Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / infrun.c
... / ...
CommitLineData
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2021 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "displaced-stepping.h"
23#include "infrun.h"
24#include <ctype.h>
25#include "symtab.h"
26#include "frame.h"
27#include "inferior.h"
28#include "breakpoint.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "target-connection.h"
33#include "gdbthread.h"
34#include "annotate.h"
35#include "symfile.h"
36#include "top.h"
37#include "inf-loop.h"
38#include "regcache.h"
39#include "value.h"
40#include "observable.h"
41#include "language.h"
42#include "solib.h"
43#include "main.h"
44#include "block.h"
45#include "mi/mi-common.h"
46#include "event-top.h"
47#include "record.h"
48#include "record-full.h"
49#include "inline-frame.h"
50#include "jit.h"
51#include "tracepoint.h"
52#include "skip.h"
53#include "probe.h"
54#include "objfiles.h"
55#include "completer.h"
56#include "target-descriptions.h"
57#include "target-dcache.h"
58#include "terminal.h"
59#include "solist.h"
60#include "gdbsupport/event-loop.h"
61#include "thread-fsm.h"
62#include "gdbsupport/enum-flags.h"
63#include "progspace-and-thread.h"
64#include "gdbsupport/gdb_optional.h"
65#include "arch-utils.h"
66#include "gdbsupport/scope-exit.h"
67#include "gdbsupport/forward-scope-exit.h"
68#include "gdbsupport/gdb_select.h"
69#include <unordered_map>
70#include "async-event.h"
71#include "gdbsupport/selftest.h"
72#include "scoped-mock-context.h"
73#include "test-target.h"
74#include "gdbsupport/common-debug.h"
75
76/* Prototypes for local functions */
77
78static void sig_print_info (enum gdb_signal);
79
80static void sig_print_header (void);
81
82static void follow_inferior_reset_breakpoints (void);
83
84static bool currently_stepping (struct thread_info *tp);
85
86static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
87
88static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
89
90static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
91
92static bool maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
93
94static void resume (gdb_signal sig);
95
96static void wait_for_inferior (inferior *inf);
97
98/* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100static struct async_event_handler *infrun_async_inferior_event_token;
101
102/* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104static int infrun_is_async = -1;
105
106/* See infrun.h. */
107
108void
109infrun_async (int enable)
110{
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
115 infrun_debug_printf ("enable=%d", enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122}
123
124/* See infrun.h. */
125
126void
127mark_infrun_async_event_handler (void)
128{
129 mark_async_event_handler (infrun_async_inferior_event_token);
130}
131
132/* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135bool step_stop_if_no_debug = false;
136static void
137show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139{
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141}
142
143/* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
146
147static ptid_t previous_inferior_ptid;
148
149/* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154static bool detach_fork = true;
155
156bool debug_infrun = false;
157static void
158show_debug_infrun (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160{
161 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
162}
163
164/* Support for disabling address space randomization. */
165
166bool disable_randomization = true;
167
168static void
169show_disable_randomization (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171{
172 if (target_supports_disable_randomization ())
173 fprintf_filtered (file,
174 _("Disabling randomization of debuggee's "
175 "virtual address space is %s.\n"),
176 value);
177 else
178 fputs_filtered (_("Disabling randomization of debuggee's "
179 "virtual address space is unsupported on\n"
180 "this platform.\n"), file);
181}
182
183static void
184set_disable_randomization (const char *args, int from_tty,
185 struct cmd_list_element *c)
186{
187 if (!target_supports_disable_randomization ())
188 error (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform."));
191}
192
193/* User interface for non-stop mode. */
194
195bool non_stop = false;
196static bool non_stop_1 = false;
197
198static void
199set_non_stop (const char *args, int from_tty,
200 struct cmd_list_element *c)
201{
202 if (target_has_execution ())
203 {
204 non_stop_1 = non_stop;
205 error (_("Cannot change this setting while the inferior is running."));
206 }
207
208 non_stop = non_stop_1;
209}
210
211static void
212show_non_stop (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214{
215 fprintf_filtered (file,
216 _("Controlling the inferior in non-stop mode is %s.\n"),
217 value);
218}
219
220/* "Observer mode" is somewhat like a more extreme version of
221 non-stop, in which all GDB operations that might affect the
222 target's execution have been disabled. */
223
224static bool observer_mode = false;
225static bool observer_mode_1 = false;
226
227static void
228set_observer_mode (const char *args, int from_tty,
229 struct cmd_list_element *c)
230{
231 if (target_has_execution ())
232 {
233 observer_mode_1 = observer_mode;
234 error (_("Cannot change this setting while the inferior is running."));
235 }
236
237 observer_mode = observer_mode_1;
238
239 may_write_registers = !observer_mode;
240 may_write_memory = !observer_mode;
241 may_insert_breakpoints = !observer_mode;
242 may_insert_tracepoints = !observer_mode;
243 /* We can insert fast tracepoints in or out of observer mode,
244 but enable them if we're going into this mode. */
245 if (observer_mode)
246 may_insert_fast_tracepoints = true;
247 may_stop = !observer_mode;
248 update_target_permissions ();
249
250 /* Going *into* observer mode we must force non-stop, then
251 going out we leave it that way. */
252 if (observer_mode)
253 {
254 pagination_enabled = 0;
255 non_stop = non_stop_1 = true;
256 }
257
258 if (from_tty)
259 printf_filtered (_("Observer mode is now %s.\n"),
260 (observer_mode ? "on" : "off"));
261}
262
263static void
264show_observer_mode (struct ui_file *file, int from_tty,
265 struct cmd_list_element *c, const char *value)
266{
267 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
268}
269
270/* This updates the value of observer mode based on changes in
271 permissions. Note that we are deliberately ignoring the values of
272 may-write-registers and may-write-memory, since the user may have
273 reason to enable these during a session, for instance to turn on a
274 debugging-related global. */
275
276void
277update_observer_mode (void)
278{
279 bool newval = (!may_insert_breakpoints
280 && !may_insert_tracepoints
281 && may_insert_fast_tracepoints
282 && !may_stop
283 && non_stop);
284
285 /* Let the user know if things change. */
286 if (newval != observer_mode)
287 printf_filtered (_("Observer mode is now %s.\n"),
288 (newval ? "on" : "off"));
289
290 observer_mode = observer_mode_1 = newval;
291}
292
293/* Tables of how to react to signals; the user sets them. */
294
295static unsigned char signal_stop[GDB_SIGNAL_LAST];
296static unsigned char signal_print[GDB_SIGNAL_LAST];
297static unsigned char signal_program[GDB_SIGNAL_LAST];
298
299/* Table of signals that are registered with "catch signal". A
300 non-zero entry indicates that the signal is caught by some "catch
301 signal" command. */
302static unsigned char signal_catch[GDB_SIGNAL_LAST];
303
304/* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
307static unsigned char signal_pass[GDB_SIGNAL_LAST];
308
309#define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317#define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
325/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328void
329update_signals_program_target (void)
330{
331 target_program_signals (signal_program);
332}
333
334/* Value to pass to target_resume() to cause all threads to resume. */
335
336#define RESUME_ALL minus_one_ptid
337
338/* Command list pointer for the "stop" placeholder. */
339
340static struct cmd_list_element *stop_command;
341
342/* Nonzero if we want to give control to the user when we're notified
343 of shared library events by the dynamic linker. */
344int stop_on_solib_events;
345
346/* Enable or disable optional shared library event breakpoints
347 as appropriate when the above flag is changed. */
348
349static void
350set_stop_on_solib_events (const char *args,
351 int from_tty, struct cmd_list_element *c)
352{
353 update_solib_breakpoints ();
354}
355
356static void
357show_stop_on_solib_events (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359{
360 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
361 value);
362}
363
364/* True after stop if current stack frame should be printed. */
365
366static bool stop_print_frame;
367
368/* This is a cached copy of the target/ptid/waitstatus of the last
369 event returned by target_wait()/deprecated_target_wait_hook().
370 This information is returned by get_last_target_status(). */
371static process_stratum_target *target_last_proc_target;
372static ptid_t target_last_wait_ptid;
373static struct target_waitstatus target_last_waitstatus;
374
375void init_thread_stepping_state (struct thread_info *tss);
376
377static const char follow_fork_mode_child[] = "child";
378static const char follow_fork_mode_parent[] = "parent";
379
380static const char *const follow_fork_mode_kind_names[] = {
381 follow_fork_mode_child,
382 follow_fork_mode_parent,
383 NULL
384};
385
386static const char *follow_fork_mode_string = follow_fork_mode_parent;
387static void
388show_follow_fork_mode_string (struct ui_file *file, int from_tty,
389 struct cmd_list_element *c, const char *value)
390{
391 fprintf_filtered (file,
392 _("Debugger response to a program "
393 "call of fork or vfork is \"%s\".\n"),
394 value);
395}
396\f
397
398/* Handle changes to the inferior list based on the type of fork,
399 which process is being followed, and whether the other process
400 should be detached. On entry inferior_ptid must be the ptid of
401 the fork parent. At return inferior_ptid is the ptid of the
402 followed inferior. */
403
404static bool
405follow_fork_inferior (bool follow_child, bool detach_fork)
406{
407 int has_vforked;
408 ptid_t parent_ptid, child_ptid;
409
410 has_vforked = (inferior_thread ()->pending_follow.kind
411 == TARGET_WAITKIND_VFORKED);
412 parent_ptid = inferior_ptid;
413 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
414
415 if (has_vforked
416 && !non_stop /* Non-stop always resumes both branches. */
417 && current_ui->prompt_state == PROMPT_BLOCKED
418 && !(follow_child || detach_fork || sched_multi))
419 {
420 /* The parent stays blocked inside the vfork syscall until the
421 child execs or exits. If we don't let the child run, then
422 the parent stays blocked. If we're telling the parent to run
423 in the foreground, the user will not be able to ctrl-c to get
424 back the terminal, effectively hanging the debug session. */
425 fprintf_filtered (gdb_stderr, _("\
426Can not resume the parent process over vfork in the foreground while\n\
427holding the child stopped. Try \"set detach-on-fork\" or \
428\"set schedule-multiple\".\n"));
429 return 1;
430 }
431
432 if (!follow_child)
433 {
434 /* Detach new forked process? */
435 if (detach_fork)
436 {
437 /* Before detaching from the child, remove all breakpoints
438 from it. If we forked, then this has already been taken
439 care of by infrun.c. If we vforked however, any
440 breakpoint inserted in the parent is visible in the
441 child, even those added while stopped in a vfork
442 catchpoint. This will remove the breakpoints from the
443 parent also, but they'll be reinserted below. */
444 if (has_vforked)
445 {
446 /* Keep breakpoints list in sync. */
447 remove_breakpoints_inf (current_inferior ());
448 }
449
450 if (print_inferior_events)
451 {
452 /* Ensure that we have a process ptid. */
453 ptid_t process_ptid = ptid_t (child_ptid.pid ());
454
455 target_terminal::ours_for_output ();
456 fprintf_filtered (gdb_stdlog,
457 _("[Detaching after %s from child %s]\n"),
458 has_vforked ? "vfork" : "fork",
459 target_pid_to_str (process_ptid).c_str ());
460 }
461 }
462 else
463 {
464 struct inferior *parent_inf, *child_inf;
465
466 /* Add process to GDB's tables. */
467 child_inf = add_inferior (child_ptid.pid ());
468
469 parent_inf = current_inferior ();
470 child_inf->attach_flag = parent_inf->attach_flag;
471 copy_terminal_info (child_inf, parent_inf);
472 child_inf->gdbarch = parent_inf->gdbarch;
473 copy_inferior_target_desc_info (child_inf, parent_inf);
474
475 scoped_restore_current_pspace_and_thread restore_pspace_thread;
476
477 set_current_inferior (child_inf);
478 switch_to_no_thread ();
479 child_inf->symfile_flags = SYMFILE_NO_READ;
480 child_inf->push_target (parent_inf->process_target ());
481 thread_info *child_thr
482 = add_thread_silent (child_inf->process_target (), child_ptid);
483
484 /* If this is a vfork child, then the address-space is
485 shared with the parent. */
486 if (has_vforked)
487 {
488 child_inf->pspace = parent_inf->pspace;
489 child_inf->aspace = parent_inf->aspace;
490
491 exec_on_vfork ();
492
493 /* The parent will be frozen until the child is done
494 with the shared region. Keep track of the
495 parent. */
496 child_inf->vfork_parent = parent_inf;
497 child_inf->pending_detach = 0;
498 parent_inf->vfork_child = child_inf;
499 parent_inf->pending_detach = 0;
500
501 /* Now that the inferiors and program spaces are all
502 wired up, we can switch to the child thread (which
503 switches inferior and program space too). */
504 switch_to_thread (child_thr);
505 }
506 else
507 {
508 child_inf->aspace = new_address_space ();
509 child_inf->pspace = new program_space (child_inf->aspace);
510 child_inf->removable = 1;
511 set_current_program_space (child_inf->pspace);
512 clone_program_space (child_inf->pspace, parent_inf->pspace);
513
514 /* solib_create_inferior_hook relies on the current
515 thread. */
516 switch_to_thread (child_thr);
517
518 /* Let the shared library layer (e.g., solib-svr4) learn
519 about this new process, relocate the cloned exec, pull
520 in shared libraries, and install the solib event
521 breakpoint. If a "cloned-VM" event was propagated
522 better throughout the core, this wouldn't be
523 required. */
524 solib_create_inferior_hook (0);
525 }
526 }
527
528 if (has_vforked)
529 {
530 struct inferior *parent_inf;
531
532 parent_inf = current_inferior ();
533
534 /* If we detached from the child, then we have to be careful
535 to not insert breakpoints in the parent until the child
536 is done with the shared memory region. However, if we're
537 staying attached to the child, then we can and should
538 insert breakpoints, so that we can debug it. A
539 subsequent child exec or exit is enough to know when does
540 the child stops using the parent's address space. */
541 parent_inf->waiting_for_vfork_done = detach_fork;
542 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
543 }
544 }
545 else
546 {
547 /* Follow the child. */
548 struct inferior *parent_inf, *child_inf;
549 struct program_space *parent_pspace;
550
551 if (print_inferior_events)
552 {
553 std::string parent_pid = target_pid_to_str (parent_ptid);
554 std::string child_pid = target_pid_to_str (child_ptid);
555
556 target_terminal::ours_for_output ();
557 fprintf_filtered (gdb_stdlog,
558 _("[Attaching after %s %s to child %s]\n"),
559 parent_pid.c_str (),
560 has_vforked ? "vfork" : "fork",
561 child_pid.c_str ());
562 }
563
564 /* Add the new inferior first, so that the target_detach below
565 doesn't unpush the target. */
566
567 child_inf = add_inferior (child_ptid.pid ());
568
569 parent_inf = current_inferior ();
570 child_inf->attach_flag = parent_inf->attach_flag;
571 copy_terminal_info (child_inf, parent_inf);
572 child_inf->gdbarch = parent_inf->gdbarch;
573 copy_inferior_target_desc_info (child_inf, parent_inf);
574
575 parent_pspace = parent_inf->pspace;
576
577 process_stratum_target *target = parent_inf->process_target ();
578
579 {
580 /* Hold a strong reference to the target while (maybe)
581 detaching the parent. Otherwise detaching could close the
582 target. */
583 auto target_ref = target_ops_ref::new_reference (target);
584
585 /* If we're vforking, we want to hold on to the parent until
586 the child exits or execs. At child exec or exit time we
587 can remove the old breakpoints from the parent and detach
588 or resume debugging it. Otherwise, detach the parent now;
589 we'll want to reuse it's program/address spaces, but we
590 can't set them to the child before removing breakpoints
591 from the parent, otherwise, the breakpoints module could
592 decide to remove breakpoints from the wrong process (since
593 they'd be assigned to the same address space). */
594
595 if (has_vforked)
596 {
597 gdb_assert (child_inf->vfork_parent == NULL);
598 gdb_assert (parent_inf->vfork_child == NULL);
599 child_inf->vfork_parent = parent_inf;
600 child_inf->pending_detach = 0;
601 parent_inf->vfork_child = child_inf;
602 parent_inf->pending_detach = detach_fork;
603 parent_inf->waiting_for_vfork_done = 0;
604 }
605 else if (detach_fork)
606 {
607 if (print_inferior_events)
608 {
609 /* Ensure that we have a process ptid. */
610 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
611
612 target_terminal::ours_for_output ();
613 fprintf_filtered (gdb_stdlog,
614 _("[Detaching after fork from "
615 "parent %s]\n"),
616 target_pid_to_str (process_ptid).c_str ());
617 }
618
619 target_detach (parent_inf, 0);
620 parent_inf = NULL;
621 }
622
623 /* Note that the detach above makes PARENT_INF dangling. */
624
625 /* Add the child thread to the appropriate lists, and switch
626 to this new thread, before cloning the program space, and
627 informing the solib layer about this new process. */
628
629 set_current_inferior (child_inf);
630 child_inf->push_target (target);
631 }
632
633 thread_info *child_thr = add_thread_silent (target, child_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642
643 exec_on_vfork ();
644 }
645 else
646 {
647 child_inf->aspace = new_address_space ();
648 child_inf->pspace = new program_space (child_inf->aspace);
649 child_inf->removable = 1;
650 child_inf->symfile_flags = SYMFILE_NO_READ;
651 set_current_program_space (child_inf->pspace);
652 clone_program_space (child_inf->pspace, parent_pspace);
653
654 /* Let the shared library layer (e.g., solib-svr4) learn
655 about this new process, relocate the cloned exec, pull in
656 shared libraries, and install the solib event breakpoint.
657 If a "cloned-VM" event was propagated better throughout
658 the core, this wouldn't be required. */
659 solib_create_inferior_hook (0);
660 }
661
662 switch_to_thread (child_thr);
663 }
664
665 return target_follow_fork (follow_child, detach_fork);
666}
667
668/* Tell the target to follow the fork we're stopped at. Returns true
669 if the inferior should be resumed; false, if the target for some
670 reason decided it's best not to resume. */
671
672static bool
673follow_fork ()
674{
675 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
676 bool should_resume = true;
677 struct thread_info *tp;
678
679 /* Copy user stepping state to the new inferior thread. FIXME: the
680 followed fork child thread should have a copy of most of the
681 parent thread structure's run control related fields, not just these.
682 Initialized to avoid "may be used uninitialized" warnings from gcc. */
683 struct breakpoint *step_resume_breakpoint = NULL;
684 struct breakpoint *exception_resume_breakpoint = NULL;
685 CORE_ADDR step_range_start = 0;
686 CORE_ADDR step_range_end = 0;
687 int current_line = 0;
688 symtab *current_symtab = NULL;
689 struct frame_id step_frame_id = { 0 };
690 struct thread_fsm *thread_fsm = NULL;
691
692 if (!non_stop)
693 {
694 process_stratum_target *wait_target;
695 ptid_t wait_ptid;
696 struct target_waitstatus wait_status;
697
698 /* Get the last target status returned by target_wait(). */
699 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
700
701 /* If not stopped at a fork event, then there's nothing else to
702 do. */
703 if (wait_status.kind != TARGET_WAITKIND_FORKED
704 && wait_status.kind != TARGET_WAITKIND_VFORKED)
705 return 1;
706
707 /* Check if we switched over from WAIT_PTID, since the event was
708 reported. */
709 if (wait_ptid != minus_one_ptid
710 && (current_inferior ()->process_target () != wait_target
711 || inferior_ptid != wait_ptid))
712 {
713 /* We did. Switch back to WAIT_PTID thread, to tell the
714 target to follow it (in either direction). We'll
715 afterwards refuse to resume, and inform the user what
716 happened. */
717 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
718 switch_to_thread (wait_thread);
719 should_resume = false;
720 }
721 }
722
723 tp = inferior_thread ();
724
725 /* If there were any forks/vforks that were caught and are now to be
726 followed, then do so now. */
727 switch (tp->pending_follow.kind)
728 {
729 case TARGET_WAITKIND_FORKED:
730 case TARGET_WAITKIND_VFORKED:
731 {
732 ptid_t parent, child;
733
734 /* If the user did a next/step, etc, over a fork call,
735 preserve the stepping state in the fork child. */
736 if (follow_child && should_resume)
737 {
738 step_resume_breakpoint = clone_momentary_breakpoint
739 (tp->control.step_resume_breakpoint);
740 step_range_start = tp->control.step_range_start;
741 step_range_end = tp->control.step_range_end;
742 current_line = tp->current_line;
743 current_symtab = tp->current_symtab;
744 step_frame_id = tp->control.step_frame_id;
745 exception_resume_breakpoint
746 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
747 thread_fsm = tp->thread_fsm;
748
749 /* For now, delete the parent's sr breakpoint, otherwise,
750 parent/child sr breakpoints are considered duplicates,
751 and the child version will not be installed. Remove
752 this when the breakpoints module becomes aware of
753 inferiors and address spaces. */
754 delete_step_resume_breakpoint (tp);
755 tp->control.step_range_start = 0;
756 tp->control.step_range_end = 0;
757 tp->control.step_frame_id = null_frame_id;
758 delete_exception_resume_breakpoint (tp);
759 tp->thread_fsm = NULL;
760 }
761
762 parent = inferior_ptid;
763 child = tp->pending_follow.value.related_pid;
764
765 process_stratum_target *parent_targ = tp->inf->process_target ();
766 /* Set up inferior(s) as specified by the caller, and tell the
767 target to do whatever is necessary to follow either parent
768 or child. */
769 if (follow_fork_inferior (follow_child, detach_fork))
770 {
771 /* Target refused to follow, or there's some other reason
772 we shouldn't resume. */
773 should_resume = 0;
774 }
775 else
776 {
777 /* This pending follow fork event is now handled, one way
778 or another. The previous selected thread may be gone
779 from the lists by now, but if it is still around, need
780 to clear the pending follow request. */
781 tp = find_thread_ptid (parent_targ, parent);
782 if (tp)
783 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
784
785 /* This makes sure we don't try to apply the "Switched
786 over from WAIT_PID" logic above. */
787 nullify_last_target_wait_ptid ();
788
789 /* If we followed the child, switch to it... */
790 if (follow_child)
791 {
792 thread_info *child_thr = find_thread_ptid (parent_targ, child);
793 switch_to_thread (child_thr);
794
795 /* ... and preserve the stepping state, in case the
796 user was stepping over the fork call. */
797 if (should_resume)
798 {
799 tp = inferior_thread ();
800 tp->control.step_resume_breakpoint
801 = step_resume_breakpoint;
802 tp->control.step_range_start = step_range_start;
803 tp->control.step_range_end = step_range_end;
804 tp->current_line = current_line;
805 tp->current_symtab = current_symtab;
806 tp->control.step_frame_id = step_frame_id;
807 tp->control.exception_resume_breakpoint
808 = exception_resume_breakpoint;
809 tp->thread_fsm = thread_fsm;
810 }
811 else
812 {
813 /* If we get here, it was because we're trying to
814 resume from a fork catchpoint, but, the user
815 has switched threads away from the thread that
816 forked. In that case, the resume command
817 issued is most likely not applicable to the
818 child, so just warn, and refuse to resume. */
819 warning (_("Not resuming: switched threads "
820 "before following fork child."));
821 }
822
823 /* Reset breakpoints in the child as appropriate. */
824 follow_inferior_reset_breakpoints ();
825 }
826 }
827 }
828 break;
829 case TARGET_WAITKIND_SPURIOUS:
830 /* Nothing to follow. */
831 break;
832 default:
833 internal_error (__FILE__, __LINE__,
834 "Unexpected pending_follow.kind %d\n",
835 tp->pending_follow.kind);
836 break;
837 }
838
839 return should_resume;
840}
841
842static void
843follow_inferior_reset_breakpoints (void)
844{
845 struct thread_info *tp = inferior_thread ();
846
847 /* Was there a step_resume breakpoint? (There was if the user
848 did a "next" at the fork() call.) If so, explicitly reset its
849 thread number. Cloned step_resume breakpoints are disabled on
850 creation, so enable it here now that it is associated with the
851 correct thread.
852
853 step_resumes are a form of bp that are made to be per-thread.
854 Since we created the step_resume bp when the parent process
855 was being debugged, and now are switching to the child process,
856 from the breakpoint package's viewpoint, that's a switch of
857 "threads". We must update the bp's notion of which thread
858 it is for, or it'll be ignored when it triggers. */
859
860 if (tp->control.step_resume_breakpoint)
861 {
862 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
863 tp->control.step_resume_breakpoint->loc->enabled = 1;
864 }
865
866 /* Treat exception_resume breakpoints like step_resume breakpoints. */
867 if (tp->control.exception_resume_breakpoint)
868 {
869 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
870 tp->control.exception_resume_breakpoint->loc->enabled = 1;
871 }
872
873 /* Reinsert all breakpoints in the child. The user may have set
874 breakpoints after catching the fork, in which case those
875 were never set in the child, but only in the parent. This makes
876 sure the inserted breakpoints match the breakpoint list. */
877
878 breakpoint_re_set ();
879 insert_breakpoints ();
880}
881
882/* The child has exited or execed: resume threads of the parent the
883 user wanted to be executing. */
884
885static int
886proceed_after_vfork_done (struct thread_info *thread,
887 void *arg)
888{
889 int pid = * (int *) arg;
890
891 if (thread->ptid.pid () == pid
892 && thread->state == THREAD_RUNNING
893 && !thread->executing
894 && !thread->stop_requested
895 && thread->suspend.stop_signal == GDB_SIGNAL_0)
896 {
897 infrun_debug_printf ("resuming vfork parent thread %s",
898 target_pid_to_str (thread->ptid).c_str ());
899
900 switch_to_thread (thread);
901 clear_proceed_status (0);
902 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
903 }
904
905 return 0;
906}
907
908/* Called whenever we notice an exec or exit event, to handle
909 detaching or resuming a vfork parent. */
910
911static void
912handle_vfork_child_exec_or_exit (int exec)
913{
914 struct inferior *inf = current_inferior ();
915
916 if (inf->vfork_parent)
917 {
918 int resume_parent = -1;
919
920 /* This exec or exit marks the end of the shared memory region
921 between the parent and the child. Break the bonds. */
922 inferior *vfork_parent = inf->vfork_parent;
923 inf->vfork_parent->vfork_child = NULL;
924 inf->vfork_parent = NULL;
925
926 /* If the user wanted to detach from the parent, now is the
927 time. */
928 if (vfork_parent->pending_detach)
929 {
930 struct program_space *pspace;
931 struct address_space *aspace;
932
933 /* follow-fork child, detach-on-fork on. */
934
935 vfork_parent->pending_detach = 0;
936
937 scoped_restore_current_pspace_and_thread restore_thread;
938
939 /* We're letting loose of the parent. */
940 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
941 switch_to_thread (tp);
942
943 /* We're about to detach from the parent, which implicitly
944 removes breakpoints from its address space. There's a
945 catch here: we want to reuse the spaces for the child,
946 but, parent/child are still sharing the pspace at this
947 point, although the exec in reality makes the kernel give
948 the child a fresh set of new pages. The problem here is
949 that the breakpoints module being unaware of this, would
950 likely chose the child process to write to the parent
951 address space. Swapping the child temporarily away from
952 the spaces has the desired effect. Yes, this is "sort
953 of" a hack. */
954
955 pspace = inf->pspace;
956 aspace = inf->aspace;
957 inf->aspace = NULL;
958 inf->pspace = NULL;
959
960 if (print_inferior_events)
961 {
962 std::string pidstr
963 = target_pid_to_str (ptid_t (vfork_parent->pid));
964
965 target_terminal::ours_for_output ();
966
967 if (exec)
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("[Detaching vfork parent %s "
971 "after child exec]\n"), pidstr.c_str ());
972 }
973 else
974 {
975 fprintf_filtered (gdb_stdlog,
976 _("[Detaching vfork parent %s "
977 "after child exit]\n"), pidstr.c_str ());
978 }
979 }
980
981 target_detach (vfork_parent, 0);
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
986 }
987 else if (exec)
988 {
989 /* We're staying attached to the parent, so, really give the
990 child a new address space. */
991 inf->pspace = new program_space (maybe_new_address_space ());
992 inf->aspace = inf->pspace->aspace;
993 inf->removable = 1;
994 set_current_program_space (inf->pspace);
995
996 resume_parent = vfork_parent->pid;
997 }
998 else
999 {
1000 /* If this is a vfork child exiting, then the pspace and
1001 aspaces were shared with the parent. Since we're
1002 reporting the process exit, we'll be mourning all that is
1003 found in the address space, and switching to null_ptid,
1004 preparing to start a new inferior. But, since we don't
1005 want to clobber the parent's address/program spaces, we
1006 go ahead and create a new one for this exiting
1007 inferior. */
1008
1009 /* Switch to no-thread while running clone_program_space, so
1010 that clone_program_space doesn't want to read the
1011 selected frame of a dead process. */
1012 scoped_restore_current_thread restore_thread;
1013 switch_to_no_thread ();
1014
1015 inf->pspace = new program_space (maybe_new_address_space ());
1016 inf->aspace = inf->pspace->aspace;
1017 set_current_program_space (inf->pspace);
1018 inf->removable = 1;
1019 inf->symfile_flags = SYMFILE_NO_READ;
1020 clone_program_space (inf->pspace, vfork_parent->pspace);
1021
1022 resume_parent = vfork_parent->pid;
1023 }
1024
1025 gdb_assert (current_program_space == inf->pspace);
1026
1027 if (non_stop && resume_parent != -1)
1028 {
1029 /* If the user wanted the parent to be running, let it go
1030 free now. */
1031 scoped_restore_current_thread restore_thread;
1032
1033 infrun_debug_printf ("resuming vfork parent process %d",
1034 resume_parent);
1035
1036 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1037 }
1038 }
1039}
1040
1041/* Enum strings for "set|show follow-exec-mode". */
1042
1043static const char follow_exec_mode_new[] = "new";
1044static const char follow_exec_mode_same[] = "same";
1045static const char *const follow_exec_mode_names[] =
1046{
1047 follow_exec_mode_new,
1048 follow_exec_mode_same,
1049 NULL,
1050};
1051
1052static const char *follow_exec_mode_string = follow_exec_mode_same;
1053static void
1054show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1055 struct cmd_list_element *c, const char *value)
1056{
1057 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1058}
1059
1060/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1061
1062static void
1063follow_exec (ptid_t ptid, const char *exec_file_target)
1064{
1065 struct inferior *inf = current_inferior ();
1066 int pid = ptid.pid ();
1067 ptid_t process_ptid;
1068
1069 /* Switch terminal for any messages produced e.g. by
1070 breakpoint_re_set. */
1071 target_terminal::ours_for_output ();
1072
1073 /* This is an exec event that we actually wish to pay attention to.
1074 Refresh our symbol table to the newly exec'd program, remove any
1075 momentary bp's, etc.
1076
1077 If there are breakpoints, they aren't really inserted now,
1078 since the exec() transformed our inferior into a fresh set
1079 of instructions.
1080
1081 We want to preserve symbolic breakpoints on the list, since
1082 we have hopes that they can be reset after the new a.out's
1083 symbol table is read.
1084
1085 However, any "raw" breakpoints must be removed from the list
1086 (e.g., the solib bp's), since their address is probably invalid
1087 now.
1088
1089 And, we DON'T want to call delete_breakpoints() here, since
1090 that may write the bp's "shadow contents" (the instruction
1091 value that was overwritten with a TRAP instruction). Since
1092 we now have a new a.out, those shadow contents aren't valid. */
1093
1094 mark_breakpoints_out ();
1095
1096 /* The target reports the exec event to the main thread, even if
1097 some other thread does the exec, and even if the main thread was
1098 stopped or already gone. We may still have non-leader threads of
1099 the process on our list. E.g., on targets that don't have thread
1100 exit events (like remote); or on native Linux in non-stop mode if
1101 there were only two threads in the inferior and the non-leader
1102 one is the one that execs (and nothing forces an update of the
1103 thread list up to here). When debugging remotely, it's best to
1104 avoid extra traffic, when possible, so avoid syncing the thread
1105 list with the target, and instead go ahead and delete all threads
1106 of the process but one that reported the event. Note this must
1107 be done before calling update_breakpoints_after_exec, as
1108 otherwise clearing the threads' resources would reference stale
1109 thread breakpoints -- it may have been one of these threads that
1110 stepped across the exec. We could just clear their stepping
1111 states, but as long as we're iterating, might as well delete
1112 them. Deleting them now rather than at the next user-visible
1113 stop provides a nicer sequence of events for user and MI
1114 notifications. */
1115 for (thread_info *th : all_threads_safe ())
1116 if (th->ptid.pid () == pid && th->ptid != ptid)
1117 delete_thread (th);
1118
1119 /* We also need to clear any left over stale state for the
1120 leader/event thread. E.g., if there was any step-resume
1121 breakpoint or similar, it's gone now. We cannot truly
1122 step-to-next statement through an exec(). */
1123 thread_info *th = inferior_thread ();
1124 th->control.step_resume_breakpoint = NULL;
1125 th->control.exception_resume_breakpoint = NULL;
1126 th->control.single_step_breakpoints = NULL;
1127 th->control.step_range_start = 0;
1128 th->control.step_range_end = 0;
1129
1130 /* The user may have had the main thread held stopped in the
1131 previous image (e.g., schedlock on, or non-stop). Release
1132 it now. */
1133 th->stop_requested = 0;
1134
1135 update_breakpoints_after_exec ();
1136
1137 /* What is this a.out's name? */
1138 process_ptid = ptid_t (pid);
1139 printf_unfiltered (_("%s is executing new program: %s\n"),
1140 target_pid_to_str (process_ptid).c_str (),
1141 exec_file_target);
1142
1143 /* We've followed the inferior through an exec. Therefore, the
1144 inferior has essentially been killed & reborn. */
1145
1146 breakpoint_init_inferior (inf_execd);
1147
1148 gdb::unique_xmalloc_ptr<char> exec_file_host
1149 = exec_file_find (exec_file_target, NULL);
1150
1151 /* If we were unable to map the executable target pathname onto a host
1152 pathname, tell the user that. Otherwise GDB's subsequent behavior
1153 is confusing. Maybe it would even be better to stop at this point
1154 so that the user can specify a file manually before continuing. */
1155 if (exec_file_host == NULL)
1156 warning (_("Could not load symbols for executable %s.\n"
1157 "Do you need \"set sysroot\"?"),
1158 exec_file_target);
1159
1160 /* Reset the shared library package. This ensures that we get a
1161 shlib event when the child reaches "_start", at which point the
1162 dld will have had a chance to initialize the child. */
1163 /* Also, loading a symbol file below may trigger symbol lookups, and
1164 we don't want those to be satisfied by the libraries of the
1165 previous incarnation of this process. */
1166 no_shared_libraries (NULL, 0);
1167
1168 if (follow_exec_mode_string == follow_exec_mode_new)
1169 {
1170 /* The user wants to keep the old inferior and program spaces
1171 around. Create a new fresh one, and switch to it. */
1172
1173 /* Do exit processing for the original inferior before setting the new
1174 inferior's pid. Having two inferiors with the same pid would confuse
1175 find_inferior_p(t)id. Transfer the terminal state and info from the
1176 old to the new inferior. */
1177 inf = add_inferior_with_spaces ();
1178 swap_terminal_info (inf, current_inferior ());
1179 exit_inferior_silent (current_inferior ());
1180
1181 inf->pid = pid;
1182 target_follow_exec (inf, exec_file_target);
1183
1184 inferior *org_inferior = current_inferior ();
1185 switch_to_inferior_no_thread (inf);
1186 inf->push_target (org_inferior->process_target ());
1187 thread_info *thr = add_thread (inf->process_target (), ptid);
1188 switch_to_thread (thr);
1189 }
1190 else
1191 {
1192 /* The old description may no longer be fit for the new image.
1193 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1194 old description; we'll read a new one below. No need to do
1195 this on "follow-exec-mode new", as the old inferior stays
1196 around (its description is later cleared/refetched on
1197 restart). */
1198 target_clear_description ();
1199 }
1200
1201 gdb_assert (current_program_space == inf->pspace);
1202
1203 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1204 because the proper displacement for a PIE (Position Independent
1205 Executable) main symbol file will only be computed by
1206 solib_create_inferior_hook below. breakpoint_re_set would fail
1207 to insert the breakpoints with the zero displacement. */
1208 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1209
1210 /* If the target can specify a description, read it. Must do this
1211 after flipping to the new executable (because the target supplied
1212 description must be compatible with the executable's
1213 architecture, and the old executable may e.g., be 32-bit, while
1214 the new one 64-bit), and before anything involving memory or
1215 registers. */
1216 target_find_description ();
1217
1218 gdb::observers::inferior_execd.notify (inf);
1219
1220 breakpoint_re_set ();
1221
1222 /* Reinsert all breakpoints. (Those which were symbolic have
1223 been reset to the proper address in the new a.out, thanks
1224 to symbol_file_command...). */
1225 insert_breakpoints ();
1226
1227 /* The next resume of this inferior should bring it to the shlib
1228 startup breakpoints. (If the user had also set bp's on
1229 "main" from the old (parent) process, then they'll auto-
1230 matically get reset there in the new process.). */
1231}
1232
1233/* The chain of threads that need to do a step-over operation to get
1234 past e.g., a breakpoint. What technique is used to step over the
1235 breakpoint/watchpoint does not matter -- all threads end up in the
1236 same queue, to maintain rough temporal order of execution, in order
1237 to avoid starvation, otherwise, we could e.g., find ourselves
1238 constantly stepping the same couple threads past their breakpoints
1239 over and over, if the single-step finish fast enough. */
1240struct thread_info *global_thread_step_over_chain_head;
1241
1242/* Bit flags indicating what the thread needs to step over. */
1243
1244enum step_over_what_flag
1245 {
1246 /* Step over a breakpoint. */
1247 STEP_OVER_BREAKPOINT = 1,
1248
1249 /* Step past a non-continuable watchpoint, in order to let the
1250 instruction execute so we can evaluate the watchpoint
1251 expression. */
1252 STEP_OVER_WATCHPOINT = 2
1253 };
1254DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1255
1256/* Info about an instruction that is being stepped over. */
1257
1258struct step_over_info
1259{
1260 /* If we're stepping past a breakpoint, this is the address space
1261 and address of the instruction the breakpoint is set at. We'll
1262 skip inserting all breakpoints here. Valid iff ASPACE is
1263 non-NULL. */
1264 const address_space *aspace = nullptr;
1265 CORE_ADDR address = 0;
1266
1267 /* The instruction being stepped over triggers a nonsteppable
1268 watchpoint. If true, we'll skip inserting watchpoints. */
1269 int nonsteppable_watchpoint_p = 0;
1270
1271 /* The thread's global number. */
1272 int thread = -1;
1273};
1274
1275/* The step-over info of the location that is being stepped over.
1276
1277 Note that with async/breakpoint always-inserted mode, a user might
1278 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1279 being stepped over. As setting a new breakpoint inserts all
1280 breakpoints, we need to make sure the breakpoint being stepped over
1281 isn't inserted then. We do that by only clearing the step-over
1282 info when the step-over is actually finished (or aborted).
1283
1284 Presently GDB can only step over one breakpoint at any given time.
1285 Given threads that can't run code in the same address space as the
1286 breakpoint's can't really miss the breakpoint, GDB could be taught
1287 to step-over at most one breakpoint per address space (so this info
1288 could move to the address space object if/when GDB is extended).
1289 The set of breakpoints being stepped over will normally be much
1290 smaller than the set of all breakpoints, so a flag in the
1291 breakpoint location structure would be wasteful. A separate list
1292 also saves complexity and run-time, as otherwise we'd have to go
1293 through all breakpoint locations clearing their flag whenever we
1294 start a new sequence. Similar considerations weigh against storing
1295 this info in the thread object. Plus, not all step overs actually
1296 have breakpoint locations -- e.g., stepping past a single-step
1297 breakpoint, or stepping to complete a non-continuable
1298 watchpoint. */
1299static struct step_over_info step_over_info;
1300
1301/* Record the address of the breakpoint/instruction we're currently
1302 stepping over.
1303 N.B. We record the aspace and address now, instead of say just the thread,
1304 because when we need the info later the thread may be running. */
1305
1306static void
1307set_step_over_info (const address_space *aspace, CORE_ADDR address,
1308 int nonsteppable_watchpoint_p,
1309 int thread)
1310{
1311 step_over_info.aspace = aspace;
1312 step_over_info.address = address;
1313 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1314 step_over_info.thread = thread;
1315}
1316
1317/* Called when we're not longer stepping over a breakpoint / an
1318 instruction, so all breakpoints are free to be (re)inserted. */
1319
1320static void
1321clear_step_over_info (void)
1322{
1323 infrun_debug_printf ("clearing step over info");
1324 step_over_info.aspace = NULL;
1325 step_over_info.address = 0;
1326 step_over_info.nonsteppable_watchpoint_p = 0;
1327 step_over_info.thread = -1;
1328}
1329
1330/* See infrun.h. */
1331
1332int
1333stepping_past_instruction_at (struct address_space *aspace,
1334 CORE_ADDR address)
1335{
1336 return (step_over_info.aspace != NULL
1337 && breakpoint_address_match (aspace, address,
1338 step_over_info.aspace,
1339 step_over_info.address));
1340}
1341
1342/* See infrun.h. */
1343
1344int
1345thread_is_stepping_over_breakpoint (int thread)
1346{
1347 return (step_over_info.thread != -1
1348 && thread == step_over_info.thread);
1349}
1350
1351/* See infrun.h. */
1352
1353int
1354stepping_past_nonsteppable_watchpoint (void)
1355{
1356 return step_over_info.nonsteppable_watchpoint_p;
1357}
1358
1359/* Returns true if step-over info is valid. */
1360
1361static bool
1362step_over_info_valid_p (void)
1363{
1364 return (step_over_info.aspace != NULL
1365 || stepping_past_nonsteppable_watchpoint ());
1366}
1367
1368\f
1369/* Displaced stepping. */
1370
1371/* In non-stop debugging mode, we must take special care to manage
1372 breakpoints properly; in particular, the traditional strategy for
1373 stepping a thread past a breakpoint it has hit is unsuitable.
1374 'Displaced stepping' is a tactic for stepping one thread past a
1375 breakpoint it has hit while ensuring that other threads running
1376 concurrently will hit the breakpoint as they should.
1377
1378 The traditional way to step a thread T off a breakpoint in a
1379 multi-threaded program in all-stop mode is as follows:
1380
1381 a0) Initially, all threads are stopped, and breakpoints are not
1382 inserted.
1383 a1) We single-step T, leaving breakpoints uninserted.
1384 a2) We insert breakpoints, and resume all threads.
1385
1386 In non-stop debugging, however, this strategy is unsuitable: we
1387 don't want to have to stop all threads in the system in order to
1388 continue or step T past a breakpoint. Instead, we use displaced
1389 stepping:
1390
1391 n0) Initially, T is stopped, other threads are running, and
1392 breakpoints are inserted.
1393 n1) We copy the instruction "under" the breakpoint to a separate
1394 location, outside the main code stream, making any adjustments
1395 to the instruction, register, and memory state as directed by
1396 T's architecture.
1397 n2) We single-step T over the instruction at its new location.
1398 n3) We adjust the resulting register and memory state as directed
1399 by T's architecture. This includes resetting T's PC to point
1400 back into the main instruction stream.
1401 n4) We resume T.
1402
1403 This approach depends on the following gdbarch methods:
1404
1405 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1406 indicate where to copy the instruction, and how much space must
1407 be reserved there. We use these in step n1.
1408
1409 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1410 address, and makes any necessary adjustments to the instruction,
1411 register contents, and memory. We use this in step n1.
1412
1413 - gdbarch_displaced_step_fixup adjusts registers and memory after
1414 we have successfully single-stepped the instruction, to yield the
1415 same effect the instruction would have had if we had executed it
1416 at its original address. We use this in step n3.
1417
1418 The gdbarch_displaced_step_copy_insn and
1419 gdbarch_displaced_step_fixup functions must be written so that
1420 copying an instruction with gdbarch_displaced_step_copy_insn,
1421 single-stepping across the copied instruction, and then applying
1422 gdbarch_displaced_insn_fixup should have the same effects on the
1423 thread's memory and registers as stepping the instruction in place
1424 would have. Exactly which responsibilities fall to the copy and
1425 which fall to the fixup is up to the author of those functions.
1426
1427 See the comments in gdbarch.sh for details.
1428
1429 Note that displaced stepping and software single-step cannot
1430 currently be used in combination, although with some care I think
1431 they could be made to. Software single-step works by placing
1432 breakpoints on all possible subsequent instructions; if the
1433 displaced instruction is a PC-relative jump, those breakpoints
1434 could fall in very strange places --- on pages that aren't
1435 executable, or at addresses that are not proper instruction
1436 boundaries. (We do generally let other threads run while we wait
1437 to hit the software single-step breakpoint, and they might
1438 encounter such a corrupted instruction.) One way to work around
1439 this would be to have gdbarch_displaced_step_copy_insn fully
1440 simulate the effect of PC-relative instructions (and return NULL)
1441 on architectures that use software single-stepping.
1442
1443 In non-stop mode, we can have independent and simultaneous step
1444 requests, so more than one thread may need to simultaneously step
1445 over a breakpoint. The current implementation assumes there is
1446 only one scratch space per process. In this case, we have to
1447 serialize access to the scratch space. If thread A wants to step
1448 over a breakpoint, but we are currently waiting for some other
1449 thread to complete a displaced step, we leave thread A stopped and
1450 place it in the displaced_step_request_queue. Whenever a displaced
1451 step finishes, we pick the next thread in the queue and start a new
1452 displaced step operation on it. See displaced_step_prepare and
1453 displaced_step_finish for details. */
1454
1455/* Return true if THREAD is doing a displaced step. */
1456
1457static bool
1458displaced_step_in_progress_thread (thread_info *thread)
1459{
1460 gdb_assert (thread != NULL);
1461
1462 return thread->displaced_step_state.in_progress ();
1463}
1464
1465/* Return true if INF has a thread doing a displaced step. */
1466
1467static bool
1468displaced_step_in_progress (inferior *inf)
1469{
1470 return inf->displaced_step_state.in_progress_count > 0;
1471}
1472
1473/* Return true if any thread is doing a displaced step. */
1474
1475static bool
1476displaced_step_in_progress_any_thread ()
1477{
1478 for (inferior *inf : all_non_exited_inferiors ())
1479 {
1480 if (displaced_step_in_progress (inf))
1481 return true;
1482 }
1483
1484 return false;
1485}
1486
1487static void
1488infrun_inferior_exit (struct inferior *inf)
1489{
1490 inf->displaced_step_state.reset ();
1491}
1492
1493static void
1494infrun_inferior_execd (inferior *inf)
1495{
1496 /* If some threads where was doing a displaced step in this inferior at the
1497 moment of the exec, they no longer exist. Even if the exec'ing thread
1498 doing a displaced step, we don't want to to any fixup nor restore displaced
1499 stepping buffer bytes. */
1500 inf->displaced_step_state.reset ();
1501
1502 for (thread_info *thread : inf->threads ())
1503 thread->displaced_step_state.reset ();
1504
1505 /* Since an in-line step is done with everything else stopped, if there was
1506 one in progress at the time of the exec, it must have been the exec'ing
1507 thread. */
1508 clear_step_over_info ();
1509}
1510
1511/* If ON, and the architecture supports it, GDB will use displaced
1512 stepping to step over breakpoints. If OFF, or if the architecture
1513 doesn't support it, GDB will instead use the traditional
1514 hold-and-step approach. If AUTO (which is the default), GDB will
1515 decide which technique to use to step over breakpoints depending on
1516 whether the target works in a non-stop way (see use_displaced_stepping). */
1517
1518static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1519
1520static void
1521show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1522 struct cmd_list_element *c,
1523 const char *value)
1524{
1525 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1526 fprintf_filtered (file,
1527 _("Debugger's willingness to use displaced stepping "
1528 "to step over breakpoints is %s (currently %s).\n"),
1529 value, target_is_non_stop_p () ? "on" : "off");
1530 else
1531 fprintf_filtered (file,
1532 _("Debugger's willingness to use displaced stepping "
1533 "to step over breakpoints is %s.\n"), value);
1534}
1535
1536/* Return true if the gdbarch implements the required methods to use
1537 displaced stepping. */
1538
1539static bool
1540gdbarch_supports_displaced_stepping (gdbarch *arch)
1541{
1542 /* Only check for the presence of `prepare`. The gdbarch verification ensures
1543 that if `prepare` is provided, so is `finish`. */
1544 return gdbarch_displaced_step_prepare_p (arch);
1545}
1546
1547/* Return non-zero if displaced stepping can/should be used to step
1548 over breakpoints of thread TP. */
1549
1550static bool
1551use_displaced_stepping (thread_info *tp)
1552{
1553 /* If the user disabled it explicitly, don't use displaced stepping. */
1554 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1555 return false;
1556
1557 /* If "auto", only use displaced stepping if the target operates in a non-stop
1558 way. */
1559 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1560 && !target_is_non_stop_p ())
1561 return false;
1562
1563 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1564
1565 /* If the architecture doesn't implement displaced stepping, don't use
1566 it. */
1567 if (!gdbarch_supports_displaced_stepping (gdbarch))
1568 return false;
1569
1570 /* If recording, don't use displaced stepping. */
1571 if (find_record_target () != nullptr)
1572 return false;
1573
1574 /* If displaced stepping failed before for this inferior, don't bother trying
1575 again. */
1576 if (tp->inf->displaced_step_state.failed_before)
1577 return false;
1578
1579 return true;
1580}
1581
1582/* Simple function wrapper around displaced_step_thread_state::reset. */
1583
1584static void
1585displaced_step_reset (displaced_step_thread_state *displaced)
1586{
1587 displaced->reset ();
1588}
1589
1590/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1591 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1592
1593using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1594
1595/* See infrun.h. */
1596
1597std::string
1598displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
1599{
1600 std::string ret;
1601
1602 for (size_t i = 0; i < len; i++)
1603 {
1604 if (i == 0)
1605 ret += string_printf ("%02x", buf[i]);
1606 else
1607 ret += string_printf (" %02x", buf[i]);
1608 }
1609
1610 return ret;
1611}
1612
1613/* Prepare to single-step, using displaced stepping.
1614
1615 Note that we cannot use displaced stepping when we have a signal to
1616 deliver. If we have a signal to deliver and an instruction to step
1617 over, then after the step, there will be no indication from the
1618 target whether the thread entered a signal handler or ignored the
1619 signal and stepped over the instruction successfully --- both cases
1620 result in a simple SIGTRAP. In the first case we mustn't do a
1621 fixup, and in the second case we must --- but we can't tell which.
1622 Comments in the code for 'random signals' in handle_inferior_event
1623 explain how we handle this case instead.
1624
1625 Returns DISPLACED_STEP_PREPARE_STATUS_OK if preparing was successful -- this
1626 thread is going to be stepped now; DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE
1627 if displaced stepping this thread got queued; or
1628 DISPLACED_STEP_PREPARE_STATUS_CANT if this instruction can't be displaced
1629 stepped. */
1630
1631static displaced_step_prepare_status
1632displaced_step_prepare_throw (thread_info *tp)
1633{
1634 regcache *regcache = get_thread_regcache (tp);
1635 struct gdbarch *gdbarch = regcache->arch ();
1636 displaced_step_thread_state &disp_step_thread_state
1637 = tp->displaced_step_state;
1638
1639 /* We should never reach this function if the architecture does not
1640 support displaced stepping. */
1641 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1642
1643 /* Nor if the thread isn't meant to step over a breakpoint. */
1644 gdb_assert (tp->control.trap_expected);
1645
1646 /* Disable range stepping while executing in the scratch pad. We
1647 want a single-step even if executing the displaced instruction in
1648 the scratch buffer lands within the stepping range (e.g., a
1649 jump/branch). */
1650 tp->control.may_range_step = 0;
1651
1652 /* We are about to start a displaced step for this thread. If one is already
1653 in progress, something's wrong. */
1654 gdb_assert (!disp_step_thread_state.in_progress ());
1655
1656 if (tp->inf->displaced_step_state.unavailable)
1657 {
1658 /* The gdbarch tells us it's not worth asking to try a prepare because
1659 it is likely that it will return unavailable, so don't bother asking. */
1660
1661 displaced_debug_printf ("deferring step of %s",
1662 target_pid_to_str (tp->ptid).c_str ());
1663
1664 global_thread_step_over_chain_enqueue (tp);
1665 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1666 }
1667
1668 displaced_debug_printf ("displaced-stepping %s now",
1669 target_pid_to_str (tp->ptid).c_str ());
1670
1671 scoped_restore_current_thread restore_thread;
1672
1673 switch_to_thread (tp);
1674
1675 CORE_ADDR original_pc = regcache_read_pc (regcache);
1676 CORE_ADDR displaced_pc;
1677
1678 displaced_step_prepare_status status
1679 = gdbarch_displaced_step_prepare (gdbarch, tp, displaced_pc);
1680
1681 if (status == DISPLACED_STEP_PREPARE_STATUS_CANT)
1682 {
1683 displaced_debug_printf ("failed to prepare (%s)",
1684 target_pid_to_str (tp->ptid).c_str ());
1685
1686 return DISPLACED_STEP_PREPARE_STATUS_CANT;
1687 }
1688 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
1689 {
1690 /* Not enough displaced stepping resources available, defer this
1691 request by placing it the queue. */
1692
1693 displaced_debug_printf ("not enough resources available, "
1694 "deferring step of %s",
1695 target_pid_to_str (tp->ptid).c_str ());
1696
1697 global_thread_step_over_chain_enqueue (tp);
1698
1699 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1700 }
1701
1702 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1703
1704 /* Save the information we need to fix things up if the step
1705 succeeds. */
1706 disp_step_thread_state.set (gdbarch);
1707
1708 tp->inf->displaced_step_state.in_progress_count++;
1709
1710 displaced_debug_printf ("prepared successfully thread=%s, "
1711 "original_pc=%s, displaced_pc=%s",
1712 target_pid_to_str (tp->ptid).c_str (),
1713 paddress (gdbarch, original_pc),
1714 paddress (gdbarch, displaced_pc));
1715
1716 return DISPLACED_STEP_PREPARE_STATUS_OK;
1717}
1718
1719/* Wrapper for displaced_step_prepare_throw that disabled further
1720 attempts at displaced stepping if we get a memory error. */
1721
1722static displaced_step_prepare_status
1723displaced_step_prepare (thread_info *thread)
1724{
1725 displaced_step_prepare_status status
1726 = DISPLACED_STEP_PREPARE_STATUS_CANT;
1727
1728 try
1729 {
1730 status = displaced_step_prepare_throw (thread);
1731 }
1732 catch (const gdb_exception_error &ex)
1733 {
1734 if (ex.error != MEMORY_ERROR
1735 && ex.error != NOT_SUPPORTED_ERROR)
1736 throw;
1737
1738 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1739 ex.what ());
1740
1741 /* Be verbose if "set displaced-stepping" is "on", silent if
1742 "auto". */
1743 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1744 {
1745 warning (_("disabling displaced stepping: %s"),
1746 ex.what ());
1747 }
1748
1749 /* Disable further displaced stepping attempts. */
1750 thread->inf->displaced_step_state.failed_before = 1;
1751 }
1752
1753 return status;
1754}
1755
1756/* If we displaced stepped an instruction successfully, adjust registers and
1757 memory to yield the same effect the instruction would have had if we had
1758 executed it at its original address, and return
1759 DISPLACED_STEP_FINISH_STATUS_OK. If the instruction didn't complete,
1760 relocate the PC and return DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED.
1761
1762 If the thread wasn't displaced stepping, return
1763 DISPLACED_STEP_FINISH_STATUS_OK as well. */
1764
1765static displaced_step_finish_status
1766displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
1767{
1768 displaced_step_thread_state *displaced = &event_thread->displaced_step_state;
1769
1770 /* Was this thread performing a displaced step? */
1771 if (!displaced->in_progress ())
1772 return DISPLACED_STEP_FINISH_STATUS_OK;
1773
1774 gdb_assert (event_thread->inf->displaced_step_state.in_progress_count > 0);
1775 event_thread->inf->displaced_step_state.in_progress_count--;
1776
1777 /* Fixup may need to read memory/registers. Switch to the thread
1778 that we're fixing up. Also, target_stopped_by_watchpoint checks
1779 the current thread, and displaced_step_restore performs ptid-dependent
1780 memory accesses using current_inferior(). */
1781 switch_to_thread (event_thread);
1782
1783 displaced_step_reset_cleanup cleanup (displaced);
1784
1785 /* Do the fixup, and release the resources acquired to do the displaced
1786 step. */
1787 return gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
1788 event_thread, signal);
1789}
1790
1791/* Data to be passed around while handling an event. This data is
1792 discarded between events. */
1793struct execution_control_state
1794{
1795 process_stratum_target *target;
1796 ptid_t ptid;
1797 /* The thread that got the event, if this was a thread event; NULL
1798 otherwise. */
1799 struct thread_info *event_thread;
1800
1801 struct target_waitstatus ws;
1802 int stop_func_filled_in;
1803 CORE_ADDR stop_func_start;
1804 CORE_ADDR stop_func_end;
1805 const char *stop_func_name;
1806 int wait_some_more;
1807
1808 /* True if the event thread hit the single-step breakpoint of
1809 another thread. Thus the event doesn't cause a stop, the thread
1810 needs to be single-stepped past the single-step breakpoint before
1811 we can switch back to the original stepping thread. */
1812 int hit_singlestep_breakpoint;
1813};
1814
1815/* Clear ECS and set it to point at TP. */
1816
1817static void
1818reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1819{
1820 memset (ecs, 0, sizeof (*ecs));
1821 ecs->event_thread = tp;
1822 ecs->ptid = tp->ptid;
1823}
1824
1825static void keep_going_pass_signal (struct execution_control_state *ecs);
1826static void prepare_to_wait (struct execution_control_state *ecs);
1827static bool keep_going_stepped_thread (struct thread_info *tp);
1828static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1829
1830/* Are there any pending step-over requests? If so, run all we can
1831 now and return true. Otherwise, return false. */
1832
1833static bool
1834start_step_over (void)
1835{
1836 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1837
1838 thread_info *next;
1839
1840 /* Don't start a new step-over if we already have an in-line
1841 step-over operation ongoing. */
1842 if (step_over_info_valid_p ())
1843 return false;
1844
1845 /* Steal the global thread step over chain. As we try to initiate displaced
1846 steps, threads will be enqueued in the global chain if no buffers are
1847 available. If we iterated on the global chain directly, we might iterate
1848 indefinitely. */
1849 thread_info *threads_to_step = global_thread_step_over_chain_head;
1850 global_thread_step_over_chain_head = NULL;
1851
1852 infrun_debug_printf ("stealing global queue of threads to step, length = %d",
1853 thread_step_over_chain_length (threads_to_step));
1854
1855 bool started = false;
1856
1857 /* On scope exit (whatever the reason, return or exception), if there are
1858 threads left in the THREADS_TO_STEP chain, put back these threads in the
1859 global list. */
1860 SCOPE_EXIT
1861 {
1862 if (threads_to_step == nullptr)
1863 infrun_debug_printf ("step-over queue now empty");
1864 else
1865 {
1866 infrun_debug_printf ("putting back %d threads to step in global queue",
1867 thread_step_over_chain_length (threads_to_step));
1868
1869 global_thread_step_over_chain_enqueue_chain (threads_to_step);
1870 }
1871 };
1872
1873 for (thread_info *tp = threads_to_step; tp != NULL; tp = next)
1874 {
1875 struct execution_control_state ecss;
1876 struct execution_control_state *ecs = &ecss;
1877 step_over_what step_what;
1878 int must_be_in_line;
1879
1880 gdb_assert (!tp->stop_requested);
1881
1882 next = thread_step_over_chain_next (threads_to_step, tp);
1883
1884 if (tp->inf->displaced_step_state.unavailable)
1885 {
1886 /* The arch told us to not even try preparing another displaced step
1887 for this inferior. Just leave the thread in THREADS_TO_STEP, it
1888 will get moved to the global chain on scope exit. */
1889 continue;
1890 }
1891
1892 /* Remove thread from the THREADS_TO_STEP chain. If anything goes wrong
1893 while we try to prepare the displaced step, we don't add it back to
1894 the global step over chain. This is to avoid a thread staying in the
1895 step over chain indefinitely if something goes wrong when resuming it
1896 If the error is intermittent and it still needs a step over, it will
1897 get enqueued again when we try to resume it normally. */
1898 thread_step_over_chain_remove (&threads_to_step, tp);
1899
1900 step_what = thread_still_needs_step_over (tp);
1901 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1902 || ((step_what & STEP_OVER_BREAKPOINT)
1903 && !use_displaced_stepping (tp)));
1904
1905 /* We currently stop all threads of all processes to step-over
1906 in-line. If we need to start a new in-line step-over, let
1907 any pending displaced steps finish first. */
1908 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1909 {
1910 global_thread_step_over_chain_enqueue (tp);
1911 continue;
1912 }
1913
1914 if (tp->control.trap_expected
1915 || tp->resumed
1916 || tp->executing)
1917 {
1918 internal_error (__FILE__, __LINE__,
1919 "[%s] has inconsistent state: "
1920 "trap_expected=%d, resumed=%d, executing=%d\n",
1921 target_pid_to_str (tp->ptid).c_str (),
1922 tp->control.trap_expected,
1923 tp->resumed,
1924 tp->executing);
1925 }
1926
1927 infrun_debug_printf ("resuming [%s] for step-over",
1928 target_pid_to_str (tp->ptid).c_str ());
1929
1930 /* keep_going_pass_signal skips the step-over if the breakpoint
1931 is no longer inserted. In all-stop, we want to keep looking
1932 for a thread that needs a step-over instead of resuming TP,
1933 because we wouldn't be able to resume anything else until the
1934 target stops again. In non-stop, the resume always resumes
1935 only TP, so it's OK to let the thread resume freely. */
1936 if (!target_is_non_stop_p () && !step_what)
1937 continue;
1938
1939 switch_to_thread (tp);
1940 reset_ecs (ecs, tp);
1941 keep_going_pass_signal (ecs);
1942
1943 if (!ecs->wait_some_more)
1944 error (_("Command aborted."));
1945
1946 /* If the thread's step over could not be initiated because no buffers
1947 were available, it was re-added to the global step over chain. */
1948 if (tp->resumed)
1949 {
1950 infrun_debug_printf ("[%s] was resumed.",
1951 target_pid_to_str (tp->ptid).c_str ());
1952 gdb_assert (!thread_is_in_step_over_chain (tp));
1953 }
1954 else
1955 {
1956 infrun_debug_printf ("[%s] was NOT resumed.",
1957 target_pid_to_str (tp->ptid).c_str ());
1958 gdb_assert (thread_is_in_step_over_chain (tp));
1959 }
1960
1961 /* If we started a new in-line step-over, we're done. */
1962 if (step_over_info_valid_p ())
1963 {
1964 gdb_assert (tp->control.trap_expected);
1965 started = true;
1966 break;
1967 }
1968
1969 if (!target_is_non_stop_p ())
1970 {
1971 /* On all-stop, shouldn't have resumed unless we needed a
1972 step over. */
1973 gdb_assert (tp->control.trap_expected
1974 || tp->step_after_step_resume_breakpoint);
1975
1976 /* With remote targets (at least), in all-stop, we can't
1977 issue any further remote commands until the program stops
1978 again. */
1979 started = true;
1980 break;
1981 }
1982
1983 /* Either the thread no longer needed a step-over, or a new
1984 displaced stepping sequence started. Even in the latter
1985 case, continue looking. Maybe we can also start another
1986 displaced step on a thread of other process. */
1987 }
1988
1989 return started;
1990}
1991
1992/* Update global variables holding ptids to hold NEW_PTID if they were
1993 holding OLD_PTID. */
1994static void
1995infrun_thread_ptid_changed (process_stratum_target *target,
1996 ptid_t old_ptid, ptid_t new_ptid)
1997{
1998 if (inferior_ptid == old_ptid
1999 && current_inferior ()->process_target () == target)
2000 inferior_ptid = new_ptid;
2001}
2002
2003\f
2004
2005static const char schedlock_off[] = "off";
2006static const char schedlock_on[] = "on";
2007static const char schedlock_step[] = "step";
2008static const char schedlock_replay[] = "replay";
2009static const char *const scheduler_enums[] = {
2010 schedlock_off,
2011 schedlock_on,
2012 schedlock_step,
2013 schedlock_replay,
2014 NULL
2015};
2016static const char *scheduler_mode = schedlock_replay;
2017static void
2018show_scheduler_mode (struct ui_file *file, int from_tty,
2019 struct cmd_list_element *c, const char *value)
2020{
2021 fprintf_filtered (file,
2022 _("Mode for locking scheduler "
2023 "during execution is \"%s\".\n"),
2024 value);
2025}
2026
2027static void
2028set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2029{
2030 if (!target_can_lock_scheduler ())
2031 {
2032 scheduler_mode = schedlock_off;
2033 error (_("Target '%s' cannot support this command."),
2034 target_shortname ());
2035 }
2036}
2037
2038/* True if execution commands resume all threads of all processes by
2039 default; otherwise, resume only threads of the current inferior
2040 process. */
2041bool sched_multi = false;
2042
2043/* Try to setup for software single stepping over the specified location.
2044 Return true if target_resume() should use hardware single step.
2045
2046 GDBARCH the current gdbarch.
2047 PC the location to step over. */
2048
2049static bool
2050maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2051{
2052 bool hw_step = true;
2053
2054 if (execution_direction == EXEC_FORWARD
2055 && gdbarch_software_single_step_p (gdbarch))
2056 hw_step = !insert_single_step_breakpoints (gdbarch);
2057
2058 return hw_step;
2059}
2060
2061/* See infrun.h. */
2062
2063ptid_t
2064user_visible_resume_ptid (int step)
2065{
2066 ptid_t resume_ptid;
2067
2068 if (non_stop)
2069 {
2070 /* With non-stop mode on, threads are always handled
2071 individually. */
2072 resume_ptid = inferior_ptid;
2073 }
2074 else if ((scheduler_mode == schedlock_on)
2075 || (scheduler_mode == schedlock_step && step))
2076 {
2077 /* User-settable 'scheduler' mode requires solo thread
2078 resume. */
2079 resume_ptid = inferior_ptid;
2080 }
2081 else if ((scheduler_mode == schedlock_replay)
2082 && target_record_will_replay (minus_one_ptid, execution_direction))
2083 {
2084 /* User-settable 'scheduler' mode requires solo thread resume in replay
2085 mode. */
2086 resume_ptid = inferior_ptid;
2087 }
2088 else if (!sched_multi && target_supports_multi_process ())
2089 {
2090 /* Resume all threads of the current process (and none of other
2091 processes). */
2092 resume_ptid = ptid_t (inferior_ptid.pid ());
2093 }
2094 else
2095 {
2096 /* Resume all threads of all processes. */
2097 resume_ptid = RESUME_ALL;
2098 }
2099
2100 return resume_ptid;
2101}
2102
2103/* See infrun.h. */
2104
2105process_stratum_target *
2106user_visible_resume_target (ptid_t resume_ptid)
2107{
2108 return (resume_ptid == minus_one_ptid && sched_multi
2109 ? NULL
2110 : current_inferior ()->process_target ());
2111}
2112
2113/* Return a ptid representing the set of threads that we will resume,
2114 in the perspective of the target, assuming run control handling
2115 does not require leaving some threads stopped (e.g., stepping past
2116 breakpoint). USER_STEP indicates whether we're about to start the
2117 target for a stepping command. */
2118
2119static ptid_t
2120internal_resume_ptid (int user_step)
2121{
2122 /* In non-stop, we always control threads individually. Note that
2123 the target may always work in non-stop mode even with "set
2124 non-stop off", in which case user_visible_resume_ptid could
2125 return a wildcard ptid. */
2126 if (target_is_non_stop_p ())
2127 return inferior_ptid;
2128 else
2129 return user_visible_resume_ptid (user_step);
2130}
2131
2132/* Wrapper for target_resume, that handles infrun-specific
2133 bookkeeping. */
2134
2135static void
2136do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
2137{
2138 struct thread_info *tp = inferior_thread ();
2139
2140 gdb_assert (!tp->stop_requested);
2141
2142 /* Install inferior's terminal modes. */
2143 target_terminal::inferior ();
2144
2145 /* Avoid confusing the next resume, if the next stop/resume
2146 happens to apply to another thread. */
2147 tp->suspend.stop_signal = GDB_SIGNAL_0;
2148
2149 /* Advise target which signals may be handled silently.
2150
2151 If we have removed breakpoints because we are stepping over one
2152 in-line (in any thread), we need to receive all signals to avoid
2153 accidentally skipping a breakpoint during execution of a signal
2154 handler.
2155
2156 Likewise if we're displaced stepping, otherwise a trap for a
2157 breakpoint in a signal handler might be confused with the
2158 displaced step finishing. We don't make the displaced_step_finish
2159 step distinguish the cases instead, because:
2160
2161 - a backtrace while stopped in the signal handler would show the
2162 scratch pad as frame older than the signal handler, instead of
2163 the real mainline code.
2164
2165 - when the thread is later resumed, the signal handler would
2166 return to the scratch pad area, which would no longer be
2167 valid. */
2168 if (step_over_info_valid_p ()
2169 || displaced_step_in_progress (tp->inf))
2170 target_pass_signals ({});
2171 else
2172 target_pass_signals (signal_pass);
2173
2174 target_resume (resume_ptid, step, sig);
2175
2176 if (target_can_async_p ())
2177 target_async (1);
2178}
2179
2180/* Resume the inferior. SIG is the signal to give the inferior
2181 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2182 call 'resume', which handles exceptions. */
2183
2184static void
2185resume_1 (enum gdb_signal sig)
2186{
2187 struct regcache *regcache = get_current_regcache ();
2188 struct gdbarch *gdbarch = regcache->arch ();
2189 struct thread_info *tp = inferior_thread ();
2190 const address_space *aspace = regcache->aspace ();
2191 ptid_t resume_ptid;
2192 /* This represents the user's step vs continue request. When
2193 deciding whether "set scheduler-locking step" applies, it's the
2194 user's intention that counts. */
2195 const int user_step = tp->control.stepping_command;
2196 /* This represents what we'll actually request the target to do.
2197 This can decay from a step to a continue, if e.g., we need to
2198 implement single-stepping with breakpoints (software
2199 single-step). */
2200 bool step;
2201
2202 gdb_assert (!tp->stop_requested);
2203 gdb_assert (!thread_is_in_step_over_chain (tp));
2204
2205 if (tp->suspend.waitstatus_pending_p)
2206 {
2207 infrun_debug_printf
2208 ("thread %s has pending wait "
2209 "status %s (currently_stepping=%d).",
2210 target_pid_to_str (tp->ptid).c_str (),
2211 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2212 currently_stepping (tp));
2213
2214 tp->inf->process_target ()->threads_executing = true;
2215 tp->resumed = true;
2216
2217 /* FIXME: What should we do if we are supposed to resume this
2218 thread with a signal? Maybe we should maintain a queue of
2219 pending signals to deliver. */
2220 if (sig != GDB_SIGNAL_0)
2221 {
2222 warning (_("Couldn't deliver signal %s to %s."),
2223 gdb_signal_to_name (sig),
2224 target_pid_to_str (tp->ptid).c_str ());
2225 }
2226
2227 tp->suspend.stop_signal = GDB_SIGNAL_0;
2228
2229 if (target_can_async_p ())
2230 {
2231 target_async (1);
2232 /* Tell the event loop we have an event to process. */
2233 mark_async_event_handler (infrun_async_inferior_event_token);
2234 }
2235 return;
2236 }
2237
2238 tp->stepped_breakpoint = 0;
2239
2240 /* Depends on stepped_breakpoint. */
2241 step = currently_stepping (tp);
2242
2243 if (current_inferior ()->waiting_for_vfork_done)
2244 {
2245 /* Don't try to single-step a vfork parent that is waiting for
2246 the child to get out of the shared memory region (by exec'ing
2247 or exiting). This is particularly important on software
2248 single-step archs, as the child process would trip on the
2249 software single step breakpoint inserted for the parent
2250 process. Since the parent will not actually execute any
2251 instruction until the child is out of the shared region (such
2252 are vfork's semantics), it is safe to simply continue it.
2253 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2254 the parent, and tell it to `keep_going', which automatically
2255 re-sets it stepping. */
2256 infrun_debug_printf ("resume : clear step");
2257 step = false;
2258 }
2259
2260 CORE_ADDR pc = regcache_read_pc (regcache);
2261
2262 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2263 "current thread [%s] at %s",
2264 step, gdb_signal_to_symbol_string (sig),
2265 tp->control.trap_expected,
2266 target_pid_to_str (inferior_ptid).c_str (),
2267 paddress (gdbarch, pc));
2268
2269 /* Normally, by the time we reach `resume', the breakpoints are either
2270 removed or inserted, as appropriate. The exception is if we're sitting
2271 at a permanent breakpoint; we need to step over it, but permanent
2272 breakpoints can't be removed. So we have to test for it here. */
2273 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2274 {
2275 if (sig != GDB_SIGNAL_0)
2276 {
2277 /* We have a signal to pass to the inferior. The resume
2278 may, or may not take us to the signal handler. If this
2279 is a step, we'll need to stop in the signal handler, if
2280 there's one, (if the target supports stepping into
2281 handlers), or in the next mainline instruction, if
2282 there's no handler. If this is a continue, we need to be
2283 sure to run the handler with all breakpoints inserted.
2284 In all cases, set a breakpoint at the current address
2285 (where the handler returns to), and once that breakpoint
2286 is hit, resume skipping the permanent breakpoint. If
2287 that breakpoint isn't hit, then we've stepped into the
2288 signal handler (or hit some other event). We'll delete
2289 the step-resume breakpoint then. */
2290
2291 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2292 "deliver signal first");
2293
2294 clear_step_over_info ();
2295 tp->control.trap_expected = 0;
2296
2297 if (tp->control.step_resume_breakpoint == NULL)
2298 {
2299 /* Set a "high-priority" step-resume, as we don't want
2300 user breakpoints at PC to trigger (again) when this
2301 hits. */
2302 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2303 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2304
2305 tp->step_after_step_resume_breakpoint = step;
2306 }
2307
2308 insert_breakpoints ();
2309 }
2310 else
2311 {
2312 /* There's no signal to pass, we can go ahead and skip the
2313 permanent breakpoint manually. */
2314 infrun_debug_printf ("skipping permanent breakpoint");
2315 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2316 /* Update pc to reflect the new address from which we will
2317 execute instructions. */
2318 pc = regcache_read_pc (regcache);
2319
2320 if (step)
2321 {
2322 /* We've already advanced the PC, so the stepping part
2323 is done. Now we need to arrange for a trap to be
2324 reported to handle_inferior_event. Set a breakpoint
2325 at the current PC, and run to it. Don't update
2326 prev_pc, because if we end in
2327 switch_back_to_stepped_thread, we want the "expected
2328 thread advanced also" branch to be taken. IOW, we
2329 don't want this thread to step further from PC
2330 (overstep). */
2331 gdb_assert (!step_over_info_valid_p ());
2332 insert_single_step_breakpoint (gdbarch, aspace, pc);
2333 insert_breakpoints ();
2334
2335 resume_ptid = internal_resume_ptid (user_step);
2336 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2337 tp->resumed = true;
2338 return;
2339 }
2340 }
2341 }
2342
2343 /* If we have a breakpoint to step over, make sure to do a single
2344 step only. Same if we have software watchpoints. */
2345 if (tp->control.trap_expected || bpstat_should_step ())
2346 tp->control.may_range_step = 0;
2347
2348 /* If displaced stepping is enabled, step over breakpoints by executing a
2349 copy of the instruction at a different address.
2350
2351 We can't use displaced stepping when we have a signal to deliver;
2352 the comments for displaced_step_prepare explain why. The
2353 comments in the handle_inferior event for dealing with 'random
2354 signals' explain what we do instead.
2355
2356 We can't use displaced stepping when we are waiting for vfork_done
2357 event, displaced stepping breaks the vfork child similarly as single
2358 step software breakpoint. */
2359 if (tp->control.trap_expected
2360 && use_displaced_stepping (tp)
2361 && !step_over_info_valid_p ()
2362 && sig == GDB_SIGNAL_0
2363 && !current_inferior ()->waiting_for_vfork_done)
2364 {
2365 displaced_step_prepare_status prepare_status
2366 = displaced_step_prepare (tp);
2367
2368 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
2369 {
2370 infrun_debug_printf ("Got placed in step-over queue");
2371
2372 tp->control.trap_expected = 0;
2373 return;
2374 }
2375 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_CANT)
2376 {
2377 /* Fallback to stepping over the breakpoint in-line. */
2378
2379 if (target_is_non_stop_p ())
2380 stop_all_threads ();
2381
2382 set_step_over_info (regcache->aspace (),
2383 regcache_read_pc (regcache), 0, tp->global_num);
2384
2385 step = maybe_software_singlestep (gdbarch, pc);
2386
2387 insert_breakpoints ();
2388 }
2389 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
2390 {
2391 /* Update pc to reflect the new address from which we will
2392 execute instructions due to displaced stepping. */
2393 pc = regcache_read_pc (get_thread_regcache (tp));
2394
2395 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
2396 }
2397 else
2398 gdb_assert_not_reached (_("Invalid displaced_step_prepare_status "
2399 "value."));
2400 }
2401
2402 /* Do we need to do it the hard way, w/temp breakpoints? */
2403 else if (step)
2404 step = maybe_software_singlestep (gdbarch, pc);
2405
2406 /* Currently, our software single-step implementation leads to different
2407 results than hardware single-stepping in one situation: when stepping
2408 into delivering a signal which has an associated signal handler,
2409 hardware single-step will stop at the first instruction of the handler,
2410 while software single-step will simply skip execution of the handler.
2411
2412 For now, this difference in behavior is accepted since there is no
2413 easy way to actually implement single-stepping into a signal handler
2414 without kernel support.
2415
2416 However, there is one scenario where this difference leads to follow-on
2417 problems: if we're stepping off a breakpoint by removing all breakpoints
2418 and then single-stepping. In this case, the software single-step
2419 behavior means that even if there is a *breakpoint* in the signal
2420 handler, GDB still would not stop.
2421
2422 Fortunately, we can at least fix this particular issue. We detect
2423 here the case where we are about to deliver a signal while software
2424 single-stepping with breakpoints removed. In this situation, we
2425 revert the decisions to remove all breakpoints and insert single-
2426 step breakpoints, and instead we install a step-resume breakpoint
2427 at the current address, deliver the signal without stepping, and
2428 once we arrive back at the step-resume breakpoint, actually step
2429 over the breakpoint we originally wanted to step over. */
2430 if (thread_has_single_step_breakpoints_set (tp)
2431 && sig != GDB_SIGNAL_0
2432 && step_over_info_valid_p ())
2433 {
2434 /* If we have nested signals or a pending signal is delivered
2435 immediately after a handler returns, might already have
2436 a step-resume breakpoint set on the earlier handler. We cannot
2437 set another step-resume breakpoint; just continue on until the
2438 original breakpoint is hit. */
2439 if (tp->control.step_resume_breakpoint == NULL)
2440 {
2441 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2442 tp->step_after_step_resume_breakpoint = 1;
2443 }
2444
2445 delete_single_step_breakpoints (tp);
2446
2447 clear_step_over_info ();
2448 tp->control.trap_expected = 0;
2449
2450 insert_breakpoints ();
2451 }
2452
2453 /* If STEP is set, it's a request to use hardware stepping
2454 facilities. But in that case, we should never
2455 use singlestep breakpoint. */
2456 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2457
2458 /* Decide the set of threads to ask the target to resume. */
2459 if (tp->control.trap_expected)
2460 {
2461 /* We're allowing a thread to run past a breakpoint it has
2462 hit, either by single-stepping the thread with the breakpoint
2463 removed, or by displaced stepping, with the breakpoint inserted.
2464 In the former case, we need to single-step only this thread,
2465 and keep others stopped, as they can miss this breakpoint if
2466 allowed to run. That's not really a problem for displaced
2467 stepping, but, we still keep other threads stopped, in case
2468 another thread is also stopped for a breakpoint waiting for
2469 its turn in the displaced stepping queue. */
2470 resume_ptid = inferior_ptid;
2471 }
2472 else
2473 resume_ptid = internal_resume_ptid (user_step);
2474
2475 if (execution_direction != EXEC_REVERSE
2476 && step && breakpoint_inserted_here_p (aspace, pc))
2477 {
2478 /* There are two cases where we currently need to step a
2479 breakpoint instruction when we have a signal to deliver:
2480
2481 - See handle_signal_stop where we handle random signals that
2482 could take out us out of the stepping range. Normally, in
2483 that case we end up continuing (instead of stepping) over the
2484 signal handler with a breakpoint at PC, but there are cases
2485 where we should _always_ single-step, even if we have a
2486 step-resume breakpoint, like when a software watchpoint is
2487 set. Assuming single-stepping and delivering a signal at the
2488 same time would takes us to the signal handler, then we could
2489 have removed the breakpoint at PC to step over it. However,
2490 some hardware step targets (like e.g., Mac OS) can't step
2491 into signal handlers, and for those, we need to leave the
2492 breakpoint at PC inserted, as otherwise if the handler
2493 recurses and executes PC again, it'll miss the breakpoint.
2494 So we leave the breakpoint inserted anyway, but we need to
2495 record that we tried to step a breakpoint instruction, so
2496 that adjust_pc_after_break doesn't end up confused.
2497
2498 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2499 in one thread after another thread that was stepping had been
2500 momentarily paused for a step-over. When we re-resume the
2501 stepping thread, it may be resumed from that address with a
2502 breakpoint that hasn't trapped yet. Seen with
2503 gdb.threads/non-stop-fair-events.exp, on targets that don't
2504 do displaced stepping. */
2505
2506 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2507 target_pid_to_str (tp->ptid).c_str ());
2508
2509 tp->stepped_breakpoint = 1;
2510
2511 /* Most targets can step a breakpoint instruction, thus
2512 executing it normally. But if this one cannot, just
2513 continue and we will hit it anyway. */
2514 if (gdbarch_cannot_step_breakpoint (gdbarch))
2515 step = false;
2516 }
2517
2518 if (debug_displaced
2519 && tp->control.trap_expected
2520 && use_displaced_stepping (tp)
2521 && !step_over_info_valid_p ())
2522 {
2523 struct regcache *resume_regcache = get_thread_regcache (tp);
2524 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2525 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2526 gdb_byte buf[4];
2527
2528 read_memory (actual_pc, buf, sizeof (buf));
2529 displaced_debug_printf ("run %s: %s",
2530 paddress (resume_gdbarch, actual_pc),
2531 displaced_step_dump_bytes
2532 (buf, sizeof (buf)).c_str ());
2533 }
2534
2535 if (tp->control.may_range_step)
2536 {
2537 /* If we're resuming a thread with the PC out of the step
2538 range, then we're doing some nested/finer run control
2539 operation, like stepping the thread out of the dynamic
2540 linker or the displaced stepping scratch pad. We
2541 shouldn't have allowed a range step then. */
2542 gdb_assert (pc_in_thread_step_range (pc, tp));
2543 }
2544
2545 do_target_resume (resume_ptid, step, sig);
2546 tp->resumed = true;
2547}
2548
2549/* Resume the inferior. SIG is the signal to give the inferior
2550 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2551 rolls back state on error. */
2552
2553static void
2554resume (gdb_signal sig)
2555{
2556 try
2557 {
2558 resume_1 (sig);
2559 }
2560 catch (const gdb_exception &ex)
2561 {
2562 /* If resuming is being aborted for any reason, delete any
2563 single-step breakpoint resume_1 may have created, to avoid
2564 confusing the following resumption, and to avoid leaving
2565 single-step breakpoints perturbing other threads, in case
2566 we're running in non-stop mode. */
2567 if (inferior_ptid != null_ptid)
2568 delete_single_step_breakpoints (inferior_thread ());
2569 throw;
2570 }
2571}
2572
2573\f
2574/* Proceeding. */
2575
2576/* See infrun.h. */
2577
2578/* Counter that tracks number of user visible stops. This can be used
2579 to tell whether a command has proceeded the inferior past the
2580 current location. This allows e.g., inferior function calls in
2581 breakpoint commands to not interrupt the command list. When the
2582 call finishes successfully, the inferior is standing at the same
2583 breakpoint as if nothing happened (and so we don't call
2584 normal_stop). */
2585static ULONGEST current_stop_id;
2586
2587/* See infrun.h. */
2588
2589ULONGEST
2590get_stop_id (void)
2591{
2592 return current_stop_id;
2593}
2594
2595/* Called when we report a user visible stop. */
2596
2597static void
2598new_stop_id (void)
2599{
2600 current_stop_id++;
2601}
2602
2603/* Clear out all variables saying what to do when inferior is continued.
2604 First do this, then set the ones you want, then call `proceed'. */
2605
2606static void
2607clear_proceed_status_thread (struct thread_info *tp)
2608{
2609 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
2610
2611 /* If we're starting a new sequence, then the previous finished
2612 single-step is no longer relevant. */
2613 if (tp->suspend.waitstatus_pending_p)
2614 {
2615 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2616 {
2617 infrun_debug_printf ("pending event of %s was a finished step. "
2618 "Discarding.",
2619 target_pid_to_str (tp->ptid).c_str ());
2620
2621 tp->suspend.waitstatus_pending_p = 0;
2622 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2623 }
2624 else
2625 {
2626 infrun_debug_printf
2627 ("thread %s has pending wait status %s (currently_stepping=%d).",
2628 target_pid_to_str (tp->ptid).c_str (),
2629 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2630 currently_stepping (tp));
2631 }
2632 }
2633
2634 /* If this signal should not be seen by program, give it zero.
2635 Used for debugging signals. */
2636 if (!signal_pass_state (tp->suspend.stop_signal))
2637 tp->suspend.stop_signal = GDB_SIGNAL_0;
2638
2639 delete tp->thread_fsm;
2640 tp->thread_fsm = NULL;
2641
2642 tp->control.trap_expected = 0;
2643 tp->control.step_range_start = 0;
2644 tp->control.step_range_end = 0;
2645 tp->control.may_range_step = 0;
2646 tp->control.step_frame_id = null_frame_id;
2647 tp->control.step_stack_frame_id = null_frame_id;
2648 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2649 tp->control.step_start_function = NULL;
2650 tp->stop_requested = 0;
2651
2652 tp->control.stop_step = 0;
2653
2654 tp->control.proceed_to_finish = 0;
2655
2656 tp->control.stepping_command = 0;
2657
2658 /* Discard any remaining commands or status from previous stop. */
2659 bpstat_clear (&tp->control.stop_bpstat);
2660}
2661
2662void
2663clear_proceed_status (int step)
2664{
2665 /* With scheduler-locking replay, stop replaying other threads if we're
2666 not replaying the user-visible resume ptid.
2667
2668 This is a convenience feature to not require the user to explicitly
2669 stop replaying the other threads. We're assuming that the user's
2670 intent is to resume tracing the recorded process. */
2671 if (!non_stop && scheduler_mode == schedlock_replay
2672 && target_record_is_replaying (minus_one_ptid)
2673 && !target_record_will_replay (user_visible_resume_ptid (step),
2674 execution_direction))
2675 target_record_stop_replaying ();
2676
2677 if (!non_stop && inferior_ptid != null_ptid)
2678 {
2679 ptid_t resume_ptid = user_visible_resume_ptid (step);
2680 process_stratum_target *resume_target
2681 = user_visible_resume_target (resume_ptid);
2682
2683 /* In all-stop mode, delete the per-thread status of all threads
2684 we're about to resume, implicitly and explicitly. */
2685 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2686 clear_proceed_status_thread (tp);
2687 }
2688
2689 if (inferior_ptid != null_ptid)
2690 {
2691 struct inferior *inferior;
2692
2693 if (non_stop)
2694 {
2695 /* If in non-stop mode, only delete the per-thread status of
2696 the current thread. */
2697 clear_proceed_status_thread (inferior_thread ());
2698 }
2699
2700 inferior = current_inferior ();
2701 inferior->control.stop_soon = NO_STOP_QUIETLY;
2702 }
2703
2704 gdb::observers::about_to_proceed.notify ();
2705}
2706
2707/* Returns true if TP is still stopped at a breakpoint that needs
2708 stepping-over in order to make progress. If the breakpoint is gone
2709 meanwhile, we can skip the whole step-over dance. */
2710
2711static bool
2712thread_still_needs_step_over_bp (struct thread_info *tp)
2713{
2714 if (tp->stepping_over_breakpoint)
2715 {
2716 struct regcache *regcache = get_thread_regcache (tp);
2717
2718 if (breakpoint_here_p (regcache->aspace (),
2719 regcache_read_pc (regcache))
2720 == ordinary_breakpoint_here)
2721 return true;
2722
2723 tp->stepping_over_breakpoint = 0;
2724 }
2725
2726 return false;
2727}
2728
2729/* Check whether thread TP still needs to start a step-over in order
2730 to make progress when resumed. Returns an bitwise or of enum
2731 step_over_what bits, indicating what needs to be stepped over. */
2732
2733static step_over_what
2734thread_still_needs_step_over (struct thread_info *tp)
2735{
2736 step_over_what what = 0;
2737
2738 if (thread_still_needs_step_over_bp (tp))
2739 what |= STEP_OVER_BREAKPOINT;
2740
2741 if (tp->stepping_over_watchpoint
2742 && !target_have_steppable_watchpoint ())
2743 what |= STEP_OVER_WATCHPOINT;
2744
2745 return what;
2746}
2747
2748/* Returns true if scheduler locking applies. STEP indicates whether
2749 we're about to do a step/next-like command to a thread. */
2750
2751static bool
2752schedlock_applies (struct thread_info *tp)
2753{
2754 return (scheduler_mode == schedlock_on
2755 || (scheduler_mode == schedlock_step
2756 && tp->control.stepping_command)
2757 || (scheduler_mode == schedlock_replay
2758 && target_record_will_replay (minus_one_ptid,
2759 execution_direction)));
2760}
2761
2762/* Set process_stratum_target::COMMIT_RESUMED_STATE in all target
2763 stacks that have threads executing and don't have threads with
2764 pending events. */
2765
2766static void
2767maybe_set_commit_resumed_all_targets ()
2768{
2769 scoped_restore_current_thread restore_thread;
2770
2771 for (inferior *inf : all_non_exited_inferiors ())
2772 {
2773 process_stratum_target *proc_target = inf->process_target ();
2774
2775 if (proc_target->commit_resumed_state)
2776 {
2777 /* We already set this in a previous iteration, via another
2778 inferior sharing the process_stratum target. */
2779 continue;
2780 }
2781
2782 /* If the target has no resumed threads, it would be useless to
2783 ask it to commit the resumed threads. */
2784 if (!proc_target->threads_executing)
2785 {
2786 infrun_debug_printf ("not requesting commit-resumed for target "
2787 "%s, no resumed threads",
2788 proc_target->shortname ());
2789 continue;
2790 }
2791
2792 /* As an optimization, if a thread from this target has some
2793 status to report, handle it before requiring the target to
2794 commit its resumed threads: handling the status might lead to
2795 resuming more threads. */
2796 bool has_thread_with_pending_status = false;
2797 for (thread_info *thread : all_non_exited_threads (proc_target))
2798 if (thread->resumed && thread->suspend.waitstatus_pending_p)
2799 {
2800 has_thread_with_pending_status = true;
2801 break;
2802 }
2803
2804 if (has_thread_with_pending_status)
2805 {
2806 infrun_debug_printf ("not requesting commit-resumed for target %s, a"
2807 " thread has a pending waitstatus",
2808 proc_target->shortname ());
2809 continue;
2810 }
2811
2812 switch_to_inferior_no_thread (inf);
2813
2814 if (target_has_pending_events ())
2815 {
2816 infrun_debug_printf ("not requesting commit-resumed for target %s, "
2817 "target has pending events",
2818 proc_target->shortname ());
2819 continue;
2820 }
2821
2822 infrun_debug_printf ("enabling commit-resumed for target %s",
2823 proc_target->shortname ());
2824
2825 proc_target->commit_resumed_state = true;
2826 }
2827}
2828
2829/* See infrun.h. */
2830
2831void
2832maybe_call_commit_resumed_all_targets ()
2833{
2834 scoped_restore_current_thread restore_thread;
2835
2836 for (inferior *inf : all_non_exited_inferiors ())
2837 {
2838 process_stratum_target *proc_target = inf->process_target ();
2839
2840 if (!proc_target->commit_resumed_state)
2841 continue;
2842
2843 switch_to_inferior_no_thread (inf);
2844
2845 infrun_debug_printf ("calling commit_resumed for target %s",
2846 proc_target->shortname());
2847
2848 target_commit_resumed ();
2849 }
2850}
2851
2852/* To track nesting of scoped_disable_commit_resumed objects, ensuring
2853 that only the outermost one attempts to re-enable
2854 commit-resumed. */
2855static bool enable_commit_resumed = true;
2856
2857/* See infrun.h. */
2858
2859scoped_disable_commit_resumed::scoped_disable_commit_resumed
2860 (const char *reason)
2861 : m_reason (reason),
2862 m_prev_enable_commit_resumed (enable_commit_resumed)
2863{
2864 infrun_debug_printf ("reason=%s", m_reason);
2865
2866 enable_commit_resumed = false;
2867
2868 for (inferior *inf : all_non_exited_inferiors ())
2869 {
2870 process_stratum_target *proc_target = inf->process_target ();
2871
2872 if (m_prev_enable_commit_resumed)
2873 {
2874 /* This is the outermost instance: force all
2875 COMMIT_RESUMED_STATE to false. */
2876 proc_target->commit_resumed_state = false;
2877 }
2878 else
2879 {
2880 /* This is not the outermost instance, we expect
2881 COMMIT_RESUMED_STATE to have been cleared by the
2882 outermost instance. */
2883 gdb_assert (!proc_target->commit_resumed_state);
2884 }
2885 }
2886}
2887
2888/* See infrun.h. */
2889
2890void
2891scoped_disable_commit_resumed::reset ()
2892{
2893 if (m_reset)
2894 return;
2895 m_reset = true;
2896
2897 infrun_debug_printf ("reason=%s", m_reason);
2898
2899 gdb_assert (!enable_commit_resumed);
2900
2901 enable_commit_resumed = m_prev_enable_commit_resumed;
2902
2903 if (m_prev_enable_commit_resumed)
2904 {
2905 /* This is the outermost instance, re-enable
2906 COMMIT_RESUMED_STATE on the targets where it's possible. */
2907 maybe_set_commit_resumed_all_targets ();
2908 }
2909 else
2910 {
2911 /* This is not the outermost instance, we expect
2912 COMMIT_RESUMED_STATE to still be false. */
2913 for (inferior *inf : all_non_exited_inferiors ())
2914 {
2915 process_stratum_target *proc_target = inf->process_target ();
2916 gdb_assert (!proc_target->commit_resumed_state);
2917 }
2918 }
2919}
2920
2921/* See infrun.h. */
2922
2923scoped_disable_commit_resumed::~scoped_disable_commit_resumed ()
2924{
2925 reset ();
2926}
2927
2928/* See infrun.h. */
2929
2930void
2931scoped_disable_commit_resumed::reset_and_commit ()
2932{
2933 reset ();
2934 maybe_call_commit_resumed_all_targets ();
2935}
2936
2937/* See infrun.h. */
2938
2939scoped_enable_commit_resumed::scoped_enable_commit_resumed
2940 (const char *reason)
2941 : m_reason (reason),
2942 m_prev_enable_commit_resumed (enable_commit_resumed)
2943{
2944 infrun_debug_printf ("reason=%s", m_reason);
2945
2946 if (!enable_commit_resumed)
2947 {
2948 enable_commit_resumed = true;
2949
2950 /* Re-enable COMMIT_RESUMED_STATE on the targets where it's
2951 possible. */
2952 maybe_set_commit_resumed_all_targets ();
2953
2954 maybe_call_commit_resumed_all_targets ();
2955 }
2956}
2957
2958/* See infrun.h. */
2959
2960scoped_enable_commit_resumed::~scoped_enable_commit_resumed ()
2961{
2962 infrun_debug_printf ("reason=%s", m_reason);
2963
2964 gdb_assert (enable_commit_resumed);
2965
2966 enable_commit_resumed = m_prev_enable_commit_resumed;
2967
2968 if (!enable_commit_resumed)
2969 {
2970 /* Force all COMMIT_RESUMED_STATE back to false. */
2971 for (inferior *inf : all_non_exited_inferiors ())
2972 {
2973 process_stratum_target *proc_target = inf->process_target ();
2974 proc_target->commit_resumed_state = false;
2975 }
2976 }
2977}
2978
2979/* Check that all the targets we're about to resume are in non-stop
2980 mode. Ideally, we'd only care whether all targets support
2981 target-async, but we're not there yet. E.g., stop_all_threads
2982 doesn't know how to handle all-stop targets. Also, the remote
2983 protocol in all-stop mode is synchronous, irrespective of
2984 target-async, which means that things like a breakpoint re-set
2985 triggered by one target would try to read memory from all targets
2986 and fail. */
2987
2988static void
2989check_multi_target_resumption (process_stratum_target *resume_target)
2990{
2991 if (!non_stop && resume_target == nullptr)
2992 {
2993 scoped_restore_current_thread restore_thread;
2994
2995 /* This is used to track whether we're resuming more than one
2996 target. */
2997 process_stratum_target *first_connection = nullptr;
2998
2999 /* The first inferior we see with a target that does not work in
3000 always-non-stop mode. */
3001 inferior *first_not_non_stop = nullptr;
3002
3003 for (inferior *inf : all_non_exited_inferiors ())
3004 {
3005 switch_to_inferior_no_thread (inf);
3006
3007 if (!target_has_execution ())
3008 continue;
3009
3010 process_stratum_target *proc_target
3011 = current_inferior ()->process_target();
3012
3013 if (!target_is_non_stop_p ())
3014 first_not_non_stop = inf;
3015
3016 if (first_connection == nullptr)
3017 first_connection = proc_target;
3018 else if (first_connection != proc_target
3019 && first_not_non_stop != nullptr)
3020 {
3021 switch_to_inferior_no_thread (first_not_non_stop);
3022
3023 proc_target = current_inferior ()->process_target();
3024
3025 error (_("Connection %d (%s) does not support "
3026 "multi-target resumption."),
3027 proc_target->connection_number,
3028 make_target_connection_string (proc_target).c_str ());
3029 }
3030 }
3031 }
3032}
3033
3034/* Basic routine for continuing the program in various fashions.
3035
3036 ADDR is the address to resume at, or -1 for resume where stopped.
3037 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
3038 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
3039
3040 You should call clear_proceed_status before calling proceed. */
3041
3042void
3043proceed (CORE_ADDR addr, enum gdb_signal siggnal)
3044{
3045 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
3046
3047 struct regcache *regcache;
3048 struct gdbarch *gdbarch;
3049 CORE_ADDR pc;
3050 struct execution_control_state ecss;
3051 struct execution_control_state *ecs = &ecss;
3052 bool started;
3053
3054 /* If we're stopped at a fork/vfork, follow the branch set by the
3055 "set follow-fork-mode" command; otherwise, we'll just proceed
3056 resuming the current thread. */
3057 if (!follow_fork ())
3058 {
3059 /* The target for some reason decided not to resume. */
3060 normal_stop ();
3061 if (target_can_async_p ())
3062 inferior_event_handler (INF_EXEC_COMPLETE);
3063 return;
3064 }
3065
3066 /* We'll update this if & when we switch to a new thread. */
3067 previous_inferior_ptid = inferior_ptid;
3068
3069 regcache = get_current_regcache ();
3070 gdbarch = regcache->arch ();
3071 const address_space *aspace = regcache->aspace ();
3072
3073 pc = regcache_read_pc_protected (regcache);
3074
3075 thread_info *cur_thr = inferior_thread ();
3076
3077 /* Fill in with reasonable starting values. */
3078 init_thread_stepping_state (cur_thr);
3079
3080 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
3081
3082 ptid_t resume_ptid
3083 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3084 process_stratum_target *resume_target
3085 = user_visible_resume_target (resume_ptid);
3086
3087 check_multi_target_resumption (resume_target);
3088
3089 if (addr == (CORE_ADDR) -1)
3090 {
3091 if (pc == cur_thr->suspend.stop_pc
3092 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3093 && execution_direction != EXEC_REVERSE)
3094 /* There is a breakpoint at the address we will resume at,
3095 step one instruction before inserting breakpoints so that
3096 we do not stop right away (and report a second hit at this
3097 breakpoint).
3098
3099 Note, we don't do this in reverse, because we won't
3100 actually be executing the breakpoint insn anyway.
3101 We'll be (un-)executing the previous instruction. */
3102 cur_thr->stepping_over_breakpoint = 1;
3103 else if (gdbarch_single_step_through_delay_p (gdbarch)
3104 && gdbarch_single_step_through_delay (gdbarch,
3105 get_current_frame ()))
3106 /* We stepped onto an instruction that needs to be stepped
3107 again before re-inserting the breakpoint, do so. */
3108 cur_thr->stepping_over_breakpoint = 1;
3109 }
3110 else
3111 {
3112 regcache_write_pc (regcache, addr);
3113 }
3114
3115 if (siggnal != GDB_SIGNAL_DEFAULT)
3116 cur_thr->suspend.stop_signal = siggnal;
3117
3118 /* If an exception is thrown from this point on, make sure to
3119 propagate GDB's knowledge of the executing state to the
3120 frontend/user running state. */
3121 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3122
3123 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3124 threads (e.g., we might need to set threads stepping over
3125 breakpoints first), from the user/frontend's point of view, all
3126 threads in RESUME_PTID are now running. Unless we're calling an
3127 inferior function, as in that case we pretend the inferior
3128 doesn't run at all. */
3129 if (!cur_thr->control.in_infcall)
3130 set_running (resume_target, resume_ptid, true);
3131
3132 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3133 gdb_signal_to_symbol_string (siggnal));
3134
3135 annotate_starting ();
3136
3137 /* Make sure that output from GDB appears before output from the
3138 inferior. */
3139 gdb_flush (gdb_stdout);
3140
3141 /* Since we've marked the inferior running, give it the terminal. A
3142 QUIT/Ctrl-C from here on is forwarded to the target (which can
3143 still detect attempts to unblock a stuck connection with repeated
3144 Ctrl-C from within target_pass_ctrlc). */
3145 target_terminal::inferior ();
3146
3147 /* In a multi-threaded task we may select another thread and
3148 then continue or step.
3149
3150 But if a thread that we're resuming had stopped at a breakpoint,
3151 it will immediately cause another breakpoint stop without any
3152 execution (i.e. it will report a breakpoint hit incorrectly). So
3153 we must step over it first.
3154
3155 Look for threads other than the current (TP) that reported a
3156 breakpoint hit and haven't been resumed yet since. */
3157
3158 /* If scheduler locking applies, we can avoid iterating over all
3159 threads. */
3160 if (!non_stop && !schedlock_applies (cur_thr))
3161 {
3162 for (thread_info *tp : all_non_exited_threads (resume_target,
3163 resume_ptid))
3164 {
3165 switch_to_thread_no_regs (tp);
3166
3167 /* Ignore the current thread here. It's handled
3168 afterwards. */
3169 if (tp == cur_thr)
3170 continue;
3171
3172 if (!thread_still_needs_step_over (tp))
3173 continue;
3174
3175 gdb_assert (!thread_is_in_step_over_chain (tp));
3176
3177 infrun_debug_printf ("need to step-over [%s] first",
3178 target_pid_to_str (tp->ptid).c_str ());
3179
3180 global_thread_step_over_chain_enqueue (tp);
3181 }
3182
3183 switch_to_thread (cur_thr);
3184 }
3185
3186 /* Enqueue the current thread last, so that we move all other
3187 threads over their breakpoints first. */
3188 if (cur_thr->stepping_over_breakpoint)
3189 global_thread_step_over_chain_enqueue (cur_thr);
3190
3191 /* If the thread isn't started, we'll still need to set its prev_pc,
3192 so that switch_back_to_stepped_thread knows the thread hasn't
3193 advanced. Must do this before resuming any thread, as in
3194 all-stop/remote, once we resume we can't send any other packet
3195 until the target stops again. */
3196 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3197
3198 {
3199 scoped_disable_commit_resumed disable_commit_resumed ("proceeding");
3200
3201 started = start_step_over ();
3202
3203 if (step_over_info_valid_p ())
3204 {
3205 /* Either this thread started a new in-line step over, or some
3206 other thread was already doing one. In either case, don't
3207 resume anything else until the step-over is finished. */
3208 }
3209 else if (started && !target_is_non_stop_p ())
3210 {
3211 /* A new displaced stepping sequence was started. In all-stop,
3212 we can't talk to the target anymore until it next stops. */
3213 }
3214 else if (!non_stop && target_is_non_stop_p ())
3215 {
3216 INFRUN_SCOPED_DEBUG_START_END
3217 ("resuming threads, all-stop-on-top-of-non-stop");
3218
3219 /* In all-stop, but the target is always in non-stop mode.
3220 Start all other threads that are implicitly resumed too. */
3221 for (thread_info *tp : all_non_exited_threads (resume_target,
3222 resume_ptid))
3223 {
3224 switch_to_thread_no_regs (tp);
3225
3226 if (!tp->inf->has_execution ())
3227 {
3228 infrun_debug_printf ("[%s] target has no execution",
3229 target_pid_to_str (tp->ptid).c_str ());
3230 continue;
3231 }
3232
3233 if (tp->resumed)
3234 {
3235 infrun_debug_printf ("[%s] resumed",
3236 target_pid_to_str (tp->ptid).c_str ());
3237 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3238 continue;
3239 }
3240
3241 if (thread_is_in_step_over_chain (tp))
3242 {
3243 infrun_debug_printf ("[%s] needs step-over",
3244 target_pid_to_str (tp->ptid).c_str ());
3245 continue;
3246 }
3247
3248 infrun_debug_printf ("resuming %s",
3249 target_pid_to_str (tp->ptid).c_str ());
3250
3251 reset_ecs (ecs, tp);
3252 switch_to_thread (tp);
3253 keep_going_pass_signal (ecs);
3254 if (!ecs->wait_some_more)
3255 error (_("Command aborted."));
3256 }
3257 }
3258 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3259 {
3260 /* The thread wasn't started, and isn't queued, run it now. */
3261 reset_ecs (ecs, cur_thr);
3262 switch_to_thread (cur_thr);
3263 keep_going_pass_signal (ecs);
3264 if (!ecs->wait_some_more)
3265 error (_("Command aborted."));
3266 }
3267
3268 disable_commit_resumed.reset_and_commit ();
3269 }
3270
3271 finish_state.release ();
3272
3273 /* If we've switched threads above, switch back to the previously
3274 current thread. We don't want the user to see a different
3275 selected thread. */
3276 switch_to_thread (cur_thr);
3277
3278 /* Tell the event loop to wait for it to stop. If the target
3279 supports asynchronous execution, it'll do this from within
3280 target_resume. */
3281 if (!target_can_async_p ())
3282 mark_async_event_handler (infrun_async_inferior_event_token);
3283}
3284\f
3285
3286/* Start remote-debugging of a machine over a serial link. */
3287
3288void
3289start_remote (int from_tty)
3290{
3291 inferior *inf = current_inferior ();
3292 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3293
3294 /* Always go on waiting for the target, regardless of the mode. */
3295 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3296 indicate to wait_for_inferior that a target should timeout if
3297 nothing is returned (instead of just blocking). Because of this,
3298 targets expecting an immediate response need to, internally, set
3299 things up so that the target_wait() is forced to eventually
3300 timeout. */
3301 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3302 differentiate to its caller what the state of the target is after
3303 the initial open has been performed. Here we're assuming that
3304 the target has stopped. It should be possible to eventually have
3305 target_open() return to the caller an indication that the target
3306 is currently running and GDB state should be set to the same as
3307 for an async run. */
3308 wait_for_inferior (inf);
3309
3310 /* Now that the inferior has stopped, do any bookkeeping like
3311 loading shared libraries. We want to do this before normal_stop,
3312 so that the displayed frame is up to date. */
3313 post_create_inferior (from_tty);
3314
3315 normal_stop ();
3316}
3317
3318/* Initialize static vars when a new inferior begins. */
3319
3320void
3321init_wait_for_inferior (void)
3322{
3323 /* These are meaningless until the first time through wait_for_inferior. */
3324
3325 breakpoint_init_inferior (inf_starting);
3326
3327 clear_proceed_status (0);
3328
3329 nullify_last_target_wait_ptid ();
3330
3331 previous_inferior_ptid = inferior_ptid;
3332}
3333
3334\f
3335
3336static void handle_inferior_event (struct execution_control_state *ecs);
3337
3338static void handle_step_into_function (struct gdbarch *gdbarch,
3339 struct execution_control_state *ecs);
3340static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3341 struct execution_control_state *ecs);
3342static void handle_signal_stop (struct execution_control_state *ecs);
3343static void check_exception_resume (struct execution_control_state *,
3344 struct frame_info *);
3345
3346static void end_stepping_range (struct execution_control_state *ecs);
3347static void stop_waiting (struct execution_control_state *ecs);
3348static void keep_going (struct execution_control_state *ecs);
3349static void process_event_stop_test (struct execution_control_state *ecs);
3350static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
3351
3352/* This function is attached as a "thread_stop_requested" observer.
3353 Cleanup local state that assumed the PTID was to be resumed, and
3354 report the stop to the frontend. */
3355
3356static void
3357infrun_thread_stop_requested (ptid_t ptid)
3358{
3359 process_stratum_target *curr_target = current_inferior ()->process_target ();
3360
3361 /* PTID was requested to stop. If the thread was already stopped,
3362 but the user/frontend doesn't know about that yet (e.g., the
3363 thread had been temporarily paused for some step-over), set up
3364 for reporting the stop now. */
3365 for (thread_info *tp : all_threads (curr_target, ptid))
3366 {
3367 if (tp->state != THREAD_RUNNING)
3368 continue;
3369 if (tp->executing)
3370 continue;
3371
3372 /* Remove matching threads from the step-over queue, so
3373 start_step_over doesn't try to resume them
3374 automatically. */
3375 if (thread_is_in_step_over_chain (tp))
3376 global_thread_step_over_chain_remove (tp);
3377
3378 /* If the thread is stopped, but the user/frontend doesn't
3379 know about that yet, queue a pending event, as if the
3380 thread had just stopped now. Unless the thread already had
3381 a pending event. */
3382 if (!tp->suspend.waitstatus_pending_p)
3383 {
3384 tp->suspend.waitstatus_pending_p = 1;
3385 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3386 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3387 }
3388
3389 /* Clear the inline-frame state, since we're re-processing the
3390 stop. */
3391 clear_inline_frame_state (tp);
3392
3393 /* If this thread was paused because some other thread was
3394 doing an inline-step over, let that finish first. Once
3395 that happens, we'll restart all threads and consume pending
3396 stop events then. */
3397 if (step_over_info_valid_p ())
3398 continue;
3399
3400 /* Otherwise we can process the (new) pending event now. Set
3401 it so this pending event is considered by
3402 do_target_wait. */
3403 tp->resumed = true;
3404 }
3405}
3406
3407static void
3408infrun_thread_thread_exit (struct thread_info *tp, int silent)
3409{
3410 if (target_last_proc_target == tp->inf->process_target ()
3411 && target_last_wait_ptid == tp->ptid)
3412 nullify_last_target_wait_ptid ();
3413}
3414
3415/* Delete the step resume, single-step and longjmp/exception resume
3416 breakpoints of TP. */
3417
3418static void
3419delete_thread_infrun_breakpoints (struct thread_info *tp)
3420{
3421 delete_step_resume_breakpoint (tp);
3422 delete_exception_resume_breakpoint (tp);
3423 delete_single_step_breakpoints (tp);
3424}
3425
3426/* If the target still has execution, call FUNC for each thread that
3427 just stopped. In all-stop, that's all the non-exited threads; in
3428 non-stop, that's the current thread, only. */
3429
3430typedef void (*for_each_just_stopped_thread_callback_func)
3431 (struct thread_info *tp);
3432
3433static void
3434for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3435{
3436 if (!target_has_execution () || inferior_ptid == null_ptid)
3437 return;
3438
3439 if (target_is_non_stop_p ())
3440 {
3441 /* If in non-stop mode, only the current thread stopped. */
3442 func (inferior_thread ());
3443 }
3444 else
3445 {
3446 /* In all-stop mode, all threads have stopped. */
3447 for (thread_info *tp : all_non_exited_threads ())
3448 func (tp);
3449 }
3450}
3451
3452/* Delete the step resume and longjmp/exception resume breakpoints of
3453 the threads that just stopped. */
3454
3455static void
3456delete_just_stopped_threads_infrun_breakpoints (void)
3457{
3458 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3459}
3460
3461/* Delete the single-step breakpoints of the threads that just
3462 stopped. */
3463
3464static void
3465delete_just_stopped_threads_single_step_breakpoints (void)
3466{
3467 for_each_just_stopped_thread (delete_single_step_breakpoints);
3468}
3469
3470/* See infrun.h. */
3471
3472void
3473print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3474 const struct target_waitstatus *ws)
3475{
3476 infrun_debug_printf ("target_wait (%d.%ld.%ld [%s], status) =",
3477 waiton_ptid.pid (),
3478 waiton_ptid.lwp (),
3479 waiton_ptid.tid (),
3480 target_pid_to_str (waiton_ptid).c_str ());
3481 infrun_debug_printf (" %d.%ld.%ld [%s],",
3482 result_ptid.pid (),
3483 result_ptid.lwp (),
3484 result_ptid.tid (),
3485 target_pid_to_str (result_ptid).c_str ());
3486 infrun_debug_printf (" %s", target_waitstatus_to_string (ws).c_str ());
3487}
3488
3489/* Select a thread at random, out of those which are resumed and have
3490 had events. */
3491
3492static struct thread_info *
3493random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3494{
3495 int num_events = 0;
3496
3497 auto has_event = [&] (thread_info *tp)
3498 {
3499 return (tp->ptid.matches (waiton_ptid)
3500 && tp->resumed
3501 && tp->suspend.waitstatus_pending_p);
3502 };
3503
3504 /* First see how many events we have. Count only resumed threads
3505 that have an event pending. */
3506 for (thread_info *tp : inf->non_exited_threads ())
3507 if (has_event (tp))
3508 num_events++;
3509
3510 if (num_events == 0)
3511 return NULL;
3512
3513 /* Now randomly pick a thread out of those that have had events. */
3514 int random_selector = (int) ((num_events * (double) rand ())
3515 / (RAND_MAX + 1.0));
3516
3517 if (num_events > 1)
3518 infrun_debug_printf ("Found %d events, selecting #%d",
3519 num_events, random_selector);
3520
3521 /* Select the Nth thread that has had an event. */
3522 for (thread_info *tp : inf->non_exited_threads ())
3523 if (has_event (tp))
3524 if (random_selector-- == 0)
3525 return tp;
3526
3527 gdb_assert_not_reached ("event thread not found");
3528}
3529
3530/* Wrapper for target_wait that first checks whether threads have
3531 pending statuses to report before actually asking the target for
3532 more events. INF is the inferior we're using to call target_wait
3533 on. */
3534
3535static ptid_t
3536do_target_wait_1 (inferior *inf, ptid_t ptid,
3537 target_waitstatus *status, target_wait_flags options)
3538{
3539 ptid_t event_ptid;
3540 struct thread_info *tp;
3541
3542 /* We know that we are looking for an event in the target of inferior
3543 INF, but we don't know which thread the event might come from. As
3544 such we want to make sure that INFERIOR_PTID is reset so that none of
3545 the wait code relies on it - doing so is always a mistake. */
3546 switch_to_inferior_no_thread (inf);
3547
3548 /* First check if there is a resumed thread with a wait status
3549 pending. */
3550 if (ptid == minus_one_ptid || ptid.is_pid ())
3551 {
3552 tp = random_pending_event_thread (inf, ptid);
3553 }
3554 else
3555 {
3556 infrun_debug_printf ("Waiting for specific thread %s.",
3557 target_pid_to_str (ptid).c_str ());
3558
3559 /* We have a specific thread to check. */
3560 tp = find_thread_ptid (inf, ptid);
3561 gdb_assert (tp != NULL);
3562 if (!tp->suspend.waitstatus_pending_p)
3563 tp = NULL;
3564 }
3565
3566 if (tp != NULL
3567 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3568 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3569 {
3570 struct regcache *regcache = get_thread_regcache (tp);
3571 struct gdbarch *gdbarch = regcache->arch ();
3572 CORE_ADDR pc;
3573 int discard = 0;
3574
3575 pc = regcache_read_pc (regcache);
3576
3577 if (pc != tp->suspend.stop_pc)
3578 {
3579 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3580 target_pid_to_str (tp->ptid).c_str (),
3581 paddress (gdbarch, tp->suspend.stop_pc),
3582 paddress (gdbarch, pc));
3583 discard = 1;
3584 }
3585 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3586 {
3587 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3588 target_pid_to_str (tp->ptid).c_str (),
3589 paddress (gdbarch, pc));
3590
3591 discard = 1;
3592 }
3593
3594 if (discard)
3595 {
3596 infrun_debug_printf ("pending event of %s cancelled.",
3597 target_pid_to_str (tp->ptid).c_str ());
3598
3599 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3600 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3601 }
3602 }
3603
3604 if (tp != NULL)
3605 {
3606 infrun_debug_printf ("Using pending wait status %s for %s.",
3607 target_waitstatus_to_string
3608 (&tp->suspend.waitstatus).c_str (),
3609 target_pid_to_str (tp->ptid).c_str ());
3610
3611 /* Now that we've selected our final event LWP, un-adjust its PC
3612 if it was a software breakpoint (and the target doesn't
3613 always adjust the PC itself). */
3614 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3615 && !target_supports_stopped_by_sw_breakpoint ())
3616 {
3617 struct regcache *regcache;
3618 struct gdbarch *gdbarch;
3619 int decr_pc;
3620
3621 regcache = get_thread_regcache (tp);
3622 gdbarch = regcache->arch ();
3623
3624 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3625 if (decr_pc != 0)
3626 {
3627 CORE_ADDR pc;
3628
3629 pc = regcache_read_pc (regcache);
3630 regcache_write_pc (regcache, pc + decr_pc);
3631 }
3632 }
3633
3634 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3635 *status = tp->suspend.waitstatus;
3636 tp->suspend.waitstatus_pending_p = 0;
3637
3638 /* Wake up the event loop again, until all pending events are
3639 processed. */
3640 if (target_is_async_p ())
3641 mark_async_event_handler (infrun_async_inferior_event_token);
3642 return tp->ptid;
3643 }
3644
3645 /* But if we don't find one, we'll have to wait. */
3646
3647 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3648 a blocking wait. */
3649 if (!target_can_async_p ())
3650 options &= ~TARGET_WNOHANG;
3651
3652 if (deprecated_target_wait_hook)
3653 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3654 else
3655 event_ptid = target_wait (ptid, status, options);
3656
3657 return event_ptid;
3658}
3659
3660/* Wrapper for target_wait that first checks whether threads have
3661 pending statuses to report before actually asking the target for
3662 more events. Polls for events from all inferiors/targets. */
3663
3664static bool
3665do_target_wait (ptid_t wait_ptid, execution_control_state *ecs,
3666 target_wait_flags options)
3667{
3668 int num_inferiors = 0;
3669 int random_selector;
3670
3671 /* For fairness, we pick the first inferior/target to poll at random
3672 out of all inferiors that may report events, and then continue
3673 polling the rest of the inferior list starting from that one in a
3674 circular fashion until the whole list is polled once. */
3675
3676 auto inferior_matches = [&wait_ptid] (inferior *inf)
3677 {
3678 return (inf->process_target () != NULL
3679 && ptid_t (inf->pid).matches (wait_ptid));
3680 };
3681
3682 /* First see how many matching inferiors we have. */
3683 for (inferior *inf : all_inferiors ())
3684 if (inferior_matches (inf))
3685 num_inferiors++;
3686
3687 if (num_inferiors == 0)
3688 {
3689 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3690 return false;
3691 }
3692
3693 /* Now randomly pick an inferior out of those that matched. */
3694 random_selector = (int)
3695 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3696
3697 if (num_inferiors > 1)
3698 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3699 num_inferiors, random_selector);
3700
3701 /* Select the Nth inferior that matched. */
3702
3703 inferior *selected = nullptr;
3704
3705 for (inferior *inf : all_inferiors ())
3706 if (inferior_matches (inf))
3707 if (random_selector-- == 0)
3708 {
3709 selected = inf;
3710 break;
3711 }
3712
3713 /* Now poll for events out of each of the matching inferior's
3714 targets, starting from the selected one. */
3715
3716 auto do_wait = [&] (inferior *inf)
3717 {
3718 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3719 ecs->target = inf->process_target ();
3720 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3721 };
3722
3723 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3724 here spuriously after the target is all stopped and we've already
3725 reported the stop to the user, polling for events. */
3726 scoped_restore_current_thread restore_thread;
3727
3728 int inf_num = selected->num;
3729 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3730 if (inferior_matches (inf))
3731 if (do_wait (inf))
3732 return true;
3733
3734 for (inferior *inf = inferior_list;
3735 inf != NULL && inf->num < inf_num;
3736 inf = inf->next)
3737 if (inferior_matches (inf))
3738 if (do_wait (inf))
3739 return true;
3740
3741 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3742 return false;
3743}
3744
3745/* An event reported by wait_one. */
3746
3747struct wait_one_event
3748{
3749 /* The target the event came out of. */
3750 process_stratum_target *target;
3751
3752 /* The PTID the event was for. */
3753 ptid_t ptid;
3754
3755 /* The waitstatus. */
3756 target_waitstatus ws;
3757};
3758
3759static bool handle_one (const wait_one_event &event);
3760static void restart_threads (struct thread_info *event_thread);
3761
3762/* Prepare and stabilize the inferior for detaching it. E.g.,
3763 detaching while a thread is displaced stepping is a recipe for
3764 crashing it, as nothing would readjust the PC out of the scratch
3765 pad. */
3766
3767void
3768prepare_for_detach (void)
3769{
3770 struct inferior *inf = current_inferior ();
3771 ptid_t pid_ptid = ptid_t (inf->pid);
3772 scoped_restore_current_thread restore_thread;
3773
3774 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3775
3776 /* Remove all threads of INF from the global step-over chain. We
3777 want to stop any ongoing step-over, not start any new one. */
3778 thread_info *next;
3779 for (thread_info *tp = global_thread_step_over_chain_head;
3780 tp != nullptr;
3781 tp = next)
3782 {
3783 next = global_thread_step_over_chain_next (tp);
3784 if (tp->inf == inf)
3785 global_thread_step_over_chain_remove (tp);
3786 }
3787
3788 /* If we were already in the middle of an inline step-over, and the
3789 thread stepping belongs to the inferior we're detaching, we need
3790 to restart the threads of other inferiors. */
3791 if (step_over_info.thread != -1)
3792 {
3793 infrun_debug_printf ("inline step-over in-process while detaching");
3794
3795 thread_info *thr = find_thread_global_id (step_over_info.thread);
3796 if (thr->inf == inf)
3797 {
3798 /* Since we removed threads of INF from the step-over chain,
3799 we know this won't start a step-over for INF. */
3800 clear_step_over_info ();
3801
3802 if (target_is_non_stop_p ())
3803 {
3804 /* Start a new step-over in another thread if there's
3805 one that needs it. */
3806 start_step_over ();
3807
3808 /* Restart all other threads (except the
3809 previously-stepping thread, since that one is still
3810 running). */
3811 if (!step_over_info_valid_p ())
3812 restart_threads (thr);
3813 }
3814 }
3815 }
3816
3817 if (displaced_step_in_progress (inf))
3818 {
3819 infrun_debug_printf ("displaced-stepping in-process while detaching");
3820
3821 /* Stop threads currently displaced stepping, aborting it. */
3822
3823 for (thread_info *thr : inf->non_exited_threads ())
3824 {
3825 if (thr->displaced_step_state.in_progress ())
3826 {
3827 if (thr->executing)
3828 {
3829 if (!thr->stop_requested)
3830 {
3831 target_stop (thr->ptid);
3832 thr->stop_requested = true;
3833 }
3834 }
3835 else
3836 thr->resumed = false;
3837 }
3838 }
3839
3840 while (displaced_step_in_progress (inf))
3841 {
3842 wait_one_event event;
3843
3844 event.target = inf->process_target ();
3845 event.ptid = do_target_wait_1 (inf, pid_ptid, &event.ws, 0);
3846
3847 if (debug_infrun)
3848 print_target_wait_results (pid_ptid, event.ptid, &event.ws);
3849
3850 handle_one (event);
3851 }
3852
3853 /* It's OK to leave some of the threads of INF stopped, since
3854 they'll be detached shortly. */
3855 }
3856}
3857
3858/* Wait for control to return from inferior to debugger.
3859
3860 If inferior gets a signal, we may decide to start it up again
3861 instead of returning. That is why there is a loop in this function.
3862 When this function actually returns it means the inferior
3863 should be left stopped and GDB should read more commands. */
3864
3865static void
3866wait_for_inferior (inferior *inf)
3867{
3868 infrun_debug_printf ("wait_for_inferior ()");
3869
3870 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3871
3872 /* If an error happens while handling the event, propagate GDB's
3873 knowledge of the executing state to the frontend/user running
3874 state. */
3875 scoped_finish_thread_state finish_state
3876 (inf->process_target (), minus_one_ptid);
3877
3878 while (1)
3879 {
3880 struct execution_control_state ecss;
3881 struct execution_control_state *ecs = &ecss;
3882
3883 memset (ecs, 0, sizeof (*ecs));
3884
3885 overlay_cache_invalid = 1;
3886
3887 /* Flush target cache before starting to handle each event.
3888 Target was running and cache could be stale. This is just a
3889 heuristic. Running threads may modify target memory, but we
3890 don't get any event. */
3891 target_dcache_invalidate ();
3892
3893 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3894 ecs->target = inf->process_target ();
3895
3896 if (debug_infrun)
3897 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3898
3899 /* Now figure out what to do with the result of the result. */
3900 handle_inferior_event (ecs);
3901
3902 if (!ecs->wait_some_more)
3903 break;
3904 }
3905
3906 /* No error, don't finish the state yet. */
3907 finish_state.release ();
3908}
3909
3910/* Cleanup that reinstalls the readline callback handler, if the
3911 target is running in the background. If while handling the target
3912 event something triggered a secondary prompt, like e.g., a
3913 pagination prompt, we'll have removed the callback handler (see
3914 gdb_readline_wrapper_line). Need to do this as we go back to the
3915 event loop, ready to process further input. Note this has no
3916 effect if the handler hasn't actually been removed, because calling
3917 rl_callback_handler_install resets the line buffer, thus losing
3918 input. */
3919
3920static void
3921reinstall_readline_callback_handler_cleanup ()
3922{
3923 struct ui *ui = current_ui;
3924
3925 if (!ui->async)
3926 {
3927 /* We're not going back to the top level event loop yet. Don't
3928 install the readline callback, as it'd prep the terminal,
3929 readline-style (raw, noecho) (e.g., --batch). We'll install
3930 it the next time the prompt is displayed, when we're ready
3931 for input. */
3932 return;
3933 }
3934
3935 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3936 gdb_rl_callback_handler_reinstall ();
3937}
3938
3939/* Clean up the FSMs of threads that are now stopped. In non-stop,
3940 that's just the event thread. In all-stop, that's all threads. */
3941
3942static void
3943clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3944{
3945 if (ecs->event_thread != NULL
3946 && ecs->event_thread->thread_fsm != NULL)
3947 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3948
3949 if (!non_stop)
3950 {
3951 for (thread_info *thr : all_non_exited_threads ())
3952 {
3953 if (thr->thread_fsm == NULL)
3954 continue;
3955 if (thr == ecs->event_thread)
3956 continue;
3957
3958 switch_to_thread (thr);
3959 thr->thread_fsm->clean_up (thr);
3960 }
3961
3962 if (ecs->event_thread != NULL)
3963 switch_to_thread (ecs->event_thread);
3964 }
3965}
3966
3967/* Helper for all_uis_check_sync_execution_done that works on the
3968 current UI. */
3969
3970static void
3971check_curr_ui_sync_execution_done (void)
3972{
3973 struct ui *ui = current_ui;
3974
3975 if (ui->prompt_state == PROMPT_NEEDED
3976 && ui->async
3977 && !gdb_in_secondary_prompt_p (ui))
3978 {
3979 target_terminal::ours ();
3980 gdb::observers::sync_execution_done.notify ();
3981 ui_register_input_event_handler (ui);
3982 }
3983}
3984
3985/* See infrun.h. */
3986
3987void
3988all_uis_check_sync_execution_done (void)
3989{
3990 SWITCH_THRU_ALL_UIS ()
3991 {
3992 check_curr_ui_sync_execution_done ();
3993 }
3994}
3995
3996/* See infrun.h. */
3997
3998void
3999all_uis_on_sync_execution_starting (void)
4000{
4001 SWITCH_THRU_ALL_UIS ()
4002 {
4003 if (current_ui->prompt_state == PROMPT_NEEDED)
4004 async_disable_stdin ();
4005 }
4006}
4007
4008/* Asynchronous version of wait_for_inferior. It is called by the
4009 event loop whenever a change of state is detected on the file
4010 descriptor corresponding to the target. It can be called more than
4011 once to complete a single execution command. In such cases we need
4012 to keep the state in a global variable ECSS. If it is the last time
4013 that this function is called for a single execution command, then
4014 report to the user that the inferior has stopped, and do the
4015 necessary cleanups. */
4016
4017void
4018fetch_inferior_event ()
4019{
4020 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
4021
4022 struct execution_control_state ecss;
4023 struct execution_control_state *ecs = &ecss;
4024 int cmd_done = 0;
4025
4026 memset (ecs, 0, sizeof (*ecs));
4027
4028 /* Events are always processed with the main UI as current UI. This
4029 way, warnings, debug output, etc. are always consistently sent to
4030 the main console. */
4031 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
4032
4033 /* Temporarily disable pagination. Otherwise, the user would be
4034 given an option to press 'q' to quit, which would cause an early
4035 exit and could leave GDB in a half-baked state. */
4036 scoped_restore save_pagination
4037 = make_scoped_restore (&pagination_enabled, false);
4038
4039 /* End up with readline processing input, if necessary. */
4040 {
4041 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
4042
4043 /* We're handling a live event, so make sure we're doing live
4044 debugging. If we're looking at traceframes while the target is
4045 running, we're going to need to get back to that mode after
4046 handling the event. */
4047 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
4048 if (non_stop)
4049 {
4050 maybe_restore_traceframe.emplace ();
4051 set_current_traceframe (-1);
4052 }
4053
4054 /* The user/frontend should not notice a thread switch due to
4055 internal events. Make sure we revert to the user selected
4056 thread and frame after handling the event and running any
4057 breakpoint commands. */
4058 scoped_restore_current_thread restore_thread;
4059
4060 overlay_cache_invalid = 1;
4061 /* Flush target cache before starting to handle each event. Target
4062 was running and cache could be stale. This is just a heuristic.
4063 Running threads may modify target memory, but we don't get any
4064 event. */
4065 target_dcache_invalidate ();
4066
4067 scoped_restore save_exec_dir
4068 = make_scoped_restore (&execution_direction,
4069 target_execution_direction ());
4070
4071 /* Allow targets to pause their resumed threads while we handle
4072 the event. */
4073 scoped_disable_commit_resumed disable_commit_resumed ("handling event");
4074
4075 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
4076 {
4077 infrun_debug_printf ("do_target_wait returned no event");
4078 disable_commit_resumed.reset_and_commit ();
4079 return;
4080 }
4081
4082 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
4083
4084 /* Switch to the target that generated the event, so we can do
4085 target calls. */
4086 switch_to_target_no_thread (ecs->target);
4087
4088 if (debug_infrun)
4089 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
4090
4091 /* If an error happens while handling the event, propagate GDB's
4092 knowledge of the executing state to the frontend/user running
4093 state. */
4094 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
4095 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
4096
4097 /* Get executed before scoped_restore_current_thread above to apply
4098 still for the thread which has thrown the exception. */
4099 auto defer_bpstat_clear
4100 = make_scope_exit (bpstat_clear_actions);
4101 auto defer_delete_threads
4102 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4103
4104 /* Now figure out what to do with the result of the result. */
4105 handle_inferior_event (ecs);
4106
4107 if (!ecs->wait_some_more)
4108 {
4109 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4110 bool should_stop = true;
4111 struct thread_info *thr = ecs->event_thread;
4112
4113 delete_just_stopped_threads_infrun_breakpoints ();
4114
4115 if (thr != NULL)
4116 {
4117 struct thread_fsm *thread_fsm = thr->thread_fsm;
4118
4119 if (thread_fsm != NULL)
4120 should_stop = thread_fsm->should_stop (thr);
4121 }
4122
4123 if (!should_stop)
4124 {
4125 keep_going (ecs);
4126 }
4127 else
4128 {
4129 bool should_notify_stop = true;
4130 int proceeded = 0;
4131
4132 clean_up_just_stopped_threads_fsms (ecs);
4133
4134 if (thr != NULL && thr->thread_fsm != NULL)
4135 should_notify_stop = thr->thread_fsm->should_notify_stop ();
4136
4137 if (should_notify_stop)
4138 {
4139 /* We may not find an inferior if this was a process exit. */
4140 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4141 proceeded = normal_stop ();
4142 }
4143
4144 if (!proceeded)
4145 {
4146 inferior_event_handler (INF_EXEC_COMPLETE);
4147 cmd_done = 1;
4148 }
4149
4150 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4151 previously selected thread is gone. We have two
4152 choices - switch to no thread selected, or restore the
4153 previously selected thread (now exited). We chose the
4154 later, just because that's what GDB used to do. After
4155 this, "info threads" says "The current thread <Thread
4156 ID 2> has terminated." instead of "No thread
4157 selected.". */
4158 if (!non_stop
4159 && cmd_done
4160 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4161 restore_thread.dont_restore ();
4162 }
4163 }
4164
4165 defer_delete_threads.release ();
4166 defer_bpstat_clear.release ();
4167
4168 /* No error, don't finish the thread states yet. */
4169 finish_state.release ();
4170
4171 disable_commit_resumed.reset_and_commit ();
4172
4173 /* This scope is used to ensure that readline callbacks are
4174 reinstalled here. */
4175 }
4176
4177 /* If a UI was in sync execution mode, and now isn't, restore its
4178 prompt (a synchronous execution command has finished, and we're
4179 ready for input). */
4180 all_uis_check_sync_execution_done ();
4181
4182 if (cmd_done
4183 && exec_done_display_p
4184 && (inferior_ptid == null_ptid
4185 || inferior_thread ()->state != THREAD_RUNNING))
4186 printf_unfiltered (_("completed.\n"));
4187}
4188
4189/* See infrun.h. */
4190
4191void
4192set_step_info (thread_info *tp, struct frame_info *frame,
4193 struct symtab_and_line sal)
4194{
4195 /* This can be removed once this function no longer implicitly relies on the
4196 inferior_ptid value. */
4197 gdb_assert (inferior_ptid == tp->ptid);
4198
4199 tp->control.step_frame_id = get_frame_id (frame);
4200 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4201
4202 tp->current_symtab = sal.symtab;
4203 tp->current_line = sal.line;
4204}
4205
4206/* Clear context switchable stepping state. */
4207
4208void
4209init_thread_stepping_state (struct thread_info *tss)
4210{
4211 tss->stepped_breakpoint = 0;
4212 tss->stepping_over_breakpoint = 0;
4213 tss->stepping_over_watchpoint = 0;
4214 tss->step_after_step_resume_breakpoint = 0;
4215}
4216
4217/* See infrun.h. */
4218
4219void
4220set_last_target_status (process_stratum_target *target, ptid_t ptid,
4221 target_waitstatus status)
4222{
4223 target_last_proc_target = target;
4224 target_last_wait_ptid = ptid;
4225 target_last_waitstatus = status;
4226}
4227
4228/* See infrun.h. */
4229
4230void
4231get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4232 target_waitstatus *status)
4233{
4234 if (target != nullptr)
4235 *target = target_last_proc_target;
4236 if (ptid != nullptr)
4237 *ptid = target_last_wait_ptid;
4238 if (status != nullptr)
4239 *status = target_last_waitstatus;
4240}
4241
4242/* See infrun.h. */
4243
4244void
4245nullify_last_target_wait_ptid (void)
4246{
4247 target_last_proc_target = nullptr;
4248 target_last_wait_ptid = minus_one_ptid;
4249 target_last_waitstatus = {};
4250}
4251
4252/* Switch thread contexts. */
4253
4254static void
4255context_switch (execution_control_state *ecs)
4256{
4257 if (ecs->ptid != inferior_ptid
4258 && (inferior_ptid == null_ptid
4259 || ecs->event_thread != inferior_thread ()))
4260 {
4261 infrun_debug_printf ("Switching context from %s to %s",
4262 target_pid_to_str (inferior_ptid).c_str (),
4263 target_pid_to_str (ecs->ptid).c_str ());
4264 }
4265
4266 switch_to_thread (ecs->event_thread);
4267}
4268
4269/* If the target can't tell whether we've hit breakpoints
4270 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4271 check whether that could have been caused by a breakpoint. If so,
4272 adjust the PC, per gdbarch_decr_pc_after_break. */
4273
4274static void
4275adjust_pc_after_break (struct thread_info *thread,
4276 struct target_waitstatus *ws)
4277{
4278 struct regcache *regcache;
4279 struct gdbarch *gdbarch;
4280 CORE_ADDR breakpoint_pc, decr_pc;
4281
4282 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4283 we aren't, just return.
4284
4285 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4286 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4287 implemented by software breakpoints should be handled through the normal
4288 breakpoint layer.
4289
4290 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4291 different signals (SIGILL or SIGEMT for instance), but it is less
4292 clear where the PC is pointing afterwards. It may not match
4293 gdbarch_decr_pc_after_break. I don't know any specific target that
4294 generates these signals at breakpoints (the code has been in GDB since at
4295 least 1992) so I can not guess how to handle them here.
4296
4297 In earlier versions of GDB, a target with
4298 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4299 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4300 target with both of these set in GDB history, and it seems unlikely to be
4301 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4302
4303 if (ws->kind != TARGET_WAITKIND_STOPPED)
4304 return;
4305
4306 if (ws->value.sig != GDB_SIGNAL_TRAP)
4307 return;
4308
4309 /* In reverse execution, when a breakpoint is hit, the instruction
4310 under it has already been de-executed. The reported PC always
4311 points at the breakpoint address, so adjusting it further would
4312 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4313 architecture:
4314
4315 B1 0x08000000 : INSN1
4316 B2 0x08000001 : INSN2
4317 0x08000002 : INSN3
4318 PC -> 0x08000003 : INSN4
4319
4320 Say you're stopped at 0x08000003 as above. Reverse continuing
4321 from that point should hit B2 as below. Reading the PC when the
4322 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4323 been de-executed already.
4324
4325 B1 0x08000000 : INSN1
4326 B2 PC -> 0x08000001 : INSN2
4327 0x08000002 : INSN3
4328 0x08000003 : INSN4
4329
4330 We can't apply the same logic as for forward execution, because
4331 we would wrongly adjust the PC to 0x08000000, since there's a
4332 breakpoint at PC - 1. We'd then report a hit on B1, although
4333 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4334 behaviour. */
4335 if (execution_direction == EXEC_REVERSE)
4336 return;
4337
4338 /* If the target can tell whether the thread hit a SW breakpoint,
4339 trust it. Targets that can tell also adjust the PC
4340 themselves. */
4341 if (target_supports_stopped_by_sw_breakpoint ())
4342 return;
4343
4344 /* Note that relying on whether a breakpoint is planted in memory to
4345 determine this can fail. E.g,. the breakpoint could have been
4346 removed since. Or the thread could have been told to step an
4347 instruction the size of a breakpoint instruction, and only
4348 _after_ was a breakpoint inserted at its address. */
4349
4350 /* If this target does not decrement the PC after breakpoints, then
4351 we have nothing to do. */
4352 regcache = get_thread_regcache (thread);
4353 gdbarch = regcache->arch ();
4354
4355 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4356 if (decr_pc == 0)
4357 return;
4358
4359 const address_space *aspace = regcache->aspace ();
4360
4361 /* Find the location where (if we've hit a breakpoint) the
4362 breakpoint would be. */
4363 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4364
4365 /* If the target can't tell whether a software breakpoint triggered,
4366 fallback to figuring it out based on breakpoints we think were
4367 inserted in the target, and on whether the thread was stepped or
4368 continued. */
4369
4370 /* Check whether there actually is a software breakpoint inserted at
4371 that location.
4372
4373 If in non-stop mode, a race condition is possible where we've
4374 removed a breakpoint, but stop events for that breakpoint were
4375 already queued and arrive later. To suppress those spurious
4376 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4377 and retire them after a number of stop events are reported. Note
4378 this is an heuristic and can thus get confused. The real fix is
4379 to get the "stopped by SW BP and needs adjustment" info out of
4380 the target/kernel (and thus never reach here; see above). */
4381 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4382 || (target_is_non_stop_p ()
4383 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4384 {
4385 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4386
4387 if (record_full_is_used ())
4388 restore_operation_disable.emplace
4389 (record_full_gdb_operation_disable_set ());
4390
4391 /* When using hardware single-step, a SIGTRAP is reported for both
4392 a completed single-step and a software breakpoint. Need to
4393 differentiate between the two, as the latter needs adjusting
4394 but the former does not.
4395
4396 The SIGTRAP can be due to a completed hardware single-step only if
4397 - we didn't insert software single-step breakpoints
4398 - this thread is currently being stepped
4399
4400 If any of these events did not occur, we must have stopped due
4401 to hitting a software breakpoint, and have to back up to the
4402 breakpoint address.
4403
4404 As a special case, we could have hardware single-stepped a
4405 software breakpoint. In this case (prev_pc == breakpoint_pc),
4406 we also need to back up to the breakpoint address. */
4407
4408 if (thread_has_single_step_breakpoints_set (thread)
4409 || !currently_stepping (thread)
4410 || (thread->stepped_breakpoint
4411 && thread->prev_pc == breakpoint_pc))
4412 regcache_write_pc (regcache, breakpoint_pc);
4413 }
4414}
4415
4416static bool
4417stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4418{
4419 for (frame = get_prev_frame (frame);
4420 frame != NULL;
4421 frame = get_prev_frame (frame))
4422 {
4423 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4424 return true;
4425
4426 if (get_frame_type (frame) != INLINE_FRAME)
4427 break;
4428 }
4429
4430 return false;
4431}
4432
4433/* Look for an inline frame that is marked for skip.
4434 If PREV_FRAME is TRUE start at the previous frame,
4435 otherwise start at the current frame. Stop at the
4436 first non-inline frame, or at the frame where the
4437 step started. */
4438
4439static bool
4440inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4441{
4442 struct frame_info *frame = get_current_frame ();
4443
4444 if (prev_frame)
4445 frame = get_prev_frame (frame);
4446
4447 for (; frame != NULL; frame = get_prev_frame (frame))
4448 {
4449 const char *fn = NULL;
4450 symtab_and_line sal;
4451 struct symbol *sym;
4452
4453 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4454 break;
4455 if (get_frame_type (frame) != INLINE_FRAME)
4456 break;
4457
4458 sal = find_frame_sal (frame);
4459 sym = get_frame_function (frame);
4460
4461 if (sym != NULL)
4462 fn = sym->print_name ();
4463
4464 if (sal.line != 0
4465 && function_name_is_marked_for_skip (fn, sal))
4466 return true;
4467 }
4468
4469 return false;
4470}
4471
4472/* If the event thread has the stop requested flag set, pretend it
4473 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4474 target_stop). */
4475
4476static bool
4477handle_stop_requested (struct execution_control_state *ecs)
4478{
4479 if (ecs->event_thread->stop_requested)
4480 {
4481 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4482 ecs->ws.value.sig = GDB_SIGNAL_0;
4483 handle_signal_stop (ecs);
4484 return true;
4485 }
4486 return false;
4487}
4488
4489/* Auxiliary function that handles syscall entry/return events.
4490 It returns true if the inferior should keep going (and GDB
4491 should ignore the event), or false if the event deserves to be
4492 processed. */
4493
4494static bool
4495handle_syscall_event (struct execution_control_state *ecs)
4496{
4497 struct regcache *regcache;
4498 int syscall_number;
4499
4500 context_switch (ecs);
4501
4502 regcache = get_thread_regcache (ecs->event_thread);
4503 syscall_number = ecs->ws.value.syscall_number;
4504 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4505
4506 if (catch_syscall_enabled () > 0
4507 && catching_syscall_number (syscall_number) > 0)
4508 {
4509 infrun_debug_printf ("syscall number=%d", syscall_number);
4510
4511 ecs->event_thread->control.stop_bpstat
4512 = bpstat_stop_status (regcache->aspace (),
4513 ecs->event_thread->suspend.stop_pc,
4514 ecs->event_thread, &ecs->ws);
4515
4516 if (handle_stop_requested (ecs))
4517 return false;
4518
4519 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4520 {
4521 /* Catchpoint hit. */
4522 return false;
4523 }
4524 }
4525
4526 if (handle_stop_requested (ecs))
4527 return false;
4528
4529 /* If no catchpoint triggered for this, then keep going. */
4530 keep_going (ecs);
4531
4532 return true;
4533}
4534
4535/* Lazily fill in the execution_control_state's stop_func_* fields. */
4536
4537static void
4538fill_in_stop_func (struct gdbarch *gdbarch,
4539 struct execution_control_state *ecs)
4540{
4541 if (!ecs->stop_func_filled_in)
4542 {
4543 const block *block;
4544 const general_symbol_info *gsi;
4545
4546 /* Don't care about return value; stop_func_start and stop_func_name
4547 will both be 0 if it doesn't work. */
4548 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4549 &gsi,
4550 &ecs->stop_func_start,
4551 &ecs->stop_func_end,
4552 &block);
4553 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
4554
4555 /* The call to find_pc_partial_function, above, will set
4556 stop_func_start and stop_func_end to the start and end
4557 of the range containing the stop pc. If this range
4558 contains the entry pc for the block (which is always the
4559 case for contiguous blocks), advance stop_func_start past
4560 the function's start offset and entrypoint. Note that
4561 stop_func_start is NOT advanced when in a range of a
4562 non-contiguous block that does not contain the entry pc. */
4563 if (block != nullptr
4564 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4565 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4566 {
4567 ecs->stop_func_start
4568 += gdbarch_deprecated_function_start_offset (gdbarch);
4569
4570 if (gdbarch_skip_entrypoint_p (gdbarch))
4571 ecs->stop_func_start
4572 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4573 }
4574
4575 ecs->stop_func_filled_in = 1;
4576 }
4577}
4578
4579
4580/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4581
4582static enum stop_kind
4583get_inferior_stop_soon (execution_control_state *ecs)
4584{
4585 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4586
4587 gdb_assert (inf != NULL);
4588 return inf->control.stop_soon;
4589}
4590
4591/* Poll for one event out of the current target. Store the resulting
4592 waitstatus in WS, and return the event ptid. Does not block. */
4593
4594static ptid_t
4595poll_one_curr_target (struct target_waitstatus *ws)
4596{
4597 ptid_t event_ptid;
4598
4599 overlay_cache_invalid = 1;
4600
4601 /* Flush target cache before starting to handle each event.
4602 Target was running and cache could be stale. This is just a
4603 heuristic. Running threads may modify target memory, but we
4604 don't get any event. */
4605 target_dcache_invalidate ();
4606
4607 if (deprecated_target_wait_hook)
4608 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4609 else
4610 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4611
4612 if (debug_infrun)
4613 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4614
4615 return event_ptid;
4616}
4617
4618/* Wait for one event out of any target. */
4619
4620static wait_one_event
4621wait_one ()
4622{
4623 while (1)
4624 {
4625 for (inferior *inf : all_inferiors ())
4626 {
4627 process_stratum_target *target = inf->process_target ();
4628 if (target == NULL
4629 || !target->is_async_p ()
4630 || !target->threads_executing)
4631 continue;
4632
4633 switch_to_inferior_no_thread (inf);
4634
4635 wait_one_event event;
4636 event.target = target;
4637 event.ptid = poll_one_curr_target (&event.ws);
4638
4639 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4640 {
4641 /* If nothing is resumed, remove the target from the
4642 event loop. */
4643 target_async (0);
4644 }
4645 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4646 return event;
4647 }
4648
4649 /* Block waiting for some event. */
4650
4651 fd_set readfds;
4652 int nfds = 0;
4653
4654 FD_ZERO (&readfds);
4655
4656 for (inferior *inf : all_inferiors ())
4657 {
4658 process_stratum_target *target = inf->process_target ();
4659 if (target == NULL
4660 || !target->is_async_p ()
4661 || !target->threads_executing)
4662 continue;
4663
4664 int fd = target->async_wait_fd ();
4665 FD_SET (fd, &readfds);
4666 if (nfds <= fd)
4667 nfds = fd + 1;
4668 }
4669
4670 if (nfds == 0)
4671 {
4672 /* No waitable targets left. All must be stopped. */
4673 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4674 }
4675
4676 QUIT;
4677
4678 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4679 if (numfds < 0)
4680 {
4681 if (errno == EINTR)
4682 continue;
4683 else
4684 perror_with_name ("interruptible_select");
4685 }
4686 }
4687}
4688
4689/* Save the thread's event and stop reason to process it later. */
4690
4691static void
4692save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4693{
4694 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4695 target_waitstatus_to_string (ws).c_str (),
4696 tp->ptid.pid (),
4697 tp->ptid.lwp (),
4698 tp->ptid.tid ());
4699
4700 /* Record for later. */
4701 tp->suspend.waitstatus = *ws;
4702 tp->suspend.waitstatus_pending_p = 1;
4703
4704 struct regcache *regcache = get_thread_regcache (tp);
4705 const address_space *aspace = regcache->aspace ();
4706
4707 if (ws->kind == TARGET_WAITKIND_STOPPED
4708 && ws->value.sig == GDB_SIGNAL_TRAP)
4709 {
4710 CORE_ADDR pc = regcache_read_pc (regcache);
4711
4712 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4713
4714 scoped_restore_current_thread restore_thread;
4715 switch_to_thread (tp);
4716
4717 if (target_stopped_by_watchpoint ())
4718 {
4719 tp->suspend.stop_reason
4720 = TARGET_STOPPED_BY_WATCHPOINT;
4721 }
4722 else if (target_supports_stopped_by_sw_breakpoint ()
4723 && target_stopped_by_sw_breakpoint ())
4724 {
4725 tp->suspend.stop_reason
4726 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4727 }
4728 else if (target_supports_stopped_by_hw_breakpoint ()
4729 && target_stopped_by_hw_breakpoint ())
4730 {
4731 tp->suspend.stop_reason
4732 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4733 }
4734 else if (!target_supports_stopped_by_hw_breakpoint ()
4735 && hardware_breakpoint_inserted_here_p (aspace,
4736 pc))
4737 {
4738 tp->suspend.stop_reason
4739 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4740 }
4741 else if (!target_supports_stopped_by_sw_breakpoint ()
4742 && software_breakpoint_inserted_here_p (aspace,
4743 pc))
4744 {
4745 tp->suspend.stop_reason
4746 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4747 }
4748 else if (!thread_has_single_step_breakpoints_set (tp)
4749 && currently_stepping (tp))
4750 {
4751 tp->suspend.stop_reason
4752 = TARGET_STOPPED_BY_SINGLE_STEP;
4753 }
4754 }
4755}
4756
4757/* Mark the non-executing threads accordingly. In all-stop, all
4758 threads of all processes are stopped when we get any event
4759 reported. In non-stop mode, only the event thread stops. */
4760
4761static void
4762mark_non_executing_threads (process_stratum_target *target,
4763 ptid_t event_ptid,
4764 struct target_waitstatus ws)
4765{
4766 ptid_t mark_ptid;
4767
4768 if (!target_is_non_stop_p ())
4769 mark_ptid = minus_one_ptid;
4770 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4771 || ws.kind == TARGET_WAITKIND_EXITED)
4772 {
4773 /* If we're handling a process exit in non-stop mode, even
4774 though threads haven't been deleted yet, one would think
4775 that there is nothing to do, as threads of the dead process
4776 will be soon deleted, and threads of any other process were
4777 left running. However, on some targets, threads survive a
4778 process exit event. E.g., for the "checkpoint" command,
4779 when the current checkpoint/fork exits, linux-fork.c
4780 automatically switches to another fork from within
4781 target_mourn_inferior, by associating the same
4782 inferior/thread to another fork. We haven't mourned yet at
4783 this point, but we must mark any threads left in the
4784 process as not-executing so that finish_thread_state marks
4785 them stopped (in the user's perspective) if/when we present
4786 the stop to the user. */
4787 mark_ptid = ptid_t (event_ptid.pid ());
4788 }
4789 else
4790 mark_ptid = event_ptid;
4791
4792 set_executing (target, mark_ptid, false);
4793
4794 /* Likewise the resumed flag. */
4795 set_resumed (target, mark_ptid, false);
4796}
4797
4798/* Handle one event after stopping threads. If the eventing thread
4799 reports back any interesting event, we leave it pending. If the
4800 eventing thread was in the middle of a displaced step, we
4801 cancel/finish it, and unless the thread's inferior is being
4802 detached, put the thread back in the step-over chain. Returns true
4803 if there are no resumed threads left in the target (thus there's no
4804 point in waiting further), false otherwise. */
4805
4806static bool
4807handle_one (const wait_one_event &event)
4808{
4809 infrun_debug_printf
4810 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4811 target_pid_to_str (event.ptid).c_str ());
4812
4813 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4814 {
4815 /* All resumed threads exited. */
4816 return true;
4817 }
4818 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4819 || event.ws.kind == TARGET_WAITKIND_EXITED
4820 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4821 {
4822 /* One thread/process exited/signalled. */
4823
4824 thread_info *t = nullptr;
4825
4826 /* The target may have reported just a pid. If so, try
4827 the first non-exited thread. */
4828 if (event.ptid.is_pid ())
4829 {
4830 int pid = event.ptid.pid ();
4831 inferior *inf = find_inferior_pid (event.target, pid);
4832 for (thread_info *tp : inf->non_exited_threads ())
4833 {
4834 t = tp;
4835 break;
4836 }
4837
4838 /* If there is no available thread, the event would
4839 have to be appended to a per-inferior event list,
4840 which does not exist (and if it did, we'd have
4841 to adjust run control command to be able to
4842 resume such an inferior). We assert here instead
4843 of going into an infinite loop. */
4844 gdb_assert (t != nullptr);
4845
4846 infrun_debug_printf
4847 ("using %s", target_pid_to_str (t->ptid).c_str ());
4848 }
4849 else
4850 {
4851 t = find_thread_ptid (event.target, event.ptid);
4852 /* Check if this is the first time we see this thread.
4853 Don't bother adding if it individually exited. */
4854 if (t == nullptr
4855 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4856 t = add_thread (event.target, event.ptid);
4857 }
4858
4859 if (t != nullptr)
4860 {
4861 /* Set the threads as non-executing to avoid
4862 another stop attempt on them. */
4863 switch_to_thread_no_regs (t);
4864 mark_non_executing_threads (event.target, event.ptid,
4865 event.ws);
4866 save_waitstatus (t, &event.ws);
4867 t->stop_requested = false;
4868 }
4869 }
4870 else
4871 {
4872 thread_info *t = find_thread_ptid (event.target, event.ptid);
4873 if (t == NULL)
4874 t = add_thread (event.target, event.ptid);
4875
4876 t->stop_requested = 0;
4877 t->executing = 0;
4878 t->resumed = false;
4879 t->control.may_range_step = 0;
4880
4881 /* This may be the first time we see the inferior report
4882 a stop. */
4883 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4884 if (inf->needs_setup)
4885 {
4886 switch_to_thread_no_regs (t);
4887 setup_inferior (0);
4888 }
4889
4890 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4891 && event.ws.value.sig == GDB_SIGNAL_0)
4892 {
4893 /* We caught the event that we intended to catch, so
4894 there's no event pending. */
4895 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4896 t->suspend.waitstatus_pending_p = 0;
4897
4898 if (displaced_step_finish (t, GDB_SIGNAL_0)
4899 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4900 {
4901 /* Add it back to the step-over queue. */
4902 infrun_debug_printf
4903 ("displaced-step of %s canceled",
4904 target_pid_to_str (t->ptid).c_str ());
4905
4906 t->control.trap_expected = 0;
4907 if (!t->inf->detaching)
4908 global_thread_step_over_chain_enqueue (t);
4909 }
4910 }
4911 else
4912 {
4913 enum gdb_signal sig;
4914 struct regcache *regcache;
4915
4916 infrun_debug_printf
4917 ("target_wait %s, saving status for %d.%ld.%ld",
4918 target_waitstatus_to_string (&event.ws).c_str (),
4919 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4920
4921 /* Record for later. */
4922 save_waitstatus (t, &event.ws);
4923
4924 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4925 ? event.ws.value.sig : GDB_SIGNAL_0);
4926
4927 if (displaced_step_finish (t, sig)
4928 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4929 {
4930 /* Add it back to the step-over queue. */
4931 t->control.trap_expected = 0;
4932 if (!t->inf->detaching)
4933 global_thread_step_over_chain_enqueue (t);
4934 }
4935
4936 regcache = get_thread_regcache (t);
4937 t->suspend.stop_pc = regcache_read_pc (regcache);
4938
4939 infrun_debug_printf ("saved stop_pc=%s for %s "
4940 "(currently_stepping=%d)",
4941 paddress (target_gdbarch (),
4942 t->suspend.stop_pc),
4943 target_pid_to_str (t->ptid).c_str (),
4944 currently_stepping (t));
4945 }
4946 }
4947
4948 return false;
4949}
4950
4951/* See infrun.h. */
4952
4953void
4954stop_all_threads (void)
4955{
4956 /* We may need multiple passes to discover all threads. */
4957 int pass;
4958 int iterations = 0;
4959
4960 gdb_assert (exists_non_stop_target ());
4961
4962 infrun_debug_printf ("starting");
4963
4964 scoped_restore_current_thread restore_thread;
4965
4966 /* Enable thread events of all targets. */
4967 for (auto *target : all_non_exited_process_targets ())
4968 {
4969 switch_to_target_no_thread (target);
4970 target_thread_events (true);
4971 }
4972
4973 SCOPE_EXIT
4974 {
4975 /* Disable thread events of all targets. */
4976 for (auto *target : all_non_exited_process_targets ())
4977 {
4978 switch_to_target_no_thread (target);
4979 target_thread_events (false);
4980 }
4981
4982 /* Use debug_prefixed_printf directly to get a meaningful function
4983 name. */
4984 if (debug_infrun)
4985 debug_prefixed_printf ("infrun", "stop_all_threads", "done");
4986 };
4987
4988 /* Request threads to stop, and then wait for the stops. Because
4989 threads we already know about can spawn more threads while we're
4990 trying to stop them, and we only learn about new threads when we
4991 update the thread list, do this in a loop, and keep iterating
4992 until two passes find no threads that need to be stopped. */
4993 for (pass = 0; pass < 2; pass++, iterations++)
4994 {
4995 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
4996 while (1)
4997 {
4998 int waits_needed = 0;
4999
5000 for (auto *target : all_non_exited_process_targets ())
5001 {
5002 switch_to_target_no_thread (target);
5003 update_thread_list ();
5004 }
5005
5006 /* Go through all threads looking for threads that we need
5007 to tell the target to stop. */
5008 for (thread_info *t : all_non_exited_threads ())
5009 {
5010 /* For a single-target setting with an all-stop target,
5011 we would not even arrive here. For a multi-target
5012 setting, until GDB is able to handle a mixture of
5013 all-stop and non-stop targets, simply skip all-stop
5014 targets' threads. This should be fine due to the
5015 protection of 'check_multi_target_resumption'. */
5016
5017 switch_to_thread_no_regs (t);
5018 if (!target_is_non_stop_p ())
5019 continue;
5020
5021 if (t->executing)
5022 {
5023 /* If already stopping, don't request a stop again.
5024 We just haven't seen the notification yet. */
5025 if (!t->stop_requested)
5026 {
5027 infrun_debug_printf (" %s executing, need stop",
5028 target_pid_to_str (t->ptid).c_str ());
5029 target_stop (t->ptid);
5030 t->stop_requested = 1;
5031 }
5032 else
5033 {
5034 infrun_debug_printf (" %s executing, already stopping",
5035 target_pid_to_str (t->ptid).c_str ());
5036 }
5037
5038 if (t->stop_requested)
5039 waits_needed++;
5040 }
5041 else
5042 {
5043 infrun_debug_printf (" %s not executing",
5044 target_pid_to_str (t->ptid).c_str ());
5045
5046 /* The thread may be not executing, but still be
5047 resumed with a pending status to process. */
5048 t->resumed = false;
5049 }
5050 }
5051
5052 if (waits_needed == 0)
5053 break;
5054
5055 /* If we find new threads on the second iteration, restart
5056 over. We want to see two iterations in a row with all
5057 threads stopped. */
5058 if (pass > 0)
5059 pass = -1;
5060
5061 for (int i = 0; i < waits_needed; i++)
5062 {
5063 wait_one_event event = wait_one ();
5064 if (handle_one (event))
5065 break;
5066 }
5067 }
5068 }
5069}
5070
5071/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
5072
5073static bool
5074handle_no_resumed (struct execution_control_state *ecs)
5075{
5076 if (target_can_async_p ())
5077 {
5078 bool any_sync = false;
5079
5080 for (ui *ui : all_uis ())
5081 {
5082 if (ui->prompt_state == PROMPT_BLOCKED)
5083 {
5084 any_sync = true;
5085 break;
5086 }
5087 }
5088 if (!any_sync)
5089 {
5090 /* There were no unwaited-for children left in the target, but,
5091 we're not synchronously waiting for events either. Just
5092 ignore. */
5093
5094 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
5095 prepare_to_wait (ecs);
5096 return true;
5097 }
5098 }
5099
5100 /* Otherwise, if we were running a synchronous execution command, we
5101 may need to cancel it and give the user back the terminal.
5102
5103 In non-stop mode, the target can't tell whether we've already
5104 consumed previous stop events, so it can end up sending us a
5105 no-resumed event like so:
5106
5107 #0 - thread 1 is left stopped
5108
5109 #1 - thread 2 is resumed and hits breakpoint
5110 -> TARGET_WAITKIND_STOPPED
5111
5112 #2 - thread 3 is resumed and exits
5113 this is the last resumed thread, so
5114 -> TARGET_WAITKIND_NO_RESUMED
5115
5116 #3 - gdb processes stop for thread 2 and decides to re-resume
5117 it.
5118
5119 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
5120 thread 2 is now resumed, so the event should be ignored.
5121
5122 IOW, if the stop for thread 2 doesn't end a foreground command,
5123 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5124 event. But it could be that the event meant that thread 2 itself
5125 (or whatever other thread was the last resumed thread) exited.
5126
5127 To address this we refresh the thread list and check whether we
5128 have resumed threads _now_. In the example above, this removes
5129 thread 3 from the thread list. If thread 2 was re-resumed, we
5130 ignore this event. If we find no thread resumed, then we cancel
5131 the synchronous command and show "no unwaited-for " to the
5132 user. */
5133
5134 inferior *curr_inf = current_inferior ();
5135
5136 scoped_restore_current_thread restore_thread;
5137
5138 for (auto *target : all_non_exited_process_targets ())
5139 {
5140 switch_to_target_no_thread (target);
5141 update_thread_list ();
5142 }
5143
5144 /* If:
5145
5146 - the current target has no thread executing, and
5147 - the current inferior is native, and
5148 - the current inferior is the one which has the terminal, and
5149 - we did nothing,
5150
5151 then a Ctrl-C from this point on would remain stuck in the
5152 kernel, until a thread resumes and dequeues it. That would
5153 result in the GDB CLI not reacting to Ctrl-C, not able to
5154 interrupt the program. To address this, if the current inferior
5155 no longer has any thread executing, we give the terminal to some
5156 other inferior that has at least one thread executing. */
5157 bool swap_terminal = true;
5158
5159 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
5160 whether to report it to the user. */
5161 bool ignore_event = false;
5162
5163 for (thread_info *thread : all_non_exited_threads ())
5164 {
5165 if (swap_terminal && thread->executing)
5166 {
5167 if (thread->inf != curr_inf)
5168 {
5169 target_terminal::ours ();
5170
5171 switch_to_thread (thread);
5172 target_terminal::inferior ();
5173 }
5174 swap_terminal = false;
5175 }
5176
5177 if (!ignore_event
5178 && (thread->executing
5179 || thread->suspend.waitstatus_pending_p))
5180 {
5181 /* Either there were no unwaited-for children left in the
5182 target at some point, but there are now, or some target
5183 other than the eventing one has unwaited-for children
5184 left. Just ignore. */
5185 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
5186 "(ignoring: found resumed)");
5187
5188 ignore_event = true;
5189 }
5190
5191 if (ignore_event && !swap_terminal)
5192 break;
5193 }
5194
5195 if (ignore_event)
5196 {
5197 switch_to_inferior_no_thread (curr_inf);
5198 prepare_to_wait (ecs);
5199 return true;
5200 }
5201
5202 /* Go ahead and report the event. */
5203 return false;
5204}
5205
5206/* Given an execution control state that has been freshly filled in by
5207 an event from the inferior, figure out what it means and take
5208 appropriate action.
5209
5210 The alternatives are:
5211
5212 1) stop_waiting and return; to really stop and return to the
5213 debugger.
5214
5215 2) keep_going and return; to wait for the next event (set
5216 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5217 once). */
5218
5219static void
5220handle_inferior_event (struct execution_control_state *ecs)
5221{
5222 /* Make sure that all temporary struct value objects that were
5223 created during the handling of the event get deleted at the
5224 end. */
5225 scoped_value_mark free_values;
5226
5227 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5228
5229 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5230 {
5231 /* We had an event in the inferior, but we are not interested in
5232 handling it at this level. The lower layers have already
5233 done what needs to be done, if anything.
5234
5235 One of the possible circumstances for this is when the
5236 inferior produces output for the console. The inferior has
5237 not stopped, and we are ignoring the event. Another possible
5238 circumstance is any event which the lower level knows will be
5239 reported multiple times without an intervening resume. */
5240 prepare_to_wait (ecs);
5241 return;
5242 }
5243
5244 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5245 {
5246 prepare_to_wait (ecs);
5247 return;
5248 }
5249
5250 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5251 && handle_no_resumed (ecs))
5252 return;
5253
5254 /* Cache the last target/ptid/waitstatus. */
5255 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5256
5257 /* Always clear state belonging to the previous time we stopped. */
5258 stop_stack_dummy = STOP_NONE;
5259
5260 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5261 {
5262 /* No unwaited-for children left. IOW, all resumed children
5263 have exited. */
5264 stop_print_frame = false;
5265 stop_waiting (ecs);
5266 return;
5267 }
5268
5269 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5270 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5271 {
5272 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5273 /* If it's a new thread, add it to the thread database. */
5274 if (ecs->event_thread == NULL)
5275 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5276
5277 /* Disable range stepping. If the next step request could use a
5278 range, this will be end up re-enabled then. */
5279 ecs->event_thread->control.may_range_step = 0;
5280 }
5281
5282 /* Dependent on valid ECS->EVENT_THREAD. */
5283 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5284
5285 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5286 reinit_frame_cache ();
5287
5288 breakpoint_retire_moribund ();
5289
5290 /* First, distinguish signals caused by the debugger from signals
5291 that have to do with the program's own actions. Note that
5292 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5293 on the operating system version. Here we detect when a SIGILL or
5294 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5295 something similar for SIGSEGV, since a SIGSEGV will be generated
5296 when we're trying to execute a breakpoint instruction on a
5297 non-executable stack. This happens for call dummy breakpoints
5298 for architectures like SPARC that place call dummies on the
5299 stack. */
5300 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5301 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5302 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5303 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5304 {
5305 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5306
5307 if (breakpoint_inserted_here_p (regcache->aspace (),
5308 regcache_read_pc (regcache)))
5309 {
5310 infrun_debug_printf ("Treating signal as SIGTRAP");
5311 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5312 }
5313 }
5314
5315 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5316
5317 switch (ecs->ws.kind)
5318 {
5319 case TARGET_WAITKIND_LOADED:
5320 {
5321 context_switch (ecs);
5322 /* Ignore gracefully during startup of the inferior, as it might
5323 be the shell which has just loaded some objects, otherwise
5324 add the symbols for the newly loaded objects. Also ignore at
5325 the beginning of an attach or remote session; we will query
5326 the full list of libraries once the connection is
5327 established. */
5328
5329 stop_kind stop_soon = get_inferior_stop_soon (ecs);
5330 if (stop_soon == NO_STOP_QUIETLY)
5331 {
5332 struct regcache *regcache;
5333
5334 regcache = get_thread_regcache (ecs->event_thread);
5335
5336 handle_solib_event ();
5337
5338 ecs->event_thread->control.stop_bpstat
5339 = bpstat_stop_status (regcache->aspace (),
5340 ecs->event_thread->suspend.stop_pc,
5341 ecs->event_thread, &ecs->ws);
5342
5343 if (handle_stop_requested (ecs))
5344 return;
5345
5346 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5347 {
5348 /* A catchpoint triggered. */
5349 process_event_stop_test (ecs);
5350 return;
5351 }
5352
5353 /* If requested, stop when the dynamic linker notifies
5354 gdb of events. This allows the user to get control
5355 and place breakpoints in initializer routines for
5356 dynamically loaded objects (among other things). */
5357 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5358 if (stop_on_solib_events)
5359 {
5360 /* Make sure we print "Stopped due to solib-event" in
5361 normal_stop. */
5362 stop_print_frame = true;
5363
5364 stop_waiting (ecs);
5365 return;
5366 }
5367 }
5368
5369 /* If we are skipping through a shell, or through shared library
5370 loading that we aren't interested in, resume the program. If
5371 we're running the program normally, also resume. */
5372 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5373 {
5374 /* Loading of shared libraries might have changed breakpoint
5375 addresses. Make sure new breakpoints are inserted. */
5376 if (stop_soon == NO_STOP_QUIETLY)
5377 insert_breakpoints ();
5378 resume (GDB_SIGNAL_0);
5379 prepare_to_wait (ecs);
5380 return;
5381 }
5382
5383 /* But stop if we're attaching or setting up a remote
5384 connection. */
5385 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5386 || stop_soon == STOP_QUIETLY_REMOTE)
5387 {
5388 infrun_debug_printf ("quietly stopped");
5389 stop_waiting (ecs);
5390 return;
5391 }
5392
5393 internal_error (__FILE__, __LINE__,
5394 _("unhandled stop_soon: %d"), (int) stop_soon);
5395 }
5396
5397 case TARGET_WAITKIND_SPURIOUS:
5398 if (handle_stop_requested (ecs))
5399 return;
5400 context_switch (ecs);
5401 resume (GDB_SIGNAL_0);
5402 prepare_to_wait (ecs);
5403 return;
5404
5405 case TARGET_WAITKIND_THREAD_CREATED:
5406 if (handle_stop_requested (ecs))
5407 return;
5408 context_switch (ecs);
5409 if (!switch_back_to_stepped_thread (ecs))
5410 keep_going (ecs);
5411 return;
5412
5413 case TARGET_WAITKIND_EXITED:
5414 case TARGET_WAITKIND_SIGNALLED:
5415 {
5416 /* Depending on the system, ecs->ptid may point to a thread or
5417 to a process. On some targets, target_mourn_inferior may
5418 need to have access to the just-exited thread. That is the
5419 case of GNU/Linux's "checkpoint" support, for example.
5420 Call the switch_to_xxx routine as appropriate. */
5421 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5422 if (thr != nullptr)
5423 switch_to_thread (thr);
5424 else
5425 {
5426 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5427 switch_to_inferior_no_thread (inf);
5428 }
5429 }
5430 handle_vfork_child_exec_or_exit (0);
5431 target_terminal::ours (); /* Must do this before mourn anyway. */
5432
5433 /* Clearing any previous state of convenience variables. */
5434 clear_exit_convenience_vars ();
5435
5436 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5437 {
5438 /* Record the exit code in the convenience variable $_exitcode, so
5439 that the user can inspect this again later. */
5440 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5441 (LONGEST) ecs->ws.value.integer);
5442
5443 /* Also record this in the inferior itself. */
5444 current_inferior ()->has_exit_code = 1;
5445 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5446
5447 /* Support the --return-child-result option. */
5448 return_child_result_value = ecs->ws.value.integer;
5449
5450 gdb::observers::exited.notify (ecs->ws.value.integer);
5451 }
5452 else
5453 {
5454 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5455
5456 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5457 {
5458 /* Set the value of the internal variable $_exitsignal,
5459 which holds the signal uncaught by the inferior. */
5460 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5461 gdbarch_gdb_signal_to_target (gdbarch,
5462 ecs->ws.value.sig));
5463 }
5464 else
5465 {
5466 /* We don't have access to the target's method used for
5467 converting between signal numbers (GDB's internal
5468 representation <-> target's representation).
5469 Therefore, we cannot do a good job at displaying this
5470 information to the user. It's better to just warn
5471 her about it (if infrun debugging is enabled), and
5472 give up. */
5473 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5474 "signal number.");
5475 }
5476
5477 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5478 }
5479
5480 gdb_flush (gdb_stdout);
5481 target_mourn_inferior (inferior_ptid);
5482 stop_print_frame = false;
5483 stop_waiting (ecs);
5484 return;
5485
5486 case TARGET_WAITKIND_FORKED:
5487 case TARGET_WAITKIND_VFORKED:
5488 /* Check whether the inferior is displaced stepping. */
5489 {
5490 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5491 struct gdbarch *gdbarch = regcache->arch ();
5492 inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid);
5493
5494 /* If this is a fork (child gets its own address space copy) and some
5495 displaced step buffers were in use at the time of the fork, restore
5496 the displaced step buffer bytes in the child process. */
5497 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5498 gdbarch_displaced_step_restore_all_in_ptid
5499 (gdbarch, parent_inf, ecs->ws.value.related_pid);
5500
5501 /* If displaced stepping is supported, and thread ecs->ptid is
5502 displaced stepping. */
5503 if (displaced_step_in_progress_thread (ecs->event_thread))
5504 {
5505 struct regcache *child_regcache;
5506 CORE_ADDR parent_pc;
5507
5508 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5509 indicating that the displaced stepping of syscall instruction
5510 has been done. Perform cleanup for parent process here. Note
5511 that this operation also cleans up the child process for vfork,
5512 because their pages are shared. */
5513 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
5514 /* Start a new step-over in another thread if there's one
5515 that needs it. */
5516 start_step_over ();
5517
5518 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5519 the child's PC is also within the scratchpad. Set the child's PC
5520 to the parent's PC value, which has already been fixed up.
5521 FIXME: we use the parent's aspace here, although we're touching
5522 the child, because the child hasn't been added to the inferior
5523 list yet at this point. */
5524
5525 child_regcache
5526 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5527 ecs->ws.value.related_pid,
5528 gdbarch,
5529 parent_inf->aspace);
5530 /* Read PC value of parent process. */
5531 parent_pc = regcache_read_pc (regcache);
5532
5533 displaced_debug_printf ("write child pc from %s to %s",
5534 paddress (gdbarch,
5535 regcache_read_pc (child_regcache)),
5536 paddress (gdbarch, parent_pc));
5537
5538 regcache_write_pc (child_regcache, parent_pc);
5539 }
5540 }
5541
5542 context_switch (ecs);
5543
5544 /* Immediately detach breakpoints from the child before there's
5545 any chance of letting the user delete breakpoints from the
5546 breakpoint lists. If we don't do this early, it's easy to
5547 leave left over traps in the child, vis: "break foo; catch
5548 fork; c; <fork>; del; c; <child calls foo>". We only follow
5549 the fork on the last `continue', and by that time the
5550 breakpoint at "foo" is long gone from the breakpoint table.
5551 If we vforked, then we don't need to unpatch here, since both
5552 parent and child are sharing the same memory pages; we'll
5553 need to unpatch at follow/detach time instead to be certain
5554 that new breakpoints added between catchpoint hit time and
5555 vfork follow are detached. */
5556 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5557 {
5558 /* This won't actually modify the breakpoint list, but will
5559 physically remove the breakpoints from the child. */
5560 detach_breakpoints (ecs->ws.value.related_pid);
5561 }
5562
5563 delete_just_stopped_threads_single_step_breakpoints ();
5564
5565 /* In case the event is caught by a catchpoint, remember that
5566 the event is to be followed at the next resume of the thread,
5567 and not immediately. */
5568 ecs->event_thread->pending_follow = ecs->ws;
5569
5570 ecs->event_thread->suspend.stop_pc
5571 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5572
5573 ecs->event_thread->control.stop_bpstat
5574 = bpstat_stop_status (get_current_regcache ()->aspace (),
5575 ecs->event_thread->suspend.stop_pc,
5576 ecs->event_thread, &ecs->ws);
5577
5578 if (handle_stop_requested (ecs))
5579 return;
5580
5581 /* If no catchpoint triggered for this, then keep going. Note
5582 that we're interested in knowing the bpstat actually causes a
5583 stop, not just if it may explain the signal. Software
5584 watchpoints, for example, always appear in the bpstat. */
5585 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5586 {
5587 bool follow_child
5588 = (follow_fork_mode_string == follow_fork_mode_child);
5589
5590 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5591
5592 process_stratum_target *targ
5593 = ecs->event_thread->inf->process_target ();
5594
5595 bool should_resume = follow_fork ();
5596
5597 /* Note that one of these may be an invalid pointer,
5598 depending on detach_fork. */
5599 thread_info *parent = ecs->event_thread;
5600 thread_info *child
5601 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5602
5603 /* At this point, the parent is marked running, and the
5604 child is marked stopped. */
5605
5606 /* If not resuming the parent, mark it stopped. */
5607 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5608 parent->set_running (false);
5609
5610 /* If resuming the child, mark it running. */
5611 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5612 child->set_running (true);
5613
5614 /* In non-stop mode, also resume the other branch. */
5615 if (!detach_fork && (non_stop
5616 || (sched_multi && target_is_non_stop_p ())))
5617 {
5618 if (follow_child)
5619 switch_to_thread (parent);
5620 else
5621 switch_to_thread (child);
5622
5623 ecs->event_thread = inferior_thread ();
5624 ecs->ptid = inferior_ptid;
5625 keep_going (ecs);
5626 }
5627
5628 if (follow_child)
5629 switch_to_thread (child);
5630 else
5631 switch_to_thread (parent);
5632
5633 ecs->event_thread = inferior_thread ();
5634 ecs->ptid = inferior_ptid;
5635
5636 if (should_resume)
5637 keep_going (ecs);
5638 else
5639 stop_waiting (ecs);
5640 return;
5641 }
5642 process_event_stop_test (ecs);
5643 return;
5644
5645 case TARGET_WAITKIND_VFORK_DONE:
5646 /* Done with the shared memory region. Re-insert breakpoints in
5647 the parent, and keep going. */
5648
5649 context_switch (ecs);
5650
5651 current_inferior ()->waiting_for_vfork_done = 0;
5652 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5653
5654 if (handle_stop_requested (ecs))
5655 return;
5656
5657 /* This also takes care of reinserting breakpoints in the
5658 previously locked inferior. */
5659 keep_going (ecs);
5660 return;
5661
5662 case TARGET_WAITKIND_EXECD:
5663
5664 /* Note we can't read registers yet (the stop_pc), because we
5665 don't yet know the inferior's post-exec architecture.
5666 'stop_pc' is explicitly read below instead. */
5667 switch_to_thread_no_regs (ecs->event_thread);
5668
5669 /* Do whatever is necessary to the parent branch of the vfork. */
5670 handle_vfork_child_exec_or_exit (1);
5671
5672 /* This causes the eventpoints and symbol table to be reset.
5673 Must do this now, before trying to determine whether to
5674 stop. */
5675 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5676
5677 /* In follow_exec we may have deleted the original thread and
5678 created a new one. Make sure that the event thread is the
5679 execd thread for that case (this is a nop otherwise). */
5680 ecs->event_thread = inferior_thread ();
5681
5682 ecs->event_thread->suspend.stop_pc
5683 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5684
5685 ecs->event_thread->control.stop_bpstat
5686 = bpstat_stop_status (get_current_regcache ()->aspace (),
5687 ecs->event_thread->suspend.stop_pc,
5688 ecs->event_thread, &ecs->ws);
5689
5690 /* Note that this may be referenced from inside
5691 bpstat_stop_status above, through inferior_has_execd. */
5692 xfree (ecs->ws.value.execd_pathname);
5693 ecs->ws.value.execd_pathname = NULL;
5694
5695 if (handle_stop_requested (ecs))
5696 return;
5697
5698 /* If no catchpoint triggered for this, then keep going. */
5699 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5700 {
5701 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5702 keep_going (ecs);
5703 return;
5704 }
5705 process_event_stop_test (ecs);
5706 return;
5707
5708 /* Be careful not to try to gather much state about a thread
5709 that's in a syscall. It's frequently a losing proposition. */
5710 case TARGET_WAITKIND_SYSCALL_ENTRY:
5711 /* Getting the current syscall number. */
5712 if (handle_syscall_event (ecs) == 0)
5713 process_event_stop_test (ecs);
5714 return;
5715
5716 /* Before examining the threads further, step this thread to
5717 get it entirely out of the syscall. (We get notice of the
5718 event when the thread is just on the verge of exiting a
5719 syscall. Stepping one instruction seems to get it back
5720 into user code.) */
5721 case TARGET_WAITKIND_SYSCALL_RETURN:
5722 if (handle_syscall_event (ecs) == 0)
5723 process_event_stop_test (ecs);
5724 return;
5725
5726 case TARGET_WAITKIND_STOPPED:
5727 handle_signal_stop (ecs);
5728 return;
5729
5730 case TARGET_WAITKIND_NO_HISTORY:
5731 /* Reverse execution: target ran out of history info. */
5732
5733 /* Switch to the stopped thread. */
5734 context_switch (ecs);
5735 infrun_debug_printf ("stopped");
5736
5737 delete_just_stopped_threads_single_step_breakpoints ();
5738 ecs->event_thread->suspend.stop_pc
5739 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5740
5741 if (handle_stop_requested (ecs))
5742 return;
5743
5744 gdb::observers::no_history.notify ();
5745 stop_waiting (ecs);
5746 return;
5747 }
5748}
5749
5750/* Restart threads back to what they were trying to do back when we
5751 paused them for an in-line step-over. The EVENT_THREAD thread is
5752 ignored. */
5753
5754static void
5755restart_threads (struct thread_info *event_thread)
5756{
5757 /* In case the instruction just stepped spawned a new thread. */
5758 update_thread_list ();
5759
5760 for (thread_info *tp : all_non_exited_threads ())
5761 {
5762 if (tp->inf->detaching)
5763 {
5764 infrun_debug_printf ("restart threads: [%s] inferior detaching",
5765 target_pid_to_str (tp->ptid).c_str ());
5766 continue;
5767 }
5768
5769 switch_to_thread_no_regs (tp);
5770
5771 if (tp == event_thread)
5772 {
5773 infrun_debug_printf ("restart threads: [%s] is event thread",
5774 target_pid_to_str (tp->ptid).c_str ());
5775 continue;
5776 }
5777
5778 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5779 {
5780 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5781 target_pid_to_str (tp->ptid).c_str ());
5782 continue;
5783 }
5784
5785 if (tp->resumed)
5786 {
5787 infrun_debug_printf ("restart threads: [%s] resumed",
5788 target_pid_to_str (tp->ptid).c_str ());
5789 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5790 continue;
5791 }
5792
5793 if (thread_is_in_step_over_chain (tp))
5794 {
5795 infrun_debug_printf ("restart threads: [%s] needs step-over",
5796 target_pid_to_str (tp->ptid).c_str ());
5797 gdb_assert (!tp->resumed);
5798 continue;
5799 }
5800
5801
5802 if (tp->suspend.waitstatus_pending_p)
5803 {
5804 infrun_debug_printf ("restart threads: [%s] has pending status",
5805 target_pid_to_str (tp->ptid).c_str ());
5806 tp->resumed = true;
5807 continue;
5808 }
5809
5810 gdb_assert (!tp->stop_requested);
5811
5812 /* If some thread needs to start a step-over at this point, it
5813 should still be in the step-over queue, and thus skipped
5814 above. */
5815 if (thread_still_needs_step_over (tp))
5816 {
5817 internal_error (__FILE__, __LINE__,
5818 "thread [%s] needs a step-over, but not in "
5819 "step-over queue\n",
5820 target_pid_to_str (tp->ptid).c_str ());
5821 }
5822
5823 if (currently_stepping (tp))
5824 {
5825 infrun_debug_printf ("restart threads: [%s] was stepping",
5826 target_pid_to_str (tp->ptid).c_str ());
5827 keep_going_stepped_thread (tp);
5828 }
5829 else
5830 {
5831 struct execution_control_state ecss;
5832 struct execution_control_state *ecs = &ecss;
5833
5834 infrun_debug_printf ("restart threads: [%s] continuing",
5835 target_pid_to_str (tp->ptid).c_str ());
5836 reset_ecs (ecs, tp);
5837 switch_to_thread (tp);
5838 keep_going_pass_signal (ecs);
5839 }
5840 }
5841}
5842
5843/* Callback for iterate_over_threads. Find a resumed thread that has
5844 a pending waitstatus. */
5845
5846static int
5847resumed_thread_with_pending_status (struct thread_info *tp,
5848 void *arg)
5849{
5850 return (tp->resumed
5851 && tp->suspend.waitstatus_pending_p);
5852}
5853
5854/* Called when we get an event that may finish an in-line or
5855 out-of-line (displaced stepping) step-over started previously.
5856 Return true if the event is processed and we should go back to the
5857 event loop; false if the caller should continue processing the
5858 event. */
5859
5860static int
5861finish_step_over (struct execution_control_state *ecs)
5862{
5863 displaced_step_finish (ecs->event_thread,
5864 ecs->event_thread->suspend.stop_signal);
5865
5866 bool had_step_over_info = step_over_info_valid_p ();
5867
5868 if (had_step_over_info)
5869 {
5870 /* If we're stepping over a breakpoint with all threads locked,
5871 then only the thread that was stepped should be reporting
5872 back an event. */
5873 gdb_assert (ecs->event_thread->control.trap_expected);
5874
5875 clear_step_over_info ();
5876 }
5877
5878 if (!target_is_non_stop_p ())
5879 return 0;
5880
5881 /* Start a new step-over in another thread if there's one that
5882 needs it. */
5883 start_step_over ();
5884
5885 /* If we were stepping over a breakpoint before, and haven't started
5886 a new in-line step-over sequence, then restart all other threads
5887 (except the event thread). We can't do this in all-stop, as then
5888 e.g., we wouldn't be able to issue any other remote packet until
5889 these other threads stop. */
5890 if (had_step_over_info && !step_over_info_valid_p ())
5891 {
5892 struct thread_info *pending;
5893
5894 /* If we only have threads with pending statuses, the restart
5895 below won't restart any thread and so nothing re-inserts the
5896 breakpoint we just stepped over. But we need it inserted
5897 when we later process the pending events, otherwise if
5898 another thread has a pending event for this breakpoint too,
5899 we'd discard its event (because the breakpoint that
5900 originally caused the event was no longer inserted). */
5901 context_switch (ecs);
5902 insert_breakpoints ();
5903
5904 restart_threads (ecs->event_thread);
5905
5906 /* If we have events pending, go through handle_inferior_event
5907 again, picking up a pending event at random. This avoids
5908 thread starvation. */
5909
5910 /* But not if we just stepped over a watchpoint in order to let
5911 the instruction execute so we can evaluate its expression.
5912 The set of watchpoints that triggered is recorded in the
5913 breakpoint objects themselves (see bp->watchpoint_triggered).
5914 If we processed another event first, that other event could
5915 clobber this info. */
5916 if (ecs->event_thread->stepping_over_watchpoint)
5917 return 0;
5918
5919 pending = iterate_over_threads (resumed_thread_with_pending_status,
5920 NULL);
5921 if (pending != NULL)
5922 {
5923 struct thread_info *tp = ecs->event_thread;
5924 struct regcache *regcache;
5925
5926 infrun_debug_printf ("found resumed threads with "
5927 "pending events, saving status");
5928
5929 gdb_assert (pending != tp);
5930
5931 /* Record the event thread's event for later. */
5932 save_waitstatus (tp, &ecs->ws);
5933 /* This was cleared early, by handle_inferior_event. Set it
5934 so this pending event is considered by
5935 do_target_wait. */
5936 tp->resumed = true;
5937
5938 gdb_assert (!tp->executing);
5939
5940 regcache = get_thread_regcache (tp);
5941 tp->suspend.stop_pc = regcache_read_pc (regcache);
5942
5943 infrun_debug_printf ("saved stop_pc=%s for %s "
5944 "(currently_stepping=%d)",
5945 paddress (target_gdbarch (),
5946 tp->suspend.stop_pc),
5947 target_pid_to_str (tp->ptid).c_str (),
5948 currently_stepping (tp));
5949
5950 /* This in-line step-over finished; clear this so we won't
5951 start a new one. This is what handle_signal_stop would
5952 do, if we returned false. */
5953 tp->stepping_over_breakpoint = 0;
5954
5955 /* Wake up the event loop again. */
5956 mark_async_event_handler (infrun_async_inferior_event_token);
5957
5958 prepare_to_wait (ecs);
5959 return 1;
5960 }
5961 }
5962
5963 return 0;
5964}
5965
5966/* Come here when the program has stopped with a signal. */
5967
5968static void
5969handle_signal_stop (struct execution_control_state *ecs)
5970{
5971 struct frame_info *frame;
5972 struct gdbarch *gdbarch;
5973 int stopped_by_watchpoint;
5974 enum stop_kind stop_soon;
5975 int random_signal;
5976
5977 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5978
5979 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5980
5981 /* Do we need to clean up the state of a thread that has
5982 completed a displaced single-step? (Doing so usually affects
5983 the PC, so do it here, before we set stop_pc.) */
5984 if (finish_step_over (ecs))
5985 return;
5986
5987 /* If we either finished a single-step or hit a breakpoint, but
5988 the user wanted this thread to be stopped, pretend we got a
5989 SIG0 (generic unsignaled stop). */
5990 if (ecs->event_thread->stop_requested
5991 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5992 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5993
5994 ecs->event_thread->suspend.stop_pc
5995 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5996
5997 context_switch (ecs);
5998
5999 if (deprecated_context_hook)
6000 deprecated_context_hook (ecs->event_thread->global_num);
6001
6002 if (debug_infrun)
6003 {
6004 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
6005 struct gdbarch *reg_gdbarch = regcache->arch ();
6006
6007 infrun_debug_printf ("stop_pc=%s",
6008 paddress (reg_gdbarch,
6009 ecs->event_thread->suspend.stop_pc));
6010 if (target_stopped_by_watchpoint ())
6011 {
6012 CORE_ADDR addr;
6013
6014 infrun_debug_printf ("stopped by watchpoint");
6015
6016 if (target_stopped_data_address (current_inferior ()->top_target (),
6017 &addr))
6018 infrun_debug_printf ("stopped data address=%s",
6019 paddress (reg_gdbarch, addr));
6020 else
6021 infrun_debug_printf ("(no data address available)");
6022 }
6023 }
6024
6025 /* This is originated from start_remote(), start_inferior() and
6026 shared libraries hook functions. */
6027 stop_soon = get_inferior_stop_soon (ecs);
6028 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
6029 {
6030 infrun_debug_printf ("quietly stopped");
6031 stop_print_frame = true;
6032 stop_waiting (ecs);
6033 return;
6034 }
6035
6036 /* This originates from attach_command(). We need to overwrite
6037 the stop_signal here, because some kernels don't ignore a
6038 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
6039 See more comments in inferior.h. On the other hand, if we
6040 get a non-SIGSTOP, report it to the user - assume the backend
6041 will handle the SIGSTOP if it should show up later.
6042
6043 Also consider that the attach is complete when we see a
6044 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
6045 target extended-remote report it instead of a SIGSTOP
6046 (e.g. gdbserver). We already rely on SIGTRAP being our
6047 signal, so this is no exception.
6048
6049 Also consider that the attach is complete when we see a
6050 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
6051 the target to stop all threads of the inferior, in case the
6052 low level attach operation doesn't stop them implicitly. If
6053 they weren't stopped implicitly, then the stub will report a
6054 GDB_SIGNAL_0, meaning: stopped for no particular reason
6055 other than GDB's request. */
6056 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
6057 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
6058 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6059 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
6060 {
6061 stop_print_frame = true;
6062 stop_waiting (ecs);
6063 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6064 return;
6065 }
6066
6067 /* At this point, get hold of the now-current thread's frame. */
6068 frame = get_current_frame ();
6069 gdbarch = get_frame_arch (frame);
6070
6071 /* Pull the single step breakpoints out of the target. */
6072 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6073 {
6074 struct regcache *regcache;
6075 CORE_ADDR pc;
6076
6077 regcache = get_thread_regcache (ecs->event_thread);
6078 const address_space *aspace = regcache->aspace ();
6079
6080 pc = regcache_read_pc (regcache);
6081
6082 /* However, before doing so, if this single-step breakpoint was
6083 actually for another thread, set this thread up for moving
6084 past it. */
6085 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6086 aspace, pc))
6087 {
6088 if (single_step_breakpoint_inserted_here_p (aspace, pc))
6089 {
6090 infrun_debug_printf ("[%s] hit another thread's single-step "
6091 "breakpoint",
6092 target_pid_to_str (ecs->ptid).c_str ());
6093 ecs->hit_singlestep_breakpoint = 1;
6094 }
6095 }
6096 else
6097 {
6098 infrun_debug_printf ("[%s] hit its single-step breakpoint",
6099 target_pid_to_str (ecs->ptid).c_str ());
6100 }
6101 }
6102 delete_just_stopped_threads_single_step_breakpoints ();
6103
6104 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6105 && ecs->event_thread->control.trap_expected
6106 && ecs->event_thread->stepping_over_watchpoint)
6107 stopped_by_watchpoint = 0;
6108 else
6109 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6110
6111 /* If necessary, step over this watchpoint. We'll be back to display
6112 it in a moment. */
6113 if (stopped_by_watchpoint
6114 && (target_have_steppable_watchpoint ()
6115 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
6116 {
6117 /* At this point, we are stopped at an instruction which has
6118 attempted to write to a piece of memory under control of
6119 a watchpoint. The instruction hasn't actually executed
6120 yet. If we were to evaluate the watchpoint expression
6121 now, we would get the old value, and therefore no change
6122 would seem to have occurred.
6123
6124 In order to make watchpoints work `right', we really need
6125 to complete the memory write, and then evaluate the
6126 watchpoint expression. We do this by single-stepping the
6127 target.
6128
6129 It may not be necessary to disable the watchpoint to step over
6130 it. For example, the PA can (with some kernel cooperation)
6131 single step over a watchpoint without disabling the watchpoint.
6132
6133 It is far more common to need to disable a watchpoint to step
6134 the inferior over it. If we have non-steppable watchpoints,
6135 we must disable the current watchpoint; it's simplest to
6136 disable all watchpoints.
6137
6138 Any breakpoint at PC must also be stepped over -- if there's
6139 one, it will have already triggered before the watchpoint
6140 triggered, and we either already reported it to the user, or
6141 it didn't cause a stop and we called keep_going. In either
6142 case, if there was a breakpoint at PC, we must be trying to
6143 step past it. */
6144 ecs->event_thread->stepping_over_watchpoint = 1;
6145 keep_going (ecs);
6146 return;
6147 }
6148
6149 ecs->event_thread->stepping_over_breakpoint = 0;
6150 ecs->event_thread->stepping_over_watchpoint = 0;
6151 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6152 ecs->event_thread->control.stop_step = 0;
6153 stop_print_frame = true;
6154 stopped_by_random_signal = 0;
6155 bpstat stop_chain = NULL;
6156
6157 /* Hide inlined functions starting here, unless we just performed stepi or
6158 nexti. After stepi and nexti, always show the innermost frame (not any
6159 inline function call sites). */
6160 if (ecs->event_thread->control.step_range_end != 1)
6161 {
6162 const address_space *aspace
6163 = get_thread_regcache (ecs->event_thread)->aspace ();
6164
6165 /* skip_inline_frames is expensive, so we avoid it if we can
6166 determine that the address is one where functions cannot have
6167 been inlined. This improves performance with inferiors that
6168 load a lot of shared libraries, because the solib event
6169 breakpoint is defined as the address of a function (i.e. not
6170 inline). Note that we have to check the previous PC as well
6171 as the current one to catch cases when we have just
6172 single-stepped off a breakpoint prior to reinstating it.
6173 Note that we're assuming that the code we single-step to is
6174 not inline, but that's not definitive: there's nothing
6175 preventing the event breakpoint function from containing
6176 inlined code, and the single-step ending up there. If the
6177 user had set a breakpoint on that inlined code, the missing
6178 skip_inline_frames call would break things. Fortunately
6179 that's an extremely unlikely scenario. */
6180 if (!pc_at_non_inline_function (aspace,
6181 ecs->event_thread->suspend.stop_pc,
6182 &ecs->ws)
6183 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6184 && ecs->event_thread->control.trap_expected
6185 && pc_at_non_inline_function (aspace,
6186 ecs->event_thread->prev_pc,
6187 &ecs->ws)))
6188 {
6189 stop_chain = build_bpstat_chain (aspace,
6190 ecs->event_thread->suspend.stop_pc,
6191 &ecs->ws);
6192 skip_inline_frames (ecs->event_thread, stop_chain);
6193
6194 /* Re-fetch current thread's frame in case that invalidated
6195 the frame cache. */
6196 frame = get_current_frame ();
6197 gdbarch = get_frame_arch (frame);
6198 }
6199 }
6200
6201 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6202 && ecs->event_thread->control.trap_expected
6203 && gdbarch_single_step_through_delay_p (gdbarch)
6204 && currently_stepping (ecs->event_thread))
6205 {
6206 /* We're trying to step off a breakpoint. Turns out that we're
6207 also on an instruction that needs to be stepped multiple
6208 times before it's been fully executing. E.g., architectures
6209 with a delay slot. It needs to be stepped twice, once for
6210 the instruction and once for the delay slot. */
6211 int step_through_delay
6212 = gdbarch_single_step_through_delay (gdbarch, frame);
6213
6214 if (step_through_delay)
6215 infrun_debug_printf ("step through delay");
6216
6217 if (ecs->event_thread->control.step_range_end == 0
6218 && step_through_delay)
6219 {
6220 /* The user issued a continue when stopped at a breakpoint.
6221 Set up for another trap and get out of here. */
6222 ecs->event_thread->stepping_over_breakpoint = 1;
6223 keep_going (ecs);
6224 return;
6225 }
6226 else if (step_through_delay)
6227 {
6228 /* The user issued a step when stopped at a breakpoint.
6229 Maybe we should stop, maybe we should not - the delay
6230 slot *might* correspond to a line of source. In any
6231 case, don't decide that here, just set
6232 ecs->stepping_over_breakpoint, making sure we
6233 single-step again before breakpoints are re-inserted. */
6234 ecs->event_thread->stepping_over_breakpoint = 1;
6235 }
6236 }
6237
6238 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6239 handles this event. */
6240 ecs->event_thread->control.stop_bpstat
6241 = bpstat_stop_status (get_current_regcache ()->aspace (),
6242 ecs->event_thread->suspend.stop_pc,
6243 ecs->event_thread, &ecs->ws, stop_chain);
6244
6245 /* Following in case break condition called a
6246 function. */
6247 stop_print_frame = true;
6248
6249 /* This is where we handle "moribund" watchpoints. Unlike
6250 software breakpoints traps, hardware watchpoint traps are
6251 always distinguishable from random traps. If no high-level
6252 watchpoint is associated with the reported stop data address
6253 anymore, then the bpstat does not explain the signal ---
6254 simply make sure to ignore it if `stopped_by_watchpoint' is
6255 set. */
6256
6257 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6258 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6259 GDB_SIGNAL_TRAP)
6260 && stopped_by_watchpoint)
6261 {
6262 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6263 "ignoring");
6264 }
6265
6266 /* NOTE: cagney/2003-03-29: These checks for a random signal
6267 at one stage in the past included checks for an inferior
6268 function call's call dummy's return breakpoint. The original
6269 comment, that went with the test, read:
6270
6271 ``End of a stack dummy. Some systems (e.g. Sony news) give
6272 another signal besides SIGTRAP, so check here as well as
6273 above.''
6274
6275 If someone ever tries to get call dummys on a
6276 non-executable stack to work (where the target would stop
6277 with something like a SIGSEGV), then those tests might need
6278 to be re-instated. Given, however, that the tests were only
6279 enabled when momentary breakpoints were not being used, I
6280 suspect that it won't be the case.
6281
6282 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6283 be necessary for call dummies on a non-executable stack on
6284 SPARC. */
6285
6286 /* See if the breakpoints module can explain the signal. */
6287 random_signal
6288 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6289 ecs->event_thread->suspend.stop_signal);
6290
6291 /* Maybe this was a trap for a software breakpoint that has since
6292 been removed. */
6293 if (random_signal && target_stopped_by_sw_breakpoint ())
6294 {
6295 if (gdbarch_program_breakpoint_here_p (gdbarch,
6296 ecs->event_thread->suspend.stop_pc))
6297 {
6298 struct regcache *regcache;
6299 int decr_pc;
6300
6301 /* Re-adjust PC to what the program would see if GDB was not
6302 debugging it. */
6303 regcache = get_thread_regcache (ecs->event_thread);
6304 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6305 if (decr_pc != 0)
6306 {
6307 gdb::optional<scoped_restore_tmpl<int>>
6308 restore_operation_disable;
6309
6310 if (record_full_is_used ())
6311 restore_operation_disable.emplace
6312 (record_full_gdb_operation_disable_set ());
6313
6314 regcache_write_pc (regcache,
6315 ecs->event_thread->suspend.stop_pc + decr_pc);
6316 }
6317 }
6318 else
6319 {
6320 /* A delayed software breakpoint event. Ignore the trap. */
6321 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6322 random_signal = 0;
6323 }
6324 }
6325
6326 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6327 has since been removed. */
6328 if (random_signal && target_stopped_by_hw_breakpoint ())
6329 {
6330 /* A delayed hardware breakpoint event. Ignore the trap. */
6331 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6332 "trap, ignoring");
6333 random_signal = 0;
6334 }
6335
6336 /* If not, perhaps stepping/nexting can. */
6337 if (random_signal)
6338 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6339 && currently_stepping (ecs->event_thread));
6340
6341 /* Perhaps the thread hit a single-step breakpoint of _another_
6342 thread. Single-step breakpoints are transparent to the
6343 breakpoints module. */
6344 if (random_signal)
6345 random_signal = !ecs->hit_singlestep_breakpoint;
6346
6347 /* No? Perhaps we got a moribund watchpoint. */
6348 if (random_signal)
6349 random_signal = !stopped_by_watchpoint;
6350
6351 /* Always stop if the user explicitly requested this thread to
6352 remain stopped. */
6353 if (ecs->event_thread->stop_requested)
6354 {
6355 random_signal = 1;
6356 infrun_debug_printf ("user-requested stop");
6357 }
6358
6359 /* For the program's own signals, act according to
6360 the signal handling tables. */
6361
6362 if (random_signal)
6363 {
6364 /* Signal not for debugging purposes. */
6365 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6366
6367 infrun_debug_printf ("random signal (%s)",
6368 gdb_signal_to_symbol_string (stop_signal));
6369
6370 stopped_by_random_signal = 1;
6371
6372 /* Always stop on signals if we're either just gaining control
6373 of the program, or the user explicitly requested this thread
6374 to remain stopped. */
6375 if (stop_soon != NO_STOP_QUIETLY
6376 || ecs->event_thread->stop_requested
6377 || signal_stop_state (ecs->event_thread->suspend.stop_signal))
6378 {
6379 stop_waiting (ecs);
6380 return;
6381 }
6382
6383 /* Notify observers the signal has "handle print" set. Note we
6384 returned early above if stopping; normal_stop handles the
6385 printing in that case. */
6386 if (signal_print[ecs->event_thread->suspend.stop_signal])
6387 {
6388 /* The signal table tells us to print about this signal. */
6389 target_terminal::ours_for_output ();
6390 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6391 target_terminal::inferior ();
6392 }
6393
6394 /* Clear the signal if it should not be passed. */
6395 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6396 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6397
6398 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6399 && ecs->event_thread->control.trap_expected
6400 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6401 {
6402 /* We were just starting a new sequence, attempting to
6403 single-step off of a breakpoint and expecting a SIGTRAP.
6404 Instead this signal arrives. This signal will take us out
6405 of the stepping range so GDB needs to remember to, when
6406 the signal handler returns, resume stepping off that
6407 breakpoint. */
6408 /* To simplify things, "continue" is forced to use the same
6409 code paths as single-step - set a breakpoint at the
6410 signal return address and then, once hit, step off that
6411 breakpoint. */
6412 infrun_debug_printf ("signal arrived while stepping over breakpoint");
6413
6414 insert_hp_step_resume_breakpoint_at_frame (frame);
6415 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6416 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6417 ecs->event_thread->control.trap_expected = 0;
6418
6419 /* If we were nexting/stepping some other thread, switch to
6420 it, so that we don't continue it, losing control. */
6421 if (!switch_back_to_stepped_thread (ecs))
6422 keep_going (ecs);
6423 return;
6424 }
6425
6426 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6427 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6428 ecs->event_thread)
6429 || ecs->event_thread->control.step_range_end == 1)
6430 && frame_id_eq (get_stack_frame_id (frame),
6431 ecs->event_thread->control.step_stack_frame_id)
6432 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6433 {
6434 /* The inferior is about to take a signal that will take it
6435 out of the single step range. Set a breakpoint at the
6436 current PC (which is presumably where the signal handler
6437 will eventually return) and then allow the inferior to
6438 run free.
6439
6440 Note that this is only needed for a signal delivered
6441 while in the single-step range. Nested signals aren't a
6442 problem as they eventually all return. */
6443 infrun_debug_printf ("signal may take us out of single-step range");
6444
6445 clear_step_over_info ();
6446 insert_hp_step_resume_breakpoint_at_frame (frame);
6447 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6448 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6449 ecs->event_thread->control.trap_expected = 0;
6450 keep_going (ecs);
6451 return;
6452 }
6453
6454 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6455 when either there's a nested signal, or when there's a
6456 pending signal enabled just as the signal handler returns
6457 (leaving the inferior at the step-resume-breakpoint without
6458 actually executing it). Either way continue until the
6459 breakpoint is really hit. */
6460
6461 if (!switch_back_to_stepped_thread (ecs))
6462 {
6463 infrun_debug_printf ("random signal, keep going");
6464
6465 keep_going (ecs);
6466 }
6467 return;
6468 }
6469
6470 process_event_stop_test (ecs);
6471}
6472
6473/* Come here when we've got some debug event / signal we can explain
6474 (IOW, not a random signal), and test whether it should cause a
6475 stop, or whether we should resume the inferior (transparently).
6476 E.g., could be a breakpoint whose condition evaluates false; we
6477 could be still stepping within the line; etc. */
6478
6479static void
6480process_event_stop_test (struct execution_control_state *ecs)
6481{
6482 struct symtab_and_line stop_pc_sal;
6483 struct frame_info *frame;
6484 struct gdbarch *gdbarch;
6485 CORE_ADDR jmp_buf_pc;
6486 struct bpstat_what what;
6487
6488 /* Handle cases caused by hitting a breakpoint. */
6489
6490 frame = get_current_frame ();
6491 gdbarch = get_frame_arch (frame);
6492
6493 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6494
6495 if (what.call_dummy)
6496 {
6497 stop_stack_dummy = what.call_dummy;
6498 }
6499
6500 /* A few breakpoint types have callbacks associated (e.g.,
6501 bp_jit_event). Run them now. */
6502 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6503
6504 /* If we hit an internal event that triggers symbol changes, the
6505 current frame will be invalidated within bpstat_what (e.g., if we
6506 hit an internal solib event). Re-fetch it. */
6507 frame = get_current_frame ();
6508 gdbarch = get_frame_arch (frame);
6509
6510 switch (what.main_action)
6511 {
6512 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6513 /* If we hit the breakpoint at longjmp while stepping, we
6514 install a momentary breakpoint at the target of the
6515 jmp_buf. */
6516
6517 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6518
6519 ecs->event_thread->stepping_over_breakpoint = 1;
6520
6521 if (what.is_longjmp)
6522 {
6523 struct value *arg_value;
6524
6525 /* If we set the longjmp breakpoint via a SystemTap probe,
6526 then use it to extract the arguments. The destination PC
6527 is the third argument to the probe. */
6528 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6529 if (arg_value)
6530 {
6531 jmp_buf_pc = value_as_address (arg_value);
6532 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6533 }
6534 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6535 || !gdbarch_get_longjmp_target (gdbarch,
6536 frame, &jmp_buf_pc))
6537 {
6538 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6539 "(!gdbarch_get_longjmp_target)");
6540 keep_going (ecs);
6541 return;
6542 }
6543
6544 /* Insert a breakpoint at resume address. */
6545 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6546 }
6547 else
6548 check_exception_resume (ecs, frame);
6549 keep_going (ecs);
6550 return;
6551
6552 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6553 {
6554 struct frame_info *init_frame;
6555
6556 /* There are several cases to consider.
6557
6558 1. The initiating frame no longer exists. In this case we
6559 must stop, because the exception or longjmp has gone too
6560 far.
6561
6562 2. The initiating frame exists, and is the same as the
6563 current frame. We stop, because the exception or longjmp
6564 has been caught.
6565
6566 3. The initiating frame exists and is different from the
6567 current frame. This means the exception or longjmp has
6568 been caught beneath the initiating frame, so keep going.
6569
6570 4. longjmp breakpoint has been placed just to protect
6571 against stale dummy frames and user is not interested in
6572 stopping around longjmps. */
6573
6574 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6575
6576 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6577 != NULL);
6578 delete_exception_resume_breakpoint (ecs->event_thread);
6579
6580 if (what.is_longjmp)
6581 {
6582 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6583
6584 if (!frame_id_p (ecs->event_thread->initiating_frame))
6585 {
6586 /* Case 4. */
6587 keep_going (ecs);
6588 return;
6589 }
6590 }
6591
6592 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6593
6594 if (init_frame)
6595 {
6596 struct frame_id current_id
6597 = get_frame_id (get_current_frame ());
6598 if (frame_id_eq (current_id,
6599 ecs->event_thread->initiating_frame))
6600 {
6601 /* Case 2. Fall through. */
6602 }
6603 else
6604 {
6605 /* Case 3. */
6606 keep_going (ecs);
6607 return;
6608 }
6609 }
6610
6611 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6612 exists. */
6613 delete_step_resume_breakpoint (ecs->event_thread);
6614
6615 end_stepping_range (ecs);
6616 }
6617 return;
6618
6619 case BPSTAT_WHAT_SINGLE:
6620 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6621 ecs->event_thread->stepping_over_breakpoint = 1;
6622 /* Still need to check other stuff, at least the case where we
6623 are stepping and step out of the right range. */
6624 break;
6625
6626 case BPSTAT_WHAT_STEP_RESUME:
6627 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6628
6629 delete_step_resume_breakpoint (ecs->event_thread);
6630 if (ecs->event_thread->control.proceed_to_finish
6631 && execution_direction == EXEC_REVERSE)
6632 {
6633 struct thread_info *tp = ecs->event_thread;
6634
6635 /* We are finishing a function in reverse, and just hit the
6636 step-resume breakpoint at the start address of the
6637 function, and we're almost there -- just need to back up
6638 by one more single-step, which should take us back to the
6639 function call. */
6640 tp->control.step_range_start = tp->control.step_range_end = 1;
6641 keep_going (ecs);
6642 return;
6643 }
6644 fill_in_stop_func (gdbarch, ecs);
6645 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6646 && execution_direction == EXEC_REVERSE)
6647 {
6648 /* We are stepping over a function call in reverse, and just
6649 hit the step-resume breakpoint at the start address of
6650 the function. Go back to single-stepping, which should
6651 take us back to the function call. */
6652 ecs->event_thread->stepping_over_breakpoint = 1;
6653 keep_going (ecs);
6654 return;
6655 }
6656 break;
6657
6658 case BPSTAT_WHAT_STOP_NOISY:
6659 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6660 stop_print_frame = true;
6661
6662 /* Assume the thread stopped for a breakpoint. We'll still check
6663 whether a/the breakpoint is there when the thread is next
6664 resumed. */
6665 ecs->event_thread->stepping_over_breakpoint = 1;
6666
6667 stop_waiting (ecs);
6668 return;
6669
6670 case BPSTAT_WHAT_STOP_SILENT:
6671 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6672 stop_print_frame = false;
6673
6674 /* Assume the thread stopped for a breakpoint. We'll still check
6675 whether a/the breakpoint is there when the thread is next
6676 resumed. */
6677 ecs->event_thread->stepping_over_breakpoint = 1;
6678 stop_waiting (ecs);
6679 return;
6680
6681 case BPSTAT_WHAT_HP_STEP_RESUME:
6682 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6683
6684 delete_step_resume_breakpoint (ecs->event_thread);
6685 if (ecs->event_thread->step_after_step_resume_breakpoint)
6686 {
6687 /* Back when the step-resume breakpoint was inserted, we
6688 were trying to single-step off a breakpoint. Go back to
6689 doing that. */
6690 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6691 ecs->event_thread->stepping_over_breakpoint = 1;
6692 keep_going (ecs);
6693 return;
6694 }
6695 break;
6696
6697 case BPSTAT_WHAT_KEEP_CHECKING:
6698 break;
6699 }
6700
6701 /* If we stepped a permanent breakpoint and we had a high priority
6702 step-resume breakpoint for the address we stepped, but we didn't
6703 hit it, then we must have stepped into the signal handler. The
6704 step-resume was only necessary to catch the case of _not_
6705 stepping into the handler, so delete it, and fall through to
6706 checking whether the step finished. */
6707 if (ecs->event_thread->stepped_breakpoint)
6708 {
6709 struct breakpoint *sr_bp
6710 = ecs->event_thread->control.step_resume_breakpoint;
6711
6712 if (sr_bp != NULL
6713 && sr_bp->loc->permanent
6714 && sr_bp->type == bp_hp_step_resume
6715 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6716 {
6717 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6718 delete_step_resume_breakpoint (ecs->event_thread);
6719 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6720 }
6721 }
6722
6723 /* We come here if we hit a breakpoint but should not stop for it.
6724 Possibly we also were stepping and should stop for that. So fall
6725 through and test for stepping. But, if not stepping, do not
6726 stop. */
6727
6728 /* In all-stop mode, if we're currently stepping but have stopped in
6729 some other thread, we need to switch back to the stepped thread. */
6730 if (switch_back_to_stepped_thread (ecs))
6731 return;
6732
6733 if (ecs->event_thread->control.step_resume_breakpoint)
6734 {
6735 infrun_debug_printf ("step-resume breakpoint is inserted");
6736
6737 /* Having a step-resume breakpoint overrides anything
6738 else having to do with stepping commands until
6739 that breakpoint is reached. */
6740 keep_going (ecs);
6741 return;
6742 }
6743
6744 if (ecs->event_thread->control.step_range_end == 0)
6745 {
6746 infrun_debug_printf ("no stepping, continue");
6747 /* Likewise if we aren't even stepping. */
6748 keep_going (ecs);
6749 return;
6750 }
6751
6752 /* Re-fetch current thread's frame in case the code above caused
6753 the frame cache to be re-initialized, making our FRAME variable
6754 a dangling pointer. */
6755 frame = get_current_frame ();
6756 gdbarch = get_frame_arch (frame);
6757 fill_in_stop_func (gdbarch, ecs);
6758
6759 /* If stepping through a line, keep going if still within it.
6760
6761 Note that step_range_end is the address of the first instruction
6762 beyond the step range, and NOT the address of the last instruction
6763 within it!
6764
6765 Note also that during reverse execution, we may be stepping
6766 through a function epilogue and therefore must detect when
6767 the current-frame changes in the middle of a line. */
6768
6769 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6770 ecs->event_thread)
6771 && (execution_direction != EXEC_REVERSE
6772 || frame_id_eq (get_frame_id (frame),
6773 ecs->event_thread->control.step_frame_id)))
6774 {
6775 infrun_debug_printf
6776 ("stepping inside range [%s-%s]",
6777 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6778 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6779
6780 /* Tentatively re-enable range stepping; `resume' disables it if
6781 necessary (e.g., if we're stepping over a breakpoint or we
6782 have software watchpoints). */
6783 ecs->event_thread->control.may_range_step = 1;
6784
6785 /* When stepping backward, stop at beginning of line range
6786 (unless it's the function entry point, in which case
6787 keep going back to the call point). */
6788 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6789 if (stop_pc == ecs->event_thread->control.step_range_start
6790 && stop_pc != ecs->stop_func_start
6791 && execution_direction == EXEC_REVERSE)
6792 end_stepping_range (ecs);
6793 else
6794 keep_going (ecs);
6795
6796 return;
6797 }
6798
6799 /* We stepped out of the stepping range. */
6800
6801 /* If we are stepping at the source level and entered the runtime
6802 loader dynamic symbol resolution code...
6803
6804 EXEC_FORWARD: we keep on single stepping until we exit the run
6805 time loader code and reach the callee's address.
6806
6807 EXEC_REVERSE: we've already executed the callee (backward), and
6808 the runtime loader code is handled just like any other
6809 undebuggable function call. Now we need only keep stepping
6810 backward through the trampoline code, and that's handled further
6811 down, so there is nothing for us to do here. */
6812
6813 if (execution_direction != EXEC_REVERSE
6814 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6815 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6816 {
6817 CORE_ADDR pc_after_resolver =
6818 gdbarch_skip_solib_resolver (gdbarch,
6819 ecs->event_thread->suspend.stop_pc);
6820
6821 infrun_debug_printf ("stepped into dynsym resolve code");
6822
6823 if (pc_after_resolver)
6824 {
6825 /* Set up a step-resume breakpoint at the address
6826 indicated by SKIP_SOLIB_RESOLVER. */
6827 symtab_and_line sr_sal;
6828 sr_sal.pc = pc_after_resolver;
6829 sr_sal.pspace = get_frame_program_space (frame);
6830
6831 insert_step_resume_breakpoint_at_sal (gdbarch,
6832 sr_sal, null_frame_id);
6833 }
6834
6835 keep_going (ecs);
6836 return;
6837 }
6838
6839 /* Step through an indirect branch thunk. */
6840 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6841 && gdbarch_in_indirect_branch_thunk (gdbarch,
6842 ecs->event_thread->suspend.stop_pc))
6843 {
6844 infrun_debug_printf ("stepped into indirect branch thunk");
6845 keep_going (ecs);
6846 return;
6847 }
6848
6849 if (ecs->event_thread->control.step_range_end != 1
6850 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6851 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6852 && get_frame_type (frame) == SIGTRAMP_FRAME)
6853 {
6854 infrun_debug_printf ("stepped into signal trampoline");
6855 /* The inferior, while doing a "step" or "next", has ended up in
6856 a signal trampoline (either by a signal being delivered or by
6857 the signal handler returning). Just single-step until the
6858 inferior leaves the trampoline (either by calling the handler
6859 or returning). */
6860 keep_going (ecs);
6861 return;
6862 }
6863
6864 /* If we're in the return path from a shared library trampoline,
6865 we want to proceed through the trampoline when stepping. */
6866 /* macro/2012-04-25: This needs to come before the subroutine
6867 call check below as on some targets return trampolines look
6868 like subroutine calls (MIPS16 return thunks). */
6869 if (gdbarch_in_solib_return_trampoline (gdbarch,
6870 ecs->event_thread->suspend.stop_pc,
6871 ecs->stop_func_name)
6872 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6873 {
6874 /* Determine where this trampoline returns. */
6875 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6876 CORE_ADDR real_stop_pc
6877 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6878
6879 infrun_debug_printf ("stepped into solib return tramp");
6880
6881 /* Only proceed through if we know where it's going. */
6882 if (real_stop_pc)
6883 {
6884 /* And put the step-breakpoint there and go until there. */
6885 symtab_and_line sr_sal;
6886 sr_sal.pc = real_stop_pc;
6887 sr_sal.section = find_pc_overlay (sr_sal.pc);
6888 sr_sal.pspace = get_frame_program_space (frame);
6889
6890 /* Do not specify what the fp should be when we stop since
6891 on some machines the prologue is where the new fp value
6892 is established. */
6893 insert_step_resume_breakpoint_at_sal (gdbarch,
6894 sr_sal, null_frame_id);
6895
6896 /* Restart without fiddling with the step ranges or
6897 other state. */
6898 keep_going (ecs);
6899 return;
6900 }
6901 }
6902
6903 /* Check for subroutine calls. The check for the current frame
6904 equalling the step ID is not necessary - the check of the
6905 previous frame's ID is sufficient - but it is a common case and
6906 cheaper than checking the previous frame's ID.
6907
6908 NOTE: frame_id_eq will never report two invalid frame IDs as
6909 being equal, so to get into this block, both the current and
6910 previous frame must have valid frame IDs. */
6911 /* The outer_frame_id check is a heuristic to detect stepping
6912 through startup code. If we step over an instruction which
6913 sets the stack pointer from an invalid value to a valid value,
6914 we may detect that as a subroutine call from the mythical
6915 "outermost" function. This could be fixed by marking
6916 outermost frames as !stack_p,code_p,special_p. Then the
6917 initial outermost frame, before sp was valid, would
6918 have code_addr == &_start. See the comment in frame_id_eq
6919 for more. */
6920 if (!frame_id_eq (get_stack_frame_id (frame),
6921 ecs->event_thread->control.step_stack_frame_id)
6922 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6923 ecs->event_thread->control.step_stack_frame_id)
6924 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6925 outer_frame_id)
6926 || (ecs->event_thread->control.step_start_function
6927 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6928 {
6929 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6930 CORE_ADDR real_stop_pc;
6931
6932 infrun_debug_printf ("stepped into subroutine");
6933
6934 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6935 {
6936 /* I presume that step_over_calls is only 0 when we're
6937 supposed to be stepping at the assembly language level
6938 ("stepi"). Just stop. */
6939 /* And this works the same backward as frontward. MVS */
6940 end_stepping_range (ecs);
6941 return;
6942 }
6943
6944 /* Reverse stepping through solib trampolines. */
6945
6946 if (execution_direction == EXEC_REVERSE
6947 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6948 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6949 || (ecs->stop_func_start == 0
6950 && in_solib_dynsym_resolve_code (stop_pc))))
6951 {
6952 /* Any solib trampoline code can be handled in reverse
6953 by simply continuing to single-step. We have already
6954 executed the solib function (backwards), and a few
6955 steps will take us back through the trampoline to the
6956 caller. */
6957 keep_going (ecs);
6958 return;
6959 }
6960
6961 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6962 {
6963 /* We're doing a "next".
6964
6965 Normal (forward) execution: set a breakpoint at the
6966 callee's return address (the address at which the caller
6967 will resume).
6968
6969 Reverse (backward) execution. set the step-resume
6970 breakpoint at the start of the function that we just
6971 stepped into (backwards), and continue to there. When we
6972 get there, we'll need to single-step back to the caller. */
6973
6974 if (execution_direction == EXEC_REVERSE)
6975 {
6976 /* If we're already at the start of the function, we've either
6977 just stepped backward into a single instruction function,
6978 or stepped back out of a signal handler to the first instruction
6979 of the function. Just keep going, which will single-step back
6980 to the caller. */
6981 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6982 {
6983 /* Normal function call return (static or dynamic). */
6984 symtab_and_line sr_sal;
6985 sr_sal.pc = ecs->stop_func_start;
6986 sr_sal.pspace = get_frame_program_space (frame);
6987 insert_step_resume_breakpoint_at_sal (gdbarch,
6988 sr_sal, null_frame_id);
6989 }
6990 }
6991 else
6992 insert_step_resume_breakpoint_at_caller (frame);
6993
6994 keep_going (ecs);
6995 return;
6996 }
6997
6998 /* If we are in a function call trampoline (a stub between the
6999 calling routine and the real function), locate the real
7000 function. That's what tells us (a) whether we want to step
7001 into it at all, and (b) what prologue we want to run to the
7002 end of, if we do step into it. */
7003 real_stop_pc = skip_language_trampoline (frame, stop_pc);
7004 if (real_stop_pc == 0)
7005 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
7006 if (real_stop_pc != 0)
7007 ecs->stop_func_start = real_stop_pc;
7008
7009 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
7010 {
7011 symtab_and_line sr_sal;
7012 sr_sal.pc = ecs->stop_func_start;
7013 sr_sal.pspace = get_frame_program_space (frame);
7014
7015 insert_step_resume_breakpoint_at_sal (gdbarch,
7016 sr_sal, null_frame_id);
7017 keep_going (ecs);
7018 return;
7019 }
7020
7021 /* If we have line number information for the function we are
7022 thinking of stepping into and the function isn't on the skip
7023 list, step into it.
7024
7025 If there are several symtabs at that PC (e.g. with include
7026 files), just want to know whether *any* of them have line
7027 numbers. find_pc_line handles this. */
7028 {
7029 struct symtab_and_line tmp_sal;
7030
7031 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
7032 if (tmp_sal.line != 0
7033 && !function_name_is_marked_for_skip (ecs->stop_func_name,
7034 tmp_sal)
7035 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
7036 {
7037 if (execution_direction == EXEC_REVERSE)
7038 handle_step_into_function_backward (gdbarch, ecs);
7039 else
7040 handle_step_into_function (gdbarch, ecs);
7041 return;
7042 }
7043 }
7044
7045 /* If we have no line number and the step-stop-if-no-debug is
7046 set, we stop the step so that the user has a chance to switch
7047 in assembly mode. */
7048 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7049 && step_stop_if_no_debug)
7050 {
7051 end_stepping_range (ecs);
7052 return;
7053 }
7054
7055 if (execution_direction == EXEC_REVERSE)
7056 {
7057 /* If we're already at the start of the function, we've either just
7058 stepped backward into a single instruction function without line
7059 number info, or stepped back out of a signal handler to the first
7060 instruction of the function without line number info. Just keep
7061 going, which will single-step back to the caller. */
7062 if (ecs->stop_func_start != stop_pc)
7063 {
7064 /* Set a breakpoint at callee's start address.
7065 From there we can step once and be back in the caller. */
7066 symtab_and_line sr_sal;
7067 sr_sal.pc = ecs->stop_func_start;
7068 sr_sal.pspace = get_frame_program_space (frame);
7069 insert_step_resume_breakpoint_at_sal (gdbarch,
7070 sr_sal, null_frame_id);
7071 }
7072 }
7073 else
7074 /* Set a breakpoint at callee's return address (the address
7075 at which the caller will resume). */
7076 insert_step_resume_breakpoint_at_caller (frame);
7077
7078 keep_going (ecs);
7079 return;
7080 }
7081
7082 /* Reverse stepping through solib trampolines. */
7083
7084 if (execution_direction == EXEC_REVERSE
7085 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7086 {
7087 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7088
7089 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7090 || (ecs->stop_func_start == 0
7091 && in_solib_dynsym_resolve_code (stop_pc)))
7092 {
7093 /* Any solib trampoline code can be handled in reverse
7094 by simply continuing to single-step. We have already
7095 executed the solib function (backwards), and a few
7096 steps will take us back through the trampoline to the
7097 caller. */
7098 keep_going (ecs);
7099 return;
7100 }
7101 else if (in_solib_dynsym_resolve_code (stop_pc))
7102 {
7103 /* Stepped backward into the solib dynsym resolver.
7104 Set a breakpoint at its start and continue, then
7105 one more step will take us out. */
7106 symtab_and_line sr_sal;
7107 sr_sal.pc = ecs->stop_func_start;
7108 sr_sal.pspace = get_frame_program_space (frame);
7109 insert_step_resume_breakpoint_at_sal (gdbarch,
7110 sr_sal, null_frame_id);
7111 keep_going (ecs);
7112 return;
7113 }
7114 }
7115
7116 /* This always returns the sal for the inner-most frame when we are in a
7117 stack of inlined frames, even if GDB actually believes that it is in a
7118 more outer frame. This is checked for below by calls to
7119 inline_skipped_frames. */
7120 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7121
7122 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7123 the trampoline processing logic, however, there are some trampolines
7124 that have no names, so we should do trampoline handling first. */
7125 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7126 && ecs->stop_func_name == NULL
7127 && stop_pc_sal.line == 0)
7128 {
7129 infrun_debug_printf ("stepped into undebuggable function");
7130
7131 /* The inferior just stepped into, or returned to, an
7132 undebuggable function (where there is no debugging information
7133 and no line number corresponding to the address where the
7134 inferior stopped). Since we want to skip this kind of code,
7135 we keep going until the inferior returns from this
7136 function - unless the user has asked us not to (via
7137 set step-mode) or we no longer know how to get back
7138 to the call site. */
7139 if (step_stop_if_no_debug
7140 || !frame_id_p (frame_unwind_caller_id (frame)))
7141 {
7142 /* If we have no line number and the step-stop-if-no-debug
7143 is set, we stop the step so that the user has a chance to
7144 switch in assembly mode. */
7145 end_stepping_range (ecs);
7146 return;
7147 }
7148 else
7149 {
7150 /* Set a breakpoint at callee's return address (the address
7151 at which the caller will resume). */
7152 insert_step_resume_breakpoint_at_caller (frame);
7153 keep_going (ecs);
7154 return;
7155 }
7156 }
7157
7158 if (ecs->event_thread->control.step_range_end == 1)
7159 {
7160 /* It is stepi or nexti. We always want to stop stepping after
7161 one instruction. */
7162 infrun_debug_printf ("stepi/nexti");
7163 end_stepping_range (ecs);
7164 return;
7165 }
7166
7167 if (stop_pc_sal.line == 0)
7168 {
7169 /* We have no line number information. That means to stop
7170 stepping (does this always happen right after one instruction,
7171 when we do "s" in a function with no line numbers,
7172 or can this happen as a result of a return or longjmp?). */
7173 infrun_debug_printf ("line number info");
7174 end_stepping_range (ecs);
7175 return;
7176 }
7177
7178 /* Look for "calls" to inlined functions, part one. If the inline
7179 frame machinery detected some skipped call sites, we have entered
7180 a new inline function. */
7181
7182 if (frame_id_eq (get_frame_id (get_current_frame ()),
7183 ecs->event_thread->control.step_frame_id)
7184 && inline_skipped_frames (ecs->event_thread))
7185 {
7186 infrun_debug_printf ("stepped into inlined function");
7187
7188 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7189
7190 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7191 {
7192 /* For "step", we're going to stop. But if the call site
7193 for this inlined function is on the same source line as
7194 we were previously stepping, go down into the function
7195 first. Otherwise stop at the call site. */
7196
7197 if (call_sal.line == ecs->event_thread->current_line
7198 && call_sal.symtab == ecs->event_thread->current_symtab)
7199 {
7200 step_into_inline_frame (ecs->event_thread);
7201 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7202 {
7203 keep_going (ecs);
7204 return;
7205 }
7206 }
7207
7208 end_stepping_range (ecs);
7209 return;
7210 }
7211 else
7212 {
7213 /* For "next", we should stop at the call site if it is on a
7214 different source line. Otherwise continue through the
7215 inlined function. */
7216 if (call_sal.line == ecs->event_thread->current_line
7217 && call_sal.symtab == ecs->event_thread->current_symtab)
7218 keep_going (ecs);
7219 else
7220 end_stepping_range (ecs);
7221 return;
7222 }
7223 }
7224
7225 /* Look for "calls" to inlined functions, part two. If we are still
7226 in the same real function we were stepping through, but we have
7227 to go further up to find the exact frame ID, we are stepping
7228 through a more inlined call beyond its call site. */
7229
7230 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7231 && !frame_id_eq (get_frame_id (get_current_frame ()),
7232 ecs->event_thread->control.step_frame_id)
7233 && stepped_in_from (get_current_frame (),
7234 ecs->event_thread->control.step_frame_id))
7235 {
7236 infrun_debug_printf ("stepping through inlined function");
7237
7238 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7239 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7240 keep_going (ecs);
7241 else
7242 end_stepping_range (ecs);
7243 return;
7244 }
7245
7246 bool refresh_step_info = true;
7247 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7248 && (ecs->event_thread->current_line != stop_pc_sal.line
7249 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7250 {
7251 /* We are at a different line. */
7252
7253 if (stop_pc_sal.is_stmt)
7254 {
7255 /* We are at the start of a statement.
7256
7257 So stop. Note that we don't stop if we step into the middle of a
7258 statement. That is said to make things like for (;;) statements
7259 work better. */
7260 infrun_debug_printf ("stepped to a different line");
7261 end_stepping_range (ecs);
7262 return;
7263 }
7264 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7265 ecs->event_thread->control.step_frame_id))
7266 {
7267 /* We are not at the start of a statement, and we have not changed
7268 frame.
7269
7270 We ignore this line table entry, and continue stepping forward,
7271 looking for a better place to stop. */
7272 refresh_step_info = false;
7273 infrun_debug_printf ("stepped to a different line, but "
7274 "it's not the start of a statement");
7275 }
7276 else
7277 {
7278 /* We are not the start of a statement, and we have changed frame.
7279
7280 We ignore this line table entry, and continue stepping forward,
7281 looking for a better place to stop. Keep refresh_step_info at
7282 true to note that the frame has changed, but ignore the line
7283 number to make sure we don't ignore a subsequent entry with the
7284 same line number. */
7285 stop_pc_sal.line = 0;
7286 infrun_debug_printf ("stepped to a different frame, but "
7287 "it's not the start of a statement");
7288 }
7289 }
7290
7291 /* We aren't done stepping.
7292
7293 Optimize by setting the stepping range to the line.
7294 (We might not be in the original line, but if we entered a
7295 new line in mid-statement, we continue stepping. This makes
7296 things like for(;;) statements work better.)
7297
7298 If we entered a SAL that indicates a non-statement line table entry,
7299 then we update the stepping range, but we don't update the step info,
7300 which includes things like the line number we are stepping away from.
7301 This means we will stop when we find a line table entry that is marked
7302 as is-statement, even if it matches the non-statement one we just
7303 stepped into. */
7304
7305 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7306 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7307 ecs->event_thread->control.may_range_step = 1;
7308 if (refresh_step_info)
7309 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7310
7311 infrun_debug_printf ("keep going");
7312 keep_going (ecs);
7313}
7314
7315static bool restart_stepped_thread (process_stratum_target *resume_target,
7316 ptid_t resume_ptid);
7317
7318/* In all-stop mode, if we're currently stepping but have stopped in
7319 some other thread, we may need to switch back to the stepped
7320 thread. Returns true we set the inferior running, false if we left
7321 it stopped (and the event needs further processing). */
7322
7323static bool
7324switch_back_to_stepped_thread (struct execution_control_state *ecs)
7325{
7326 if (!target_is_non_stop_p ())
7327 {
7328 /* If any thread is blocked on some internal breakpoint, and we
7329 simply need to step over that breakpoint to get it going
7330 again, do that first. */
7331
7332 /* However, if we see an event for the stepping thread, then we
7333 know all other threads have been moved past their breakpoints
7334 already. Let the caller check whether the step is finished,
7335 etc., before deciding to move it past a breakpoint. */
7336 if (ecs->event_thread->control.step_range_end != 0)
7337 return false;
7338
7339 /* Check if the current thread is blocked on an incomplete
7340 step-over, interrupted by a random signal. */
7341 if (ecs->event_thread->control.trap_expected
7342 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7343 {
7344 infrun_debug_printf
7345 ("need to finish step-over of [%s]",
7346 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7347 keep_going (ecs);
7348 return true;
7349 }
7350
7351 /* Check if the current thread is blocked by a single-step
7352 breakpoint of another thread. */
7353 if (ecs->hit_singlestep_breakpoint)
7354 {
7355 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7356 target_pid_to_str (ecs->ptid).c_str ());
7357 keep_going (ecs);
7358 return true;
7359 }
7360
7361 /* If this thread needs yet another step-over (e.g., stepping
7362 through a delay slot), do it first before moving on to
7363 another thread. */
7364 if (thread_still_needs_step_over (ecs->event_thread))
7365 {
7366 infrun_debug_printf
7367 ("thread [%s] still needs step-over",
7368 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7369 keep_going (ecs);
7370 return true;
7371 }
7372
7373 /* If scheduler locking applies even if not stepping, there's no
7374 need to walk over threads. Above we've checked whether the
7375 current thread is stepping. If some other thread not the
7376 event thread is stepping, then it must be that scheduler
7377 locking is not in effect. */
7378 if (schedlock_applies (ecs->event_thread))
7379 return false;
7380
7381 /* Otherwise, we no longer expect a trap in the current thread.
7382 Clear the trap_expected flag before switching back -- this is
7383 what keep_going does as well, if we call it. */
7384 ecs->event_thread->control.trap_expected = 0;
7385
7386 /* Likewise, clear the signal if it should not be passed. */
7387 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7388 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7389
7390 if (restart_stepped_thread (ecs->target, ecs->ptid))
7391 {
7392 prepare_to_wait (ecs);
7393 return true;
7394 }
7395
7396 switch_to_thread (ecs->event_thread);
7397 }
7398
7399 return false;
7400}
7401
7402/* Look for the thread that was stepping, and resume it.
7403 RESUME_TARGET / RESUME_PTID indicate the set of threads the caller
7404 is resuming. Return true if a thread was started, false
7405 otherwise. */
7406
7407static bool
7408restart_stepped_thread (process_stratum_target *resume_target,
7409 ptid_t resume_ptid)
7410{
7411 /* Do all pending step-overs before actually proceeding with
7412 step/next/etc. */
7413 if (start_step_over ())
7414 return true;
7415
7416 for (thread_info *tp : all_threads_safe ())
7417 {
7418 if (tp->state == THREAD_EXITED)
7419 continue;
7420
7421 if (tp->suspend.waitstatus_pending_p)
7422 continue;
7423
7424 /* Ignore threads of processes the caller is not
7425 resuming. */
7426 if (!sched_multi
7427 && (tp->inf->process_target () != resume_target
7428 || tp->inf->pid != resume_ptid.pid ()))
7429 continue;
7430
7431 if (tp->control.trap_expected)
7432 {
7433 infrun_debug_printf ("switching back to stepped thread (step-over)");
7434
7435 if (keep_going_stepped_thread (tp))
7436 return true;
7437 }
7438 }
7439
7440 for (thread_info *tp : all_threads_safe ())
7441 {
7442 if (tp->state == THREAD_EXITED)
7443 continue;
7444
7445 if (tp->suspend.waitstatus_pending_p)
7446 continue;
7447
7448 /* Ignore threads of processes the caller is not
7449 resuming. */
7450 if (!sched_multi
7451 && (tp->inf->process_target () != resume_target
7452 || tp->inf->pid != resume_ptid.pid ()))
7453 continue;
7454
7455 /* Did we find the stepping thread? */
7456 if (tp->control.step_range_end)
7457 {
7458 infrun_debug_printf ("switching back to stepped thread (stepping)");
7459
7460 if (keep_going_stepped_thread (tp))
7461 return true;
7462 }
7463 }
7464
7465 return false;
7466}
7467
7468/* See infrun.h. */
7469
7470void
7471restart_after_all_stop_detach (process_stratum_target *proc_target)
7472{
7473 /* Note we don't check target_is_non_stop_p() here, because the
7474 current inferior may no longer have a process_stratum target
7475 pushed, as we just detached. */
7476
7477 /* See if we have a THREAD_RUNNING thread that need to be
7478 re-resumed. If we have any thread that is already executing,
7479 then we don't need to resume the target -- it is already been
7480 resumed. With the remote target (in all-stop), it's even
7481 impossible to issue another resumption if the target is already
7482 resumed, until the target reports a stop. */
7483 for (thread_info *thr : all_threads (proc_target))
7484 {
7485 if (thr->state != THREAD_RUNNING)
7486 continue;
7487
7488 /* If we have any thread that is already executing, then we
7489 don't need to resume the target -- it is already been
7490 resumed. */
7491 if (thr->executing)
7492 return;
7493
7494 /* If we have a pending event to process, skip resuming the
7495 target and go straight to processing it. */
7496 if (thr->resumed && thr->suspend.waitstatus_pending_p)
7497 return;
7498 }
7499
7500 /* Alright, we need to re-resume the target. If a thread was
7501 stepping, we need to restart it stepping. */
7502 if (restart_stepped_thread (proc_target, minus_one_ptid))
7503 return;
7504
7505 /* Otherwise, find the first THREAD_RUNNING thread and resume
7506 it. */
7507 for (thread_info *thr : all_threads (proc_target))
7508 {
7509 if (thr->state != THREAD_RUNNING)
7510 continue;
7511
7512 execution_control_state ecs;
7513 reset_ecs (&ecs, thr);
7514 switch_to_thread (thr);
7515 keep_going (&ecs);
7516 return;
7517 }
7518}
7519
7520/* Set a previously stepped thread back to stepping. Returns true on
7521 success, false if the resume is not possible (e.g., the thread
7522 vanished). */
7523
7524static bool
7525keep_going_stepped_thread (struct thread_info *tp)
7526{
7527 struct frame_info *frame;
7528 struct execution_control_state ecss;
7529 struct execution_control_state *ecs = &ecss;
7530
7531 /* If the stepping thread exited, then don't try to switch back and
7532 resume it, which could fail in several different ways depending
7533 on the target. Instead, just keep going.
7534
7535 We can find a stepping dead thread in the thread list in two
7536 cases:
7537
7538 - The target supports thread exit events, and when the target
7539 tries to delete the thread from the thread list, inferior_ptid
7540 pointed at the exiting thread. In such case, calling
7541 delete_thread does not really remove the thread from the list;
7542 instead, the thread is left listed, with 'exited' state.
7543
7544 - The target's debug interface does not support thread exit
7545 events, and so we have no idea whatsoever if the previously
7546 stepping thread is still alive. For that reason, we need to
7547 synchronously query the target now. */
7548
7549 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7550 {
7551 infrun_debug_printf ("not resuming previously stepped thread, it has "
7552 "vanished");
7553
7554 delete_thread (tp);
7555 return false;
7556 }
7557
7558 infrun_debug_printf ("resuming previously stepped thread");
7559
7560 reset_ecs (ecs, tp);
7561 switch_to_thread (tp);
7562
7563 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7564 frame = get_current_frame ();
7565
7566 /* If the PC of the thread we were trying to single-step has
7567 changed, then that thread has trapped or been signaled, but the
7568 event has not been reported to GDB yet. Re-poll the target
7569 looking for this particular thread's event (i.e. temporarily
7570 enable schedlock) by:
7571
7572 - setting a break at the current PC
7573 - resuming that particular thread, only (by setting trap
7574 expected)
7575
7576 This prevents us continuously moving the single-step breakpoint
7577 forward, one instruction at a time, overstepping. */
7578
7579 if (tp->suspend.stop_pc != tp->prev_pc)
7580 {
7581 ptid_t resume_ptid;
7582
7583 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7584 paddress (target_gdbarch (), tp->prev_pc),
7585 paddress (target_gdbarch (), tp->suspend.stop_pc));
7586
7587 /* Clear the info of the previous step-over, as it's no longer
7588 valid (if the thread was trying to step over a breakpoint, it
7589 has already succeeded). It's what keep_going would do too,
7590 if we called it. Do this before trying to insert the sss
7591 breakpoint, otherwise if we were previously trying to step
7592 over this exact address in another thread, the breakpoint is
7593 skipped. */
7594 clear_step_over_info ();
7595 tp->control.trap_expected = 0;
7596
7597 insert_single_step_breakpoint (get_frame_arch (frame),
7598 get_frame_address_space (frame),
7599 tp->suspend.stop_pc);
7600
7601 tp->resumed = true;
7602 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7603 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
7604 }
7605 else
7606 {
7607 infrun_debug_printf ("expected thread still hasn't advanced");
7608
7609 keep_going_pass_signal (ecs);
7610 }
7611
7612 return true;
7613}
7614
7615/* Is thread TP in the middle of (software or hardware)
7616 single-stepping? (Note the result of this function must never be
7617 passed directly as target_resume's STEP parameter.) */
7618
7619static bool
7620currently_stepping (struct thread_info *tp)
7621{
7622 return ((tp->control.step_range_end
7623 && tp->control.step_resume_breakpoint == NULL)
7624 || tp->control.trap_expected
7625 || tp->stepped_breakpoint
7626 || bpstat_should_step ());
7627}
7628
7629/* Inferior has stepped into a subroutine call with source code that
7630 we should not step over. Do step to the first line of code in
7631 it. */
7632
7633static void
7634handle_step_into_function (struct gdbarch *gdbarch,
7635 struct execution_control_state *ecs)
7636{
7637 fill_in_stop_func (gdbarch, ecs);
7638
7639 compunit_symtab *cust
7640 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7641 if (cust != NULL && compunit_language (cust) != language_asm)
7642 ecs->stop_func_start
7643 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7644
7645 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7646 /* Use the step_resume_break to step until the end of the prologue,
7647 even if that involves jumps (as it seems to on the vax under
7648 4.2). */
7649 /* If the prologue ends in the middle of a source line, continue to
7650 the end of that source line (if it is still within the function).
7651 Otherwise, just go to end of prologue. */
7652 if (stop_func_sal.end
7653 && stop_func_sal.pc != ecs->stop_func_start
7654 && stop_func_sal.end < ecs->stop_func_end)
7655 ecs->stop_func_start = stop_func_sal.end;
7656
7657 /* Architectures which require breakpoint adjustment might not be able
7658 to place a breakpoint at the computed address. If so, the test
7659 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7660 ecs->stop_func_start to an address at which a breakpoint may be
7661 legitimately placed.
7662
7663 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7664 made, GDB will enter an infinite loop when stepping through
7665 optimized code consisting of VLIW instructions which contain
7666 subinstructions corresponding to different source lines. On
7667 FR-V, it's not permitted to place a breakpoint on any but the
7668 first subinstruction of a VLIW instruction. When a breakpoint is
7669 set, GDB will adjust the breakpoint address to the beginning of
7670 the VLIW instruction. Thus, we need to make the corresponding
7671 adjustment here when computing the stop address. */
7672
7673 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7674 {
7675 ecs->stop_func_start
7676 = gdbarch_adjust_breakpoint_address (gdbarch,
7677 ecs->stop_func_start);
7678 }
7679
7680 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7681 {
7682 /* We are already there: stop now. */
7683 end_stepping_range (ecs);
7684 return;
7685 }
7686 else
7687 {
7688 /* Put the step-breakpoint there and go until there. */
7689 symtab_and_line sr_sal;
7690 sr_sal.pc = ecs->stop_func_start;
7691 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7692 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7693
7694 /* Do not specify what the fp should be when we stop since on
7695 some machines the prologue is where the new fp value is
7696 established. */
7697 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7698
7699 /* And make sure stepping stops right away then. */
7700 ecs->event_thread->control.step_range_end
7701 = ecs->event_thread->control.step_range_start;
7702 }
7703 keep_going (ecs);
7704}
7705
7706/* Inferior has stepped backward into a subroutine call with source
7707 code that we should not step over. Do step to the beginning of the
7708 last line of code in it. */
7709
7710static void
7711handle_step_into_function_backward (struct gdbarch *gdbarch,
7712 struct execution_control_state *ecs)
7713{
7714 struct compunit_symtab *cust;
7715 struct symtab_and_line stop_func_sal;
7716
7717 fill_in_stop_func (gdbarch, ecs);
7718
7719 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7720 if (cust != NULL && compunit_language (cust) != language_asm)
7721 ecs->stop_func_start
7722 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7723
7724 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7725
7726 /* OK, we're just going to keep stepping here. */
7727 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7728 {
7729 /* We're there already. Just stop stepping now. */
7730 end_stepping_range (ecs);
7731 }
7732 else
7733 {
7734 /* Else just reset the step range and keep going.
7735 No step-resume breakpoint, they don't work for
7736 epilogues, which can have multiple entry paths. */
7737 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7738 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7739 keep_going (ecs);
7740 }
7741 return;
7742}
7743
7744/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7745 This is used to both functions and to skip over code. */
7746
7747static void
7748insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7749 struct symtab_and_line sr_sal,
7750 struct frame_id sr_id,
7751 enum bptype sr_type)
7752{
7753 /* There should never be more than one step-resume or longjmp-resume
7754 breakpoint per thread, so we should never be setting a new
7755 step_resume_breakpoint when one is already active. */
7756 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7757 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7758
7759 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7760 paddress (gdbarch, sr_sal.pc));
7761
7762 inferior_thread ()->control.step_resume_breakpoint
7763 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7764}
7765
7766void
7767insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7768 struct symtab_and_line sr_sal,
7769 struct frame_id sr_id)
7770{
7771 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7772 sr_sal, sr_id,
7773 bp_step_resume);
7774}
7775
7776/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7777 This is used to skip a potential signal handler.
7778
7779 This is called with the interrupted function's frame. The signal
7780 handler, when it returns, will resume the interrupted function at
7781 RETURN_FRAME.pc. */
7782
7783static void
7784insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7785{
7786 gdb_assert (return_frame != NULL);
7787
7788 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7789
7790 symtab_and_line sr_sal;
7791 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7792 sr_sal.section = find_pc_overlay (sr_sal.pc);
7793 sr_sal.pspace = get_frame_program_space (return_frame);
7794
7795 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7796 get_stack_frame_id (return_frame),
7797 bp_hp_step_resume);
7798}
7799
7800/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7801 is used to skip a function after stepping into it (for "next" or if
7802 the called function has no debugging information).
7803
7804 The current function has almost always been reached by single
7805 stepping a call or return instruction. NEXT_FRAME belongs to the
7806 current function, and the breakpoint will be set at the caller's
7807 resume address.
7808
7809 This is a separate function rather than reusing
7810 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7811 get_prev_frame, which may stop prematurely (see the implementation
7812 of frame_unwind_caller_id for an example). */
7813
7814static void
7815insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7816{
7817 /* We shouldn't have gotten here if we don't know where the call site
7818 is. */
7819 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7820
7821 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7822
7823 symtab_and_line sr_sal;
7824 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7825 frame_unwind_caller_pc (next_frame));
7826 sr_sal.section = find_pc_overlay (sr_sal.pc);
7827 sr_sal.pspace = frame_unwind_program_space (next_frame);
7828
7829 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7830 frame_unwind_caller_id (next_frame));
7831}
7832
7833/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7834 new breakpoint at the target of a jmp_buf. The handling of
7835 longjmp-resume uses the same mechanisms used for handling
7836 "step-resume" breakpoints. */
7837
7838static void
7839insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7840{
7841 /* There should never be more than one longjmp-resume breakpoint per
7842 thread, so we should never be setting a new
7843 longjmp_resume_breakpoint when one is already active. */
7844 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7845
7846 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7847 paddress (gdbarch, pc));
7848
7849 inferior_thread ()->control.exception_resume_breakpoint =
7850 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7851}
7852
7853/* Insert an exception resume breakpoint. TP is the thread throwing
7854 the exception. The block B is the block of the unwinder debug hook
7855 function. FRAME is the frame corresponding to the call to this
7856 function. SYM is the symbol of the function argument holding the
7857 target PC of the exception. */
7858
7859static void
7860insert_exception_resume_breakpoint (struct thread_info *tp,
7861 const struct block *b,
7862 struct frame_info *frame,
7863 struct symbol *sym)
7864{
7865 try
7866 {
7867 struct block_symbol vsym;
7868 struct value *value;
7869 CORE_ADDR handler;
7870 struct breakpoint *bp;
7871
7872 vsym = lookup_symbol_search_name (sym->search_name (),
7873 b, VAR_DOMAIN);
7874 value = read_var_value (vsym.symbol, vsym.block, frame);
7875 /* If the value was optimized out, revert to the old behavior. */
7876 if (! value_optimized_out (value))
7877 {
7878 handler = value_as_address (value);
7879
7880 infrun_debug_printf ("exception resume at %lx",
7881 (unsigned long) handler);
7882
7883 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7884 handler,
7885 bp_exception_resume).release ();
7886
7887 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7888 frame = NULL;
7889
7890 bp->thread = tp->global_num;
7891 inferior_thread ()->control.exception_resume_breakpoint = bp;
7892 }
7893 }
7894 catch (const gdb_exception_error &e)
7895 {
7896 /* We want to ignore errors here. */
7897 }
7898}
7899
7900/* A helper for check_exception_resume that sets an
7901 exception-breakpoint based on a SystemTap probe. */
7902
7903static void
7904insert_exception_resume_from_probe (struct thread_info *tp,
7905 const struct bound_probe *probe,
7906 struct frame_info *frame)
7907{
7908 struct value *arg_value;
7909 CORE_ADDR handler;
7910 struct breakpoint *bp;
7911
7912 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7913 if (!arg_value)
7914 return;
7915
7916 handler = value_as_address (arg_value);
7917
7918 infrun_debug_printf ("exception resume at %s",
7919 paddress (probe->objfile->arch (), handler));
7920
7921 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7922 handler, bp_exception_resume).release ();
7923 bp->thread = tp->global_num;
7924 inferior_thread ()->control.exception_resume_breakpoint = bp;
7925}
7926
7927/* This is called when an exception has been intercepted. Check to
7928 see whether the exception's destination is of interest, and if so,
7929 set an exception resume breakpoint there. */
7930
7931static void
7932check_exception_resume (struct execution_control_state *ecs,
7933 struct frame_info *frame)
7934{
7935 struct bound_probe probe;
7936 struct symbol *func;
7937
7938 /* First see if this exception unwinding breakpoint was set via a
7939 SystemTap probe point. If so, the probe has two arguments: the
7940 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7941 set a breakpoint there. */
7942 probe = find_probe_by_pc (get_frame_pc (frame));
7943 if (probe.prob)
7944 {
7945 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7946 return;
7947 }
7948
7949 func = get_frame_function (frame);
7950 if (!func)
7951 return;
7952
7953 try
7954 {
7955 const struct block *b;
7956 struct block_iterator iter;
7957 struct symbol *sym;
7958 int argno = 0;
7959
7960 /* The exception breakpoint is a thread-specific breakpoint on
7961 the unwinder's debug hook, declared as:
7962
7963 void _Unwind_DebugHook (void *cfa, void *handler);
7964
7965 The CFA argument indicates the frame to which control is
7966 about to be transferred. HANDLER is the destination PC.
7967
7968 We ignore the CFA and set a temporary breakpoint at HANDLER.
7969 This is not extremely efficient but it avoids issues in gdb
7970 with computing the DWARF CFA, and it also works even in weird
7971 cases such as throwing an exception from inside a signal
7972 handler. */
7973
7974 b = SYMBOL_BLOCK_VALUE (func);
7975 ALL_BLOCK_SYMBOLS (b, iter, sym)
7976 {
7977 if (!SYMBOL_IS_ARGUMENT (sym))
7978 continue;
7979
7980 if (argno == 0)
7981 ++argno;
7982 else
7983 {
7984 insert_exception_resume_breakpoint (ecs->event_thread,
7985 b, frame, sym);
7986 break;
7987 }
7988 }
7989 }
7990 catch (const gdb_exception_error &e)
7991 {
7992 }
7993}
7994
7995static void
7996stop_waiting (struct execution_control_state *ecs)
7997{
7998 infrun_debug_printf ("stop_waiting");
7999
8000 /* Let callers know we don't want to wait for the inferior anymore. */
8001 ecs->wait_some_more = 0;
8002
8003 /* If all-stop, but there exists a non-stop target, stop all
8004 threads now that we're presenting the stop to the user. */
8005 if (!non_stop && exists_non_stop_target ())
8006 stop_all_threads ();
8007}
8008
8009/* Like keep_going, but passes the signal to the inferior, even if the
8010 signal is set to nopass. */
8011
8012static void
8013keep_going_pass_signal (struct execution_control_state *ecs)
8014{
8015 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
8016 gdb_assert (!ecs->event_thread->resumed);
8017
8018 /* Save the pc before execution, to compare with pc after stop. */
8019 ecs->event_thread->prev_pc
8020 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
8021
8022 if (ecs->event_thread->control.trap_expected)
8023 {
8024 struct thread_info *tp = ecs->event_thread;
8025
8026 infrun_debug_printf ("%s has trap_expected set, "
8027 "resuming to collect trap",
8028 target_pid_to_str (tp->ptid).c_str ());
8029
8030 /* We haven't yet gotten our trap, and either: intercepted a
8031 non-signal event (e.g., a fork); or took a signal which we
8032 are supposed to pass through to the inferior. Simply
8033 continue. */
8034 resume (ecs->event_thread->suspend.stop_signal);
8035 }
8036 else if (step_over_info_valid_p ())
8037 {
8038 /* Another thread is stepping over a breakpoint in-line. If
8039 this thread needs a step-over too, queue the request. In
8040 either case, this resume must be deferred for later. */
8041 struct thread_info *tp = ecs->event_thread;
8042
8043 if (ecs->hit_singlestep_breakpoint
8044 || thread_still_needs_step_over (tp))
8045 {
8046 infrun_debug_printf ("step-over already in progress: "
8047 "step-over for %s deferred",
8048 target_pid_to_str (tp->ptid).c_str ());
8049 global_thread_step_over_chain_enqueue (tp);
8050 }
8051 else
8052 {
8053 infrun_debug_printf ("step-over in progress: resume of %s deferred",
8054 target_pid_to_str (tp->ptid).c_str ());
8055 }
8056 }
8057 else
8058 {
8059 struct regcache *regcache = get_current_regcache ();
8060 int remove_bp;
8061 int remove_wps;
8062 step_over_what step_what;
8063
8064 /* Either the trap was not expected, but we are continuing
8065 anyway (if we got a signal, the user asked it be passed to
8066 the child)
8067 -- or --
8068 We got our expected trap, but decided we should resume from
8069 it.
8070
8071 We're going to run this baby now!
8072
8073 Note that insert_breakpoints won't try to re-insert
8074 already inserted breakpoints. Therefore, we don't
8075 care if breakpoints were already inserted, or not. */
8076
8077 /* If we need to step over a breakpoint, and we're not using
8078 displaced stepping to do so, insert all breakpoints
8079 (watchpoints, etc.) but the one we're stepping over, step one
8080 instruction, and then re-insert the breakpoint when that step
8081 is finished. */
8082
8083 step_what = thread_still_needs_step_over (ecs->event_thread);
8084
8085 remove_bp = (ecs->hit_singlestep_breakpoint
8086 || (step_what & STEP_OVER_BREAKPOINT));
8087 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
8088
8089 /* We can't use displaced stepping if we need to step past a
8090 watchpoint. The instruction copied to the scratch pad would
8091 still trigger the watchpoint. */
8092 if (remove_bp
8093 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
8094 {
8095 set_step_over_info (regcache->aspace (),
8096 regcache_read_pc (regcache), remove_wps,
8097 ecs->event_thread->global_num);
8098 }
8099 else if (remove_wps)
8100 set_step_over_info (NULL, 0, remove_wps, -1);
8101
8102 /* If we now need to do an in-line step-over, we need to stop
8103 all other threads. Note this must be done before
8104 insert_breakpoints below, because that removes the breakpoint
8105 we're about to step over, otherwise other threads could miss
8106 it. */
8107 if (step_over_info_valid_p () && target_is_non_stop_p ())
8108 stop_all_threads ();
8109
8110 /* Stop stepping if inserting breakpoints fails. */
8111 try
8112 {
8113 insert_breakpoints ();
8114 }
8115 catch (const gdb_exception_error &e)
8116 {
8117 exception_print (gdb_stderr, e);
8118 stop_waiting (ecs);
8119 clear_step_over_info ();
8120 return;
8121 }
8122
8123 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
8124
8125 resume (ecs->event_thread->suspend.stop_signal);
8126 }
8127
8128 prepare_to_wait (ecs);
8129}
8130
8131/* Called when we should continue running the inferior, because the
8132 current event doesn't cause a user visible stop. This does the
8133 resuming part; waiting for the next event is done elsewhere. */
8134
8135static void
8136keep_going (struct execution_control_state *ecs)
8137{
8138 if (ecs->event_thread->control.trap_expected
8139 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8140 ecs->event_thread->control.trap_expected = 0;
8141
8142 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8143 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8144 keep_going_pass_signal (ecs);
8145}
8146
8147/* This function normally comes after a resume, before
8148 handle_inferior_event exits. It takes care of any last bits of
8149 housekeeping, and sets the all-important wait_some_more flag. */
8150
8151static void
8152prepare_to_wait (struct execution_control_state *ecs)
8153{
8154 infrun_debug_printf ("prepare_to_wait");
8155
8156 ecs->wait_some_more = 1;
8157
8158 /* If the target can't async, emulate it by marking the infrun event
8159 handler such that as soon as we get back to the event-loop, we
8160 immediately end up in fetch_inferior_event again calling
8161 target_wait. */
8162 if (!target_can_async_p ())
8163 mark_infrun_async_event_handler ();
8164}
8165
8166/* We are done with the step range of a step/next/si/ni command.
8167 Called once for each n of a "step n" operation. */
8168
8169static void
8170end_stepping_range (struct execution_control_state *ecs)
8171{
8172 ecs->event_thread->control.stop_step = 1;
8173 stop_waiting (ecs);
8174}
8175
8176/* Several print_*_reason functions to print why the inferior has stopped.
8177 We always print something when the inferior exits, or receives a signal.
8178 The rest of the cases are dealt with later on in normal_stop and
8179 print_it_typical. Ideally there should be a call to one of these
8180 print_*_reason functions functions from handle_inferior_event each time
8181 stop_waiting is called.
8182
8183 Note that we don't call these directly, instead we delegate that to
8184 the interpreters, through observers. Interpreters then call these
8185 with whatever uiout is right. */
8186
8187void
8188print_end_stepping_range_reason (struct ui_out *uiout)
8189{
8190 /* For CLI-like interpreters, print nothing. */
8191
8192 if (uiout->is_mi_like_p ())
8193 {
8194 uiout->field_string ("reason",
8195 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8196 }
8197}
8198
8199void
8200print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8201{
8202 annotate_signalled ();
8203 if (uiout->is_mi_like_p ())
8204 uiout->field_string
8205 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8206 uiout->text ("\nProgram terminated with signal ");
8207 annotate_signal_name ();
8208 uiout->field_string ("signal-name",
8209 gdb_signal_to_name (siggnal));
8210 annotate_signal_name_end ();
8211 uiout->text (", ");
8212 annotate_signal_string ();
8213 uiout->field_string ("signal-meaning",
8214 gdb_signal_to_string (siggnal));
8215 annotate_signal_string_end ();
8216 uiout->text (".\n");
8217 uiout->text ("The program no longer exists.\n");
8218}
8219
8220void
8221print_exited_reason (struct ui_out *uiout, int exitstatus)
8222{
8223 struct inferior *inf = current_inferior ();
8224 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8225
8226 annotate_exited (exitstatus);
8227 if (exitstatus)
8228 {
8229 if (uiout->is_mi_like_p ())
8230 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8231 std::string exit_code_str
8232 = string_printf ("0%o", (unsigned int) exitstatus);
8233 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8234 plongest (inf->num), pidstr.c_str (),
8235 string_field ("exit-code", exit_code_str.c_str ()));
8236 }
8237 else
8238 {
8239 if (uiout->is_mi_like_p ())
8240 uiout->field_string
8241 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8242 uiout->message ("[Inferior %s (%s) exited normally]\n",
8243 plongest (inf->num), pidstr.c_str ());
8244 }
8245}
8246
8247void
8248print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8249{
8250 struct thread_info *thr = inferior_thread ();
8251
8252 annotate_signal ();
8253
8254 if (uiout->is_mi_like_p ())
8255 ;
8256 else if (show_thread_that_caused_stop ())
8257 {
8258 const char *name;
8259
8260 uiout->text ("\nThread ");
8261 uiout->field_string ("thread-id", print_thread_id (thr));
8262
8263 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8264 if (name != NULL)
8265 {
8266 uiout->text (" \"");
8267 uiout->field_string ("name", name);
8268 uiout->text ("\"");
8269 }
8270 }
8271 else
8272 uiout->text ("\nProgram");
8273
8274 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8275 uiout->text (" stopped");
8276 else
8277 {
8278 uiout->text (" received signal ");
8279 annotate_signal_name ();
8280 if (uiout->is_mi_like_p ())
8281 uiout->field_string
8282 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8283 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8284 annotate_signal_name_end ();
8285 uiout->text (", ");
8286 annotate_signal_string ();
8287 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8288
8289 struct regcache *regcache = get_current_regcache ();
8290 struct gdbarch *gdbarch = regcache->arch ();
8291 if (gdbarch_report_signal_info_p (gdbarch))
8292 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8293
8294 annotate_signal_string_end ();
8295 }
8296 uiout->text (".\n");
8297}
8298
8299void
8300print_no_history_reason (struct ui_out *uiout)
8301{
8302 uiout->text ("\nNo more reverse-execution history.\n");
8303}
8304
8305/* Print current location without a level number, if we have changed
8306 functions or hit a breakpoint. Print source line if we have one.
8307 bpstat_print contains the logic deciding in detail what to print,
8308 based on the event(s) that just occurred. */
8309
8310static void
8311print_stop_location (struct target_waitstatus *ws)
8312{
8313 int bpstat_ret;
8314 enum print_what source_flag;
8315 int do_frame_printing = 1;
8316 struct thread_info *tp = inferior_thread ();
8317
8318 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8319 switch (bpstat_ret)
8320 {
8321 case PRINT_UNKNOWN:
8322 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8323 should) carry around the function and does (or should) use
8324 that when doing a frame comparison. */
8325 if (tp->control.stop_step
8326 && frame_id_eq (tp->control.step_frame_id,
8327 get_frame_id (get_current_frame ()))
8328 && (tp->control.step_start_function
8329 == find_pc_function (tp->suspend.stop_pc)))
8330 {
8331 /* Finished step, just print source line. */
8332 source_flag = SRC_LINE;
8333 }
8334 else
8335 {
8336 /* Print location and source line. */
8337 source_flag = SRC_AND_LOC;
8338 }
8339 break;
8340 case PRINT_SRC_AND_LOC:
8341 /* Print location and source line. */
8342 source_flag = SRC_AND_LOC;
8343 break;
8344 case PRINT_SRC_ONLY:
8345 source_flag = SRC_LINE;
8346 break;
8347 case PRINT_NOTHING:
8348 /* Something bogus. */
8349 source_flag = SRC_LINE;
8350 do_frame_printing = 0;
8351 break;
8352 default:
8353 internal_error (__FILE__, __LINE__, _("Unknown value."));
8354 }
8355
8356 /* The behavior of this routine with respect to the source
8357 flag is:
8358 SRC_LINE: Print only source line
8359 LOCATION: Print only location
8360 SRC_AND_LOC: Print location and source line. */
8361 if (do_frame_printing)
8362 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8363}
8364
8365/* See infrun.h. */
8366
8367void
8368print_stop_event (struct ui_out *uiout, bool displays)
8369{
8370 struct target_waitstatus last;
8371 struct thread_info *tp;
8372
8373 get_last_target_status (nullptr, nullptr, &last);
8374
8375 {
8376 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8377
8378 print_stop_location (&last);
8379
8380 /* Display the auto-display expressions. */
8381 if (displays)
8382 do_displays ();
8383 }
8384
8385 tp = inferior_thread ();
8386 if (tp->thread_fsm != NULL
8387 && tp->thread_fsm->finished_p ())
8388 {
8389 struct return_value_info *rv;
8390
8391 rv = tp->thread_fsm->return_value ();
8392 if (rv != NULL)
8393 print_return_value (uiout, rv);
8394 }
8395}
8396
8397/* See infrun.h. */
8398
8399void
8400maybe_remove_breakpoints (void)
8401{
8402 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
8403 {
8404 if (remove_breakpoints ())
8405 {
8406 target_terminal::ours_for_output ();
8407 printf_filtered (_("Cannot remove breakpoints because "
8408 "program is no longer writable.\nFurther "
8409 "execution is probably impossible.\n"));
8410 }
8411 }
8412}
8413
8414/* The execution context that just caused a normal stop. */
8415
8416struct stop_context
8417{
8418 stop_context ();
8419
8420 DISABLE_COPY_AND_ASSIGN (stop_context);
8421
8422 bool changed () const;
8423
8424 /* The stop ID. */
8425 ULONGEST stop_id;
8426
8427 /* The event PTID. */
8428
8429 ptid_t ptid;
8430
8431 /* If stopp for a thread event, this is the thread that caused the
8432 stop. */
8433 thread_info_ref thread;
8434
8435 /* The inferior that caused the stop. */
8436 int inf_num;
8437};
8438
8439/* Initializes a new stop context. If stopped for a thread event, this
8440 takes a strong reference to the thread. */
8441
8442stop_context::stop_context ()
8443{
8444 stop_id = get_stop_id ();
8445 ptid = inferior_ptid;
8446 inf_num = current_inferior ()->num;
8447
8448 if (inferior_ptid != null_ptid)
8449 {
8450 /* Take a strong reference so that the thread can't be deleted
8451 yet. */
8452 thread = thread_info_ref::new_reference (inferior_thread ());
8453 }
8454}
8455
8456/* Return true if the current context no longer matches the saved stop
8457 context. */
8458
8459bool
8460stop_context::changed () const
8461{
8462 if (ptid != inferior_ptid)
8463 return true;
8464 if (inf_num != current_inferior ()->num)
8465 return true;
8466 if (thread != NULL && thread->state != THREAD_STOPPED)
8467 return true;
8468 if (get_stop_id () != stop_id)
8469 return true;
8470 return false;
8471}
8472
8473/* See infrun.h. */
8474
8475int
8476normal_stop (void)
8477{
8478 struct target_waitstatus last;
8479
8480 get_last_target_status (nullptr, nullptr, &last);
8481
8482 new_stop_id ();
8483
8484 /* If an exception is thrown from this point on, make sure to
8485 propagate GDB's knowledge of the executing state to the
8486 frontend/user running state. A QUIT is an easy exception to see
8487 here, so do this before any filtered output. */
8488
8489 ptid_t finish_ptid = null_ptid;
8490
8491 if (!non_stop)
8492 finish_ptid = minus_one_ptid;
8493 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8494 || last.kind == TARGET_WAITKIND_EXITED)
8495 {
8496 /* On some targets, we may still have live threads in the
8497 inferior when we get a process exit event. E.g., for
8498 "checkpoint", when the current checkpoint/fork exits,
8499 linux-fork.c automatically switches to another fork from
8500 within target_mourn_inferior. */
8501 if (inferior_ptid != null_ptid)
8502 finish_ptid = ptid_t (inferior_ptid.pid ());
8503 }
8504 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8505 finish_ptid = inferior_ptid;
8506
8507 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8508 if (finish_ptid != null_ptid)
8509 {
8510 maybe_finish_thread_state.emplace
8511 (user_visible_resume_target (finish_ptid), finish_ptid);
8512 }
8513
8514 /* As we're presenting a stop, and potentially removing breakpoints,
8515 update the thread list so we can tell whether there are threads
8516 running on the target. With target remote, for example, we can
8517 only learn about new threads when we explicitly update the thread
8518 list. Do this before notifying the interpreters about signal
8519 stops, end of stepping ranges, etc., so that the "new thread"
8520 output is emitted before e.g., "Program received signal FOO",
8521 instead of after. */
8522 update_thread_list ();
8523
8524 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8525 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8526
8527 /* As with the notification of thread events, we want to delay
8528 notifying the user that we've switched thread context until
8529 the inferior actually stops.
8530
8531 There's no point in saying anything if the inferior has exited.
8532 Note that SIGNALLED here means "exited with a signal", not
8533 "received a signal".
8534
8535 Also skip saying anything in non-stop mode. In that mode, as we
8536 don't want GDB to switch threads behind the user's back, to avoid
8537 races where the user is typing a command to apply to thread x,
8538 but GDB switches to thread y before the user finishes entering
8539 the command, fetch_inferior_event installs a cleanup to restore
8540 the current thread back to the thread the user had selected right
8541 after this event is handled, so we're not really switching, only
8542 informing of a stop. */
8543 if (!non_stop
8544 && previous_inferior_ptid != inferior_ptid
8545 && target_has_execution ()
8546 && last.kind != TARGET_WAITKIND_SIGNALLED
8547 && last.kind != TARGET_WAITKIND_EXITED
8548 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8549 {
8550 SWITCH_THRU_ALL_UIS ()
8551 {
8552 target_terminal::ours_for_output ();
8553 printf_filtered (_("[Switching to %s]\n"),
8554 target_pid_to_str (inferior_ptid).c_str ());
8555 annotate_thread_changed ();
8556 }
8557 previous_inferior_ptid = inferior_ptid;
8558 }
8559
8560 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8561 {
8562 SWITCH_THRU_ALL_UIS ()
8563 if (current_ui->prompt_state == PROMPT_BLOCKED)
8564 {
8565 target_terminal::ours_for_output ();
8566 printf_filtered (_("No unwaited-for children left.\n"));
8567 }
8568 }
8569
8570 /* Note: this depends on the update_thread_list call above. */
8571 maybe_remove_breakpoints ();
8572
8573 /* If an auto-display called a function and that got a signal,
8574 delete that auto-display to avoid an infinite recursion. */
8575
8576 if (stopped_by_random_signal)
8577 disable_current_display ();
8578
8579 SWITCH_THRU_ALL_UIS ()
8580 {
8581 async_enable_stdin ();
8582 }
8583
8584 /* Let the user/frontend see the threads as stopped. */
8585 maybe_finish_thread_state.reset ();
8586
8587 /* Select innermost stack frame - i.e., current frame is frame 0,
8588 and current location is based on that. Handle the case where the
8589 dummy call is returning after being stopped. E.g. the dummy call
8590 previously hit a breakpoint. (If the dummy call returns
8591 normally, we won't reach here.) Do this before the stop hook is
8592 run, so that it doesn't get to see the temporary dummy frame,
8593 which is not where we'll present the stop. */
8594 if (has_stack_frames ())
8595 {
8596 if (stop_stack_dummy == STOP_STACK_DUMMY)
8597 {
8598 /* Pop the empty frame that contains the stack dummy. This
8599 also restores inferior state prior to the call (struct
8600 infcall_suspend_state). */
8601 struct frame_info *frame = get_current_frame ();
8602
8603 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8604 frame_pop (frame);
8605 /* frame_pop calls reinit_frame_cache as the last thing it
8606 does which means there's now no selected frame. */
8607 }
8608
8609 select_frame (get_current_frame ());
8610
8611 /* Set the current source location. */
8612 set_current_sal_from_frame (get_current_frame ());
8613 }
8614
8615 /* Look up the hook_stop and run it (CLI internally handles problem
8616 of stop_command's pre-hook not existing). */
8617 if (stop_command != NULL)
8618 {
8619 stop_context saved_context;
8620
8621 try
8622 {
8623 execute_cmd_pre_hook (stop_command);
8624 }
8625 catch (const gdb_exception &ex)
8626 {
8627 exception_fprintf (gdb_stderr, ex,
8628 "Error while running hook_stop:\n");
8629 }
8630
8631 /* If the stop hook resumes the target, then there's no point in
8632 trying to notify about the previous stop; its context is
8633 gone. Likewise if the command switches thread or inferior --
8634 the observers would print a stop for the wrong
8635 thread/inferior. */
8636 if (saved_context.changed ())
8637 return 1;
8638 }
8639
8640 /* Notify observers about the stop. This is where the interpreters
8641 print the stop event. */
8642 if (inferior_ptid != null_ptid)
8643 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8644 stop_print_frame);
8645 else
8646 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8647
8648 annotate_stopped ();
8649
8650 if (target_has_execution ())
8651 {
8652 if (last.kind != TARGET_WAITKIND_SIGNALLED
8653 && last.kind != TARGET_WAITKIND_EXITED
8654 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8655 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8656 Delete any breakpoint that is to be deleted at the next stop. */
8657 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8658 }
8659
8660 /* Try to get rid of automatically added inferiors that are no
8661 longer needed. Keeping those around slows down things linearly.
8662 Note that this never removes the current inferior. */
8663 prune_inferiors ();
8664
8665 return 0;
8666}
8667\f
8668int
8669signal_stop_state (int signo)
8670{
8671 return signal_stop[signo];
8672}
8673
8674int
8675signal_print_state (int signo)
8676{
8677 return signal_print[signo];
8678}
8679
8680int
8681signal_pass_state (int signo)
8682{
8683 return signal_program[signo];
8684}
8685
8686static void
8687signal_cache_update (int signo)
8688{
8689 if (signo == -1)
8690 {
8691 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8692 signal_cache_update (signo);
8693
8694 return;
8695 }
8696
8697 signal_pass[signo] = (signal_stop[signo] == 0
8698 && signal_print[signo] == 0
8699 && signal_program[signo] == 1
8700 && signal_catch[signo] == 0);
8701}
8702
8703int
8704signal_stop_update (int signo, int state)
8705{
8706 int ret = signal_stop[signo];
8707
8708 signal_stop[signo] = state;
8709 signal_cache_update (signo);
8710 return ret;
8711}
8712
8713int
8714signal_print_update (int signo, int state)
8715{
8716 int ret = signal_print[signo];
8717
8718 signal_print[signo] = state;
8719 signal_cache_update (signo);
8720 return ret;
8721}
8722
8723int
8724signal_pass_update (int signo, int state)
8725{
8726 int ret = signal_program[signo];
8727
8728 signal_program[signo] = state;
8729 signal_cache_update (signo);
8730 return ret;
8731}
8732
8733/* Update the global 'signal_catch' from INFO and notify the
8734 target. */
8735
8736void
8737signal_catch_update (const unsigned int *info)
8738{
8739 int i;
8740
8741 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8742 signal_catch[i] = info[i] > 0;
8743 signal_cache_update (-1);
8744 target_pass_signals (signal_pass);
8745}
8746
8747static void
8748sig_print_header (void)
8749{
8750 printf_filtered (_("Signal Stop\tPrint\tPass "
8751 "to program\tDescription\n"));
8752}
8753
8754static void
8755sig_print_info (enum gdb_signal oursig)
8756{
8757 const char *name = gdb_signal_to_name (oursig);
8758 int name_padding = 13 - strlen (name);
8759
8760 if (name_padding <= 0)
8761 name_padding = 0;
8762
8763 printf_filtered ("%s", name);
8764 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8765 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8766 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8767 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8768 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8769}
8770
8771/* Specify how various signals in the inferior should be handled. */
8772
8773static void
8774handle_command (const char *args, int from_tty)
8775{
8776 int digits, wordlen;
8777 int sigfirst, siglast;
8778 enum gdb_signal oursig;
8779 int allsigs;
8780
8781 if (args == NULL)
8782 {
8783 error_no_arg (_("signal to handle"));
8784 }
8785
8786 /* Allocate and zero an array of flags for which signals to handle. */
8787
8788 const size_t nsigs = GDB_SIGNAL_LAST;
8789 unsigned char sigs[nsigs] {};
8790
8791 /* Break the command line up into args. */
8792
8793 gdb_argv built_argv (args);
8794
8795 /* Walk through the args, looking for signal oursigs, signal names, and
8796 actions. Signal numbers and signal names may be interspersed with
8797 actions, with the actions being performed for all signals cumulatively
8798 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8799
8800 for (char *arg : built_argv)
8801 {
8802 wordlen = strlen (arg);
8803 for (digits = 0; isdigit (arg[digits]); digits++)
8804 {;
8805 }
8806 allsigs = 0;
8807 sigfirst = siglast = -1;
8808
8809 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8810 {
8811 /* Apply action to all signals except those used by the
8812 debugger. Silently skip those. */
8813 allsigs = 1;
8814 sigfirst = 0;
8815 siglast = nsigs - 1;
8816 }
8817 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8818 {
8819 SET_SIGS (nsigs, sigs, signal_stop);
8820 SET_SIGS (nsigs, sigs, signal_print);
8821 }
8822 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8823 {
8824 UNSET_SIGS (nsigs, sigs, signal_program);
8825 }
8826 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8827 {
8828 SET_SIGS (nsigs, sigs, signal_print);
8829 }
8830 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8831 {
8832 SET_SIGS (nsigs, sigs, signal_program);
8833 }
8834 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8835 {
8836 UNSET_SIGS (nsigs, sigs, signal_stop);
8837 }
8838 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8839 {
8840 SET_SIGS (nsigs, sigs, signal_program);
8841 }
8842 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8843 {
8844 UNSET_SIGS (nsigs, sigs, signal_print);
8845 UNSET_SIGS (nsigs, sigs, signal_stop);
8846 }
8847 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8848 {
8849 UNSET_SIGS (nsigs, sigs, signal_program);
8850 }
8851 else if (digits > 0)
8852 {
8853 /* It is numeric. The numeric signal refers to our own
8854 internal signal numbering from target.h, not to host/target
8855 signal number. This is a feature; users really should be
8856 using symbolic names anyway, and the common ones like
8857 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8858
8859 sigfirst = siglast = (int)
8860 gdb_signal_from_command (atoi (arg));
8861 if (arg[digits] == '-')
8862 {
8863 siglast = (int)
8864 gdb_signal_from_command (atoi (arg + digits + 1));
8865 }
8866 if (sigfirst > siglast)
8867 {
8868 /* Bet he didn't figure we'd think of this case... */
8869 std::swap (sigfirst, siglast);
8870 }
8871 }
8872 else
8873 {
8874 oursig = gdb_signal_from_name (arg);
8875 if (oursig != GDB_SIGNAL_UNKNOWN)
8876 {
8877 sigfirst = siglast = (int) oursig;
8878 }
8879 else
8880 {
8881 /* Not a number and not a recognized flag word => complain. */
8882 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8883 }
8884 }
8885
8886 /* If any signal numbers or symbol names were found, set flags for
8887 which signals to apply actions to. */
8888
8889 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8890 {
8891 switch ((enum gdb_signal) signum)
8892 {
8893 case GDB_SIGNAL_TRAP:
8894 case GDB_SIGNAL_INT:
8895 if (!allsigs && !sigs[signum])
8896 {
8897 if (query (_("%s is used by the debugger.\n\
8898Are you sure you want to change it? "),
8899 gdb_signal_to_name ((enum gdb_signal) signum)))
8900 {
8901 sigs[signum] = 1;
8902 }
8903 else
8904 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8905 }
8906 break;
8907 case GDB_SIGNAL_0:
8908 case GDB_SIGNAL_DEFAULT:
8909 case GDB_SIGNAL_UNKNOWN:
8910 /* Make sure that "all" doesn't print these. */
8911 break;
8912 default:
8913 sigs[signum] = 1;
8914 break;
8915 }
8916 }
8917 }
8918
8919 for (int signum = 0; signum < nsigs; signum++)
8920 if (sigs[signum])
8921 {
8922 signal_cache_update (-1);
8923 target_pass_signals (signal_pass);
8924 target_program_signals (signal_program);
8925
8926 if (from_tty)
8927 {
8928 /* Show the results. */
8929 sig_print_header ();
8930 for (; signum < nsigs; signum++)
8931 if (sigs[signum])
8932 sig_print_info ((enum gdb_signal) signum);
8933 }
8934
8935 break;
8936 }
8937}
8938
8939/* Complete the "handle" command. */
8940
8941static void
8942handle_completer (struct cmd_list_element *ignore,
8943 completion_tracker &tracker,
8944 const char *text, const char *word)
8945{
8946 static const char * const keywords[] =
8947 {
8948 "all",
8949 "stop",
8950 "ignore",
8951 "print",
8952 "pass",
8953 "nostop",
8954 "noignore",
8955 "noprint",
8956 "nopass",
8957 NULL,
8958 };
8959
8960 signal_completer (ignore, tracker, text, word);
8961 complete_on_enum (tracker, keywords, word, word);
8962}
8963
8964enum gdb_signal
8965gdb_signal_from_command (int num)
8966{
8967 if (num >= 1 && num <= 15)
8968 return (enum gdb_signal) num;
8969 error (_("Only signals 1-15 are valid as numeric signals.\n\
8970Use \"info signals\" for a list of symbolic signals."));
8971}
8972
8973/* Print current contents of the tables set by the handle command.
8974 It is possible we should just be printing signals actually used
8975 by the current target (but for things to work right when switching
8976 targets, all signals should be in the signal tables). */
8977
8978static void
8979info_signals_command (const char *signum_exp, int from_tty)
8980{
8981 enum gdb_signal oursig;
8982
8983 sig_print_header ();
8984
8985 if (signum_exp)
8986 {
8987 /* First see if this is a symbol name. */
8988 oursig = gdb_signal_from_name (signum_exp);
8989 if (oursig == GDB_SIGNAL_UNKNOWN)
8990 {
8991 /* No, try numeric. */
8992 oursig =
8993 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8994 }
8995 sig_print_info (oursig);
8996 return;
8997 }
8998
8999 printf_filtered ("\n");
9000 /* These ugly casts brought to you by the native VAX compiler. */
9001 for (oursig = GDB_SIGNAL_FIRST;
9002 (int) oursig < (int) GDB_SIGNAL_LAST;
9003 oursig = (enum gdb_signal) ((int) oursig + 1))
9004 {
9005 QUIT;
9006
9007 if (oursig != GDB_SIGNAL_UNKNOWN
9008 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
9009 sig_print_info (oursig);
9010 }
9011
9012 printf_filtered (_("\nUse the \"handle\" command "
9013 "to change these tables.\n"));
9014}
9015
9016/* The $_siginfo convenience variable is a bit special. We don't know
9017 for sure the type of the value until we actually have a chance to
9018 fetch the data. The type can change depending on gdbarch, so it is
9019 also dependent on which thread you have selected.
9020
9021 1. making $_siginfo be an internalvar that creates a new value on
9022 access.
9023
9024 2. making the value of $_siginfo be an lval_computed value. */
9025
9026/* This function implements the lval_computed support for reading a
9027 $_siginfo value. */
9028
9029static void
9030siginfo_value_read (struct value *v)
9031{
9032 LONGEST transferred;
9033
9034 /* If we can access registers, so can we access $_siginfo. Likewise
9035 vice versa. */
9036 validate_registers_access ();
9037
9038 transferred =
9039 target_read (current_inferior ()->top_target (),
9040 TARGET_OBJECT_SIGNAL_INFO,
9041 NULL,
9042 value_contents_all_raw (v),
9043 value_offset (v),
9044 TYPE_LENGTH (value_type (v)));
9045
9046 if (transferred != TYPE_LENGTH (value_type (v)))
9047 error (_("Unable to read siginfo"));
9048}
9049
9050/* This function implements the lval_computed support for writing a
9051 $_siginfo value. */
9052
9053static void
9054siginfo_value_write (struct value *v, struct value *fromval)
9055{
9056 LONGEST transferred;
9057
9058 /* If we can access registers, so can we access $_siginfo. Likewise
9059 vice versa. */
9060 validate_registers_access ();
9061
9062 transferred = target_write (current_inferior ()->top_target (),
9063 TARGET_OBJECT_SIGNAL_INFO,
9064 NULL,
9065 value_contents_all_raw (fromval),
9066 value_offset (v),
9067 TYPE_LENGTH (value_type (fromval)));
9068
9069 if (transferred != TYPE_LENGTH (value_type (fromval)))
9070 error (_("Unable to write siginfo"));
9071}
9072
9073static const struct lval_funcs siginfo_value_funcs =
9074 {
9075 siginfo_value_read,
9076 siginfo_value_write
9077 };
9078
9079/* Return a new value with the correct type for the siginfo object of
9080 the current thread using architecture GDBARCH. Return a void value
9081 if there's no object available. */
9082
9083static struct value *
9084siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9085 void *ignore)
9086{
9087 if (target_has_stack ()
9088 && inferior_ptid != null_ptid
9089 && gdbarch_get_siginfo_type_p (gdbarch))
9090 {
9091 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9092
9093 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
9094 }
9095
9096 return allocate_value (builtin_type (gdbarch)->builtin_void);
9097}
9098
9099\f
9100/* infcall_suspend_state contains state about the program itself like its
9101 registers and any signal it received when it last stopped.
9102 This state must be restored regardless of how the inferior function call
9103 ends (either successfully, or after it hits a breakpoint or signal)
9104 if the program is to properly continue where it left off. */
9105
9106class infcall_suspend_state
9107{
9108public:
9109 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9110 once the inferior function call has finished. */
9111 infcall_suspend_state (struct gdbarch *gdbarch,
9112 const struct thread_info *tp,
9113 struct regcache *regcache)
9114 : m_thread_suspend (tp->suspend),
9115 m_registers (new readonly_detached_regcache (*regcache))
9116 {
9117 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9118
9119 if (gdbarch_get_siginfo_type_p (gdbarch))
9120 {
9121 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9122 size_t len = TYPE_LENGTH (type);
9123
9124 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9125
9126 if (target_read (current_inferior ()->top_target (),
9127 TARGET_OBJECT_SIGNAL_INFO, NULL,
9128 siginfo_data.get (), 0, len) != len)
9129 {
9130 /* Errors ignored. */
9131 siginfo_data.reset (nullptr);
9132 }
9133 }
9134
9135 if (siginfo_data)
9136 {
9137 m_siginfo_gdbarch = gdbarch;
9138 m_siginfo_data = std::move (siginfo_data);
9139 }
9140 }
9141
9142 /* Return a pointer to the stored register state. */
9143
9144 readonly_detached_regcache *registers () const
9145 {
9146 return m_registers.get ();
9147 }
9148
9149 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9150
9151 void restore (struct gdbarch *gdbarch,
9152 struct thread_info *tp,
9153 struct regcache *regcache) const
9154 {
9155 tp->suspend = m_thread_suspend;
9156
9157 if (m_siginfo_gdbarch == gdbarch)
9158 {
9159 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9160
9161 /* Errors ignored. */
9162 target_write (current_inferior ()->top_target (),
9163 TARGET_OBJECT_SIGNAL_INFO, NULL,
9164 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9165 }
9166
9167 /* The inferior can be gone if the user types "print exit(0)"
9168 (and perhaps other times). */
9169 if (target_has_execution ())
9170 /* NB: The register write goes through to the target. */
9171 regcache->restore (registers ());
9172 }
9173
9174private:
9175 /* How the current thread stopped before the inferior function call was
9176 executed. */
9177 struct thread_suspend_state m_thread_suspend;
9178
9179 /* The registers before the inferior function call was executed. */
9180 std::unique_ptr<readonly_detached_regcache> m_registers;
9181
9182 /* Format of SIGINFO_DATA or NULL if it is not present. */
9183 struct gdbarch *m_siginfo_gdbarch = nullptr;
9184
9185 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9186 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9187 content would be invalid. */
9188 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9189};
9190
9191infcall_suspend_state_up
9192save_infcall_suspend_state ()
9193{
9194 struct thread_info *tp = inferior_thread ();
9195 struct regcache *regcache = get_current_regcache ();
9196 struct gdbarch *gdbarch = regcache->arch ();
9197
9198 infcall_suspend_state_up inf_state
9199 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9200
9201 /* Having saved the current state, adjust the thread state, discarding
9202 any stop signal information. The stop signal is not useful when
9203 starting an inferior function call, and run_inferior_call will not use
9204 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9205 tp->suspend.stop_signal = GDB_SIGNAL_0;
9206
9207 return inf_state;
9208}
9209
9210/* Restore inferior session state to INF_STATE. */
9211
9212void
9213restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9214{
9215 struct thread_info *tp = inferior_thread ();
9216 struct regcache *regcache = get_current_regcache ();
9217 struct gdbarch *gdbarch = regcache->arch ();
9218
9219 inf_state->restore (gdbarch, tp, regcache);
9220 discard_infcall_suspend_state (inf_state);
9221}
9222
9223void
9224discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9225{
9226 delete inf_state;
9227}
9228
9229readonly_detached_regcache *
9230get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9231{
9232 return inf_state->registers ();
9233}
9234
9235/* infcall_control_state contains state regarding gdb's control of the
9236 inferior itself like stepping control. It also contains session state like
9237 the user's currently selected frame. */
9238
9239struct infcall_control_state
9240{
9241 struct thread_control_state thread_control;
9242 struct inferior_control_state inferior_control;
9243
9244 /* Other fields: */
9245 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9246 int stopped_by_random_signal = 0;
9247
9248 /* ID and level of the selected frame when the inferior function
9249 call was made. */
9250 struct frame_id selected_frame_id {};
9251 int selected_frame_level = -1;
9252};
9253
9254/* Save all of the information associated with the inferior<==>gdb
9255 connection. */
9256
9257infcall_control_state_up
9258save_infcall_control_state ()
9259{
9260 infcall_control_state_up inf_status (new struct infcall_control_state);
9261 struct thread_info *tp = inferior_thread ();
9262 struct inferior *inf = current_inferior ();
9263
9264 inf_status->thread_control = tp->control;
9265 inf_status->inferior_control = inf->control;
9266
9267 tp->control.step_resume_breakpoint = NULL;
9268 tp->control.exception_resume_breakpoint = NULL;
9269
9270 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9271 chain. If caller's caller is walking the chain, they'll be happier if we
9272 hand them back the original chain when restore_infcall_control_state is
9273 called. */
9274 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9275
9276 /* Other fields: */
9277 inf_status->stop_stack_dummy = stop_stack_dummy;
9278 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9279
9280 save_selected_frame (&inf_status->selected_frame_id,
9281 &inf_status->selected_frame_level);
9282
9283 return inf_status;
9284}
9285
9286/* Restore inferior session state to INF_STATUS. */
9287
9288void
9289restore_infcall_control_state (struct infcall_control_state *inf_status)
9290{
9291 struct thread_info *tp = inferior_thread ();
9292 struct inferior *inf = current_inferior ();
9293
9294 if (tp->control.step_resume_breakpoint)
9295 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9296
9297 if (tp->control.exception_resume_breakpoint)
9298 tp->control.exception_resume_breakpoint->disposition
9299 = disp_del_at_next_stop;
9300
9301 /* Handle the bpstat_copy of the chain. */
9302 bpstat_clear (&tp->control.stop_bpstat);
9303
9304 tp->control = inf_status->thread_control;
9305 inf->control = inf_status->inferior_control;
9306
9307 /* Other fields: */
9308 stop_stack_dummy = inf_status->stop_stack_dummy;
9309 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9310
9311 if (target_has_stack ())
9312 {
9313 restore_selected_frame (inf_status->selected_frame_id,
9314 inf_status->selected_frame_level);
9315 }
9316
9317 delete inf_status;
9318}
9319
9320void
9321discard_infcall_control_state (struct infcall_control_state *inf_status)
9322{
9323 if (inf_status->thread_control.step_resume_breakpoint)
9324 inf_status->thread_control.step_resume_breakpoint->disposition
9325 = disp_del_at_next_stop;
9326
9327 if (inf_status->thread_control.exception_resume_breakpoint)
9328 inf_status->thread_control.exception_resume_breakpoint->disposition
9329 = disp_del_at_next_stop;
9330
9331 /* See save_infcall_control_state for info on stop_bpstat. */
9332 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9333
9334 delete inf_status;
9335}
9336\f
9337/* See infrun.h. */
9338
9339void
9340clear_exit_convenience_vars (void)
9341{
9342 clear_internalvar (lookup_internalvar ("_exitsignal"));
9343 clear_internalvar (lookup_internalvar ("_exitcode"));
9344}
9345\f
9346
9347/* User interface for reverse debugging:
9348 Set exec-direction / show exec-direction commands
9349 (returns error unless target implements to_set_exec_direction method). */
9350
9351enum exec_direction_kind execution_direction = EXEC_FORWARD;
9352static const char exec_forward[] = "forward";
9353static const char exec_reverse[] = "reverse";
9354static const char *exec_direction = exec_forward;
9355static const char *const exec_direction_names[] = {
9356 exec_forward,
9357 exec_reverse,
9358 NULL
9359};
9360
9361static void
9362set_exec_direction_func (const char *args, int from_tty,
9363 struct cmd_list_element *cmd)
9364{
9365 if (target_can_execute_reverse ())
9366 {
9367 if (!strcmp (exec_direction, exec_forward))
9368 execution_direction = EXEC_FORWARD;
9369 else if (!strcmp (exec_direction, exec_reverse))
9370 execution_direction = EXEC_REVERSE;
9371 }
9372 else
9373 {
9374 exec_direction = exec_forward;
9375 error (_("Target does not support this operation."));
9376 }
9377}
9378
9379static void
9380show_exec_direction_func (struct ui_file *out, int from_tty,
9381 struct cmd_list_element *cmd, const char *value)
9382{
9383 switch (execution_direction) {
9384 case EXEC_FORWARD:
9385 fprintf_filtered (out, _("Forward.\n"));
9386 break;
9387 case EXEC_REVERSE:
9388 fprintf_filtered (out, _("Reverse.\n"));
9389 break;
9390 default:
9391 internal_error (__FILE__, __LINE__,
9392 _("bogus execution_direction value: %d"),
9393 (int) execution_direction);
9394 }
9395}
9396
9397static void
9398show_schedule_multiple (struct ui_file *file, int from_tty,
9399 struct cmd_list_element *c, const char *value)
9400{
9401 fprintf_filtered (file, _("Resuming the execution of threads "
9402 "of all processes is %s.\n"), value);
9403}
9404
9405/* Implementation of `siginfo' variable. */
9406
9407static const struct internalvar_funcs siginfo_funcs =
9408{
9409 siginfo_make_value,
9410 NULL,
9411 NULL
9412};
9413
9414/* Callback for infrun's target events source. This is marked when a
9415 thread has a pending status to process. */
9416
9417static void
9418infrun_async_inferior_event_handler (gdb_client_data data)
9419{
9420 clear_async_event_handler (infrun_async_inferior_event_token);
9421 inferior_event_handler (INF_REG_EVENT);
9422}
9423
9424#if GDB_SELF_TEST
9425namespace selftests
9426{
9427
9428/* Verify that when two threads with the same ptid exist (from two different
9429 targets) and one of them changes ptid, we only update inferior_ptid if
9430 it is appropriate. */
9431
9432static void
9433infrun_thread_ptid_changed ()
9434{
9435 gdbarch *arch = current_inferior ()->gdbarch;
9436
9437 /* The thread which inferior_ptid represents changes ptid. */
9438 {
9439 scoped_restore_current_pspace_and_thread restore;
9440
9441 scoped_mock_context<test_target_ops> target1 (arch);
9442 scoped_mock_context<test_target_ops> target2 (arch);
9443 target2.mock_inferior.next = &target1.mock_inferior;
9444
9445 ptid_t old_ptid (111, 222);
9446 ptid_t new_ptid (111, 333);
9447
9448 target1.mock_inferior.pid = old_ptid.pid ();
9449 target1.mock_thread.ptid = old_ptid;
9450 target2.mock_inferior.pid = old_ptid.pid ();
9451 target2.mock_thread.ptid = old_ptid;
9452
9453 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9454 set_current_inferior (&target1.mock_inferior);
9455
9456 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9457
9458 gdb_assert (inferior_ptid == new_ptid);
9459 }
9460
9461 /* A thread with the same ptid as inferior_ptid, but from another target,
9462 changes ptid. */
9463 {
9464 scoped_restore_current_pspace_and_thread restore;
9465
9466 scoped_mock_context<test_target_ops> target1 (arch);
9467 scoped_mock_context<test_target_ops> target2 (arch);
9468 target2.mock_inferior.next = &target1.mock_inferior;
9469
9470 ptid_t old_ptid (111, 222);
9471 ptid_t new_ptid (111, 333);
9472
9473 target1.mock_inferior.pid = old_ptid.pid ();
9474 target1.mock_thread.ptid = old_ptid;
9475 target2.mock_inferior.pid = old_ptid.pid ();
9476 target2.mock_thread.ptid = old_ptid;
9477
9478 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9479 set_current_inferior (&target2.mock_inferior);
9480
9481 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9482
9483 gdb_assert (inferior_ptid == old_ptid);
9484 }
9485}
9486
9487} /* namespace selftests */
9488
9489#endif /* GDB_SELF_TEST */
9490
9491void _initialize_infrun ();
9492void
9493_initialize_infrun ()
9494{
9495 struct cmd_list_element *c;
9496
9497 /* Register extra event sources in the event loop. */
9498 infrun_async_inferior_event_token
9499 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9500 "infrun");
9501
9502 add_info ("signals", info_signals_command, _("\
9503What debugger does when program gets various signals.\n\
9504Specify a signal as argument to print info on that signal only."));
9505 add_info_alias ("handle", "signals", 0);
9506
9507 c = add_com ("handle", class_run, handle_command, _("\
9508Specify how to handle signals.\n\
9509Usage: handle SIGNAL [ACTIONS]\n\
9510Args are signals and actions to apply to those signals.\n\
9511If no actions are specified, the current settings for the specified signals\n\
9512will be displayed instead.\n\
9513\n\
9514Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9515from 1-15 are allowed for compatibility with old versions of GDB.\n\
9516Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9517The special arg \"all\" is recognized to mean all signals except those\n\
9518used by the debugger, typically SIGTRAP and SIGINT.\n\
9519\n\
9520Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9521\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9522Stop means reenter debugger if this signal happens (implies print).\n\
9523Print means print a message if this signal happens.\n\
9524Pass means let program see this signal; otherwise program doesn't know.\n\
9525Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9526Pass and Stop may be combined.\n\
9527\n\
9528Multiple signals may be specified. Signal numbers and signal names\n\
9529may be interspersed with actions, with the actions being performed for\n\
9530all signals cumulatively specified."));
9531 set_cmd_completer (c, handle_completer);
9532
9533 if (!dbx_commands)
9534 stop_command = add_cmd ("stop", class_obscure,
9535 not_just_help_class_command, _("\
9536There is no `stop' command, but you can set a hook on `stop'.\n\
9537This allows you to set a list of commands to be run each time execution\n\
9538of the program stops."), &cmdlist);
9539
9540 add_setshow_boolean_cmd
9541 ("infrun", class_maintenance, &debug_infrun,
9542 _("Set inferior debugging."),
9543 _("Show inferior debugging."),
9544 _("When non-zero, inferior specific debugging is enabled."),
9545 NULL, show_debug_infrun, &setdebuglist, &showdebuglist);
9546
9547 add_setshow_boolean_cmd ("non-stop", no_class,
9548 &non_stop_1, _("\
9549Set whether gdb controls the inferior in non-stop mode."), _("\
9550Show whether gdb controls the inferior in non-stop mode."), _("\
9551When debugging a multi-threaded program and this setting is\n\
9552off (the default, also called all-stop mode), when one thread stops\n\
9553(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9554all other threads in the program while you interact with the thread of\n\
9555interest. When you continue or step a thread, you can allow the other\n\
9556threads to run, or have them remain stopped, but while you inspect any\n\
9557thread's state, all threads stop.\n\
9558\n\
9559In non-stop mode, when one thread stops, other threads can continue\n\
9560to run freely. You'll be able to step each thread independently,\n\
9561leave it stopped or free to run as needed."),
9562 set_non_stop,
9563 show_non_stop,
9564 &setlist,
9565 &showlist);
9566
9567 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9568 {
9569 signal_stop[i] = 1;
9570 signal_print[i] = 1;
9571 signal_program[i] = 1;
9572 signal_catch[i] = 0;
9573 }
9574
9575 /* Signals caused by debugger's own actions should not be given to
9576 the program afterwards.
9577
9578 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9579 explicitly specifies that it should be delivered to the target
9580 program. Typically, that would occur when a user is debugging a
9581 target monitor on a simulator: the target monitor sets a
9582 breakpoint; the simulator encounters this breakpoint and halts
9583 the simulation handing control to GDB; GDB, noting that the stop
9584 address doesn't map to any known breakpoint, returns control back
9585 to the simulator; the simulator then delivers the hardware
9586 equivalent of a GDB_SIGNAL_TRAP to the program being
9587 debugged. */
9588 signal_program[GDB_SIGNAL_TRAP] = 0;
9589 signal_program[GDB_SIGNAL_INT] = 0;
9590
9591 /* Signals that are not errors should not normally enter the debugger. */
9592 signal_stop[GDB_SIGNAL_ALRM] = 0;
9593 signal_print[GDB_SIGNAL_ALRM] = 0;
9594 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9595 signal_print[GDB_SIGNAL_VTALRM] = 0;
9596 signal_stop[GDB_SIGNAL_PROF] = 0;
9597 signal_print[GDB_SIGNAL_PROF] = 0;
9598 signal_stop[GDB_SIGNAL_CHLD] = 0;
9599 signal_print[GDB_SIGNAL_CHLD] = 0;
9600 signal_stop[GDB_SIGNAL_IO] = 0;
9601 signal_print[GDB_SIGNAL_IO] = 0;
9602 signal_stop[GDB_SIGNAL_POLL] = 0;
9603 signal_print[GDB_SIGNAL_POLL] = 0;
9604 signal_stop[GDB_SIGNAL_URG] = 0;
9605 signal_print[GDB_SIGNAL_URG] = 0;
9606 signal_stop[GDB_SIGNAL_WINCH] = 0;
9607 signal_print[GDB_SIGNAL_WINCH] = 0;
9608 signal_stop[GDB_SIGNAL_PRIO] = 0;
9609 signal_print[GDB_SIGNAL_PRIO] = 0;
9610
9611 /* These signals are used internally by user-level thread
9612 implementations. (See signal(5) on Solaris.) Like the above
9613 signals, a healthy program receives and handles them as part of
9614 its normal operation. */
9615 signal_stop[GDB_SIGNAL_LWP] = 0;
9616 signal_print[GDB_SIGNAL_LWP] = 0;
9617 signal_stop[GDB_SIGNAL_WAITING] = 0;
9618 signal_print[GDB_SIGNAL_WAITING] = 0;
9619 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9620 signal_print[GDB_SIGNAL_CANCEL] = 0;
9621 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9622 signal_print[GDB_SIGNAL_LIBRT] = 0;
9623
9624 /* Update cached state. */
9625 signal_cache_update (-1);
9626
9627 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9628 &stop_on_solib_events, _("\
9629Set stopping for shared library events."), _("\
9630Show stopping for shared library events."), _("\
9631If nonzero, gdb will give control to the user when the dynamic linker\n\
9632notifies gdb of shared library events. The most common event of interest\n\
9633to the user would be loading/unloading of a new library."),
9634 set_stop_on_solib_events,
9635 show_stop_on_solib_events,
9636 &setlist, &showlist);
9637
9638 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9639 follow_fork_mode_kind_names,
9640 &follow_fork_mode_string, _("\
9641Set debugger response to a program call of fork or vfork."), _("\
9642Show debugger response to a program call of fork or vfork."), _("\
9643A fork or vfork creates a new process. follow-fork-mode can be:\n\
9644 parent - the original process is debugged after a fork\n\
9645 child - the new process is debugged after a fork\n\
9646The unfollowed process will continue to run.\n\
9647By default, the debugger will follow the parent process."),
9648 NULL,
9649 show_follow_fork_mode_string,
9650 &setlist, &showlist);
9651
9652 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9653 follow_exec_mode_names,
9654 &follow_exec_mode_string, _("\
9655Set debugger response to a program call of exec."), _("\
9656Show debugger response to a program call of exec."), _("\
9657An exec call replaces the program image of a process.\n\
9658\n\
9659follow-exec-mode can be:\n\
9660\n\
9661 new - the debugger creates a new inferior and rebinds the process\n\
9662to this new inferior. The program the process was running before\n\
9663the exec call can be restarted afterwards by restarting the original\n\
9664inferior.\n\
9665\n\
9666 same - the debugger keeps the process bound to the same inferior.\n\
9667The new executable image replaces the previous executable loaded in\n\
9668the inferior. Restarting the inferior after the exec call restarts\n\
9669the executable the process was running after the exec call.\n\
9670\n\
9671By default, the debugger will use the same inferior."),
9672 NULL,
9673 show_follow_exec_mode_string,
9674 &setlist, &showlist);
9675
9676 add_setshow_enum_cmd ("scheduler-locking", class_run,
9677 scheduler_enums, &scheduler_mode, _("\
9678Set mode for locking scheduler during execution."), _("\
9679Show mode for locking scheduler during execution."), _("\
9680off == no locking (threads may preempt at any time)\n\
9681on == full locking (no thread except the current thread may run)\n\
9682 This applies to both normal execution and replay mode.\n\
9683step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9684 In this mode, other threads may run during other commands.\n\
9685 This applies to both normal execution and replay mode.\n\
9686replay == scheduler locked in replay mode and unlocked during normal execution."),
9687 set_schedlock_func, /* traps on target vector */
9688 show_scheduler_mode,
9689 &setlist, &showlist);
9690
9691 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9692Set mode for resuming threads of all processes."), _("\
9693Show mode for resuming threads of all processes."), _("\
9694When on, execution commands (such as 'continue' or 'next') resume all\n\
9695threads of all processes. When off (which is the default), execution\n\
9696commands only resume the threads of the current process. The set of\n\
9697threads that are resumed is further refined by the scheduler-locking\n\
9698mode (see help set scheduler-locking)."),
9699 NULL,
9700 show_schedule_multiple,
9701 &setlist, &showlist);
9702
9703 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9704Set mode of the step operation."), _("\
9705Show mode of the step operation."), _("\
9706When set, doing a step over a function without debug line information\n\
9707will stop at the first instruction of that function. Otherwise, the\n\
9708function is skipped and the step command stops at a different source line."),
9709 NULL,
9710 show_step_stop_if_no_debug,
9711 &setlist, &showlist);
9712
9713 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9714 &can_use_displaced_stepping, _("\
9715Set debugger's willingness to use displaced stepping."), _("\
9716Show debugger's willingness to use displaced stepping."), _("\
9717If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9718supported by the target architecture. If off, gdb will not use displaced\n\
9719stepping to step over breakpoints, even if such is supported by the target\n\
9720architecture. If auto (which is the default), gdb will use displaced stepping\n\
9721if the target architecture supports it and non-stop mode is active, but will not\n\
9722use it in all-stop mode (see help set non-stop)."),
9723 NULL,
9724 show_can_use_displaced_stepping,
9725 &setlist, &showlist);
9726
9727 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9728 &exec_direction, _("Set direction of execution.\n\
9729Options are 'forward' or 'reverse'."),
9730 _("Show direction of execution (forward/reverse)."),
9731 _("Tells gdb whether to execute forward or backward."),
9732 set_exec_direction_func, show_exec_direction_func,
9733 &setlist, &showlist);
9734
9735 /* Set/show detach-on-fork: user-settable mode. */
9736
9737 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9738Set whether gdb will detach the child of a fork."), _("\
9739Show whether gdb will detach the child of a fork."), _("\
9740Tells gdb whether to detach the child of a fork."),
9741 NULL, NULL, &setlist, &showlist);
9742
9743 /* Set/show disable address space randomization mode. */
9744
9745 add_setshow_boolean_cmd ("disable-randomization", class_support,
9746 &disable_randomization, _("\
9747Set disabling of debuggee's virtual address space randomization."), _("\
9748Show disabling of debuggee's virtual address space randomization."), _("\
9749When this mode is on (which is the default), randomization of the virtual\n\
9750address space is disabled. Standalone programs run with the randomization\n\
9751enabled by default on some platforms."),
9752 &set_disable_randomization,
9753 &show_disable_randomization,
9754 &setlist, &showlist);
9755
9756 /* ptid initializations */
9757 inferior_ptid = null_ptid;
9758 target_last_wait_ptid = minus_one_ptid;
9759
9760 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9761 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9762 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9763 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9764 gdb::observers::inferior_execd.attach (infrun_inferior_execd);
9765
9766 /* Explicitly create without lookup, since that tries to create a
9767 value with a void typed value, and when we get here, gdbarch
9768 isn't initialized yet. At this point, we're quite sure there
9769 isn't another convenience variable of the same name. */
9770 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9771
9772 add_setshow_boolean_cmd ("observer", no_class,
9773 &observer_mode_1, _("\
9774Set whether gdb controls the inferior in observer mode."), _("\
9775Show whether gdb controls the inferior in observer mode."), _("\
9776In observer mode, GDB can get data from the inferior, but not\n\
9777affect its execution. Registers and memory may not be changed,\n\
9778breakpoints may not be set, and the program cannot be interrupted\n\
9779or signalled."),
9780 set_observer_mode,
9781 show_observer_mode,
9782 &setlist,
9783 &showlist);
9784
9785#if GDB_SELF_TEST
9786 selftests::register_test ("infrun_thread_ptid_changed",
9787 selftests::infrun_thread_ptid_changed);
9788#endif
9789}
This page took 0.05205 seconds and 4 git commands to generate.