid frame, which means that CACHE->base |
| 2012 | currently holds the frame pointer for our calling frame. If |
| 2013 | we're at the start of a function, or somewhere half-way its |
| 2014 | prologue, the function's frame probably hasn't been fully |
| 2015 | setup yet. Try to reconstruct the base address for the stack |
| 2016 | frame by looking at the stack pointer. For truly "frameless" |
| 2017 | functions this might work too. */ |
| 2018 | |
| 2019 | if (cache->saved_sp_reg != -1) |
| 2020 | { |
| 2021 | /* Saved stack pointer has been saved. */ |
| 2022 | get_frame_register (this_frame, cache->saved_sp_reg, buf); |
| 2023 | cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order); |
| 2024 | |
| 2025 | /* We're halfway aligning the stack. */ |
| 2026 | cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4; |
| 2027 | cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4; |
| 2028 | |
| 2029 | /* This will be added back below. */ |
| 2030 | cache->saved_regs[I386_EIP_REGNUM] -= cache->base; |
| 2031 | } |
| 2032 | else if (cache->pc != 0 |
| 2033 | || target_read_code (get_frame_pc (this_frame), buf, 1)) |
| 2034 | { |
| 2035 | /* We're in a known function, but did not find a frame |
| 2036 | setup. Assume that the function does not use %ebp. |
| 2037 | Alternatively, we may have jumped to an invalid |
| 2038 | address; in that case there is definitely no new |
| 2039 | frame in %ebp. */ |
| 2040 | get_frame_register (this_frame, I386_ESP_REGNUM, buf); |
| 2041 | cache->base = extract_unsigned_integer (buf, 4, byte_order) |
| 2042 | + cache->sp_offset; |
| 2043 | } |
| 2044 | else |
| 2045 | /* We're in an unknown function. We could not find the start |
| 2046 | of the function to analyze the prologue; our best option is |
| 2047 | to assume a typical frame layout with the caller's %ebp |
| 2048 | saved. */ |
| 2049 | cache->saved_regs[I386_EBP_REGNUM] = 0; |
| 2050 | } |
| 2051 | |
| 2052 | if (cache->saved_sp_reg != -1) |
| 2053 | { |
| 2054 | /* Saved stack pointer has been saved (but the SAVED_SP_REG |
| 2055 | register may be unavailable). */ |
| 2056 | if (cache->saved_sp == 0 |
| 2057 | && deprecated_frame_register_read (this_frame, |
| 2058 | cache->saved_sp_reg, buf)) |
| 2059 | cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order); |
| 2060 | } |
| 2061 | /* Now that we have the base address for the stack frame we can |
| 2062 | calculate the value of %esp in the calling frame. */ |
| 2063 | else if (cache->saved_sp == 0) |
| 2064 | cache->saved_sp = cache->base + 8; |
| 2065 | |
| 2066 | /* Adjust all the saved registers such that they contain addresses |
| 2067 | instead of offsets. */ |
| 2068 | for (i = 0; i < I386_NUM_SAVED_REGS; i++) |
| 2069 | if (cache->saved_regs[i] != -1) |
| 2070 | cache->saved_regs[i] += cache->base; |
| 2071 | |
| 2072 | cache->base_p = 1; |
| 2073 | } |
| 2074 | |
| 2075 | static struct i386_frame_cache * |
| 2076 | i386_frame_cache (struct frame_info *this_frame, void **this_cache) |
| 2077 | { |
| 2078 | struct i386_frame_cache *cache; |
| 2079 | |
| 2080 | if (*this_cache) |
| 2081 | return (struct i386_frame_cache *) *this_cache; |
| 2082 | |
| 2083 | cache = i386_alloc_frame_cache (); |
| 2084 | *this_cache = cache; |
| 2085 | |
| 2086 | try |
| 2087 | { |
| 2088 | i386_frame_cache_1 (this_frame, cache); |
| 2089 | } |
| 2090 | catch (const gdb_exception_error &ex) |
| 2091 | { |
| 2092 | if (ex.error != NOT_AVAILABLE_ERROR) |
| 2093 | throw; |
| 2094 | } |
| 2095 | |
| 2096 | return cache; |
| 2097 | } |
| 2098 | |
| 2099 | static void |
| 2100 | i386_frame_this_id (struct frame_info *this_frame, void **this_cache, |
| 2101 | struct frame_id *this_id) |
| 2102 | { |
| 2103 | struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache); |
| 2104 | |
| 2105 | if (!cache->base_p) |
| 2106 | (*this_id) = frame_id_build_unavailable_stack (cache->pc); |
| 2107 | else if (cache->base == 0) |
| 2108 | { |
| 2109 | /* This marks the outermost frame. */ |
| 2110 | } |
| 2111 | else |
| 2112 | { |
| 2113 | /* See the end of i386_push_dummy_call. */ |
| 2114 | (*this_id) = frame_id_build (cache->base + 8, cache->pc); |
| 2115 | } |
| 2116 | } |
| 2117 | |
| 2118 | static enum unwind_stop_reason |
| 2119 | i386_frame_unwind_stop_reason (struct frame_info *this_frame, |
| 2120 | void **this_cache) |
| 2121 | { |
| 2122 | struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache); |
| 2123 | |
| 2124 | if (!cache->base_p) |
| 2125 | return UNWIND_UNAVAILABLE; |
| 2126 | |
| 2127 | /* This marks the outermost frame. */ |
| 2128 | if (cache->base == 0) |
| 2129 | return UNWIND_OUTERMOST; |
| 2130 | |
| 2131 | return UNWIND_NO_REASON; |
| 2132 | } |
| 2133 | |
| 2134 | static struct value * |
| 2135 | i386_frame_prev_register (struct frame_info *this_frame, void **this_cache, |
| 2136 | int regnum) |
| 2137 | { |
| 2138 | struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache); |
| 2139 | |
| 2140 | gdb_assert (regnum >= 0); |
| 2141 | |
| 2142 | /* The System V ABI says that: |
| 2143 | |
| 2144 | "The flags register contains the system flags, such as the |
| 2145 | direction flag and the carry flag. The direction flag must be |
| 2146 | set to the forward (that is, zero) direction before entry and |
| 2147 | upon exit from a function. Other user flags have no specified |
| 2148 | role in the standard calling sequence and are not preserved." |
| 2149 | |
| 2150 | To guarantee the "upon exit" part of that statement we fake a |
| 2151 | saved flags register that has its direction flag cleared. |
| 2152 | |
| 2153 | Note that GCC doesn't seem to rely on the fact that the direction |
| 2154 | flag is cleared after a function return; it always explicitly |
| 2155 | clears the flag before operations where it matters. |
| 2156 | |
| 2157 | FIXME: kettenis/20030316: I'm not quite sure whether this is the |
| 2158 | right thing to do. The way we fake the flags register here makes |
| 2159 | it impossible to change it. */ |
| 2160 | |
| 2161 | if (regnum == I386_EFLAGS_REGNUM) |
| 2162 | { |
| 2163 | ULONGEST val; |
| 2164 | |
| 2165 | val = get_frame_register_unsigned (this_frame, regnum); |
| 2166 | val &= ~(1 << 10); |
| 2167 | return frame_unwind_got_constant (this_frame, regnum, val); |
| 2168 | } |
| 2169 | |
| 2170 | if (regnum == I386_EIP_REGNUM && cache->pc_in_eax) |
| 2171 | return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM); |
| 2172 | |
| 2173 | if (regnum == I386_ESP_REGNUM |
| 2174 | && (cache->saved_sp != 0 || cache->saved_sp_reg != -1)) |
| 2175 | { |
| 2176 | /* If the SP has been saved, but we don't know where, then this |
| 2177 | means that SAVED_SP_REG register was found unavailable back |
| 2178 | when we built the cache. */ |
| 2179 | if (cache->saved_sp == 0) |
| 2180 | return frame_unwind_got_register (this_frame, regnum, |
| 2181 | cache->saved_sp_reg); |
| 2182 | else |
| 2183 | return frame_unwind_got_constant (this_frame, regnum, |
| 2184 | cache->saved_sp); |
| 2185 | } |
| 2186 | |
| 2187 | if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1) |
| 2188 | return frame_unwind_got_memory (this_frame, regnum, |
| 2189 | cache->saved_regs[regnum]); |
| 2190 | |
| 2191 | return frame_unwind_got_register (this_frame, regnum, regnum); |
| 2192 | } |
| 2193 | |
| 2194 | static const struct frame_unwind i386_frame_unwind = |
| 2195 | { |
| 2196 | NORMAL_FRAME, |
| 2197 | i386_frame_unwind_stop_reason, |
| 2198 | i386_frame_this_id, |
| 2199 | i386_frame_prev_register, |
| 2200 | NULL, |
| 2201 | default_frame_sniffer |
| 2202 | }; |
| 2203 | |
| 2204 | /* Normal frames, but in a function epilogue. */ |
| 2205 | |
| 2206 | /* Implement the stack_frame_destroyed_p gdbarch method. |
| 2207 | |
| 2208 | The epilogue is defined here as the 'ret' instruction, which will |
| 2209 | follow any instruction such as 'leave' or 'pop %ebp' that destroys |
| 2210 | the function's stack frame. */ |
| 2211 | |
| 2212 | static int |
| 2213 | i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
| 2214 | { |
| 2215 | gdb_byte insn; |
| 2216 | struct compunit_symtab *cust; |
| 2217 | |
| 2218 | cust = find_pc_compunit_symtab (pc); |
| 2219 | if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust)) |
| 2220 | return 0; |
| 2221 | |
| 2222 | if (target_read_memory (pc, &insn, 1)) |
| 2223 | return 0; /* Can't read memory at pc. */ |
| 2224 | |
| 2225 | if (insn != 0xc3) /* 'ret' instruction. */ |
| 2226 | return 0; |
| 2227 | |
| 2228 | return 1; |
| 2229 | } |
| 2230 | |
| 2231 | static int |
| 2232 | i386_epilogue_frame_sniffer (const struct frame_unwind *self, |
| 2233 | struct frame_info *this_frame, |
| 2234 | void **this_prologue_cache) |
| 2235 | { |
| 2236 | if (frame_relative_level (this_frame) == 0) |
| 2237 | return i386_stack_frame_destroyed_p (get_frame_arch (this_frame), |
| 2238 | get_frame_pc (this_frame)); |
| 2239 | else |
| 2240 | return 0; |
| 2241 | } |
| 2242 | |
| 2243 | static struct i386_frame_cache * |
| 2244 | i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache) |
| 2245 | { |
| 2246 | struct i386_frame_cache *cache; |
| 2247 | CORE_ADDR sp; |
| 2248 | |
| 2249 | if (*this_cache) |
| 2250 | return (struct i386_frame_cache *) *this_cache; |
| 2251 | |
| 2252 | cache = i386_alloc_frame_cache (); |
| 2253 | *this_cache = cache; |
| 2254 | |
| 2255 | try |
| 2256 | { |
| 2257 | cache->pc = get_frame_func (this_frame); |
| 2258 | |
| 2259 | /* At this point the stack looks as if we just entered the |
| 2260 | function, with the return address at the top of the |
| 2261 | stack. */ |
| 2262 | sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM); |
| 2263 | cache->base = sp + cache->sp_offset; |
| 2264 | cache->saved_sp = cache->base + 8; |
| 2265 | cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4; |
| 2266 | |
| 2267 | cache->base_p = 1; |
| 2268 | } |
| 2269 | catch (const gdb_exception_error &ex) |
| 2270 | { |
| 2271 | if (ex.error != NOT_AVAILABLE_ERROR) |
| 2272 | throw; |
| 2273 | } |
| 2274 | |
| 2275 | return cache; |
| 2276 | } |
| 2277 | |
| 2278 | static enum unwind_stop_reason |
| 2279 | i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame, |
| 2280 | void **this_cache) |
| 2281 | { |
| 2282 | struct i386_frame_cache *cache = |
| 2283 | i386_epilogue_frame_cache (this_frame, this_cache); |
| 2284 | |
| 2285 | if (!cache->base_p) |
| 2286 | return UNWIND_UNAVAILABLE; |
| 2287 | |
| 2288 | return UNWIND_NO_REASON; |
| 2289 | } |
| 2290 | |
| 2291 | static void |
| 2292 | i386_epilogue_frame_this_id (struct frame_info *this_frame, |
| 2293 | void **this_cache, |
| 2294 | struct frame_id *this_id) |
| 2295 | { |
| 2296 | struct i386_frame_cache *cache = |
| 2297 | i386_epilogue_frame_cache (this_frame, this_cache); |
| 2298 | |
| 2299 | if (!cache->base_p) |
| 2300 | (*this_id) = frame_id_build_unavailable_stack (cache->pc); |
| 2301 | else |
| 2302 | (*this_id) = frame_id_build (cache->base + 8, cache->pc); |
| 2303 | } |
| 2304 | |
| 2305 | static struct value * |
| 2306 | i386_epilogue_frame_prev_register (struct frame_info *this_frame, |
| 2307 | void **this_cache, int regnum) |
| 2308 | { |
| 2309 | /* Make sure we've initialized the cache. */ |
| 2310 | i386_epilogue_frame_cache (this_frame, this_cache); |
| 2311 | |
| 2312 | return i386_frame_prev_register (this_frame, this_cache, regnum); |
| 2313 | } |
| 2314 | |
| 2315 | static const struct frame_unwind i386_epilogue_frame_unwind = |
| 2316 | { |
| 2317 | NORMAL_FRAME, |
| 2318 | i386_epilogue_frame_unwind_stop_reason, |
| 2319 | i386_epilogue_frame_this_id, |
| 2320 | i386_epilogue_frame_prev_register, |
| 2321 | NULL, |
| 2322 | i386_epilogue_frame_sniffer |
| 2323 | }; |
| 2324 | \f |
| 2325 | |
| 2326 | /* Stack-based trampolines. */ |
| 2327 | |
| 2328 | /* These trampolines are used on cross x86 targets, when taking the |
| 2329 | address of a nested function. When executing these trampolines, |
| 2330 | no stack frame is set up, so we are in a similar situation as in |
| 2331 | epilogues and i386_epilogue_frame_this_id can be re-used. */ |
| 2332 | |
| 2333 | /* Static chain passed in register. */ |
| 2334 | |
| 2335 | struct i386_insn i386_tramp_chain_in_reg_insns[] = |
| 2336 | { |
| 2337 | /* `movl imm32, %eax' and `movl imm32, %ecx' */ |
| 2338 | { 5, { 0xb8 }, { 0xfe } }, |
| 2339 | |
| 2340 | /* `jmp imm32' */ |
| 2341 | { 5, { 0xe9 }, { 0xff } }, |
| 2342 | |
| 2343 | {0} |
| 2344 | }; |
| 2345 | |
| 2346 | /* Static chain passed on stack (when regparm=3). */ |
| 2347 | |
| 2348 | struct i386_insn i386_tramp_chain_on_stack_insns[] = |
| 2349 | { |
| 2350 | /* `push imm32' */ |
| 2351 | { 5, { 0x68 }, { 0xff } }, |
| 2352 | |
| 2353 | /* `jmp imm32' */ |
| 2354 | { 5, { 0xe9 }, { 0xff } }, |
| 2355 | |
| 2356 | {0} |
| 2357 | }; |
| 2358 | |
| 2359 | /* Return whether PC points inside a stack trampoline. */ |
| 2360 | |
| 2361 | static int |
| 2362 | i386_in_stack_tramp_p (CORE_ADDR pc) |
| 2363 | { |
| 2364 | gdb_byte insn; |
| 2365 | const char *name; |
| 2366 | |
| 2367 | /* A stack trampoline is detected if no name is associated |
| 2368 | to the current pc and if it points inside a trampoline |
| 2369 | sequence. */ |
| 2370 | |
| 2371 | find_pc_partial_function (pc, &name, NULL, NULL); |
| 2372 | if (name) |
| 2373 | return 0; |
| 2374 | |
| 2375 | if (target_read_memory (pc, &insn, 1)) |
| 2376 | return 0; |
| 2377 | |
| 2378 | if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns) |
| 2379 | && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns)) |
| 2380 | return 0; |
| 2381 | |
| 2382 | return 1; |
| 2383 | } |
| 2384 | |
| 2385 | static int |
| 2386 | i386_stack_tramp_frame_sniffer (const struct frame_unwind *self, |
| 2387 | struct frame_info *this_frame, |
| 2388 | void **this_cache) |
| 2389 | { |
| 2390 | if (frame_relative_level (this_frame) == 0) |
| 2391 | return i386_in_stack_tramp_p (get_frame_pc (this_frame)); |
| 2392 | else |
| 2393 | return 0; |
| 2394 | } |
| 2395 | |
| 2396 | static const struct frame_unwind i386_stack_tramp_frame_unwind = |
| 2397 | { |
| 2398 | NORMAL_FRAME, |
| 2399 | i386_epilogue_frame_unwind_stop_reason, |
| 2400 | i386_epilogue_frame_this_id, |
| 2401 | i386_epilogue_frame_prev_register, |
| 2402 | NULL, |
| 2403 | i386_stack_tramp_frame_sniffer |
| 2404 | }; |
| 2405 | \f |
| 2406 | /* Generate a bytecode expression to get the value of the saved PC. */ |
| 2407 | |
| 2408 | static void |
| 2409 | i386_gen_return_address (struct gdbarch *gdbarch, |
| 2410 | struct agent_expr *ax, struct axs_value *value, |
| 2411 | CORE_ADDR scope) |
| 2412 | { |
| 2413 | /* The following sequence assumes the traditional use of the base |
| 2414 | register. */ |
| 2415 | ax_reg (ax, I386_EBP_REGNUM); |
| 2416 | ax_const_l (ax, 4); |
| 2417 | ax_simple (ax, aop_add); |
| 2418 | value->type = register_type (gdbarch, I386_EIP_REGNUM); |
| 2419 | value->kind = axs_lvalue_memory; |
| 2420 | } |
| 2421 | \f |
| 2422 | |
| 2423 | /* Signal trampolines. */ |
| 2424 | |
| 2425 | static struct i386_frame_cache * |
| 2426 | i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache) |
| 2427 | { |
| 2428 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| 2429 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 2430 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 2431 | struct i386_frame_cache *cache; |
| 2432 | CORE_ADDR addr; |
| 2433 | gdb_byte buf[4]; |
| 2434 | |
| 2435 | if (*this_cache) |
| 2436 | return (struct i386_frame_cache *) *this_cache; |
| 2437 | |
| 2438 | cache = i386_alloc_frame_cache (); |
| 2439 | |
| 2440 | try |
| 2441 | { |
| 2442 | get_frame_register (this_frame, I386_ESP_REGNUM, buf); |
| 2443 | cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4; |
| 2444 | |
| 2445 | addr = tdep->sigcontext_addr (this_frame); |
| 2446 | if (tdep->sc_reg_offset) |
| 2447 | { |
| 2448 | int i; |
| 2449 | |
| 2450 | gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS); |
| 2451 | |
| 2452 | for (i = 0; i < tdep->sc_num_regs; i++) |
| 2453 | if (tdep->sc_reg_offset[i] != -1) |
| 2454 | cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; |
| 2455 | } |
| 2456 | else |
| 2457 | { |
| 2458 | cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset; |
| 2459 | cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset; |
| 2460 | } |
| 2461 | |
| 2462 | cache->base_p = 1; |
| 2463 | } |
| 2464 | catch (const gdb_exception_error &ex) |
| 2465 | { |
| 2466 | if (ex.error != NOT_AVAILABLE_ERROR) |
| 2467 | throw; |
| 2468 | } |
| 2469 | |
| 2470 | *this_cache = cache; |
| 2471 | return cache; |
| 2472 | } |
| 2473 | |
| 2474 | static enum unwind_stop_reason |
| 2475 | i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame, |
| 2476 | void **this_cache) |
| 2477 | { |
| 2478 | struct i386_frame_cache *cache = |
| 2479 | i386_sigtramp_frame_cache (this_frame, this_cache); |
| 2480 | |
| 2481 | if (!cache->base_p) |
| 2482 | return UNWIND_UNAVAILABLE; |
| 2483 | |
| 2484 | return UNWIND_NO_REASON; |
| 2485 | } |
| 2486 | |
| 2487 | static void |
| 2488 | i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache, |
| 2489 | struct frame_id *this_id) |
| 2490 | { |
| 2491 | struct i386_frame_cache *cache = |
| 2492 | i386_sigtramp_frame_cache (this_frame, this_cache); |
| 2493 | |
| 2494 | if (!cache->base_p) |
| 2495 | (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame)); |
| 2496 | else |
| 2497 | { |
| 2498 | /* See the end of i386_push_dummy_call. */ |
| 2499 | (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame)); |
| 2500 | } |
| 2501 | } |
| 2502 | |
| 2503 | static struct value * |
| 2504 | i386_sigtramp_frame_prev_register (struct frame_info *this_frame, |
| 2505 | void **this_cache, int regnum) |
| 2506 | { |
| 2507 | /* Make sure we've initialized the cache. */ |
| 2508 | i386_sigtramp_frame_cache (this_frame, this_cache); |
| 2509 | |
| 2510 | return i386_frame_prev_register (this_frame, this_cache, regnum); |
| 2511 | } |
| 2512 | |
| 2513 | static int |
| 2514 | i386_sigtramp_frame_sniffer (const struct frame_unwind *self, |
| 2515 | struct frame_info *this_frame, |
| 2516 | void **this_prologue_cache) |
| 2517 | { |
| 2518 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame)); |
| 2519 | |
| 2520 | /* We shouldn't even bother if we don't have a sigcontext_addr |
| 2521 | handler. */ |
| 2522 | if (tdep->sigcontext_addr == NULL) |
| 2523 | return 0; |
| 2524 | |
| 2525 | if (tdep->sigtramp_p != NULL) |
| 2526 | { |
| 2527 | if (tdep->sigtramp_p (this_frame)) |
| 2528 | return 1; |
| 2529 | } |
| 2530 | |
| 2531 | if (tdep->sigtramp_start != 0) |
| 2532 | { |
| 2533 | CORE_ADDR pc = get_frame_pc (this_frame); |
| 2534 | |
| 2535 | gdb_assert (tdep->sigtramp_end != 0); |
| 2536 | if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end) |
| 2537 | return 1; |
| 2538 | } |
| 2539 | |
| 2540 | return 0; |
| 2541 | } |
| 2542 | |
| 2543 | static const struct frame_unwind i386_sigtramp_frame_unwind = |
| 2544 | { |
| 2545 | SIGTRAMP_FRAME, |
| 2546 | i386_sigtramp_frame_unwind_stop_reason, |
| 2547 | i386_sigtramp_frame_this_id, |
| 2548 | i386_sigtramp_frame_prev_register, |
| 2549 | NULL, |
| 2550 | i386_sigtramp_frame_sniffer |
| 2551 | }; |
| 2552 | \f |
| 2553 | |
| 2554 | static CORE_ADDR |
| 2555 | i386_frame_base_address (struct frame_info *this_frame, void **this_cache) |
| 2556 | { |
| 2557 | struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache); |
| 2558 | |
| 2559 | return cache->base; |
| 2560 | } |
| 2561 | |
| 2562 | static const struct frame_base i386_frame_base = |
| 2563 | { |
| 2564 | &i386_frame_unwind, |
| 2565 | i386_frame_base_address, |
| 2566 | i386_frame_base_address, |
| 2567 | i386_frame_base_address |
| 2568 | }; |
| 2569 | |
| 2570 | static struct frame_id |
| 2571 | i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
| 2572 | { |
| 2573 | CORE_ADDR fp; |
| 2574 | |
| 2575 | fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM); |
| 2576 | |
| 2577 | /* See the end of i386_push_dummy_call. */ |
| 2578 | return frame_id_build (fp + 8, get_frame_pc (this_frame)); |
| 2579 | } |
| 2580 | |
| 2581 | /* _Decimal128 function return values need 16-byte alignment on the |
| 2582 | stack. */ |
| 2583 | |
| 2584 | static CORE_ADDR |
| 2585 | i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
| 2586 | { |
| 2587 | return sp & -(CORE_ADDR)16; |
| 2588 | } |
| 2589 | \f |
| 2590 | |
| 2591 | /* Figure out where the longjmp will land. Slurp the args out of the |
| 2592 | stack. We expect the first arg to be a pointer to the jmp_buf |
| 2593 | structure from which we extract the address that we will land at. |
| 2594 | This address is copied into PC. This routine returns non-zero on |
| 2595 | success. */ |
| 2596 | |
| 2597 | static int |
| 2598 | i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) |
| 2599 | { |
| 2600 | gdb_byte buf[4]; |
| 2601 | CORE_ADDR sp, jb_addr; |
| 2602 | struct gdbarch *gdbarch = get_frame_arch (frame); |
| 2603 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 2604 | int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset; |
| 2605 | |
| 2606 | /* If JB_PC_OFFSET is -1, we have no way to find out where the |
| 2607 | longjmp will land. */ |
| 2608 | if (jb_pc_offset == -1) |
| 2609 | return 0; |
| 2610 | |
| 2611 | get_frame_register (frame, I386_ESP_REGNUM, buf); |
| 2612 | sp = extract_unsigned_integer (buf, 4, byte_order); |
| 2613 | if (target_read_memory (sp + 4, buf, 4)) |
| 2614 | return 0; |
| 2615 | |
| 2616 | jb_addr = extract_unsigned_integer (buf, 4, byte_order); |
| 2617 | if (target_read_memory (jb_addr + jb_pc_offset, buf, 4)) |
| 2618 | return 0; |
| 2619 | |
| 2620 | *pc = extract_unsigned_integer (buf, 4, byte_order); |
| 2621 | return 1; |
| 2622 | } |
| 2623 | \f |
| 2624 | |
| 2625 | /* Check whether TYPE must be 16-byte-aligned when passed as a |
| 2626 | function argument. 16-byte vectors, _Decimal128 and structures or |
| 2627 | unions containing such types must be 16-byte-aligned; other |
| 2628 | arguments are 4-byte-aligned. */ |
| 2629 | |
| 2630 | static int |
| 2631 | i386_16_byte_align_p (struct type *type) |
| 2632 | { |
| 2633 | type = check_typedef (type); |
| 2634 | if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT |
| 2635 | || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))) |
| 2636 | && TYPE_LENGTH (type) == 16) |
| 2637 | return 1; |
| 2638 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY) |
| 2639 | return i386_16_byte_align_p (TYPE_TARGET_TYPE (type)); |
| 2640 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT |
| 2641 | || TYPE_CODE (type) == TYPE_CODE_UNION) |
| 2642 | { |
| 2643 | int i; |
| 2644 | for (i = 0; i < TYPE_NFIELDS (type); i++) |
| 2645 | { |
| 2646 | if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i))) |
| 2647 | return 1; |
| 2648 | } |
| 2649 | } |
| 2650 | return 0; |
| 2651 | } |
| 2652 | |
| 2653 | /* Implementation for set_gdbarch_push_dummy_code. */ |
| 2654 | |
| 2655 | static CORE_ADDR |
| 2656 | i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr, |
| 2657 | struct value **args, int nargs, struct type *value_type, |
| 2658 | CORE_ADDR *real_pc, CORE_ADDR *bp_addr, |
| 2659 | struct regcache *regcache) |
| 2660 | { |
| 2661 | /* Use 0xcc breakpoint - 1 byte. */ |
| 2662 | *bp_addr = sp - 1; |
| 2663 | *real_pc = funaddr; |
| 2664 | |
| 2665 | /* Keep the stack aligned. */ |
| 2666 | return sp - 16; |
| 2667 | } |
| 2668 | |
| 2669 | static CORE_ADDR |
| 2670 | i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| 2671 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, |
| 2672 | struct value **args, CORE_ADDR sp, |
| 2673 | function_call_return_method return_method, |
| 2674 | CORE_ADDR struct_addr) |
| 2675 | { |
| 2676 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 2677 | gdb_byte buf[4]; |
| 2678 | int i; |
| 2679 | int write_pass; |
| 2680 | int args_space = 0; |
| 2681 | |
| 2682 | /* BND registers can be in arbitrary values at the moment of the |
| 2683 | inferior call. This can cause boundary violations that are not |
| 2684 | due to a real bug or even desired by the user. The best to be done |
| 2685 | is set the BND registers to allow access to the whole memory, INIT |
| 2686 | state, before pushing the inferior call. */ |
| 2687 | i387_reset_bnd_regs (gdbarch, regcache); |
| 2688 | |
| 2689 | /* Determine the total space required for arguments and struct |
| 2690 | return address in a first pass (allowing for 16-byte-aligned |
| 2691 | arguments), then push arguments in a second pass. */ |
| 2692 | |
| 2693 | for (write_pass = 0; write_pass < 2; write_pass++) |
| 2694 | { |
| 2695 | int args_space_used = 0; |
| 2696 | |
| 2697 | if (return_method == return_method_struct) |
| 2698 | { |
| 2699 | if (write_pass) |
| 2700 | { |
| 2701 | /* Push value address. */ |
| 2702 | store_unsigned_integer (buf, 4, byte_order, struct_addr); |
| 2703 | write_memory (sp, buf, 4); |
| 2704 | args_space_used += 4; |
| 2705 | } |
| 2706 | else |
| 2707 | args_space += 4; |
| 2708 | } |
| 2709 | |
| 2710 | for (i = 0; i < nargs; i++) |
| 2711 | { |
| 2712 | int len = TYPE_LENGTH (value_enclosing_type (args[i])); |
| 2713 | |
| 2714 | if (write_pass) |
| 2715 | { |
| 2716 | if (i386_16_byte_align_p (value_enclosing_type (args[i]))) |
| 2717 | args_space_used = align_up (args_space_used, 16); |
| 2718 | |
| 2719 | write_memory (sp + args_space_used, |
| 2720 | value_contents_all (args[i]), len); |
| 2721 | /* The System V ABI says that: |
| 2722 | |
| 2723 | "An argument's size is increased, if necessary, to make it a |
| 2724 | multiple of [32-bit] words. This may require tail padding, |
| 2725 | depending on the size of the argument." |
| 2726 | |
| 2727 | This makes sure the stack stays word-aligned. */ |
| 2728 | args_space_used += align_up (len, 4); |
| 2729 | } |
| 2730 | else |
| 2731 | { |
| 2732 | if (i386_16_byte_align_p (value_enclosing_type (args[i]))) |
| 2733 | args_space = align_up (args_space, 16); |
| 2734 | args_space += align_up (len, 4); |
| 2735 | } |
| 2736 | } |
| 2737 | |
| 2738 | if (!write_pass) |
| 2739 | { |
| 2740 | sp -= args_space; |
| 2741 | |
| 2742 | /* The original System V ABI only requires word alignment, |
| 2743 | but modern incarnations need 16-byte alignment in order |
| 2744 | to support SSE. Since wasting a few bytes here isn't |
| 2745 | harmful we unconditionally enforce 16-byte alignment. */ |
| 2746 | sp &= ~0xf; |
| 2747 | } |
| 2748 | } |
| 2749 | |
| 2750 | /* Store return address. */ |
| 2751 | sp -= 4; |
| 2752 | store_unsigned_integer (buf, 4, byte_order, bp_addr); |
| 2753 | write_memory (sp, buf, 4); |
| 2754 | |
| 2755 | /* Finally, update the stack pointer... */ |
| 2756 | store_unsigned_integer (buf, 4, byte_order, sp); |
| 2757 | regcache->cooked_write (I386_ESP_REGNUM, buf); |
| 2758 | |
| 2759 | /* ...and fake a frame pointer. */ |
| 2760 | regcache->cooked_write (I386_EBP_REGNUM, buf); |
| 2761 | |
| 2762 | /* MarkK wrote: This "+ 8" is all over the place: |
| 2763 | (i386_frame_this_id, i386_sigtramp_frame_this_id, |
| 2764 | i386_dummy_id). It's there, since all frame unwinders for |
| 2765 | a given target have to agree (within a certain margin) on the |
| 2766 | definition of the stack address of a frame. Otherwise frame id |
| 2767 | comparison might not work correctly. Since DWARF2/GCC uses the |
| 2768 | stack address *before* the function call as a frame's CFA. On |
| 2769 | the i386, when %ebp is used as a frame pointer, the offset |
| 2770 | between the contents %ebp and the CFA as defined by GCC. */ |
| 2771 | return sp + 8; |
| 2772 | } |
| 2773 | |
| 2774 | /* These registers are used for returning integers (and on some |
| 2775 | targets also for returning `struct' and `union' values when their |
| 2776 | size and alignment match an integer type). */ |
| 2777 | #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */ |
| 2778 | #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */ |
| 2779 | |
| 2780 | /* Read, for architecture GDBARCH, a function return value of TYPE |
| 2781 | from REGCACHE, and copy that into VALBUF. */ |
| 2782 | |
| 2783 | static void |
| 2784 | i386_extract_return_value (struct gdbarch *gdbarch, struct type *type, |
| 2785 | struct regcache *regcache, gdb_byte *valbuf) |
| 2786 | { |
| 2787 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 2788 | int len = TYPE_LENGTH (type); |
| 2789 | gdb_byte buf[I386_MAX_REGISTER_SIZE]; |
| 2790 | |
| 2791 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
| 2792 | { |
| 2793 | if (tdep->st0_regnum < 0) |
| 2794 | { |
| 2795 | warning (_("Cannot find floating-point return value.")); |
| 2796 | memset (valbuf, 0, len); |
| 2797 | return; |
| 2798 | } |
| 2799 | |
| 2800 | /* Floating-point return values can be found in %st(0). Convert |
| 2801 | its contents to the desired type. This is probably not |
| 2802 | exactly how it would happen on the target itself, but it is |
| 2803 | the best we can do. */ |
| 2804 | regcache->raw_read (I386_ST0_REGNUM, buf); |
| 2805 | target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type); |
| 2806 | } |
| 2807 | else |
| 2808 | { |
| 2809 | int low_size = register_size (gdbarch, LOW_RETURN_REGNUM); |
| 2810 | int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM); |
| 2811 | |
| 2812 | if (len <= low_size) |
| 2813 | { |
| 2814 | regcache->raw_read (LOW_RETURN_REGNUM, buf); |
| 2815 | memcpy (valbuf, buf, len); |
| 2816 | } |
| 2817 | else if (len <= (low_size + high_size)) |
| 2818 | { |
| 2819 | regcache->raw_read (LOW_RETURN_REGNUM, buf); |
| 2820 | memcpy (valbuf, buf, low_size); |
| 2821 | regcache->raw_read (HIGH_RETURN_REGNUM, buf); |
| 2822 | memcpy (valbuf + low_size, buf, len - low_size); |
| 2823 | } |
| 2824 | else |
| 2825 | internal_error (__FILE__, __LINE__, |
| 2826 | _("Cannot extract return value of %d bytes long."), |
| 2827 | len); |
| 2828 | } |
| 2829 | } |
| 2830 | |
| 2831 | /* Write, for architecture GDBARCH, a function return value of TYPE |
| 2832 | from VALBUF into REGCACHE. */ |
| 2833 | |
| 2834 | static void |
| 2835 | i386_store_return_value (struct gdbarch *gdbarch, struct type *type, |
| 2836 | struct regcache *regcache, const gdb_byte *valbuf) |
| 2837 | { |
| 2838 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 2839 | int len = TYPE_LENGTH (type); |
| 2840 | |
| 2841 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
| 2842 | { |
| 2843 | ULONGEST fstat; |
| 2844 | gdb_byte buf[I386_MAX_REGISTER_SIZE]; |
| 2845 | |
| 2846 | if (tdep->st0_regnum < 0) |
| 2847 | { |
| 2848 | warning (_("Cannot set floating-point return value.")); |
| 2849 | return; |
| 2850 | } |
| 2851 | |
| 2852 | /* Returning floating-point values is a bit tricky. Apart from |
| 2853 | storing the return value in %st(0), we have to simulate the |
| 2854 | state of the FPU at function return point. */ |
| 2855 | |
| 2856 | /* Convert the value found in VALBUF to the extended |
| 2857 | floating-point format used by the FPU. This is probably |
| 2858 | not exactly how it would happen on the target itself, but |
| 2859 | it is the best we can do. */ |
| 2860 | target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch)); |
| 2861 | regcache->raw_write (I386_ST0_REGNUM, buf); |
| 2862 | |
| 2863 | /* Set the top of the floating-point register stack to 7. The |
| 2864 | actual value doesn't really matter, but 7 is what a normal |
| 2865 | function return would end up with if the program started out |
| 2866 | with a freshly initialized FPU. */ |
| 2867 | regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat); |
| 2868 | fstat |= (7 << 11); |
| 2869 | regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat); |
| 2870 | |
| 2871 | /* Mark %st(1) through %st(7) as empty. Since we set the top of |
| 2872 | the floating-point register stack to 7, the appropriate value |
| 2873 | for the tag word is 0x3fff. */ |
| 2874 | regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff); |
| 2875 | } |
| 2876 | else |
| 2877 | { |
| 2878 | int low_size = register_size (gdbarch, LOW_RETURN_REGNUM); |
| 2879 | int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM); |
| 2880 | |
| 2881 | if (len <= low_size) |
| 2882 | regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf); |
| 2883 | else if (len <= (low_size + high_size)) |
| 2884 | { |
| 2885 | regcache->raw_write (LOW_RETURN_REGNUM, valbuf); |
| 2886 | regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size, |
| 2887 | valbuf + low_size); |
| 2888 | } |
| 2889 | else |
| 2890 | internal_error (__FILE__, __LINE__, |
| 2891 | _("Cannot store return value of %d bytes long."), len); |
| 2892 | } |
| 2893 | } |
| 2894 | \f |
| 2895 | |
| 2896 | /* This is the variable that is set with "set struct-convention", and |
| 2897 | its legitimate values. */ |
| 2898 | static const char default_struct_convention[] = "default"; |
| 2899 | static const char pcc_struct_convention[] = "pcc"; |
| 2900 | static const char reg_struct_convention[] = "reg"; |
| 2901 | static const char *const valid_conventions[] = |
| 2902 | { |
| 2903 | default_struct_convention, |
| 2904 | pcc_struct_convention, |
| 2905 | reg_struct_convention, |
| 2906 | NULL |
| 2907 | }; |
| 2908 | static const char *struct_convention = default_struct_convention; |
| 2909 | |
| 2910 | /* Return non-zero if TYPE, which is assumed to be a structure, |
| 2911 | a union type, or an array type, should be returned in registers |
| 2912 | for architecture GDBARCH. */ |
| 2913 | |
| 2914 | static int |
| 2915 | i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type) |
| 2916 | { |
| 2917 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 2918 | enum type_code code = TYPE_CODE (type); |
| 2919 | int len = TYPE_LENGTH (type); |
| 2920 | |
| 2921 | gdb_assert (code == TYPE_CODE_STRUCT |
| 2922 | || code == TYPE_CODE_UNION |
| 2923 | || code == TYPE_CODE_ARRAY); |
| 2924 | |
| 2925 | if (struct_convention == pcc_struct_convention |
| 2926 | || (struct_convention == default_struct_convention |
| 2927 | && tdep->struct_return == pcc_struct_return)) |
| 2928 | return 0; |
| 2929 | |
| 2930 | /* Structures consisting of a single `float', `double' or 'long |
| 2931 | double' member are returned in %st(0). */ |
| 2932 | if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1) |
| 2933 | { |
| 2934 | type = check_typedef (TYPE_FIELD_TYPE (type, 0)); |
| 2935 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
| 2936 | return (len == 4 || len == 8 || len == 12); |
| 2937 | } |
| 2938 | |
| 2939 | return (len == 1 || len == 2 || len == 4 || len == 8); |
| 2940 | } |
| 2941 | |
| 2942 | /* Determine, for architecture GDBARCH, how a return value of TYPE |
| 2943 | should be returned. If it is supposed to be returned in registers, |
| 2944 | and READBUF is non-zero, read the appropriate value from REGCACHE, |
| 2945 | and copy it into READBUF. If WRITEBUF is non-zero, write the value |
| 2946 | from WRITEBUF into REGCACHE. */ |
| 2947 | |
| 2948 | static enum return_value_convention |
| 2949 | i386_return_value (struct gdbarch *gdbarch, struct value *function, |
| 2950 | struct type *type, struct regcache *regcache, |
| 2951 | gdb_byte *readbuf, const gdb_byte *writebuf) |
| 2952 | { |
| 2953 | enum type_code code = TYPE_CODE (type); |
| 2954 | |
| 2955 | if (((code == TYPE_CODE_STRUCT |
| 2956 | || code == TYPE_CODE_UNION |
| 2957 | || code == TYPE_CODE_ARRAY) |
| 2958 | && !i386_reg_struct_return_p (gdbarch, type)) |
| 2959 | /* Complex double and long double uses the struct return convention. */ |
| 2960 | || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16) |
| 2961 | || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24) |
| 2962 | /* 128-bit decimal float uses the struct return convention. */ |
| 2963 | || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16)) |
| 2964 | { |
| 2965 | /* The System V ABI says that: |
| 2966 | |
| 2967 | "A function that returns a structure or union also sets %eax |
| 2968 | to the value of the original address of the caller's area |
| 2969 | before it returns. Thus when the caller receives control |
| 2970 | again, the address of the returned object resides in register |
| 2971 | %eax and can be used to access the object." |
| 2972 | |
| 2973 | So the ABI guarantees that we can always find the return |
| 2974 | value just after the function has returned. */ |
| 2975 | |
| 2976 | /* Note that the ABI doesn't mention functions returning arrays, |
| 2977 | which is something possible in certain languages such as Ada. |
| 2978 | In this case, the value is returned as if it was wrapped in |
| 2979 | a record, so the convention applied to records also applies |
| 2980 | to arrays. */ |
| 2981 | |
| 2982 | if (readbuf) |
| 2983 | { |
| 2984 | ULONGEST addr; |
| 2985 | |
| 2986 | regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr); |
| 2987 | read_memory (addr, readbuf, TYPE_LENGTH (type)); |
| 2988 | } |
| 2989 | |
| 2990 | return RETURN_VALUE_ABI_RETURNS_ADDRESS; |
| 2991 | } |
| 2992 | |
| 2993 | /* This special case is for structures consisting of a single |
| 2994 | `float', `double' or 'long double' member. These structures are |
| 2995 | returned in %st(0). For these structures, we call ourselves |
| 2996 | recursively, changing TYPE into the type of the first member of |
| 2997 | the structure. Since that should work for all structures that |
| 2998 | have only one member, we don't bother to check the member's type |
| 2999 | here. */ |
| 3000 | if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1) |
| 3001 | { |
| 3002 | type = check_typedef (TYPE_FIELD_TYPE (type, 0)); |
| 3003 | return i386_return_value (gdbarch, function, type, regcache, |
| 3004 | readbuf, writebuf); |
| 3005 | } |
| 3006 | |
| 3007 | if (readbuf) |
| 3008 | i386_extract_return_value (gdbarch, type, regcache, readbuf); |
| 3009 | if (writebuf) |
| 3010 | i386_store_return_value (gdbarch, type, regcache, writebuf); |
| 3011 | |
| 3012 | return RETURN_VALUE_REGISTER_CONVENTION; |
| 3013 | } |
| 3014 | \f |
| 3015 | |
| 3016 | struct type * |
| 3017 | i387_ext_type (struct gdbarch *gdbarch) |
| 3018 | { |
| 3019 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 3020 | |
| 3021 | if (!tdep->i387_ext_type) |
| 3022 | { |
| 3023 | tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext"); |
| 3024 | gdb_assert (tdep->i387_ext_type != NULL); |
| 3025 | } |
| 3026 | |
| 3027 | return tdep->i387_ext_type; |
| 3028 | } |
| 3029 | |
| 3030 | /* Construct type for pseudo BND registers. We can't use |
| 3031 | tdesc_find_type since a complement of one value has to be used |
| 3032 | to describe the upper bound. */ |
| 3033 | |
| 3034 | static struct type * |
| 3035 | i386_bnd_type (struct gdbarch *gdbarch) |
| 3036 | { |
| 3037 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 3038 | |
| 3039 | |
| 3040 | if (!tdep->i386_bnd_type) |
| 3041 | { |
| 3042 | struct type *t; |
| 3043 | const struct builtin_type *bt = builtin_type (gdbarch); |
| 3044 | |
| 3045 | /* The type we're building is described bellow: */ |
| 3046 | #if 0 |
| 3047 | struct __bound128 |
| 3048 | { |
| 3049 | void *lbound; |
| 3050 | void *ubound; /* One complement of raw ubound field. */ |
| 3051 | }; |
| 3052 | #endif |
| 3053 | |
| 3054 | t = arch_composite_type (gdbarch, |
| 3055 | "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT); |
| 3056 | |
| 3057 | append_composite_type_field (t, "lbound", bt->builtin_data_ptr); |
| 3058 | append_composite_type_field (t, "ubound", bt->builtin_data_ptr); |
| 3059 | |
| 3060 | TYPE_NAME (t) = "builtin_type_bound128"; |
| 3061 | tdep->i386_bnd_type = t; |
| 3062 | } |
| 3063 | |
| 3064 | return tdep->i386_bnd_type; |
| 3065 | } |
| 3066 | |
| 3067 | /* Construct vector type for pseudo ZMM registers. We can't use |
| 3068 | tdesc_find_type since ZMM isn't described in target description. */ |
| 3069 | |
| 3070 | static struct type * |
| 3071 | i386_zmm_type (struct gdbarch *gdbarch) |
| 3072 | { |
| 3073 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 3074 | |
| 3075 | if (!tdep->i386_zmm_type) |
| 3076 | { |
| 3077 | const struct builtin_type *bt = builtin_type (gdbarch); |
| 3078 | |
| 3079 | /* The type we're building is this: */ |
| 3080 | #if 0 |
| 3081 | union __gdb_builtin_type_vec512i |
| 3082 | { |
| 3083 | int128_t uint128[4]; |
| 3084 | int64_t v4_int64[8]; |
| 3085 | int32_t v8_int32[16]; |
| 3086 | int16_t v16_int16[32]; |
| 3087 | int8_t v32_int8[64]; |
| 3088 | double v4_double[8]; |
| 3089 | float v8_float[16]; |
| 3090 | }; |
| 3091 | #endif |
| 3092 | |
| 3093 | struct type *t; |
| 3094 | |
| 3095 | t = arch_composite_type (gdbarch, |
| 3096 | "__gdb_builtin_type_vec512i", TYPE_CODE_UNION); |
| 3097 | append_composite_type_field (t, "v16_float", |
| 3098 | init_vector_type (bt->builtin_float, 16)); |
| 3099 | append_composite_type_field (t, "v8_double", |
| 3100 | init_vector_type (bt->builtin_double, 8)); |
| 3101 | append_composite_type_field (t, "v64_int8", |
| 3102 | init_vector_type (bt->builtin_int8, 64)); |
| 3103 | append_composite_type_field (t, "v32_int16", |
| 3104 | init_vector_type (bt->builtin_int16, 32)); |
| 3105 | append_composite_type_field (t, "v16_int32", |
| 3106 | init_vector_type (bt->builtin_int32, 16)); |
| 3107 | append_composite_type_field (t, "v8_int64", |
| 3108 | init_vector_type (bt->builtin_int64, 8)); |
| 3109 | append_composite_type_field (t, "v4_int128", |
| 3110 | init_vector_type (bt->builtin_int128, 4)); |
| 3111 | |
| 3112 | TYPE_VECTOR (t) = 1; |
| 3113 | TYPE_NAME (t) = "builtin_type_vec512i"; |
| 3114 | tdep->i386_zmm_type = t; |
| 3115 | } |
| 3116 | |
| 3117 | return tdep->i386_zmm_type; |
| 3118 | } |
| 3119 | |
| 3120 | /* Construct vector type for pseudo YMM registers. We can't use |
| 3121 | tdesc_find_type since YMM isn't described in target description. */ |
| 3122 | |
| 3123 | static struct type * |
| 3124 | i386_ymm_type (struct gdbarch *gdbarch) |
| 3125 | { |
| 3126 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 3127 | |
| 3128 | if (!tdep->i386_ymm_type) |
| 3129 | { |
| 3130 | const struct builtin_type *bt = builtin_type (gdbarch); |
| 3131 | |
| 3132 | /* The type we're building is this: */ |
| 3133 | #if 0 |
| 3134 | union __gdb_builtin_type_vec256i |
| 3135 | { |
| 3136 | int128_t uint128[2]; |
| 3137 | int64_t v2_int64[4]; |
| 3138 | int32_t v4_int32[8]; |
| 3139 | int16_t v8_int16[16]; |
| 3140 | int8_t v16_int8[32]; |
| 3141 | double v2_double[4]; |
| 3142 | float v4_float[8]; |
| 3143 | }; |
| 3144 | #endif |
| 3145 | |
| 3146 | struct type *t; |
| 3147 | |
| 3148 | t = arch_composite_type (gdbarch, |
| 3149 | "__gdb_builtin_type_vec256i", TYPE_CODE_UNION); |
| 3150 | append_composite_type_field (t, "v8_float", |
| 3151 | init_vector_type (bt->builtin_float, 8)); |
| 3152 | append_composite_type_field (t, "v4_double", |
| 3153 | init_vector_type (bt->builtin_double, 4)); |
| 3154 | append_composite_type_field (t, "v32_int8", |
| 3155 | init_vector_type (bt->builtin_int8, 32)); |
| 3156 | append_composite_type_field (t, "v16_int16", |
| 3157 | init_vector_type (bt->builtin_int16, 16)); |
| 3158 | append_composite_type_field (t, "v8_int32", |
| 3159 | init_vector_type (bt->builtin_int32, 8)); |
| 3160 | append_composite_type_field (t, "v4_int64", |
| 3161 | init_vector_type (bt->builtin_int64, 4)); |
| 3162 | append_composite_type_field (t, "v2_int128", |
| 3163 | init_vector_type (bt->builtin_int128, 2)); |
| 3164 | |
| 3165 | TYPE_VECTOR (t) = 1; |
| 3166 | TYPE_NAME (t) = "builtin_type_vec256i"; |
| 3167 | tdep->i386_ymm_type = t; |
| 3168 | } |
| 3169 | |
| 3170 | return tdep->i386_ymm_type; |
| 3171 | } |
| 3172 | |
| 3173 | /* Construct vector type for MMX registers. */ |
| 3174 | static struct type * |
| 3175 | i386_mmx_type (struct gdbarch *gdbarch) |
| 3176 | { |
| 3177 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 3178 | |
| 3179 | if (!tdep->i386_mmx_type) |
| 3180 | { |
| 3181 | const struct builtin_type *bt = builtin_type (gdbarch); |
| 3182 | |
| 3183 | /* The type we're building is this: */ |
| 3184 | #if 0 |
| 3185 | union __gdb_builtin_type_vec64i |
| 3186 | { |
| 3187 | int64_t uint64; |
| 3188 | int32_t v2_int32[2]; |
| 3189 | int16_t v4_int16[4]; |
| 3190 | int8_t v8_int8[8]; |
| 3191 | }; |
| 3192 | #endif |
| 3193 | |
| 3194 | struct type *t; |
| 3195 | |
| 3196 | t = arch_composite_type (gdbarch, |
| 3197 | "__gdb_builtin_type_vec64i", TYPE_CODE_UNION); |
| 3198 | |
| 3199 | append_composite_type_field (t, "uint64", bt->builtin_int64); |
| 3200 | append_composite_type_field (t, "v2_int32", |
| 3201 | init_vector_type (bt->builtin_int32, 2)); |
| 3202 | append_composite_type_field (t, "v4_int16", |
| 3203 | init_vector_type (bt->builtin_int16, 4)); |
| 3204 | append_composite_type_field (t, "v8_int8", |
| 3205 | init_vector_type (bt->builtin_int8, 8)); |
| 3206 | |
| 3207 | TYPE_VECTOR (t) = 1; |
| 3208 | TYPE_NAME (t) = "builtin_type_vec64i"; |
| 3209 | tdep->i386_mmx_type = t; |
| 3210 | } |
| 3211 | |
| 3212 | return tdep->i386_mmx_type; |
| 3213 | } |
| 3214 | |
| 3215 | /* Return the GDB type object for the "standard" data type of data in |
| 3216 | register REGNUM. */ |
| 3217 | |
| 3218 | struct type * |
| 3219 | i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum) |
| 3220 | { |
| 3221 | if (i386_bnd_regnum_p (gdbarch, regnum)) |
| 3222 | return i386_bnd_type (gdbarch); |
| 3223 | if (i386_mmx_regnum_p (gdbarch, regnum)) |
| 3224 | return i386_mmx_type (gdbarch); |
| 3225 | else if (i386_ymm_regnum_p (gdbarch, regnum)) |
| 3226 | return i386_ymm_type (gdbarch); |
| 3227 | else if (i386_ymm_avx512_regnum_p (gdbarch, regnum)) |
| 3228 | return i386_ymm_type (gdbarch); |
| 3229 | else if (i386_zmm_regnum_p (gdbarch, regnum)) |
| 3230 | return i386_zmm_type (gdbarch); |
| 3231 | else |
| 3232 | { |
| 3233 | const struct builtin_type *bt = builtin_type (gdbarch); |
| 3234 | if (i386_byte_regnum_p (gdbarch, regnum)) |
| 3235 | return bt->builtin_int8; |
| 3236 | else if (i386_word_regnum_p (gdbarch, regnum)) |
| 3237 | return bt->builtin_int16; |
| 3238 | else if (i386_dword_regnum_p (gdbarch, regnum)) |
| 3239 | return bt->builtin_int32; |
| 3240 | else if (i386_k_regnum_p (gdbarch, regnum)) |
| 3241 | return bt->builtin_int64; |
| 3242 | } |
| 3243 | |
| 3244 | internal_error (__FILE__, __LINE__, _("invalid regnum")); |
| 3245 | } |
| 3246 | |
| 3247 | /* Map a cooked register onto a raw register or memory. For the i386, |
| 3248 | the MMX registers need to be mapped onto floating point registers. */ |
| 3249 | |
| 3250 | static int |
| 3251 | i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum) |
| 3252 | { |
| 3253 | struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ()); |
| 3254 | int mmxreg, fpreg; |
| 3255 | ULONGEST fstat; |
| 3256 | int tos; |
| 3257 | |
| 3258 | mmxreg = regnum - tdep->mm0_regnum; |
| 3259 | regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat); |
| 3260 | tos = (fstat >> 11) & 0x7; |
| 3261 | fpreg = (mmxreg + tos) % 8; |
| 3262 | |
| 3263 | return (I387_ST0_REGNUM (tdep) + fpreg); |
| 3264 | } |
| 3265 | |
| 3266 | /* A helper function for us by i386_pseudo_register_read_value and |
| 3267 | amd64_pseudo_register_read_value. It does all the work but reads |
| 3268 | the data into an already-allocated value. */ |
| 3269 | |
| 3270 | void |
| 3271 | i386_pseudo_register_read_into_value (struct gdbarch *gdbarch, |
| 3272 | readable_regcache *regcache, |
| 3273 | int regnum, |
| 3274 | struct value *result_value) |
| 3275 | { |
| 3276 | gdb_byte raw_buf[I386_MAX_REGISTER_SIZE]; |
| 3277 | enum register_status status; |
| 3278 | gdb_byte *buf = value_contents_raw (result_value); |
| 3279 | |
| 3280 | if (i386_mmx_regnum_p (gdbarch, regnum)) |
| 3281 | { |
| 3282 | int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum); |
| 3283 | |
| 3284 | /* Extract (always little endian). */ |
| 3285 | status = regcache->raw_read (fpnum, raw_buf); |
| 3286 | if (status != REG_VALID) |
| 3287 | mark_value_bytes_unavailable (result_value, 0, |
| 3288 | TYPE_LENGTH (value_type (result_value))); |
| 3289 | else |
| 3290 | memcpy (buf, raw_buf, register_size (gdbarch, regnum)); |
| 3291 | } |
| 3292 | else |
| 3293 | { |
| 3294 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 3295 | if (i386_bnd_regnum_p (gdbarch, regnum)) |
| 3296 | { |
| 3297 | regnum -= tdep->bnd0_regnum; |
| 3298 | |
| 3299 | /* Extract (always little endian). Read lower 128bits. */ |
| 3300 | status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum, |
| 3301 | raw_buf); |
| 3302 | if (status != REG_VALID) |
| 3303 | mark_value_bytes_unavailable (result_value, 0, 16); |
| 3304 | else |
| 3305 | { |
| 3306 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
| 3307 | LONGEST upper, lower; |
| 3308 | int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr); |
| 3309 | |
| 3310 | lower = extract_unsigned_integer (raw_buf, 8, byte_order); |
| 3311 | upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order); |
| 3312 | upper = ~upper; |
| 3313 | |
| 3314 | memcpy (buf, &lower, size); |
| 3315 | memcpy (buf + size, &upper, size); |
| 3316 | } |
| 3317 | } |
| 3318 | else if (i386_k_regnum_p (gdbarch, regnum)) |
| 3319 | { |
| 3320 | regnum -= tdep->k0_regnum; |
| 3321 | |
| 3322 | /* Extract (always little endian). */ |
| 3323 | status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf); |
| 3324 | if (status != REG_VALID) |
| 3325 | mark_value_bytes_unavailable (result_value, 0, 8); |
| 3326 | else |
| 3327 | memcpy (buf, raw_buf, 8); |
| 3328 | } |
| 3329 | else if (i386_zmm_regnum_p (gdbarch, regnum)) |
| 3330 | { |
| 3331 | regnum -= tdep->zmm0_regnum; |
| 3332 | |
| 3333 | if (regnum < num_lower_zmm_regs) |
| 3334 | { |
| 3335 | /* Extract (always little endian). Read lower 128bits. */ |
| 3336 | status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum, |
| 3337 | raw_buf); |
| 3338 | if (status != REG_VALID) |
| 3339 | mark_value_bytes_unavailable (result_value, 0, 16); |
| 3340 | else |
| 3341 | memcpy (buf, raw_buf, 16); |
| 3342 | |
| 3343 | /* Extract (always little endian). Read upper 128bits. */ |
| 3344 | status = regcache->raw_read (tdep->ymm0h_regnum + regnum, |
| 3345 | raw_buf); |
| 3346 | if (status != REG_VALID) |
| 3347 | mark_value_bytes_unavailable (result_value, 16, 16); |
| 3348 | else |
| 3349 | memcpy (buf + 16, raw_buf, 16); |
| 3350 | } |
| 3351 | else |
| 3352 | { |
| 3353 | /* Extract (always little endian). Read lower 128bits. */ |
| 3354 | status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum |
| 3355 | - num_lower_zmm_regs, |
| 3356 | raw_buf); |
| 3357 | if (status != REG_VALID) |
| 3358 | mark_value_bytes_unavailable (result_value, 0, 16); |
| 3359 | else |
| 3360 | memcpy (buf, raw_buf, 16); |
| 3361 | |
| 3362 | /* Extract (always little endian). Read upper 128bits. */ |
| 3363 | status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum |
| 3364 | - num_lower_zmm_regs, |
| 3365 | raw_buf); |
| 3366 | if (status != REG_VALID) |
| 3367 | mark_value_bytes_unavailable (result_value, 16, 16); |
| 3368 | else |
| 3369 | memcpy (buf + 16, raw_buf, 16); |
| 3370 | } |
| 3371 | |
| 3372 | /* Read upper 256bits. */ |
| 3373 | status = regcache->raw_read (tdep->zmm0h_regnum + regnum, |
| 3374 | raw_buf); |
| 3375 | if (status != REG_VALID) |
| 3376 | mark_value_bytes_unavailable (result_value, 32, 32); |
| 3377 | else |
| 3378 | memcpy (buf + 32, raw_buf, 32); |
| 3379 | } |
| 3380 | else if (i386_ymm_regnum_p (gdbarch, regnum)) |
| 3381 | { |
| 3382 | regnum -= tdep->ymm0_regnum; |
| 3383 | |
| 3384 | /* Extract (always little endian). Read lower 128bits. */ |
| 3385 | status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum, |
| 3386 | raw_buf); |
| 3387 | if (status != REG_VALID) |
| 3388 | mark_value_bytes_unavailable (result_value, 0, 16); |
| 3389 | else |
| 3390 | memcpy (buf, raw_buf, 16); |
| 3391 | /* Read upper 128bits. */ |
| 3392 | status = regcache->raw_read (tdep->ymm0h_regnum + regnum, |
| 3393 | raw_buf); |
| 3394 | if (status != REG_VALID) |
| 3395 | mark_value_bytes_unavailable (result_value, 16, 32); |
| 3396 | else |
| 3397 | memcpy (buf + 16, raw_buf, 16); |
| 3398 | } |
| 3399 | else if (i386_ymm_avx512_regnum_p (gdbarch, regnum)) |
| 3400 | { |
| 3401 | regnum -= tdep->ymm16_regnum; |
| 3402 | /* Extract (always little endian). Read lower 128bits. */ |
| 3403 | status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum, |
| 3404 | raw_buf); |
| 3405 | if (status != REG_VALID) |
| 3406 | mark_value_bytes_unavailable (result_value, 0, 16); |
| 3407 | else |
| 3408 | memcpy (buf, raw_buf, 16); |
| 3409 | /* Read upper 128bits. */ |
| 3410 | status = regcache->raw_read (tdep->ymm16h_regnum + regnum, |
| 3411 | raw_buf); |
| 3412 | if (status != REG_VALID) |
| 3413 | mark_value_bytes_unavailable (result_value, 16, 16); |
| 3414 | else |
| 3415 | memcpy (buf + 16, raw_buf, 16); |
| 3416 | } |
| 3417 | else if (i386_word_regnum_p (gdbarch, regnum)) |
| 3418 | { |
| 3419 | int gpnum = regnum - tdep->ax_regnum; |
| 3420 | |
| 3421 | /* Extract (always little endian). */ |
| 3422 | status = regcache->raw_read (gpnum, raw_buf); |
| 3423 | if (status != REG_VALID) |
| 3424 | mark_value_bytes_unavailable (result_value, 0, |
| 3425 | TYPE_LENGTH (value_type (result_value))); |
| 3426 | else |
| 3427 | memcpy (buf, raw_buf, 2); |
| 3428 | } |
| 3429 | else if (i386_byte_regnum_p (gdbarch, regnum)) |
| 3430 | { |
| 3431 | int gpnum = regnum - tdep->al_regnum; |
| 3432 | |
| 3433 | /* Extract (always little endian). We read both lower and |
| 3434 | upper registers. */ |
| 3435 | status = regcache->raw_read (gpnum % 4, raw_buf); |
| 3436 | if (status != REG_VALID) |
| 3437 | mark_value_bytes_unavailable (result_value, 0, |
| 3438 | TYPE_LENGTH (value_type (result_value))); |
| 3439 | else if (gpnum >= 4) |
| 3440 | memcpy (buf, raw_buf + 1, 1); |
| 3441 | else |
| 3442 | memcpy (buf, raw_buf, 1); |
| 3443 | } |
| 3444 | else |
| 3445 | internal_error (__FILE__, __LINE__, _("invalid regnum")); |
| 3446 | } |
| 3447 | } |
| 3448 | |
| 3449 | static struct value * |
| 3450 | i386_pseudo_register_read_value (struct gdbarch *gdbarch, |
| 3451 | readable_regcache *regcache, |
| 3452 | int regnum) |
| 3453 | { |
| 3454 | struct value *result; |
| 3455 | |
| 3456 | result = allocate_value (register_type (gdbarch, regnum)); |
| 3457 | VALUE_LVAL (result) = lval_register; |
| 3458 | VALUE_REGNUM (result) = regnum; |
| 3459 | |
| 3460 | i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result); |
| 3461 | |
| 3462 | return result; |
| 3463 | } |
| 3464 | |
| 3465 | void |
| 3466 | i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, |
| 3467 | int regnum, const gdb_byte *buf) |
| 3468 | { |
| 3469 | gdb_byte raw_buf[I386_MAX_REGISTER_SIZE]; |
| 3470 | |
| 3471 | if (i386_mmx_regnum_p (gdbarch, regnum)) |
| 3472 | { |
| 3473 | int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum); |
| 3474 | |
| 3475 | /* Read ... */ |
| 3476 | regcache->raw_read (fpnum, raw_buf); |
| 3477 | /* ... Modify ... (always little endian). */ |
| 3478 | memcpy (raw_buf, buf, register_size (gdbarch, regnum)); |
| 3479 | /* ... Write. */ |
| 3480 | regcache->raw_write (fpnum, raw_buf); |
| 3481 | } |
| 3482 | else |
| 3483 | { |
| 3484 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 3485 | |
| 3486 | if (i386_bnd_regnum_p (gdbarch, regnum)) |
| 3487 | { |
| 3488 | ULONGEST upper, lower; |
| 3489 | int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr); |
| 3490 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
| 3491 | |
| 3492 | /* New values from input value. */ |
| 3493 | regnum -= tdep->bnd0_regnum; |
| 3494 | lower = extract_unsigned_integer (buf, size, byte_order); |
| 3495 | upper = extract_unsigned_integer (buf + size, size, byte_order); |
| 3496 | |
| 3497 | /* Fetching register buffer. */ |
| 3498 | regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum, |
| 3499 | raw_buf); |
| 3500 | |
| 3501 | upper = ~upper; |
| 3502 | |
| 3503 | /* Set register bits. */ |
| 3504 | memcpy (raw_buf, &lower, 8); |
| 3505 | memcpy (raw_buf + 8, &upper, 8); |
| 3506 | |
| 3507 | regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf); |
| 3508 | } |
| 3509 | else if (i386_k_regnum_p (gdbarch, regnum)) |
| 3510 | { |
| 3511 | regnum -= tdep->k0_regnum; |
| 3512 | |
| 3513 | regcache->raw_write (tdep->k0_regnum + regnum, buf); |
| 3514 | } |
| 3515 | else if (i386_zmm_regnum_p (gdbarch, regnum)) |
| 3516 | { |
| 3517 | regnum -= tdep->zmm0_regnum; |
| 3518 | |
| 3519 | if (regnum < num_lower_zmm_regs) |
| 3520 | { |
| 3521 | /* Write lower 128bits. */ |
| 3522 | regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf); |
| 3523 | /* Write upper 128bits. */ |
| 3524 | regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16); |
| 3525 | } |
| 3526 | else |
| 3527 | { |
| 3528 | /* Write lower 128bits. */ |
| 3529 | regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum |
| 3530 | - num_lower_zmm_regs, buf); |
| 3531 | /* Write upper 128bits. */ |
| 3532 | regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum |
| 3533 | - num_lower_zmm_regs, buf + 16); |
| 3534 | } |
| 3535 | /* Write upper 256bits. */ |
| 3536 | regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32); |
| 3537 | } |
| 3538 | else if (i386_ymm_regnum_p (gdbarch, regnum)) |
| 3539 | { |
| 3540 | regnum -= tdep->ymm0_regnum; |
| 3541 | |
| 3542 | /* ... Write lower 128bits. */ |
| 3543 | regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf); |
| 3544 | /* ... Write upper 128bits. */ |
| 3545 | regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16); |
| 3546 | } |
| 3547 | else if (i386_ymm_avx512_regnum_p (gdbarch, regnum)) |
| 3548 | { |
| 3549 | regnum -= tdep->ymm16_regnum; |
| 3550 | |
| 3551 | /* ... Write lower 128bits. */ |
| 3552 | regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf); |
| 3553 | /* ... Write upper 128bits. */ |
| 3554 | regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16); |
| 3555 | } |
| 3556 | else if (i386_word_regnum_p (gdbarch, regnum)) |
| 3557 | { |
| 3558 | int gpnum = regnum - tdep->ax_regnum; |
| 3559 | |
| 3560 | /* Read ... */ |
| 3561 | regcache->raw_read (gpnum, raw_buf); |
| 3562 | /* ... Modify ... (always little endian). */ |
| 3563 | memcpy (raw_buf, buf, 2); |
| 3564 | /* ... Write. */ |
| 3565 | regcache->raw_write (gpnum, raw_buf); |
| 3566 | } |
| 3567 | else if (i386_byte_regnum_p (gdbarch, regnum)) |
| 3568 | { |
| 3569 | int gpnum = regnum - tdep->al_regnum; |
| 3570 | |
| 3571 | /* Read ... We read both lower and upper registers. */ |
| 3572 | regcache->raw_read (gpnum % 4, raw_buf); |
| 3573 | /* ... Modify ... (always little endian). */ |
| 3574 | if (gpnum >= 4) |
| 3575 | memcpy (raw_buf + 1, buf, 1); |
| 3576 | else |
| 3577 | memcpy (raw_buf, buf, 1); |
| 3578 | /* ... Write. */ |
| 3579 | regcache->raw_write (gpnum % 4, raw_buf); |
| 3580 | } |
| 3581 | else |
| 3582 | internal_error (__FILE__, __LINE__, _("invalid regnum")); |
| 3583 | } |
| 3584 | } |
| 3585 | |
| 3586 | /* Implement the 'ax_pseudo_register_collect' gdbarch method. */ |
| 3587 | |
| 3588 | int |
| 3589 | i386_ax_pseudo_register_collect (struct gdbarch *gdbarch, |
| 3590 | struct agent_expr *ax, int regnum) |
| 3591 | { |
| 3592 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 3593 | |
| 3594 | if (i386_mmx_regnum_p (gdbarch, regnum)) |
| 3595 | { |
| 3596 | /* MMX to FPU register mapping depends on current TOS. Let's just |
| 3597 | not care and collect everything... */ |
| 3598 | int i; |
| 3599 | |
| 3600 | ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep)); |
| 3601 | for (i = 0; i < 8; i++) |
| 3602 | ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i); |
| 3603 | return 0; |
| 3604 | } |
| 3605 | else if (i386_bnd_regnum_p (gdbarch, regnum)) |
| 3606 | { |
| 3607 | regnum -= tdep->bnd0_regnum; |
| 3608 | ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum); |
| 3609 | return 0; |
| 3610 | } |
| 3611 | else if (i386_k_regnum_p (gdbarch, regnum)) |
| 3612 | { |
| 3613 | regnum -= tdep->k0_regnum; |
| 3614 | ax_reg_mask (ax, tdep->k0_regnum + regnum); |
| 3615 | return 0; |
| 3616 | } |
| 3617 | else if (i386_zmm_regnum_p (gdbarch, regnum)) |
| 3618 | { |
| 3619 | regnum -= tdep->zmm0_regnum; |
| 3620 | if (regnum < num_lower_zmm_regs) |
| 3621 | { |
| 3622 | ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum); |
| 3623 | ax_reg_mask (ax, tdep->ymm0h_regnum + regnum); |
| 3624 | } |
| 3625 | else |
| 3626 | { |
| 3627 | ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum |
| 3628 | - num_lower_zmm_regs); |
| 3629 | ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum |
| 3630 | - num_lower_zmm_regs); |
| 3631 | } |
| 3632 | ax_reg_mask (ax, tdep->zmm0h_regnum + regnum); |
| 3633 | return 0; |
| 3634 | } |
| 3635 | else if (i386_ymm_regnum_p (gdbarch, regnum)) |
| 3636 | { |
| 3637 | regnum -= tdep->ymm0_regnum; |
| 3638 | ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum); |
| 3639 | ax_reg_mask (ax, tdep->ymm0h_regnum + regnum); |
| 3640 | return 0; |
| 3641 | } |
| 3642 | else if (i386_ymm_avx512_regnum_p (gdbarch, regnum)) |
| 3643 | { |
| 3644 | regnum -= tdep->ymm16_regnum; |
| 3645 | ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum); |
| 3646 | ax_reg_mask (ax, tdep->ymm16h_regnum + regnum); |
| 3647 | return 0; |
| 3648 | } |
| 3649 | else if (i386_word_regnum_p (gdbarch, regnum)) |
| 3650 | { |
| 3651 | int gpnum = regnum - tdep->ax_regnum; |
| 3652 | |
| 3653 | ax_reg_mask (ax, gpnum); |
| 3654 | return 0; |
| 3655 | } |
| 3656 | else if (i386_byte_regnum_p (gdbarch, regnum)) |
| 3657 | { |
| 3658 | int gpnum = regnum - tdep->al_regnum; |
| 3659 | |
| 3660 | ax_reg_mask (ax, gpnum % 4); |
| 3661 | return 0; |
| 3662 | } |
| 3663 | else |
| 3664 | internal_error (__FILE__, __LINE__, _("invalid regnum")); |
| 3665 | return 1; |
| 3666 | } |
| 3667 | \f |
| 3668 | |
| 3669 | /* Return the register number of the register allocated by GCC after |
| 3670 | REGNUM, or -1 if there is no such register. */ |
| 3671 | |
| 3672 | static int |
| 3673 | i386_next_regnum (int regnum) |
| 3674 | { |
| 3675 | /* GCC allocates the registers in the order: |
| 3676 | |
| 3677 | %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ... |
| 3678 | |
| 3679 | Since storing a variable in %esp doesn't make any sense we return |
| 3680 | -1 for %ebp and for %esp itself. */ |
| 3681 | static int next_regnum[] = |
| 3682 | { |
| 3683 | I386_EDX_REGNUM, /* Slot for %eax. */ |
| 3684 | I386_EBX_REGNUM, /* Slot for %ecx. */ |
| 3685 | I386_ECX_REGNUM, /* Slot for %edx. */ |
| 3686 | I386_ESI_REGNUM, /* Slot for %ebx. */ |
| 3687 | -1, -1, /* Slots for %esp and %ebp. */ |
| 3688 | I386_EDI_REGNUM, /* Slot for %esi. */ |
| 3689 | I386_EBP_REGNUM /* Slot for %edi. */ |
| 3690 | }; |
| 3691 | |
| 3692 | if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0])) |
| 3693 | return next_regnum[regnum]; |
| 3694 | |
| 3695 | return -1; |
| 3696 | } |
| 3697 | |
| 3698 | /* Return nonzero if a value of type TYPE stored in register REGNUM |
| 3699 | needs any special handling. */ |
| 3700 | |
| 3701 | static int |
| 3702 | i386_convert_register_p (struct gdbarch *gdbarch, |
| 3703 | int regnum, struct type *type) |
| 3704 | { |
| 3705 | int len = TYPE_LENGTH (type); |
| 3706 | |
| 3707 | /* Values may be spread across multiple registers. Most debugging |
| 3708 | formats aren't expressive enough to specify the locations, so |
| 3709 | some heuristics is involved. Right now we only handle types that |
| 3710 | have a length that is a multiple of the word size, since GCC |
| 3711 | doesn't seem to put any other types into registers. */ |
| 3712 | if (len > 4 && len % 4 == 0) |
| 3713 | { |
| 3714 | int last_regnum = regnum; |
| 3715 | |
| 3716 | while (len > 4) |
| 3717 | { |
| 3718 | last_regnum = i386_next_regnum (last_regnum); |
| 3719 | len -= 4; |
| 3720 | } |
| 3721 | |
| 3722 | if (last_regnum != -1) |
| 3723 | return 1; |
| 3724 | } |
| 3725 | |
| 3726 | return i387_convert_register_p (gdbarch, regnum, type); |
| 3727 | } |
| 3728 | |
| 3729 | /* Read a value of type TYPE from register REGNUM in frame FRAME, and |
| 3730 | return its contents in TO. */ |
| 3731 | |
| 3732 | static int |
| 3733 | i386_register_to_value (struct frame_info *frame, int regnum, |
| 3734 | struct type *type, gdb_byte *to, |
| 3735 | int *optimizedp, int *unavailablep) |
| 3736 | { |
| 3737 | struct gdbarch *gdbarch = get_frame_arch (frame); |
| 3738 | int len = TYPE_LENGTH (type); |
| 3739 | |
| 3740 | if (i386_fp_regnum_p (gdbarch, regnum)) |
| 3741 | return i387_register_to_value (frame, regnum, type, to, |
| 3742 | optimizedp, unavailablep); |
| 3743 | |
| 3744 | /* Read a value spread across multiple registers. */ |
| 3745 | |
| 3746 | gdb_assert (len > 4 && len % 4 == 0); |
| 3747 | |
| 3748 | while (len > 0) |
| 3749 | { |
| 3750 | gdb_assert (regnum != -1); |
| 3751 | gdb_assert (register_size (gdbarch, regnum) == 4); |
| 3752 | |
| 3753 | if (!get_frame_register_bytes (frame, regnum, 0, |
| 3754 | register_size (gdbarch, regnum), |
| 3755 | to, optimizedp, unavailablep)) |
| 3756 | return 0; |
| 3757 | |
| 3758 | regnum = i386_next_regnum (regnum); |
| 3759 | len -= 4; |
| 3760 | to += 4; |
| 3761 | } |
| 3762 | |
| 3763 | *optimizedp = *unavailablep = 0; |
| 3764 | return 1; |
| 3765 | } |
| 3766 | |
| 3767 | /* Write the contents FROM of a value of type TYPE into register |
| 3768 | REGNUM in frame FRAME. */ |
| 3769 | |
| 3770 | static void |
| 3771 | i386_value_to_register (struct frame_info *frame, int regnum, |
| 3772 | struct type *type, const gdb_byte *from) |
| 3773 | { |
| 3774 | int len = TYPE_LENGTH (type); |
| 3775 | |
| 3776 | if (i386_fp_regnum_p (get_frame_arch (frame), regnum)) |
| 3777 | { |
| 3778 | i387_value_to_register (frame, regnum, type, from); |
| 3779 | return; |
| 3780 | } |
| 3781 | |
| 3782 | /* Write a value spread across multiple registers. */ |
| 3783 | |
| 3784 | gdb_assert (len > 4 && len % 4 == 0); |
| 3785 | |
| 3786 | while (len > 0) |
| 3787 | { |
| 3788 | gdb_assert (regnum != -1); |
| 3789 | gdb_assert (register_size (get_frame_arch (frame), regnum) == 4); |
| 3790 | |
| 3791 | put_frame_register (frame, regnum, from); |
| 3792 | regnum = i386_next_regnum (regnum); |
| 3793 | len -= 4; |
| 3794 | from += 4; |
| 3795 | } |
| 3796 | } |
| 3797 | \f |
| 3798 | /* Supply register REGNUM from the buffer specified by GREGS and LEN |
| 3799 | in the general-purpose register set REGSET to register cache |
| 3800 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ |
| 3801 | |
| 3802 | void |
| 3803 | i386_supply_gregset (const struct regset *regset, struct regcache *regcache, |
| 3804 | int regnum, const void *gregs, size_t len) |
| 3805 | { |
| 3806 | struct gdbarch *gdbarch = regcache->arch (); |
| 3807 | const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 3808 | const gdb_byte *regs = (const gdb_byte *) gregs; |
| 3809 | int i; |
| 3810 | |
| 3811 | gdb_assert (len >= tdep->sizeof_gregset); |
| 3812 | |
| 3813 | for (i = 0; i < tdep->gregset_num_regs; i++) |
| 3814 | { |
| 3815 | if ((regnum == i || regnum == -1) |
| 3816 | && tdep->gregset_reg_offset[i] != -1) |
| 3817 | regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]); |
| 3818 | } |
| 3819 | } |
| 3820 | |
| 3821 | /* Collect register REGNUM from the register cache REGCACHE and store |
| 3822 | it in the buffer specified by GREGS and LEN as described by the |
| 3823 | general-purpose register set REGSET. If REGNUM is -1, do this for |
| 3824 | all registers in REGSET. */ |
| 3825 | |
| 3826 | static void |
| 3827 | i386_collect_gregset (const struct regset *regset, |
| 3828 | const struct regcache *regcache, |
| 3829 | int regnum, void *gregs, size_t len) |
| 3830 | { |
| 3831 | struct gdbarch *gdbarch = regcache->arch (); |
| 3832 | const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 3833 | gdb_byte *regs = (gdb_byte *) gregs; |
| 3834 | int i; |
| 3835 | |
| 3836 | gdb_assert (len >= tdep->sizeof_gregset); |
| 3837 | |
| 3838 | for (i = 0; i < tdep->gregset_num_regs; i++) |
| 3839 | { |
| 3840 | if ((regnum == i || regnum == -1) |
| 3841 | && tdep->gregset_reg_offset[i] != -1) |
| 3842 | regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]); |
| 3843 | } |
| 3844 | } |
| 3845 | |
| 3846 | /* Supply register REGNUM from the buffer specified by FPREGS and LEN |
| 3847 | in the floating-point register set REGSET to register cache |
| 3848 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ |
| 3849 | |
| 3850 | static void |
| 3851 | i386_supply_fpregset (const struct regset *regset, struct regcache *regcache, |
| 3852 | int regnum, const void *fpregs, size_t len) |
| 3853 | { |
| 3854 | struct gdbarch *gdbarch = regcache->arch (); |
| 3855 | const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 3856 | |
| 3857 | if (len == I387_SIZEOF_FXSAVE) |
| 3858 | { |
| 3859 | i387_supply_fxsave (regcache, regnum, fpregs); |
| 3860 | return; |
| 3861 | } |
| 3862 | |
| 3863 | gdb_assert (len >= tdep->sizeof_fpregset); |
| 3864 | i387_supply_fsave (regcache, regnum, fpregs); |
| 3865 | } |
| 3866 | |
| 3867 | /* Collect register REGNUM from the register cache REGCACHE and store |
| 3868 | it in the buffer specified by FPREGS and LEN as described by the |
| 3869 | floating-point register set REGSET. If REGNUM is -1, do this for |
| 3870 | all registers in REGSET. */ |
| 3871 | |
| 3872 | static void |
| 3873 | i386_collect_fpregset (const struct regset *regset, |
| 3874 | const struct regcache *regcache, |
| 3875 | int regnum, void *fpregs, size_t len) |
| 3876 | { |
| 3877 | struct gdbarch *gdbarch = regcache->arch (); |
| 3878 | const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 3879 | |
| 3880 | if (len == I387_SIZEOF_FXSAVE) |
| 3881 | { |
| 3882 | i387_collect_fxsave (regcache, regnum, fpregs); |
| 3883 | return; |
| 3884 | } |
| 3885 | |
| 3886 | gdb_assert (len >= tdep->sizeof_fpregset); |
| 3887 | i387_collect_fsave (regcache, regnum, fpregs); |
| 3888 | } |
| 3889 | |
| 3890 | /* Register set definitions. */ |
| 3891 | |
| 3892 | const struct regset i386_gregset = |
| 3893 | { |
| 3894 | NULL, i386_supply_gregset, i386_collect_gregset |
| 3895 | }; |
| 3896 | |
| 3897 | const struct regset i386_fpregset = |
| 3898 | { |
| 3899 | NULL, i386_supply_fpregset, i386_collect_fpregset |
| 3900 | }; |
| 3901 | |
| 3902 | /* Default iterator over core file register note sections. */ |
| 3903 | |
| 3904 | void |
| 3905 | i386_iterate_over_regset_sections (struct gdbarch *gdbarch, |
| 3906 | iterate_over_regset_sections_cb *cb, |
| 3907 | void *cb_data, |
| 3908 | const struct regcache *regcache) |
| 3909 | { |
| 3910 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 3911 | |
| 3912 | cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL, |
| 3913 | cb_data); |
| 3914 | if (tdep->sizeof_fpregset) |
| 3915 | cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset, |
| 3916 | NULL, cb_data); |
| 3917 | } |
| 3918 | \f |
| 3919 | |
| 3920 | /* Stuff for WIN32 PE style DLL's but is pretty generic really. */ |
| 3921 | |
| 3922 | CORE_ADDR |
| 3923 | i386_pe_skip_trampoline_code (struct frame_info *frame, |
| 3924 | CORE_ADDR pc, char *name) |
| 3925 | { |
| 3926 | struct gdbarch *gdbarch = get_frame_arch (frame); |
| 3927 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 3928 | |
| 3929 | /* jmp *(dest) */ |
| 3930 | if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff) |
| 3931 | { |
| 3932 | unsigned long indirect = |
| 3933 | read_memory_unsigned_integer (pc + 2, 4, byte_order); |
| 3934 | struct minimal_symbol *indsym = |
| 3935 | indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0; |
| 3936 | const char *symname = indsym ? indsym->linkage_name () : 0; |
| 3937 | |
| 3938 | if (symname) |
| 3939 | { |
| 3940 | if (startswith (symname, "__imp_") |
| 3941 | || startswith (symname, "_imp_")) |
| 3942 | return name ? 1 : |
| 3943 | read_memory_unsigned_integer (indirect, 4, byte_order); |
| 3944 | } |
| 3945 | } |
| 3946 | return 0; /* Not a trampoline. */ |
| 3947 | } |
| 3948 | \f |
| 3949 | |
| 3950 | /* Return whether the THIS_FRAME corresponds to a sigtramp |
| 3951 | routine. */ |
| 3952 | |
| 3953 | int |
| 3954 | i386_sigtramp_p (struct frame_info *this_frame) |
| 3955 | { |
| 3956 | CORE_ADDR pc = get_frame_pc (this_frame); |
| 3957 | const char *name; |
| 3958 | |
| 3959 | find_pc_partial_function (pc, &name, NULL, NULL); |
| 3960 | return (name && strcmp ("_sigtramp", name) == 0); |
| 3961 | } |
| 3962 | \f |
| 3963 | |
| 3964 | /* We have two flavours of disassembly. The machinery on this page |
| 3965 | deals with switching between those. */ |
| 3966 | |
| 3967 | static int |
| 3968 | i386_print_insn (bfd_vma pc, struct disassemble_info *info) |
| 3969 | { |
| 3970 | gdb_assert (disassembly_flavor == att_flavor |
| 3971 | || disassembly_flavor == intel_flavor); |
| 3972 | |
| 3973 | info->disassembler_options = disassembly_flavor; |
| 3974 | |
| 3975 | return default_print_insn (pc, info); |
| 3976 | } |
| 3977 | \f |
| 3978 | |
| 3979 | /* There are a few i386 architecture variants that differ only |
| 3980 | slightly from the generic i386 target. For now, we don't give them |
| 3981 | their own source file, but include them here. As a consequence, |
| 3982 | they'll always be included. */ |
| 3983 | |
| 3984 | /* System V Release 4 (SVR4). */ |
| 3985 | |
| 3986 | /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp |
| 3987 | routine. */ |
| 3988 | |
| 3989 | static int |
| 3990 | i386_svr4_sigtramp_p (struct frame_info *this_frame) |
| 3991 | { |
| 3992 | CORE_ADDR pc = get_frame_pc (this_frame); |
| 3993 | const char *name; |
| 3994 | |
| 3995 | /* The origin of these symbols is currently unknown. */ |
| 3996 | find_pc_partial_function (pc, &name, NULL, NULL); |
| 3997 | return (name && (strcmp ("_sigreturn", name) == 0 |
| 3998 | || strcmp ("sigvechandler", name) == 0)); |
| 3999 | } |
| 4000 | |
| 4001 | /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the |
| 4002 | address of the associated sigcontext (ucontext) structure. */ |
| 4003 | |
| 4004 | static CORE_ADDR |
| 4005 | i386_svr4_sigcontext_addr (struct frame_info *this_frame) |
| 4006 | { |
| 4007 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| 4008 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 4009 | gdb_byte buf[4]; |
| 4010 | CORE_ADDR sp; |
| 4011 | |
| 4012 | get_frame_register (this_frame, I386_ESP_REGNUM, buf); |
| 4013 | sp = extract_unsigned_integer (buf, 4, byte_order); |
| 4014 | |
| 4015 | return read_memory_unsigned_integer (sp + 8, 4, byte_order); |
| 4016 | } |
| 4017 | |
| 4018 | \f |
| 4019 | |
| 4020 | /* Implementation of `gdbarch_stap_is_single_operand', as defined in |
| 4021 | gdbarch.h. */ |
| 4022 | |
| 4023 | int |
| 4024 | i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s) |
| 4025 | { |
| 4026 | return (*s == '$' /* Literal number. */ |
| 4027 | || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */ |
| 4028 | || (*s == '(' && s[1] == '%') /* Register indirection. */ |
| 4029 | || (*s == '%' && isalpha (s[1]))); /* Register access. */ |
| 4030 | } |
| 4031 | |
| 4032 | /* Helper function for i386_stap_parse_special_token. |
| 4033 | |
| 4034 | This function parses operands of the form `-8+3+1(%rbp)', which |
| 4035 | must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'. |
| 4036 | |
| 4037 | Return true if the operand was parsed successfully, false |
| 4038 | otherwise. */ |
| 4039 | |
| 4040 | static bool |
| 4041 | i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch, |
| 4042 | struct stap_parse_info *p) |
| 4043 | { |
| 4044 | const char *s = p->arg; |
| 4045 | |
| 4046 | if (isdigit (*s) || *s == '-' || *s == '+') |
| 4047 | { |
| 4048 | bool got_minus[3]; |
| 4049 | int i; |
| 4050 | long displacements[3]; |
| 4051 | const char *start; |
| 4052 | char *regname; |
| 4053 | int len; |
| 4054 | struct stoken str; |
| 4055 | char *endp; |
| 4056 | |
| 4057 | got_minus[0] = false; |
| 4058 | if (*s == '+') |
| 4059 | ++s; |
| 4060 | else if (*s == '-') |
| 4061 | { |
| 4062 | ++s; |
| 4063 | got_minus[0] = true; |
| 4064 | } |
| 4065 | |
| 4066 | if (!isdigit ((unsigned char) *s)) |
| 4067 | return false; |
| 4068 | |
| 4069 | displacements[0] = strtol (s, &endp, 10); |
| 4070 | s = endp; |
| 4071 | |
| 4072 | if (*s != '+' && *s != '-') |
| 4073 | { |
| 4074 | /* We are not dealing with a triplet. */ |
| 4075 | return false; |
| 4076 | } |
| 4077 | |
| 4078 | got_minus[1] = false; |
| 4079 | if (*s == '+') |
| 4080 | ++s; |
| 4081 | else |
| 4082 | { |
| 4083 | ++s; |
| 4084 | got_minus[1] = true; |
| 4085 | } |
| 4086 | |
| 4087 | if (!isdigit ((unsigned char) *s)) |
| 4088 | return false; |
| 4089 | |
| 4090 | displacements[1] = strtol (s, &endp, 10); |
| 4091 | s = endp; |
| 4092 | |
| 4093 | if (*s != '+' && *s != '-') |
| 4094 | { |
| 4095 | /* We are not dealing with a triplet. */ |
| 4096 | return false; |
| 4097 | } |
| 4098 | |
| 4099 | got_minus[2] = false; |
| 4100 | if (*s == '+') |
| 4101 | ++s; |
| 4102 | else |
| 4103 | { |
| 4104 | ++s; |
| 4105 | got_minus[2] = true; |
| 4106 | } |
| 4107 | |
| 4108 | if (!isdigit ((unsigned char) *s)) |
| 4109 | return false; |
| 4110 | |
| 4111 | displacements[2] = strtol (s, &endp, 10); |
| 4112 | s = endp; |
| 4113 | |
| 4114 | if (*s != '(' || s[1] != '%') |
| 4115 | return false; |
| 4116 | |
| 4117 | s += 2; |
| 4118 | start = s; |
| 4119 | |
| 4120 | while (isalnum (*s)) |
| 4121 | ++s; |
| 4122 | |
| 4123 | if (*s++ != ')') |
| 4124 | return false; |
| 4125 | |
| 4126 | len = s - start - 1; |
| 4127 | regname = (char *) alloca (len + 1); |
| 4128 | |
| 4129 | strncpy (regname, start, len); |
| 4130 | regname[len] = '\0'; |
| 4131 | |
| 4132 | if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1) |
| 4133 | error (_("Invalid register name `%s' on expression `%s'."), |
| 4134 | regname, p->saved_arg); |
| 4135 | |
| 4136 | for (i = 0; i < 3; i++) |
| 4137 | { |
| 4138 | write_exp_elt_opcode (&p->pstate, OP_LONG); |
| 4139 | write_exp_elt_type |
| 4140 | (&p->pstate, builtin_type (gdbarch)->builtin_long); |
| 4141 | write_exp_elt_longcst (&p->pstate, displacements[i]); |
| 4142 | write_exp_elt_opcode (&p->pstate, OP_LONG); |
| 4143 | if (got_minus[i]) |
| 4144 | write_exp_elt_opcode (&p->pstate, UNOP_NEG); |
| 4145 | } |
| 4146 | |
| 4147 | write_exp_elt_opcode (&p->pstate, OP_REGISTER); |
| 4148 | str.ptr = regname; |
| 4149 | str.length = len; |
| 4150 | write_exp_string (&p->pstate, str); |
| 4151 | write_exp_elt_opcode (&p->pstate, OP_REGISTER); |
| 4152 | |
| 4153 | write_exp_elt_opcode (&p->pstate, UNOP_CAST); |
| 4154 | write_exp_elt_type (&p->pstate, |
| 4155 | builtin_type (gdbarch)->builtin_data_ptr); |
| 4156 | write_exp_elt_opcode (&p->pstate, UNOP_CAST); |
| 4157 | |
| 4158 | write_exp_elt_opcode (&p->pstate, BINOP_ADD); |
| 4159 | write_exp_elt_opcode (&p->pstate, BINOP_ADD); |
| 4160 | write_exp_elt_opcode (&p->pstate, BINOP_ADD); |
| 4161 | |
| 4162 | write_exp_elt_opcode (&p->pstate, UNOP_CAST); |
| 4163 | write_exp_elt_type (&p->pstate, |
| 4164 | lookup_pointer_type (p->arg_type)); |
| 4165 | write_exp_elt_opcode (&p->pstate, UNOP_CAST); |
| 4166 | |
| 4167 | write_exp_elt_opcode (&p->pstate, UNOP_IND); |
| 4168 | |
| 4169 | p->arg = s; |
| 4170 | |
| 4171 | return true; |
| 4172 | } |
| 4173 | |
| 4174 | return false; |
| 4175 | } |
| 4176 | |
| 4177 | /* Helper function for i386_stap_parse_special_token. |
| 4178 | |
| 4179 | This function parses operands of the form `register base + |
| 4180 | (register index * size) + offset', as represented in |
| 4181 | `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'. |
| 4182 | |
| 4183 | Return true if the operand was parsed successfully, false |
| 4184 | otherwise. */ |
| 4185 | |
| 4186 | static bool |
| 4187 | i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch, |
| 4188 | struct stap_parse_info *p) |
| 4189 | { |
| 4190 | const char *s = p->arg; |
| 4191 | |
| 4192 | if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+') |
| 4193 | { |
| 4194 | bool offset_minus = false; |
| 4195 | long offset = 0; |
| 4196 | bool size_minus = false; |
| 4197 | long size = 0; |
| 4198 | const char *start; |
| 4199 | char *base; |
| 4200 | int len_base; |
| 4201 | char *index; |
| 4202 | int len_index; |
| 4203 | struct stoken base_token, index_token; |
| 4204 | |
| 4205 | if (*s == '+') |
| 4206 | ++s; |
| 4207 | else if (*s == '-') |
| 4208 | { |
| 4209 | ++s; |
| 4210 | offset_minus = true; |
| 4211 | } |
| 4212 | |
| 4213 | if (offset_minus && !isdigit (*s)) |
| 4214 | return false; |
| 4215 | |
| 4216 | if (isdigit (*s)) |
| 4217 | { |
| 4218 | char *endp; |
| 4219 | |
| 4220 | offset = strtol (s, &endp, 10); |
| 4221 | s = endp; |
| 4222 | } |
| 4223 | |
| 4224 | if (*s != '(' || s[1] != '%') |
| 4225 | return false; |
| 4226 | |
| 4227 | s += 2; |
| 4228 | start = s; |
| 4229 | |
| 4230 | while (isalnum (*s)) |
| 4231 | ++s; |
| 4232 | |
| 4233 | if (*s != ',' || s[1] != '%') |
| 4234 | return false; |
| 4235 | |
| 4236 | len_base = s - start; |
| 4237 | base = (char *) alloca (len_base + 1); |
| 4238 | strncpy (base, start, len_base); |
| 4239 | base[len_base] = '\0'; |
| 4240 | |
| 4241 | if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1) |
| 4242 | error (_("Invalid register name `%s' on expression `%s'."), |
| 4243 | base, p->saved_arg); |
| 4244 | |
| 4245 | s += 2; |
| 4246 | start = s; |
| 4247 | |
| 4248 | while (isalnum (*s)) |
| 4249 | ++s; |
| 4250 | |
| 4251 | len_index = s - start; |
| 4252 | index = (char *) alloca (len_index + 1); |
| 4253 | strncpy (index, start, len_index); |
| 4254 | index[len_index] = '\0'; |
| 4255 | |
| 4256 | if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1) |
| 4257 | error (_("Invalid register name `%s' on expression `%s'."), |
| 4258 | index, p->saved_arg); |
| 4259 | |
| 4260 | if (*s != ',' && *s != ')') |
| 4261 | return false; |
| 4262 | |
| 4263 | if (*s == ',') |
| 4264 | { |
| 4265 | char *endp; |
| 4266 | |
| 4267 | ++s; |
| 4268 | if (*s == '+') |
| 4269 | ++s; |
| 4270 | else if (*s == '-') |
| 4271 | { |
| 4272 | ++s; |
| 4273 | size_minus = true; |
| 4274 | } |
| 4275 | |
| 4276 | size = strtol (s, &endp, 10); |
| 4277 | s = endp; |
| 4278 | |
| 4279 | if (*s != ')') |
| 4280 | return false; |
| 4281 | } |
| 4282 | |
| 4283 | ++s; |
| 4284 | |
| 4285 | if (offset) |
| 4286 | { |
| 4287 | write_exp_elt_opcode (&p->pstate, OP_LONG); |
| 4288 | write_exp_elt_type (&p->pstate, |
| 4289 | builtin_type (gdbarch)->builtin_long); |
| 4290 | write_exp_elt_longcst (&p->pstate, offset); |
| 4291 | write_exp_elt_opcode (&p->pstate, OP_LONG); |
| 4292 | if (offset_minus) |
| 4293 | write_exp_elt_opcode (&p->pstate, UNOP_NEG); |
| 4294 | } |
| 4295 | |
| 4296 | write_exp_elt_opcode (&p->pstate, OP_REGISTER); |
| 4297 | base_token.ptr = base; |
| 4298 | base_token.length = len_base; |
| 4299 | write_exp_string (&p->pstate, base_token); |
| 4300 | write_exp_elt_opcode (&p->pstate, OP_REGISTER); |
| 4301 | |
| 4302 | if (offset) |
| 4303 | write_exp_elt_opcode (&p->pstate, BINOP_ADD); |
| 4304 | |
| 4305 | write_exp_elt_opcode (&p->pstate, OP_REGISTER); |
| 4306 | index_token.ptr = index; |
| 4307 | index_token.length = len_index; |
| 4308 | write_exp_string (&p->pstate, index_token); |
| 4309 | write_exp_elt_opcode (&p->pstate, OP_REGISTER); |
| 4310 | |
| 4311 | if (size) |
| 4312 | { |
| 4313 | write_exp_elt_opcode (&p->pstate, OP_LONG); |
| 4314 | write_exp_elt_type (&p->pstate, |
| 4315 | builtin_type (gdbarch)->builtin_long); |
| 4316 | write_exp_elt_longcst (&p->pstate, size); |
| 4317 | write_exp_elt_opcode (&p->pstate, OP_LONG); |
| 4318 | if (size_minus) |
| 4319 | write_exp_elt_opcode (&p->pstate, UNOP_NEG); |
| 4320 | write_exp_elt_opcode (&p->pstate, BINOP_MUL); |
| 4321 | } |
| 4322 | |
| 4323 | write_exp_elt_opcode (&p->pstate, BINOP_ADD); |
| 4324 | |
| 4325 | write_exp_elt_opcode (&p->pstate, UNOP_CAST); |
| 4326 | write_exp_elt_type (&p->pstate, |
| 4327 | lookup_pointer_type (p->arg_type)); |
| 4328 | write_exp_elt_opcode (&p->pstate, UNOP_CAST); |
| 4329 | |
| 4330 | write_exp_elt_opcode (&p->pstate, UNOP_IND); |
| 4331 | |
| 4332 | p->arg = s; |
| 4333 | |
| 4334 | return true; |
| 4335 | } |
| 4336 | |
| 4337 | return false; |
| 4338 | } |
| 4339 | |
| 4340 | /* Implementation of `gdbarch_stap_parse_special_token', as defined in |
| 4341 | gdbarch.h. */ |
| 4342 | |
| 4343 | int |
| 4344 | i386_stap_parse_special_token (struct gdbarch *gdbarch, |
| 4345 | struct stap_parse_info *p) |
| 4346 | { |
| 4347 | /* In order to parse special tokens, we use a state-machine that go |
| 4348 | through every known token and try to get a match. */ |
| 4349 | enum |
| 4350 | { |
| 4351 | TRIPLET, |
| 4352 | THREE_ARG_DISPLACEMENT, |
| 4353 | DONE |
| 4354 | }; |
| 4355 | int current_state; |
| 4356 | |
| 4357 | current_state = TRIPLET; |
| 4358 | |
| 4359 | /* The special tokens to be parsed here are: |
| 4360 | |
| 4361 | - `register base + (register index * size) + offset', as represented |
| 4362 | in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'. |
| 4363 | |
| 4364 | - Operands of the form `-8+3+1(%rbp)', which must be interpreted as |
| 4365 | `*(-8 + 3 - 1 + (void *) $eax)'. */ |
| 4366 | |
| 4367 | while (current_state != DONE) |
| 4368 | { |
| 4369 | switch (current_state) |
| 4370 | { |
| 4371 | case TRIPLET: |
| 4372 | if (i386_stap_parse_special_token_triplet (gdbarch, p)) |
| 4373 | return 1; |
| 4374 | break; |
| 4375 | |
| 4376 | case THREE_ARG_DISPLACEMENT: |
| 4377 | if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p)) |
| 4378 | return 1; |
| 4379 | break; |
| 4380 | } |
| 4381 | |
| 4382 | /* Advancing to the next state. */ |
| 4383 | ++current_state; |
| 4384 | } |
| 4385 | |
| 4386 | return 0; |
| 4387 | } |
| 4388 | |
| 4389 | /* Implementation of 'gdbarch_stap_adjust_register', as defined in |
| 4390 | gdbarch.h. */ |
| 4391 | |
| 4392 | static std::string |
| 4393 | i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p, |
| 4394 | const std::string ®name, int regnum) |
| 4395 | { |
| 4396 | static const std::unordered_set<std::string> reg_assoc |
| 4397 | = { "ax", "bx", "cx", "dx", |
| 4398 | "si", "di", "bp", "sp" }; |
| 4399 | |
| 4400 | /* If we are dealing with a register whose size is less than the size |
| 4401 | specified by the "[-]N@" prefix, and it is one of the registers that |
| 4402 | we know has an extended variant available, then use the extended |
| 4403 | version of the register instead. */ |
| 4404 | if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type) |
| 4405 | && reg_assoc.find (regname) != reg_assoc.end ()) |
| 4406 | return "e" + regname; |
| 4407 | |
| 4408 | /* Otherwise, just use the requested register. */ |
| 4409 | return regname; |
| 4410 | } |
| 4411 | |
| 4412 | \f |
| 4413 | |
| 4414 | /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always |
| 4415 | also supplies -m64 or -m32 by gdbarch_gcc_target_options. */ |
| 4416 | |
| 4417 | static const char * |
| 4418 | i386_gnu_triplet_regexp (struct gdbarch *gdbarch) |
| 4419 | { |
| 4420 | return "(x86_64|i.86)"; |
| 4421 | } |
| 4422 | |
| 4423 | \f |
| 4424 | |
| 4425 | /* Implement the "in_indirect_branch_thunk" gdbarch function. */ |
| 4426 | |
| 4427 | static bool |
| 4428 | i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc) |
| 4429 | { |
| 4430 | return x86_in_indirect_branch_thunk (pc, i386_register_names, |
| 4431 | I386_EAX_REGNUM, I386_EIP_REGNUM); |
| 4432 | } |
| 4433 | |
| 4434 | /* Generic ELF. */ |
| 4435 | |
| 4436 | void |
| 4437 | i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
| 4438 | { |
| 4439 | static const char *const stap_integer_prefixes[] = { "$", NULL }; |
| 4440 | static const char *const stap_register_prefixes[] = { "%", NULL }; |
| 4441 | static const char *const stap_register_indirection_prefixes[] = { "(", |
| 4442 | NULL }; |
| 4443 | static const char *const stap_register_indirection_suffixes[] = { ")", |
| 4444 | NULL }; |
| 4445 | |
| 4446 | /* We typically use stabs-in-ELF with the SVR4 register numbering. */ |
| 4447 | set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum); |
| 4448 | |
| 4449 | /* Registering SystemTap handlers. */ |
| 4450 | set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes); |
| 4451 | set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes); |
| 4452 | set_gdbarch_stap_register_indirection_prefixes (gdbarch, |
| 4453 | stap_register_indirection_prefixes); |
| 4454 | set_gdbarch_stap_register_indirection_suffixes (gdbarch, |
| 4455 | stap_register_indirection_suffixes); |
| 4456 | set_gdbarch_stap_is_single_operand (gdbarch, |
| 4457 | i386_stap_is_single_operand); |
| 4458 | set_gdbarch_stap_parse_special_token (gdbarch, |
| 4459 | i386_stap_parse_special_token); |
| 4460 | set_gdbarch_stap_adjust_register (gdbarch, |
| 4461 | i386_stap_adjust_register); |
| 4462 | |
| 4463 | set_gdbarch_in_indirect_branch_thunk (gdbarch, |
| 4464 | i386_in_indirect_branch_thunk); |
| 4465 | } |
| 4466 | |
| 4467 | /* System V Release 4 (SVR4). */ |
| 4468 | |
| 4469 | void |
| 4470 | i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
| 4471 | { |
| 4472 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 4473 | |
| 4474 | /* System V Release 4 uses ELF. */ |
| 4475 | i386_elf_init_abi (info, gdbarch); |
| 4476 | |
| 4477 | /* System V Release 4 has shared libraries. */ |
| 4478 | set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); |
| 4479 | |
| 4480 | tdep->sigtramp_p = i386_svr4_sigtramp_p; |
| 4481 | tdep->sigcontext_addr = i386_svr4_sigcontext_addr; |
| 4482 | tdep->sc_pc_offset = 36 + 14 * 4; |
| 4483 | tdep->sc_sp_offset = 36 + 17 * 4; |
| 4484 | |
| 4485 | tdep->jb_pc_offset = 20; |
| 4486 | } |
| 4487 | |
| 4488 | \f |
| 4489 | |
| 4490 | /* i386 register groups. In addition to the normal groups, add "mmx" |
| 4491 | and "sse". */ |
| 4492 | |
| 4493 | static struct reggroup *i386_sse_reggroup; |
| 4494 | static struct reggroup *i386_mmx_reggroup; |
| 4495 | |
| 4496 | static void |
| 4497 | i386_init_reggroups (void) |
| 4498 | { |
| 4499 | i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP); |
| 4500 | i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP); |
| 4501 | } |
| 4502 | |
| 4503 | static void |
| 4504 | i386_add_reggroups (struct gdbarch *gdbarch) |
| 4505 | { |
| 4506 | reggroup_add (gdbarch, i386_sse_reggroup); |
| 4507 | reggroup_add (gdbarch, i386_mmx_reggroup); |
| 4508 | reggroup_add (gdbarch, general_reggroup); |
| 4509 | reggroup_add (gdbarch, float_reggroup); |
| 4510 | reggroup_add (gdbarch, all_reggroup); |
| 4511 | reggroup_add (gdbarch, save_reggroup); |
| 4512 | reggroup_add (gdbarch, restore_reggroup); |
| 4513 | reggroup_add (gdbarch, vector_reggroup); |
| 4514 | reggroup_add (gdbarch, system_reggroup); |
| 4515 | } |
| 4516 | |
| 4517 | int |
| 4518 | i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
| 4519 | struct reggroup *group) |
| 4520 | { |
| 4521 | const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 4522 | int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p, |
| 4523 | ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p, |
| 4524 | bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p, |
| 4525 | mpx_ctrl_regnum_p, xmm_avx512_regnum_p, |
| 4526 | avx512_p, avx_p, sse_p, pkru_regnum_p; |
| 4527 | |
| 4528 | /* Don't include pseudo registers, except for MMX, in any register |
| 4529 | groups. */ |
| 4530 | if (i386_byte_regnum_p (gdbarch, regnum)) |
| 4531 | return 0; |
| 4532 | |
| 4533 | if (i386_word_regnum_p (gdbarch, regnum)) |
| 4534 | return 0; |
| 4535 | |
| 4536 | if (i386_dword_regnum_p (gdbarch, regnum)) |
| 4537 | return 0; |
| 4538 | |
| 4539 | mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum); |
| 4540 | if (group == i386_mmx_reggroup) |
| 4541 | return mmx_regnum_p; |
| 4542 | |
| 4543 | pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum); |
| 4544 | xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum); |
| 4545 | xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum); |
| 4546 | mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum); |
| 4547 | if (group == i386_sse_reggroup) |
| 4548 | return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p; |
| 4549 | |
| 4550 | ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum); |
| 4551 | ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum); |
| 4552 | zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum); |
| 4553 | |
| 4554 | avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK) |
| 4555 | == X86_XSTATE_AVX_AVX512_MASK); |
| 4556 | avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK) |
| 4557 | == X86_XSTATE_AVX_MASK) && !avx512_p; |
| 4558 | sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK) |
| 4559 | == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p; |
| 4560 | |
| 4561 | if (group == vector_reggroup) |
| 4562 | return (mmx_regnum_p |
| 4563 | || (zmm_regnum_p && avx512_p) |
| 4564 | || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p) |
| 4565 | || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p) |
| 4566 | || mxcsr_regnum_p); |
| 4567 | |
| 4568 | fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum) |
| 4569 | || i386_fpc_regnum_p (gdbarch, regnum)); |
| 4570 | if (group == float_reggroup) |
| 4571 | return fp_regnum_p; |
| 4572 | |
| 4573 | /* For "info reg all", don't include upper YMM registers nor XMM |
| 4574 | registers when AVX is supported. */ |
| 4575 | ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum); |
| 4576 | ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum); |
| 4577 | zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum); |
| 4578 | if (group == all_reggroup |
| 4579 | && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p) |
| 4580 | || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p) |
| 4581 | || ymmh_regnum_p |
| 4582 | || ymmh_avx512_regnum_p |
| 4583 | || zmmh_regnum_p)) |
| 4584 | return 0; |
| 4585 | |
| 4586 | bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum); |
| 4587 | if (group == all_reggroup |
| 4588 | && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK)))) |
| 4589 | return bnd_regnum_p; |
| 4590 | |
| 4591 | bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum); |
| 4592 | if (group == all_reggroup |
| 4593 | && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK)))) |
| 4594 | return 0; |
| 4595 | |
| 4596 | mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum); |
| 4597 | if (group == all_reggroup |
| 4598 | && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK)))) |
| 4599 | return mpx_ctrl_regnum_p; |
| 4600 | |
| 4601 | if (group == general_reggroup) |
| 4602 | return (!fp_regnum_p |
| 4603 | && !mmx_regnum_p |
| 4604 | && !mxcsr_regnum_p |
| 4605 | && !xmm_regnum_p |
| 4606 | && !xmm_avx512_regnum_p |
| 4607 | && !ymm_regnum_p |
| 4608 | && !ymmh_regnum_p |
| 4609 | && !ymm_avx512_regnum_p |
| 4610 | && !ymmh_avx512_regnum_p |
| 4611 | && !bndr_regnum_p |
| 4612 | && !bnd_regnum_p |
| 4613 | && !mpx_ctrl_regnum_p |
| 4614 | && !zmm_regnum_p |
| 4615 | && !zmmh_regnum_p |
| 4616 | && !pkru_regnum_p); |
| 4617 | |
| 4618 | return default_register_reggroup_p (gdbarch, regnum, group); |
| 4619 | } |
| 4620 | \f |
| 4621 | |
| 4622 | /* Get the ARGIth function argument for the current function. */ |
| 4623 | |
| 4624 | static CORE_ADDR |
| 4625 | i386_fetch_pointer_argument (struct frame_info *frame, int argi, |
| 4626 | struct type *type) |
| 4627 | { |
| 4628 | struct gdbarch *gdbarch = get_frame_arch (frame); |
| 4629 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 4630 | CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM); |
| 4631 | return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order); |
| 4632 | } |
| 4633 | |
| 4634 | #define PREFIX_REPZ 0x01 |
| 4635 | #define PREFIX_REPNZ 0x02 |
| 4636 | #define PREFIX_LOCK 0x04 |
| 4637 | #define PREFIX_DATA 0x08 |
| 4638 | #define PREFIX_ADDR 0x10 |
| 4639 | |
| 4640 | /* operand size */ |
| 4641 | enum |
| 4642 | { |
| 4643 | OT_BYTE = 0, |
| 4644 | OT_WORD, |
| 4645 | OT_LONG, |
| 4646 | OT_QUAD, |
| 4647 | OT_DQUAD, |
| 4648 | }; |
| 4649 | |
| 4650 | /* i386 arith/logic operations */ |
| 4651 | enum |
| 4652 | { |
| 4653 | OP_ADDL, |
| 4654 | OP_ORL, |
| 4655 | OP_ADCL, |
| 4656 | OP_SBBL, |
| 4657 | OP_ANDL, |
| 4658 | OP_SUBL, |
| 4659 | OP_XORL, |
| 4660 | OP_CMPL, |
| 4661 | }; |
| 4662 | |
| 4663 | struct i386_record_s |
| 4664 | { |
| 4665 | struct gdbarch *gdbarch; |
| 4666 | struct regcache *regcache; |
| 4667 | CORE_ADDR orig_addr; |
| 4668 | CORE_ADDR addr; |
| 4669 | int aflag; |
| 4670 | int dflag; |
| 4671 | int override; |
| 4672 | uint8_t modrm; |
| 4673 | uint8_t mod, reg, rm; |
| 4674 | int ot; |
| 4675 | uint8_t rex_x; |
| 4676 | uint8_t rex_b; |
| 4677 | int rip_offset; |
| 4678 | int popl_esp_hack; |
| 4679 | const int *regmap; |
| 4680 | }; |
| 4681 | |
| 4682 | /* Parse the "modrm" part of the memory address irp->addr points at. |
| 4683 | Returns -1 if something goes wrong, 0 otherwise. */ |
| 4684 | |
| 4685 | static int |
| 4686 | i386_record_modrm (struct i386_record_s *irp) |
| 4687 | { |
| 4688 | struct gdbarch *gdbarch = irp->gdbarch; |
| 4689 | |
| 4690 | if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1)) |
| 4691 | return -1; |
| 4692 | |
| 4693 | irp->addr++; |
| 4694 | irp->mod = (irp->modrm >> 6) & 3; |
| 4695 | irp->reg = (irp->modrm >> 3) & 7; |
| 4696 | irp->rm = irp->modrm & 7; |
| 4697 | |
| 4698 | return 0; |
| 4699 | } |
| 4700 | |
| 4701 | /* Extract the memory address that the current instruction writes to, |
| 4702 | and return it in *ADDR. Return -1 if something goes wrong. */ |
| 4703 | |
| 4704 | static int |
| 4705 | i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr) |
| 4706 | { |
| 4707 | struct gdbarch *gdbarch = irp->gdbarch; |
| 4708 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 4709 | gdb_byte buf[4]; |
| 4710 | ULONGEST offset64; |
| 4711 | |
| 4712 | *addr = 0; |
| 4713 | if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM]) |
| 4714 | { |
| 4715 | /* 32/64 bits */ |
| 4716 | int havesib = 0; |
| 4717 | uint8_t scale = 0; |
| 4718 | uint8_t byte; |
| 4719 | uint8_t index = 0; |
| 4720 | uint8_t base = irp->rm; |
| 4721 | |
| 4722 | if (base == 4) |
| 4723 | { |
| 4724 | havesib = 1; |
| 4725 | if (record_read_memory (gdbarch, irp->addr, &byte, 1)) |
| 4726 | return -1; |
| 4727 | irp->addr++; |
| 4728 | scale = (byte >> 6) & 3; |
| 4729 | index = ((byte >> 3) & 7) | irp->rex_x; |
| 4730 | base = (byte & 7); |
| 4731 | } |
| 4732 | base |= irp->rex_b; |
| 4733 | |
| 4734 | switch (irp->mod) |
| 4735 | { |
| 4736 | case 0: |
| 4737 | if ((base & 7) == 5) |
| 4738 | { |
| 4739 | base = 0xff; |
| 4740 | if (record_read_memory (gdbarch, irp->addr, buf, 4)) |
| 4741 | return -1; |
| 4742 | irp->addr += 4; |
| 4743 | *addr = extract_signed_integer (buf, 4, byte_order); |
| 4744 | if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib) |
| 4745 | *addr += irp->addr + irp->rip_offset; |
| 4746 | } |
| 4747 | break; |
| 4748 | case 1: |
| 4749 | if (record_read_memory (gdbarch, irp->addr, buf, 1)) |
| 4750 | return -1; |
| 4751 | irp->addr++; |
| 4752 | *addr = (int8_t) buf[0]; |
| 4753 | break; |
| 4754 | case 2: |
| 4755 | if (record_read_memory (gdbarch, irp->addr, buf, 4)) |
| 4756 | return -1; |
| 4757 | *addr = extract_signed_integer (buf, 4, byte_order); |
| 4758 | irp->addr += 4; |
| 4759 | break; |
| 4760 | } |
| 4761 | |
| 4762 | offset64 = 0; |
| 4763 | if (base != 0xff) |
| 4764 | { |
| 4765 | if (base == 4 && irp->popl_esp_hack) |
| 4766 | *addr += irp->popl_esp_hack; |
| 4767 | regcache_raw_read_unsigned (irp->regcache, irp->regmap[base], |
| 4768 | &offset64); |
| 4769 | } |
| 4770 | if (irp->aflag == 2) |
| 4771 | { |
| 4772 | *addr += offset64; |
| 4773 | } |
| 4774 | else |
| 4775 | *addr = (uint32_t) (offset64 + *addr); |
| 4776 | |
| 4777 | if (havesib && (index != 4 || scale != 0)) |
| 4778 | { |
| 4779 | regcache_raw_read_unsigned (irp->regcache, irp->regmap[index], |
| 4780 | &offset64); |
| 4781 | if (irp->aflag == 2) |
| 4782 | *addr += offset64 << scale; |
| 4783 | else |
| 4784 | *addr = (uint32_t) (*addr + (offset64 << scale)); |
| 4785 | } |
| 4786 | |
| 4787 | if (!irp->aflag) |
| 4788 | { |
| 4789 | /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend |
| 4790 | address from 32-bit to 64-bit. */ |
| 4791 | *addr = (uint32_t) *addr; |
| 4792 | } |
| 4793 | } |
| 4794 | else |
| 4795 | { |
| 4796 | /* 16 bits */ |
| 4797 | switch (irp->mod) |
| 4798 | { |
| 4799 | case 0: |
| 4800 | if (irp->rm == 6) |
| 4801 | { |
| 4802 | if (record_read_memory (gdbarch, irp->addr, buf, 2)) |
| 4803 | return -1; |
| 4804 | irp->addr += 2; |
| 4805 | *addr = extract_signed_integer (buf, 2, byte_order); |
| 4806 | irp->rm = 0; |
| 4807 | goto no_rm; |
| 4808 | } |
| 4809 | break; |
| 4810 | case 1: |
| 4811 | if (record_read_memory (gdbarch, irp->addr, buf, 1)) |
| 4812 | return -1; |
| 4813 | irp->addr++; |
| 4814 | *addr = (int8_t) buf[0]; |
| 4815 | break; |
| 4816 | case 2: |
| 4817 | if (record_read_memory (gdbarch, irp->addr, buf, 2)) |
| 4818 | return -1; |
| 4819 | irp->addr += 2; |
| 4820 | *addr = extract_signed_integer (buf, 2, byte_order); |
| 4821 | break; |
| 4822 | } |
| 4823 | |
| 4824 | switch (irp->rm) |
| 4825 | { |
| 4826 | case 0: |
| 4827 | regcache_raw_read_unsigned (irp->regcache, |
| 4828 | irp->regmap[X86_RECORD_REBX_REGNUM], |
| 4829 | &offset64); |
| 4830 | *addr = (uint32_t) (*addr + offset64); |
| 4831 | regcache_raw_read_unsigned (irp->regcache, |
| 4832 | irp->regmap[X86_RECORD_RESI_REGNUM], |
| 4833 | &offset64); |
| 4834 | *addr = (uint32_t) (*addr + offset64); |
| 4835 | break; |
| 4836 | case 1: |
| 4837 | regcache_raw_read_unsigned (irp->regcache, |
| 4838 | irp->regmap[X86_RECORD_REBX_REGNUM], |
| 4839 | &offset64); |
| 4840 | *addr = (uint32_t) (*addr + offset64); |
| 4841 | regcache_raw_read_unsigned (irp->regcache, |
| 4842 | irp->regmap[X86_RECORD_REDI_REGNUM], |
| 4843 | &offset64); |
| 4844 | *addr = (uint32_t) (*addr + offset64); |
| 4845 | break; |
| 4846 | case 2: |
| 4847 | regcache_raw_read_unsigned (irp->regcache, |
| 4848 | irp->regmap[X86_RECORD_REBP_REGNUM], |
| 4849 | &offset64); |
| 4850 | *addr = (uint32_t) (*addr + offset64); |
| 4851 | regcache_raw_read_unsigned (irp->regcache, |
| 4852 | irp->regmap[X86_RECORD_RESI_REGNUM], |
| 4853 | &offset64); |
| 4854 | *addr = (uint32_t) (*addr + offset64); |
| 4855 | break; |
| 4856 | case 3: |
| 4857 | regcache_raw_read_unsigned (irp->regcache, |
| 4858 | irp->regmap[X86_RECORD_REBP_REGNUM], |
| 4859 | &offset64); |
| 4860 | *addr = (uint32_t) (*addr + offset64); |
| 4861 | regcache_raw_read_unsigned (irp->regcache, |
| 4862 | irp->regmap[X86_RECORD_REDI_REGNUM], |
| 4863 | &offset64); |
| 4864 | *addr = (uint32_t) (*addr + offset64); |
| 4865 | break; |
| 4866 | case 4: |
| 4867 | regcache_raw_read_unsigned (irp->regcache, |
| 4868 | irp->regmap[X86_RECORD_RESI_REGNUM], |
| 4869 | &offset64); |
| 4870 | *addr = (uint32_t) (*addr + offset64); |
| 4871 | break; |
| 4872 | case 5: |
| 4873 | regcache_raw_read_unsigned (irp->regcache, |
| 4874 | irp->regmap[X86_RECORD_REDI_REGNUM], |
| 4875 | &offset64); |
| 4876 | *addr = (uint32_t) (*addr + offset64); |
| 4877 | break; |
| 4878 | case 6: |
| 4879 | regcache_raw_read_unsigned (irp->regcache, |
| 4880 | irp->regmap[X86_RECORD_REBP_REGNUM], |
| 4881 | &offset64); |
| 4882 | *addr = (uint32_t) (*addr + offset64); |
| 4883 | break; |
| 4884 | case 7: |
| 4885 | regcache_raw_read_unsigned (irp->regcache, |
| 4886 | irp->regmap[X86_RECORD_REBX_REGNUM], |
| 4887 | &offset64); |
| 4888 | *addr = (uint32_t) (*addr + offset64); |
| 4889 | break; |
| 4890 | } |
| 4891 | *addr &= 0xffff; |
| 4892 | } |
| 4893 | |
| 4894 | no_rm: |
| 4895 | return 0; |
| 4896 | } |
| 4897 | |
| 4898 | /* Record the address and contents of the memory that will be changed |
| 4899 | by the current instruction. Return -1 if something goes wrong, 0 |
| 4900 | otherwise. */ |
| 4901 | |
| 4902 | static int |
| 4903 | i386_record_lea_modrm (struct i386_record_s *irp) |
| 4904 | { |
| 4905 | struct gdbarch *gdbarch = irp->gdbarch; |
| 4906 | uint64_t addr; |
| 4907 | |
| 4908 | if (irp->override >= 0) |
| 4909 | { |
| 4910 | if (record_full_memory_query) |
| 4911 | { |
| 4912 | if (yquery (_("\ |
| 4913 | Process record ignores the memory change of instruction at address %s\n\ |
| 4914 | because it can't get the value of the segment register.\n\ |
| 4915 | Do you want to stop the program?"), |
| 4916 | paddress (gdbarch, irp->orig_addr))) |
| 4917 | return -1; |
| 4918 | } |
| 4919 | |
| 4920 | return 0; |
| 4921 | } |
| 4922 | |
| 4923 | if (i386_record_lea_modrm_addr (irp, &addr)) |
| 4924 | return -1; |
| 4925 | |
| 4926 | if (record_full_arch_list_add_mem (addr, 1 << irp->ot)) |
| 4927 | return -1; |
| 4928 | |
| 4929 | return 0; |
| 4930 | } |
| 4931 | |
| 4932 | /* Record the effects of a push operation. Return -1 if something |
| 4933 | goes wrong, 0 otherwise. */ |
| 4934 | |
| 4935 | static int |
| 4936 | i386_record_push (struct i386_record_s *irp, int size) |
| 4937 | { |
| 4938 | ULONGEST addr; |
| 4939 | |
| 4940 | if (record_full_arch_list_add_reg (irp->regcache, |
| 4941 | irp->regmap[X86_RECORD_RESP_REGNUM])) |
| 4942 | return -1; |
| 4943 | regcache_raw_read_unsigned (irp->regcache, |
| 4944 | irp->regmap[X86_RECORD_RESP_REGNUM], |
| 4945 | &addr); |
| 4946 | if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size)) |
| 4947 | return -1; |
| 4948 | |
| 4949 | return 0; |
| 4950 | } |
| 4951 | |
| 4952 | |
| 4953 | /* Defines contents to record. */ |
| 4954 | #define I386_SAVE_FPU_REGS 0xfffd |
| 4955 | #define I386_SAVE_FPU_ENV 0xfffe |
| 4956 | #define I386_SAVE_FPU_ENV_REG_STACK 0xffff |
| 4957 | |
| 4958 | /* Record the values of the floating point registers which will be |
| 4959 | changed by the current instruction. Returns -1 if something is |
| 4960 | wrong, 0 otherwise. */ |
| 4961 | |
| 4962 | static int i386_record_floats (struct gdbarch *gdbarch, |
| 4963 | struct i386_record_s *ir, |
| 4964 | uint32_t iregnum) |
| 4965 | { |
| 4966 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 4967 | int i; |
| 4968 | |
| 4969 | /* Oza: Because of floating point insn push/pop of fpu stack is going to |
| 4970 | happen. Currently we store st0-st7 registers, but we need not store all |
| 4971 | registers all the time, in future we use ftag register and record only |
| 4972 | those who are not marked as an empty. */ |
| 4973 | |
| 4974 | if (I386_SAVE_FPU_REGS == iregnum) |
| 4975 | { |
| 4976 | for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++) |
| 4977 | { |
| 4978 | if (record_full_arch_list_add_reg (ir->regcache, i)) |
| 4979 | return -1; |
| 4980 | } |
| 4981 | } |
| 4982 | else if (I386_SAVE_FPU_ENV == iregnum) |
| 4983 | { |
| 4984 | for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++) |
| 4985 | { |
| 4986 | if (record_full_arch_list_add_reg (ir->regcache, i)) |
| 4987 | return -1; |
| 4988 | } |
| 4989 | } |
| 4990 | else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum) |
| 4991 | { |
| 4992 | for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++) |
| 4993 | { |
| 4994 | if (record_full_arch_list_add_reg (ir->regcache, i)) |
| 4995 | return -1; |
| 4996 | } |
| 4997 | } |
| 4998 | else if ((iregnum >= I387_ST0_REGNUM (tdep)) && |
| 4999 | (iregnum <= I387_FOP_REGNUM (tdep))) |
| 5000 | { |
| 5001 | if (record_full_arch_list_add_reg (ir->regcache,iregnum)) |
| 5002 | return -1; |
| 5003 | } |
| 5004 | else |
| 5005 | { |
| 5006 | /* Parameter error. */ |
| 5007 | return -1; |
| 5008 | } |
| 5009 | if(I386_SAVE_FPU_ENV != iregnum) |
| 5010 | { |
| 5011 | for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++) |
| 5012 | { |
| 5013 | if (record_full_arch_list_add_reg (ir->regcache, i)) |
| 5014 | return -1; |
| 5015 | } |
| 5016 | } |
| 5017 | return 0; |
| 5018 | } |
| 5019 | |
| 5020 | /* Parse the current instruction, and record the values of the |
| 5021 | registers and memory that will be changed by the current |
| 5022 | instruction. Returns -1 if something goes wrong, 0 otherwise. */ |
| 5023 | |
| 5024 | #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \ |
| 5025 | record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)]) |
| 5026 | |
| 5027 | int |
| 5028 | i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache, |
| 5029 | CORE_ADDR input_addr) |
| 5030 | { |
| 5031 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 5032 | int prefixes = 0; |
| 5033 | int regnum = 0; |
| 5034 | uint32_t opcode; |
| 5035 | uint8_t opcode8; |
| 5036 | ULONGEST addr; |
| 5037 | gdb_byte buf[I386_MAX_REGISTER_SIZE]; |
| 5038 | struct i386_record_s ir; |
| 5039 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 5040 | uint8_t rex_w = -1; |
| 5041 | uint8_t rex_r = 0; |
| 5042 | |
| 5043 | memset (&ir, 0, sizeof (struct i386_record_s)); |
| 5044 | ir.regcache = regcache; |
| 5045 | ir.addr = input_addr; |
| 5046 | ir.orig_addr = input_addr; |
| 5047 | ir.aflag = 1; |
| 5048 | ir.dflag = 1; |
| 5049 | ir.override = -1; |
| 5050 | ir.popl_esp_hack = 0; |
| 5051 | ir.regmap = tdep->record_regmap; |
| 5052 | ir.gdbarch = gdbarch; |
| 5053 | |
| 5054 | if (record_debug > 1) |
| 5055 | fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record " |
| 5056 | "addr = %s\n", |
| 5057 | paddress (gdbarch, ir.addr)); |
| 5058 | |
| 5059 | /* prefixes */ |
| 5060 | while (1) |
| 5061 | { |
| 5062 | if (record_read_memory (gdbarch, ir.addr, &opcode8, 1)) |
| 5063 | return -1; |
| 5064 | ir.addr++; |
| 5065 | switch (opcode8) /* Instruction prefixes */ |
| 5066 | { |
| 5067 | case REPE_PREFIX_OPCODE: |
| 5068 | prefixes |= PREFIX_REPZ; |
| 5069 | break; |
| 5070 | case REPNE_PREFIX_OPCODE: |
| 5071 | prefixes |= PREFIX_REPNZ; |
| 5072 | break; |
| 5073 | case LOCK_PREFIX_OPCODE: |
| 5074 | prefixes |= PREFIX_LOCK; |
| 5075 | break; |
| 5076 | case CS_PREFIX_OPCODE: |
| 5077 | ir.override = X86_RECORD_CS_REGNUM; |
| 5078 | break; |
| 5079 | case SS_PREFIX_OPCODE: |
| 5080 | ir.override = X86_RECORD_SS_REGNUM; |
| 5081 | break; |
| 5082 | case DS_PREFIX_OPCODE: |
| 5083 | ir.override = X86_RECORD_DS_REGNUM; |
| 5084 | break; |
| 5085 | case ES_PREFIX_OPCODE: |
| 5086 | ir.override = X86_RECORD_ES_REGNUM; |
| 5087 | break; |
| 5088 | case FS_PREFIX_OPCODE: |
| 5089 | ir.override = X86_RECORD_FS_REGNUM; |
| 5090 | break; |
| 5091 | case GS_PREFIX_OPCODE: |
| 5092 | ir.override = X86_RECORD_GS_REGNUM; |
| 5093 | break; |
| 5094 | case DATA_PREFIX_OPCODE: |
| 5095 | prefixes |= PREFIX_DATA; |
| 5096 | break; |
| 5097 | case ADDR_PREFIX_OPCODE: |
| 5098 | prefixes |= PREFIX_ADDR; |
| 5099 | break; |
| 5100 | case 0x40: /* i386 inc %eax */ |
| 5101 | case 0x41: /* i386 inc %ecx */ |
| 5102 | case 0x42: /* i386 inc %edx */ |
| 5103 | case 0x43: /* i386 inc %ebx */ |
| 5104 | case 0x44: /* i386 inc %esp */ |
| 5105 | case 0x45: /* i386 inc %ebp */ |
| 5106 | case 0x46: /* i386 inc %esi */ |
| 5107 | case 0x47: /* i386 inc %edi */ |
| 5108 | case 0x48: /* i386 dec %eax */ |
| 5109 | case 0x49: /* i386 dec %ecx */ |
| 5110 | case 0x4a: /* i386 dec %edx */ |
| 5111 | case 0x4b: /* i386 dec %ebx */ |
| 5112 | case 0x4c: /* i386 dec %esp */ |
| 5113 | case 0x4d: /* i386 dec %ebp */ |
| 5114 | case 0x4e: /* i386 dec %esi */ |
| 5115 | case 0x4f: /* i386 dec %edi */ |
| 5116 | if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */ |
| 5117 | { |
| 5118 | /* REX */ |
| 5119 | rex_w = (opcode8 >> 3) & 1; |
| 5120 | rex_r = (opcode8 & 0x4) << 1; |
| 5121 | ir.rex_x = (opcode8 & 0x2) << 2; |
| 5122 | ir.rex_b = (opcode8 & 0x1) << 3; |
| 5123 | } |
| 5124 | else /* 32 bit target */ |
| 5125 | goto out_prefixes; |
| 5126 | break; |
| 5127 | default: |
| 5128 | goto out_prefixes; |
| 5129 | break; |
| 5130 | } |
| 5131 | } |
| 5132 | out_prefixes: |
| 5133 | if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1) |
| 5134 | { |
| 5135 | ir.dflag = 2; |
| 5136 | } |
| 5137 | else |
| 5138 | { |
| 5139 | if (prefixes & PREFIX_DATA) |
| 5140 | ir.dflag ^= 1; |
| 5141 | } |
| 5142 | if (prefixes & PREFIX_ADDR) |
| 5143 | ir.aflag ^= 1; |
| 5144 | else if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5145 | ir.aflag = 2; |
| 5146 | |
| 5147 | /* Now check op code. */ |
| 5148 | opcode = (uint32_t) opcode8; |
| 5149 | reswitch: |
| 5150 | switch (opcode) |
| 5151 | { |
| 5152 | case 0x0f: |
| 5153 | if (record_read_memory (gdbarch, ir.addr, &opcode8, 1)) |
| 5154 | return -1; |
| 5155 | ir.addr++; |
| 5156 | opcode = (uint32_t) opcode8 | 0x0f00; |
| 5157 | goto reswitch; |
| 5158 | break; |
| 5159 | |
| 5160 | case 0x00: /* arith & logic */ |
| 5161 | case 0x01: |
| 5162 | case 0x02: |
| 5163 | case 0x03: |
| 5164 | case 0x04: |
| 5165 | case 0x05: |
| 5166 | case 0x08: |
| 5167 | case 0x09: |
| 5168 | case 0x0a: |
| 5169 | case 0x0b: |
| 5170 | case 0x0c: |
| 5171 | case 0x0d: |
| 5172 | case 0x10: |
| 5173 | case 0x11: |
| 5174 | case 0x12: |
| 5175 | case 0x13: |
| 5176 | case 0x14: |
| 5177 | case 0x15: |
| 5178 | case 0x18: |
| 5179 | case 0x19: |
| 5180 | case 0x1a: |
| 5181 | case 0x1b: |
| 5182 | case 0x1c: |
| 5183 | case 0x1d: |
| 5184 | case 0x20: |
| 5185 | case 0x21: |
| 5186 | case 0x22: |
| 5187 | case 0x23: |
| 5188 | case 0x24: |
| 5189 | case 0x25: |
| 5190 | case 0x28: |
| 5191 | case 0x29: |
| 5192 | case 0x2a: |
| 5193 | case 0x2b: |
| 5194 | case 0x2c: |
| 5195 | case 0x2d: |
| 5196 | case 0x30: |
| 5197 | case 0x31: |
| 5198 | case 0x32: |
| 5199 | case 0x33: |
| 5200 | case 0x34: |
| 5201 | case 0x35: |
| 5202 | case 0x38: |
| 5203 | case 0x39: |
| 5204 | case 0x3a: |
| 5205 | case 0x3b: |
| 5206 | case 0x3c: |
| 5207 | case 0x3d: |
| 5208 | if (((opcode >> 3) & 7) != OP_CMPL) |
| 5209 | { |
| 5210 | if ((opcode & 1) == 0) |
| 5211 | ir.ot = OT_BYTE; |
| 5212 | else |
| 5213 | ir.ot = ir.dflag + OT_WORD; |
| 5214 | |
| 5215 | switch ((opcode >> 1) & 3) |
| 5216 | { |
| 5217 | case 0: /* OP Ev, Gv */ |
| 5218 | if (i386_record_modrm (&ir)) |
| 5219 | return -1; |
| 5220 | if (ir.mod != 3) |
| 5221 | { |
| 5222 | if (i386_record_lea_modrm (&ir)) |
| 5223 | return -1; |
| 5224 | } |
| 5225 | else |
| 5226 | { |
| 5227 | ir.rm |= ir.rex_b; |
| 5228 | if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5229 | ir.rm &= 0x3; |
| 5230 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm); |
| 5231 | } |
| 5232 | break; |
| 5233 | case 1: /* OP Gv, Ev */ |
| 5234 | if (i386_record_modrm (&ir)) |
| 5235 | return -1; |
| 5236 | ir.reg |= rex_r; |
| 5237 | if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5238 | ir.reg &= 0x3; |
| 5239 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg); |
| 5240 | break; |
| 5241 | case 2: /* OP A, Iv */ |
| 5242 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 5243 | break; |
| 5244 | } |
| 5245 | } |
| 5246 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5247 | break; |
| 5248 | |
| 5249 | case 0x80: /* GRP1 */ |
| 5250 | case 0x81: |
| 5251 | case 0x82: |
| 5252 | case 0x83: |
| 5253 | if (i386_record_modrm (&ir)) |
| 5254 | return -1; |
| 5255 | |
| 5256 | if (ir.reg != OP_CMPL) |
| 5257 | { |
| 5258 | if ((opcode & 1) == 0) |
| 5259 | ir.ot = OT_BYTE; |
| 5260 | else |
| 5261 | ir.ot = ir.dflag + OT_WORD; |
| 5262 | |
| 5263 | if (ir.mod != 3) |
| 5264 | { |
| 5265 | if (opcode == 0x83) |
| 5266 | ir.rip_offset = 1; |
| 5267 | else |
| 5268 | ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot); |
| 5269 | if (i386_record_lea_modrm (&ir)) |
| 5270 | return -1; |
| 5271 | } |
| 5272 | else |
| 5273 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b); |
| 5274 | } |
| 5275 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5276 | break; |
| 5277 | |
| 5278 | case 0x40: /* inc */ |
| 5279 | case 0x41: |
| 5280 | case 0x42: |
| 5281 | case 0x43: |
| 5282 | case 0x44: |
| 5283 | case 0x45: |
| 5284 | case 0x46: |
| 5285 | case 0x47: |
| 5286 | |
| 5287 | case 0x48: /* dec */ |
| 5288 | case 0x49: |
| 5289 | case 0x4a: |
| 5290 | case 0x4b: |
| 5291 | case 0x4c: |
| 5292 | case 0x4d: |
| 5293 | case 0x4e: |
| 5294 | case 0x4f: |
| 5295 | |
| 5296 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7); |
| 5297 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5298 | break; |
| 5299 | |
| 5300 | case 0xf6: /* GRP3 */ |
| 5301 | case 0xf7: |
| 5302 | if ((opcode & 1) == 0) |
| 5303 | ir.ot = OT_BYTE; |
| 5304 | else |
| 5305 | ir.ot = ir.dflag + OT_WORD; |
| 5306 | if (i386_record_modrm (&ir)) |
| 5307 | return -1; |
| 5308 | |
| 5309 | if (ir.mod != 3 && ir.reg == 0) |
| 5310 | ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot); |
| 5311 | |
| 5312 | switch (ir.reg) |
| 5313 | { |
| 5314 | case 0: /* test */ |
| 5315 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5316 | break; |
| 5317 | case 2: /* not */ |
| 5318 | case 3: /* neg */ |
| 5319 | if (ir.mod != 3) |
| 5320 | { |
| 5321 | if (i386_record_lea_modrm (&ir)) |
| 5322 | return -1; |
| 5323 | } |
| 5324 | else |
| 5325 | { |
| 5326 | ir.rm |= ir.rex_b; |
| 5327 | if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5328 | ir.rm &= 0x3; |
| 5329 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm); |
| 5330 | } |
| 5331 | if (ir.reg == 3) /* neg */ |
| 5332 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5333 | break; |
| 5334 | case 4: /* mul */ |
| 5335 | case 5: /* imul */ |
| 5336 | case 6: /* div */ |
| 5337 | case 7: /* idiv */ |
| 5338 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 5339 | if (ir.ot != OT_BYTE) |
| 5340 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM); |
| 5341 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5342 | break; |
| 5343 | default: |
| 5344 | ir.addr -= 2; |
| 5345 | opcode = opcode << 8 | ir.modrm; |
| 5346 | goto no_support; |
| 5347 | break; |
| 5348 | } |
| 5349 | break; |
| 5350 | |
| 5351 | case 0xfe: /* GRP4 */ |
| 5352 | case 0xff: /* GRP5 */ |
| 5353 | if (i386_record_modrm (&ir)) |
| 5354 | return -1; |
| 5355 | if (ir.reg >= 2 && opcode == 0xfe) |
| 5356 | { |
| 5357 | ir.addr -= 2; |
| 5358 | opcode = opcode << 8 | ir.modrm; |
| 5359 | goto no_support; |
| 5360 | } |
| 5361 | switch (ir.reg) |
| 5362 | { |
| 5363 | case 0: /* inc */ |
| 5364 | case 1: /* dec */ |
| 5365 | if ((opcode & 1) == 0) |
| 5366 | ir.ot = OT_BYTE; |
| 5367 | else |
| 5368 | ir.ot = ir.dflag + OT_WORD; |
| 5369 | if (ir.mod != 3) |
| 5370 | { |
| 5371 | if (i386_record_lea_modrm (&ir)) |
| 5372 | return -1; |
| 5373 | } |
| 5374 | else |
| 5375 | { |
| 5376 | ir.rm |= ir.rex_b; |
| 5377 | if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5378 | ir.rm &= 0x3; |
| 5379 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm); |
| 5380 | } |
| 5381 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5382 | break; |
| 5383 | case 2: /* call */ |
| 5384 | if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag) |
| 5385 | ir.dflag = 2; |
| 5386 | if (i386_record_push (&ir, 1 << (ir.dflag + 1))) |
| 5387 | return -1; |
| 5388 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5389 | break; |
| 5390 | case 3: /* lcall */ |
| 5391 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM); |
| 5392 | if (i386_record_push (&ir, 1 << (ir.dflag + 1))) |
| 5393 | return -1; |
| 5394 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5395 | break; |
| 5396 | case 4: /* jmp */ |
| 5397 | case 5: /* ljmp */ |
| 5398 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5399 | break; |
| 5400 | case 6: /* push */ |
| 5401 | if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag) |
| 5402 | ir.dflag = 2; |
| 5403 | if (i386_record_push (&ir, 1 << (ir.dflag + 1))) |
| 5404 | return -1; |
| 5405 | break; |
| 5406 | default: |
| 5407 | ir.addr -= 2; |
| 5408 | opcode = opcode << 8 | ir.modrm; |
| 5409 | goto no_support; |
| 5410 | break; |
| 5411 | } |
| 5412 | break; |
| 5413 | |
| 5414 | case 0x84: /* test */ |
| 5415 | case 0x85: |
| 5416 | case 0xa8: |
| 5417 | case 0xa9: |
| 5418 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5419 | break; |
| 5420 | |
| 5421 | case 0x98: /* CWDE/CBW */ |
| 5422 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 5423 | break; |
| 5424 | |
| 5425 | case 0x99: /* CDQ/CWD */ |
| 5426 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 5427 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM); |
| 5428 | break; |
| 5429 | |
| 5430 | case 0x0faf: /* imul */ |
| 5431 | case 0x69: |
| 5432 | case 0x6b: |
| 5433 | ir.ot = ir.dflag + OT_WORD; |
| 5434 | if (i386_record_modrm (&ir)) |
| 5435 | return -1; |
| 5436 | if (opcode == 0x69) |
| 5437 | ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot); |
| 5438 | else if (opcode == 0x6b) |
| 5439 | ir.rip_offset = 1; |
| 5440 | ir.reg |= rex_r; |
| 5441 | if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5442 | ir.reg &= 0x3; |
| 5443 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg); |
| 5444 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5445 | break; |
| 5446 | |
| 5447 | case 0x0fc0: /* xadd */ |
| 5448 | case 0x0fc1: |
| 5449 | if ((opcode & 1) == 0) |
| 5450 | ir.ot = OT_BYTE; |
| 5451 | else |
| 5452 | ir.ot = ir.dflag + OT_WORD; |
| 5453 | if (i386_record_modrm (&ir)) |
| 5454 | return -1; |
| 5455 | ir.reg |= rex_r; |
| 5456 | if (ir.mod == 3) |
| 5457 | { |
| 5458 | if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5459 | ir.reg &= 0x3; |
| 5460 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg); |
| 5461 | if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5462 | ir.rm &= 0x3; |
| 5463 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm); |
| 5464 | } |
| 5465 | else |
| 5466 | { |
| 5467 | if (i386_record_lea_modrm (&ir)) |
| 5468 | return -1; |
| 5469 | if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5470 | ir.reg &= 0x3; |
| 5471 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg); |
| 5472 | } |
| 5473 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5474 | break; |
| 5475 | |
| 5476 | case 0x0fb0: /* cmpxchg */ |
| 5477 | case 0x0fb1: |
| 5478 | if ((opcode & 1) == 0) |
| 5479 | ir.ot = OT_BYTE; |
| 5480 | else |
| 5481 | ir.ot = ir.dflag + OT_WORD; |
| 5482 | if (i386_record_modrm (&ir)) |
| 5483 | return -1; |
| 5484 | if (ir.mod == 3) |
| 5485 | { |
| 5486 | ir.reg |= rex_r; |
| 5487 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 5488 | if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5489 | ir.reg &= 0x3; |
| 5490 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg); |
| 5491 | } |
| 5492 | else |
| 5493 | { |
| 5494 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 5495 | if (i386_record_lea_modrm (&ir)) |
| 5496 | return -1; |
| 5497 | } |
| 5498 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5499 | break; |
| 5500 | |
| 5501 | case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */ |
| 5502 | if (i386_record_modrm (&ir)) |
| 5503 | return -1; |
| 5504 | if (ir.mod == 3) |
| 5505 | { |
| 5506 | /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as |
| 5507 | an extended opcode. rdrand has bits 110 (/6) and rdseed |
| 5508 | has bits 111 (/7). */ |
| 5509 | if (ir.reg == 6 || ir.reg == 7) |
| 5510 | { |
| 5511 | /* The storage register is described by the 3 R/M bits, but the |
| 5512 | REX.B prefix may be used to give access to registers |
| 5513 | R8~R15. In this case ir.rex_b + R/M will give us the register |
| 5514 | in the range R8~R15. |
| 5515 | |
| 5516 | REX.W may also be used to access 64-bit registers, but we |
| 5517 | already record entire registers and not just partial bits |
| 5518 | of them. */ |
| 5519 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm); |
| 5520 | /* These instructions also set conditional bits. */ |
| 5521 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5522 | break; |
| 5523 | } |
| 5524 | else |
| 5525 | { |
| 5526 | /* We don't handle this particular instruction yet. */ |
| 5527 | ir.addr -= 2; |
| 5528 | opcode = opcode << 8 | ir.modrm; |
| 5529 | goto no_support; |
| 5530 | } |
| 5531 | } |
| 5532 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 5533 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM); |
| 5534 | if (i386_record_lea_modrm (&ir)) |
| 5535 | return -1; |
| 5536 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5537 | break; |
| 5538 | |
| 5539 | case 0x50: /* push */ |
| 5540 | case 0x51: |
| 5541 | case 0x52: |
| 5542 | case 0x53: |
| 5543 | case 0x54: |
| 5544 | case 0x55: |
| 5545 | case 0x56: |
| 5546 | case 0x57: |
| 5547 | case 0x68: |
| 5548 | case 0x6a: |
| 5549 | if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag) |
| 5550 | ir.dflag = 2; |
| 5551 | if (i386_record_push (&ir, 1 << (ir.dflag + 1))) |
| 5552 | return -1; |
| 5553 | break; |
| 5554 | |
| 5555 | case 0x06: /* push es */ |
| 5556 | case 0x0e: /* push cs */ |
| 5557 | case 0x16: /* push ss */ |
| 5558 | case 0x1e: /* push ds */ |
| 5559 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5560 | { |
| 5561 | ir.addr -= 1; |
| 5562 | goto no_support; |
| 5563 | } |
| 5564 | if (i386_record_push (&ir, 1 << (ir.dflag + 1))) |
| 5565 | return -1; |
| 5566 | break; |
| 5567 | |
| 5568 | case 0x0fa0: /* push fs */ |
| 5569 | case 0x0fa8: /* push gs */ |
| 5570 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5571 | { |
| 5572 | ir.addr -= 2; |
| 5573 | goto no_support; |
| 5574 | } |
| 5575 | if (i386_record_push (&ir, 1 << (ir.dflag + 1))) |
| 5576 | return -1; |
| 5577 | break; |
| 5578 | |
| 5579 | case 0x60: /* pusha */ |
| 5580 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5581 | { |
| 5582 | ir.addr -= 1; |
| 5583 | goto no_support; |
| 5584 | } |
| 5585 | if (i386_record_push (&ir, 1 << (ir.dflag + 4))) |
| 5586 | return -1; |
| 5587 | break; |
| 5588 | |
| 5589 | case 0x58: /* pop */ |
| 5590 | case 0x59: |
| 5591 | case 0x5a: |
| 5592 | case 0x5b: |
| 5593 | case 0x5c: |
| 5594 | case 0x5d: |
| 5595 | case 0x5e: |
| 5596 | case 0x5f: |
| 5597 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM); |
| 5598 | I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b); |
| 5599 | break; |
| 5600 | |
| 5601 | case 0x61: /* popa */ |
| 5602 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5603 | { |
| 5604 | ir.addr -= 1; |
| 5605 | goto no_support; |
| 5606 | } |
| 5607 | for (regnum = X86_RECORD_REAX_REGNUM; |
| 5608 | regnum <= X86_RECORD_REDI_REGNUM; |
| 5609 | regnum++) |
| 5610 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum); |
| 5611 | break; |
| 5612 | |
| 5613 | case 0x8f: /* pop */ |
| 5614 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5615 | ir.ot = ir.dflag ? OT_QUAD : OT_WORD; |
| 5616 | else |
| 5617 | ir.ot = ir.dflag + OT_WORD; |
| 5618 | if (i386_record_modrm (&ir)) |
| 5619 | return -1; |
| 5620 | if (ir.mod == 3) |
| 5621 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b); |
| 5622 | else |
| 5623 | { |
| 5624 | ir.popl_esp_hack = 1 << ir.ot; |
| 5625 | if (i386_record_lea_modrm (&ir)) |
| 5626 | return -1; |
| 5627 | } |
| 5628 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM); |
| 5629 | break; |
| 5630 | |
| 5631 | case 0xc8: /* enter */ |
| 5632 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM); |
| 5633 | if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag) |
| 5634 | ir.dflag = 2; |
| 5635 | if (i386_record_push (&ir, 1 << (ir.dflag + 1))) |
| 5636 | return -1; |
| 5637 | break; |
| 5638 | |
| 5639 | case 0xc9: /* leave */ |
| 5640 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM); |
| 5641 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM); |
| 5642 | break; |
| 5643 | |
| 5644 | case 0x07: /* pop es */ |
| 5645 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5646 | { |
| 5647 | ir.addr -= 1; |
| 5648 | goto no_support; |
| 5649 | } |
| 5650 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM); |
| 5651 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM); |
| 5652 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5653 | break; |
| 5654 | |
| 5655 | case 0x17: /* pop ss */ |
| 5656 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5657 | { |
| 5658 | ir.addr -= 1; |
| 5659 | goto no_support; |
| 5660 | } |
| 5661 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM); |
| 5662 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM); |
| 5663 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5664 | break; |
| 5665 | |
| 5666 | case 0x1f: /* pop ds */ |
| 5667 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5668 | { |
| 5669 | ir.addr -= 1; |
| 5670 | goto no_support; |
| 5671 | } |
| 5672 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM); |
| 5673 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM); |
| 5674 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5675 | break; |
| 5676 | |
| 5677 | case 0x0fa1: /* pop fs */ |
| 5678 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM); |
| 5679 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM); |
| 5680 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5681 | break; |
| 5682 | |
| 5683 | case 0x0fa9: /* pop gs */ |
| 5684 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM); |
| 5685 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM); |
| 5686 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5687 | break; |
| 5688 | |
| 5689 | case 0x88: /* mov */ |
| 5690 | case 0x89: |
| 5691 | case 0xc6: |
| 5692 | case 0xc7: |
| 5693 | if ((opcode & 1) == 0) |
| 5694 | ir.ot = OT_BYTE; |
| 5695 | else |
| 5696 | ir.ot = ir.dflag + OT_WORD; |
| 5697 | |
| 5698 | if (i386_record_modrm (&ir)) |
| 5699 | return -1; |
| 5700 | |
| 5701 | if (ir.mod != 3) |
| 5702 | { |
| 5703 | if (opcode == 0xc6 || opcode == 0xc7) |
| 5704 | ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot); |
| 5705 | if (i386_record_lea_modrm (&ir)) |
| 5706 | return -1; |
| 5707 | } |
| 5708 | else |
| 5709 | { |
| 5710 | if (opcode == 0xc6 || opcode == 0xc7) |
| 5711 | ir.rm |= ir.rex_b; |
| 5712 | if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5713 | ir.rm &= 0x3; |
| 5714 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm); |
| 5715 | } |
| 5716 | break; |
| 5717 | |
| 5718 | case 0x8a: /* mov */ |
| 5719 | case 0x8b: |
| 5720 | if ((opcode & 1) == 0) |
| 5721 | ir.ot = OT_BYTE; |
| 5722 | else |
| 5723 | ir.ot = ir.dflag + OT_WORD; |
| 5724 | if (i386_record_modrm (&ir)) |
| 5725 | return -1; |
| 5726 | ir.reg |= rex_r; |
| 5727 | if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5728 | ir.reg &= 0x3; |
| 5729 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg); |
| 5730 | break; |
| 5731 | |
| 5732 | case 0x8c: /* mov seg */ |
| 5733 | if (i386_record_modrm (&ir)) |
| 5734 | return -1; |
| 5735 | if (ir.reg > 5) |
| 5736 | { |
| 5737 | ir.addr -= 2; |
| 5738 | opcode = opcode << 8 | ir.modrm; |
| 5739 | goto no_support; |
| 5740 | } |
| 5741 | |
| 5742 | if (ir.mod == 3) |
| 5743 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm); |
| 5744 | else |
| 5745 | { |
| 5746 | ir.ot = OT_WORD; |
| 5747 | if (i386_record_lea_modrm (&ir)) |
| 5748 | return -1; |
| 5749 | } |
| 5750 | break; |
| 5751 | |
| 5752 | case 0x8e: /* mov seg */ |
| 5753 | if (i386_record_modrm (&ir)) |
| 5754 | return -1; |
| 5755 | switch (ir.reg) |
| 5756 | { |
| 5757 | case 0: |
| 5758 | regnum = X86_RECORD_ES_REGNUM; |
| 5759 | break; |
| 5760 | case 2: |
| 5761 | regnum = X86_RECORD_SS_REGNUM; |
| 5762 | break; |
| 5763 | case 3: |
| 5764 | regnum = X86_RECORD_DS_REGNUM; |
| 5765 | break; |
| 5766 | case 4: |
| 5767 | regnum = X86_RECORD_FS_REGNUM; |
| 5768 | break; |
| 5769 | case 5: |
| 5770 | regnum = X86_RECORD_GS_REGNUM; |
| 5771 | break; |
| 5772 | default: |
| 5773 | ir.addr -= 2; |
| 5774 | opcode = opcode << 8 | ir.modrm; |
| 5775 | goto no_support; |
| 5776 | break; |
| 5777 | } |
| 5778 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum); |
| 5779 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5780 | break; |
| 5781 | |
| 5782 | case 0x0fb6: /* movzbS */ |
| 5783 | case 0x0fb7: /* movzwS */ |
| 5784 | case 0x0fbe: /* movsbS */ |
| 5785 | case 0x0fbf: /* movswS */ |
| 5786 | if (i386_record_modrm (&ir)) |
| 5787 | return -1; |
| 5788 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r); |
| 5789 | break; |
| 5790 | |
| 5791 | case 0x8d: /* lea */ |
| 5792 | if (i386_record_modrm (&ir)) |
| 5793 | return -1; |
| 5794 | if (ir.mod == 3) |
| 5795 | { |
| 5796 | ir.addr -= 2; |
| 5797 | opcode = opcode << 8 | ir.modrm; |
| 5798 | goto no_support; |
| 5799 | } |
| 5800 | ir.ot = ir.dflag; |
| 5801 | ir.reg |= rex_r; |
| 5802 | if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5803 | ir.reg &= 0x3; |
| 5804 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg); |
| 5805 | break; |
| 5806 | |
| 5807 | case 0xa0: /* mov EAX */ |
| 5808 | case 0xa1: |
| 5809 | |
| 5810 | case 0xd7: /* xlat */ |
| 5811 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 5812 | break; |
| 5813 | |
| 5814 | case 0xa2: /* mov EAX */ |
| 5815 | case 0xa3: |
| 5816 | if (ir.override >= 0) |
| 5817 | { |
| 5818 | if (record_full_memory_query) |
| 5819 | { |
| 5820 | if (yquery (_("\ |
| 5821 | Process record ignores the memory change of instruction at address %s\n\ |
| 5822 | because it can't get the value of the segment register.\n\ |
| 5823 | Do you want to stop the program?"), |
| 5824 | paddress (gdbarch, ir.orig_addr))) |
| 5825 | return -1; |
| 5826 | } |
| 5827 | } |
| 5828 | else |
| 5829 | { |
| 5830 | if ((opcode & 1) == 0) |
| 5831 | ir.ot = OT_BYTE; |
| 5832 | else |
| 5833 | ir.ot = ir.dflag + OT_WORD; |
| 5834 | if (ir.aflag == 2) |
| 5835 | { |
| 5836 | if (record_read_memory (gdbarch, ir.addr, buf, 8)) |
| 5837 | return -1; |
| 5838 | ir.addr += 8; |
| 5839 | addr = extract_unsigned_integer (buf, 8, byte_order); |
| 5840 | } |
| 5841 | else if (ir.aflag) |
| 5842 | { |
| 5843 | if (record_read_memory (gdbarch, ir.addr, buf, 4)) |
| 5844 | return -1; |
| 5845 | ir.addr += 4; |
| 5846 | addr = extract_unsigned_integer (buf, 4, byte_order); |
| 5847 | } |
| 5848 | else |
| 5849 | { |
| 5850 | if (record_read_memory (gdbarch, ir.addr, buf, 2)) |
| 5851 | return -1; |
| 5852 | ir.addr += 2; |
| 5853 | addr = extract_unsigned_integer (buf, 2, byte_order); |
| 5854 | } |
| 5855 | if (record_full_arch_list_add_mem (addr, 1 << ir.ot)) |
| 5856 | return -1; |
| 5857 | } |
| 5858 | break; |
| 5859 | |
| 5860 | case 0xb0: /* mov R, Ib */ |
| 5861 | case 0xb1: |
| 5862 | case 0xb2: |
| 5863 | case 0xb3: |
| 5864 | case 0xb4: |
| 5865 | case 0xb5: |
| 5866 | case 0xb6: |
| 5867 | case 0xb7: |
| 5868 | I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5869 | ? ((opcode & 0x7) | ir.rex_b) |
| 5870 | : ((opcode & 0x7) & 0x3)); |
| 5871 | break; |
| 5872 | |
| 5873 | case 0xb8: /* mov R, Iv */ |
| 5874 | case 0xb9: |
| 5875 | case 0xba: |
| 5876 | case 0xbb: |
| 5877 | case 0xbc: |
| 5878 | case 0xbd: |
| 5879 | case 0xbe: |
| 5880 | case 0xbf: |
| 5881 | I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b); |
| 5882 | break; |
| 5883 | |
| 5884 | case 0x91: /* xchg R, EAX */ |
| 5885 | case 0x92: |
| 5886 | case 0x93: |
| 5887 | case 0x94: |
| 5888 | case 0x95: |
| 5889 | case 0x96: |
| 5890 | case 0x97: |
| 5891 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 5892 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7); |
| 5893 | break; |
| 5894 | |
| 5895 | case 0x86: /* xchg Ev, Gv */ |
| 5896 | case 0x87: |
| 5897 | if ((opcode & 1) == 0) |
| 5898 | ir.ot = OT_BYTE; |
| 5899 | else |
| 5900 | ir.ot = ir.dflag + OT_WORD; |
| 5901 | if (i386_record_modrm (&ir)) |
| 5902 | return -1; |
| 5903 | if (ir.mod == 3) |
| 5904 | { |
| 5905 | ir.rm |= ir.rex_b; |
| 5906 | if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5907 | ir.rm &= 0x3; |
| 5908 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm); |
| 5909 | } |
| 5910 | else |
| 5911 | { |
| 5912 | if (i386_record_lea_modrm (&ir)) |
| 5913 | return -1; |
| 5914 | } |
| 5915 | ir.reg |= rex_r; |
| 5916 | if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5917 | ir.reg &= 0x3; |
| 5918 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg); |
| 5919 | break; |
| 5920 | |
| 5921 | case 0xc4: /* les Gv */ |
| 5922 | case 0xc5: /* lds Gv */ |
| 5923 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5924 | { |
| 5925 | ir.addr -= 1; |
| 5926 | goto no_support; |
| 5927 | } |
| 5928 | /* FALLTHROUGH */ |
| 5929 | case 0x0fb2: /* lss Gv */ |
| 5930 | case 0x0fb4: /* lfs Gv */ |
| 5931 | case 0x0fb5: /* lgs Gv */ |
| 5932 | if (i386_record_modrm (&ir)) |
| 5933 | return -1; |
| 5934 | if (ir.mod == 3) |
| 5935 | { |
| 5936 | if (opcode > 0xff) |
| 5937 | ir.addr -= 3; |
| 5938 | else |
| 5939 | ir.addr -= 2; |
| 5940 | opcode = opcode << 8 | ir.modrm; |
| 5941 | goto no_support; |
| 5942 | } |
| 5943 | switch (opcode) |
| 5944 | { |
| 5945 | case 0xc4: /* les Gv */ |
| 5946 | regnum = X86_RECORD_ES_REGNUM; |
| 5947 | break; |
| 5948 | case 0xc5: /* lds Gv */ |
| 5949 | regnum = X86_RECORD_DS_REGNUM; |
| 5950 | break; |
| 5951 | case 0x0fb2: /* lss Gv */ |
| 5952 | regnum = X86_RECORD_SS_REGNUM; |
| 5953 | break; |
| 5954 | case 0x0fb4: /* lfs Gv */ |
| 5955 | regnum = X86_RECORD_FS_REGNUM; |
| 5956 | break; |
| 5957 | case 0x0fb5: /* lgs Gv */ |
| 5958 | regnum = X86_RECORD_GS_REGNUM; |
| 5959 | break; |
| 5960 | } |
| 5961 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum); |
| 5962 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r); |
| 5963 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5964 | break; |
| 5965 | |
| 5966 | case 0xc0: /* shifts */ |
| 5967 | case 0xc1: |
| 5968 | case 0xd0: |
| 5969 | case 0xd1: |
| 5970 | case 0xd2: |
| 5971 | case 0xd3: |
| 5972 | if ((opcode & 1) == 0) |
| 5973 | ir.ot = OT_BYTE; |
| 5974 | else |
| 5975 | ir.ot = ir.dflag + OT_WORD; |
| 5976 | if (i386_record_modrm (&ir)) |
| 5977 | return -1; |
| 5978 | if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3)) |
| 5979 | { |
| 5980 | if (i386_record_lea_modrm (&ir)) |
| 5981 | return -1; |
| 5982 | } |
| 5983 | else |
| 5984 | { |
| 5985 | ir.rm |= ir.rex_b; |
| 5986 | if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM]) |
| 5987 | ir.rm &= 0x3; |
| 5988 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm); |
| 5989 | } |
| 5990 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 5991 | break; |
| 5992 | |
| 5993 | case 0x0fa4: |
| 5994 | case 0x0fa5: |
| 5995 | case 0x0fac: |
| 5996 | case 0x0fad: |
| 5997 | if (i386_record_modrm (&ir)) |
| 5998 | return -1; |
| 5999 | if (ir.mod == 3) |
| 6000 | { |
| 6001 | if (record_full_arch_list_add_reg (ir.regcache, ir.rm)) |
| 6002 | return -1; |
| 6003 | } |
| 6004 | else |
| 6005 | { |
| 6006 | if (i386_record_lea_modrm (&ir)) |
| 6007 | return -1; |
| 6008 | } |
| 6009 | break; |
| 6010 | |
| 6011 | case 0xd8: /* Floats. */ |
| 6012 | case 0xd9: |
| 6013 | case 0xda: |
| 6014 | case 0xdb: |
| 6015 | case 0xdc: |
| 6016 | case 0xdd: |
| 6017 | case 0xde: |
| 6018 | case 0xdf: |
| 6019 | if (i386_record_modrm (&ir)) |
| 6020 | return -1; |
| 6021 | ir.reg |= ((opcode & 7) << 3); |
| 6022 | if (ir.mod != 3) |
| 6023 | { |
| 6024 | /* Memory. */ |
| 6025 | uint64_t addr64; |
| 6026 | |
| 6027 | if (i386_record_lea_modrm_addr (&ir, &addr64)) |
| 6028 | return -1; |
| 6029 | switch (ir.reg) |
| 6030 | { |
| 6031 | case 0x02: |
| 6032 | case 0x12: |
| 6033 | case 0x22: |
| 6034 | case 0x32: |
| 6035 | /* For fcom, ficom nothing to do. */ |
| 6036 | break; |
| 6037 | case 0x03: |
| 6038 | case 0x13: |
| 6039 | case 0x23: |
| 6040 | case 0x33: |
| 6041 | /* For fcomp, ficomp pop FPU stack, store all. */ |
| 6042 | if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS)) |
| 6043 | return -1; |
| 6044 | break; |
| 6045 | case 0x00: |
| 6046 | case 0x01: |
| 6047 | case 0x04: |
| 6048 | case 0x05: |
| 6049 | case 0x06: |
| 6050 | case 0x07: |
| 6051 | case 0x10: |
| 6052 | case 0x11: |
| 6053 | case 0x14: |
| 6054 | case 0x15: |
| 6055 | case 0x16: |
| 6056 | case 0x17: |
| 6057 | case 0x20: |
| 6058 | case 0x21: |
| 6059 | case 0x24: |
| 6060 | case 0x25: |
| 6061 | case 0x26: |
| 6062 | case 0x27: |
| 6063 | case 0x30: |
| 6064 | case 0x31: |
| 6065 | case 0x34: |
| 6066 | case 0x35: |
| 6067 | case 0x36: |
| 6068 | case 0x37: |
| 6069 | /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul, |
| 6070 | fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension |
| 6071 | of code, always affects st(0) register. */ |
| 6072 | if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep))) |
| 6073 | return -1; |
| 6074 | break; |
| 6075 | case 0x08: |
| 6076 | case 0x0a: |
| 6077 | case 0x0b: |
| 6078 | case 0x18: |
| 6079 | case 0x19: |
| 6080 | case 0x1a: |
| 6081 | case 0x1b: |
| 6082 | case 0x1d: |
| 6083 | case 0x28: |
| 6084 | case 0x29: |
| 6085 | case 0x2a: |
| 6086 | case 0x2b: |
| 6087 | case 0x38: |
| 6088 | case 0x39: |
| 6089 | case 0x3a: |
| 6090 | case 0x3b: |
| 6091 | case 0x3c: |
| 6092 | case 0x3d: |
| 6093 | switch (ir.reg & 7) |
| 6094 | { |
| 6095 | case 0: |
| 6096 | /* Handling fld, fild. */ |
| 6097 | if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS)) |
| 6098 | return -1; |
| 6099 | break; |
| 6100 | case 1: |
| 6101 | switch (ir.reg >> 4) |
| 6102 | { |
| 6103 | case 0: |
| 6104 | if (record_full_arch_list_add_mem (addr64, 4)) |
| 6105 | return -1; |
| 6106 | break; |
| 6107 | case 2: |
| 6108 | if (record_full_arch_list_add_mem (addr64, 8)) |
| 6109 | return -1; |
| 6110 | break; |
| 6111 | case 3: |
| 6112 | break; |
| 6113 | default: |
| 6114 | if (record_full_arch_list_add_mem (addr64, 2)) |
| 6115 | return -1; |
| 6116 | break; |
| 6117 | } |
| 6118 | break; |
| 6119 | default: |
| 6120 | switch (ir.reg >> 4) |
| 6121 | { |
| 6122 | case 0: |
| 6123 | if (record_full_arch_list_add_mem (addr64, 4)) |
| 6124 | return -1; |
| 6125 | if (3 == (ir.reg & 7)) |
| 6126 | { |
| 6127 | /* For fstp m32fp. */ |
| 6128 | if (i386_record_floats (gdbarch, &ir, |
| 6129 | I386_SAVE_FPU_REGS)) |
| 6130 | return -1; |
| 6131 | } |
| 6132 | break; |
| 6133 | case 1: |
| 6134 | if (record_full_arch_list_add_mem (addr64, 4)) |
| 6135 | return -1; |
| 6136 | if ((3 == (ir.reg & 7)) |
| 6137 | || (5 == (ir.reg & 7)) |
| 6138 | || (7 == (ir.reg & 7))) |
| 6139 | { |
| 6140 | /* For fstp insn. */ |
| 6141 | if (i386_record_floats (gdbarch, &ir, |
| 6142 | I386_SAVE_FPU_REGS)) |
| 6143 | return -1; |
| 6144 | } |
| 6145 | break; |
| 6146 | case 2: |
| 6147 | if (record_full_arch_list_add_mem (addr64, 8)) |
| 6148 | return -1; |
| 6149 | if (3 == (ir.reg & 7)) |
| 6150 | { |
| 6151 | /* For fstp m64fp. */ |
| 6152 | if (i386_record_floats (gdbarch, &ir, |
| 6153 | I386_SAVE_FPU_REGS)) |
| 6154 | return -1; |
| 6155 | } |
| 6156 | break; |
| 6157 | case 3: |
| 6158 | if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7))) |
| 6159 | { |
| 6160 | /* For fistp, fbld, fild, fbstp. */ |
| 6161 | if (i386_record_floats (gdbarch, &ir, |
| 6162 | I386_SAVE_FPU_REGS)) |
| 6163 | return -1; |
| 6164 | } |
| 6165 | /* Fall through */ |
| 6166 | default: |
| 6167 | if (record_full_arch_list_add_mem (addr64, 2)) |
| 6168 | return -1; |
| 6169 | break; |
| 6170 | } |
| 6171 | break; |
| 6172 | } |
| 6173 | break; |
| 6174 | case 0x0c: |
| 6175 | /* Insn fldenv. */ |
| 6176 | if (i386_record_floats (gdbarch, &ir, |
| 6177 | I386_SAVE_FPU_ENV_REG_STACK)) |
| 6178 | return -1; |
| 6179 | break; |
| 6180 | case 0x0d: |
| 6181 | /* Insn fldcw. */ |
| 6182 | if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep))) |
| 6183 | return -1; |
| 6184 | break; |
| 6185 | case 0x2c: |
| 6186 | /* Insn frstor. */ |
| 6187 | if (i386_record_floats (gdbarch, &ir, |
| 6188 | I386_SAVE_FPU_ENV_REG_STACK)) |
| 6189 | return -1; |
| 6190 | break; |
| 6191 | case 0x0e: |
| 6192 | if (ir.dflag) |
| 6193 | { |
| 6194 | if (record_full_arch_list_add_mem (addr64, 28)) |
| 6195 | return -1; |
| 6196 | } |
| 6197 | else |
| 6198 | { |
| 6199 | if (record_full_arch_list_add_mem (addr64, 14)) |
| 6200 | return -1; |
| 6201 | } |
| 6202 | break; |
| 6203 | case 0x0f: |
| 6204 | case 0x2f: |
| 6205 | if (record_full_arch_list_add_mem (addr64, 2)) |
| 6206 | return -1; |
| 6207 | /* Insn fstp, fbstp. */ |
| 6208 | if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS)) |
| 6209 | return -1; |
| 6210 | break; |
| 6211 | case 0x1f: |
| 6212 | case 0x3e: |
| 6213 | if (record_full_arch_list_add_mem (addr64, 10)) |
| 6214 | return -1; |
| 6215 | break; |
| 6216 | case 0x2e: |
| 6217 | if (ir.dflag) |
| 6218 | { |
| 6219 | if (record_full_arch_list_add_mem (addr64, 28)) |
| 6220 | return -1; |
| 6221 | addr64 += 28; |
| 6222 | } |
| 6223 | else |
| 6224 | { |
| 6225 | if (record_full_arch_list_add_mem (addr64, 14)) |
| 6226 | return -1; |
| 6227 | addr64 += 14; |
| 6228 | } |
| 6229 | if (record_full_arch_list_add_mem (addr64, 80)) |
| 6230 | return -1; |
| 6231 | /* Insn fsave. */ |
| 6232 | if (i386_record_floats (gdbarch, &ir, |
| 6233 | I386_SAVE_FPU_ENV_REG_STACK)) |
| 6234 | return -1; |
| 6235 | break; |
| 6236 | case 0x3f: |
| 6237 | if (record_full_arch_list_add_mem (addr64, 8)) |
| 6238 | return -1; |
| 6239 | /* Insn fistp. */ |
| 6240 | if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS)) |
| 6241 | return -1; |
| 6242 | break; |
| 6243 | default: |
| 6244 | ir.addr -= 2; |
| 6245 | opcode = opcode << 8 | ir.modrm; |
| 6246 | goto no_support; |
| 6247 | break; |
| 6248 | } |
| 6249 | } |
| 6250 | /* Opcode is an extension of modR/M byte. */ |
| 6251 | else |
| 6252 | { |
| 6253 | switch (opcode) |
| 6254 | { |
| 6255 | case 0xd8: |
| 6256 | if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep))) |
| 6257 | return -1; |
| 6258 | break; |
| 6259 | case 0xd9: |
| 6260 | if (0x0c == (ir.modrm >> 4)) |
| 6261 | { |
| 6262 | if ((ir.modrm & 0x0f) <= 7) |
| 6263 | { |
| 6264 | if (i386_record_floats (gdbarch, &ir, |
| 6265 | I386_SAVE_FPU_REGS)) |
| 6266 | return -1; |
| 6267 | } |
| 6268 | else |
| 6269 | { |
| 6270 | if (i386_record_floats (gdbarch, &ir, |
| 6271 | I387_ST0_REGNUM (tdep))) |
| 6272 | return -1; |
| 6273 | /* If only st(0) is changing, then we have already |
| 6274 | recorded. */ |
| 6275 | if ((ir.modrm & 0x0f) - 0x08) |
| 6276 | { |
| 6277 | if (i386_record_floats (gdbarch, &ir, |
| 6278 | I387_ST0_REGNUM (tdep) + |
| 6279 | ((ir.modrm & 0x0f) - 0x08))) |
| 6280 | return -1; |
| 6281 | } |
| 6282 | } |
| 6283 | } |
| 6284 | else |
| 6285 | { |
| 6286 | switch (ir.modrm) |
| 6287 | { |
| 6288 | case 0xe0: |
| 6289 | case 0xe1: |
| 6290 | case 0xf0: |
| 6291 | case 0xf5: |
| 6292 | case 0xf8: |
| 6293 | case 0xfa: |
| 6294 | case 0xfc: |
| 6295 | case 0xfe: |
| 6296 | case 0xff: |
| 6297 | if (i386_record_floats (gdbarch, &ir, |
| 6298 | I387_ST0_REGNUM (tdep))) |
| 6299 | return -1; |
| 6300 | break; |
| 6301 | case 0xf1: |
| 6302 | case 0xf2: |
| 6303 | case 0xf3: |
| 6304 | case 0xf4: |
| 6305 | case 0xf6: |
| 6306 | case 0xf7: |
| 6307 | case 0xe8: |
| 6308 | case 0xe9: |
| 6309 | case 0xea: |
| 6310 | case 0xeb: |
| 6311 | case 0xec: |
| 6312 | case 0xed: |
| 6313 | case 0xee: |
| 6314 | case 0xf9: |
| 6315 | case 0xfb: |
| 6316 | if (i386_record_floats (gdbarch, &ir, |
| 6317 | I386_SAVE_FPU_REGS)) |
| 6318 | return -1; |
| 6319 | break; |
| 6320 | case 0xfd: |
| 6321 | if (i386_record_floats (gdbarch, &ir, |
| 6322 | I387_ST0_REGNUM (tdep))) |
| 6323 | return -1; |
| 6324 | if (i386_record_floats (gdbarch, &ir, |
| 6325 | I387_ST0_REGNUM (tdep) + 1)) |
| 6326 | return -1; |
| 6327 | break; |
| 6328 | } |
| 6329 | } |
| 6330 | break; |
| 6331 | case 0xda: |
| 6332 | if (0xe9 == ir.modrm) |
| 6333 | { |
| 6334 | if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS)) |
| 6335 | return -1; |
| 6336 | } |
| 6337 | else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4)) |
| 6338 | { |
| 6339 | if (i386_record_floats (gdbarch, &ir, |
| 6340 | I387_ST0_REGNUM (tdep))) |
| 6341 | return -1; |
| 6342 | if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7)) |
| 6343 | { |
| 6344 | if (i386_record_floats (gdbarch, &ir, |
| 6345 | I387_ST0_REGNUM (tdep) + |
| 6346 | (ir.modrm & 0x0f))) |
| 6347 | return -1; |
| 6348 | } |
| 6349 | else if ((ir.modrm & 0x0f) - 0x08) |
| 6350 | { |
| 6351 | if (i386_record_floats (gdbarch, &ir, |
| 6352 | I387_ST0_REGNUM (tdep) + |
| 6353 | ((ir.modrm & 0x0f) - 0x08))) |
| 6354 | return -1; |
| 6355 | } |
| 6356 | } |
| 6357 | break; |
| 6358 | case 0xdb: |
| 6359 | if (0xe3 == ir.modrm) |
| 6360 | { |
| 6361 | if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV)) |
| 6362 | return -1; |
| 6363 | } |
| 6364 | else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4)) |
| 6365 | { |
| 6366 | if (i386_record_floats (gdbarch, &ir, |
| 6367 | I387_ST0_REGNUM (tdep))) |
| 6368 | return -1; |
| 6369 | if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7)) |
| 6370 | { |
| 6371 | if (i386_record_floats (gdbarch, &ir, |
| 6372 | I387_ST0_REGNUM (tdep) + |
| 6373 | (ir.modrm & 0x0f))) |
| 6374 | return -1; |
| 6375 | } |
| 6376 | else if ((ir.modrm & 0x0f) - 0x08) |
| 6377 | { |
| 6378 | if (i386_record_floats (gdbarch, &ir, |
| 6379 | I387_ST0_REGNUM (tdep) + |
| 6380 | ((ir.modrm & 0x0f) - 0x08))) |
| 6381 | return -1; |
| 6382 | } |
| 6383 | } |
| 6384 | break; |
| 6385 | case 0xdc: |
| 6386 | if ((0x0c == ir.modrm >> 4) |
| 6387 | || (0x0d == ir.modrm >> 4) |
| 6388 | || (0x0f == ir.modrm >> 4)) |
| 6389 | { |
| 6390 | if ((ir.modrm & 0x0f) <= 7) |
| 6391 | { |
| 6392 | if (i386_record_floats (gdbarch, &ir, |
| 6393 | I387_ST0_REGNUM (tdep) + |
| 6394 | (ir.modrm & 0x0f))) |
| 6395 | return -1; |
| 6396 | } |
| 6397 | else |
| 6398 | { |
| 6399 | if (i386_record_floats (gdbarch, &ir, |
| 6400 | I387_ST0_REGNUM (tdep) + |
| 6401 | ((ir.modrm & 0x0f) - 0x08))) |
| 6402 | return -1; |
| 6403 | } |
| 6404 | } |
| 6405 | break; |
| 6406 | case 0xdd: |
| 6407 | if (0x0c == ir.modrm >> 4) |
| 6408 | { |
| 6409 | if (i386_record_floats (gdbarch, &ir, |
| 6410 | I387_FTAG_REGNUM (tdep))) |
| 6411 | return -1; |
| 6412 | } |
| 6413 | else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4)) |
| 6414 | { |
| 6415 | if ((ir.modrm & 0x0f) <= 7) |
| 6416 | { |
| 6417 | if (i386_record_floats (gdbarch, &ir, |
| 6418 | I387_ST0_REGNUM (tdep) + |
| 6419 | (ir.modrm & 0x0f))) |
| 6420 | return -1; |
| 6421 | } |
| 6422 | else |
| 6423 | { |
| 6424 | if (i386_record_floats (gdbarch, &ir, |
| 6425 | I386_SAVE_FPU_REGS)) |
| 6426 | return -1; |
| 6427 | } |
| 6428 | } |
| 6429 | break; |
| 6430 | case 0xde: |
| 6431 | if ((0x0c == ir.modrm >> 4) |
| 6432 | || (0x0e == ir.modrm >> 4) |
| 6433 | || (0x0f == ir.modrm >> 4) |
| 6434 | || (0xd9 == ir.modrm)) |
| 6435 | { |
| 6436 | if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS)) |
| 6437 | return -1; |
| 6438 | } |
| 6439 | break; |
| 6440 | case 0xdf: |
| 6441 | if (0xe0 == ir.modrm) |
| 6442 | { |
| 6443 | if (record_full_arch_list_add_reg (ir.regcache, |
| 6444 | I386_EAX_REGNUM)) |
| 6445 | return -1; |
| 6446 | } |
| 6447 | else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4)) |
| 6448 | { |
| 6449 | if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS)) |
| 6450 | return -1; |
| 6451 | } |
| 6452 | break; |
| 6453 | } |
| 6454 | } |
| 6455 | break; |
| 6456 | /* string ops */ |
| 6457 | case 0xa4: /* movsS */ |
| 6458 | case 0xa5: |
| 6459 | case 0xaa: /* stosS */ |
| 6460 | case 0xab: |
| 6461 | case 0x6c: /* insS */ |
| 6462 | case 0x6d: |
| 6463 | regcache_raw_read_unsigned (ir.regcache, |
| 6464 | ir.regmap[X86_RECORD_RECX_REGNUM], |
| 6465 | &addr); |
| 6466 | if (addr) |
| 6467 | { |
| 6468 | ULONGEST es, ds; |
| 6469 | |
| 6470 | if ((opcode & 1) == 0) |
| 6471 | ir.ot = OT_BYTE; |
| 6472 | else |
| 6473 | ir.ot = ir.dflag + OT_WORD; |
| 6474 | regcache_raw_read_unsigned (ir.regcache, |
| 6475 | ir.regmap[X86_RECORD_REDI_REGNUM], |
| 6476 | &addr); |
| 6477 | |
| 6478 | regcache_raw_read_unsigned (ir.regcache, |
| 6479 | ir.regmap[X86_RECORD_ES_REGNUM], |
| 6480 | &es); |
| 6481 | regcache_raw_read_unsigned (ir.regcache, |
| 6482 | ir.regmap[X86_RECORD_DS_REGNUM], |
| 6483 | &ds); |
| 6484 | if (ir.aflag && (es != ds)) |
| 6485 | { |
| 6486 | /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */ |
| 6487 | if (record_full_memory_query) |
| 6488 | { |
| 6489 | if (yquery (_("\ |
| 6490 | Process record ignores the memory change of instruction at address %s\n\ |
| 6491 | because it can't get the value of the segment register.\n\ |
| 6492 | Do you want to stop the program?"), |
| 6493 | paddress (gdbarch, ir.orig_addr))) |
| 6494 | return -1; |
| 6495 | } |
| 6496 | } |
| 6497 | else |
| 6498 | { |
| 6499 | if (record_full_arch_list_add_mem (addr, 1 << ir.ot)) |
| 6500 | return -1; |
| 6501 | } |
| 6502 | |
| 6503 | if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ)) |
| 6504 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM); |
| 6505 | if (opcode == 0xa4 || opcode == 0xa5) |
| 6506 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM); |
| 6507 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM); |
| 6508 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6509 | } |
| 6510 | break; |
| 6511 | |
| 6512 | case 0xa6: /* cmpsS */ |
| 6513 | case 0xa7: |
| 6514 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM); |
| 6515 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM); |
| 6516 | if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ)) |
| 6517 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM); |
| 6518 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6519 | break; |
| 6520 | |
| 6521 | case 0xac: /* lodsS */ |
| 6522 | case 0xad: |
| 6523 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 6524 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM); |
| 6525 | if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ)) |
| 6526 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM); |
| 6527 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6528 | break; |
| 6529 | |
| 6530 | case 0xae: /* scasS */ |
| 6531 | case 0xaf: |
| 6532 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM); |
| 6533 | if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ)) |
| 6534 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM); |
| 6535 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6536 | break; |
| 6537 | |
| 6538 | case 0x6e: /* outsS */ |
| 6539 | case 0x6f: |
| 6540 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM); |
| 6541 | if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ)) |
| 6542 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM); |
| 6543 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6544 | break; |
| 6545 | |
| 6546 | case 0xe4: /* port I/O */ |
| 6547 | case 0xe5: |
| 6548 | case 0xec: |
| 6549 | case 0xed: |
| 6550 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6551 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 6552 | break; |
| 6553 | |
| 6554 | case 0xe6: |
| 6555 | case 0xe7: |
| 6556 | case 0xee: |
| 6557 | case 0xef: |
| 6558 | break; |
| 6559 | |
| 6560 | /* control */ |
| 6561 | case 0xc2: /* ret im */ |
| 6562 | case 0xc3: /* ret */ |
| 6563 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM); |
| 6564 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6565 | break; |
| 6566 | |
| 6567 | case 0xca: /* lret im */ |
| 6568 | case 0xcb: /* lret */ |
| 6569 | case 0xcf: /* iret */ |
| 6570 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM); |
| 6571 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM); |
| 6572 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6573 | break; |
| 6574 | |
| 6575 | case 0xe8: /* call im */ |
| 6576 | if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag) |
| 6577 | ir.dflag = 2; |
| 6578 | if (i386_record_push (&ir, 1 << (ir.dflag + 1))) |
| 6579 | return -1; |
| 6580 | break; |
| 6581 | |
| 6582 | case 0x9a: /* lcall im */ |
| 6583 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 6584 | { |
| 6585 | ir.addr -= 1; |
| 6586 | goto no_support; |
| 6587 | } |
| 6588 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM); |
| 6589 | if (i386_record_push (&ir, 1 << (ir.dflag + 1))) |
| 6590 | return -1; |
| 6591 | break; |
| 6592 | |
| 6593 | case 0xe9: /* jmp im */ |
| 6594 | case 0xea: /* ljmp im */ |
| 6595 | case 0xeb: /* jmp Jb */ |
| 6596 | case 0x70: /* jcc Jb */ |
| 6597 | case 0x71: |
| 6598 | case 0x72: |
| 6599 | case 0x73: |
| 6600 | case 0x74: |
| 6601 | case 0x75: |
| 6602 | case 0x76: |
| 6603 | case 0x77: |
| 6604 | case 0x78: |
| 6605 | case 0x79: |
| 6606 | case 0x7a: |
| 6607 | case 0x7b: |
| 6608 | case 0x7c: |
| 6609 | case 0x7d: |
| 6610 | case 0x7e: |
| 6611 | case 0x7f: |
| 6612 | case 0x0f80: /* jcc Jv */ |
| 6613 | case 0x0f81: |
| 6614 | case 0x0f82: |
| 6615 | case 0x0f83: |
| 6616 | case 0x0f84: |
| 6617 | case 0x0f85: |
| 6618 | case 0x0f86: |
| 6619 | case 0x0f87: |
| 6620 | case 0x0f88: |
| 6621 | case 0x0f89: |
| 6622 | case 0x0f8a: |
| 6623 | case 0x0f8b: |
| 6624 | case 0x0f8c: |
| 6625 | case 0x0f8d: |
| 6626 | case 0x0f8e: |
| 6627 | case 0x0f8f: |
| 6628 | break; |
| 6629 | |
| 6630 | case 0x0f90: /* setcc Gv */ |
| 6631 | case 0x0f91: |
| 6632 | case 0x0f92: |
| 6633 | case 0x0f93: |
| 6634 | case 0x0f94: |
| 6635 | case 0x0f95: |
| 6636 | case 0x0f96: |
| 6637 | case 0x0f97: |
| 6638 | case 0x0f98: |
| 6639 | case 0x0f99: |
| 6640 | case 0x0f9a: |
| 6641 | case 0x0f9b: |
| 6642 | case 0x0f9c: |
| 6643 | case 0x0f9d: |
| 6644 | case 0x0f9e: |
| 6645 | case 0x0f9f: |
| 6646 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6647 | ir.ot = OT_BYTE; |
| 6648 | if (i386_record_modrm (&ir)) |
| 6649 | return -1; |
| 6650 | if (ir.mod == 3) |
| 6651 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b) |
| 6652 | : (ir.rm & 0x3)); |
| 6653 | else |
| 6654 | { |
| 6655 | if (i386_record_lea_modrm (&ir)) |
| 6656 | return -1; |
| 6657 | } |
| 6658 | break; |
| 6659 | |
| 6660 | case 0x0f40: /* cmov Gv, Ev */ |
| 6661 | case 0x0f41: |
| 6662 | case 0x0f42: |
| 6663 | case 0x0f43: |
| 6664 | case 0x0f44: |
| 6665 | case 0x0f45: |
| 6666 | case 0x0f46: |
| 6667 | case 0x0f47: |
| 6668 | case 0x0f48: |
| 6669 | case 0x0f49: |
| 6670 | case 0x0f4a: |
| 6671 | case 0x0f4b: |
| 6672 | case 0x0f4c: |
| 6673 | case 0x0f4d: |
| 6674 | case 0x0f4e: |
| 6675 | case 0x0f4f: |
| 6676 | if (i386_record_modrm (&ir)) |
| 6677 | return -1; |
| 6678 | ir.reg |= rex_r; |
| 6679 | if (ir.dflag == OT_BYTE) |
| 6680 | ir.reg &= 0x3; |
| 6681 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg); |
| 6682 | break; |
| 6683 | |
| 6684 | /* flags */ |
| 6685 | case 0x9c: /* pushf */ |
| 6686 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6687 | if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag) |
| 6688 | ir.dflag = 2; |
| 6689 | if (i386_record_push (&ir, 1 << (ir.dflag + 1))) |
| 6690 | return -1; |
| 6691 | break; |
| 6692 | |
| 6693 | case 0x9d: /* popf */ |
| 6694 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM); |
| 6695 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6696 | break; |
| 6697 | |
| 6698 | case 0x9e: /* sahf */ |
| 6699 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 6700 | { |
| 6701 | ir.addr -= 1; |
| 6702 | goto no_support; |
| 6703 | } |
| 6704 | /* FALLTHROUGH */ |
| 6705 | case 0xf5: /* cmc */ |
| 6706 | case 0xf8: /* clc */ |
| 6707 | case 0xf9: /* stc */ |
| 6708 | case 0xfc: /* cld */ |
| 6709 | case 0xfd: /* std */ |
| 6710 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6711 | break; |
| 6712 | |
| 6713 | case 0x9f: /* lahf */ |
| 6714 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 6715 | { |
| 6716 | ir.addr -= 1; |
| 6717 | goto no_support; |
| 6718 | } |
| 6719 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6720 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 6721 | break; |
| 6722 | |
| 6723 | /* bit operations */ |
| 6724 | case 0x0fba: /* bt/bts/btr/btc Gv, im */ |
| 6725 | ir.ot = ir.dflag + OT_WORD; |
| 6726 | if (i386_record_modrm (&ir)) |
| 6727 | return -1; |
| 6728 | if (ir.reg < 4) |
| 6729 | { |
| 6730 | ir.addr -= 2; |
| 6731 | opcode = opcode << 8 | ir.modrm; |
| 6732 | goto no_support; |
| 6733 | } |
| 6734 | if (ir.reg != 4) |
| 6735 | { |
| 6736 | if (ir.mod == 3) |
| 6737 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b); |
| 6738 | else |
| 6739 | { |
| 6740 | if (i386_record_lea_modrm (&ir)) |
| 6741 | return -1; |
| 6742 | } |
| 6743 | } |
| 6744 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6745 | break; |
| 6746 | |
| 6747 | case 0x0fa3: /* bt Gv, Ev */ |
| 6748 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6749 | break; |
| 6750 | |
| 6751 | case 0x0fab: /* bts */ |
| 6752 | case 0x0fb3: /* btr */ |
| 6753 | case 0x0fbb: /* btc */ |
| 6754 | ir.ot = ir.dflag + OT_WORD; |
| 6755 | if (i386_record_modrm (&ir)) |
| 6756 | return -1; |
| 6757 | if (ir.mod == 3) |
| 6758 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b); |
| 6759 | else |
| 6760 | { |
| 6761 | uint64_t addr64; |
| 6762 | if (i386_record_lea_modrm_addr (&ir, &addr64)) |
| 6763 | return -1; |
| 6764 | regcache_raw_read_unsigned (ir.regcache, |
| 6765 | ir.regmap[ir.reg | rex_r], |
| 6766 | &addr); |
| 6767 | switch (ir.dflag) |
| 6768 | { |
| 6769 | case 0: |
| 6770 | addr64 += ((int16_t) addr >> 4) << 4; |
| 6771 | break; |
| 6772 | case 1: |
| 6773 | addr64 += ((int32_t) addr >> 5) << 5; |
| 6774 | break; |
| 6775 | case 2: |
| 6776 | addr64 += ((int64_t) addr >> 6) << 6; |
| 6777 | break; |
| 6778 | } |
| 6779 | if (record_full_arch_list_add_mem (addr64, 1 << ir.ot)) |
| 6780 | return -1; |
| 6781 | if (i386_record_lea_modrm (&ir)) |
| 6782 | return -1; |
| 6783 | } |
| 6784 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6785 | break; |
| 6786 | |
| 6787 | case 0x0fbc: /* bsf */ |
| 6788 | case 0x0fbd: /* bsr */ |
| 6789 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r); |
| 6790 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6791 | break; |
| 6792 | |
| 6793 | /* bcd */ |
| 6794 | case 0x27: /* daa */ |
| 6795 | case 0x2f: /* das */ |
| 6796 | case 0x37: /* aaa */ |
| 6797 | case 0x3f: /* aas */ |
| 6798 | case 0xd4: /* aam */ |
| 6799 | case 0xd5: /* aad */ |
| 6800 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 6801 | { |
| 6802 | ir.addr -= 1; |
| 6803 | goto no_support; |
| 6804 | } |
| 6805 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 6806 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6807 | break; |
| 6808 | |
| 6809 | /* misc */ |
| 6810 | case 0x90: /* nop */ |
| 6811 | if (prefixes & PREFIX_LOCK) |
| 6812 | { |
| 6813 | ir.addr -= 1; |
| 6814 | goto no_support; |
| 6815 | } |
| 6816 | break; |
| 6817 | |
| 6818 | case 0x9b: /* fwait */ |
| 6819 | if (record_read_memory (gdbarch, ir.addr, &opcode8, 1)) |
| 6820 | return -1; |
| 6821 | opcode = (uint32_t) opcode8; |
| 6822 | ir.addr++; |
| 6823 | goto reswitch; |
| 6824 | break; |
| 6825 | |
| 6826 | /* XXX */ |
| 6827 | case 0xcc: /* int3 */ |
| 6828 | printf_unfiltered (_("Process record does not support instruction " |
| 6829 | "int3.\n")); |
| 6830 | ir.addr -= 1; |
| 6831 | goto no_support; |
| 6832 | break; |
| 6833 | |
| 6834 | /* XXX */ |
| 6835 | case 0xcd: /* int */ |
| 6836 | { |
| 6837 | int ret; |
| 6838 | uint8_t interrupt; |
| 6839 | if (record_read_memory (gdbarch, ir.addr, &interrupt, 1)) |
| 6840 | return -1; |
| 6841 | ir.addr++; |
| 6842 | if (interrupt != 0x80 |
| 6843 | || tdep->i386_intx80_record == NULL) |
| 6844 | { |
| 6845 | printf_unfiltered (_("Process record does not support " |
| 6846 | "instruction int 0x%02x.\n"), |
| 6847 | interrupt); |
| 6848 | ir.addr -= 2; |
| 6849 | goto no_support; |
| 6850 | } |
| 6851 | ret = tdep->i386_intx80_record (ir.regcache); |
| 6852 | if (ret) |
| 6853 | return ret; |
| 6854 | } |
| 6855 | break; |
| 6856 | |
| 6857 | /* XXX */ |
| 6858 | case 0xce: /* into */ |
| 6859 | printf_unfiltered (_("Process record does not support " |
| 6860 | "instruction into.\n")); |
| 6861 | ir.addr -= 1; |
| 6862 | goto no_support; |
| 6863 | break; |
| 6864 | |
| 6865 | case 0xfa: /* cli */ |
| 6866 | case 0xfb: /* sti */ |
| 6867 | break; |
| 6868 | |
| 6869 | case 0x62: /* bound */ |
| 6870 | printf_unfiltered (_("Process record does not support " |
| 6871 | "instruction bound.\n")); |
| 6872 | ir.addr -= 1; |
| 6873 | goto no_support; |
| 6874 | break; |
| 6875 | |
| 6876 | case 0x0fc8: /* bswap reg */ |
| 6877 | case 0x0fc9: |
| 6878 | case 0x0fca: |
| 6879 | case 0x0fcb: |
| 6880 | case 0x0fcc: |
| 6881 | case 0x0fcd: |
| 6882 | case 0x0fce: |
| 6883 | case 0x0fcf: |
| 6884 | I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b); |
| 6885 | break; |
| 6886 | |
| 6887 | case 0xd6: /* salc */ |
| 6888 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 6889 | { |
| 6890 | ir.addr -= 1; |
| 6891 | goto no_support; |
| 6892 | } |
| 6893 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 6894 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6895 | break; |
| 6896 | |
| 6897 | case 0xe0: /* loopnz */ |
| 6898 | case 0xe1: /* loopz */ |
| 6899 | case 0xe2: /* loop */ |
| 6900 | case 0xe3: /* jecxz */ |
| 6901 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM); |
| 6902 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 6903 | break; |
| 6904 | |
| 6905 | case 0x0f30: /* wrmsr */ |
| 6906 | printf_unfiltered (_("Process record does not support " |
| 6907 | "instruction wrmsr.\n")); |
| 6908 | ir.addr -= 2; |
| 6909 | goto no_support; |
| 6910 | break; |
| 6911 | |
| 6912 | case 0x0f32: /* rdmsr */ |
| 6913 | printf_unfiltered (_("Process record does not support " |
| 6914 | "instruction rdmsr.\n")); |
| 6915 | ir.addr -= 2; |
| 6916 | goto no_support; |
| 6917 | break; |
| 6918 | |
| 6919 | case 0x0f31: /* rdtsc */ |
| 6920 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 6921 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM); |
| 6922 | break; |
| 6923 | |
| 6924 | case 0x0f34: /* sysenter */ |
| 6925 | { |
| 6926 | int ret; |
| 6927 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 6928 | { |
| 6929 | ir.addr -= 2; |
| 6930 | goto no_support; |
| 6931 | } |
| 6932 | if (tdep->i386_sysenter_record == NULL) |
| 6933 | { |
| 6934 | printf_unfiltered (_("Process record does not support " |
| 6935 | "instruction sysenter.\n")); |
| 6936 | ir.addr -= 2; |
| 6937 | goto no_support; |
| 6938 | } |
| 6939 | ret = tdep->i386_sysenter_record (ir.regcache); |
| 6940 | if (ret) |
| 6941 | return ret; |
| 6942 | } |
| 6943 | break; |
| 6944 | |
| 6945 | case 0x0f35: /* sysexit */ |
| 6946 | printf_unfiltered (_("Process record does not support " |
| 6947 | "instruction sysexit.\n")); |
| 6948 | ir.addr -= 2; |
| 6949 | goto no_support; |
| 6950 | break; |
| 6951 | |
| 6952 | case 0x0f05: /* syscall */ |
| 6953 | { |
| 6954 | int ret; |
| 6955 | if (tdep->i386_syscall_record == NULL) |
| 6956 | { |
| 6957 | printf_unfiltered (_("Process record does not support " |
| 6958 | "instruction syscall.\n")); |
| 6959 | ir.addr -= 2; |
| 6960 | goto no_support; |
| 6961 | } |
| 6962 | ret = tdep->i386_syscall_record (ir.regcache); |
| 6963 | if (ret) |
| 6964 | return ret; |
| 6965 | } |
| 6966 | break; |
| 6967 | |
| 6968 | case 0x0f07: /* sysret */ |
| 6969 | printf_unfiltered (_("Process record does not support " |
| 6970 | "instruction sysret.\n")); |
| 6971 | ir.addr -= 2; |
| 6972 | goto no_support; |
| 6973 | break; |
| 6974 | |
| 6975 | case 0x0fa2: /* cpuid */ |
| 6976 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 6977 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM); |
| 6978 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM); |
| 6979 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM); |
| 6980 | break; |
| 6981 | |
| 6982 | case 0xf4: /* hlt */ |
| 6983 | printf_unfiltered (_("Process record does not support " |
| 6984 | "instruction hlt.\n")); |
| 6985 | ir.addr -= 1; |
| 6986 | goto no_support; |
| 6987 | break; |
| 6988 | |
| 6989 | case 0x0f00: |
| 6990 | if (i386_record_modrm (&ir)) |
| 6991 | return -1; |
| 6992 | switch (ir.reg) |
| 6993 | { |
| 6994 | case 0: /* sldt */ |
| 6995 | case 1: /* str */ |
| 6996 | if (ir.mod == 3) |
| 6997 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b); |
| 6998 | else |
| 6999 | { |
| 7000 | ir.ot = OT_WORD; |
| 7001 | if (i386_record_lea_modrm (&ir)) |
| 7002 | return -1; |
| 7003 | } |
| 7004 | break; |
| 7005 | case 2: /* lldt */ |
| 7006 | case 3: /* ltr */ |
| 7007 | break; |
| 7008 | case 4: /* verr */ |
| 7009 | case 5: /* verw */ |
| 7010 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 7011 | break; |
| 7012 | default: |
| 7013 | ir.addr -= 3; |
| 7014 | opcode = opcode << 8 | ir.modrm; |
| 7015 | goto no_support; |
| 7016 | break; |
| 7017 | } |
| 7018 | break; |
| 7019 | |
| 7020 | case 0x0f01: |
| 7021 | if (i386_record_modrm (&ir)) |
| 7022 | return -1; |
| 7023 | switch (ir.reg) |
| 7024 | { |
| 7025 | case 0: /* sgdt */ |
| 7026 | { |
| 7027 | uint64_t addr64; |
| 7028 | |
| 7029 | if (ir.mod == 3) |
| 7030 | { |
| 7031 | ir.addr -= 3; |
| 7032 | opcode = opcode << 8 | ir.modrm; |
| 7033 | goto no_support; |
| 7034 | } |
| 7035 | if (ir.override >= 0) |
| 7036 | { |
| 7037 | if (record_full_memory_query) |
| 7038 | { |
| 7039 | if (yquery (_("\ |
| 7040 | Process record ignores the memory change of instruction at address %s\n\ |
| 7041 | because it can't get the value of the segment register.\n\ |
| 7042 | Do you want to stop the program?"), |
| 7043 | paddress (gdbarch, ir.orig_addr))) |
| 7044 | return -1; |
| 7045 | } |
| 7046 | } |
| 7047 | else |
| 7048 | { |
| 7049 | if (i386_record_lea_modrm_addr (&ir, &addr64)) |
| 7050 | return -1; |
| 7051 | if (record_full_arch_list_add_mem (addr64, 2)) |
| 7052 | return -1; |
| 7053 | addr64 += 2; |
| 7054 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 7055 | { |
| 7056 | if (record_full_arch_list_add_mem (addr64, 8)) |
| 7057 | return -1; |
| 7058 | } |
| 7059 | else |
| 7060 | { |
| 7061 | if (record_full_arch_list_add_mem (addr64, 4)) |
| 7062 | return -1; |
| 7063 | } |
| 7064 | } |
| 7065 | } |
| 7066 | break; |
| 7067 | case 1: |
| 7068 | if (ir.mod == 3) |
| 7069 | { |
| 7070 | switch (ir.rm) |
| 7071 | { |
| 7072 | case 0: /* monitor */ |
| 7073 | break; |
| 7074 | case 1: /* mwait */ |
| 7075 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 7076 | break; |
| 7077 | default: |
| 7078 | ir.addr -= 3; |
| 7079 | opcode = opcode << 8 | ir.modrm; |
| 7080 | goto no_support; |
| 7081 | break; |
| 7082 | } |
| 7083 | } |
| 7084 | else |
| 7085 | { |
| 7086 | /* sidt */ |
| 7087 | if (ir.override >= 0) |
| 7088 | { |
| 7089 | if (record_full_memory_query) |
| 7090 | { |
| 7091 | if (yquery (_("\ |
| 7092 | Process record ignores the memory change of instruction at address %s\n\ |
| 7093 | because it can't get the value of the segment register.\n\ |
| 7094 | Do you want to stop the program?"), |
| 7095 | paddress (gdbarch, ir.orig_addr))) |
| 7096 | return -1; |
| 7097 | } |
| 7098 | } |
| 7099 | else |
| 7100 | { |
| 7101 | uint64_t addr64; |
| 7102 | |
| 7103 | if (i386_record_lea_modrm_addr (&ir, &addr64)) |
| 7104 | return -1; |
| 7105 | if (record_full_arch_list_add_mem (addr64, 2)) |
| 7106 | return -1; |
| 7107 | addr64 += 2; |
| 7108 | if (ir.regmap[X86_RECORD_R8_REGNUM]) |
| 7109 | { |
| 7110 | if (record_full_arch_list_add_mem (addr64, 8)) |
| 7111 | return -1; |
| 7112 | } |
| 7113 | else |
| 7114 | { |
| 7115 | if (record_full_arch_list_add_mem (addr64, 4)) |
| 7116 | return -1; |
| 7117 | } |
| 7118 | } |
| 7119 | } |
| 7120 | break; |
| 7121 | case 2: /* lgdt */ |
| 7122 | if (ir.mod == 3) |
| 7123 | { |
| 7124 | /* xgetbv */ |
| 7125 | if (ir.rm == 0) |
| 7126 | { |
| 7127 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 7128 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM); |
| 7129 | break; |
| 7130 | } |
| 7131 | /* xsetbv */ |
| 7132 | else if (ir.rm == 1) |
| 7133 | break; |
| 7134 | } |
| 7135 | /* Fall through. */ |
| 7136 | case 3: /* lidt */ |
| 7137 | if (ir.mod == 3) |
| 7138 | { |
| 7139 | ir.addr -= 3; |
| 7140 | opcode = opcode << 8 | ir.modrm; |
| 7141 | goto no_support; |
| 7142 | } |
| 7143 | break; |
| 7144 | case 4: /* smsw */ |
| 7145 | if (ir.mod == 3) |
| 7146 | { |
| 7147 | if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b)) |
| 7148 | return -1; |
| 7149 | } |
| 7150 | else |
| 7151 | { |
| 7152 | ir.ot = OT_WORD; |
| 7153 | if (i386_record_lea_modrm (&ir)) |
| 7154 | return -1; |
| 7155 | } |
| 7156 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 7157 | break; |
| 7158 | case 6: /* lmsw */ |
| 7159 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 7160 | break; |
| 7161 | case 7: /* invlpg */ |
| 7162 | if (ir.mod == 3) |
| 7163 | { |
| 7164 | if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM]) |
| 7165 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM); |
| 7166 | else |
| 7167 | { |
| 7168 | ir.addr -= 3; |
| 7169 | opcode = opcode << 8 | ir.modrm; |
| 7170 | goto no_support; |
| 7171 | } |
| 7172 | } |
| 7173 | else |
| 7174 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 7175 | break; |
| 7176 | default: |
| 7177 | ir.addr -= 3; |
| 7178 | opcode = opcode << 8 | ir.modrm; |
| 7179 | goto no_support; |
| 7180 | break; |
| 7181 | } |
| 7182 | break; |
| 7183 | |
| 7184 | case 0x0f08: /* invd */ |
| 7185 | case 0x0f09: /* wbinvd */ |
| 7186 | break; |
| 7187 | |
| 7188 | case 0x63: /* arpl */ |
| 7189 | if (i386_record_modrm (&ir)) |
| 7190 | return -1; |
| 7191 | if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM]) |
| 7192 | { |
| 7193 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM] |
| 7194 | ? (ir.reg | rex_r) : ir.rm); |
| 7195 | } |
| 7196 | else |
| 7197 | { |
| 7198 | ir.ot = ir.dflag ? OT_LONG : OT_WORD; |
| 7199 | if (i386_record_lea_modrm (&ir)) |
| 7200 | return -1; |
| 7201 | } |
| 7202 | if (!ir.regmap[X86_RECORD_R8_REGNUM]) |
| 7203 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 7204 | break; |
| 7205 | |
| 7206 | case 0x0f02: /* lar */ |
| 7207 | case 0x0f03: /* lsl */ |
| 7208 | if (i386_record_modrm (&ir)) |
| 7209 | return -1; |
| 7210 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r); |
| 7211 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 7212 | break; |
| 7213 | |
| 7214 | case 0x0f18: |
| 7215 | if (i386_record_modrm (&ir)) |
| 7216 | return -1; |
| 7217 | if (ir.mod == 3 && ir.reg == 3) |
| 7218 | { |
| 7219 | ir.addr -= 3; |
| 7220 | opcode = opcode << 8 | ir.modrm; |
| 7221 | goto no_support; |
| 7222 | } |
| 7223 | break; |
| 7224 | |
| 7225 | case 0x0f19: |
| 7226 | case 0x0f1a: |
| 7227 | case 0x0f1b: |
| 7228 | case 0x0f1c: |
| 7229 | case 0x0f1d: |
| 7230 | case 0x0f1e: |
| 7231 | case 0x0f1f: |
| 7232 | /* nop (multi byte) */ |
| 7233 | break; |
| 7234 | |
| 7235 | case 0x0f20: /* mov reg, crN */ |
| 7236 | case 0x0f22: /* mov crN, reg */ |
| 7237 | if (i386_record_modrm (&ir)) |
| 7238 | return -1; |
| 7239 | if ((ir.modrm & 0xc0) != 0xc0) |
| 7240 | { |
| 7241 | ir.addr -= 3; |
| 7242 | opcode = opcode << 8 | ir.modrm; |
| 7243 | goto no_support; |
| 7244 | } |
| 7245 | switch (ir.reg) |
| 7246 | { |
| 7247 | case 0: |
| 7248 | case 2: |
| 7249 | case 3: |
| 7250 | case 4: |
| 7251 | case 8: |
| 7252 | if (opcode & 2) |
| 7253 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 7254 | else |
| 7255 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b); |
| 7256 | break; |
| 7257 | default: |
| 7258 | ir.addr -= 3; |
| 7259 | opcode = opcode << 8 | ir.modrm; |
| 7260 | goto no_support; |
| 7261 | break; |
| 7262 | } |
| 7263 | break; |
| 7264 | |
| 7265 | case 0x0f21: /* mov reg, drN */ |
| 7266 | case 0x0f23: /* mov drN, reg */ |
| 7267 | if (i386_record_modrm (&ir)) |
| 7268 | return -1; |
| 7269 | if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4 |
| 7270 | || ir.reg == 5 || ir.reg >= 8) |
| 7271 | { |
| 7272 | ir.addr -= 3; |
| 7273 | opcode = opcode << 8 | ir.modrm; |
| 7274 | goto no_support; |
| 7275 | } |
| 7276 | if (opcode & 2) |
| 7277 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 7278 | else |
| 7279 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b); |
| 7280 | break; |
| 7281 | |
| 7282 | case 0x0f06: /* clts */ |
| 7283 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 7284 | break; |
| 7285 | |
| 7286 | /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */ |
| 7287 | |
| 7288 | case 0x0f0d: /* 3DNow! prefetch */ |
| 7289 | break; |
| 7290 | |
| 7291 | case 0x0f0e: /* 3DNow! femms */ |
| 7292 | case 0x0f77: /* emms */ |
| 7293 | if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep))) |
| 7294 | goto no_support; |
| 7295 | record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep)); |
| 7296 | break; |
| 7297 | |
| 7298 | case 0x0f0f: /* 3DNow! data */ |
| 7299 | if (i386_record_modrm (&ir)) |
| 7300 | return -1; |
| 7301 | if (record_read_memory (gdbarch, ir.addr, &opcode8, 1)) |
| 7302 | return -1; |
| 7303 | ir.addr++; |
| 7304 | switch (opcode8) |
| 7305 | { |
| 7306 | case 0x0c: /* 3DNow! pi2fw */ |
| 7307 | case 0x0d: /* 3DNow! pi2fd */ |
| 7308 | case 0x1c: /* 3DNow! pf2iw */ |
| 7309 | case 0x1d: /* 3DNow! pf2id */ |
| 7310 | case 0x8a: /* 3DNow! pfnacc */ |
| 7311 | case 0x8e: /* 3DNow! pfpnacc */ |
| 7312 | case 0x90: /* 3DNow! pfcmpge */ |
| 7313 | case 0x94: /* 3DNow! pfmin */ |
| 7314 | case 0x96: /* 3DNow! pfrcp */ |
| 7315 | case 0x97: /* 3DNow! pfrsqrt */ |
| 7316 | case 0x9a: /* 3DNow! pfsub */ |
| 7317 | case 0x9e: /* 3DNow! pfadd */ |
| 7318 | case 0xa0: /* 3DNow! pfcmpgt */ |
| 7319 | case 0xa4: /* 3DNow! pfmax */ |
| 7320 | case 0xa6: /* 3DNow! pfrcpit1 */ |
| 7321 | case 0xa7: /* 3DNow! pfrsqit1 */ |
| 7322 | case 0xaa: /* 3DNow! pfsubr */ |
| 7323 | case 0xae: /* 3DNow! pfacc */ |
| 7324 | case 0xb0: /* 3DNow! pfcmpeq */ |
| 7325 | case 0xb4: /* 3DNow! pfmul */ |
| 7326 | case 0xb6: /* 3DNow! pfrcpit2 */ |
| 7327 | case 0xb7: /* 3DNow! pmulhrw */ |
| 7328 | case 0xbb: /* 3DNow! pswapd */ |
| 7329 | case 0xbf: /* 3DNow! pavgusb */ |
| 7330 | if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg)) |
| 7331 | goto no_support_3dnow_data; |
| 7332 | record_full_arch_list_add_reg (ir.regcache, ir.reg); |
| 7333 | break; |
| 7334 | |
| 7335 | default: |
| 7336 | no_support_3dnow_data: |
| 7337 | opcode = (opcode << 8) | opcode8; |
| 7338 | goto no_support; |
| 7339 | break; |
| 7340 | } |
| 7341 | break; |
| 7342 | |
| 7343 | case 0x0faa: /* rsm */ |
| 7344 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 7345 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM); |
| 7346 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM); |
| 7347 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM); |
| 7348 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM); |
| 7349 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM); |
| 7350 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM); |
| 7351 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM); |
| 7352 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM); |
| 7353 | break; |
| 7354 | |
| 7355 | case 0x0fae: |
| 7356 | if (i386_record_modrm (&ir)) |
| 7357 | return -1; |
| 7358 | switch(ir.reg) |
| 7359 | { |
| 7360 | case 0: /* fxsave */ |
| 7361 | { |
| 7362 | uint64_t tmpu64; |
| 7363 | |
| 7364 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 7365 | if (i386_record_lea_modrm_addr (&ir, &tmpu64)) |
| 7366 | return -1; |
| 7367 | if (record_full_arch_list_add_mem (tmpu64, 512)) |
| 7368 | return -1; |
| 7369 | } |
| 7370 | break; |
| 7371 | |
| 7372 | case 1: /* fxrstor */ |
| 7373 | { |
| 7374 | int i; |
| 7375 | |
| 7376 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 7377 | |
| 7378 | for (i = I387_MM0_REGNUM (tdep); |
| 7379 | i386_mmx_regnum_p (gdbarch, i); i++) |
| 7380 | record_full_arch_list_add_reg (ir.regcache, i); |
| 7381 | |
| 7382 | for (i = I387_XMM0_REGNUM (tdep); |
| 7383 | i386_xmm_regnum_p (gdbarch, i); i++) |
| 7384 | record_full_arch_list_add_reg (ir.regcache, i); |
| 7385 | |
| 7386 | if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep))) |
| 7387 | record_full_arch_list_add_reg (ir.regcache, |
| 7388 | I387_MXCSR_REGNUM(tdep)); |
| 7389 | |
| 7390 | for (i = I387_ST0_REGNUM (tdep); |
| 7391 | i386_fp_regnum_p (gdbarch, i); i++) |
| 7392 | record_full_arch_list_add_reg (ir.regcache, i); |
| 7393 | |
| 7394 | for (i = I387_FCTRL_REGNUM (tdep); |
| 7395 | i386_fpc_regnum_p (gdbarch, i); i++) |
| 7396 | record_full_arch_list_add_reg (ir.regcache, i); |
| 7397 | } |
| 7398 | break; |
| 7399 | |
| 7400 | case 2: /* ldmxcsr */ |
| 7401 | if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep))) |
| 7402 | goto no_support; |
| 7403 | record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep)); |
| 7404 | break; |
| 7405 | |
| 7406 | case 3: /* stmxcsr */ |
| 7407 | ir.ot = OT_LONG; |
| 7408 | if (i386_record_lea_modrm (&ir)) |
| 7409 | return -1; |
| 7410 | break; |
| 7411 | |
| 7412 | case 5: /* lfence */ |
| 7413 | case 6: /* mfence */ |
| 7414 | case 7: /* sfence clflush */ |
| 7415 | break; |
| 7416 | |
| 7417 | default: |
| 7418 | opcode = (opcode << 8) | ir.modrm; |
| 7419 | goto no_support; |
| 7420 | break; |
| 7421 | } |
| 7422 | break; |
| 7423 | |
| 7424 | case 0x0fc3: /* movnti */ |
| 7425 | ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG; |
| 7426 | if (i386_record_modrm (&ir)) |
| 7427 | return -1; |
| 7428 | if (ir.mod == 3) |
| 7429 | goto no_support; |
| 7430 | ir.reg |= rex_r; |
| 7431 | if (i386_record_lea_modrm (&ir)) |
| 7432 | return -1; |
| 7433 | break; |
| 7434 | |
| 7435 | /* Add prefix to opcode. */ |
| 7436 | case 0x0f10: |
| 7437 | case 0x0f11: |
| 7438 | case 0x0f12: |
| 7439 | case 0x0f13: |
| 7440 | case 0x0f14: |
| 7441 | case 0x0f15: |
| 7442 | case 0x0f16: |
| 7443 | case 0x0f17: |
| 7444 | case 0x0f28: |
| 7445 | case 0x0f29: |
| 7446 | case 0x0f2a: |
| 7447 | case 0x0f2b: |
| 7448 | case 0x0f2c: |
| 7449 | case 0x0f2d: |
| 7450 | case 0x0f2e: |
| 7451 | case 0x0f2f: |
| 7452 | case 0x0f38: |
| 7453 | case 0x0f39: |
| 7454 | case 0x0f3a: |
| 7455 | case 0x0f50: |
| 7456 | case 0x0f51: |
| 7457 | case 0x0f52: |
| 7458 | case 0x0f53: |
| 7459 | case 0x0f54: |
| 7460 | case 0x0f55: |
| 7461 | case 0x0f56: |
| 7462 | case 0x0f57: |
| 7463 | case 0x0f58: |
| 7464 | case 0x0f59: |
| 7465 | case 0x0f5a: |
| 7466 | case 0x0f5b: |
| 7467 | case 0x0f5c: |
| 7468 | case 0x0f5d: |
| 7469 | case 0x0f5e: |
| 7470 | case 0x0f5f: |
| 7471 | case 0x0f60: |
| 7472 | case 0x0f61: |
| 7473 | case 0x0f62: |
| 7474 | case 0x0f63: |
| 7475 | case 0x0f64: |
| 7476 | case 0x0f65: |
| 7477 | case 0x0f66: |
| 7478 | case 0x0f67: |
| 7479 | case 0x0f68: |
| 7480 | case 0x0f69: |
| 7481 | case 0x0f6a: |
| 7482 | case 0x0f6b: |
| 7483 | case 0x0f6c: |
| 7484 | case 0x0f6d: |
| 7485 | case 0x0f6e: |
| 7486 | case 0x0f6f: |
| 7487 | case 0x0f70: |
| 7488 | case 0x0f71: |
| 7489 | case 0x0f72: |
| 7490 | case 0x0f73: |
| 7491 | case 0x0f74: |
| 7492 | case 0x0f75: |
| 7493 | case 0x0f76: |
| 7494 | case 0x0f7c: |
| 7495 | case 0x0f7d: |
| 7496 | case 0x0f7e: |
| 7497 | case 0x0f7f: |
| 7498 | case 0x0fb8: |
| 7499 | case 0x0fc2: |
| 7500 | case 0x0fc4: |
| 7501 | case 0x0fc5: |
| 7502 | case 0x0fc6: |
| 7503 | case 0x0fd0: |
| 7504 | case 0x0fd1: |
| 7505 | case 0x0fd2: |
| 7506 | case 0x0fd3: |
| 7507 | case 0x0fd4: |
| 7508 | case 0x0fd5: |
| 7509 | case 0x0fd6: |
| 7510 | case 0x0fd7: |
| 7511 | case 0x0fd8: |
| 7512 | case 0x0fd9: |
| 7513 | case 0x0fda: |
| 7514 | case 0x0fdb: |
| 7515 | case 0x0fdc: |
| 7516 | case 0x0fdd: |
| 7517 | case 0x0fde: |
| 7518 | case 0x0fdf: |
| 7519 | case 0x0fe0: |
| 7520 | case 0x0fe1: |
| 7521 | case 0x0fe2: |
| 7522 | case 0x0fe3: |
| 7523 | case 0x0fe4: |
| 7524 | case 0x0fe5: |
| 7525 | case 0x0fe6: |
| 7526 | case 0x0fe7: |
| 7527 | case 0x0fe8: |
| 7528 | case 0x0fe9: |
| 7529 | case 0x0fea: |
| 7530 | case 0x0feb: |
| 7531 | case 0x0fec: |
| 7532 | case 0x0fed: |
| 7533 | case 0x0fee: |
| 7534 | case 0x0fef: |
| 7535 | case 0x0ff0: |
| 7536 | case 0x0ff1: |
| 7537 | case 0x0ff2: |
| 7538 | case 0x0ff3: |
| 7539 | case 0x0ff4: |
| 7540 | case 0x0ff5: |
| 7541 | case 0x0ff6: |
| 7542 | case 0x0ff7: |
| 7543 | case 0x0ff8: |
| 7544 | case 0x0ff9: |
| 7545 | case 0x0ffa: |
| 7546 | case 0x0ffb: |
| 7547 | case 0x0ffc: |
| 7548 | case 0x0ffd: |
| 7549 | case 0x0ffe: |
| 7550 | /* Mask out PREFIX_ADDR. */ |
| 7551 | switch ((prefixes & ~PREFIX_ADDR)) |
| 7552 | { |
| 7553 | case PREFIX_REPNZ: |
| 7554 | opcode |= 0xf20000; |
| 7555 | break; |
| 7556 | case PREFIX_DATA: |
| 7557 | opcode |= 0x660000; |
| 7558 | break; |
| 7559 | case PREFIX_REPZ: |
| 7560 | opcode |= 0xf30000; |
| 7561 | break; |
| 7562 | } |
| 7563 | reswitch_prefix_add: |
| 7564 | switch (opcode) |
| 7565 | { |
| 7566 | case 0x0f38: |
| 7567 | case 0x660f38: |
| 7568 | case 0xf20f38: |
| 7569 | case 0x0f3a: |
| 7570 | case 0x660f3a: |
| 7571 | if (record_read_memory (gdbarch, ir.addr, &opcode8, 1)) |
| 7572 | return -1; |
| 7573 | ir.addr++; |
| 7574 | opcode = (uint32_t) opcode8 | opcode << 8; |
| 7575 | goto reswitch_prefix_add; |
| 7576 | break; |
| 7577 | |
| 7578 | case 0x0f10: /* movups */ |
| 7579 | case 0x660f10: /* movupd */ |
| 7580 | case 0xf30f10: /* movss */ |
| 7581 | case 0xf20f10: /* movsd */ |
| 7582 | case 0x0f12: /* movlps */ |
| 7583 | case 0x660f12: /* movlpd */ |
| 7584 | case 0xf30f12: /* movsldup */ |
| 7585 | case 0xf20f12: /* movddup */ |
| 7586 | case 0x0f14: /* unpcklps */ |
| 7587 | case 0x660f14: /* unpcklpd */ |
| 7588 | case 0x0f15: /* unpckhps */ |
| 7589 | case 0x660f15: /* unpckhpd */ |
| 7590 | case 0x0f16: /* movhps */ |
| 7591 | case 0x660f16: /* movhpd */ |
| 7592 | case 0xf30f16: /* movshdup */ |
| 7593 | case 0x0f28: /* movaps */ |
| 7594 | case 0x660f28: /* movapd */ |
| 7595 | case 0x0f2a: /* cvtpi2ps */ |
| 7596 | case 0x660f2a: /* cvtpi2pd */ |
| 7597 | case 0xf30f2a: /* cvtsi2ss */ |
| 7598 | case 0xf20f2a: /* cvtsi2sd */ |
| 7599 | case 0x0f2c: /* cvttps2pi */ |
| 7600 | case 0x660f2c: /* cvttpd2pi */ |
| 7601 | case 0x0f2d: /* cvtps2pi */ |
| 7602 | case 0x660f2d: /* cvtpd2pi */ |
| 7603 | case 0x660f3800: /* pshufb */ |
| 7604 | case 0x660f3801: /* phaddw */ |
| 7605 | case 0x660f3802: /* phaddd */ |
| 7606 | case 0x660f3803: /* phaddsw */ |
| 7607 | case 0x660f3804: /* pmaddubsw */ |
| 7608 | case 0x660f3805: /* phsubw */ |
| 7609 | case 0x660f3806: /* phsubd */ |
| 7610 | case 0x660f3807: /* phsubsw */ |
| 7611 | case 0x660f3808: /* psignb */ |
| 7612 | case 0x660f3809: /* psignw */ |
| 7613 | case 0x660f380a: /* psignd */ |
| 7614 | case 0x660f380b: /* pmulhrsw */ |
| 7615 | case 0x660f3810: /* pblendvb */ |
| 7616 | case 0x660f3814: /* blendvps */ |
| 7617 | case 0x660f3815: /* blendvpd */ |
| 7618 | case 0x660f381c: /* pabsb */ |
| 7619 | case 0x660f381d: /* pabsw */ |
| 7620 | case 0x660f381e: /* pabsd */ |
| 7621 | case 0x660f3820: /* pmovsxbw */ |
| 7622 | case 0x660f3821: /* pmovsxbd */ |
| 7623 | case 0x660f3822: /* pmovsxbq */ |
| 7624 | case 0x660f3823: /* pmovsxwd */ |
| 7625 | case 0x660f3824: /* pmovsxwq */ |
| 7626 | case 0x660f3825: /* pmovsxdq */ |
| 7627 | case 0x660f3828: /* pmuldq */ |
| 7628 | case 0x660f3829: /* pcmpeqq */ |
| 7629 | case 0x660f382a: /* movntdqa */ |
| 7630 | case 0x660f3a08: /* roundps */ |
| 7631 | case 0x660f3a09: /* roundpd */ |
| 7632 | case 0x660f3a0a: /* roundss */ |
| 7633 | case 0x660f3a0b: /* roundsd */ |
| 7634 | case 0x660f3a0c: /* blendps */ |
| 7635 | case 0x660f3a0d: /* blendpd */ |
| 7636 | case 0x660f3a0e: /* pblendw */ |
| 7637 | case 0x660f3a0f: /* palignr */ |
| 7638 | case 0x660f3a20: /* pinsrb */ |
| 7639 | case 0x660f3a21: /* insertps */ |
| 7640 | case 0x660f3a22: /* pinsrd pinsrq */ |
| 7641 | case 0x660f3a40: /* dpps */ |
| 7642 | case 0x660f3a41: /* dppd */ |
| 7643 | case 0x660f3a42: /* mpsadbw */ |
| 7644 | case 0x660f3a60: /* pcmpestrm */ |
| 7645 | case 0x660f3a61: /* pcmpestri */ |
| 7646 | case 0x660f3a62: /* pcmpistrm */ |
| 7647 | case 0x660f3a63: /* pcmpistri */ |
| 7648 | case 0x0f51: /* sqrtps */ |
| 7649 | case 0x660f51: /* sqrtpd */ |
| 7650 | case 0xf20f51: /* sqrtsd */ |
| 7651 | case 0xf30f51: /* sqrtss */ |
| 7652 | case 0x0f52: /* rsqrtps */ |
| 7653 | case 0xf30f52: /* rsqrtss */ |
| 7654 | case 0x0f53: /* rcpps */ |
| 7655 | case 0xf30f53: /* rcpss */ |
| 7656 | case 0x0f54: /* andps */ |
| 7657 | case 0x660f54: /* andpd */ |
| 7658 | case 0x0f55: /* andnps */ |
| 7659 | case 0x660f55: /* andnpd */ |
| 7660 | case 0x0f56: /* orps */ |
| 7661 | case 0x660f56: /* orpd */ |
| 7662 | case 0x0f57: /* xorps */ |
| 7663 | case 0x660f57: /* xorpd */ |
| 7664 | case 0x0f58: /* addps */ |
| 7665 | case 0x660f58: /* addpd */ |
| 7666 | case 0xf20f58: /* addsd */ |
| 7667 | case 0xf30f58: /* addss */ |
| 7668 | case 0x0f59: /* mulps */ |
| 7669 | case 0x660f59: /* mulpd */ |
| 7670 | case 0xf20f59: /* mulsd */ |
| 7671 | case 0xf30f59: /* mulss */ |
| 7672 | case 0x0f5a: /* cvtps2pd */ |
| 7673 | case 0x660f5a: /* cvtpd2ps */ |
| 7674 | case 0xf20f5a: /* cvtsd2ss */ |
| 7675 | case 0xf30f5a: /* cvtss2sd */ |
| 7676 | case 0x0f5b: /* cvtdq2ps */ |
| 7677 | case 0x660f5b: /* cvtps2dq */ |
| 7678 | case 0xf30f5b: /* cvttps2dq */ |
| 7679 | case 0x0f5c: /* subps */ |
| 7680 | case 0x660f5c: /* subpd */ |
| 7681 | case 0xf20f5c: /* subsd */ |
| 7682 | case 0xf30f5c: /* subss */ |
| 7683 | case 0x0f5d: /* minps */ |
| 7684 | case 0x660f5d: /* minpd */ |
| 7685 | case 0xf20f5d: /* minsd */ |
| 7686 | case 0xf30f5d: /* minss */ |
| 7687 | case 0x0f5e: /* divps */ |
| 7688 | case 0x660f5e: /* divpd */ |
| 7689 | case 0xf20f5e: /* divsd */ |
| 7690 | case 0xf30f5e: /* divss */ |
| 7691 | case 0x0f5f: /* maxps */ |
| 7692 | case 0x660f5f: /* maxpd */ |
| 7693 | case 0xf20f5f: /* maxsd */ |
| 7694 | case 0xf30f5f: /* maxss */ |
| 7695 | case 0x660f60: /* punpcklbw */ |
| 7696 | case 0x660f61: /* punpcklwd */ |
| 7697 | case 0x660f62: /* punpckldq */ |
| 7698 | case 0x660f63: /* packsswb */ |
| 7699 | case 0x660f64: /* pcmpgtb */ |
| 7700 | case 0x660f65: /* pcmpgtw */ |
| 7701 | case 0x660f66: /* pcmpgtd */ |
| 7702 | case 0x660f67: /* packuswb */ |
| 7703 | case 0x660f68: /* punpckhbw */ |
| 7704 | case 0x660f69: /* punpckhwd */ |
| 7705 | case 0x660f6a: /* punpckhdq */ |
| 7706 | case 0x660f6b: /* packssdw */ |
| 7707 | case 0x660f6c: /* punpcklqdq */ |
| 7708 | case 0x660f6d: /* punpckhqdq */ |
| 7709 | case 0x660f6e: /* movd */ |
| 7710 | case 0x660f6f: /* movdqa */ |
| 7711 | case 0xf30f6f: /* movdqu */ |
| 7712 | case 0x660f70: /* pshufd */ |
| 7713 | case 0xf20f70: /* pshuflw */ |
| 7714 | case 0xf30f70: /* pshufhw */ |
| 7715 | case 0x660f74: /* pcmpeqb */ |
| 7716 | case 0x660f75: /* pcmpeqw */ |
| 7717 | case 0x660f76: /* pcmpeqd */ |
| 7718 | case 0x660f7c: /* haddpd */ |
| 7719 | case 0xf20f7c: /* haddps */ |
| 7720 | case 0x660f7d: /* hsubpd */ |
| 7721 | case 0xf20f7d: /* hsubps */ |
| 7722 | case 0xf30f7e: /* movq */ |
| 7723 | case 0x0fc2: /* cmpps */ |
| 7724 | case 0x660fc2: /* cmppd */ |
| 7725 | case 0xf20fc2: /* cmpsd */ |
| 7726 | case 0xf30fc2: /* cmpss */ |
| 7727 | case 0x660fc4: /* pinsrw */ |
| 7728 | case 0x0fc6: /* shufps */ |
| 7729 | case 0x660fc6: /* shufpd */ |
| 7730 | case 0x660fd0: /* addsubpd */ |
| 7731 | case 0xf20fd0: /* addsubps */ |
| 7732 | case 0x660fd1: /* psrlw */ |
| 7733 | case 0x660fd2: /* psrld */ |
| 7734 | case 0x660fd3: /* psrlq */ |
| 7735 | case 0x660fd4: /* paddq */ |
| 7736 | case 0x660fd5: /* pmullw */ |
| 7737 | case 0xf30fd6: /* movq2dq */ |
| 7738 | case 0x660fd8: /* psubusb */ |
| 7739 | case 0x660fd9: /* psubusw */ |
| 7740 | case 0x660fda: /* pminub */ |
| 7741 | case 0x660fdb: /* pand */ |
| 7742 | case 0x660fdc: /* paddusb */ |
| 7743 | case 0x660fdd: /* paddusw */ |
| 7744 | case 0x660fde: /* pmaxub */ |
| 7745 | case 0x660fdf: /* pandn */ |
| 7746 | case 0x660fe0: /* pavgb */ |
| 7747 | case 0x660fe1: /* psraw */ |
| 7748 | case 0x660fe2: /* psrad */ |
| 7749 | case 0x660fe3: /* pavgw */ |
| 7750 | case 0x660fe4: /* pmulhuw */ |
| 7751 | case 0x660fe5: /* pmulhw */ |
| 7752 | case 0x660fe6: /* cvttpd2dq */ |
| 7753 | case 0xf20fe6: /* cvtpd2dq */ |
| 7754 | case 0xf30fe6: /* cvtdq2pd */ |
| 7755 | case 0x660fe8: /* psubsb */ |
| 7756 | case 0x660fe9: /* psubsw */ |
| 7757 | case 0x660fea: /* pminsw */ |
| 7758 | case 0x660feb: /* por */ |
| 7759 | case 0x660fec: /* paddsb */ |
| 7760 | case 0x660fed: /* paddsw */ |
| 7761 | case 0x660fee: /* pmaxsw */ |
| 7762 | case 0x660fef: /* pxor */ |
| 7763 | case 0xf20ff0: /* lddqu */ |
| 7764 | case 0x660ff1: /* psllw */ |
| 7765 | case 0x660ff2: /* pslld */ |
| 7766 | case 0x660ff3: /* psllq */ |
| 7767 | case 0x660ff4: /* pmuludq */ |
| 7768 | case 0x660ff5: /* pmaddwd */ |
| 7769 | case 0x660ff6: /* psadbw */ |
| 7770 | case 0x660ff8: /* psubb */ |
| 7771 | case 0x660ff9: /* psubw */ |
| 7772 | case 0x660ffa: /* psubd */ |
| 7773 | case 0x660ffb: /* psubq */ |
| 7774 | case 0x660ffc: /* paddb */ |
| 7775 | case 0x660ffd: /* paddw */ |
| 7776 | case 0x660ffe: /* paddd */ |
| 7777 | if (i386_record_modrm (&ir)) |
| 7778 | return -1; |
| 7779 | ir.reg |= rex_r; |
| 7780 | if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg)) |
| 7781 | goto no_support; |
| 7782 | record_full_arch_list_add_reg (ir.regcache, |
| 7783 | I387_XMM0_REGNUM (tdep) + ir.reg); |
| 7784 | if ((opcode & 0xfffffffc) == 0x660f3a60) |
| 7785 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 7786 | break; |
| 7787 | |
| 7788 | case 0x0f11: /* movups */ |
| 7789 | case 0x660f11: /* movupd */ |
| 7790 | case 0xf30f11: /* movss */ |
| 7791 | case 0xf20f11: /* movsd */ |
| 7792 | case 0x0f13: /* movlps */ |
| 7793 | case 0x660f13: /* movlpd */ |
| 7794 | case 0x0f17: /* movhps */ |
| 7795 | case 0x660f17: /* movhpd */ |
| 7796 | case 0x0f29: /* movaps */ |
| 7797 | case 0x660f29: /* movapd */ |
| 7798 | case 0x660f3a14: /* pextrb */ |
| 7799 | case 0x660f3a15: /* pextrw */ |
| 7800 | case 0x660f3a16: /* pextrd pextrq */ |
| 7801 | case 0x660f3a17: /* extractps */ |
| 7802 | case 0x660f7f: /* movdqa */ |
| 7803 | case 0xf30f7f: /* movdqu */ |
| 7804 | if (i386_record_modrm (&ir)) |
| 7805 | return -1; |
| 7806 | if (ir.mod == 3) |
| 7807 | { |
| 7808 | if (opcode == 0x0f13 || opcode == 0x660f13 |
| 7809 | || opcode == 0x0f17 || opcode == 0x660f17) |
| 7810 | goto no_support; |
| 7811 | ir.rm |= ir.rex_b; |
| 7812 | if (!i386_xmm_regnum_p (gdbarch, |
| 7813 | I387_XMM0_REGNUM (tdep) + ir.rm)) |
| 7814 | goto no_support; |
| 7815 | record_full_arch_list_add_reg (ir.regcache, |
| 7816 | I387_XMM0_REGNUM (tdep) + ir.rm); |
| 7817 | } |
| 7818 | else |
| 7819 | { |
| 7820 | switch (opcode) |
| 7821 | { |
| 7822 | case 0x660f3a14: |
| 7823 | ir.ot = OT_BYTE; |
| 7824 | break; |
| 7825 | case 0x660f3a15: |
| 7826 | ir.ot = OT_WORD; |
| 7827 | break; |
| 7828 | case 0x660f3a16: |
| 7829 | ir.ot = OT_LONG; |
| 7830 | break; |
| 7831 | case 0x660f3a17: |
| 7832 | ir.ot = OT_QUAD; |
| 7833 | break; |
| 7834 | default: |
| 7835 | ir.ot = OT_DQUAD; |
| 7836 | break; |
| 7837 | } |
| 7838 | if (i386_record_lea_modrm (&ir)) |
| 7839 | return -1; |
| 7840 | } |
| 7841 | break; |
| 7842 | |
| 7843 | case 0x0f2b: /* movntps */ |
| 7844 | case 0x660f2b: /* movntpd */ |
| 7845 | case 0x0fe7: /* movntq */ |
| 7846 | case 0x660fe7: /* movntdq */ |
| 7847 | if (ir.mod == 3) |
| 7848 | goto no_support; |
| 7849 | if (opcode == 0x0fe7) |
| 7850 | ir.ot = OT_QUAD; |
| 7851 | else |
| 7852 | ir.ot = OT_DQUAD; |
| 7853 | if (i386_record_lea_modrm (&ir)) |
| 7854 | return -1; |
| 7855 | break; |
| 7856 | |
| 7857 | case 0xf30f2c: /* cvttss2si */ |
| 7858 | case 0xf20f2c: /* cvttsd2si */ |
| 7859 | case 0xf30f2d: /* cvtss2si */ |
| 7860 | case 0xf20f2d: /* cvtsd2si */ |
| 7861 | case 0xf20f38f0: /* crc32 */ |
| 7862 | case 0xf20f38f1: /* crc32 */ |
| 7863 | case 0x0f50: /* movmskps */ |
| 7864 | case 0x660f50: /* movmskpd */ |
| 7865 | case 0x0fc5: /* pextrw */ |
| 7866 | case 0x660fc5: /* pextrw */ |
| 7867 | case 0x0fd7: /* pmovmskb */ |
| 7868 | case 0x660fd7: /* pmovmskb */ |
| 7869 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r); |
| 7870 | break; |
| 7871 | |
| 7872 | case 0x0f3800: /* pshufb */ |
| 7873 | case 0x0f3801: /* phaddw */ |
| 7874 | case 0x0f3802: /* phaddd */ |
| 7875 | case 0x0f3803: /* phaddsw */ |
| 7876 | case 0x0f3804: /* pmaddubsw */ |
| 7877 | case 0x0f3805: /* phsubw */ |
| 7878 | case 0x0f3806: /* phsubd */ |
| 7879 | case 0x0f3807: /* phsubsw */ |
| 7880 | case 0x0f3808: /* psignb */ |
| 7881 | case 0x0f3809: /* psignw */ |
| 7882 | case 0x0f380a: /* psignd */ |
| 7883 | case 0x0f380b: /* pmulhrsw */ |
| 7884 | case 0x0f381c: /* pabsb */ |
| 7885 | case 0x0f381d: /* pabsw */ |
| 7886 | case 0x0f381e: /* pabsd */ |
| 7887 | case 0x0f382b: /* packusdw */ |
| 7888 | case 0x0f3830: /* pmovzxbw */ |
| 7889 | case 0x0f3831: /* pmovzxbd */ |
| 7890 | case 0x0f3832: /* pmovzxbq */ |
| 7891 | case 0x0f3833: /* pmovzxwd */ |
| 7892 | case 0x0f3834: /* pmovzxwq */ |
| 7893 | case 0x0f3835: /* pmovzxdq */ |
| 7894 | case 0x0f3837: /* pcmpgtq */ |
| 7895 | case 0x0f3838: /* pminsb */ |
| 7896 | case 0x0f3839: /* pminsd */ |
| 7897 | case 0x0f383a: /* pminuw */ |
| 7898 | case 0x0f383b: /* pminud */ |
| 7899 | case 0x0f383c: /* pmaxsb */ |
| 7900 | case 0x0f383d: /* pmaxsd */ |
| 7901 | case 0x0f383e: /* pmaxuw */ |
| 7902 | case 0x0f383f: /* pmaxud */ |
| 7903 | case 0x0f3840: /* pmulld */ |
| 7904 | case 0x0f3841: /* phminposuw */ |
| 7905 | case 0x0f3a0f: /* palignr */ |
| 7906 | case 0x0f60: /* punpcklbw */ |
| 7907 | case 0x0f61: /* punpcklwd */ |
| 7908 | case 0x0f62: /* punpckldq */ |
| 7909 | case 0x0f63: /* packsswb */ |
| 7910 | case 0x0f64: /* pcmpgtb */ |
| 7911 | case 0x0f65: /* pcmpgtw */ |
| 7912 | case 0x0f66: /* pcmpgtd */ |
| 7913 | case 0x0f67: /* packuswb */ |
| 7914 | case 0x0f68: /* punpckhbw */ |
| 7915 | case 0x0f69: /* punpckhwd */ |
| 7916 | case 0x0f6a: /* punpckhdq */ |
| 7917 | case 0x0f6b: /* packssdw */ |
| 7918 | case 0x0f6e: /* movd */ |
| 7919 | case 0x0f6f: /* movq */ |
| 7920 | case 0x0f70: /* pshufw */ |
| 7921 | case 0x0f74: /* pcmpeqb */ |
| 7922 | case 0x0f75: /* pcmpeqw */ |
| 7923 | case 0x0f76: /* pcmpeqd */ |
| 7924 | case 0x0fc4: /* pinsrw */ |
| 7925 | case 0x0fd1: /* psrlw */ |
| 7926 | case 0x0fd2: /* psrld */ |
| 7927 | case 0x0fd3: /* psrlq */ |
| 7928 | case 0x0fd4: /* paddq */ |
| 7929 | case 0x0fd5: /* pmullw */ |
| 7930 | case 0xf20fd6: /* movdq2q */ |
| 7931 | case 0x0fd8: /* psubusb */ |
| 7932 | case 0x0fd9: /* psubusw */ |
| 7933 | case 0x0fda: /* pminub */ |
| 7934 | case 0x0fdb: /* pand */ |
| 7935 | case 0x0fdc: /* paddusb */ |
| 7936 | case 0x0fdd: /* paddusw */ |
| 7937 | case 0x0fde: /* pmaxub */ |
| 7938 | case 0x0fdf: /* pandn */ |
| 7939 | case 0x0fe0: /* pavgb */ |
| 7940 | case 0x0fe1: /* psraw */ |
| 7941 | case 0x0fe2: /* psrad */ |
| 7942 | case 0x0fe3: /* pavgw */ |
| 7943 | case 0x0fe4: /* pmulhuw */ |
| 7944 | case 0x0fe5: /* pmulhw */ |
| 7945 | case 0x0fe8: /* psubsb */ |
| 7946 | case 0x0fe9: /* psubsw */ |
| 7947 | case 0x0fea: /* pminsw */ |
| 7948 | case 0x0feb: /* por */ |
| 7949 | case 0x0fec: /* paddsb */ |
| 7950 | case 0x0fed: /* paddsw */ |
| 7951 | case 0x0fee: /* pmaxsw */ |
| 7952 | case 0x0fef: /* pxor */ |
| 7953 | case 0x0ff1: /* psllw */ |
| 7954 | case 0x0ff2: /* pslld */ |
| 7955 | case 0x0ff3: /* psllq */ |
| 7956 | case 0x0ff4: /* pmuludq */ |
| 7957 | case 0x0ff5: /* pmaddwd */ |
| 7958 | case 0x0ff6: /* psadbw */ |
| 7959 | case 0x0ff8: /* psubb */ |
| 7960 | case 0x0ff9: /* psubw */ |
| 7961 | case 0x0ffa: /* psubd */ |
| 7962 | case 0x0ffb: /* psubq */ |
| 7963 | case 0x0ffc: /* paddb */ |
| 7964 | case 0x0ffd: /* paddw */ |
| 7965 | case 0x0ffe: /* paddd */ |
| 7966 | if (i386_record_modrm (&ir)) |
| 7967 | return -1; |
| 7968 | if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg)) |
| 7969 | goto no_support; |
| 7970 | record_full_arch_list_add_reg (ir.regcache, |
| 7971 | I387_MM0_REGNUM (tdep) + ir.reg); |
| 7972 | break; |
| 7973 | |
| 7974 | case 0x0f71: /* psllw */ |
| 7975 | case 0x0f72: /* pslld */ |
| 7976 | case 0x0f73: /* psllq */ |
| 7977 | if (i386_record_modrm (&ir)) |
| 7978 | return -1; |
| 7979 | if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm)) |
| 7980 | goto no_support; |
| 7981 | record_full_arch_list_add_reg (ir.regcache, |
| 7982 | I387_MM0_REGNUM (tdep) + ir.rm); |
| 7983 | break; |
| 7984 | |
| 7985 | case 0x660f71: /* psllw */ |
| 7986 | case 0x660f72: /* pslld */ |
| 7987 | case 0x660f73: /* psllq */ |
| 7988 | if (i386_record_modrm (&ir)) |
| 7989 | return -1; |
| 7990 | ir.rm |= ir.rex_b; |
| 7991 | if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm)) |
| 7992 | goto no_support; |
| 7993 | record_full_arch_list_add_reg (ir.regcache, |
| 7994 | I387_XMM0_REGNUM (tdep) + ir.rm); |
| 7995 | break; |
| 7996 | |
| 7997 | case 0x0f7e: /* movd */ |
| 7998 | case 0x660f7e: /* movd */ |
| 7999 | if (i386_record_modrm (&ir)) |
| 8000 | return -1; |
| 8001 | if (ir.mod == 3) |
| 8002 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b); |
| 8003 | else |
| 8004 | { |
| 8005 | if (ir.dflag == 2) |
| 8006 | ir.ot = OT_QUAD; |
| 8007 | else |
| 8008 | ir.ot = OT_LONG; |
| 8009 | if (i386_record_lea_modrm (&ir)) |
| 8010 | return -1; |
| 8011 | } |
| 8012 | break; |
| 8013 | |
| 8014 | case 0x0f7f: /* movq */ |
| 8015 | if (i386_record_modrm (&ir)) |
| 8016 | return -1; |
| 8017 | if (ir.mod == 3) |
| 8018 | { |
| 8019 | if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm)) |
| 8020 | goto no_support; |
| 8021 | record_full_arch_list_add_reg (ir.regcache, |
| 8022 | I387_MM0_REGNUM (tdep) + ir.rm); |
| 8023 | } |
| 8024 | else |
| 8025 | { |
| 8026 | ir.ot = OT_QUAD; |
| 8027 | if (i386_record_lea_modrm (&ir)) |
| 8028 | return -1; |
| 8029 | } |
| 8030 | break; |
| 8031 | |
| 8032 | case 0xf30fb8: /* popcnt */ |
| 8033 | if (i386_record_modrm (&ir)) |
| 8034 | return -1; |
| 8035 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg); |
| 8036 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 8037 | break; |
| 8038 | |
| 8039 | case 0x660fd6: /* movq */ |
| 8040 | if (i386_record_modrm (&ir)) |
| 8041 | return -1; |
| 8042 | if (ir.mod == 3) |
| 8043 | { |
| 8044 | ir.rm |= ir.rex_b; |
| 8045 | if (!i386_xmm_regnum_p (gdbarch, |
| 8046 | I387_XMM0_REGNUM (tdep) + ir.rm)) |
| 8047 | goto no_support; |
| 8048 | record_full_arch_list_add_reg (ir.regcache, |
| 8049 | I387_XMM0_REGNUM (tdep) + ir.rm); |
| 8050 | } |
| 8051 | else |
| 8052 | { |
| 8053 | ir.ot = OT_QUAD; |
| 8054 | if (i386_record_lea_modrm (&ir)) |
| 8055 | return -1; |
| 8056 | } |
| 8057 | break; |
| 8058 | |
| 8059 | case 0x660f3817: /* ptest */ |
| 8060 | case 0x0f2e: /* ucomiss */ |
| 8061 | case 0x660f2e: /* ucomisd */ |
| 8062 | case 0x0f2f: /* comiss */ |
| 8063 | case 0x660f2f: /* comisd */ |
| 8064 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM); |
| 8065 | break; |
| 8066 | |
| 8067 | case 0x0ff7: /* maskmovq */ |
| 8068 | regcache_raw_read_unsigned (ir.regcache, |
| 8069 | ir.regmap[X86_RECORD_REDI_REGNUM], |
| 8070 | &addr); |
| 8071 | if (record_full_arch_list_add_mem (addr, 64)) |
| 8072 | return -1; |
| 8073 | break; |
| 8074 | |
| 8075 | case 0x660ff7: /* maskmovdqu */ |
| 8076 | regcache_raw_read_unsigned (ir.regcache, |
| 8077 | ir.regmap[X86_RECORD_REDI_REGNUM], |
| 8078 | &addr); |
| 8079 | if (record_full_arch_list_add_mem (addr, 128)) |
| 8080 | return -1; |
| 8081 | break; |
| 8082 | |
| 8083 | default: |
| 8084 | goto no_support; |
| 8085 | break; |
| 8086 | } |
| 8087 | break; |
| 8088 | |
| 8089 | default: |
| 8090 | goto no_support; |
| 8091 | break; |
| 8092 | } |
| 8093 | |
| 8094 | /* In the future, maybe still need to deal with need_dasm. */ |
| 8095 | I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM); |
| 8096 | if (record_full_arch_list_add_end ()) |
| 8097 | return -1; |
| 8098 | |
| 8099 | return 0; |
| 8100 | |
| 8101 | no_support: |
| 8102 | printf_unfiltered (_("Process record does not support instruction 0x%02x " |
| 8103 | "at address %s.\n"), |
| 8104 | (unsigned int) (opcode), |
| 8105 | paddress (gdbarch, ir.orig_addr)); |
| 8106 | return -1; |
| 8107 | } |
| 8108 | |
| 8109 | static const int i386_record_regmap[] = |
| 8110 | { |
| 8111 | I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM, |
| 8112 | I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM, |
| 8113 | 0, 0, 0, 0, 0, 0, 0, 0, |
| 8114 | I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM, |
| 8115 | I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM |
| 8116 | }; |
| 8117 | |
| 8118 | /* Check that the given address appears suitable for a fast |
| 8119 | tracepoint, which on x86-64 means that we need an instruction of at |
| 8120 | least 5 bytes, so that we can overwrite it with a 4-byte-offset |
| 8121 | jump and not have to worry about program jumps to an address in the |
| 8122 | middle of the tracepoint jump. On x86, it may be possible to use |
| 8123 | 4-byte jumps with a 2-byte offset to a trampoline located in the |
| 8124 | bottom 64 KiB of memory. Returns 1 if OK, and writes a size |
| 8125 | of instruction to replace, and 0 if not, plus an explanatory |
| 8126 | string. */ |
| 8127 | |
| 8128 | static int |
| 8129 | i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr, |
| 8130 | std::string *msg) |
| 8131 | { |
| 8132 | int len, jumplen; |
| 8133 | |
| 8134 | /* Ask the target for the minimum instruction length supported. */ |
| 8135 | jumplen = target_get_min_fast_tracepoint_insn_len (); |
| 8136 | |
| 8137 | if (jumplen < 0) |
| 8138 | { |
| 8139 | /* If the target does not support the get_min_fast_tracepoint_insn_len |
| 8140 | operation, assume that fast tracepoints will always be implemented |
| 8141 | using 4-byte relative jumps on both x86 and x86-64. */ |
| 8142 | jumplen = 5; |
| 8143 | } |
| 8144 | else if (jumplen == 0) |
| 8145 | { |
| 8146 | /* If the target does support get_min_fast_tracepoint_insn_len but |
| 8147 | returns zero, then the IPA has not loaded yet. In this case, |
| 8148 | we optimistically assume that truncated 2-byte relative jumps |
| 8149 | will be available on x86, and compensate later if this assumption |
| 8150 | turns out to be incorrect. On x86-64 architectures, 4-byte relative |
| 8151 | jumps will always be used. */ |
| 8152 | jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4; |
| 8153 | } |
| 8154 | |
| 8155 | /* Check for fit. */ |
| 8156 | len = gdb_insn_length (gdbarch, addr); |
| 8157 | |
| 8158 | if (len < jumplen) |
| 8159 | { |
| 8160 | /* Return a bit of target-specific detail to add to the caller's |
| 8161 | generic failure message. */ |
| 8162 | if (msg) |
| 8163 | *msg = string_printf (_("; instruction is only %d bytes long, " |
| 8164 | "need at least %d bytes for the jump"), |
| 8165 | len, jumplen); |
| 8166 | return 0; |
| 8167 | } |
| 8168 | else |
| 8169 | { |
| 8170 | if (msg) |
| 8171 | msg->clear (); |
| 8172 | return 1; |
| 8173 | } |
| 8174 | } |
| 8175 | |
| 8176 | /* Return a floating-point format for a floating-point variable of |
| 8177 | length LEN in bits. If non-NULL, NAME is the name of its type. |
| 8178 | If no suitable type is found, return NULL. */ |
| 8179 | |
| 8180 | static const struct floatformat ** |
| 8181 | i386_floatformat_for_type (struct gdbarch *gdbarch, |
| 8182 | const char *name, int len) |
| 8183 | { |
| 8184 | if (len == 128 && name) |
| 8185 | if (strcmp (name, "__float128") == 0 |
| 8186 | || strcmp (name, "_Float128") == 0 |
| 8187 | || strcmp (name, "complex _Float128") == 0 |
| 8188 | || strcmp (name, "complex(kind=16)") == 0 |
| 8189 | || strcmp (name, "real(kind=16)") == 0) |
| 8190 | return floatformats_ia64_quad; |
| 8191 | |
| 8192 | return default_floatformat_for_type (gdbarch, name, len); |
| 8193 | } |
| 8194 | |
| 8195 | static int |
| 8196 | i386_validate_tdesc_p (struct gdbarch_tdep *tdep, |
| 8197 | struct tdesc_arch_data *tdesc_data) |
| 8198 | { |
| 8199 | const struct target_desc *tdesc = tdep->tdesc; |
| 8200 | const struct tdesc_feature *feature_core; |
| 8201 | |
| 8202 | const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx, |
| 8203 | *feature_avx512, *feature_pkeys, *feature_segments; |
| 8204 | int i, num_regs, valid_p; |
| 8205 | |
| 8206 | if (! tdesc_has_registers (tdesc)) |
| 8207 | return 0; |
| 8208 | |
| 8209 | /* Get core registers. */ |
| 8210 | feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core"); |
| 8211 | if (feature_core == NULL) |
| 8212 | return 0; |
| 8213 | |
| 8214 | /* Get SSE registers. */ |
| 8215 | feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse"); |
| 8216 | |
| 8217 | /* Try AVX registers. */ |
| 8218 | feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx"); |
| 8219 | |
| 8220 | /* Try MPX registers. */ |
| 8221 | feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx"); |
| 8222 | |
| 8223 | /* Try AVX512 registers. */ |
| 8224 | feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512"); |
| 8225 | |
| 8226 | /* Try segment base registers. */ |
| 8227 | feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments"); |
| 8228 | |
| 8229 | /* Try PKEYS */ |
| 8230 | feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys"); |
| 8231 | |
| 8232 | valid_p = 1; |
| 8233 | |
| 8234 | /* The XCR0 bits. */ |
| 8235 | if (feature_avx512) |
| 8236 | { |
| 8237 | /* AVX512 register description requires AVX register description. */ |
| 8238 | if (!feature_avx) |
| 8239 | return 0; |
| 8240 | |
| 8241 | tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK; |
| 8242 | |
| 8243 | /* It may have been set by OSABI initialization function. */ |
| 8244 | if (tdep->k0_regnum < 0) |
| 8245 | { |
| 8246 | tdep->k_register_names = i386_k_names; |
| 8247 | tdep->k0_regnum = I386_K0_REGNUM; |
| 8248 | } |
| 8249 | |
| 8250 | for (i = 0; i < I387_NUM_K_REGS; i++) |
| 8251 | valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data, |
| 8252 | tdep->k0_regnum + i, |
| 8253 | i386_k_names[i]); |
| 8254 | |
| 8255 | if (tdep->num_zmm_regs == 0) |
| 8256 | { |
| 8257 | tdep->zmmh_register_names = i386_zmmh_names; |
| 8258 | tdep->num_zmm_regs = 8; |
| 8259 | tdep->zmm0h_regnum = I386_ZMM0H_REGNUM; |
| 8260 | } |
| 8261 | |
| 8262 | for (i = 0; i < tdep->num_zmm_regs; i++) |
| 8263 | valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data, |
| 8264 | tdep->zmm0h_regnum + i, |
| 8265 | tdep->zmmh_register_names[i]); |
| 8266 | |
| 8267 | for (i = 0; i < tdep->num_xmm_avx512_regs; i++) |
| 8268 | valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data, |
| 8269 | tdep->xmm16_regnum + i, |
| 8270 | tdep->xmm_avx512_register_names[i]); |
| 8271 | |
| 8272 | for (i = 0; i < tdep->num_ymm_avx512_regs; i++) |
| 8273 | valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data, |
| 8274 | tdep->ymm16h_regnum + i, |
| 8275 | tdep->ymm16h_register_names[i]); |
| 8276 | } |
| 8277 | if (feature_avx) |
| 8278 | { |
| 8279 | /* AVX register description requires SSE register description. */ |
| 8280 | if (!feature_sse) |
| 8281 | return 0; |
| 8282 | |
| 8283 | if (!feature_avx512) |
| 8284 | tdep->xcr0 = X86_XSTATE_AVX_MASK; |
| 8285 | |
| 8286 | /* It may have been set by OSABI initialization function. */ |
| 8287 | if (tdep->num_ymm_regs == 0) |
| 8288 | { |
| 8289 | tdep->ymmh_register_names = i386_ymmh_names; |
| 8290 | tdep->num_ymm_regs = 8; |
| 8291 | tdep->ymm0h_regnum = I386_YMM0H_REGNUM; |
| 8292 | } |
| 8293 | |
| 8294 | for (i = 0; i < tdep->num_ymm_regs; i++) |
| 8295 | valid_p &= tdesc_numbered_register (feature_avx, tdesc_data, |
| 8296 | tdep->ymm0h_regnum + i, |
| 8297 | tdep->ymmh_register_names[i]); |
| 8298 | } |
| 8299 | else if (feature_sse) |
| 8300 | tdep->xcr0 = X86_XSTATE_SSE_MASK; |
| 8301 | else |
| 8302 | { |
| 8303 | tdep->xcr0 = X86_XSTATE_X87_MASK; |
| 8304 | tdep->num_xmm_regs = 0; |
| 8305 | } |
| 8306 | |
| 8307 | num_regs = tdep->num_core_regs; |
| 8308 | for (i = 0; i < num_regs; i++) |
| 8309 | valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i, |
| 8310 | tdep->register_names[i]); |
| 8311 | |
| 8312 | if (feature_sse) |
| 8313 | { |
| 8314 | /* Need to include %mxcsr, so add one. */ |
| 8315 | num_regs += tdep->num_xmm_regs + 1; |
| 8316 | for (; i < num_regs; i++) |
| 8317 | valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i, |
| 8318 | tdep->register_names[i]); |
| 8319 | } |
| 8320 | |
| 8321 | if (feature_mpx) |
| 8322 | { |
| 8323 | tdep->xcr0 |= X86_XSTATE_MPX_MASK; |
| 8324 | |
| 8325 | if (tdep->bnd0r_regnum < 0) |
| 8326 | { |
| 8327 | tdep->mpx_register_names = i386_mpx_names; |
| 8328 | tdep->bnd0r_regnum = I386_BND0R_REGNUM; |
| 8329 | tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM; |
| 8330 | } |
| 8331 | |
| 8332 | for (i = 0; i < I387_NUM_MPX_REGS; i++) |
| 8333 | valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data, |
| 8334 | I387_BND0R_REGNUM (tdep) + i, |
| 8335 | tdep->mpx_register_names[i]); |
| 8336 | } |
| 8337 | |
| 8338 | if (feature_segments) |
| 8339 | { |
| 8340 | if (tdep->fsbase_regnum < 0) |
| 8341 | tdep->fsbase_regnum = I386_FSBASE_REGNUM; |
| 8342 | valid_p &= tdesc_numbered_register (feature_segments, tdesc_data, |
| 8343 | tdep->fsbase_regnum, "fs_base"); |
| 8344 | valid_p &= tdesc_numbered_register (feature_segments, tdesc_data, |
| 8345 | tdep->fsbase_regnum + 1, "gs_base"); |
| 8346 | } |
| 8347 | |
| 8348 | if (feature_pkeys) |
| 8349 | { |
| 8350 | tdep->xcr0 |= X86_XSTATE_PKRU; |
| 8351 | if (tdep->pkru_regnum < 0) |
| 8352 | { |
| 8353 | tdep->pkeys_register_names = i386_pkeys_names; |
| 8354 | tdep->pkru_regnum = I386_PKRU_REGNUM; |
| 8355 | tdep->num_pkeys_regs = 1; |
| 8356 | } |
| 8357 | |
| 8358 | for (i = 0; i < I387_NUM_PKEYS_REGS; i++) |
| 8359 | valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data, |
| 8360 | I387_PKRU_REGNUM (tdep) + i, |
| 8361 | tdep->pkeys_register_names[i]); |
| 8362 | } |
| 8363 | |
| 8364 | return valid_p; |
| 8365 | } |
| 8366 | |
| 8367 | \f |
| 8368 | |
| 8369 | /* Implement the type_align gdbarch function. */ |
| 8370 | |
| 8371 | static ULONGEST |
| 8372 | i386_type_align (struct gdbarch *gdbarch, struct type *type) |
| 8373 | { |
| 8374 | type = check_typedef (type); |
| 8375 | |
| 8376 | if (gdbarch_ptr_bit (gdbarch) == 32) |
| 8377 | { |
| 8378 | if ((TYPE_CODE (type) == TYPE_CODE_INT |
| 8379 | || TYPE_CODE (type) == TYPE_CODE_FLT) |
| 8380 | && TYPE_LENGTH (type) > 4) |
| 8381 | return 4; |
| 8382 | |
| 8383 | /* Handle x86's funny long double. */ |
| 8384 | if (TYPE_CODE (type) == TYPE_CODE_FLT |
| 8385 | && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8) |
| 8386 | return 4; |
| 8387 | } |
| 8388 | |
| 8389 | return 0; |
| 8390 | } |
| 8391 | |
| 8392 | \f |
| 8393 | /* Note: This is called for both i386 and amd64. */ |
| 8394 | |
| 8395 | static struct gdbarch * |
| 8396 | i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
| 8397 | { |
| 8398 | struct gdbarch_tdep *tdep; |
| 8399 | struct gdbarch *gdbarch; |
| 8400 | struct tdesc_arch_data *tdesc_data; |
| 8401 | const struct target_desc *tdesc; |
| 8402 | int mm0_regnum; |
| 8403 | int ymm0_regnum; |
| 8404 | int bnd0_regnum; |
| 8405 | int num_bnd_cooked; |
| 8406 | |
| 8407 | /* If there is already a candidate, use it. */ |
| 8408 | arches = gdbarch_list_lookup_by_info (arches, &info); |
| 8409 | if (arches != NULL) |
| 8410 | return arches->gdbarch; |
| 8411 | |
| 8412 | /* Allocate space for the new architecture. Assume i386 for now. */ |
| 8413 | tdep = XCNEW (struct gdbarch_tdep); |
| 8414 | gdbarch = gdbarch_alloc (&info, tdep); |
| 8415 | |
| 8416 | /* General-purpose registers. */ |
| 8417 | tdep->gregset_reg_offset = NULL; |
| 8418 | tdep->gregset_num_regs = I386_NUM_GREGS; |
| 8419 | tdep->sizeof_gregset = 0; |
| 8420 | |
| 8421 | /* Floating-point registers. */ |
| 8422 | tdep->sizeof_fpregset = I387_SIZEOF_FSAVE; |
| 8423 | tdep->fpregset = &i386_fpregset; |
| 8424 | |
| 8425 | /* The default settings include the FPU registers, the MMX registers |
| 8426 | and the SSE registers. This can be overridden for a specific ABI |
| 8427 | by adjusting the members `st0_regnum', `mm0_regnum' and |
| 8428 | `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers |
| 8429 | will show up in the output of "info all-registers". */ |
| 8430 | |
| 8431 | tdep->st0_regnum = I386_ST0_REGNUM; |
| 8432 | |
| 8433 | /* I386_NUM_XREGS includes %mxcsr, so substract one. */ |
| 8434 | tdep->num_xmm_regs = I386_NUM_XREGS - 1; |
| 8435 | |
| 8436 | tdep->jb_pc_offset = -1; |
| 8437 | tdep->struct_return = pcc_struct_return; |
| 8438 | tdep->sigtramp_start = 0; |
| 8439 | tdep->sigtramp_end = 0; |
| 8440 | tdep->sigtramp_p = i386_sigtramp_p; |
| 8441 | tdep->sigcontext_addr = NULL; |
| 8442 | tdep->sc_reg_offset = NULL; |
| 8443 | tdep->sc_pc_offset = -1; |
| 8444 | tdep->sc_sp_offset = -1; |
| 8445 | |
| 8446 | tdep->xsave_xcr0_offset = -1; |
| 8447 | |
| 8448 | tdep->record_regmap = i386_record_regmap; |
| 8449 | |
| 8450 | set_gdbarch_type_align (gdbarch, i386_type_align); |
| 8451 | |
| 8452 | /* The format used for `long double' on almost all i386 targets is |
| 8453 | the i387 extended floating-point format. In fact, of all targets |
| 8454 | in the GCC 2.95 tree, only OSF/1 does it different, and insists |
| 8455 | on having a `long double' that's not `long' at all. */ |
| 8456 | set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext); |
| 8457 | |
| 8458 | /* Although the i387 extended floating-point has only 80 significant |
| 8459 | bits, a `long double' actually takes up 96, probably to enforce |
| 8460 | alignment. */ |
| 8461 | set_gdbarch_long_double_bit (gdbarch, 96); |
| 8462 | |
| 8463 | /* Support for floating-point data type variants. */ |
| 8464 | set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type); |
| 8465 | |
| 8466 | /* Register numbers of various important registers. */ |
| 8467 | set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */ |
| 8468 | set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */ |
| 8469 | set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */ |
| 8470 | set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */ |
| 8471 | |
| 8472 | /* NOTE: kettenis/20040418: GCC does have two possible register |
| 8473 | numbering schemes on the i386: dbx and SVR4. These schemes |
| 8474 | differ in how they number %ebp, %esp, %eflags, and the |
| 8475 | floating-point registers, and are implemented by the arrays |
| 8476 | dbx_register_map[] and svr4_dbx_register_map in |
| 8477 | gcc/config/i386.c. GCC also defines a third numbering scheme in |
| 8478 | gcc/config/i386.c, which it designates as the "default" register |
| 8479 | map used in 64bit mode. This last register numbering scheme is |
| 8480 | implemented in dbx64_register_map, and is used for AMD64; see |
| 8481 | amd64-tdep.c. |
| 8482 | |
| 8483 | Currently, each GCC i386 target always uses the same register |
| 8484 | numbering scheme across all its supported debugging formats |
| 8485 | i.e. SDB (COFF), stabs and DWARF 2. This is because |
| 8486 | gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the |
| 8487 | DBX_REGISTER_NUMBER macro which is defined by each target's |
| 8488 | respective config header in a manner independent of the requested |
| 8489 | output debugging format. |
| 8490 | |
| 8491 | This does not match the arrangement below, which presumes that |
| 8492 | the SDB and stabs numbering schemes differ from the DWARF and |
| 8493 | DWARF 2 ones. The reason for this arrangement is that it is |
| 8494 | likely to get the numbering scheme for the target's |
| 8495 | default/native debug format right. For targets where GCC is the |
| 8496 | native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for |
| 8497 | targets where the native toolchain uses a different numbering |
| 8498 | scheme for a particular debug format (stabs-in-ELF on Solaris) |
| 8499 | the defaults below will have to be overridden, like |
| 8500 | i386_elf_init_abi() does. */ |
| 8501 | |
| 8502 | /* Use the dbx register numbering scheme for stabs and COFF. */ |
| 8503 | set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum); |
| 8504 | set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum); |
| 8505 | |
| 8506 | /* Use the SVR4 register numbering scheme for DWARF 2. */ |
| 8507 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum); |
| 8508 | |
| 8509 | /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to |
| 8510 | be in use on any of the supported i386 targets. */ |
| 8511 | |
| 8512 | set_gdbarch_print_float_info (gdbarch, i387_print_float_info); |
| 8513 | |
| 8514 | set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target); |
| 8515 | |
| 8516 | /* Call dummy code. */ |
| 8517 | set_gdbarch_call_dummy_location (gdbarch, ON_STACK); |
| 8518 | set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code); |
| 8519 | set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call); |
| 8520 | set_gdbarch_frame_align (gdbarch, i386_frame_align); |
| 8521 | |
| 8522 | set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p); |
| 8523 | set_gdbarch_register_to_value (gdbarch, i386_register_to_value); |
| 8524 | set_gdbarch_value_to_register (gdbarch, i386_value_to_register); |
| 8525 | |
| 8526 | set_gdbarch_return_value (gdbarch, i386_return_value); |
| 8527 | |
| 8528 | set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue); |
| 8529 | |
| 8530 | /* Stack grows downward. */ |
| 8531 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
| 8532 | |
| 8533 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc); |
| 8534 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind); |
| 8535 | |
| 8536 | set_gdbarch_decr_pc_after_break (gdbarch, 1); |
| 8537 | set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN); |
| 8538 | |
| 8539 | set_gdbarch_frame_args_skip (gdbarch, 8); |
| 8540 | |
| 8541 | set_gdbarch_print_insn (gdbarch, i386_print_insn); |
| 8542 | |
| 8543 | set_gdbarch_dummy_id (gdbarch, i386_dummy_id); |
| 8544 | |
| 8545 | set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc); |
| 8546 | |
| 8547 | /* Add the i386 register groups. */ |
| 8548 | i386_add_reggroups (gdbarch); |
| 8549 | tdep->register_reggroup_p = i386_register_reggroup_p; |
| 8550 | |
| 8551 | /* Helper for function argument information. */ |
| 8552 | set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument); |
| 8553 | |
| 8554 | /* Hook the function epilogue frame unwinder. This unwinder is |
| 8555 | appended to the list first, so that it supercedes the DWARF |
| 8556 | unwinder in function epilogues (where the DWARF unwinder |
| 8557 | currently fails). */ |
| 8558 | frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind); |
| 8559 | |
| 8560 | /* Hook in the DWARF CFI frame unwinder. This unwinder is appended |
| 8561 | to the list before the prologue-based unwinders, so that DWARF |
| 8562 | CFI info will be used if it is available. */ |
| 8563 | dwarf2_append_unwinders (gdbarch); |
| 8564 | |
| 8565 | frame_base_set_default (gdbarch, &i386_frame_base); |
| 8566 | |
| 8567 | /* Pseudo registers may be changed by amd64_init_abi. */ |
| 8568 | set_gdbarch_pseudo_register_read_value (gdbarch, |
| 8569 | i386_pseudo_register_read_value); |
| 8570 | set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write); |
| 8571 | set_gdbarch_ax_pseudo_register_collect (gdbarch, |
| 8572 | i386_ax_pseudo_register_collect); |
| 8573 | |
| 8574 | set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type); |
| 8575 | set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name); |
| 8576 | |
| 8577 | /* Override the normal target description method to make the AVX |
| 8578 | upper halves anonymous. */ |
| 8579 | set_gdbarch_register_name (gdbarch, i386_register_name); |
| 8580 | |
| 8581 | /* Even though the default ABI only includes general-purpose registers, |
| 8582 | floating-point registers and the SSE registers, we have to leave a |
| 8583 | gap for the upper AVX, MPX and AVX512 registers. */ |
| 8584 | set_gdbarch_num_regs (gdbarch, I386_NUM_REGS); |
| 8585 | |
| 8586 | set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp); |
| 8587 | |
| 8588 | /* Get the x86 target description from INFO. */ |
| 8589 | tdesc = info.target_desc; |
| 8590 | if (! tdesc_has_registers (tdesc)) |
| 8591 | tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false); |
| 8592 | tdep->tdesc = tdesc; |
| 8593 | |
| 8594 | tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS; |
| 8595 | tdep->register_names = i386_register_names; |
| 8596 | |
| 8597 | /* No upper YMM registers. */ |
| 8598 | tdep->ymmh_register_names = NULL; |
| 8599 | tdep->ymm0h_regnum = -1; |
| 8600 | |
| 8601 | /* No upper ZMM registers. */ |
| 8602 | tdep->zmmh_register_names = NULL; |
| 8603 | tdep->zmm0h_regnum = -1; |
| 8604 | |
| 8605 | /* No high XMM registers. */ |
| 8606 | tdep->xmm_avx512_register_names = NULL; |
| 8607 | tdep->xmm16_regnum = -1; |
| 8608 | |
| 8609 | /* No upper YMM16-31 registers. */ |
| 8610 | tdep->ymm16h_register_names = NULL; |
| 8611 | tdep->ymm16h_regnum = -1; |
| 8612 | |
| 8613 | tdep->num_byte_regs = 8; |
| 8614 | tdep->num_word_regs = 8; |
| 8615 | tdep->num_dword_regs = 0; |
| 8616 | tdep->num_mmx_regs = 8; |
| 8617 | tdep->num_ymm_regs = 0; |
| 8618 | |
| 8619 | /* No MPX registers. */ |
| 8620 | tdep->bnd0r_regnum = -1; |
| 8621 | tdep->bndcfgu_regnum = -1; |
| 8622 | |
| 8623 | /* No AVX512 registers. */ |
| 8624 | tdep->k0_regnum = -1; |
| 8625 | tdep->num_zmm_regs = 0; |
| 8626 | tdep->num_ymm_avx512_regs = 0; |
| 8627 | tdep->num_xmm_avx512_regs = 0; |
| 8628 | |
| 8629 | /* No PKEYS registers */ |
| 8630 | tdep->pkru_regnum = -1; |
| 8631 | tdep->num_pkeys_regs = 0; |
| 8632 | |
| 8633 | /* No segment base registers. */ |
| 8634 | tdep->fsbase_regnum = -1; |
| 8635 | |
| 8636 | tdesc_data = tdesc_data_alloc (); |
| 8637 | |
| 8638 | set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction); |
| 8639 | |
| 8640 | set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address); |
| 8641 | |
| 8642 | set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call); |
| 8643 | set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret); |
| 8644 | set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump); |
| 8645 | |
| 8646 | /* Hook in ABI-specific overrides, if they have been registered. |
| 8647 | Note: If INFO specifies a 64 bit arch, this is where we turn |
| 8648 | a 32-bit i386 into a 64-bit amd64. */ |
| 8649 | info.tdesc_data = tdesc_data; |
| 8650 | gdbarch_init_osabi (info, gdbarch); |
| 8651 | |
| 8652 | if (!i386_validate_tdesc_p (tdep, tdesc_data)) |
| 8653 | { |
| 8654 | tdesc_data_cleanup (tdesc_data); |
| 8655 | xfree (tdep); |
| 8656 | gdbarch_free (gdbarch); |
| 8657 | return NULL; |
| 8658 | } |
| 8659 | |
| 8660 | num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0); |
| 8661 | |
| 8662 | /* Wire in pseudo registers. Number of pseudo registers may be |
| 8663 | changed. */ |
| 8664 | set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs |
| 8665 | + tdep->num_word_regs |
| 8666 | + tdep->num_dword_regs |
| 8667 | + tdep->num_mmx_regs |
| 8668 | + tdep->num_ymm_regs |
| 8669 | + num_bnd_cooked |
| 8670 | + tdep->num_ymm_avx512_regs |
| 8671 | + tdep->num_zmm_regs)); |
| 8672 | |
| 8673 | /* Target description may be changed. */ |
| 8674 | tdesc = tdep->tdesc; |
| 8675 | |
| 8676 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); |
| 8677 | |
| 8678 | /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */ |
| 8679 | set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p); |
| 8680 | |
| 8681 | /* Make %al the first pseudo-register. */ |
| 8682 | tdep->al_regnum = gdbarch_num_regs (gdbarch); |
| 8683 | tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs; |
| 8684 | |
| 8685 | ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs; |
| 8686 | if (tdep->num_dword_regs) |
| 8687 | { |
| 8688 | /* Support dword pseudo-register if it hasn't been disabled. */ |
| 8689 | tdep->eax_regnum = ymm0_regnum; |
| 8690 | ymm0_regnum += tdep->num_dword_regs; |
| 8691 | } |
| 8692 | else |
| 8693 | tdep->eax_regnum = -1; |
| 8694 | |
| 8695 | mm0_regnum = ymm0_regnum; |
| 8696 | if (tdep->num_ymm_regs) |
| 8697 | { |
| 8698 | /* Support YMM pseudo-register if it is available. */ |
| 8699 | tdep->ymm0_regnum = ymm0_regnum; |
| 8700 | mm0_regnum += tdep->num_ymm_regs; |
| 8701 | } |
| 8702 | else |
| 8703 | tdep->ymm0_regnum = -1; |
| 8704 | |
| 8705 | if (tdep->num_ymm_avx512_regs) |
| 8706 | { |
| 8707 | /* Support YMM16-31 pseudo registers if available. */ |
| 8708 | tdep->ymm16_regnum = mm0_regnum; |
| 8709 | mm0_regnum += tdep->num_ymm_avx512_regs; |
| 8710 | } |
| 8711 | else |
| 8712 | tdep->ymm16_regnum = -1; |
| 8713 | |
| 8714 | if (tdep->num_zmm_regs) |
| 8715 | { |
| 8716 | /* Support ZMM pseudo-register if it is available. */ |
| 8717 | tdep->zmm0_regnum = mm0_regnum; |
| 8718 | mm0_regnum += tdep->num_zmm_regs; |
| 8719 | } |
| 8720 | else |
| 8721 | tdep->zmm0_regnum = -1; |
| 8722 | |
| 8723 | bnd0_regnum = mm0_regnum; |
| 8724 | if (tdep->num_mmx_regs != 0) |
| 8725 | { |
| 8726 | /* Support MMX pseudo-register if MMX hasn't been disabled. */ |
| 8727 | tdep->mm0_regnum = mm0_regnum; |
| 8728 | bnd0_regnum += tdep->num_mmx_regs; |
| 8729 | } |
| 8730 | else |
| 8731 | tdep->mm0_regnum = -1; |
| 8732 | |
| 8733 | if (tdep->bnd0r_regnum > 0) |
| 8734 | tdep->bnd0_regnum = bnd0_regnum; |
| 8735 | else |
| 8736 | tdep-> bnd0_regnum = -1; |
| 8737 | |
| 8738 | /* Hook in the legacy prologue-based unwinders last (fallback). */ |
| 8739 | frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind); |
| 8740 | frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind); |
| 8741 | frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind); |
| 8742 | |
| 8743 | /* If we have a register mapping, enable the generic core file |
| 8744 | support, unless it has already been enabled. */ |
| 8745 | if (tdep->gregset_reg_offset |
| 8746 | && !gdbarch_iterate_over_regset_sections_p (gdbarch)) |
| 8747 | set_gdbarch_iterate_over_regset_sections |
| 8748 | (gdbarch, i386_iterate_over_regset_sections); |
| 8749 | |
| 8750 | set_gdbarch_fast_tracepoint_valid_at (gdbarch, |
| 8751 | i386_fast_tracepoint_valid_at); |
| 8752 | |
| 8753 | return gdbarch; |
| 8754 | } |
| 8755 | |
| 8756 | \f |
| 8757 | |
| 8758 | /* Return the target description for a specified XSAVE feature mask. */ |
| 8759 | |
| 8760 | const struct target_desc * |
| 8761 | i386_target_description (uint64_t xcr0, bool segments) |
| 8762 | { |
| 8763 | static target_desc *i386_tdescs \ |
| 8764 | [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {}; |
| 8765 | target_desc **tdesc; |
| 8766 | |
| 8767 | tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0] |
| 8768 | [(xcr0 & X86_XSTATE_AVX) ? 1 : 0] |
| 8769 | [(xcr0 & X86_XSTATE_MPX) ? 1 : 0] |
| 8770 | [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0] |
| 8771 | [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0] |
| 8772 | [segments ? 1 : 0]; |
| 8773 | |
| 8774 | if (*tdesc == NULL) |
| 8775 | *tdesc = i386_create_target_description (xcr0, false, segments); |
| 8776 | |
| 8777 | return *tdesc; |
| 8778 | } |
| 8779 | |
| 8780 | #define MPX_BASE_MASK (~(ULONGEST) 0xfff) |
| 8781 | |
| 8782 | /* Find the bound directory base address. */ |
| 8783 | |
| 8784 | static unsigned long |
| 8785 | i386_mpx_bd_base (void) |
| 8786 | { |
| 8787 | struct regcache *rcache; |
| 8788 | struct gdbarch_tdep *tdep; |
| 8789 | ULONGEST ret; |
| 8790 | enum register_status regstatus; |
| 8791 | |
| 8792 | rcache = get_current_regcache (); |
| 8793 | tdep = gdbarch_tdep (rcache->arch ()); |
| 8794 | |
| 8795 | regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret); |
| 8796 | |
| 8797 | if (regstatus != REG_VALID) |
| 8798 | error (_("BNDCFGU register invalid, read status %d."), regstatus); |
| 8799 | |
| 8800 | return ret & MPX_BASE_MASK; |
| 8801 | } |
| 8802 | |
| 8803 | int |
| 8804 | i386_mpx_enabled (void) |
| 8805 | { |
| 8806 | const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ()); |
| 8807 | const struct target_desc *tdesc = tdep->tdesc; |
| 8808 | |
| 8809 | return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL); |
| 8810 | } |
| 8811 | |
| 8812 | #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */ |
| 8813 | #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */ |
| 8814 | #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */ |
| 8815 | #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */ |
| 8816 | |
| 8817 | /* Find the bound table entry given the pointer location and the base |
| 8818 | address of the table. */ |
| 8819 | |
| 8820 | static CORE_ADDR |
| 8821 | i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base) |
| 8822 | { |
| 8823 | CORE_ADDR offset1; |
| 8824 | CORE_ADDR offset2; |
| 8825 | CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift; |
| 8826 | CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift; |
| 8827 | CORE_ADDR bd_entry_addr; |
| 8828 | CORE_ADDR bt_addr; |
| 8829 | CORE_ADDR bd_entry; |
| 8830 | struct gdbarch *gdbarch = get_current_arch (); |
| 8831 | struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr; |
| 8832 | |
| 8833 | |
| 8834 | if (gdbarch_ptr_bit (gdbarch) == 64) |
| 8835 | { |
| 8836 | mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK; |
| 8837 | bd_ptr_r_shift = 20; |
| 8838 | bd_ptr_l_shift = 3; |
| 8839 | bt_select_r_shift = 3; |
| 8840 | bt_select_l_shift = 5; |
| 8841 | bt_mask = (CORE_ADDR) MPX_BT_MASK; |
| 8842 | |
| 8843 | if ( sizeof (CORE_ADDR) == 4) |
| 8844 | error (_("bound table examination not supported\ |
| 8845 | for 64-bit process with 32-bit GDB")); |
| 8846 | } |
| 8847 | else |
| 8848 | { |
| 8849 | mpx_bd_mask = MPX_BD_MASK_32; |
| 8850 | bd_ptr_r_shift = 12; |
| 8851 | bd_ptr_l_shift = 2; |
| 8852 | bt_select_r_shift = 2; |
| 8853 | bt_select_l_shift = 4; |
| 8854 | bt_mask = MPX_BT_MASK_32; |
| 8855 | } |
| 8856 | |
| 8857 | offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift; |
| 8858 | bd_entry_addr = bd_base + offset1; |
| 8859 | bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type); |
| 8860 | |
| 8861 | if ((bd_entry & 0x1) == 0) |
| 8862 | error (_("Invalid bounds directory entry at %s."), |
| 8863 | paddress (get_current_arch (), bd_entry_addr)); |
| 8864 | |
| 8865 | /* Clearing status bit. */ |
| 8866 | bd_entry--; |
| 8867 | bt_addr = bd_entry & ~bt_select_r_shift; |
| 8868 | offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift; |
| 8869 | |
| 8870 | return bt_addr + offset2; |
| 8871 | } |
| 8872 | |
| 8873 | /* Print routine for the mpx bounds. */ |
| 8874 | |
| 8875 | static void |
| 8876 | i386_mpx_print_bounds (const CORE_ADDR bt_entry[4]) |
| 8877 | { |
| 8878 | struct ui_out *uiout = current_uiout; |
| 8879 | LONGEST size; |
| 8880 | struct gdbarch *gdbarch = get_current_arch (); |
| 8881 | CORE_ADDR onecompl = ~((CORE_ADDR) 0); |
| 8882 | int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0); |
| 8883 | |
| 8884 | if (bounds_in_map == 1) |
| 8885 | { |
| 8886 | uiout->text ("Null bounds on map:"); |
| 8887 | uiout->text (" pointer value = "); |
| 8888 | uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]); |
| 8889 | uiout->text ("."); |
| 8890 | uiout->text ("\n"); |
| 8891 | } |
| 8892 | else |
| 8893 | { |
| 8894 | uiout->text ("{lbound = "); |
| 8895 | uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]); |
| 8896 | uiout->text (", ubound = "); |
| 8897 | |
| 8898 | /* The upper bound is stored in 1's complement. */ |
| 8899 | uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]); |
| 8900 | uiout->text ("}: pointer value = "); |
| 8901 | uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]); |
| 8902 | |
| 8903 | if (gdbarch_ptr_bit (gdbarch) == 64) |
| 8904 | size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]); |
| 8905 | else |
| 8906 | size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]); |
| 8907 | |
| 8908 | /* In case the bounds are 0x0 and 0xffff... the difference will be -1. |
| 8909 | -1 represents in this sense full memory access, and there is no need |
| 8910 | one to the size. */ |
| 8911 | |
| 8912 | size = (size > -1 ? size + 1 : size); |
| 8913 | uiout->text (", size = "); |
| 8914 | uiout->field_string ("size", plongest (size)); |
| 8915 | |
| 8916 | uiout->text (", metadata = "); |
| 8917 | uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]); |
| 8918 | uiout->text ("\n"); |
| 8919 | } |
| 8920 | } |
| 8921 | |
| 8922 | /* Implement the command "show mpx bound". */ |
| 8923 | |
| 8924 | static void |
| 8925 | i386_mpx_info_bounds (const char *args, int from_tty) |
| 8926 | { |
| 8927 | CORE_ADDR bd_base = 0; |
| 8928 | CORE_ADDR addr; |
| 8929 | CORE_ADDR bt_entry_addr = 0; |
| 8930 | CORE_ADDR bt_entry[4]; |
| 8931 | int i; |
| 8932 | struct gdbarch *gdbarch = get_current_arch (); |
| 8933 | struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr; |
| 8934 | |
| 8935 | if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386 |
| 8936 | || !i386_mpx_enabled ()) |
| 8937 | { |
| 8938 | printf_unfiltered (_("Intel Memory Protection Extensions not " |
| 8939 | "supported on this target.\n")); |
| 8940 | return; |
| 8941 | } |
| 8942 | |
| 8943 | if (args == NULL) |
| 8944 | { |
| 8945 | printf_unfiltered (_("Address of pointer variable expected.\n")); |
| 8946 | return; |
| 8947 | } |
| 8948 | |
| 8949 | addr = parse_and_eval_address (args); |
| 8950 | |
| 8951 | bd_base = i386_mpx_bd_base (); |
| 8952 | bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base); |
| 8953 | |
| 8954 | memset (bt_entry, 0, sizeof (bt_entry)); |
| 8955 | |
| 8956 | for (i = 0; i < 4; i++) |
| 8957 | bt_entry[i] = read_memory_typed_address (bt_entry_addr |
| 8958 | + i * TYPE_LENGTH (data_ptr_type), |
| 8959 | data_ptr_type); |
| 8960 | |
| 8961 | i386_mpx_print_bounds (bt_entry); |
| 8962 | } |
| 8963 | |
| 8964 | /* Implement the command "set mpx bound". */ |
| 8965 | |
| 8966 | static void |
| 8967 | i386_mpx_set_bounds (const char *args, int from_tty) |
| 8968 | { |
| 8969 | CORE_ADDR bd_base = 0; |
| 8970 | CORE_ADDR addr, lower, upper; |
| 8971 | CORE_ADDR bt_entry_addr = 0; |
| 8972 | CORE_ADDR bt_entry[2]; |
| 8973 | const char *input = args; |
| 8974 | int i; |
| 8975 | struct gdbarch *gdbarch = get_current_arch (); |
| 8976 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 8977 | struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr; |
| 8978 | |
| 8979 | if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386 |
| 8980 | || !i386_mpx_enabled ()) |
| 8981 | error (_("Intel Memory Protection Extensions not supported\ |
| 8982 | on this target.")); |
| 8983 | |
| 8984 | if (args == NULL) |
| 8985 | error (_("Pointer value expected.")); |
| 8986 | |
| 8987 | addr = value_as_address (parse_to_comma_and_eval (&input)); |
| 8988 | |
| 8989 | if (input[0] == ',') |
| 8990 | ++input; |
| 8991 | if (input[0] == '\0') |
| 8992 | error (_("wrong number of arguments: missing lower and upper bound.")); |
| 8993 | lower = value_as_address (parse_to_comma_and_eval (&input)); |
| 8994 | |
| 8995 | if (input[0] == ',') |
| 8996 | ++input; |
| 8997 | if (input[0] == '\0') |
| 8998 | error (_("Wrong number of arguments; Missing upper bound.")); |
| 8999 | upper = value_as_address (parse_to_comma_and_eval (&input)); |
| 9000 | |
| 9001 | bd_base = i386_mpx_bd_base (); |
| 9002 | bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base); |
| 9003 | for (i = 0; i < 2; i++) |
| 9004 | bt_entry[i] = read_memory_typed_address (bt_entry_addr |
| 9005 | + i * TYPE_LENGTH (data_ptr_type), |
| 9006 | data_ptr_type); |
| 9007 | bt_entry[0] = (uint64_t) lower; |
| 9008 | bt_entry[1] = ~(uint64_t) upper; |
| 9009 | |
| 9010 | for (i = 0; i < 2; i++) |
| 9011 | write_memory_unsigned_integer (bt_entry_addr |
| 9012 | + i * TYPE_LENGTH (data_ptr_type), |
| 9013 | TYPE_LENGTH (data_ptr_type), byte_order, |
| 9014 | bt_entry[i]); |
| 9015 | } |
| 9016 | |
| 9017 | static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist; |
| 9018 | |
| 9019 | /* Helper function for the CLI commands. */ |
| 9020 | |
| 9021 | static void |
| 9022 | set_mpx_cmd (const char *args, int from_tty) |
| 9023 | { |
| 9024 | help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout); |
| 9025 | } |
| 9026 | |
| 9027 | /* Helper function for the CLI commands. */ |
| 9028 | |
| 9029 | static void |
| 9030 | show_mpx_cmd (const char *args, int from_tty) |
| 9031 | { |
| 9032 | cmd_show_list (mpx_show_cmdlist, from_tty, ""); |
| 9033 | } |
| 9034 | |
| 9035 | void |
| 9036 | _initialize_i386_tdep (void) |
| 9037 | { |
| 9038 | register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init); |
| 9039 | |
| 9040 | /* Add the variable that controls the disassembly flavor. */ |
| 9041 | add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors, |
| 9042 | &disassembly_flavor, _("\ |
| 9043 | Set the disassembly flavor."), _("\ |
| 9044 | Show the disassembly flavor."), _("\ |
| 9045 | The valid values are \"att\" and \"intel\", and the default value is \"att\"."), |
| 9046 | NULL, |
| 9047 | NULL, /* FIXME: i18n: */ |
| 9048 | &setlist, &showlist); |
| 9049 | |
| 9050 | /* Add the variable that controls the convention for returning |
| 9051 | structs. */ |
| 9052 | add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions, |
| 9053 | &struct_convention, _("\ |
| 9054 | Set the convention for returning small structs."), _("\ |
| 9055 | Show the convention for returning small structs."), _("\ |
| 9056 | Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\ |
| 9057 | is \"default\"."), |
| 9058 | NULL, |
| 9059 | NULL, /* FIXME: i18n: */ |
| 9060 | &setlist, &showlist); |
| 9061 | |
| 9062 | /* Add "mpx" prefix for the set commands. */ |
| 9063 | |
| 9064 | add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\ |
| 9065 | Set Intel Memory Protection Extensions specific variables."), |
| 9066 | &mpx_set_cmdlist, "set mpx ", |
| 9067 | 0 /* allow-unknown */, &setlist); |
| 9068 | |
| 9069 | /* Add "mpx" prefix for the show commands. */ |
| 9070 | |
| 9071 | add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\ |
| 9072 | Show Intel Memory Protection Extensions specific variables."), |
| 9073 | &mpx_show_cmdlist, "show mpx ", |
| 9074 | 0 /* allow-unknown */, &showlist); |
| 9075 | |
| 9076 | /* Add "bound" command for the show mpx commands list. */ |
| 9077 | |
| 9078 | add_cmd ("bound", no_class, i386_mpx_info_bounds, |
| 9079 | "Show the memory bounds for a given array/pointer storage\ |
| 9080 | in the bound table.", |
| 9081 | &mpx_show_cmdlist); |
| 9082 | |
| 9083 | /* Add "bound" command for the set mpx commands list. */ |
| 9084 | |
| 9085 | add_cmd ("bound", no_class, i386_mpx_set_bounds, |
| 9086 | "Set the memory bounds for a given array/pointer storage\ |
| 9087 | in the bound table.", |
| 9088 | &mpx_set_cmdlist); |
| 9089 | |
| 9090 | gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4, |
| 9091 | i386_svr4_init_abi); |
| 9092 | |
| 9093 | /* Initialize the i386-specific register groups. */ |
| 9094 | i386_init_reggroups (); |
| 9095 | |
| 9096 | /* Tell remote stub that we support XML target description. */ |
| 9097 | register_remote_support_xml ("i386"); |
| 9098 | } |