Adjust fork/vfork/exec to pass ptids around.
[deliverable/binutils-gdb.git] / gdb / infrun.c
... / ...
CommitLineData
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
29#include "exceptions.h"
30#include "breakpoint.h"
31#include "gdb_wait.h"
32#include "gdbcore.h"
33#include "gdbcmd.h"
34#include "cli/cli-script.h"
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
38#include "symfile.h"
39#include "top.h"
40#include <signal.h>
41#include "inf-loop.h"
42#include "regcache.h"
43#include "value.h"
44#include "observer.h"
45#include "language.h"
46#include "solib.h"
47#include "main.h"
48
49#include "gdb_assert.h"
50#include "mi/mi-common.h"
51
52/* Prototypes for local functions */
53
54static void signals_info (char *, int);
55
56static void handle_command (char *, int);
57
58static void sig_print_info (enum target_signal);
59
60static void sig_print_header (void);
61
62static void resume_cleanups (void *);
63
64static int hook_stop_stub (void *);
65
66static int restore_selected_frame (void *);
67
68static void build_infrun (void);
69
70static int follow_fork (void);
71
72static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75struct execution_control_state;
76
77static int currently_stepping (struct execution_control_state *ecs);
78
79static void xdb_handle_command (char *args, int from_tty);
80
81static int prepare_to_proceed (int);
82
83void _initialize_infrun (void);
84
85/* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88int step_stop_if_no_debug = 0;
89static void
90show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92{
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94}
95
96/* In asynchronous mode, but simulating synchronous execution. */
97
98int sync_execution = 0;
99
100/* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
102 running in. */
103
104static ptid_t previous_inferior_ptid;
105
106int debug_displaced = 0;
107static void
108show_debug_displaced (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110{
111 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
112}
113
114static int debug_infrun = 0;
115static void
116show_debug_infrun (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118{
119 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
120}
121
122/* If the program uses ELF-style shared libraries, then calls to
123 functions in shared libraries go through stubs, which live in a
124 table called the PLT (Procedure Linkage Table). The first time the
125 function is called, the stub sends control to the dynamic linker,
126 which looks up the function's real address, patches the stub so
127 that future calls will go directly to the function, and then passes
128 control to the function.
129
130 If we are stepping at the source level, we don't want to see any of
131 this --- we just want to skip over the stub and the dynamic linker.
132 The simple approach is to single-step until control leaves the
133 dynamic linker.
134
135 However, on some systems (e.g., Red Hat's 5.2 distribution) the
136 dynamic linker calls functions in the shared C library, so you
137 can't tell from the PC alone whether the dynamic linker is still
138 running. In this case, we use a step-resume breakpoint to get us
139 past the dynamic linker, as if we were using "next" to step over a
140 function call.
141
142 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
143 linker code or not. Normally, this means we single-step. However,
144 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
145 address where we can place a step-resume breakpoint to get past the
146 linker's symbol resolution function.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
149 pretty portable way, by comparing the PC against the address ranges
150 of the dynamic linker's sections.
151
152 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
153 it depends on internal details of the dynamic linker. It's usually
154 not too hard to figure out where to put a breakpoint, but it
155 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
156 sanity checking. If it can't figure things out, returning zero and
157 getting the (possibly confusing) stepping behavior is better than
158 signalling an error, which will obscure the change in the
159 inferior's state. */
160
161/* This function returns TRUE if pc is the address of an instruction
162 that lies within the dynamic linker (such as the event hook, or the
163 dld itself).
164
165 This function must be used only when a dynamic linker event has
166 been caught, and the inferior is being stepped out of the hook, or
167 undefined results are guaranteed. */
168
169#ifndef SOLIB_IN_DYNAMIC_LINKER
170#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
171#endif
172
173
174/* Convert the #defines into values. This is temporary until wfi control
175 flow is completely sorted out. */
176
177#ifndef CANNOT_STEP_HW_WATCHPOINTS
178#define CANNOT_STEP_HW_WATCHPOINTS 0
179#else
180#undef CANNOT_STEP_HW_WATCHPOINTS
181#define CANNOT_STEP_HW_WATCHPOINTS 1
182#endif
183
184/* Tables of how to react to signals; the user sets them. */
185
186static unsigned char *signal_stop;
187static unsigned char *signal_print;
188static unsigned char *signal_program;
189
190#define SET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 1; \
196 } while (0)
197
198#define UNSET_SIGS(nsigs,sigs,flags) \
199 do { \
200 int signum = (nsigs); \
201 while (signum-- > 0) \
202 if ((sigs)[signum]) \
203 (flags)[signum] = 0; \
204 } while (0)
205
206/* Value to pass to target_resume() to cause all threads to resume */
207
208#define RESUME_ALL (pid_to_ptid (-1))
209
210/* Command list pointer for the "stop" placeholder. */
211
212static struct cmd_list_element *stop_command;
213
214/* Function inferior was in as of last step command. */
215
216static struct symbol *step_start_function;
217
218/* Nonzero if we are presently stepping over a breakpoint.
219
220 If we hit a breakpoint or watchpoint, and then continue,
221 we need to single step the current thread with breakpoints
222 disabled, to avoid hitting the same breakpoint or
223 watchpoint again. And we should step just a single
224 thread and keep other threads stopped, so that
225 other threads don't miss breakpoints while they are removed.
226
227 So, this variable simultaneously means that we need to single
228 step the current thread, keep other threads stopped, and that
229 breakpoints should be removed while we step.
230
231 This variable is set either:
232 - in proceed, when we resume inferior on user's explicit request
233 - in keep_going, if handle_inferior_event decides we need to
234 step over breakpoint.
235
236 The variable is cleared in clear_proceed_status, called every
237 time before we call proceed. The proceed calls wait_for_inferior,
238 which calls handle_inferior_event in a loop, and until
239 wait_for_inferior exits, this variable is changed only by keep_going. */
240
241static int stepping_over_breakpoint;
242
243/* Nonzero if we want to give control to the user when we're notified
244 of shared library events by the dynamic linker. */
245static int stop_on_solib_events;
246static void
247show_stop_on_solib_events (struct ui_file *file, int from_tty,
248 struct cmd_list_element *c, const char *value)
249{
250 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
251 value);
252}
253
254/* Nonzero means expecting a trace trap
255 and should stop the inferior and return silently when it happens. */
256
257int stop_after_trap;
258
259/* Nonzero means expecting a trap and caller will handle it themselves.
260 It is used after attach, due to attaching to a process;
261 when running in the shell before the child program has been exec'd;
262 and when running some kinds of remote stuff (FIXME?). */
263
264enum stop_kind stop_soon;
265
266/* Nonzero if proceed is being used for a "finish" command or a similar
267 situation when stop_registers should be saved. */
268
269int proceed_to_finish;
270
271/* Save register contents here when about to pop a stack dummy frame,
272 if-and-only-if proceed_to_finish is set.
273 Thus this contains the return value from the called function (assuming
274 values are returned in a register). */
275
276struct regcache *stop_registers;
277
278/* Nonzero after stop if current stack frame should be printed. */
279
280static int stop_print_frame;
281
282/* Step-resume or longjmp-resume breakpoint. */
283static struct breakpoint *step_resume_breakpoint = NULL;
284
285/* This is a cached copy of the pid/waitstatus of the last event
286 returned by target_wait()/deprecated_target_wait_hook(). This
287 information is returned by get_last_target_status(). */
288static ptid_t target_last_wait_ptid;
289static struct target_waitstatus target_last_waitstatus;
290
291/* This is used to remember when a fork, vfork or exec event
292 was caught by a catchpoint, and thus the event is to be
293 followed at the next resume of the inferior, and not
294 immediately. */
295static struct
296{
297 enum target_waitkind kind;
298 struct
299 {
300 ptid_t parent_pid;
301 ptid_t child_pid;
302 }
303 fork_event;
304 char *execd_pathname;
305}
306pending_follow;
307
308static const char follow_fork_mode_child[] = "child";
309static const char follow_fork_mode_parent[] = "parent";
310
311static const char *follow_fork_mode_kind_names[] = {
312 follow_fork_mode_child,
313 follow_fork_mode_parent,
314 NULL
315};
316
317static const char *follow_fork_mode_string = follow_fork_mode_parent;
318static void
319show_follow_fork_mode_string (struct ui_file *file, int from_tty,
320 struct cmd_list_element *c, const char *value)
321{
322 fprintf_filtered (file, _("\
323Debugger response to a program call of fork or vfork is \"%s\".\n"),
324 value);
325}
326\f
327
328static int
329follow_fork (void)
330{
331 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
332
333 return target_follow_fork (follow_child);
334}
335
336void
337follow_inferior_reset_breakpoints (void)
338{
339 /* Was there a step_resume breakpoint? (There was if the user
340 did a "next" at the fork() call.) If so, explicitly reset its
341 thread number.
342
343 step_resumes are a form of bp that are made to be per-thread.
344 Since we created the step_resume bp when the parent process
345 was being debugged, and now are switching to the child process,
346 from the breakpoint package's viewpoint, that's a switch of
347 "threads". We must update the bp's notion of which thread
348 it is for, or it'll be ignored when it triggers. */
349
350 if (step_resume_breakpoint)
351 breakpoint_re_set_thread (step_resume_breakpoint);
352
353 /* Reinsert all breakpoints in the child. The user may have set
354 breakpoints after catching the fork, in which case those
355 were never set in the child, but only in the parent. This makes
356 sure the inserted breakpoints match the breakpoint list. */
357
358 breakpoint_re_set ();
359 insert_breakpoints ();
360}
361
362/* EXECD_PATHNAME is assumed to be non-NULL. */
363
364static void
365follow_exec (ptid_t pid, char *execd_pathname)
366{
367 ptid_t saved_pid = pid;
368 struct target_ops *tgt;
369
370 /* This is an exec event that we actually wish to pay attention to.
371 Refresh our symbol table to the newly exec'd program, remove any
372 momentary bp's, etc.
373
374 If there are breakpoints, they aren't really inserted now,
375 since the exec() transformed our inferior into a fresh set
376 of instructions.
377
378 We want to preserve symbolic breakpoints on the list, since
379 we have hopes that they can be reset after the new a.out's
380 symbol table is read.
381
382 However, any "raw" breakpoints must be removed from the list
383 (e.g., the solib bp's), since their address is probably invalid
384 now.
385
386 And, we DON'T want to call delete_breakpoints() here, since
387 that may write the bp's "shadow contents" (the instruction
388 value that was overwritten witha TRAP instruction). Since
389 we now have a new a.out, those shadow contents aren't valid. */
390 update_breakpoints_after_exec ();
391
392 /* If there was one, it's gone now. We cannot truly step-to-next
393 statement through an exec(). */
394 step_resume_breakpoint = NULL;
395 step_range_start = 0;
396 step_range_end = 0;
397
398 /* What is this a.out's name? */
399 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
400
401 /* We've followed the inferior through an exec. Therefore, the
402 inferior has essentially been killed & reborn. */
403
404 gdb_flush (gdb_stdout);
405 generic_mourn_inferior ();
406 /* Because mourn_inferior resets inferior_ptid. */
407 inferior_ptid = saved_pid;
408
409 if (gdb_sysroot && *gdb_sysroot)
410 {
411 char *name = alloca (strlen (gdb_sysroot)
412 + strlen (execd_pathname)
413 + 1);
414 strcpy (name, gdb_sysroot);
415 strcat (name, execd_pathname);
416 execd_pathname = name;
417 }
418
419 /* That a.out is now the one to use. */
420 exec_file_attach (execd_pathname, 0);
421
422 /* Reset the shared library package. This ensures that we get a
423 shlib event when the child reaches "_start", at which point the
424 dld will have had a chance to initialize the child. */
425 /* Also, loading a symbol file below may trigger symbol lookups, and
426 we don't want those to be satisfied by the libraries of the
427 previous incarnation of this process. */
428 no_shared_libraries (NULL, 0);
429
430 /* Load the main file's symbols. */
431 symbol_file_add_main (execd_pathname, 0);
432
433#ifdef SOLIB_CREATE_INFERIOR_HOOK
434 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
435#else
436 solib_create_inferior_hook ();
437#endif
438
439 /* Reinsert all breakpoints. (Those which were symbolic have
440 been reset to the proper address in the new a.out, thanks
441 to symbol_file_command...) */
442 insert_breakpoints ();
443
444 /* The next resume of this inferior should bring it to the shlib
445 startup breakpoints. (If the user had also set bp's on
446 "main" from the old (parent) process, then they'll auto-
447 matically get reset there in the new process.) */
448}
449
450/* Non-zero if we just simulating a single-step. This is needed
451 because we cannot remove the breakpoints in the inferior process
452 until after the `wait' in `wait_for_inferior'. */
453static int singlestep_breakpoints_inserted_p = 0;
454
455/* The thread we inserted single-step breakpoints for. */
456static ptid_t singlestep_ptid;
457
458/* PC when we started this single-step. */
459static CORE_ADDR singlestep_pc;
460
461/* If another thread hit the singlestep breakpoint, we save the original
462 thread here so that we can resume single-stepping it later. */
463static ptid_t saved_singlestep_ptid;
464static int stepping_past_singlestep_breakpoint;
465
466/* If not equal to null_ptid, this means that after stepping over breakpoint
467 is finished, we need to switch to deferred_step_ptid, and step it.
468
469 The use case is when one thread has hit a breakpoint, and then the user
470 has switched to another thread and issued 'step'. We need to step over
471 breakpoint in the thread which hit the breakpoint, but then continue
472 stepping the thread user has selected. */
473static ptid_t deferred_step_ptid;
474\f
475/* Displaced stepping. */
476
477/* In non-stop debugging mode, we must take special care to manage
478 breakpoints properly; in particular, the traditional strategy for
479 stepping a thread past a breakpoint it has hit is unsuitable.
480 'Displaced stepping' is a tactic for stepping one thread past a
481 breakpoint it has hit while ensuring that other threads running
482 concurrently will hit the breakpoint as they should.
483
484 The traditional way to step a thread T off a breakpoint in a
485 multi-threaded program in all-stop mode is as follows:
486
487 a0) Initially, all threads are stopped, and breakpoints are not
488 inserted.
489 a1) We single-step T, leaving breakpoints uninserted.
490 a2) We insert breakpoints, and resume all threads.
491
492 In non-stop debugging, however, this strategy is unsuitable: we
493 don't want to have to stop all threads in the system in order to
494 continue or step T past a breakpoint. Instead, we use displaced
495 stepping:
496
497 n0) Initially, T is stopped, other threads are running, and
498 breakpoints are inserted.
499 n1) We copy the instruction "under" the breakpoint to a separate
500 location, outside the main code stream, making any adjustments
501 to the instruction, register, and memory state as directed by
502 T's architecture.
503 n2) We single-step T over the instruction at its new location.
504 n3) We adjust the resulting register and memory state as directed
505 by T's architecture. This includes resetting T's PC to point
506 back into the main instruction stream.
507 n4) We resume T.
508
509 This approach depends on the following gdbarch methods:
510
511 - gdbarch_max_insn_length and gdbarch_displaced_step_location
512 indicate where to copy the instruction, and how much space must
513 be reserved there. We use these in step n1.
514
515 - gdbarch_displaced_step_copy_insn copies a instruction to a new
516 address, and makes any necessary adjustments to the instruction,
517 register contents, and memory. We use this in step n1.
518
519 - gdbarch_displaced_step_fixup adjusts registers and memory after
520 we have successfuly single-stepped the instruction, to yield the
521 same effect the instruction would have had if we had executed it
522 at its original address. We use this in step n3.
523
524 - gdbarch_displaced_step_free_closure provides cleanup.
525
526 The gdbarch_displaced_step_copy_insn and
527 gdbarch_displaced_step_fixup functions must be written so that
528 copying an instruction with gdbarch_displaced_step_copy_insn,
529 single-stepping across the copied instruction, and then applying
530 gdbarch_displaced_insn_fixup should have the same effects on the
531 thread's memory and registers as stepping the instruction in place
532 would have. Exactly which responsibilities fall to the copy and
533 which fall to the fixup is up to the author of those functions.
534
535 See the comments in gdbarch.sh for details.
536
537 Note that displaced stepping and software single-step cannot
538 currently be used in combination, although with some care I think
539 they could be made to. Software single-step works by placing
540 breakpoints on all possible subsequent instructions; if the
541 displaced instruction is a PC-relative jump, those breakpoints
542 could fall in very strange places --- on pages that aren't
543 executable, or at addresses that are not proper instruction
544 boundaries. (We do generally let other threads run while we wait
545 to hit the software single-step breakpoint, and they might
546 encounter such a corrupted instruction.) One way to work around
547 this would be to have gdbarch_displaced_step_copy_insn fully
548 simulate the effect of PC-relative instructions (and return NULL)
549 on architectures that use software single-stepping.
550
551 In non-stop mode, we can have independent and simultaneous step
552 requests, so more than one thread may need to simultaneously step
553 over a breakpoint. The current implementation assumes there is
554 only one scratch space per process. In this case, we have to
555 serialize access to the scratch space. If thread A wants to step
556 over a breakpoint, but we are currently waiting for some other
557 thread to complete a displaced step, we leave thread A stopped and
558 place it in the displaced_step_request_queue. Whenever a displaced
559 step finishes, we pick the next thread in the queue and start a new
560 displaced step operation on it. See displaced_step_prepare and
561 displaced_step_fixup for details. */
562
563/* If this is not null_ptid, this is the thread carrying out a
564 displaced single-step. This thread's state will require fixing up
565 once it has completed its step. */
566static ptid_t displaced_step_ptid;
567
568struct displaced_step_request
569{
570 ptid_t ptid;
571 struct displaced_step_request *next;
572};
573
574/* A queue of pending displaced stepping requests. */
575struct displaced_step_request *displaced_step_request_queue;
576
577/* The architecture the thread had when we stepped it. */
578static struct gdbarch *displaced_step_gdbarch;
579
580/* The closure provided gdbarch_displaced_step_copy_insn, to be used
581 for post-step cleanup. */
582static struct displaced_step_closure *displaced_step_closure;
583
584/* The address of the original instruction, and the copy we made. */
585static CORE_ADDR displaced_step_original, displaced_step_copy;
586
587/* Saved contents of copy area. */
588static gdb_byte *displaced_step_saved_copy;
589
590/* When this is non-zero, we are allowed to use displaced stepping, if
591 the architecture supports it. When this is zero, we use
592 traditional the hold-and-step approach. */
593int can_use_displaced_stepping = 1;
594static void
595show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
596 struct cmd_list_element *c,
597 const char *value)
598{
599 fprintf_filtered (file, _("\
600Debugger's willingness to use displaced stepping to step over "
601"breakpoints is %s.\n"), value);
602}
603
604/* Return non-zero if displaced stepping is enabled, and can be used
605 with GDBARCH. */
606static int
607use_displaced_stepping (struct gdbarch *gdbarch)
608{
609 return (can_use_displaced_stepping
610 && gdbarch_displaced_step_copy_insn_p (gdbarch));
611}
612
613/* Clean out any stray displaced stepping state. */
614static void
615displaced_step_clear (void)
616{
617 /* Indicate that there is no cleanup pending. */
618 displaced_step_ptid = null_ptid;
619
620 if (displaced_step_closure)
621 {
622 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
623 displaced_step_closure);
624 displaced_step_closure = NULL;
625 }
626}
627
628static void
629cleanup_displaced_step_closure (void *ptr)
630{
631 struct displaced_step_closure *closure = ptr;
632
633 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
634}
635
636/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
637void
638displaced_step_dump_bytes (struct ui_file *file,
639 const gdb_byte *buf,
640 size_t len)
641{
642 int i;
643
644 for (i = 0; i < len; i++)
645 fprintf_unfiltered (file, "%02x ", buf[i]);
646 fputs_unfiltered ("\n", file);
647}
648
649/* Prepare to single-step, using displaced stepping.
650
651 Note that we cannot use displaced stepping when we have a signal to
652 deliver. If we have a signal to deliver and an instruction to step
653 over, then after the step, there will be no indication from the
654 target whether the thread entered a signal handler or ignored the
655 signal and stepped over the instruction successfully --- both cases
656 result in a simple SIGTRAP. In the first case we mustn't do a
657 fixup, and in the second case we must --- but we can't tell which.
658 Comments in the code for 'random signals' in handle_inferior_event
659 explain how we handle this case instead.
660
661 Returns 1 if preparing was successful -- this thread is going to be
662 stepped now; or 0 if displaced stepping this thread got queued. */
663static int
664displaced_step_prepare (ptid_t ptid)
665{
666 struct cleanup *old_cleanups;
667 struct regcache *regcache = get_thread_regcache (ptid);
668 struct gdbarch *gdbarch = get_regcache_arch (regcache);
669 CORE_ADDR original, copy;
670 ULONGEST len;
671 struct displaced_step_closure *closure;
672
673 /* We should never reach this function if the architecture does not
674 support displaced stepping. */
675 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
676
677 /* For the first cut, we're displaced stepping one thread at a
678 time. */
679
680 if (!ptid_equal (displaced_step_ptid, null_ptid))
681 {
682 /* Already waiting for a displaced step to finish. Defer this
683 request and place in queue. */
684 struct displaced_step_request *req, *new_req;
685
686 if (debug_displaced)
687 fprintf_unfiltered (gdb_stdlog,
688 "displaced: defering step of %s\n",
689 target_pid_to_str (ptid));
690
691 new_req = xmalloc (sizeof (*new_req));
692 new_req->ptid = ptid;
693 new_req->next = NULL;
694
695 if (displaced_step_request_queue)
696 {
697 for (req = displaced_step_request_queue;
698 req && req->next;
699 req = req->next)
700 ;
701 req->next = new_req;
702 }
703 else
704 displaced_step_request_queue = new_req;
705
706 return 0;
707 }
708 else
709 {
710 if (debug_displaced)
711 fprintf_unfiltered (gdb_stdlog,
712 "displaced: stepping %s now\n",
713 target_pid_to_str (ptid));
714 }
715
716 displaced_step_clear ();
717
718 original = regcache_read_pc (regcache);
719
720 copy = gdbarch_displaced_step_location (gdbarch);
721 len = gdbarch_max_insn_length (gdbarch);
722
723 /* Save the original contents of the copy area. */
724 displaced_step_saved_copy = xmalloc (len);
725 old_cleanups = make_cleanup (free_current_contents,
726 &displaced_step_saved_copy);
727 read_memory (copy, displaced_step_saved_copy, len);
728 if (debug_displaced)
729 {
730 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
731 paddr_nz (copy));
732 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
733 };
734
735 closure = gdbarch_displaced_step_copy_insn (gdbarch,
736 original, copy, regcache);
737
738 /* We don't support the fully-simulated case at present. */
739 gdb_assert (closure);
740
741 make_cleanup (cleanup_displaced_step_closure, closure);
742
743 /* Resume execution at the copy. */
744 regcache_write_pc (regcache, copy);
745
746 discard_cleanups (old_cleanups);
747
748 if (debug_displaced)
749 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
750 paddr_nz (copy));
751
752 /* Save the information we need to fix things up if the step
753 succeeds. */
754 displaced_step_ptid = ptid;
755 displaced_step_gdbarch = gdbarch;
756 displaced_step_closure = closure;
757 displaced_step_original = original;
758 displaced_step_copy = copy;
759 return 1;
760}
761
762static void
763displaced_step_clear_cleanup (void *ignore)
764{
765 displaced_step_clear ();
766}
767
768static void
769write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
770{
771 struct cleanup *ptid_cleanup = save_inferior_ptid ();
772 inferior_ptid = ptid;
773 write_memory (memaddr, myaddr, len);
774 do_cleanups (ptid_cleanup);
775}
776
777static void
778displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
779{
780 struct cleanup *old_cleanups;
781
782 /* Was this event for the pid we displaced? */
783 if (ptid_equal (displaced_step_ptid, null_ptid)
784 || ! ptid_equal (displaced_step_ptid, event_ptid))
785 return;
786
787 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
788
789 /* Restore the contents of the copy area. */
790 {
791 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
792 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
793 displaced_step_saved_copy, len);
794 if (debug_displaced)
795 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
796 paddr_nz (displaced_step_copy));
797 }
798
799 /* Did the instruction complete successfully? */
800 if (signal == TARGET_SIGNAL_TRAP)
801 {
802 /* Fix up the resulting state. */
803 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
804 displaced_step_closure,
805 displaced_step_original,
806 displaced_step_copy,
807 get_thread_regcache (displaced_step_ptid));
808 }
809 else
810 {
811 /* Since the instruction didn't complete, all we can do is
812 relocate the PC. */
813 struct regcache *regcache = get_thread_regcache (event_ptid);
814 CORE_ADDR pc = regcache_read_pc (regcache);
815 pc = displaced_step_original + (pc - displaced_step_copy);
816 regcache_write_pc (regcache, pc);
817 }
818
819 do_cleanups (old_cleanups);
820
821 /* Are there any pending displaced stepping requests? If so, run
822 one now. */
823 if (displaced_step_request_queue)
824 {
825 struct displaced_step_request *head;
826 ptid_t ptid;
827
828 head = displaced_step_request_queue;
829 ptid = head->ptid;
830 displaced_step_request_queue = head->next;
831 xfree (head);
832
833 if (debug_displaced)
834 fprintf_unfiltered (gdb_stdlog,
835 "displaced: stepping queued %s now\n",
836 target_pid_to_str (ptid));
837
838
839 displaced_step_ptid = null_ptid;
840 displaced_step_prepare (ptid);
841 target_resume (ptid, 1, TARGET_SIGNAL_0);
842 }
843}
844
845\f
846/* Resuming. */
847
848/* Things to clean up if we QUIT out of resume (). */
849static void
850resume_cleanups (void *ignore)
851{
852 normal_stop ();
853}
854
855static const char schedlock_off[] = "off";
856static const char schedlock_on[] = "on";
857static const char schedlock_step[] = "step";
858static const char *scheduler_enums[] = {
859 schedlock_off,
860 schedlock_on,
861 schedlock_step,
862 NULL
863};
864static const char *scheduler_mode = schedlock_off;
865static void
866show_scheduler_mode (struct ui_file *file, int from_tty,
867 struct cmd_list_element *c, const char *value)
868{
869 fprintf_filtered (file, _("\
870Mode for locking scheduler during execution is \"%s\".\n"),
871 value);
872}
873
874static void
875set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
876{
877 if (!target_can_lock_scheduler)
878 {
879 scheduler_mode = schedlock_off;
880 error (_("Target '%s' cannot support this command."), target_shortname);
881 }
882}
883
884
885/* Resume the inferior, but allow a QUIT. This is useful if the user
886 wants to interrupt some lengthy single-stepping operation
887 (for child processes, the SIGINT goes to the inferior, and so
888 we get a SIGINT random_signal, but for remote debugging and perhaps
889 other targets, that's not true).
890
891 STEP nonzero if we should step (zero to continue instead).
892 SIG is the signal to give the inferior (zero for none). */
893void
894resume (int step, enum target_signal sig)
895{
896 int should_resume = 1;
897 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
898 struct regcache *regcache = get_current_regcache ();
899 struct gdbarch *gdbarch = get_regcache_arch (regcache);
900 CORE_ADDR pc = regcache_read_pc (regcache);
901 QUIT;
902
903 if (debug_infrun)
904 fprintf_unfiltered (gdb_stdlog,
905 "infrun: resume (step=%d, signal=%d), "
906 "stepping_over_breakpoint=%d\n",
907 step, sig, stepping_over_breakpoint);
908
909 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
910 over an instruction that causes a page fault without triggering
911 a hardware watchpoint. The kernel properly notices that it shouldn't
912 stop, because the hardware watchpoint is not triggered, but it forgets
913 the step request and continues the program normally.
914 Work around the problem by removing hardware watchpoints if a step is
915 requested, GDB will check for a hardware watchpoint trigger after the
916 step anyway. */
917 if (CANNOT_STEP_HW_WATCHPOINTS && step)
918 remove_hw_watchpoints ();
919
920
921 /* Normally, by the time we reach `resume', the breakpoints are either
922 removed or inserted, as appropriate. The exception is if we're sitting
923 at a permanent breakpoint; we need to step over it, but permanent
924 breakpoints can't be removed. So we have to test for it here. */
925 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
926 {
927 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
928 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
929 else
930 error (_("\
931The program is stopped at a permanent breakpoint, but GDB does not know\n\
932how to step past a permanent breakpoint on this architecture. Try using\n\
933a command like `return' or `jump' to continue execution."));
934 }
935
936 /* If enabled, step over breakpoints by executing a copy of the
937 instruction at a different address.
938
939 We can't use displaced stepping when we have a signal to deliver;
940 the comments for displaced_step_prepare explain why. The
941 comments in the handle_inferior event for dealing with 'random
942 signals' explain what we do instead. */
943 if (use_displaced_stepping (gdbarch)
944 && stepping_over_breakpoint
945 && sig == TARGET_SIGNAL_0)
946 {
947 if (!displaced_step_prepare (inferior_ptid))
948 /* Got placed in displaced stepping queue. Will be resumed
949 later when all the currently queued displaced stepping
950 requests finish. */
951 return;
952 }
953
954 if (step && gdbarch_software_single_step_p (gdbarch))
955 {
956 /* Do it the hard way, w/temp breakpoints */
957 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
958 {
959 /* ...and don't ask hardware to do it. */
960 step = 0;
961 /* and do not pull these breakpoints until after a `wait' in
962 `wait_for_inferior' */
963 singlestep_breakpoints_inserted_p = 1;
964 singlestep_ptid = inferior_ptid;
965 singlestep_pc = pc;
966 }
967 }
968
969 /* If there were any forks/vforks/execs that were caught and are
970 now to be followed, then do so. */
971 switch (pending_follow.kind)
972 {
973 case TARGET_WAITKIND_FORKED:
974 case TARGET_WAITKIND_VFORKED:
975 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
976 if (follow_fork ())
977 should_resume = 0;
978 break;
979
980 case TARGET_WAITKIND_EXECD:
981 /* follow_exec is called as soon as the exec event is seen. */
982 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
983 break;
984
985 default:
986 break;
987 }
988
989 /* Install inferior's terminal modes. */
990 target_terminal_inferior ();
991
992 if (should_resume)
993 {
994 ptid_t resume_ptid;
995
996 resume_ptid = RESUME_ALL; /* Default */
997
998 /* If STEP is set, it's a request to use hardware stepping
999 facilities. But in that case, we should never
1000 use singlestep breakpoint. */
1001 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1002
1003 if (singlestep_breakpoints_inserted_p
1004 && stepping_past_singlestep_breakpoint)
1005 {
1006 /* The situation here is as follows. In thread T1 we wanted to
1007 single-step. Lacking hardware single-stepping we've
1008 set breakpoint at the PC of the next instruction -- call it
1009 P. After resuming, we've hit that breakpoint in thread T2.
1010 Now we've removed original breakpoint, inserted breakpoint
1011 at P+1, and try to step to advance T2 past breakpoint.
1012 We need to step only T2, as if T1 is allowed to freely run,
1013 it can run past P, and if other threads are allowed to run,
1014 they can hit breakpoint at P+1, and nested hits of single-step
1015 breakpoints is not something we'd want -- that's complicated
1016 to support, and has no value. */
1017 resume_ptid = inferior_ptid;
1018 }
1019
1020 if ((step || singlestep_breakpoints_inserted_p)
1021 && stepping_over_breakpoint)
1022 {
1023 /* We're allowing a thread to run past a breakpoint it has
1024 hit, by single-stepping the thread with the breakpoint
1025 removed. In which case, we need to single-step only this
1026 thread, and keep others stopped, as they can miss this
1027 breakpoint if allowed to run.
1028
1029 The current code actually removes all breakpoints when
1030 doing this, not just the one being stepped over, so if we
1031 let other threads run, we can actually miss any
1032 breakpoint, not just the one at PC. */
1033 resume_ptid = inferior_ptid;
1034 }
1035
1036 if ((scheduler_mode == schedlock_on)
1037 || (scheduler_mode == schedlock_step
1038 && (step || singlestep_breakpoints_inserted_p)))
1039 {
1040 /* User-settable 'scheduler' mode requires solo thread resume. */
1041 resume_ptid = inferior_ptid;
1042 }
1043
1044 if (gdbarch_cannot_step_breakpoint (gdbarch))
1045 {
1046 /* Most targets can step a breakpoint instruction, thus
1047 executing it normally. But if this one cannot, just
1048 continue and we will hit it anyway. */
1049 if (step && breakpoint_inserted_here_p (pc))
1050 step = 0;
1051 }
1052
1053 if (debug_displaced
1054 && use_displaced_stepping (gdbarch)
1055 && stepping_over_breakpoint)
1056 {
1057 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1058 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1059 gdb_byte buf[4];
1060
1061 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1062 paddr_nz (actual_pc));
1063 read_memory (actual_pc, buf, sizeof (buf));
1064 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1065 }
1066
1067 target_resume (resume_ptid, step, sig);
1068 }
1069
1070 discard_cleanups (old_cleanups);
1071}
1072\f
1073/* Proceeding. */
1074
1075/* Clear out all variables saying what to do when inferior is continued.
1076 First do this, then set the ones you want, then call `proceed'. */
1077
1078void
1079clear_proceed_status (void)
1080{
1081 stepping_over_breakpoint = 0;
1082 step_range_start = 0;
1083 step_range_end = 0;
1084 step_frame_id = null_frame_id;
1085 step_over_calls = STEP_OVER_UNDEBUGGABLE;
1086 stop_after_trap = 0;
1087 stop_soon = NO_STOP_QUIETLY;
1088 proceed_to_finish = 0;
1089 breakpoint_proceeded = 1; /* We're about to proceed... */
1090
1091 if (stop_registers)
1092 {
1093 regcache_xfree (stop_registers);
1094 stop_registers = NULL;
1095 }
1096
1097 /* Discard any remaining commands or status from previous stop. */
1098 bpstat_clear (&stop_bpstat);
1099}
1100
1101/* This should be suitable for any targets that support threads. */
1102
1103static int
1104prepare_to_proceed (int step)
1105{
1106 ptid_t wait_ptid;
1107 struct target_waitstatus wait_status;
1108
1109 /* Get the last target status returned by target_wait(). */
1110 get_last_target_status (&wait_ptid, &wait_status);
1111
1112 /* Make sure we were stopped at a breakpoint. */
1113 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1114 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1115 {
1116 return 0;
1117 }
1118
1119 /* Switched over from WAIT_PID. */
1120 if (!ptid_equal (wait_ptid, minus_one_ptid)
1121 && !ptid_equal (inferior_ptid, wait_ptid))
1122 {
1123 struct regcache *regcache = get_thread_regcache (wait_ptid);
1124
1125 if (breakpoint_here_p (regcache_read_pc (regcache)))
1126 {
1127 /* If stepping, remember current thread to switch back to. */
1128 if (step)
1129 deferred_step_ptid = inferior_ptid;
1130
1131 /* Switch back to WAIT_PID thread. */
1132 switch_to_thread (wait_ptid);
1133
1134 /* We return 1 to indicate that there is a breakpoint here,
1135 so we need to step over it before continuing to avoid
1136 hitting it straight away. */
1137 return 1;
1138 }
1139 }
1140
1141 return 0;
1142}
1143
1144/* Record the pc of the program the last time it stopped. This is
1145 just used internally by wait_for_inferior, but need to be preserved
1146 over calls to it and cleared when the inferior is started. */
1147static CORE_ADDR prev_pc;
1148
1149/* Basic routine for continuing the program in various fashions.
1150
1151 ADDR is the address to resume at, or -1 for resume where stopped.
1152 SIGGNAL is the signal to give it, or 0 for none,
1153 or -1 for act according to how it stopped.
1154 STEP is nonzero if should trap after one instruction.
1155 -1 means return after that and print nothing.
1156 You should probably set various step_... variables
1157 before calling here, if you are stepping.
1158
1159 You should call clear_proceed_status before calling proceed. */
1160
1161void
1162proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1163{
1164 struct regcache *regcache = get_current_regcache ();
1165 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1166 CORE_ADDR pc = regcache_read_pc (regcache);
1167 int oneproc = 0;
1168
1169 if (step > 0)
1170 step_start_function = find_pc_function (pc);
1171 if (step < 0)
1172 stop_after_trap = 1;
1173
1174 if (addr == (CORE_ADDR) -1)
1175 {
1176 if (pc == stop_pc && breakpoint_here_p (pc))
1177 /* There is a breakpoint at the address we will resume at,
1178 step one instruction before inserting breakpoints so that
1179 we do not stop right away (and report a second hit at this
1180 breakpoint). */
1181 oneproc = 1;
1182 else if (gdbarch_single_step_through_delay_p (gdbarch)
1183 && gdbarch_single_step_through_delay (gdbarch,
1184 get_current_frame ()))
1185 /* We stepped onto an instruction that needs to be stepped
1186 again before re-inserting the breakpoint, do so. */
1187 oneproc = 1;
1188 }
1189 else
1190 {
1191 regcache_write_pc (regcache, addr);
1192 }
1193
1194 if (debug_infrun)
1195 fprintf_unfiltered (gdb_stdlog,
1196 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1197 paddr_nz (addr), siggnal, step);
1198
1199 /* In a multi-threaded task we may select another thread
1200 and then continue or step.
1201
1202 But if the old thread was stopped at a breakpoint, it
1203 will immediately cause another breakpoint stop without
1204 any execution (i.e. it will report a breakpoint hit
1205 incorrectly). So we must step over it first.
1206
1207 prepare_to_proceed checks the current thread against the thread
1208 that reported the most recent event. If a step-over is required
1209 it returns TRUE and sets the current thread to the old thread. */
1210 if (prepare_to_proceed (step))
1211 oneproc = 1;
1212
1213 if (oneproc)
1214 {
1215 stepping_over_breakpoint = 1;
1216 /* If displaced stepping is enabled, we can step over the
1217 breakpoint without hitting it, so leave all breakpoints
1218 inserted. Otherwise we need to disable all breakpoints, step
1219 one instruction, and then re-add them when that step is
1220 finished. */
1221 if (!use_displaced_stepping (gdbarch))
1222 remove_breakpoints ();
1223 }
1224
1225 /* We can insert breakpoints if we're not trying to step over one,
1226 or if we are stepping over one but we're using displaced stepping
1227 to do so. */
1228 if (! stepping_over_breakpoint || use_displaced_stepping (gdbarch))
1229 insert_breakpoints ();
1230
1231 if (siggnal != TARGET_SIGNAL_DEFAULT)
1232 stop_signal = siggnal;
1233 /* If this signal should not be seen by program,
1234 give it zero. Used for debugging signals. */
1235 else if (!signal_program[stop_signal])
1236 stop_signal = TARGET_SIGNAL_0;
1237
1238 annotate_starting ();
1239
1240 /* Make sure that output from GDB appears before output from the
1241 inferior. */
1242 gdb_flush (gdb_stdout);
1243
1244 /* Refresh prev_pc value just prior to resuming. This used to be
1245 done in stop_stepping, however, setting prev_pc there did not handle
1246 scenarios such as inferior function calls or returning from
1247 a function via the return command. In those cases, the prev_pc
1248 value was not set properly for subsequent commands. The prev_pc value
1249 is used to initialize the starting line number in the ecs. With an
1250 invalid value, the gdb next command ends up stopping at the position
1251 represented by the next line table entry past our start position.
1252 On platforms that generate one line table entry per line, this
1253 is not a problem. However, on the ia64, the compiler generates
1254 extraneous line table entries that do not increase the line number.
1255 When we issue the gdb next command on the ia64 after an inferior call
1256 or a return command, we often end up a few instructions forward, still
1257 within the original line we started.
1258
1259 An attempt was made to have init_execution_control_state () refresh
1260 the prev_pc value before calculating the line number. This approach
1261 did not work because on platforms that use ptrace, the pc register
1262 cannot be read unless the inferior is stopped. At that point, we
1263 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1264 call can fail. Setting the prev_pc value here ensures the value is
1265 updated correctly when the inferior is stopped. */
1266 prev_pc = regcache_read_pc (get_current_regcache ());
1267
1268 /* Resume inferior. */
1269 resume (oneproc || step || bpstat_should_step (), stop_signal);
1270
1271 /* Wait for it to stop (if not standalone)
1272 and in any case decode why it stopped, and act accordingly. */
1273 /* Do this only if we are not using the event loop, or if the target
1274 does not support asynchronous execution. */
1275 if (!target_can_async_p ())
1276 {
1277 wait_for_inferior (0);
1278 normal_stop ();
1279 }
1280}
1281\f
1282
1283/* Start remote-debugging of a machine over a serial link. */
1284
1285void
1286start_remote (int from_tty)
1287{
1288 init_wait_for_inferior ();
1289 stop_soon = STOP_QUIETLY_REMOTE;
1290 stepping_over_breakpoint = 0;
1291
1292 /* Always go on waiting for the target, regardless of the mode. */
1293 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1294 indicate to wait_for_inferior that a target should timeout if
1295 nothing is returned (instead of just blocking). Because of this,
1296 targets expecting an immediate response need to, internally, set
1297 things up so that the target_wait() is forced to eventually
1298 timeout. */
1299 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1300 differentiate to its caller what the state of the target is after
1301 the initial open has been performed. Here we're assuming that
1302 the target has stopped. It should be possible to eventually have
1303 target_open() return to the caller an indication that the target
1304 is currently running and GDB state should be set to the same as
1305 for an async run. */
1306 wait_for_inferior (0);
1307
1308 /* Now that the inferior has stopped, do any bookkeeping like
1309 loading shared libraries. We want to do this before normal_stop,
1310 so that the displayed frame is up to date. */
1311 post_create_inferior (&current_target, from_tty);
1312
1313 normal_stop ();
1314}
1315
1316/* Initialize static vars when a new inferior begins. */
1317
1318void
1319init_wait_for_inferior (void)
1320{
1321 /* These are meaningless until the first time through wait_for_inferior. */
1322 prev_pc = 0;
1323
1324 breakpoint_init_inferior (inf_starting);
1325
1326 /* Don't confuse first call to proceed(). */
1327 stop_signal = TARGET_SIGNAL_0;
1328
1329 /* The first resume is not following a fork/vfork/exec. */
1330 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1331
1332 clear_proceed_status ();
1333
1334 stepping_past_singlestep_breakpoint = 0;
1335 deferred_step_ptid = null_ptid;
1336
1337 target_last_wait_ptid = minus_one_ptid;
1338
1339 displaced_step_clear ();
1340}
1341
1342\f
1343/* This enum encodes possible reasons for doing a target_wait, so that
1344 wfi can call target_wait in one place. (Ultimately the call will be
1345 moved out of the infinite loop entirely.) */
1346
1347enum infwait_states
1348{
1349 infwait_normal_state,
1350 infwait_thread_hop_state,
1351 infwait_step_watch_state,
1352 infwait_nonstep_watch_state
1353};
1354
1355/* Why did the inferior stop? Used to print the appropriate messages
1356 to the interface from within handle_inferior_event(). */
1357enum inferior_stop_reason
1358{
1359 /* Step, next, nexti, stepi finished. */
1360 END_STEPPING_RANGE,
1361 /* Inferior terminated by signal. */
1362 SIGNAL_EXITED,
1363 /* Inferior exited. */
1364 EXITED,
1365 /* Inferior received signal, and user asked to be notified. */
1366 SIGNAL_RECEIVED
1367};
1368
1369/* This structure contains what used to be local variables in
1370 wait_for_inferior. Probably many of them can return to being
1371 locals in handle_inferior_event. */
1372
1373struct execution_control_state
1374{
1375 struct target_waitstatus ws;
1376 struct target_waitstatus *wp;
1377 /* Should we step over breakpoint next time keep_going
1378 is called? */
1379 int stepping_over_breakpoint;
1380 int random_signal;
1381 CORE_ADDR stop_func_start;
1382 CORE_ADDR stop_func_end;
1383 char *stop_func_name;
1384 struct symtab_and_line sal;
1385 int current_line;
1386 struct symtab *current_symtab;
1387 ptid_t ptid;
1388 ptid_t saved_inferior_ptid;
1389 int step_after_step_resume_breakpoint;
1390 int stepping_through_solib_after_catch;
1391 bpstat stepping_through_solib_catchpoints;
1392 int new_thread_event;
1393 struct target_waitstatus tmpstatus;
1394 enum infwait_states infwait_state;
1395 ptid_t waiton_ptid;
1396 int wait_some_more;
1397};
1398
1399void init_execution_control_state (struct execution_control_state *ecs);
1400
1401void handle_inferior_event (struct execution_control_state *ecs);
1402
1403static void step_into_function (struct execution_control_state *ecs);
1404static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1405static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1406static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1407 struct frame_id sr_id);
1408static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1409
1410static void stop_stepping (struct execution_control_state *ecs);
1411static void prepare_to_wait (struct execution_control_state *ecs);
1412static void keep_going (struct execution_control_state *ecs);
1413static void print_stop_reason (enum inferior_stop_reason stop_reason,
1414 int stop_info);
1415
1416/* Wait for control to return from inferior to debugger.
1417
1418 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1419 as if they were SIGTRAP signals. This can be useful during
1420 the startup sequence on some targets such as HP/UX, where
1421 we receive an EXEC event instead of the expected SIGTRAP.
1422
1423 If inferior gets a signal, we may decide to start it up again
1424 instead of returning. That is why there is a loop in this function.
1425 When this function actually returns it means the inferior
1426 should be left stopped and GDB should read more commands. */
1427
1428void
1429wait_for_inferior (int treat_exec_as_sigtrap)
1430{
1431 struct cleanup *old_cleanups;
1432 struct execution_control_state ecss;
1433 struct execution_control_state *ecs;
1434
1435 if (debug_infrun)
1436 fprintf_unfiltered
1437 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1438 treat_exec_as_sigtrap);
1439
1440 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1441 &step_resume_breakpoint);
1442
1443 /* wfi still stays in a loop, so it's OK just to take the address of
1444 a local to get the ecs pointer. */
1445 ecs = &ecss;
1446
1447 /* Fill in with reasonable starting values. */
1448 init_execution_control_state (ecs);
1449
1450 /* We'll update this if & when we switch to a new thread. */
1451 previous_inferior_ptid = inferior_ptid;
1452
1453 overlay_cache_invalid = 1;
1454
1455 /* We have to invalidate the registers BEFORE calling target_wait
1456 because they can be loaded from the target while in target_wait.
1457 This makes remote debugging a bit more efficient for those
1458 targets that provide critical registers as part of their normal
1459 status mechanism. */
1460
1461 registers_changed ();
1462
1463 while (1)
1464 {
1465 if (deprecated_target_wait_hook)
1466 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1467 else
1468 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1469
1470 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1471 {
1472 xfree (ecs->ws.value.execd_pathname);
1473 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1474 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1475 }
1476
1477 /* Now figure out what to do with the result of the result. */
1478 handle_inferior_event (ecs);
1479
1480 if (!ecs->wait_some_more)
1481 break;
1482 }
1483 do_cleanups (old_cleanups);
1484}
1485
1486/* Asynchronous version of wait_for_inferior. It is called by the
1487 event loop whenever a change of state is detected on the file
1488 descriptor corresponding to the target. It can be called more than
1489 once to complete a single execution command. In such cases we need
1490 to keep the state in a global variable ASYNC_ECSS. If it is the
1491 last time that this function is called for a single execution
1492 command, then report to the user that the inferior has stopped, and
1493 do the necessary cleanups. */
1494
1495struct execution_control_state async_ecss;
1496struct execution_control_state *async_ecs;
1497
1498void
1499fetch_inferior_event (void *client_data)
1500{
1501 static struct cleanup *old_cleanups;
1502
1503 async_ecs = &async_ecss;
1504
1505 if (!async_ecs->wait_some_more)
1506 {
1507 /* Fill in with reasonable starting values. */
1508 init_execution_control_state (async_ecs);
1509
1510 /* We'll update this if & when we switch to a new thread. */
1511 previous_inferior_ptid = inferior_ptid;
1512
1513 overlay_cache_invalid = 1;
1514
1515 /* We have to invalidate the registers BEFORE calling target_wait
1516 because they can be loaded from the target while in target_wait.
1517 This makes remote debugging a bit more efficient for those
1518 targets that provide critical registers as part of their normal
1519 status mechanism. */
1520
1521 registers_changed ();
1522 }
1523
1524 if (deprecated_target_wait_hook)
1525 async_ecs->ptid =
1526 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1527 else
1528 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1529
1530 /* Now figure out what to do with the result of the result. */
1531 handle_inferior_event (async_ecs);
1532
1533 if (!async_ecs->wait_some_more)
1534 {
1535 delete_step_resume_breakpoint (&step_resume_breakpoint);
1536
1537 normal_stop ();
1538 if (step_multi && stop_step)
1539 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1540 else
1541 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1542 }
1543}
1544
1545/* Prepare an execution control state for looping through a
1546 wait_for_inferior-type loop. */
1547
1548void
1549init_execution_control_state (struct execution_control_state *ecs)
1550{
1551 ecs->stepping_over_breakpoint = 0;
1552 ecs->random_signal = 0;
1553 ecs->step_after_step_resume_breakpoint = 0;
1554 ecs->stepping_through_solib_after_catch = 0;
1555 ecs->stepping_through_solib_catchpoints = NULL;
1556 ecs->sal = find_pc_line (prev_pc, 0);
1557 ecs->current_line = ecs->sal.line;
1558 ecs->current_symtab = ecs->sal.symtab;
1559 ecs->infwait_state = infwait_normal_state;
1560 ecs->waiton_ptid = pid_to_ptid (-1);
1561 ecs->wp = &(ecs->ws);
1562}
1563
1564/* Return the cached copy of the last pid/waitstatus returned by
1565 target_wait()/deprecated_target_wait_hook(). The data is actually
1566 cached by handle_inferior_event(), which gets called immediately
1567 after target_wait()/deprecated_target_wait_hook(). */
1568
1569void
1570get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1571{
1572 *ptidp = target_last_wait_ptid;
1573 *status = target_last_waitstatus;
1574}
1575
1576void
1577nullify_last_target_wait_ptid (void)
1578{
1579 target_last_wait_ptid = minus_one_ptid;
1580}
1581
1582/* Switch thread contexts, maintaining "infrun state". */
1583
1584static void
1585context_switch (struct execution_control_state *ecs)
1586{
1587 /* Caution: it may happen that the new thread (or the old one!)
1588 is not in the thread list. In this case we must not attempt
1589 to "switch context", or we run the risk that our context may
1590 be lost. This may happen as a result of the target module
1591 mishandling thread creation. */
1592
1593 if (debug_infrun)
1594 {
1595 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1596 target_pid_to_str (inferior_ptid));
1597 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1598 target_pid_to_str (ecs->ptid));
1599 }
1600
1601 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1602 { /* Perform infrun state context switch: */
1603 /* Save infrun state for the old thread. */
1604 save_infrun_state (inferior_ptid, prev_pc,
1605 stepping_over_breakpoint, step_resume_breakpoint,
1606 step_range_start,
1607 step_range_end, &step_frame_id,
1608 ecs->stepping_over_breakpoint,
1609 ecs->stepping_through_solib_after_catch,
1610 ecs->stepping_through_solib_catchpoints,
1611 ecs->current_line, ecs->current_symtab);
1612
1613 /* Load infrun state for the new thread. */
1614 load_infrun_state (ecs->ptid, &prev_pc,
1615 &stepping_over_breakpoint, &step_resume_breakpoint,
1616 &step_range_start,
1617 &step_range_end, &step_frame_id,
1618 &ecs->stepping_over_breakpoint,
1619 &ecs->stepping_through_solib_after_catch,
1620 &ecs->stepping_through_solib_catchpoints,
1621 &ecs->current_line, &ecs->current_symtab);
1622 }
1623
1624 switch_to_thread (ecs->ptid);
1625}
1626
1627static void
1628adjust_pc_after_break (struct execution_control_state *ecs)
1629{
1630 struct regcache *regcache = get_thread_regcache (ecs->ptid);
1631 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1632 CORE_ADDR breakpoint_pc;
1633
1634 /* If this target does not decrement the PC after breakpoints, then
1635 we have nothing to do. */
1636 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1637 return;
1638
1639 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1640 we aren't, just return.
1641
1642 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1643 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1644 implemented by software breakpoints should be handled through the normal
1645 breakpoint layer.
1646
1647 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1648 different signals (SIGILL or SIGEMT for instance), but it is less
1649 clear where the PC is pointing afterwards. It may not match
1650 gdbarch_decr_pc_after_break. I don't know any specific target that
1651 generates these signals at breakpoints (the code has been in GDB since at
1652 least 1992) so I can not guess how to handle them here.
1653
1654 In earlier versions of GDB, a target with
1655 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1656 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1657 target with both of these set in GDB history, and it seems unlikely to be
1658 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1659
1660 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1661 return;
1662
1663 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1664 return;
1665
1666 /* Find the location where (if we've hit a breakpoint) the
1667 breakpoint would be. */
1668 breakpoint_pc = regcache_read_pc (regcache)
1669 - gdbarch_decr_pc_after_break (gdbarch);
1670
1671 /* Check whether there actually is a software breakpoint inserted
1672 at that location. */
1673 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1674 {
1675 /* When using hardware single-step, a SIGTRAP is reported for both
1676 a completed single-step and a software breakpoint. Need to
1677 differentiate between the two, as the latter needs adjusting
1678 but the former does not.
1679
1680 The SIGTRAP can be due to a completed hardware single-step only if
1681 - we didn't insert software single-step breakpoints
1682 - the thread to be examined is still the current thread
1683 - this thread is currently being stepped
1684
1685 If any of these events did not occur, we must have stopped due
1686 to hitting a software breakpoint, and have to back up to the
1687 breakpoint address.
1688
1689 As a special case, we could have hardware single-stepped a
1690 software breakpoint. In this case (prev_pc == breakpoint_pc),
1691 we also need to back up to the breakpoint address. */
1692
1693 if (singlestep_breakpoints_inserted_p
1694 || !ptid_equal (ecs->ptid, inferior_ptid)
1695 || !currently_stepping (ecs)
1696 || prev_pc == breakpoint_pc)
1697 regcache_write_pc (regcache, breakpoint_pc);
1698 }
1699}
1700
1701/* Given an execution control state that has been freshly filled in
1702 by an event from the inferior, figure out what it means and take
1703 appropriate action. */
1704
1705void
1706handle_inferior_event (struct execution_control_state *ecs)
1707{
1708 int sw_single_step_trap_p = 0;
1709 int stopped_by_watchpoint;
1710 int stepped_after_stopped_by_watchpoint = 0;
1711
1712 breakpoint_retire_moribund ();
1713
1714 /* Cache the last pid/waitstatus. */
1715 target_last_wait_ptid = ecs->ptid;
1716 target_last_waitstatus = *ecs->wp;
1717
1718 /* Always clear state belonging to the previous time we stopped. */
1719 stop_stack_dummy = 0;
1720
1721 adjust_pc_after_break (ecs);
1722
1723 switch (ecs->infwait_state)
1724 {
1725 case infwait_thread_hop_state:
1726 if (debug_infrun)
1727 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1728 /* Cancel the waiton_ptid. */
1729 ecs->waiton_ptid = pid_to_ptid (-1);
1730 break;
1731
1732 case infwait_normal_state:
1733 if (debug_infrun)
1734 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1735 break;
1736
1737 case infwait_step_watch_state:
1738 if (debug_infrun)
1739 fprintf_unfiltered (gdb_stdlog,
1740 "infrun: infwait_step_watch_state\n");
1741
1742 stepped_after_stopped_by_watchpoint = 1;
1743 break;
1744
1745 case infwait_nonstep_watch_state:
1746 if (debug_infrun)
1747 fprintf_unfiltered (gdb_stdlog,
1748 "infrun: infwait_nonstep_watch_state\n");
1749 insert_breakpoints ();
1750
1751 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1752 handle things like signals arriving and other things happening
1753 in combination correctly? */
1754 stepped_after_stopped_by_watchpoint = 1;
1755 break;
1756
1757 default:
1758 internal_error (__FILE__, __LINE__, _("bad switch"));
1759 }
1760 ecs->infwait_state = infwait_normal_state;
1761
1762 reinit_frame_cache ();
1763
1764 /* If it's a new process, add it to the thread database */
1765
1766 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1767 && !ptid_equal (ecs->ptid, minus_one_ptid)
1768 && !in_thread_list (ecs->ptid));
1769
1770 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1771 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1772 add_thread (ecs->ptid);
1773
1774 /* Mark all threads as not-executing. In non-stop, this should be
1775 adjusted to only mark ecs->ptid. */
1776 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1777 set_executing (pid_to_ptid (-1), 0);
1778
1779 switch (ecs->ws.kind)
1780 {
1781 case TARGET_WAITKIND_LOADED:
1782 if (debug_infrun)
1783 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1784 /* Ignore gracefully during startup of the inferior, as it might
1785 be the shell which has just loaded some objects, otherwise
1786 add the symbols for the newly loaded objects. Also ignore at
1787 the beginning of an attach or remote session; we will query
1788 the full list of libraries once the connection is
1789 established. */
1790 if (stop_soon == NO_STOP_QUIETLY)
1791 {
1792 /* Check for any newly added shared libraries if we're
1793 supposed to be adding them automatically. Switch
1794 terminal for any messages produced by
1795 breakpoint_re_set. */
1796 target_terminal_ours_for_output ();
1797 /* NOTE: cagney/2003-11-25: Make certain that the target
1798 stack's section table is kept up-to-date. Architectures,
1799 (e.g., PPC64), use the section table to perform
1800 operations such as address => section name and hence
1801 require the table to contain all sections (including
1802 those found in shared libraries). */
1803 /* NOTE: cagney/2003-11-25: Pass current_target and not
1804 exec_ops to SOLIB_ADD. This is because current GDB is
1805 only tooled to propagate section_table changes out from
1806 the "current_target" (see target_resize_to_sections), and
1807 not up from the exec stratum. This, of course, isn't
1808 right. "infrun.c" should only interact with the
1809 exec/process stratum, instead relying on the target stack
1810 to propagate relevant changes (stop, section table
1811 changed, ...) up to other layers. */
1812#ifdef SOLIB_ADD
1813 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1814#else
1815 solib_add (NULL, 0, &current_target, auto_solib_add);
1816#endif
1817 target_terminal_inferior ();
1818
1819 /* If requested, stop when the dynamic linker notifies
1820 gdb of events. This allows the user to get control
1821 and place breakpoints in initializer routines for
1822 dynamically loaded objects (among other things). */
1823 if (stop_on_solib_events)
1824 {
1825 stop_stepping (ecs);
1826 return;
1827 }
1828
1829 /* NOTE drow/2007-05-11: This might be a good place to check
1830 for "catch load". */
1831 }
1832
1833 /* If we are skipping through a shell, or through shared library
1834 loading that we aren't interested in, resume the program. If
1835 we're running the program normally, also resume. But stop if
1836 we're attaching or setting up a remote connection. */
1837 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1838 {
1839 /* Loading of shared libraries might have changed breakpoint
1840 addresses. Make sure new breakpoints are inserted. */
1841 if (stop_soon == NO_STOP_QUIETLY
1842 && !breakpoints_always_inserted_mode ())
1843 insert_breakpoints ();
1844 resume (0, TARGET_SIGNAL_0);
1845 prepare_to_wait (ecs);
1846 return;
1847 }
1848
1849 break;
1850
1851 case TARGET_WAITKIND_SPURIOUS:
1852 if (debug_infrun)
1853 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1854 resume (0, TARGET_SIGNAL_0);
1855 prepare_to_wait (ecs);
1856 return;
1857
1858 case TARGET_WAITKIND_EXITED:
1859 if (debug_infrun)
1860 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1861 target_terminal_ours (); /* Must do this before mourn anyway */
1862 print_stop_reason (EXITED, ecs->ws.value.integer);
1863
1864 /* Record the exit code in the convenience variable $_exitcode, so
1865 that the user can inspect this again later. */
1866 set_internalvar (lookup_internalvar ("_exitcode"),
1867 value_from_longest (builtin_type_int,
1868 (LONGEST) ecs->ws.value.integer));
1869 gdb_flush (gdb_stdout);
1870 target_mourn_inferior ();
1871 singlestep_breakpoints_inserted_p = 0;
1872 stop_print_frame = 0;
1873 stop_stepping (ecs);
1874 return;
1875
1876 case TARGET_WAITKIND_SIGNALLED:
1877 if (debug_infrun)
1878 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1879 stop_print_frame = 0;
1880 stop_signal = ecs->ws.value.sig;
1881 target_terminal_ours (); /* Must do this before mourn anyway */
1882
1883 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1884 reach here unless the inferior is dead. However, for years
1885 target_kill() was called here, which hints that fatal signals aren't
1886 really fatal on some systems. If that's true, then some changes
1887 may be needed. */
1888 target_mourn_inferior ();
1889
1890 print_stop_reason (SIGNAL_EXITED, stop_signal);
1891 singlestep_breakpoints_inserted_p = 0;
1892 stop_stepping (ecs);
1893 return;
1894
1895 /* The following are the only cases in which we keep going;
1896 the above cases end in a continue or goto. */
1897 case TARGET_WAITKIND_FORKED:
1898 case TARGET_WAITKIND_VFORKED:
1899 if (debug_infrun)
1900 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1901 stop_signal = TARGET_SIGNAL_TRAP;
1902 pending_follow.kind = ecs->ws.kind;
1903
1904 pending_follow.fork_event.parent_pid = ecs->ptid;
1905 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1906
1907 if (!ptid_equal (ecs->ptid, inferior_ptid))
1908 {
1909 context_switch (ecs);
1910 reinit_frame_cache ();
1911 }
1912
1913 stop_pc = read_pc ();
1914
1915 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1916
1917 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1918
1919 /* If no catchpoint triggered for this, then keep going. */
1920 if (ecs->random_signal)
1921 {
1922 stop_signal = TARGET_SIGNAL_0;
1923 keep_going (ecs);
1924 return;
1925 }
1926 goto process_event_stop_test;
1927
1928 case TARGET_WAITKIND_EXECD:
1929 if (debug_infrun)
1930 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1931 stop_signal = TARGET_SIGNAL_TRAP;
1932
1933 pending_follow.execd_pathname =
1934 savestring (ecs->ws.value.execd_pathname,
1935 strlen (ecs->ws.value.execd_pathname));
1936
1937 /* This causes the eventpoints and symbol table to be reset. Must
1938 do this now, before trying to determine whether to stop. */
1939 follow_exec (inferior_ptid, pending_follow.execd_pathname);
1940 xfree (pending_follow.execd_pathname);
1941
1942 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
1943 ecs->saved_inferior_ptid = inferior_ptid;
1944 inferior_ptid = ecs->ptid;
1945
1946 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1947
1948 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1949 inferior_ptid = ecs->saved_inferior_ptid;
1950
1951 if (!ptid_equal (ecs->ptid, inferior_ptid))
1952 {
1953 context_switch (ecs);
1954 reinit_frame_cache ();
1955 }
1956
1957 /* If no catchpoint triggered for this, then keep going. */
1958 if (ecs->random_signal)
1959 {
1960 stop_signal = TARGET_SIGNAL_0;
1961 keep_going (ecs);
1962 return;
1963 }
1964 goto process_event_stop_test;
1965
1966 /* Be careful not to try to gather much state about a thread
1967 that's in a syscall. It's frequently a losing proposition. */
1968 case TARGET_WAITKIND_SYSCALL_ENTRY:
1969 if (debug_infrun)
1970 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1971 resume (0, TARGET_SIGNAL_0);
1972 prepare_to_wait (ecs);
1973 return;
1974
1975 /* Before examining the threads further, step this thread to
1976 get it entirely out of the syscall. (We get notice of the
1977 event when the thread is just on the verge of exiting a
1978 syscall. Stepping one instruction seems to get it back
1979 into user code.) */
1980 case TARGET_WAITKIND_SYSCALL_RETURN:
1981 if (debug_infrun)
1982 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1983 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1984 prepare_to_wait (ecs);
1985 return;
1986
1987 case TARGET_WAITKIND_STOPPED:
1988 if (debug_infrun)
1989 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1990 stop_signal = ecs->ws.value.sig;
1991 break;
1992
1993 /* We had an event in the inferior, but we are not interested
1994 in handling it at this level. The lower layers have already
1995 done what needs to be done, if anything.
1996
1997 One of the possible circumstances for this is when the
1998 inferior produces output for the console. The inferior has
1999 not stopped, and we are ignoring the event. Another possible
2000 circumstance is any event which the lower level knows will be
2001 reported multiple times without an intervening resume. */
2002 case TARGET_WAITKIND_IGNORE:
2003 if (debug_infrun)
2004 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2005 prepare_to_wait (ecs);
2006 return;
2007 }
2008
2009 /* We may want to consider not doing a resume here in order to give
2010 the user a chance to play with the new thread. It might be good
2011 to make that a user-settable option. */
2012
2013 /* At this point, all threads are stopped (happens automatically in
2014 either the OS or the native code). Therefore we need to continue
2015 all threads in order to make progress. */
2016 if (ecs->new_thread_event)
2017 {
2018 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2019 prepare_to_wait (ecs);
2020 return;
2021 }
2022
2023 /* Do we need to clean up the state of a thread that has completed a
2024 displaced single-step? (Doing so usually affects the PC, so do
2025 it here, before we set stop_pc.) */
2026 displaced_step_fixup (ecs->ptid, stop_signal);
2027
2028 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2029
2030 if (debug_infrun)
2031 {
2032 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2033 paddr_nz (stop_pc));
2034 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2035 {
2036 CORE_ADDR addr;
2037 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2038
2039 if (target_stopped_data_address (&current_target, &addr))
2040 fprintf_unfiltered (gdb_stdlog,
2041 "infrun: stopped data address = 0x%s\n",
2042 paddr_nz (addr));
2043 else
2044 fprintf_unfiltered (gdb_stdlog,
2045 "infrun: (no data address available)\n");
2046 }
2047 }
2048
2049 if (stepping_past_singlestep_breakpoint)
2050 {
2051 gdb_assert (singlestep_breakpoints_inserted_p);
2052 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2053 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2054
2055 stepping_past_singlestep_breakpoint = 0;
2056
2057 /* We've either finished single-stepping past the single-step
2058 breakpoint, or stopped for some other reason. It would be nice if
2059 we could tell, but we can't reliably. */
2060 if (stop_signal == TARGET_SIGNAL_TRAP)
2061 {
2062 if (debug_infrun)
2063 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2064 /* Pull the single step breakpoints out of the target. */
2065 remove_single_step_breakpoints ();
2066 singlestep_breakpoints_inserted_p = 0;
2067
2068 ecs->random_signal = 0;
2069
2070 ecs->ptid = saved_singlestep_ptid;
2071 context_switch (ecs);
2072 if (deprecated_context_hook)
2073 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2074
2075 resume (1, TARGET_SIGNAL_0);
2076 prepare_to_wait (ecs);
2077 return;
2078 }
2079 }
2080
2081 stepping_past_singlestep_breakpoint = 0;
2082
2083 if (!ptid_equal (deferred_step_ptid, null_ptid))
2084 {
2085 /* If we stopped for some other reason than single-stepping, ignore
2086 the fact that we were supposed to switch back. */
2087 if (stop_signal == TARGET_SIGNAL_TRAP)
2088 {
2089 if (debug_infrun)
2090 fprintf_unfiltered (gdb_stdlog,
2091 "infrun: handling deferred step\n");
2092
2093 /* Pull the single step breakpoints out of the target. */
2094 if (singlestep_breakpoints_inserted_p)
2095 {
2096 remove_single_step_breakpoints ();
2097 singlestep_breakpoints_inserted_p = 0;
2098 }
2099
2100 /* Note: We do not call context_switch at this point, as the
2101 context is already set up for stepping the original thread. */
2102 switch_to_thread (deferred_step_ptid);
2103 deferred_step_ptid = null_ptid;
2104 /* Suppress spurious "Switching to ..." message. */
2105 previous_inferior_ptid = inferior_ptid;
2106
2107 resume (1, TARGET_SIGNAL_0);
2108 prepare_to_wait (ecs);
2109 return;
2110 }
2111
2112 deferred_step_ptid = null_ptid;
2113 }
2114
2115 /* See if a thread hit a thread-specific breakpoint that was meant for
2116 another thread. If so, then step that thread past the breakpoint,
2117 and continue it. */
2118
2119 if (stop_signal == TARGET_SIGNAL_TRAP)
2120 {
2121 int thread_hop_needed = 0;
2122
2123 /* Check if a regular breakpoint has been hit before checking
2124 for a potential single step breakpoint. Otherwise, GDB will
2125 not see this breakpoint hit when stepping onto breakpoints. */
2126 if (regular_breakpoint_inserted_here_p (stop_pc))
2127 {
2128 ecs->random_signal = 0;
2129 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2130 thread_hop_needed = 1;
2131 }
2132 else if (singlestep_breakpoints_inserted_p)
2133 {
2134 /* We have not context switched yet, so this should be true
2135 no matter which thread hit the singlestep breakpoint. */
2136 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2137 if (debug_infrun)
2138 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2139 "trap for %s\n",
2140 target_pid_to_str (ecs->ptid));
2141
2142 ecs->random_signal = 0;
2143 /* The call to in_thread_list is necessary because PTIDs sometimes
2144 change when we go from single-threaded to multi-threaded. If
2145 the singlestep_ptid is still in the list, assume that it is
2146 really different from ecs->ptid. */
2147 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2148 && in_thread_list (singlestep_ptid))
2149 {
2150 /* If the PC of the thread we were trying to single-step
2151 has changed, discard this event (which we were going
2152 to ignore anyway), and pretend we saw that thread
2153 trap. This prevents us continuously moving the
2154 single-step breakpoint forward, one instruction at a
2155 time. If the PC has changed, then the thread we were
2156 trying to single-step has trapped or been signalled,
2157 but the event has not been reported to GDB yet.
2158
2159 There might be some cases where this loses signal
2160 information, if a signal has arrived at exactly the
2161 same time that the PC changed, but this is the best
2162 we can do with the information available. Perhaps we
2163 should arrange to report all events for all threads
2164 when they stop, or to re-poll the remote looking for
2165 this particular thread (i.e. temporarily enable
2166 schedlock). */
2167
2168 CORE_ADDR new_singlestep_pc
2169 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2170
2171 if (new_singlestep_pc != singlestep_pc)
2172 {
2173 if (debug_infrun)
2174 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2175 " but expected thread advanced also\n");
2176
2177 /* The current context still belongs to
2178 singlestep_ptid. Don't swap here, since that's
2179 the context we want to use. Just fudge our
2180 state and continue. */
2181 ecs->ptid = singlestep_ptid;
2182 stop_pc = new_singlestep_pc;
2183 }
2184 else
2185 {
2186 if (debug_infrun)
2187 fprintf_unfiltered (gdb_stdlog,
2188 "infrun: unexpected thread\n");
2189
2190 thread_hop_needed = 1;
2191 stepping_past_singlestep_breakpoint = 1;
2192 saved_singlestep_ptid = singlestep_ptid;
2193 }
2194 }
2195 }
2196
2197 if (thread_hop_needed)
2198 {
2199 int remove_status = 0;
2200
2201 if (debug_infrun)
2202 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2203
2204 /* Saw a breakpoint, but it was hit by the wrong thread.
2205 Just continue. */
2206
2207 if (singlestep_breakpoints_inserted_p)
2208 {
2209 /* Pull the single step breakpoints out of the target. */
2210 remove_single_step_breakpoints ();
2211 singlestep_breakpoints_inserted_p = 0;
2212 }
2213
2214 /* If the arch can displace step, don't remove the
2215 breakpoints. */
2216 if (!use_displaced_stepping (current_gdbarch))
2217 remove_status = remove_breakpoints ();
2218
2219 /* Did we fail to remove breakpoints? If so, try
2220 to set the PC past the bp. (There's at least
2221 one situation in which we can fail to remove
2222 the bp's: On HP-UX's that use ttrace, we can't
2223 change the address space of a vforking child
2224 process until the child exits (well, okay, not
2225 then either :-) or execs. */
2226 if (remove_status != 0)
2227 error (_("Cannot step over breakpoint hit in wrong thread"));
2228 else
2229 { /* Single step */
2230 if (!ptid_equal (inferior_ptid, ecs->ptid))
2231 context_switch (ecs);
2232 ecs->waiton_ptid = ecs->ptid;
2233 ecs->wp = &(ecs->ws);
2234 ecs->stepping_over_breakpoint = 1;
2235
2236 ecs->infwait_state = infwait_thread_hop_state;
2237 keep_going (ecs);
2238 registers_changed ();
2239 return;
2240 }
2241 }
2242 else if (singlestep_breakpoints_inserted_p)
2243 {
2244 sw_single_step_trap_p = 1;
2245 ecs->random_signal = 0;
2246 }
2247 }
2248 else
2249 ecs->random_signal = 1;
2250
2251 /* See if something interesting happened to the non-current thread. If
2252 so, then switch to that thread. */
2253 if (!ptid_equal (ecs->ptid, inferior_ptid))
2254 {
2255 if (debug_infrun)
2256 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2257
2258 context_switch (ecs);
2259
2260 if (deprecated_context_hook)
2261 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2262 }
2263
2264 if (singlestep_breakpoints_inserted_p)
2265 {
2266 /* Pull the single step breakpoints out of the target. */
2267 remove_single_step_breakpoints ();
2268 singlestep_breakpoints_inserted_p = 0;
2269 }
2270
2271 if (stepped_after_stopped_by_watchpoint)
2272 stopped_by_watchpoint = 0;
2273 else
2274 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2275
2276 /* If necessary, step over this watchpoint. We'll be back to display
2277 it in a moment. */
2278 if (stopped_by_watchpoint
2279 && (HAVE_STEPPABLE_WATCHPOINT
2280 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2281 {
2282 /* At this point, we are stopped at an instruction which has
2283 attempted to write to a piece of memory under control of
2284 a watchpoint. The instruction hasn't actually executed
2285 yet. If we were to evaluate the watchpoint expression
2286 now, we would get the old value, and therefore no change
2287 would seem to have occurred.
2288
2289 In order to make watchpoints work `right', we really need
2290 to complete the memory write, and then evaluate the
2291 watchpoint expression. We do this by single-stepping the
2292 target.
2293
2294 It may not be necessary to disable the watchpoint to stop over
2295 it. For example, the PA can (with some kernel cooperation)
2296 single step over a watchpoint without disabling the watchpoint.
2297
2298 It is far more common to need to disable a watchpoint to step
2299 the inferior over it. If we have non-steppable watchpoints,
2300 we must disable the current watchpoint; it's simplest to
2301 disable all watchpoints and breakpoints. */
2302
2303 if (!HAVE_STEPPABLE_WATCHPOINT)
2304 remove_breakpoints ();
2305 registers_changed ();
2306 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2307 ecs->waiton_ptid = ecs->ptid;
2308 if (HAVE_STEPPABLE_WATCHPOINT)
2309 ecs->infwait_state = infwait_step_watch_state;
2310 else
2311 ecs->infwait_state = infwait_nonstep_watch_state;
2312 prepare_to_wait (ecs);
2313 return;
2314 }
2315
2316 ecs->stop_func_start = 0;
2317 ecs->stop_func_end = 0;
2318 ecs->stop_func_name = 0;
2319 /* Don't care about return value; stop_func_start and stop_func_name
2320 will both be 0 if it doesn't work. */
2321 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2322 &ecs->stop_func_start, &ecs->stop_func_end);
2323 ecs->stop_func_start
2324 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2325 ecs->stepping_over_breakpoint = 0;
2326 bpstat_clear (&stop_bpstat);
2327 stop_step = 0;
2328 stop_print_frame = 1;
2329 ecs->random_signal = 0;
2330 stopped_by_random_signal = 0;
2331
2332 if (stop_signal == TARGET_SIGNAL_TRAP
2333 && stepping_over_breakpoint
2334 && gdbarch_single_step_through_delay_p (current_gdbarch)
2335 && currently_stepping (ecs))
2336 {
2337 /* We're trying to step off a breakpoint. Turns out that we're
2338 also on an instruction that needs to be stepped multiple
2339 times before it's been fully executing. E.g., architectures
2340 with a delay slot. It needs to be stepped twice, once for
2341 the instruction and once for the delay slot. */
2342 int step_through_delay
2343 = gdbarch_single_step_through_delay (current_gdbarch,
2344 get_current_frame ());
2345 if (debug_infrun && step_through_delay)
2346 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2347 if (step_range_end == 0 && step_through_delay)
2348 {
2349 /* The user issued a continue when stopped at a breakpoint.
2350 Set up for another trap and get out of here. */
2351 ecs->stepping_over_breakpoint = 1;
2352 keep_going (ecs);
2353 return;
2354 }
2355 else if (step_through_delay)
2356 {
2357 /* The user issued a step when stopped at a breakpoint.
2358 Maybe we should stop, maybe we should not - the delay
2359 slot *might* correspond to a line of source. In any
2360 case, don't decide that here, just set
2361 ecs->stepping_over_breakpoint, making sure we
2362 single-step again before breakpoints are re-inserted. */
2363 ecs->stepping_over_breakpoint = 1;
2364 }
2365 }
2366
2367 /* Look at the cause of the stop, and decide what to do.
2368 The alternatives are:
2369 1) break; to really stop and return to the debugger,
2370 2) drop through to start up again
2371 (set ecs->stepping_over_breakpoint to 1 to single step once)
2372 3) set ecs->random_signal to 1, and the decision between 1 and 2
2373 will be made according to the signal handling tables. */
2374
2375 /* First, distinguish signals caused by the debugger from signals
2376 that have to do with the program's own actions. Note that
2377 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2378 on the operating system version. Here we detect when a SIGILL or
2379 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2380 something similar for SIGSEGV, since a SIGSEGV will be generated
2381 when we're trying to execute a breakpoint instruction on a
2382 non-executable stack. This happens for call dummy breakpoints
2383 for architectures like SPARC that place call dummies on the
2384 stack.
2385
2386 If we're doing a displaced step past a breakpoint, then the
2387 breakpoint is always inserted at the original instruction;
2388 non-standard signals can't be explained by the breakpoint. */
2389 if (stop_signal == TARGET_SIGNAL_TRAP
2390 || (! stepping_over_breakpoint
2391 && breakpoint_inserted_here_p (stop_pc)
2392 && (stop_signal == TARGET_SIGNAL_ILL
2393 || stop_signal == TARGET_SIGNAL_SEGV
2394 || stop_signal == TARGET_SIGNAL_EMT))
2395 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2396 || stop_soon == STOP_QUIETLY_REMOTE)
2397 {
2398 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2399 {
2400 if (debug_infrun)
2401 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2402 stop_print_frame = 0;
2403 stop_stepping (ecs);
2404 return;
2405 }
2406
2407 /* This is originated from start_remote(), start_inferior() and
2408 shared libraries hook functions. */
2409 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2410 {
2411 if (debug_infrun)
2412 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2413 stop_stepping (ecs);
2414 return;
2415 }
2416
2417 /* This originates from attach_command(). We need to overwrite
2418 the stop_signal here, because some kernels don't ignore a
2419 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2420 See more comments in inferior.h. On the other hand, if we
2421 get a non-SIGSTOP, report it to the user - assume the backend
2422 will handle the SIGSTOP if it should show up later. */
2423 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2424 && stop_signal == TARGET_SIGNAL_STOP)
2425 {
2426 stop_stepping (ecs);
2427 stop_signal = TARGET_SIGNAL_0;
2428 return;
2429 }
2430
2431 /* See if there is a breakpoint at the current PC. */
2432 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2433
2434 /* Following in case break condition called a
2435 function. */
2436 stop_print_frame = 1;
2437
2438 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2439 at one stage in the past included checks for an inferior
2440 function call's call dummy's return breakpoint. The original
2441 comment, that went with the test, read:
2442
2443 ``End of a stack dummy. Some systems (e.g. Sony news) give
2444 another signal besides SIGTRAP, so check here as well as
2445 above.''
2446
2447 If someone ever tries to get get call dummys on a
2448 non-executable stack to work (where the target would stop
2449 with something like a SIGSEGV), then those tests might need
2450 to be re-instated. Given, however, that the tests were only
2451 enabled when momentary breakpoints were not being used, I
2452 suspect that it won't be the case.
2453
2454 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2455 be necessary for call dummies on a non-executable stack on
2456 SPARC. */
2457
2458 if (stop_signal == TARGET_SIGNAL_TRAP)
2459 ecs->random_signal
2460 = !(bpstat_explains_signal (stop_bpstat)
2461 || stepping_over_breakpoint
2462 || (step_range_end && step_resume_breakpoint == NULL));
2463 else
2464 {
2465 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2466 if (!ecs->random_signal)
2467 stop_signal = TARGET_SIGNAL_TRAP;
2468 }
2469 }
2470
2471 /* When we reach this point, we've pretty much decided
2472 that the reason for stopping must've been a random
2473 (unexpected) signal. */
2474
2475 else
2476 ecs->random_signal = 1;
2477
2478process_event_stop_test:
2479 /* For the program's own signals, act according to
2480 the signal handling tables. */
2481
2482 if (ecs->random_signal)
2483 {
2484 /* Signal not for debugging purposes. */
2485 int printed = 0;
2486
2487 if (debug_infrun)
2488 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2489
2490 stopped_by_random_signal = 1;
2491
2492 if (signal_print[stop_signal])
2493 {
2494 printed = 1;
2495 target_terminal_ours_for_output ();
2496 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2497 }
2498 if (signal_stop_state (stop_signal))
2499 {
2500 stop_stepping (ecs);
2501 return;
2502 }
2503 /* If not going to stop, give terminal back
2504 if we took it away. */
2505 else if (printed)
2506 target_terminal_inferior ();
2507
2508 /* Clear the signal if it should not be passed. */
2509 if (signal_program[stop_signal] == 0)
2510 stop_signal = TARGET_SIGNAL_0;
2511
2512 if (prev_pc == read_pc ()
2513 && stepping_over_breakpoint
2514 && step_resume_breakpoint == NULL)
2515 {
2516 /* We were just starting a new sequence, attempting to
2517 single-step off of a breakpoint and expecting a SIGTRAP.
2518 Instead this signal arrives. This signal will take us out
2519 of the stepping range so GDB needs to remember to, when
2520 the signal handler returns, resume stepping off that
2521 breakpoint. */
2522 /* To simplify things, "continue" is forced to use the same
2523 code paths as single-step - set a breakpoint at the
2524 signal return address and then, once hit, step off that
2525 breakpoint. */
2526 if (debug_infrun)
2527 fprintf_unfiltered (gdb_stdlog,
2528 "infrun: signal arrived while stepping over "
2529 "breakpoint\n");
2530
2531 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2532 ecs->step_after_step_resume_breakpoint = 1;
2533 keep_going (ecs);
2534 return;
2535 }
2536
2537 if (step_range_end != 0
2538 && stop_signal != TARGET_SIGNAL_0
2539 && stop_pc >= step_range_start && stop_pc < step_range_end
2540 && frame_id_eq (get_frame_id (get_current_frame ()),
2541 step_frame_id)
2542 && step_resume_breakpoint == NULL)
2543 {
2544 /* The inferior is about to take a signal that will take it
2545 out of the single step range. Set a breakpoint at the
2546 current PC (which is presumably where the signal handler
2547 will eventually return) and then allow the inferior to
2548 run free.
2549
2550 Note that this is only needed for a signal delivered
2551 while in the single-step range. Nested signals aren't a
2552 problem as they eventually all return. */
2553 if (debug_infrun)
2554 fprintf_unfiltered (gdb_stdlog,
2555 "infrun: signal may take us out of "
2556 "single-step range\n");
2557
2558 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2559 keep_going (ecs);
2560 return;
2561 }
2562
2563 /* Note: step_resume_breakpoint may be non-NULL. This occures
2564 when either there's a nested signal, or when there's a
2565 pending signal enabled just as the signal handler returns
2566 (leaving the inferior at the step-resume-breakpoint without
2567 actually executing it). Either way continue until the
2568 breakpoint is really hit. */
2569 keep_going (ecs);
2570 return;
2571 }
2572
2573 /* Handle cases caused by hitting a breakpoint. */
2574 {
2575 CORE_ADDR jmp_buf_pc;
2576 struct bpstat_what what;
2577
2578 what = bpstat_what (stop_bpstat);
2579
2580 if (what.call_dummy)
2581 {
2582 stop_stack_dummy = 1;
2583 }
2584
2585 switch (what.main_action)
2586 {
2587 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2588 /* If we hit the breakpoint at longjmp while stepping, we
2589 install a momentary breakpoint at the target of the
2590 jmp_buf. */
2591
2592 if (debug_infrun)
2593 fprintf_unfiltered (gdb_stdlog,
2594 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2595
2596 ecs->stepping_over_breakpoint = 1;
2597
2598 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2599 || !gdbarch_get_longjmp_target (current_gdbarch,
2600 get_current_frame (), &jmp_buf_pc))
2601 {
2602 if (debug_infrun)
2603 fprintf_unfiltered (gdb_stdlog, "\
2604infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
2605 keep_going (ecs);
2606 return;
2607 }
2608
2609 /* We're going to replace the current step-resume breakpoint
2610 with a longjmp-resume breakpoint. */
2611 if (step_resume_breakpoint != NULL)
2612 delete_step_resume_breakpoint (&step_resume_breakpoint);
2613
2614 /* Insert a breakpoint at resume address. */
2615 insert_longjmp_resume_breakpoint (jmp_buf_pc);
2616
2617 keep_going (ecs);
2618 return;
2619
2620 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2621 if (debug_infrun)
2622 fprintf_unfiltered (gdb_stdlog,
2623 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2624
2625 gdb_assert (step_resume_breakpoint != NULL);
2626 delete_step_resume_breakpoint (&step_resume_breakpoint);
2627
2628 stop_step = 1;
2629 print_stop_reason (END_STEPPING_RANGE, 0);
2630 stop_stepping (ecs);
2631 return;
2632
2633 case BPSTAT_WHAT_SINGLE:
2634 if (debug_infrun)
2635 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2636 ecs->stepping_over_breakpoint = 1;
2637 /* Still need to check other stuff, at least the case
2638 where we are stepping and step out of the right range. */
2639 break;
2640
2641 case BPSTAT_WHAT_STOP_NOISY:
2642 if (debug_infrun)
2643 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2644 stop_print_frame = 1;
2645
2646 /* We are about to nuke the step_resume_breakpointt via the
2647 cleanup chain, so no need to worry about it here. */
2648
2649 stop_stepping (ecs);
2650 return;
2651
2652 case BPSTAT_WHAT_STOP_SILENT:
2653 if (debug_infrun)
2654 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2655 stop_print_frame = 0;
2656
2657 /* We are about to nuke the step_resume_breakpoin via the
2658 cleanup chain, so no need to worry about it here. */
2659
2660 stop_stepping (ecs);
2661 return;
2662
2663 case BPSTAT_WHAT_STEP_RESUME:
2664 /* This proably demands a more elegant solution, but, yeah
2665 right...
2666
2667 This function's use of the simple variable
2668 step_resume_breakpoint doesn't seem to accomodate
2669 simultaneously active step-resume bp's, although the
2670 breakpoint list certainly can.
2671
2672 If we reach here and step_resume_breakpoint is already
2673 NULL, then apparently we have multiple active
2674 step-resume bp's. We'll just delete the breakpoint we
2675 stopped at, and carry on.
2676
2677 Correction: what the code currently does is delete a
2678 step-resume bp, but it makes no effort to ensure that
2679 the one deleted is the one currently stopped at. MVS */
2680
2681 if (debug_infrun)
2682 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2683
2684 if (step_resume_breakpoint == NULL)
2685 {
2686 step_resume_breakpoint =
2687 bpstat_find_step_resume_breakpoint (stop_bpstat);
2688 }
2689 delete_step_resume_breakpoint (&step_resume_breakpoint);
2690 if (ecs->step_after_step_resume_breakpoint)
2691 {
2692 /* Back when the step-resume breakpoint was inserted, we
2693 were trying to single-step off a breakpoint. Go back
2694 to doing that. */
2695 ecs->step_after_step_resume_breakpoint = 0;
2696 ecs->stepping_over_breakpoint = 1;
2697 keep_going (ecs);
2698 return;
2699 }
2700 break;
2701
2702 case BPSTAT_WHAT_CHECK_SHLIBS:
2703 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2704 {
2705 if (debug_infrun)
2706 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2707
2708 /* Check for any newly added shared libraries if we're
2709 supposed to be adding them automatically. Switch
2710 terminal for any messages produced by
2711 breakpoint_re_set. */
2712 target_terminal_ours_for_output ();
2713 /* NOTE: cagney/2003-11-25: Make certain that the target
2714 stack's section table is kept up-to-date. Architectures,
2715 (e.g., PPC64), use the section table to perform
2716 operations such as address => section name and hence
2717 require the table to contain all sections (including
2718 those found in shared libraries). */
2719 /* NOTE: cagney/2003-11-25: Pass current_target and not
2720 exec_ops to SOLIB_ADD. This is because current GDB is
2721 only tooled to propagate section_table changes out from
2722 the "current_target" (see target_resize_to_sections), and
2723 not up from the exec stratum. This, of course, isn't
2724 right. "infrun.c" should only interact with the
2725 exec/process stratum, instead relying on the target stack
2726 to propagate relevant changes (stop, section table
2727 changed, ...) up to other layers. */
2728#ifdef SOLIB_ADD
2729 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2730#else
2731 solib_add (NULL, 0, &current_target, auto_solib_add);
2732#endif
2733 target_terminal_inferior ();
2734
2735 /* If requested, stop when the dynamic linker notifies
2736 gdb of events. This allows the user to get control
2737 and place breakpoints in initializer routines for
2738 dynamically loaded objects (among other things). */
2739 if (stop_on_solib_events || stop_stack_dummy)
2740 {
2741 stop_stepping (ecs);
2742 return;
2743 }
2744
2745 /* If we stopped due to an explicit catchpoint, then the
2746 (see above) call to SOLIB_ADD pulled in any symbols
2747 from a newly-loaded library, if appropriate.
2748
2749 We do want the inferior to stop, but not where it is
2750 now, which is in the dynamic linker callback. Rather,
2751 we would like it stop in the user's program, just after
2752 the call that caused this catchpoint to trigger. That
2753 gives the user a more useful vantage from which to
2754 examine their program's state. */
2755 else if (what.main_action
2756 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2757 {
2758 /* ??rehrauer: If I could figure out how to get the
2759 right return PC from here, we could just set a temp
2760 breakpoint and resume. I'm not sure we can without
2761 cracking open the dld's shared libraries and sniffing
2762 their unwind tables and text/data ranges, and that's
2763 not a terribly portable notion.
2764
2765 Until that time, we must step the inferior out of the
2766 dld callback, and also out of the dld itself (and any
2767 code or stubs in libdld.sl, such as "shl_load" and
2768 friends) until we reach non-dld code. At that point,
2769 we can stop stepping. */
2770 bpstat_get_triggered_catchpoints (stop_bpstat,
2771 &ecs->
2772 stepping_through_solib_catchpoints);
2773 ecs->stepping_through_solib_after_catch = 1;
2774
2775 /* Be sure to lift all breakpoints, so the inferior does
2776 actually step past this point... */
2777 ecs->stepping_over_breakpoint = 1;
2778 break;
2779 }
2780 else
2781 {
2782 /* We want to step over this breakpoint, then keep going. */
2783 ecs->stepping_over_breakpoint = 1;
2784 break;
2785 }
2786 }
2787 break;
2788
2789 case BPSTAT_WHAT_LAST:
2790 /* Not a real code, but listed here to shut up gcc -Wall. */
2791
2792 case BPSTAT_WHAT_KEEP_CHECKING:
2793 break;
2794 }
2795 }
2796
2797 /* We come here if we hit a breakpoint but should not
2798 stop for it. Possibly we also were stepping
2799 and should stop for that. So fall through and
2800 test for stepping. But, if not stepping,
2801 do not stop. */
2802
2803 /* Are we stepping to get the inferior out of the dynamic linker's
2804 hook (and possibly the dld itself) after catching a shlib
2805 event? */
2806 if (ecs->stepping_through_solib_after_catch)
2807 {
2808#if defined(SOLIB_ADD)
2809 /* Have we reached our destination? If not, keep going. */
2810 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2811 {
2812 if (debug_infrun)
2813 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2814 ecs->stepping_over_breakpoint = 1;
2815 keep_going (ecs);
2816 return;
2817 }
2818#endif
2819 if (debug_infrun)
2820 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2821 /* Else, stop and report the catchpoint(s) whose triggering
2822 caused us to begin stepping. */
2823 ecs->stepping_through_solib_after_catch = 0;
2824 bpstat_clear (&stop_bpstat);
2825 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2826 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2827 stop_print_frame = 1;
2828 stop_stepping (ecs);
2829 return;
2830 }
2831
2832 if (step_resume_breakpoint)
2833 {
2834 if (debug_infrun)
2835 fprintf_unfiltered (gdb_stdlog,
2836 "infrun: step-resume breakpoint is inserted\n");
2837
2838 /* Having a step-resume breakpoint overrides anything
2839 else having to do with stepping commands until
2840 that breakpoint is reached. */
2841 keep_going (ecs);
2842 return;
2843 }
2844
2845 if (step_range_end == 0)
2846 {
2847 if (debug_infrun)
2848 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2849 /* Likewise if we aren't even stepping. */
2850 keep_going (ecs);
2851 return;
2852 }
2853
2854 /* If stepping through a line, keep going if still within it.
2855
2856 Note that step_range_end is the address of the first instruction
2857 beyond the step range, and NOT the address of the last instruction
2858 within it! */
2859 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2860 {
2861 if (debug_infrun)
2862 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2863 paddr_nz (step_range_start),
2864 paddr_nz (step_range_end));
2865 keep_going (ecs);
2866 return;
2867 }
2868
2869 /* We stepped out of the stepping range. */
2870
2871 /* If we are stepping at the source level and entered the runtime
2872 loader dynamic symbol resolution code, we keep on single stepping
2873 until we exit the run time loader code and reach the callee's
2874 address. */
2875 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2876#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2877 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2878#else
2879 && in_solib_dynsym_resolve_code (stop_pc)
2880#endif
2881 )
2882 {
2883 CORE_ADDR pc_after_resolver =
2884 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2885
2886 if (debug_infrun)
2887 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2888
2889 if (pc_after_resolver)
2890 {
2891 /* Set up a step-resume breakpoint at the address
2892 indicated by SKIP_SOLIB_RESOLVER. */
2893 struct symtab_and_line sr_sal;
2894 init_sal (&sr_sal);
2895 sr_sal.pc = pc_after_resolver;
2896
2897 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2898 }
2899
2900 keep_going (ecs);
2901 return;
2902 }
2903
2904 if (step_range_end != 1
2905 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2906 || step_over_calls == STEP_OVER_ALL)
2907 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2908 {
2909 if (debug_infrun)
2910 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2911 /* The inferior, while doing a "step" or "next", has ended up in
2912 a signal trampoline (either by a signal being delivered or by
2913 the signal handler returning). Just single-step until the
2914 inferior leaves the trampoline (either by calling the handler
2915 or returning). */
2916 keep_going (ecs);
2917 return;
2918 }
2919
2920 /* Check for subroutine calls. The check for the current frame
2921 equalling the step ID is not necessary - the check of the
2922 previous frame's ID is sufficient - but it is a common case and
2923 cheaper than checking the previous frame's ID.
2924
2925 NOTE: frame_id_eq will never report two invalid frame IDs as
2926 being equal, so to get into this block, both the current and
2927 previous frame must have valid frame IDs. */
2928 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2929 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2930 {
2931 CORE_ADDR real_stop_pc;
2932
2933 if (debug_infrun)
2934 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2935
2936 if ((step_over_calls == STEP_OVER_NONE)
2937 || ((step_range_end == 1)
2938 && in_prologue (prev_pc, ecs->stop_func_start)))
2939 {
2940 /* I presume that step_over_calls is only 0 when we're
2941 supposed to be stepping at the assembly language level
2942 ("stepi"). Just stop. */
2943 /* Also, maybe we just did a "nexti" inside a prolog, so we
2944 thought it was a subroutine call but it was not. Stop as
2945 well. FENN */
2946 stop_step = 1;
2947 print_stop_reason (END_STEPPING_RANGE, 0);
2948 stop_stepping (ecs);
2949 return;
2950 }
2951
2952 if (step_over_calls == STEP_OVER_ALL)
2953 {
2954 /* We're doing a "next", set a breakpoint at callee's return
2955 address (the address at which the caller will
2956 resume). */
2957 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2958 keep_going (ecs);
2959 return;
2960 }
2961
2962 /* If we are in a function call trampoline (a stub between the
2963 calling routine and the real function), locate the real
2964 function. That's what tells us (a) whether we want to step
2965 into it at all, and (b) what prologue we want to run to the
2966 end of, if we do step into it. */
2967 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2968 if (real_stop_pc == 0)
2969 real_stop_pc = gdbarch_skip_trampoline_code
2970 (current_gdbarch, get_current_frame (), stop_pc);
2971 if (real_stop_pc != 0)
2972 ecs->stop_func_start = real_stop_pc;
2973
2974 if (
2975#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2976 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2977#else
2978 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2979#endif
2980)
2981 {
2982 struct symtab_and_line sr_sal;
2983 init_sal (&sr_sal);
2984 sr_sal.pc = ecs->stop_func_start;
2985
2986 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2987 keep_going (ecs);
2988 return;
2989 }
2990
2991 /* If we have line number information for the function we are
2992 thinking of stepping into, step into it.
2993
2994 If there are several symtabs at that PC (e.g. with include
2995 files), just want to know whether *any* of them have line
2996 numbers. find_pc_line handles this. */
2997 {
2998 struct symtab_and_line tmp_sal;
2999
3000 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3001 if (tmp_sal.line != 0)
3002 {
3003 step_into_function (ecs);
3004 return;
3005 }
3006 }
3007
3008 /* If we have no line number and the step-stop-if-no-debug is
3009 set, we stop the step so that the user has a chance to switch
3010 in assembly mode. */
3011 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
3012 {
3013 stop_step = 1;
3014 print_stop_reason (END_STEPPING_RANGE, 0);
3015 stop_stepping (ecs);
3016 return;
3017 }
3018
3019 /* Set a breakpoint at callee's return address (the address at
3020 which the caller will resume). */
3021 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3022 keep_going (ecs);
3023 return;
3024 }
3025
3026 /* If we're in the return path from a shared library trampoline,
3027 we want to proceed through the trampoline when stepping. */
3028 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3029 stop_pc, ecs->stop_func_name))
3030 {
3031 /* Determine where this trampoline returns. */
3032 CORE_ADDR real_stop_pc;
3033 real_stop_pc = gdbarch_skip_trampoline_code
3034 (current_gdbarch, get_current_frame (), stop_pc);
3035
3036 if (debug_infrun)
3037 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3038
3039 /* Only proceed through if we know where it's going. */
3040 if (real_stop_pc)
3041 {
3042 /* And put the step-breakpoint there and go until there. */
3043 struct symtab_and_line sr_sal;
3044
3045 init_sal (&sr_sal); /* initialize to zeroes */
3046 sr_sal.pc = real_stop_pc;
3047 sr_sal.section = find_pc_overlay (sr_sal.pc);
3048
3049 /* Do not specify what the fp should be when we stop since
3050 on some machines the prologue is where the new fp value
3051 is established. */
3052 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3053
3054 /* Restart without fiddling with the step ranges or
3055 other state. */
3056 keep_going (ecs);
3057 return;
3058 }
3059 }
3060
3061 ecs->sal = find_pc_line (stop_pc, 0);
3062
3063 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3064 the trampoline processing logic, however, there are some trampolines
3065 that have no names, so we should do trampoline handling first. */
3066 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
3067 && ecs->stop_func_name == NULL
3068 && ecs->sal.line == 0)
3069 {
3070 if (debug_infrun)
3071 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3072
3073 /* The inferior just stepped into, or returned to, an
3074 undebuggable function (where there is no debugging information
3075 and no line number corresponding to the address where the
3076 inferior stopped). Since we want to skip this kind of code,
3077 we keep going until the inferior returns from this
3078 function - unless the user has asked us not to (via
3079 set step-mode) or we no longer know how to get back
3080 to the call site. */
3081 if (step_stop_if_no_debug
3082 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3083 {
3084 /* If we have no line number and the step-stop-if-no-debug
3085 is set, we stop the step so that the user has a chance to
3086 switch in assembly mode. */
3087 stop_step = 1;
3088 print_stop_reason (END_STEPPING_RANGE, 0);
3089 stop_stepping (ecs);
3090 return;
3091 }
3092 else
3093 {
3094 /* Set a breakpoint at callee's return address (the address
3095 at which the caller will resume). */
3096 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3097 keep_going (ecs);
3098 return;
3099 }
3100 }
3101
3102 if (step_range_end == 1)
3103 {
3104 /* It is stepi or nexti. We always want to stop stepping after
3105 one instruction. */
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3108 stop_step = 1;
3109 print_stop_reason (END_STEPPING_RANGE, 0);
3110 stop_stepping (ecs);
3111 return;
3112 }
3113
3114 if (ecs->sal.line == 0)
3115 {
3116 /* We have no line number information. That means to stop
3117 stepping (does this always happen right after one instruction,
3118 when we do "s" in a function with no line numbers,
3119 or can this happen as a result of a return or longjmp?). */
3120 if (debug_infrun)
3121 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3122 stop_step = 1;
3123 print_stop_reason (END_STEPPING_RANGE, 0);
3124 stop_stepping (ecs);
3125 return;
3126 }
3127
3128 if ((stop_pc == ecs->sal.pc)
3129 && (ecs->current_line != ecs->sal.line
3130 || ecs->current_symtab != ecs->sal.symtab))
3131 {
3132 /* We are at the start of a different line. So stop. Note that
3133 we don't stop if we step into the middle of a different line.
3134 That is said to make things like for (;;) statements work
3135 better. */
3136 if (debug_infrun)
3137 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3138 stop_step = 1;
3139 print_stop_reason (END_STEPPING_RANGE, 0);
3140 stop_stepping (ecs);
3141 return;
3142 }
3143
3144 /* We aren't done stepping.
3145
3146 Optimize by setting the stepping range to the line.
3147 (We might not be in the original line, but if we entered a
3148 new line in mid-statement, we continue stepping. This makes
3149 things like for(;;) statements work better.) */
3150
3151 step_range_start = ecs->sal.pc;
3152 step_range_end = ecs->sal.end;
3153 step_frame_id = get_frame_id (get_current_frame ());
3154 ecs->current_line = ecs->sal.line;
3155 ecs->current_symtab = ecs->sal.symtab;
3156
3157 /* In the case where we just stepped out of a function into the
3158 middle of a line of the caller, continue stepping, but
3159 step_frame_id must be modified to current frame */
3160#if 0
3161 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
3162 generous. It will trigger on things like a step into a frameless
3163 stackless leaf function. I think the logic should instead look
3164 at the unwound frame ID has that should give a more robust
3165 indication of what happened. */
3166 if (step - ID == current - ID)
3167 still stepping in same function;
3168 else if (step - ID == unwind (current - ID))
3169 stepped into a function;
3170 else
3171 stepped out of a function;
3172 /* Of course this assumes that the frame ID unwind code is robust
3173 and we're willing to introduce frame unwind logic into this
3174 function. Fortunately, those days are nearly upon us. */
3175#endif
3176 {
3177 struct frame_info *frame = get_current_frame ();
3178 struct frame_id current_frame = get_frame_id (frame);
3179 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
3180 step_frame_id)))
3181 step_frame_id = current_frame;
3182 }
3183
3184 if (debug_infrun)
3185 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3186 keep_going (ecs);
3187}
3188
3189/* Are we in the middle of stepping? */
3190
3191static int
3192currently_stepping (struct execution_control_state *ecs)
3193{
3194 return (((step_range_end && step_resume_breakpoint == NULL)
3195 || stepping_over_breakpoint)
3196 || ecs->stepping_through_solib_after_catch
3197 || bpstat_should_step ());
3198}
3199
3200/* Subroutine call with source code we should not step over. Do step
3201 to the first line of code in it. */
3202
3203static void
3204step_into_function (struct execution_control_state *ecs)
3205{
3206 struct symtab *s;
3207 struct symtab_and_line sr_sal;
3208
3209 s = find_pc_symtab (stop_pc);
3210 if (s && s->language != language_asm)
3211 ecs->stop_func_start = gdbarch_skip_prologue
3212 (current_gdbarch, ecs->stop_func_start);
3213
3214 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
3215 /* Use the step_resume_break to step until the end of the prologue,
3216 even if that involves jumps (as it seems to on the vax under
3217 4.2). */
3218 /* If the prologue ends in the middle of a source line, continue to
3219 the end of that source line (if it is still within the function).
3220 Otherwise, just go to end of prologue. */
3221 if (ecs->sal.end
3222 && ecs->sal.pc != ecs->stop_func_start
3223 && ecs->sal.end < ecs->stop_func_end)
3224 ecs->stop_func_start = ecs->sal.end;
3225
3226 /* Architectures which require breakpoint adjustment might not be able
3227 to place a breakpoint at the computed address. If so, the test
3228 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3229 ecs->stop_func_start to an address at which a breakpoint may be
3230 legitimately placed.
3231
3232 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3233 made, GDB will enter an infinite loop when stepping through
3234 optimized code consisting of VLIW instructions which contain
3235 subinstructions corresponding to different source lines. On
3236 FR-V, it's not permitted to place a breakpoint on any but the
3237 first subinstruction of a VLIW instruction. When a breakpoint is
3238 set, GDB will adjust the breakpoint address to the beginning of
3239 the VLIW instruction. Thus, we need to make the corresponding
3240 adjustment here when computing the stop address. */
3241
3242 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3243 {
3244 ecs->stop_func_start
3245 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3246 ecs->stop_func_start);
3247 }
3248
3249 if (ecs->stop_func_start == stop_pc)
3250 {
3251 /* We are already there: stop now. */
3252 stop_step = 1;
3253 print_stop_reason (END_STEPPING_RANGE, 0);
3254 stop_stepping (ecs);
3255 return;
3256 }
3257 else
3258 {
3259 /* Put the step-breakpoint there and go until there. */
3260 init_sal (&sr_sal); /* initialize to zeroes */
3261 sr_sal.pc = ecs->stop_func_start;
3262 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3263
3264 /* Do not specify what the fp should be when we stop since on
3265 some machines the prologue is where the new fp value is
3266 established. */
3267 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3268
3269 /* And make sure stepping stops right away then. */
3270 step_range_end = step_range_start;
3271 }
3272 keep_going (ecs);
3273}
3274
3275/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3276 This is used to both functions and to skip over code. */
3277
3278static void
3279insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3280 struct frame_id sr_id)
3281{
3282 /* There should never be more than one step-resume or longjmp-resume
3283 breakpoint per thread, so we should never be setting a new
3284 step_resume_breakpoint when one is already active. */
3285 gdb_assert (step_resume_breakpoint == NULL);
3286
3287 if (debug_infrun)
3288 fprintf_unfiltered (gdb_stdlog,
3289 "infrun: inserting step-resume breakpoint at 0x%s\n",
3290 paddr_nz (sr_sal.pc));
3291
3292 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
3293 bp_step_resume);
3294}
3295
3296/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3297 to skip a potential signal handler.
3298
3299 This is called with the interrupted function's frame. The signal
3300 handler, when it returns, will resume the interrupted function at
3301 RETURN_FRAME.pc. */
3302
3303static void
3304insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3305{
3306 struct symtab_and_line sr_sal;
3307
3308 gdb_assert (return_frame != NULL);
3309 init_sal (&sr_sal); /* initialize to zeros */
3310
3311 sr_sal.pc = gdbarch_addr_bits_remove
3312 (current_gdbarch, get_frame_pc (return_frame));
3313 sr_sal.section = find_pc_overlay (sr_sal.pc);
3314
3315 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3316}
3317
3318/* Similar to insert_step_resume_breakpoint_at_frame, except
3319 but a breakpoint at the previous frame's PC. This is used to
3320 skip a function after stepping into it (for "next" or if the called
3321 function has no debugging information).
3322
3323 The current function has almost always been reached by single
3324 stepping a call or return instruction. NEXT_FRAME belongs to the
3325 current function, and the breakpoint will be set at the caller's
3326 resume address.
3327
3328 This is a separate function rather than reusing
3329 insert_step_resume_breakpoint_at_frame in order to avoid
3330 get_prev_frame, which may stop prematurely (see the implementation
3331 of frame_unwind_id for an example). */
3332
3333static void
3334insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3335{
3336 struct symtab_and_line sr_sal;
3337
3338 /* We shouldn't have gotten here if we don't know where the call site
3339 is. */
3340 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3341
3342 init_sal (&sr_sal); /* initialize to zeros */
3343
3344 sr_sal.pc = gdbarch_addr_bits_remove
3345 (current_gdbarch, frame_pc_unwind (next_frame));
3346 sr_sal.section = find_pc_overlay (sr_sal.pc);
3347
3348 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3349}
3350
3351/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3352 new breakpoint at the target of a jmp_buf. The handling of
3353 longjmp-resume uses the same mechanisms used for handling
3354 "step-resume" breakpoints. */
3355
3356static void
3357insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3358{
3359 /* There should never be more than one step-resume or longjmp-resume
3360 breakpoint per thread, so we should never be setting a new
3361 longjmp_resume_breakpoint when one is already active. */
3362 gdb_assert (step_resume_breakpoint == NULL);
3363
3364 if (debug_infrun)
3365 fprintf_unfiltered (gdb_stdlog,
3366 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3367 paddr_nz (pc));
3368
3369 step_resume_breakpoint =
3370 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3371}
3372
3373static void
3374stop_stepping (struct execution_control_state *ecs)
3375{
3376 if (debug_infrun)
3377 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3378
3379 /* Let callers know we don't want to wait for the inferior anymore. */
3380 ecs->wait_some_more = 0;
3381}
3382
3383/* This function handles various cases where we need to continue
3384 waiting for the inferior. */
3385/* (Used to be the keep_going: label in the old wait_for_inferior) */
3386
3387static void
3388keep_going (struct execution_control_state *ecs)
3389{
3390 /* Save the pc before execution, to compare with pc after stop. */
3391 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3392
3393 /* If we did not do break;, it means we should keep running the
3394 inferior and not return to debugger. */
3395
3396 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
3397 {
3398 /* We took a signal (which we are supposed to pass through to
3399 the inferior, else we'd have done a break above) and we
3400 haven't yet gotten our trap. Simply continue. */
3401 resume (currently_stepping (ecs), stop_signal);
3402 }
3403 else
3404 {
3405 /* Either the trap was not expected, but we are continuing
3406 anyway (the user asked that this signal be passed to the
3407 child)
3408 -- or --
3409 The signal was SIGTRAP, e.g. it was our signal, but we
3410 decided we should resume from it.
3411
3412 We're going to run this baby now!
3413
3414 Note that insert_breakpoints won't try to re-insert
3415 already inserted breakpoints. Therefore, we don't
3416 care if breakpoints were already inserted, or not. */
3417
3418 if (ecs->stepping_over_breakpoint)
3419 {
3420 if (! use_displaced_stepping (current_gdbarch))
3421 /* Since we can't do a displaced step, we have to remove
3422 the breakpoint while we step it. To keep things
3423 simple, we remove them all. */
3424 remove_breakpoints ();
3425 }
3426 else
3427 {
3428 struct gdb_exception e;
3429 /* Stop stepping when inserting breakpoints
3430 has failed. */
3431 TRY_CATCH (e, RETURN_MASK_ERROR)
3432 {
3433 insert_breakpoints ();
3434 }
3435 if (e.reason < 0)
3436 {
3437 stop_stepping (ecs);
3438 return;
3439 }
3440 }
3441
3442 stepping_over_breakpoint = ecs->stepping_over_breakpoint;
3443
3444 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3445 specifies that such a signal should be delivered to the
3446 target program).
3447
3448 Typically, this would occure when a user is debugging a
3449 target monitor on a simulator: the target monitor sets a
3450 breakpoint; the simulator encounters this break-point and
3451 halts the simulation handing control to GDB; GDB, noteing
3452 that the break-point isn't valid, returns control back to the
3453 simulator; the simulator then delivers the hardware
3454 equivalent of a SIGNAL_TRAP to the program being debugged. */
3455
3456 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
3457 stop_signal = TARGET_SIGNAL_0;
3458
3459
3460 resume (currently_stepping (ecs), stop_signal);
3461 }
3462
3463 prepare_to_wait (ecs);
3464}
3465
3466/* This function normally comes after a resume, before
3467 handle_inferior_event exits. It takes care of any last bits of
3468 housekeeping, and sets the all-important wait_some_more flag. */
3469
3470static void
3471prepare_to_wait (struct execution_control_state *ecs)
3472{
3473 if (debug_infrun)
3474 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3475 if (ecs->infwait_state == infwait_normal_state)
3476 {
3477 overlay_cache_invalid = 1;
3478
3479 /* We have to invalidate the registers BEFORE calling
3480 target_wait because they can be loaded from the target while
3481 in target_wait. This makes remote debugging a bit more
3482 efficient for those targets that provide critical registers
3483 as part of their normal status mechanism. */
3484
3485 registers_changed ();
3486 ecs->waiton_ptid = pid_to_ptid (-1);
3487 ecs->wp = &(ecs->ws);
3488 }
3489 /* This is the old end of the while loop. Let everybody know we
3490 want to wait for the inferior some more and get called again
3491 soon. */
3492 ecs->wait_some_more = 1;
3493}
3494
3495/* Print why the inferior has stopped. We always print something when
3496 the inferior exits, or receives a signal. The rest of the cases are
3497 dealt with later on in normal_stop() and print_it_typical(). Ideally
3498 there should be a call to this function from handle_inferior_event()
3499 each time stop_stepping() is called.*/
3500static void
3501print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3502{
3503 switch (stop_reason)
3504 {
3505 case END_STEPPING_RANGE:
3506 /* We are done with a step/next/si/ni command. */
3507 /* For now print nothing. */
3508 /* Print a message only if not in the middle of doing a "step n"
3509 operation for n > 1 */
3510 if (!step_multi || !stop_step)
3511 if (ui_out_is_mi_like_p (uiout))
3512 ui_out_field_string
3513 (uiout, "reason",
3514 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3515 break;
3516 case SIGNAL_EXITED:
3517 /* The inferior was terminated by a signal. */
3518 annotate_signalled ();
3519 if (ui_out_is_mi_like_p (uiout))
3520 ui_out_field_string
3521 (uiout, "reason",
3522 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3523 ui_out_text (uiout, "\nProgram terminated with signal ");
3524 annotate_signal_name ();
3525 ui_out_field_string (uiout, "signal-name",
3526 target_signal_to_name (stop_info));
3527 annotate_signal_name_end ();
3528 ui_out_text (uiout, ", ");
3529 annotate_signal_string ();
3530 ui_out_field_string (uiout, "signal-meaning",
3531 target_signal_to_string (stop_info));
3532 annotate_signal_string_end ();
3533 ui_out_text (uiout, ".\n");
3534 ui_out_text (uiout, "The program no longer exists.\n");
3535 break;
3536 case EXITED:
3537 /* The inferior program is finished. */
3538 annotate_exited (stop_info);
3539 if (stop_info)
3540 {
3541 if (ui_out_is_mi_like_p (uiout))
3542 ui_out_field_string (uiout, "reason",
3543 async_reason_lookup (EXEC_ASYNC_EXITED));
3544 ui_out_text (uiout, "\nProgram exited with code ");
3545 ui_out_field_fmt (uiout, "exit-code", "0%o",
3546 (unsigned int) stop_info);
3547 ui_out_text (uiout, ".\n");
3548 }
3549 else
3550 {
3551 if (ui_out_is_mi_like_p (uiout))
3552 ui_out_field_string
3553 (uiout, "reason",
3554 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3555 ui_out_text (uiout, "\nProgram exited normally.\n");
3556 }
3557 /* Support the --return-child-result option. */
3558 return_child_result_value = stop_info;
3559 break;
3560 case SIGNAL_RECEIVED:
3561 /* Signal received. The signal table tells us to print about
3562 it. */
3563 annotate_signal ();
3564 ui_out_text (uiout, "\nProgram received signal ");
3565 annotate_signal_name ();
3566 if (ui_out_is_mi_like_p (uiout))
3567 ui_out_field_string
3568 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3569 ui_out_field_string (uiout, "signal-name",
3570 target_signal_to_name (stop_info));
3571 annotate_signal_name_end ();
3572 ui_out_text (uiout, ", ");
3573 annotate_signal_string ();
3574 ui_out_field_string (uiout, "signal-meaning",
3575 target_signal_to_string (stop_info));
3576 annotate_signal_string_end ();
3577 ui_out_text (uiout, ".\n");
3578 break;
3579 default:
3580 internal_error (__FILE__, __LINE__,
3581 _("print_stop_reason: unrecognized enum value"));
3582 break;
3583 }
3584}
3585\f
3586
3587/* Here to return control to GDB when the inferior stops for real.
3588 Print appropriate messages, remove breakpoints, give terminal our modes.
3589
3590 STOP_PRINT_FRAME nonzero means print the executing frame
3591 (pc, function, args, file, line number and line text).
3592 BREAKPOINTS_FAILED nonzero means stop was due to error
3593 attempting to insert breakpoints. */
3594
3595void
3596normal_stop (void)
3597{
3598 struct target_waitstatus last;
3599 ptid_t last_ptid;
3600
3601 get_last_target_status (&last_ptid, &last);
3602
3603 /* As with the notification of thread events, we want to delay
3604 notifying the user that we've switched thread context until
3605 the inferior actually stops.
3606
3607 There's no point in saying anything if the inferior has exited.
3608 Note that SIGNALLED here means "exited with a signal", not
3609 "received a signal". */
3610 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3611 && target_has_execution
3612 && last.kind != TARGET_WAITKIND_SIGNALLED
3613 && last.kind != TARGET_WAITKIND_EXITED)
3614 {
3615 target_terminal_ours_for_output ();
3616 printf_filtered (_("[Switching to %s]\n"),
3617 target_pid_to_str (inferior_ptid));
3618 annotate_thread_changed ();
3619 previous_inferior_ptid = inferior_ptid;
3620 }
3621
3622 /* NOTE drow/2004-01-17: Is this still necessary? */
3623 /* Make sure that the current_frame's pc is correct. This
3624 is a correction for setting up the frame info before doing
3625 gdbarch_decr_pc_after_break */
3626 if (target_has_execution)
3627 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3628 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3629 frame code to check for this and sort out any resultant mess.
3630 gdbarch_decr_pc_after_break needs to just go away. */
3631 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3632
3633 if (!breakpoints_always_inserted_mode () && target_has_execution)
3634 {
3635 if (remove_breakpoints ())
3636 {
3637 target_terminal_ours_for_output ();
3638 printf_filtered (_("\
3639Cannot remove breakpoints because program is no longer writable.\n\
3640It might be running in another process.\n\
3641Further execution is probably impossible.\n"));
3642 }
3643 }
3644
3645 /* If an auto-display called a function and that got a signal,
3646 delete that auto-display to avoid an infinite recursion. */
3647
3648 if (stopped_by_random_signal)
3649 disable_current_display ();
3650
3651 /* Don't print a message if in the middle of doing a "step n"
3652 operation for n > 1 */
3653 if (step_multi && stop_step)
3654 goto done;
3655
3656 target_terminal_ours ();
3657
3658 /* Set the current source location. This will also happen if we
3659 display the frame below, but the current SAL will be incorrect
3660 during a user hook-stop function. */
3661 if (target_has_stack && !stop_stack_dummy)
3662 set_current_sal_from_frame (get_current_frame (), 1);
3663
3664 /* Look up the hook_stop and run it (CLI internally handles problem
3665 of stop_command's pre-hook not existing). */
3666 if (stop_command)
3667 catch_errors (hook_stop_stub, stop_command,
3668 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3669
3670 if (!target_has_stack)
3671 {
3672
3673 goto done;
3674 }
3675
3676 /* Select innermost stack frame - i.e., current frame is frame 0,
3677 and current location is based on that.
3678 Don't do this on return from a stack dummy routine,
3679 or if the program has exited. */
3680
3681 if (!stop_stack_dummy)
3682 {
3683 select_frame (get_current_frame ());
3684
3685 /* Print current location without a level number, if
3686 we have changed functions or hit a breakpoint.
3687 Print source line if we have one.
3688 bpstat_print() contains the logic deciding in detail
3689 what to print, based on the event(s) that just occurred. */
3690
3691 /* If --batch-silent is enabled then there's no need to print the current
3692 source location, and to try risks causing an error message about
3693 missing source files. */
3694 if (stop_print_frame && !batch_silent)
3695 {
3696 int bpstat_ret;
3697 int source_flag;
3698 int do_frame_printing = 1;
3699
3700 bpstat_ret = bpstat_print (stop_bpstat);
3701 switch (bpstat_ret)
3702 {
3703 case PRINT_UNKNOWN:
3704 /* If we had hit a shared library event breakpoint,
3705 bpstat_print would print out this message. If we hit
3706 an OS-level shared library event, do the same
3707 thing. */
3708 if (last.kind == TARGET_WAITKIND_LOADED)
3709 {
3710 printf_filtered (_("Stopped due to shared library event\n"));
3711 source_flag = SRC_LINE; /* something bogus */
3712 do_frame_printing = 0;
3713 break;
3714 }
3715
3716 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3717 (or should) carry around the function and does (or
3718 should) use that when doing a frame comparison. */
3719 if (stop_step
3720 && frame_id_eq (step_frame_id,
3721 get_frame_id (get_current_frame ()))
3722 && step_start_function == find_pc_function (stop_pc))
3723 source_flag = SRC_LINE; /* finished step, just print source line */
3724 else
3725 source_flag = SRC_AND_LOC; /* print location and source line */
3726 break;
3727 case PRINT_SRC_AND_LOC:
3728 source_flag = SRC_AND_LOC; /* print location and source line */
3729 break;
3730 case PRINT_SRC_ONLY:
3731 source_flag = SRC_LINE;
3732 break;
3733 case PRINT_NOTHING:
3734 source_flag = SRC_LINE; /* something bogus */
3735 do_frame_printing = 0;
3736 break;
3737 default:
3738 internal_error (__FILE__, __LINE__, _("Unknown value."));
3739 }
3740
3741 if (ui_out_is_mi_like_p (uiout))
3742 ui_out_field_int (uiout, "thread-id",
3743 pid_to_thread_id (inferior_ptid));
3744 /* The behavior of this routine with respect to the source
3745 flag is:
3746 SRC_LINE: Print only source line
3747 LOCATION: Print only location
3748 SRC_AND_LOC: Print location and source line */
3749 if (do_frame_printing)
3750 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3751
3752 /* Display the auto-display expressions. */
3753 do_displays ();
3754 }
3755 }
3756
3757 /* Save the function value return registers, if we care.
3758 We might be about to restore their previous contents. */
3759 if (proceed_to_finish)
3760 {
3761 /* This should not be necessary. */
3762 if (stop_registers)
3763 regcache_xfree (stop_registers);
3764
3765 /* NB: The copy goes through to the target picking up the value of
3766 all the registers. */
3767 stop_registers = regcache_dup (get_current_regcache ());
3768 }
3769
3770 if (stop_stack_dummy)
3771 {
3772 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3773 ends with a setting of the current frame, so we can use that
3774 next. */
3775 frame_pop (get_current_frame ());
3776 /* Set stop_pc to what it was before we called the function.
3777 Can't rely on restore_inferior_status because that only gets
3778 called if we don't stop in the called function. */
3779 stop_pc = read_pc ();
3780 select_frame (get_current_frame ());
3781 }
3782
3783done:
3784 annotate_stopped ();
3785 if (!suppress_stop_observer && !step_multi)
3786 observer_notify_normal_stop (stop_bpstat);
3787 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3788 Delete any breakpoint that is to be deleted at the next stop. */
3789 breakpoint_auto_delete (stop_bpstat);
3790 set_running (pid_to_ptid (-1), 0);
3791}
3792
3793static int
3794hook_stop_stub (void *cmd)
3795{
3796 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3797 return (0);
3798}
3799\f
3800int
3801signal_stop_state (int signo)
3802{
3803 /* Always stop on signals if we're just gaining control of the
3804 program. */
3805 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
3806}
3807
3808int
3809signal_print_state (int signo)
3810{
3811 return signal_print[signo];
3812}
3813
3814int
3815signal_pass_state (int signo)
3816{
3817 return signal_program[signo];
3818}
3819
3820int
3821signal_stop_update (int signo, int state)
3822{
3823 int ret = signal_stop[signo];
3824 signal_stop[signo] = state;
3825 return ret;
3826}
3827
3828int
3829signal_print_update (int signo, int state)
3830{
3831 int ret = signal_print[signo];
3832 signal_print[signo] = state;
3833 return ret;
3834}
3835
3836int
3837signal_pass_update (int signo, int state)
3838{
3839 int ret = signal_program[signo];
3840 signal_program[signo] = state;
3841 return ret;
3842}
3843
3844static void
3845sig_print_header (void)
3846{
3847 printf_filtered (_("\
3848Signal Stop\tPrint\tPass to program\tDescription\n"));
3849}
3850
3851static void
3852sig_print_info (enum target_signal oursig)
3853{
3854 char *name = target_signal_to_name (oursig);
3855 int name_padding = 13 - strlen (name);
3856
3857 if (name_padding <= 0)
3858 name_padding = 0;
3859
3860 printf_filtered ("%s", name);
3861 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3862 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3863 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3864 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3865 printf_filtered ("%s\n", target_signal_to_string (oursig));
3866}
3867
3868/* Specify how various signals in the inferior should be handled. */
3869
3870static void
3871handle_command (char *args, int from_tty)
3872{
3873 char **argv;
3874 int digits, wordlen;
3875 int sigfirst, signum, siglast;
3876 enum target_signal oursig;
3877 int allsigs;
3878 int nsigs;
3879 unsigned char *sigs;
3880 struct cleanup *old_chain;
3881
3882 if (args == NULL)
3883 {
3884 error_no_arg (_("signal to handle"));
3885 }
3886
3887 /* Allocate and zero an array of flags for which signals to handle. */
3888
3889 nsigs = (int) TARGET_SIGNAL_LAST;
3890 sigs = (unsigned char *) alloca (nsigs);
3891 memset (sigs, 0, nsigs);
3892
3893 /* Break the command line up into args. */
3894
3895 argv = buildargv (args);
3896 if (argv == NULL)
3897 {
3898 nomem (0);
3899 }
3900 old_chain = make_cleanup_freeargv (argv);
3901
3902 /* Walk through the args, looking for signal oursigs, signal names, and
3903 actions. Signal numbers and signal names may be interspersed with
3904 actions, with the actions being performed for all signals cumulatively
3905 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3906
3907 while (*argv != NULL)
3908 {
3909 wordlen = strlen (*argv);
3910 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3911 {;
3912 }
3913 allsigs = 0;
3914 sigfirst = siglast = -1;
3915
3916 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3917 {
3918 /* Apply action to all signals except those used by the
3919 debugger. Silently skip those. */
3920 allsigs = 1;
3921 sigfirst = 0;
3922 siglast = nsigs - 1;
3923 }
3924 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3925 {
3926 SET_SIGS (nsigs, sigs, signal_stop);
3927 SET_SIGS (nsigs, sigs, signal_print);
3928 }
3929 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3930 {
3931 UNSET_SIGS (nsigs, sigs, signal_program);
3932 }
3933 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3934 {
3935 SET_SIGS (nsigs, sigs, signal_print);
3936 }
3937 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3938 {
3939 SET_SIGS (nsigs, sigs, signal_program);
3940 }
3941 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3942 {
3943 UNSET_SIGS (nsigs, sigs, signal_stop);
3944 }
3945 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3946 {
3947 SET_SIGS (nsigs, sigs, signal_program);
3948 }
3949 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3950 {
3951 UNSET_SIGS (nsigs, sigs, signal_print);
3952 UNSET_SIGS (nsigs, sigs, signal_stop);
3953 }
3954 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3955 {
3956 UNSET_SIGS (nsigs, sigs, signal_program);
3957 }
3958 else if (digits > 0)
3959 {
3960 /* It is numeric. The numeric signal refers to our own
3961 internal signal numbering from target.h, not to host/target
3962 signal number. This is a feature; users really should be
3963 using symbolic names anyway, and the common ones like
3964 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3965
3966 sigfirst = siglast = (int)
3967 target_signal_from_command (atoi (*argv));
3968 if ((*argv)[digits] == '-')
3969 {
3970 siglast = (int)
3971 target_signal_from_command (atoi ((*argv) + digits + 1));
3972 }
3973 if (sigfirst > siglast)
3974 {
3975 /* Bet he didn't figure we'd think of this case... */
3976 signum = sigfirst;
3977 sigfirst = siglast;
3978 siglast = signum;
3979 }
3980 }
3981 else
3982 {
3983 oursig = target_signal_from_name (*argv);
3984 if (oursig != TARGET_SIGNAL_UNKNOWN)
3985 {
3986 sigfirst = siglast = (int) oursig;
3987 }
3988 else
3989 {
3990 /* Not a number and not a recognized flag word => complain. */
3991 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3992 }
3993 }
3994
3995 /* If any signal numbers or symbol names were found, set flags for
3996 which signals to apply actions to. */
3997
3998 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3999 {
4000 switch ((enum target_signal) signum)
4001 {
4002 case TARGET_SIGNAL_TRAP:
4003 case TARGET_SIGNAL_INT:
4004 if (!allsigs && !sigs[signum])
4005 {
4006 if (query ("%s is used by the debugger.\n\
4007Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4008 {
4009 sigs[signum] = 1;
4010 }
4011 else
4012 {
4013 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4014 gdb_flush (gdb_stdout);
4015 }
4016 }
4017 break;
4018 case TARGET_SIGNAL_0:
4019 case TARGET_SIGNAL_DEFAULT:
4020 case TARGET_SIGNAL_UNKNOWN:
4021 /* Make sure that "all" doesn't print these. */
4022 break;
4023 default:
4024 sigs[signum] = 1;
4025 break;
4026 }
4027 }
4028
4029 argv++;
4030 }
4031
4032 target_notice_signals (inferior_ptid);
4033
4034 if (from_tty)
4035 {
4036 /* Show the results. */
4037 sig_print_header ();
4038 for (signum = 0; signum < nsigs; signum++)
4039 {
4040 if (sigs[signum])
4041 {
4042 sig_print_info (signum);
4043 }
4044 }
4045 }
4046
4047 do_cleanups (old_chain);
4048}
4049
4050static void
4051xdb_handle_command (char *args, int from_tty)
4052{
4053 char **argv;
4054 struct cleanup *old_chain;
4055
4056 /* Break the command line up into args. */
4057
4058 argv = buildargv (args);
4059 if (argv == NULL)
4060 {
4061 nomem (0);
4062 }
4063 old_chain = make_cleanup_freeargv (argv);
4064 if (argv[1] != (char *) NULL)
4065 {
4066 char *argBuf;
4067 int bufLen;
4068
4069 bufLen = strlen (argv[0]) + 20;
4070 argBuf = (char *) xmalloc (bufLen);
4071 if (argBuf)
4072 {
4073 int validFlag = 1;
4074 enum target_signal oursig;
4075
4076 oursig = target_signal_from_name (argv[0]);
4077 memset (argBuf, 0, bufLen);
4078 if (strcmp (argv[1], "Q") == 0)
4079 sprintf (argBuf, "%s %s", argv[0], "noprint");
4080 else
4081 {
4082 if (strcmp (argv[1], "s") == 0)
4083 {
4084 if (!signal_stop[oursig])
4085 sprintf (argBuf, "%s %s", argv[0], "stop");
4086 else
4087 sprintf (argBuf, "%s %s", argv[0], "nostop");
4088 }
4089 else if (strcmp (argv[1], "i") == 0)
4090 {
4091 if (!signal_program[oursig])
4092 sprintf (argBuf, "%s %s", argv[0], "pass");
4093 else
4094 sprintf (argBuf, "%s %s", argv[0], "nopass");
4095 }
4096 else if (strcmp (argv[1], "r") == 0)
4097 {
4098 if (!signal_print[oursig])
4099 sprintf (argBuf, "%s %s", argv[0], "print");
4100 else
4101 sprintf (argBuf, "%s %s", argv[0], "noprint");
4102 }
4103 else
4104 validFlag = 0;
4105 }
4106 if (validFlag)
4107 handle_command (argBuf, from_tty);
4108 else
4109 printf_filtered (_("Invalid signal handling flag.\n"));
4110 if (argBuf)
4111 xfree (argBuf);
4112 }
4113 }
4114 do_cleanups (old_chain);
4115}
4116
4117/* Print current contents of the tables set by the handle command.
4118 It is possible we should just be printing signals actually used
4119 by the current target (but for things to work right when switching
4120 targets, all signals should be in the signal tables). */
4121
4122static void
4123signals_info (char *signum_exp, int from_tty)
4124{
4125 enum target_signal oursig;
4126 sig_print_header ();
4127
4128 if (signum_exp)
4129 {
4130 /* First see if this is a symbol name. */
4131 oursig = target_signal_from_name (signum_exp);
4132 if (oursig == TARGET_SIGNAL_UNKNOWN)
4133 {
4134 /* No, try numeric. */
4135 oursig =
4136 target_signal_from_command (parse_and_eval_long (signum_exp));
4137 }
4138 sig_print_info (oursig);
4139 return;
4140 }
4141
4142 printf_filtered ("\n");
4143 /* These ugly casts brought to you by the native VAX compiler. */
4144 for (oursig = TARGET_SIGNAL_FIRST;
4145 (int) oursig < (int) TARGET_SIGNAL_LAST;
4146 oursig = (enum target_signal) ((int) oursig + 1))
4147 {
4148 QUIT;
4149
4150 if (oursig != TARGET_SIGNAL_UNKNOWN
4151 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4152 sig_print_info (oursig);
4153 }
4154
4155 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4156}
4157\f
4158struct inferior_status
4159{
4160 enum target_signal stop_signal;
4161 CORE_ADDR stop_pc;
4162 bpstat stop_bpstat;
4163 int stop_step;
4164 int stop_stack_dummy;
4165 int stopped_by_random_signal;
4166 int stepping_over_breakpoint;
4167 CORE_ADDR step_range_start;
4168 CORE_ADDR step_range_end;
4169 struct frame_id step_frame_id;
4170 enum step_over_calls_kind step_over_calls;
4171 CORE_ADDR step_resume_break_address;
4172 int stop_after_trap;
4173 int stop_soon;
4174
4175 /* These are here because if call_function_by_hand has written some
4176 registers and then decides to call error(), we better not have changed
4177 any registers. */
4178 struct regcache *registers;
4179
4180 /* A frame unique identifier. */
4181 struct frame_id selected_frame_id;
4182
4183 int breakpoint_proceeded;
4184 int restore_stack_info;
4185 int proceed_to_finish;
4186};
4187
4188void
4189write_inferior_status_register (struct inferior_status *inf_status, int regno,
4190 LONGEST val)
4191{
4192 int size = register_size (current_gdbarch, regno);
4193 void *buf = alloca (size);
4194 store_signed_integer (buf, size, val);
4195 regcache_raw_write (inf_status->registers, regno, buf);
4196}
4197
4198/* Save all of the information associated with the inferior<==>gdb
4199 connection. INF_STATUS is a pointer to a "struct inferior_status"
4200 (defined in inferior.h). */
4201
4202struct inferior_status *
4203save_inferior_status (int restore_stack_info)
4204{
4205 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4206
4207 inf_status->stop_signal = stop_signal;
4208 inf_status->stop_pc = stop_pc;
4209 inf_status->stop_step = stop_step;
4210 inf_status->stop_stack_dummy = stop_stack_dummy;
4211 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4212 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
4213 inf_status->step_range_start = step_range_start;
4214 inf_status->step_range_end = step_range_end;
4215 inf_status->step_frame_id = step_frame_id;
4216 inf_status->step_over_calls = step_over_calls;
4217 inf_status->stop_after_trap = stop_after_trap;
4218 inf_status->stop_soon = stop_soon;
4219 /* Save original bpstat chain here; replace it with copy of chain.
4220 If caller's caller is walking the chain, they'll be happier if we
4221 hand them back the original chain when restore_inferior_status is
4222 called. */
4223 inf_status->stop_bpstat = stop_bpstat;
4224 stop_bpstat = bpstat_copy (stop_bpstat);
4225 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4226 inf_status->restore_stack_info = restore_stack_info;
4227 inf_status->proceed_to_finish = proceed_to_finish;
4228
4229 inf_status->registers = regcache_dup (get_current_regcache ());
4230
4231 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4232 return inf_status;
4233}
4234
4235static int
4236restore_selected_frame (void *args)
4237{
4238 struct frame_id *fid = (struct frame_id *) args;
4239 struct frame_info *frame;
4240
4241 frame = frame_find_by_id (*fid);
4242
4243 /* If inf_status->selected_frame_id is NULL, there was no previously
4244 selected frame. */
4245 if (frame == NULL)
4246 {
4247 warning (_("Unable to restore previously selected frame."));
4248 return 0;
4249 }
4250
4251 select_frame (frame);
4252
4253 return (1);
4254}
4255
4256void
4257restore_inferior_status (struct inferior_status *inf_status)
4258{
4259 stop_signal = inf_status->stop_signal;
4260 stop_pc = inf_status->stop_pc;
4261 stop_step = inf_status->stop_step;
4262 stop_stack_dummy = inf_status->stop_stack_dummy;
4263 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4264 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
4265 step_range_start = inf_status->step_range_start;
4266 step_range_end = inf_status->step_range_end;
4267 step_frame_id = inf_status->step_frame_id;
4268 step_over_calls = inf_status->step_over_calls;
4269 stop_after_trap = inf_status->stop_after_trap;
4270 stop_soon = inf_status->stop_soon;
4271 bpstat_clear (&stop_bpstat);
4272 stop_bpstat = inf_status->stop_bpstat;
4273 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4274 proceed_to_finish = inf_status->proceed_to_finish;
4275
4276 /* The inferior can be gone if the user types "print exit(0)"
4277 (and perhaps other times). */
4278 if (target_has_execution)
4279 /* NB: The register write goes through to the target. */
4280 regcache_cpy (get_current_regcache (), inf_status->registers);
4281 regcache_xfree (inf_status->registers);
4282
4283 /* FIXME: If we are being called after stopping in a function which
4284 is called from gdb, we should not be trying to restore the
4285 selected frame; it just prints a spurious error message (The
4286 message is useful, however, in detecting bugs in gdb (like if gdb
4287 clobbers the stack)). In fact, should we be restoring the
4288 inferior status at all in that case? . */
4289
4290 if (target_has_stack && inf_status->restore_stack_info)
4291 {
4292 /* The point of catch_errors is that if the stack is clobbered,
4293 walking the stack might encounter a garbage pointer and
4294 error() trying to dereference it. */
4295 if (catch_errors
4296 (restore_selected_frame, &inf_status->selected_frame_id,
4297 "Unable to restore previously selected frame:\n",
4298 RETURN_MASK_ERROR) == 0)
4299 /* Error in restoring the selected frame. Select the innermost
4300 frame. */
4301 select_frame (get_current_frame ());
4302
4303 }
4304
4305 xfree (inf_status);
4306}
4307
4308static void
4309do_restore_inferior_status_cleanup (void *sts)
4310{
4311 restore_inferior_status (sts);
4312}
4313
4314struct cleanup *
4315make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4316{
4317 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4318}
4319
4320void
4321discard_inferior_status (struct inferior_status *inf_status)
4322{
4323 /* See save_inferior_status for info on stop_bpstat. */
4324 bpstat_clear (&inf_status->stop_bpstat);
4325 regcache_xfree (inf_status->registers);
4326 xfree (inf_status);
4327}
4328
4329int
4330inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4331{
4332 struct target_waitstatus last;
4333 ptid_t last_ptid;
4334
4335 get_last_target_status (&last_ptid, &last);
4336
4337 if (last.kind != TARGET_WAITKIND_FORKED)
4338 return 0;
4339
4340 if (!ptid_equal (last_ptid, pid))
4341 return 0;
4342
4343 *child_pid = last.value.related_pid;
4344 return 1;
4345}
4346
4347int
4348inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4349{
4350 struct target_waitstatus last;
4351 ptid_t last_ptid;
4352
4353 get_last_target_status (&last_ptid, &last);
4354
4355 if (last.kind != TARGET_WAITKIND_VFORKED)
4356 return 0;
4357
4358 if (!ptid_equal (last_ptid, pid))
4359 return 0;
4360
4361 *child_pid = last.value.related_pid;
4362 return 1;
4363}
4364
4365int
4366inferior_has_execd (ptid_t pid, char **execd_pathname)
4367{
4368 struct target_waitstatus last;
4369 ptid_t last_ptid;
4370
4371 get_last_target_status (&last_ptid, &last);
4372
4373 if (last.kind != TARGET_WAITKIND_EXECD)
4374 return 0;
4375
4376 if (!ptid_equal (last_ptid, pid))
4377 return 0;
4378
4379 *execd_pathname = xstrdup (last.value.execd_pathname);
4380 return 1;
4381}
4382
4383/* Oft used ptids */
4384ptid_t null_ptid;
4385ptid_t minus_one_ptid;
4386
4387/* Create a ptid given the necessary PID, LWP, and TID components. */
4388
4389ptid_t
4390ptid_build (int pid, long lwp, long tid)
4391{
4392 ptid_t ptid;
4393
4394 ptid.pid = pid;
4395 ptid.lwp = lwp;
4396 ptid.tid = tid;
4397 return ptid;
4398}
4399
4400/* Create a ptid from just a pid. */
4401
4402ptid_t
4403pid_to_ptid (int pid)
4404{
4405 return ptid_build (pid, 0, 0);
4406}
4407
4408/* Fetch the pid (process id) component from a ptid. */
4409
4410int
4411ptid_get_pid (ptid_t ptid)
4412{
4413 return ptid.pid;
4414}
4415
4416/* Fetch the lwp (lightweight process) component from a ptid. */
4417
4418long
4419ptid_get_lwp (ptid_t ptid)
4420{
4421 return ptid.lwp;
4422}
4423
4424/* Fetch the tid (thread id) component from a ptid. */
4425
4426long
4427ptid_get_tid (ptid_t ptid)
4428{
4429 return ptid.tid;
4430}
4431
4432/* ptid_equal() is used to test equality of two ptids. */
4433
4434int
4435ptid_equal (ptid_t ptid1, ptid_t ptid2)
4436{
4437 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4438 && ptid1.tid == ptid2.tid);
4439}
4440
4441/* restore_inferior_ptid() will be used by the cleanup machinery
4442 to restore the inferior_ptid value saved in a call to
4443 save_inferior_ptid(). */
4444
4445static void
4446restore_inferior_ptid (void *arg)
4447{
4448 ptid_t *saved_ptid_ptr = arg;
4449 inferior_ptid = *saved_ptid_ptr;
4450 xfree (arg);
4451}
4452
4453/* Save the value of inferior_ptid so that it may be restored by a
4454 later call to do_cleanups(). Returns the struct cleanup pointer
4455 needed for later doing the cleanup. */
4456
4457struct cleanup *
4458save_inferior_ptid (void)
4459{
4460 ptid_t *saved_ptid_ptr;
4461
4462 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4463 *saved_ptid_ptr = inferior_ptid;
4464 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4465}
4466\f
4467
4468void
4469_initialize_infrun (void)
4470{
4471 int i;
4472 int numsigs;
4473 struct cmd_list_element *c;
4474
4475 add_info ("signals", signals_info, _("\
4476What debugger does when program gets various signals.\n\
4477Specify a signal as argument to print info on that signal only."));
4478 add_info_alias ("handle", "signals", 0);
4479
4480 add_com ("handle", class_run, handle_command, _("\
4481Specify how to handle a signal.\n\
4482Args are signals and actions to apply to those signals.\n\
4483Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4484from 1-15 are allowed for compatibility with old versions of GDB.\n\
4485Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4486The special arg \"all\" is recognized to mean all signals except those\n\
4487used by the debugger, typically SIGTRAP and SIGINT.\n\
4488Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4489\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4490Stop means reenter debugger if this signal happens (implies print).\n\
4491Print means print a message if this signal happens.\n\
4492Pass means let program see this signal; otherwise program doesn't know.\n\
4493Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4494Pass and Stop may be combined."));
4495 if (xdb_commands)
4496 {
4497 add_com ("lz", class_info, signals_info, _("\
4498What debugger does when program gets various signals.\n\
4499Specify a signal as argument to print info on that signal only."));
4500 add_com ("z", class_run, xdb_handle_command, _("\
4501Specify how to handle a signal.\n\
4502Args are signals and actions to apply to those signals.\n\
4503Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4504from 1-15 are allowed for compatibility with old versions of GDB.\n\
4505Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4506The special arg \"all\" is recognized to mean all signals except those\n\
4507used by the debugger, typically SIGTRAP and SIGINT.\n\
4508Recognized actions include \"s\" (toggles between stop and nostop), \n\
4509\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4510nopass), \"Q\" (noprint)\n\
4511Stop means reenter debugger if this signal happens (implies print).\n\
4512Print means print a message if this signal happens.\n\
4513Pass means let program see this signal; otherwise program doesn't know.\n\
4514Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4515Pass and Stop may be combined."));
4516 }
4517
4518 if (!dbx_commands)
4519 stop_command = add_cmd ("stop", class_obscure,
4520 not_just_help_class_command, _("\
4521There is no `stop' command, but you can set a hook on `stop'.\n\
4522This allows you to set a list of commands to be run each time execution\n\
4523of the program stops."), &cmdlist);
4524
4525 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4526Set inferior debugging."), _("\
4527Show inferior debugging."), _("\
4528When non-zero, inferior specific debugging is enabled."),
4529 NULL,
4530 show_debug_infrun,
4531 &setdebuglist, &showdebuglist);
4532
4533 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4534Set displaced stepping debugging."), _("\
4535Show displaced stepping debugging."), _("\
4536When non-zero, displaced stepping specific debugging is enabled."),
4537 NULL,
4538 show_debug_displaced,
4539 &setdebuglist, &showdebuglist);
4540
4541 numsigs = (int) TARGET_SIGNAL_LAST;
4542 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4543 signal_print = (unsigned char *)
4544 xmalloc (sizeof (signal_print[0]) * numsigs);
4545 signal_program = (unsigned char *)
4546 xmalloc (sizeof (signal_program[0]) * numsigs);
4547 for (i = 0; i < numsigs; i++)
4548 {
4549 signal_stop[i] = 1;
4550 signal_print[i] = 1;
4551 signal_program[i] = 1;
4552 }
4553
4554 /* Signals caused by debugger's own actions
4555 should not be given to the program afterwards. */
4556 signal_program[TARGET_SIGNAL_TRAP] = 0;
4557 signal_program[TARGET_SIGNAL_INT] = 0;
4558
4559 /* Signals that are not errors should not normally enter the debugger. */
4560 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4561 signal_print[TARGET_SIGNAL_ALRM] = 0;
4562 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4563 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4564 signal_stop[TARGET_SIGNAL_PROF] = 0;
4565 signal_print[TARGET_SIGNAL_PROF] = 0;
4566 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4567 signal_print[TARGET_SIGNAL_CHLD] = 0;
4568 signal_stop[TARGET_SIGNAL_IO] = 0;
4569 signal_print[TARGET_SIGNAL_IO] = 0;
4570 signal_stop[TARGET_SIGNAL_POLL] = 0;
4571 signal_print[TARGET_SIGNAL_POLL] = 0;
4572 signal_stop[TARGET_SIGNAL_URG] = 0;
4573 signal_print[TARGET_SIGNAL_URG] = 0;
4574 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4575 signal_print[TARGET_SIGNAL_WINCH] = 0;
4576
4577 /* These signals are used internally by user-level thread
4578 implementations. (See signal(5) on Solaris.) Like the above
4579 signals, a healthy program receives and handles them as part of
4580 its normal operation. */
4581 signal_stop[TARGET_SIGNAL_LWP] = 0;
4582 signal_print[TARGET_SIGNAL_LWP] = 0;
4583 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4584 signal_print[TARGET_SIGNAL_WAITING] = 0;
4585 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4586 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4587
4588 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4589 &stop_on_solib_events, _("\
4590Set stopping for shared library events."), _("\
4591Show stopping for shared library events."), _("\
4592If nonzero, gdb will give control to the user when the dynamic linker\n\
4593notifies gdb of shared library events. The most common event of interest\n\
4594to the user would be loading/unloading of a new library."),
4595 NULL,
4596 show_stop_on_solib_events,
4597 &setlist, &showlist);
4598
4599 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4600 follow_fork_mode_kind_names,
4601 &follow_fork_mode_string, _("\
4602Set debugger response to a program call of fork or vfork."), _("\
4603Show debugger response to a program call of fork or vfork."), _("\
4604A fork or vfork creates a new process. follow-fork-mode can be:\n\
4605 parent - the original process is debugged after a fork\n\
4606 child - the new process is debugged after a fork\n\
4607The unfollowed process will continue to run.\n\
4608By default, the debugger will follow the parent process."),
4609 NULL,
4610 show_follow_fork_mode_string,
4611 &setlist, &showlist);
4612
4613 add_setshow_enum_cmd ("scheduler-locking", class_run,
4614 scheduler_enums, &scheduler_mode, _("\
4615Set mode for locking scheduler during execution."), _("\
4616Show mode for locking scheduler during execution."), _("\
4617off == no locking (threads may preempt at any time)\n\
4618on == full locking (no thread except the current thread may run)\n\
4619step == scheduler locked during every single-step operation.\n\
4620 In this mode, no other thread may run during a step command.\n\
4621 Other threads may run while stepping over a function call ('next')."),
4622 set_schedlock_func, /* traps on target vector */
4623 show_scheduler_mode,
4624 &setlist, &showlist);
4625
4626 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4627Set mode of the step operation."), _("\
4628Show mode of the step operation."), _("\
4629When set, doing a step over a function without debug line information\n\
4630will stop at the first instruction of that function. Otherwise, the\n\
4631function is skipped and the step command stops at a different source line."),
4632 NULL,
4633 show_step_stop_if_no_debug,
4634 &setlist, &showlist);
4635
4636 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
4637 &can_use_displaced_stepping, _("\
4638Set debugger's willingness to use displaced stepping."), _("\
4639Show debugger's willingness to use displaced stepping."), _("\
4640If zero, gdb will not use displaced stepping to step over\n\
4641breakpoints, even if such is supported by the target."),
4642 NULL,
4643 show_can_use_displaced_stepping,
4644 &maintenance_set_cmdlist,
4645 &maintenance_show_cmdlist);
4646
4647 /* ptid initializations */
4648 null_ptid = ptid_build (0, 0, 0);
4649 minus_one_ptid = ptid_build (-1, 0, 0);
4650 inferior_ptid = null_ptid;
4651 target_last_wait_ptid = minus_one_ptid;
4652 displaced_step_ptid = null_ptid;
4653}
This page took 0.037666 seconds and 4 git commands to generate.