* gdbarch.sh (make_corefile_notes): New architecture callback.
[deliverable/binutils-gdb.git] / gdb / infrun.c
... / ...
CommitLineData
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "exceptions.h"
28#include "breakpoint.h"
29#include "gdb_wait.h"
30#include "gdbcore.h"
31#include "gdbcmd.h"
32#include "cli/cli-script.h"
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
36#include "symfile.h"
37#include "top.h"
38#include <signal.h>
39#include "inf-loop.h"
40#include "regcache.h"
41#include "value.h"
42#include "observer.h"
43#include "language.h"
44#include "solib.h"
45#include "main.h"
46#include "dictionary.h"
47#include "block.h"
48#include "gdb_assert.h"
49#include "mi/mi-common.h"
50#include "event-top.h"
51#include "record.h"
52#include "inline-frame.h"
53#include "jit.h"
54#include "tracepoint.h"
55#include "continuations.h"
56#include "interps.h"
57#include "skip.h"
58
59/* Prototypes for local functions */
60
61static void signals_info (char *, int);
62
63static void handle_command (char *, int);
64
65static void sig_print_info (enum target_signal);
66
67static void sig_print_header (void);
68
69static void resume_cleanups (void *);
70
71static int hook_stop_stub (void *);
72
73static int restore_selected_frame (void *);
74
75static int follow_fork (void);
76
77static void set_schedlock_func (char *args, int from_tty,
78 struct cmd_list_element *c);
79
80static int currently_stepping (struct thread_info *tp);
81
82static int currently_stepping_or_nexting_callback (struct thread_info *tp,
83 void *data);
84
85static void xdb_handle_command (char *args, int from_tty);
86
87static int prepare_to_proceed (int);
88
89static void print_exited_reason (int exitstatus);
90
91static void print_signal_exited_reason (enum target_signal siggnal);
92
93static void print_no_history_reason (void);
94
95static void print_signal_received_reason (enum target_signal siggnal);
96
97static void print_end_stepping_range_reason (void);
98
99void _initialize_infrun (void);
100
101void nullify_last_target_wait_ptid (void);
102
103static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
104
105static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
106
107static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
108
109/* When set, stop the 'step' command if we enter a function which has
110 no line number information. The normal behavior is that we step
111 over such function. */
112int step_stop_if_no_debug = 0;
113static void
114show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116{
117 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
118}
119
120/* In asynchronous mode, but simulating synchronous execution. */
121
122int sync_execution = 0;
123
124/* wait_for_inferior and normal_stop use this to notify the user
125 when the inferior stopped in a different thread than it had been
126 running in. */
127
128static ptid_t previous_inferior_ptid;
129
130/* Default behavior is to detach newly forked processes (legacy). */
131int detach_fork = 1;
132
133int debug_displaced = 0;
134static void
135show_debug_displaced (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
139}
140
141int debug_infrun = 0;
142static void
143show_debug_infrun (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
146 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
147}
148
149
150/* Support for disabling address space randomization. */
151
152int disable_randomization = 1;
153
154static void
155show_disable_randomization (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 if (target_supports_disable_randomization ())
159 fprintf_filtered (file,
160 _("Disabling randomization of debuggee's "
161 "virtual address space is %s.\n"),
162 value);
163 else
164 fputs_filtered (_("Disabling randomization of debuggee's "
165 "virtual address space is unsupported on\n"
166 "this platform.\n"), file);
167}
168
169static void
170set_disable_randomization (char *args, int from_tty,
171 struct cmd_list_element *c)
172{
173 if (!target_supports_disable_randomization ())
174 error (_("Disabling randomization of debuggee's "
175 "virtual address space is unsupported on\n"
176 "this platform."));
177}
178
179
180/* If the program uses ELF-style shared libraries, then calls to
181 functions in shared libraries go through stubs, which live in a
182 table called the PLT (Procedure Linkage Table). The first time the
183 function is called, the stub sends control to the dynamic linker,
184 which looks up the function's real address, patches the stub so
185 that future calls will go directly to the function, and then passes
186 control to the function.
187
188 If we are stepping at the source level, we don't want to see any of
189 this --- we just want to skip over the stub and the dynamic linker.
190 The simple approach is to single-step until control leaves the
191 dynamic linker.
192
193 However, on some systems (e.g., Red Hat's 5.2 distribution) the
194 dynamic linker calls functions in the shared C library, so you
195 can't tell from the PC alone whether the dynamic linker is still
196 running. In this case, we use a step-resume breakpoint to get us
197 past the dynamic linker, as if we were using "next" to step over a
198 function call.
199
200 in_solib_dynsym_resolve_code() says whether we're in the dynamic
201 linker code or not. Normally, this means we single-step. However,
202 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
203 address where we can place a step-resume breakpoint to get past the
204 linker's symbol resolution function.
205
206 in_solib_dynsym_resolve_code() can generally be implemented in a
207 pretty portable way, by comparing the PC against the address ranges
208 of the dynamic linker's sections.
209
210 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
211 it depends on internal details of the dynamic linker. It's usually
212 not too hard to figure out where to put a breakpoint, but it
213 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
214 sanity checking. If it can't figure things out, returning zero and
215 getting the (possibly confusing) stepping behavior is better than
216 signalling an error, which will obscure the change in the
217 inferior's state. */
218
219/* This function returns TRUE if pc is the address of an instruction
220 that lies within the dynamic linker (such as the event hook, or the
221 dld itself).
222
223 This function must be used only when a dynamic linker event has
224 been caught, and the inferior is being stepped out of the hook, or
225 undefined results are guaranteed. */
226
227#ifndef SOLIB_IN_DYNAMIC_LINKER
228#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
229#endif
230
231/* "Observer mode" is somewhat like a more extreme version of
232 non-stop, in which all GDB operations that might affect the
233 target's execution have been disabled. */
234
235static int non_stop_1 = 0;
236
237int observer_mode = 0;
238static int observer_mode_1 = 0;
239
240static void
241set_observer_mode (char *args, int from_tty,
242 struct cmd_list_element *c)
243{
244 extern int pagination_enabled;
245
246 if (target_has_execution)
247 {
248 observer_mode_1 = observer_mode;
249 error (_("Cannot change this setting while the inferior is running."));
250 }
251
252 observer_mode = observer_mode_1;
253
254 may_write_registers = !observer_mode;
255 may_write_memory = !observer_mode;
256 may_insert_breakpoints = !observer_mode;
257 may_insert_tracepoints = !observer_mode;
258 /* We can insert fast tracepoints in or out of observer mode,
259 but enable them if we're going into this mode. */
260 if (observer_mode)
261 may_insert_fast_tracepoints = 1;
262 may_stop = !observer_mode;
263 update_target_permissions ();
264
265 /* Going *into* observer mode we must force non-stop, then
266 going out we leave it that way. */
267 if (observer_mode)
268 {
269 target_async_permitted = 1;
270 pagination_enabled = 0;
271 non_stop = non_stop_1 = 1;
272 }
273
274 if (from_tty)
275 printf_filtered (_("Observer mode is now %s.\n"),
276 (observer_mode ? "on" : "off"));
277}
278
279static void
280show_observer_mode (struct ui_file *file, int from_tty,
281 struct cmd_list_element *c, const char *value)
282{
283 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
284}
285
286/* This updates the value of observer mode based on changes in
287 permissions. Note that we are deliberately ignoring the values of
288 may-write-registers and may-write-memory, since the user may have
289 reason to enable these during a session, for instance to turn on a
290 debugging-related global. */
291
292void
293update_observer_mode (void)
294{
295 int newval;
296
297 newval = (!may_insert_breakpoints
298 && !may_insert_tracepoints
299 && may_insert_fast_tracepoints
300 && !may_stop
301 && non_stop);
302
303 /* Let the user know if things change. */
304 if (newval != observer_mode)
305 printf_filtered (_("Observer mode is now %s.\n"),
306 (newval ? "on" : "off"));
307
308 observer_mode = observer_mode_1 = newval;
309}
310
311/* Tables of how to react to signals; the user sets them. */
312
313static unsigned char *signal_stop;
314static unsigned char *signal_print;
315static unsigned char *signal_program;
316
317/* Table of signals that the target may silently handle.
318 This is automatically determined from the flags above,
319 and simply cached here. */
320static unsigned char *signal_pass;
321
322#define SET_SIGS(nsigs,sigs,flags) \
323 do { \
324 int signum = (nsigs); \
325 while (signum-- > 0) \
326 if ((sigs)[signum]) \
327 (flags)[signum] = 1; \
328 } while (0)
329
330#define UNSET_SIGS(nsigs,sigs,flags) \
331 do { \
332 int signum = (nsigs); \
333 while (signum-- > 0) \
334 if ((sigs)[signum]) \
335 (flags)[signum] = 0; \
336 } while (0)
337
338/* Value to pass to target_resume() to cause all threads to resume. */
339
340#define RESUME_ALL minus_one_ptid
341
342/* Command list pointer for the "stop" placeholder. */
343
344static struct cmd_list_element *stop_command;
345
346/* Function inferior was in as of last step command. */
347
348static struct symbol *step_start_function;
349
350/* Nonzero if we want to give control to the user when we're notified
351 of shared library events by the dynamic linker. */
352int stop_on_solib_events;
353static void
354show_stop_on_solib_events (struct ui_file *file, int from_tty,
355 struct cmd_list_element *c, const char *value)
356{
357 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
358 value);
359}
360
361/* Nonzero means expecting a trace trap
362 and should stop the inferior and return silently when it happens. */
363
364int stop_after_trap;
365
366/* Save register contents here when executing a "finish" command or are
367 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
368 Thus this contains the return value from the called function (assuming
369 values are returned in a register). */
370
371struct regcache *stop_registers;
372
373/* Nonzero after stop if current stack frame should be printed. */
374
375static int stop_print_frame;
376
377/* This is a cached copy of the pid/waitstatus of the last event
378 returned by target_wait()/deprecated_target_wait_hook(). This
379 information is returned by get_last_target_status(). */
380static ptid_t target_last_wait_ptid;
381static struct target_waitstatus target_last_waitstatus;
382
383static void context_switch (ptid_t ptid);
384
385void init_thread_stepping_state (struct thread_info *tss);
386
387void init_infwait_state (void);
388
389static const char follow_fork_mode_child[] = "child";
390static const char follow_fork_mode_parent[] = "parent";
391
392static const char *follow_fork_mode_kind_names[] = {
393 follow_fork_mode_child,
394 follow_fork_mode_parent,
395 NULL
396};
397
398static const char *follow_fork_mode_string = follow_fork_mode_parent;
399static void
400show_follow_fork_mode_string (struct ui_file *file, int from_tty,
401 struct cmd_list_element *c, const char *value)
402{
403 fprintf_filtered (file,
404 _("Debugger response to a program "
405 "call of fork or vfork is \"%s\".\n"),
406 value);
407}
408\f
409
410/* Tell the target to follow the fork we're stopped at. Returns true
411 if the inferior should be resumed; false, if the target for some
412 reason decided it's best not to resume. */
413
414static int
415follow_fork (void)
416{
417 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
418 int should_resume = 1;
419 struct thread_info *tp;
420
421 /* Copy user stepping state to the new inferior thread. FIXME: the
422 followed fork child thread should have a copy of most of the
423 parent thread structure's run control related fields, not just these.
424 Initialized to avoid "may be used uninitialized" warnings from gcc. */
425 struct breakpoint *step_resume_breakpoint = NULL;
426 struct breakpoint *exception_resume_breakpoint = NULL;
427 CORE_ADDR step_range_start = 0;
428 CORE_ADDR step_range_end = 0;
429 struct frame_id step_frame_id = { 0 };
430
431 if (!non_stop)
432 {
433 ptid_t wait_ptid;
434 struct target_waitstatus wait_status;
435
436 /* Get the last target status returned by target_wait(). */
437 get_last_target_status (&wait_ptid, &wait_status);
438
439 /* If not stopped at a fork event, then there's nothing else to
440 do. */
441 if (wait_status.kind != TARGET_WAITKIND_FORKED
442 && wait_status.kind != TARGET_WAITKIND_VFORKED)
443 return 1;
444
445 /* Check if we switched over from WAIT_PTID, since the event was
446 reported. */
447 if (!ptid_equal (wait_ptid, minus_one_ptid)
448 && !ptid_equal (inferior_ptid, wait_ptid))
449 {
450 /* We did. Switch back to WAIT_PTID thread, to tell the
451 target to follow it (in either direction). We'll
452 afterwards refuse to resume, and inform the user what
453 happened. */
454 switch_to_thread (wait_ptid);
455 should_resume = 0;
456 }
457 }
458
459 tp = inferior_thread ();
460
461 /* If there were any forks/vforks that were caught and are now to be
462 followed, then do so now. */
463 switch (tp->pending_follow.kind)
464 {
465 case TARGET_WAITKIND_FORKED:
466 case TARGET_WAITKIND_VFORKED:
467 {
468 ptid_t parent, child;
469
470 /* If the user did a next/step, etc, over a fork call,
471 preserve the stepping state in the fork child. */
472 if (follow_child && should_resume)
473 {
474 step_resume_breakpoint = clone_momentary_breakpoint
475 (tp->control.step_resume_breakpoint);
476 step_range_start = tp->control.step_range_start;
477 step_range_end = tp->control.step_range_end;
478 step_frame_id = tp->control.step_frame_id;
479 exception_resume_breakpoint
480 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
481
482 /* For now, delete the parent's sr breakpoint, otherwise,
483 parent/child sr breakpoints are considered duplicates,
484 and the child version will not be installed. Remove
485 this when the breakpoints module becomes aware of
486 inferiors and address spaces. */
487 delete_step_resume_breakpoint (tp);
488 tp->control.step_range_start = 0;
489 tp->control.step_range_end = 0;
490 tp->control.step_frame_id = null_frame_id;
491 delete_exception_resume_breakpoint (tp);
492 }
493
494 parent = inferior_ptid;
495 child = tp->pending_follow.value.related_pid;
496
497 /* Tell the target to do whatever is necessary to follow
498 either parent or child. */
499 if (target_follow_fork (follow_child))
500 {
501 /* Target refused to follow, or there's some other reason
502 we shouldn't resume. */
503 should_resume = 0;
504 }
505 else
506 {
507 /* This pending follow fork event is now handled, one way
508 or another. The previous selected thread may be gone
509 from the lists by now, but if it is still around, need
510 to clear the pending follow request. */
511 tp = find_thread_ptid (parent);
512 if (tp)
513 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
514
515 /* This makes sure we don't try to apply the "Switched
516 over from WAIT_PID" logic above. */
517 nullify_last_target_wait_ptid ();
518
519 /* If we followed the child, switch to it... */
520 if (follow_child)
521 {
522 switch_to_thread (child);
523
524 /* ... and preserve the stepping state, in case the
525 user was stepping over the fork call. */
526 if (should_resume)
527 {
528 tp = inferior_thread ();
529 tp->control.step_resume_breakpoint
530 = step_resume_breakpoint;
531 tp->control.step_range_start = step_range_start;
532 tp->control.step_range_end = step_range_end;
533 tp->control.step_frame_id = step_frame_id;
534 tp->control.exception_resume_breakpoint
535 = exception_resume_breakpoint;
536 }
537 else
538 {
539 /* If we get here, it was because we're trying to
540 resume from a fork catchpoint, but, the user
541 has switched threads away from the thread that
542 forked. In that case, the resume command
543 issued is most likely not applicable to the
544 child, so just warn, and refuse to resume. */
545 warning (_("Not resuming: switched threads "
546 "before following fork child.\n"));
547 }
548
549 /* Reset breakpoints in the child as appropriate. */
550 follow_inferior_reset_breakpoints ();
551 }
552 else
553 switch_to_thread (parent);
554 }
555 }
556 break;
557 case TARGET_WAITKIND_SPURIOUS:
558 /* Nothing to follow. */
559 break;
560 default:
561 internal_error (__FILE__, __LINE__,
562 "Unexpected pending_follow.kind %d\n",
563 tp->pending_follow.kind);
564 break;
565 }
566
567 return should_resume;
568}
569
570void
571follow_inferior_reset_breakpoints (void)
572{
573 struct thread_info *tp = inferior_thread ();
574
575 /* Was there a step_resume breakpoint? (There was if the user
576 did a "next" at the fork() call.) If so, explicitly reset its
577 thread number.
578
579 step_resumes are a form of bp that are made to be per-thread.
580 Since we created the step_resume bp when the parent process
581 was being debugged, and now are switching to the child process,
582 from the breakpoint package's viewpoint, that's a switch of
583 "threads". We must update the bp's notion of which thread
584 it is for, or it'll be ignored when it triggers. */
585
586 if (tp->control.step_resume_breakpoint)
587 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
588
589 if (tp->control.exception_resume_breakpoint)
590 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
591
592 /* Reinsert all breakpoints in the child. The user may have set
593 breakpoints after catching the fork, in which case those
594 were never set in the child, but only in the parent. This makes
595 sure the inserted breakpoints match the breakpoint list. */
596
597 breakpoint_re_set ();
598 insert_breakpoints ();
599}
600
601/* The child has exited or execed: resume threads of the parent the
602 user wanted to be executing. */
603
604static int
605proceed_after_vfork_done (struct thread_info *thread,
606 void *arg)
607{
608 int pid = * (int *) arg;
609
610 if (ptid_get_pid (thread->ptid) == pid
611 && is_running (thread->ptid)
612 && !is_executing (thread->ptid)
613 && !thread->stop_requested
614 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
615 {
616 if (debug_infrun)
617 fprintf_unfiltered (gdb_stdlog,
618 "infrun: resuming vfork parent thread %s\n",
619 target_pid_to_str (thread->ptid));
620
621 switch_to_thread (thread->ptid);
622 clear_proceed_status ();
623 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
624 }
625
626 return 0;
627}
628
629/* Called whenever we notice an exec or exit event, to handle
630 detaching or resuming a vfork parent. */
631
632static void
633handle_vfork_child_exec_or_exit (int exec)
634{
635 struct inferior *inf = current_inferior ();
636
637 if (inf->vfork_parent)
638 {
639 int resume_parent = -1;
640
641 /* This exec or exit marks the end of the shared memory region
642 between the parent and the child. If the user wanted to
643 detach from the parent, now is the time. */
644
645 if (inf->vfork_parent->pending_detach)
646 {
647 struct thread_info *tp;
648 struct cleanup *old_chain;
649 struct program_space *pspace;
650 struct address_space *aspace;
651
652 /* follow-fork child, detach-on-fork on. */
653
654 old_chain = make_cleanup_restore_current_thread ();
655
656 /* We're letting loose of the parent. */
657 tp = any_live_thread_of_process (inf->vfork_parent->pid);
658 switch_to_thread (tp->ptid);
659
660 /* We're about to detach from the parent, which implicitly
661 removes breakpoints from its address space. There's a
662 catch here: we want to reuse the spaces for the child,
663 but, parent/child are still sharing the pspace at this
664 point, although the exec in reality makes the kernel give
665 the child a fresh set of new pages. The problem here is
666 that the breakpoints module being unaware of this, would
667 likely chose the child process to write to the parent
668 address space. Swapping the child temporarily away from
669 the spaces has the desired effect. Yes, this is "sort
670 of" a hack. */
671
672 pspace = inf->pspace;
673 aspace = inf->aspace;
674 inf->aspace = NULL;
675 inf->pspace = NULL;
676
677 if (debug_infrun || info_verbose)
678 {
679 target_terminal_ours ();
680
681 if (exec)
682 fprintf_filtered (gdb_stdlog,
683 "Detaching vfork parent process "
684 "%d after child exec.\n",
685 inf->vfork_parent->pid);
686 else
687 fprintf_filtered (gdb_stdlog,
688 "Detaching vfork parent process "
689 "%d after child exit.\n",
690 inf->vfork_parent->pid);
691 }
692
693 target_detach (NULL, 0);
694
695 /* Put it back. */
696 inf->pspace = pspace;
697 inf->aspace = aspace;
698
699 do_cleanups (old_chain);
700 }
701 else if (exec)
702 {
703 /* We're staying attached to the parent, so, really give the
704 child a new address space. */
705 inf->pspace = add_program_space (maybe_new_address_space ());
706 inf->aspace = inf->pspace->aspace;
707 inf->removable = 1;
708 set_current_program_space (inf->pspace);
709
710 resume_parent = inf->vfork_parent->pid;
711
712 /* Break the bonds. */
713 inf->vfork_parent->vfork_child = NULL;
714 }
715 else
716 {
717 struct cleanup *old_chain;
718 struct program_space *pspace;
719
720 /* If this is a vfork child exiting, then the pspace and
721 aspaces were shared with the parent. Since we're
722 reporting the process exit, we'll be mourning all that is
723 found in the address space, and switching to null_ptid,
724 preparing to start a new inferior. But, since we don't
725 want to clobber the parent's address/program spaces, we
726 go ahead and create a new one for this exiting
727 inferior. */
728
729 /* Switch to null_ptid, so that clone_program_space doesn't want
730 to read the selected frame of a dead process. */
731 old_chain = save_inferior_ptid ();
732 inferior_ptid = null_ptid;
733
734 /* This inferior is dead, so avoid giving the breakpoints
735 module the option to write through to it (cloning a
736 program space resets breakpoints). */
737 inf->aspace = NULL;
738 inf->pspace = NULL;
739 pspace = add_program_space (maybe_new_address_space ());
740 set_current_program_space (pspace);
741 inf->removable = 1;
742 clone_program_space (pspace, inf->vfork_parent->pspace);
743 inf->pspace = pspace;
744 inf->aspace = pspace->aspace;
745
746 /* Put back inferior_ptid. We'll continue mourning this
747 inferior. */
748 do_cleanups (old_chain);
749
750 resume_parent = inf->vfork_parent->pid;
751 /* Break the bonds. */
752 inf->vfork_parent->vfork_child = NULL;
753 }
754
755 inf->vfork_parent = NULL;
756
757 gdb_assert (current_program_space == inf->pspace);
758
759 if (non_stop && resume_parent != -1)
760 {
761 /* If the user wanted the parent to be running, let it go
762 free now. */
763 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
764
765 if (debug_infrun)
766 fprintf_unfiltered (gdb_stdlog,
767 "infrun: resuming vfork parent process %d\n",
768 resume_parent);
769
770 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
771
772 do_cleanups (old_chain);
773 }
774 }
775}
776
777/* Enum strings for "set|show displaced-stepping". */
778
779static const char follow_exec_mode_new[] = "new";
780static const char follow_exec_mode_same[] = "same";
781static const char *follow_exec_mode_names[] =
782{
783 follow_exec_mode_new,
784 follow_exec_mode_same,
785 NULL,
786};
787
788static const char *follow_exec_mode_string = follow_exec_mode_same;
789static void
790show_follow_exec_mode_string (struct ui_file *file, int from_tty,
791 struct cmd_list_element *c, const char *value)
792{
793 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
794}
795
796/* EXECD_PATHNAME is assumed to be non-NULL. */
797
798static void
799follow_exec (ptid_t pid, char *execd_pathname)
800{
801 struct thread_info *th = inferior_thread ();
802 struct inferior *inf = current_inferior ();
803
804 /* This is an exec event that we actually wish to pay attention to.
805 Refresh our symbol table to the newly exec'd program, remove any
806 momentary bp's, etc.
807
808 If there are breakpoints, they aren't really inserted now,
809 since the exec() transformed our inferior into a fresh set
810 of instructions.
811
812 We want to preserve symbolic breakpoints on the list, since
813 we have hopes that they can be reset after the new a.out's
814 symbol table is read.
815
816 However, any "raw" breakpoints must be removed from the list
817 (e.g., the solib bp's), since their address is probably invalid
818 now.
819
820 And, we DON'T want to call delete_breakpoints() here, since
821 that may write the bp's "shadow contents" (the instruction
822 value that was overwritten witha TRAP instruction). Since
823 we now have a new a.out, those shadow contents aren't valid. */
824
825 mark_breakpoints_out ();
826
827 update_breakpoints_after_exec ();
828
829 /* If there was one, it's gone now. We cannot truly step-to-next
830 statement through an exec(). */
831 th->control.step_resume_breakpoint = NULL;
832 th->control.exception_resume_breakpoint = NULL;
833 th->control.step_range_start = 0;
834 th->control.step_range_end = 0;
835
836 /* The target reports the exec event to the main thread, even if
837 some other thread does the exec, and even if the main thread was
838 already stopped --- if debugging in non-stop mode, it's possible
839 the user had the main thread held stopped in the previous image
840 --- release it now. This is the same behavior as step-over-exec
841 with scheduler-locking on in all-stop mode. */
842 th->stop_requested = 0;
843
844 /* What is this a.out's name? */
845 printf_unfiltered (_("%s is executing new program: %s\n"),
846 target_pid_to_str (inferior_ptid),
847 execd_pathname);
848
849 /* We've followed the inferior through an exec. Therefore, the
850 inferior has essentially been killed & reborn. */
851
852 gdb_flush (gdb_stdout);
853
854 breakpoint_init_inferior (inf_execd);
855
856 if (gdb_sysroot && *gdb_sysroot)
857 {
858 char *name = alloca (strlen (gdb_sysroot)
859 + strlen (execd_pathname)
860 + 1);
861
862 strcpy (name, gdb_sysroot);
863 strcat (name, execd_pathname);
864 execd_pathname = name;
865 }
866
867 /* Reset the shared library package. This ensures that we get a
868 shlib event when the child reaches "_start", at which point the
869 dld will have had a chance to initialize the child. */
870 /* Also, loading a symbol file below may trigger symbol lookups, and
871 we don't want those to be satisfied by the libraries of the
872 previous incarnation of this process. */
873 no_shared_libraries (NULL, 0);
874
875 if (follow_exec_mode_string == follow_exec_mode_new)
876 {
877 struct program_space *pspace;
878
879 /* The user wants to keep the old inferior and program spaces
880 around. Create a new fresh one, and switch to it. */
881
882 inf = add_inferior (current_inferior ()->pid);
883 pspace = add_program_space (maybe_new_address_space ());
884 inf->pspace = pspace;
885 inf->aspace = pspace->aspace;
886
887 exit_inferior_num_silent (current_inferior ()->num);
888
889 set_current_inferior (inf);
890 set_current_program_space (pspace);
891 }
892
893 gdb_assert (current_program_space == inf->pspace);
894
895 /* That a.out is now the one to use. */
896 exec_file_attach (execd_pathname, 0);
897
898 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
899 (Position Independent Executable) main symbol file will get applied by
900 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
901 the breakpoints with the zero displacement. */
902
903 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
904 NULL, 0);
905
906 set_initial_language ();
907
908#ifdef SOLIB_CREATE_INFERIOR_HOOK
909 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
910#else
911 solib_create_inferior_hook (0);
912#endif
913
914 jit_inferior_created_hook ();
915
916 breakpoint_re_set ();
917
918 /* Reinsert all breakpoints. (Those which were symbolic have
919 been reset to the proper address in the new a.out, thanks
920 to symbol_file_command...). */
921 insert_breakpoints ();
922
923 /* The next resume of this inferior should bring it to the shlib
924 startup breakpoints. (If the user had also set bp's on
925 "main" from the old (parent) process, then they'll auto-
926 matically get reset there in the new process.). */
927}
928
929/* Non-zero if we just simulating a single-step. This is needed
930 because we cannot remove the breakpoints in the inferior process
931 until after the `wait' in `wait_for_inferior'. */
932static int singlestep_breakpoints_inserted_p = 0;
933
934/* The thread we inserted single-step breakpoints for. */
935static ptid_t singlestep_ptid;
936
937/* PC when we started this single-step. */
938static CORE_ADDR singlestep_pc;
939
940/* If another thread hit the singlestep breakpoint, we save the original
941 thread here so that we can resume single-stepping it later. */
942static ptid_t saved_singlestep_ptid;
943static int stepping_past_singlestep_breakpoint;
944
945/* If not equal to null_ptid, this means that after stepping over breakpoint
946 is finished, we need to switch to deferred_step_ptid, and step it.
947
948 The use case is when one thread has hit a breakpoint, and then the user
949 has switched to another thread and issued 'step'. We need to step over
950 breakpoint in the thread which hit the breakpoint, but then continue
951 stepping the thread user has selected. */
952static ptid_t deferred_step_ptid;
953\f
954/* Displaced stepping. */
955
956/* In non-stop debugging mode, we must take special care to manage
957 breakpoints properly; in particular, the traditional strategy for
958 stepping a thread past a breakpoint it has hit is unsuitable.
959 'Displaced stepping' is a tactic for stepping one thread past a
960 breakpoint it has hit while ensuring that other threads running
961 concurrently will hit the breakpoint as they should.
962
963 The traditional way to step a thread T off a breakpoint in a
964 multi-threaded program in all-stop mode is as follows:
965
966 a0) Initially, all threads are stopped, and breakpoints are not
967 inserted.
968 a1) We single-step T, leaving breakpoints uninserted.
969 a2) We insert breakpoints, and resume all threads.
970
971 In non-stop debugging, however, this strategy is unsuitable: we
972 don't want to have to stop all threads in the system in order to
973 continue or step T past a breakpoint. Instead, we use displaced
974 stepping:
975
976 n0) Initially, T is stopped, other threads are running, and
977 breakpoints are inserted.
978 n1) We copy the instruction "under" the breakpoint to a separate
979 location, outside the main code stream, making any adjustments
980 to the instruction, register, and memory state as directed by
981 T's architecture.
982 n2) We single-step T over the instruction at its new location.
983 n3) We adjust the resulting register and memory state as directed
984 by T's architecture. This includes resetting T's PC to point
985 back into the main instruction stream.
986 n4) We resume T.
987
988 This approach depends on the following gdbarch methods:
989
990 - gdbarch_max_insn_length and gdbarch_displaced_step_location
991 indicate where to copy the instruction, and how much space must
992 be reserved there. We use these in step n1.
993
994 - gdbarch_displaced_step_copy_insn copies a instruction to a new
995 address, and makes any necessary adjustments to the instruction,
996 register contents, and memory. We use this in step n1.
997
998 - gdbarch_displaced_step_fixup adjusts registers and memory after
999 we have successfuly single-stepped the instruction, to yield the
1000 same effect the instruction would have had if we had executed it
1001 at its original address. We use this in step n3.
1002
1003 - gdbarch_displaced_step_free_closure provides cleanup.
1004
1005 The gdbarch_displaced_step_copy_insn and
1006 gdbarch_displaced_step_fixup functions must be written so that
1007 copying an instruction with gdbarch_displaced_step_copy_insn,
1008 single-stepping across the copied instruction, and then applying
1009 gdbarch_displaced_insn_fixup should have the same effects on the
1010 thread's memory and registers as stepping the instruction in place
1011 would have. Exactly which responsibilities fall to the copy and
1012 which fall to the fixup is up to the author of those functions.
1013
1014 See the comments in gdbarch.sh for details.
1015
1016 Note that displaced stepping and software single-step cannot
1017 currently be used in combination, although with some care I think
1018 they could be made to. Software single-step works by placing
1019 breakpoints on all possible subsequent instructions; if the
1020 displaced instruction is a PC-relative jump, those breakpoints
1021 could fall in very strange places --- on pages that aren't
1022 executable, or at addresses that are not proper instruction
1023 boundaries. (We do generally let other threads run while we wait
1024 to hit the software single-step breakpoint, and they might
1025 encounter such a corrupted instruction.) One way to work around
1026 this would be to have gdbarch_displaced_step_copy_insn fully
1027 simulate the effect of PC-relative instructions (and return NULL)
1028 on architectures that use software single-stepping.
1029
1030 In non-stop mode, we can have independent and simultaneous step
1031 requests, so more than one thread may need to simultaneously step
1032 over a breakpoint. The current implementation assumes there is
1033 only one scratch space per process. In this case, we have to
1034 serialize access to the scratch space. If thread A wants to step
1035 over a breakpoint, but we are currently waiting for some other
1036 thread to complete a displaced step, we leave thread A stopped and
1037 place it in the displaced_step_request_queue. Whenever a displaced
1038 step finishes, we pick the next thread in the queue and start a new
1039 displaced step operation on it. See displaced_step_prepare and
1040 displaced_step_fixup for details. */
1041
1042struct displaced_step_request
1043{
1044 ptid_t ptid;
1045 struct displaced_step_request *next;
1046};
1047
1048/* Per-inferior displaced stepping state. */
1049struct displaced_step_inferior_state
1050{
1051 /* Pointer to next in linked list. */
1052 struct displaced_step_inferior_state *next;
1053
1054 /* The process this displaced step state refers to. */
1055 int pid;
1056
1057 /* A queue of pending displaced stepping requests. One entry per
1058 thread that needs to do a displaced step. */
1059 struct displaced_step_request *step_request_queue;
1060
1061 /* If this is not null_ptid, this is the thread carrying out a
1062 displaced single-step in process PID. This thread's state will
1063 require fixing up once it has completed its step. */
1064 ptid_t step_ptid;
1065
1066 /* The architecture the thread had when we stepped it. */
1067 struct gdbarch *step_gdbarch;
1068
1069 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1070 for post-step cleanup. */
1071 struct displaced_step_closure *step_closure;
1072
1073 /* The address of the original instruction, and the copy we
1074 made. */
1075 CORE_ADDR step_original, step_copy;
1076
1077 /* Saved contents of copy area. */
1078 gdb_byte *step_saved_copy;
1079};
1080
1081/* The list of states of processes involved in displaced stepping
1082 presently. */
1083static struct displaced_step_inferior_state *displaced_step_inferior_states;
1084
1085/* Get the displaced stepping state of process PID. */
1086
1087static struct displaced_step_inferior_state *
1088get_displaced_stepping_state (int pid)
1089{
1090 struct displaced_step_inferior_state *state;
1091
1092 for (state = displaced_step_inferior_states;
1093 state != NULL;
1094 state = state->next)
1095 if (state->pid == pid)
1096 return state;
1097
1098 return NULL;
1099}
1100
1101/* Add a new displaced stepping state for process PID to the displaced
1102 stepping state list, or return a pointer to an already existing
1103 entry, if it already exists. Never returns NULL. */
1104
1105static struct displaced_step_inferior_state *
1106add_displaced_stepping_state (int pid)
1107{
1108 struct displaced_step_inferior_state *state;
1109
1110 for (state = displaced_step_inferior_states;
1111 state != NULL;
1112 state = state->next)
1113 if (state->pid == pid)
1114 return state;
1115
1116 state = xcalloc (1, sizeof (*state));
1117 state->pid = pid;
1118 state->next = displaced_step_inferior_states;
1119 displaced_step_inferior_states = state;
1120
1121 return state;
1122}
1123
1124/* If inferior is in displaced stepping, and ADDR equals to starting address
1125 of copy area, return corresponding displaced_step_closure. Otherwise,
1126 return NULL. */
1127
1128struct displaced_step_closure*
1129get_displaced_step_closure_by_addr (CORE_ADDR addr)
1130{
1131 struct displaced_step_inferior_state *displaced
1132 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1133
1134 /* If checking the mode of displaced instruction in copy area. */
1135 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1136 && (displaced->step_copy == addr))
1137 return displaced->step_closure;
1138
1139 return NULL;
1140}
1141
1142/* Remove the displaced stepping state of process PID. */
1143
1144static void
1145remove_displaced_stepping_state (int pid)
1146{
1147 struct displaced_step_inferior_state *it, **prev_next_p;
1148
1149 gdb_assert (pid != 0);
1150
1151 it = displaced_step_inferior_states;
1152 prev_next_p = &displaced_step_inferior_states;
1153 while (it)
1154 {
1155 if (it->pid == pid)
1156 {
1157 *prev_next_p = it->next;
1158 xfree (it);
1159 return;
1160 }
1161
1162 prev_next_p = &it->next;
1163 it = *prev_next_p;
1164 }
1165}
1166
1167static void
1168infrun_inferior_exit (struct inferior *inf)
1169{
1170 remove_displaced_stepping_state (inf->pid);
1171}
1172
1173/* Enum strings for "set|show displaced-stepping". */
1174
1175static const char can_use_displaced_stepping_auto[] = "auto";
1176static const char can_use_displaced_stepping_on[] = "on";
1177static const char can_use_displaced_stepping_off[] = "off";
1178static const char *can_use_displaced_stepping_enum[] =
1179{
1180 can_use_displaced_stepping_auto,
1181 can_use_displaced_stepping_on,
1182 can_use_displaced_stepping_off,
1183 NULL,
1184};
1185
1186/* If ON, and the architecture supports it, GDB will use displaced
1187 stepping to step over breakpoints. If OFF, or if the architecture
1188 doesn't support it, GDB will instead use the traditional
1189 hold-and-step approach. If AUTO (which is the default), GDB will
1190 decide which technique to use to step over breakpoints depending on
1191 which of all-stop or non-stop mode is active --- displaced stepping
1192 in non-stop mode; hold-and-step in all-stop mode. */
1193
1194static const char *can_use_displaced_stepping =
1195 can_use_displaced_stepping_auto;
1196
1197static void
1198show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1199 struct cmd_list_element *c,
1200 const char *value)
1201{
1202 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1203 fprintf_filtered (file,
1204 _("Debugger's willingness to use displaced stepping "
1205 "to step over breakpoints is %s (currently %s).\n"),
1206 value, non_stop ? "on" : "off");
1207 else
1208 fprintf_filtered (file,
1209 _("Debugger's willingness to use displaced stepping "
1210 "to step over breakpoints is %s.\n"), value);
1211}
1212
1213/* Return non-zero if displaced stepping can/should be used to step
1214 over breakpoints. */
1215
1216static int
1217use_displaced_stepping (struct gdbarch *gdbarch)
1218{
1219 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1220 && non_stop)
1221 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1222 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1223 && !RECORD_IS_USED);
1224}
1225
1226/* Clean out any stray displaced stepping state. */
1227static void
1228displaced_step_clear (struct displaced_step_inferior_state *displaced)
1229{
1230 /* Indicate that there is no cleanup pending. */
1231 displaced->step_ptid = null_ptid;
1232
1233 if (displaced->step_closure)
1234 {
1235 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1236 displaced->step_closure);
1237 displaced->step_closure = NULL;
1238 }
1239}
1240
1241static void
1242displaced_step_clear_cleanup (void *arg)
1243{
1244 struct displaced_step_inferior_state *state = arg;
1245
1246 displaced_step_clear (state);
1247}
1248
1249/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1250void
1251displaced_step_dump_bytes (struct ui_file *file,
1252 const gdb_byte *buf,
1253 size_t len)
1254{
1255 int i;
1256
1257 for (i = 0; i < len; i++)
1258 fprintf_unfiltered (file, "%02x ", buf[i]);
1259 fputs_unfiltered ("\n", file);
1260}
1261
1262/* Prepare to single-step, using displaced stepping.
1263
1264 Note that we cannot use displaced stepping when we have a signal to
1265 deliver. If we have a signal to deliver and an instruction to step
1266 over, then after the step, there will be no indication from the
1267 target whether the thread entered a signal handler or ignored the
1268 signal and stepped over the instruction successfully --- both cases
1269 result in a simple SIGTRAP. In the first case we mustn't do a
1270 fixup, and in the second case we must --- but we can't tell which.
1271 Comments in the code for 'random signals' in handle_inferior_event
1272 explain how we handle this case instead.
1273
1274 Returns 1 if preparing was successful -- this thread is going to be
1275 stepped now; or 0 if displaced stepping this thread got queued. */
1276static int
1277displaced_step_prepare (ptid_t ptid)
1278{
1279 struct cleanup *old_cleanups, *ignore_cleanups;
1280 struct regcache *regcache = get_thread_regcache (ptid);
1281 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1282 CORE_ADDR original, copy;
1283 ULONGEST len;
1284 struct displaced_step_closure *closure;
1285 struct displaced_step_inferior_state *displaced;
1286
1287 /* We should never reach this function if the architecture does not
1288 support displaced stepping. */
1289 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1290
1291 /* We have to displaced step one thread at a time, as we only have
1292 access to a single scratch space per inferior. */
1293
1294 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1295
1296 if (!ptid_equal (displaced->step_ptid, null_ptid))
1297 {
1298 /* Already waiting for a displaced step to finish. Defer this
1299 request and place in queue. */
1300 struct displaced_step_request *req, *new_req;
1301
1302 if (debug_displaced)
1303 fprintf_unfiltered (gdb_stdlog,
1304 "displaced: defering step of %s\n",
1305 target_pid_to_str (ptid));
1306
1307 new_req = xmalloc (sizeof (*new_req));
1308 new_req->ptid = ptid;
1309 new_req->next = NULL;
1310
1311 if (displaced->step_request_queue)
1312 {
1313 for (req = displaced->step_request_queue;
1314 req && req->next;
1315 req = req->next)
1316 ;
1317 req->next = new_req;
1318 }
1319 else
1320 displaced->step_request_queue = new_req;
1321
1322 return 0;
1323 }
1324 else
1325 {
1326 if (debug_displaced)
1327 fprintf_unfiltered (gdb_stdlog,
1328 "displaced: stepping %s now\n",
1329 target_pid_to_str (ptid));
1330 }
1331
1332 displaced_step_clear (displaced);
1333
1334 old_cleanups = save_inferior_ptid ();
1335 inferior_ptid = ptid;
1336
1337 original = regcache_read_pc (regcache);
1338
1339 copy = gdbarch_displaced_step_location (gdbarch);
1340 len = gdbarch_max_insn_length (gdbarch);
1341
1342 /* Save the original contents of the copy area. */
1343 displaced->step_saved_copy = xmalloc (len);
1344 ignore_cleanups = make_cleanup (free_current_contents,
1345 &displaced->step_saved_copy);
1346 read_memory (copy, displaced->step_saved_copy, len);
1347 if (debug_displaced)
1348 {
1349 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1350 paddress (gdbarch, copy));
1351 displaced_step_dump_bytes (gdb_stdlog,
1352 displaced->step_saved_copy,
1353 len);
1354 };
1355
1356 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1357 original, copy, regcache);
1358
1359 /* We don't support the fully-simulated case at present. */
1360 gdb_assert (closure);
1361
1362 /* Save the information we need to fix things up if the step
1363 succeeds. */
1364 displaced->step_ptid = ptid;
1365 displaced->step_gdbarch = gdbarch;
1366 displaced->step_closure = closure;
1367 displaced->step_original = original;
1368 displaced->step_copy = copy;
1369
1370 make_cleanup (displaced_step_clear_cleanup, displaced);
1371
1372 /* Resume execution at the copy. */
1373 regcache_write_pc (regcache, copy);
1374
1375 discard_cleanups (ignore_cleanups);
1376
1377 do_cleanups (old_cleanups);
1378
1379 if (debug_displaced)
1380 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1381 paddress (gdbarch, copy));
1382
1383 return 1;
1384}
1385
1386static void
1387write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1388 const gdb_byte *myaddr, int len)
1389{
1390 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1391
1392 inferior_ptid = ptid;
1393 write_memory (memaddr, myaddr, len);
1394 do_cleanups (ptid_cleanup);
1395}
1396
1397/* Restore the contents of the copy area for thread PTID. */
1398
1399static void
1400displaced_step_restore (struct displaced_step_inferior_state *displaced,
1401 ptid_t ptid)
1402{
1403 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1404
1405 write_memory_ptid (ptid, displaced->step_copy,
1406 displaced->step_saved_copy, len);
1407 if (debug_displaced)
1408 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1409 target_pid_to_str (ptid),
1410 paddress (displaced->step_gdbarch,
1411 displaced->step_copy));
1412}
1413
1414static void
1415displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1416{
1417 struct cleanup *old_cleanups;
1418 struct displaced_step_inferior_state *displaced
1419 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1420
1421 /* Was any thread of this process doing a displaced step? */
1422 if (displaced == NULL)
1423 return;
1424
1425 /* Was this event for the pid we displaced? */
1426 if (ptid_equal (displaced->step_ptid, null_ptid)
1427 || ! ptid_equal (displaced->step_ptid, event_ptid))
1428 return;
1429
1430 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1431
1432 displaced_step_restore (displaced, displaced->step_ptid);
1433
1434 /* Did the instruction complete successfully? */
1435 if (signal == TARGET_SIGNAL_TRAP)
1436 {
1437 /* Fix up the resulting state. */
1438 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1439 displaced->step_closure,
1440 displaced->step_original,
1441 displaced->step_copy,
1442 get_thread_regcache (displaced->step_ptid));
1443 }
1444 else
1445 {
1446 /* Since the instruction didn't complete, all we can do is
1447 relocate the PC. */
1448 struct regcache *regcache = get_thread_regcache (event_ptid);
1449 CORE_ADDR pc = regcache_read_pc (regcache);
1450
1451 pc = displaced->step_original + (pc - displaced->step_copy);
1452 regcache_write_pc (regcache, pc);
1453 }
1454
1455 do_cleanups (old_cleanups);
1456
1457 displaced->step_ptid = null_ptid;
1458
1459 /* Are there any pending displaced stepping requests? If so, run
1460 one now. Leave the state object around, since we're likely to
1461 need it again soon. */
1462 while (displaced->step_request_queue)
1463 {
1464 struct displaced_step_request *head;
1465 ptid_t ptid;
1466 struct regcache *regcache;
1467 struct gdbarch *gdbarch;
1468 CORE_ADDR actual_pc;
1469 struct address_space *aspace;
1470
1471 head = displaced->step_request_queue;
1472 ptid = head->ptid;
1473 displaced->step_request_queue = head->next;
1474 xfree (head);
1475
1476 context_switch (ptid);
1477
1478 regcache = get_thread_regcache (ptid);
1479 actual_pc = regcache_read_pc (regcache);
1480 aspace = get_regcache_aspace (regcache);
1481
1482 if (breakpoint_here_p (aspace, actual_pc))
1483 {
1484 if (debug_displaced)
1485 fprintf_unfiltered (gdb_stdlog,
1486 "displaced: stepping queued %s now\n",
1487 target_pid_to_str (ptid));
1488
1489 displaced_step_prepare (ptid);
1490
1491 gdbarch = get_regcache_arch (regcache);
1492
1493 if (debug_displaced)
1494 {
1495 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1496 gdb_byte buf[4];
1497
1498 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1499 paddress (gdbarch, actual_pc));
1500 read_memory (actual_pc, buf, sizeof (buf));
1501 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1502 }
1503
1504 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1505 displaced->step_closure))
1506 target_resume (ptid, 1, TARGET_SIGNAL_0);
1507 else
1508 target_resume (ptid, 0, TARGET_SIGNAL_0);
1509
1510 /* Done, we're stepping a thread. */
1511 break;
1512 }
1513 else
1514 {
1515 int step;
1516 struct thread_info *tp = inferior_thread ();
1517
1518 /* The breakpoint we were sitting under has since been
1519 removed. */
1520 tp->control.trap_expected = 0;
1521
1522 /* Go back to what we were trying to do. */
1523 step = currently_stepping (tp);
1524
1525 if (debug_displaced)
1526 fprintf_unfiltered (gdb_stdlog,
1527 "breakpoint is gone %s: step(%d)\n",
1528 target_pid_to_str (tp->ptid), step);
1529
1530 target_resume (ptid, step, TARGET_SIGNAL_0);
1531 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1532
1533 /* This request was discarded. See if there's any other
1534 thread waiting for its turn. */
1535 }
1536 }
1537}
1538
1539/* Update global variables holding ptids to hold NEW_PTID if they were
1540 holding OLD_PTID. */
1541static void
1542infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1543{
1544 struct displaced_step_request *it;
1545 struct displaced_step_inferior_state *displaced;
1546
1547 if (ptid_equal (inferior_ptid, old_ptid))
1548 inferior_ptid = new_ptid;
1549
1550 if (ptid_equal (singlestep_ptid, old_ptid))
1551 singlestep_ptid = new_ptid;
1552
1553 if (ptid_equal (deferred_step_ptid, old_ptid))
1554 deferred_step_ptid = new_ptid;
1555
1556 for (displaced = displaced_step_inferior_states;
1557 displaced;
1558 displaced = displaced->next)
1559 {
1560 if (ptid_equal (displaced->step_ptid, old_ptid))
1561 displaced->step_ptid = new_ptid;
1562
1563 for (it = displaced->step_request_queue; it; it = it->next)
1564 if (ptid_equal (it->ptid, old_ptid))
1565 it->ptid = new_ptid;
1566 }
1567}
1568
1569\f
1570/* Resuming. */
1571
1572/* Things to clean up if we QUIT out of resume (). */
1573static void
1574resume_cleanups (void *ignore)
1575{
1576 normal_stop ();
1577}
1578
1579static const char schedlock_off[] = "off";
1580static const char schedlock_on[] = "on";
1581static const char schedlock_step[] = "step";
1582static const char *scheduler_enums[] = {
1583 schedlock_off,
1584 schedlock_on,
1585 schedlock_step,
1586 NULL
1587};
1588static const char *scheduler_mode = schedlock_off;
1589static void
1590show_scheduler_mode (struct ui_file *file, int from_tty,
1591 struct cmd_list_element *c, const char *value)
1592{
1593 fprintf_filtered (file,
1594 _("Mode for locking scheduler "
1595 "during execution is \"%s\".\n"),
1596 value);
1597}
1598
1599static void
1600set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1601{
1602 if (!target_can_lock_scheduler)
1603 {
1604 scheduler_mode = schedlock_off;
1605 error (_("Target '%s' cannot support this command."), target_shortname);
1606 }
1607}
1608
1609/* True if execution commands resume all threads of all processes by
1610 default; otherwise, resume only threads of the current inferior
1611 process. */
1612int sched_multi = 0;
1613
1614/* Try to setup for software single stepping over the specified location.
1615 Return 1 if target_resume() should use hardware single step.
1616
1617 GDBARCH the current gdbarch.
1618 PC the location to step over. */
1619
1620static int
1621maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1622{
1623 int hw_step = 1;
1624
1625 if (execution_direction == EXEC_FORWARD
1626 && gdbarch_software_single_step_p (gdbarch)
1627 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1628 {
1629 hw_step = 0;
1630 /* Do not pull these breakpoints until after a `wait' in
1631 `wait_for_inferior'. */
1632 singlestep_breakpoints_inserted_p = 1;
1633 singlestep_ptid = inferior_ptid;
1634 singlestep_pc = pc;
1635 }
1636 return hw_step;
1637}
1638
1639/* Return a ptid representing the set of threads that we will proceed,
1640 in the perspective of the user/frontend. We may actually resume
1641 fewer threads at first, e.g., if a thread is stopped at a
1642 breakpoint that needs stepping-off, but that should not be visible
1643 to the user/frontend, and neither should the frontend/user be
1644 allowed to proceed any of the threads that happen to be stopped for
1645 internal run control handling, if a previous command wanted them
1646 resumed. */
1647
1648ptid_t
1649user_visible_resume_ptid (int step)
1650{
1651 /* By default, resume all threads of all processes. */
1652 ptid_t resume_ptid = RESUME_ALL;
1653
1654 /* Maybe resume only all threads of the current process. */
1655 if (!sched_multi && target_supports_multi_process ())
1656 {
1657 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1658 }
1659
1660 /* Maybe resume a single thread after all. */
1661 if (non_stop)
1662 {
1663 /* With non-stop mode on, threads are always handled
1664 individually. */
1665 resume_ptid = inferior_ptid;
1666 }
1667 else if ((scheduler_mode == schedlock_on)
1668 || (scheduler_mode == schedlock_step
1669 && (step || singlestep_breakpoints_inserted_p)))
1670 {
1671 /* User-settable 'scheduler' mode requires solo thread resume. */
1672 resume_ptid = inferior_ptid;
1673 }
1674
1675 return resume_ptid;
1676}
1677
1678/* Resume the inferior, but allow a QUIT. This is useful if the user
1679 wants to interrupt some lengthy single-stepping operation
1680 (for child processes, the SIGINT goes to the inferior, and so
1681 we get a SIGINT random_signal, but for remote debugging and perhaps
1682 other targets, that's not true).
1683
1684 STEP nonzero if we should step (zero to continue instead).
1685 SIG is the signal to give the inferior (zero for none). */
1686void
1687resume (int step, enum target_signal sig)
1688{
1689 int should_resume = 1;
1690 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1691 struct regcache *regcache = get_current_regcache ();
1692 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1693 struct thread_info *tp = inferior_thread ();
1694 CORE_ADDR pc = regcache_read_pc (regcache);
1695 struct address_space *aspace = get_regcache_aspace (regcache);
1696
1697 QUIT;
1698
1699 if (current_inferior ()->waiting_for_vfork_done)
1700 {
1701 /* Don't try to single-step a vfork parent that is waiting for
1702 the child to get out of the shared memory region (by exec'ing
1703 or exiting). This is particularly important on software
1704 single-step archs, as the child process would trip on the
1705 software single step breakpoint inserted for the parent
1706 process. Since the parent will not actually execute any
1707 instruction until the child is out of the shared region (such
1708 are vfork's semantics), it is safe to simply continue it.
1709 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1710 the parent, and tell it to `keep_going', which automatically
1711 re-sets it stepping. */
1712 if (debug_infrun)
1713 fprintf_unfiltered (gdb_stdlog,
1714 "infrun: resume : clear step\n");
1715 step = 0;
1716 }
1717
1718 if (debug_infrun)
1719 fprintf_unfiltered (gdb_stdlog,
1720 "infrun: resume (step=%d, signal=%d), "
1721 "trap_expected=%d, current thread [%s] at %s\n",
1722 step, sig, tp->control.trap_expected,
1723 target_pid_to_str (inferior_ptid),
1724 paddress (gdbarch, pc));
1725
1726 /* Normally, by the time we reach `resume', the breakpoints are either
1727 removed or inserted, as appropriate. The exception is if we're sitting
1728 at a permanent breakpoint; we need to step over it, but permanent
1729 breakpoints can't be removed. So we have to test for it here. */
1730 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1731 {
1732 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1733 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1734 else
1735 error (_("\
1736The program is stopped at a permanent breakpoint, but GDB does not know\n\
1737how to step past a permanent breakpoint on this architecture. Try using\n\
1738a command like `return' or `jump' to continue execution."));
1739 }
1740
1741 /* If enabled, step over breakpoints by executing a copy of the
1742 instruction at a different address.
1743
1744 We can't use displaced stepping when we have a signal to deliver;
1745 the comments for displaced_step_prepare explain why. The
1746 comments in the handle_inferior event for dealing with 'random
1747 signals' explain what we do instead.
1748
1749 We can't use displaced stepping when we are waiting for vfork_done
1750 event, displaced stepping breaks the vfork child similarly as single
1751 step software breakpoint. */
1752 if (use_displaced_stepping (gdbarch)
1753 && (tp->control.trap_expected
1754 || (step && gdbarch_software_single_step_p (gdbarch)))
1755 && sig == TARGET_SIGNAL_0
1756 && !current_inferior ()->waiting_for_vfork_done)
1757 {
1758 struct displaced_step_inferior_state *displaced;
1759
1760 if (!displaced_step_prepare (inferior_ptid))
1761 {
1762 /* Got placed in displaced stepping queue. Will be resumed
1763 later when all the currently queued displaced stepping
1764 requests finish. The thread is not executing at this point,
1765 and the call to set_executing will be made later. But we
1766 need to call set_running here, since from frontend point of view,
1767 the thread is running. */
1768 set_running (inferior_ptid, 1);
1769 discard_cleanups (old_cleanups);
1770 return;
1771 }
1772
1773 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1774 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1775 displaced->step_closure);
1776 }
1777
1778 /* Do we need to do it the hard way, w/temp breakpoints? */
1779 else if (step)
1780 step = maybe_software_singlestep (gdbarch, pc);
1781
1782 /* Currently, our software single-step implementation leads to different
1783 results than hardware single-stepping in one situation: when stepping
1784 into delivering a signal which has an associated signal handler,
1785 hardware single-step will stop at the first instruction of the handler,
1786 while software single-step will simply skip execution of the handler.
1787
1788 For now, this difference in behavior is accepted since there is no
1789 easy way to actually implement single-stepping into a signal handler
1790 without kernel support.
1791
1792 However, there is one scenario where this difference leads to follow-on
1793 problems: if we're stepping off a breakpoint by removing all breakpoints
1794 and then single-stepping. In this case, the software single-step
1795 behavior means that even if there is a *breakpoint* in the signal
1796 handler, GDB still would not stop.
1797
1798 Fortunately, we can at least fix this particular issue. We detect
1799 here the case where we are about to deliver a signal while software
1800 single-stepping with breakpoints removed. In this situation, we
1801 revert the decisions to remove all breakpoints and insert single-
1802 step breakpoints, and instead we install a step-resume breakpoint
1803 at the current address, deliver the signal without stepping, and
1804 once we arrive back at the step-resume breakpoint, actually step
1805 over the breakpoint we originally wanted to step over. */
1806 if (singlestep_breakpoints_inserted_p
1807 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1808 {
1809 /* If we have nested signals or a pending signal is delivered
1810 immediately after a handler returns, might might already have
1811 a step-resume breakpoint set on the earlier handler. We cannot
1812 set another step-resume breakpoint; just continue on until the
1813 original breakpoint is hit. */
1814 if (tp->control.step_resume_breakpoint == NULL)
1815 {
1816 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1817 tp->step_after_step_resume_breakpoint = 1;
1818 }
1819
1820 remove_single_step_breakpoints ();
1821 singlestep_breakpoints_inserted_p = 0;
1822
1823 insert_breakpoints ();
1824 tp->control.trap_expected = 0;
1825 }
1826
1827 if (should_resume)
1828 {
1829 ptid_t resume_ptid;
1830
1831 /* If STEP is set, it's a request to use hardware stepping
1832 facilities. But in that case, we should never
1833 use singlestep breakpoint. */
1834 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1835
1836 /* Decide the set of threads to ask the target to resume. Start
1837 by assuming everything will be resumed, than narrow the set
1838 by applying increasingly restricting conditions. */
1839 resume_ptid = user_visible_resume_ptid (step);
1840
1841 /* Maybe resume a single thread after all. */
1842 if (singlestep_breakpoints_inserted_p
1843 && stepping_past_singlestep_breakpoint)
1844 {
1845 /* The situation here is as follows. In thread T1 we wanted to
1846 single-step. Lacking hardware single-stepping we've
1847 set breakpoint at the PC of the next instruction -- call it
1848 P. After resuming, we've hit that breakpoint in thread T2.
1849 Now we've removed original breakpoint, inserted breakpoint
1850 at P+1, and try to step to advance T2 past breakpoint.
1851 We need to step only T2, as if T1 is allowed to freely run,
1852 it can run past P, and if other threads are allowed to run,
1853 they can hit breakpoint at P+1, and nested hits of single-step
1854 breakpoints is not something we'd want -- that's complicated
1855 to support, and has no value. */
1856 resume_ptid = inferior_ptid;
1857 }
1858 else if ((step || singlestep_breakpoints_inserted_p)
1859 && tp->control.trap_expected)
1860 {
1861 /* We're allowing a thread to run past a breakpoint it has
1862 hit, by single-stepping the thread with the breakpoint
1863 removed. In which case, we need to single-step only this
1864 thread, and keep others stopped, as they can miss this
1865 breakpoint if allowed to run.
1866
1867 The current code actually removes all breakpoints when
1868 doing this, not just the one being stepped over, so if we
1869 let other threads run, we can actually miss any
1870 breakpoint, not just the one at PC. */
1871 resume_ptid = inferior_ptid;
1872 }
1873
1874 if (gdbarch_cannot_step_breakpoint (gdbarch))
1875 {
1876 /* Most targets can step a breakpoint instruction, thus
1877 executing it normally. But if this one cannot, just
1878 continue and we will hit it anyway. */
1879 if (step && breakpoint_inserted_here_p (aspace, pc))
1880 step = 0;
1881 }
1882
1883 if (debug_displaced
1884 && use_displaced_stepping (gdbarch)
1885 && tp->control.trap_expected)
1886 {
1887 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1888 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1889 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1890 gdb_byte buf[4];
1891
1892 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1893 paddress (resume_gdbarch, actual_pc));
1894 read_memory (actual_pc, buf, sizeof (buf));
1895 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1896 }
1897
1898 /* Install inferior's terminal modes. */
1899 target_terminal_inferior ();
1900
1901 /* Avoid confusing the next resume, if the next stop/resume
1902 happens to apply to another thread. */
1903 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1904
1905 /* Advise target which signals may be handled silently. If we have
1906 removed breakpoints because we are stepping over one (which can
1907 happen only if we are not using displaced stepping), we need to
1908 receive all signals to avoid accidentally skipping a breakpoint
1909 during execution of a signal handler. */
1910 if ((step || singlestep_breakpoints_inserted_p)
1911 && tp->control.trap_expected
1912 && !use_displaced_stepping (gdbarch))
1913 target_pass_signals (0, NULL);
1914 else
1915 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1916
1917 target_resume (resume_ptid, step, sig);
1918 }
1919
1920 discard_cleanups (old_cleanups);
1921}
1922\f
1923/* Proceeding. */
1924
1925/* Clear out all variables saying what to do when inferior is continued.
1926 First do this, then set the ones you want, then call `proceed'. */
1927
1928static void
1929clear_proceed_status_thread (struct thread_info *tp)
1930{
1931 if (debug_infrun)
1932 fprintf_unfiltered (gdb_stdlog,
1933 "infrun: clear_proceed_status_thread (%s)\n",
1934 target_pid_to_str (tp->ptid));
1935
1936 tp->control.trap_expected = 0;
1937 tp->control.step_range_start = 0;
1938 tp->control.step_range_end = 0;
1939 tp->control.step_frame_id = null_frame_id;
1940 tp->control.step_stack_frame_id = null_frame_id;
1941 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1942 tp->stop_requested = 0;
1943
1944 tp->control.stop_step = 0;
1945
1946 tp->control.proceed_to_finish = 0;
1947
1948 /* Discard any remaining commands or status from previous stop. */
1949 bpstat_clear (&tp->control.stop_bpstat);
1950}
1951
1952static int
1953clear_proceed_status_callback (struct thread_info *tp, void *data)
1954{
1955 if (is_exited (tp->ptid))
1956 return 0;
1957
1958 clear_proceed_status_thread (tp);
1959 return 0;
1960}
1961
1962void
1963clear_proceed_status (void)
1964{
1965 if (!non_stop)
1966 {
1967 /* In all-stop mode, delete the per-thread status of all
1968 threads, even if inferior_ptid is null_ptid, there may be
1969 threads on the list. E.g., we may be launching a new
1970 process, while selecting the executable. */
1971 iterate_over_threads (clear_proceed_status_callback, NULL);
1972 }
1973
1974 if (!ptid_equal (inferior_ptid, null_ptid))
1975 {
1976 struct inferior *inferior;
1977
1978 if (non_stop)
1979 {
1980 /* If in non-stop mode, only delete the per-thread status of
1981 the current thread. */
1982 clear_proceed_status_thread (inferior_thread ());
1983 }
1984
1985 inferior = current_inferior ();
1986 inferior->control.stop_soon = NO_STOP_QUIETLY;
1987 }
1988
1989 stop_after_trap = 0;
1990
1991 observer_notify_about_to_proceed ();
1992
1993 if (stop_registers)
1994 {
1995 regcache_xfree (stop_registers);
1996 stop_registers = NULL;
1997 }
1998}
1999
2000/* Check the current thread against the thread that reported the most recent
2001 event. If a step-over is required return TRUE and set the current thread
2002 to the old thread. Otherwise return FALSE.
2003
2004 This should be suitable for any targets that support threads. */
2005
2006static int
2007prepare_to_proceed (int step)
2008{
2009 ptid_t wait_ptid;
2010 struct target_waitstatus wait_status;
2011 int schedlock_enabled;
2012
2013 /* With non-stop mode on, threads are always handled individually. */
2014 gdb_assert (! non_stop);
2015
2016 /* Get the last target status returned by target_wait(). */
2017 get_last_target_status (&wait_ptid, &wait_status);
2018
2019 /* Make sure we were stopped at a breakpoint. */
2020 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2021 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
2022 && wait_status.value.sig != TARGET_SIGNAL_ILL
2023 && wait_status.value.sig != TARGET_SIGNAL_SEGV
2024 && wait_status.value.sig != TARGET_SIGNAL_EMT))
2025 {
2026 return 0;
2027 }
2028
2029 schedlock_enabled = (scheduler_mode == schedlock_on
2030 || (scheduler_mode == schedlock_step
2031 && step));
2032
2033 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2034 if (schedlock_enabled)
2035 return 0;
2036
2037 /* Don't switch over if we're about to resume some other process
2038 other than WAIT_PTID's, and schedule-multiple is off. */
2039 if (!sched_multi
2040 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2041 return 0;
2042
2043 /* Switched over from WAIT_PID. */
2044 if (!ptid_equal (wait_ptid, minus_one_ptid)
2045 && !ptid_equal (inferior_ptid, wait_ptid))
2046 {
2047 struct regcache *regcache = get_thread_regcache (wait_ptid);
2048
2049 if (breakpoint_here_p (get_regcache_aspace (regcache),
2050 regcache_read_pc (regcache)))
2051 {
2052 /* If stepping, remember current thread to switch back to. */
2053 if (step)
2054 deferred_step_ptid = inferior_ptid;
2055
2056 /* Switch back to WAIT_PID thread. */
2057 switch_to_thread (wait_ptid);
2058
2059 if (debug_infrun)
2060 fprintf_unfiltered (gdb_stdlog,
2061 "infrun: prepare_to_proceed (step=%d), "
2062 "switched to [%s]\n",
2063 step, target_pid_to_str (inferior_ptid));
2064
2065 /* We return 1 to indicate that there is a breakpoint here,
2066 so we need to step over it before continuing to avoid
2067 hitting it straight away. */
2068 return 1;
2069 }
2070 }
2071
2072 return 0;
2073}
2074
2075/* Basic routine for continuing the program in various fashions.
2076
2077 ADDR is the address to resume at, or -1 for resume where stopped.
2078 SIGGNAL is the signal to give it, or 0 for none,
2079 or -1 for act according to how it stopped.
2080 STEP is nonzero if should trap after one instruction.
2081 -1 means return after that and print nothing.
2082 You should probably set various step_... variables
2083 before calling here, if you are stepping.
2084
2085 You should call clear_proceed_status before calling proceed. */
2086
2087void
2088proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
2089{
2090 struct regcache *regcache;
2091 struct gdbarch *gdbarch;
2092 struct thread_info *tp;
2093 CORE_ADDR pc;
2094 struct address_space *aspace;
2095 int oneproc = 0;
2096
2097 /* If we're stopped at a fork/vfork, follow the branch set by the
2098 "set follow-fork-mode" command; otherwise, we'll just proceed
2099 resuming the current thread. */
2100 if (!follow_fork ())
2101 {
2102 /* The target for some reason decided not to resume. */
2103 normal_stop ();
2104 if (target_can_async_p ())
2105 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2106 return;
2107 }
2108
2109 /* We'll update this if & when we switch to a new thread. */
2110 previous_inferior_ptid = inferior_ptid;
2111
2112 regcache = get_current_regcache ();
2113 gdbarch = get_regcache_arch (regcache);
2114 aspace = get_regcache_aspace (regcache);
2115 pc = regcache_read_pc (regcache);
2116
2117 if (step > 0)
2118 step_start_function = find_pc_function (pc);
2119 if (step < 0)
2120 stop_after_trap = 1;
2121
2122 if (addr == (CORE_ADDR) -1)
2123 {
2124 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2125 && execution_direction != EXEC_REVERSE)
2126 /* There is a breakpoint at the address we will resume at,
2127 step one instruction before inserting breakpoints so that
2128 we do not stop right away (and report a second hit at this
2129 breakpoint).
2130
2131 Note, we don't do this in reverse, because we won't
2132 actually be executing the breakpoint insn anyway.
2133 We'll be (un-)executing the previous instruction. */
2134
2135 oneproc = 1;
2136 else if (gdbarch_single_step_through_delay_p (gdbarch)
2137 && gdbarch_single_step_through_delay (gdbarch,
2138 get_current_frame ()))
2139 /* We stepped onto an instruction that needs to be stepped
2140 again before re-inserting the breakpoint, do so. */
2141 oneproc = 1;
2142 }
2143 else
2144 {
2145 regcache_write_pc (regcache, addr);
2146 }
2147
2148 if (debug_infrun)
2149 fprintf_unfiltered (gdb_stdlog,
2150 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2151 paddress (gdbarch, addr), siggnal, step);
2152
2153 if (non_stop)
2154 /* In non-stop, each thread is handled individually. The context
2155 must already be set to the right thread here. */
2156 ;
2157 else
2158 {
2159 /* In a multi-threaded task we may select another thread and
2160 then continue or step.
2161
2162 But if the old thread was stopped at a breakpoint, it will
2163 immediately cause another breakpoint stop without any
2164 execution (i.e. it will report a breakpoint hit incorrectly).
2165 So we must step over it first.
2166
2167 prepare_to_proceed checks the current thread against the
2168 thread that reported the most recent event. If a step-over
2169 is required it returns TRUE and sets the current thread to
2170 the old thread. */
2171 if (prepare_to_proceed (step))
2172 oneproc = 1;
2173 }
2174
2175 /* prepare_to_proceed may change the current thread. */
2176 tp = inferior_thread ();
2177
2178 if (oneproc)
2179 {
2180 tp->control.trap_expected = 1;
2181 /* If displaced stepping is enabled, we can step over the
2182 breakpoint without hitting it, so leave all breakpoints
2183 inserted. Otherwise we need to disable all breakpoints, step
2184 one instruction, and then re-add them when that step is
2185 finished. */
2186 if (!use_displaced_stepping (gdbarch))
2187 remove_breakpoints ();
2188 }
2189
2190 /* We can insert breakpoints if we're not trying to step over one,
2191 or if we are stepping over one but we're using displaced stepping
2192 to do so. */
2193 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2194 insert_breakpoints ();
2195
2196 if (!non_stop)
2197 {
2198 /* Pass the last stop signal to the thread we're resuming,
2199 irrespective of whether the current thread is the thread that
2200 got the last event or not. This was historically GDB's
2201 behaviour before keeping a stop_signal per thread. */
2202
2203 struct thread_info *last_thread;
2204 ptid_t last_ptid;
2205 struct target_waitstatus last_status;
2206
2207 get_last_target_status (&last_ptid, &last_status);
2208 if (!ptid_equal (inferior_ptid, last_ptid)
2209 && !ptid_equal (last_ptid, null_ptid)
2210 && !ptid_equal (last_ptid, minus_one_ptid))
2211 {
2212 last_thread = find_thread_ptid (last_ptid);
2213 if (last_thread)
2214 {
2215 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2216 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2217 }
2218 }
2219 }
2220
2221 if (siggnal != TARGET_SIGNAL_DEFAULT)
2222 tp->suspend.stop_signal = siggnal;
2223 /* If this signal should not be seen by program,
2224 give it zero. Used for debugging signals. */
2225 else if (!signal_program[tp->suspend.stop_signal])
2226 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2227
2228 annotate_starting ();
2229
2230 /* Make sure that output from GDB appears before output from the
2231 inferior. */
2232 gdb_flush (gdb_stdout);
2233
2234 /* Refresh prev_pc value just prior to resuming. This used to be
2235 done in stop_stepping, however, setting prev_pc there did not handle
2236 scenarios such as inferior function calls or returning from
2237 a function via the return command. In those cases, the prev_pc
2238 value was not set properly for subsequent commands. The prev_pc value
2239 is used to initialize the starting line number in the ecs. With an
2240 invalid value, the gdb next command ends up stopping at the position
2241 represented by the next line table entry past our start position.
2242 On platforms that generate one line table entry per line, this
2243 is not a problem. However, on the ia64, the compiler generates
2244 extraneous line table entries that do not increase the line number.
2245 When we issue the gdb next command on the ia64 after an inferior call
2246 or a return command, we often end up a few instructions forward, still
2247 within the original line we started.
2248
2249 An attempt was made to refresh the prev_pc at the same time the
2250 execution_control_state is initialized (for instance, just before
2251 waiting for an inferior event). But this approach did not work
2252 because of platforms that use ptrace, where the pc register cannot
2253 be read unless the inferior is stopped. At that point, we are not
2254 guaranteed the inferior is stopped and so the regcache_read_pc() call
2255 can fail. Setting the prev_pc value here ensures the value is updated
2256 correctly when the inferior is stopped. */
2257 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2258
2259 /* Fill in with reasonable starting values. */
2260 init_thread_stepping_state (tp);
2261
2262 /* Reset to normal state. */
2263 init_infwait_state ();
2264
2265 /* Resume inferior. */
2266 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2267
2268 /* Wait for it to stop (if not standalone)
2269 and in any case decode why it stopped, and act accordingly. */
2270 /* Do this only if we are not using the event loop, or if the target
2271 does not support asynchronous execution. */
2272 if (!target_can_async_p ())
2273 {
2274 wait_for_inferior ();
2275 normal_stop ();
2276 }
2277}
2278\f
2279
2280/* Start remote-debugging of a machine over a serial link. */
2281
2282void
2283start_remote (int from_tty)
2284{
2285 struct inferior *inferior;
2286
2287 inferior = current_inferior ();
2288 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2289
2290 /* Always go on waiting for the target, regardless of the mode. */
2291 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2292 indicate to wait_for_inferior that a target should timeout if
2293 nothing is returned (instead of just blocking). Because of this,
2294 targets expecting an immediate response need to, internally, set
2295 things up so that the target_wait() is forced to eventually
2296 timeout. */
2297 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2298 differentiate to its caller what the state of the target is after
2299 the initial open has been performed. Here we're assuming that
2300 the target has stopped. It should be possible to eventually have
2301 target_open() return to the caller an indication that the target
2302 is currently running and GDB state should be set to the same as
2303 for an async run. */
2304 wait_for_inferior ();
2305
2306 /* Now that the inferior has stopped, do any bookkeeping like
2307 loading shared libraries. We want to do this before normal_stop,
2308 so that the displayed frame is up to date. */
2309 post_create_inferior (&current_target, from_tty);
2310
2311 normal_stop ();
2312}
2313
2314/* Initialize static vars when a new inferior begins. */
2315
2316void
2317init_wait_for_inferior (void)
2318{
2319 /* These are meaningless until the first time through wait_for_inferior. */
2320
2321 breakpoint_init_inferior (inf_starting);
2322
2323 clear_proceed_status ();
2324
2325 stepping_past_singlestep_breakpoint = 0;
2326 deferred_step_ptid = null_ptid;
2327
2328 target_last_wait_ptid = minus_one_ptid;
2329
2330 previous_inferior_ptid = inferior_ptid;
2331 init_infwait_state ();
2332
2333 /* Discard any skipped inlined frames. */
2334 clear_inline_frame_state (minus_one_ptid);
2335}
2336
2337\f
2338/* This enum encodes possible reasons for doing a target_wait, so that
2339 wfi can call target_wait in one place. (Ultimately the call will be
2340 moved out of the infinite loop entirely.) */
2341
2342enum infwait_states
2343{
2344 infwait_normal_state,
2345 infwait_thread_hop_state,
2346 infwait_step_watch_state,
2347 infwait_nonstep_watch_state
2348};
2349
2350/* The PTID we'll do a target_wait on.*/
2351ptid_t waiton_ptid;
2352
2353/* Current inferior wait state. */
2354enum infwait_states infwait_state;
2355
2356/* Data to be passed around while handling an event. This data is
2357 discarded between events. */
2358struct execution_control_state
2359{
2360 ptid_t ptid;
2361 /* The thread that got the event, if this was a thread event; NULL
2362 otherwise. */
2363 struct thread_info *event_thread;
2364
2365 struct target_waitstatus ws;
2366 int random_signal;
2367 int stop_func_filled_in;
2368 CORE_ADDR stop_func_start;
2369 CORE_ADDR stop_func_end;
2370 char *stop_func_name;
2371 int new_thread_event;
2372 int wait_some_more;
2373};
2374
2375static void handle_inferior_event (struct execution_control_state *ecs);
2376
2377static void handle_step_into_function (struct gdbarch *gdbarch,
2378 struct execution_control_state *ecs);
2379static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2380 struct execution_control_state *ecs);
2381static void check_exception_resume (struct execution_control_state *,
2382 struct frame_info *, struct symbol *);
2383
2384static void stop_stepping (struct execution_control_state *ecs);
2385static void prepare_to_wait (struct execution_control_state *ecs);
2386static void keep_going (struct execution_control_state *ecs);
2387
2388/* Callback for iterate over threads. If the thread is stopped, but
2389 the user/frontend doesn't know about that yet, go through
2390 normal_stop, as if the thread had just stopped now. ARG points at
2391 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2392 ptid_is_pid(PTID) is true, applies to all threads of the process
2393 pointed at by PTID. Otherwise, apply only to the thread pointed by
2394 PTID. */
2395
2396static int
2397infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2398{
2399 ptid_t ptid = * (ptid_t *) arg;
2400
2401 if ((ptid_equal (info->ptid, ptid)
2402 || ptid_equal (minus_one_ptid, ptid)
2403 || (ptid_is_pid (ptid)
2404 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2405 && is_running (info->ptid)
2406 && !is_executing (info->ptid))
2407 {
2408 struct cleanup *old_chain;
2409 struct execution_control_state ecss;
2410 struct execution_control_state *ecs = &ecss;
2411
2412 memset (ecs, 0, sizeof (*ecs));
2413
2414 old_chain = make_cleanup_restore_current_thread ();
2415
2416 switch_to_thread (info->ptid);
2417
2418 /* Go through handle_inferior_event/normal_stop, so we always
2419 have consistent output as if the stop event had been
2420 reported. */
2421 ecs->ptid = info->ptid;
2422 ecs->event_thread = find_thread_ptid (info->ptid);
2423 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2424 ecs->ws.value.sig = TARGET_SIGNAL_0;
2425
2426 handle_inferior_event (ecs);
2427
2428 if (!ecs->wait_some_more)
2429 {
2430 struct thread_info *tp;
2431
2432 normal_stop ();
2433
2434 /* Finish off the continuations. */
2435 tp = inferior_thread ();
2436 do_all_intermediate_continuations_thread (tp, 1);
2437 do_all_continuations_thread (tp, 1);
2438 }
2439
2440 do_cleanups (old_chain);
2441 }
2442
2443 return 0;
2444}
2445
2446/* This function is attached as a "thread_stop_requested" observer.
2447 Cleanup local state that assumed the PTID was to be resumed, and
2448 report the stop to the frontend. */
2449
2450static void
2451infrun_thread_stop_requested (ptid_t ptid)
2452{
2453 struct displaced_step_inferior_state *displaced;
2454
2455 /* PTID was requested to stop. Remove it from the displaced
2456 stepping queue, so we don't try to resume it automatically. */
2457
2458 for (displaced = displaced_step_inferior_states;
2459 displaced;
2460 displaced = displaced->next)
2461 {
2462 struct displaced_step_request *it, **prev_next_p;
2463
2464 it = displaced->step_request_queue;
2465 prev_next_p = &displaced->step_request_queue;
2466 while (it)
2467 {
2468 if (ptid_match (it->ptid, ptid))
2469 {
2470 *prev_next_p = it->next;
2471 it->next = NULL;
2472 xfree (it);
2473 }
2474 else
2475 {
2476 prev_next_p = &it->next;
2477 }
2478
2479 it = *prev_next_p;
2480 }
2481 }
2482
2483 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2484}
2485
2486static void
2487infrun_thread_thread_exit (struct thread_info *tp, int silent)
2488{
2489 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2490 nullify_last_target_wait_ptid ();
2491}
2492
2493/* Callback for iterate_over_threads. */
2494
2495static int
2496delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2497{
2498 if (is_exited (info->ptid))
2499 return 0;
2500
2501 delete_step_resume_breakpoint (info);
2502 delete_exception_resume_breakpoint (info);
2503 return 0;
2504}
2505
2506/* In all-stop, delete the step resume breakpoint of any thread that
2507 had one. In non-stop, delete the step resume breakpoint of the
2508 thread that just stopped. */
2509
2510static void
2511delete_step_thread_step_resume_breakpoint (void)
2512{
2513 if (!target_has_execution
2514 || ptid_equal (inferior_ptid, null_ptid))
2515 /* If the inferior has exited, we have already deleted the step
2516 resume breakpoints out of GDB's lists. */
2517 return;
2518
2519 if (non_stop)
2520 {
2521 /* If in non-stop mode, only delete the step-resume or
2522 longjmp-resume breakpoint of the thread that just stopped
2523 stepping. */
2524 struct thread_info *tp = inferior_thread ();
2525
2526 delete_step_resume_breakpoint (tp);
2527 delete_exception_resume_breakpoint (tp);
2528 }
2529 else
2530 /* In all-stop mode, delete all step-resume and longjmp-resume
2531 breakpoints of any thread that had them. */
2532 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2533}
2534
2535/* A cleanup wrapper. */
2536
2537static void
2538delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2539{
2540 delete_step_thread_step_resume_breakpoint ();
2541}
2542
2543/* Pretty print the results of target_wait, for debugging purposes. */
2544
2545static void
2546print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2547 const struct target_waitstatus *ws)
2548{
2549 char *status_string = target_waitstatus_to_string (ws);
2550 struct ui_file *tmp_stream = mem_fileopen ();
2551 char *text;
2552
2553 /* The text is split over several lines because it was getting too long.
2554 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2555 output as a unit; we want only one timestamp printed if debug_timestamp
2556 is set. */
2557
2558 fprintf_unfiltered (tmp_stream,
2559 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2560 if (PIDGET (waiton_ptid) != -1)
2561 fprintf_unfiltered (tmp_stream,
2562 " [%s]", target_pid_to_str (waiton_ptid));
2563 fprintf_unfiltered (tmp_stream, ", status) =\n");
2564 fprintf_unfiltered (tmp_stream,
2565 "infrun: %d [%s],\n",
2566 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2567 fprintf_unfiltered (tmp_stream,
2568 "infrun: %s\n",
2569 status_string);
2570
2571 text = ui_file_xstrdup (tmp_stream, NULL);
2572
2573 /* This uses %s in part to handle %'s in the text, but also to avoid
2574 a gcc error: the format attribute requires a string literal. */
2575 fprintf_unfiltered (gdb_stdlog, "%s", text);
2576
2577 xfree (status_string);
2578 xfree (text);
2579 ui_file_delete (tmp_stream);
2580}
2581
2582/* Prepare and stabilize the inferior for detaching it. E.g.,
2583 detaching while a thread is displaced stepping is a recipe for
2584 crashing it, as nothing would readjust the PC out of the scratch
2585 pad. */
2586
2587void
2588prepare_for_detach (void)
2589{
2590 struct inferior *inf = current_inferior ();
2591 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2592 struct cleanup *old_chain_1;
2593 struct displaced_step_inferior_state *displaced;
2594
2595 displaced = get_displaced_stepping_state (inf->pid);
2596
2597 /* Is any thread of this process displaced stepping? If not,
2598 there's nothing else to do. */
2599 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2600 return;
2601
2602 if (debug_infrun)
2603 fprintf_unfiltered (gdb_stdlog,
2604 "displaced-stepping in-process while detaching");
2605
2606 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2607 inf->detaching = 1;
2608
2609 while (!ptid_equal (displaced->step_ptid, null_ptid))
2610 {
2611 struct cleanup *old_chain_2;
2612 struct execution_control_state ecss;
2613 struct execution_control_state *ecs;
2614
2615 ecs = &ecss;
2616 memset (ecs, 0, sizeof (*ecs));
2617
2618 overlay_cache_invalid = 1;
2619
2620 if (deprecated_target_wait_hook)
2621 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2622 else
2623 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2624
2625 if (debug_infrun)
2626 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2627
2628 /* If an error happens while handling the event, propagate GDB's
2629 knowledge of the executing state to the frontend/user running
2630 state. */
2631 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2632 &minus_one_ptid);
2633
2634 /* In non-stop mode, each thread is handled individually.
2635 Switch early, so the global state is set correctly for this
2636 thread. */
2637 if (non_stop
2638 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2639 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2640 context_switch (ecs->ptid);
2641
2642 /* Now figure out what to do with the result of the result. */
2643 handle_inferior_event (ecs);
2644
2645 /* No error, don't finish the state yet. */
2646 discard_cleanups (old_chain_2);
2647
2648 /* Breakpoints and watchpoints are not installed on the target
2649 at this point, and signals are passed directly to the
2650 inferior, so this must mean the process is gone. */
2651 if (!ecs->wait_some_more)
2652 {
2653 discard_cleanups (old_chain_1);
2654 error (_("Program exited while detaching"));
2655 }
2656 }
2657
2658 discard_cleanups (old_chain_1);
2659}
2660
2661/* Wait for control to return from inferior to debugger.
2662
2663 If inferior gets a signal, we may decide to start it up again
2664 instead of returning. That is why there is a loop in this function.
2665 When this function actually returns it means the inferior
2666 should be left stopped and GDB should read more commands. */
2667
2668void
2669wait_for_inferior (void)
2670{
2671 struct cleanup *old_cleanups;
2672 struct execution_control_state ecss;
2673 struct execution_control_state *ecs;
2674
2675 if (debug_infrun)
2676 fprintf_unfiltered
2677 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2678
2679 old_cleanups =
2680 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2681
2682 ecs = &ecss;
2683 memset (ecs, 0, sizeof (*ecs));
2684
2685 while (1)
2686 {
2687 struct cleanup *old_chain;
2688
2689 overlay_cache_invalid = 1;
2690
2691 if (deprecated_target_wait_hook)
2692 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2693 else
2694 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2695
2696 if (debug_infrun)
2697 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2698
2699 /* If an error happens while handling the event, propagate GDB's
2700 knowledge of the executing state to the frontend/user running
2701 state. */
2702 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2703
2704 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2705 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2706 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2707
2708 /* Now figure out what to do with the result of the result. */
2709 handle_inferior_event (ecs);
2710
2711 /* No error, don't finish the state yet. */
2712 discard_cleanups (old_chain);
2713
2714 if (!ecs->wait_some_more)
2715 break;
2716 }
2717
2718 do_cleanups (old_cleanups);
2719}
2720
2721/* Asynchronous version of wait_for_inferior. It is called by the
2722 event loop whenever a change of state is detected on the file
2723 descriptor corresponding to the target. It can be called more than
2724 once to complete a single execution command. In such cases we need
2725 to keep the state in a global variable ECSS. If it is the last time
2726 that this function is called for a single execution command, then
2727 report to the user that the inferior has stopped, and do the
2728 necessary cleanups. */
2729
2730void
2731fetch_inferior_event (void *client_data)
2732{
2733 struct execution_control_state ecss;
2734 struct execution_control_state *ecs = &ecss;
2735 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2736 struct cleanup *ts_old_chain;
2737 int was_sync = sync_execution;
2738 int cmd_done = 0;
2739
2740 memset (ecs, 0, sizeof (*ecs));
2741
2742 /* We're handling a live event, so make sure we're doing live
2743 debugging. If we're looking at traceframes while the target is
2744 running, we're going to need to get back to that mode after
2745 handling the event. */
2746 if (non_stop)
2747 {
2748 make_cleanup_restore_current_traceframe ();
2749 set_current_traceframe (-1);
2750 }
2751
2752 if (non_stop)
2753 /* In non-stop mode, the user/frontend should not notice a thread
2754 switch due to internal events. Make sure we reverse to the
2755 user selected thread and frame after handling the event and
2756 running any breakpoint commands. */
2757 make_cleanup_restore_current_thread ();
2758
2759 overlay_cache_invalid = 1;
2760
2761 make_cleanup_restore_integer (&execution_direction);
2762 execution_direction = target_execution_direction ();
2763
2764 if (deprecated_target_wait_hook)
2765 ecs->ptid =
2766 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2767 else
2768 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2769
2770 if (debug_infrun)
2771 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2772
2773 if (non_stop
2774 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2775 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2776 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2777 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2778 /* In non-stop mode, each thread is handled individually. Switch
2779 early, so the global state is set correctly for this
2780 thread. */
2781 context_switch (ecs->ptid);
2782
2783 /* If an error happens while handling the event, propagate GDB's
2784 knowledge of the executing state to the frontend/user running
2785 state. */
2786 if (!non_stop)
2787 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2788 else
2789 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2790
2791 /* Get executed before make_cleanup_restore_current_thread above to apply
2792 still for the thread which has thrown the exception. */
2793 make_bpstat_clear_actions_cleanup ();
2794
2795 /* Now figure out what to do with the result of the result. */
2796 handle_inferior_event (ecs);
2797
2798 if (!ecs->wait_some_more)
2799 {
2800 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2801
2802 delete_step_thread_step_resume_breakpoint ();
2803
2804 /* We may not find an inferior if this was a process exit. */
2805 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2806 normal_stop ();
2807
2808 if (target_has_execution
2809 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2810 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2811 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2812 && ecs->event_thread->step_multi
2813 && ecs->event_thread->control.stop_step)
2814 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2815 else
2816 {
2817 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2818 cmd_done = 1;
2819 }
2820 }
2821
2822 /* No error, don't finish the thread states yet. */
2823 discard_cleanups (ts_old_chain);
2824
2825 /* Revert thread and frame. */
2826 do_cleanups (old_chain);
2827
2828 /* If the inferior was in sync execution mode, and now isn't,
2829 restore the prompt (a synchronous execution command has finished,
2830 and we're ready for input). */
2831 if (interpreter_async && was_sync && !sync_execution)
2832 display_gdb_prompt (0);
2833
2834 if (cmd_done
2835 && !was_sync
2836 && exec_done_display_p
2837 && (ptid_equal (inferior_ptid, null_ptid)
2838 || !is_running (inferior_ptid)))
2839 printf_unfiltered (_("completed.\n"));
2840}
2841
2842/* Record the frame and location we're currently stepping through. */
2843void
2844set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2845{
2846 struct thread_info *tp = inferior_thread ();
2847
2848 tp->control.step_frame_id = get_frame_id (frame);
2849 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2850
2851 tp->current_symtab = sal.symtab;
2852 tp->current_line = sal.line;
2853}
2854
2855/* Clear context switchable stepping state. */
2856
2857void
2858init_thread_stepping_state (struct thread_info *tss)
2859{
2860 tss->stepping_over_breakpoint = 0;
2861 tss->step_after_step_resume_breakpoint = 0;
2862}
2863
2864/* Return the cached copy of the last pid/waitstatus returned by
2865 target_wait()/deprecated_target_wait_hook(). The data is actually
2866 cached by handle_inferior_event(), which gets called immediately
2867 after target_wait()/deprecated_target_wait_hook(). */
2868
2869void
2870get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2871{
2872 *ptidp = target_last_wait_ptid;
2873 *status = target_last_waitstatus;
2874}
2875
2876void
2877nullify_last_target_wait_ptid (void)
2878{
2879 target_last_wait_ptid = minus_one_ptid;
2880}
2881
2882/* Switch thread contexts. */
2883
2884static void
2885context_switch (ptid_t ptid)
2886{
2887 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2888 {
2889 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2890 target_pid_to_str (inferior_ptid));
2891 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2892 target_pid_to_str (ptid));
2893 }
2894
2895 switch_to_thread (ptid);
2896}
2897
2898static void
2899adjust_pc_after_break (struct execution_control_state *ecs)
2900{
2901 struct regcache *regcache;
2902 struct gdbarch *gdbarch;
2903 struct address_space *aspace;
2904 CORE_ADDR breakpoint_pc;
2905
2906 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2907 we aren't, just return.
2908
2909 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2910 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2911 implemented by software breakpoints should be handled through the normal
2912 breakpoint layer.
2913
2914 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2915 different signals (SIGILL or SIGEMT for instance), but it is less
2916 clear where the PC is pointing afterwards. It may not match
2917 gdbarch_decr_pc_after_break. I don't know any specific target that
2918 generates these signals at breakpoints (the code has been in GDB since at
2919 least 1992) so I can not guess how to handle them here.
2920
2921 In earlier versions of GDB, a target with
2922 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2923 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2924 target with both of these set in GDB history, and it seems unlikely to be
2925 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2926
2927 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2928 return;
2929
2930 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2931 return;
2932
2933 /* In reverse execution, when a breakpoint is hit, the instruction
2934 under it has already been de-executed. The reported PC always
2935 points at the breakpoint address, so adjusting it further would
2936 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2937 architecture:
2938
2939 B1 0x08000000 : INSN1
2940 B2 0x08000001 : INSN2
2941 0x08000002 : INSN3
2942 PC -> 0x08000003 : INSN4
2943
2944 Say you're stopped at 0x08000003 as above. Reverse continuing
2945 from that point should hit B2 as below. Reading the PC when the
2946 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2947 been de-executed already.
2948
2949 B1 0x08000000 : INSN1
2950 B2 PC -> 0x08000001 : INSN2
2951 0x08000002 : INSN3
2952 0x08000003 : INSN4
2953
2954 We can't apply the same logic as for forward execution, because
2955 we would wrongly adjust the PC to 0x08000000, since there's a
2956 breakpoint at PC - 1. We'd then report a hit on B1, although
2957 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2958 behaviour. */
2959 if (execution_direction == EXEC_REVERSE)
2960 return;
2961
2962 /* If this target does not decrement the PC after breakpoints, then
2963 we have nothing to do. */
2964 regcache = get_thread_regcache (ecs->ptid);
2965 gdbarch = get_regcache_arch (regcache);
2966 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2967 return;
2968
2969 aspace = get_regcache_aspace (regcache);
2970
2971 /* Find the location where (if we've hit a breakpoint) the
2972 breakpoint would be. */
2973 breakpoint_pc = regcache_read_pc (regcache)
2974 - gdbarch_decr_pc_after_break (gdbarch);
2975
2976 /* Check whether there actually is a software breakpoint inserted at
2977 that location.
2978
2979 If in non-stop mode, a race condition is possible where we've
2980 removed a breakpoint, but stop events for that breakpoint were
2981 already queued and arrive later. To suppress those spurious
2982 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2983 and retire them after a number of stop events are reported. */
2984 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2985 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2986 {
2987 struct cleanup *old_cleanups = NULL;
2988
2989 if (RECORD_IS_USED)
2990 old_cleanups = record_gdb_operation_disable_set ();
2991
2992 /* When using hardware single-step, a SIGTRAP is reported for both
2993 a completed single-step and a software breakpoint. Need to
2994 differentiate between the two, as the latter needs adjusting
2995 but the former does not.
2996
2997 The SIGTRAP can be due to a completed hardware single-step only if
2998 - we didn't insert software single-step breakpoints
2999 - the thread to be examined is still the current thread
3000 - this thread is currently being stepped
3001
3002 If any of these events did not occur, we must have stopped due
3003 to hitting a software breakpoint, and have to back up to the
3004 breakpoint address.
3005
3006 As a special case, we could have hardware single-stepped a
3007 software breakpoint. In this case (prev_pc == breakpoint_pc),
3008 we also need to back up to the breakpoint address. */
3009
3010 if (singlestep_breakpoints_inserted_p
3011 || !ptid_equal (ecs->ptid, inferior_ptid)
3012 || !currently_stepping (ecs->event_thread)
3013 || ecs->event_thread->prev_pc == breakpoint_pc)
3014 regcache_write_pc (regcache, breakpoint_pc);
3015
3016 if (RECORD_IS_USED)
3017 do_cleanups (old_cleanups);
3018 }
3019}
3020
3021void
3022init_infwait_state (void)
3023{
3024 waiton_ptid = pid_to_ptid (-1);
3025 infwait_state = infwait_normal_state;
3026}
3027
3028void
3029error_is_running (void)
3030{
3031 error (_("Cannot execute this command while "
3032 "the selected thread is running."));
3033}
3034
3035void
3036ensure_not_running (void)
3037{
3038 if (is_running (inferior_ptid))
3039 error_is_running ();
3040}
3041
3042static int
3043stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3044{
3045 for (frame = get_prev_frame (frame);
3046 frame != NULL;
3047 frame = get_prev_frame (frame))
3048 {
3049 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3050 return 1;
3051 if (get_frame_type (frame) != INLINE_FRAME)
3052 break;
3053 }
3054
3055 return 0;
3056}
3057
3058/* Auxiliary function that handles syscall entry/return events.
3059 It returns 1 if the inferior should keep going (and GDB
3060 should ignore the event), or 0 if the event deserves to be
3061 processed. */
3062
3063static int
3064handle_syscall_event (struct execution_control_state *ecs)
3065{
3066 struct regcache *regcache;
3067 struct gdbarch *gdbarch;
3068 int syscall_number;
3069
3070 if (!ptid_equal (ecs->ptid, inferior_ptid))
3071 context_switch (ecs->ptid);
3072
3073 regcache = get_thread_regcache (ecs->ptid);
3074 gdbarch = get_regcache_arch (regcache);
3075 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3076 stop_pc = regcache_read_pc (regcache);
3077
3078 target_last_waitstatus.value.syscall_number = syscall_number;
3079
3080 if (catch_syscall_enabled () > 0
3081 && catching_syscall_number (syscall_number) > 0)
3082 {
3083 if (debug_infrun)
3084 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3085 syscall_number);
3086
3087 ecs->event_thread->control.stop_bpstat
3088 = bpstat_stop_status (get_regcache_aspace (regcache),
3089 stop_pc, ecs->ptid);
3090 ecs->random_signal
3091 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3092
3093 if (!ecs->random_signal)
3094 {
3095 /* Catchpoint hit. */
3096 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3097 return 0;
3098 }
3099 }
3100
3101 /* If no catchpoint triggered for this, then keep going. */
3102 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3103 keep_going (ecs);
3104 return 1;
3105}
3106
3107/* Clear the supplied execution_control_state's stop_func_* fields. */
3108
3109static void
3110clear_stop_func (struct execution_control_state *ecs)
3111{
3112 ecs->stop_func_filled_in = 0;
3113 ecs->stop_func_start = 0;
3114 ecs->stop_func_end = 0;
3115 ecs->stop_func_name = NULL;
3116}
3117
3118/* Lazily fill in the execution_control_state's stop_func_* fields. */
3119
3120static void
3121fill_in_stop_func (struct gdbarch *gdbarch,
3122 struct execution_control_state *ecs)
3123{
3124 if (!ecs->stop_func_filled_in)
3125 {
3126 /* Don't care about return value; stop_func_start and stop_func_name
3127 will both be 0 if it doesn't work. */
3128 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3129 &ecs->stop_func_start, &ecs->stop_func_end);
3130 ecs->stop_func_start
3131 += gdbarch_deprecated_function_start_offset (gdbarch);
3132
3133 ecs->stop_func_filled_in = 1;
3134 }
3135}
3136
3137/* Given an execution control state that has been freshly filled in
3138 by an event from the inferior, figure out what it means and take
3139 appropriate action. */
3140
3141static void
3142handle_inferior_event (struct execution_control_state *ecs)
3143{
3144 struct frame_info *frame;
3145 struct gdbarch *gdbarch;
3146 int stopped_by_watchpoint;
3147 int stepped_after_stopped_by_watchpoint = 0;
3148 struct symtab_and_line stop_pc_sal;
3149 enum stop_kind stop_soon;
3150
3151 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3152 {
3153 /* We had an event in the inferior, but we are not interested in
3154 handling it at this level. The lower layers have already
3155 done what needs to be done, if anything.
3156
3157 One of the possible circumstances for this is when the
3158 inferior produces output for the console. The inferior has
3159 not stopped, and we are ignoring the event. Another possible
3160 circumstance is any event which the lower level knows will be
3161 reported multiple times without an intervening resume. */
3162 if (debug_infrun)
3163 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3164 prepare_to_wait (ecs);
3165 return;
3166 }
3167
3168 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3169 && target_can_async_p () && !sync_execution)
3170 {
3171 /* There were no unwaited-for children left in the target, but,
3172 we're not synchronously waiting for events either. Just
3173 ignore. Otherwise, if we were running a synchronous
3174 execution command, we need to cancel it and give the user
3175 back the terminal. */
3176 if (debug_infrun)
3177 fprintf_unfiltered (gdb_stdlog,
3178 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3179 prepare_to_wait (ecs);
3180 return;
3181 }
3182
3183 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3184 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3185 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3186 {
3187 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3188
3189 gdb_assert (inf);
3190 stop_soon = inf->control.stop_soon;
3191 }
3192 else
3193 stop_soon = NO_STOP_QUIETLY;
3194
3195 /* Cache the last pid/waitstatus. */
3196 target_last_wait_ptid = ecs->ptid;
3197 target_last_waitstatus = ecs->ws;
3198
3199 /* Always clear state belonging to the previous time we stopped. */
3200 stop_stack_dummy = STOP_NONE;
3201
3202 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3203 {
3204 /* No unwaited-for children left. IOW, all resumed children
3205 have exited. */
3206 if (debug_infrun)
3207 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3208
3209 stop_print_frame = 0;
3210 stop_stepping (ecs);
3211 return;
3212 }
3213
3214 /* If it's a new process, add it to the thread database. */
3215
3216 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3217 && !ptid_equal (ecs->ptid, minus_one_ptid)
3218 && !in_thread_list (ecs->ptid));
3219
3220 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3221 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3222 add_thread (ecs->ptid);
3223
3224 ecs->event_thread = find_thread_ptid (ecs->ptid);
3225
3226 /* Dependent on valid ECS->EVENT_THREAD. */
3227 adjust_pc_after_break (ecs);
3228
3229 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3230 reinit_frame_cache ();
3231
3232 breakpoint_retire_moribund ();
3233
3234 /* First, distinguish signals caused by the debugger from signals
3235 that have to do with the program's own actions. Note that
3236 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3237 on the operating system version. Here we detect when a SIGILL or
3238 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3239 something similar for SIGSEGV, since a SIGSEGV will be generated
3240 when we're trying to execute a breakpoint instruction on a
3241 non-executable stack. This happens for call dummy breakpoints
3242 for architectures like SPARC that place call dummies on the
3243 stack. */
3244 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3245 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3246 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3247 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3248 {
3249 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3250
3251 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3252 regcache_read_pc (regcache)))
3253 {
3254 if (debug_infrun)
3255 fprintf_unfiltered (gdb_stdlog,
3256 "infrun: Treating signal as SIGTRAP\n");
3257 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3258 }
3259 }
3260
3261 /* Mark the non-executing threads accordingly. In all-stop, all
3262 threads of all processes are stopped when we get any event
3263 reported. In non-stop mode, only the event thread stops. If
3264 we're handling a process exit in non-stop mode, there's nothing
3265 to do, as threads of the dead process are gone, and threads of
3266 any other process were left running. */
3267 if (!non_stop)
3268 set_executing (minus_one_ptid, 0);
3269 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3270 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3271 set_executing (ecs->ptid, 0);
3272
3273 switch (infwait_state)
3274 {
3275 case infwait_thread_hop_state:
3276 if (debug_infrun)
3277 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3278 break;
3279
3280 case infwait_normal_state:
3281 if (debug_infrun)
3282 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3283 break;
3284
3285 case infwait_step_watch_state:
3286 if (debug_infrun)
3287 fprintf_unfiltered (gdb_stdlog,
3288 "infrun: infwait_step_watch_state\n");
3289
3290 stepped_after_stopped_by_watchpoint = 1;
3291 break;
3292
3293 case infwait_nonstep_watch_state:
3294 if (debug_infrun)
3295 fprintf_unfiltered (gdb_stdlog,
3296 "infrun: infwait_nonstep_watch_state\n");
3297 insert_breakpoints ();
3298
3299 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3300 handle things like signals arriving and other things happening
3301 in combination correctly? */
3302 stepped_after_stopped_by_watchpoint = 1;
3303 break;
3304
3305 default:
3306 internal_error (__FILE__, __LINE__, _("bad switch"));
3307 }
3308
3309 infwait_state = infwait_normal_state;
3310 waiton_ptid = pid_to_ptid (-1);
3311
3312 switch (ecs->ws.kind)
3313 {
3314 case TARGET_WAITKIND_LOADED:
3315 if (debug_infrun)
3316 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3317 /* Ignore gracefully during startup of the inferior, as it might
3318 be the shell which has just loaded some objects, otherwise
3319 add the symbols for the newly loaded objects. Also ignore at
3320 the beginning of an attach or remote session; we will query
3321 the full list of libraries once the connection is
3322 established. */
3323 if (stop_soon == NO_STOP_QUIETLY)
3324 {
3325 /* Check for any newly added shared libraries if we're
3326 supposed to be adding them automatically. Switch
3327 terminal for any messages produced by
3328 breakpoint_re_set. */
3329 target_terminal_ours_for_output ();
3330 /* NOTE: cagney/2003-11-25: Make certain that the target
3331 stack's section table is kept up-to-date. Architectures,
3332 (e.g., PPC64), use the section table to perform
3333 operations such as address => section name and hence
3334 require the table to contain all sections (including
3335 those found in shared libraries). */
3336#ifdef SOLIB_ADD
3337 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3338#else
3339 solib_add (NULL, 0, &current_target, auto_solib_add);
3340#endif
3341 target_terminal_inferior ();
3342
3343 /* If requested, stop when the dynamic linker notifies
3344 gdb of events. This allows the user to get control
3345 and place breakpoints in initializer routines for
3346 dynamically loaded objects (among other things). */
3347 if (stop_on_solib_events)
3348 {
3349 /* Make sure we print "Stopped due to solib-event" in
3350 normal_stop. */
3351 stop_print_frame = 1;
3352
3353 stop_stepping (ecs);
3354 return;
3355 }
3356
3357 /* NOTE drow/2007-05-11: This might be a good place to check
3358 for "catch load". */
3359 }
3360
3361 /* If we are skipping through a shell, or through shared library
3362 loading that we aren't interested in, resume the program. If
3363 we're running the program normally, also resume. But stop if
3364 we're attaching or setting up a remote connection. */
3365 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3366 {
3367 /* Loading of shared libraries might have changed breakpoint
3368 addresses. Make sure new breakpoints are inserted. */
3369 if (stop_soon == NO_STOP_QUIETLY
3370 && !breakpoints_always_inserted_mode ())
3371 insert_breakpoints ();
3372 resume (0, TARGET_SIGNAL_0);
3373 prepare_to_wait (ecs);
3374 return;
3375 }
3376
3377 break;
3378
3379 case TARGET_WAITKIND_SPURIOUS:
3380 if (debug_infrun)
3381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3382 resume (0, TARGET_SIGNAL_0);
3383 prepare_to_wait (ecs);
3384 return;
3385
3386 case TARGET_WAITKIND_EXITED:
3387 if (debug_infrun)
3388 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3389 inferior_ptid = ecs->ptid;
3390 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3391 set_current_program_space (current_inferior ()->pspace);
3392 handle_vfork_child_exec_or_exit (0);
3393 target_terminal_ours (); /* Must do this before mourn anyway. */
3394 print_exited_reason (ecs->ws.value.integer);
3395
3396 /* Record the exit code in the convenience variable $_exitcode, so
3397 that the user can inspect this again later. */
3398 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3399 (LONGEST) ecs->ws.value.integer);
3400
3401 /* Also record this in the inferior itself. */
3402 current_inferior ()->has_exit_code = 1;
3403 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3404
3405 gdb_flush (gdb_stdout);
3406 target_mourn_inferior ();
3407 singlestep_breakpoints_inserted_p = 0;
3408 cancel_single_step_breakpoints ();
3409 stop_print_frame = 0;
3410 stop_stepping (ecs);
3411 return;
3412
3413 case TARGET_WAITKIND_SIGNALLED:
3414 if (debug_infrun)
3415 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3416 inferior_ptid = ecs->ptid;
3417 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3418 set_current_program_space (current_inferior ()->pspace);
3419 handle_vfork_child_exec_or_exit (0);
3420 stop_print_frame = 0;
3421 target_terminal_ours (); /* Must do this before mourn anyway. */
3422
3423 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3424 reach here unless the inferior is dead. However, for years
3425 target_kill() was called here, which hints that fatal signals aren't
3426 really fatal on some systems. If that's true, then some changes
3427 may be needed. */
3428 target_mourn_inferior ();
3429
3430 print_signal_exited_reason (ecs->ws.value.sig);
3431 singlestep_breakpoints_inserted_p = 0;
3432 cancel_single_step_breakpoints ();
3433 stop_stepping (ecs);
3434 return;
3435
3436 /* The following are the only cases in which we keep going;
3437 the above cases end in a continue or goto. */
3438 case TARGET_WAITKIND_FORKED:
3439 case TARGET_WAITKIND_VFORKED:
3440 if (debug_infrun)
3441 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3442
3443 /* Check whether the inferior is displaced stepping. */
3444 {
3445 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3446 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3447 struct displaced_step_inferior_state *displaced
3448 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3449
3450 /* If checking displaced stepping is supported, and thread
3451 ecs->ptid is displaced stepping. */
3452 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3453 {
3454 struct inferior *parent_inf
3455 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3456 struct regcache *child_regcache;
3457 CORE_ADDR parent_pc;
3458
3459 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3460 indicating that the displaced stepping of syscall instruction
3461 has been done. Perform cleanup for parent process here. Note
3462 that this operation also cleans up the child process for vfork,
3463 because their pages are shared. */
3464 displaced_step_fixup (ecs->ptid, TARGET_SIGNAL_TRAP);
3465
3466 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3467 {
3468 /* Restore scratch pad for child process. */
3469 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3470 }
3471
3472 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3473 the child's PC is also within the scratchpad. Set the child's PC
3474 to the parent's PC value, which has already been fixed up.
3475 FIXME: we use the parent's aspace here, although we're touching
3476 the child, because the child hasn't been added to the inferior
3477 list yet at this point. */
3478
3479 child_regcache
3480 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3481 gdbarch,
3482 parent_inf->aspace);
3483 /* Read PC value of parent process. */
3484 parent_pc = regcache_read_pc (regcache);
3485
3486 if (debug_displaced)
3487 fprintf_unfiltered (gdb_stdlog,
3488 "displaced: write child pc from %s to %s\n",
3489 paddress (gdbarch,
3490 regcache_read_pc (child_regcache)),
3491 paddress (gdbarch, parent_pc));
3492
3493 regcache_write_pc (child_regcache, parent_pc);
3494 }
3495 }
3496
3497 if (!ptid_equal (ecs->ptid, inferior_ptid))
3498 {
3499 context_switch (ecs->ptid);
3500 reinit_frame_cache ();
3501 }
3502
3503 /* Immediately detach breakpoints from the child before there's
3504 any chance of letting the user delete breakpoints from the
3505 breakpoint lists. If we don't do this early, it's easy to
3506 leave left over traps in the child, vis: "break foo; catch
3507 fork; c; <fork>; del; c; <child calls foo>". We only follow
3508 the fork on the last `continue', and by that time the
3509 breakpoint at "foo" is long gone from the breakpoint table.
3510 If we vforked, then we don't need to unpatch here, since both
3511 parent and child are sharing the same memory pages; we'll
3512 need to unpatch at follow/detach time instead to be certain
3513 that new breakpoints added between catchpoint hit time and
3514 vfork follow are detached. */
3515 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3516 {
3517 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3518
3519 /* This won't actually modify the breakpoint list, but will
3520 physically remove the breakpoints from the child. */
3521 detach_breakpoints (child_pid);
3522 }
3523
3524 if (singlestep_breakpoints_inserted_p)
3525 {
3526 /* Pull the single step breakpoints out of the target. */
3527 remove_single_step_breakpoints ();
3528 singlestep_breakpoints_inserted_p = 0;
3529 }
3530
3531 /* In case the event is caught by a catchpoint, remember that
3532 the event is to be followed at the next resume of the thread,
3533 and not immediately. */
3534 ecs->event_thread->pending_follow = ecs->ws;
3535
3536 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3537
3538 ecs->event_thread->control.stop_bpstat
3539 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3540 stop_pc, ecs->ptid);
3541
3542 /* Note that we're interested in knowing the bpstat actually
3543 causes a stop, not just if it may explain the signal.
3544 Software watchpoints, for example, always appear in the
3545 bpstat. */
3546 ecs->random_signal
3547 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3548
3549 /* If no catchpoint triggered for this, then keep going. */
3550 if (ecs->random_signal)
3551 {
3552 ptid_t parent;
3553 ptid_t child;
3554 int should_resume;
3555 int follow_child
3556 = (follow_fork_mode_string == follow_fork_mode_child);
3557
3558 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3559
3560 should_resume = follow_fork ();
3561
3562 parent = ecs->ptid;
3563 child = ecs->ws.value.related_pid;
3564
3565 /* In non-stop mode, also resume the other branch. */
3566 if (non_stop && !detach_fork)
3567 {
3568 if (follow_child)
3569 switch_to_thread (parent);
3570 else
3571 switch_to_thread (child);
3572
3573 ecs->event_thread = inferior_thread ();
3574 ecs->ptid = inferior_ptid;
3575 keep_going (ecs);
3576 }
3577
3578 if (follow_child)
3579 switch_to_thread (child);
3580 else
3581 switch_to_thread (parent);
3582
3583 ecs->event_thread = inferior_thread ();
3584 ecs->ptid = inferior_ptid;
3585
3586 if (should_resume)
3587 keep_going (ecs);
3588 else
3589 stop_stepping (ecs);
3590 return;
3591 }
3592 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3593 goto process_event_stop_test;
3594
3595 case TARGET_WAITKIND_VFORK_DONE:
3596 /* Done with the shared memory region. Re-insert breakpoints in
3597 the parent, and keep going. */
3598
3599 if (debug_infrun)
3600 fprintf_unfiltered (gdb_stdlog,
3601 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3602
3603 if (!ptid_equal (ecs->ptid, inferior_ptid))
3604 context_switch (ecs->ptid);
3605
3606 current_inferior ()->waiting_for_vfork_done = 0;
3607 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3608 /* This also takes care of reinserting breakpoints in the
3609 previously locked inferior. */
3610 keep_going (ecs);
3611 return;
3612
3613 case TARGET_WAITKIND_EXECD:
3614 if (debug_infrun)
3615 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3616
3617 if (!ptid_equal (ecs->ptid, inferior_ptid))
3618 {
3619 context_switch (ecs->ptid);
3620 reinit_frame_cache ();
3621 }
3622
3623 singlestep_breakpoints_inserted_p = 0;
3624 cancel_single_step_breakpoints ();
3625
3626 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3627
3628 /* Do whatever is necessary to the parent branch of the vfork. */
3629 handle_vfork_child_exec_or_exit (1);
3630
3631 /* This causes the eventpoints and symbol table to be reset.
3632 Must do this now, before trying to determine whether to
3633 stop. */
3634 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3635
3636 ecs->event_thread->control.stop_bpstat
3637 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3638 stop_pc, ecs->ptid);
3639 ecs->random_signal
3640 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3641
3642 /* Note that this may be referenced from inside
3643 bpstat_stop_status above, through inferior_has_execd. */
3644 xfree (ecs->ws.value.execd_pathname);
3645 ecs->ws.value.execd_pathname = NULL;
3646
3647 /* If no catchpoint triggered for this, then keep going. */
3648 if (ecs->random_signal)
3649 {
3650 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3651 keep_going (ecs);
3652 return;
3653 }
3654 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3655 goto process_event_stop_test;
3656
3657 /* Be careful not to try to gather much state about a thread
3658 that's in a syscall. It's frequently a losing proposition. */
3659 case TARGET_WAITKIND_SYSCALL_ENTRY:
3660 if (debug_infrun)
3661 fprintf_unfiltered (gdb_stdlog,
3662 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3663 /* Getting the current syscall number. */
3664 if (handle_syscall_event (ecs) != 0)
3665 return;
3666 goto process_event_stop_test;
3667
3668 /* Before examining the threads further, step this thread to
3669 get it entirely out of the syscall. (We get notice of the
3670 event when the thread is just on the verge of exiting a
3671 syscall. Stepping one instruction seems to get it back
3672 into user code.) */
3673 case TARGET_WAITKIND_SYSCALL_RETURN:
3674 if (debug_infrun)
3675 fprintf_unfiltered (gdb_stdlog,
3676 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3677 if (handle_syscall_event (ecs) != 0)
3678 return;
3679 goto process_event_stop_test;
3680
3681 case TARGET_WAITKIND_STOPPED:
3682 if (debug_infrun)
3683 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3684 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3685 break;
3686
3687 case TARGET_WAITKIND_NO_HISTORY:
3688 if (debug_infrun)
3689 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3690 /* Reverse execution: target ran out of history info. */
3691 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3692 print_no_history_reason ();
3693 stop_stepping (ecs);
3694 return;
3695 }
3696
3697 if (ecs->new_thread_event)
3698 {
3699 if (non_stop)
3700 /* Non-stop assumes that the target handles adding new threads
3701 to the thread list. */
3702 internal_error (__FILE__, __LINE__,
3703 "targets should add new threads to the thread "
3704 "list themselves in non-stop mode.");
3705
3706 /* We may want to consider not doing a resume here in order to
3707 give the user a chance to play with the new thread. It might
3708 be good to make that a user-settable option. */
3709
3710 /* At this point, all threads are stopped (happens automatically
3711 in either the OS or the native code). Therefore we need to
3712 continue all threads in order to make progress. */
3713
3714 if (!ptid_equal (ecs->ptid, inferior_ptid))
3715 context_switch (ecs->ptid);
3716 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3717 prepare_to_wait (ecs);
3718 return;
3719 }
3720
3721 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3722 {
3723 /* Do we need to clean up the state of a thread that has
3724 completed a displaced single-step? (Doing so usually affects
3725 the PC, so do it here, before we set stop_pc.) */
3726 displaced_step_fixup (ecs->ptid,
3727 ecs->event_thread->suspend.stop_signal);
3728
3729 /* If we either finished a single-step or hit a breakpoint, but
3730 the user wanted this thread to be stopped, pretend we got a
3731 SIG0 (generic unsignaled stop). */
3732
3733 if (ecs->event_thread->stop_requested
3734 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3735 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3736 }
3737
3738 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3739
3740 if (debug_infrun)
3741 {
3742 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3743 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3744 struct cleanup *old_chain = save_inferior_ptid ();
3745
3746 inferior_ptid = ecs->ptid;
3747
3748 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3749 paddress (gdbarch, stop_pc));
3750 if (target_stopped_by_watchpoint ())
3751 {
3752 CORE_ADDR addr;
3753
3754 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3755
3756 if (target_stopped_data_address (&current_target, &addr))
3757 fprintf_unfiltered (gdb_stdlog,
3758 "infrun: stopped data address = %s\n",
3759 paddress (gdbarch, addr));
3760 else
3761 fprintf_unfiltered (gdb_stdlog,
3762 "infrun: (no data address available)\n");
3763 }
3764
3765 do_cleanups (old_chain);
3766 }
3767
3768 if (stepping_past_singlestep_breakpoint)
3769 {
3770 gdb_assert (singlestep_breakpoints_inserted_p);
3771 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3772 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3773
3774 stepping_past_singlestep_breakpoint = 0;
3775
3776 /* We've either finished single-stepping past the single-step
3777 breakpoint, or stopped for some other reason. It would be nice if
3778 we could tell, but we can't reliably. */
3779 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3780 {
3781 if (debug_infrun)
3782 fprintf_unfiltered (gdb_stdlog,
3783 "infrun: stepping_past_"
3784 "singlestep_breakpoint\n");
3785 /* Pull the single step breakpoints out of the target. */
3786 remove_single_step_breakpoints ();
3787 singlestep_breakpoints_inserted_p = 0;
3788
3789 ecs->random_signal = 0;
3790 ecs->event_thread->control.trap_expected = 0;
3791
3792 context_switch (saved_singlestep_ptid);
3793 if (deprecated_context_hook)
3794 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3795
3796 resume (1, TARGET_SIGNAL_0);
3797 prepare_to_wait (ecs);
3798 return;
3799 }
3800 }
3801
3802 if (!ptid_equal (deferred_step_ptid, null_ptid))
3803 {
3804 /* In non-stop mode, there's never a deferred_step_ptid set. */
3805 gdb_assert (!non_stop);
3806
3807 /* If we stopped for some other reason than single-stepping, ignore
3808 the fact that we were supposed to switch back. */
3809 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3810 {
3811 if (debug_infrun)
3812 fprintf_unfiltered (gdb_stdlog,
3813 "infrun: handling deferred step\n");
3814
3815 /* Pull the single step breakpoints out of the target. */
3816 if (singlestep_breakpoints_inserted_p)
3817 {
3818 remove_single_step_breakpoints ();
3819 singlestep_breakpoints_inserted_p = 0;
3820 }
3821
3822 ecs->event_thread->control.trap_expected = 0;
3823
3824 /* Note: We do not call context_switch at this point, as the
3825 context is already set up for stepping the original thread. */
3826 switch_to_thread (deferred_step_ptid);
3827 deferred_step_ptid = null_ptid;
3828 /* Suppress spurious "Switching to ..." message. */
3829 previous_inferior_ptid = inferior_ptid;
3830
3831 resume (1, TARGET_SIGNAL_0);
3832 prepare_to_wait (ecs);
3833 return;
3834 }
3835
3836 deferred_step_ptid = null_ptid;
3837 }
3838
3839 /* See if a thread hit a thread-specific breakpoint that was meant for
3840 another thread. If so, then step that thread past the breakpoint,
3841 and continue it. */
3842
3843 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3844 {
3845 int thread_hop_needed = 0;
3846 struct address_space *aspace =
3847 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3848
3849 /* Check if a regular breakpoint has been hit before checking
3850 for a potential single step breakpoint. Otherwise, GDB will
3851 not see this breakpoint hit when stepping onto breakpoints. */
3852 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3853 {
3854 ecs->random_signal = 0;
3855 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3856 thread_hop_needed = 1;
3857 }
3858 else if (singlestep_breakpoints_inserted_p)
3859 {
3860 /* We have not context switched yet, so this should be true
3861 no matter which thread hit the singlestep breakpoint. */
3862 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3863 if (debug_infrun)
3864 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3865 "trap for %s\n",
3866 target_pid_to_str (ecs->ptid));
3867
3868 ecs->random_signal = 0;
3869 /* The call to in_thread_list is necessary because PTIDs sometimes
3870 change when we go from single-threaded to multi-threaded. If
3871 the singlestep_ptid is still in the list, assume that it is
3872 really different from ecs->ptid. */
3873 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3874 && in_thread_list (singlestep_ptid))
3875 {
3876 /* If the PC of the thread we were trying to single-step
3877 has changed, discard this event (which we were going
3878 to ignore anyway), and pretend we saw that thread
3879 trap. This prevents us continuously moving the
3880 single-step breakpoint forward, one instruction at a
3881 time. If the PC has changed, then the thread we were
3882 trying to single-step has trapped or been signalled,
3883 but the event has not been reported to GDB yet.
3884
3885 There might be some cases where this loses signal
3886 information, if a signal has arrived at exactly the
3887 same time that the PC changed, but this is the best
3888 we can do with the information available. Perhaps we
3889 should arrange to report all events for all threads
3890 when they stop, or to re-poll the remote looking for
3891 this particular thread (i.e. temporarily enable
3892 schedlock). */
3893
3894 CORE_ADDR new_singlestep_pc
3895 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3896
3897 if (new_singlestep_pc != singlestep_pc)
3898 {
3899 enum target_signal stop_signal;
3900
3901 if (debug_infrun)
3902 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3903 " but expected thread advanced also\n");
3904
3905 /* The current context still belongs to
3906 singlestep_ptid. Don't swap here, since that's
3907 the context we want to use. Just fudge our
3908 state and continue. */
3909 stop_signal = ecs->event_thread->suspend.stop_signal;
3910 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3911 ecs->ptid = singlestep_ptid;
3912 ecs->event_thread = find_thread_ptid (ecs->ptid);
3913 ecs->event_thread->suspend.stop_signal = stop_signal;
3914 stop_pc = new_singlestep_pc;
3915 }
3916 else
3917 {
3918 if (debug_infrun)
3919 fprintf_unfiltered (gdb_stdlog,
3920 "infrun: unexpected thread\n");
3921
3922 thread_hop_needed = 1;
3923 stepping_past_singlestep_breakpoint = 1;
3924 saved_singlestep_ptid = singlestep_ptid;
3925 }
3926 }
3927 }
3928
3929 if (thread_hop_needed)
3930 {
3931 struct regcache *thread_regcache;
3932 int remove_status = 0;
3933
3934 if (debug_infrun)
3935 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3936
3937 /* Switch context before touching inferior memory, the
3938 previous thread may have exited. */
3939 if (!ptid_equal (inferior_ptid, ecs->ptid))
3940 context_switch (ecs->ptid);
3941
3942 /* Saw a breakpoint, but it was hit by the wrong thread.
3943 Just continue. */
3944
3945 if (singlestep_breakpoints_inserted_p)
3946 {
3947 /* Pull the single step breakpoints out of the target. */
3948 remove_single_step_breakpoints ();
3949 singlestep_breakpoints_inserted_p = 0;
3950 }
3951
3952 /* If the arch can displace step, don't remove the
3953 breakpoints. */
3954 thread_regcache = get_thread_regcache (ecs->ptid);
3955 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3956 remove_status = remove_breakpoints ();
3957
3958 /* Did we fail to remove breakpoints? If so, try
3959 to set the PC past the bp. (There's at least
3960 one situation in which we can fail to remove
3961 the bp's: On HP-UX's that use ttrace, we can't
3962 change the address space of a vforking child
3963 process until the child exits (well, okay, not
3964 then either :-) or execs. */
3965 if (remove_status != 0)
3966 error (_("Cannot step over breakpoint hit in wrong thread"));
3967 else
3968 { /* Single step */
3969 if (!non_stop)
3970 {
3971 /* Only need to require the next event from this
3972 thread in all-stop mode. */
3973 waiton_ptid = ecs->ptid;
3974 infwait_state = infwait_thread_hop_state;
3975 }
3976
3977 ecs->event_thread->stepping_over_breakpoint = 1;
3978 keep_going (ecs);
3979 return;
3980 }
3981 }
3982 else if (singlestep_breakpoints_inserted_p)
3983 {
3984 ecs->random_signal = 0;
3985 }
3986 }
3987 else
3988 ecs->random_signal = 1;
3989
3990 /* See if something interesting happened to the non-current thread. If
3991 so, then switch to that thread. */
3992 if (!ptid_equal (ecs->ptid, inferior_ptid))
3993 {
3994 if (debug_infrun)
3995 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3996
3997 context_switch (ecs->ptid);
3998
3999 if (deprecated_context_hook)
4000 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4001 }
4002
4003 /* At this point, get hold of the now-current thread's frame. */
4004 frame = get_current_frame ();
4005 gdbarch = get_frame_arch (frame);
4006
4007 if (singlestep_breakpoints_inserted_p)
4008 {
4009 /* Pull the single step breakpoints out of the target. */
4010 remove_single_step_breakpoints ();
4011 singlestep_breakpoints_inserted_p = 0;
4012 }
4013
4014 if (stepped_after_stopped_by_watchpoint)
4015 stopped_by_watchpoint = 0;
4016 else
4017 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4018
4019 /* If necessary, step over this watchpoint. We'll be back to display
4020 it in a moment. */
4021 if (stopped_by_watchpoint
4022 && (target_have_steppable_watchpoint
4023 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4024 {
4025 /* At this point, we are stopped at an instruction which has
4026 attempted to write to a piece of memory under control of
4027 a watchpoint. The instruction hasn't actually executed
4028 yet. If we were to evaluate the watchpoint expression
4029 now, we would get the old value, and therefore no change
4030 would seem to have occurred.
4031
4032 In order to make watchpoints work `right', we really need
4033 to complete the memory write, and then evaluate the
4034 watchpoint expression. We do this by single-stepping the
4035 target.
4036
4037 It may not be necessary to disable the watchpoint to stop over
4038 it. For example, the PA can (with some kernel cooperation)
4039 single step over a watchpoint without disabling the watchpoint.
4040
4041 It is far more common to need to disable a watchpoint to step
4042 the inferior over it. If we have non-steppable watchpoints,
4043 we must disable the current watchpoint; it's simplest to
4044 disable all watchpoints and breakpoints. */
4045 int hw_step = 1;
4046
4047 if (!target_have_steppable_watchpoint)
4048 {
4049 remove_breakpoints ();
4050 /* See comment in resume why we need to stop bypassing signals
4051 while breakpoints have been removed. */
4052 target_pass_signals (0, NULL);
4053 }
4054 /* Single step */
4055 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4056 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
4057 waiton_ptid = ecs->ptid;
4058 if (target_have_steppable_watchpoint)
4059 infwait_state = infwait_step_watch_state;
4060 else
4061 infwait_state = infwait_nonstep_watch_state;
4062 prepare_to_wait (ecs);
4063 return;
4064 }
4065
4066 clear_stop_func (ecs);
4067 ecs->event_thread->stepping_over_breakpoint = 0;
4068 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4069 ecs->event_thread->control.stop_step = 0;
4070 stop_print_frame = 1;
4071 ecs->random_signal = 0;
4072 stopped_by_random_signal = 0;
4073
4074 /* Hide inlined functions starting here, unless we just performed stepi or
4075 nexti. After stepi and nexti, always show the innermost frame (not any
4076 inline function call sites). */
4077 if (ecs->event_thread->control.step_range_end != 1)
4078 {
4079 struct address_space *aspace =
4080 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4081
4082 /* skip_inline_frames is expensive, so we avoid it if we can
4083 determine that the address is one where functions cannot have
4084 been inlined. This improves performance with inferiors that
4085 load a lot of shared libraries, because the solib event
4086 breakpoint is defined as the address of a function (i.e. not
4087 inline). Note that we have to check the previous PC as well
4088 as the current one to catch cases when we have just
4089 single-stepped off a breakpoint prior to reinstating it.
4090 Note that we're assuming that the code we single-step to is
4091 not inline, but that's not definitive: there's nothing
4092 preventing the event breakpoint function from containing
4093 inlined code, and the single-step ending up there. If the
4094 user had set a breakpoint on that inlined code, the missing
4095 skip_inline_frames call would break things. Fortunately
4096 that's an extremely unlikely scenario. */
4097 if (!pc_at_non_inline_function (aspace, stop_pc)
4098 && !(ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4099 && ecs->event_thread->control.trap_expected
4100 && pc_at_non_inline_function (aspace,
4101 ecs->event_thread->prev_pc)))
4102 skip_inline_frames (ecs->ptid);
4103 }
4104
4105 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4106 && ecs->event_thread->control.trap_expected
4107 && gdbarch_single_step_through_delay_p (gdbarch)
4108 && currently_stepping (ecs->event_thread))
4109 {
4110 /* We're trying to step off a breakpoint. Turns out that we're
4111 also on an instruction that needs to be stepped multiple
4112 times before it's been fully executing. E.g., architectures
4113 with a delay slot. It needs to be stepped twice, once for
4114 the instruction and once for the delay slot. */
4115 int step_through_delay
4116 = gdbarch_single_step_through_delay (gdbarch, frame);
4117
4118 if (debug_infrun && step_through_delay)
4119 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4120 if (ecs->event_thread->control.step_range_end == 0
4121 && step_through_delay)
4122 {
4123 /* The user issued a continue when stopped at a breakpoint.
4124 Set up for another trap and get out of here. */
4125 ecs->event_thread->stepping_over_breakpoint = 1;
4126 keep_going (ecs);
4127 return;
4128 }
4129 else if (step_through_delay)
4130 {
4131 /* The user issued a step when stopped at a breakpoint.
4132 Maybe we should stop, maybe we should not - the delay
4133 slot *might* correspond to a line of source. In any
4134 case, don't decide that here, just set
4135 ecs->stepping_over_breakpoint, making sure we
4136 single-step again before breakpoints are re-inserted. */
4137 ecs->event_thread->stepping_over_breakpoint = 1;
4138 }
4139 }
4140
4141 /* Look at the cause of the stop, and decide what to do.
4142 The alternatives are:
4143 1) stop_stepping and return; to really stop and return to the debugger,
4144 2) keep_going and return to start up again
4145 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4146 3) set ecs->random_signal to 1, and the decision between 1 and 2
4147 will be made according to the signal handling tables. */
4148
4149 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4150 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4151 || stop_soon == STOP_QUIETLY_REMOTE)
4152 {
4153 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4154 && stop_after_trap)
4155 {
4156 if (debug_infrun)
4157 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4158 stop_print_frame = 0;
4159 stop_stepping (ecs);
4160 return;
4161 }
4162
4163 /* This is originated from start_remote(), start_inferior() and
4164 shared libraries hook functions. */
4165 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4166 {
4167 if (debug_infrun)
4168 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4169 stop_stepping (ecs);
4170 return;
4171 }
4172
4173 /* This originates from attach_command(). We need to overwrite
4174 the stop_signal here, because some kernels don't ignore a
4175 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4176 See more comments in inferior.h. On the other hand, if we
4177 get a non-SIGSTOP, report it to the user - assume the backend
4178 will handle the SIGSTOP if it should show up later.
4179
4180 Also consider that the attach is complete when we see a
4181 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4182 target extended-remote report it instead of a SIGSTOP
4183 (e.g. gdbserver). We already rely on SIGTRAP being our
4184 signal, so this is no exception.
4185
4186 Also consider that the attach is complete when we see a
4187 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4188 the target to stop all threads of the inferior, in case the
4189 low level attach operation doesn't stop them implicitly. If
4190 they weren't stopped implicitly, then the stub will report a
4191 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4192 other than GDB's request. */
4193 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4194 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4195 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4196 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
4197 {
4198 stop_stepping (ecs);
4199 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4200 return;
4201 }
4202
4203 /* See if there is a breakpoint at the current PC. */
4204 ecs->event_thread->control.stop_bpstat
4205 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4206 stop_pc, ecs->ptid);
4207
4208 /* Following in case break condition called a
4209 function. */
4210 stop_print_frame = 1;
4211
4212 /* This is where we handle "moribund" watchpoints. Unlike
4213 software breakpoints traps, hardware watchpoint traps are
4214 always distinguishable from random traps. If no high-level
4215 watchpoint is associated with the reported stop data address
4216 anymore, then the bpstat does not explain the signal ---
4217 simply make sure to ignore it if `stopped_by_watchpoint' is
4218 set. */
4219
4220 if (debug_infrun
4221 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4222 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4223 && stopped_by_watchpoint)
4224 fprintf_unfiltered (gdb_stdlog,
4225 "infrun: no user watchpoint explains "
4226 "watchpoint SIGTRAP, ignoring\n");
4227
4228 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4229 at one stage in the past included checks for an inferior
4230 function call's call dummy's return breakpoint. The original
4231 comment, that went with the test, read:
4232
4233 ``End of a stack dummy. Some systems (e.g. Sony news) give
4234 another signal besides SIGTRAP, so check here as well as
4235 above.''
4236
4237 If someone ever tries to get call dummys on a
4238 non-executable stack to work (where the target would stop
4239 with something like a SIGSEGV), then those tests might need
4240 to be re-instated. Given, however, that the tests were only
4241 enabled when momentary breakpoints were not being used, I
4242 suspect that it won't be the case.
4243
4244 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4245 be necessary for call dummies on a non-executable stack on
4246 SPARC. */
4247
4248 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
4249 ecs->random_signal
4250 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4251 || stopped_by_watchpoint
4252 || ecs->event_thread->control.trap_expected
4253 || (ecs->event_thread->control.step_range_end
4254 && (ecs->event_thread->control.step_resume_breakpoint
4255 == NULL)));
4256 else
4257 {
4258 ecs->random_signal = !bpstat_explains_signal
4259 (ecs->event_thread->control.stop_bpstat);
4260 if (!ecs->random_signal)
4261 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
4262 }
4263 }
4264
4265 /* When we reach this point, we've pretty much decided
4266 that the reason for stopping must've been a random
4267 (unexpected) signal. */
4268
4269 else
4270 ecs->random_signal = 1;
4271
4272process_event_stop_test:
4273
4274 /* Re-fetch current thread's frame in case we did a
4275 "goto process_event_stop_test" above. */
4276 frame = get_current_frame ();
4277 gdbarch = get_frame_arch (frame);
4278
4279 /* For the program's own signals, act according to
4280 the signal handling tables. */
4281
4282 if (ecs->random_signal)
4283 {
4284 /* Signal not for debugging purposes. */
4285 int printed = 0;
4286 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4287
4288 if (debug_infrun)
4289 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4290 ecs->event_thread->suspend.stop_signal);
4291
4292 stopped_by_random_signal = 1;
4293
4294 if (signal_print[ecs->event_thread->suspend.stop_signal])
4295 {
4296 printed = 1;
4297 target_terminal_ours_for_output ();
4298 print_signal_received_reason
4299 (ecs->event_thread->suspend.stop_signal);
4300 }
4301 /* Always stop on signals if we're either just gaining control
4302 of the program, or the user explicitly requested this thread
4303 to remain stopped. */
4304 if (stop_soon != NO_STOP_QUIETLY
4305 || ecs->event_thread->stop_requested
4306 || (!inf->detaching
4307 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4308 {
4309 stop_stepping (ecs);
4310 return;
4311 }
4312 /* If not going to stop, give terminal back
4313 if we took it away. */
4314 else if (printed)
4315 target_terminal_inferior ();
4316
4317 /* Clear the signal if it should not be passed. */
4318 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4319 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4320
4321 if (ecs->event_thread->prev_pc == stop_pc
4322 && ecs->event_thread->control.trap_expected
4323 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4324 {
4325 /* We were just starting a new sequence, attempting to
4326 single-step off of a breakpoint and expecting a SIGTRAP.
4327 Instead this signal arrives. This signal will take us out
4328 of the stepping range so GDB needs to remember to, when
4329 the signal handler returns, resume stepping off that
4330 breakpoint. */
4331 /* To simplify things, "continue" is forced to use the same
4332 code paths as single-step - set a breakpoint at the
4333 signal return address and then, once hit, step off that
4334 breakpoint. */
4335 if (debug_infrun)
4336 fprintf_unfiltered (gdb_stdlog,
4337 "infrun: signal arrived while stepping over "
4338 "breakpoint\n");
4339
4340 insert_hp_step_resume_breakpoint_at_frame (frame);
4341 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4342 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4343 ecs->event_thread->control.trap_expected = 0;
4344 keep_going (ecs);
4345 return;
4346 }
4347
4348 if (ecs->event_thread->control.step_range_end != 0
4349 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4350 && (ecs->event_thread->control.step_range_start <= stop_pc
4351 && stop_pc < ecs->event_thread->control.step_range_end)
4352 && frame_id_eq (get_stack_frame_id (frame),
4353 ecs->event_thread->control.step_stack_frame_id)
4354 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4355 {
4356 /* The inferior is about to take a signal that will take it
4357 out of the single step range. Set a breakpoint at the
4358 current PC (which is presumably where the signal handler
4359 will eventually return) and then allow the inferior to
4360 run free.
4361
4362 Note that this is only needed for a signal delivered
4363 while in the single-step range. Nested signals aren't a
4364 problem as they eventually all return. */
4365 if (debug_infrun)
4366 fprintf_unfiltered (gdb_stdlog,
4367 "infrun: signal may take us out of "
4368 "single-step range\n");
4369
4370 insert_hp_step_resume_breakpoint_at_frame (frame);
4371 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4372 ecs->event_thread->control.trap_expected = 0;
4373 keep_going (ecs);
4374 return;
4375 }
4376
4377 /* Note: step_resume_breakpoint may be non-NULL. This occures
4378 when either there's a nested signal, or when there's a
4379 pending signal enabled just as the signal handler returns
4380 (leaving the inferior at the step-resume-breakpoint without
4381 actually executing it). Either way continue until the
4382 breakpoint is really hit. */
4383 keep_going (ecs);
4384 return;
4385 }
4386
4387 /* Handle cases caused by hitting a breakpoint. */
4388 {
4389 CORE_ADDR jmp_buf_pc;
4390 struct bpstat_what what;
4391
4392 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4393
4394 if (what.call_dummy)
4395 {
4396 stop_stack_dummy = what.call_dummy;
4397 }
4398
4399 /* If we hit an internal event that triggers symbol changes, the
4400 current frame will be invalidated within bpstat_what (e.g., if
4401 we hit an internal solib event). Re-fetch it. */
4402 frame = get_current_frame ();
4403 gdbarch = get_frame_arch (frame);
4404
4405 switch (what.main_action)
4406 {
4407 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4408 /* If we hit the breakpoint at longjmp while stepping, we
4409 install a momentary breakpoint at the target of the
4410 jmp_buf. */
4411
4412 if (debug_infrun)
4413 fprintf_unfiltered (gdb_stdlog,
4414 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4415
4416 ecs->event_thread->stepping_over_breakpoint = 1;
4417
4418 if (what.is_longjmp)
4419 {
4420 if (!gdbarch_get_longjmp_target_p (gdbarch)
4421 || !gdbarch_get_longjmp_target (gdbarch,
4422 frame, &jmp_buf_pc))
4423 {
4424 if (debug_infrun)
4425 fprintf_unfiltered (gdb_stdlog,
4426 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4427 "(!gdbarch_get_longjmp_target)\n");
4428 keep_going (ecs);
4429 return;
4430 }
4431
4432 /* We're going to replace the current step-resume breakpoint
4433 with a longjmp-resume breakpoint. */
4434 delete_step_resume_breakpoint (ecs->event_thread);
4435
4436 /* Insert a breakpoint at resume address. */
4437 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4438 }
4439 else
4440 {
4441 struct symbol *func = get_frame_function (frame);
4442
4443 if (func)
4444 check_exception_resume (ecs, frame, func);
4445 }
4446 keep_going (ecs);
4447 return;
4448
4449 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4450 if (debug_infrun)
4451 fprintf_unfiltered (gdb_stdlog,
4452 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4453
4454 if (what.is_longjmp)
4455 {
4456 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4457 != NULL);
4458 delete_step_resume_breakpoint (ecs->event_thread);
4459 }
4460 else
4461 {
4462 /* There are several cases to consider.
4463
4464 1. The initiating frame no longer exists. In this case
4465 we must stop, because the exception has gone too far.
4466
4467 2. The initiating frame exists, and is the same as the
4468 current frame. We stop, because the exception has been
4469 caught.
4470
4471 3. The initiating frame exists and is different from
4472 the current frame. This means the exception has been
4473 caught beneath the initiating frame, so keep going. */
4474 struct frame_info *init_frame
4475 = frame_find_by_id (ecs->event_thread->initiating_frame);
4476
4477 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4478 != NULL);
4479 delete_exception_resume_breakpoint (ecs->event_thread);
4480
4481 if (init_frame)
4482 {
4483 struct frame_id current_id
4484 = get_frame_id (get_current_frame ());
4485 if (frame_id_eq (current_id,
4486 ecs->event_thread->initiating_frame))
4487 {
4488 /* Case 2. Fall through. */
4489 }
4490 else
4491 {
4492 /* Case 3. */
4493 keep_going (ecs);
4494 return;
4495 }
4496 }
4497
4498 /* For Cases 1 and 2, remove the step-resume breakpoint,
4499 if it exists. */
4500 delete_step_resume_breakpoint (ecs->event_thread);
4501 }
4502
4503 ecs->event_thread->control.stop_step = 1;
4504 print_end_stepping_range_reason ();
4505 stop_stepping (ecs);
4506 return;
4507
4508 case BPSTAT_WHAT_SINGLE:
4509 if (debug_infrun)
4510 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4511 ecs->event_thread->stepping_over_breakpoint = 1;
4512 /* Still need to check other stuff, at least the case
4513 where we are stepping and step out of the right range. */
4514 break;
4515
4516 case BPSTAT_WHAT_STEP_RESUME:
4517 if (debug_infrun)
4518 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4519
4520 delete_step_resume_breakpoint (ecs->event_thread);
4521 if (ecs->event_thread->control.proceed_to_finish
4522 && execution_direction == EXEC_REVERSE)
4523 {
4524 struct thread_info *tp = ecs->event_thread;
4525
4526 /* We are finishing a function in reverse, and just hit
4527 the step-resume breakpoint at the start address of the
4528 function, and we're almost there -- just need to back
4529 up by one more single-step, which should take us back
4530 to the function call. */
4531 tp->control.step_range_start = tp->control.step_range_end = 1;
4532 keep_going (ecs);
4533 return;
4534 }
4535 fill_in_stop_func (gdbarch, ecs);
4536 if (stop_pc == ecs->stop_func_start
4537 && execution_direction == EXEC_REVERSE)
4538 {
4539 /* We are stepping over a function call in reverse, and
4540 just hit the step-resume breakpoint at the start
4541 address of the function. Go back to single-stepping,
4542 which should take us back to the function call. */
4543 ecs->event_thread->stepping_over_breakpoint = 1;
4544 keep_going (ecs);
4545 return;
4546 }
4547 break;
4548
4549 case BPSTAT_WHAT_STOP_NOISY:
4550 if (debug_infrun)
4551 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4552 stop_print_frame = 1;
4553
4554 /* We are about to nuke the step_resume_breakpointt via the
4555 cleanup chain, so no need to worry about it here. */
4556
4557 stop_stepping (ecs);
4558 return;
4559
4560 case BPSTAT_WHAT_STOP_SILENT:
4561 if (debug_infrun)
4562 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4563 stop_print_frame = 0;
4564
4565 /* We are about to nuke the step_resume_breakpoin via the
4566 cleanup chain, so no need to worry about it here. */
4567
4568 stop_stepping (ecs);
4569 return;
4570
4571 case BPSTAT_WHAT_HP_STEP_RESUME:
4572 if (debug_infrun)
4573 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4574
4575 delete_step_resume_breakpoint (ecs->event_thread);
4576 if (ecs->event_thread->step_after_step_resume_breakpoint)
4577 {
4578 /* Back when the step-resume breakpoint was inserted, we
4579 were trying to single-step off a breakpoint. Go back
4580 to doing that. */
4581 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4582 ecs->event_thread->stepping_over_breakpoint = 1;
4583 keep_going (ecs);
4584 return;
4585 }
4586 break;
4587
4588 case BPSTAT_WHAT_KEEP_CHECKING:
4589 break;
4590 }
4591 }
4592
4593 /* We come here if we hit a breakpoint but should not
4594 stop for it. Possibly we also were stepping
4595 and should stop for that. So fall through and
4596 test for stepping. But, if not stepping,
4597 do not stop. */
4598
4599 /* In all-stop mode, if we're currently stepping but have stopped in
4600 some other thread, we need to switch back to the stepped thread. */
4601 if (!non_stop)
4602 {
4603 struct thread_info *tp;
4604
4605 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4606 ecs->event_thread);
4607 if (tp)
4608 {
4609 /* However, if the current thread is blocked on some internal
4610 breakpoint, and we simply need to step over that breakpoint
4611 to get it going again, do that first. */
4612 if ((ecs->event_thread->control.trap_expected
4613 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
4614 || ecs->event_thread->stepping_over_breakpoint)
4615 {
4616 keep_going (ecs);
4617 return;
4618 }
4619
4620 /* If the stepping thread exited, then don't try to switch
4621 back and resume it, which could fail in several different
4622 ways depending on the target. Instead, just keep going.
4623
4624 We can find a stepping dead thread in the thread list in
4625 two cases:
4626
4627 - The target supports thread exit events, and when the
4628 target tries to delete the thread from the thread list,
4629 inferior_ptid pointed at the exiting thread. In such
4630 case, calling delete_thread does not really remove the
4631 thread from the list; instead, the thread is left listed,
4632 with 'exited' state.
4633
4634 - The target's debug interface does not support thread
4635 exit events, and so we have no idea whatsoever if the
4636 previously stepping thread is still alive. For that
4637 reason, we need to synchronously query the target
4638 now. */
4639 if (is_exited (tp->ptid)
4640 || !target_thread_alive (tp->ptid))
4641 {
4642 if (debug_infrun)
4643 fprintf_unfiltered (gdb_stdlog,
4644 "infrun: not switching back to "
4645 "stepped thread, it has vanished\n");
4646
4647 delete_thread (tp->ptid);
4648 keep_going (ecs);
4649 return;
4650 }
4651
4652 /* Otherwise, we no longer expect a trap in the current thread.
4653 Clear the trap_expected flag before switching back -- this is
4654 what keep_going would do as well, if we called it. */
4655 ecs->event_thread->control.trap_expected = 0;
4656
4657 if (debug_infrun)
4658 fprintf_unfiltered (gdb_stdlog,
4659 "infrun: switching back to stepped thread\n");
4660
4661 ecs->event_thread = tp;
4662 ecs->ptid = tp->ptid;
4663 context_switch (ecs->ptid);
4664 keep_going (ecs);
4665 return;
4666 }
4667 }
4668
4669 if (ecs->event_thread->control.step_resume_breakpoint)
4670 {
4671 if (debug_infrun)
4672 fprintf_unfiltered (gdb_stdlog,
4673 "infrun: step-resume breakpoint is inserted\n");
4674
4675 /* Having a step-resume breakpoint overrides anything
4676 else having to do with stepping commands until
4677 that breakpoint is reached. */
4678 keep_going (ecs);
4679 return;
4680 }
4681
4682 if (ecs->event_thread->control.step_range_end == 0)
4683 {
4684 if (debug_infrun)
4685 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4686 /* Likewise if we aren't even stepping. */
4687 keep_going (ecs);
4688 return;
4689 }
4690
4691 /* Re-fetch current thread's frame in case the code above caused
4692 the frame cache to be re-initialized, making our FRAME variable
4693 a dangling pointer. */
4694 frame = get_current_frame ();
4695 gdbarch = get_frame_arch (frame);
4696 fill_in_stop_func (gdbarch, ecs);
4697
4698 /* If stepping through a line, keep going if still within it.
4699
4700 Note that step_range_end is the address of the first instruction
4701 beyond the step range, and NOT the address of the last instruction
4702 within it!
4703
4704 Note also that during reverse execution, we may be stepping
4705 through a function epilogue and therefore must detect when
4706 the current-frame changes in the middle of a line. */
4707
4708 if (stop_pc >= ecs->event_thread->control.step_range_start
4709 && stop_pc < ecs->event_thread->control.step_range_end
4710 && (execution_direction != EXEC_REVERSE
4711 || frame_id_eq (get_frame_id (frame),
4712 ecs->event_thread->control.step_frame_id)))
4713 {
4714 if (debug_infrun)
4715 fprintf_unfiltered
4716 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4717 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4718 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4719
4720 /* When stepping backward, stop at beginning of line range
4721 (unless it's the function entry point, in which case
4722 keep going back to the call point). */
4723 if (stop_pc == ecs->event_thread->control.step_range_start
4724 && stop_pc != ecs->stop_func_start
4725 && execution_direction == EXEC_REVERSE)
4726 {
4727 ecs->event_thread->control.stop_step = 1;
4728 print_end_stepping_range_reason ();
4729 stop_stepping (ecs);
4730 }
4731 else
4732 keep_going (ecs);
4733
4734 return;
4735 }
4736
4737 /* We stepped out of the stepping range. */
4738
4739 /* If we are stepping at the source level and entered the runtime
4740 loader dynamic symbol resolution code...
4741
4742 EXEC_FORWARD: we keep on single stepping until we exit the run
4743 time loader code and reach the callee's address.
4744
4745 EXEC_REVERSE: we've already executed the callee (backward), and
4746 the runtime loader code is handled just like any other
4747 undebuggable function call. Now we need only keep stepping
4748 backward through the trampoline code, and that's handled further
4749 down, so there is nothing for us to do here. */
4750
4751 if (execution_direction != EXEC_REVERSE
4752 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4753 && in_solib_dynsym_resolve_code (stop_pc))
4754 {
4755 CORE_ADDR pc_after_resolver =
4756 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4757
4758 if (debug_infrun)
4759 fprintf_unfiltered (gdb_stdlog,
4760 "infrun: stepped into dynsym resolve code\n");
4761
4762 if (pc_after_resolver)
4763 {
4764 /* Set up a step-resume breakpoint at the address
4765 indicated by SKIP_SOLIB_RESOLVER. */
4766 struct symtab_and_line sr_sal;
4767
4768 init_sal (&sr_sal);
4769 sr_sal.pc = pc_after_resolver;
4770 sr_sal.pspace = get_frame_program_space (frame);
4771
4772 insert_step_resume_breakpoint_at_sal (gdbarch,
4773 sr_sal, null_frame_id);
4774 }
4775
4776 keep_going (ecs);
4777 return;
4778 }
4779
4780 if (ecs->event_thread->control.step_range_end != 1
4781 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4782 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4783 && get_frame_type (frame) == SIGTRAMP_FRAME)
4784 {
4785 if (debug_infrun)
4786 fprintf_unfiltered (gdb_stdlog,
4787 "infrun: stepped into signal trampoline\n");
4788 /* The inferior, while doing a "step" or "next", has ended up in
4789 a signal trampoline (either by a signal being delivered or by
4790 the signal handler returning). Just single-step until the
4791 inferior leaves the trampoline (either by calling the handler
4792 or returning). */
4793 keep_going (ecs);
4794 return;
4795 }
4796
4797 /* Check for subroutine calls. The check for the current frame
4798 equalling the step ID is not necessary - the check of the
4799 previous frame's ID is sufficient - but it is a common case and
4800 cheaper than checking the previous frame's ID.
4801
4802 NOTE: frame_id_eq will never report two invalid frame IDs as
4803 being equal, so to get into this block, both the current and
4804 previous frame must have valid frame IDs. */
4805 /* The outer_frame_id check is a heuristic to detect stepping
4806 through startup code. If we step over an instruction which
4807 sets the stack pointer from an invalid value to a valid value,
4808 we may detect that as a subroutine call from the mythical
4809 "outermost" function. This could be fixed by marking
4810 outermost frames as !stack_p,code_p,special_p. Then the
4811 initial outermost frame, before sp was valid, would
4812 have code_addr == &_start. See the comment in frame_id_eq
4813 for more. */
4814 if (!frame_id_eq (get_stack_frame_id (frame),
4815 ecs->event_thread->control.step_stack_frame_id)
4816 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4817 ecs->event_thread->control.step_stack_frame_id)
4818 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4819 outer_frame_id)
4820 || step_start_function != find_pc_function (stop_pc))))
4821 {
4822 CORE_ADDR real_stop_pc;
4823
4824 if (debug_infrun)
4825 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4826
4827 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4828 || ((ecs->event_thread->control.step_range_end == 1)
4829 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4830 ecs->stop_func_start)))
4831 {
4832 /* I presume that step_over_calls is only 0 when we're
4833 supposed to be stepping at the assembly language level
4834 ("stepi"). Just stop. */
4835 /* Also, maybe we just did a "nexti" inside a prolog, so we
4836 thought it was a subroutine call but it was not. Stop as
4837 well. FENN */
4838 /* And this works the same backward as frontward. MVS */
4839 ecs->event_thread->control.stop_step = 1;
4840 print_end_stepping_range_reason ();
4841 stop_stepping (ecs);
4842 return;
4843 }
4844
4845 /* Reverse stepping through solib trampolines. */
4846
4847 if (execution_direction == EXEC_REVERSE
4848 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4849 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4850 || (ecs->stop_func_start == 0
4851 && in_solib_dynsym_resolve_code (stop_pc))))
4852 {
4853 /* Any solib trampoline code can be handled in reverse
4854 by simply continuing to single-step. We have already
4855 executed the solib function (backwards), and a few
4856 steps will take us back through the trampoline to the
4857 caller. */
4858 keep_going (ecs);
4859 return;
4860 }
4861
4862 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4863 {
4864 /* We're doing a "next".
4865
4866 Normal (forward) execution: set a breakpoint at the
4867 callee's return address (the address at which the caller
4868 will resume).
4869
4870 Reverse (backward) execution. set the step-resume
4871 breakpoint at the start of the function that we just
4872 stepped into (backwards), and continue to there. When we
4873 get there, we'll need to single-step back to the caller. */
4874
4875 if (execution_direction == EXEC_REVERSE)
4876 {
4877 struct symtab_and_line sr_sal;
4878
4879 /* Normal function call return (static or dynamic). */
4880 init_sal (&sr_sal);
4881 sr_sal.pc = ecs->stop_func_start;
4882 sr_sal.pspace = get_frame_program_space (frame);
4883 insert_step_resume_breakpoint_at_sal (gdbarch,
4884 sr_sal, null_frame_id);
4885 }
4886 else
4887 insert_step_resume_breakpoint_at_caller (frame);
4888
4889 keep_going (ecs);
4890 return;
4891 }
4892
4893 /* If we are in a function call trampoline (a stub between the
4894 calling routine and the real function), locate the real
4895 function. That's what tells us (a) whether we want to step
4896 into it at all, and (b) what prologue we want to run to the
4897 end of, if we do step into it. */
4898 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4899 if (real_stop_pc == 0)
4900 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4901 if (real_stop_pc != 0)
4902 ecs->stop_func_start = real_stop_pc;
4903
4904 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4905 {
4906 struct symtab_and_line sr_sal;
4907
4908 init_sal (&sr_sal);
4909 sr_sal.pc = ecs->stop_func_start;
4910 sr_sal.pspace = get_frame_program_space (frame);
4911
4912 insert_step_resume_breakpoint_at_sal (gdbarch,
4913 sr_sal, null_frame_id);
4914 keep_going (ecs);
4915 return;
4916 }
4917
4918 /* If we have line number information for the function we are
4919 thinking of stepping into and the function isn't on the skip
4920 list, step into it.
4921
4922 If there are several symtabs at that PC (e.g. with include
4923 files), just want to know whether *any* of them have line
4924 numbers. find_pc_line handles this. */
4925 {
4926 struct symtab_and_line tmp_sal;
4927
4928 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4929 if (tmp_sal.line != 0
4930 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
4931 {
4932 if (execution_direction == EXEC_REVERSE)
4933 handle_step_into_function_backward (gdbarch, ecs);
4934 else
4935 handle_step_into_function (gdbarch, ecs);
4936 return;
4937 }
4938 }
4939
4940 /* If we have no line number and the step-stop-if-no-debug is
4941 set, we stop the step so that the user has a chance to switch
4942 in assembly mode. */
4943 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4944 && step_stop_if_no_debug)
4945 {
4946 ecs->event_thread->control.stop_step = 1;
4947 print_end_stepping_range_reason ();
4948 stop_stepping (ecs);
4949 return;
4950 }
4951
4952 if (execution_direction == EXEC_REVERSE)
4953 {
4954 /* Set a breakpoint at callee's start address.
4955 From there we can step once and be back in the caller. */
4956 struct symtab_and_line sr_sal;
4957
4958 init_sal (&sr_sal);
4959 sr_sal.pc = ecs->stop_func_start;
4960 sr_sal.pspace = get_frame_program_space (frame);
4961 insert_step_resume_breakpoint_at_sal (gdbarch,
4962 sr_sal, null_frame_id);
4963 }
4964 else
4965 /* Set a breakpoint at callee's return address (the address
4966 at which the caller will resume). */
4967 insert_step_resume_breakpoint_at_caller (frame);
4968
4969 keep_going (ecs);
4970 return;
4971 }
4972
4973 /* Reverse stepping through solib trampolines. */
4974
4975 if (execution_direction == EXEC_REVERSE
4976 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4977 {
4978 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4979 || (ecs->stop_func_start == 0
4980 && in_solib_dynsym_resolve_code (stop_pc)))
4981 {
4982 /* Any solib trampoline code can be handled in reverse
4983 by simply continuing to single-step. We have already
4984 executed the solib function (backwards), and a few
4985 steps will take us back through the trampoline to the
4986 caller. */
4987 keep_going (ecs);
4988 return;
4989 }
4990 else if (in_solib_dynsym_resolve_code (stop_pc))
4991 {
4992 /* Stepped backward into the solib dynsym resolver.
4993 Set a breakpoint at its start and continue, then
4994 one more step will take us out. */
4995 struct symtab_and_line sr_sal;
4996
4997 init_sal (&sr_sal);
4998 sr_sal.pc = ecs->stop_func_start;
4999 sr_sal.pspace = get_frame_program_space (frame);
5000 insert_step_resume_breakpoint_at_sal (gdbarch,
5001 sr_sal, null_frame_id);
5002 keep_going (ecs);
5003 return;
5004 }
5005 }
5006
5007 /* If we're in the return path from a shared library trampoline,
5008 we want to proceed through the trampoline when stepping. */
5009 if (gdbarch_in_solib_return_trampoline (gdbarch,
5010 stop_pc, ecs->stop_func_name))
5011 {
5012 /* Determine where this trampoline returns. */
5013 CORE_ADDR real_stop_pc;
5014
5015 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5016
5017 if (debug_infrun)
5018 fprintf_unfiltered (gdb_stdlog,
5019 "infrun: stepped into solib return tramp\n");
5020
5021 /* Only proceed through if we know where it's going. */
5022 if (real_stop_pc)
5023 {
5024 /* And put the step-breakpoint there and go until there. */
5025 struct symtab_and_line sr_sal;
5026
5027 init_sal (&sr_sal); /* initialize to zeroes */
5028 sr_sal.pc = real_stop_pc;
5029 sr_sal.section = find_pc_overlay (sr_sal.pc);
5030 sr_sal.pspace = get_frame_program_space (frame);
5031
5032 /* Do not specify what the fp should be when we stop since
5033 on some machines the prologue is where the new fp value
5034 is established. */
5035 insert_step_resume_breakpoint_at_sal (gdbarch,
5036 sr_sal, null_frame_id);
5037
5038 /* Restart without fiddling with the step ranges or
5039 other state. */
5040 keep_going (ecs);
5041 return;
5042 }
5043 }
5044
5045 stop_pc_sal = find_pc_line (stop_pc, 0);
5046
5047 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5048 the trampoline processing logic, however, there are some trampolines
5049 that have no names, so we should do trampoline handling first. */
5050 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5051 && ecs->stop_func_name == NULL
5052 && stop_pc_sal.line == 0)
5053 {
5054 if (debug_infrun)
5055 fprintf_unfiltered (gdb_stdlog,
5056 "infrun: stepped into undebuggable function\n");
5057
5058 /* The inferior just stepped into, or returned to, an
5059 undebuggable function (where there is no debugging information
5060 and no line number corresponding to the address where the
5061 inferior stopped). Since we want to skip this kind of code,
5062 we keep going until the inferior returns from this
5063 function - unless the user has asked us not to (via
5064 set step-mode) or we no longer know how to get back
5065 to the call site. */
5066 if (step_stop_if_no_debug
5067 || !frame_id_p (frame_unwind_caller_id (frame)))
5068 {
5069 /* If we have no line number and the step-stop-if-no-debug
5070 is set, we stop the step so that the user has a chance to
5071 switch in assembly mode. */
5072 ecs->event_thread->control.stop_step = 1;
5073 print_end_stepping_range_reason ();
5074 stop_stepping (ecs);
5075 return;
5076 }
5077 else
5078 {
5079 /* Set a breakpoint at callee's return address (the address
5080 at which the caller will resume). */
5081 insert_step_resume_breakpoint_at_caller (frame);
5082 keep_going (ecs);
5083 return;
5084 }
5085 }
5086
5087 if (ecs->event_thread->control.step_range_end == 1)
5088 {
5089 /* It is stepi or nexti. We always want to stop stepping after
5090 one instruction. */
5091 if (debug_infrun)
5092 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5093 ecs->event_thread->control.stop_step = 1;
5094 print_end_stepping_range_reason ();
5095 stop_stepping (ecs);
5096 return;
5097 }
5098
5099 if (stop_pc_sal.line == 0)
5100 {
5101 /* We have no line number information. That means to stop
5102 stepping (does this always happen right after one instruction,
5103 when we do "s" in a function with no line numbers,
5104 or can this happen as a result of a return or longjmp?). */
5105 if (debug_infrun)
5106 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5107 ecs->event_thread->control.stop_step = 1;
5108 print_end_stepping_range_reason ();
5109 stop_stepping (ecs);
5110 return;
5111 }
5112
5113 /* Look for "calls" to inlined functions, part one. If the inline
5114 frame machinery detected some skipped call sites, we have entered
5115 a new inline function. */
5116
5117 if (frame_id_eq (get_frame_id (get_current_frame ()),
5118 ecs->event_thread->control.step_frame_id)
5119 && inline_skipped_frames (ecs->ptid))
5120 {
5121 struct symtab_and_line call_sal;
5122
5123 if (debug_infrun)
5124 fprintf_unfiltered (gdb_stdlog,
5125 "infrun: stepped into inlined function\n");
5126
5127 find_frame_sal (get_current_frame (), &call_sal);
5128
5129 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5130 {
5131 /* For "step", we're going to stop. But if the call site
5132 for this inlined function is on the same source line as
5133 we were previously stepping, go down into the function
5134 first. Otherwise stop at the call site. */
5135
5136 if (call_sal.line == ecs->event_thread->current_line
5137 && call_sal.symtab == ecs->event_thread->current_symtab)
5138 step_into_inline_frame (ecs->ptid);
5139
5140 ecs->event_thread->control.stop_step = 1;
5141 print_end_stepping_range_reason ();
5142 stop_stepping (ecs);
5143 return;
5144 }
5145 else
5146 {
5147 /* For "next", we should stop at the call site if it is on a
5148 different source line. Otherwise continue through the
5149 inlined function. */
5150 if (call_sal.line == ecs->event_thread->current_line
5151 && call_sal.symtab == ecs->event_thread->current_symtab)
5152 keep_going (ecs);
5153 else
5154 {
5155 ecs->event_thread->control.stop_step = 1;
5156 print_end_stepping_range_reason ();
5157 stop_stepping (ecs);
5158 }
5159 return;
5160 }
5161 }
5162
5163 /* Look for "calls" to inlined functions, part two. If we are still
5164 in the same real function we were stepping through, but we have
5165 to go further up to find the exact frame ID, we are stepping
5166 through a more inlined call beyond its call site. */
5167
5168 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5169 && !frame_id_eq (get_frame_id (get_current_frame ()),
5170 ecs->event_thread->control.step_frame_id)
5171 && stepped_in_from (get_current_frame (),
5172 ecs->event_thread->control.step_frame_id))
5173 {
5174 if (debug_infrun)
5175 fprintf_unfiltered (gdb_stdlog,
5176 "infrun: stepping through inlined function\n");
5177
5178 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5179 keep_going (ecs);
5180 else
5181 {
5182 ecs->event_thread->control.stop_step = 1;
5183 print_end_stepping_range_reason ();
5184 stop_stepping (ecs);
5185 }
5186 return;
5187 }
5188
5189 if ((stop_pc == stop_pc_sal.pc)
5190 && (ecs->event_thread->current_line != stop_pc_sal.line
5191 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5192 {
5193 /* We are at the start of a different line. So stop. Note that
5194 we don't stop if we step into the middle of a different line.
5195 That is said to make things like for (;;) statements work
5196 better. */
5197 if (debug_infrun)
5198 fprintf_unfiltered (gdb_stdlog,
5199 "infrun: stepped to a different line\n");
5200 ecs->event_thread->control.stop_step = 1;
5201 print_end_stepping_range_reason ();
5202 stop_stepping (ecs);
5203 return;
5204 }
5205
5206 /* We aren't done stepping.
5207
5208 Optimize by setting the stepping range to the line.
5209 (We might not be in the original line, but if we entered a
5210 new line in mid-statement, we continue stepping. This makes
5211 things like for(;;) statements work better.) */
5212
5213 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5214 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5215 set_step_info (frame, stop_pc_sal);
5216
5217 if (debug_infrun)
5218 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5219 keep_going (ecs);
5220}
5221
5222/* Is thread TP in the middle of single-stepping? */
5223
5224static int
5225currently_stepping (struct thread_info *tp)
5226{
5227 return ((tp->control.step_range_end
5228 && tp->control.step_resume_breakpoint == NULL)
5229 || tp->control.trap_expected
5230 || bpstat_should_step ());
5231}
5232
5233/* Returns true if any thread *but* the one passed in "data" is in the
5234 middle of stepping or of handling a "next". */
5235
5236static int
5237currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5238{
5239 if (tp == data)
5240 return 0;
5241
5242 return (tp->control.step_range_end
5243 || tp->control.trap_expected);
5244}
5245
5246/* Inferior has stepped into a subroutine call with source code that
5247 we should not step over. Do step to the first line of code in
5248 it. */
5249
5250static void
5251handle_step_into_function (struct gdbarch *gdbarch,
5252 struct execution_control_state *ecs)
5253{
5254 struct symtab *s;
5255 struct symtab_and_line stop_func_sal, sr_sal;
5256
5257 fill_in_stop_func (gdbarch, ecs);
5258
5259 s = find_pc_symtab (stop_pc);
5260 if (s && s->language != language_asm)
5261 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5262 ecs->stop_func_start);
5263
5264 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5265 /* Use the step_resume_break to step until the end of the prologue,
5266 even if that involves jumps (as it seems to on the vax under
5267 4.2). */
5268 /* If the prologue ends in the middle of a source line, continue to
5269 the end of that source line (if it is still within the function).
5270 Otherwise, just go to end of prologue. */
5271 if (stop_func_sal.end
5272 && stop_func_sal.pc != ecs->stop_func_start
5273 && stop_func_sal.end < ecs->stop_func_end)
5274 ecs->stop_func_start = stop_func_sal.end;
5275
5276 /* Architectures which require breakpoint adjustment might not be able
5277 to place a breakpoint at the computed address. If so, the test
5278 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5279 ecs->stop_func_start to an address at which a breakpoint may be
5280 legitimately placed.
5281
5282 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5283 made, GDB will enter an infinite loop when stepping through
5284 optimized code consisting of VLIW instructions which contain
5285 subinstructions corresponding to different source lines. On
5286 FR-V, it's not permitted to place a breakpoint on any but the
5287 first subinstruction of a VLIW instruction. When a breakpoint is
5288 set, GDB will adjust the breakpoint address to the beginning of
5289 the VLIW instruction. Thus, we need to make the corresponding
5290 adjustment here when computing the stop address. */
5291
5292 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5293 {
5294 ecs->stop_func_start
5295 = gdbarch_adjust_breakpoint_address (gdbarch,
5296 ecs->stop_func_start);
5297 }
5298
5299 if (ecs->stop_func_start == stop_pc)
5300 {
5301 /* We are already there: stop now. */
5302 ecs->event_thread->control.stop_step = 1;
5303 print_end_stepping_range_reason ();
5304 stop_stepping (ecs);
5305 return;
5306 }
5307 else
5308 {
5309 /* Put the step-breakpoint there and go until there. */
5310 init_sal (&sr_sal); /* initialize to zeroes */
5311 sr_sal.pc = ecs->stop_func_start;
5312 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5313 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5314
5315 /* Do not specify what the fp should be when we stop since on
5316 some machines the prologue is where the new fp value is
5317 established. */
5318 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5319
5320 /* And make sure stepping stops right away then. */
5321 ecs->event_thread->control.step_range_end
5322 = ecs->event_thread->control.step_range_start;
5323 }
5324 keep_going (ecs);
5325}
5326
5327/* Inferior has stepped backward into a subroutine call with source
5328 code that we should not step over. Do step to the beginning of the
5329 last line of code in it. */
5330
5331static void
5332handle_step_into_function_backward (struct gdbarch *gdbarch,
5333 struct execution_control_state *ecs)
5334{
5335 struct symtab *s;
5336 struct symtab_and_line stop_func_sal;
5337
5338 fill_in_stop_func (gdbarch, ecs);
5339
5340 s = find_pc_symtab (stop_pc);
5341 if (s && s->language != language_asm)
5342 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5343 ecs->stop_func_start);
5344
5345 stop_func_sal = find_pc_line (stop_pc, 0);
5346
5347 /* OK, we're just going to keep stepping here. */
5348 if (stop_func_sal.pc == stop_pc)
5349 {
5350 /* We're there already. Just stop stepping now. */
5351 ecs->event_thread->control.stop_step = 1;
5352 print_end_stepping_range_reason ();
5353 stop_stepping (ecs);
5354 }
5355 else
5356 {
5357 /* Else just reset the step range and keep going.
5358 No step-resume breakpoint, they don't work for
5359 epilogues, which can have multiple entry paths. */
5360 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5361 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5362 keep_going (ecs);
5363 }
5364 return;
5365}
5366
5367/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5368 This is used to both functions and to skip over code. */
5369
5370static void
5371insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5372 struct symtab_and_line sr_sal,
5373 struct frame_id sr_id,
5374 enum bptype sr_type)
5375{
5376 /* There should never be more than one step-resume or longjmp-resume
5377 breakpoint per thread, so we should never be setting a new
5378 step_resume_breakpoint when one is already active. */
5379 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5380 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5381
5382 if (debug_infrun)
5383 fprintf_unfiltered (gdb_stdlog,
5384 "infrun: inserting step-resume breakpoint at %s\n",
5385 paddress (gdbarch, sr_sal.pc));
5386
5387 inferior_thread ()->control.step_resume_breakpoint
5388 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5389}
5390
5391void
5392insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5393 struct symtab_and_line sr_sal,
5394 struct frame_id sr_id)
5395{
5396 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5397 sr_sal, sr_id,
5398 bp_step_resume);
5399}
5400
5401/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5402 This is used to skip a potential signal handler.
5403
5404 This is called with the interrupted function's frame. The signal
5405 handler, when it returns, will resume the interrupted function at
5406 RETURN_FRAME.pc. */
5407
5408static void
5409insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5410{
5411 struct symtab_and_line sr_sal;
5412 struct gdbarch *gdbarch;
5413
5414 gdb_assert (return_frame != NULL);
5415 init_sal (&sr_sal); /* initialize to zeros */
5416
5417 gdbarch = get_frame_arch (return_frame);
5418 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5419 sr_sal.section = find_pc_overlay (sr_sal.pc);
5420 sr_sal.pspace = get_frame_program_space (return_frame);
5421
5422 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5423 get_stack_frame_id (return_frame),
5424 bp_hp_step_resume);
5425}
5426
5427/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5428 is used to skip a function after stepping into it (for "next" or if
5429 the called function has no debugging information).
5430
5431 The current function has almost always been reached by single
5432 stepping a call or return instruction. NEXT_FRAME belongs to the
5433 current function, and the breakpoint will be set at the caller's
5434 resume address.
5435
5436 This is a separate function rather than reusing
5437 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5438 get_prev_frame, which may stop prematurely (see the implementation
5439 of frame_unwind_caller_id for an example). */
5440
5441static void
5442insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5443{
5444 struct symtab_and_line sr_sal;
5445 struct gdbarch *gdbarch;
5446
5447 /* We shouldn't have gotten here if we don't know where the call site
5448 is. */
5449 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5450
5451 init_sal (&sr_sal); /* initialize to zeros */
5452
5453 gdbarch = frame_unwind_caller_arch (next_frame);
5454 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5455 frame_unwind_caller_pc (next_frame));
5456 sr_sal.section = find_pc_overlay (sr_sal.pc);
5457 sr_sal.pspace = frame_unwind_program_space (next_frame);
5458
5459 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5460 frame_unwind_caller_id (next_frame));
5461}
5462
5463/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5464 new breakpoint at the target of a jmp_buf. The handling of
5465 longjmp-resume uses the same mechanisms used for handling
5466 "step-resume" breakpoints. */
5467
5468static void
5469insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5470{
5471 /* There should never be more than one step-resume or longjmp-resume
5472 breakpoint per thread, so we should never be setting a new
5473 longjmp_resume_breakpoint when one is already active. */
5474 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5475
5476 if (debug_infrun)
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: inserting longjmp-resume breakpoint at %s\n",
5479 paddress (gdbarch, pc));
5480
5481 inferior_thread ()->control.step_resume_breakpoint =
5482 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5483}
5484
5485/* Insert an exception resume breakpoint. TP is the thread throwing
5486 the exception. The block B is the block of the unwinder debug hook
5487 function. FRAME is the frame corresponding to the call to this
5488 function. SYM is the symbol of the function argument holding the
5489 target PC of the exception. */
5490
5491static void
5492insert_exception_resume_breakpoint (struct thread_info *tp,
5493 struct block *b,
5494 struct frame_info *frame,
5495 struct symbol *sym)
5496{
5497 volatile struct gdb_exception e;
5498
5499 /* We want to ignore errors here. */
5500 TRY_CATCH (e, RETURN_MASK_ERROR)
5501 {
5502 struct symbol *vsym;
5503 struct value *value;
5504 CORE_ADDR handler;
5505 struct breakpoint *bp;
5506
5507 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5508 value = read_var_value (vsym, frame);
5509 /* If the value was optimized out, revert to the old behavior. */
5510 if (! value_optimized_out (value))
5511 {
5512 handler = value_as_address (value);
5513
5514 if (debug_infrun)
5515 fprintf_unfiltered (gdb_stdlog,
5516 "infrun: exception resume at %lx\n",
5517 (unsigned long) handler);
5518
5519 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5520 handler, bp_exception_resume);
5521 bp->thread = tp->num;
5522 inferior_thread ()->control.exception_resume_breakpoint = bp;
5523 }
5524 }
5525}
5526
5527/* This is called when an exception has been intercepted. Check to
5528 see whether the exception's destination is of interest, and if so,
5529 set an exception resume breakpoint there. */
5530
5531static void
5532check_exception_resume (struct execution_control_state *ecs,
5533 struct frame_info *frame, struct symbol *func)
5534{
5535 volatile struct gdb_exception e;
5536
5537 TRY_CATCH (e, RETURN_MASK_ERROR)
5538 {
5539 struct block *b;
5540 struct dict_iterator iter;
5541 struct symbol *sym;
5542 int argno = 0;
5543
5544 /* The exception breakpoint is a thread-specific breakpoint on
5545 the unwinder's debug hook, declared as:
5546
5547 void _Unwind_DebugHook (void *cfa, void *handler);
5548
5549 The CFA argument indicates the frame to which control is
5550 about to be transferred. HANDLER is the destination PC.
5551
5552 We ignore the CFA and set a temporary breakpoint at HANDLER.
5553 This is not extremely efficient but it avoids issues in gdb
5554 with computing the DWARF CFA, and it also works even in weird
5555 cases such as throwing an exception from inside a signal
5556 handler. */
5557
5558 b = SYMBOL_BLOCK_VALUE (func);
5559 ALL_BLOCK_SYMBOLS (b, iter, sym)
5560 {
5561 if (!SYMBOL_IS_ARGUMENT (sym))
5562 continue;
5563
5564 if (argno == 0)
5565 ++argno;
5566 else
5567 {
5568 insert_exception_resume_breakpoint (ecs->event_thread,
5569 b, frame, sym);
5570 break;
5571 }
5572 }
5573 }
5574}
5575
5576static void
5577stop_stepping (struct execution_control_state *ecs)
5578{
5579 if (debug_infrun)
5580 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5581
5582 /* Let callers know we don't want to wait for the inferior anymore. */
5583 ecs->wait_some_more = 0;
5584}
5585
5586/* This function handles various cases where we need to continue
5587 waiting for the inferior. */
5588/* (Used to be the keep_going: label in the old wait_for_inferior). */
5589
5590static void
5591keep_going (struct execution_control_state *ecs)
5592{
5593 /* Make sure normal_stop is called if we get a QUIT handled before
5594 reaching resume. */
5595 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5596
5597 /* Save the pc before execution, to compare with pc after stop. */
5598 ecs->event_thread->prev_pc
5599 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5600
5601 /* If we did not do break;, it means we should keep running the
5602 inferior and not return to debugger. */
5603
5604 if (ecs->event_thread->control.trap_expected
5605 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
5606 {
5607 /* We took a signal (which we are supposed to pass through to
5608 the inferior, else we'd not get here) and we haven't yet
5609 gotten our trap. Simply continue. */
5610
5611 discard_cleanups (old_cleanups);
5612 resume (currently_stepping (ecs->event_thread),
5613 ecs->event_thread->suspend.stop_signal);
5614 }
5615 else
5616 {
5617 /* Either the trap was not expected, but we are continuing
5618 anyway (the user asked that this signal be passed to the
5619 child)
5620 -- or --
5621 The signal was SIGTRAP, e.g. it was our signal, but we
5622 decided we should resume from it.
5623
5624 We're going to run this baby now!
5625
5626 Note that insert_breakpoints won't try to re-insert
5627 already inserted breakpoints. Therefore, we don't
5628 care if breakpoints were already inserted, or not. */
5629
5630 if (ecs->event_thread->stepping_over_breakpoint)
5631 {
5632 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5633
5634 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5635 /* Since we can't do a displaced step, we have to remove
5636 the breakpoint while we step it. To keep things
5637 simple, we remove them all. */
5638 remove_breakpoints ();
5639 }
5640 else
5641 {
5642 volatile struct gdb_exception e;
5643
5644 /* Stop stepping when inserting breakpoints
5645 has failed. */
5646 TRY_CATCH (e, RETURN_MASK_ERROR)
5647 {
5648 insert_breakpoints ();
5649 }
5650 if (e.reason < 0)
5651 {
5652 exception_print (gdb_stderr, e);
5653 stop_stepping (ecs);
5654 return;
5655 }
5656 }
5657
5658 ecs->event_thread->control.trap_expected
5659 = ecs->event_thread->stepping_over_breakpoint;
5660
5661 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5662 specifies that such a signal should be delivered to the
5663 target program).
5664
5665 Typically, this would occure when a user is debugging a
5666 target monitor on a simulator: the target monitor sets a
5667 breakpoint; the simulator encounters this break-point and
5668 halts the simulation handing control to GDB; GDB, noteing
5669 that the break-point isn't valid, returns control back to the
5670 simulator; the simulator then delivers the hardware
5671 equivalent of a SIGNAL_TRAP to the program being debugged. */
5672
5673 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5674 && !signal_program[ecs->event_thread->suspend.stop_signal])
5675 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
5676
5677 discard_cleanups (old_cleanups);
5678 resume (currently_stepping (ecs->event_thread),
5679 ecs->event_thread->suspend.stop_signal);
5680 }
5681
5682 prepare_to_wait (ecs);
5683}
5684
5685/* This function normally comes after a resume, before
5686 handle_inferior_event exits. It takes care of any last bits of
5687 housekeeping, and sets the all-important wait_some_more flag. */
5688
5689static void
5690prepare_to_wait (struct execution_control_state *ecs)
5691{
5692 if (debug_infrun)
5693 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5694
5695 /* This is the old end of the while loop. Let everybody know we
5696 want to wait for the inferior some more and get called again
5697 soon. */
5698 ecs->wait_some_more = 1;
5699}
5700
5701/* Several print_*_reason functions to print why the inferior has stopped.
5702 We always print something when the inferior exits, or receives a signal.
5703 The rest of the cases are dealt with later on in normal_stop and
5704 print_it_typical. Ideally there should be a call to one of these
5705 print_*_reason functions functions from handle_inferior_event each time
5706 stop_stepping is called. */
5707
5708/* Print why the inferior has stopped.
5709 We are done with a step/next/si/ni command, print why the inferior has
5710 stopped. For now print nothing. Print a message only if not in the middle
5711 of doing a "step n" operation for n > 1. */
5712
5713static void
5714print_end_stepping_range_reason (void)
5715{
5716 if ((!inferior_thread ()->step_multi
5717 || !inferior_thread ()->control.stop_step)
5718 && ui_out_is_mi_like_p (current_uiout))
5719 ui_out_field_string (current_uiout, "reason",
5720 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5721}
5722
5723/* The inferior was terminated by a signal, print why it stopped. */
5724
5725static void
5726print_signal_exited_reason (enum target_signal siggnal)
5727{
5728 struct ui_out *uiout = current_uiout;
5729
5730 annotate_signalled ();
5731 if (ui_out_is_mi_like_p (uiout))
5732 ui_out_field_string
5733 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5734 ui_out_text (uiout, "\nProgram terminated with signal ");
5735 annotate_signal_name ();
5736 ui_out_field_string (uiout, "signal-name",
5737 target_signal_to_name (siggnal));
5738 annotate_signal_name_end ();
5739 ui_out_text (uiout, ", ");
5740 annotate_signal_string ();
5741 ui_out_field_string (uiout, "signal-meaning",
5742 target_signal_to_string (siggnal));
5743 annotate_signal_string_end ();
5744 ui_out_text (uiout, ".\n");
5745 ui_out_text (uiout, "The program no longer exists.\n");
5746}
5747
5748/* The inferior program is finished, print why it stopped. */
5749
5750static void
5751print_exited_reason (int exitstatus)
5752{
5753 struct inferior *inf = current_inferior ();
5754 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5755 struct ui_out *uiout = current_uiout;
5756
5757 annotate_exited (exitstatus);
5758 if (exitstatus)
5759 {
5760 if (ui_out_is_mi_like_p (uiout))
5761 ui_out_field_string (uiout, "reason",
5762 async_reason_lookup (EXEC_ASYNC_EXITED));
5763 ui_out_text (uiout, "[Inferior ");
5764 ui_out_text (uiout, plongest (inf->num));
5765 ui_out_text (uiout, " (");
5766 ui_out_text (uiout, pidstr);
5767 ui_out_text (uiout, ") exited with code ");
5768 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5769 ui_out_text (uiout, "]\n");
5770 }
5771 else
5772 {
5773 if (ui_out_is_mi_like_p (uiout))
5774 ui_out_field_string
5775 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5776 ui_out_text (uiout, "[Inferior ");
5777 ui_out_text (uiout, plongest (inf->num));
5778 ui_out_text (uiout, " (");
5779 ui_out_text (uiout, pidstr);
5780 ui_out_text (uiout, ") exited normally]\n");
5781 }
5782 /* Support the --return-child-result option. */
5783 return_child_result_value = exitstatus;
5784}
5785
5786/* Signal received, print why the inferior has stopped. The signal table
5787 tells us to print about it. */
5788
5789static void
5790print_signal_received_reason (enum target_signal siggnal)
5791{
5792 struct ui_out *uiout = current_uiout;
5793
5794 annotate_signal ();
5795
5796 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5797 {
5798 struct thread_info *t = inferior_thread ();
5799
5800 ui_out_text (uiout, "\n[");
5801 ui_out_field_string (uiout, "thread-name",
5802 target_pid_to_str (t->ptid));
5803 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5804 ui_out_text (uiout, " stopped");
5805 }
5806 else
5807 {
5808 ui_out_text (uiout, "\nProgram received signal ");
5809 annotate_signal_name ();
5810 if (ui_out_is_mi_like_p (uiout))
5811 ui_out_field_string
5812 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5813 ui_out_field_string (uiout, "signal-name",
5814 target_signal_to_name (siggnal));
5815 annotate_signal_name_end ();
5816 ui_out_text (uiout, ", ");
5817 annotate_signal_string ();
5818 ui_out_field_string (uiout, "signal-meaning",
5819 target_signal_to_string (siggnal));
5820 annotate_signal_string_end ();
5821 }
5822 ui_out_text (uiout, ".\n");
5823}
5824
5825/* Reverse execution: target ran out of history info, print why the inferior
5826 has stopped. */
5827
5828static void
5829print_no_history_reason (void)
5830{
5831 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5832}
5833
5834/* Here to return control to GDB when the inferior stops for real.
5835 Print appropriate messages, remove breakpoints, give terminal our modes.
5836
5837 STOP_PRINT_FRAME nonzero means print the executing frame
5838 (pc, function, args, file, line number and line text).
5839 BREAKPOINTS_FAILED nonzero means stop was due to error
5840 attempting to insert breakpoints. */
5841
5842void
5843normal_stop (void)
5844{
5845 struct target_waitstatus last;
5846 ptid_t last_ptid;
5847 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5848
5849 get_last_target_status (&last_ptid, &last);
5850
5851 /* If an exception is thrown from this point on, make sure to
5852 propagate GDB's knowledge of the executing state to the
5853 frontend/user running state. A QUIT is an easy exception to see
5854 here, so do this before any filtered output. */
5855 if (!non_stop)
5856 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5857 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5858 && last.kind != TARGET_WAITKIND_EXITED
5859 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5860 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5861
5862 /* In non-stop mode, we don't want GDB to switch threads behind the
5863 user's back, to avoid races where the user is typing a command to
5864 apply to thread x, but GDB switches to thread y before the user
5865 finishes entering the command. */
5866
5867 /* As with the notification of thread events, we want to delay
5868 notifying the user that we've switched thread context until
5869 the inferior actually stops.
5870
5871 There's no point in saying anything if the inferior has exited.
5872 Note that SIGNALLED here means "exited with a signal", not
5873 "received a signal". */
5874 if (!non_stop
5875 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5876 && target_has_execution
5877 && last.kind != TARGET_WAITKIND_SIGNALLED
5878 && last.kind != TARGET_WAITKIND_EXITED
5879 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5880 {
5881 target_terminal_ours_for_output ();
5882 printf_filtered (_("[Switching to %s]\n"),
5883 target_pid_to_str (inferior_ptid));
5884 annotate_thread_changed ();
5885 previous_inferior_ptid = inferior_ptid;
5886 }
5887
5888 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5889 {
5890 gdb_assert (sync_execution || !target_can_async_p ());
5891
5892 target_terminal_ours_for_output ();
5893 printf_filtered (_("No unwaited-for children left.\n"));
5894 }
5895
5896 if (!breakpoints_always_inserted_mode () && target_has_execution)
5897 {
5898 if (remove_breakpoints ())
5899 {
5900 target_terminal_ours_for_output ();
5901 printf_filtered (_("Cannot remove breakpoints because "
5902 "program is no longer writable.\nFurther "
5903 "execution is probably impossible.\n"));
5904 }
5905 }
5906
5907 /* If an auto-display called a function and that got a signal,
5908 delete that auto-display to avoid an infinite recursion. */
5909
5910 if (stopped_by_random_signal)
5911 disable_current_display ();
5912
5913 /* Don't print a message if in the middle of doing a "step n"
5914 operation for n > 1 */
5915 if (target_has_execution
5916 && last.kind != TARGET_WAITKIND_SIGNALLED
5917 && last.kind != TARGET_WAITKIND_EXITED
5918 && inferior_thread ()->step_multi
5919 && inferior_thread ()->control.stop_step)
5920 goto done;
5921
5922 target_terminal_ours ();
5923 async_enable_stdin ();
5924
5925 /* Set the current source location. This will also happen if we
5926 display the frame below, but the current SAL will be incorrect
5927 during a user hook-stop function. */
5928 if (has_stack_frames () && !stop_stack_dummy)
5929 set_current_sal_from_frame (get_current_frame (), 1);
5930
5931 /* Let the user/frontend see the threads as stopped. */
5932 do_cleanups (old_chain);
5933
5934 /* Look up the hook_stop and run it (CLI internally handles problem
5935 of stop_command's pre-hook not existing). */
5936 if (stop_command)
5937 catch_errors (hook_stop_stub, stop_command,
5938 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5939
5940 if (!has_stack_frames ())
5941 goto done;
5942
5943 if (last.kind == TARGET_WAITKIND_SIGNALLED
5944 || last.kind == TARGET_WAITKIND_EXITED)
5945 goto done;
5946
5947 /* Select innermost stack frame - i.e., current frame is frame 0,
5948 and current location is based on that.
5949 Don't do this on return from a stack dummy routine,
5950 or if the program has exited. */
5951
5952 if (!stop_stack_dummy)
5953 {
5954 select_frame (get_current_frame ());
5955
5956 /* Print current location without a level number, if
5957 we have changed functions or hit a breakpoint.
5958 Print source line if we have one.
5959 bpstat_print() contains the logic deciding in detail
5960 what to print, based on the event(s) that just occurred. */
5961
5962 /* If --batch-silent is enabled then there's no need to print the current
5963 source location, and to try risks causing an error message about
5964 missing source files. */
5965 if (stop_print_frame && !batch_silent)
5966 {
5967 int bpstat_ret;
5968 int source_flag;
5969 int do_frame_printing = 1;
5970 struct thread_info *tp = inferior_thread ();
5971
5972 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
5973 switch (bpstat_ret)
5974 {
5975 case PRINT_UNKNOWN:
5976 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5977 (or should) carry around the function and does (or
5978 should) use that when doing a frame comparison. */
5979 if (tp->control.stop_step
5980 && frame_id_eq (tp->control.step_frame_id,
5981 get_frame_id (get_current_frame ()))
5982 && step_start_function == find_pc_function (stop_pc))
5983 source_flag = SRC_LINE; /* Finished step, just
5984 print source line. */
5985 else
5986 source_flag = SRC_AND_LOC; /* Print location and
5987 source line. */
5988 break;
5989 case PRINT_SRC_AND_LOC:
5990 source_flag = SRC_AND_LOC; /* Print location and
5991 source line. */
5992 break;
5993 case PRINT_SRC_ONLY:
5994 source_flag = SRC_LINE;
5995 break;
5996 case PRINT_NOTHING:
5997 source_flag = SRC_LINE; /* something bogus */
5998 do_frame_printing = 0;
5999 break;
6000 default:
6001 internal_error (__FILE__, __LINE__, _("Unknown value."));
6002 }
6003
6004 /* The behavior of this routine with respect to the source
6005 flag is:
6006 SRC_LINE: Print only source line
6007 LOCATION: Print only location
6008 SRC_AND_LOC: Print location and source line. */
6009 if (do_frame_printing)
6010 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6011
6012 /* Display the auto-display expressions. */
6013 do_displays ();
6014 }
6015 }
6016
6017 /* Save the function value return registers, if we care.
6018 We might be about to restore their previous contents. */
6019 if (inferior_thread ()->control.proceed_to_finish
6020 && execution_direction != EXEC_REVERSE)
6021 {
6022 /* This should not be necessary. */
6023 if (stop_registers)
6024 regcache_xfree (stop_registers);
6025
6026 /* NB: The copy goes through to the target picking up the value of
6027 all the registers. */
6028 stop_registers = regcache_dup (get_current_regcache ());
6029 }
6030
6031 if (stop_stack_dummy == STOP_STACK_DUMMY)
6032 {
6033 /* Pop the empty frame that contains the stack dummy.
6034 This also restores inferior state prior to the call
6035 (struct infcall_suspend_state). */
6036 struct frame_info *frame = get_current_frame ();
6037
6038 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6039 frame_pop (frame);
6040 /* frame_pop() calls reinit_frame_cache as the last thing it
6041 does which means there's currently no selected frame. We
6042 don't need to re-establish a selected frame if the dummy call
6043 returns normally, that will be done by
6044 restore_infcall_control_state. However, we do have to handle
6045 the case where the dummy call is returning after being
6046 stopped (e.g. the dummy call previously hit a breakpoint).
6047 We can't know which case we have so just always re-establish
6048 a selected frame here. */
6049 select_frame (get_current_frame ());
6050 }
6051
6052done:
6053 annotate_stopped ();
6054
6055 /* Suppress the stop observer if we're in the middle of:
6056
6057 - a step n (n > 1), as there still more steps to be done.
6058
6059 - a "finish" command, as the observer will be called in
6060 finish_command_continuation, so it can include the inferior
6061 function's return value.
6062
6063 - calling an inferior function, as we pretend we inferior didn't
6064 run at all. The return value of the call is handled by the
6065 expression evaluator, through call_function_by_hand. */
6066
6067 if (!target_has_execution
6068 || last.kind == TARGET_WAITKIND_SIGNALLED
6069 || last.kind == TARGET_WAITKIND_EXITED
6070 || last.kind == TARGET_WAITKIND_NO_RESUMED
6071 || (!(inferior_thread ()->step_multi
6072 && inferior_thread ()->control.stop_step)
6073 && !(inferior_thread ()->control.stop_bpstat
6074 && inferior_thread ()->control.proceed_to_finish)
6075 && !inferior_thread ()->control.in_infcall))
6076 {
6077 if (!ptid_equal (inferior_ptid, null_ptid))
6078 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6079 stop_print_frame);
6080 else
6081 observer_notify_normal_stop (NULL, stop_print_frame);
6082 }
6083
6084 if (target_has_execution)
6085 {
6086 if (last.kind != TARGET_WAITKIND_SIGNALLED
6087 && last.kind != TARGET_WAITKIND_EXITED)
6088 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6089 Delete any breakpoint that is to be deleted at the next stop. */
6090 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6091 }
6092
6093 /* Try to get rid of automatically added inferiors that are no
6094 longer needed. Keeping those around slows down things linearly.
6095 Note that this never removes the current inferior. */
6096 prune_inferiors ();
6097}
6098
6099static int
6100hook_stop_stub (void *cmd)
6101{
6102 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6103 return (0);
6104}
6105\f
6106int
6107signal_stop_state (int signo)
6108{
6109 return signal_stop[signo];
6110}
6111
6112int
6113signal_print_state (int signo)
6114{
6115 return signal_print[signo];
6116}
6117
6118int
6119signal_pass_state (int signo)
6120{
6121 return signal_program[signo];
6122}
6123
6124static void
6125signal_cache_update (int signo)
6126{
6127 if (signo == -1)
6128 {
6129 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6130 signal_cache_update (signo);
6131
6132 return;
6133 }
6134
6135 signal_pass[signo] = (signal_stop[signo] == 0
6136 && signal_print[signo] == 0
6137 && signal_program[signo] == 1);
6138}
6139
6140int
6141signal_stop_update (int signo, int state)
6142{
6143 int ret = signal_stop[signo];
6144
6145 signal_stop[signo] = state;
6146 signal_cache_update (signo);
6147 return ret;
6148}
6149
6150int
6151signal_print_update (int signo, int state)
6152{
6153 int ret = signal_print[signo];
6154
6155 signal_print[signo] = state;
6156 signal_cache_update (signo);
6157 return ret;
6158}
6159
6160int
6161signal_pass_update (int signo, int state)
6162{
6163 int ret = signal_program[signo];
6164
6165 signal_program[signo] = state;
6166 signal_cache_update (signo);
6167 return ret;
6168}
6169
6170static void
6171sig_print_header (void)
6172{
6173 printf_filtered (_("Signal Stop\tPrint\tPass "
6174 "to program\tDescription\n"));
6175}
6176
6177static void
6178sig_print_info (enum target_signal oursig)
6179{
6180 const char *name = target_signal_to_name (oursig);
6181 int name_padding = 13 - strlen (name);
6182
6183 if (name_padding <= 0)
6184 name_padding = 0;
6185
6186 printf_filtered ("%s", name);
6187 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6188 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6189 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6190 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6191 printf_filtered ("%s\n", target_signal_to_string (oursig));
6192}
6193
6194/* Specify how various signals in the inferior should be handled. */
6195
6196static void
6197handle_command (char *args, int from_tty)
6198{
6199 char **argv;
6200 int digits, wordlen;
6201 int sigfirst, signum, siglast;
6202 enum target_signal oursig;
6203 int allsigs;
6204 int nsigs;
6205 unsigned char *sigs;
6206 struct cleanup *old_chain;
6207
6208 if (args == NULL)
6209 {
6210 error_no_arg (_("signal to handle"));
6211 }
6212
6213 /* Allocate and zero an array of flags for which signals to handle. */
6214
6215 nsigs = (int) TARGET_SIGNAL_LAST;
6216 sigs = (unsigned char *) alloca (nsigs);
6217 memset (sigs, 0, nsigs);
6218
6219 /* Break the command line up into args. */
6220
6221 argv = gdb_buildargv (args);
6222 old_chain = make_cleanup_freeargv (argv);
6223
6224 /* Walk through the args, looking for signal oursigs, signal names, and
6225 actions. Signal numbers and signal names may be interspersed with
6226 actions, with the actions being performed for all signals cumulatively
6227 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6228
6229 while (*argv != NULL)
6230 {
6231 wordlen = strlen (*argv);
6232 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6233 {;
6234 }
6235 allsigs = 0;
6236 sigfirst = siglast = -1;
6237
6238 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6239 {
6240 /* Apply action to all signals except those used by the
6241 debugger. Silently skip those. */
6242 allsigs = 1;
6243 sigfirst = 0;
6244 siglast = nsigs - 1;
6245 }
6246 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6247 {
6248 SET_SIGS (nsigs, sigs, signal_stop);
6249 SET_SIGS (nsigs, sigs, signal_print);
6250 }
6251 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6252 {
6253 UNSET_SIGS (nsigs, sigs, signal_program);
6254 }
6255 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6256 {
6257 SET_SIGS (nsigs, sigs, signal_print);
6258 }
6259 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6260 {
6261 SET_SIGS (nsigs, sigs, signal_program);
6262 }
6263 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6264 {
6265 UNSET_SIGS (nsigs, sigs, signal_stop);
6266 }
6267 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6268 {
6269 SET_SIGS (nsigs, sigs, signal_program);
6270 }
6271 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6272 {
6273 UNSET_SIGS (nsigs, sigs, signal_print);
6274 UNSET_SIGS (nsigs, sigs, signal_stop);
6275 }
6276 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6277 {
6278 UNSET_SIGS (nsigs, sigs, signal_program);
6279 }
6280 else if (digits > 0)
6281 {
6282 /* It is numeric. The numeric signal refers to our own
6283 internal signal numbering from target.h, not to host/target
6284 signal number. This is a feature; users really should be
6285 using symbolic names anyway, and the common ones like
6286 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6287
6288 sigfirst = siglast = (int)
6289 target_signal_from_command (atoi (*argv));
6290 if ((*argv)[digits] == '-')
6291 {
6292 siglast = (int)
6293 target_signal_from_command (atoi ((*argv) + digits + 1));
6294 }
6295 if (sigfirst > siglast)
6296 {
6297 /* Bet he didn't figure we'd think of this case... */
6298 signum = sigfirst;
6299 sigfirst = siglast;
6300 siglast = signum;
6301 }
6302 }
6303 else
6304 {
6305 oursig = target_signal_from_name (*argv);
6306 if (oursig != TARGET_SIGNAL_UNKNOWN)
6307 {
6308 sigfirst = siglast = (int) oursig;
6309 }
6310 else
6311 {
6312 /* Not a number and not a recognized flag word => complain. */
6313 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6314 }
6315 }
6316
6317 /* If any signal numbers or symbol names were found, set flags for
6318 which signals to apply actions to. */
6319
6320 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6321 {
6322 switch ((enum target_signal) signum)
6323 {
6324 case TARGET_SIGNAL_TRAP:
6325 case TARGET_SIGNAL_INT:
6326 if (!allsigs && !sigs[signum])
6327 {
6328 if (query (_("%s is used by the debugger.\n\
6329Are you sure you want to change it? "),
6330 target_signal_to_name ((enum target_signal) signum)))
6331 {
6332 sigs[signum] = 1;
6333 }
6334 else
6335 {
6336 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6337 gdb_flush (gdb_stdout);
6338 }
6339 }
6340 break;
6341 case TARGET_SIGNAL_0:
6342 case TARGET_SIGNAL_DEFAULT:
6343 case TARGET_SIGNAL_UNKNOWN:
6344 /* Make sure that "all" doesn't print these. */
6345 break;
6346 default:
6347 sigs[signum] = 1;
6348 break;
6349 }
6350 }
6351
6352 argv++;
6353 }
6354
6355 for (signum = 0; signum < nsigs; signum++)
6356 if (sigs[signum])
6357 {
6358 signal_cache_update (-1);
6359 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
6360
6361 if (from_tty)
6362 {
6363 /* Show the results. */
6364 sig_print_header ();
6365 for (; signum < nsigs; signum++)
6366 if (sigs[signum])
6367 sig_print_info (signum);
6368 }
6369
6370 break;
6371 }
6372
6373 do_cleanups (old_chain);
6374}
6375
6376static void
6377xdb_handle_command (char *args, int from_tty)
6378{
6379 char **argv;
6380 struct cleanup *old_chain;
6381
6382 if (args == NULL)
6383 error_no_arg (_("xdb command"));
6384
6385 /* Break the command line up into args. */
6386
6387 argv = gdb_buildargv (args);
6388 old_chain = make_cleanup_freeargv (argv);
6389 if (argv[1] != (char *) NULL)
6390 {
6391 char *argBuf;
6392 int bufLen;
6393
6394 bufLen = strlen (argv[0]) + 20;
6395 argBuf = (char *) xmalloc (bufLen);
6396 if (argBuf)
6397 {
6398 int validFlag = 1;
6399 enum target_signal oursig;
6400
6401 oursig = target_signal_from_name (argv[0]);
6402 memset (argBuf, 0, bufLen);
6403 if (strcmp (argv[1], "Q") == 0)
6404 sprintf (argBuf, "%s %s", argv[0], "noprint");
6405 else
6406 {
6407 if (strcmp (argv[1], "s") == 0)
6408 {
6409 if (!signal_stop[oursig])
6410 sprintf (argBuf, "%s %s", argv[0], "stop");
6411 else
6412 sprintf (argBuf, "%s %s", argv[0], "nostop");
6413 }
6414 else if (strcmp (argv[1], "i") == 0)
6415 {
6416 if (!signal_program[oursig])
6417 sprintf (argBuf, "%s %s", argv[0], "pass");
6418 else
6419 sprintf (argBuf, "%s %s", argv[0], "nopass");
6420 }
6421 else if (strcmp (argv[1], "r") == 0)
6422 {
6423 if (!signal_print[oursig])
6424 sprintf (argBuf, "%s %s", argv[0], "print");
6425 else
6426 sprintf (argBuf, "%s %s", argv[0], "noprint");
6427 }
6428 else
6429 validFlag = 0;
6430 }
6431 if (validFlag)
6432 handle_command (argBuf, from_tty);
6433 else
6434 printf_filtered (_("Invalid signal handling flag.\n"));
6435 if (argBuf)
6436 xfree (argBuf);
6437 }
6438 }
6439 do_cleanups (old_chain);
6440}
6441
6442/* Print current contents of the tables set by the handle command.
6443 It is possible we should just be printing signals actually used
6444 by the current target (but for things to work right when switching
6445 targets, all signals should be in the signal tables). */
6446
6447static void
6448signals_info (char *signum_exp, int from_tty)
6449{
6450 enum target_signal oursig;
6451
6452 sig_print_header ();
6453
6454 if (signum_exp)
6455 {
6456 /* First see if this is a symbol name. */
6457 oursig = target_signal_from_name (signum_exp);
6458 if (oursig == TARGET_SIGNAL_UNKNOWN)
6459 {
6460 /* No, try numeric. */
6461 oursig =
6462 target_signal_from_command (parse_and_eval_long (signum_exp));
6463 }
6464 sig_print_info (oursig);
6465 return;
6466 }
6467
6468 printf_filtered ("\n");
6469 /* These ugly casts brought to you by the native VAX compiler. */
6470 for (oursig = TARGET_SIGNAL_FIRST;
6471 (int) oursig < (int) TARGET_SIGNAL_LAST;
6472 oursig = (enum target_signal) ((int) oursig + 1))
6473 {
6474 QUIT;
6475
6476 if (oursig != TARGET_SIGNAL_UNKNOWN
6477 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
6478 sig_print_info (oursig);
6479 }
6480
6481 printf_filtered (_("\nUse the \"handle\" command "
6482 "to change these tables.\n"));
6483}
6484
6485/* Check if it makes sense to read $_siginfo from the current thread
6486 at this point. If not, throw an error. */
6487
6488static void
6489validate_siginfo_access (void)
6490{
6491 /* No current inferior, no siginfo. */
6492 if (ptid_equal (inferior_ptid, null_ptid))
6493 error (_("No thread selected."));
6494
6495 /* Don't try to read from a dead thread. */
6496 if (is_exited (inferior_ptid))
6497 error (_("The current thread has terminated"));
6498
6499 /* ... or from a spinning thread. */
6500 if (is_running (inferior_ptid))
6501 error (_("Selected thread is running."));
6502}
6503
6504/* The $_siginfo convenience variable is a bit special. We don't know
6505 for sure the type of the value until we actually have a chance to
6506 fetch the data. The type can change depending on gdbarch, so it is
6507 also dependent on which thread you have selected.
6508
6509 1. making $_siginfo be an internalvar that creates a new value on
6510 access.
6511
6512 2. making the value of $_siginfo be an lval_computed value. */
6513
6514/* This function implements the lval_computed support for reading a
6515 $_siginfo value. */
6516
6517static void
6518siginfo_value_read (struct value *v)
6519{
6520 LONGEST transferred;
6521
6522 validate_siginfo_access ();
6523
6524 transferred =
6525 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6526 NULL,
6527 value_contents_all_raw (v),
6528 value_offset (v),
6529 TYPE_LENGTH (value_type (v)));
6530
6531 if (transferred != TYPE_LENGTH (value_type (v)))
6532 error (_("Unable to read siginfo"));
6533}
6534
6535/* This function implements the lval_computed support for writing a
6536 $_siginfo value. */
6537
6538static void
6539siginfo_value_write (struct value *v, struct value *fromval)
6540{
6541 LONGEST transferred;
6542
6543 validate_siginfo_access ();
6544
6545 transferred = target_write (&current_target,
6546 TARGET_OBJECT_SIGNAL_INFO,
6547 NULL,
6548 value_contents_all_raw (fromval),
6549 value_offset (v),
6550 TYPE_LENGTH (value_type (fromval)));
6551
6552 if (transferred != TYPE_LENGTH (value_type (fromval)))
6553 error (_("Unable to write siginfo"));
6554}
6555
6556static const struct lval_funcs siginfo_value_funcs =
6557 {
6558 siginfo_value_read,
6559 siginfo_value_write
6560 };
6561
6562/* Return a new value with the correct type for the siginfo object of
6563 the current thread using architecture GDBARCH. Return a void value
6564 if there's no object available. */
6565
6566static struct value *
6567siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
6568{
6569 if (target_has_stack
6570 && !ptid_equal (inferior_ptid, null_ptid)
6571 && gdbarch_get_siginfo_type_p (gdbarch))
6572 {
6573 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6574
6575 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6576 }
6577
6578 return allocate_value (builtin_type (gdbarch)->builtin_void);
6579}
6580
6581\f
6582/* infcall_suspend_state contains state about the program itself like its
6583 registers and any signal it received when it last stopped.
6584 This state must be restored regardless of how the inferior function call
6585 ends (either successfully, or after it hits a breakpoint or signal)
6586 if the program is to properly continue where it left off. */
6587
6588struct infcall_suspend_state
6589{
6590 struct thread_suspend_state thread_suspend;
6591 struct inferior_suspend_state inferior_suspend;
6592
6593 /* Other fields: */
6594 CORE_ADDR stop_pc;
6595 struct regcache *registers;
6596
6597 /* Format of SIGINFO_DATA or NULL if it is not present. */
6598 struct gdbarch *siginfo_gdbarch;
6599
6600 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6601 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6602 content would be invalid. */
6603 gdb_byte *siginfo_data;
6604};
6605
6606struct infcall_suspend_state *
6607save_infcall_suspend_state (void)
6608{
6609 struct infcall_suspend_state *inf_state;
6610 struct thread_info *tp = inferior_thread ();
6611 struct inferior *inf = current_inferior ();
6612 struct regcache *regcache = get_current_regcache ();
6613 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6614 gdb_byte *siginfo_data = NULL;
6615
6616 if (gdbarch_get_siginfo_type_p (gdbarch))
6617 {
6618 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6619 size_t len = TYPE_LENGTH (type);
6620 struct cleanup *back_to;
6621
6622 siginfo_data = xmalloc (len);
6623 back_to = make_cleanup (xfree, siginfo_data);
6624
6625 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6626 siginfo_data, 0, len) == len)
6627 discard_cleanups (back_to);
6628 else
6629 {
6630 /* Errors ignored. */
6631 do_cleanups (back_to);
6632 siginfo_data = NULL;
6633 }
6634 }
6635
6636 inf_state = XZALLOC (struct infcall_suspend_state);
6637
6638 if (siginfo_data)
6639 {
6640 inf_state->siginfo_gdbarch = gdbarch;
6641 inf_state->siginfo_data = siginfo_data;
6642 }
6643
6644 inf_state->thread_suspend = tp->suspend;
6645 inf_state->inferior_suspend = inf->suspend;
6646
6647 /* run_inferior_call will not use the signal due to its `proceed' call with
6648 TARGET_SIGNAL_0 anyway. */
6649 tp->suspend.stop_signal = TARGET_SIGNAL_0;
6650
6651 inf_state->stop_pc = stop_pc;
6652
6653 inf_state->registers = regcache_dup (regcache);
6654
6655 return inf_state;
6656}
6657
6658/* Restore inferior session state to INF_STATE. */
6659
6660void
6661restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6662{
6663 struct thread_info *tp = inferior_thread ();
6664 struct inferior *inf = current_inferior ();
6665 struct regcache *regcache = get_current_regcache ();
6666 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6667
6668 tp->suspend = inf_state->thread_suspend;
6669 inf->suspend = inf_state->inferior_suspend;
6670
6671 stop_pc = inf_state->stop_pc;
6672
6673 if (inf_state->siginfo_gdbarch == gdbarch)
6674 {
6675 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6676 size_t len = TYPE_LENGTH (type);
6677
6678 /* Errors ignored. */
6679 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6680 inf_state->siginfo_data, 0, len);
6681 }
6682
6683 /* The inferior can be gone if the user types "print exit(0)"
6684 (and perhaps other times). */
6685 if (target_has_execution)
6686 /* NB: The register write goes through to the target. */
6687 regcache_cpy (regcache, inf_state->registers);
6688
6689 discard_infcall_suspend_state (inf_state);
6690}
6691
6692static void
6693do_restore_infcall_suspend_state_cleanup (void *state)
6694{
6695 restore_infcall_suspend_state (state);
6696}
6697
6698struct cleanup *
6699make_cleanup_restore_infcall_suspend_state
6700 (struct infcall_suspend_state *inf_state)
6701{
6702 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6703}
6704
6705void
6706discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6707{
6708 regcache_xfree (inf_state->registers);
6709 xfree (inf_state->siginfo_data);
6710 xfree (inf_state);
6711}
6712
6713struct regcache *
6714get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6715{
6716 return inf_state->registers;
6717}
6718
6719/* infcall_control_state contains state regarding gdb's control of the
6720 inferior itself like stepping control. It also contains session state like
6721 the user's currently selected frame. */
6722
6723struct infcall_control_state
6724{
6725 struct thread_control_state thread_control;
6726 struct inferior_control_state inferior_control;
6727
6728 /* Other fields: */
6729 enum stop_stack_kind stop_stack_dummy;
6730 int stopped_by_random_signal;
6731 int stop_after_trap;
6732
6733 /* ID if the selected frame when the inferior function call was made. */
6734 struct frame_id selected_frame_id;
6735};
6736
6737/* Save all of the information associated with the inferior<==>gdb
6738 connection. */
6739
6740struct infcall_control_state *
6741save_infcall_control_state (void)
6742{
6743 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6744 struct thread_info *tp = inferior_thread ();
6745 struct inferior *inf = current_inferior ();
6746
6747 inf_status->thread_control = tp->control;
6748 inf_status->inferior_control = inf->control;
6749
6750 tp->control.step_resume_breakpoint = NULL;
6751 tp->control.exception_resume_breakpoint = NULL;
6752
6753 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6754 chain. If caller's caller is walking the chain, they'll be happier if we
6755 hand them back the original chain when restore_infcall_control_state is
6756 called. */
6757 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6758
6759 /* Other fields: */
6760 inf_status->stop_stack_dummy = stop_stack_dummy;
6761 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6762 inf_status->stop_after_trap = stop_after_trap;
6763
6764 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6765
6766 return inf_status;
6767}
6768
6769static int
6770restore_selected_frame (void *args)
6771{
6772 struct frame_id *fid = (struct frame_id *) args;
6773 struct frame_info *frame;
6774
6775 frame = frame_find_by_id (*fid);
6776
6777 /* If inf_status->selected_frame_id is NULL, there was no previously
6778 selected frame. */
6779 if (frame == NULL)
6780 {
6781 warning (_("Unable to restore previously selected frame."));
6782 return 0;
6783 }
6784
6785 select_frame (frame);
6786
6787 return (1);
6788}
6789
6790/* Restore inferior session state to INF_STATUS. */
6791
6792void
6793restore_infcall_control_state (struct infcall_control_state *inf_status)
6794{
6795 struct thread_info *tp = inferior_thread ();
6796 struct inferior *inf = current_inferior ();
6797
6798 if (tp->control.step_resume_breakpoint)
6799 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6800
6801 if (tp->control.exception_resume_breakpoint)
6802 tp->control.exception_resume_breakpoint->disposition
6803 = disp_del_at_next_stop;
6804
6805 /* Handle the bpstat_copy of the chain. */
6806 bpstat_clear (&tp->control.stop_bpstat);
6807
6808 tp->control = inf_status->thread_control;
6809 inf->control = inf_status->inferior_control;
6810
6811 /* Other fields: */
6812 stop_stack_dummy = inf_status->stop_stack_dummy;
6813 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6814 stop_after_trap = inf_status->stop_after_trap;
6815
6816 if (target_has_stack)
6817 {
6818 /* The point of catch_errors is that if the stack is clobbered,
6819 walking the stack might encounter a garbage pointer and
6820 error() trying to dereference it. */
6821 if (catch_errors
6822 (restore_selected_frame, &inf_status->selected_frame_id,
6823 "Unable to restore previously selected frame:\n",
6824 RETURN_MASK_ERROR) == 0)
6825 /* Error in restoring the selected frame. Select the innermost
6826 frame. */
6827 select_frame (get_current_frame ());
6828 }
6829
6830 xfree (inf_status);
6831}
6832
6833static void
6834do_restore_infcall_control_state_cleanup (void *sts)
6835{
6836 restore_infcall_control_state (sts);
6837}
6838
6839struct cleanup *
6840make_cleanup_restore_infcall_control_state
6841 (struct infcall_control_state *inf_status)
6842{
6843 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6844}
6845
6846void
6847discard_infcall_control_state (struct infcall_control_state *inf_status)
6848{
6849 if (inf_status->thread_control.step_resume_breakpoint)
6850 inf_status->thread_control.step_resume_breakpoint->disposition
6851 = disp_del_at_next_stop;
6852
6853 if (inf_status->thread_control.exception_resume_breakpoint)
6854 inf_status->thread_control.exception_resume_breakpoint->disposition
6855 = disp_del_at_next_stop;
6856
6857 /* See save_infcall_control_state for info on stop_bpstat. */
6858 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6859
6860 xfree (inf_status);
6861}
6862\f
6863int
6864inferior_has_forked (ptid_t pid, ptid_t *child_pid)
6865{
6866 struct target_waitstatus last;
6867 ptid_t last_ptid;
6868
6869 get_last_target_status (&last_ptid, &last);
6870
6871 if (last.kind != TARGET_WAITKIND_FORKED)
6872 return 0;
6873
6874 if (!ptid_equal (last_ptid, pid))
6875 return 0;
6876
6877 *child_pid = last.value.related_pid;
6878 return 1;
6879}
6880
6881int
6882inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
6883{
6884 struct target_waitstatus last;
6885 ptid_t last_ptid;
6886
6887 get_last_target_status (&last_ptid, &last);
6888
6889 if (last.kind != TARGET_WAITKIND_VFORKED)
6890 return 0;
6891
6892 if (!ptid_equal (last_ptid, pid))
6893 return 0;
6894
6895 *child_pid = last.value.related_pid;
6896 return 1;
6897}
6898
6899int
6900inferior_has_execd (ptid_t pid, char **execd_pathname)
6901{
6902 struct target_waitstatus last;
6903 ptid_t last_ptid;
6904
6905 get_last_target_status (&last_ptid, &last);
6906
6907 if (last.kind != TARGET_WAITKIND_EXECD)
6908 return 0;
6909
6910 if (!ptid_equal (last_ptid, pid))
6911 return 0;
6912
6913 *execd_pathname = xstrdup (last.value.execd_pathname);
6914 return 1;
6915}
6916
6917int
6918inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6919{
6920 struct target_waitstatus last;
6921 ptid_t last_ptid;
6922
6923 get_last_target_status (&last_ptid, &last);
6924
6925 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6926 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6927 return 0;
6928
6929 if (!ptid_equal (last_ptid, pid))
6930 return 0;
6931
6932 *syscall_number = last.value.syscall_number;
6933 return 1;
6934}
6935
6936int
6937ptid_match (ptid_t ptid, ptid_t filter)
6938{
6939 if (ptid_equal (filter, minus_one_ptid))
6940 return 1;
6941 if (ptid_is_pid (filter)
6942 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6943 return 1;
6944 else if (ptid_equal (ptid, filter))
6945 return 1;
6946
6947 return 0;
6948}
6949
6950/* restore_inferior_ptid() will be used by the cleanup machinery
6951 to restore the inferior_ptid value saved in a call to
6952 save_inferior_ptid(). */
6953
6954static void
6955restore_inferior_ptid (void *arg)
6956{
6957 ptid_t *saved_ptid_ptr = arg;
6958
6959 inferior_ptid = *saved_ptid_ptr;
6960 xfree (arg);
6961}
6962
6963/* Save the value of inferior_ptid so that it may be restored by a
6964 later call to do_cleanups(). Returns the struct cleanup pointer
6965 needed for later doing the cleanup. */
6966
6967struct cleanup *
6968save_inferior_ptid (void)
6969{
6970 ptid_t *saved_ptid_ptr;
6971
6972 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6973 *saved_ptid_ptr = inferior_ptid;
6974 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6975}
6976\f
6977
6978/* User interface for reverse debugging:
6979 Set exec-direction / show exec-direction commands
6980 (returns error unless target implements to_set_exec_direction method). */
6981
6982int execution_direction = EXEC_FORWARD;
6983static const char exec_forward[] = "forward";
6984static const char exec_reverse[] = "reverse";
6985static const char *exec_direction = exec_forward;
6986static const char *exec_direction_names[] = {
6987 exec_forward,
6988 exec_reverse,
6989 NULL
6990};
6991
6992static void
6993set_exec_direction_func (char *args, int from_tty,
6994 struct cmd_list_element *cmd)
6995{
6996 if (target_can_execute_reverse)
6997 {
6998 if (!strcmp (exec_direction, exec_forward))
6999 execution_direction = EXEC_FORWARD;
7000 else if (!strcmp (exec_direction, exec_reverse))
7001 execution_direction = EXEC_REVERSE;
7002 }
7003 else
7004 {
7005 exec_direction = exec_forward;
7006 error (_("Target does not support this operation."));
7007 }
7008}
7009
7010static void
7011show_exec_direction_func (struct ui_file *out, int from_tty,
7012 struct cmd_list_element *cmd, const char *value)
7013{
7014 switch (execution_direction) {
7015 case EXEC_FORWARD:
7016 fprintf_filtered (out, _("Forward.\n"));
7017 break;
7018 case EXEC_REVERSE:
7019 fprintf_filtered (out, _("Reverse.\n"));
7020 break;
7021 default:
7022 internal_error (__FILE__, __LINE__,
7023 _("bogus execution_direction value: %d"),
7024 (int) execution_direction);
7025 }
7026}
7027
7028/* User interface for non-stop mode. */
7029
7030int non_stop = 0;
7031
7032static void
7033set_non_stop (char *args, int from_tty,
7034 struct cmd_list_element *c)
7035{
7036 if (target_has_execution)
7037 {
7038 non_stop_1 = non_stop;
7039 error (_("Cannot change this setting while the inferior is running."));
7040 }
7041
7042 non_stop = non_stop_1;
7043}
7044
7045static void
7046show_non_stop (struct ui_file *file, int from_tty,
7047 struct cmd_list_element *c, const char *value)
7048{
7049 fprintf_filtered (file,
7050 _("Controlling the inferior in non-stop mode is %s.\n"),
7051 value);
7052}
7053
7054static void
7055show_schedule_multiple (struct ui_file *file, int from_tty,
7056 struct cmd_list_element *c, const char *value)
7057{
7058 fprintf_filtered (file, _("Resuming the execution of threads "
7059 "of all processes is %s.\n"), value);
7060}
7061
7062void
7063_initialize_infrun (void)
7064{
7065 int i;
7066 int numsigs;
7067
7068 add_info ("signals", signals_info, _("\
7069What debugger does when program gets various signals.\n\
7070Specify a signal as argument to print info on that signal only."));
7071 add_info_alias ("handle", "signals", 0);
7072
7073 add_com ("handle", class_run, handle_command, _("\
7074Specify how to handle a signal.\n\
7075Args are signals and actions to apply to those signals.\n\
7076Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7077from 1-15 are allowed for compatibility with old versions of GDB.\n\
7078Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7079The special arg \"all\" is recognized to mean all signals except those\n\
7080used by the debugger, typically SIGTRAP and SIGINT.\n\
7081Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7082\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7083Stop means reenter debugger if this signal happens (implies print).\n\
7084Print means print a message if this signal happens.\n\
7085Pass means let program see this signal; otherwise program doesn't know.\n\
7086Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7087Pass and Stop may be combined."));
7088 if (xdb_commands)
7089 {
7090 add_com ("lz", class_info, signals_info, _("\
7091What debugger does when program gets various signals.\n\
7092Specify a signal as argument to print info on that signal only."));
7093 add_com ("z", class_run, xdb_handle_command, _("\
7094Specify how to handle a signal.\n\
7095Args are signals and actions to apply to those signals.\n\
7096Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7097from 1-15 are allowed for compatibility with old versions of GDB.\n\
7098Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7099The special arg \"all\" is recognized to mean all signals except those\n\
7100used by the debugger, typically SIGTRAP and SIGINT.\n\
7101Recognized actions include \"s\" (toggles between stop and nostop),\n\
7102\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7103nopass), \"Q\" (noprint)\n\
7104Stop means reenter debugger if this signal happens (implies print).\n\
7105Print means print a message if this signal happens.\n\
7106Pass means let program see this signal; otherwise program doesn't know.\n\
7107Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7108Pass and Stop may be combined."));
7109 }
7110
7111 if (!dbx_commands)
7112 stop_command = add_cmd ("stop", class_obscure,
7113 not_just_help_class_command, _("\
7114There is no `stop' command, but you can set a hook on `stop'.\n\
7115This allows you to set a list of commands to be run each time execution\n\
7116of the program stops."), &cmdlist);
7117
7118 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7119Set inferior debugging."), _("\
7120Show inferior debugging."), _("\
7121When non-zero, inferior specific debugging is enabled."),
7122 NULL,
7123 show_debug_infrun,
7124 &setdebuglist, &showdebuglist);
7125
7126 add_setshow_boolean_cmd ("displaced", class_maintenance,
7127 &debug_displaced, _("\
7128Set displaced stepping debugging."), _("\
7129Show displaced stepping debugging."), _("\
7130When non-zero, displaced stepping specific debugging is enabled."),
7131 NULL,
7132 show_debug_displaced,
7133 &setdebuglist, &showdebuglist);
7134
7135 add_setshow_boolean_cmd ("non-stop", no_class,
7136 &non_stop_1, _("\
7137Set whether gdb controls the inferior in non-stop mode."), _("\
7138Show whether gdb controls the inferior in non-stop mode."), _("\
7139When debugging a multi-threaded program and this setting is\n\
7140off (the default, also called all-stop mode), when one thread stops\n\
7141(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7142all other threads in the program while you interact with the thread of\n\
7143interest. When you continue or step a thread, you can allow the other\n\
7144threads to run, or have them remain stopped, but while you inspect any\n\
7145thread's state, all threads stop.\n\
7146\n\
7147In non-stop mode, when one thread stops, other threads can continue\n\
7148to run freely. You'll be able to step each thread independently,\n\
7149leave it stopped or free to run as needed."),
7150 set_non_stop,
7151 show_non_stop,
7152 &setlist,
7153 &showlist);
7154
7155 numsigs = (int) TARGET_SIGNAL_LAST;
7156 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7157 signal_print = (unsigned char *)
7158 xmalloc (sizeof (signal_print[0]) * numsigs);
7159 signal_program = (unsigned char *)
7160 xmalloc (sizeof (signal_program[0]) * numsigs);
7161 signal_pass = (unsigned char *)
7162 xmalloc (sizeof (signal_program[0]) * numsigs);
7163 for (i = 0; i < numsigs; i++)
7164 {
7165 signal_stop[i] = 1;
7166 signal_print[i] = 1;
7167 signal_program[i] = 1;
7168 }
7169
7170 /* Signals caused by debugger's own actions
7171 should not be given to the program afterwards. */
7172 signal_program[TARGET_SIGNAL_TRAP] = 0;
7173 signal_program[TARGET_SIGNAL_INT] = 0;
7174
7175 /* Signals that are not errors should not normally enter the debugger. */
7176 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7177 signal_print[TARGET_SIGNAL_ALRM] = 0;
7178 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7179 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7180 signal_stop[TARGET_SIGNAL_PROF] = 0;
7181 signal_print[TARGET_SIGNAL_PROF] = 0;
7182 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7183 signal_print[TARGET_SIGNAL_CHLD] = 0;
7184 signal_stop[TARGET_SIGNAL_IO] = 0;
7185 signal_print[TARGET_SIGNAL_IO] = 0;
7186 signal_stop[TARGET_SIGNAL_POLL] = 0;
7187 signal_print[TARGET_SIGNAL_POLL] = 0;
7188 signal_stop[TARGET_SIGNAL_URG] = 0;
7189 signal_print[TARGET_SIGNAL_URG] = 0;
7190 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7191 signal_print[TARGET_SIGNAL_WINCH] = 0;
7192 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7193 signal_print[TARGET_SIGNAL_PRIO] = 0;
7194
7195 /* These signals are used internally by user-level thread
7196 implementations. (See signal(5) on Solaris.) Like the above
7197 signals, a healthy program receives and handles them as part of
7198 its normal operation. */
7199 signal_stop[TARGET_SIGNAL_LWP] = 0;
7200 signal_print[TARGET_SIGNAL_LWP] = 0;
7201 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7202 signal_print[TARGET_SIGNAL_WAITING] = 0;
7203 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7204 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7205
7206 /* Update cached state. */
7207 signal_cache_update (-1);
7208
7209 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7210 &stop_on_solib_events, _("\
7211Set stopping for shared library events."), _("\
7212Show stopping for shared library events."), _("\
7213If nonzero, gdb will give control to the user when the dynamic linker\n\
7214notifies gdb of shared library events. The most common event of interest\n\
7215to the user would be loading/unloading of a new library."),
7216 NULL,
7217 show_stop_on_solib_events,
7218 &setlist, &showlist);
7219
7220 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7221 follow_fork_mode_kind_names,
7222 &follow_fork_mode_string, _("\
7223Set debugger response to a program call of fork or vfork."), _("\
7224Show debugger response to a program call of fork or vfork."), _("\
7225A fork or vfork creates a new process. follow-fork-mode can be:\n\
7226 parent - the original process is debugged after a fork\n\
7227 child - the new process is debugged after a fork\n\
7228The unfollowed process will continue to run.\n\
7229By default, the debugger will follow the parent process."),
7230 NULL,
7231 show_follow_fork_mode_string,
7232 &setlist, &showlist);
7233
7234 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7235 follow_exec_mode_names,
7236 &follow_exec_mode_string, _("\
7237Set debugger response to a program call of exec."), _("\
7238Show debugger response to a program call of exec."), _("\
7239An exec call replaces the program image of a process.\n\
7240\n\
7241follow-exec-mode can be:\n\
7242\n\
7243 new - the debugger creates a new inferior and rebinds the process\n\
7244to this new inferior. The program the process was running before\n\
7245the exec call can be restarted afterwards by restarting the original\n\
7246inferior.\n\
7247\n\
7248 same - the debugger keeps the process bound to the same inferior.\n\
7249The new executable image replaces the previous executable loaded in\n\
7250the inferior. Restarting the inferior after the exec call restarts\n\
7251the executable the process was running after the exec call.\n\
7252\n\
7253By default, the debugger will use the same inferior."),
7254 NULL,
7255 show_follow_exec_mode_string,
7256 &setlist, &showlist);
7257
7258 add_setshow_enum_cmd ("scheduler-locking", class_run,
7259 scheduler_enums, &scheduler_mode, _("\
7260Set mode for locking scheduler during execution."), _("\
7261Show mode for locking scheduler during execution."), _("\
7262off == no locking (threads may preempt at any time)\n\
7263on == full locking (no thread except the current thread may run)\n\
7264step == scheduler locked during every single-step operation.\n\
7265 In this mode, no other thread may run during a step command.\n\
7266 Other threads may run while stepping over a function call ('next')."),
7267 set_schedlock_func, /* traps on target vector */
7268 show_scheduler_mode,
7269 &setlist, &showlist);
7270
7271 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7272Set mode for resuming threads of all processes."), _("\
7273Show mode for resuming threads of all processes."), _("\
7274When on, execution commands (such as 'continue' or 'next') resume all\n\
7275threads of all processes. When off (which is the default), execution\n\
7276commands only resume the threads of the current process. The set of\n\
7277threads that are resumed is further refined by the scheduler-locking\n\
7278mode (see help set scheduler-locking)."),
7279 NULL,
7280 show_schedule_multiple,
7281 &setlist, &showlist);
7282
7283 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7284Set mode of the step operation."), _("\
7285Show mode of the step operation."), _("\
7286When set, doing a step over a function without debug line information\n\
7287will stop at the first instruction of that function. Otherwise, the\n\
7288function is skipped and the step command stops at a different source line."),
7289 NULL,
7290 show_step_stop_if_no_debug,
7291 &setlist, &showlist);
7292
7293 add_setshow_enum_cmd ("displaced-stepping", class_run,
7294 can_use_displaced_stepping_enum,
7295 &can_use_displaced_stepping, _("\
7296Set debugger's willingness to use displaced stepping."), _("\
7297Show debugger's willingness to use displaced stepping."), _("\
7298If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7299supported by the target architecture. If off, gdb will not use displaced\n\
7300stepping to step over breakpoints, even if such is supported by the target\n\
7301architecture. If auto (which is the default), gdb will use displaced stepping\n\
7302if the target architecture supports it and non-stop mode is active, but will not\n\
7303use it in all-stop mode (see help set non-stop)."),
7304 NULL,
7305 show_can_use_displaced_stepping,
7306 &setlist, &showlist);
7307
7308 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7309 &exec_direction, _("Set direction of execution.\n\
7310Options are 'forward' or 'reverse'."),
7311 _("Show direction of execution (forward/reverse)."),
7312 _("Tells gdb whether to execute forward or backward."),
7313 set_exec_direction_func, show_exec_direction_func,
7314 &setlist, &showlist);
7315
7316 /* Set/show detach-on-fork: user-settable mode. */
7317
7318 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7319Set whether gdb will detach the child of a fork."), _("\
7320Show whether gdb will detach the child of a fork."), _("\
7321Tells gdb whether to detach the child of a fork."),
7322 NULL, NULL, &setlist, &showlist);
7323
7324 /* Set/show disable address space randomization mode. */
7325
7326 add_setshow_boolean_cmd ("disable-randomization", class_support,
7327 &disable_randomization, _("\
7328Set disabling of debuggee's virtual address space randomization."), _("\
7329Show disabling of debuggee's virtual address space randomization."), _("\
7330When this mode is on (which is the default), randomization of the virtual\n\
7331address space is disabled. Standalone programs run with the randomization\n\
7332enabled by default on some platforms."),
7333 &set_disable_randomization,
7334 &show_disable_randomization,
7335 &setlist, &showlist);
7336
7337 /* ptid initializations */
7338 inferior_ptid = null_ptid;
7339 target_last_wait_ptid = minus_one_ptid;
7340
7341 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7342 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7343 observer_attach_thread_exit (infrun_thread_thread_exit);
7344 observer_attach_inferior_exit (infrun_inferior_exit);
7345
7346 /* Explicitly create without lookup, since that tries to create a
7347 value with a void typed value, and when we get here, gdbarch
7348 isn't initialized yet. At this point, we're quite sure there
7349 isn't another convenience variable of the same name. */
7350 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
7351
7352 add_setshow_boolean_cmd ("observer", no_class,
7353 &observer_mode_1, _("\
7354Set whether gdb controls the inferior in observer mode."), _("\
7355Show whether gdb controls the inferior in observer mode."), _("\
7356In observer mode, GDB can get data from the inferior, but not\n\
7357affect its execution. Registers and memory may not be changed,\n\
7358breakpoints may not be set, and the program cannot be interrupted\n\
7359or signalled."),
7360 set_observer_mode,
7361 show_observer_mode,
7362 &setlist,
7363 &showlist);
7364}
This page took 0.046634 seconds and 4 git commands to generate.