Add native target for FreeBSD/mips.
[deliverable/binutils-gdb.git] / gdb / infrun.c
... / ...
CommitLineData
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "infrun.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
28#include "gdb_wait.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "cli/cli-script.h"
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
35#include "symfile.h"
36#include "top.h"
37#include <signal.h>
38#include "inf-loop.h"
39#include "regcache.h"
40#include "value.h"
41#include "observer.h"
42#include "language.h"
43#include "solib.h"
44#include "main.h"
45#include "dictionary.h"
46#include "block.h"
47#include "mi/mi-common.h"
48#include "event-top.h"
49#include "record.h"
50#include "record-full.h"
51#include "inline-frame.h"
52#include "jit.h"
53#include "tracepoint.h"
54#include "continuations.h"
55#include "interps.h"
56#include "skip.h"
57#include "probe.h"
58#include "objfiles.h"
59#include "completer.h"
60#include "target-descriptions.h"
61#include "target-dcache.h"
62#include "terminal.h"
63#include "solist.h"
64#include "event-loop.h"
65#include "thread-fsm.h"
66#include "common/enum-flags.h"
67
68/* Prototypes for local functions */
69
70static void signals_info (char *, int);
71
72static void handle_command (char *, int);
73
74static void sig_print_info (enum gdb_signal);
75
76static void sig_print_header (void);
77
78static void resume_cleanups (void *);
79
80static int hook_stop_stub (void *);
81
82static int restore_selected_frame (void *);
83
84static int follow_fork (void);
85
86static int follow_fork_inferior (int follow_child, int detach_fork);
87
88static void follow_inferior_reset_breakpoints (void);
89
90static void set_schedlock_func (char *args, int from_tty,
91 struct cmd_list_element *c);
92
93static int currently_stepping (struct thread_info *tp);
94
95void _initialize_infrun (void);
96
97void nullify_last_target_wait_ptid (void);
98
99static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
100
101static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
103static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
105static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
107/* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109static struct async_event_handler *infrun_async_inferior_event_token;
110
111/* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113static int infrun_is_async = -1;
114
115/* See infrun.h. */
116
117void
118infrun_async (int enable)
119{
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134}
135
136/* See infrun.h. */
137
138void
139mark_infrun_async_event_handler (void)
140{
141 mark_async_event_handler (infrun_async_inferior_event_token);
142}
143
144/* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147int step_stop_if_no_debug = 0;
148static void
149show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151{
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153}
154
155/* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
158
159static ptid_t previous_inferior_ptid;
160
161/* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166static int detach_fork = 1;
167
168int debug_displaced = 0;
169static void
170show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172{
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174}
175
176unsigned int debug_infrun = 0;
177static void
178show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182}
183
184
185/* Support for disabling address space randomization. */
186
187int disable_randomization = 1;
188
189static void
190show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192{
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202}
203
204static void
205set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207{
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212}
213
214/* User interface for non-stop mode. */
215
216int non_stop = 0;
217static int non_stop_1 = 0;
218
219static void
220set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222{
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230}
231
232static void
233show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235{
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239}
240
241/* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
245int observer_mode = 0;
246static int observer_mode_1 = 0;
247
248static void
249set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251{
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282}
283
284static void
285show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287{
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289}
290
291/* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297void
298update_observer_mode (void)
299{
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314}
315
316/* Tables of how to react to signals; the user sets them. */
317
318static unsigned char *signal_stop;
319static unsigned char *signal_print;
320static unsigned char *signal_program;
321
322/* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326static unsigned char *signal_catch;
327
328/* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331static unsigned char *signal_pass;
332
333#define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341#define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
349/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352void
353update_signals_program_target (void)
354{
355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
356}
357
358/* Value to pass to target_resume() to cause all threads to resume. */
359
360#define RESUME_ALL minus_one_ptid
361
362/* Command list pointer for the "stop" placeholder. */
363
364static struct cmd_list_element *stop_command;
365
366/* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
368int stop_on_solib_events;
369
370/* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373static void
374set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375{
376 update_solib_breakpoints ();
377}
378
379static void
380show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382{
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385}
386
387/* Nonzero after stop if current stack frame should be printed. */
388
389static int stop_print_frame;
390
391/* This is a cached copy of the pid/waitstatus of the last event
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
394static ptid_t target_last_wait_ptid;
395static struct target_waitstatus target_last_waitstatus;
396
397static void context_switch (ptid_t ptid);
398
399void init_thread_stepping_state (struct thread_info *tss);
400
401static const char follow_fork_mode_child[] = "child";
402static const char follow_fork_mode_parent[] = "parent";
403
404static const char *const follow_fork_mode_kind_names[] = {
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
408};
409
410static const char *follow_fork_mode_string = follow_fork_mode_parent;
411static void
412show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414{
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
418 value);
419}
420\f
421
422/* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428static int
429follow_fork_inferior (int follow_child, int detach_fork)
430{
431 int has_vforked;
432 ptid_t parent_ptid, child_ptid;
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
441 && current_ui->prompt_state == PROMPT_BLOCKED
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450Can not resume the parent process over vfork in the foreground while\n\
451holding the child stopped. Try \"set detach-on-fork\" or \
452\"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
480 target_terminal_ours_for_output ();
481 fprintf_filtered (gdb_stdlog,
482 _("Detaching after %s from child %s.\n"),
483 has_vforked ? "vfork" : "fork",
484 target_pid_to_str (process_ptid));
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (ptid_get_pid (child_ptid));
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
504 inferior_ptid = child_ptid;
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
572 has_vforked ? "vfork" : "fork",
573 target_pid_to_str (child_ptid));
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
579 child_inf = add_inferior (ptid_get_pid (child_ptid));
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
610 {
611 if (info_verbose || debug_infrun)
612 {
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
619 "child %s.\n"),
620 target_pid_to_str (process_ptid));
621 }
622
623 target_detach (NULL, 0);
624 }
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
632 inferior_ptid = child_ptid;
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662}
663
664/* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
668static int
669follow_fork (void)
670{
671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
680 struct breakpoint *exception_resume_breakpoint = NULL;
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
684 struct thread_fsm *thread_fsm = NULL;
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
736 thread_fsm = tp->thread_fsm;
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
747 delete_exception_resume_breakpoint (tp);
748 tp->thread_fsm = NULL;
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
769 tp = find_thread_ptid (parent);
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
777 /* If we followed the child, switch to it... */
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
794 tp->thread_fsm = thread_fsm;
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
804 warning (_("Not resuming: switched threads "
805 "before following fork child."));
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
825
826 return should_resume;
827}
828
829static void
830follow_inferior_reset_breakpoints (void)
831{
832 struct thread_info *tp = inferior_thread ();
833
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
847 if (tp->control.step_resume_breakpoint)
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
852
853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
854 if (tp->control.exception_resume_breakpoint)
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
859
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
867}
868
869/* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872static int
873proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875{
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
890 clear_proceed_status (0);
891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
892 }
893
894 return 0;
895}
896
897/* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900static void
901handle_vfork_child_exec_or_exit (int exec)
902{
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
920 /* follow-fork child, detach-on-fork on. */
921
922 inf->vfork_parent->pending_detach = 0;
923
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
958 target_terminal_ours_for_output ();
959
960 if (exec)
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
967 else
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
1025 inf->symfile_flags = SYMFILE_NO_READ;
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1031 inferior. */
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059}
1060
1061/* Enum strings for "set|show follow-exec-mode". */
1062
1063static const char follow_exec_mode_new[] = "new";
1064static const char follow_exec_mode_same[] = "same";
1065static const char *const follow_exec_mode_names[] =
1066{
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070};
1071
1072static const char *follow_exec_mode_string = follow_exec_mode_same;
1073static void
1074show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078}
1079
1080/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1081
1082static void
1083follow_exec (ptid_t ptid, char *exec_file_target)
1084{
1085 struct thread_info *th, *tmp;
1086 struct inferior *inf = current_inferior ();
1087 int pid = ptid_get_pid (ptid);
1088 ptid_t process_ptid;
1089 char *exec_file_host;
1090 struct cleanup *old_chain;
1091
1092 /* This is an exec event that we actually wish to pay attention to.
1093 Refresh our symbol table to the newly exec'd program, remove any
1094 momentary bp's, etc.
1095
1096 If there are breakpoints, they aren't really inserted now,
1097 since the exec() transformed our inferior into a fresh set
1098 of instructions.
1099
1100 We want to preserve symbolic breakpoints on the list, since
1101 we have hopes that they can be reset after the new a.out's
1102 symbol table is read.
1103
1104 However, any "raw" breakpoints must be removed from the list
1105 (e.g., the solib bp's), since their address is probably invalid
1106 now.
1107
1108 And, we DON'T want to call delete_breakpoints() here, since
1109 that may write the bp's "shadow contents" (the instruction
1110 value that was overwritten witha TRAP instruction). Since
1111 we now have a new a.out, those shadow contents aren't valid. */
1112
1113 mark_breakpoints_out ();
1114
1115 /* The target reports the exec event to the main thread, even if
1116 some other thread does the exec, and even if the main thread was
1117 stopped or already gone. We may still have non-leader threads of
1118 the process on our list. E.g., on targets that don't have thread
1119 exit events (like remote); or on native Linux in non-stop mode if
1120 there were only two threads in the inferior and the non-leader
1121 one is the one that execs (and nothing forces an update of the
1122 thread list up to here). When debugging remotely, it's best to
1123 avoid extra traffic, when possible, so avoid syncing the thread
1124 list with the target, and instead go ahead and delete all threads
1125 of the process but one that reported the event. Note this must
1126 be done before calling update_breakpoints_after_exec, as
1127 otherwise clearing the threads' resources would reference stale
1128 thread breakpoints -- it may have been one of these threads that
1129 stepped across the exec. We could just clear their stepping
1130 states, but as long as we're iterating, might as well delete
1131 them. Deleting them now rather than at the next user-visible
1132 stop provides a nicer sequence of events for user and MI
1133 notifications. */
1134 ALL_THREADS_SAFE (th, tmp)
1135 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1136 delete_thread (th->ptid);
1137
1138 /* We also need to clear any left over stale state for the
1139 leader/event thread. E.g., if there was any step-resume
1140 breakpoint or similar, it's gone now. We cannot truly
1141 step-to-next statement through an exec(). */
1142 th = inferior_thread ();
1143 th->control.step_resume_breakpoint = NULL;
1144 th->control.exception_resume_breakpoint = NULL;
1145 th->control.single_step_breakpoints = NULL;
1146 th->control.step_range_start = 0;
1147 th->control.step_range_end = 0;
1148
1149 /* The user may have had the main thread held stopped in the
1150 previous image (e.g., schedlock on, or non-stop). Release
1151 it now. */
1152 th->stop_requested = 0;
1153
1154 update_breakpoints_after_exec ();
1155
1156 /* What is this a.out's name? */
1157 process_ptid = pid_to_ptid (pid);
1158 printf_unfiltered (_("%s is executing new program: %s\n"),
1159 target_pid_to_str (process_ptid),
1160 exec_file_target);
1161
1162 /* We've followed the inferior through an exec. Therefore, the
1163 inferior has essentially been killed & reborn. */
1164
1165 gdb_flush (gdb_stdout);
1166
1167 breakpoint_init_inferior (inf_execd);
1168
1169 exec_file_host = exec_file_find (exec_file_target, NULL);
1170 old_chain = make_cleanup (xfree, exec_file_host);
1171
1172 /* If we were unable to map the executable target pathname onto a host
1173 pathname, tell the user that. Otherwise GDB's subsequent behavior
1174 is confusing. Maybe it would even be better to stop at this point
1175 so that the user can specify a file manually before continuing. */
1176 if (exec_file_host == NULL)
1177 warning (_("Could not load symbols for executable %s.\n"
1178 "Do you need \"set sysroot\"?"),
1179 exec_file_target);
1180
1181 /* Reset the shared library package. This ensures that we get a
1182 shlib event when the child reaches "_start", at which point the
1183 dld will have had a chance to initialize the child. */
1184 /* Also, loading a symbol file below may trigger symbol lookups, and
1185 we don't want those to be satisfied by the libraries of the
1186 previous incarnation of this process. */
1187 no_shared_libraries (NULL, 0);
1188
1189 if (follow_exec_mode_string == follow_exec_mode_new)
1190 {
1191 /* The user wants to keep the old inferior and program spaces
1192 around. Create a new fresh one, and switch to it. */
1193
1194 /* Do exit processing for the original inferior before adding
1195 the new inferior so we don't have two active inferiors with
1196 the same ptid, which can confuse find_inferior_ptid. */
1197 exit_inferior_num_silent (current_inferior ()->num);
1198
1199 inf = add_inferior_with_spaces ();
1200 inf->pid = pid;
1201 target_follow_exec (inf, exec_file_target);
1202
1203 set_current_inferior (inf);
1204 set_current_program_space (inf->pspace);
1205 add_thread (ptid);
1206 }
1207 else
1208 {
1209 /* The old description may no longer be fit for the new image.
1210 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1211 old description; we'll read a new one below. No need to do
1212 this on "follow-exec-mode new", as the old inferior stays
1213 around (its description is later cleared/refetched on
1214 restart). */
1215 target_clear_description ();
1216 }
1217
1218 gdb_assert (current_program_space == inf->pspace);
1219
1220 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1221 because the proper displacement for a PIE (Position Independent
1222 Executable) main symbol file will only be computed by
1223 solib_create_inferior_hook below. breakpoint_re_set would fail
1224 to insert the breakpoints with the zero displacement. */
1225 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
1226
1227 do_cleanups (old_chain);
1228
1229 /* If the target can specify a description, read it. Must do this
1230 after flipping to the new executable (because the target supplied
1231 description must be compatible with the executable's
1232 architecture, and the old executable may e.g., be 32-bit, while
1233 the new one 64-bit), and before anything involving memory or
1234 registers. */
1235 target_find_description ();
1236
1237 solib_create_inferior_hook (0);
1238
1239 jit_inferior_created_hook ();
1240
1241 breakpoint_re_set ();
1242
1243 /* Reinsert all breakpoints. (Those which were symbolic have
1244 been reset to the proper address in the new a.out, thanks
1245 to symbol_file_command...). */
1246 insert_breakpoints ();
1247
1248 /* The next resume of this inferior should bring it to the shlib
1249 startup breakpoints. (If the user had also set bp's on
1250 "main" from the old (parent) process, then they'll auto-
1251 matically get reset there in the new process.). */
1252}
1253
1254/* The queue of threads that need to do a step-over operation to get
1255 past e.g., a breakpoint. What technique is used to step over the
1256 breakpoint/watchpoint does not matter -- all threads end up in the
1257 same queue, to maintain rough temporal order of execution, in order
1258 to avoid starvation, otherwise, we could e.g., find ourselves
1259 constantly stepping the same couple threads past their breakpoints
1260 over and over, if the single-step finish fast enough. */
1261struct thread_info *step_over_queue_head;
1262
1263/* Bit flags indicating what the thread needs to step over. */
1264
1265enum step_over_what_flag
1266 {
1267 /* Step over a breakpoint. */
1268 STEP_OVER_BREAKPOINT = 1,
1269
1270 /* Step past a non-continuable watchpoint, in order to let the
1271 instruction execute so we can evaluate the watchpoint
1272 expression. */
1273 STEP_OVER_WATCHPOINT = 2
1274 };
1275DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1276
1277/* Info about an instruction that is being stepped over. */
1278
1279struct step_over_info
1280{
1281 /* If we're stepping past a breakpoint, this is the address space
1282 and address of the instruction the breakpoint is set at. We'll
1283 skip inserting all breakpoints here. Valid iff ASPACE is
1284 non-NULL. */
1285 struct address_space *aspace;
1286 CORE_ADDR address;
1287
1288 /* The instruction being stepped over triggers a nonsteppable
1289 watchpoint. If true, we'll skip inserting watchpoints. */
1290 int nonsteppable_watchpoint_p;
1291
1292 /* The thread's global number. */
1293 int thread;
1294};
1295
1296/* The step-over info of the location that is being stepped over.
1297
1298 Note that with async/breakpoint always-inserted mode, a user might
1299 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1300 being stepped over. As setting a new breakpoint inserts all
1301 breakpoints, we need to make sure the breakpoint being stepped over
1302 isn't inserted then. We do that by only clearing the step-over
1303 info when the step-over is actually finished (or aborted).
1304
1305 Presently GDB can only step over one breakpoint at any given time.
1306 Given threads that can't run code in the same address space as the
1307 breakpoint's can't really miss the breakpoint, GDB could be taught
1308 to step-over at most one breakpoint per address space (so this info
1309 could move to the address space object if/when GDB is extended).
1310 The set of breakpoints being stepped over will normally be much
1311 smaller than the set of all breakpoints, so a flag in the
1312 breakpoint location structure would be wasteful. A separate list
1313 also saves complexity and run-time, as otherwise we'd have to go
1314 through all breakpoint locations clearing their flag whenever we
1315 start a new sequence. Similar considerations weigh against storing
1316 this info in the thread object. Plus, not all step overs actually
1317 have breakpoint locations -- e.g., stepping past a single-step
1318 breakpoint, or stepping to complete a non-continuable
1319 watchpoint. */
1320static struct step_over_info step_over_info;
1321
1322/* Record the address of the breakpoint/instruction we're currently
1323 stepping over.
1324 N.B. We record the aspace and address now, instead of say just the thread,
1325 because when we need the info later the thread may be running. */
1326
1327static void
1328set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1329 int nonsteppable_watchpoint_p,
1330 int thread)
1331{
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335 step_over_info.thread = thread;
1336}
1337
1338/* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341static void
1342clear_step_over_info (void)
1343{
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
1349 step_over_info.nonsteppable_watchpoint_p = 0;
1350 step_over_info.thread = -1;
1351}
1352
1353/* See infrun.h. */
1354
1355int
1356stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358{
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363}
1364
1365/* See infrun.h. */
1366
1367int
1368thread_is_stepping_over_breakpoint (int thread)
1369{
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372}
1373
1374/* See infrun.h. */
1375
1376int
1377stepping_past_nonsteppable_watchpoint (void)
1378{
1379 return step_over_info.nonsteppable_watchpoint_p;
1380}
1381
1382/* Returns true if step-over info is valid. */
1383
1384static int
1385step_over_info_valid_p (void)
1386{
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
1389}
1390
1391\f
1392/* Displaced stepping. */
1393
1394/* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
1441 - gdbarch_displaced_step_free_closure provides cleanup.
1442
1443 The gdbarch_displaced_step_copy_insn and
1444 gdbarch_displaced_step_fixup functions must be written so that
1445 copying an instruction with gdbarch_displaced_step_copy_insn,
1446 single-stepping across the copied instruction, and then applying
1447 gdbarch_displaced_insn_fixup should have the same effects on the
1448 thread's memory and registers as stepping the instruction in place
1449 would have. Exactly which responsibilities fall to the copy and
1450 which fall to the fixup is up to the author of those functions.
1451
1452 See the comments in gdbarch.sh for details.
1453
1454 Note that displaced stepping and software single-step cannot
1455 currently be used in combination, although with some care I think
1456 they could be made to. Software single-step works by placing
1457 breakpoints on all possible subsequent instructions; if the
1458 displaced instruction is a PC-relative jump, those breakpoints
1459 could fall in very strange places --- on pages that aren't
1460 executable, or at addresses that are not proper instruction
1461 boundaries. (We do generally let other threads run while we wait
1462 to hit the software single-step breakpoint, and they might
1463 encounter such a corrupted instruction.) One way to work around
1464 this would be to have gdbarch_displaced_step_copy_insn fully
1465 simulate the effect of PC-relative instructions (and return NULL)
1466 on architectures that use software single-stepping.
1467
1468 In non-stop mode, we can have independent and simultaneous step
1469 requests, so more than one thread may need to simultaneously step
1470 over a breakpoint. The current implementation assumes there is
1471 only one scratch space per process. In this case, we have to
1472 serialize access to the scratch space. If thread A wants to step
1473 over a breakpoint, but we are currently waiting for some other
1474 thread to complete a displaced step, we leave thread A stopped and
1475 place it in the displaced_step_request_queue. Whenever a displaced
1476 step finishes, we pick the next thread in the queue and start a new
1477 displaced step operation on it. See displaced_step_prepare and
1478 displaced_step_fixup for details. */
1479
1480/* Per-inferior displaced stepping state. */
1481struct displaced_step_inferior_state
1482{
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
1487 int pid;
1488
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
1493 /* If this is not null_ptid, this is the thread carrying out a
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
1496 ptid_t step_ptid;
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511};
1512
1513/* The list of states of processes involved in displaced stepping
1514 presently. */
1515static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517/* Get the displaced stepping state of process PID. */
1518
1519static struct displaced_step_inferior_state *
1520get_displaced_stepping_state (int pid)
1521{
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
1527 if (state->pid == pid)
1528 return state;
1529
1530 return NULL;
1531}
1532
1533/* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536static int
1537displaced_step_in_progress_any_inferior (void)
1538{
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
1544 if (!ptid_equal (state->step_ptid, null_ptid))
1545 return 1;
1546
1547 return 0;
1548}
1549
1550/* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553static int
1554displaced_step_in_progress_thread (ptid_t ptid)
1555{
1556 struct displaced_step_inferior_state *displaced;
1557
1558 gdb_assert (!ptid_equal (ptid, null_ptid));
1559
1560 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1561
1562 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1563}
1564
1565/* Return true if process PID has a thread doing a displaced step. */
1566
1567static int
1568displaced_step_in_progress (int pid)
1569{
1570 struct displaced_step_inferior_state *displaced;
1571
1572 displaced = get_displaced_stepping_state (pid);
1573 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1574 return 1;
1575
1576 return 0;
1577}
1578
1579/* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583static struct displaced_step_inferior_state *
1584add_displaced_stepping_state (int pid)
1585{
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
1591 if (state->pid == pid)
1592 return state;
1593
1594 state = XCNEW (struct displaced_step_inferior_state);
1595 state->pid = pid;
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
1598
1599 return state;
1600}
1601
1602/* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606struct displaced_step_closure*
1607get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608{
1609 struct displaced_step_inferior_state *displaced
1610 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1611
1612 /* If checking the mode of displaced instruction in copy area. */
1613 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1614 && (displaced->step_copy == addr))
1615 return displaced->step_closure;
1616
1617 return NULL;
1618}
1619
1620/* Remove the displaced stepping state of process PID. */
1621
1622static void
1623remove_displaced_stepping_state (int pid)
1624{
1625 struct displaced_step_inferior_state *it, **prev_next_p;
1626
1627 gdb_assert (pid != 0);
1628
1629 it = displaced_step_inferior_states;
1630 prev_next_p = &displaced_step_inferior_states;
1631 while (it)
1632 {
1633 if (it->pid == pid)
1634 {
1635 *prev_next_p = it->next;
1636 xfree (it);
1637 return;
1638 }
1639
1640 prev_next_p = &it->next;
1641 it = *prev_next_p;
1642 }
1643}
1644
1645static void
1646infrun_inferior_exit (struct inferior *inf)
1647{
1648 remove_displaced_stepping_state (inf->pid);
1649}
1650
1651/* If ON, and the architecture supports it, GDB will use displaced
1652 stepping to step over breakpoints. If OFF, or if the architecture
1653 doesn't support it, GDB will instead use the traditional
1654 hold-and-step approach. If AUTO (which is the default), GDB will
1655 decide which technique to use to step over breakpoints depending on
1656 which of all-stop or non-stop mode is active --- displaced stepping
1657 in non-stop mode; hold-and-step in all-stop mode. */
1658
1659static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1660
1661static void
1662show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1663 struct cmd_list_element *c,
1664 const char *value)
1665{
1666 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1667 fprintf_filtered (file,
1668 _("Debugger's willingness to use displaced stepping "
1669 "to step over breakpoints is %s (currently %s).\n"),
1670 value, target_is_non_stop_p () ? "on" : "off");
1671 else
1672 fprintf_filtered (file,
1673 _("Debugger's willingness to use displaced stepping "
1674 "to step over breakpoints is %s.\n"), value);
1675}
1676
1677/* Return non-zero if displaced stepping can/should be used to step
1678 over breakpoints of thread TP. */
1679
1680static int
1681use_displaced_stepping (struct thread_info *tp)
1682{
1683 struct regcache *regcache = get_thread_regcache (tp->ptid);
1684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1685 struct displaced_step_inferior_state *displaced_state;
1686
1687 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1688
1689 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1690 && target_is_non_stop_p ())
1691 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1692 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1693 && find_record_target () == NULL
1694 && (displaced_state == NULL
1695 || !displaced_state->failed_before));
1696}
1697
1698/* Clean out any stray displaced stepping state. */
1699static void
1700displaced_step_clear (struct displaced_step_inferior_state *displaced)
1701{
1702 /* Indicate that there is no cleanup pending. */
1703 displaced->step_ptid = null_ptid;
1704
1705 if (displaced->step_closure)
1706 {
1707 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1708 displaced->step_closure);
1709 displaced->step_closure = NULL;
1710 }
1711}
1712
1713static void
1714displaced_step_clear_cleanup (void *arg)
1715{
1716 struct displaced_step_inferior_state *state
1717 = (struct displaced_step_inferior_state *) arg;
1718
1719 displaced_step_clear (state);
1720}
1721
1722/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1723void
1724displaced_step_dump_bytes (struct ui_file *file,
1725 const gdb_byte *buf,
1726 size_t len)
1727{
1728 int i;
1729
1730 for (i = 0; i < len; i++)
1731 fprintf_unfiltered (file, "%02x ", buf[i]);
1732 fputs_unfiltered ("\n", file);
1733}
1734
1735/* Prepare to single-step, using displaced stepping.
1736
1737 Note that we cannot use displaced stepping when we have a signal to
1738 deliver. If we have a signal to deliver and an instruction to step
1739 over, then after the step, there will be no indication from the
1740 target whether the thread entered a signal handler or ignored the
1741 signal and stepped over the instruction successfully --- both cases
1742 result in a simple SIGTRAP. In the first case we mustn't do a
1743 fixup, and in the second case we must --- but we can't tell which.
1744 Comments in the code for 'random signals' in handle_inferior_event
1745 explain how we handle this case instead.
1746
1747 Returns 1 if preparing was successful -- this thread is going to be
1748 stepped now; 0 if displaced stepping this thread got queued; or -1
1749 if this instruction can't be displaced stepped. */
1750
1751static int
1752displaced_step_prepare_throw (ptid_t ptid)
1753{
1754 struct cleanup *old_cleanups, *ignore_cleanups;
1755 struct thread_info *tp = find_thread_ptid (ptid);
1756 struct regcache *regcache = get_thread_regcache (ptid);
1757 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1758 struct address_space *aspace = get_regcache_aspace (regcache);
1759 CORE_ADDR original, copy;
1760 ULONGEST len;
1761 struct displaced_step_closure *closure;
1762 struct displaced_step_inferior_state *displaced;
1763 int status;
1764
1765 /* We should never reach this function if the architecture does not
1766 support displaced stepping. */
1767 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1768
1769 /* Nor if the thread isn't meant to step over a breakpoint. */
1770 gdb_assert (tp->control.trap_expected);
1771
1772 /* Disable range stepping while executing in the scratch pad. We
1773 want a single-step even if executing the displaced instruction in
1774 the scratch buffer lands within the stepping range (e.g., a
1775 jump/branch). */
1776 tp->control.may_range_step = 0;
1777
1778 /* We have to displaced step one thread at a time, as we only have
1779 access to a single scratch space per inferior. */
1780
1781 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1782
1783 if (!ptid_equal (displaced->step_ptid, null_ptid))
1784 {
1785 /* Already waiting for a displaced step to finish. Defer this
1786 request and place in queue. */
1787
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
1790 "displaced: deferring step of %s\n",
1791 target_pid_to_str (ptid));
1792
1793 thread_step_over_chain_enqueue (tp);
1794 return 0;
1795 }
1796 else
1797 {
1798 if (debug_displaced)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "displaced: stepping %s now\n",
1801 target_pid_to_str (ptid));
1802 }
1803
1804 displaced_step_clear (displaced);
1805
1806 old_cleanups = save_inferior_ptid ();
1807 inferior_ptid = ptid;
1808
1809 original = regcache_read_pc (regcache);
1810
1811 copy = gdbarch_displaced_step_location (gdbarch);
1812 len = gdbarch_max_insn_length (gdbarch);
1813
1814 if (breakpoint_in_range_p (aspace, copy, len))
1815 {
1816 /* There's a breakpoint set in the scratch pad location range
1817 (which is usually around the entry point). We'd either
1818 install it before resuming, which would overwrite/corrupt the
1819 scratch pad, or if it was already inserted, this displaced
1820 step would overwrite it. The latter is OK in the sense that
1821 we already assume that no thread is going to execute the code
1822 in the scratch pad range (after initial startup) anyway, but
1823 the former is unacceptable. Simply punt and fallback to
1824 stepping over this breakpoint in-line. */
1825 if (debug_displaced)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "displaced: breakpoint set in scratch pad. "
1829 "Stepping over breakpoint in-line instead.\n");
1830 }
1831
1832 do_cleanups (old_cleanups);
1833 return -1;
1834 }
1835
1836 /* Save the original contents of the copy area. */
1837 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1838 ignore_cleanups = make_cleanup (free_current_contents,
1839 &displaced->step_saved_copy);
1840 status = target_read_memory (copy, displaced->step_saved_copy, len);
1841 if (status != 0)
1842 throw_error (MEMORY_ERROR,
1843 _("Error accessing memory address %s (%s) for "
1844 "displaced-stepping scratch space."),
1845 paddress (gdbarch, copy), safe_strerror (status));
1846 if (debug_displaced)
1847 {
1848 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1849 paddress (gdbarch, copy));
1850 displaced_step_dump_bytes (gdb_stdlog,
1851 displaced->step_saved_copy,
1852 len);
1853 };
1854
1855 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1856 original, copy, regcache);
1857 if (closure == NULL)
1858 {
1859 /* The architecture doesn't know how or want to displaced step
1860 this instruction or instruction sequence. Fallback to
1861 stepping over the breakpoint in-line. */
1862 do_cleanups (old_cleanups);
1863 return -1;
1864 }
1865
1866 /* Save the information we need to fix things up if the step
1867 succeeds. */
1868 displaced->step_ptid = ptid;
1869 displaced->step_gdbarch = gdbarch;
1870 displaced->step_closure = closure;
1871 displaced->step_original = original;
1872 displaced->step_copy = copy;
1873
1874 make_cleanup (displaced_step_clear_cleanup, displaced);
1875
1876 /* Resume execution at the copy. */
1877 regcache_write_pc (regcache, copy);
1878
1879 discard_cleanups (ignore_cleanups);
1880
1881 do_cleanups (old_cleanups);
1882
1883 if (debug_displaced)
1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 paddress (gdbarch, copy));
1886
1887 return 1;
1888}
1889
1890/* Wrapper for displaced_step_prepare_throw that disabled further
1891 attempts at displaced stepping if we get a memory error. */
1892
1893static int
1894displaced_step_prepare (ptid_t ptid)
1895{
1896 int prepared = -1;
1897
1898 TRY
1899 {
1900 prepared = displaced_step_prepare_throw (ptid);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 struct displaced_step_inferior_state *displaced_state;
1905
1906 if (ex.error != MEMORY_ERROR
1907 && ex.error != NOT_SUPPORTED_ERROR)
1908 throw_exception (ex);
1909
1910 if (debug_infrun)
1911 {
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: disabling displaced stepping: %s\n",
1914 ex.message);
1915 }
1916
1917 /* Be verbose if "set displaced-stepping" is "on", silent if
1918 "auto". */
1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 {
1921 warning (_("disabling displaced stepping: %s"),
1922 ex.message);
1923 }
1924
1925 /* Disable further displaced stepping attempts. */
1926 displaced_state
1927 = get_displaced_stepping_state (ptid_get_pid (ptid));
1928 displaced_state->failed_before = 1;
1929 }
1930 END_CATCH
1931
1932 return prepared;
1933}
1934
1935static void
1936write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 const gdb_byte *myaddr, int len)
1938{
1939 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1940
1941 inferior_ptid = ptid;
1942 write_memory (memaddr, myaddr, len);
1943 do_cleanups (ptid_cleanup);
1944}
1945
1946/* Restore the contents of the copy area for thread PTID. */
1947
1948static void
1949displaced_step_restore (struct displaced_step_inferior_state *displaced,
1950 ptid_t ptid)
1951{
1952 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1953
1954 write_memory_ptid (ptid, displaced->step_copy,
1955 displaced->step_saved_copy, len);
1956 if (debug_displaced)
1957 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1958 target_pid_to_str (ptid),
1959 paddress (displaced->step_gdbarch,
1960 displaced->step_copy));
1961}
1962
1963/* If we displaced stepped an instruction successfully, adjust
1964 registers and memory to yield the same effect the instruction would
1965 have had if we had executed it at its original address, and return
1966 1. If the instruction didn't complete, relocate the PC and return
1967 -1. If the thread wasn't displaced stepping, return 0. */
1968
1969static int
1970displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1971{
1972 struct cleanup *old_cleanups;
1973 struct displaced_step_inferior_state *displaced
1974 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1975 int ret;
1976
1977 /* Was any thread of this process doing a displaced step? */
1978 if (displaced == NULL)
1979 return 0;
1980
1981 /* Was this event for the pid we displaced? */
1982 if (ptid_equal (displaced->step_ptid, null_ptid)
1983 || ! ptid_equal (displaced->step_ptid, event_ptid))
1984 return 0;
1985
1986 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1987
1988 displaced_step_restore (displaced, displaced->step_ptid);
1989
1990 /* Fixup may need to read memory/registers. Switch to the thread
1991 that we're fixing up. Also, target_stopped_by_watchpoint checks
1992 the current thread. */
1993 switch_to_thread (event_ptid);
1994
1995 /* Did the instruction complete successfully? */
1996 if (signal == GDB_SIGNAL_TRAP
1997 && !(target_stopped_by_watchpoint ()
1998 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1999 || target_have_steppable_watchpoint)))
2000 {
2001 /* Fix up the resulting state. */
2002 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2003 displaced->step_closure,
2004 displaced->step_original,
2005 displaced->step_copy,
2006 get_thread_regcache (displaced->step_ptid));
2007 ret = 1;
2008 }
2009 else
2010 {
2011 /* Since the instruction didn't complete, all we can do is
2012 relocate the PC. */
2013 struct regcache *regcache = get_thread_regcache (event_ptid);
2014 CORE_ADDR pc = regcache_read_pc (regcache);
2015
2016 pc = displaced->step_original + (pc - displaced->step_copy);
2017 regcache_write_pc (regcache, pc);
2018 ret = -1;
2019 }
2020
2021 do_cleanups (old_cleanups);
2022
2023 displaced->step_ptid = null_ptid;
2024
2025 return ret;
2026}
2027
2028/* Data to be passed around while handling an event. This data is
2029 discarded between events. */
2030struct execution_control_state
2031{
2032 ptid_t ptid;
2033 /* The thread that got the event, if this was a thread event; NULL
2034 otherwise. */
2035 struct thread_info *event_thread;
2036
2037 struct target_waitstatus ws;
2038 int stop_func_filled_in;
2039 CORE_ADDR stop_func_start;
2040 CORE_ADDR stop_func_end;
2041 const char *stop_func_name;
2042 int wait_some_more;
2043
2044 /* True if the event thread hit the single-step breakpoint of
2045 another thread. Thus the event doesn't cause a stop, the thread
2046 needs to be single-stepped past the single-step breakpoint before
2047 we can switch back to the original stepping thread. */
2048 int hit_singlestep_breakpoint;
2049};
2050
2051/* Clear ECS and set it to point at TP. */
2052
2053static void
2054reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2055{
2056 memset (ecs, 0, sizeof (*ecs));
2057 ecs->event_thread = tp;
2058 ecs->ptid = tp->ptid;
2059}
2060
2061static void keep_going_pass_signal (struct execution_control_state *ecs);
2062static void prepare_to_wait (struct execution_control_state *ecs);
2063static int keep_going_stepped_thread (struct thread_info *tp);
2064static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2065
2066/* Are there any pending step-over requests? If so, run all we can
2067 now and return true. Otherwise, return false. */
2068
2069static int
2070start_step_over (void)
2071{
2072 struct thread_info *tp, *next;
2073
2074 /* Don't start a new step-over if we already have an in-line
2075 step-over operation ongoing. */
2076 if (step_over_info_valid_p ())
2077 return 0;
2078
2079 for (tp = step_over_queue_head; tp != NULL; tp = next)
2080 {
2081 struct execution_control_state ecss;
2082 struct execution_control_state *ecs = &ecss;
2083 step_over_what step_what;
2084 int must_be_in_line;
2085
2086 next = thread_step_over_chain_next (tp);
2087
2088 /* If this inferior already has a displaced step in process,
2089 don't start a new one. */
2090 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2091 continue;
2092
2093 step_what = thread_still_needs_step_over (tp);
2094 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2095 || ((step_what & STEP_OVER_BREAKPOINT)
2096 && !use_displaced_stepping (tp)));
2097
2098 /* We currently stop all threads of all processes to step-over
2099 in-line. If we need to start a new in-line step-over, let
2100 any pending displaced steps finish first. */
2101 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2102 return 0;
2103
2104 thread_step_over_chain_remove (tp);
2105
2106 if (step_over_queue_head == NULL)
2107 {
2108 if (debug_infrun)
2109 fprintf_unfiltered (gdb_stdlog,
2110 "infrun: step-over queue now empty\n");
2111 }
2112
2113 if (tp->control.trap_expected
2114 || tp->resumed
2115 || tp->executing)
2116 {
2117 internal_error (__FILE__, __LINE__,
2118 "[%s] has inconsistent state: "
2119 "trap_expected=%d, resumed=%d, executing=%d\n",
2120 target_pid_to_str (tp->ptid),
2121 tp->control.trap_expected,
2122 tp->resumed,
2123 tp->executing);
2124 }
2125
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog,
2128 "infrun: resuming [%s] for step-over\n",
2129 target_pid_to_str (tp->ptid));
2130
2131 /* keep_going_pass_signal skips the step-over if the breakpoint
2132 is no longer inserted. In all-stop, we want to keep looking
2133 for a thread that needs a step-over instead of resuming TP,
2134 because we wouldn't be able to resume anything else until the
2135 target stops again. In non-stop, the resume always resumes
2136 only TP, so it's OK to let the thread resume freely. */
2137 if (!target_is_non_stop_p () && !step_what)
2138 continue;
2139
2140 switch_to_thread (tp->ptid);
2141 reset_ecs (ecs, tp);
2142 keep_going_pass_signal (ecs);
2143
2144 if (!ecs->wait_some_more)
2145 error (_("Command aborted."));
2146
2147 gdb_assert (tp->resumed);
2148
2149 /* If we started a new in-line step-over, we're done. */
2150 if (step_over_info_valid_p ())
2151 {
2152 gdb_assert (tp->control.trap_expected);
2153 return 1;
2154 }
2155
2156 if (!target_is_non_stop_p ())
2157 {
2158 /* On all-stop, shouldn't have resumed unless we needed a
2159 step over. */
2160 gdb_assert (tp->control.trap_expected
2161 || tp->step_after_step_resume_breakpoint);
2162
2163 /* With remote targets (at least), in all-stop, we can't
2164 issue any further remote commands until the program stops
2165 again. */
2166 return 1;
2167 }
2168
2169 /* Either the thread no longer needed a step-over, or a new
2170 displaced stepping sequence started. Even in the latter
2171 case, continue looking. Maybe we can also start another
2172 displaced step on a thread of other process. */
2173 }
2174
2175 return 0;
2176}
2177
2178/* Update global variables holding ptids to hold NEW_PTID if they were
2179 holding OLD_PTID. */
2180static void
2181infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2182{
2183 struct displaced_step_inferior_state *displaced;
2184
2185 if (ptid_equal (inferior_ptid, old_ptid))
2186 inferior_ptid = new_ptid;
2187
2188 for (displaced = displaced_step_inferior_states;
2189 displaced;
2190 displaced = displaced->next)
2191 {
2192 if (ptid_equal (displaced->step_ptid, old_ptid))
2193 displaced->step_ptid = new_ptid;
2194 }
2195}
2196
2197\f
2198/* Resuming. */
2199
2200/* Things to clean up if we QUIT out of resume (). */
2201static void
2202resume_cleanups (void *ignore)
2203{
2204 if (!ptid_equal (inferior_ptid, null_ptid))
2205 delete_single_step_breakpoints (inferior_thread ());
2206
2207 normal_stop ();
2208}
2209
2210static const char schedlock_off[] = "off";
2211static const char schedlock_on[] = "on";
2212static const char schedlock_step[] = "step";
2213static const char schedlock_replay[] = "replay";
2214static const char *const scheduler_enums[] = {
2215 schedlock_off,
2216 schedlock_on,
2217 schedlock_step,
2218 schedlock_replay,
2219 NULL
2220};
2221static const char *scheduler_mode = schedlock_replay;
2222static void
2223show_scheduler_mode (struct ui_file *file, int from_tty,
2224 struct cmd_list_element *c, const char *value)
2225{
2226 fprintf_filtered (file,
2227 _("Mode for locking scheduler "
2228 "during execution is \"%s\".\n"),
2229 value);
2230}
2231
2232static void
2233set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2234{
2235 if (!target_can_lock_scheduler)
2236 {
2237 scheduler_mode = schedlock_off;
2238 error (_("Target '%s' cannot support this command."), target_shortname);
2239 }
2240}
2241
2242/* True if execution commands resume all threads of all processes by
2243 default; otherwise, resume only threads of the current inferior
2244 process. */
2245int sched_multi = 0;
2246
2247/* Try to setup for software single stepping over the specified location.
2248 Return 1 if target_resume() should use hardware single step.
2249
2250 GDBARCH the current gdbarch.
2251 PC the location to step over. */
2252
2253static int
2254maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2255{
2256 int hw_step = 1;
2257
2258 if (execution_direction == EXEC_FORWARD
2259 && gdbarch_software_single_step_p (gdbarch))
2260 hw_step = !insert_single_step_breakpoints (gdbarch);
2261
2262 return hw_step;
2263}
2264
2265/* See infrun.h. */
2266
2267ptid_t
2268user_visible_resume_ptid (int step)
2269{
2270 ptid_t resume_ptid;
2271
2272 if (non_stop)
2273 {
2274 /* With non-stop mode on, threads are always handled
2275 individually. */
2276 resume_ptid = inferior_ptid;
2277 }
2278 else if ((scheduler_mode == schedlock_on)
2279 || (scheduler_mode == schedlock_step && step))
2280 {
2281 /* User-settable 'scheduler' mode requires solo thread
2282 resume. */
2283 resume_ptid = inferior_ptid;
2284 }
2285 else if ((scheduler_mode == schedlock_replay)
2286 && target_record_will_replay (minus_one_ptid, execution_direction))
2287 {
2288 /* User-settable 'scheduler' mode requires solo thread resume in replay
2289 mode. */
2290 resume_ptid = inferior_ptid;
2291 }
2292 else if (!sched_multi && target_supports_multi_process ())
2293 {
2294 /* Resume all threads of the current process (and none of other
2295 processes). */
2296 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2297 }
2298 else
2299 {
2300 /* Resume all threads of all processes. */
2301 resume_ptid = RESUME_ALL;
2302 }
2303
2304 return resume_ptid;
2305}
2306
2307/* Return a ptid representing the set of threads that we will resume,
2308 in the perspective of the target, assuming run control handling
2309 does not require leaving some threads stopped (e.g., stepping past
2310 breakpoint). USER_STEP indicates whether we're about to start the
2311 target for a stepping command. */
2312
2313static ptid_t
2314internal_resume_ptid (int user_step)
2315{
2316 /* In non-stop, we always control threads individually. Note that
2317 the target may always work in non-stop mode even with "set
2318 non-stop off", in which case user_visible_resume_ptid could
2319 return a wildcard ptid. */
2320 if (target_is_non_stop_p ())
2321 return inferior_ptid;
2322 else
2323 return user_visible_resume_ptid (user_step);
2324}
2325
2326/* Wrapper for target_resume, that handles infrun-specific
2327 bookkeeping. */
2328
2329static void
2330do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2331{
2332 struct thread_info *tp = inferior_thread ();
2333
2334 /* Install inferior's terminal modes. */
2335 target_terminal_inferior ();
2336
2337 /* Avoid confusing the next resume, if the next stop/resume
2338 happens to apply to another thread. */
2339 tp->suspend.stop_signal = GDB_SIGNAL_0;
2340
2341 /* Advise target which signals may be handled silently.
2342
2343 If we have removed breakpoints because we are stepping over one
2344 in-line (in any thread), we need to receive all signals to avoid
2345 accidentally skipping a breakpoint during execution of a signal
2346 handler.
2347
2348 Likewise if we're displaced stepping, otherwise a trap for a
2349 breakpoint in a signal handler might be confused with the
2350 displaced step finishing. We don't make the displaced_step_fixup
2351 step distinguish the cases instead, because:
2352
2353 - a backtrace while stopped in the signal handler would show the
2354 scratch pad as frame older than the signal handler, instead of
2355 the real mainline code.
2356
2357 - when the thread is later resumed, the signal handler would
2358 return to the scratch pad area, which would no longer be
2359 valid. */
2360 if (step_over_info_valid_p ()
2361 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2362 target_pass_signals (0, NULL);
2363 else
2364 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2365
2366 target_resume (resume_ptid, step, sig);
2367
2368 target_commit_resume ();
2369}
2370
2371/* Resume the inferior, but allow a QUIT. This is useful if the user
2372 wants to interrupt some lengthy single-stepping operation
2373 (for child processes, the SIGINT goes to the inferior, and so
2374 we get a SIGINT random_signal, but for remote debugging and perhaps
2375 other targets, that's not true).
2376
2377 SIG is the signal to give the inferior (zero for none). */
2378void
2379resume (enum gdb_signal sig)
2380{
2381 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2382 struct regcache *regcache = get_current_regcache ();
2383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2384 struct thread_info *tp = inferior_thread ();
2385 CORE_ADDR pc = regcache_read_pc (regcache);
2386 struct address_space *aspace = get_regcache_aspace (regcache);
2387 ptid_t resume_ptid;
2388 /* This represents the user's step vs continue request. When
2389 deciding whether "set scheduler-locking step" applies, it's the
2390 user's intention that counts. */
2391 const int user_step = tp->control.stepping_command;
2392 /* This represents what we'll actually request the target to do.
2393 This can decay from a step to a continue, if e.g., we need to
2394 implement single-stepping with breakpoints (software
2395 single-step). */
2396 int step;
2397
2398 gdb_assert (!thread_is_in_step_over_chain (tp));
2399
2400 QUIT;
2401
2402 if (tp->suspend.waitstatus_pending_p)
2403 {
2404 if (debug_infrun)
2405 {
2406 char *statstr;
2407
2408 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2409 fprintf_unfiltered (gdb_stdlog,
2410 "infrun: resume: thread %s has pending wait status %s "
2411 "(currently_stepping=%d).\n",
2412 target_pid_to_str (tp->ptid), statstr,
2413 currently_stepping (tp));
2414 xfree (statstr);
2415 }
2416
2417 tp->resumed = 1;
2418
2419 /* FIXME: What should we do if we are supposed to resume this
2420 thread with a signal? Maybe we should maintain a queue of
2421 pending signals to deliver. */
2422 if (sig != GDB_SIGNAL_0)
2423 {
2424 warning (_("Couldn't deliver signal %s to %s."),
2425 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2426 }
2427
2428 tp->suspend.stop_signal = GDB_SIGNAL_0;
2429 discard_cleanups (old_cleanups);
2430
2431 if (target_can_async_p ())
2432 target_async (1);
2433 return;
2434 }
2435
2436 tp->stepped_breakpoint = 0;
2437
2438 /* Depends on stepped_breakpoint. */
2439 step = currently_stepping (tp);
2440
2441 if (current_inferior ()->waiting_for_vfork_done)
2442 {
2443 /* Don't try to single-step a vfork parent that is waiting for
2444 the child to get out of the shared memory region (by exec'ing
2445 or exiting). This is particularly important on software
2446 single-step archs, as the child process would trip on the
2447 software single step breakpoint inserted for the parent
2448 process. Since the parent will not actually execute any
2449 instruction until the child is out of the shared region (such
2450 are vfork's semantics), it is safe to simply continue it.
2451 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2452 the parent, and tell it to `keep_going', which automatically
2453 re-sets it stepping. */
2454 if (debug_infrun)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "infrun: resume : clear step\n");
2457 step = 0;
2458 }
2459
2460 if (debug_infrun)
2461 fprintf_unfiltered (gdb_stdlog,
2462 "infrun: resume (step=%d, signal=%s), "
2463 "trap_expected=%d, current thread [%s] at %s\n",
2464 step, gdb_signal_to_symbol_string (sig),
2465 tp->control.trap_expected,
2466 target_pid_to_str (inferior_ptid),
2467 paddress (gdbarch, pc));
2468
2469 /* Normally, by the time we reach `resume', the breakpoints are either
2470 removed or inserted, as appropriate. The exception is if we're sitting
2471 at a permanent breakpoint; we need to step over it, but permanent
2472 breakpoints can't be removed. So we have to test for it here. */
2473 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2474 {
2475 if (sig != GDB_SIGNAL_0)
2476 {
2477 /* We have a signal to pass to the inferior. The resume
2478 may, or may not take us to the signal handler. If this
2479 is a step, we'll need to stop in the signal handler, if
2480 there's one, (if the target supports stepping into
2481 handlers), or in the next mainline instruction, if
2482 there's no handler. If this is a continue, we need to be
2483 sure to run the handler with all breakpoints inserted.
2484 In all cases, set a breakpoint at the current address
2485 (where the handler returns to), and once that breakpoint
2486 is hit, resume skipping the permanent breakpoint. If
2487 that breakpoint isn't hit, then we've stepped into the
2488 signal handler (or hit some other event). We'll delete
2489 the step-resume breakpoint then. */
2490
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint, "
2494 "deliver signal first\n");
2495
2496 clear_step_over_info ();
2497 tp->control.trap_expected = 0;
2498
2499 if (tp->control.step_resume_breakpoint == NULL)
2500 {
2501 /* Set a "high-priority" step-resume, as we don't want
2502 user breakpoints at PC to trigger (again) when this
2503 hits. */
2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2505 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2506
2507 tp->step_after_step_resume_breakpoint = step;
2508 }
2509
2510 insert_breakpoints ();
2511 }
2512 else
2513 {
2514 /* There's no signal to pass, we can go ahead and skip the
2515 permanent breakpoint manually. */
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: resume: skipping permanent breakpoint\n");
2519 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2520 /* Update pc to reflect the new address from which we will
2521 execute instructions. */
2522 pc = regcache_read_pc (regcache);
2523
2524 if (step)
2525 {
2526 /* We've already advanced the PC, so the stepping part
2527 is done. Now we need to arrange for a trap to be
2528 reported to handle_inferior_event. Set a breakpoint
2529 at the current PC, and run to it. Don't update
2530 prev_pc, because if we end in
2531 switch_back_to_stepped_thread, we want the "expected
2532 thread advanced also" branch to be taken. IOW, we
2533 don't want this thread to step further from PC
2534 (overstep). */
2535 gdb_assert (!step_over_info_valid_p ());
2536 insert_single_step_breakpoint (gdbarch, aspace, pc);
2537 insert_breakpoints ();
2538
2539 resume_ptid = internal_resume_ptid (user_step);
2540 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2541 discard_cleanups (old_cleanups);
2542 tp->resumed = 1;
2543 return;
2544 }
2545 }
2546 }
2547
2548 /* If we have a breakpoint to step over, make sure to do a single
2549 step only. Same if we have software watchpoints. */
2550 if (tp->control.trap_expected || bpstat_should_step ())
2551 tp->control.may_range_step = 0;
2552
2553 /* If enabled, step over breakpoints by executing a copy of the
2554 instruction at a different address.
2555
2556 We can't use displaced stepping when we have a signal to deliver;
2557 the comments for displaced_step_prepare explain why. The
2558 comments in the handle_inferior event for dealing with 'random
2559 signals' explain what we do instead.
2560
2561 We can't use displaced stepping when we are waiting for vfork_done
2562 event, displaced stepping breaks the vfork child similarly as single
2563 step software breakpoint. */
2564 if (tp->control.trap_expected
2565 && use_displaced_stepping (tp)
2566 && !step_over_info_valid_p ()
2567 && sig == GDB_SIGNAL_0
2568 && !current_inferior ()->waiting_for_vfork_done)
2569 {
2570 int prepared = displaced_step_prepare (inferior_ptid);
2571
2572 if (prepared == 0)
2573 {
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "Got placed in step-over queue\n");
2577
2578 tp->control.trap_expected = 0;
2579 discard_cleanups (old_cleanups);
2580 return;
2581 }
2582 else if (prepared < 0)
2583 {
2584 /* Fallback to stepping over the breakpoint in-line. */
2585
2586 if (target_is_non_stop_p ())
2587 stop_all_threads ();
2588
2589 set_step_over_info (get_regcache_aspace (regcache),
2590 regcache_read_pc (regcache), 0, tp->global_num);
2591
2592 step = maybe_software_singlestep (gdbarch, pc);
2593
2594 insert_breakpoints ();
2595 }
2596 else if (prepared > 0)
2597 {
2598 struct displaced_step_inferior_state *displaced;
2599
2600 /* Update pc to reflect the new address from which we will
2601 execute instructions due to displaced stepping. */
2602 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2603
2604 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2605 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2606 displaced->step_closure);
2607 }
2608 }
2609
2610 /* Do we need to do it the hard way, w/temp breakpoints? */
2611 else if (step)
2612 step = maybe_software_singlestep (gdbarch, pc);
2613
2614 /* Currently, our software single-step implementation leads to different
2615 results than hardware single-stepping in one situation: when stepping
2616 into delivering a signal which has an associated signal handler,
2617 hardware single-step will stop at the first instruction of the handler,
2618 while software single-step will simply skip execution of the handler.
2619
2620 For now, this difference in behavior is accepted since there is no
2621 easy way to actually implement single-stepping into a signal handler
2622 without kernel support.
2623
2624 However, there is one scenario where this difference leads to follow-on
2625 problems: if we're stepping off a breakpoint by removing all breakpoints
2626 and then single-stepping. In this case, the software single-step
2627 behavior means that even if there is a *breakpoint* in the signal
2628 handler, GDB still would not stop.
2629
2630 Fortunately, we can at least fix this particular issue. We detect
2631 here the case where we are about to deliver a signal while software
2632 single-stepping with breakpoints removed. In this situation, we
2633 revert the decisions to remove all breakpoints and insert single-
2634 step breakpoints, and instead we install a step-resume breakpoint
2635 at the current address, deliver the signal without stepping, and
2636 once we arrive back at the step-resume breakpoint, actually step
2637 over the breakpoint we originally wanted to step over. */
2638 if (thread_has_single_step_breakpoints_set (tp)
2639 && sig != GDB_SIGNAL_0
2640 && step_over_info_valid_p ())
2641 {
2642 /* If we have nested signals or a pending signal is delivered
2643 immediately after a handler returns, might might already have
2644 a step-resume breakpoint set on the earlier handler. We cannot
2645 set another step-resume breakpoint; just continue on until the
2646 original breakpoint is hit. */
2647 if (tp->control.step_resume_breakpoint == NULL)
2648 {
2649 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2650 tp->step_after_step_resume_breakpoint = 1;
2651 }
2652
2653 delete_single_step_breakpoints (tp);
2654
2655 clear_step_over_info ();
2656 tp->control.trap_expected = 0;
2657
2658 insert_breakpoints ();
2659 }
2660
2661 /* If STEP is set, it's a request to use hardware stepping
2662 facilities. But in that case, we should never
2663 use singlestep breakpoint. */
2664 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2665
2666 /* Decide the set of threads to ask the target to resume. */
2667 if (tp->control.trap_expected)
2668 {
2669 /* We're allowing a thread to run past a breakpoint it has
2670 hit, either by single-stepping the thread with the breakpoint
2671 removed, or by displaced stepping, with the breakpoint inserted.
2672 In the former case, we need to single-step only this thread,
2673 and keep others stopped, as they can miss this breakpoint if
2674 allowed to run. That's not really a problem for displaced
2675 stepping, but, we still keep other threads stopped, in case
2676 another thread is also stopped for a breakpoint waiting for
2677 its turn in the displaced stepping queue. */
2678 resume_ptid = inferior_ptid;
2679 }
2680 else
2681 resume_ptid = internal_resume_ptid (user_step);
2682
2683 if (execution_direction != EXEC_REVERSE
2684 && step && breakpoint_inserted_here_p (aspace, pc))
2685 {
2686 /* There are two cases where we currently need to step a
2687 breakpoint instruction when we have a signal to deliver:
2688
2689 - See handle_signal_stop where we handle random signals that
2690 could take out us out of the stepping range. Normally, in
2691 that case we end up continuing (instead of stepping) over the
2692 signal handler with a breakpoint at PC, but there are cases
2693 where we should _always_ single-step, even if we have a
2694 step-resume breakpoint, like when a software watchpoint is
2695 set. Assuming single-stepping and delivering a signal at the
2696 same time would takes us to the signal handler, then we could
2697 have removed the breakpoint at PC to step over it. However,
2698 some hardware step targets (like e.g., Mac OS) can't step
2699 into signal handlers, and for those, we need to leave the
2700 breakpoint at PC inserted, as otherwise if the handler
2701 recurses and executes PC again, it'll miss the breakpoint.
2702 So we leave the breakpoint inserted anyway, but we need to
2703 record that we tried to step a breakpoint instruction, so
2704 that adjust_pc_after_break doesn't end up confused.
2705
2706 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2707 in one thread after another thread that was stepping had been
2708 momentarily paused for a step-over. When we re-resume the
2709 stepping thread, it may be resumed from that address with a
2710 breakpoint that hasn't trapped yet. Seen with
2711 gdb.threads/non-stop-fair-events.exp, on targets that don't
2712 do displaced stepping. */
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "infrun: resume: [%s] stepped breakpoint\n",
2717 target_pid_to_str (tp->ptid));
2718
2719 tp->stepped_breakpoint = 1;
2720
2721 /* Most targets can step a breakpoint instruction, thus
2722 executing it normally. But if this one cannot, just
2723 continue and we will hit it anyway. */
2724 if (gdbarch_cannot_step_breakpoint (gdbarch))
2725 step = 0;
2726 }
2727
2728 if (debug_displaced
2729 && tp->control.trap_expected
2730 && use_displaced_stepping (tp)
2731 && !step_over_info_valid_p ())
2732 {
2733 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2734 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2735 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2736 gdb_byte buf[4];
2737
2738 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2739 paddress (resume_gdbarch, actual_pc));
2740 read_memory (actual_pc, buf, sizeof (buf));
2741 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2742 }
2743
2744 if (tp->control.may_range_step)
2745 {
2746 /* If we're resuming a thread with the PC out of the step
2747 range, then we're doing some nested/finer run control
2748 operation, like stepping the thread out of the dynamic
2749 linker or the displaced stepping scratch pad. We
2750 shouldn't have allowed a range step then. */
2751 gdb_assert (pc_in_thread_step_range (pc, tp));
2752 }
2753
2754 do_target_resume (resume_ptid, step, sig);
2755 tp->resumed = 1;
2756 discard_cleanups (old_cleanups);
2757}
2758\f
2759/* Proceeding. */
2760
2761/* See infrun.h. */
2762
2763/* Counter that tracks number of user visible stops. This can be used
2764 to tell whether a command has proceeded the inferior past the
2765 current location. This allows e.g., inferior function calls in
2766 breakpoint commands to not interrupt the command list. When the
2767 call finishes successfully, the inferior is standing at the same
2768 breakpoint as if nothing happened (and so we don't call
2769 normal_stop). */
2770static ULONGEST current_stop_id;
2771
2772/* See infrun.h. */
2773
2774ULONGEST
2775get_stop_id (void)
2776{
2777 return current_stop_id;
2778}
2779
2780/* Called when we report a user visible stop. */
2781
2782static void
2783new_stop_id (void)
2784{
2785 current_stop_id++;
2786}
2787
2788/* Clear out all variables saying what to do when inferior is continued.
2789 First do this, then set the ones you want, then call `proceed'. */
2790
2791static void
2792clear_proceed_status_thread (struct thread_info *tp)
2793{
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status_thread (%s)\n",
2797 target_pid_to_str (tp->ptid));
2798
2799 /* If we're starting a new sequence, then the previous finished
2800 single-step is no longer relevant. */
2801 if (tp->suspend.waitstatus_pending_p)
2802 {
2803 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2804 {
2805 if (debug_infrun)
2806 fprintf_unfiltered (gdb_stdlog,
2807 "infrun: clear_proceed_status: pending "
2808 "event of %s was a finished step. "
2809 "Discarding.\n",
2810 target_pid_to_str (tp->ptid));
2811
2812 tp->suspend.waitstatus_pending_p = 0;
2813 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2814 }
2815 else if (debug_infrun)
2816 {
2817 char *statstr;
2818
2819 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2820 fprintf_unfiltered (gdb_stdlog,
2821 "infrun: clear_proceed_status_thread: thread %s "
2822 "has pending wait status %s "
2823 "(currently_stepping=%d).\n",
2824 target_pid_to_str (tp->ptid), statstr,
2825 currently_stepping (tp));
2826 xfree (statstr);
2827 }
2828 }
2829
2830 /* If this signal should not be seen by program, give it zero.
2831 Used for debugging signals. */
2832 if (!signal_pass_state (tp->suspend.stop_signal))
2833 tp->suspend.stop_signal = GDB_SIGNAL_0;
2834
2835 thread_fsm_delete (tp->thread_fsm);
2836 tp->thread_fsm = NULL;
2837
2838 tp->control.trap_expected = 0;
2839 tp->control.step_range_start = 0;
2840 tp->control.step_range_end = 0;
2841 tp->control.may_range_step = 0;
2842 tp->control.step_frame_id = null_frame_id;
2843 tp->control.step_stack_frame_id = null_frame_id;
2844 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2845 tp->control.step_start_function = NULL;
2846 tp->stop_requested = 0;
2847
2848 tp->control.stop_step = 0;
2849
2850 tp->control.proceed_to_finish = 0;
2851
2852 tp->control.stepping_command = 0;
2853
2854 /* Discard any remaining commands or status from previous stop. */
2855 bpstat_clear (&tp->control.stop_bpstat);
2856}
2857
2858void
2859clear_proceed_status (int step)
2860{
2861 /* With scheduler-locking replay, stop replaying other threads if we're
2862 not replaying the user-visible resume ptid.
2863
2864 This is a convenience feature to not require the user to explicitly
2865 stop replaying the other threads. We're assuming that the user's
2866 intent is to resume tracing the recorded process. */
2867 if (!non_stop && scheduler_mode == schedlock_replay
2868 && target_record_is_replaying (minus_one_ptid)
2869 && !target_record_will_replay (user_visible_resume_ptid (step),
2870 execution_direction))
2871 target_record_stop_replaying ();
2872
2873 if (!non_stop)
2874 {
2875 struct thread_info *tp;
2876 ptid_t resume_ptid;
2877
2878 resume_ptid = user_visible_resume_ptid (step);
2879
2880 /* In all-stop mode, delete the per-thread status of all threads
2881 we're about to resume, implicitly and explicitly. */
2882 ALL_NON_EXITED_THREADS (tp)
2883 {
2884 if (!ptid_match (tp->ptid, resume_ptid))
2885 continue;
2886 clear_proceed_status_thread (tp);
2887 }
2888 }
2889
2890 if (!ptid_equal (inferior_ptid, null_ptid))
2891 {
2892 struct inferior *inferior;
2893
2894 if (non_stop)
2895 {
2896 /* If in non-stop mode, only delete the per-thread status of
2897 the current thread. */
2898 clear_proceed_status_thread (inferior_thread ());
2899 }
2900
2901 inferior = current_inferior ();
2902 inferior->control.stop_soon = NO_STOP_QUIETLY;
2903 }
2904
2905 observer_notify_about_to_proceed ();
2906}
2907
2908/* Returns true if TP is still stopped at a breakpoint that needs
2909 stepping-over in order to make progress. If the breakpoint is gone
2910 meanwhile, we can skip the whole step-over dance. */
2911
2912static int
2913thread_still_needs_step_over_bp (struct thread_info *tp)
2914{
2915 if (tp->stepping_over_breakpoint)
2916 {
2917 struct regcache *regcache = get_thread_regcache (tp->ptid);
2918
2919 if (breakpoint_here_p (get_regcache_aspace (regcache),
2920 regcache_read_pc (regcache))
2921 == ordinary_breakpoint_here)
2922 return 1;
2923
2924 tp->stepping_over_breakpoint = 0;
2925 }
2926
2927 return 0;
2928}
2929
2930/* Check whether thread TP still needs to start a step-over in order
2931 to make progress when resumed. Returns an bitwise or of enum
2932 step_over_what bits, indicating what needs to be stepped over. */
2933
2934static step_over_what
2935thread_still_needs_step_over (struct thread_info *tp)
2936{
2937 step_over_what what = 0;
2938
2939 if (thread_still_needs_step_over_bp (tp))
2940 what |= STEP_OVER_BREAKPOINT;
2941
2942 if (tp->stepping_over_watchpoint
2943 && !target_have_steppable_watchpoint)
2944 what |= STEP_OVER_WATCHPOINT;
2945
2946 return what;
2947}
2948
2949/* Returns true if scheduler locking applies. STEP indicates whether
2950 we're about to do a step/next-like command to a thread. */
2951
2952static int
2953schedlock_applies (struct thread_info *tp)
2954{
2955 return (scheduler_mode == schedlock_on
2956 || (scheduler_mode == schedlock_step
2957 && tp->control.stepping_command)
2958 || (scheduler_mode == schedlock_replay
2959 && target_record_will_replay (minus_one_ptid,
2960 execution_direction)));
2961}
2962
2963/* Basic routine for continuing the program in various fashions.
2964
2965 ADDR is the address to resume at, or -1 for resume where stopped.
2966 SIGGNAL is the signal to give it, or 0 for none,
2967 or -1 for act according to how it stopped.
2968 STEP is nonzero if should trap after one instruction.
2969 -1 means return after that and print nothing.
2970 You should probably set various step_... variables
2971 before calling here, if you are stepping.
2972
2973 You should call clear_proceed_status before calling proceed. */
2974
2975void
2976proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2977{
2978 struct regcache *regcache;
2979 struct gdbarch *gdbarch;
2980 struct thread_info *tp;
2981 CORE_ADDR pc;
2982 struct address_space *aspace;
2983 ptid_t resume_ptid;
2984 struct execution_control_state ecss;
2985 struct execution_control_state *ecs = &ecss;
2986 struct cleanup *old_chain;
2987 struct cleanup *defer_resume_cleanup;
2988 int started;
2989
2990 /* If we're stopped at a fork/vfork, follow the branch set by the
2991 "set follow-fork-mode" command; otherwise, we'll just proceed
2992 resuming the current thread. */
2993 if (!follow_fork ())
2994 {
2995 /* The target for some reason decided not to resume. */
2996 normal_stop ();
2997 if (target_can_async_p ())
2998 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2999 return;
3000 }
3001
3002 /* We'll update this if & when we switch to a new thread. */
3003 previous_inferior_ptid = inferior_ptid;
3004
3005 regcache = get_current_regcache ();
3006 gdbarch = get_regcache_arch (regcache);
3007 aspace = get_regcache_aspace (regcache);
3008 pc = regcache_read_pc (regcache);
3009 tp = inferior_thread ();
3010
3011 /* Fill in with reasonable starting values. */
3012 init_thread_stepping_state (tp);
3013
3014 gdb_assert (!thread_is_in_step_over_chain (tp));
3015
3016 if (addr == (CORE_ADDR) -1)
3017 {
3018 if (pc == stop_pc
3019 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3020 && execution_direction != EXEC_REVERSE)
3021 /* There is a breakpoint at the address we will resume at,
3022 step one instruction before inserting breakpoints so that
3023 we do not stop right away (and report a second hit at this
3024 breakpoint).
3025
3026 Note, we don't do this in reverse, because we won't
3027 actually be executing the breakpoint insn anyway.
3028 We'll be (un-)executing the previous instruction. */
3029 tp->stepping_over_breakpoint = 1;
3030 else if (gdbarch_single_step_through_delay_p (gdbarch)
3031 && gdbarch_single_step_through_delay (gdbarch,
3032 get_current_frame ()))
3033 /* We stepped onto an instruction that needs to be stepped
3034 again before re-inserting the breakpoint, do so. */
3035 tp->stepping_over_breakpoint = 1;
3036 }
3037 else
3038 {
3039 regcache_write_pc (regcache, addr);
3040 }
3041
3042 if (siggnal != GDB_SIGNAL_DEFAULT)
3043 tp->suspend.stop_signal = siggnal;
3044
3045 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3046
3047 /* If an exception is thrown from this point on, make sure to
3048 propagate GDB's knowledge of the executing state to the
3049 frontend/user running state. */
3050 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3051
3052 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3053 threads (e.g., we might need to set threads stepping over
3054 breakpoints first), from the user/frontend's point of view, all
3055 threads in RESUME_PTID are now running. Unless we're calling an
3056 inferior function, as in that case we pretend the inferior
3057 doesn't run at all. */
3058 if (!tp->control.in_infcall)
3059 set_running (resume_ptid, 1);
3060
3061 if (debug_infrun)
3062 fprintf_unfiltered (gdb_stdlog,
3063 "infrun: proceed (addr=%s, signal=%s)\n",
3064 paddress (gdbarch, addr),
3065 gdb_signal_to_symbol_string (siggnal));
3066
3067 annotate_starting ();
3068
3069 /* Make sure that output from GDB appears before output from the
3070 inferior. */
3071 gdb_flush (gdb_stdout);
3072
3073 /* In a multi-threaded task we may select another thread and
3074 then continue or step.
3075
3076 But if a thread that we're resuming had stopped at a breakpoint,
3077 it will immediately cause another breakpoint stop without any
3078 execution (i.e. it will report a breakpoint hit incorrectly). So
3079 we must step over it first.
3080
3081 Look for threads other than the current (TP) that reported a
3082 breakpoint hit and haven't been resumed yet since. */
3083
3084 /* If scheduler locking applies, we can avoid iterating over all
3085 threads. */
3086 if (!non_stop && !schedlock_applies (tp))
3087 {
3088 struct thread_info *current = tp;
3089
3090 ALL_NON_EXITED_THREADS (tp)
3091 {
3092 /* Ignore the current thread here. It's handled
3093 afterwards. */
3094 if (tp == current)
3095 continue;
3096
3097 /* Ignore threads of processes we're not resuming. */
3098 if (!ptid_match (tp->ptid, resume_ptid))
3099 continue;
3100
3101 if (!thread_still_needs_step_over (tp))
3102 continue;
3103
3104 gdb_assert (!thread_is_in_step_over_chain (tp));
3105
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "infrun: need to step-over [%s] first\n",
3109 target_pid_to_str (tp->ptid));
3110
3111 thread_step_over_chain_enqueue (tp);
3112 }
3113
3114 tp = current;
3115 }
3116
3117 /* Enqueue the current thread last, so that we move all other
3118 threads over their breakpoints first. */
3119 if (tp->stepping_over_breakpoint)
3120 thread_step_over_chain_enqueue (tp);
3121
3122 /* If the thread isn't started, we'll still need to set its prev_pc,
3123 so that switch_back_to_stepped_thread knows the thread hasn't
3124 advanced. Must do this before resuming any thread, as in
3125 all-stop/remote, once we resume we can't send any other packet
3126 until the target stops again. */
3127 tp->prev_pc = regcache_read_pc (regcache);
3128
3129 defer_resume_cleanup = make_cleanup_defer_target_commit_resume ();
3130
3131 started = start_step_over ();
3132
3133 if (step_over_info_valid_p ())
3134 {
3135 /* Either this thread started a new in-line step over, or some
3136 other thread was already doing one. In either case, don't
3137 resume anything else until the step-over is finished. */
3138 }
3139 else if (started && !target_is_non_stop_p ())
3140 {
3141 /* A new displaced stepping sequence was started. In all-stop,
3142 we can't talk to the target anymore until it next stops. */
3143 }
3144 else if (!non_stop && target_is_non_stop_p ())
3145 {
3146 /* In all-stop, but the target is always in non-stop mode.
3147 Start all other threads that are implicitly resumed too. */
3148 ALL_NON_EXITED_THREADS (tp)
3149 {
3150 /* Ignore threads of processes we're not resuming. */
3151 if (!ptid_match (tp->ptid, resume_ptid))
3152 continue;
3153
3154 if (tp->resumed)
3155 {
3156 if (debug_infrun)
3157 fprintf_unfiltered (gdb_stdlog,
3158 "infrun: proceed: [%s] resumed\n",
3159 target_pid_to_str (tp->ptid));
3160 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3161 continue;
3162 }
3163
3164 if (thread_is_in_step_over_chain (tp))
3165 {
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "infrun: proceed: [%s] needs step-over\n",
3169 target_pid_to_str (tp->ptid));
3170 continue;
3171 }
3172
3173 if (debug_infrun)
3174 fprintf_unfiltered (gdb_stdlog,
3175 "infrun: proceed: resuming %s\n",
3176 target_pid_to_str (tp->ptid));
3177
3178 reset_ecs (ecs, tp);
3179 switch_to_thread (tp->ptid);
3180 keep_going_pass_signal (ecs);
3181 if (!ecs->wait_some_more)
3182 error (_("Command aborted."));
3183 }
3184 }
3185 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3186 {
3187 /* The thread wasn't started, and isn't queued, run it now. */
3188 reset_ecs (ecs, tp);
3189 switch_to_thread (tp->ptid);
3190 keep_going_pass_signal (ecs);
3191 if (!ecs->wait_some_more)
3192 error (_("Command aborted."));
3193 }
3194
3195 do_cleanups (defer_resume_cleanup);
3196 target_commit_resume ();
3197
3198 discard_cleanups (old_chain);
3199
3200 /* Tell the event loop to wait for it to stop. If the target
3201 supports asynchronous execution, it'll do this from within
3202 target_resume. */
3203 if (!target_can_async_p ())
3204 mark_async_event_handler (infrun_async_inferior_event_token);
3205}
3206\f
3207
3208/* Start remote-debugging of a machine over a serial link. */
3209
3210void
3211start_remote (int from_tty)
3212{
3213 struct inferior *inferior;
3214
3215 inferior = current_inferior ();
3216 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3217
3218 /* Always go on waiting for the target, regardless of the mode. */
3219 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3220 indicate to wait_for_inferior that a target should timeout if
3221 nothing is returned (instead of just blocking). Because of this,
3222 targets expecting an immediate response need to, internally, set
3223 things up so that the target_wait() is forced to eventually
3224 timeout. */
3225 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3226 differentiate to its caller what the state of the target is after
3227 the initial open has been performed. Here we're assuming that
3228 the target has stopped. It should be possible to eventually have
3229 target_open() return to the caller an indication that the target
3230 is currently running and GDB state should be set to the same as
3231 for an async run. */
3232 wait_for_inferior ();
3233
3234 /* Now that the inferior has stopped, do any bookkeeping like
3235 loading shared libraries. We want to do this before normal_stop,
3236 so that the displayed frame is up to date. */
3237 post_create_inferior (&current_target, from_tty);
3238
3239 normal_stop ();
3240}
3241
3242/* Initialize static vars when a new inferior begins. */
3243
3244void
3245init_wait_for_inferior (void)
3246{
3247 /* These are meaningless until the first time through wait_for_inferior. */
3248
3249 breakpoint_init_inferior (inf_starting);
3250
3251 clear_proceed_status (0);
3252
3253 target_last_wait_ptid = minus_one_ptid;
3254
3255 previous_inferior_ptid = inferior_ptid;
3256
3257 /* Discard any skipped inlined frames. */
3258 clear_inline_frame_state (minus_one_ptid);
3259}
3260
3261\f
3262
3263static void handle_inferior_event (struct execution_control_state *ecs);
3264
3265static void handle_step_into_function (struct gdbarch *gdbarch,
3266 struct execution_control_state *ecs);
3267static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3268 struct execution_control_state *ecs);
3269static void handle_signal_stop (struct execution_control_state *ecs);
3270static void check_exception_resume (struct execution_control_state *,
3271 struct frame_info *);
3272
3273static void end_stepping_range (struct execution_control_state *ecs);
3274static void stop_waiting (struct execution_control_state *ecs);
3275static void keep_going (struct execution_control_state *ecs);
3276static void process_event_stop_test (struct execution_control_state *ecs);
3277static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3278
3279/* Callback for iterate over threads. If the thread is stopped, but
3280 the user/frontend doesn't know about that yet, go through
3281 normal_stop, as if the thread had just stopped now. ARG points at
3282 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3283 ptid_is_pid(PTID) is true, applies to all threads of the process
3284 pointed at by PTID. Otherwise, apply only to the thread pointed by
3285 PTID. */
3286
3287static int
3288infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3289{
3290 ptid_t ptid = * (ptid_t *) arg;
3291
3292 if ((ptid_equal (info->ptid, ptid)
3293 || ptid_equal (minus_one_ptid, ptid)
3294 || (ptid_is_pid (ptid)
3295 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3296 && is_running (info->ptid)
3297 && !is_executing (info->ptid))
3298 {
3299 struct cleanup *old_chain;
3300 struct execution_control_state ecss;
3301 struct execution_control_state *ecs = &ecss;
3302
3303 memset (ecs, 0, sizeof (*ecs));
3304
3305 old_chain = make_cleanup_restore_current_thread ();
3306
3307 overlay_cache_invalid = 1;
3308 /* Flush target cache before starting to handle each event.
3309 Target was running and cache could be stale. This is just a
3310 heuristic. Running threads may modify target memory, but we
3311 don't get any event. */
3312 target_dcache_invalidate ();
3313
3314 /* Go through handle_inferior_event/normal_stop, so we always
3315 have consistent output as if the stop event had been
3316 reported. */
3317 ecs->ptid = info->ptid;
3318 ecs->event_thread = info;
3319 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3320 ecs->ws.value.sig = GDB_SIGNAL_0;
3321
3322 handle_inferior_event (ecs);
3323
3324 if (!ecs->wait_some_more)
3325 {
3326 /* Cancel any running execution command. */
3327 thread_cancel_execution_command (info);
3328
3329 normal_stop ();
3330 }
3331
3332 do_cleanups (old_chain);
3333 }
3334
3335 return 0;
3336}
3337
3338/* This function is attached as a "thread_stop_requested" observer.
3339 Cleanup local state that assumed the PTID was to be resumed, and
3340 report the stop to the frontend. */
3341
3342static void
3343infrun_thread_stop_requested (ptid_t ptid)
3344{
3345 struct thread_info *tp;
3346
3347 /* PTID was requested to stop. Remove matching threads from the
3348 step-over queue, so we don't try to resume them
3349 automatically. */
3350 ALL_NON_EXITED_THREADS (tp)
3351 if (ptid_match (tp->ptid, ptid))
3352 {
3353 if (thread_is_in_step_over_chain (tp))
3354 thread_step_over_chain_remove (tp);
3355 }
3356
3357 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3358}
3359
3360static void
3361infrun_thread_thread_exit (struct thread_info *tp, int silent)
3362{
3363 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3364 nullify_last_target_wait_ptid ();
3365}
3366
3367/* Delete the step resume, single-step and longjmp/exception resume
3368 breakpoints of TP. */
3369
3370static void
3371delete_thread_infrun_breakpoints (struct thread_info *tp)
3372{
3373 delete_step_resume_breakpoint (tp);
3374 delete_exception_resume_breakpoint (tp);
3375 delete_single_step_breakpoints (tp);
3376}
3377
3378/* If the target still has execution, call FUNC for each thread that
3379 just stopped. In all-stop, that's all the non-exited threads; in
3380 non-stop, that's the current thread, only. */
3381
3382typedef void (*for_each_just_stopped_thread_callback_func)
3383 (struct thread_info *tp);
3384
3385static void
3386for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3387{
3388 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3389 return;
3390
3391 if (target_is_non_stop_p ())
3392 {
3393 /* If in non-stop mode, only the current thread stopped. */
3394 func (inferior_thread ());
3395 }
3396 else
3397 {
3398 struct thread_info *tp;
3399
3400 /* In all-stop mode, all threads have stopped. */
3401 ALL_NON_EXITED_THREADS (tp)
3402 {
3403 func (tp);
3404 }
3405 }
3406}
3407
3408/* Delete the step resume and longjmp/exception resume breakpoints of
3409 the threads that just stopped. */
3410
3411static void
3412delete_just_stopped_threads_infrun_breakpoints (void)
3413{
3414 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3415}
3416
3417/* Delete the single-step breakpoints of the threads that just
3418 stopped. */
3419
3420static void
3421delete_just_stopped_threads_single_step_breakpoints (void)
3422{
3423 for_each_just_stopped_thread (delete_single_step_breakpoints);
3424}
3425
3426/* A cleanup wrapper. */
3427
3428static void
3429delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3430{
3431 delete_just_stopped_threads_infrun_breakpoints ();
3432}
3433
3434/* See infrun.h. */
3435
3436void
3437print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3438 const struct target_waitstatus *ws)
3439{
3440 char *status_string = target_waitstatus_to_string (ws);
3441 struct ui_file *tmp_stream = mem_fileopen ();
3442
3443 /* The text is split over several lines because it was getting too long.
3444 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3445 output as a unit; we want only one timestamp printed if debug_timestamp
3446 is set. */
3447
3448 fprintf_unfiltered (tmp_stream,
3449 "infrun: target_wait (%d.%ld.%ld",
3450 ptid_get_pid (waiton_ptid),
3451 ptid_get_lwp (waiton_ptid),
3452 ptid_get_tid (waiton_ptid));
3453 if (ptid_get_pid (waiton_ptid) != -1)
3454 fprintf_unfiltered (tmp_stream,
3455 " [%s]", target_pid_to_str (waiton_ptid));
3456 fprintf_unfiltered (tmp_stream, ", status) =\n");
3457 fprintf_unfiltered (tmp_stream,
3458 "infrun: %d.%ld.%ld [%s],\n",
3459 ptid_get_pid (result_ptid),
3460 ptid_get_lwp (result_ptid),
3461 ptid_get_tid (result_ptid),
3462 target_pid_to_str (result_ptid));
3463 fprintf_unfiltered (tmp_stream,
3464 "infrun: %s\n",
3465 status_string);
3466
3467 std::string text = ui_file_as_string (tmp_stream);
3468
3469 /* This uses %s in part to handle %'s in the text, but also to avoid
3470 a gcc error: the format attribute requires a string literal. */
3471 fprintf_unfiltered (gdb_stdlog, "%s", text.c_str ());
3472
3473 xfree (status_string);
3474 ui_file_delete (tmp_stream);
3475}
3476
3477/* Select a thread at random, out of those which are resumed and have
3478 had events. */
3479
3480static struct thread_info *
3481random_pending_event_thread (ptid_t waiton_ptid)
3482{
3483 struct thread_info *event_tp;
3484 int num_events = 0;
3485 int random_selector;
3486
3487 /* First see how many events we have. Count only resumed threads
3488 that have an event pending. */
3489 ALL_NON_EXITED_THREADS (event_tp)
3490 if (ptid_match (event_tp->ptid, waiton_ptid)
3491 && event_tp->resumed
3492 && event_tp->suspend.waitstatus_pending_p)
3493 num_events++;
3494
3495 if (num_events == 0)
3496 return NULL;
3497
3498 /* Now randomly pick a thread out of those that have had events. */
3499 random_selector = (int)
3500 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3501
3502 if (debug_infrun && num_events > 1)
3503 fprintf_unfiltered (gdb_stdlog,
3504 "infrun: Found %d events, selecting #%d\n",
3505 num_events, random_selector);
3506
3507 /* Select the Nth thread that has had an event. */
3508 ALL_NON_EXITED_THREADS (event_tp)
3509 if (ptid_match (event_tp->ptid, waiton_ptid)
3510 && event_tp->resumed
3511 && event_tp->suspend.waitstatus_pending_p)
3512 if (random_selector-- == 0)
3513 break;
3514
3515 return event_tp;
3516}
3517
3518/* Wrapper for target_wait that first checks whether threads have
3519 pending statuses to report before actually asking the target for
3520 more events. */
3521
3522static ptid_t
3523do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3524{
3525 ptid_t event_ptid;
3526 struct thread_info *tp;
3527
3528 /* First check if there is a resumed thread with a wait status
3529 pending. */
3530 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3531 {
3532 tp = random_pending_event_thread (ptid);
3533 }
3534 else
3535 {
3536 if (debug_infrun)
3537 fprintf_unfiltered (gdb_stdlog,
3538 "infrun: Waiting for specific thread %s.\n",
3539 target_pid_to_str (ptid));
3540
3541 /* We have a specific thread to check. */
3542 tp = find_thread_ptid (ptid);
3543 gdb_assert (tp != NULL);
3544 if (!tp->suspend.waitstatus_pending_p)
3545 tp = NULL;
3546 }
3547
3548 if (tp != NULL
3549 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3550 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3551 {
3552 struct regcache *regcache = get_thread_regcache (tp->ptid);
3553 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3554 CORE_ADDR pc;
3555 int discard = 0;
3556
3557 pc = regcache_read_pc (regcache);
3558
3559 if (pc != tp->suspend.stop_pc)
3560 {
3561 if (debug_infrun)
3562 fprintf_unfiltered (gdb_stdlog,
3563 "infrun: PC of %s changed. was=%s, now=%s\n",
3564 target_pid_to_str (tp->ptid),
3565 paddress (gdbarch, tp->prev_pc),
3566 paddress (gdbarch, pc));
3567 discard = 1;
3568 }
3569 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3570 {
3571 if (debug_infrun)
3572 fprintf_unfiltered (gdb_stdlog,
3573 "infrun: previous breakpoint of %s, at %s gone\n",
3574 target_pid_to_str (tp->ptid),
3575 paddress (gdbarch, pc));
3576
3577 discard = 1;
3578 }
3579
3580 if (discard)
3581 {
3582 if (debug_infrun)
3583 fprintf_unfiltered (gdb_stdlog,
3584 "infrun: pending event of %s cancelled.\n",
3585 target_pid_to_str (tp->ptid));
3586
3587 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3588 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3589 }
3590 }
3591
3592 if (tp != NULL)
3593 {
3594 if (debug_infrun)
3595 {
3596 char *statstr;
3597
3598 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3599 fprintf_unfiltered (gdb_stdlog,
3600 "infrun: Using pending wait status %s for %s.\n",
3601 statstr,
3602 target_pid_to_str (tp->ptid));
3603 xfree (statstr);
3604 }
3605
3606 /* Now that we've selected our final event LWP, un-adjust its PC
3607 if it was a software breakpoint (and the target doesn't
3608 always adjust the PC itself). */
3609 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3610 && !target_supports_stopped_by_sw_breakpoint ())
3611 {
3612 struct regcache *regcache;
3613 struct gdbarch *gdbarch;
3614 int decr_pc;
3615
3616 regcache = get_thread_regcache (tp->ptid);
3617 gdbarch = get_regcache_arch (regcache);
3618
3619 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3620 if (decr_pc != 0)
3621 {
3622 CORE_ADDR pc;
3623
3624 pc = regcache_read_pc (regcache);
3625 regcache_write_pc (regcache, pc + decr_pc);
3626 }
3627 }
3628
3629 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3630 *status = tp->suspend.waitstatus;
3631 tp->suspend.waitstatus_pending_p = 0;
3632
3633 /* Wake up the event loop again, until all pending events are
3634 processed. */
3635 if (target_is_async_p ())
3636 mark_async_event_handler (infrun_async_inferior_event_token);
3637 return tp->ptid;
3638 }
3639
3640 /* But if we don't find one, we'll have to wait. */
3641
3642 if (deprecated_target_wait_hook)
3643 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3644 else
3645 event_ptid = target_wait (ptid, status, options);
3646
3647 return event_ptid;
3648}
3649
3650/* Prepare and stabilize the inferior for detaching it. E.g.,
3651 detaching while a thread is displaced stepping is a recipe for
3652 crashing it, as nothing would readjust the PC out of the scratch
3653 pad. */
3654
3655void
3656prepare_for_detach (void)
3657{
3658 struct inferior *inf = current_inferior ();
3659 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3660 struct cleanup *old_chain_1;
3661 struct displaced_step_inferior_state *displaced;
3662
3663 displaced = get_displaced_stepping_state (inf->pid);
3664
3665 /* Is any thread of this process displaced stepping? If not,
3666 there's nothing else to do. */
3667 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3668 return;
3669
3670 if (debug_infrun)
3671 fprintf_unfiltered (gdb_stdlog,
3672 "displaced-stepping in-process while detaching");
3673
3674 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3675 inf->detaching = 1;
3676
3677 while (!ptid_equal (displaced->step_ptid, null_ptid))
3678 {
3679 struct cleanup *old_chain_2;
3680 struct execution_control_state ecss;
3681 struct execution_control_state *ecs;
3682
3683 ecs = &ecss;
3684 memset (ecs, 0, sizeof (*ecs));
3685
3686 overlay_cache_invalid = 1;
3687 /* Flush target cache before starting to handle each event.
3688 Target was running and cache could be stale. This is just a
3689 heuristic. Running threads may modify target memory, but we
3690 don't get any event. */
3691 target_dcache_invalidate ();
3692
3693 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3694
3695 if (debug_infrun)
3696 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3697
3698 /* If an error happens while handling the event, propagate GDB's
3699 knowledge of the executing state to the frontend/user running
3700 state. */
3701 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3702 &minus_one_ptid);
3703
3704 /* Now figure out what to do with the result of the result. */
3705 handle_inferior_event (ecs);
3706
3707 /* No error, don't finish the state yet. */
3708 discard_cleanups (old_chain_2);
3709
3710 /* Breakpoints and watchpoints are not installed on the target
3711 at this point, and signals are passed directly to the
3712 inferior, so this must mean the process is gone. */
3713 if (!ecs->wait_some_more)
3714 {
3715 discard_cleanups (old_chain_1);
3716 error (_("Program exited while detaching"));
3717 }
3718 }
3719
3720 discard_cleanups (old_chain_1);
3721}
3722
3723/* Wait for control to return from inferior to debugger.
3724
3725 If inferior gets a signal, we may decide to start it up again
3726 instead of returning. That is why there is a loop in this function.
3727 When this function actually returns it means the inferior
3728 should be left stopped and GDB should read more commands. */
3729
3730void
3731wait_for_inferior (void)
3732{
3733 struct cleanup *old_cleanups;
3734 struct cleanup *thread_state_chain;
3735
3736 if (debug_infrun)
3737 fprintf_unfiltered
3738 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3739
3740 old_cleanups
3741 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3742 NULL);
3743
3744 /* If an error happens while handling the event, propagate GDB's
3745 knowledge of the executing state to the frontend/user running
3746 state. */
3747 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3748
3749 while (1)
3750 {
3751 struct execution_control_state ecss;
3752 struct execution_control_state *ecs = &ecss;
3753 ptid_t waiton_ptid = minus_one_ptid;
3754
3755 memset (ecs, 0, sizeof (*ecs));
3756
3757 overlay_cache_invalid = 1;
3758
3759 /* Flush target cache before starting to handle each event.
3760 Target was running and cache could be stale. This is just a
3761 heuristic. Running threads may modify target memory, but we
3762 don't get any event. */
3763 target_dcache_invalidate ();
3764
3765 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3766
3767 if (debug_infrun)
3768 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3769
3770 /* Now figure out what to do with the result of the result. */
3771 handle_inferior_event (ecs);
3772
3773 if (!ecs->wait_some_more)
3774 break;
3775 }
3776
3777 /* No error, don't finish the state yet. */
3778 discard_cleanups (thread_state_chain);
3779
3780 do_cleanups (old_cleanups);
3781}
3782
3783/* Cleanup that reinstalls the readline callback handler, if the
3784 target is running in the background. If while handling the target
3785 event something triggered a secondary prompt, like e.g., a
3786 pagination prompt, we'll have removed the callback handler (see
3787 gdb_readline_wrapper_line). Need to do this as we go back to the
3788 event loop, ready to process further input. Note this has no
3789 effect if the handler hasn't actually been removed, because calling
3790 rl_callback_handler_install resets the line buffer, thus losing
3791 input. */
3792
3793static void
3794reinstall_readline_callback_handler_cleanup (void *arg)
3795{
3796 struct ui *ui = current_ui;
3797
3798 if (!ui->async)
3799 {
3800 /* We're not going back to the top level event loop yet. Don't
3801 install the readline callback, as it'd prep the terminal,
3802 readline-style (raw, noecho) (e.g., --batch). We'll install
3803 it the next time the prompt is displayed, when we're ready
3804 for input. */
3805 return;
3806 }
3807
3808 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3809 gdb_rl_callback_handler_reinstall ();
3810}
3811
3812/* Clean up the FSMs of threads that are now stopped. In non-stop,
3813 that's just the event thread. In all-stop, that's all threads. */
3814
3815static void
3816clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3817{
3818 struct thread_info *thr = ecs->event_thread;
3819
3820 if (thr != NULL && thr->thread_fsm != NULL)
3821 thread_fsm_clean_up (thr->thread_fsm, thr);
3822
3823 if (!non_stop)
3824 {
3825 ALL_NON_EXITED_THREADS (thr)
3826 {
3827 if (thr->thread_fsm == NULL)
3828 continue;
3829 if (thr == ecs->event_thread)
3830 continue;
3831
3832 switch_to_thread (thr->ptid);
3833 thread_fsm_clean_up (thr->thread_fsm, thr);
3834 }
3835
3836 if (ecs->event_thread != NULL)
3837 switch_to_thread (ecs->event_thread->ptid);
3838 }
3839}
3840
3841/* Helper for all_uis_check_sync_execution_done that works on the
3842 current UI. */
3843
3844static void
3845check_curr_ui_sync_execution_done (void)
3846{
3847 struct ui *ui = current_ui;
3848
3849 if (ui->prompt_state == PROMPT_NEEDED
3850 && ui->async
3851 && !gdb_in_secondary_prompt_p (ui))
3852 {
3853 target_terminal_ours ();
3854 observer_notify_sync_execution_done ();
3855 ui_register_input_event_handler (ui);
3856 }
3857}
3858
3859/* See infrun.h. */
3860
3861void
3862all_uis_check_sync_execution_done (void)
3863{
3864 SWITCH_THRU_ALL_UIS ()
3865 {
3866 check_curr_ui_sync_execution_done ();
3867 }
3868}
3869
3870/* See infrun.h. */
3871
3872void
3873all_uis_on_sync_execution_starting (void)
3874{
3875 SWITCH_THRU_ALL_UIS ()
3876 {
3877 if (current_ui->prompt_state == PROMPT_NEEDED)
3878 async_disable_stdin ();
3879 }
3880}
3881
3882/* Asynchronous version of wait_for_inferior. It is called by the
3883 event loop whenever a change of state is detected on the file
3884 descriptor corresponding to the target. It can be called more than
3885 once to complete a single execution command. In such cases we need
3886 to keep the state in a global variable ECSS. If it is the last time
3887 that this function is called for a single execution command, then
3888 report to the user that the inferior has stopped, and do the
3889 necessary cleanups. */
3890
3891void
3892fetch_inferior_event (void *client_data)
3893{
3894 struct execution_control_state ecss;
3895 struct execution_control_state *ecs = &ecss;
3896 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3897 struct cleanup *ts_old_chain;
3898 int cmd_done = 0;
3899 ptid_t waiton_ptid = minus_one_ptid;
3900
3901 memset (ecs, 0, sizeof (*ecs));
3902
3903 /* Events are always processed with the main UI as current UI. This
3904 way, warnings, debug output, etc. are always consistently sent to
3905 the main console. */
3906 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3907
3908 /* End up with readline processing input, if necessary. */
3909 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3910
3911 /* We're handling a live event, so make sure we're doing live
3912 debugging. If we're looking at traceframes while the target is
3913 running, we're going to need to get back to that mode after
3914 handling the event. */
3915 if (non_stop)
3916 {
3917 make_cleanup_restore_current_traceframe ();
3918 set_current_traceframe (-1);
3919 }
3920
3921 if (non_stop)
3922 /* In non-stop mode, the user/frontend should not notice a thread
3923 switch due to internal events. Make sure we reverse to the
3924 user selected thread and frame after handling the event and
3925 running any breakpoint commands. */
3926 make_cleanup_restore_current_thread ();
3927
3928 overlay_cache_invalid = 1;
3929 /* Flush target cache before starting to handle each event. Target
3930 was running and cache could be stale. This is just a heuristic.
3931 Running threads may modify target memory, but we don't get any
3932 event. */
3933 target_dcache_invalidate ();
3934
3935 scoped_restore save_exec_dir
3936 = make_scoped_restore (&execution_direction, target_execution_direction ());
3937
3938 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3939 target_can_async_p () ? TARGET_WNOHANG : 0);
3940
3941 if (debug_infrun)
3942 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3943
3944 /* If an error happens while handling the event, propagate GDB's
3945 knowledge of the executing state to the frontend/user running
3946 state. */
3947 if (!target_is_non_stop_p ())
3948 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3949 else
3950 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3951
3952 /* Get executed before make_cleanup_restore_current_thread above to apply
3953 still for the thread which has thrown the exception. */
3954 make_bpstat_clear_actions_cleanup ();
3955
3956 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3957
3958 /* Now figure out what to do with the result of the result. */
3959 handle_inferior_event (ecs);
3960
3961 if (!ecs->wait_some_more)
3962 {
3963 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3964 int should_stop = 1;
3965 struct thread_info *thr = ecs->event_thread;
3966 int should_notify_stop = 1;
3967
3968 delete_just_stopped_threads_infrun_breakpoints ();
3969
3970 if (thr != NULL)
3971 {
3972 struct thread_fsm *thread_fsm = thr->thread_fsm;
3973
3974 if (thread_fsm != NULL)
3975 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3976 }
3977
3978 if (!should_stop)
3979 {
3980 keep_going (ecs);
3981 }
3982 else
3983 {
3984 clean_up_just_stopped_threads_fsms (ecs);
3985
3986 if (thr != NULL && thr->thread_fsm != NULL)
3987 {
3988 should_notify_stop
3989 = thread_fsm_should_notify_stop (thr->thread_fsm);
3990 }
3991
3992 if (should_notify_stop)
3993 {
3994 int proceeded = 0;
3995
3996 /* We may not find an inferior if this was a process exit. */
3997 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3998 proceeded = normal_stop ();
3999
4000 if (!proceeded)
4001 {
4002 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4003 cmd_done = 1;
4004 }
4005 }
4006 }
4007 }
4008
4009 /* No error, don't finish the thread states yet. */
4010 discard_cleanups (ts_old_chain);
4011
4012 /* Revert thread and frame. */
4013 do_cleanups (old_chain);
4014
4015 /* If a UI was in sync execution mode, and now isn't, restore its
4016 prompt (a synchronous execution command has finished, and we're
4017 ready for input). */
4018 all_uis_check_sync_execution_done ();
4019
4020 if (cmd_done
4021 && exec_done_display_p
4022 && (ptid_equal (inferior_ptid, null_ptid)
4023 || !is_running (inferior_ptid)))
4024 printf_unfiltered (_("completed.\n"));
4025}
4026
4027/* Record the frame and location we're currently stepping through. */
4028void
4029set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4030{
4031 struct thread_info *tp = inferior_thread ();
4032
4033 tp->control.step_frame_id = get_frame_id (frame);
4034 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4035
4036 tp->current_symtab = sal.symtab;
4037 tp->current_line = sal.line;
4038}
4039
4040/* Clear context switchable stepping state. */
4041
4042void
4043init_thread_stepping_state (struct thread_info *tss)
4044{
4045 tss->stepped_breakpoint = 0;
4046 tss->stepping_over_breakpoint = 0;
4047 tss->stepping_over_watchpoint = 0;
4048 tss->step_after_step_resume_breakpoint = 0;
4049}
4050
4051/* Set the cached copy of the last ptid/waitstatus. */
4052
4053void
4054set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4055{
4056 target_last_wait_ptid = ptid;
4057 target_last_waitstatus = status;
4058}
4059
4060/* Return the cached copy of the last pid/waitstatus returned by
4061 target_wait()/deprecated_target_wait_hook(). The data is actually
4062 cached by handle_inferior_event(), which gets called immediately
4063 after target_wait()/deprecated_target_wait_hook(). */
4064
4065void
4066get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4067{
4068 *ptidp = target_last_wait_ptid;
4069 *status = target_last_waitstatus;
4070}
4071
4072void
4073nullify_last_target_wait_ptid (void)
4074{
4075 target_last_wait_ptid = minus_one_ptid;
4076}
4077
4078/* Switch thread contexts. */
4079
4080static void
4081context_switch (ptid_t ptid)
4082{
4083 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4084 {
4085 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4086 target_pid_to_str (inferior_ptid));
4087 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4088 target_pid_to_str (ptid));
4089 }
4090
4091 switch_to_thread (ptid);
4092}
4093
4094/* If the target can't tell whether we've hit breakpoints
4095 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4096 check whether that could have been caused by a breakpoint. If so,
4097 adjust the PC, per gdbarch_decr_pc_after_break. */
4098
4099static void
4100adjust_pc_after_break (struct thread_info *thread,
4101 struct target_waitstatus *ws)
4102{
4103 struct regcache *regcache;
4104 struct gdbarch *gdbarch;
4105 struct address_space *aspace;
4106 CORE_ADDR breakpoint_pc, decr_pc;
4107
4108 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4109 we aren't, just return.
4110
4111 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4112 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4113 implemented by software breakpoints should be handled through the normal
4114 breakpoint layer.
4115
4116 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4117 different signals (SIGILL or SIGEMT for instance), but it is less
4118 clear where the PC is pointing afterwards. It may not match
4119 gdbarch_decr_pc_after_break. I don't know any specific target that
4120 generates these signals at breakpoints (the code has been in GDB since at
4121 least 1992) so I can not guess how to handle them here.
4122
4123 In earlier versions of GDB, a target with
4124 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4125 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4126 target with both of these set in GDB history, and it seems unlikely to be
4127 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4128
4129 if (ws->kind != TARGET_WAITKIND_STOPPED)
4130 return;
4131
4132 if (ws->value.sig != GDB_SIGNAL_TRAP)
4133 return;
4134
4135 /* In reverse execution, when a breakpoint is hit, the instruction
4136 under it has already been de-executed. The reported PC always
4137 points at the breakpoint address, so adjusting it further would
4138 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4139 architecture:
4140
4141 B1 0x08000000 : INSN1
4142 B2 0x08000001 : INSN2
4143 0x08000002 : INSN3
4144 PC -> 0x08000003 : INSN4
4145
4146 Say you're stopped at 0x08000003 as above. Reverse continuing
4147 from that point should hit B2 as below. Reading the PC when the
4148 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4149 been de-executed already.
4150
4151 B1 0x08000000 : INSN1
4152 B2 PC -> 0x08000001 : INSN2
4153 0x08000002 : INSN3
4154 0x08000003 : INSN4
4155
4156 We can't apply the same logic as for forward execution, because
4157 we would wrongly adjust the PC to 0x08000000, since there's a
4158 breakpoint at PC - 1. We'd then report a hit on B1, although
4159 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4160 behaviour. */
4161 if (execution_direction == EXEC_REVERSE)
4162 return;
4163
4164 /* If the target can tell whether the thread hit a SW breakpoint,
4165 trust it. Targets that can tell also adjust the PC
4166 themselves. */
4167 if (target_supports_stopped_by_sw_breakpoint ())
4168 return;
4169
4170 /* Note that relying on whether a breakpoint is planted in memory to
4171 determine this can fail. E.g,. the breakpoint could have been
4172 removed since. Or the thread could have been told to step an
4173 instruction the size of a breakpoint instruction, and only
4174 _after_ was a breakpoint inserted at its address. */
4175
4176 /* If this target does not decrement the PC after breakpoints, then
4177 we have nothing to do. */
4178 regcache = get_thread_regcache (thread->ptid);
4179 gdbarch = get_regcache_arch (regcache);
4180
4181 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4182 if (decr_pc == 0)
4183 return;
4184
4185 aspace = get_regcache_aspace (regcache);
4186
4187 /* Find the location where (if we've hit a breakpoint) the
4188 breakpoint would be. */
4189 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4190
4191 /* If the target can't tell whether a software breakpoint triggered,
4192 fallback to figuring it out based on breakpoints we think were
4193 inserted in the target, and on whether the thread was stepped or
4194 continued. */
4195
4196 /* Check whether there actually is a software breakpoint inserted at
4197 that location.
4198
4199 If in non-stop mode, a race condition is possible where we've
4200 removed a breakpoint, but stop events for that breakpoint were
4201 already queued and arrive later. To suppress those spurious
4202 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4203 and retire them after a number of stop events are reported. Note
4204 this is an heuristic and can thus get confused. The real fix is
4205 to get the "stopped by SW BP and needs adjustment" info out of
4206 the target/kernel (and thus never reach here; see above). */
4207 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4208 || (target_is_non_stop_p ()
4209 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4210 {
4211 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4212
4213 if (record_full_is_used ())
4214 record_full_gdb_operation_disable_set ();
4215
4216 /* When using hardware single-step, a SIGTRAP is reported for both
4217 a completed single-step and a software breakpoint. Need to
4218 differentiate between the two, as the latter needs adjusting
4219 but the former does not.
4220
4221 The SIGTRAP can be due to a completed hardware single-step only if
4222 - we didn't insert software single-step breakpoints
4223 - this thread is currently being stepped
4224
4225 If any of these events did not occur, we must have stopped due
4226 to hitting a software breakpoint, and have to back up to the
4227 breakpoint address.
4228
4229 As a special case, we could have hardware single-stepped a
4230 software breakpoint. In this case (prev_pc == breakpoint_pc),
4231 we also need to back up to the breakpoint address. */
4232
4233 if (thread_has_single_step_breakpoints_set (thread)
4234 || !currently_stepping (thread)
4235 || (thread->stepped_breakpoint
4236 && thread->prev_pc == breakpoint_pc))
4237 regcache_write_pc (regcache, breakpoint_pc);
4238
4239 do_cleanups (old_cleanups);
4240 }
4241}
4242
4243static int
4244stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4245{
4246 for (frame = get_prev_frame (frame);
4247 frame != NULL;
4248 frame = get_prev_frame (frame))
4249 {
4250 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4251 return 1;
4252 if (get_frame_type (frame) != INLINE_FRAME)
4253 break;
4254 }
4255
4256 return 0;
4257}
4258
4259/* Auxiliary function that handles syscall entry/return events.
4260 It returns 1 if the inferior should keep going (and GDB
4261 should ignore the event), or 0 if the event deserves to be
4262 processed. */
4263
4264static int
4265handle_syscall_event (struct execution_control_state *ecs)
4266{
4267 struct regcache *regcache;
4268 int syscall_number;
4269
4270 if (!ptid_equal (ecs->ptid, inferior_ptid))
4271 context_switch (ecs->ptid);
4272
4273 regcache = get_thread_regcache (ecs->ptid);
4274 syscall_number = ecs->ws.value.syscall_number;
4275 stop_pc = regcache_read_pc (regcache);
4276
4277 if (catch_syscall_enabled () > 0
4278 && catching_syscall_number (syscall_number) > 0)
4279 {
4280 if (debug_infrun)
4281 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4282 syscall_number);
4283
4284 ecs->event_thread->control.stop_bpstat
4285 = bpstat_stop_status (get_regcache_aspace (regcache),
4286 stop_pc, ecs->ptid, &ecs->ws);
4287
4288 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4289 {
4290 /* Catchpoint hit. */
4291 return 0;
4292 }
4293 }
4294
4295 /* If no catchpoint triggered for this, then keep going. */
4296 keep_going (ecs);
4297 return 1;
4298}
4299
4300/* Lazily fill in the execution_control_state's stop_func_* fields. */
4301
4302static void
4303fill_in_stop_func (struct gdbarch *gdbarch,
4304 struct execution_control_state *ecs)
4305{
4306 if (!ecs->stop_func_filled_in)
4307 {
4308 /* Don't care about return value; stop_func_start and stop_func_name
4309 will both be 0 if it doesn't work. */
4310 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4311 &ecs->stop_func_start, &ecs->stop_func_end);
4312 ecs->stop_func_start
4313 += gdbarch_deprecated_function_start_offset (gdbarch);
4314
4315 if (gdbarch_skip_entrypoint_p (gdbarch))
4316 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4317 ecs->stop_func_start);
4318
4319 ecs->stop_func_filled_in = 1;
4320 }
4321}
4322
4323
4324/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4325
4326static enum stop_kind
4327get_inferior_stop_soon (ptid_t ptid)
4328{
4329 struct inferior *inf = find_inferior_ptid (ptid);
4330
4331 gdb_assert (inf != NULL);
4332 return inf->control.stop_soon;
4333}
4334
4335/* Wait for one event. Store the resulting waitstatus in WS, and
4336 return the event ptid. */
4337
4338static ptid_t
4339wait_one (struct target_waitstatus *ws)
4340{
4341 ptid_t event_ptid;
4342 ptid_t wait_ptid = minus_one_ptid;
4343
4344 overlay_cache_invalid = 1;
4345
4346 /* Flush target cache before starting to handle each event.
4347 Target was running and cache could be stale. This is just a
4348 heuristic. Running threads may modify target memory, but we
4349 don't get any event. */
4350 target_dcache_invalidate ();
4351
4352 if (deprecated_target_wait_hook)
4353 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4354 else
4355 event_ptid = target_wait (wait_ptid, ws, 0);
4356
4357 if (debug_infrun)
4358 print_target_wait_results (wait_ptid, event_ptid, ws);
4359
4360 return event_ptid;
4361}
4362
4363/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4364 instead of the current thread. */
4365#define THREAD_STOPPED_BY(REASON) \
4366static int \
4367thread_stopped_by_ ## REASON (ptid_t ptid) \
4368{ \
4369 struct cleanup *old_chain; \
4370 int res; \
4371 \
4372 old_chain = save_inferior_ptid (); \
4373 inferior_ptid = ptid; \
4374 \
4375 res = target_stopped_by_ ## REASON (); \
4376 \
4377 do_cleanups (old_chain); \
4378 \
4379 return res; \
4380}
4381
4382/* Generate thread_stopped_by_watchpoint. */
4383THREAD_STOPPED_BY (watchpoint)
4384/* Generate thread_stopped_by_sw_breakpoint. */
4385THREAD_STOPPED_BY (sw_breakpoint)
4386/* Generate thread_stopped_by_hw_breakpoint. */
4387THREAD_STOPPED_BY (hw_breakpoint)
4388
4389/* Cleanups that switches to the PTID pointed at by PTID_P. */
4390
4391static void
4392switch_to_thread_cleanup (void *ptid_p)
4393{
4394 ptid_t ptid = *(ptid_t *) ptid_p;
4395
4396 switch_to_thread (ptid);
4397}
4398
4399/* Save the thread's event and stop reason to process it later. */
4400
4401static void
4402save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4403{
4404 struct regcache *regcache;
4405 struct address_space *aspace;
4406
4407 if (debug_infrun)
4408 {
4409 char *statstr;
4410
4411 statstr = target_waitstatus_to_string (ws);
4412 fprintf_unfiltered (gdb_stdlog,
4413 "infrun: saving status %s for %d.%ld.%ld\n",
4414 statstr,
4415 ptid_get_pid (tp->ptid),
4416 ptid_get_lwp (tp->ptid),
4417 ptid_get_tid (tp->ptid));
4418 xfree (statstr);
4419 }
4420
4421 /* Record for later. */
4422 tp->suspend.waitstatus = *ws;
4423 tp->suspend.waitstatus_pending_p = 1;
4424
4425 regcache = get_thread_regcache (tp->ptid);
4426 aspace = get_regcache_aspace (regcache);
4427
4428 if (ws->kind == TARGET_WAITKIND_STOPPED
4429 && ws->value.sig == GDB_SIGNAL_TRAP)
4430 {
4431 CORE_ADDR pc = regcache_read_pc (regcache);
4432
4433 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4434
4435 if (thread_stopped_by_watchpoint (tp->ptid))
4436 {
4437 tp->suspend.stop_reason
4438 = TARGET_STOPPED_BY_WATCHPOINT;
4439 }
4440 else if (target_supports_stopped_by_sw_breakpoint ()
4441 && thread_stopped_by_sw_breakpoint (tp->ptid))
4442 {
4443 tp->suspend.stop_reason
4444 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4445 }
4446 else if (target_supports_stopped_by_hw_breakpoint ()
4447 && thread_stopped_by_hw_breakpoint (tp->ptid))
4448 {
4449 tp->suspend.stop_reason
4450 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4451 }
4452 else if (!target_supports_stopped_by_hw_breakpoint ()
4453 && hardware_breakpoint_inserted_here_p (aspace,
4454 pc))
4455 {
4456 tp->suspend.stop_reason
4457 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4458 }
4459 else if (!target_supports_stopped_by_sw_breakpoint ()
4460 && software_breakpoint_inserted_here_p (aspace,
4461 pc))
4462 {
4463 tp->suspend.stop_reason
4464 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4465 }
4466 else if (!thread_has_single_step_breakpoints_set (tp)
4467 && currently_stepping (tp))
4468 {
4469 tp->suspend.stop_reason
4470 = TARGET_STOPPED_BY_SINGLE_STEP;
4471 }
4472 }
4473}
4474
4475/* A cleanup that disables thread create/exit events. */
4476
4477static void
4478disable_thread_events (void *arg)
4479{
4480 target_thread_events (0);
4481}
4482
4483/* See infrun.h. */
4484
4485void
4486stop_all_threads (void)
4487{
4488 /* We may need multiple passes to discover all threads. */
4489 int pass;
4490 int iterations = 0;
4491 ptid_t entry_ptid;
4492 struct cleanup *old_chain;
4493
4494 gdb_assert (target_is_non_stop_p ());
4495
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4498
4499 entry_ptid = inferior_ptid;
4500 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4501
4502 target_thread_events (1);
4503 make_cleanup (disable_thread_events, NULL);
4504
4505 /* Request threads to stop, and then wait for the stops. Because
4506 threads we already know about can spawn more threads while we're
4507 trying to stop them, and we only learn about new threads when we
4508 update the thread list, do this in a loop, and keep iterating
4509 until two passes find no threads that need to be stopped. */
4510 for (pass = 0; pass < 2; pass++, iterations++)
4511 {
4512 if (debug_infrun)
4513 fprintf_unfiltered (gdb_stdlog,
4514 "infrun: stop_all_threads, pass=%d, "
4515 "iterations=%d\n", pass, iterations);
4516 while (1)
4517 {
4518 ptid_t event_ptid;
4519 struct target_waitstatus ws;
4520 int need_wait = 0;
4521 struct thread_info *t;
4522
4523 update_thread_list ();
4524
4525 /* Go through all threads looking for threads that we need
4526 to tell the target to stop. */
4527 ALL_NON_EXITED_THREADS (t)
4528 {
4529 if (t->executing)
4530 {
4531 /* If already stopping, don't request a stop again.
4532 We just haven't seen the notification yet. */
4533 if (!t->stop_requested)
4534 {
4535 if (debug_infrun)
4536 fprintf_unfiltered (gdb_stdlog,
4537 "infrun: %s executing, "
4538 "need stop\n",
4539 target_pid_to_str (t->ptid));
4540 target_stop (t->ptid);
4541 t->stop_requested = 1;
4542 }
4543 else
4544 {
4545 if (debug_infrun)
4546 fprintf_unfiltered (gdb_stdlog,
4547 "infrun: %s executing, "
4548 "already stopping\n",
4549 target_pid_to_str (t->ptid));
4550 }
4551
4552 if (t->stop_requested)
4553 need_wait = 1;
4554 }
4555 else
4556 {
4557 if (debug_infrun)
4558 fprintf_unfiltered (gdb_stdlog,
4559 "infrun: %s not executing\n",
4560 target_pid_to_str (t->ptid));
4561
4562 /* The thread may be not executing, but still be
4563 resumed with a pending status to process. */
4564 t->resumed = 0;
4565 }
4566 }
4567
4568 if (!need_wait)
4569 break;
4570
4571 /* If we find new threads on the second iteration, restart
4572 over. We want to see two iterations in a row with all
4573 threads stopped. */
4574 if (pass > 0)
4575 pass = -1;
4576
4577 event_ptid = wait_one (&ws);
4578 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4579 {
4580 /* All resumed threads exited. */
4581 }
4582 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4583 || ws.kind == TARGET_WAITKIND_EXITED
4584 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4585 {
4586 if (debug_infrun)
4587 {
4588 ptid_t ptid = pid_to_ptid (ws.value.integer);
4589
4590 fprintf_unfiltered (gdb_stdlog,
4591 "infrun: %s exited while "
4592 "stopping threads\n",
4593 target_pid_to_str (ptid));
4594 }
4595 }
4596 else
4597 {
4598 struct inferior *inf;
4599
4600 t = find_thread_ptid (event_ptid);
4601 if (t == NULL)
4602 t = add_thread (event_ptid);
4603
4604 t->stop_requested = 0;
4605 t->executing = 0;
4606 t->resumed = 0;
4607 t->control.may_range_step = 0;
4608
4609 /* This may be the first time we see the inferior report
4610 a stop. */
4611 inf = find_inferior_ptid (event_ptid);
4612 if (inf->needs_setup)
4613 {
4614 switch_to_thread_no_regs (t);
4615 setup_inferior (0);
4616 }
4617
4618 if (ws.kind == TARGET_WAITKIND_STOPPED
4619 && ws.value.sig == GDB_SIGNAL_0)
4620 {
4621 /* We caught the event that we intended to catch, so
4622 there's no event pending. */
4623 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4624 t->suspend.waitstatus_pending_p = 0;
4625
4626 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4627 {
4628 /* Add it back to the step-over queue. */
4629 if (debug_infrun)
4630 {
4631 fprintf_unfiltered (gdb_stdlog,
4632 "infrun: displaced-step of %s "
4633 "canceled: adding back to the "
4634 "step-over queue\n",
4635 target_pid_to_str (t->ptid));
4636 }
4637 t->control.trap_expected = 0;
4638 thread_step_over_chain_enqueue (t);
4639 }
4640 }
4641 else
4642 {
4643 enum gdb_signal sig;
4644 struct regcache *regcache;
4645
4646 if (debug_infrun)
4647 {
4648 char *statstr;
4649
4650 statstr = target_waitstatus_to_string (&ws);
4651 fprintf_unfiltered (gdb_stdlog,
4652 "infrun: target_wait %s, saving "
4653 "status for %d.%ld.%ld\n",
4654 statstr,
4655 ptid_get_pid (t->ptid),
4656 ptid_get_lwp (t->ptid),
4657 ptid_get_tid (t->ptid));
4658 xfree (statstr);
4659 }
4660
4661 /* Record for later. */
4662 save_waitstatus (t, &ws);
4663
4664 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4665 ? ws.value.sig : GDB_SIGNAL_0);
4666
4667 if (displaced_step_fixup (t->ptid, sig) < 0)
4668 {
4669 /* Add it back to the step-over queue. */
4670 t->control.trap_expected = 0;
4671 thread_step_over_chain_enqueue (t);
4672 }
4673
4674 regcache = get_thread_regcache (t->ptid);
4675 t->suspend.stop_pc = regcache_read_pc (regcache);
4676
4677 if (debug_infrun)
4678 {
4679 fprintf_unfiltered (gdb_stdlog,
4680 "infrun: saved stop_pc=%s for %s "
4681 "(currently_stepping=%d)\n",
4682 paddress (target_gdbarch (),
4683 t->suspend.stop_pc),
4684 target_pid_to_str (t->ptid),
4685 currently_stepping (t));
4686 }
4687 }
4688 }
4689 }
4690 }
4691
4692 do_cleanups (old_chain);
4693
4694 if (debug_infrun)
4695 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4696}
4697
4698/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4699
4700static int
4701handle_no_resumed (struct execution_control_state *ecs)
4702{
4703 struct inferior *inf;
4704 struct thread_info *thread;
4705
4706 if (target_can_async_p ())
4707 {
4708 struct ui *ui;
4709 int any_sync = 0;
4710
4711 ALL_UIS (ui)
4712 {
4713 if (ui->prompt_state == PROMPT_BLOCKED)
4714 {
4715 any_sync = 1;
4716 break;
4717 }
4718 }
4719 if (!any_sync)
4720 {
4721 /* There were no unwaited-for children left in the target, but,
4722 we're not synchronously waiting for events either. Just
4723 ignore. */
4724
4725 if (debug_infrun)
4726 fprintf_unfiltered (gdb_stdlog,
4727 "infrun: TARGET_WAITKIND_NO_RESUMED "
4728 "(ignoring: bg)\n");
4729 prepare_to_wait (ecs);
4730 return 1;
4731 }
4732 }
4733
4734 /* Otherwise, if we were running a synchronous execution command, we
4735 may need to cancel it and give the user back the terminal.
4736
4737 In non-stop mode, the target can't tell whether we've already
4738 consumed previous stop events, so it can end up sending us a
4739 no-resumed event like so:
4740
4741 #0 - thread 1 is left stopped
4742
4743 #1 - thread 2 is resumed and hits breakpoint
4744 -> TARGET_WAITKIND_STOPPED
4745
4746 #2 - thread 3 is resumed and exits
4747 this is the last resumed thread, so
4748 -> TARGET_WAITKIND_NO_RESUMED
4749
4750 #3 - gdb processes stop for thread 2 and decides to re-resume
4751 it.
4752
4753 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4754 thread 2 is now resumed, so the event should be ignored.
4755
4756 IOW, if the stop for thread 2 doesn't end a foreground command,
4757 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4758 event. But it could be that the event meant that thread 2 itself
4759 (or whatever other thread was the last resumed thread) exited.
4760
4761 To address this we refresh the thread list and check whether we
4762 have resumed threads _now_. In the example above, this removes
4763 thread 3 from the thread list. If thread 2 was re-resumed, we
4764 ignore this event. If we find no thread resumed, then we cancel
4765 the synchronous command show "no unwaited-for " to the user. */
4766 update_thread_list ();
4767
4768 ALL_NON_EXITED_THREADS (thread)
4769 {
4770 if (thread->executing
4771 || thread->suspend.waitstatus_pending_p)
4772 {
4773 /* There were no unwaited-for children left in the target at
4774 some point, but there are now. Just ignore. */
4775 if (debug_infrun)
4776 fprintf_unfiltered (gdb_stdlog,
4777 "infrun: TARGET_WAITKIND_NO_RESUMED "
4778 "(ignoring: found resumed)\n");
4779 prepare_to_wait (ecs);
4780 return 1;
4781 }
4782 }
4783
4784 /* Note however that we may find no resumed thread because the whole
4785 process exited meanwhile (thus updating the thread list results
4786 in an empty thread list). In this case we know we'll be getting
4787 a process exit event shortly. */
4788 ALL_INFERIORS (inf)
4789 {
4790 if (inf->pid == 0)
4791 continue;
4792
4793 thread = any_live_thread_of_process (inf->pid);
4794 if (thread == NULL)
4795 {
4796 if (debug_infrun)
4797 fprintf_unfiltered (gdb_stdlog,
4798 "infrun: TARGET_WAITKIND_NO_RESUMED "
4799 "(expect process exit)\n");
4800 prepare_to_wait (ecs);
4801 return 1;
4802 }
4803 }
4804
4805 /* Go ahead and report the event. */
4806 return 0;
4807}
4808
4809/* Given an execution control state that has been freshly filled in by
4810 an event from the inferior, figure out what it means and take
4811 appropriate action.
4812
4813 The alternatives are:
4814
4815 1) stop_waiting and return; to really stop and return to the
4816 debugger.
4817
4818 2) keep_going and return; to wait for the next event (set
4819 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4820 once). */
4821
4822static void
4823handle_inferior_event_1 (struct execution_control_state *ecs)
4824{
4825 enum stop_kind stop_soon;
4826
4827 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4828 {
4829 /* We had an event in the inferior, but we are not interested in
4830 handling it at this level. The lower layers have already
4831 done what needs to be done, if anything.
4832
4833 One of the possible circumstances for this is when the
4834 inferior produces output for the console. The inferior has
4835 not stopped, and we are ignoring the event. Another possible
4836 circumstance is any event which the lower level knows will be
4837 reported multiple times without an intervening resume. */
4838 if (debug_infrun)
4839 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4840 prepare_to_wait (ecs);
4841 return;
4842 }
4843
4844 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4845 {
4846 if (debug_infrun)
4847 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4848 prepare_to_wait (ecs);
4849 return;
4850 }
4851
4852 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4853 && handle_no_resumed (ecs))
4854 return;
4855
4856 /* Cache the last pid/waitstatus. */
4857 set_last_target_status (ecs->ptid, ecs->ws);
4858
4859 /* Always clear state belonging to the previous time we stopped. */
4860 stop_stack_dummy = STOP_NONE;
4861
4862 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4863 {
4864 /* No unwaited-for children left. IOW, all resumed children
4865 have exited. */
4866 if (debug_infrun)
4867 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4868
4869 stop_print_frame = 0;
4870 stop_waiting (ecs);
4871 return;
4872 }
4873
4874 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4875 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4876 {
4877 ecs->event_thread = find_thread_ptid (ecs->ptid);
4878 /* If it's a new thread, add it to the thread database. */
4879 if (ecs->event_thread == NULL)
4880 ecs->event_thread = add_thread (ecs->ptid);
4881
4882 /* Disable range stepping. If the next step request could use a
4883 range, this will be end up re-enabled then. */
4884 ecs->event_thread->control.may_range_step = 0;
4885 }
4886
4887 /* Dependent on valid ECS->EVENT_THREAD. */
4888 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4889
4890 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4891 reinit_frame_cache ();
4892
4893 breakpoint_retire_moribund ();
4894
4895 /* First, distinguish signals caused by the debugger from signals
4896 that have to do with the program's own actions. Note that
4897 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4898 on the operating system version. Here we detect when a SIGILL or
4899 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4900 something similar for SIGSEGV, since a SIGSEGV will be generated
4901 when we're trying to execute a breakpoint instruction on a
4902 non-executable stack. This happens for call dummy breakpoints
4903 for architectures like SPARC that place call dummies on the
4904 stack. */
4905 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4906 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4907 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4908 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4909 {
4910 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4911
4912 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4913 regcache_read_pc (regcache)))
4914 {
4915 if (debug_infrun)
4916 fprintf_unfiltered (gdb_stdlog,
4917 "infrun: Treating signal as SIGTRAP\n");
4918 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4919 }
4920 }
4921
4922 /* Mark the non-executing threads accordingly. In all-stop, all
4923 threads of all processes are stopped when we get any event
4924 reported. In non-stop mode, only the event thread stops. */
4925 {
4926 ptid_t mark_ptid;
4927
4928 if (!target_is_non_stop_p ())
4929 mark_ptid = minus_one_ptid;
4930 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4931 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4932 {
4933 /* If we're handling a process exit in non-stop mode, even
4934 though threads haven't been deleted yet, one would think
4935 that there is nothing to do, as threads of the dead process
4936 will be soon deleted, and threads of any other process were
4937 left running. However, on some targets, threads survive a
4938 process exit event. E.g., for the "checkpoint" command,
4939 when the current checkpoint/fork exits, linux-fork.c
4940 automatically switches to another fork from within
4941 target_mourn_inferior, by associating the same
4942 inferior/thread to another fork. We haven't mourned yet at
4943 this point, but we must mark any threads left in the
4944 process as not-executing so that finish_thread_state marks
4945 them stopped (in the user's perspective) if/when we present
4946 the stop to the user. */
4947 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4948 }
4949 else
4950 mark_ptid = ecs->ptid;
4951
4952 set_executing (mark_ptid, 0);
4953
4954 /* Likewise the resumed flag. */
4955 set_resumed (mark_ptid, 0);
4956 }
4957
4958 switch (ecs->ws.kind)
4959 {
4960 case TARGET_WAITKIND_LOADED:
4961 if (debug_infrun)
4962 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4963 if (!ptid_equal (ecs->ptid, inferior_ptid))
4964 context_switch (ecs->ptid);
4965 /* Ignore gracefully during startup of the inferior, as it might
4966 be the shell which has just loaded some objects, otherwise
4967 add the symbols for the newly loaded objects. Also ignore at
4968 the beginning of an attach or remote session; we will query
4969 the full list of libraries once the connection is
4970 established. */
4971
4972 stop_soon = get_inferior_stop_soon (ecs->ptid);
4973 if (stop_soon == NO_STOP_QUIETLY)
4974 {
4975 struct regcache *regcache;
4976
4977 regcache = get_thread_regcache (ecs->ptid);
4978
4979 handle_solib_event ();
4980
4981 ecs->event_thread->control.stop_bpstat
4982 = bpstat_stop_status (get_regcache_aspace (regcache),
4983 stop_pc, ecs->ptid, &ecs->ws);
4984
4985 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4986 {
4987 /* A catchpoint triggered. */
4988 process_event_stop_test (ecs);
4989 return;
4990 }
4991
4992 /* If requested, stop when the dynamic linker notifies
4993 gdb of events. This allows the user to get control
4994 and place breakpoints in initializer routines for
4995 dynamically loaded objects (among other things). */
4996 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4997 if (stop_on_solib_events)
4998 {
4999 /* Make sure we print "Stopped due to solib-event" in
5000 normal_stop. */
5001 stop_print_frame = 1;
5002
5003 stop_waiting (ecs);
5004 return;
5005 }
5006 }
5007
5008 /* If we are skipping through a shell, or through shared library
5009 loading that we aren't interested in, resume the program. If
5010 we're running the program normally, also resume. */
5011 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5012 {
5013 /* Loading of shared libraries might have changed breakpoint
5014 addresses. Make sure new breakpoints are inserted. */
5015 if (stop_soon == NO_STOP_QUIETLY)
5016 insert_breakpoints ();
5017 resume (GDB_SIGNAL_0);
5018 prepare_to_wait (ecs);
5019 return;
5020 }
5021
5022 /* But stop if we're attaching or setting up a remote
5023 connection. */
5024 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5025 || stop_soon == STOP_QUIETLY_REMOTE)
5026 {
5027 if (debug_infrun)
5028 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5029 stop_waiting (ecs);
5030 return;
5031 }
5032
5033 internal_error (__FILE__, __LINE__,
5034 _("unhandled stop_soon: %d"), (int) stop_soon);
5035
5036 case TARGET_WAITKIND_SPURIOUS:
5037 if (debug_infrun)
5038 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5039 if (!ptid_equal (ecs->ptid, inferior_ptid))
5040 context_switch (ecs->ptid);
5041 resume (GDB_SIGNAL_0);
5042 prepare_to_wait (ecs);
5043 return;
5044
5045 case TARGET_WAITKIND_THREAD_CREATED:
5046 if (debug_infrun)
5047 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5048 if (!ptid_equal (ecs->ptid, inferior_ptid))
5049 context_switch (ecs->ptid);
5050 if (!switch_back_to_stepped_thread (ecs))
5051 keep_going (ecs);
5052 return;
5053
5054 case TARGET_WAITKIND_EXITED:
5055 case TARGET_WAITKIND_SIGNALLED:
5056 if (debug_infrun)
5057 {
5058 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5059 fprintf_unfiltered (gdb_stdlog,
5060 "infrun: TARGET_WAITKIND_EXITED\n");
5061 else
5062 fprintf_unfiltered (gdb_stdlog,
5063 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5064 }
5065
5066 inferior_ptid = ecs->ptid;
5067 set_current_inferior (find_inferior_ptid (ecs->ptid));
5068 set_current_program_space (current_inferior ()->pspace);
5069 handle_vfork_child_exec_or_exit (0);
5070 target_terminal_ours (); /* Must do this before mourn anyway. */
5071
5072 /* Clearing any previous state of convenience variables. */
5073 clear_exit_convenience_vars ();
5074
5075 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5076 {
5077 /* Record the exit code in the convenience variable $_exitcode, so
5078 that the user can inspect this again later. */
5079 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5080 (LONGEST) ecs->ws.value.integer);
5081
5082 /* Also record this in the inferior itself. */
5083 current_inferior ()->has_exit_code = 1;
5084 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5085
5086 /* Support the --return-child-result option. */
5087 return_child_result_value = ecs->ws.value.integer;
5088
5089 observer_notify_exited (ecs->ws.value.integer);
5090 }
5091 else
5092 {
5093 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5094 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5095
5096 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5097 {
5098 /* Set the value of the internal variable $_exitsignal,
5099 which holds the signal uncaught by the inferior. */
5100 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5101 gdbarch_gdb_signal_to_target (gdbarch,
5102 ecs->ws.value.sig));
5103 }
5104 else
5105 {
5106 /* We don't have access to the target's method used for
5107 converting between signal numbers (GDB's internal
5108 representation <-> target's representation).
5109 Therefore, we cannot do a good job at displaying this
5110 information to the user. It's better to just warn
5111 her about it (if infrun debugging is enabled), and
5112 give up. */
5113 if (debug_infrun)
5114 fprintf_filtered (gdb_stdlog, _("\
5115Cannot fill $_exitsignal with the correct signal number.\n"));
5116 }
5117
5118 observer_notify_signal_exited (ecs->ws.value.sig);
5119 }
5120
5121 gdb_flush (gdb_stdout);
5122 target_mourn_inferior (inferior_ptid);
5123 stop_print_frame = 0;
5124 stop_waiting (ecs);
5125 return;
5126
5127 /* The following are the only cases in which we keep going;
5128 the above cases end in a continue or goto. */
5129 case TARGET_WAITKIND_FORKED:
5130 case TARGET_WAITKIND_VFORKED:
5131 if (debug_infrun)
5132 {
5133 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5134 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5135 else
5136 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5137 }
5138
5139 /* Check whether the inferior is displaced stepping. */
5140 {
5141 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5142 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5143
5144 /* If checking displaced stepping is supported, and thread
5145 ecs->ptid is displaced stepping. */
5146 if (displaced_step_in_progress_thread (ecs->ptid))
5147 {
5148 struct inferior *parent_inf
5149 = find_inferior_ptid (ecs->ptid);
5150 struct regcache *child_regcache;
5151 CORE_ADDR parent_pc;
5152
5153 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5154 indicating that the displaced stepping of syscall instruction
5155 has been done. Perform cleanup for parent process here. Note
5156 that this operation also cleans up the child process for vfork,
5157 because their pages are shared. */
5158 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5159 /* Start a new step-over in another thread if there's one
5160 that needs it. */
5161 start_step_over ();
5162
5163 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5164 {
5165 struct displaced_step_inferior_state *displaced
5166 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5167
5168 /* Restore scratch pad for child process. */
5169 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5170 }
5171
5172 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5173 the child's PC is also within the scratchpad. Set the child's PC
5174 to the parent's PC value, which has already been fixed up.
5175 FIXME: we use the parent's aspace here, although we're touching
5176 the child, because the child hasn't been added to the inferior
5177 list yet at this point. */
5178
5179 child_regcache
5180 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5181 gdbarch,
5182 parent_inf->aspace);
5183 /* Read PC value of parent process. */
5184 parent_pc = regcache_read_pc (regcache);
5185
5186 if (debug_displaced)
5187 fprintf_unfiltered (gdb_stdlog,
5188 "displaced: write child pc from %s to %s\n",
5189 paddress (gdbarch,
5190 regcache_read_pc (child_regcache)),
5191 paddress (gdbarch, parent_pc));
5192
5193 regcache_write_pc (child_regcache, parent_pc);
5194 }
5195 }
5196
5197 if (!ptid_equal (ecs->ptid, inferior_ptid))
5198 context_switch (ecs->ptid);
5199
5200 /* Immediately detach breakpoints from the child before there's
5201 any chance of letting the user delete breakpoints from the
5202 breakpoint lists. If we don't do this early, it's easy to
5203 leave left over traps in the child, vis: "break foo; catch
5204 fork; c; <fork>; del; c; <child calls foo>". We only follow
5205 the fork on the last `continue', and by that time the
5206 breakpoint at "foo" is long gone from the breakpoint table.
5207 If we vforked, then we don't need to unpatch here, since both
5208 parent and child are sharing the same memory pages; we'll
5209 need to unpatch at follow/detach time instead to be certain
5210 that new breakpoints added between catchpoint hit time and
5211 vfork follow are detached. */
5212 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5213 {
5214 /* This won't actually modify the breakpoint list, but will
5215 physically remove the breakpoints from the child. */
5216 detach_breakpoints (ecs->ws.value.related_pid);
5217 }
5218
5219 delete_just_stopped_threads_single_step_breakpoints ();
5220
5221 /* In case the event is caught by a catchpoint, remember that
5222 the event is to be followed at the next resume of the thread,
5223 and not immediately. */
5224 ecs->event_thread->pending_follow = ecs->ws;
5225
5226 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5227
5228 ecs->event_thread->control.stop_bpstat
5229 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5230 stop_pc, ecs->ptid, &ecs->ws);
5231
5232 /* If no catchpoint triggered for this, then keep going. Note
5233 that we're interested in knowing the bpstat actually causes a
5234 stop, not just if it may explain the signal. Software
5235 watchpoints, for example, always appear in the bpstat. */
5236 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5237 {
5238 ptid_t parent;
5239 ptid_t child;
5240 int should_resume;
5241 int follow_child
5242 = (follow_fork_mode_string == follow_fork_mode_child);
5243
5244 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5245
5246 should_resume = follow_fork ();
5247
5248 parent = ecs->ptid;
5249 child = ecs->ws.value.related_pid;
5250
5251 /* At this point, the parent is marked running, and the
5252 child is marked stopped. */
5253
5254 /* If not resuming the parent, mark it stopped. */
5255 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5256 set_running (parent, 0);
5257
5258 /* If resuming the child, mark it running. */
5259 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5260 set_running (child, 1);
5261
5262 /* In non-stop mode, also resume the other branch. */
5263 if (!detach_fork && (non_stop
5264 || (sched_multi && target_is_non_stop_p ())))
5265 {
5266 if (follow_child)
5267 switch_to_thread (parent);
5268 else
5269 switch_to_thread (child);
5270
5271 ecs->event_thread = inferior_thread ();
5272 ecs->ptid = inferior_ptid;
5273 keep_going (ecs);
5274 }
5275
5276 if (follow_child)
5277 switch_to_thread (child);
5278 else
5279 switch_to_thread (parent);
5280
5281 ecs->event_thread = inferior_thread ();
5282 ecs->ptid = inferior_ptid;
5283
5284 if (should_resume)
5285 keep_going (ecs);
5286 else
5287 stop_waiting (ecs);
5288 return;
5289 }
5290 process_event_stop_test (ecs);
5291 return;
5292
5293 case TARGET_WAITKIND_VFORK_DONE:
5294 /* Done with the shared memory region. Re-insert breakpoints in
5295 the parent, and keep going. */
5296
5297 if (debug_infrun)
5298 fprintf_unfiltered (gdb_stdlog,
5299 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5300
5301 if (!ptid_equal (ecs->ptid, inferior_ptid))
5302 context_switch (ecs->ptid);
5303
5304 current_inferior ()->waiting_for_vfork_done = 0;
5305 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5306 /* This also takes care of reinserting breakpoints in the
5307 previously locked inferior. */
5308 keep_going (ecs);
5309 return;
5310
5311 case TARGET_WAITKIND_EXECD:
5312 if (debug_infrun)
5313 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5314
5315 if (!ptid_equal (ecs->ptid, inferior_ptid))
5316 context_switch (ecs->ptid);
5317
5318 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5319
5320 /* Do whatever is necessary to the parent branch of the vfork. */
5321 handle_vfork_child_exec_or_exit (1);
5322
5323 /* This causes the eventpoints and symbol table to be reset.
5324 Must do this now, before trying to determine whether to
5325 stop. */
5326 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5327
5328 /* In follow_exec we may have deleted the original thread and
5329 created a new one. Make sure that the event thread is the
5330 execd thread for that case (this is a nop otherwise). */
5331 ecs->event_thread = inferior_thread ();
5332
5333 ecs->event_thread->control.stop_bpstat
5334 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5335 stop_pc, ecs->ptid, &ecs->ws);
5336
5337 /* Note that this may be referenced from inside
5338 bpstat_stop_status above, through inferior_has_execd. */
5339 xfree (ecs->ws.value.execd_pathname);
5340 ecs->ws.value.execd_pathname = NULL;
5341
5342 /* If no catchpoint triggered for this, then keep going. */
5343 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5344 {
5345 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5346 keep_going (ecs);
5347 return;
5348 }
5349 process_event_stop_test (ecs);
5350 return;
5351
5352 /* Be careful not to try to gather much state about a thread
5353 that's in a syscall. It's frequently a losing proposition. */
5354 case TARGET_WAITKIND_SYSCALL_ENTRY:
5355 if (debug_infrun)
5356 fprintf_unfiltered (gdb_stdlog,
5357 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5358 /* Getting the current syscall number. */
5359 if (handle_syscall_event (ecs) == 0)
5360 process_event_stop_test (ecs);
5361 return;
5362
5363 /* Before examining the threads further, step this thread to
5364 get it entirely out of the syscall. (We get notice of the
5365 event when the thread is just on the verge of exiting a
5366 syscall. Stepping one instruction seems to get it back
5367 into user code.) */
5368 case TARGET_WAITKIND_SYSCALL_RETURN:
5369 if (debug_infrun)
5370 fprintf_unfiltered (gdb_stdlog,
5371 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5372 if (handle_syscall_event (ecs) == 0)
5373 process_event_stop_test (ecs);
5374 return;
5375
5376 case TARGET_WAITKIND_STOPPED:
5377 if (debug_infrun)
5378 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5379 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5380 handle_signal_stop (ecs);
5381 return;
5382
5383 case TARGET_WAITKIND_NO_HISTORY:
5384 if (debug_infrun)
5385 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5386 /* Reverse execution: target ran out of history info. */
5387
5388 /* Switch to the stopped thread. */
5389 if (!ptid_equal (ecs->ptid, inferior_ptid))
5390 context_switch (ecs->ptid);
5391 if (debug_infrun)
5392 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5393
5394 delete_just_stopped_threads_single_step_breakpoints ();
5395 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5396 observer_notify_no_history ();
5397 stop_waiting (ecs);
5398 return;
5399 }
5400}
5401
5402/* A wrapper around handle_inferior_event_1, which also makes sure
5403 that all temporary struct value objects that were created during
5404 the handling of the event get deleted at the end. */
5405
5406static void
5407handle_inferior_event (struct execution_control_state *ecs)
5408{
5409 struct value *mark = value_mark ();
5410
5411 handle_inferior_event_1 (ecs);
5412 /* Purge all temporary values created during the event handling,
5413 as it could be a long time before we return to the command level
5414 where such values would otherwise be purged. */
5415 value_free_to_mark (mark);
5416}
5417
5418/* Restart threads back to what they were trying to do back when we
5419 paused them for an in-line step-over. The EVENT_THREAD thread is
5420 ignored. */
5421
5422static void
5423restart_threads (struct thread_info *event_thread)
5424{
5425 struct thread_info *tp;
5426
5427 /* In case the instruction just stepped spawned a new thread. */
5428 update_thread_list ();
5429
5430 ALL_NON_EXITED_THREADS (tp)
5431 {
5432 if (tp == event_thread)
5433 {
5434 if (debug_infrun)
5435 fprintf_unfiltered (gdb_stdlog,
5436 "infrun: restart threads: "
5437 "[%s] is event thread\n",
5438 target_pid_to_str (tp->ptid));
5439 continue;
5440 }
5441
5442 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5443 {
5444 if (debug_infrun)
5445 fprintf_unfiltered (gdb_stdlog,
5446 "infrun: restart threads: "
5447 "[%s] not meant to be running\n",
5448 target_pid_to_str (tp->ptid));
5449 continue;
5450 }
5451
5452 if (tp->resumed)
5453 {
5454 if (debug_infrun)
5455 fprintf_unfiltered (gdb_stdlog,
5456 "infrun: restart threads: [%s] resumed\n",
5457 target_pid_to_str (tp->ptid));
5458 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5459 continue;
5460 }
5461
5462 if (thread_is_in_step_over_chain (tp))
5463 {
5464 if (debug_infrun)
5465 fprintf_unfiltered (gdb_stdlog,
5466 "infrun: restart threads: "
5467 "[%s] needs step-over\n",
5468 target_pid_to_str (tp->ptid));
5469 gdb_assert (!tp->resumed);
5470 continue;
5471 }
5472
5473
5474 if (tp->suspend.waitstatus_pending_p)
5475 {
5476 if (debug_infrun)
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: restart threads: "
5479 "[%s] has pending status\n",
5480 target_pid_to_str (tp->ptid));
5481 tp->resumed = 1;
5482 continue;
5483 }
5484
5485 /* If some thread needs to start a step-over at this point, it
5486 should still be in the step-over queue, and thus skipped
5487 above. */
5488 if (thread_still_needs_step_over (tp))
5489 {
5490 internal_error (__FILE__, __LINE__,
5491 "thread [%s] needs a step-over, but not in "
5492 "step-over queue\n",
5493 target_pid_to_str (tp->ptid));
5494 }
5495
5496 if (currently_stepping (tp))
5497 {
5498 if (debug_infrun)
5499 fprintf_unfiltered (gdb_stdlog,
5500 "infrun: restart threads: [%s] was stepping\n",
5501 target_pid_to_str (tp->ptid));
5502 keep_going_stepped_thread (tp);
5503 }
5504 else
5505 {
5506 struct execution_control_state ecss;
5507 struct execution_control_state *ecs = &ecss;
5508
5509 if (debug_infrun)
5510 fprintf_unfiltered (gdb_stdlog,
5511 "infrun: restart threads: [%s] continuing\n",
5512 target_pid_to_str (tp->ptid));
5513 reset_ecs (ecs, tp);
5514 switch_to_thread (tp->ptid);
5515 keep_going_pass_signal (ecs);
5516 }
5517 }
5518}
5519
5520/* Callback for iterate_over_threads. Find a resumed thread that has
5521 a pending waitstatus. */
5522
5523static int
5524resumed_thread_with_pending_status (struct thread_info *tp,
5525 void *arg)
5526{
5527 return (tp->resumed
5528 && tp->suspend.waitstatus_pending_p);
5529}
5530
5531/* Called when we get an event that may finish an in-line or
5532 out-of-line (displaced stepping) step-over started previously.
5533 Return true if the event is processed and we should go back to the
5534 event loop; false if the caller should continue processing the
5535 event. */
5536
5537static int
5538finish_step_over (struct execution_control_state *ecs)
5539{
5540 int had_step_over_info;
5541
5542 displaced_step_fixup (ecs->ptid,
5543 ecs->event_thread->suspend.stop_signal);
5544
5545 had_step_over_info = step_over_info_valid_p ();
5546
5547 if (had_step_over_info)
5548 {
5549 /* If we're stepping over a breakpoint with all threads locked,
5550 then only the thread that was stepped should be reporting
5551 back an event. */
5552 gdb_assert (ecs->event_thread->control.trap_expected);
5553
5554 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5555 clear_step_over_info ();
5556 }
5557
5558 if (!target_is_non_stop_p ())
5559 return 0;
5560
5561 /* Start a new step-over in another thread if there's one that
5562 needs it. */
5563 start_step_over ();
5564
5565 /* If we were stepping over a breakpoint before, and haven't started
5566 a new in-line step-over sequence, then restart all other threads
5567 (except the event thread). We can't do this in all-stop, as then
5568 e.g., we wouldn't be able to issue any other remote packet until
5569 these other threads stop. */
5570 if (had_step_over_info && !step_over_info_valid_p ())
5571 {
5572 struct thread_info *pending;
5573
5574 /* If we only have threads with pending statuses, the restart
5575 below won't restart any thread and so nothing re-inserts the
5576 breakpoint we just stepped over. But we need it inserted
5577 when we later process the pending events, otherwise if
5578 another thread has a pending event for this breakpoint too,
5579 we'd discard its event (because the breakpoint that
5580 originally caused the event was no longer inserted). */
5581 context_switch (ecs->ptid);
5582 insert_breakpoints ();
5583
5584 restart_threads (ecs->event_thread);
5585
5586 /* If we have events pending, go through handle_inferior_event
5587 again, picking up a pending event at random. This avoids
5588 thread starvation. */
5589
5590 /* But not if we just stepped over a watchpoint in order to let
5591 the instruction execute so we can evaluate its expression.
5592 The set of watchpoints that triggered is recorded in the
5593 breakpoint objects themselves (see bp->watchpoint_triggered).
5594 If we processed another event first, that other event could
5595 clobber this info. */
5596 if (ecs->event_thread->stepping_over_watchpoint)
5597 return 0;
5598
5599 pending = iterate_over_threads (resumed_thread_with_pending_status,
5600 NULL);
5601 if (pending != NULL)
5602 {
5603 struct thread_info *tp = ecs->event_thread;
5604 struct regcache *regcache;
5605
5606 if (debug_infrun)
5607 {
5608 fprintf_unfiltered (gdb_stdlog,
5609 "infrun: found resumed threads with "
5610 "pending events, saving status\n");
5611 }
5612
5613 gdb_assert (pending != tp);
5614
5615 /* Record the event thread's event for later. */
5616 save_waitstatus (tp, &ecs->ws);
5617 /* This was cleared early, by handle_inferior_event. Set it
5618 so this pending event is considered by
5619 do_target_wait. */
5620 tp->resumed = 1;
5621
5622 gdb_assert (!tp->executing);
5623
5624 regcache = get_thread_regcache (tp->ptid);
5625 tp->suspend.stop_pc = regcache_read_pc (regcache);
5626
5627 if (debug_infrun)
5628 {
5629 fprintf_unfiltered (gdb_stdlog,
5630 "infrun: saved stop_pc=%s for %s "
5631 "(currently_stepping=%d)\n",
5632 paddress (target_gdbarch (),
5633 tp->suspend.stop_pc),
5634 target_pid_to_str (tp->ptid),
5635 currently_stepping (tp));
5636 }
5637
5638 /* This in-line step-over finished; clear this so we won't
5639 start a new one. This is what handle_signal_stop would
5640 do, if we returned false. */
5641 tp->stepping_over_breakpoint = 0;
5642
5643 /* Wake up the event loop again. */
5644 mark_async_event_handler (infrun_async_inferior_event_token);
5645
5646 prepare_to_wait (ecs);
5647 return 1;
5648 }
5649 }
5650
5651 return 0;
5652}
5653
5654/* Come here when the program has stopped with a signal. */
5655
5656static void
5657handle_signal_stop (struct execution_control_state *ecs)
5658{
5659 struct frame_info *frame;
5660 struct gdbarch *gdbarch;
5661 int stopped_by_watchpoint;
5662 enum stop_kind stop_soon;
5663 int random_signal;
5664
5665 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5666
5667 /* Do we need to clean up the state of a thread that has
5668 completed a displaced single-step? (Doing so usually affects
5669 the PC, so do it here, before we set stop_pc.) */
5670 if (finish_step_over (ecs))
5671 return;
5672
5673 /* If we either finished a single-step or hit a breakpoint, but
5674 the user wanted this thread to be stopped, pretend we got a
5675 SIG0 (generic unsignaled stop). */
5676 if (ecs->event_thread->stop_requested
5677 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5678 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5679
5680 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5681
5682 if (debug_infrun)
5683 {
5684 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5685 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5686 struct cleanup *old_chain = save_inferior_ptid ();
5687
5688 inferior_ptid = ecs->ptid;
5689
5690 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5691 paddress (gdbarch, stop_pc));
5692 if (target_stopped_by_watchpoint ())
5693 {
5694 CORE_ADDR addr;
5695
5696 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5697
5698 if (target_stopped_data_address (&current_target, &addr))
5699 fprintf_unfiltered (gdb_stdlog,
5700 "infrun: stopped data address = %s\n",
5701 paddress (gdbarch, addr));
5702 else
5703 fprintf_unfiltered (gdb_stdlog,
5704 "infrun: (no data address available)\n");
5705 }
5706
5707 do_cleanups (old_chain);
5708 }
5709
5710 /* This is originated from start_remote(), start_inferior() and
5711 shared libraries hook functions. */
5712 stop_soon = get_inferior_stop_soon (ecs->ptid);
5713 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5714 {
5715 if (!ptid_equal (ecs->ptid, inferior_ptid))
5716 context_switch (ecs->ptid);
5717 if (debug_infrun)
5718 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5719 stop_print_frame = 1;
5720 stop_waiting (ecs);
5721 return;
5722 }
5723
5724 /* This originates from attach_command(). We need to overwrite
5725 the stop_signal here, because some kernels don't ignore a
5726 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5727 See more comments in inferior.h. On the other hand, if we
5728 get a non-SIGSTOP, report it to the user - assume the backend
5729 will handle the SIGSTOP if it should show up later.
5730
5731 Also consider that the attach is complete when we see a
5732 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5733 target extended-remote report it instead of a SIGSTOP
5734 (e.g. gdbserver). We already rely on SIGTRAP being our
5735 signal, so this is no exception.
5736
5737 Also consider that the attach is complete when we see a
5738 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5739 the target to stop all threads of the inferior, in case the
5740 low level attach operation doesn't stop them implicitly. If
5741 they weren't stopped implicitly, then the stub will report a
5742 GDB_SIGNAL_0, meaning: stopped for no particular reason
5743 other than GDB's request. */
5744 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5745 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5746 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5747 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5748 {
5749 stop_print_frame = 1;
5750 stop_waiting (ecs);
5751 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5752 return;
5753 }
5754
5755 /* See if something interesting happened to the non-current thread. If
5756 so, then switch to that thread. */
5757 if (!ptid_equal (ecs->ptid, inferior_ptid))
5758 {
5759 if (debug_infrun)
5760 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5761
5762 context_switch (ecs->ptid);
5763
5764 if (deprecated_context_hook)
5765 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5766 }
5767
5768 /* At this point, get hold of the now-current thread's frame. */
5769 frame = get_current_frame ();
5770 gdbarch = get_frame_arch (frame);
5771
5772 /* Pull the single step breakpoints out of the target. */
5773 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5774 {
5775 struct regcache *regcache;
5776 struct address_space *aspace;
5777 CORE_ADDR pc;
5778
5779 regcache = get_thread_regcache (ecs->ptid);
5780 aspace = get_regcache_aspace (regcache);
5781 pc = regcache_read_pc (regcache);
5782
5783 /* However, before doing so, if this single-step breakpoint was
5784 actually for another thread, set this thread up for moving
5785 past it. */
5786 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5787 aspace, pc))
5788 {
5789 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5790 {
5791 if (debug_infrun)
5792 {
5793 fprintf_unfiltered (gdb_stdlog,
5794 "infrun: [%s] hit another thread's "
5795 "single-step breakpoint\n",
5796 target_pid_to_str (ecs->ptid));
5797 }
5798 ecs->hit_singlestep_breakpoint = 1;
5799 }
5800 }
5801 else
5802 {
5803 if (debug_infrun)
5804 {
5805 fprintf_unfiltered (gdb_stdlog,
5806 "infrun: [%s] hit its "
5807 "single-step breakpoint\n",
5808 target_pid_to_str (ecs->ptid));
5809 }
5810 }
5811 }
5812 delete_just_stopped_threads_single_step_breakpoints ();
5813
5814 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5815 && ecs->event_thread->control.trap_expected
5816 && ecs->event_thread->stepping_over_watchpoint)
5817 stopped_by_watchpoint = 0;
5818 else
5819 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5820
5821 /* If necessary, step over this watchpoint. We'll be back to display
5822 it in a moment. */
5823 if (stopped_by_watchpoint
5824 && (target_have_steppable_watchpoint
5825 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5826 {
5827 /* At this point, we are stopped at an instruction which has
5828 attempted to write to a piece of memory under control of
5829 a watchpoint. The instruction hasn't actually executed
5830 yet. If we were to evaluate the watchpoint expression
5831 now, we would get the old value, and therefore no change
5832 would seem to have occurred.
5833
5834 In order to make watchpoints work `right', we really need
5835 to complete the memory write, and then evaluate the
5836 watchpoint expression. We do this by single-stepping the
5837 target.
5838
5839 It may not be necessary to disable the watchpoint to step over
5840 it. For example, the PA can (with some kernel cooperation)
5841 single step over a watchpoint without disabling the watchpoint.
5842
5843 It is far more common to need to disable a watchpoint to step
5844 the inferior over it. If we have non-steppable watchpoints,
5845 we must disable the current watchpoint; it's simplest to
5846 disable all watchpoints.
5847
5848 Any breakpoint at PC must also be stepped over -- if there's
5849 one, it will have already triggered before the watchpoint
5850 triggered, and we either already reported it to the user, or
5851 it didn't cause a stop and we called keep_going. In either
5852 case, if there was a breakpoint at PC, we must be trying to
5853 step past it. */
5854 ecs->event_thread->stepping_over_watchpoint = 1;
5855 keep_going (ecs);
5856 return;
5857 }
5858
5859 ecs->event_thread->stepping_over_breakpoint = 0;
5860 ecs->event_thread->stepping_over_watchpoint = 0;
5861 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5862 ecs->event_thread->control.stop_step = 0;
5863 stop_print_frame = 1;
5864 stopped_by_random_signal = 0;
5865
5866 /* Hide inlined functions starting here, unless we just performed stepi or
5867 nexti. After stepi and nexti, always show the innermost frame (not any
5868 inline function call sites). */
5869 if (ecs->event_thread->control.step_range_end != 1)
5870 {
5871 struct address_space *aspace =
5872 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5873
5874 /* skip_inline_frames is expensive, so we avoid it if we can
5875 determine that the address is one where functions cannot have
5876 been inlined. This improves performance with inferiors that
5877 load a lot of shared libraries, because the solib event
5878 breakpoint is defined as the address of a function (i.e. not
5879 inline). Note that we have to check the previous PC as well
5880 as the current one to catch cases when we have just
5881 single-stepped off a breakpoint prior to reinstating it.
5882 Note that we're assuming that the code we single-step to is
5883 not inline, but that's not definitive: there's nothing
5884 preventing the event breakpoint function from containing
5885 inlined code, and the single-step ending up there. If the
5886 user had set a breakpoint on that inlined code, the missing
5887 skip_inline_frames call would break things. Fortunately
5888 that's an extremely unlikely scenario. */
5889 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5890 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5891 && ecs->event_thread->control.trap_expected
5892 && pc_at_non_inline_function (aspace,
5893 ecs->event_thread->prev_pc,
5894 &ecs->ws)))
5895 {
5896 skip_inline_frames (ecs->ptid);
5897
5898 /* Re-fetch current thread's frame in case that invalidated
5899 the frame cache. */
5900 frame = get_current_frame ();
5901 gdbarch = get_frame_arch (frame);
5902 }
5903 }
5904
5905 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5906 && ecs->event_thread->control.trap_expected
5907 && gdbarch_single_step_through_delay_p (gdbarch)
5908 && currently_stepping (ecs->event_thread))
5909 {
5910 /* We're trying to step off a breakpoint. Turns out that we're
5911 also on an instruction that needs to be stepped multiple
5912 times before it's been fully executing. E.g., architectures
5913 with a delay slot. It needs to be stepped twice, once for
5914 the instruction and once for the delay slot. */
5915 int step_through_delay
5916 = gdbarch_single_step_through_delay (gdbarch, frame);
5917
5918 if (debug_infrun && step_through_delay)
5919 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5920 if (ecs->event_thread->control.step_range_end == 0
5921 && step_through_delay)
5922 {
5923 /* The user issued a continue when stopped at a breakpoint.
5924 Set up for another trap and get out of here. */
5925 ecs->event_thread->stepping_over_breakpoint = 1;
5926 keep_going (ecs);
5927 return;
5928 }
5929 else if (step_through_delay)
5930 {
5931 /* The user issued a step when stopped at a breakpoint.
5932 Maybe we should stop, maybe we should not - the delay
5933 slot *might* correspond to a line of source. In any
5934 case, don't decide that here, just set
5935 ecs->stepping_over_breakpoint, making sure we
5936 single-step again before breakpoints are re-inserted. */
5937 ecs->event_thread->stepping_over_breakpoint = 1;
5938 }
5939 }
5940
5941 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5942 handles this event. */
5943 ecs->event_thread->control.stop_bpstat
5944 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5945 stop_pc, ecs->ptid, &ecs->ws);
5946
5947 /* Following in case break condition called a
5948 function. */
5949 stop_print_frame = 1;
5950
5951 /* This is where we handle "moribund" watchpoints. Unlike
5952 software breakpoints traps, hardware watchpoint traps are
5953 always distinguishable from random traps. If no high-level
5954 watchpoint is associated with the reported stop data address
5955 anymore, then the bpstat does not explain the signal ---
5956 simply make sure to ignore it if `stopped_by_watchpoint' is
5957 set. */
5958
5959 if (debug_infrun
5960 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5961 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5962 GDB_SIGNAL_TRAP)
5963 && stopped_by_watchpoint)
5964 fprintf_unfiltered (gdb_stdlog,
5965 "infrun: no user watchpoint explains "
5966 "watchpoint SIGTRAP, ignoring\n");
5967
5968 /* NOTE: cagney/2003-03-29: These checks for a random signal
5969 at one stage in the past included checks for an inferior
5970 function call's call dummy's return breakpoint. The original
5971 comment, that went with the test, read:
5972
5973 ``End of a stack dummy. Some systems (e.g. Sony news) give
5974 another signal besides SIGTRAP, so check here as well as
5975 above.''
5976
5977 If someone ever tries to get call dummys on a
5978 non-executable stack to work (where the target would stop
5979 with something like a SIGSEGV), then those tests might need
5980 to be re-instated. Given, however, that the tests were only
5981 enabled when momentary breakpoints were not being used, I
5982 suspect that it won't be the case.
5983
5984 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5985 be necessary for call dummies on a non-executable stack on
5986 SPARC. */
5987
5988 /* See if the breakpoints module can explain the signal. */
5989 random_signal
5990 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5991 ecs->event_thread->suspend.stop_signal);
5992
5993 /* Maybe this was a trap for a software breakpoint that has since
5994 been removed. */
5995 if (random_signal && target_stopped_by_sw_breakpoint ())
5996 {
5997 if (program_breakpoint_here_p (gdbarch, stop_pc))
5998 {
5999 struct regcache *regcache;
6000 int decr_pc;
6001
6002 /* Re-adjust PC to what the program would see if GDB was not
6003 debugging it. */
6004 regcache = get_thread_regcache (ecs->event_thread->ptid);
6005 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6006 if (decr_pc != 0)
6007 {
6008 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6009
6010 if (record_full_is_used ())
6011 record_full_gdb_operation_disable_set ();
6012
6013 regcache_write_pc (regcache, stop_pc + decr_pc);
6014
6015 do_cleanups (old_cleanups);
6016 }
6017 }
6018 else
6019 {
6020 /* A delayed software breakpoint event. Ignore the trap. */
6021 if (debug_infrun)
6022 fprintf_unfiltered (gdb_stdlog,
6023 "infrun: delayed software breakpoint "
6024 "trap, ignoring\n");
6025 random_signal = 0;
6026 }
6027 }
6028
6029 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6030 has since been removed. */
6031 if (random_signal && target_stopped_by_hw_breakpoint ())
6032 {
6033 /* A delayed hardware breakpoint event. Ignore the trap. */
6034 if (debug_infrun)
6035 fprintf_unfiltered (gdb_stdlog,
6036 "infrun: delayed hardware breakpoint/watchpoint "
6037 "trap, ignoring\n");
6038 random_signal = 0;
6039 }
6040
6041 /* If not, perhaps stepping/nexting can. */
6042 if (random_signal)
6043 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6044 && currently_stepping (ecs->event_thread));
6045
6046 /* Perhaps the thread hit a single-step breakpoint of _another_
6047 thread. Single-step breakpoints are transparent to the
6048 breakpoints module. */
6049 if (random_signal)
6050 random_signal = !ecs->hit_singlestep_breakpoint;
6051
6052 /* No? Perhaps we got a moribund watchpoint. */
6053 if (random_signal)
6054 random_signal = !stopped_by_watchpoint;
6055
6056 /* For the program's own signals, act according to
6057 the signal handling tables. */
6058
6059 if (random_signal)
6060 {
6061 /* Signal not for debugging purposes. */
6062 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6063 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6064
6065 if (debug_infrun)
6066 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6067 gdb_signal_to_symbol_string (stop_signal));
6068
6069 stopped_by_random_signal = 1;
6070
6071 /* Always stop on signals if we're either just gaining control
6072 of the program, or the user explicitly requested this thread
6073 to remain stopped. */
6074 if (stop_soon != NO_STOP_QUIETLY
6075 || ecs->event_thread->stop_requested
6076 || (!inf->detaching
6077 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6078 {
6079 stop_waiting (ecs);
6080 return;
6081 }
6082
6083 /* Notify observers the signal has "handle print" set. Note we
6084 returned early above if stopping; normal_stop handles the
6085 printing in that case. */
6086 if (signal_print[ecs->event_thread->suspend.stop_signal])
6087 {
6088 /* The signal table tells us to print about this signal. */
6089 target_terminal_ours_for_output ();
6090 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6091 target_terminal_inferior ();
6092 }
6093
6094 /* Clear the signal if it should not be passed. */
6095 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6096 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6097
6098 if (ecs->event_thread->prev_pc == stop_pc
6099 && ecs->event_thread->control.trap_expected
6100 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6101 {
6102 int was_in_line;
6103
6104 /* We were just starting a new sequence, attempting to
6105 single-step off of a breakpoint and expecting a SIGTRAP.
6106 Instead this signal arrives. This signal will take us out
6107 of the stepping range so GDB needs to remember to, when
6108 the signal handler returns, resume stepping off that
6109 breakpoint. */
6110 /* To simplify things, "continue" is forced to use the same
6111 code paths as single-step - set a breakpoint at the
6112 signal return address and then, once hit, step off that
6113 breakpoint. */
6114 if (debug_infrun)
6115 fprintf_unfiltered (gdb_stdlog,
6116 "infrun: signal arrived while stepping over "
6117 "breakpoint\n");
6118
6119 was_in_line = step_over_info_valid_p ();
6120 clear_step_over_info ();
6121 insert_hp_step_resume_breakpoint_at_frame (frame);
6122 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6123 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6124 ecs->event_thread->control.trap_expected = 0;
6125
6126 if (target_is_non_stop_p ())
6127 {
6128 /* Either "set non-stop" is "on", or the target is
6129 always in non-stop mode. In this case, we have a bit
6130 more work to do. Resume the current thread, and if
6131 we had paused all threads, restart them while the
6132 signal handler runs. */
6133 keep_going (ecs);
6134
6135 if (was_in_line)
6136 {
6137 restart_threads (ecs->event_thread);
6138 }
6139 else if (debug_infrun)
6140 {
6141 fprintf_unfiltered (gdb_stdlog,
6142 "infrun: no need to restart threads\n");
6143 }
6144 return;
6145 }
6146
6147 /* If we were nexting/stepping some other thread, switch to
6148 it, so that we don't continue it, losing control. */
6149 if (!switch_back_to_stepped_thread (ecs))
6150 keep_going (ecs);
6151 return;
6152 }
6153
6154 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6155 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6156 || ecs->event_thread->control.step_range_end == 1)
6157 && frame_id_eq (get_stack_frame_id (frame),
6158 ecs->event_thread->control.step_stack_frame_id)
6159 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6160 {
6161 /* The inferior is about to take a signal that will take it
6162 out of the single step range. Set a breakpoint at the
6163 current PC (which is presumably where the signal handler
6164 will eventually return) and then allow the inferior to
6165 run free.
6166
6167 Note that this is only needed for a signal delivered
6168 while in the single-step range. Nested signals aren't a
6169 problem as they eventually all return. */
6170 if (debug_infrun)
6171 fprintf_unfiltered (gdb_stdlog,
6172 "infrun: signal may take us out of "
6173 "single-step range\n");
6174
6175 clear_step_over_info ();
6176 insert_hp_step_resume_breakpoint_at_frame (frame);
6177 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6178 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6179 ecs->event_thread->control.trap_expected = 0;
6180 keep_going (ecs);
6181 return;
6182 }
6183
6184 /* Note: step_resume_breakpoint may be non-NULL. This occures
6185 when either there's a nested signal, or when there's a
6186 pending signal enabled just as the signal handler returns
6187 (leaving the inferior at the step-resume-breakpoint without
6188 actually executing it). Either way continue until the
6189 breakpoint is really hit. */
6190
6191 if (!switch_back_to_stepped_thread (ecs))
6192 {
6193 if (debug_infrun)
6194 fprintf_unfiltered (gdb_stdlog,
6195 "infrun: random signal, keep going\n");
6196
6197 keep_going (ecs);
6198 }
6199 return;
6200 }
6201
6202 process_event_stop_test (ecs);
6203}
6204
6205/* Come here when we've got some debug event / signal we can explain
6206 (IOW, not a random signal), and test whether it should cause a
6207 stop, or whether we should resume the inferior (transparently).
6208 E.g., could be a breakpoint whose condition evaluates false; we
6209 could be still stepping within the line; etc. */
6210
6211static void
6212process_event_stop_test (struct execution_control_state *ecs)
6213{
6214 struct symtab_and_line stop_pc_sal;
6215 struct frame_info *frame;
6216 struct gdbarch *gdbarch;
6217 CORE_ADDR jmp_buf_pc;
6218 struct bpstat_what what;
6219
6220 /* Handle cases caused by hitting a breakpoint. */
6221
6222 frame = get_current_frame ();
6223 gdbarch = get_frame_arch (frame);
6224
6225 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6226
6227 if (what.call_dummy)
6228 {
6229 stop_stack_dummy = what.call_dummy;
6230 }
6231
6232 /* A few breakpoint types have callbacks associated (e.g.,
6233 bp_jit_event). Run them now. */
6234 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6235
6236 /* If we hit an internal event that triggers symbol changes, the
6237 current frame will be invalidated within bpstat_what (e.g., if we
6238 hit an internal solib event). Re-fetch it. */
6239 frame = get_current_frame ();
6240 gdbarch = get_frame_arch (frame);
6241
6242 switch (what.main_action)
6243 {
6244 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6245 /* If we hit the breakpoint at longjmp while stepping, we
6246 install a momentary breakpoint at the target of the
6247 jmp_buf. */
6248
6249 if (debug_infrun)
6250 fprintf_unfiltered (gdb_stdlog,
6251 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6252
6253 ecs->event_thread->stepping_over_breakpoint = 1;
6254
6255 if (what.is_longjmp)
6256 {
6257 struct value *arg_value;
6258
6259 /* If we set the longjmp breakpoint via a SystemTap probe,
6260 then use it to extract the arguments. The destination PC
6261 is the third argument to the probe. */
6262 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6263 if (arg_value)
6264 {
6265 jmp_buf_pc = value_as_address (arg_value);
6266 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6267 }
6268 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6269 || !gdbarch_get_longjmp_target (gdbarch,
6270 frame, &jmp_buf_pc))
6271 {
6272 if (debug_infrun)
6273 fprintf_unfiltered (gdb_stdlog,
6274 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6275 "(!gdbarch_get_longjmp_target)\n");
6276 keep_going (ecs);
6277 return;
6278 }
6279
6280 /* Insert a breakpoint at resume address. */
6281 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6282 }
6283 else
6284 check_exception_resume (ecs, frame);
6285 keep_going (ecs);
6286 return;
6287
6288 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6289 {
6290 struct frame_info *init_frame;
6291
6292 /* There are several cases to consider.
6293
6294 1. The initiating frame no longer exists. In this case we
6295 must stop, because the exception or longjmp has gone too
6296 far.
6297
6298 2. The initiating frame exists, and is the same as the
6299 current frame. We stop, because the exception or longjmp
6300 has been caught.
6301
6302 3. The initiating frame exists and is different from the
6303 current frame. This means the exception or longjmp has
6304 been caught beneath the initiating frame, so keep going.
6305
6306 4. longjmp breakpoint has been placed just to protect
6307 against stale dummy frames and user is not interested in
6308 stopping around longjmps. */
6309
6310 if (debug_infrun)
6311 fprintf_unfiltered (gdb_stdlog,
6312 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6313
6314 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6315 != NULL);
6316 delete_exception_resume_breakpoint (ecs->event_thread);
6317
6318 if (what.is_longjmp)
6319 {
6320 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6321
6322 if (!frame_id_p (ecs->event_thread->initiating_frame))
6323 {
6324 /* Case 4. */
6325 keep_going (ecs);
6326 return;
6327 }
6328 }
6329
6330 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6331
6332 if (init_frame)
6333 {
6334 struct frame_id current_id
6335 = get_frame_id (get_current_frame ());
6336 if (frame_id_eq (current_id,
6337 ecs->event_thread->initiating_frame))
6338 {
6339 /* Case 2. Fall through. */
6340 }
6341 else
6342 {
6343 /* Case 3. */
6344 keep_going (ecs);
6345 return;
6346 }
6347 }
6348
6349 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6350 exists. */
6351 delete_step_resume_breakpoint (ecs->event_thread);
6352
6353 end_stepping_range (ecs);
6354 }
6355 return;
6356
6357 case BPSTAT_WHAT_SINGLE:
6358 if (debug_infrun)
6359 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6360 ecs->event_thread->stepping_over_breakpoint = 1;
6361 /* Still need to check other stuff, at least the case where we
6362 are stepping and step out of the right range. */
6363 break;
6364
6365 case BPSTAT_WHAT_STEP_RESUME:
6366 if (debug_infrun)
6367 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6368
6369 delete_step_resume_breakpoint (ecs->event_thread);
6370 if (ecs->event_thread->control.proceed_to_finish
6371 && execution_direction == EXEC_REVERSE)
6372 {
6373 struct thread_info *tp = ecs->event_thread;
6374
6375 /* We are finishing a function in reverse, and just hit the
6376 step-resume breakpoint at the start address of the
6377 function, and we're almost there -- just need to back up
6378 by one more single-step, which should take us back to the
6379 function call. */
6380 tp->control.step_range_start = tp->control.step_range_end = 1;
6381 keep_going (ecs);
6382 return;
6383 }
6384 fill_in_stop_func (gdbarch, ecs);
6385 if (stop_pc == ecs->stop_func_start
6386 && execution_direction == EXEC_REVERSE)
6387 {
6388 /* We are stepping over a function call in reverse, and just
6389 hit the step-resume breakpoint at the start address of
6390 the function. Go back to single-stepping, which should
6391 take us back to the function call. */
6392 ecs->event_thread->stepping_over_breakpoint = 1;
6393 keep_going (ecs);
6394 return;
6395 }
6396 break;
6397
6398 case BPSTAT_WHAT_STOP_NOISY:
6399 if (debug_infrun)
6400 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6401 stop_print_frame = 1;
6402
6403 /* Assume the thread stopped for a breapoint. We'll still check
6404 whether a/the breakpoint is there when the thread is next
6405 resumed. */
6406 ecs->event_thread->stepping_over_breakpoint = 1;
6407
6408 stop_waiting (ecs);
6409 return;
6410
6411 case BPSTAT_WHAT_STOP_SILENT:
6412 if (debug_infrun)
6413 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6414 stop_print_frame = 0;
6415
6416 /* Assume the thread stopped for a breapoint. We'll still check
6417 whether a/the breakpoint is there when the thread is next
6418 resumed. */
6419 ecs->event_thread->stepping_over_breakpoint = 1;
6420 stop_waiting (ecs);
6421 return;
6422
6423 case BPSTAT_WHAT_HP_STEP_RESUME:
6424 if (debug_infrun)
6425 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6426
6427 delete_step_resume_breakpoint (ecs->event_thread);
6428 if (ecs->event_thread->step_after_step_resume_breakpoint)
6429 {
6430 /* Back when the step-resume breakpoint was inserted, we
6431 were trying to single-step off a breakpoint. Go back to
6432 doing that. */
6433 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6434 ecs->event_thread->stepping_over_breakpoint = 1;
6435 keep_going (ecs);
6436 return;
6437 }
6438 break;
6439
6440 case BPSTAT_WHAT_KEEP_CHECKING:
6441 break;
6442 }
6443
6444 /* If we stepped a permanent breakpoint and we had a high priority
6445 step-resume breakpoint for the address we stepped, but we didn't
6446 hit it, then we must have stepped into the signal handler. The
6447 step-resume was only necessary to catch the case of _not_
6448 stepping into the handler, so delete it, and fall through to
6449 checking whether the step finished. */
6450 if (ecs->event_thread->stepped_breakpoint)
6451 {
6452 struct breakpoint *sr_bp
6453 = ecs->event_thread->control.step_resume_breakpoint;
6454
6455 if (sr_bp != NULL
6456 && sr_bp->loc->permanent
6457 && sr_bp->type == bp_hp_step_resume
6458 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6459 {
6460 if (debug_infrun)
6461 fprintf_unfiltered (gdb_stdlog,
6462 "infrun: stepped permanent breakpoint, stopped in "
6463 "handler\n");
6464 delete_step_resume_breakpoint (ecs->event_thread);
6465 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6466 }
6467 }
6468
6469 /* We come here if we hit a breakpoint but should not stop for it.
6470 Possibly we also were stepping and should stop for that. So fall
6471 through and test for stepping. But, if not stepping, do not
6472 stop. */
6473
6474 /* In all-stop mode, if we're currently stepping but have stopped in
6475 some other thread, we need to switch back to the stepped thread. */
6476 if (switch_back_to_stepped_thread (ecs))
6477 return;
6478
6479 if (ecs->event_thread->control.step_resume_breakpoint)
6480 {
6481 if (debug_infrun)
6482 fprintf_unfiltered (gdb_stdlog,
6483 "infrun: step-resume breakpoint is inserted\n");
6484
6485 /* Having a step-resume breakpoint overrides anything
6486 else having to do with stepping commands until
6487 that breakpoint is reached. */
6488 keep_going (ecs);
6489 return;
6490 }
6491
6492 if (ecs->event_thread->control.step_range_end == 0)
6493 {
6494 if (debug_infrun)
6495 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6496 /* Likewise if we aren't even stepping. */
6497 keep_going (ecs);
6498 return;
6499 }
6500
6501 /* Re-fetch current thread's frame in case the code above caused
6502 the frame cache to be re-initialized, making our FRAME variable
6503 a dangling pointer. */
6504 frame = get_current_frame ();
6505 gdbarch = get_frame_arch (frame);
6506 fill_in_stop_func (gdbarch, ecs);
6507
6508 /* If stepping through a line, keep going if still within it.
6509
6510 Note that step_range_end is the address of the first instruction
6511 beyond the step range, and NOT the address of the last instruction
6512 within it!
6513
6514 Note also that during reverse execution, we may be stepping
6515 through a function epilogue and therefore must detect when
6516 the current-frame changes in the middle of a line. */
6517
6518 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6519 && (execution_direction != EXEC_REVERSE
6520 || frame_id_eq (get_frame_id (frame),
6521 ecs->event_thread->control.step_frame_id)))
6522 {
6523 if (debug_infrun)
6524 fprintf_unfiltered
6525 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6526 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6527 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6528
6529 /* Tentatively re-enable range stepping; `resume' disables it if
6530 necessary (e.g., if we're stepping over a breakpoint or we
6531 have software watchpoints). */
6532 ecs->event_thread->control.may_range_step = 1;
6533
6534 /* When stepping backward, stop at beginning of line range
6535 (unless it's the function entry point, in which case
6536 keep going back to the call point). */
6537 if (stop_pc == ecs->event_thread->control.step_range_start
6538 && stop_pc != ecs->stop_func_start
6539 && execution_direction == EXEC_REVERSE)
6540 end_stepping_range (ecs);
6541 else
6542 keep_going (ecs);
6543
6544 return;
6545 }
6546
6547 /* We stepped out of the stepping range. */
6548
6549 /* If we are stepping at the source level and entered the runtime
6550 loader dynamic symbol resolution code...
6551
6552 EXEC_FORWARD: we keep on single stepping until we exit the run
6553 time loader code and reach the callee's address.
6554
6555 EXEC_REVERSE: we've already executed the callee (backward), and
6556 the runtime loader code is handled just like any other
6557 undebuggable function call. Now we need only keep stepping
6558 backward through the trampoline code, and that's handled further
6559 down, so there is nothing for us to do here. */
6560
6561 if (execution_direction != EXEC_REVERSE
6562 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6563 && in_solib_dynsym_resolve_code (stop_pc))
6564 {
6565 CORE_ADDR pc_after_resolver =
6566 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6567
6568 if (debug_infrun)
6569 fprintf_unfiltered (gdb_stdlog,
6570 "infrun: stepped into dynsym resolve code\n");
6571
6572 if (pc_after_resolver)
6573 {
6574 /* Set up a step-resume breakpoint at the address
6575 indicated by SKIP_SOLIB_RESOLVER. */
6576 struct symtab_and_line sr_sal;
6577
6578 init_sal (&sr_sal);
6579 sr_sal.pc = pc_after_resolver;
6580 sr_sal.pspace = get_frame_program_space (frame);
6581
6582 insert_step_resume_breakpoint_at_sal (gdbarch,
6583 sr_sal, null_frame_id);
6584 }
6585
6586 keep_going (ecs);
6587 return;
6588 }
6589
6590 if (ecs->event_thread->control.step_range_end != 1
6591 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6592 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6593 && get_frame_type (frame) == SIGTRAMP_FRAME)
6594 {
6595 if (debug_infrun)
6596 fprintf_unfiltered (gdb_stdlog,
6597 "infrun: stepped into signal trampoline\n");
6598 /* The inferior, while doing a "step" or "next", has ended up in
6599 a signal trampoline (either by a signal being delivered or by
6600 the signal handler returning). Just single-step until the
6601 inferior leaves the trampoline (either by calling the handler
6602 or returning). */
6603 keep_going (ecs);
6604 return;
6605 }
6606
6607 /* If we're in the return path from a shared library trampoline,
6608 we want to proceed through the trampoline when stepping. */
6609 /* macro/2012-04-25: This needs to come before the subroutine
6610 call check below as on some targets return trampolines look
6611 like subroutine calls (MIPS16 return thunks). */
6612 if (gdbarch_in_solib_return_trampoline (gdbarch,
6613 stop_pc, ecs->stop_func_name)
6614 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6615 {
6616 /* Determine where this trampoline returns. */
6617 CORE_ADDR real_stop_pc;
6618
6619 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6620
6621 if (debug_infrun)
6622 fprintf_unfiltered (gdb_stdlog,
6623 "infrun: stepped into solib return tramp\n");
6624
6625 /* Only proceed through if we know where it's going. */
6626 if (real_stop_pc)
6627 {
6628 /* And put the step-breakpoint there and go until there. */
6629 struct symtab_and_line sr_sal;
6630
6631 init_sal (&sr_sal); /* initialize to zeroes */
6632 sr_sal.pc = real_stop_pc;
6633 sr_sal.section = find_pc_overlay (sr_sal.pc);
6634 sr_sal.pspace = get_frame_program_space (frame);
6635
6636 /* Do not specify what the fp should be when we stop since
6637 on some machines the prologue is where the new fp value
6638 is established. */
6639 insert_step_resume_breakpoint_at_sal (gdbarch,
6640 sr_sal, null_frame_id);
6641
6642 /* Restart without fiddling with the step ranges or
6643 other state. */
6644 keep_going (ecs);
6645 return;
6646 }
6647 }
6648
6649 /* Check for subroutine calls. The check for the current frame
6650 equalling the step ID is not necessary - the check of the
6651 previous frame's ID is sufficient - but it is a common case and
6652 cheaper than checking the previous frame's ID.
6653
6654 NOTE: frame_id_eq will never report two invalid frame IDs as
6655 being equal, so to get into this block, both the current and
6656 previous frame must have valid frame IDs. */
6657 /* The outer_frame_id check is a heuristic to detect stepping
6658 through startup code. If we step over an instruction which
6659 sets the stack pointer from an invalid value to a valid value,
6660 we may detect that as a subroutine call from the mythical
6661 "outermost" function. This could be fixed by marking
6662 outermost frames as !stack_p,code_p,special_p. Then the
6663 initial outermost frame, before sp was valid, would
6664 have code_addr == &_start. See the comment in frame_id_eq
6665 for more. */
6666 if (!frame_id_eq (get_stack_frame_id (frame),
6667 ecs->event_thread->control.step_stack_frame_id)
6668 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6669 ecs->event_thread->control.step_stack_frame_id)
6670 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6671 outer_frame_id)
6672 || (ecs->event_thread->control.step_start_function
6673 != find_pc_function (stop_pc)))))
6674 {
6675 CORE_ADDR real_stop_pc;
6676
6677 if (debug_infrun)
6678 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6679
6680 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6681 {
6682 /* I presume that step_over_calls is only 0 when we're
6683 supposed to be stepping at the assembly language level
6684 ("stepi"). Just stop. */
6685 /* And this works the same backward as frontward. MVS */
6686 end_stepping_range (ecs);
6687 return;
6688 }
6689
6690 /* Reverse stepping through solib trampolines. */
6691
6692 if (execution_direction == EXEC_REVERSE
6693 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6694 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6695 || (ecs->stop_func_start == 0
6696 && in_solib_dynsym_resolve_code (stop_pc))))
6697 {
6698 /* Any solib trampoline code can be handled in reverse
6699 by simply continuing to single-step. We have already
6700 executed the solib function (backwards), and a few
6701 steps will take us back through the trampoline to the
6702 caller. */
6703 keep_going (ecs);
6704 return;
6705 }
6706
6707 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6708 {
6709 /* We're doing a "next".
6710
6711 Normal (forward) execution: set a breakpoint at the
6712 callee's return address (the address at which the caller
6713 will resume).
6714
6715 Reverse (backward) execution. set the step-resume
6716 breakpoint at the start of the function that we just
6717 stepped into (backwards), and continue to there. When we
6718 get there, we'll need to single-step back to the caller. */
6719
6720 if (execution_direction == EXEC_REVERSE)
6721 {
6722 /* If we're already at the start of the function, we've either
6723 just stepped backward into a single instruction function,
6724 or stepped back out of a signal handler to the first instruction
6725 of the function. Just keep going, which will single-step back
6726 to the caller. */
6727 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6728 {
6729 struct symtab_and_line sr_sal;
6730
6731 /* Normal function call return (static or dynamic). */
6732 init_sal (&sr_sal);
6733 sr_sal.pc = ecs->stop_func_start;
6734 sr_sal.pspace = get_frame_program_space (frame);
6735 insert_step_resume_breakpoint_at_sal (gdbarch,
6736 sr_sal, null_frame_id);
6737 }
6738 }
6739 else
6740 insert_step_resume_breakpoint_at_caller (frame);
6741
6742 keep_going (ecs);
6743 return;
6744 }
6745
6746 /* If we are in a function call trampoline (a stub between the
6747 calling routine and the real function), locate the real
6748 function. That's what tells us (a) whether we want to step
6749 into it at all, and (b) what prologue we want to run to the
6750 end of, if we do step into it. */
6751 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6752 if (real_stop_pc == 0)
6753 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6754 if (real_stop_pc != 0)
6755 ecs->stop_func_start = real_stop_pc;
6756
6757 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6758 {
6759 struct symtab_and_line sr_sal;
6760
6761 init_sal (&sr_sal);
6762 sr_sal.pc = ecs->stop_func_start;
6763 sr_sal.pspace = get_frame_program_space (frame);
6764
6765 insert_step_resume_breakpoint_at_sal (gdbarch,
6766 sr_sal, null_frame_id);
6767 keep_going (ecs);
6768 return;
6769 }
6770
6771 /* If we have line number information for the function we are
6772 thinking of stepping into and the function isn't on the skip
6773 list, step into it.
6774
6775 If there are several symtabs at that PC (e.g. with include
6776 files), just want to know whether *any* of them have line
6777 numbers. find_pc_line handles this. */
6778 {
6779 struct symtab_and_line tmp_sal;
6780
6781 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6782 if (tmp_sal.line != 0
6783 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6784 &tmp_sal))
6785 {
6786 if (execution_direction == EXEC_REVERSE)
6787 handle_step_into_function_backward (gdbarch, ecs);
6788 else
6789 handle_step_into_function (gdbarch, ecs);
6790 return;
6791 }
6792 }
6793
6794 /* If we have no line number and the step-stop-if-no-debug is
6795 set, we stop the step so that the user has a chance to switch
6796 in assembly mode. */
6797 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6798 && step_stop_if_no_debug)
6799 {
6800 end_stepping_range (ecs);
6801 return;
6802 }
6803
6804 if (execution_direction == EXEC_REVERSE)
6805 {
6806 /* If we're already at the start of the function, we've either just
6807 stepped backward into a single instruction function without line
6808 number info, or stepped back out of a signal handler to the first
6809 instruction of the function without line number info. Just keep
6810 going, which will single-step back to the caller. */
6811 if (ecs->stop_func_start != stop_pc)
6812 {
6813 /* Set a breakpoint at callee's start address.
6814 From there we can step once and be back in the caller. */
6815 struct symtab_and_line sr_sal;
6816
6817 init_sal (&sr_sal);
6818 sr_sal.pc = ecs->stop_func_start;
6819 sr_sal.pspace = get_frame_program_space (frame);
6820 insert_step_resume_breakpoint_at_sal (gdbarch,
6821 sr_sal, null_frame_id);
6822 }
6823 }
6824 else
6825 /* Set a breakpoint at callee's return address (the address
6826 at which the caller will resume). */
6827 insert_step_resume_breakpoint_at_caller (frame);
6828
6829 keep_going (ecs);
6830 return;
6831 }
6832
6833 /* Reverse stepping through solib trampolines. */
6834
6835 if (execution_direction == EXEC_REVERSE
6836 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6837 {
6838 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6839 || (ecs->stop_func_start == 0
6840 && in_solib_dynsym_resolve_code (stop_pc)))
6841 {
6842 /* Any solib trampoline code can be handled in reverse
6843 by simply continuing to single-step. We have already
6844 executed the solib function (backwards), and a few
6845 steps will take us back through the trampoline to the
6846 caller. */
6847 keep_going (ecs);
6848 return;
6849 }
6850 else if (in_solib_dynsym_resolve_code (stop_pc))
6851 {
6852 /* Stepped backward into the solib dynsym resolver.
6853 Set a breakpoint at its start and continue, then
6854 one more step will take us out. */
6855 struct symtab_and_line sr_sal;
6856
6857 init_sal (&sr_sal);
6858 sr_sal.pc = ecs->stop_func_start;
6859 sr_sal.pspace = get_frame_program_space (frame);
6860 insert_step_resume_breakpoint_at_sal (gdbarch,
6861 sr_sal, null_frame_id);
6862 keep_going (ecs);
6863 return;
6864 }
6865 }
6866
6867 stop_pc_sal = find_pc_line (stop_pc, 0);
6868
6869 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6870 the trampoline processing logic, however, there are some trampolines
6871 that have no names, so we should do trampoline handling first. */
6872 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6873 && ecs->stop_func_name == NULL
6874 && stop_pc_sal.line == 0)
6875 {
6876 if (debug_infrun)
6877 fprintf_unfiltered (gdb_stdlog,
6878 "infrun: stepped into undebuggable function\n");
6879
6880 /* The inferior just stepped into, or returned to, an
6881 undebuggable function (where there is no debugging information
6882 and no line number corresponding to the address where the
6883 inferior stopped). Since we want to skip this kind of code,
6884 we keep going until the inferior returns from this
6885 function - unless the user has asked us not to (via
6886 set step-mode) or we no longer know how to get back
6887 to the call site. */
6888 if (step_stop_if_no_debug
6889 || !frame_id_p (frame_unwind_caller_id (frame)))
6890 {
6891 /* If we have no line number and the step-stop-if-no-debug
6892 is set, we stop the step so that the user has a chance to
6893 switch in assembly mode. */
6894 end_stepping_range (ecs);
6895 return;
6896 }
6897 else
6898 {
6899 /* Set a breakpoint at callee's return address (the address
6900 at which the caller will resume). */
6901 insert_step_resume_breakpoint_at_caller (frame);
6902 keep_going (ecs);
6903 return;
6904 }
6905 }
6906
6907 if (ecs->event_thread->control.step_range_end == 1)
6908 {
6909 /* It is stepi or nexti. We always want to stop stepping after
6910 one instruction. */
6911 if (debug_infrun)
6912 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6913 end_stepping_range (ecs);
6914 return;
6915 }
6916
6917 if (stop_pc_sal.line == 0)
6918 {
6919 /* We have no line number information. That means to stop
6920 stepping (does this always happen right after one instruction,
6921 when we do "s" in a function with no line numbers,
6922 or can this happen as a result of a return or longjmp?). */
6923 if (debug_infrun)
6924 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6925 end_stepping_range (ecs);
6926 return;
6927 }
6928
6929 /* Look for "calls" to inlined functions, part one. If the inline
6930 frame machinery detected some skipped call sites, we have entered
6931 a new inline function. */
6932
6933 if (frame_id_eq (get_frame_id (get_current_frame ()),
6934 ecs->event_thread->control.step_frame_id)
6935 && inline_skipped_frames (ecs->ptid))
6936 {
6937 struct symtab_and_line call_sal;
6938
6939 if (debug_infrun)
6940 fprintf_unfiltered (gdb_stdlog,
6941 "infrun: stepped into inlined function\n");
6942
6943 find_frame_sal (get_current_frame (), &call_sal);
6944
6945 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6946 {
6947 /* For "step", we're going to stop. But if the call site
6948 for this inlined function is on the same source line as
6949 we were previously stepping, go down into the function
6950 first. Otherwise stop at the call site. */
6951
6952 if (call_sal.line == ecs->event_thread->current_line
6953 && call_sal.symtab == ecs->event_thread->current_symtab)
6954 step_into_inline_frame (ecs->ptid);
6955
6956 end_stepping_range (ecs);
6957 return;
6958 }
6959 else
6960 {
6961 /* For "next", we should stop at the call site if it is on a
6962 different source line. Otherwise continue through the
6963 inlined function. */
6964 if (call_sal.line == ecs->event_thread->current_line
6965 && call_sal.symtab == ecs->event_thread->current_symtab)
6966 keep_going (ecs);
6967 else
6968 end_stepping_range (ecs);
6969 return;
6970 }
6971 }
6972
6973 /* Look for "calls" to inlined functions, part two. If we are still
6974 in the same real function we were stepping through, but we have
6975 to go further up to find the exact frame ID, we are stepping
6976 through a more inlined call beyond its call site. */
6977
6978 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6979 && !frame_id_eq (get_frame_id (get_current_frame ()),
6980 ecs->event_thread->control.step_frame_id)
6981 && stepped_in_from (get_current_frame (),
6982 ecs->event_thread->control.step_frame_id))
6983 {
6984 if (debug_infrun)
6985 fprintf_unfiltered (gdb_stdlog,
6986 "infrun: stepping through inlined function\n");
6987
6988 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6989 keep_going (ecs);
6990 else
6991 end_stepping_range (ecs);
6992 return;
6993 }
6994
6995 if ((stop_pc == stop_pc_sal.pc)
6996 && (ecs->event_thread->current_line != stop_pc_sal.line
6997 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6998 {
6999 /* We are at the start of a different line. So stop. Note that
7000 we don't stop if we step into the middle of a different line.
7001 That is said to make things like for (;;) statements work
7002 better. */
7003 if (debug_infrun)
7004 fprintf_unfiltered (gdb_stdlog,
7005 "infrun: stepped to a different line\n");
7006 end_stepping_range (ecs);
7007 return;
7008 }
7009
7010 /* We aren't done stepping.
7011
7012 Optimize by setting the stepping range to the line.
7013 (We might not be in the original line, but if we entered a
7014 new line in mid-statement, we continue stepping. This makes
7015 things like for(;;) statements work better.) */
7016
7017 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7018 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7019 ecs->event_thread->control.may_range_step = 1;
7020 set_step_info (frame, stop_pc_sal);
7021
7022 if (debug_infrun)
7023 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7024 keep_going (ecs);
7025}
7026
7027/* In all-stop mode, if we're currently stepping but have stopped in
7028 some other thread, we may need to switch back to the stepped
7029 thread. Returns true we set the inferior running, false if we left
7030 it stopped (and the event needs further processing). */
7031
7032static int
7033switch_back_to_stepped_thread (struct execution_control_state *ecs)
7034{
7035 if (!target_is_non_stop_p ())
7036 {
7037 struct thread_info *tp;
7038 struct thread_info *stepping_thread;
7039
7040 /* If any thread is blocked on some internal breakpoint, and we
7041 simply need to step over that breakpoint to get it going
7042 again, do that first. */
7043
7044 /* However, if we see an event for the stepping thread, then we
7045 know all other threads have been moved past their breakpoints
7046 already. Let the caller check whether the step is finished,
7047 etc., before deciding to move it past a breakpoint. */
7048 if (ecs->event_thread->control.step_range_end != 0)
7049 return 0;
7050
7051 /* Check if the current thread is blocked on an incomplete
7052 step-over, interrupted by a random signal. */
7053 if (ecs->event_thread->control.trap_expected
7054 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7055 {
7056 if (debug_infrun)
7057 {
7058 fprintf_unfiltered (gdb_stdlog,
7059 "infrun: need to finish step-over of [%s]\n",
7060 target_pid_to_str (ecs->event_thread->ptid));
7061 }
7062 keep_going (ecs);
7063 return 1;
7064 }
7065
7066 /* Check if the current thread is blocked by a single-step
7067 breakpoint of another thread. */
7068 if (ecs->hit_singlestep_breakpoint)
7069 {
7070 if (debug_infrun)
7071 {
7072 fprintf_unfiltered (gdb_stdlog,
7073 "infrun: need to step [%s] over single-step "
7074 "breakpoint\n",
7075 target_pid_to_str (ecs->ptid));
7076 }
7077 keep_going (ecs);
7078 return 1;
7079 }
7080
7081 /* If this thread needs yet another step-over (e.g., stepping
7082 through a delay slot), do it first before moving on to
7083 another thread. */
7084 if (thread_still_needs_step_over (ecs->event_thread))
7085 {
7086 if (debug_infrun)
7087 {
7088 fprintf_unfiltered (gdb_stdlog,
7089 "infrun: thread [%s] still needs step-over\n",
7090 target_pid_to_str (ecs->event_thread->ptid));
7091 }
7092 keep_going (ecs);
7093 return 1;
7094 }
7095
7096 /* If scheduler locking applies even if not stepping, there's no
7097 need to walk over threads. Above we've checked whether the
7098 current thread is stepping. If some other thread not the
7099 event thread is stepping, then it must be that scheduler
7100 locking is not in effect. */
7101 if (schedlock_applies (ecs->event_thread))
7102 return 0;
7103
7104 /* Otherwise, we no longer expect a trap in the current thread.
7105 Clear the trap_expected flag before switching back -- this is
7106 what keep_going does as well, if we call it. */
7107 ecs->event_thread->control.trap_expected = 0;
7108
7109 /* Likewise, clear the signal if it should not be passed. */
7110 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7111 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7112
7113 /* Do all pending step-overs before actually proceeding with
7114 step/next/etc. */
7115 if (start_step_over ())
7116 {
7117 prepare_to_wait (ecs);
7118 return 1;
7119 }
7120
7121 /* Look for the stepping/nexting thread. */
7122 stepping_thread = NULL;
7123
7124 ALL_NON_EXITED_THREADS (tp)
7125 {
7126 /* Ignore threads of processes the caller is not
7127 resuming. */
7128 if (!sched_multi
7129 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7130 continue;
7131
7132 /* When stepping over a breakpoint, we lock all threads
7133 except the one that needs to move past the breakpoint.
7134 If a non-event thread has this set, the "incomplete
7135 step-over" check above should have caught it earlier. */
7136 if (tp->control.trap_expected)
7137 {
7138 internal_error (__FILE__, __LINE__,
7139 "[%s] has inconsistent state: "
7140 "trap_expected=%d\n",
7141 target_pid_to_str (tp->ptid),
7142 tp->control.trap_expected);
7143 }
7144
7145 /* Did we find the stepping thread? */
7146 if (tp->control.step_range_end)
7147 {
7148 /* Yep. There should only one though. */
7149 gdb_assert (stepping_thread == NULL);
7150
7151 /* The event thread is handled at the top, before we
7152 enter this loop. */
7153 gdb_assert (tp != ecs->event_thread);
7154
7155 /* If some thread other than the event thread is
7156 stepping, then scheduler locking can't be in effect,
7157 otherwise we wouldn't have resumed the current event
7158 thread in the first place. */
7159 gdb_assert (!schedlock_applies (tp));
7160
7161 stepping_thread = tp;
7162 }
7163 }
7164
7165 if (stepping_thread != NULL)
7166 {
7167 if (debug_infrun)
7168 fprintf_unfiltered (gdb_stdlog,
7169 "infrun: switching back to stepped thread\n");
7170
7171 if (keep_going_stepped_thread (stepping_thread))
7172 {
7173 prepare_to_wait (ecs);
7174 return 1;
7175 }
7176 }
7177 }
7178
7179 return 0;
7180}
7181
7182/* Set a previously stepped thread back to stepping. Returns true on
7183 success, false if the resume is not possible (e.g., the thread
7184 vanished). */
7185
7186static int
7187keep_going_stepped_thread (struct thread_info *tp)
7188{
7189 struct frame_info *frame;
7190 struct execution_control_state ecss;
7191 struct execution_control_state *ecs = &ecss;
7192
7193 /* If the stepping thread exited, then don't try to switch back and
7194 resume it, which could fail in several different ways depending
7195 on the target. Instead, just keep going.
7196
7197 We can find a stepping dead thread in the thread list in two
7198 cases:
7199
7200 - The target supports thread exit events, and when the target
7201 tries to delete the thread from the thread list, inferior_ptid
7202 pointed at the exiting thread. In such case, calling
7203 delete_thread does not really remove the thread from the list;
7204 instead, the thread is left listed, with 'exited' state.
7205
7206 - The target's debug interface does not support thread exit
7207 events, and so we have no idea whatsoever if the previously
7208 stepping thread is still alive. For that reason, we need to
7209 synchronously query the target now. */
7210
7211 if (is_exited (tp->ptid)
7212 || !target_thread_alive (tp->ptid))
7213 {
7214 if (debug_infrun)
7215 fprintf_unfiltered (gdb_stdlog,
7216 "infrun: not resuming previously "
7217 "stepped thread, it has vanished\n");
7218
7219 delete_thread (tp->ptid);
7220 return 0;
7221 }
7222
7223 if (debug_infrun)
7224 fprintf_unfiltered (gdb_stdlog,
7225 "infrun: resuming previously stepped thread\n");
7226
7227 reset_ecs (ecs, tp);
7228 switch_to_thread (tp->ptid);
7229
7230 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7231 frame = get_current_frame ();
7232
7233 /* If the PC of the thread we were trying to single-step has
7234 changed, then that thread has trapped or been signaled, but the
7235 event has not been reported to GDB yet. Re-poll the target
7236 looking for this particular thread's event (i.e. temporarily
7237 enable schedlock) by:
7238
7239 - setting a break at the current PC
7240 - resuming that particular thread, only (by setting trap
7241 expected)
7242
7243 This prevents us continuously moving the single-step breakpoint
7244 forward, one instruction at a time, overstepping. */
7245
7246 if (stop_pc != tp->prev_pc)
7247 {
7248 ptid_t resume_ptid;
7249
7250 if (debug_infrun)
7251 fprintf_unfiltered (gdb_stdlog,
7252 "infrun: expected thread advanced also (%s -> %s)\n",
7253 paddress (target_gdbarch (), tp->prev_pc),
7254 paddress (target_gdbarch (), stop_pc));
7255
7256 /* Clear the info of the previous step-over, as it's no longer
7257 valid (if the thread was trying to step over a breakpoint, it
7258 has already succeeded). It's what keep_going would do too,
7259 if we called it. Do this before trying to insert the sss
7260 breakpoint, otherwise if we were previously trying to step
7261 over this exact address in another thread, the breakpoint is
7262 skipped. */
7263 clear_step_over_info ();
7264 tp->control.trap_expected = 0;
7265
7266 insert_single_step_breakpoint (get_frame_arch (frame),
7267 get_frame_address_space (frame),
7268 stop_pc);
7269
7270 tp->resumed = 1;
7271 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7272 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7273 }
7274 else
7275 {
7276 if (debug_infrun)
7277 fprintf_unfiltered (gdb_stdlog,
7278 "infrun: expected thread still hasn't advanced\n");
7279
7280 keep_going_pass_signal (ecs);
7281 }
7282 return 1;
7283}
7284
7285/* Is thread TP in the middle of (software or hardware)
7286 single-stepping? (Note the result of this function must never be
7287 passed directly as target_resume's STEP parameter.) */
7288
7289static int
7290currently_stepping (struct thread_info *tp)
7291{
7292 return ((tp->control.step_range_end
7293 && tp->control.step_resume_breakpoint == NULL)
7294 || tp->control.trap_expected
7295 || tp->stepped_breakpoint
7296 || bpstat_should_step ());
7297}
7298
7299/* Inferior has stepped into a subroutine call with source code that
7300 we should not step over. Do step to the first line of code in
7301 it. */
7302
7303static void
7304handle_step_into_function (struct gdbarch *gdbarch,
7305 struct execution_control_state *ecs)
7306{
7307 struct compunit_symtab *cust;
7308 struct symtab_and_line stop_func_sal, sr_sal;
7309
7310 fill_in_stop_func (gdbarch, ecs);
7311
7312 cust = find_pc_compunit_symtab (stop_pc);
7313 if (cust != NULL && compunit_language (cust) != language_asm)
7314 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7315 ecs->stop_func_start);
7316
7317 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7318 /* Use the step_resume_break to step until the end of the prologue,
7319 even if that involves jumps (as it seems to on the vax under
7320 4.2). */
7321 /* If the prologue ends in the middle of a source line, continue to
7322 the end of that source line (if it is still within the function).
7323 Otherwise, just go to end of prologue. */
7324 if (stop_func_sal.end
7325 && stop_func_sal.pc != ecs->stop_func_start
7326 && stop_func_sal.end < ecs->stop_func_end)
7327 ecs->stop_func_start = stop_func_sal.end;
7328
7329 /* Architectures which require breakpoint adjustment might not be able
7330 to place a breakpoint at the computed address. If so, the test
7331 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7332 ecs->stop_func_start to an address at which a breakpoint may be
7333 legitimately placed.
7334
7335 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7336 made, GDB will enter an infinite loop when stepping through
7337 optimized code consisting of VLIW instructions which contain
7338 subinstructions corresponding to different source lines. On
7339 FR-V, it's not permitted to place a breakpoint on any but the
7340 first subinstruction of a VLIW instruction. When a breakpoint is
7341 set, GDB will adjust the breakpoint address to the beginning of
7342 the VLIW instruction. Thus, we need to make the corresponding
7343 adjustment here when computing the stop address. */
7344
7345 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7346 {
7347 ecs->stop_func_start
7348 = gdbarch_adjust_breakpoint_address (gdbarch,
7349 ecs->stop_func_start);
7350 }
7351
7352 if (ecs->stop_func_start == stop_pc)
7353 {
7354 /* We are already there: stop now. */
7355 end_stepping_range (ecs);
7356 return;
7357 }
7358 else
7359 {
7360 /* Put the step-breakpoint there and go until there. */
7361 init_sal (&sr_sal); /* initialize to zeroes */
7362 sr_sal.pc = ecs->stop_func_start;
7363 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7364 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7365
7366 /* Do not specify what the fp should be when we stop since on
7367 some machines the prologue is where the new fp value is
7368 established. */
7369 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7370
7371 /* And make sure stepping stops right away then. */
7372 ecs->event_thread->control.step_range_end
7373 = ecs->event_thread->control.step_range_start;
7374 }
7375 keep_going (ecs);
7376}
7377
7378/* Inferior has stepped backward into a subroutine call with source
7379 code that we should not step over. Do step to the beginning of the
7380 last line of code in it. */
7381
7382static void
7383handle_step_into_function_backward (struct gdbarch *gdbarch,
7384 struct execution_control_state *ecs)
7385{
7386 struct compunit_symtab *cust;
7387 struct symtab_and_line stop_func_sal;
7388
7389 fill_in_stop_func (gdbarch, ecs);
7390
7391 cust = find_pc_compunit_symtab (stop_pc);
7392 if (cust != NULL && compunit_language (cust) != language_asm)
7393 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7394 ecs->stop_func_start);
7395
7396 stop_func_sal = find_pc_line (stop_pc, 0);
7397
7398 /* OK, we're just going to keep stepping here. */
7399 if (stop_func_sal.pc == stop_pc)
7400 {
7401 /* We're there already. Just stop stepping now. */
7402 end_stepping_range (ecs);
7403 }
7404 else
7405 {
7406 /* Else just reset the step range and keep going.
7407 No step-resume breakpoint, they don't work for
7408 epilogues, which can have multiple entry paths. */
7409 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7410 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7411 keep_going (ecs);
7412 }
7413 return;
7414}
7415
7416/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7417 This is used to both functions and to skip over code. */
7418
7419static void
7420insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7421 struct symtab_and_line sr_sal,
7422 struct frame_id sr_id,
7423 enum bptype sr_type)
7424{
7425 /* There should never be more than one step-resume or longjmp-resume
7426 breakpoint per thread, so we should never be setting a new
7427 step_resume_breakpoint when one is already active. */
7428 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7429 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7430
7431 if (debug_infrun)
7432 fprintf_unfiltered (gdb_stdlog,
7433 "infrun: inserting step-resume breakpoint at %s\n",
7434 paddress (gdbarch, sr_sal.pc));
7435
7436 inferior_thread ()->control.step_resume_breakpoint
7437 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7438}
7439
7440void
7441insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7442 struct symtab_and_line sr_sal,
7443 struct frame_id sr_id)
7444{
7445 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7446 sr_sal, sr_id,
7447 bp_step_resume);
7448}
7449
7450/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7451 This is used to skip a potential signal handler.
7452
7453 This is called with the interrupted function's frame. The signal
7454 handler, when it returns, will resume the interrupted function at
7455 RETURN_FRAME.pc. */
7456
7457static void
7458insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7459{
7460 struct symtab_and_line sr_sal;
7461 struct gdbarch *gdbarch;
7462
7463 gdb_assert (return_frame != NULL);
7464 init_sal (&sr_sal); /* initialize to zeros */
7465
7466 gdbarch = get_frame_arch (return_frame);
7467 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7468 sr_sal.section = find_pc_overlay (sr_sal.pc);
7469 sr_sal.pspace = get_frame_program_space (return_frame);
7470
7471 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7472 get_stack_frame_id (return_frame),
7473 bp_hp_step_resume);
7474}
7475
7476/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7477 is used to skip a function after stepping into it (for "next" or if
7478 the called function has no debugging information).
7479
7480 The current function has almost always been reached by single
7481 stepping a call or return instruction. NEXT_FRAME belongs to the
7482 current function, and the breakpoint will be set at the caller's
7483 resume address.
7484
7485 This is a separate function rather than reusing
7486 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7487 get_prev_frame, which may stop prematurely (see the implementation
7488 of frame_unwind_caller_id for an example). */
7489
7490static void
7491insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7492{
7493 struct symtab_and_line sr_sal;
7494 struct gdbarch *gdbarch;
7495
7496 /* We shouldn't have gotten here if we don't know where the call site
7497 is. */
7498 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7499
7500 init_sal (&sr_sal); /* initialize to zeros */
7501
7502 gdbarch = frame_unwind_caller_arch (next_frame);
7503 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7504 frame_unwind_caller_pc (next_frame));
7505 sr_sal.section = find_pc_overlay (sr_sal.pc);
7506 sr_sal.pspace = frame_unwind_program_space (next_frame);
7507
7508 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7509 frame_unwind_caller_id (next_frame));
7510}
7511
7512/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7513 new breakpoint at the target of a jmp_buf. The handling of
7514 longjmp-resume uses the same mechanisms used for handling
7515 "step-resume" breakpoints. */
7516
7517static void
7518insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7519{
7520 /* There should never be more than one longjmp-resume breakpoint per
7521 thread, so we should never be setting a new
7522 longjmp_resume_breakpoint when one is already active. */
7523 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7524
7525 if (debug_infrun)
7526 fprintf_unfiltered (gdb_stdlog,
7527 "infrun: inserting longjmp-resume breakpoint at %s\n",
7528 paddress (gdbarch, pc));
7529
7530 inferior_thread ()->control.exception_resume_breakpoint =
7531 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7532}
7533
7534/* Insert an exception resume breakpoint. TP is the thread throwing
7535 the exception. The block B is the block of the unwinder debug hook
7536 function. FRAME is the frame corresponding to the call to this
7537 function. SYM is the symbol of the function argument holding the
7538 target PC of the exception. */
7539
7540static void
7541insert_exception_resume_breakpoint (struct thread_info *tp,
7542 const struct block *b,
7543 struct frame_info *frame,
7544 struct symbol *sym)
7545{
7546 TRY
7547 {
7548 struct block_symbol vsym;
7549 struct value *value;
7550 CORE_ADDR handler;
7551 struct breakpoint *bp;
7552
7553 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7554 value = read_var_value (vsym.symbol, vsym.block, frame);
7555 /* If the value was optimized out, revert to the old behavior. */
7556 if (! value_optimized_out (value))
7557 {
7558 handler = value_as_address (value);
7559
7560 if (debug_infrun)
7561 fprintf_unfiltered (gdb_stdlog,
7562 "infrun: exception resume at %lx\n",
7563 (unsigned long) handler);
7564
7565 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7566 handler, bp_exception_resume);
7567
7568 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7569 frame = NULL;
7570
7571 bp->thread = tp->global_num;
7572 inferior_thread ()->control.exception_resume_breakpoint = bp;
7573 }
7574 }
7575 CATCH (e, RETURN_MASK_ERROR)
7576 {
7577 /* We want to ignore errors here. */
7578 }
7579 END_CATCH
7580}
7581
7582/* A helper for check_exception_resume that sets an
7583 exception-breakpoint based on a SystemTap probe. */
7584
7585static void
7586insert_exception_resume_from_probe (struct thread_info *tp,
7587 const struct bound_probe *probe,
7588 struct frame_info *frame)
7589{
7590 struct value *arg_value;
7591 CORE_ADDR handler;
7592 struct breakpoint *bp;
7593
7594 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7595 if (!arg_value)
7596 return;
7597
7598 handler = value_as_address (arg_value);
7599
7600 if (debug_infrun)
7601 fprintf_unfiltered (gdb_stdlog,
7602 "infrun: exception resume at %s\n",
7603 paddress (get_objfile_arch (probe->objfile),
7604 handler));
7605
7606 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7607 handler, bp_exception_resume);
7608 bp->thread = tp->global_num;
7609 inferior_thread ()->control.exception_resume_breakpoint = bp;
7610}
7611
7612/* This is called when an exception has been intercepted. Check to
7613 see whether the exception's destination is of interest, and if so,
7614 set an exception resume breakpoint there. */
7615
7616static void
7617check_exception_resume (struct execution_control_state *ecs,
7618 struct frame_info *frame)
7619{
7620 struct bound_probe probe;
7621 struct symbol *func;
7622
7623 /* First see if this exception unwinding breakpoint was set via a
7624 SystemTap probe point. If so, the probe has two arguments: the
7625 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7626 set a breakpoint there. */
7627 probe = find_probe_by_pc (get_frame_pc (frame));
7628 if (probe.probe)
7629 {
7630 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7631 return;
7632 }
7633
7634 func = get_frame_function (frame);
7635 if (!func)
7636 return;
7637
7638 TRY
7639 {
7640 const struct block *b;
7641 struct block_iterator iter;
7642 struct symbol *sym;
7643 int argno = 0;
7644
7645 /* The exception breakpoint is a thread-specific breakpoint on
7646 the unwinder's debug hook, declared as:
7647
7648 void _Unwind_DebugHook (void *cfa, void *handler);
7649
7650 The CFA argument indicates the frame to which control is
7651 about to be transferred. HANDLER is the destination PC.
7652
7653 We ignore the CFA and set a temporary breakpoint at HANDLER.
7654 This is not extremely efficient but it avoids issues in gdb
7655 with computing the DWARF CFA, and it also works even in weird
7656 cases such as throwing an exception from inside a signal
7657 handler. */
7658
7659 b = SYMBOL_BLOCK_VALUE (func);
7660 ALL_BLOCK_SYMBOLS (b, iter, sym)
7661 {
7662 if (!SYMBOL_IS_ARGUMENT (sym))
7663 continue;
7664
7665 if (argno == 0)
7666 ++argno;
7667 else
7668 {
7669 insert_exception_resume_breakpoint (ecs->event_thread,
7670 b, frame, sym);
7671 break;
7672 }
7673 }
7674 }
7675 CATCH (e, RETURN_MASK_ERROR)
7676 {
7677 }
7678 END_CATCH
7679}
7680
7681static void
7682stop_waiting (struct execution_control_state *ecs)
7683{
7684 if (debug_infrun)
7685 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7686
7687 clear_step_over_info ();
7688
7689 /* Let callers know we don't want to wait for the inferior anymore. */
7690 ecs->wait_some_more = 0;
7691
7692 /* If all-stop, but the target is always in non-stop mode, stop all
7693 threads now that we're presenting the stop to the user. */
7694 if (!non_stop && target_is_non_stop_p ())
7695 stop_all_threads ();
7696}
7697
7698/* Like keep_going, but passes the signal to the inferior, even if the
7699 signal is set to nopass. */
7700
7701static void
7702keep_going_pass_signal (struct execution_control_state *ecs)
7703{
7704 /* Make sure normal_stop is called if we get a QUIT handled before
7705 reaching resume. */
7706 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7707
7708 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7709 gdb_assert (!ecs->event_thread->resumed);
7710
7711 /* Save the pc before execution, to compare with pc after stop. */
7712 ecs->event_thread->prev_pc
7713 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7714
7715 if (ecs->event_thread->control.trap_expected)
7716 {
7717 struct thread_info *tp = ecs->event_thread;
7718
7719 if (debug_infrun)
7720 fprintf_unfiltered (gdb_stdlog,
7721 "infrun: %s has trap_expected set, "
7722 "resuming to collect trap\n",
7723 target_pid_to_str (tp->ptid));
7724
7725 /* We haven't yet gotten our trap, and either: intercepted a
7726 non-signal event (e.g., a fork); or took a signal which we
7727 are supposed to pass through to the inferior. Simply
7728 continue. */
7729 discard_cleanups (old_cleanups);
7730 resume (ecs->event_thread->suspend.stop_signal);
7731 }
7732 else if (step_over_info_valid_p ())
7733 {
7734 /* Another thread is stepping over a breakpoint in-line. If
7735 this thread needs a step-over too, queue the request. In
7736 either case, this resume must be deferred for later. */
7737 struct thread_info *tp = ecs->event_thread;
7738
7739 if (ecs->hit_singlestep_breakpoint
7740 || thread_still_needs_step_over (tp))
7741 {
7742 if (debug_infrun)
7743 fprintf_unfiltered (gdb_stdlog,
7744 "infrun: step-over already in progress: "
7745 "step-over for %s deferred\n",
7746 target_pid_to_str (tp->ptid));
7747 thread_step_over_chain_enqueue (tp);
7748 }
7749 else
7750 {
7751 if (debug_infrun)
7752 fprintf_unfiltered (gdb_stdlog,
7753 "infrun: step-over in progress: "
7754 "resume of %s deferred\n",
7755 target_pid_to_str (tp->ptid));
7756 }
7757
7758 discard_cleanups (old_cleanups);
7759 }
7760 else
7761 {
7762 struct regcache *regcache = get_current_regcache ();
7763 int remove_bp;
7764 int remove_wps;
7765 step_over_what step_what;
7766
7767 /* Either the trap was not expected, but we are continuing
7768 anyway (if we got a signal, the user asked it be passed to
7769 the child)
7770 -- or --
7771 We got our expected trap, but decided we should resume from
7772 it.
7773
7774 We're going to run this baby now!
7775
7776 Note that insert_breakpoints won't try to re-insert
7777 already inserted breakpoints. Therefore, we don't
7778 care if breakpoints were already inserted, or not. */
7779
7780 /* If we need to step over a breakpoint, and we're not using
7781 displaced stepping to do so, insert all breakpoints
7782 (watchpoints, etc.) but the one we're stepping over, step one
7783 instruction, and then re-insert the breakpoint when that step
7784 is finished. */
7785
7786 step_what = thread_still_needs_step_over (ecs->event_thread);
7787
7788 remove_bp = (ecs->hit_singlestep_breakpoint
7789 || (step_what & STEP_OVER_BREAKPOINT));
7790 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7791
7792 /* We can't use displaced stepping if we need to step past a
7793 watchpoint. The instruction copied to the scratch pad would
7794 still trigger the watchpoint. */
7795 if (remove_bp
7796 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7797 {
7798 set_step_over_info (get_regcache_aspace (regcache),
7799 regcache_read_pc (regcache), remove_wps,
7800 ecs->event_thread->global_num);
7801 }
7802 else if (remove_wps)
7803 set_step_over_info (NULL, 0, remove_wps, -1);
7804
7805 /* If we now need to do an in-line step-over, we need to stop
7806 all other threads. Note this must be done before
7807 insert_breakpoints below, because that removes the breakpoint
7808 we're about to step over, otherwise other threads could miss
7809 it. */
7810 if (step_over_info_valid_p () && target_is_non_stop_p ())
7811 stop_all_threads ();
7812
7813 /* Stop stepping if inserting breakpoints fails. */
7814 TRY
7815 {
7816 insert_breakpoints ();
7817 }
7818 CATCH (e, RETURN_MASK_ERROR)
7819 {
7820 exception_print (gdb_stderr, e);
7821 stop_waiting (ecs);
7822 discard_cleanups (old_cleanups);
7823 return;
7824 }
7825 END_CATCH
7826
7827 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7828
7829 discard_cleanups (old_cleanups);
7830 resume (ecs->event_thread->suspend.stop_signal);
7831 }
7832
7833 prepare_to_wait (ecs);
7834}
7835
7836/* Called when we should continue running the inferior, because the
7837 current event doesn't cause a user visible stop. This does the
7838 resuming part; waiting for the next event is done elsewhere. */
7839
7840static void
7841keep_going (struct execution_control_state *ecs)
7842{
7843 if (ecs->event_thread->control.trap_expected
7844 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7845 ecs->event_thread->control.trap_expected = 0;
7846
7847 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7848 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7849 keep_going_pass_signal (ecs);
7850}
7851
7852/* This function normally comes after a resume, before
7853 handle_inferior_event exits. It takes care of any last bits of
7854 housekeeping, and sets the all-important wait_some_more flag. */
7855
7856static void
7857prepare_to_wait (struct execution_control_state *ecs)
7858{
7859 if (debug_infrun)
7860 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7861
7862 ecs->wait_some_more = 1;
7863
7864 if (!target_is_async_p ())
7865 mark_infrun_async_event_handler ();
7866}
7867
7868/* We are done with the step range of a step/next/si/ni command.
7869 Called once for each n of a "step n" operation. */
7870
7871static void
7872end_stepping_range (struct execution_control_state *ecs)
7873{
7874 ecs->event_thread->control.stop_step = 1;
7875 stop_waiting (ecs);
7876}
7877
7878/* Several print_*_reason functions to print why the inferior has stopped.
7879 We always print something when the inferior exits, or receives a signal.
7880 The rest of the cases are dealt with later on in normal_stop and
7881 print_it_typical. Ideally there should be a call to one of these
7882 print_*_reason functions functions from handle_inferior_event each time
7883 stop_waiting is called.
7884
7885 Note that we don't call these directly, instead we delegate that to
7886 the interpreters, through observers. Interpreters then call these
7887 with whatever uiout is right. */
7888
7889void
7890print_end_stepping_range_reason (struct ui_out *uiout)
7891{
7892 /* For CLI-like interpreters, print nothing. */
7893
7894 if (uiout->is_mi_like_p ())
7895 {
7896 uiout->field_string ("reason",
7897 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7898 }
7899}
7900
7901void
7902print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7903{
7904 annotate_signalled ();
7905 if (uiout->is_mi_like_p ())
7906 uiout->field_string
7907 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7908 uiout->text ("\nProgram terminated with signal ");
7909 annotate_signal_name ();
7910 uiout->field_string ("signal-name",
7911 gdb_signal_to_name (siggnal));
7912 annotate_signal_name_end ();
7913 uiout->text (", ");
7914 annotate_signal_string ();
7915 uiout->field_string ("signal-meaning",
7916 gdb_signal_to_string (siggnal));
7917 annotate_signal_string_end ();
7918 uiout->text (".\n");
7919 uiout->text ("The program no longer exists.\n");
7920}
7921
7922void
7923print_exited_reason (struct ui_out *uiout, int exitstatus)
7924{
7925 struct inferior *inf = current_inferior ();
7926 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7927
7928 annotate_exited (exitstatus);
7929 if (exitstatus)
7930 {
7931 if (uiout->is_mi_like_p ())
7932 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7933 uiout->text ("[Inferior ");
7934 uiout->text (plongest (inf->num));
7935 uiout->text (" (");
7936 uiout->text (pidstr);
7937 uiout->text (") exited with code ");
7938 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7939 uiout->text ("]\n");
7940 }
7941 else
7942 {
7943 if (uiout->is_mi_like_p ())
7944 uiout->field_string
7945 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7946 uiout->text ("[Inferior ");
7947 uiout->text (plongest (inf->num));
7948 uiout->text (" (");
7949 uiout->text (pidstr);
7950 uiout->text (") exited normally]\n");
7951 }
7952}
7953
7954/* Some targets/architectures can do extra processing/display of
7955 segmentation faults. E.g., Intel MPX boundary faults.
7956 Call the architecture dependent function to handle the fault. */
7957
7958static void
7959handle_segmentation_fault (struct ui_out *uiout)
7960{
7961 struct regcache *regcache = get_current_regcache ();
7962 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7963
7964 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7965 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7966}
7967
7968void
7969print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7970{
7971 struct thread_info *thr = inferior_thread ();
7972
7973 annotate_signal ();
7974
7975 if (uiout->is_mi_like_p ())
7976 ;
7977 else if (show_thread_that_caused_stop ())
7978 {
7979 const char *name;
7980
7981 uiout->text ("\nThread ");
7982 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7983
7984 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7985 if (name != NULL)
7986 {
7987 uiout->text (" \"");
7988 uiout->field_fmt ("name", "%s", name);
7989 uiout->text ("\"");
7990 }
7991 }
7992 else
7993 uiout->text ("\nProgram");
7994
7995 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7996 uiout->text (" stopped");
7997 else
7998 {
7999 uiout->text (" received signal ");
8000 annotate_signal_name ();
8001 if (uiout->is_mi_like_p ())
8002 uiout->field_string
8003 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8004 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8005 annotate_signal_name_end ();
8006 uiout->text (", ");
8007 annotate_signal_string ();
8008 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8009
8010 if (siggnal == GDB_SIGNAL_SEGV)
8011 handle_segmentation_fault (uiout);
8012
8013 annotate_signal_string_end ();
8014 }
8015 uiout->text (".\n");
8016}
8017
8018void
8019print_no_history_reason (struct ui_out *uiout)
8020{
8021 uiout->text ("\nNo more reverse-execution history.\n");
8022}
8023
8024/* Print current location without a level number, if we have changed
8025 functions or hit a breakpoint. Print source line if we have one.
8026 bpstat_print contains the logic deciding in detail what to print,
8027 based on the event(s) that just occurred. */
8028
8029static void
8030print_stop_location (struct target_waitstatus *ws)
8031{
8032 int bpstat_ret;
8033 enum print_what source_flag;
8034 int do_frame_printing = 1;
8035 struct thread_info *tp = inferior_thread ();
8036
8037 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8038 switch (bpstat_ret)
8039 {
8040 case PRINT_UNKNOWN:
8041 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8042 should) carry around the function and does (or should) use
8043 that when doing a frame comparison. */
8044 if (tp->control.stop_step
8045 && frame_id_eq (tp->control.step_frame_id,
8046 get_frame_id (get_current_frame ()))
8047 && tp->control.step_start_function == find_pc_function (stop_pc))
8048 {
8049 /* Finished step, just print source line. */
8050 source_flag = SRC_LINE;
8051 }
8052 else
8053 {
8054 /* Print location and source line. */
8055 source_flag = SRC_AND_LOC;
8056 }
8057 break;
8058 case PRINT_SRC_AND_LOC:
8059 /* Print location and source line. */
8060 source_flag = SRC_AND_LOC;
8061 break;
8062 case PRINT_SRC_ONLY:
8063 source_flag = SRC_LINE;
8064 break;
8065 case PRINT_NOTHING:
8066 /* Something bogus. */
8067 source_flag = SRC_LINE;
8068 do_frame_printing = 0;
8069 break;
8070 default:
8071 internal_error (__FILE__, __LINE__, _("Unknown value."));
8072 }
8073
8074 /* The behavior of this routine with respect to the source
8075 flag is:
8076 SRC_LINE: Print only source line
8077 LOCATION: Print only location
8078 SRC_AND_LOC: Print location and source line. */
8079 if (do_frame_printing)
8080 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8081}
8082
8083/* See infrun.h. */
8084
8085void
8086print_stop_event (struct ui_out *uiout)
8087{
8088 struct target_waitstatus last;
8089 ptid_t last_ptid;
8090 struct thread_info *tp;
8091
8092 get_last_target_status (&last_ptid, &last);
8093
8094 {
8095 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8096
8097 print_stop_location (&last);
8098
8099 /* Display the auto-display expressions. */
8100 do_displays ();
8101 }
8102
8103 tp = inferior_thread ();
8104 if (tp->thread_fsm != NULL
8105 && thread_fsm_finished_p (tp->thread_fsm))
8106 {
8107 struct return_value_info *rv;
8108
8109 rv = thread_fsm_return_value (tp->thread_fsm);
8110 if (rv != NULL)
8111 print_return_value (uiout, rv);
8112 }
8113}
8114
8115/* See infrun.h. */
8116
8117void
8118maybe_remove_breakpoints (void)
8119{
8120 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8121 {
8122 if (remove_breakpoints ())
8123 {
8124 target_terminal_ours_for_output ();
8125 printf_filtered (_("Cannot remove breakpoints because "
8126 "program is no longer writable.\nFurther "
8127 "execution is probably impossible.\n"));
8128 }
8129 }
8130}
8131
8132/* The execution context that just caused a normal stop. */
8133
8134struct stop_context
8135{
8136 /* The stop ID. */
8137 ULONGEST stop_id;
8138
8139 /* The event PTID. */
8140
8141 ptid_t ptid;
8142
8143 /* If stopp for a thread event, this is the thread that caused the
8144 stop. */
8145 struct thread_info *thread;
8146
8147 /* The inferior that caused the stop. */
8148 int inf_num;
8149};
8150
8151/* Returns a new stop context. If stopped for a thread event, this
8152 takes a strong reference to the thread. */
8153
8154static struct stop_context *
8155save_stop_context (void)
8156{
8157 struct stop_context *sc = XNEW (struct stop_context);
8158
8159 sc->stop_id = get_stop_id ();
8160 sc->ptid = inferior_ptid;
8161 sc->inf_num = current_inferior ()->num;
8162
8163 if (!ptid_equal (inferior_ptid, null_ptid))
8164 {
8165 /* Take a strong reference so that the thread can't be deleted
8166 yet. */
8167 sc->thread = inferior_thread ();
8168 sc->thread->refcount++;
8169 }
8170 else
8171 sc->thread = NULL;
8172
8173 return sc;
8174}
8175
8176/* Release a stop context previously created with save_stop_context.
8177 Releases the strong reference to the thread as well. */
8178
8179static void
8180release_stop_context_cleanup (void *arg)
8181{
8182 struct stop_context *sc = (struct stop_context *) arg;
8183
8184 if (sc->thread != NULL)
8185 sc->thread->refcount--;
8186 xfree (sc);
8187}
8188
8189/* Return true if the current context no longer matches the saved stop
8190 context. */
8191
8192static int
8193stop_context_changed (struct stop_context *prev)
8194{
8195 if (!ptid_equal (prev->ptid, inferior_ptid))
8196 return 1;
8197 if (prev->inf_num != current_inferior ()->num)
8198 return 1;
8199 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8200 return 1;
8201 if (get_stop_id () != prev->stop_id)
8202 return 1;
8203 return 0;
8204}
8205
8206/* See infrun.h. */
8207
8208int
8209normal_stop (void)
8210{
8211 struct target_waitstatus last;
8212 ptid_t last_ptid;
8213 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8214 ptid_t pid_ptid;
8215
8216 get_last_target_status (&last_ptid, &last);
8217
8218 new_stop_id ();
8219
8220 /* If an exception is thrown from this point on, make sure to
8221 propagate GDB's knowledge of the executing state to the
8222 frontend/user running state. A QUIT is an easy exception to see
8223 here, so do this before any filtered output. */
8224 if (!non_stop)
8225 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8226 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8227 || last.kind == TARGET_WAITKIND_EXITED)
8228 {
8229 /* On some targets, we may still have live threads in the
8230 inferior when we get a process exit event. E.g., for
8231 "checkpoint", when the current checkpoint/fork exits,
8232 linux-fork.c automatically switches to another fork from
8233 within target_mourn_inferior. */
8234 if (!ptid_equal (inferior_ptid, null_ptid))
8235 {
8236 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8237 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8238 }
8239 }
8240 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8241 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8242
8243 /* As we're presenting a stop, and potentially removing breakpoints,
8244 update the thread list so we can tell whether there are threads
8245 running on the target. With target remote, for example, we can
8246 only learn about new threads when we explicitly update the thread
8247 list. Do this before notifying the interpreters about signal
8248 stops, end of stepping ranges, etc., so that the "new thread"
8249 output is emitted before e.g., "Program received signal FOO",
8250 instead of after. */
8251 update_thread_list ();
8252
8253 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8254 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8255
8256 /* As with the notification of thread events, we want to delay
8257 notifying the user that we've switched thread context until
8258 the inferior actually stops.
8259
8260 There's no point in saying anything if the inferior has exited.
8261 Note that SIGNALLED here means "exited with a signal", not
8262 "received a signal".
8263
8264 Also skip saying anything in non-stop mode. In that mode, as we
8265 don't want GDB to switch threads behind the user's back, to avoid
8266 races where the user is typing a command to apply to thread x,
8267 but GDB switches to thread y before the user finishes entering
8268 the command, fetch_inferior_event installs a cleanup to restore
8269 the current thread back to the thread the user had selected right
8270 after this event is handled, so we're not really switching, only
8271 informing of a stop. */
8272 if (!non_stop
8273 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8274 && target_has_execution
8275 && last.kind != TARGET_WAITKIND_SIGNALLED
8276 && last.kind != TARGET_WAITKIND_EXITED
8277 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8278 {
8279 SWITCH_THRU_ALL_UIS ()
8280 {
8281 target_terminal_ours_for_output ();
8282 printf_filtered (_("[Switching to %s]\n"),
8283 target_pid_to_str (inferior_ptid));
8284 annotate_thread_changed ();
8285 }
8286 previous_inferior_ptid = inferior_ptid;
8287 }
8288
8289 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8290 {
8291 SWITCH_THRU_ALL_UIS ()
8292 if (current_ui->prompt_state == PROMPT_BLOCKED)
8293 {
8294 target_terminal_ours_for_output ();
8295 printf_filtered (_("No unwaited-for children left.\n"));
8296 }
8297 }
8298
8299 /* Note: this depends on the update_thread_list call above. */
8300 maybe_remove_breakpoints ();
8301
8302 /* If an auto-display called a function and that got a signal,
8303 delete that auto-display to avoid an infinite recursion. */
8304
8305 if (stopped_by_random_signal)
8306 disable_current_display ();
8307
8308 SWITCH_THRU_ALL_UIS ()
8309 {
8310 async_enable_stdin ();
8311 }
8312
8313 /* Let the user/frontend see the threads as stopped. */
8314 do_cleanups (old_chain);
8315
8316 /* Select innermost stack frame - i.e., current frame is frame 0,
8317 and current location is based on that. Handle the case where the
8318 dummy call is returning after being stopped. E.g. the dummy call
8319 previously hit a breakpoint. (If the dummy call returns
8320 normally, we won't reach here.) Do this before the stop hook is
8321 run, so that it doesn't get to see the temporary dummy frame,
8322 which is not where we'll present the stop. */
8323 if (has_stack_frames ())
8324 {
8325 if (stop_stack_dummy == STOP_STACK_DUMMY)
8326 {
8327 /* Pop the empty frame that contains the stack dummy. This
8328 also restores inferior state prior to the call (struct
8329 infcall_suspend_state). */
8330 struct frame_info *frame = get_current_frame ();
8331
8332 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8333 frame_pop (frame);
8334 /* frame_pop calls reinit_frame_cache as the last thing it
8335 does which means there's now no selected frame. */
8336 }
8337
8338 select_frame (get_current_frame ());
8339
8340 /* Set the current source location. */
8341 set_current_sal_from_frame (get_current_frame ());
8342 }
8343
8344 /* Look up the hook_stop and run it (CLI internally handles problem
8345 of stop_command's pre-hook not existing). */
8346 if (stop_command != NULL)
8347 {
8348 struct stop_context *saved_context = save_stop_context ();
8349 struct cleanup *old_chain
8350 = make_cleanup (release_stop_context_cleanup, saved_context);
8351
8352 catch_errors (hook_stop_stub, stop_command,
8353 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8354
8355 /* If the stop hook resumes the target, then there's no point in
8356 trying to notify about the previous stop; its context is
8357 gone. Likewise if the command switches thread or inferior --
8358 the observers would print a stop for the wrong
8359 thread/inferior. */
8360 if (stop_context_changed (saved_context))
8361 {
8362 do_cleanups (old_chain);
8363 return 1;
8364 }
8365 do_cleanups (old_chain);
8366 }
8367
8368 /* Notify observers about the stop. This is where the interpreters
8369 print the stop event. */
8370 if (!ptid_equal (inferior_ptid, null_ptid))
8371 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8372 stop_print_frame);
8373 else
8374 observer_notify_normal_stop (NULL, stop_print_frame);
8375
8376 annotate_stopped ();
8377
8378 if (target_has_execution)
8379 {
8380 if (last.kind != TARGET_WAITKIND_SIGNALLED
8381 && last.kind != TARGET_WAITKIND_EXITED)
8382 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8383 Delete any breakpoint that is to be deleted at the next stop. */
8384 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8385 }
8386
8387 /* Try to get rid of automatically added inferiors that are no
8388 longer needed. Keeping those around slows down things linearly.
8389 Note that this never removes the current inferior. */
8390 prune_inferiors ();
8391
8392 return 0;
8393}
8394
8395static int
8396hook_stop_stub (void *cmd)
8397{
8398 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8399 return (0);
8400}
8401\f
8402int
8403signal_stop_state (int signo)
8404{
8405 return signal_stop[signo];
8406}
8407
8408int
8409signal_print_state (int signo)
8410{
8411 return signal_print[signo];
8412}
8413
8414int
8415signal_pass_state (int signo)
8416{
8417 return signal_program[signo];
8418}
8419
8420static void
8421signal_cache_update (int signo)
8422{
8423 if (signo == -1)
8424 {
8425 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8426 signal_cache_update (signo);
8427
8428 return;
8429 }
8430
8431 signal_pass[signo] = (signal_stop[signo] == 0
8432 && signal_print[signo] == 0
8433 && signal_program[signo] == 1
8434 && signal_catch[signo] == 0);
8435}
8436
8437int
8438signal_stop_update (int signo, int state)
8439{
8440 int ret = signal_stop[signo];
8441
8442 signal_stop[signo] = state;
8443 signal_cache_update (signo);
8444 return ret;
8445}
8446
8447int
8448signal_print_update (int signo, int state)
8449{
8450 int ret = signal_print[signo];
8451
8452 signal_print[signo] = state;
8453 signal_cache_update (signo);
8454 return ret;
8455}
8456
8457int
8458signal_pass_update (int signo, int state)
8459{
8460 int ret = signal_program[signo];
8461
8462 signal_program[signo] = state;
8463 signal_cache_update (signo);
8464 return ret;
8465}
8466
8467/* Update the global 'signal_catch' from INFO and notify the
8468 target. */
8469
8470void
8471signal_catch_update (const unsigned int *info)
8472{
8473 int i;
8474
8475 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8476 signal_catch[i] = info[i] > 0;
8477 signal_cache_update (-1);
8478 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8479}
8480
8481static void
8482sig_print_header (void)
8483{
8484 printf_filtered (_("Signal Stop\tPrint\tPass "
8485 "to program\tDescription\n"));
8486}
8487
8488static void
8489sig_print_info (enum gdb_signal oursig)
8490{
8491 const char *name = gdb_signal_to_name (oursig);
8492 int name_padding = 13 - strlen (name);
8493
8494 if (name_padding <= 0)
8495 name_padding = 0;
8496
8497 printf_filtered ("%s", name);
8498 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8499 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8500 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8501 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8502 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8503}
8504
8505/* Specify how various signals in the inferior should be handled. */
8506
8507static void
8508handle_command (char *args, int from_tty)
8509{
8510 char **argv;
8511 int digits, wordlen;
8512 int sigfirst, signum, siglast;
8513 enum gdb_signal oursig;
8514 int allsigs;
8515 int nsigs;
8516 unsigned char *sigs;
8517 struct cleanup *old_chain;
8518
8519 if (args == NULL)
8520 {
8521 error_no_arg (_("signal to handle"));
8522 }
8523
8524 /* Allocate and zero an array of flags for which signals to handle. */
8525
8526 nsigs = (int) GDB_SIGNAL_LAST;
8527 sigs = (unsigned char *) alloca (nsigs);
8528 memset (sigs, 0, nsigs);
8529
8530 /* Break the command line up into args. */
8531
8532 argv = gdb_buildargv (args);
8533 old_chain = make_cleanup_freeargv (argv);
8534
8535 /* Walk through the args, looking for signal oursigs, signal names, and
8536 actions. Signal numbers and signal names may be interspersed with
8537 actions, with the actions being performed for all signals cumulatively
8538 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8539
8540 while (*argv != NULL)
8541 {
8542 wordlen = strlen (*argv);
8543 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8544 {;
8545 }
8546 allsigs = 0;
8547 sigfirst = siglast = -1;
8548
8549 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8550 {
8551 /* Apply action to all signals except those used by the
8552 debugger. Silently skip those. */
8553 allsigs = 1;
8554 sigfirst = 0;
8555 siglast = nsigs - 1;
8556 }
8557 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8558 {
8559 SET_SIGS (nsigs, sigs, signal_stop);
8560 SET_SIGS (nsigs, sigs, signal_print);
8561 }
8562 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8563 {
8564 UNSET_SIGS (nsigs, sigs, signal_program);
8565 }
8566 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8567 {
8568 SET_SIGS (nsigs, sigs, signal_print);
8569 }
8570 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8571 {
8572 SET_SIGS (nsigs, sigs, signal_program);
8573 }
8574 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8575 {
8576 UNSET_SIGS (nsigs, sigs, signal_stop);
8577 }
8578 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8579 {
8580 SET_SIGS (nsigs, sigs, signal_program);
8581 }
8582 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8583 {
8584 UNSET_SIGS (nsigs, sigs, signal_print);
8585 UNSET_SIGS (nsigs, sigs, signal_stop);
8586 }
8587 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8588 {
8589 UNSET_SIGS (nsigs, sigs, signal_program);
8590 }
8591 else if (digits > 0)
8592 {
8593 /* It is numeric. The numeric signal refers to our own
8594 internal signal numbering from target.h, not to host/target
8595 signal number. This is a feature; users really should be
8596 using symbolic names anyway, and the common ones like
8597 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8598
8599 sigfirst = siglast = (int)
8600 gdb_signal_from_command (atoi (*argv));
8601 if ((*argv)[digits] == '-')
8602 {
8603 siglast = (int)
8604 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8605 }
8606 if (sigfirst > siglast)
8607 {
8608 /* Bet he didn't figure we'd think of this case... */
8609 signum = sigfirst;
8610 sigfirst = siglast;
8611 siglast = signum;
8612 }
8613 }
8614 else
8615 {
8616 oursig = gdb_signal_from_name (*argv);
8617 if (oursig != GDB_SIGNAL_UNKNOWN)
8618 {
8619 sigfirst = siglast = (int) oursig;
8620 }
8621 else
8622 {
8623 /* Not a number and not a recognized flag word => complain. */
8624 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8625 }
8626 }
8627
8628 /* If any signal numbers or symbol names were found, set flags for
8629 which signals to apply actions to. */
8630
8631 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8632 {
8633 switch ((enum gdb_signal) signum)
8634 {
8635 case GDB_SIGNAL_TRAP:
8636 case GDB_SIGNAL_INT:
8637 if (!allsigs && !sigs[signum])
8638 {
8639 if (query (_("%s is used by the debugger.\n\
8640Are you sure you want to change it? "),
8641 gdb_signal_to_name ((enum gdb_signal) signum)))
8642 {
8643 sigs[signum] = 1;
8644 }
8645 else
8646 {
8647 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8648 gdb_flush (gdb_stdout);
8649 }
8650 }
8651 break;
8652 case GDB_SIGNAL_0:
8653 case GDB_SIGNAL_DEFAULT:
8654 case GDB_SIGNAL_UNKNOWN:
8655 /* Make sure that "all" doesn't print these. */
8656 break;
8657 default:
8658 sigs[signum] = 1;
8659 break;
8660 }
8661 }
8662
8663 argv++;
8664 }
8665
8666 for (signum = 0; signum < nsigs; signum++)
8667 if (sigs[signum])
8668 {
8669 signal_cache_update (-1);
8670 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8671 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8672
8673 if (from_tty)
8674 {
8675 /* Show the results. */
8676 sig_print_header ();
8677 for (; signum < nsigs; signum++)
8678 if (sigs[signum])
8679 sig_print_info ((enum gdb_signal) signum);
8680 }
8681
8682 break;
8683 }
8684
8685 do_cleanups (old_chain);
8686}
8687
8688/* Complete the "handle" command. */
8689
8690static VEC (char_ptr) *
8691handle_completer (struct cmd_list_element *ignore,
8692 const char *text, const char *word)
8693{
8694 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8695 static const char * const keywords[] =
8696 {
8697 "all",
8698 "stop",
8699 "ignore",
8700 "print",
8701 "pass",
8702 "nostop",
8703 "noignore",
8704 "noprint",
8705 "nopass",
8706 NULL,
8707 };
8708
8709 vec_signals = signal_completer (ignore, text, word);
8710 vec_keywords = complete_on_enum (keywords, word, word);
8711
8712 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8713 VEC_free (char_ptr, vec_signals);
8714 VEC_free (char_ptr, vec_keywords);
8715 return return_val;
8716}
8717
8718enum gdb_signal
8719gdb_signal_from_command (int num)
8720{
8721 if (num >= 1 && num <= 15)
8722 return (enum gdb_signal) num;
8723 error (_("Only signals 1-15 are valid as numeric signals.\n\
8724Use \"info signals\" for a list of symbolic signals."));
8725}
8726
8727/* Print current contents of the tables set by the handle command.
8728 It is possible we should just be printing signals actually used
8729 by the current target (but for things to work right when switching
8730 targets, all signals should be in the signal tables). */
8731
8732static void
8733signals_info (char *signum_exp, int from_tty)
8734{
8735 enum gdb_signal oursig;
8736
8737 sig_print_header ();
8738
8739 if (signum_exp)
8740 {
8741 /* First see if this is a symbol name. */
8742 oursig = gdb_signal_from_name (signum_exp);
8743 if (oursig == GDB_SIGNAL_UNKNOWN)
8744 {
8745 /* No, try numeric. */
8746 oursig =
8747 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8748 }
8749 sig_print_info (oursig);
8750 return;
8751 }
8752
8753 printf_filtered ("\n");
8754 /* These ugly casts brought to you by the native VAX compiler. */
8755 for (oursig = GDB_SIGNAL_FIRST;
8756 (int) oursig < (int) GDB_SIGNAL_LAST;
8757 oursig = (enum gdb_signal) ((int) oursig + 1))
8758 {
8759 QUIT;
8760
8761 if (oursig != GDB_SIGNAL_UNKNOWN
8762 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8763 sig_print_info (oursig);
8764 }
8765
8766 printf_filtered (_("\nUse the \"handle\" command "
8767 "to change these tables.\n"));
8768}
8769
8770/* The $_siginfo convenience variable is a bit special. We don't know
8771 for sure the type of the value until we actually have a chance to
8772 fetch the data. The type can change depending on gdbarch, so it is
8773 also dependent on which thread you have selected.
8774
8775 1. making $_siginfo be an internalvar that creates a new value on
8776 access.
8777
8778 2. making the value of $_siginfo be an lval_computed value. */
8779
8780/* This function implements the lval_computed support for reading a
8781 $_siginfo value. */
8782
8783static void
8784siginfo_value_read (struct value *v)
8785{
8786 LONGEST transferred;
8787
8788 /* If we can access registers, so can we access $_siginfo. Likewise
8789 vice versa. */
8790 validate_registers_access ();
8791
8792 transferred =
8793 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8794 NULL,
8795 value_contents_all_raw (v),
8796 value_offset (v),
8797 TYPE_LENGTH (value_type (v)));
8798
8799 if (transferred != TYPE_LENGTH (value_type (v)))
8800 error (_("Unable to read siginfo"));
8801}
8802
8803/* This function implements the lval_computed support for writing a
8804 $_siginfo value. */
8805
8806static void
8807siginfo_value_write (struct value *v, struct value *fromval)
8808{
8809 LONGEST transferred;
8810
8811 /* If we can access registers, so can we access $_siginfo. Likewise
8812 vice versa. */
8813 validate_registers_access ();
8814
8815 transferred = target_write (&current_target,
8816 TARGET_OBJECT_SIGNAL_INFO,
8817 NULL,
8818 value_contents_all_raw (fromval),
8819 value_offset (v),
8820 TYPE_LENGTH (value_type (fromval)));
8821
8822 if (transferred != TYPE_LENGTH (value_type (fromval)))
8823 error (_("Unable to write siginfo"));
8824}
8825
8826static const struct lval_funcs siginfo_value_funcs =
8827 {
8828 siginfo_value_read,
8829 siginfo_value_write
8830 };
8831
8832/* Return a new value with the correct type for the siginfo object of
8833 the current thread using architecture GDBARCH. Return a void value
8834 if there's no object available. */
8835
8836static struct value *
8837siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8838 void *ignore)
8839{
8840 if (target_has_stack
8841 && !ptid_equal (inferior_ptid, null_ptid)
8842 && gdbarch_get_siginfo_type_p (gdbarch))
8843 {
8844 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8845
8846 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8847 }
8848
8849 return allocate_value (builtin_type (gdbarch)->builtin_void);
8850}
8851
8852\f
8853/* infcall_suspend_state contains state about the program itself like its
8854 registers and any signal it received when it last stopped.
8855 This state must be restored regardless of how the inferior function call
8856 ends (either successfully, or after it hits a breakpoint or signal)
8857 if the program is to properly continue where it left off. */
8858
8859struct infcall_suspend_state
8860{
8861 struct thread_suspend_state thread_suspend;
8862
8863 /* Other fields: */
8864 CORE_ADDR stop_pc;
8865 struct regcache *registers;
8866
8867 /* Format of SIGINFO_DATA or NULL if it is not present. */
8868 struct gdbarch *siginfo_gdbarch;
8869
8870 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8871 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8872 content would be invalid. */
8873 gdb_byte *siginfo_data;
8874};
8875
8876struct infcall_suspend_state *
8877save_infcall_suspend_state (void)
8878{
8879 struct infcall_suspend_state *inf_state;
8880 struct thread_info *tp = inferior_thread ();
8881 struct regcache *regcache = get_current_regcache ();
8882 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8883 gdb_byte *siginfo_data = NULL;
8884
8885 if (gdbarch_get_siginfo_type_p (gdbarch))
8886 {
8887 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8888 size_t len = TYPE_LENGTH (type);
8889 struct cleanup *back_to;
8890
8891 siginfo_data = (gdb_byte *) xmalloc (len);
8892 back_to = make_cleanup (xfree, siginfo_data);
8893
8894 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8895 siginfo_data, 0, len) == len)
8896 discard_cleanups (back_to);
8897 else
8898 {
8899 /* Errors ignored. */
8900 do_cleanups (back_to);
8901 siginfo_data = NULL;
8902 }
8903 }
8904
8905 inf_state = XCNEW (struct infcall_suspend_state);
8906
8907 if (siginfo_data)
8908 {
8909 inf_state->siginfo_gdbarch = gdbarch;
8910 inf_state->siginfo_data = siginfo_data;
8911 }
8912
8913 inf_state->thread_suspend = tp->suspend;
8914
8915 /* run_inferior_call will not use the signal due to its `proceed' call with
8916 GDB_SIGNAL_0 anyway. */
8917 tp->suspend.stop_signal = GDB_SIGNAL_0;
8918
8919 inf_state->stop_pc = stop_pc;
8920
8921 inf_state->registers = regcache_dup (regcache);
8922
8923 return inf_state;
8924}
8925
8926/* Restore inferior session state to INF_STATE. */
8927
8928void
8929restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8930{
8931 struct thread_info *tp = inferior_thread ();
8932 struct regcache *regcache = get_current_regcache ();
8933 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8934
8935 tp->suspend = inf_state->thread_suspend;
8936
8937 stop_pc = inf_state->stop_pc;
8938
8939 if (inf_state->siginfo_gdbarch == gdbarch)
8940 {
8941 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8942
8943 /* Errors ignored. */
8944 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8945 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8946 }
8947
8948 /* The inferior can be gone if the user types "print exit(0)"
8949 (and perhaps other times). */
8950 if (target_has_execution)
8951 /* NB: The register write goes through to the target. */
8952 regcache_cpy (regcache, inf_state->registers);
8953
8954 discard_infcall_suspend_state (inf_state);
8955}
8956
8957static void
8958do_restore_infcall_suspend_state_cleanup (void *state)
8959{
8960 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8961}
8962
8963struct cleanup *
8964make_cleanup_restore_infcall_suspend_state
8965 (struct infcall_suspend_state *inf_state)
8966{
8967 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8968}
8969
8970void
8971discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8972{
8973 regcache_xfree (inf_state->registers);
8974 xfree (inf_state->siginfo_data);
8975 xfree (inf_state);
8976}
8977
8978struct regcache *
8979get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8980{
8981 return inf_state->registers;
8982}
8983
8984/* infcall_control_state contains state regarding gdb's control of the
8985 inferior itself like stepping control. It also contains session state like
8986 the user's currently selected frame. */
8987
8988struct infcall_control_state
8989{
8990 struct thread_control_state thread_control;
8991 struct inferior_control_state inferior_control;
8992
8993 /* Other fields: */
8994 enum stop_stack_kind stop_stack_dummy;
8995 int stopped_by_random_signal;
8996
8997 /* ID if the selected frame when the inferior function call was made. */
8998 struct frame_id selected_frame_id;
8999};
9000
9001/* Save all of the information associated with the inferior<==>gdb
9002 connection. */
9003
9004struct infcall_control_state *
9005save_infcall_control_state (void)
9006{
9007 struct infcall_control_state *inf_status =
9008 XNEW (struct infcall_control_state);
9009 struct thread_info *tp = inferior_thread ();
9010 struct inferior *inf = current_inferior ();
9011
9012 inf_status->thread_control = tp->control;
9013 inf_status->inferior_control = inf->control;
9014
9015 tp->control.step_resume_breakpoint = NULL;
9016 tp->control.exception_resume_breakpoint = NULL;
9017
9018 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9019 chain. If caller's caller is walking the chain, they'll be happier if we
9020 hand them back the original chain when restore_infcall_control_state is
9021 called. */
9022 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9023
9024 /* Other fields: */
9025 inf_status->stop_stack_dummy = stop_stack_dummy;
9026 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9027
9028 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9029
9030 return inf_status;
9031}
9032
9033static int
9034restore_selected_frame (void *args)
9035{
9036 struct frame_id *fid = (struct frame_id *) args;
9037 struct frame_info *frame;
9038
9039 frame = frame_find_by_id (*fid);
9040
9041 /* If inf_status->selected_frame_id is NULL, there was no previously
9042 selected frame. */
9043 if (frame == NULL)
9044 {
9045 warning (_("Unable to restore previously selected frame."));
9046 return 0;
9047 }
9048
9049 select_frame (frame);
9050
9051 return (1);
9052}
9053
9054/* Restore inferior session state to INF_STATUS. */
9055
9056void
9057restore_infcall_control_state (struct infcall_control_state *inf_status)
9058{
9059 struct thread_info *tp = inferior_thread ();
9060 struct inferior *inf = current_inferior ();
9061
9062 if (tp->control.step_resume_breakpoint)
9063 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9064
9065 if (tp->control.exception_resume_breakpoint)
9066 tp->control.exception_resume_breakpoint->disposition
9067 = disp_del_at_next_stop;
9068
9069 /* Handle the bpstat_copy of the chain. */
9070 bpstat_clear (&tp->control.stop_bpstat);
9071
9072 tp->control = inf_status->thread_control;
9073 inf->control = inf_status->inferior_control;
9074
9075 /* Other fields: */
9076 stop_stack_dummy = inf_status->stop_stack_dummy;
9077 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9078
9079 if (target_has_stack)
9080 {
9081 /* The point of catch_errors is that if the stack is clobbered,
9082 walking the stack might encounter a garbage pointer and
9083 error() trying to dereference it. */
9084 if (catch_errors
9085 (restore_selected_frame, &inf_status->selected_frame_id,
9086 "Unable to restore previously selected frame:\n",
9087 RETURN_MASK_ERROR) == 0)
9088 /* Error in restoring the selected frame. Select the innermost
9089 frame. */
9090 select_frame (get_current_frame ());
9091 }
9092
9093 xfree (inf_status);
9094}
9095
9096static void
9097do_restore_infcall_control_state_cleanup (void *sts)
9098{
9099 restore_infcall_control_state ((struct infcall_control_state *) sts);
9100}
9101
9102struct cleanup *
9103make_cleanup_restore_infcall_control_state
9104 (struct infcall_control_state *inf_status)
9105{
9106 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9107}
9108
9109void
9110discard_infcall_control_state (struct infcall_control_state *inf_status)
9111{
9112 if (inf_status->thread_control.step_resume_breakpoint)
9113 inf_status->thread_control.step_resume_breakpoint->disposition
9114 = disp_del_at_next_stop;
9115
9116 if (inf_status->thread_control.exception_resume_breakpoint)
9117 inf_status->thread_control.exception_resume_breakpoint->disposition
9118 = disp_del_at_next_stop;
9119
9120 /* See save_infcall_control_state for info on stop_bpstat. */
9121 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9122
9123 xfree (inf_status);
9124}
9125\f
9126/* restore_inferior_ptid() will be used by the cleanup machinery
9127 to restore the inferior_ptid value saved in a call to
9128 save_inferior_ptid(). */
9129
9130static void
9131restore_inferior_ptid (void *arg)
9132{
9133 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
9134
9135 inferior_ptid = *saved_ptid_ptr;
9136 xfree (arg);
9137}
9138
9139/* Save the value of inferior_ptid so that it may be restored by a
9140 later call to do_cleanups(). Returns the struct cleanup pointer
9141 needed for later doing the cleanup. */
9142
9143struct cleanup *
9144save_inferior_ptid (void)
9145{
9146 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
9147
9148 *saved_ptid_ptr = inferior_ptid;
9149 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9150}
9151
9152/* See infrun.h. */
9153
9154void
9155clear_exit_convenience_vars (void)
9156{
9157 clear_internalvar (lookup_internalvar ("_exitsignal"));
9158 clear_internalvar (lookup_internalvar ("_exitcode"));
9159}
9160\f
9161
9162/* User interface for reverse debugging:
9163 Set exec-direction / show exec-direction commands
9164 (returns error unless target implements to_set_exec_direction method). */
9165
9166enum exec_direction_kind execution_direction = EXEC_FORWARD;
9167static const char exec_forward[] = "forward";
9168static const char exec_reverse[] = "reverse";
9169static const char *exec_direction = exec_forward;
9170static const char *const exec_direction_names[] = {
9171 exec_forward,
9172 exec_reverse,
9173 NULL
9174};
9175
9176static void
9177set_exec_direction_func (char *args, int from_tty,
9178 struct cmd_list_element *cmd)
9179{
9180 if (target_can_execute_reverse)
9181 {
9182 if (!strcmp (exec_direction, exec_forward))
9183 execution_direction = EXEC_FORWARD;
9184 else if (!strcmp (exec_direction, exec_reverse))
9185 execution_direction = EXEC_REVERSE;
9186 }
9187 else
9188 {
9189 exec_direction = exec_forward;
9190 error (_("Target does not support this operation."));
9191 }
9192}
9193
9194static void
9195show_exec_direction_func (struct ui_file *out, int from_tty,
9196 struct cmd_list_element *cmd, const char *value)
9197{
9198 switch (execution_direction) {
9199 case EXEC_FORWARD:
9200 fprintf_filtered (out, _("Forward.\n"));
9201 break;
9202 case EXEC_REVERSE:
9203 fprintf_filtered (out, _("Reverse.\n"));
9204 break;
9205 default:
9206 internal_error (__FILE__, __LINE__,
9207 _("bogus execution_direction value: %d"),
9208 (int) execution_direction);
9209 }
9210}
9211
9212static void
9213show_schedule_multiple (struct ui_file *file, int from_tty,
9214 struct cmd_list_element *c, const char *value)
9215{
9216 fprintf_filtered (file, _("Resuming the execution of threads "
9217 "of all processes is %s.\n"), value);
9218}
9219
9220/* Implementation of `siginfo' variable. */
9221
9222static const struct internalvar_funcs siginfo_funcs =
9223{
9224 siginfo_make_value,
9225 NULL,
9226 NULL
9227};
9228
9229/* Callback for infrun's target events source. This is marked when a
9230 thread has a pending status to process. */
9231
9232static void
9233infrun_async_inferior_event_handler (gdb_client_data data)
9234{
9235 inferior_event_handler (INF_REG_EVENT, NULL);
9236}
9237
9238void
9239_initialize_infrun (void)
9240{
9241 int i;
9242 int numsigs;
9243 struct cmd_list_element *c;
9244
9245 /* Register extra event sources in the event loop. */
9246 infrun_async_inferior_event_token
9247 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9248
9249 add_info ("signals", signals_info, _("\
9250What debugger does when program gets various signals.\n\
9251Specify a signal as argument to print info on that signal only."));
9252 add_info_alias ("handle", "signals", 0);
9253
9254 c = add_com ("handle", class_run, handle_command, _("\
9255Specify how to handle signals.\n\
9256Usage: handle SIGNAL [ACTIONS]\n\
9257Args are signals and actions to apply to those signals.\n\
9258If no actions are specified, the current settings for the specified signals\n\
9259will be displayed instead.\n\
9260\n\
9261Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9262from 1-15 are allowed for compatibility with old versions of GDB.\n\
9263Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9264The special arg \"all\" is recognized to mean all signals except those\n\
9265used by the debugger, typically SIGTRAP and SIGINT.\n\
9266\n\
9267Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9268\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9269Stop means reenter debugger if this signal happens (implies print).\n\
9270Print means print a message if this signal happens.\n\
9271Pass means let program see this signal; otherwise program doesn't know.\n\
9272Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9273Pass and Stop may be combined.\n\
9274\n\
9275Multiple signals may be specified. Signal numbers and signal names\n\
9276may be interspersed with actions, with the actions being performed for\n\
9277all signals cumulatively specified."));
9278 set_cmd_completer (c, handle_completer);
9279
9280 if (!dbx_commands)
9281 stop_command = add_cmd ("stop", class_obscure,
9282 not_just_help_class_command, _("\
9283There is no `stop' command, but you can set a hook on `stop'.\n\
9284This allows you to set a list of commands to be run each time execution\n\
9285of the program stops."), &cmdlist);
9286
9287 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9288Set inferior debugging."), _("\
9289Show inferior debugging."), _("\
9290When non-zero, inferior specific debugging is enabled."),
9291 NULL,
9292 show_debug_infrun,
9293 &setdebuglist, &showdebuglist);
9294
9295 add_setshow_boolean_cmd ("displaced", class_maintenance,
9296 &debug_displaced, _("\
9297Set displaced stepping debugging."), _("\
9298Show displaced stepping debugging."), _("\
9299When non-zero, displaced stepping specific debugging is enabled."),
9300 NULL,
9301 show_debug_displaced,
9302 &setdebuglist, &showdebuglist);
9303
9304 add_setshow_boolean_cmd ("non-stop", no_class,
9305 &non_stop_1, _("\
9306Set whether gdb controls the inferior in non-stop mode."), _("\
9307Show whether gdb controls the inferior in non-stop mode."), _("\
9308When debugging a multi-threaded program and this setting is\n\
9309off (the default, also called all-stop mode), when one thread stops\n\
9310(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9311all other threads in the program while you interact with the thread of\n\
9312interest. When you continue or step a thread, you can allow the other\n\
9313threads to run, or have them remain stopped, but while you inspect any\n\
9314thread's state, all threads stop.\n\
9315\n\
9316In non-stop mode, when one thread stops, other threads can continue\n\
9317to run freely. You'll be able to step each thread independently,\n\
9318leave it stopped or free to run as needed."),
9319 set_non_stop,
9320 show_non_stop,
9321 &setlist,
9322 &showlist);
9323
9324 numsigs = (int) GDB_SIGNAL_LAST;
9325 signal_stop = XNEWVEC (unsigned char, numsigs);
9326 signal_print = XNEWVEC (unsigned char, numsigs);
9327 signal_program = XNEWVEC (unsigned char, numsigs);
9328 signal_catch = XNEWVEC (unsigned char, numsigs);
9329 signal_pass = XNEWVEC (unsigned char, numsigs);
9330 for (i = 0; i < numsigs; i++)
9331 {
9332 signal_stop[i] = 1;
9333 signal_print[i] = 1;
9334 signal_program[i] = 1;
9335 signal_catch[i] = 0;
9336 }
9337
9338 /* Signals caused by debugger's own actions should not be given to
9339 the program afterwards.
9340
9341 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9342 explicitly specifies that it should be delivered to the target
9343 program. Typically, that would occur when a user is debugging a
9344 target monitor on a simulator: the target monitor sets a
9345 breakpoint; the simulator encounters this breakpoint and halts
9346 the simulation handing control to GDB; GDB, noting that the stop
9347 address doesn't map to any known breakpoint, returns control back
9348 to the simulator; the simulator then delivers the hardware
9349 equivalent of a GDB_SIGNAL_TRAP to the program being
9350 debugged. */
9351 signal_program[GDB_SIGNAL_TRAP] = 0;
9352 signal_program[GDB_SIGNAL_INT] = 0;
9353
9354 /* Signals that are not errors should not normally enter the debugger. */
9355 signal_stop[GDB_SIGNAL_ALRM] = 0;
9356 signal_print[GDB_SIGNAL_ALRM] = 0;
9357 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9358 signal_print[GDB_SIGNAL_VTALRM] = 0;
9359 signal_stop[GDB_SIGNAL_PROF] = 0;
9360 signal_print[GDB_SIGNAL_PROF] = 0;
9361 signal_stop[GDB_SIGNAL_CHLD] = 0;
9362 signal_print[GDB_SIGNAL_CHLD] = 0;
9363 signal_stop[GDB_SIGNAL_IO] = 0;
9364 signal_print[GDB_SIGNAL_IO] = 0;
9365 signal_stop[GDB_SIGNAL_POLL] = 0;
9366 signal_print[GDB_SIGNAL_POLL] = 0;
9367 signal_stop[GDB_SIGNAL_URG] = 0;
9368 signal_print[GDB_SIGNAL_URG] = 0;
9369 signal_stop[GDB_SIGNAL_WINCH] = 0;
9370 signal_print[GDB_SIGNAL_WINCH] = 0;
9371 signal_stop[GDB_SIGNAL_PRIO] = 0;
9372 signal_print[GDB_SIGNAL_PRIO] = 0;
9373
9374 /* These signals are used internally by user-level thread
9375 implementations. (See signal(5) on Solaris.) Like the above
9376 signals, a healthy program receives and handles them as part of
9377 its normal operation. */
9378 signal_stop[GDB_SIGNAL_LWP] = 0;
9379 signal_print[GDB_SIGNAL_LWP] = 0;
9380 signal_stop[GDB_SIGNAL_WAITING] = 0;
9381 signal_print[GDB_SIGNAL_WAITING] = 0;
9382 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9383 signal_print[GDB_SIGNAL_CANCEL] = 0;
9384 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9385 signal_print[GDB_SIGNAL_LIBRT] = 0;
9386
9387 /* Update cached state. */
9388 signal_cache_update (-1);
9389
9390 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9391 &stop_on_solib_events, _("\
9392Set stopping for shared library events."), _("\
9393Show stopping for shared library events."), _("\
9394If nonzero, gdb will give control to the user when the dynamic linker\n\
9395notifies gdb of shared library events. The most common event of interest\n\
9396to the user would be loading/unloading of a new library."),
9397 set_stop_on_solib_events,
9398 show_stop_on_solib_events,
9399 &setlist, &showlist);
9400
9401 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9402 follow_fork_mode_kind_names,
9403 &follow_fork_mode_string, _("\
9404Set debugger response to a program call of fork or vfork."), _("\
9405Show debugger response to a program call of fork or vfork."), _("\
9406A fork or vfork creates a new process. follow-fork-mode can be:\n\
9407 parent - the original process is debugged after a fork\n\
9408 child - the new process is debugged after a fork\n\
9409The unfollowed process will continue to run.\n\
9410By default, the debugger will follow the parent process."),
9411 NULL,
9412 show_follow_fork_mode_string,
9413 &setlist, &showlist);
9414
9415 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9416 follow_exec_mode_names,
9417 &follow_exec_mode_string, _("\
9418Set debugger response to a program call of exec."), _("\
9419Show debugger response to a program call of exec."), _("\
9420An exec call replaces the program image of a process.\n\
9421\n\
9422follow-exec-mode can be:\n\
9423\n\
9424 new - the debugger creates a new inferior and rebinds the process\n\
9425to this new inferior. The program the process was running before\n\
9426the exec call can be restarted afterwards by restarting the original\n\
9427inferior.\n\
9428\n\
9429 same - the debugger keeps the process bound to the same inferior.\n\
9430The new executable image replaces the previous executable loaded in\n\
9431the inferior. Restarting the inferior after the exec call restarts\n\
9432the executable the process was running after the exec call.\n\
9433\n\
9434By default, the debugger will use the same inferior."),
9435 NULL,
9436 show_follow_exec_mode_string,
9437 &setlist, &showlist);
9438
9439 add_setshow_enum_cmd ("scheduler-locking", class_run,
9440 scheduler_enums, &scheduler_mode, _("\
9441Set mode for locking scheduler during execution."), _("\
9442Show mode for locking scheduler during execution."), _("\
9443off == no locking (threads may preempt at any time)\n\
9444on == full locking (no thread except the current thread may run)\n\
9445 This applies to both normal execution and replay mode.\n\
9446step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9447 In this mode, other threads may run during other commands.\n\
9448 This applies to both normal execution and replay mode.\n\
9449replay == scheduler locked in replay mode and unlocked during normal execution."),
9450 set_schedlock_func, /* traps on target vector */
9451 show_scheduler_mode,
9452 &setlist, &showlist);
9453
9454 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9455Set mode for resuming threads of all processes."), _("\
9456Show mode for resuming threads of all processes."), _("\
9457When on, execution commands (such as 'continue' or 'next') resume all\n\
9458threads of all processes. When off (which is the default), execution\n\
9459commands only resume the threads of the current process. The set of\n\
9460threads that are resumed is further refined by the scheduler-locking\n\
9461mode (see help set scheduler-locking)."),
9462 NULL,
9463 show_schedule_multiple,
9464 &setlist, &showlist);
9465
9466 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9467Set mode of the step operation."), _("\
9468Show mode of the step operation."), _("\
9469When set, doing a step over a function without debug line information\n\
9470will stop at the first instruction of that function. Otherwise, the\n\
9471function is skipped and the step command stops at a different source line."),
9472 NULL,
9473 show_step_stop_if_no_debug,
9474 &setlist, &showlist);
9475
9476 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9477 &can_use_displaced_stepping, _("\
9478Set debugger's willingness to use displaced stepping."), _("\
9479Show debugger's willingness to use displaced stepping."), _("\
9480If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9481supported by the target architecture. If off, gdb will not use displaced\n\
9482stepping to step over breakpoints, even if such is supported by the target\n\
9483architecture. If auto (which is the default), gdb will use displaced stepping\n\
9484if the target architecture supports it and non-stop mode is active, but will not\n\
9485use it in all-stop mode (see help set non-stop)."),
9486 NULL,
9487 show_can_use_displaced_stepping,
9488 &setlist, &showlist);
9489
9490 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9491 &exec_direction, _("Set direction of execution.\n\
9492Options are 'forward' or 'reverse'."),
9493 _("Show direction of execution (forward/reverse)."),
9494 _("Tells gdb whether to execute forward or backward."),
9495 set_exec_direction_func, show_exec_direction_func,
9496 &setlist, &showlist);
9497
9498 /* Set/show detach-on-fork: user-settable mode. */
9499
9500 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9501Set whether gdb will detach the child of a fork."), _("\
9502Show whether gdb will detach the child of a fork."), _("\
9503Tells gdb whether to detach the child of a fork."),
9504 NULL, NULL, &setlist, &showlist);
9505
9506 /* Set/show disable address space randomization mode. */
9507
9508 add_setshow_boolean_cmd ("disable-randomization", class_support,
9509 &disable_randomization, _("\
9510Set disabling of debuggee's virtual address space randomization."), _("\
9511Show disabling of debuggee's virtual address space randomization."), _("\
9512When this mode is on (which is the default), randomization of the virtual\n\
9513address space is disabled. Standalone programs run with the randomization\n\
9514enabled by default on some platforms."),
9515 &set_disable_randomization,
9516 &show_disable_randomization,
9517 &setlist, &showlist);
9518
9519 /* ptid initializations */
9520 inferior_ptid = null_ptid;
9521 target_last_wait_ptid = minus_one_ptid;
9522
9523 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9524 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9525 observer_attach_thread_exit (infrun_thread_thread_exit);
9526 observer_attach_inferior_exit (infrun_inferior_exit);
9527
9528 /* Explicitly create without lookup, since that tries to create a
9529 value with a void typed value, and when we get here, gdbarch
9530 isn't initialized yet. At this point, we're quite sure there
9531 isn't another convenience variable of the same name. */
9532 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9533
9534 add_setshow_boolean_cmd ("observer", no_class,
9535 &observer_mode_1, _("\
9536Set whether gdb controls the inferior in observer mode."), _("\
9537Show whether gdb controls the inferior in observer mode."), _("\
9538In observer mode, GDB can get data from the inferior, but not\n\
9539affect its execution. Registers and memory may not be changed,\n\
9540breakpoints may not be set, and the program cannot be interrupted\n\
9541or signalled."),
9542 set_observer_mode,
9543 show_observer_mode,
9544 &setlist,
9545 &showlist);
9546}
This page took 0.052895 seconds and 4 git commands to generate.