ld:
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
... / ...
CommitLineData
1/* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "command.h"
25#include "dummy-frame.h"
26#include "dwarf2-frame.h"
27#include "doublest.h"
28#include "frame.h"
29#include "frame-base.h"
30#include "frame-unwind.h"
31#include "inferior.h"
32#include "gdbcmd.h"
33#include "gdbcore.h"
34#include "gdbtypes.h"
35#include "objfiles.h"
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
39#include "regset.h"
40#include "symfile.h"
41#include "symtab.h"
42#include "target.h"
43#include "value.h"
44#include "dis-asm.h"
45
46#include "gdb_assert.h"
47#include "gdb_string.h"
48
49#include "i386-tdep.h"
50#include "i387-tdep.h"
51
52/* Register names. */
53
54static char *i386_register_names[] =
55{
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67};
68
69static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
70
71/* Register names for MMX pseudo-registers. */
72
73static char *i386_mmx_names[] =
74{
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
77};
78
79static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
80
81static int
82i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
83{
84 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
85
86 if (mm0_regnum < 0)
87 return 0;
88
89 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
90}
91
92/* SSE register? */
93
94static int
95i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
96{
97 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
98
99#define I387_ST0_REGNUM tdep->st0_regnum
100#define I387_NUM_XMM_REGS tdep->num_xmm_regs
101
102 if (I387_NUM_XMM_REGS == 0)
103 return 0;
104
105 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
106
107#undef I387_ST0_REGNUM
108#undef I387_NUM_XMM_REGS
109}
110
111static int
112i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
113{
114 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
115
116#define I387_ST0_REGNUM tdep->st0_regnum
117#define I387_NUM_XMM_REGS tdep->num_xmm_regs
118
119 if (I387_NUM_XMM_REGS == 0)
120 return 0;
121
122 return (regnum == I387_MXCSR_REGNUM);
123
124#undef I387_ST0_REGNUM
125#undef I387_NUM_XMM_REGS
126}
127
128#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
129#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
130#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
131
132/* FP register? */
133
134int
135i386_fp_regnum_p (int regnum)
136{
137 if (I387_ST0_REGNUM < 0)
138 return 0;
139
140 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
141}
142
143int
144i386_fpc_regnum_p (int regnum)
145{
146 if (I387_ST0_REGNUM < 0)
147 return 0;
148
149 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
150}
151
152/* Return the name of register REGNUM. */
153
154const char *
155i386_register_name (struct gdbarch *gdbarch, int regnum)
156{
157 if (i386_mmx_regnum_p (gdbarch, regnum))
158 return i386_mmx_names[regnum - I387_MM0_REGNUM];
159
160 if (regnum >= 0 && regnum < i386_num_register_names)
161 return i386_register_names[regnum];
162
163 return NULL;
164}
165
166/* Convert a dbx register number REG to the appropriate register
167 number used by GDB. */
168
169static int
170i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
171{
172 /* This implements what GCC calls the "default" register map
173 (dbx_register_map[]). */
174
175 if (reg >= 0 && reg <= 7)
176 {
177 /* General-purpose registers. The debug info calls %ebp
178 register 4, and %esp register 5. */
179 if (reg == 4)
180 return 5;
181 else if (reg == 5)
182 return 4;
183 else return reg;
184 }
185 else if (reg >= 12 && reg <= 19)
186 {
187 /* Floating-point registers. */
188 return reg - 12 + I387_ST0_REGNUM;
189 }
190 else if (reg >= 21 && reg <= 28)
191 {
192 /* SSE registers. */
193 return reg - 21 + I387_XMM0_REGNUM;
194 }
195 else if (reg >= 29 && reg <= 36)
196 {
197 /* MMX registers. */
198 return reg - 29 + I387_MM0_REGNUM;
199 }
200
201 /* This will hopefully provoke a warning. */
202 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
203}
204
205/* Convert SVR4 register number REG to the appropriate register number
206 used by GDB. */
207
208static int
209i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
210{
211 /* This implements the GCC register map that tries to be compatible
212 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
213
214 /* The SVR4 register numbering includes %eip and %eflags, and
215 numbers the floating point registers differently. */
216 if (reg >= 0 && reg <= 9)
217 {
218 /* General-purpose registers. */
219 return reg;
220 }
221 else if (reg >= 11 && reg <= 18)
222 {
223 /* Floating-point registers. */
224 return reg - 11 + I387_ST0_REGNUM;
225 }
226 else if (reg >= 21 && reg <= 36)
227 {
228 /* The SSE and MMX registers have the same numbers as with dbx. */
229 return i386_dbx_reg_to_regnum (gdbarch, reg);
230 }
231
232 switch (reg)
233 {
234 case 37: return I387_FCTRL_REGNUM;
235 case 38: return I387_FSTAT_REGNUM;
236 case 39: return I387_MXCSR_REGNUM;
237 case 40: return I386_ES_REGNUM;
238 case 41: return I386_CS_REGNUM;
239 case 42: return I386_SS_REGNUM;
240 case 43: return I386_DS_REGNUM;
241 case 44: return I386_FS_REGNUM;
242 case 45: return I386_GS_REGNUM;
243 }
244
245 /* This will hopefully provoke a warning. */
246 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
247}
248
249#undef I387_ST0_REGNUM
250#undef I387_MM0_REGNUM
251#undef I387_NUM_XMM_REGS
252\f
253
254/* This is the variable that is set with "set disassembly-flavor", and
255 its legitimate values. */
256static const char att_flavor[] = "att";
257static const char intel_flavor[] = "intel";
258static const char *valid_flavors[] =
259{
260 att_flavor,
261 intel_flavor,
262 NULL
263};
264static const char *disassembly_flavor = att_flavor;
265\f
266
267/* Use the program counter to determine the contents and size of a
268 breakpoint instruction. Return a pointer to a string of bytes that
269 encode a breakpoint instruction, store the length of the string in
270 *LEN and optionally adjust *PC to point to the correct memory
271 location for inserting the breakpoint.
272
273 On the i386 we have a single breakpoint that fits in a single byte
274 and can be inserted anywhere.
275
276 This function is 64-bit safe. */
277
278static const gdb_byte *
279i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
280{
281 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
282
283 *len = sizeof (break_insn);
284 return break_insn;
285}
286\f
287#ifdef I386_REGNO_TO_SYMMETRY
288#error "The Sequent Symmetry is no longer supported."
289#endif
290
291/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
292 and %esp "belong" to the calling function. Therefore these
293 registers should be saved if they're going to be modified. */
294
295/* The maximum number of saved registers. This should include all
296 registers mentioned above, and %eip. */
297#define I386_NUM_SAVED_REGS I386_NUM_GREGS
298
299struct i386_frame_cache
300{
301 /* Base address. */
302 CORE_ADDR base;
303 LONGEST sp_offset;
304 CORE_ADDR pc;
305
306 /* Saved registers. */
307 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
308 CORE_ADDR saved_sp;
309 int stack_align;
310 int pc_in_eax;
311
312 /* Stack space reserved for local variables. */
313 long locals;
314};
315
316/* Allocate and initialize a frame cache. */
317
318static struct i386_frame_cache *
319i386_alloc_frame_cache (void)
320{
321 struct i386_frame_cache *cache;
322 int i;
323
324 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
325
326 /* Base address. */
327 cache->base = 0;
328 cache->sp_offset = -4;
329 cache->pc = 0;
330
331 /* Saved registers. We initialize these to -1 since zero is a valid
332 offset (that's where %ebp is supposed to be stored). */
333 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
334 cache->saved_regs[i] = -1;
335 cache->saved_sp = 0;
336 cache->stack_align = 0;
337 cache->pc_in_eax = 0;
338
339 /* Frameless until proven otherwise. */
340 cache->locals = -1;
341
342 return cache;
343}
344
345/* If the instruction at PC is a jump, return the address of its
346 target. Otherwise, return PC. */
347
348static CORE_ADDR
349i386_follow_jump (CORE_ADDR pc)
350{
351 gdb_byte op;
352 long delta = 0;
353 int data16 = 0;
354
355 read_memory_nobpt (pc, &op, 1);
356 if (op == 0x66)
357 {
358 data16 = 1;
359 op = read_memory_unsigned_integer (pc + 1, 1);
360 }
361
362 switch (op)
363 {
364 case 0xe9:
365 /* Relative jump: if data16 == 0, disp32, else disp16. */
366 if (data16)
367 {
368 delta = read_memory_integer (pc + 2, 2);
369
370 /* Include the size of the jmp instruction (including the
371 0x66 prefix). */
372 delta += 4;
373 }
374 else
375 {
376 delta = read_memory_integer (pc + 1, 4);
377
378 /* Include the size of the jmp instruction. */
379 delta += 5;
380 }
381 break;
382 case 0xeb:
383 /* Relative jump, disp8 (ignore data16). */
384 delta = read_memory_integer (pc + data16 + 1, 1);
385
386 delta += data16 + 2;
387 break;
388 }
389
390 return pc + delta;
391}
392
393/* Check whether PC points at a prologue for a function returning a
394 structure or union. If so, it updates CACHE and returns the
395 address of the first instruction after the code sequence that
396 removes the "hidden" argument from the stack or CURRENT_PC,
397 whichever is smaller. Otherwise, return PC. */
398
399static CORE_ADDR
400i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
401 struct i386_frame_cache *cache)
402{
403 /* Functions that return a structure or union start with:
404
405 popl %eax 0x58
406 xchgl %eax, (%esp) 0x87 0x04 0x24
407 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
408
409 (the System V compiler puts out the second `xchg' instruction,
410 and the assembler doesn't try to optimize it, so the 'sib' form
411 gets generated). This sequence is used to get the address of the
412 return buffer for a function that returns a structure. */
413 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
414 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
415 gdb_byte buf[4];
416 gdb_byte op;
417
418 if (current_pc <= pc)
419 return pc;
420
421 read_memory_nobpt (pc, &op, 1);
422
423 if (op != 0x58) /* popl %eax */
424 return pc;
425
426 read_memory_nobpt (pc + 1, buf, 4);
427 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
428 return pc;
429
430 if (current_pc == pc)
431 {
432 cache->sp_offset += 4;
433 return current_pc;
434 }
435
436 if (current_pc == pc + 1)
437 {
438 cache->pc_in_eax = 1;
439 return current_pc;
440 }
441
442 if (buf[1] == proto1[1])
443 return pc + 4;
444 else
445 return pc + 5;
446}
447
448static CORE_ADDR
449i386_skip_probe (CORE_ADDR pc)
450{
451 /* A function may start with
452
453 pushl constant
454 call _probe
455 addl $4, %esp
456
457 followed by
458
459 pushl %ebp
460
461 etc. */
462 gdb_byte buf[8];
463 gdb_byte op;
464
465 read_memory_nobpt (pc, &op, 1);
466
467 if (op == 0x68 || op == 0x6a)
468 {
469 int delta;
470
471 /* Skip past the `pushl' instruction; it has either a one-byte or a
472 four-byte operand, depending on the opcode. */
473 if (op == 0x68)
474 delta = 5;
475 else
476 delta = 2;
477
478 /* Read the following 8 bytes, which should be `call _probe' (6
479 bytes) followed by `addl $4,%esp' (2 bytes). */
480 read_memory (pc + delta, buf, sizeof (buf));
481 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
482 pc += delta + sizeof (buf);
483 }
484
485 return pc;
486}
487
488/* GCC 4.1 and later, can put code in the prologue to realign the
489 stack pointer. Check whether PC points to such code, and update
490 CACHE accordingly. Return the first instruction after the code
491 sequence or CURRENT_PC, whichever is smaller. If we don't
492 recognize the code, return PC. */
493
494static CORE_ADDR
495i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
496 struct i386_frame_cache *cache)
497{
498 /* The register used by the compiler to perform the stack re-alignment
499 is, in order of preference, either %ecx, %edx, or %eax. GCC should
500 never use %ebx as it always treats it as callee-saved, whereas
501 the compiler can only use caller-saved registers. */
502 static const gdb_byte insns_ecx[10] = {
503 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
504 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
505 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
506 };
507 static const gdb_byte insns_edx[10] = {
508 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
509 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
510 0xff, 0x72, 0xfc /* pushl -4(%edx) */
511 };
512 static const gdb_byte insns_eax[10] = {
513 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
514 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
515 0xff, 0x70, 0xfc /* pushl -4(%eax) */
516 };
517 gdb_byte buf[10];
518
519 if (target_read_memory (pc, buf, sizeof buf)
520 || (memcmp (buf, insns_ecx, sizeof buf) != 0
521 && memcmp (buf, insns_edx, sizeof buf) != 0
522 && memcmp (buf, insns_eax, sizeof buf) != 0))
523 return pc;
524
525 if (current_pc > pc + 4)
526 cache->stack_align = 1;
527
528 return min (pc + 10, current_pc);
529}
530
531/* Maximum instruction length we need to handle. */
532#define I386_MAX_INSN_LEN 6
533
534/* Instruction description. */
535struct i386_insn
536{
537 size_t len;
538 gdb_byte insn[I386_MAX_INSN_LEN];
539 gdb_byte mask[I386_MAX_INSN_LEN];
540};
541
542/* Search for the instruction at PC in the list SKIP_INSNS. Return
543 the first instruction description that matches. Otherwise, return
544 NULL. */
545
546static struct i386_insn *
547i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
548{
549 struct i386_insn *insn;
550 gdb_byte op;
551
552 read_memory_nobpt (pc, &op, 1);
553
554 for (insn = skip_insns; insn->len > 0; insn++)
555 {
556 if ((op & insn->mask[0]) == insn->insn[0])
557 {
558 gdb_byte buf[I386_MAX_INSN_LEN - 1];
559 int insn_matched = 1;
560 size_t i;
561
562 gdb_assert (insn->len > 1);
563 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
564
565 read_memory_nobpt (pc + 1, buf, insn->len - 1);
566 for (i = 1; i < insn->len; i++)
567 {
568 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
569 insn_matched = 0;
570 }
571
572 if (insn_matched)
573 return insn;
574 }
575 }
576
577 return NULL;
578}
579
580/* Some special instructions that might be migrated by GCC into the
581 part of the prologue that sets up the new stack frame. Because the
582 stack frame hasn't been setup yet, no registers have been saved
583 yet, and only the scratch registers %eax, %ecx and %edx can be
584 touched. */
585
586struct i386_insn i386_frame_setup_skip_insns[] =
587{
588 /* Check for `movb imm8, r' and `movl imm32, r'.
589
590 ??? Should we handle 16-bit operand-sizes here? */
591
592 /* `movb imm8, %al' and `movb imm8, %ah' */
593 /* `movb imm8, %cl' and `movb imm8, %ch' */
594 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
595 /* `movb imm8, %dl' and `movb imm8, %dh' */
596 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
597 /* `movl imm32, %eax' and `movl imm32, %ecx' */
598 { 5, { 0xb8 }, { 0xfe } },
599 /* `movl imm32, %edx' */
600 { 5, { 0xba }, { 0xff } },
601
602 /* Check for `mov imm32, r32'. Note that there is an alternative
603 encoding for `mov m32, %eax'.
604
605 ??? Should we handle SIB adressing here?
606 ??? Should we handle 16-bit operand-sizes here? */
607
608 /* `movl m32, %eax' */
609 { 5, { 0xa1 }, { 0xff } },
610 /* `movl m32, %eax' and `mov; m32, %ecx' */
611 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
612 /* `movl m32, %edx' */
613 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
614
615 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
616 Because of the symmetry, there are actually two ways to encode
617 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
618 opcode bytes 0x31 and 0x33 for `xorl'. */
619
620 /* `subl %eax, %eax' */
621 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
622 /* `subl %ecx, %ecx' */
623 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
624 /* `subl %edx, %edx' */
625 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
626 /* `xorl %eax, %eax' */
627 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
628 /* `xorl %ecx, %ecx' */
629 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
630 /* `xorl %edx, %edx' */
631 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
632 { 0 }
633};
634
635/* Check whether PC points at a code that sets up a new stack frame.
636 If so, it updates CACHE and returns the address of the first
637 instruction after the sequence that sets up the frame or LIMIT,
638 whichever is smaller. If we don't recognize the code, return PC. */
639
640static CORE_ADDR
641i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
642 struct i386_frame_cache *cache)
643{
644 struct i386_insn *insn;
645 gdb_byte op;
646 int skip = 0;
647
648 if (limit <= pc)
649 return limit;
650
651 read_memory_nobpt (pc, &op, 1);
652
653 if (op == 0x55) /* pushl %ebp */
654 {
655 /* Take into account that we've executed the `pushl %ebp' that
656 starts this instruction sequence. */
657 cache->saved_regs[I386_EBP_REGNUM] = 0;
658 cache->sp_offset += 4;
659 pc++;
660
661 /* If that's all, return now. */
662 if (limit <= pc)
663 return limit;
664
665 /* Check for some special instructions that might be migrated by
666 GCC into the prologue and skip them. At this point in the
667 prologue, code should only touch the scratch registers %eax,
668 %ecx and %edx, so while the number of posibilities is sheer,
669 it is limited.
670
671 Make sure we only skip these instructions if we later see the
672 `movl %esp, %ebp' that actually sets up the frame. */
673 while (pc + skip < limit)
674 {
675 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
676 if (insn == NULL)
677 break;
678
679 skip += insn->len;
680 }
681
682 /* If that's all, return now. */
683 if (limit <= pc + skip)
684 return limit;
685
686 read_memory_nobpt (pc + skip, &op, 1);
687
688 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
689 switch (op)
690 {
691 case 0x8b:
692 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
693 return pc;
694 break;
695 case 0x89:
696 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
697 return pc;
698 break;
699 default:
700 return pc;
701 }
702
703 /* OK, we actually have a frame. We just don't know how large
704 it is yet. Set its size to zero. We'll adjust it if
705 necessary. We also now commit to skipping the special
706 instructions mentioned before. */
707 cache->locals = 0;
708 pc += (skip + 2);
709
710 /* If that's all, return now. */
711 if (limit <= pc)
712 return limit;
713
714 /* Check for stack adjustment
715
716 subl $XXX, %esp
717
718 NOTE: You can't subtract a 16-bit immediate from a 32-bit
719 reg, so we don't have to worry about a data16 prefix. */
720 read_memory_nobpt (pc, &op, 1);
721 if (op == 0x83)
722 {
723 /* `subl' with 8-bit immediate. */
724 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
725 /* Some instruction starting with 0x83 other than `subl'. */
726 return pc;
727
728 /* `subl' with signed 8-bit immediate (though it wouldn't
729 make sense to be negative). */
730 cache->locals = read_memory_integer (pc + 2, 1);
731 return pc + 3;
732 }
733 else if (op == 0x81)
734 {
735 /* Maybe it is `subl' with a 32-bit immediate. */
736 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
737 /* Some instruction starting with 0x81 other than `subl'. */
738 return pc;
739
740 /* It is `subl' with a 32-bit immediate. */
741 cache->locals = read_memory_integer (pc + 2, 4);
742 return pc + 6;
743 }
744 else
745 {
746 /* Some instruction other than `subl'. */
747 return pc;
748 }
749 }
750 else if (op == 0xc8) /* enter */
751 {
752 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
753 return pc + 4;
754 }
755
756 return pc;
757}
758
759/* Check whether PC points at code that saves registers on the stack.
760 If so, it updates CACHE and returns the address of the first
761 instruction after the register saves or CURRENT_PC, whichever is
762 smaller. Otherwise, return PC. */
763
764static CORE_ADDR
765i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
766 struct i386_frame_cache *cache)
767{
768 CORE_ADDR offset = 0;
769 gdb_byte op;
770 int i;
771
772 if (cache->locals > 0)
773 offset -= cache->locals;
774 for (i = 0; i < 8 && pc < current_pc; i++)
775 {
776 read_memory_nobpt (pc, &op, 1);
777 if (op < 0x50 || op > 0x57)
778 break;
779
780 offset -= 4;
781 cache->saved_regs[op - 0x50] = offset;
782 cache->sp_offset += 4;
783 pc++;
784 }
785
786 return pc;
787}
788
789/* Do a full analysis of the prologue at PC and update CACHE
790 accordingly. Bail out early if CURRENT_PC is reached. Return the
791 address where the analysis stopped.
792
793 We handle these cases:
794
795 The startup sequence can be at the start of the function, or the
796 function can start with a branch to startup code at the end.
797
798 %ebp can be set up with either the 'enter' instruction, or "pushl
799 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
800 once used in the System V compiler).
801
802 Local space is allocated just below the saved %ebp by either the
803 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
804 16-bit unsigned argument for space to allocate, and the 'addl'
805 instruction could have either a signed byte, or 32-bit immediate.
806
807 Next, the registers used by this function are pushed. With the
808 System V compiler they will always be in the order: %edi, %esi,
809 %ebx (and sometimes a harmless bug causes it to also save but not
810 restore %eax); however, the code below is willing to see the pushes
811 in any order, and will handle up to 8 of them.
812
813 If the setup sequence is at the end of the function, then the next
814 instruction will be a branch back to the start. */
815
816static CORE_ADDR
817i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
818 struct i386_frame_cache *cache)
819{
820 pc = i386_follow_jump (pc);
821 pc = i386_analyze_struct_return (pc, current_pc, cache);
822 pc = i386_skip_probe (pc);
823 pc = i386_analyze_stack_align (pc, current_pc, cache);
824 pc = i386_analyze_frame_setup (pc, current_pc, cache);
825 return i386_analyze_register_saves (pc, current_pc, cache);
826}
827
828/* Return PC of first real instruction. */
829
830static CORE_ADDR
831i386_skip_prologue (CORE_ADDR start_pc)
832{
833 static gdb_byte pic_pat[6] =
834 {
835 0xe8, 0, 0, 0, 0, /* call 0x0 */
836 0x5b, /* popl %ebx */
837 };
838 struct i386_frame_cache cache;
839 CORE_ADDR pc;
840 gdb_byte op;
841 int i;
842
843 cache.locals = -1;
844 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
845 if (cache.locals < 0)
846 return start_pc;
847
848 /* Found valid frame setup. */
849
850 /* The native cc on SVR4 in -K PIC mode inserts the following code
851 to get the address of the global offset table (GOT) into register
852 %ebx:
853
854 call 0x0
855 popl %ebx
856 movl %ebx,x(%ebp) (optional)
857 addl y,%ebx
858
859 This code is with the rest of the prologue (at the end of the
860 function), so we have to skip it to get to the first real
861 instruction at the start of the function. */
862
863 for (i = 0; i < 6; i++)
864 {
865 read_memory_nobpt (pc + i, &op, 1);
866 if (pic_pat[i] != op)
867 break;
868 }
869 if (i == 6)
870 {
871 int delta = 6;
872
873 read_memory_nobpt (pc + delta, &op, 1);
874
875 if (op == 0x89) /* movl %ebx, x(%ebp) */
876 {
877 op = read_memory_unsigned_integer (pc + delta + 1, 1);
878
879 if (op == 0x5d) /* One byte offset from %ebp. */
880 delta += 3;
881 else if (op == 0x9d) /* Four byte offset from %ebp. */
882 delta += 6;
883 else /* Unexpected instruction. */
884 delta = 0;
885
886 read_memory_nobpt (pc + delta, &op, 1);
887 }
888
889 /* addl y,%ebx */
890 if (delta > 0 && op == 0x81
891 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
892 {
893 pc += delta + 6;
894 }
895 }
896
897 /* If the function starts with a branch (to startup code at the end)
898 the last instruction should bring us back to the first
899 instruction of the real code. */
900 if (i386_follow_jump (start_pc) != start_pc)
901 pc = i386_follow_jump (pc);
902
903 return pc;
904}
905
906/* This function is 64-bit safe. */
907
908static CORE_ADDR
909i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
910{
911 gdb_byte buf[8];
912
913 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
914 return extract_typed_address (buf, builtin_type_void_func_ptr);
915}
916\f
917
918/* Normal frames. */
919
920static struct i386_frame_cache *
921i386_frame_cache (struct frame_info *next_frame, void **this_cache)
922{
923 struct i386_frame_cache *cache;
924 gdb_byte buf[4];
925 int i;
926
927 if (*this_cache)
928 return *this_cache;
929
930 cache = i386_alloc_frame_cache ();
931 *this_cache = cache;
932
933 /* In principle, for normal frames, %ebp holds the frame pointer,
934 which holds the base address for the current stack frame.
935 However, for functions that don't need it, the frame pointer is
936 optional. For these "frameless" functions the frame pointer is
937 actually the frame pointer of the calling frame. Signal
938 trampolines are just a special case of a "frameless" function.
939 They (usually) share their frame pointer with the frame that was
940 in progress when the signal occurred. */
941
942 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
943 cache->base = extract_unsigned_integer (buf, 4);
944 if (cache->base == 0)
945 return cache;
946
947 /* For normal frames, %eip is stored at 4(%ebp). */
948 cache->saved_regs[I386_EIP_REGNUM] = 4;
949
950 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
951 if (cache->pc != 0)
952 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
953
954 if (cache->stack_align)
955 {
956 /* Saved stack pointer has been saved in %ecx. */
957 frame_unwind_register (next_frame, I386_ECX_REGNUM, buf);
958 cache->saved_sp = extract_unsigned_integer(buf, 4);
959 }
960
961 if (cache->locals < 0)
962 {
963 /* We didn't find a valid frame, which means that CACHE->base
964 currently holds the frame pointer for our calling frame. If
965 we're at the start of a function, or somewhere half-way its
966 prologue, the function's frame probably hasn't been fully
967 setup yet. Try to reconstruct the base address for the stack
968 frame by looking at the stack pointer. For truly "frameless"
969 functions this might work too. */
970
971 if (cache->stack_align)
972 {
973 /* We're halfway aligning the stack. */
974 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
975 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
976
977 /* This will be added back below. */
978 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
979 }
980 else
981 {
982 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
983 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
984 }
985 }
986
987 /* Now that we have the base address for the stack frame we can
988 calculate the value of %esp in the calling frame. */
989 if (cache->saved_sp == 0)
990 cache->saved_sp = cache->base + 8;
991
992 /* Adjust all the saved registers such that they contain addresses
993 instead of offsets. */
994 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
995 if (cache->saved_regs[i] != -1)
996 cache->saved_regs[i] += cache->base;
997
998 return cache;
999}
1000
1001static void
1002i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
1003 struct frame_id *this_id)
1004{
1005 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1006
1007 /* This marks the outermost frame. */
1008 if (cache->base == 0)
1009 return;
1010
1011 /* See the end of i386_push_dummy_call. */
1012 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1013}
1014
1015static void
1016i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1017 int regnum, int *optimizedp,
1018 enum lval_type *lvalp, CORE_ADDR *addrp,
1019 int *realnump, gdb_byte *valuep)
1020{
1021 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1022
1023 gdb_assert (regnum >= 0);
1024
1025 /* The System V ABI says that:
1026
1027 "The flags register contains the system flags, such as the
1028 direction flag and the carry flag. The direction flag must be
1029 set to the forward (that is, zero) direction before entry and
1030 upon exit from a function. Other user flags have no specified
1031 role in the standard calling sequence and are not preserved."
1032
1033 To guarantee the "upon exit" part of that statement we fake a
1034 saved flags register that has its direction flag cleared.
1035
1036 Note that GCC doesn't seem to rely on the fact that the direction
1037 flag is cleared after a function return; it always explicitly
1038 clears the flag before operations where it matters.
1039
1040 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1041 right thing to do. The way we fake the flags register here makes
1042 it impossible to change it. */
1043
1044 if (regnum == I386_EFLAGS_REGNUM)
1045 {
1046 *optimizedp = 0;
1047 *lvalp = not_lval;
1048 *addrp = 0;
1049 *realnump = -1;
1050 if (valuep)
1051 {
1052 ULONGEST val;
1053
1054 /* Clear the direction flag. */
1055 val = frame_unwind_register_unsigned (next_frame,
1056 I386_EFLAGS_REGNUM);
1057 val &= ~(1 << 10);
1058 store_unsigned_integer (valuep, 4, val);
1059 }
1060
1061 return;
1062 }
1063
1064 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1065 {
1066 *optimizedp = 0;
1067 *lvalp = lval_register;
1068 *addrp = 0;
1069 *realnump = I386_EAX_REGNUM;
1070 if (valuep)
1071 frame_unwind_register (next_frame, (*realnump), valuep);
1072 return;
1073 }
1074
1075 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1076 {
1077 *optimizedp = 0;
1078 *lvalp = not_lval;
1079 *addrp = 0;
1080 *realnump = -1;
1081 if (valuep)
1082 {
1083 /* Store the value. */
1084 store_unsigned_integer (valuep, 4, cache->saved_sp);
1085 }
1086 return;
1087 }
1088
1089 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1090 {
1091 *optimizedp = 0;
1092 *lvalp = lval_memory;
1093 *addrp = cache->saved_regs[regnum];
1094 *realnump = -1;
1095 if (valuep)
1096 {
1097 /* Read the value in from memory. */
1098 read_memory (*addrp, valuep,
1099 register_size (get_frame_arch (next_frame), regnum));
1100 }
1101 return;
1102 }
1103
1104 *optimizedp = 0;
1105 *lvalp = lval_register;
1106 *addrp = 0;
1107 *realnump = regnum;
1108 if (valuep)
1109 frame_unwind_register (next_frame, (*realnump), valuep);
1110}
1111
1112static const struct frame_unwind i386_frame_unwind =
1113{
1114 NORMAL_FRAME,
1115 i386_frame_this_id,
1116 i386_frame_prev_register
1117};
1118
1119static const struct frame_unwind *
1120i386_frame_sniffer (struct frame_info *next_frame)
1121{
1122 return &i386_frame_unwind;
1123}
1124\f
1125
1126/* Signal trampolines. */
1127
1128static struct i386_frame_cache *
1129i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1130{
1131 struct i386_frame_cache *cache;
1132 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1133 CORE_ADDR addr;
1134 gdb_byte buf[4];
1135
1136 if (*this_cache)
1137 return *this_cache;
1138
1139 cache = i386_alloc_frame_cache ();
1140
1141 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1142 cache->base = extract_unsigned_integer (buf, 4) - 4;
1143
1144 addr = tdep->sigcontext_addr (next_frame);
1145 if (tdep->sc_reg_offset)
1146 {
1147 int i;
1148
1149 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1150
1151 for (i = 0; i < tdep->sc_num_regs; i++)
1152 if (tdep->sc_reg_offset[i] != -1)
1153 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1154 }
1155 else
1156 {
1157 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1158 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1159 }
1160
1161 *this_cache = cache;
1162 return cache;
1163}
1164
1165static void
1166i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1167 struct frame_id *this_id)
1168{
1169 struct i386_frame_cache *cache =
1170 i386_sigtramp_frame_cache (next_frame, this_cache);
1171
1172 /* See the end of i386_push_dummy_call. */
1173 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1174}
1175
1176static void
1177i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1178 void **this_cache,
1179 int regnum, int *optimizedp,
1180 enum lval_type *lvalp, CORE_ADDR *addrp,
1181 int *realnump, gdb_byte *valuep)
1182{
1183 /* Make sure we've initialized the cache. */
1184 i386_sigtramp_frame_cache (next_frame, this_cache);
1185
1186 i386_frame_prev_register (next_frame, this_cache, regnum,
1187 optimizedp, lvalp, addrp, realnump, valuep);
1188}
1189
1190static const struct frame_unwind i386_sigtramp_frame_unwind =
1191{
1192 SIGTRAMP_FRAME,
1193 i386_sigtramp_frame_this_id,
1194 i386_sigtramp_frame_prev_register
1195};
1196
1197static const struct frame_unwind *
1198i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
1199{
1200 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1201
1202 /* We shouldn't even bother if we don't have a sigcontext_addr
1203 handler. */
1204 if (tdep->sigcontext_addr == NULL)
1205 return NULL;
1206
1207 if (tdep->sigtramp_p != NULL)
1208 {
1209 if (tdep->sigtramp_p (next_frame))
1210 return &i386_sigtramp_frame_unwind;
1211 }
1212
1213 if (tdep->sigtramp_start != 0)
1214 {
1215 CORE_ADDR pc = frame_pc_unwind (next_frame);
1216
1217 gdb_assert (tdep->sigtramp_end != 0);
1218 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1219 return &i386_sigtramp_frame_unwind;
1220 }
1221
1222 return NULL;
1223}
1224\f
1225
1226static CORE_ADDR
1227i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1228{
1229 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1230
1231 return cache->base;
1232}
1233
1234static const struct frame_base i386_frame_base =
1235{
1236 &i386_frame_unwind,
1237 i386_frame_base_address,
1238 i386_frame_base_address,
1239 i386_frame_base_address
1240};
1241
1242static struct frame_id
1243i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1244{
1245 gdb_byte buf[4];
1246 CORE_ADDR fp;
1247
1248 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1249 fp = extract_unsigned_integer (buf, 4);
1250
1251 /* See the end of i386_push_dummy_call. */
1252 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1253}
1254\f
1255
1256/* Figure out where the longjmp will land. Slurp the args out of the
1257 stack. We expect the first arg to be a pointer to the jmp_buf
1258 structure from which we extract the address that we will land at.
1259 This address is copied into PC. This routine returns non-zero on
1260 success.
1261
1262 This function is 64-bit safe. */
1263
1264static int
1265i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1266{
1267 gdb_byte buf[8];
1268 CORE_ADDR sp, jb_addr;
1269 int jb_pc_offset = gdbarch_tdep (get_frame_arch (frame))->jb_pc_offset;
1270 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1271
1272 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1273 longjmp will land. */
1274 if (jb_pc_offset == -1)
1275 return 0;
1276
1277 /* Don't use I386_ESP_REGNUM here, since this function is also used
1278 for AMD64. */
1279 get_frame_register (frame, gdbarch_sp_regnum (get_frame_arch (frame)), buf);
1280 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
1281 if (target_read_memory (sp + len, buf, len))
1282 return 0;
1283
1284 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1285 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1286 return 0;
1287
1288 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1289 return 1;
1290}
1291\f
1292
1293static CORE_ADDR
1294i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1295 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1296 struct value **args, CORE_ADDR sp, int struct_return,
1297 CORE_ADDR struct_addr)
1298{
1299 gdb_byte buf[4];
1300 int i;
1301
1302 /* Push arguments in reverse order. */
1303 for (i = nargs - 1; i >= 0; i--)
1304 {
1305 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1306
1307 /* The System V ABI says that:
1308
1309 "An argument's size is increased, if necessary, to make it a
1310 multiple of [32-bit] words. This may require tail padding,
1311 depending on the size of the argument."
1312
1313 This makes sure the stack stays word-aligned. */
1314 sp -= (len + 3) & ~3;
1315 write_memory (sp, value_contents_all (args[i]), len);
1316 }
1317
1318 /* Push value address. */
1319 if (struct_return)
1320 {
1321 sp -= 4;
1322 store_unsigned_integer (buf, 4, struct_addr);
1323 write_memory (sp, buf, 4);
1324 }
1325
1326 /* Store return address. */
1327 sp -= 4;
1328 store_unsigned_integer (buf, 4, bp_addr);
1329 write_memory (sp, buf, 4);
1330
1331 /* Finally, update the stack pointer... */
1332 store_unsigned_integer (buf, 4, sp);
1333 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1334
1335 /* ...and fake a frame pointer. */
1336 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1337
1338 /* MarkK wrote: This "+ 8" is all over the place:
1339 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1340 i386_unwind_dummy_id). It's there, since all frame unwinders for
1341 a given target have to agree (within a certain margin) on the
1342 definition of the stack address of a frame. Otherwise
1343 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1344 stack address *before* the function call as a frame's CFA. On
1345 the i386, when %ebp is used as a frame pointer, the offset
1346 between the contents %ebp and the CFA as defined by GCC. */
1347 return sp + 8;
1348}
1349
1350/* These registers are used for returning integers (and on some
1351 targets also for returning `struct' and `union' values when their
1352 size and alignment match an integer type). */
1353#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1354#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1355
1356/* Read, for architecture GDBARCH, a function return value of TYPE
1357 from REGCACHE, and copy that into VALBUF. */
1358
1359static void
1360i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1361 struct regcache *regcache, gdb_byte *valbuf)
1362{
1363 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1364 int len = TYPE_LENGTH (type);
1365 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1366
1367 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1368 {
1369 if (tdep->st0_regnum < 0)
1370 {
1371 warning (_("Cannot find floating-point return value."));
1372 memset (valbuf, 0, len);
1373 return;
1374 }
1375
1376 /* Floating-point return values can be found in %st(0). Convert
1377 its contents to the desired type. This is probably not
1378 exactly how it would happen on the target itself, but it is
1379 the best we can do. */
1380 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1381 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1382 }
1383 else
1384 {
1385 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1386 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1387
1388 if (len <= low_size)
1389 {
1390 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1391 memcpy (valbuf, buf, len);
1392 }
1393 else if (len <= (low_size + high_size))
1394 {
1395 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1396 memcpy (valbuf, buf, low_size);
1397 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1398 memcpy (valbuf + low_size, buf, len - low_size);
1399 }
1400 else
1401 internal_error (__FILE__, __LINE__,
1402 _("Cannot extract return value of %d bytes long."), len);
1403 }
1404}
1405
1406/* Write, for architecture GDBARCH, a function return value of TYPE
1407 from VALBUF into REGCACHE. */
1408
1409static void
1410i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1411 struct regcache *regcache, const gdb_byte *valbuf)
1412{
1413 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1414 int len = TYPE_LENGTH (type);
1415
1416 /* Define I387_ST0_REGNUM such that we use the proper definitions
1417 for the architecture. */
1418#define I387_ST0_REGNUM I386_ST0_REGNUM
1419
1420 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1421 {
1422 ULONGEST fstat;
1423 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1424
1425 if (tdep->st0_regnum < 0)
1426 {
1427 warning (_("Cannot set floating-point return value."));
1428 return;
1429 }
1430
1431 /* Returning floating-point values is a bit tricky. Apart from
1432 storing the return value in %st(0), we have to simulate the
1433 state of the FPU at function return point. */
1434
1435 /* Convert the value found in VALBUF to the extended
1436 floating-point format used by the FPU. This is probably
1437 not exactly how it would happen on the target itself, but
1438 it is the best we can do. */
1439 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1440 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1441
1442 /* Set the top of the floating-point register stack to 7. The
1443 actual value doesn't really matter, but 7 is what a normal
1444 function return would end up with if the program started out
1445 with a freshly initialized FPU. */
1446 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1447 fstat |= (7 << 11);
1448 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
1449
1450 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1451 the floating-point register stack to 7, the appropriate value
1452 for the tag word is 0x3fff. */
1453 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
1454 }
1455 else
1456 {
1457 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1458 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1459
1460 if (len <= low_size)
1461 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1462 else if (len <= (low_size + high_size))
1463 {
1464 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1465 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1466 len - low_size, valbuf + low_size);
1467 }
1468 else
1469 internal_error (__FILE__, __LINE__,
1470 _("Cannot store return value of %d bytes long."), len);
1471 }
1472
1473#undef I387_ST0_REGNUM
1474}
1475\f
1476
1477/* This is the variable that is set with "set struct-convention", and
1478 its legitimate values. */
1479static const char default_struct_convention[] = "default";
1480static const char pcc_struct_convention[] = "pcc";
1481static const char reg_struct_convention[] = "reg";
1482static const char *valid_conventions[] =
1483{
1484 default_struct_convention,
1485 pcc_struct_convention,
1486 reg_struct_convention,
1487 NULL
1488};
1489static const char *struct_convention = default_struct_convention;
1490
1491/* Return non-zero if TYPE, which is assumed to be a structure,
1492 a union type, or an array type, should be returned in registers
1493 for architecture GDBARCH. */
1494
1495static int
1496i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1497{
1498 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1499 enum type_code code = TYPE_CODE (type);
1500 int len = TYPE_LENGTH (type);
1501
1502 gdb_assert (code == TYPE_CODE_STRUCT
1503 || code == TYPE_CODE_UNION
1504 || code == TYPE_CODE_ARRAY);
1505
1506 if (struct_convention == pcc_struct_convention
1507 || (struct_convention == default_struct_convention
1508 && tdep->struct_return == pcc_struct_return))
1509 return 0;
1510
1511 /* Structures consisting of a single `float', `double' or 'long
1512 double' member are returned in %st(0). */
1513 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1514 {
1515 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1516 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1517 return (len == 4 || len == 8 || len == 12);
1518 }
1519
1520 return (len == 1 || len == 2 || len == 4 || len == 8);
1521}
1522
1523/* Determine, for architecture GDBARCH, how a return value of TYPE
1524 should be returned. If it is supposed to be returned in registers,
1525 and READBUF is non-zero, read the appropriate value from REGCACHE,
1526 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1527 from WRITEBUF into REGCACHE. */
1528
1529static enum return_value_convention
1530i386_return_value (struct gdbarch *gdbarch, struct type *type,
1531 struct regcache *regcache, gdb_byte *readbuf,
1532 const gdb_byte *writebuf)
1533{
1534 enum type_code code = TYPE_CODE (type);
1535
1536 if ((code == TYPE_CODE_STRUCT
1537 || code == TYPE_CODE_UNION
1538 || code == TYPE_CODE_ARRAY)
1539 && !i386_reg_struct_return_p (gdbarch, type))
1540 {
1541 /* The System V ABI says that:
1542
1543 "A function that returns a structure or union also sets %eax
1544 to the value of the original address of the caller's area
1545 before it returns. Thus when the caller receives control
1546 again, the address of the returned object resides in register
1547 %eax and can be used to access the object."
1548
1549 So the ABI guarantees that we can always find the return
1550 value just after the function has returned. */
1551
1552 /* Note that the ABI doesn't mention functions returning arrays,
1553 which is something possible in certain languages such as Ada.
1554 In this case, the value is returned as if it was wrapped in
1555 a record, so the convention applied to records also applies
1556 to arrays. */
1557
1558 if (readbuf)
1559 {
1560 ULONGEST addr;
1561
1562 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1563 read_memory (addr, readbuf, TYPE_LENGTH (type));
1564 }
1565
1566 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1567 }
1568
1569 /* This special case is for structures consisting of a single
1570 `float', `double' or 'long double' member. These structures are
1571 returned in %st(0). For these structures, we call ourselves
1572 recursively, changing TYPE into the type of the first member of
1573 the structure. Since that should work for all structures that
1574 have only one member, we don't bother to check the member's type
1575 here. */
1576 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1577 {
1578 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1579 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1580 }
1581
1582 if (readbuf)
1583 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1584 if (writebuf)
1585 i386_store_return_value (gdbarch, type, regcache, writebuf);
1586
1587 return RETURN_VALUE_REGISTER_CONVENTION;
1588}
1589\f
1590
1591/* Type for %eflags. */
1592struct type *i386_eflags_type;
1593
1594/* Type for %mxcsr. */
1595struct type *i386_mxcsr_type;
1596
1597/* Construct types for ISA-specific registers. */
1598static void
1599i386_init_types (void)
1600{
1601 struct type *type;
1602
1603 type = init_flags_type ("builtin_type_i386_eflags", 4);
1604 append_flags_type_flag (type, 0, "CF");
1605 append_flags_type_flag (type, 1, NULL);
1606 append_flags_type_flag (type, 2, "PF");
1607 append_flags_type_flag (type, 4, "AF");
1608 append_flags_type_flag (type, 6, "ZF");
1609 append_flags_type_flag (type, 7, "SF");
1610 append_flags_type_flag (type, 8, "TF");
1611 append_flags_type_flag (type, 9, "IF");
1612 append_flags_type_flag (type, 10, "DF");
1613 append_flags_type_flag (type, 11, "OF");
1614 append_flags_type_flag (type, 14, "NT");
1615 append_flags_type_flag (type, 16, "RF");
1616 append_flags_type_flag (type, 17, "VM");
1617 append_flags_type_flag (type, 18, "AC");
1618 append_flags_type_flag (type, 19, "VIF");
1619 append_flags_type_flag (type, 20, "VIP");
1620 append_flags_type_flag (type, 21, "ID");
1621 i386_eflags_type = type;
1622
1623 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1624 append_flags_type_flag (type, 0, "IE");
1625 append_flags_type_flag (type, 1, "DE");
1626 append_flags_type_flag (type, 2, "ZE");
1627 append_flags_type_flag (type, 3, "OE");
1628 append_flags_type_flag (type, 4, "UE");
1629 append_flags_type_flag (type, 5, "PE");
1630 append_flags_type_flag (type, 6, "DAZ");
1631 append_flags_type_flag (type, 7, "IM");
1632 append_flags_type_flag (type, 8, "DM");
1633 append_flags_type_flag (type, 9, "ZM");
1634 append_flags_type_flag (type, 10, "OM");
1635 append_flags_type_flag (type, 11, "UM");
1636 append_flags_type_flag (type, 12, "PM");
1637 append_flags_type_flag (type, 15, "FZ");
1638 i386_mxcsr_type = type;
1639}
1640
1641/* Construct vector type for MMX registers. */
1642struct type *
1643i386_mmx_type (struct gdbarch *gdbarch)
1644{
1645 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1646
1647 if (!tdep->i386_mmx_type)
1648 {
1649 /* The type we're building is this: */
1650#if 0
1651 union __gdb_builtin_type_vec64i
1652 {
1653 int64_t uint64;
1654 int32_t v2_int32[2];
1655 int16_t v4_int16[4];
1656 int8_t v8_int8[8];
1657 };
1658#endif
1659
1660 struct type *t;
1661
1662 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1663 append_composite_type_field (t, "uint64", builtin_type_int64);
1664 append_composite_type_field (t, "v2_int32",
1665 init_vector_type (builtin_type_int32, 2));
1666 append_composite_type_field (t, "v4_int16",
1667 init_vector_type (builtin_type_int16, 4));
1668 append_composite_type_field (t, "v8_int8",
1669 init_vector_type (builtin_type_int8, 8));
1670
1671 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1672 TYPE_NAME (t) = "builtin_type_vec64i";
1673 tdep->i386_mmx_type = t;
1674 }
1675
1676 return tdep->i386_mmx_type;
1677}
1678
1679struct type *
1680i386_sse_type (struct gdbarch *gdbarch)
1681{
1682 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1683
1684 if (!tdep->i386_sse_type)
1685 {
1686 /* The type we're building is this: */
1687#if 0
1688 union __gdb_builtin_type_vec128i
1689 {
1690 int128_t uint128;
1691 int64_t v2_int64[2];
1692 int32_t v4_int32[4];
1693 int16_t v8_int16[8];
1694 int8_t v16_int8[16];
1695 double v2_double[2];
1696 float v4_float[4];
1697 };
1698#endif
1699
1700 struct type *t;
1701
1702 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1703 append_composite_type_field (t, "v4_float",
1704 init_vector_type (builtin_type_float, 4));
1705 append_composite_type_field (t, "v2_double",
1706 init_vector_type (builtin_type_double, 2));
1707 append_composite_type_field (t, "v16_int8",
1708 init_vector_type (builtin_type_int8, 16));
1709 append_composite_type_field (t, "v8_int16",
1710 init_vector_type (builtin_type_int16, 8));
1711 append_composite_type_field (t, "v4_int32",
1712 init_vector_type (builtin_type_int32, 4));
1713 append_composite_type_field (t, "v2_int64",
1714 init_vector_type (builtin_type_int64, 2));
1715 append_composite_type_field (t, "uint128", builtin_type_int128);
1716
1717 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1718 TYPE_NAME (t) = "builtin_type_vec128i";
1719 tdep->i386_sse_type = t;
1720 }
1721
1722 return tdep->i386_sse_type;
1723}
1724
1725/* Return the GDB type object for the "standard" data type of data in
1726 register REGNUM. Perhaps %esi and %edi should go here, but
1727 potentially they could be used for things other than address. */
1728
1729static struct type *
1730i386_register_type (struct gdbarch *gdbarch, int regnum)
1731{
1732 if (regnum == I386_EIP_REGNUM)
1733 return builtin_type_void_func_ptr;
1734
1735 if (regnum == I386_EFLAGS_REGNUM)
1736 return i386_eflags_type;
1737
1738 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1739 return builtin_type_void_data_ptr;
1740
1741 if (i386_fp_regnum_p (regnum))
1742 return builtin_type_i387_ext;
1743
1744 if (i386_mmx_regnum_p (gdbarch, regnum))
1745 return i386_mmx_type (gdbarch);
1746
1747 if (i386_sse_regnum_p (gdbarch, regnum))
1748 return i386_sse_type (gdbarch);
1749
1750#define I387_ST0_REGNUM I386_ST0_REGNUM
1751#define I387_NUM_XMM_REGS (gdbarch_tdep (gdbarch)->num_xmm_regs)
1752
1753 if (regnum == I387_MXCSR_REGNUM)
1754 return i386_mxcsr_type;
1755
1756#undef I387_ST0_REGNUM
1757#undef I387_NUM_XMM_REGS
1758
1759 return builtin_type_int;
1760}
1761
1762/* Map a cooked register onto a raw register or memory. For the i386,
1763 the MMX registers need to be mapped onto floating point registers. */
1764
1765static int
1766i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1767{
1768 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1769 int mmxreg, fpreg;
1770 ULONGEST fstat;
1771 int tos;
1772
1773 /* Define I387_ST0_REGNUM such that we use the proper definitions
1774 for REGCACHE's architecture. */
1775#define I387_ST0_REGNUM tdep->st0_regnum
1776
1777 mmxreg = regnum - tdep->mm0_regnum;
1778 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1779 tos = (fstat >> 11) & 0x7;
1780 fpreg = (mmxreg + tos) % 8;
1781
1782 return (I387_ST0_REGNUM + fpreg);
1783
1784#undef I387_ST0_REGNUM
1785}
1786
1787static void
1788i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1789 int regnum, gdb_byte *buf)
1790{
1791 if (i386_mmx_regnum_p (gdbarch, regnum))
1792 {
1793 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1794 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1795
1796 /* Extract (always little endian). */
1797 regcache_raw_read (regcache, fpnum, mmx_buf);
1798 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1799 }
1800 else
1801 regcache_raw_read (regcache, regnum, buf);
1802}
1803
1804static void
1805i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1806 int regnum, const gdb_byte *buf)
1807{
1808 if (i386_mmx_regnum_p (gdbarch, regnum))
1809 {
1810 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1811 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1812
1813 /* Read ... */
1814 regcache_raw_read (regcache, fpnum, mmx_buf);
1815 /* ... Modify ... (always little endian). */
1816 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1817 /* ... Write. */
1818 regcache_raw_write (regcache, fpnum, mmx_buf);
1819 }
1820 else
1821 regcache_raw_write (regcache, regnum, buf);
1822}
1823\f
1824
1825/* Return the register number of the register allocated by GCC after
1826 REGNUM, or -1 if there is no such register. */
1827
1828static int
1829i386_next_regnum (int regnum)
1830{
1831 /* GCC allocates the registers in the order:
1832
1833 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1834
1835 Since storing a variable in %esp doesn't make any sense we return
1836 -1 for %ebp and for %esp itself. */
1837 static int next_regnum[] =
1838 {
1839 I386_EDX_REGNUM, /* Slot for %eax. */
1840 I386_EBX_REGNUM, /* Slot for %ecx. */
1841 I386_ECX_REGNUM, /* Slot for %edx. */
1842 I386_ESI_REGNUM, /* Slot for %ebx. */
1843 -1, -1, /* Slots for %esp and %ebp. */
1844 I386_EDI_REGNUM, /* Slot for %esi. */
1845 I386_EBP_REGNUM /* Slot for %edi. */
1846 };
1847
1848 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1849 return next_regnum[regnum];
1850
1851 return -1;
1852}
1853
1854/* Return nonzero if a value of type TYPE stored in register REGNUM
1855 needs any special handling. */
1856
1857static int
1858i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
1859{
1860 int len = TYPE_LENGTH (type);
1861
1862 /* Values may be spread across multiple registers. Most debugging
1863 formats aren't expressive enough to specify the locations, so
1864 some heuristics is involved. Right now we only handle types that
1865 have a length that is a multiple of the word size, since GCC
1866 doesn't seem to put any other types into registers. */
1867 if (len > 4 && len % 4 == 0)
1868 {
1869 int last_regnum = regnum;
1870
1871 while (len > 4)
1872 {
1873 last_regnum = i386_next_regnum (last_regnum);
1874 len -= 4;
1875 }
1876
1877 if (last_regnum != -1)
1878 return 1;
1879 }
1880
1881 return i387_convert_register_p (gdbarch, regnum, type);
1882}
1883
1884/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1885 return its contents in TO. */
1886
1887static void
1888i386_register_to_value (struct frame_info *frame, int regnum,
1889 struct type *type, gdb_byte *to)
1890{
1891 int len = TYPE_LENGTH (type);
1892
1893 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1894 available in FRAME (i.e. if it wasn't saved)? */
1895
1896 if (i386_fp_regnum_p (regnum))
1897 {
1898 i387_register_to_value (frame, regnum, type, to);
1899 return;
1900 }
1901
1902 /* Read a value spread across multiple registers. */
1903
1904 gdb_assert (len > 4 && len % 4 == 0);
1905
1906 while (len > 0)
1907 {
1908 gdb_assert (regnum != -1);
1909 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
1910
1911 get_frame_register (frame, regnum, to);
1912 regnum = i386_next_regnum (regnum);
1913 len -= 4;
1914 to += 4;
1915 }
1916}
1917
1918/* Write the contents FROM of a value of type TYPE into register
1919 REGNUM in frame FRAME. */
1920
1921static void
1922i386_value_to_register (struct frame_info *frame, int regnum,
1923 struct type *type, const gdb_byte *from)
1924{
1925 int len = TYPE_LENGTH (type);
1926
1927 if (i386_fp_regnum_p (regnum))
1928 {
1929 i387_value_to_register (frame, regnum, type, from);
1930 return;
1931 }
1932
1933 /* Write a value spread across multiple registers. */
1934
1935 gdb_assert (len > 4 && len % 4 == 0);
1936
1937 while (len > 0)
1938 {
1939 gdb_assert (regnum != -1);
1940 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
1941
1942 put_frame_register (frame, regnum, from);
1943 regnum = i386_next_regnum (regnum);
1944 len -= 4;
1945 from += 4;
1946 }
1947}
1948\f
1949/* Supply register REGNUM from the buffer specified by GREGS and LEN
1950 in the general-purpose register set REGSET to register cache
1951 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1952
1953void
1954i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1955 int regnum, const void *gregs, size_t len)
1956{
1957 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1958 const gdb_byte *regs = gregs;
1959 int i;
1960
1961 gdb_assert (len == tdep->sizeof_gregset);
1962
1963 for (i = 0; i < tdep->gregset_num_regs; i++)
1964 {
1965 if ((regnum == i || regnum == -1)
1966 && tdep->gregset_reg_offset[i] != -1)
1967 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1968 }
1969}
1970
1971/* Collect register REGNUM from the register cache REGCACHE and store
1972 it in the buffer specified by GREGS and LEN as described by the
1973 general-purpose register set REGSET. If REGNUM is -1, do this for
1974 all registers in REGSET. */
1975
1976void
1977i386_collect_gregset (const struct regset *regset,
1978 const struct regcache *regcache,
1979 int regnum, void *gregs, size_t len)
1980{
1981 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1982 gdb_byte *regs = gregs;
1983 int i;
1984
1985 gdb_assert (len == tdep->sizeof_gregset);
1986
1987 for (i = 0; i < tdep->gregset_num_regs; i++)
1988 {
1989 if ((regnum == i || regnum == -1)
1990 && tdep->gregset_reg_offset[i] != -1)
1991 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1992 }
1993}
1994
1995/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1996 in the floating-point register set REGSET to register cache
1997 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1998
1999static void
2000i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2001 int regnum, const void *fpregs, size_t len)
2002{
2003 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2004
2005 if (len == I387_SIZEOF_FXSAVE)
2006 {
2007 i387_supply_fxsave (regcache, regnum, fpregs);
2008 return;
2009 }
2010
2011 gdb_assert (len == tdep->sizeof_fpregset);
2012 i387_supply_fsave (regcache, regnum, fpregs);
2013}
2014
2015/* Collect register REGNUM from the register cache REGCACHE and store
2016 it in the buffer specified by FPREGS and LEN as described by the
2017 floating-point register set REGSET. If REGNUM is -1, do this for
2018 all registers in REGSET. */
2019
2020static void
2021i386_collect_fpregset (const struct regset *regset,
2022 const struct regcache *regcache,
2023 int regnum, void *fpregs, size_t len)
2024{
2025 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2026
2027 if (len == I387_SIZEOF_FXSAVE)
2028 {
2029 i387_collect_fxsave (regcache, regnum, fpregs);
2030 return;
2031 }
2032
2033 gdb_assert (len == tdep->sizeof_fpregset);
2034 i387_collect_fsave (regcache, regnum, fpregs);
2035}
2036
2037/* Return the appropriate register set for the core section identified
2038 by SECT_NAME and SECT_SIZE. */
2039
2040const struct regset *
2041i386_regset_from_core_section (struct gdbarch *gdbarch,
2042 const char *sect_name, size_t sect_size)
2043{
2044 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2045
2046 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2047 {
2048 if (tdep->gregset == NULL)
2049 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2050 i386_collect_gregset);
2051 return tdep->gregset;
2052 }
2053
2054 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2055 || (strcmp (sect_name, ".reg-xfp") == 0
2056 && sect_size == I387_SIZEOF_FXSAVE))
2057 {
2058 if (tdep->fpregset == NULL)
2059 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2060 i386_collect_fpregset);
2061 return tdep->fpregset;
2062 }
2063
2064 return NULL;
2065}
2066\f
2067
2068/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2069
2070CORE_ADDR
2071i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
2072{
2073 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
2074 {
2075 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
2076 struct minimal_symbol *indsym =
2077 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2078 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2079
2080 if (symname)
2081 {
2082 if (strncmp (symname, "__imp_", 6) == 0
2083 || strncmp (symname, "_imp_", 5) == 0)
2084 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2085 }
2086 }
2087 return 0; /* Not a trampoline. */
2088}
2089\f
2090
2091/* Return whether the frame preceding NEXT_FRAME corresponds to a
2092 sigtramp routine. */
2093
2094static int
2095i386_sigtramp_p (struct frame_info *next_frame)
2096{
2097 CORE_ADDR pc = frame_pc_unwind (next_frame);
2098 char *name;
2099
2100 find_pc_partial_function (pc, &name, NULL, NULL);
2101 return (name && strcmp ("_sigtramp", name) == 0);
2102}
2103\f
2104
2105/* We have two flavours of disassembly. The machinery on this page
2106 deals with switching between those. */
2107
2108static int
2109i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2110{
2111 gdb_assert (disassembly_flavor == att_flavor
2112 || disassembly_flavor == intel_flavor);
2113
2114 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2115 constified, cast to prevent a compiler warning. */
2116 info->disassembler_options = (char *) disassembly_flavor;
2117 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
2118
2119 return print_insn_i386 (pc, info);
2120}
2121\f
2122
2123/* There are a few i386 architecture variants that differ only
2124 slightly from the generic i386 target. For now, we don't give them
2125 their own source file, but include them here. As a consequence,
2126 they'll always be included. */
2127
2128/* System V Release 4 (SVR4). */
2129
2130/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
2131 sigtramp routine. */
2132
2133static int
2134i386_svr4_sigtramp_p (struct frame_info *next_frame)
2135{
2136 CORE_ADDR pc = frame_pc_unwind (next_frame);
2137 char *name;
2138
2139 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2140 currently unknown. */
2141 find_pc_partial_function (pc, &name, NULL, NULL);
2142 return (name && (strcmp ("_sigreturn", name) == 0
2143 || strcmp ("_sigacthandler", name) == 0
2144 || strcmp ("sigvechandler", name) == 0));
2145}
2146
2147/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2148 routine, return the address of the associated sigcontext (ucontext)
2149 structure. */
2150
2151static CORE_ADDR
2152i386_svr4_sigcontext_addr (struct frame_info *next_frame)
2153{
2154 gdb_byte buf[4];
2155 CORE_ADDR sp;
2156
2157 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2158 sp = extract_unsigned_integer (buf, 4);
2159
2160 return read_memory_unsigned_integer (sp + 8, 4);
2161}
2162\f
2163
2164/* Generic ELF. */
2165
2166void
2167i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2168{
2169 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2170 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2171}
2172
2173/* System V Release 4 (SVR4). */
2174
2175void
2176i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2177{
2178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2179
2180 /* System V Release 4 uses ELF. */
2181 i386_elf_init_abi (info, gdbarch);
2182
2183 /* System V Release 4 has shared libraries. */
2184 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2185
2186 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2187 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2188 tdep->sc_pc_offset = 36 + 14 * 4;
2189 tdep->sc_sp_offset = 36 + 17 * 4;
2190
2191 tdep->jb_pc_offset = 20;
2192}
2193
2194/* DJGPP. */
2195
2196static void
2197i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2198{
2199 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2200
2201 /* DJGPP doesn't have any special frames for signal handlers. */
2202 tdep->sigtramp_p = NULL;
2203
2204 tdep->jb_pc_offset = 36;
2205}
2206\f
2207
2208/* i386 register groups. In addition to the normal groups, add "mmx"
2209 and "sse". */
2210
2211static struct reggroup *i386_sse_reggroup;
2212static struct reggroup *i386_mmx_reggroup;
2213
2214static void
2215i386_init_reggroups (void)
2216{
2217 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2218 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2219}
2220
2221static void
2222i386_add_reggroups (struct gdbarch *gdbarch)
2223{
2224 reggroup_add (gdbarch, i386_sse_reggroup);
2225 reggroup_add (gdbarch, i386_mmx_reggroup);
2226 reggroup_add (gdbarch, general_reggroup);
2227 reggroup_add (gdbarch, float_reggroup);
2228 reggroup_add (gdbarch, all_reggroup);
2229 reggroup_add (gdbarch, save_reggroup);
2230 reggroup_add (gdbarch, restore_reggroup);
2231 reggroup_add (gdbarch, vector_reggroup);
2232 reggroup_add (gdbarch, system_reggroup);
2233}
2234
2235int
2236i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2237 struct reggroup *group)
2238{
2239 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2240 || i386_mxcsr_regnum_p (gdbarch, regnum));
2241 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2242 || i386_fpc_regnum_p (regnum));
2243 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2244
2245 if (group == i386_mmx_reggroup)
2246 return mmx_regnum_p;
2247 if (group == i386_sse_reggroup)
2248 return sse_regnum_p;
2249 if (group == vector_reggroup)
2250 return (mmx_regnum_p || sse_regnum_p);
2251 if (group == float_reggroup)
2252 return fp_regnum_p;
2253 if (group == general_reggroup)
2254 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2255
2256 return default_register_reggroup_p (gdbarch, regnum, group);
2257}
2258\f
2259
2260/* Get the ARGIth function argument for the current function. */
2261
2262static CORE_ADDR
2263i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2264 struct type *type)
2265{
2266 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2267 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2268}
2269
2270\f
2271static struct gdbarch *
2272i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2273{
2274 struct gdbarch_tdep *tdep;
2275 struct gdbarch *gdbarch;
2276
2277 /* If there is already a candidate, use it. */
2278 arches = gdbarch_list_lookup_by_info (arches, &info);
2279 if (arches != NULL)
2280 return arches->gdbarch;
2281
2282 /* Allocate space for the new architecture. */
2283 tdep = XCALLOC (1, struct gdbarch_tdep);
2284 gdbarch = gdbarch_alloc (&info, tdep);
2285
2286 /* General-purpose registers. */
2287 tdep->gregset = NULL;
2288 tdep->gregset_reg_offset = NULL;
2289 tdep->gregset_num_regs = I386_NUM_GREGS;
2290 tdep->sizeof_gregset = 0;
2291
2292 /* Floating-point registers. */
2293 tdep->fpregset = NULL;
2294 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2295
2296 /* The default settings include the FPU registers, the MMX registers
2297 and the SSE registers. This can be overridden for a specific ABI
2298 by adjusting the members `st0_regnum', `mm0_regnum' and
2299 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2300 will show up in the output of "info all-registers". Ideally we
2301 should try to autodetect whether they are available, such that we
2302 can prevent "info all-registers" from displaying registers that
2303 aren't available.
2304
2305 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2306 [the SSE registers] always (even when they don't exist) or never
2307 showing them to the user (even when they do exist), I prefer the
2308 former over the latter. */
2309
2310 tdep->st0_regnum = I386_ST0_REGNUM;
2311
2312 /* The MMX registers are implemented as pseudo-registers. Put off
2313 calculating the register number for %mm0 until we know the number
2314 of raw registers. */
2315 tdep->mm0_regnum = 0;
2316
2317 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2318 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2319
2320 tdep->jb_pc_offset = -1;
2321 tdep->struct_return = pcc_struct_return;
2322 tdep->sigtramp_start = 0;
2323 tdep->sigtramp_end = 0;
2324 tdep->sigtramp_p = i386_sigtramp_p;
2325 tdep->sigcontext_addr = NULL;
2326 tdep->sc_reg_offset = NULL;
2327 tdep->sc_pc_offset = -1;
2328 tdep->sc_sp_offset = -1;
2329
2330 /* The format used for `long double' on almost all i386 targets is
2331 the i387 extended floating-point format. In fact, of all targets
2332 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2333 on having a `long double' that's not `long' at all. */
2334 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
2335
2336 /* Although the i387 extended floating-point has only 80 significant
2337 bits, a `long double' actually takes up 96, probably to enforce
2338 alignment. */
2339 set_gdbarch_long_double_bit (gdbarch, 96);
2340
2341 /* The default ABI includes general-purpose registers,
2342 floating-point registers, and the SSE registers. */
2343 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2344 set_gdbarch_register_name (gdbarch, i386_register_name);
2345 set_gdbarch_register_type (gdbarch, i386_register_type);
2346
2347 /* Register numbers of various important registers. */
2348 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2349 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2350 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2351 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2352
2353 /* NOTE: kettenis/20040418: GCC does have two possible register
2354 numbering schemes on the i386: dbx and SVR4. These schemes
2355 differ in how they number %ebp, %esp, %eflags, and the
2356 floating-point registers, and are implemented by the arrays
2357 dbx_register_map[] and svr4_dbx_register_map in
2358 gcc/config/i386.c. GCC also defines a third numbering scheme in
2359 gcc/config/i386.c, which it designates as the "default" register
2360 map used in 64bit mode. This last register numbering scheme is
2361 implemented in dbx64_register_map, and is used for AMD64; see
2362 amd64-tdep.c.
2363
2364 Currently, each GCC i386 target always uses the same register
2365 numbering scheme across all its supported debugging formats
2366 i.e. SDB (COFF), stabs and DWARF 2. This is because
2367 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2368 DBX_REGISTER_NUMBER macro which is defined by each target's
2369 respective config header in a manner independent of the requested
2370 output debugging format.
2371
2372 This does not match the arrangement below, which presumes that
2373 the SDB and stabs numbering schemes differ from the DWARF and
2374 DWARF 2 ones. The reason for this arrangement is that it is
2375 likely to get the numbering scheme for the target's
2376 default/native debug format right. For targets where GCC is the
2377 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2378 targets where the native toolchain uses a different numbering
2379 scheme for a particular debug format (stabs-in-ELF on Solaris)
2380 the defaults below will have to be overridden, like
2381 i386_elf_init_abi() does. */
2382
2383 /* Use the dbx register numbering scheme for stabs and COFF. */
2384 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2385 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2386
2387 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2388 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2389 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2390
2391 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
2392 be in use on any of the supported i386 targets. */
2393
2394 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2395
2396 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2397
2398 /* Call dummy code. */
2399 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2400
2401 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2402 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2403 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2404
2405 set_gdbarch_return_value (gdbarch, i386_return_value);
2406
2407 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2408
2409 /* Stack grows downward. */
2410 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2411
2412 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2413 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2414
2415 set_gdbarch_frame_args_skip (gdbarch, 8);
2416
2417 /* Wire in the MMX registers. */
2418 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2419 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2420 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2421
2422 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2423
2424 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
2425
2426 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2427
2428 /* Add the i386 register groups. */
2429 i386_add_reggroups (gdbarch);
2430 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2431
2432 /* Helper for function argument information. */
2433 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2434
2435 /* Hook in the DWARF CFI frame unwinder. */
2436 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2437
2438 frame_base_set_default (gdbarch, &i386_frame_base);
2439
2440 /* Hook in ABI-specific overrides, if they have been registered. */
2441 gdbarch_init_osabi (info, gdbarch);
2442
2443 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2444 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
2445
2446 /* If we have a register mapping, enable the generic core file
2447 support, unless it has already been enabled. */
2448 if (tdep->gregset_reg_offset
2449 && !gdbarch_regset_from_core_section_p (gdbarch))
2450 set_gdbarch_regset_from_core_section (gdbarch,
2451 i386_regset_from_core_section);
2452
2453 /* Unless support for MMX has been disabled, make %mm0 the first
2454 pseudo-register. */
2455 if (tdep->mm0_regnum == 0)
2456 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2457
2458 return gdbarch;
2459}
2460
2461static enum gdb_osabi
2462i386_coff_osabi_sniffer (bfd *abfd)
2463{
2464 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2465 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2466 return GDB_OSABI_GO32;
2467
2468 return GDB_OSABI_UNKNOWN;
2469}
2470\f
2471
2472/* Provide a prototype to silence -Wmissing-prototypes. */
2473void _initialize_i386_tdep (void);
2474
2475void
2476_initialize_i386_tdep (void)
2477{
2478 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2479
2480 /* Add the variable that controls the disassembly flavor. */
2481 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2482 &disassembly_flavor, _("\
2483Set the disassembly flavor."), _("\
2484Show the disassembly flavor."), _("\
2485The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2486 NULL,
2487 NULL, /* FIXME: i18n: */
2488 &setlist, &showlist);
2489
2490 /* Add the variable that controls the convention for returning
2491 structs. */
2492 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2493 &struct_convention, _("\
2494Set the convention for returning small structs."), _("\
2495Show the convention for returning small structs."), _("\
2496Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2497is \"default\"."),
2498 NULL,
2499 NULL, /* FIXME: i18n: */
2500 &setlist, &showlist);
2501
2502 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2503 i386_coff_osabi_sniffer);
2504
2505 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2506 i386_svr4_init_abi);
2507 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2508 i386_go32_init_abi);
2509
2510 /* Initialize the i386-specific register groups & types. */
2511 i386_init_reggroups ();
2512 i386_init_types();
2513}
This page took 0.031587 seconds and 4 git commands to generate.