* remote.c (remote_address_masked): If remote_address_size is zero,
[deliverable/binutils-gdb.git] / gdb / infrun.c
... / ...
CommitLineData
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
31#include "exceptions.h"
32#include "breakpoint.h"
33#include "gdb_wait.h"
34#include "gdbcore.h"
35#include "gdbcmd.h"
36#include "cli/cli-script.h"
37#include "target.h"
38#include "gdbthread.h"
39#include "annotate.h"
40#include "symfile.h"
41#include "top.h"
42#include <signal.h>
43#include "inf-loop.h"
44#include "regcache.h"
45#include "value.h"
46#include "observer.h"
47#include "language.h"
48#include "solib.h"
49#include "main.h"
50
51#include "gdb_assert.h"
52#include "mi/mi-common.h"
53
54/* Prototypes for local functions */
55
56static void signals_info (char *, int);
57
58static void handle_command (char *, int);
59
60static void sig_print_info (enum target_signal);
61
62static void sig_print_header (void);
63
64static void resume_cleanups (void *);
65
66static int hook_stop_stub (void *);
67
68static int restore_selected_frame (void *);
69
70static void build_infrun (void);
71
72static int follow_fork (void);
73
74static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77struct execution_control_state;
78
79static int currently_stepping (struct execution_control_state *ecs);
80
81static void xdb_handle_command (char *args, int from_tty);
82
83static int prepare_to_proceed (void);
84
85void _initialize_infrun (void);
86
87int inferior_ignoring_startup_exec_events = 0;
88int inferior_ignoring_leading_exec_events = 0;
89
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
94static void
95show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97{
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99}
100
101/* In asynchronous mode, but simulating synchronous execution. */
102
103int sync_execution = 0;
104
105/* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109static ptid_t previous_inferior_ptid;
110
111/* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114#ifndef MAY_FOLLOW_EXEC
115#define MAY_FOLLOW_EXEC (0)
116#endif
117
118static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120static int debug_infrun = 0;
121static void
122show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124{
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126}
127
128/* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167/* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175#ifndef SOLIB_IN_DYNAMIC_LINKER
176#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177#endif
178
179
180/* Convert the #defines into values. This is temporary until wfi control
181 flow is completely sorted out. */
182
183#ifndef CANNOT_STEP_HW_WATCHPOINTS
184#define CANNOT_STEP_HW_WATCHPOINTS 0
185#else
186#undef CANNOT_STEP_HW_WATCHPOINTS
187#define CANNOT_STEP_HW_WATCHPOINTS 1
188#endif
189
190/* Tables of how to react to signals; the user sets them. */
191
192static unsigned char *signal_stop;
193static unsigned char *signal_print;
194static unsigned char *signal_program;
195
196#define SET_SIGS(nsigs,sigs,flags) \
197 do { \
198 int signum = (nsigs); \
199 while (signum-- > 0) \
200 if ((sigs)[signum]) \
201 (flags)[signum] = 1; \
202 } while (0)
203
204#define UNSET_SIGS(nsigs,sigs,flags) \
205 do { \
206 int signum = (nsigs); \
207 while (signum-- > 0) \
208 if ((sigs)[signum]) \
209 (flags)[signum] = 0; \
210 } while (0)
211
212/* Value to pass to target_resume() to cause all threads to resume */
213
214#define RESUME_ALL (pid_to_ptid (-1))
215
216/* Command list pointer for the "stop" placeholder. */
217
218static struct cmd_list_element *stop_command;
219
220/* Nonzero if breakpoints are now inserted in the inferior. */
221
222static int breakpoints_inserted;
223
224/* Function inferior was in as of last step command. */
225
226static struct symbol *step_start_function;
227
228/* Nonzero if we are expecting a trace trap and should proceed from it. */
229
230static int trap_expected;
231
232/* Nonzero if we want to give control to the user when we're notified
233 of shared library events by the dynamic linker. */
234static int stop_on_solib_events;
235static void
236show_stop_on_solib_events (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238{
239 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
240 value);
241}
242
243/* Nonzero means expecting a trace trap
244 and should stop the inferior and return silently when it happens. */
245
246int stop_after_trap;
247
248/* Nonzero means expecting a trap and caller will handle it themselves.
249 It is used after attach, due to attaching to a process;
250 when running in the shell before the child program has been exec'd;
251 and when running some kinds of remote stuff (FIXME?). */
252
253enum stop_kind stop_soon;
254
255/* Nonzero if proceed is being used for a "finish" command or a similar
256 situation when stop_registers should be saved. */
257
258int proceed_to_finish;
259
260/* Save register contents here when about to pop a stack dummy frame,
261 if-and-only-if proceed_to_finish is set.
262 Thus this contains the return value from the called function (assuming
263 values are returned in a register). */
264
265struct regcache *stop_registers;
266
267/* Nonzero after stop if current stack frame should be printed. */
268
269static int stop_print_frame;
270
271static struct breakpoint *step_resume_breakpoint = NULL;
272
273/* This is a cached copy of the pid/waitstatus of the last event
274 returned by target_wait()/deprecated_target_wait_hook(). This
275 information is returned by get_last_target_status(). */
276static ptid_t target_last_wait_ptid;
277static struct target_waitstatus target_last_waitstatus;
278
279/* This is used to remember when a fork, vfork or exec event
280 was caught by a catchpoint, and thus the event is to be
281 followed at the next resume of the inferior, and not
282 immediately. */
283static struct
284{
285 enum target_waitkind kind;
286 struct
287 {
288 int parent_pid;
289 int child_pid;
290 }
291 fork_event;
292 char *execd_pathname;
293}
294pending_follow;
295
296static const char follow_fork_mode_child[] = "child";
297static const char follow_fork_mode_parent[] = "parent";
298
299static const char *follow_fork_mode_kind_names[] = {
300 follow_fork_mode_child,
301 follow_fork_mode_parent,
302 NULL
303};
304
305static const char *follow_fork_mode_string = follow_fork_mode_parent;
306static void
307show_follow_fork_mode_string (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
309{
310 fprintf_filtered (file, _("\
311Debugger response to a program call of fork or vfork is \"%s\".\n"),
312 value);
313}
314\f
315
316static int
317follow_fork (void)
318{
319 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
320
321 return target_follow_fork (follow_child);
322}
323
324void
325follow_inferior_reset_breakpoints (void)
326{
327 /* Was there a step_resume breakpoint? (There was if the user
328 did a "next" at the fork() call.) If so, explicitly reset its
329 thread number.
330
331 step_resumes are a form of bp that are made to be per-thread.
332 Since we created the step_resume bp when the parent process
333 was being debugged, and now are switching to the child process,
334 from the breakpoint package's viewpoint, that's a switch of
335 "threads". We must update the bp's notion of which thread
336 it is for, or it'll be ignored when it triggers. */
337
338 if (step_resume_breakpoint)
339 breakpoint_re_set_thread (step_resume_breakpoint);
340
341 /* Reinsert all breakpoints in the child. The user may have set
342 breakpoints after catching the fork, in which case those
343 were never set in the child, but only in the parent. This makes
344 sure the inserted breakpoints match the breakpoint list. */
345
346 breakpoint_re_set ();
347 insert_breakpoints ();
348}
349
350/* EXECD_PATHNAME is assumed to be non-NULL. */
351
352static void
353follow_exec (int pid, char *execd_pathname)
354{
355 int saved_pid = pid;
356 struct target_ops *tgt;
357
358 if (!may_follow_exec)
359 return;
360
361 /* This is an exec event that we actually wish to pay attention to.
362 Refresh our symbol table to the newly exec'd program, remove any
363 momentary bp's, etc.
364
365 If there are breakpoints, they aren't really inserted now,
366 since the exec() transformed our inferior into a fresh set
367 of instructions.
368
369 We want to preserve symbolic breakpoints on the list, since
370 we have hopes that they can be reset after the new a.out's
371 symbol table is read.
372
373 However, any "raw" breakpoints must be removed from the list
374 (e.g., the solib bp's), since their address is probably invalid
375 now.
376
377 And, we DON'T want to call delete_breakpoints() here, since
378 that may write the bp's "shadow contents" (the instruction
379 value that was overwritten witha TRAP instruction). Since
380 we now have a new a.out, those shadow contents aren't valid. */
381 update_breakpoints_after_exec ();
382
383 /* If there was one, it's gone now. We cannot truly step-to-next
384 statement through an exec(). */
385 step_resume_breakpoint = NULL;
386 step_range_start = 0;
387 step_range_end = 0;
388
389 /* What is this a.out's name? */
390 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
391
392 /* We've followed the inferior through an exec. Therefore, the
393 inferior has essentially been killed & reborn. */
394
395 /* First collect the run target in effect. */
396 tgt = find_run_target ();
397 /* If we can't find one, things are in a very strange state... */
398 if (tgt == NULL)
399 error (_("Could find run target to save before following exec"));
400
401 gdb_flush (gdb_stdout);
402 target_mourn_inferior ();
403 inferior_ptid = pid_to_ptid (saved_pid);
404 /* Because mourn_inferior resets inferior_ptid. */
405 push_target (tgt);
406
407 /* That a.out is now the one to use. */
408 exec_file_attach (execd_pathname, 0);
409
410 /* And also is where symbols can be found. */
411 symbol_file_add_main (execd_pathname, 0);
412
413 /* Reset the shared library package. This ensures that we get
414 a shlib event when the child reaches "_start", at which point
415 the dld will have had a chance to initialize the child. */
416#if defined(SOLIB_RESTART)
417 SOLIB_RESTART ();
418#endif
419#ifdef SOLIB_CREATE_INFERIOR_HOOK
420 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
421#else
422 solib_create_inferior_hook ();
423#endif
424
425 /* Reinsert all breakpoints. (Those which were symbolic have
426 been reset to the proper address in the new a.out, thanks
427 to symbol_file_command...) */
428 insert_breakpoints ();
429
430 /* The next resume of this inferior should bring it to the shlib
431 startup breakpoints. (If the user had also set bp's on
432 "main" from the old (parent) process, then they'll auto-
433 matically get reset there in the new process.) */
434}
435
436/* Non-zero if we just simulating a single-step. This is needed
437 because we cannot remove the breakpoints in the inferior process
438 until after the `wait' in `wait_for_inferior'. */
439static int singlestep_breakpoints_inserted_p = 0;
440
441/* The thread we inserted single-step breakpoints for. */
442static ptid_t singlestep_ptid;
443
444/* PC when we started this single-step. */
445static CORE_ADDR singlestep_pc;
446
447/* If another thread hit the singlestep breakpoint, we save the original
448 thread here so that we can resume single-stepping it later. */
449static ptid_t saved_singlestep_ptid;
450static int stepping_past_singlestep_breakpoint;
451\f
452
453/* Things to clean up if we QUIT out of resume (). */
454static void
455resume_cleanups (void *ignore)
456{
457 normal_stop ();
458}
459
460static const char schedlock_off[] = "off";
461static const char schedlock_on[] = "on";
462static const char schedlock_step[] = "step";
463static const char *scheduler_enums[] = {
464 schedlock_off,
465 schedlock_on,
466 schedlock_step,
467 NULL
468};
469static const char *scheduler_mode = schedlock_off;
470static void
471show_scheduler_mode (struct ui_file *file, int from_tty,
472 struct cmd_list_element *c, const char *value)
473{
474 fprintf_filtered (file, _("\
475Mode for locking scheduler during execution is \"%s\".\n"),
476 value);
477}
478
479static void
480set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
481{
482 if (!target_can_lock_scheduler)
483 {
484 scheduler_mode = schedlock_off;
485 error (_("Target '%s' cannot support this command."), target_shortname);
486 }
487}
488
489
490/* Resume the inferior, but allow a QUIT. This is useful if the user
491 wants to interrupt some lengthy single-stepping operation
492 (for child processes, the SIGINT goes to the inferior, and so
493 we get a SIGINT random_signal, but for remote debugging and perhaps
494 other targets, that's not true).
495
496 STEP nonzero if we should step (zero to continue instead).
497 SIG is the signal to give the inferior (zero for none). */
498void
499resume (int step, enum target_signal sig)
500{
501 int should_resume = 1;
502 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
503 QUIT;
504
505 if (debug_infrun)
506 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
507 step, sig);
508
509 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
510
511
512 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
513 over an instruction that causes a page fault without triggering
514 a hardware watchpoint. The kernel properly notices that it shouldn't
515 stop, because the hardware watchpoint is not triggered, but it forgets
516 the step request and continues the program normally.
517 Work around the problem by removing hardware watchpoints if a step is
518 requested, GDB will check for a hardware watchpoint trigger after the
519 step anyway. */
520 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
521 remove_hw_watchpoints ();
522
523
524 /* Normally, by the time we reach `resume', the breakpoints are either
525 removed or inserted, as appropriate. The exception is if we're sitting
526 at a permanent breakpoint; we need to step over it, but permanent
527 breakpoints can't be removed. So we have to test for it here. */
528 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
529 {
530 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
531 gdbarch_skip_permanent_breakpoint (current_gdbarch,
532 get_current_regcache ());
533 else
534 error (_("\
535The program is stopped at a permanent breakpoint, but GDB does not know\n\
536how to step past a permanent breakpoint on this architecture. Try using\n\
537a command like `return' or `jump' to continue execution."));
538 }
539
540 if (SOFTWARE_SINGLE_STEP_P () && step)
541 {
542 /* Do it the hard way, w/temp breakpoints */
543 if (SOFTWARE_SINGLE_STEP (get_current_frame ()))
544 {
545 /* ...and don't ask hardware to do it. */
546 step = 0;
547 /* and do not pull these breakpoints until after a `wait' in
548 `wait_for_inferior' */
549 singlestep_breakpoints_inserted_p = 1;
550 singlestep_ptid = inferior_ptid;
551 singlestep_pc = read_pc ();
552 }
553 }
554
555 /* If there were any forks/vforks/execs that were caught and are
556 now to be followed, then do so. */
557 switch (pending_follow.kind)
558 {
559 case TARGET_WAITKIND_FORKED:
560 case TARGET_WAITKIND_VFORKED:
561 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
562 if (follow_fork ())
563 should_resume = 0;
564 break;
565
566 case TARGET_WAITKIND_EXECD:
567 /* follow_exec is called as soon as the exec event is seen. */
568 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
569 break;
570
571 default:
572 break;
573 }
574
575 /* Install inferior's terminal modes. */
576 target_terminal_inferior ();
577
578 if (should_resume)
579 {
580 ptid_t resume_ptid;
581
582 resume_ptid = RESUME_ALL; /* Default */
583
584 if ((step || singlestep_breakpoints_inserted_p)
585 && (stepping_past_singlestep_breakpoint
586 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
587 {
588 /* Stepping past a breakpoint without inserting breakpoints.
589 Make sure only the current thread gets to step, so that
590 other threads don't sneak past breakpoints while they are
591 not inserted. */
592
593 resume_ptid = inferior_ptid;
594 }
595
596 if ((scheduler_mode == schedlock_on)
597 || (scheduler_mode == schedlock_step
598 && (step || singlestep_breakpoints_inserted_p)))
599 {
600 /* User-settable 'scheduler' mode requires solo thread resume. */
601 resume_ptid = inferior_ptid;
602 }
603
604 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
605 {
606 /* Most targets can step a breakpoint instruction, thus
607 executing it normally. But if this one cannot, just
608 continue and we will hit it anyway. */
609 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
610 step = 0;
611 }
612 target_resume (resume_ptid, step, sig);
613 }
614
615 discard_cleanups (old_cleanups);
616}
617\f
618
619/* Clear out all variables saying what to do when inferior is continued.
620 First do this, then set the ones you want, then call `proceed'. */
621
622void
623clear_proceed_status (void)
624{
625 trap_expected = 0;
626 step_range_start = 0;
627 step_range_end = 0;
628 step_frame_id = null_frame_id;
629 step_over_calls = STEP_OVER_UNDEBUGGABLE;
630 stop_after_trap = 0;
631 stop_soon = NO_STOP_QUIETLY;
632 proceed_to_finish = 0;
633 breakpoint_proceeded = 1; /* We're about to proceed... */
634
635 /* Discard any remaining commands or status from previous stop. */
636 bpstat_clear (&stop_bpstat);
637}
638
639/* This should be suitable for any targets that support threads. */
640
641static int
642prepare_to_proceed (void)
643{
644 ptid_t wait_ptid;
645 struct target_waitstatus wait_status;
646
647 /* Get the last target status returned by target_wait(). */
648 get_last_target_status (&wait_ptid, &wait_status);
649
650 /* Make sure we were stopped either at a breakpoint, or because
651 of a Ctrl-C. */
652 if (wait_status.kind != TARGET_WAITKIND_STOPPED
653 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
654 && wait_status.value.sig != TARGET_SIGNAL_INT))
655 {
656 return 0;
657 }
658
659 if (!ptid_equal (wait_ptid, minus_one_ptid)
660 && !ptid_equal (inferior_ptid, wait_ptid))
661 {
662 /* Switched over from WAIT_PID. */
663 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
664
665 if (wait_pc != read_pc ())
666 {
667 /* Switch back to WAIT_PID thread. */
668 inferior_ptid = wait_ptid;
669
670 /* FIXME: This stuff came from switch_to_thread() in
671 thread.c (which should probably be a public function). */
672 reinit_frame_cache ();
673 registers_changed ();
674 stop_pc = wait_pc;
675 }
676
677 /* We return 1 to indicate that there is a breakpoint here,
678 so we need to step over it before continuing to avoid
679 hitting it straight away. */
680 if (breakpoint_here_p (wait_pc))
681 return 1;
682 }
683
684 return 0;
685
686}
687
688/* Record the pc of the program the last time it stopped. This is
689 just used internally by wait_for_inferior, but need to be preserved
690 over calls to it and cleared when the inferior is started. */
691static CORE_ADDR prev_pc;
692
693/* Basic routine for continuing the program in various fashions.
694
695 ADDR is the address to resume at, or -1 for resume where stopped.
696 SIGGNAL is the signal to give it, or 0 for none,
697 or -1 for act according to how it stopped.
698 STEP is nonzero if should trap after one instruction.
699 -1 means return after that and print nothing.
700 You should probably set various step_... variables
701 before calling here, if you are stepping.
702
703 You should call clear_proceed_status before calling proceed. */
704
705void
706proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
707{
708 int oneproc = 0;
709
710 if (step > 0)
711 step_start_function = find_pc_function (read_pc ());
712 if (step < 0)
713 stop_after_trap = 1;
714
715 if (addr == (CORE_ADDR) -1)
716 {
717 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
718 /* There is a breakpoint at the address we will resume at,
719 step one instruction before inserting breakpoints so that
720 we do not stop right away (and report a second hit at this
721 breakpoint). */
722 oneproc = 1;
723 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
724 && gdbarch_single_step_through_delay (current_gdbarch,
725 get_current_frame ()))
726 /* We stepped onto an instruction that needs to be stepped
727 again before re-inserting the breakpoint, do so. */
728 oneproc = 1;
729 }
730 else
731 {
732 write_pc (addr);
733 }
734
735 if (debug_infrun)
736 fprintf_unfiltered (gdb_stdlog,
737 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
738 paddr_nz (addr), siggnal, step);
739
740 /* In a multi-threaded task we may select another thread
741 and then continue or step.
742
743 But if the old thread was stopped at a breakpoint, it
744 will immediately cause another breakpoint stop without
745 any execution (i.e. it will report a breakpoint hit
746 incorrectly). So we must step over it first.
747
748 prepare_to_proceed checks the current thread against the thread
749 that reported the most recent event. If a step-over is required
750 it returns TRUE and sets the current thread to the old thread. */
751 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
752 oneproc = 1;
753
754 if (oneproc)
755 /* We will get a trace trap after one instruction.
756 Continue it automatically and insert breakpoints then. */
757 trap_expected = 1;
758 else
759 {
760 insert_breakpoints ();
761 /* If we get here there was no call to error() in
762 insert breakpoints -- so they were inserted. */
763 breakpoints_inserted = 1;
764 }
765
766 if (siggnal != TARGET_SIGNAL_DEFAULT)
767 stop_signal = siggnal;
768 /* If this signal should not be seen by program,
769 give it zero. Used for debugging signals. */
770 else if (!signal_program[stop_signal])
771 stop_signal = TARGET_SIGNAL_0;
772
773 annotate_starting ();
774
775 /* Make sure that output from GDB appears before output from the
776 inferior. */
777 gdb_flush (gdb_stdout);
778
779 /* Refresh prev_pc value just prior to resuming. This used to be
780 done in stop_stepping, however, setting prev_pc there did not handle
781 scenarios such as inferior function calls or returning from
782 a function via the return command. In those cases, the prev_pc
783 value was not set properly for subsequent commands. The prev_pc value
784 is used to initialize the starting line number in the ecs. With an
785 invalid value, the gdb next command ends up stopping at the position
786 represented by the next line table entry past our start position.
787 On platforms that generate one line table entry per line, this
788 is not a problem. However, on the ia64, the compiler generates
789 extraneous line table entries that do not increase the line number.
790 When we issue the gdb next command on the ia64 after an inferior call
791 or a return command, we often end up a few instructions forward, still
792 within the original line we started.
793
794 An attempt was made to have init_execution_control_state () refresh
795 the prev_pc value before calculating the line number. This approach
796 did not work because on platforms that use ptrace, the pc register
797 cannot be read unless the inferior is stopped. At that point, we
798 are not guaranteed the inferior is stopped and so the read_pc ()
799 call can fail. Setting the prev_pc value here ensures the value is
800 updated correctly when the inferior is stopped. */
801 prev_pc = read_pc ();
802
803 /* Resume inferior. */
804 resume (oneproc || step || bpstat_should_step (), stop_signal);
805
806 /* Wait for it to stop (if not standalone)
807 and in any case decode why it stopped, and act accordingly. */
808 /* Do this only if we are not using the event loop, or if the target
809 does not support asynchronous execution. */
810 if (!target_can_async_p ())
811 {
812 wait_for_inferior ();
813 normal_stop ();
814 }
815}
816\f
817
818/* Start remote-debugging of a machine over a serial link. */
819
820void
821start_remote (int from_tty)
822{
823 init_thread_list ();
824 init_wait_for_inferior ();
825 stop_soon = STOP_QUIETLY;
826 trap_expected = 0;
827
828 /* Always go on waiting for the target, regardless of the mode. */
829 /* FIXME: cagney/1999-09-23: At present it isn't possible to
830 indicate to wait_for_inferior that a target should timeout if
831 nothing is returned (instead of just blocking). Because of this,
832 targets expecting an immediate response need to, internally, set
833 things up so that the target_wait() is forced to eventually
834 timeout. */
835 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
836 differentiate to its caller what the state of the target is after
837 the initial open has been performed. Here we're assuming that
838 the target has stopped. It should be possible to eventually have
839 target_open() return to the caller an indication that the target
840 is currently running and GDB state should be set to the same as
841 for an async run. */
842 wait_for_inferior ();
843
844 /* Now that the inferior has stopped, do any bookkeeping like
845 loading shared libraries. We want to do this before normal_stop,
846 so that the displayed frame is up to date. */
847 post_create_inferior (&current_target, from_tty);
848
849 normal_stop ();
850}
851
852/* Initialize static vars when a new inferior begins. */
853
854void
855init_wait_for_inferior (void)
856{
857 /* These are meaningless until the first time through wait_for_inferior. */
858 prev_pc = 0;
859
860 breakpoints_inserted = 0;
861 breakpoint_init_inferior (inf_starting);
862
863 /* Don't confuse first call to proceed(). */
864 stop_signal = TARGET_SIGNAL_0;
865
866 /* The first resume is not following a fork/vfork/exec. */
867 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
868
869 clear_proceed_status ();
870
871 stepping_past_singlestep_breakpoint = 0;
872}
873\f
874/* This enum encodes possible reasons for doing a target_wait, so that
875 wfi can call target_wait in one place. (Ultimately the call will be
876 moved out of the infinite loop entirely.) */
877
878enum infwait_states
879{
880 infwait_normal_state,
881 infwait_thread_hop_state,
882 infwait_nonstep_watch_state
883};
884
885/* Why did the inferior stop? Used to print the appropriate messages
886 to the interface from within handle_inferior_event(). */
887enum inferior_stop_reason
888{
889 /* Step, next, nexti, stepi finished. */
890 END_STEPPING_RANGE,
891 /* Inferior terminated by signal. */
892 SIGNAL_EXITED,
893 /* Inferior exited. */
894 EXITED,
895 /* Inferior received signal, and user asked to be notified. */
896 SIGNAL_RECEIVED
897};
898
899/* This structure contains what used to be local variables in
900 wait_for_inferior. Probably many of them can return to being
901 locals in handle_inferior_event. */
902
903struct execution_control_state
904{
905 struct target_waitstatus ws;
906 struct target_waitstatus *wp;
907 int another_trap;
908 int random_signal;
909 CORE_ADDR stop_func_start;
910 CORE_ADDR stop_func_end;
911 char *stop_func_name;
912 struct symtab_and_line sal;
913 int current_line;
914 struct symtab *current_symtab;
915 int handling_longjmp; /* FIXME */
916 ptid_t ptid;
917 ptid_t saved_inferior_ptid;
918 int step_after_step_resume_breakpoint;
919 int stepping_through_solib_after_catch;
920 bpstat stepping_through_solib_catchpoints;
921 int new_thread_event;
922 struct target_waitstatus tmpstatus;
923 enum infwait_states infwait_state;
924 ptid_t waiton_ptid;
925 int wait_some_more;
926};
927
928void init_execution_control_state (struct execution_control_state *ecs);
929
930void handle_inferior_event (struct execution_control_state *ecs);
931
932static void step_into_function (struct execution_control_state *ecs);
933static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
934static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
935static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
936 struct frame_id sr_id);
937static void stop_stepping (struct execution_control_state *ecs);
938static void prepare_to_wait (struct execution_control_state *ecs);
939static void keep_going (struct execution_control_state *ecs);
940static void print_stop_reason (enum inferior_stop_reason stop_reason,
941 int stop_info);
942
943/* Wait for control to return from inferior to debugger.
944 If inferior gets a signal, we may decide to start it up again
945 instead of returning. That is why there is a loop in this function.
946 When this function actually returns it means the inferior
947 should be left stopped and GDB should read more commands. */
948
949void
950wait_for_inferior (void)
951{
952 struct cleanup *old_cleanups;
953 struct execution_control_state ecss;
954 struct execution_control_state *ecs;
955
956 if (debug_infrun)
957 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
958
959 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
960 &step_resume_breakpoint);
961
962 /* wfi still stays in a loop, so it's OK just to take the address of
963 a local to get the ecs pointer. */
964 ecs = &ecss;
965
966 /* Fill in with reasonable starting values. */
967 init_execution_control_state (ecs);
968
969 /* We'll update this if & when we switch to a new thread. */
970 previous_inferior_ptid = inferior_ptid;
971
972 overlay_cache_invalid = 1;
973
974 /* We have to invalidate the registers BEFORE calling target_wait
975 because they can be loaded from the target while in target_wait.
976 This makes remote debugging a bit more efficient for those
977 targets that provide critical registers as part of their normal
978 status mechanism. */
979
980 registers_changed ();
981
982 while (1)
983 {
984 if (deprecated_target_wait_hook)
985 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
986 else
987 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
988
989 /* Now figure out what to do with the result of the result. */
990 handle_inferior_event (ecs);
991
992 if (!ecs->wait_some_more)
993 break;
994 }
995 do_cleanups (old_cleanups);
996}
997
998/* Asynchronous version of wait_for_inferior. It is called by the
999 event loop whenever a change of state is detected on the file
1000 descriptor corresponding to the target. It can be called more than
1001 once to complete a single execution command. In such cases we need
1002 to keep the state in a global variable ASYNC_ECSS. If it is the
1003 last time that this function is called for a single execution
1004 command, then report to the user that the inferior has stopped, and
1005 do the necessary cleanups. */
1006
1007struct execution_control_state async_ecss;
1008struct execution_control_state *async_ecs;
1009
1010void
1011fetch_inferior_event (void *client_data)
1012{
1013 static struct cleanup *old_cleanups;
1014
1015 async_ecs = &async_ecss;
1016
1017 if (!async_ecs->wait_some_more)
1018 {
1019 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1020 &step_resume_breakpoint);
1021
1022 /* Fill in with reasonable starting values. */
1023 init_execution_control_state (async_ecs);
1024
1025 /* We'll update this if & when we switch to a new thread. */
1026 previous_inferior_ptid = inferior_ptid;
1027
1028 overlay_cache_invalid = 1;
1029
1030 /* We have to invalidate the registers BEFORE calling target_wait
1031 because they can be loaded from the target while in target_wait.
1032 This makes remote debugging a bit more efficient for those
1033 targets that provide critical registers as part of their normal
1034 status mechanism. */
1035
1036 registers_changed ();
1037 }
1038
1039 if (deprecated_target_wait_hook)
1040 async_ecs->ptid =
1041 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1042 else
1043 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1044
1045 /* Now figure out what to do with the result of the result. */
1046 handle_inferior_event (async_ecs);
1047
1048 if (!async_ecs->wait_some_more)
1049 {
1050 /* Do only the cleanups that have been added by this
1051 function. Let the continuations for the commands do the rest,
1052 if there are any. */
1053 do_exec_cleanups (old_cleanups);
1054 normal_stop ();
1055 if (step_multi && stop_step)
1056 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1057 else
1058 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1059 }
1060}
1061
1062/* Prepare an execution control state for looping through a
1063 wait_for_inferior-type loop. */
1064
1065void
1066init_execution_control_state (struct execution_control_state *ecs)
1067{
1068 ecs->another_trap = 0;
1069 ecs->random_signal = 0;
1070 ecs->step_after_step_resume_breakpoint = 0;
1071 ecs->handling_longjmp = 0; /* FIXME */
1072 ecs->stepping_through_solib_after_catch = 0;
1073 ecs->stepping_through_solib_catchpoints = NULL;
1074 ecs->sal = find_pc_line (prev_pc, 0);
1075 ecs->current_line = ecs->sal.line;
1076 ecs->current_symtab = ecs->sal.symtab;
1077 ecs->infwait_state = infwait_normal_state;
1078 ecs->waiton_ptid = pid_to_ptid (-1);
1079 ecs->wp = &(ecs->ws);
1080}
1081
1082/* Return the cached copy of the last pid/waitstatus returned by
1083 target_wait()/deprecated_target_wait_hook(). The data is actually
1084 cached by handle_inferior_event(), which gets called immediately
1085 after target_wait()/deprecated_target_wait_hook(). */
1086
1087void
1088get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1089{
1090 *ptidp = target_last_wait_ptid;
1091 *status = target_last_waitstatus;
1092}
1093
1094void
1095nullify_last_target_wait_ptid (void)
1096{
1097 target_last_wait_ptid = minus_one_ptid;
1098}
1099
1100/* Switch thread contexts, maintaining "infrun state". */
1101
1102static void
1103context_switch (struct execution_control_state *ecs)
1104{
1105 /* Caution: it may happen that the new thread (or the old one!)
1106 is not in the thread list. In this case we must not attempt
1107 to "switch context", or we run the risk that our context may
1108 be lost. This may happen as a result of the target module
1109 mishandling thread creation. */
1110
1111 if (debug_infrun)
1112 {
1113 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1114 target_pid_to_str (inferior_ptid));
1115 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1116 target_pid_to_str (ecs->ptid));
1117 }
1118
1119 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1120 { /* Perform infrun state context switch: */
1121 /* Save infrun state for the old thread. */
1122 save_infrun_state (inferior_ptid, prev_pc,
1123 trap_expected, step_resume_breakpoint,
1124 step_range_start,
1125 step_range_end, &step_frame_id,
1126 ecs->handling_longjmp, ecs->another_trap,
1127 ecs->stepping_through_solib_after_catch,
1128 ecs->stepping_through_solib_catchpoints,
1129 ecs->current_line, ecs->current_symtab);
1130
1131 /* Load infrun state for the new thread. */
1132 load_infrun_state (ecs->ptid, &prev_pc,
1133 &trap_expected, &step_resume_breakpoint,
1134 &step_range_start,
1135 &step_range_end, &step_frame_id,
1136 &ecs->handling_longjmp, &ecs->another_trap,
1137 &ecs->stepping_through_solib_after_catch,
1138 &ecs->stepping_through_solib_catchpoints,
1139 &ecs->current_line, &ecs->current_symtab);
1140 }
1141 inferior_ptid = ecs->ptid;
1142 reinit_frame_cache ();
1143}
1144
1145static void
1146adjust_pc_after_break (struct execution_control_state *ecs)
1147{
1148 CORE_ADDR breakpoint_pc;
1149
1150 /* If this target does not decrement the PC after breakpoints, then
1151 we have nothing to do. */
1152 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1153 return;
1154
1155 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1156 we aren't, just return.
1157
1158 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1159 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1160 implemented by software breakpoints should be handled through the normal
1161 breakpoint layer.
1162
1163 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1164 different signals (SIGILL or SIGEMT for instance), but it is less
1165 clear where the PC is pointing afterwards. It may not match
1166 gdbarch_decr_pc_after_break. I don't know any specific target that
1167 generates these signals at breakpoints (the code has been in GDB since at
1168 least 1992) so I can not guess how to handle them here.
1169
1170 In earlier versions of GDB, a target with
1171 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1172 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1173 target with both of these set in GDB history, and it seems unlikely to be
1174 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1175
1176 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1177 return;
1178
1179 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1180 return;
1181
1182 /* Find the location where (if we've hit a breakpoint) the
1183 breakpoint would be. */
1184 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1185 (current_gdbarch);
1186
1187 if (SOFTWARE_SINGLE_STEP_P ())
1188 {
1189 /* When using software single-step, a SIGTRAP can only indicate
1190 an inserted breakpoint. This actually makes things
1191 easier. */
1192 if (singlestep_breakpoints_inserted_p)
1193 /* When software single stepping, the instruction at [prev_pc]
1194 is never a breakpoint, but the instruction following
1195 [prev_pc] (in program execution order) always is. Assume
1196 that following instruction was reached and hence a software
1197 breakpoint was hit. */
1198 write_pc_pid (breakpoint_pc, ecs->ptid);
1199 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1200 /* The inferior was free running (i.e., no single-step
1201 breakpoints inserted) and it hit a software breakpoint. */
1202 write_pc_pid (breakpoint_pc, ecs->ptid);
1203 }
1204 else
1205 {
1206 /* When using hardware single-step, a SIGTRAP is reported for
1207 both a completed single-step and a software breakpoint. Need
1208 to differentiate between the two as the latter needs
1209 adjusting but the former does not.
1210
1211 When the thread to be examined does not match the current thread
1212 context we can't use currently_stepping, so assume no
1213 single-stepping in this case. */
1214 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1215 {
1216 if (prev_pc == breakpoint_pc
1217 && software_breakpoint_inserted_here_p (breakpoint_pc))
1218 /* Hardware single-stepped a software breakpoint (as
1219 occures when the inferior is resumed with PC pointing
1220 at not-yet-hit software breakpoint). Since the
1221 breakpoint really is executed, the inferior needs to be
1222 backed up to the breakpoint address. */
1223 write_pc_pid (breakpoint_pc, ecs->ptid);
1224 }
1225 else
1226 {
1227 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1228 /* The inferior was free running (i.e., no hardware
1229 single-step and no possibility of a false SIGTRAP) and
1230 hit a software breakpoint. */
1231 write_pc_pid (breakpoint_pc, ecs->ptid);
1232 }
1233 }
1234}
1235
1236/* Given an execution control state that has been freshly filled in
1237 by an event from the inferior, figure out what it means and take
1238 appropriate action. */
1239
1240int stepped_after_stopped_by_watchpoint;
1241
1242void
1243handle_inferior_event (struct execution_control_state *ecs)
1244{
1245 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1246 that the variable stepped_after_stopped_by_watchpoint isn't used,
1247 then you're wrong! See remote.c:remote_stopped_data_address. */
1248
1249 int sw_single_step_trap_p = 0;
1250 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1251
1252 /* Cache the last pid/waitstatus. */
1253 target_last_wait_ptid = ecs->ptid;
1254 target_last_waitstatus = *ecs->wp;
1255
1256 adjust_pc_after_break (ecs);
1257
1258 switch (ecs->infwait_state)
1259 {
1260 case infwait_thread_hop_state:
1261 if (debug_infrun)
1262 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1263 /* Cancel the waiton_ptid. */
1264 ecs->waiton_ptid = pid_to_ptid (-1);
1265 break;
1266
1267 case infwait_normal_state:
1268 if (debug_infrun)
1269 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1270 stepped_after_stopped_by_watchpoint = 0;
1271 break;
1272
1273 case infwait_nonstep_watch_state:
1274 if (debug_infrun)
1275 fprintf_unfiltered (gdb_stdlog,
1276 "infrun: infwait_nonstep_watch_state\n");
1277 insert_breakpoints ();
1278
1279 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1280 handle things like signals arriving and other things happening
1281 in combination correctly? */
1282 stepped_after_stopped_by_watchpoint = 1;
1283 break;
1284
1285 default:
1286 internal_error (__FILE__, __LINE__, _("bad switch"));
1287 }
1288 ecs->infwait_state = infwait_normal_state;
1289
1290 reinit_frame_cache ();
1291
1292 /* If it's a new process, add it to the thread database */
1293
1294 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1295 && !ptid_equal (ecs->ptid, minus_one_ptid)
1296 && !in_thread_list (ecs->ptid));
1297
1298 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1299 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1300 {
1301 add_thread (ecs->ptid);
1302
1303 ui_out_text (uiout, "[New ");
1304 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1305 ui_out_text (uiout, "]\n");
1306 }
1307
1308 switch (ecs->ws.kind)
1309 {
1310 case TARGET_WAITKIND_LOADED:
1311 if (debug_infrun)
1312 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1313 /* Ignore gracefully during startup of the inferior, as it
1314 might be the shell which has just loaded some objects,
1315 otherwise add the symbols for the newly loaded objects. */
1316#ifdef SOLIB_ADD
1317 if (stop_soon == NO_STOP_QUIETLY)
1318 {
1319 /* Remove breakpoints, SOLIB_ADD might adjust
1320 breakpoint addresses via breakpoint_re_set. */
1321 if (breakpoints_inserted)
1322 remove_breakpoints ();
1323
1324 /* Check for any newly added shared libraries if we're
1325 supposed to be adding them automatically. Switch
1326 terminal for any messages produced by
1327 breakpoint_re_set. */
1328 target_terminal_ours_for_output ();
1329 /* NOTE: cagney/2003-11-25: Make certain that the target
1330 stack's section table is kept up-to-date. Architectures,
1331 (e.g., PPC64), use the section table to perform
1332 operations such as address => section name and hence
1333 require the table to contain all sections (including
1334 those found in shared libraries). */
1335 /* NOTE: cagney/2003-11-25: Pass current_target and not
1336 exec_ops to SOLIB_ADD. This is because current GDB is
1337 only tooled to propagate section_table changes out from
1338 the "current_target" (see target_resize_to_sections), and
1339 not up from the exec stratum. This, of course, isn't
1340 right. "infrun.c" should only interact with the
1341 exec/process stratum, instead relying on the target stack
1342 to propagate relevant changes (stop, section table
1343 changed, ...) up to other layers. */
1344 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1345 target_terminal_inferior ();
1346
1347 /* Reinsert breakpoints and continue. */
1348 if (breakpoints_inserted)
1349 insert_breakpoints ();
1350 }
1351#endif
1352 resume (0, TARGET_SIGNAL_0);
1353 prepare_to_wait (ecs);
1354 return;
1355
1356 case TARGET_WAITKIND_SPURIOUS:
1357 if (debug_infrun)
1358 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1359 resume (0, TARGET_SIGNAL_0);
1360 prepare_to_wait (ecs);
1361 return;
1362
1363 case TARGET_WAITKIND_EXITED:
1364 if (debug_infrun)
1365 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1366 target_terminal_ours (); /* Must do this before mourn anyway */
1367 print_stop_reason (EXITED, ecs->ws.value.integer);
1368
1369 /* Record the exit code in the convenience variable $_exitcode, so
1370 that the user can inspect this again later. */
1371 set_internalvar (lookup_internalvar ("_exitcode"),
1372 value_from_longest (builtin_type_int,
1373 (LONGEST) ecs->ws.value.integer));
1374 gdb_flush (gdb_stdout);
1375 target_mourn_inferior ();
1376 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1377 stop_print_frame = 0;
1378 stop_stepping (ecs);
1379 return;
1380
1381 case TARGET_WAITKIND_SIGNALLED:
1382 if (debug_infrun)
1383 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1384 stop_print_frame = 0;
1385 stop_signal = ecs->ws.value.sig;
1386 target_terminal_ours (); /* Must do this before mourn anyway */
1387
1388 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1389 reach here unless the inferior is dead. However, for years
1390 target_kill() was called here, which hints that fatal signals aren't
1391 really fatal on some systems. If that's true, then some changes
1392 may be needed. */
1393 target_mourn_inferior ();
1394
1395 print_stop_reason (SIGNAL_EXITED, stop_signal);
1396 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1397 stop_stepping (ecs);
1398 return;
1399
1400 /* The following are the only cases in which we keep going;
1401 the above cases end in a continue or goto. */
1402 case TARGET_WAITKIND_FORKED:
1403 case TARGET_WAITKIND_VFORKED:
1404 if (debug_infrun)
1405 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1406 stop_signal = TARGET_SIGNAL_TRAP;
1407 pending_follow.kind = ecs->ws.kind;
1408
1409 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1410 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1411
1412 if (!ptid_equal (ecs->ptid, inferior_ptid))
1413 {
1414 context_switch (ecs);
1415 reinit_frame_cache ();
1416 }
1417
1418 stop_pc = read_pc ();
1419
1420 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1421
1422 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1423
1424 /* If no catchpoint triggered for this, then keep going. */
1425 if (ecs->random_signal)
1426 {
1427 stop_signal = TARGET_SIGNAL_0;
1428 keep_going (ecs);
1429 return;
1430 }
1431 goto process_event_stop_test;
1432
1433 case TARGET_WAITKIND_EXECD:
1434 if (debug_infrun)
1435 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1436 stop_signal = TARGET_SIGNAL_TRAP;
1437
1438 /* NOTE drow/2002-12-05: This code should be pushed down into the
1439 target_wait function. Until then following vfork on HP/UX 10.20
1440 is probably broken by this. Of course, it's broken anyway. */
1441 /* Is this a target which reports multiple exec events per actual
1442 call to exec()? (HP-UX using ptrace does, for example.) If so,
1443 ignore all but the last one. Just resume the exec'r, and wait
1444 for the next exec event. */
1445 if (inferior_ignoring_leading_exec_events)
1446 {
1447 inferior_ignoring_leading_exec_events--;
1448 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1449 prepare_to_wait (ecs);
1450 return;
1451 }
1452 inferior_ignoring_leading_exec_events =
1453 target_reported_exec_events_per_exec_call () - 1;
1454
1455 pending_follow.execd_pathname =
1456 savestring (ecs->ws.value.execd_pathname,
1457 strlen (ecs->ws.value.execd_pathname));
1458
1459 /* This causes the eventpoints and symbol table to be reset. Must
1460 do this now, before trying to determine whether to stop. */
1461 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1462 xfree (pending_follow.execd_pathname);
1463
1464 stop_pc = read_pc_pid (ecs->ptid);
1465 ecs->saved_inferior_ptid = inferior_ptid;
1466 inferior_ptid = ecs->ptid;
1467
1468 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1469
1470 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1471 inferior_ptid = ecs->saved_inferior_ptid;
1472
1473 if (!ptid_equal (ecs->ptid, inferior_ptid))
1474 {
1475 context_switch (ecs);
1476 reinit_frame_cache ();
1477 }
1478
1479 /* If no catchpoint triggered for this, then keep going. */
1480 if (ecs->random_signal)
1481 {
1482 stop_signal = TARGET_SIGNAL_0;
1483 keep_going (ecs);
1484 return;
1485 }
1486 goto process_event_stop_test;
1487
1488 /* Be careful not to try to gather much state about a thread
1489 that's in a syscall. It's frequently a losing proposition. */
1490 case TARGET_WAITKIND_SYSCALL_ENTRY:
1491 if (debug_infrun)
1492 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1493 resume (0, TARGET_SIGNAL_0);
1494 prepare_to_wait (ecs);
1495 return;
1496
1497 /* Before examining the threads further, step this thread to
1498 get it entirely out of the syscall. (We get notice of the
1499 event when the thread is just on the verge of exiting a
1500 syscall. Stepping one instruction seems to get it back
1501 into user code.) */
1502 case TARGET_WAITKIND_SYSCALL_RETURN:
1503 if (debug_infrun)
1504 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1505 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1506 prepare_to_wait (ecs);
1507 return;
1508
1509 case TARGET_WAITKIND_STOPPED:
1510 if (debug_infrun)
1511 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1512 stop_signal = ecs->ws.value.sig;
1513 break;
1514
1515 /* We had an event in the inferior, but we are not interested
1516 in handling it at this level. The lower layers have already
1517 done what needs to be done, if anything.
1518
1519 One of the possible circumstances for this is when the
1520 inferior produces output for the console. The inferior has
1521 not stopped, and we are ignoring the event. Another possible
1522 circumstance is any event which the lower level knows will be
1523 reported multiple times without an intervening resume. */
1524 case TARGET_WAITKIND_IGNORE:
1525 if (debug_infrun)
1526 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1527 prepare_to_wait (ecs);
1528 return;
1529 }
1530
1531 /* We may want to consider not doing a resume here in order to give
1532 the user a chance to play with the new thread. It might be good
1533 to make that a user-settable option. */
1534
1535 /* At this point, all threads are stopped (happens automatically in
1536 either the OS or the native code). Therefore we need to continue
1537 all threads in order to make progress. */
1538 if (ecs->new_thread_event)
1539 {
1540 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1541 prepare_to_wait (ecs);
1542 return;
1543 }
1544
1545 stop_pc = read_pc_pid (ecs->ptid);
1546
1547 if (debug_infrun)
1548 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1549
1550 if (stepping_past_singlestep_breakpoint)
1551 {
1552 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1553 && singlestep_breakpoints_inserted_p);
1554 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1555 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1556
1557 stepping_past_singlestep_breakpoint = 0;
1558
1559 /* We've either finished single-stepping past the single-step
1560 breakpoint, or stopped for some other reason. It would be nice if
1561 we could tell, but we can't reliably. */
1562 if (stop_signal == TARGET_SIGNAL_TRAP)
1563 {
1564 if (debug_infrun)
1565 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1566 /* Pull the single step breakpoints out of the target. */
1567 remove_single_step_breakpoints ();
1568 singlestep_breakpoints_inserted_p = 0;
1569
1570 ecs->random_signal = 0;
1571
1572 ecs->ptid = saved_singlestep_ptid;
1573 context_switch (ecs);
1574 if (deprecated_context_hook)
1575 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1576
1577 resume (1, TARGET_SIGNAL_0);
1578 prepare_to_wait (ecs);
1579 return;
1580 }
1581 }
1582
1583 stepping_past_singlestep_breakpoint = 0;
1584
1585 /* See if a thread hit a thread-specific breakpoint that was meant for
1586 another thread. If so, then step that thread past the breakpoint,
1587 and continue it. */
1588
1589 if (stop_signal == TARGET_SIGNAL_TRAP)
1590 {
1591 int thread_hop_needed = 0;
1592
1593 /* Check if a regular breakpoint has been hit before checking
1594 for a potential single step breakpoint. Otherwise, GDB will
1595 not see this breakpoint hit when stepping onto breakpoints. */
1596 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1597 {
1598 ecs->random_signal = 0;
1599 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1600 thread_hop_needed = 1;
1601 }
1602 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1603 {
1604 /* We have not context switched yet, so this should be true
1605 no matter which thread hit the singlestep breakpoint. */
1606 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1607 if (debug_infrun)
1608 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1609 "trap for %s\n",
1610 target_pid_to_str (ecs->ptid));
1611
1612 ecs->random_signal = 0;
1613 /* The call to in_thread_list is necessary because PTIDs sometimes
1614 change when we go from single-threaded to multi-threaded. If
1615 the singlestep_ptid is still in the list, assume that it is
1616 really different from ecs->ptid. */
1617 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1618 && in_thread_list (singlestep_ptid))
1619 {
1620 /* If the PC of the thread we were trying to single-step
1621 has changed, discard this event (which we were going
1622 to ignore anyway), and pretend we saw that thread
1623 trap. This prevents us continuously moving the
1624 single-step breakpoint forward, one instruction at a
1625 time. If the PC has changed, then the thread we were
1626 trying to single-step has trapped or been signalled,
1627 but the event has not been reported to GDB yet.
1628
1629 There might be some cases where this loses signal
1630 information, if a signal has arrived at exactly the
1631 same time that the PC changed, but this is the best
1632 we can do with the information available. Perhaps we
1633 should arrange to report all events for all threads
1634 when they stop, or to re-poll the remote looking for
1635 this particular thread (i.e. temporarily enable
1636 schedlock). */
1637 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1638 {
1639 if (debug_infrun)
1640 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1641 " but expected thread advanced also\n");
1642
1643 /* The current context still belongs to
1644 singlestep_ptid. Don't swap here, since that's
1645 the context we want to use. Just fudge our
1646 state and continue. */
1647 ecs->ptid = singlestep_ptid;
1648 stop_pc = read_pc_pid (ecs->ptid);
1649 }
1650 else
1651 {
1652 if (debug_infrun)
1653 fprintf_unfiltered (gdb_stdlog,
1654 "infrun: unexpected thread\n");
1655
1656 thread_hop_needed = 1;
1657 stepping_past_singlestep_breakpoint = 1;
1658 saved_singlestep_ptid = singlestep_ptid;
1659 }
1660 }
1661 }
1662
1663 if (thread_hop_needed)
1664 {
1665 int remove_status;
1666
1667 if (debug_infrun)
1668 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1669
1670 /* Saw a breakpoint, but it was hit by the wrong thread.
1671 Just continue. */
1672
1673 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1674 {
1675 /* Pull the single step breakpoints out of the target. */
1676 remove_single_step_breakpoints ();
1677 singlestep_breakpoints_inserted_p = 0;
1678 }
1679
1680 remove_status = remove_breakpoints ();
1681 /* Did we fail to remove breakpoints? If so, try
1682 to set the PC past the bp. (There's at least
1683 one situation in which we can fail to remove
1684 the bp's: On HP-UX's that use ttrace, we can't
1685 change the address space of a vforking child
1686 process until the child exits (well, okay, not
1687 then either :-) or execs. */
1688 if (remove_status != 0)
1689 {
1690 /* FIXME! This is obviously non-portable! */
1691 write_pc_pid (stop_pc + 4, ecs->ptid);
1692 /* We need to restart all the threads now,
1693 * unles we're running in scheduler-locked mode.
1694 * Use currently_stepping to determine whether to
1695 * step or continue.
1696 */
1697 /* FIXME MVS: is there any reason not to call resume()? */
1698 if (scheduler_mode == schedlock_on)
1699 target_resume (ecs->ptid,
1700 currently_stepping (ecs), TARGET_SIGNAL_0);
1701 else
1702 target_resume (RESUME_ALL,
1703 currently_stepping (ecs), TARGET_SIGNAL_0);
1704 prepare_to_wait (ecs);
1705 return;
1706 }
1707 else
1708 { /* Single step */
1709 breakpoints_inserted = 0;
1710 if (!ptid_equal (inferior_ptid, ecs->ptid))
1711 context_switch (ecs);
1712 ecs->waiton_ptid = ecs->ptid;
1713 ecs->wp = &(ecs->ws);
1714 ecs->another_trap = 1;
1715
1716 ecs->infwait_state = infwait_thread_hop_state;
1717 keep_going (ecs);
1718 registers_changed ();
1719 return;
1720 }
1721 }
1722 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1723 {
1724 sw_single_step_trap_p = 1;
1725 ecs->random_signal = 0;
1726 }
1727 }
1728 else
1729 ecs->random_signal = 1;
1730
1731 /* See if something interesting happened to the non-current thread. If
1732 so, then switch to that thread. */
1733 if (!ptid_equal (ecs->ptid, inferior_ptid))
1734 {
1735 if (debug_infrun)
1736 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1737
1738 context_switch (ecs);
1739
1740 if (deprecated_context_hook)
1741 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1742 }
1743
1744 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1745 {
1746 /* Pull the single step breakpoints out of the target. */
1747 remove_single_step_breakpoints ();
1748 singlestep_breakpoints_inserted_p = 0;
1749 }
1750
1751 /* It may not be necessary to disable the watchpoint to stop over
1752 it. For example, the PA can (with some kernel cooperation)
1753 single step over a watchpoint without disabling the watchpoint. */
1754 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1755 {
1756 if (debug_infrun)
1757 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1758 resume (1, 0);
1759 prepare_to_wait (ecs);
1760 return;
1761 }
1762
1763 /* It is far more common to need to disable a watchpoint to step
1764 the inferior over it. FIXME. What else might a debug
1765 register or page protection watchpoint scheme need here? */
1766 if (gdbarch_have_nonsteppable_watchpoint (current_gdbarch)
1767 && STOPPED_BY_WATCHPOINT (ecs->ws))
1768 {
1769 /* At this point, we are stopped at an instruction which has
1770 attempted to write to a piece of memory under control of
1771 a watchpoint. The instruction hasn't actually executed
1772 yet. If we were to evaluate the watchpoint expression
1773 now, we would get the old value, and therefore no change
1774 would seem to have occurred.
1775
1776 In order to make watchpoints work `right', we really need
1777 to complete the memory write, and then evaluate the
1778 watchpoint expression. The following code does that by
1779 removing the watchpoint (actually, all watchpoints and
1780 breakpoints), single-stepping the target, re-inserting
1781 watchpoints, and then falling through to let normal
1782 single-step processing handle proceed. Since this
1783 includes evaluating watchpoints, things will come to a
1784 stop in the correct manner. */
1785
1786 if (debug_infrun)
1787 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1788 remove_breakpoints ();
1789 registers_changed ();
1790 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1791
1792 ecs->waiton_ptid = ecs->ptid;
1793 ecs->wp = &(ecs->ws);
1794 ecs->infwait_state = infwait_nonstep_watch_state;
1795 prepare_to_wait (ecs);
1796 return;
1797 }
1798
1799 /* It may be possible to simply continue after a watchpoint. */
1800 if (HAVE_CONTINUABLE_WATCHPOINT)
1801 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1802
1803 ecs->stop_func_start = 0;
1804 ecs->stop_func_end = 0;
1805 ecs->stop_func_name = 0;
1806 /* Don't care about return value; stop_func_start and stop_func_name
1807 will both be 0 if it doesn't work. */
1808 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1809 &ecs->stop_func_start, &ecs->stop_func_end);
1810 ecs->stop_func_start
1811 += gdbarch_deprecated_function_start_offset (current_gdbarch);
1812 ecs->another_trap = 0;
1813 bpstat_clear (&stop_bpstat);
1814 stop_step = 0;
1815 stop_stack_dummy = 0;
1816 stop_print_frame = 1;
1817 ecs->random_signal = 0;
1818 stopped_by_random_signal = 0;
1819
1820 if (stop_signal == TARGET_SIGNAL_TRAP
1821 && trap_expected
1822 && gdbarch_single_step_through_delay_p (current_gdbarch)
1823 && currently_stepping (ecs))
1824 {
1825 /* We're trying to step of a breakpoint. Turns out that we're
1826 also on an instruction that needs to be stepped multiple
1827 times before it's been fully executing. E.g., architectures
1828 with a delay slot. It needs to be stepped twice, once for
1829 the instruction and once for the delay slot. */
1830 int step_through_delay
1831 = gdbarch_single_step_through_delay (current_gdbarch,
1832 get_current_frame ());
1833 if (debug_infrun && step_through_delay)
1834 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1835 if (step_range_end == 0 && step_through_delay)
1836 {
1837 /* The user issued a continue when stopped at a breakpoint.
1838 Set up for another trap and get out of here. */
1839 ecs->another_trap = 1;
1840 keep_going (ecs);
1841 return;
1842 }
1843 else if (step_through_delay)
1844 {
1845 /* The user issued a step when stopped at a breakpoint.
1846 Maybe we should stop, maybe we should not - the delay
1847 slot *might* correspond to a line of source. In any
1848 case, don't decide that here, just set ecs->another_trap,
1849 making sure we single-step again before breakpoints are
1850 re-inserted. */
1851 ecs->another_trap = 1;
1852 }
1853 }
1854
1855 /* Look at the cause of the stop, and decide what to do.
1856 The alternatives are:
1857 1) break; to really stop and return to the debugger,
1858 2) drop through to start up again
1859 (set ecs->another_trap to 1 to single step once)
1860 3) set ecs->random_signal to 1, and the decision between 1 and 2
1861 will be made according to the signal handling tables. */
1862
1863 /* First, distinguish signals caused by the debugger from signals
1864 that have to do with the program's own actions. Note that
1865 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1866 on the operating system version. Here we detect when a SIGILL or
1867 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1868 something similar for SIGSEGV, since a SIGSEGV will be generated
1869 when we're trying to execute a breakpoint instruction on a
1870 non-executable stack. This happens for call dummy breakpoints
1871 for architectures like SPARC that place call dummies on the
1872 stack. */
1873
1874 if (stop_signal == TARGET_SIGNAL_TRAP
1875 || (breakpoints_inserted
1876 && (stop_signal == TARGET_SIGNAL_ILL
1877 || stop_signal == TARGET_SIGNAL_SEGV
1878 || stop_signal == TARGET_SIGNAL_EMT))
1879 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1880 {
1881 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1882 {
1883 if (debug_infrun)
1884 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1885 stop_print_frame = 0;
1886 stop_stepping (ecs);
1887 return;
1888 }
1889
1890 /* This is originated from start_remote(), start_inferior() and
1891 shared libraries hook functions. */
1892 if (stop_soon == STOP_QUIETLY)
1893 {
1894 if (debug_infrun)
1895 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1896 stop_stepping (ecs);
1897 return;
1898 }
1899
1900 /* This originates from attach_command(). We need to overwrite
1901 the stop_signal here, because some kernels don't ignore a
1902 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1903 See more comments in inferior.h. */
1904 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1905 {
1906 stop_stepping (ecs);
1907 if (stop_signal == TARGET_SIGNAL_STOP)
1908 stop_signal = TARGET_SIGNAL_0;
1909 return;
1910 }
1911
1912 /* Don't even think about breakpoints if just proceeded over a
1913 breakpoint. */
1914 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1915 {
1916 if (debug_infrun)
1917 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1918 bpstat_clear (&stop_bpstat);
1919 }
1920 else
1921 {
1922 /* See if there is a breakpoint at the current PC. */
1923 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1924 stopped_by_watchpoint);
1925
1926 /* Following in case break condition called a
1927 function. */
1928 stop_print_frame = 1;
1929 }
1930
1931 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1932 at one stage in the past included checks for an inferior
1933 function call's call dummy's return breakpoint. The original
1934 comment, that went with the test, read:
1935
1936 ``End of a stack dummy. Some systems (e.g. Sony news) give
1937 another signal besides SIGTRAP, so check here as well as
1938 above.''
1939
1940 If someone ever tries to get get call dummys on a
1941 non-executable stack to work (where the target would stop
1942 with something like a SIGSEGV), then those tests might need
1943 to be re-instated. Given, however, that the tests were only
1944 enabled when momentary breakpoints were not being used, I
1945 suspect that it won't be the case.
1946
1947 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1948 be necessary for call dummies on a non-executable stack on
1949 SPARC. */
1950
1951 if (stop_signal == TARGET_SIGNAL_TRAP)
1952 ecs->random_signal
1953 = !(bpstat_explains_signal (stop_bpstat)
1954 || trap_expected
1955 || (step_range_end && step_resume_breakpoint == NULL));
1956 else
1957 {
1958 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1959 if (!ecs->random_signal)
1960 stop_signal = TARGET_SIGNAL_TRAP;
1961 }
1962 }
1963
1964 /* When we reach this point, we've pretty much decided
1965 that the reason for stopping must've been a random
1966 (unexpected) signal. */
1967
1968 else
1969 ecs->random_signal = 1;
1970
1971process_event_stop_test:
1972 /* For the program's own signals, act according to
1973 the signal handling tables. */
1974
1975 if (ecs->random_signal)
1976 {
1977 /* Signal not for debugging purposes. */
1978 int printed = 0;
1979
1980 if (debug_infrun)
1981 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1982
1983 stopped_by_random_signal = 1;
1984
1985 if (signal_print[stop_signal])
1986 {
1987 printed = 1;
1988 target_terminal_ours_for_output ();
1989 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1990 }
1991 if (signal_stop[stop_signal])
1992 {
1993 stop_stepping (ecs);
1994 return;
1995 }
1996 /* If not going to stop, give terminal back
1997 if we took it away. */
1998 else if (printed)
1999 target_terminal_inferior ();
2000
2001 /* Clear the signal if it should not be passed. */
2002 if (signal_program[stop_signal] == 0)
2003 stop_signal = TARGET_SIGNAL_0;
2004
2005 if (prev_pc == read_pc ()
2006 && !breakpoints_inserted
2007 && breakpoint_here_p (read_pc ())
2008 && step_resume_breakpoint == NULL)
2009 {
2010 /* We were just starting a new sequence, attempting to
2011 single-step off of a breakpoint and expecting a SIGTRAP.
2012 Intead this signal arrives. This signal will take us out
2013 of the stepping range so GDB needs to remember to, when
2014 the signal handler returns, resume stepping off that
2015 breakpoint. */
2016 /* To simplify things, "continue" is forced to use the same
2017 code paths as single-step - set a breakpoint at the
2018 signal return address and then, once hit, step off that
2019 breakpoint. */
2020
2021 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2022 ecs->step_after_step_resume_breakpoint = 1;
2023 keep_going (ecs);
2024 return;
2025 }
2026
2027 if (step_range_end != 0
2028 && stop_signal != TARGET_SIGNAL_0
2029 && stop_pc >= step_range_start && stop_pc < step_range_end
2030 && frame_id_eq (get_frame_id (get_current_frame ()),
2031 step_frame_id)
2032 && step_resume_breakpoint == NULL)
2033 {
2034 /* The inferior is about to take a signal that will take it
2035 out of the single step range. Set a breakpoint at the
2036 current PC (which is presumably where the signal handler
2037 will eventually return) and then allow the inferior to
2038 run free.
2039
2040 Note that this is only needed for a signal delivered
2041 while in the single-step range. Nested signals aren't a
2042 problem as they eventually all return. */
2043 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2044 keep_going (ecs);
2045 return;
2046 }
2047
2048 /* Note: step_resume_breakpoint may be non-NULL. This occures
2049 when either there's a nested signal, or when there's a
2050 pending signal enabled just as the signal handler returns
2051 (leaving the inferior at the step-resume-breakpoint without
2052 actually executing it). Either way continue until the
2053 breakpoint is really hit. */
2054 keep_going (ecs);
2055 return;
2056 }
2057
2058 /* Handle cases caused by hitting a breakpoint. */
2059 {
2060 CORE_ADDR jmp_buf_pc;
2061 struct bpstat_what what;
2062
2063 what = bpstat_what (stop_bpstat);
2064
2065 if (what.call_dummy)
2066 {
2067 stop_stack_dummy = 1;
2068 }
2069
2070 switch (what.main_action)
2071 {
2072 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2073 /* If we hit the breakpoint at longjmp, disable it for the
2074 duration of this command. Then, install a temporary
2075 breakpoint at the target of the jmp_buf. */
2076 if (debug_infrun)
2077 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2078 disable_longjmp_breakpoint ();
2079 remove_breakpoints ();
2080 breakpoints_inserted = 0;
2081 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2082 || !gdbarch_get_longjmp_target (current_gdbarch,
2083 get_current_frame (), &jmp_buf_pc))
2084 {
2085 keep_going (ecs);
2086 return;
2087 }
2088
2089 /* Need to blow away step-resume breakpoint, as it
2090 interferes with us */
2091 if (step_resume_breakpoint != NULL)
2092 {
2093 delete_step_resume_breakpoint (&step_resume_breakpoint);
2094 }
2095
2096 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2097 ecs->handling_longjmp = 1; /* FIXME */
2098 keep_going (ecs);
2099 return;
2100
2101 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2102 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2103 if (debug_infrun)
2104 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2105 remove_breakpoints ();
2106 breakpoints_inserted = 0;
2107 disable_longjmp_breakpoint ();
2108 ecs->handling_longjmp = 0; /* FIXME */
2109 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2110 break;
2111 /* else fallthrough */
2112
2113 case BPSTAT_WHAT_SINGLE:
2114 if (debug_infrun)
2115 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2116 if (breakpoints_inserted)
2117 remove_breakpoints ();
2118 breakpoints_inserted = 0;
2119 ecs->another_trap = 1;
2120 /* Still need to check other stuff, at least the case
2121 where we are stepping and step out of the right range. */
2122 break;
2123
2124 case BPSTAT_WHAT_STOP_NOISY:
2125 if (debug_infrun)
2126 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2127 stop_print_frame = 1;
2128
2129 /* We are about to nuke the step_resume_breakpointt via the
2130 cleanup chain, so no need to worry about it here. */
2131
2132 stop_stepping (ecs);
2133 return;
2134
2135 case BPSTAT_WHAT_STOP_SILENT:
2136 if (debug_infrun)
2137 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2138 stop_print_frame = 0;
2139
2140 /* We are about to nuke the step_resume_breakpoin via the
2141 cleanup chain, so no need to worry about it here. */
2142
2143 stop_stepping (ecs);
2144 return;
2145
2146 case BPSTAT_WHAT_STEP_RESUME:
2147 /* This proably demands a more elegant solution, but, yeah
2148 right...
2149
2150 This function's use of the simple variable
2151 step_resume_breakpoint doesn't seem to accomodate
2152 simultaneously active step-resume bp's, although the
2153 breakpoint list certainly can.
2154
2155 If we reach here and step_resume_breakpoint is already
2156 NULL, then apparently we have multiple active
2157 step-resume bp's. We'll just delete the breakpoint we
2158 stopped at, and carry on.
2159
2160 Correction: what the code currently does is delete a
2161 step-resume bp, but it makes no effort to ensure that
2162 the one deleted is the one currently stopped at. MVS */
2163
2164 if (debug_infrun)
2165 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2166
2167 if (step_resume_breakpoint == NULL)
2168 {
2169 step_resume_breakpoint =
2170 bpstat_find_step_resume_breakpoint (stop_bpstat);
2171 }
2172 delete_step_resume_breakpoint (&step_resume_breakpoint);
2173 if (ecs->step_after_step_resume_breakpoint)
2174 {
2175 /* Back when the step-resume breakpoint was inserted, we
2176 were trying to single-step off a breakpoint. Go back
2177 to doing that. */
2178 ecs->step_after_step_resume_breakpoint = 0;
2179 remove_breakpoints ();
2180 breakpoints_inserted = 0;
2181 ecs->another_trap = 1;
2182 keep_going (ecs);
2183 return;
2184 }
2185 break;
2186
2187 case BPSTAT_WHAT_CHECK_SHLIBS:
2188 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2189 {
2190 if (debug_infrun)
2191 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2192 /* Remove breakpoints, we eventually want to step over the
2193 shlib event breakpoint, and SOLIB_ADD might adjust
2194 breakpoint addresses via breakpoint_re_set. */
2195 if (breakpoints_inserted)
2196 remove_breakpoints ();
2197 breakpoints_inserted = 0;
2198
2199 /* Check for any newly added shared libraries if we're
2200 supposed to be adding them automatically. Switch
2201 terminal for any messages produced by
2202 breakpoint_re_set. */
2203 target_terminal_ours_for_output ();
2204 /* NOTE: cagney/2003-11-25: Make certain that the target
2205 stack's section table is kept up-to-date. Architectures,
2206 (e.g., PPC64), use the section table to perform
2207 operations such as address => section name and hence
2208 require the table to contain all sections (including
2209 those found in shared libraries). */
2210 /* NOTE: cagney/2003-11-25: Pass current_target and not
2211 exec_ops to SOLIB_ADD. This is because current GDB is
2212 only tooled to propagate section_table changes out from
2213 the "current_target" (see target_resize_to_sections), and
2214 not up from the exec stratum. This, of course, isn't
2215 right. "infrun.c" should only interact with the
2216 exec/process stratum, instead relying on the target stack
2217 to propagate relevant changes (stop, section table
2218 changed, ...) up to other layers. */
2219#ifdef SOLIB_ADD
2220 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2221#else
2222 solib_add (NULL, 0, &current_target, auto_solib_add);
2223#endif
2224 target_terminal_inferior ();
2225
2226 /* Try to reenable shared library breakpoints, additional
2227 code segments in shared libraries might be mapped in now. */
2228 re_enable_breakpoints_in_shlibs ();
2229
2230 /* If requested, stop when the dynamic linker notifies
2231 gdb of events. This allows the user to get control
2232 and place breakpoints in initializer routines for
2233 dynamically loaded objects (among other things). */
2234 if (stop_on_solib_events || stop_stack_dummy)
2235 {
2236 stop_stepping (ecs);
2237 return;
2238 }
2239
2240 /* If we stopped due to an explicit catchpoint, then the
2241 (see above) call to SOLIB_ADD pulled in any symbols
2242 from a newly-loaded library, if appropriate.
2243
2244 We do want the inferior to stop, but not where it is
2245 now, which is in the dynamic linker callback. Rather,
2246 we would like it stop in the user's program, just after
2247 the call that caused this catchpoint to trigger. That
2248 gives the user a more useful vantage from which to
2249 examine their program's state. */
2250 else if (what.main_action
2251 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2252 {
2253 /* ??rehrauer: If I could figure out how to get the
2254 right return PC from here, we could just set a temp
2255 breakpoint and resume. I'm not sure we can without
2256 cracking open the dld's shared libraries and sniffing
2257 their unwind tables and text/data ranges, and that's
2258 not a terribly portable notion.
2259
2260 Until that time, we must step the inferior out of the
2261 dld callback, and also out of the dld itself (and any
2262 code or stubs in libdld.sl, such as "shl_load" and
2263 friends) until we reach non-dld code. At that point,
2264 we can stop stepping. */
2265 bpstat_get_triggered_catchpoints (stop_bpstat,
2266 &ecs->
2267 stepping_through_solib_catchpoints);
2268 ecs->stepping_through_solib_after_catch = 1;
2269
2270 /* Be sure to lift all breakpoints, so the inferior does
2271 actually step past this point... */
2272 ecs->another_trap = 1;
2273 break;
2274 }
2275 else
2276 {
2277 /* We want to step over this breakpoint, then keep going. */
2278 ecs->another_trap = 1;
2279 break;
2280 }
2281 }
2282 break;
2283
2284 case BPSTAT_WHAT_LAST:
2285 /* Not a real code, but listed here to shut up gcc -Wall. */
2286
2287 case BPSTAT_WHAT_KEEP_CHECKING:
2288 break;
2289 }
2290 }
2291
2292 /* We come here if we hit a breakpoint but should not
2293 stop for it. Possibly we also were stepping
2294 and should stop for that. So fall through and
2295 test for stepping. But, if not stepping,
2296 do not stop. */
2297
2298 /* Are we stepping to get the inferior out of the dynamic linker's
2299 hook (and possibly the dld itself) after catching a shlib
2300 event? */
2301 if (ecs->stepping_through_solib_after_catch)
2302 {
2303#if defined(SOLIB_ADD)
2304 /* Have we reached our destination? If not, keep going. */
2305 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2306 {
2307 if (debug_infrun)
2308 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2309 ecs->another_trap = 1;
2310 keep_going (ecs);
2311 return;
2312 }
2313#endif
2314 if (debug_infrun)
2315 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2316 /* Else, stop and report the catchpoint(s) whose triggering
2317 caused us to begin stepping. */
2318 ecs->stepping_through_solib_after_catch = 0;
2319 bpstat_clear (&stop_bpstat);
2320 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2321 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2322 stop_print_frame = 1;
2323 stop_stepping (ecs);
2324 return;
2325 }
2326
2327 if (step_resume_breakpoint)
2328 {
2329 if (debug_infrun)
2330 fprintf_unfiltered (gdb_stdlog,
2331 "infrun: step-resume breakpoint is inserted\n");
2332
2333 /* Having a step-resume breakpoint overrides anything
2334 else having to do with stepping commands until
2335 that breakpoint is reached. */
2336 keep_going (ecs);
2337 return;
2338 }
2339
2340 if (step_range_end == 0)
2341 {
2342 if (debug_infrun)
2343 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2344 /* Likewise if we aren't even stepping. */
2345 keep_going (ecs);
2346 return;
2347 }
2348
2349 /* If stepping through a line, keep going if still within it.
2350
2351 Note that step_range_end is the address of the first instruction
2352 beyond the step range, and NOT the address of the last instruction
2353 within it! */
2354 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2355 {
2356 if (debug_infrun)
2357 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2358 paddr_nz (step_range_start),
2359 paddr_nz (step_range_end));
2360 keep_going (ecs);
2361 return;
2362 }
2363
2364 /* We stepped out of the stepping range. */
2365
2366 /* If we are stepping at the source level and entered the runtime
2367 loader dynamic symbol resolution code, we keep on single stepping
2368 until we exit the run time loader code and reach the callee's
2369 address. */
2370 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2371#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2372 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2373#else
2374 && in_solib_dynsym_resolve_code (stop_pc)
2375#endif
2376 )
2377 {
2378 CORE_ADDR pc_after_resolver =
2379 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2380
2381 if (debug_infrun)
2382 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2383
2384 if (pc_after_resolver)
2385 {
2386 /* Set up a step-resume breakpoint at the address
2387 indicated by SKIP_SOLIB_RESOLVER. */
2388 struct symtab_and_line sr_sal;
2389 init_sal (&sr_sal);
2390 sr_sal.pc = pc_after_resolver;
2391
2392 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2393 }
2394
2395 keep_going (ecs);
2396 return;
2397 }
2398
2399 if (step_range_end != 1
2400 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2401 || step_over_calls == STEP_OVER_ALL)
2402 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2403 {
2404 if (debug_infrun)
2405 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2406 /* The inferior, while doing a "step" or "next", has ended up in
2407 a signal trampoline (either by a signal being delivered or by
2408 the signal handler returning). Just single-step until the
2409 inferior leaves the trampoline (either by calling the handler
2410 or returning). */
2411 keep_going (ecs);
2412 return;
2413 }
2414
2415 /* Check for subroutine calls. The check for the current frame
2416 equalling the step ID is not necessary - the check of the
2417 previous frame's ID is sufficient - but it is a common case and
2418 cheaper than checking the previous frame's ID.
2419
2420 NOTE: frame_id_eq will never report two invalid frame IDs as
2421 being equal, so to get into this block, both the current and
2422 previous frame must have valid frame IDs. */
2423 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2424 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2425 {
2426 CORE_ADDR real_stop_pc;
2427
2428 if (debug_infrun)
2429 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2430
2431 if ((step_over_calls == STEP_OVER_NONE)
2432 || ((step_range_end == 1)
2433 && in_prologue (prev_pc, ecs->stop_func_start)))
2434 {
2435 /* I presume that step_over_calls is only 0 when we're
2436 supposed to be stepping at the assembly language level
2437 ("stepi"). Just stop. */
2438 /* Also, maybe we just did a "nexti" inside a prolog, so we
2439 thought it was a subroutine call but it was not. Stop as
2440 well. FENN */
2441 stop_step = 1;
2442 print_stop_reason (END_STEPPING_RANGE, 0);
2443 stop_stepping (ecs);
2444 return;
2445 }
2446
2447 if (step_over_calls == STEP_OVER_ALL)
2448 {
2449 /* We're doing a "next", set a breakpoint at callee's return
2450 address (the address at which the caller will
2451 resume). */
2452 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2453 keep_going (ecs);
2454 return;
2455 }
2456
2457 /* If we are in a function call trampoline (a stub between the
2458 calling routine and the real function), locate the real
2459 function. That's what tells us (a) whether we want to step
2460 into it at all, and (b) what prologue we want to run to the
2461 end of, if we do step into it. */
2462 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2463 if (real_stop_pc == 0)
2464 real_stop_pc = gdbarch_skip_trampoline_code
2465 (current_gdbarch, get_current_frame (), stop_pc);
2466 if (real_stop_pc != 0)
2467 ecs->stop_func_start = real_stop_pc;
2468
2469 if (
2470#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2471 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2472#else
2473 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2474#endif
2475)
2476 {
2477 struct symtab_and_line sr_sal;
2478 init_sal (&sr_sal);
2479 sr_sal.pc = ecs->stop_func_start;
2480
2481 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2482 keep_going (ecs);
2483 return;
2484 }
2485
2486 /* If we have line number information for the function we are
2487 thinking of stepping into, step into it.
2488
2489 If there are several symtabs at that PC (e.g. with include
2490 files), just want to know whether *any* of them have line
2491 numbers. find_pc_line handles this. */
2492 {
2493 struct symtab_and_line tmp_sal;
2494
2495 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2496 if (tmp_sal.line != 0)
2497 {
2498 step_into_function (ecs);
2499 return;
2500 }
2501 }
2502
2503 /* If we have no line number and the step-stop-if-no-debug is
2504 set, we stop the step so that the user has a chance to switch
2505 in assembly mode. */
2506 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2507 {
2508 stop_step = 1;
2509 print_stop_reason (END_STEPPING_RANGE, 0);
2510 stop_stepping (ecs);
2511 return;
2512 }
2513
2514 /* Set a breakpoint at callee's return address (the address at
2515 which the caller will resume). */
2516 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2517 keep_going (ecs);
2518 return;
2519 }
2520
2521 /* If we're in the return path from a shared library trampoline,
2522 we want to proceed through the trampoline when stepping. */
2523 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2524 stop_pc, ecs->stop_func_name))
2525 {
2526 /* Determine where this trampoline returns. */
2527 CORE_ADDR real_stop_pc;
2528 real_stop_pc = gdbarch_skip_trampoline_code
2529 (current_gdbarch, get_current_frame (), stop_pc);
2530
2531 if (debug_infrun)
2532 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2533
2534 /* Only proceed through if we know where it's going. */
2535 if (real_stop_pc)
2536 {
2537 /* And put the step-breakpoint there and go until there. */
2538 struct symtab_and_line sr_sal;
2539
2540 init_sal (&sr_sal); /* initialize to zeroes */
2541 sr_sal.pc = real_stop_pc;
2542 sr_sal.section = find_pc_overlay (sr_sal.pc);
2543
2544 /* Do not specify what the fp should be when we stop since
2545 on some machines the prologue is where the new fp value
2546 is established. */
2547 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2548
2549 /* Restart without fiddling with the step ranges or
2550 other state. */
2551 keep_going (ecs);
2552 return;
2553 }
2554 }
2555
2556 ecs->sal = find_pc_line (stop_pc, 0);
2557
2558 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2559 the trampoline processing logic, however, there are some trampolines
2560 that have no names, so we should do trampoline handling first. */
2561 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2562 && ecs->stop_func_name == NULL
2563 && ecs->sal.line == 0)
2564 {
2565 if (debug_infrun)
2566 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2567
2568 /* The inferior just stepped into, or returned to, an
2569 undebuggable function (where there is no debugging information
2570 and no line number corresponding to the address where the
2571 inferior stopped). Since we want to skip this kind of code,
2572 we keep going until the inferior returns from this
2573 function - unless the user has asked us not to (via
2574 set step-mode) or we no longer know how to get back
2575 to the call site. */
2576 if (step_stop_if_no_debug
2577 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2578 {
2579 /* If we have no line number and the step-stop-if-no-debug
2580 is set, we stop the step so that the user has a chance to
2581 switch in assembly mode. */
2582 stop_step = 1;
2583 print_stop_reason (END_STEPPING_RANGE, 0);
2584 stop_stepping (ecs);
2585 return;
2586 }
2587 else
2588 {
2589 /* Set a breakpoint at callee's return address (the address
2590 at which the caller will resume). */
2591 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2592 keep_going (ecs);
2593 return;
2594 }
2595 }
2596
2597 if (step_range_end == 1)
2598 {
2599 /* It is stepi or nexti. We always want to stop stepping after
2600 one instruction. */
2601 if (debug_infrun)
2602 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2603 stop_step = 1;
2604 print_stop_reason (END_STEPPING_RANGE, 0);
2605 stop_stepping (ecs);
2606 return;
2607 }
2608
2609 if (ecs->sal.line == 0)
2610 {
2611 /* We have no line number information. That means to stop
2612 stepping (does this always happen right after one instruction,
2613 when we do "s" in a function with no line numbers,
2614 or can this happen as a result of a return or longjmp?). */
2615 if (debug_infrun)
2616 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2617 stop_step = 1;
2618 print_stop_reason (END_STEPPING_RANGE, 0);
2619 stop_stepping (ecs);
2620 return;
2621 }
2622
2623 if ((stop_pc == ecs->sal.pc)
2624 && (ecs->current_line != ecs->sal.line
2625 || ecs->current_symtab != ecs->sal.symtab))
2626 {
2627 /* We are at the start of a different line. So stop. Note that
2628 we don't stop if we step into the middle of a different line.
2629 That is said to make things like for (;;) statements work
2630 better. */
2631 if (debug_infrun)
2632 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2633 stop_step = 1;
2634 print_stop_reason (END_STEPPING_RANGE, 0);
2635 stop_stepping (ecs);
2636 return;
2637 }
2638
2639 /* We aren't done stepping.
2640
2641 Optimize by setting the stepping range to the line.
2642 (We might not be in the original line, but if we entered a
2643 new line in mid-statement, we continue stepping. This makes
2644 things like for(;;) statements work better.) */
2645
2646 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2647 {
2648 /* If this is the last line of the function, don't keep stepping
2649 (it would probably step us out of the function).
2650 This is particularly necessary for a one-line function,
2651 in which after skipping the prologue we better stop even though
2652 we will be in mid-line. */
2653 if (debug_infrun)
2654 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2655 stop_step = 1;
2656 print_stop_reason (END_STEPPING_RANGE, 0);
2657 stop_stepping (ecs);
2658 return;
2659 }
2660 step_range_start = ecs->sal.pc;
2661 step_range_end = ecs->sal.end;
2662 step_frame_id = get_frame_id (get_current_frame ());
2663 ecs->current_line = ecs->sal.line;
2664 ecs->current_symtab = ecs->sal.symtab;
2665
2666 /* In the case where we just stepped out of a function into the
2667 middle of a line of the caller, continue stepping, but
2668 step_frame_id must be modified to current frame */
2669#if 0
2670 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2671 generous. It will trigger on things like a step into a frameless
2672 stackless leaf function. I think the logic should instead look
2673 at the unwound frame ID has that should give a more robust
2674 indication of what happened. */
2675 if (step - ID == current - ID)
2676 still stepping in same function;
2677 else if (step - ID == unwind (current - ID))
2678 stepped into a function;
2679 else
2680 stepped out of a function;
2681 /* Of course this assumes that the frame ID unwind code is robust
2682 and we're willing to introduce frame unwind logic into this
2683 function. Fortunately, those days are nearly upon us. */
2684#endif
2685 {
2686 struct frame_id current_frame = get_frame_id (get_current_frame ());
2687 if (!(frame_id_inner (current_frame, step_frame_id)))
2688 step_frame_id = current_frame;
2689 }
2690
2691 if (debug_infrun)
2692 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2693 keep_going (ecs);
2694}
2695
2696/* Are we in the middle of stepping? */
2697
2698static int
2699currently_stepping (struct execution_control_state *ecs)
2700{
2701 return ((!ecs->handling_longjmp
2702 && ((step_range_end && step_resume_breakpoint == NULL)
2703 || trap_expected))
2704 || ecs->stepping_through_solib_after_catch
2705 || bpstat_should_step ());
2706}
2707
2708/* Subroutine call with source code we should not step over. Do step
2709 to the first line of code in it. */
2710
2711static void
2712step_into_function (struct execution_control_state *ecs)
2713{
2714 struct symtab *s;
2715 struct symtab_and_line sr_sal;
2716
2717 s = find_pc_symtab (stop_pc);
2718 if (s && s->language != language_asm)
2719 ecs->stop_func_start = gdbarch_skip_prologue
2720 (current_gdbarch, ecs->stop_func_start);
2721
2722 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2723 /* Use the step_resume_break to step until the end of the prologue,
2724 even if that involves jumps (as it seems to on the vax under
2725 4.2). */
2726 /* If the prologue ends in the middle of a source line, continue to
2727 the end of that source line (if it is still within the function).
2728 Otherwise, just go to end of prologue. */
2729 if (ecs->sal.end
2730 && ecs->sal.pc != ecs->stop_func_start
2731 && ecs->sal.end < ecs->stop_func_end)
2732 ecs->stop_func_start = ecs->sal.end;
2733
2734 /* Architectures which require breakpoint adjustment might not be able
2735 to place a breakpoint at the computed address. If so, the test
2736 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2737 ecs->stop_func_start to an address at which a breakpoint may be
2738 legitimately placed.
2739
2740 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2741 made, GDB will enter an infinite loop when stepping through
2742 optimized code consisting of VLIW instructions which contain
2743 subinstructions corresponding to different source lines. On
2744 FR-V, it's not permitted to place a breakpoint on any but the
2745 first subinstruction of a VLIW instruction. When a breakpoint is
2746 set, GDB will adjust the breakpoint address to the beginning of
2747 the VLIW instruction. Thus, we need to make the corresponding
2748 adjustment here when computing the stop address. */
2749
2750 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2751 {
2752 ecs->stop_func_start
2753 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2754 ecs->stop_func_start);
2755 }
2756
2757 if (ecs->stop_func_start == stop_pc)
2758 {
2759 /* We are already there: stop now. */
2760 stop_step = 1;
2761 print_stop_reason (END_STEPPING_RANGE, 0);
2762 stop_stepping (ecs);
2763 return;
2764 }
2765 else
2766 {
2767 /* Put the step-breakpoint there and go until there. */
2768 init_sal (&sr_sal); /* initialize to zeroes */
2769 sr_sal.pc = ecs->stop_func_start;
2770 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2771
2772 /* Do not specify what the fp should be when we stop since on
2773 some machines the prologue is where the new fp value is
2774 established. */
2775 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2776
2777 /* And make sure stepping stops right away then. */
2778 step_range_end = step_range_start;
2779 }
2780 keep_going (ecs);
2781}
2782
2783/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2784 This is used to both functions and to skip over code. */
2785
2786static void
2787insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2788 struct frame_id sr_id)
2789{
2790 /* There should never be more than one step-resume breakpoint per
2791 thread, so we should never be setting a new
2792 step_resume_breakpoint when one is already active. */
2793 gdb_assert (step_resume_breakpoint == NULL);
2794
2795 if (debug_infrun)
2796 fprintf_unfiltered (gdb_stdlog,
2797 "infrun: inserting step-resume breakpoint at 0x%s\n",
2798 paddr_nz (sr_sal.pc));
2799
2800 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2801 bp_step_resume);
2802 if (breakpoints_inserted)
2803 insert_breakpoints ();
2804}
2805
2806/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2807 to skip a potential signal handler.
2808
2809 This is called with the interrupted function's frame. The signal
2810 handler, when it returns, will resume the interrupted function at
2811 RETURN_FRAME.pc. */
2812
2813static void
2814insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2815{
2816 struct symtab_and_line sr_sal;
2817
2818 init_sal (&sr_sal); /* initialize to zeros */
2819
2820 sr_sal.pc = gdbarch_addr_bits_remove
2821 (current_gdbarch, get_frame_pc (return_frame));
2822 sr_sal.section = find_pc_overlay (sr_sal.pc);
2823
2824 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2825}
2826
2827/* Similar to insert_step_resume_breakpoint_at_frame, except
2828 but a breakpoint at the previous frame's PC. This is used to
2829 skip a function after stepping into it (for "next" or if the called
2830 function has no debugging information).
2831
2832 The current function has almost always been reached by single
2833 stepping a call or return instruction. NEXT_FRAME belongs to the
2834 current function, and the breakpoint will be set at the caller's
2835 resume address.
2836
2837 This is a separate function rather than reusing
2838 insert_step_resume_breakpoint_at_frame in order to avoid
2839 get_prev_frame, which may stop prematurely (see the implementation
2840 of frame_unwind_id for an example). */
2841
2842static void
2843insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2844{
2845 struct symtab_and_line sr_sal;
2846
2847 /* We shouldn't have gotten here if we don't know where the call site
2848 is. */
2849 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2850
2851 init_sal (&sr_sal); /* initialize to zeros */
2852
2853 sr_sal.pc = gdbarch_addr_bits_remove
2854 (current_gdbarch, frame_pc_unwind (next_frame));
2855 sr_sal.section = find_pc_overlay (sr_sal.pc);
2856
2857 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2858}
2859
2860static void
2861stop_stepping (struct execution_control_state *ecs)
2862{
2863 if (debug_infrun)
2864 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2865
2866 /* Let callers know we don't want to wait for the inferior anymore. */
2867 ecs->wait_some_more = 0;
2868}
2869
2870/* This function handles various cases where we need to continue
2871 waiting for the inferior. */
2872/* (Used to be the keep_going: label in the old wait_for_inferior) */
2873
2874static void
2875keep_going (struct execution_control_state *ecs)
2876{
2877 /* Save the pc before execution, to compare with pc after stop. */
2878 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2879
2880 /* If we did not do break;, it means we should keep running the
2881 inferior and not return to debugger. */
2882
2883 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2884 {
2885 /* We took a signal (which we are supposed to pass through to
2886 the inferior, else we'd have done a break above) and we
2887 haven't yet gotten our trap. Simply continue. */
2888 resume (currently_stepping (ecs), stop_signal);
2889 }
2890 else
2891 {
2892 /* Either the trap was not expected, but we are continuing
2893 anyway (the user asked that this signal be passed to the
2894 child)
2895 -- or --
2896 The signal was SIGTRAP, e.g. it was our signal, but we
2897 decided we should resume from it.
2898
2899 We're going to run this baby now! */
2900
2901 if (!breakpoints_inserted && !ecs->another_trap)
2902 {
2903 /* Stop stepping when inserting breakpoints
2904 has failed. */
2905 if (insert_breakpoints () != 0)
2906 {
2907 stop_stepping (ecs);
2908 return;
2909 }
2910 breakpoints_inserted = 1;
2911 }
2912
2913 trap_expected = ecs->another_trap;
2914
2915 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2916 specifies that such a signal should be delivered to the
2917 target program).
2918
2919 Typically, this would occure when a user is debugging a
2920 target monitor on a simulator: the target monitor sets a
2921 breakpoint; the simulator encounters this break-point and
2922 halts the simulation handing control to GDB; GDB, noteing
2923 that the break-point isn't valid, returns control back to the
2924 simulator; the simulator then delivers the hardware
2925 equivalent of a SIGNAL_TRAP to the program being debugged. */
2926
2927 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2928 stop_signal = TARGET_SIGNAL_0;
2929
2930
2931 resume (currently_stepping (ecs), stop_signal);
2932 }
2933
2934 prepare_to_wait (ecs);
2935}
2936
2937/* This function normally comes after a resume, before
2938 handle_inferior_event exits. It takes care of any last bits of
2939 housekeeping, and sets the all-important wait_some_more flag. */
2940
2941static void
2942prepare_to_wait (struct execution_control_state *ecs)
2943{
2944 if (debug_infrun)
2945 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2946 if (ecs->infwait_state == infwait_normal_state)
2947 {
2948 overlay_cache_invalid = 1;
2949
2950 /* We have to invalidate the registers BEFORE calling
2951 target_wait because they can be loaded from the target while
2952 in target_wait. This makes remote debugging a bit more
2953 efficient for those targets that provide critical registers
2954 as part of their normal status mechanism. */
2955
2956 registers_changed ();
2957 ecs->waiton_ptid = pid_to_ptid (-1);
2958 ecs->wp = &(ecs->ws);
2959 }
2960 /* This is the old end of the while loop. Let everybody know we
2961 want to wait for the inferior some more and get called again
2962 soon. */
2963 ecs->wait_some_more = 1;
2964}
2965
2966/* Print why the inferior has stopped. We always print something when
2967 the inferior exits, or receives a signal. The rest of the cases are
2968 dealt with later on in normal_stop() and print_it_typical(). Ideally
2969 there should be a call to this function from handle_inferior_event()
2970 each time stop_stepping() is called.*/
2971static void
2972print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2973{
2974 switch (stop_reason)
2975 {
2976 case END_STEPPING_RANGE:
2977 /* We are done with a step/next/si/ni command. */
2978 /* For now print nothing. */
2979 /* Print a message only if not in the middle of doing a "step n"
2980 operation for n > 1 */
2981 if (!step_multi || !stop_step)
2982 if (ui_out_is_mi_like_p (uiout))
2983 ui_out_field_string
2984 (uiout, "reason",
2985 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2986 break;
2987 case SIGNAL_EXITED:
2988 /* The inferior was terminated by a signal. */
2989 annotate_signalled ();
2990 if (ui_out_is_mi_like_p (uiout))
2991 ui_out_field_string
2992 (uiout, "reason",
2993 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2994 ui_out_text (uiout, "\nProgram terminated with signal ");
2995 annotate_signal_name ();
2996 ui_out_field_string (uiout, "signal-name",
2997 target_signal_to_name (stop_info));
2998 annotate_signal_name_end ();
2999 ui_out_text (uiout, ", ");
3000 annotate_signal_string ();
3001 ui_out_field_string (uiout, "signal-meaning",
3002 target_signal_to_string (stop_info));
3003 annotate_signal_string_end ();
3004 ui_out_text (uiout, ".\n");
3005 ui_out_text (uiout, "The program no longer exists.\n");
3006 break;
3007 case EXITED:
3008 /* The inferior program is finished. */
3009 annotate_exited (stop_info);
3010 if (stop_info)
3011 {
3012 if (ui_out_is_mi_like_p (uiout))
3013 ui_out_field_string (uiout, "reason",
3014 async_reason_lookup (EXEC_ASYNC_EXITED));
3015 ui_out_text (uiout, "\nProgram exited with code ");
3016 ui_out_field_fmt (uiout, "exit-code", "0%o",
3017 (unsigned int) stop_info);
3018 ui_out_text (uiout, ".\n");
3019 }
3020 else
3021 {
3022 if (ui_out_is_mi_like_p (uiout))
3023 ui_out_field_string
3024 (uiout, "reason",
3025 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3026 ui_out_text (uiout, "\nProgram exited normally.\n");
3027 }
3028 /* Support the --return-child-result option. */
3029 return_child_result_value = stop_info;
3030 break;
3031 case SIGNAL_RECEIVED:
3032 /* Signal received. The signal table tells us to print about
3033 it. */
3034 annotate_signal ();
3035 ui_out_text (uiout, "\nProgram received signal ");
3036 annotate_signal_name ();
3037 if (ui_out_is_mi_like_p (uiout))
3038 ui_out_field_string
3039 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3040 ui_out_field_string (uiout, "signal-name",
3041 target_signal_to_name (stop_info));
3042 annotate_signal_name_end ();
3043 ui_out_text (uiout, ", ");
3044 annotate_signal_string ();
3045 ui_out_field_string (uiout, "signal-meaning",
3046 target_signal_to_string (stop_info));
3047 annotate_signal_string_end ();
3048 ui_out_text (uiout, ".\n");
3049 break;
3050 default:
3051 internal_error (__FILE__, __LINE__,
3052 _("print_stop_reason: unrecognized enum value"));
3053 break;
3054 }
3055}
3056\f
3057
3058/* Here to return control to GDB when the inferior stops for real.
3059 Print appropriate messages, remove breakpoints, give terminal our modes.
3060
3061 STOP_PRINT_FRAME nonzero means print the executing frame
3062 (pc, function, args, file, line number and line text).
3063 BREAKPOINTS_FAILED nonzero means stop was due to error
3064 attempting to insert breakpoints. */
3065
3066void
3067normal_stop (void)
3068{
3069 struct target_waitstatus last;
3070 ptid_t last_ptid;
3071
3072 get_last_target_status (&last_ptid, &last);
3073
3074 /* As with the notification of thread events, we want to delay
3075 notifying the user that we've switched thread context until
3076 the inferior actually stops.
3077
3078 There's no point in saying anything if the inferior has exited.
3079 Note that SIGNALLED here means "exited with a signal", not
3080 "received a signal". */
3081 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3082 && target_has_execution
3083 && last.kind != TARGET_WAITKIND_SIGNALLED
3084 && last.kind != TARGET_WAITKIND_EXITED)
3085 {
3086 target_terminal_ours_for_output ();
3087 printf_filtered (_("[Switching to %s]\n"),
3088 target_pid_or_tid_to_str (inferior_ptid));
3089 previous_inferior_ptid = inferior_ptid;
3090 }
3091
3092 /* NOTE drow/2004-01-17: Is this still necessary? */
3093 /* Make sure that the current_frame's pc is correct. This
3094 is a correction for setting up the frame info before doing
3095 gdbarch_decr_pc_after_break */
3096 if (target_has_execution)
3097 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3098 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3099 frame code to check for this and sort out any resultant mess.
3100 gdbarch_decr_pc_after_break needs to just go away. */
3101 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3102
3103 if (target_has_execution && breakpoints_inserted)
3104 {
3105 if (remove_breakpoints ())
3106 {
3107 target_terminal_ours_for_output ();
3108 printf_filtered (_("\
3109Cannot remove breakpoints because program is no longer writable.\n\
3110It might be running in another process.\n\
3111Further execution is probably impossible.\n"));
3112 }
3113 }
3114 breakpoints_inserted = 0;
3115
3116 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3117 Delete any breakpoint that is to be deleted at the next stop. */
3118
3119 breakpoint_auto_delete (stop_bpstat);
3120
3121 /* If an auto-display called a function and that got a signal,
3122 delete that auto-display to avoid an infinite recursion. */
3123
3124 if (stopped_by_random_signal)
3125 disable_current_display ();
3126
3127 /* Don't print a message if in the middle of doing a "step n"
3128 operation for n > 1 */
3129 if (step_multi && stop_step)
3130 goto done;
3131
3132 target_terminal_ours ();
3133
3134 /* Set the current source location. This will also happen if we
3135 display the frame below, but the current SAL will be incorrect
3136 during a user hook-stop function. */
3137 if (target_has_stack && !stop_stack_dummy)
3138 set_current_sal_from_frame (get_current_frame (), 1);
3139
3140 /* Look up the hook_stop and run it (CLI internally handles problem
3141 of stop_command's pre-hook not existing). */
3142 if (stop_command)
3143 catch_errors (hook_stop_stub, stop_command,
3144 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3145
3146 if (!target_has_stack)
3147 {
3148
3149 goto done;
3150 }
3151
3152 /* Select innermost stack frame - i.e., current frame is frame 0,
3153 and current location is based on that.
3154 Don't do this on return from a stack dummy routine,
3155 or if the program has exited. */
3156
3157 if (!stop_stack_dummy)
3158 {
3159 select_frame (get_current_frame ());
3160
3161 /* Print current location without a level number, if
3162 we have changed functions or hit a breakpoint.
3163 Print source line if we have one.
3164 bpstat_print() contains the logic deciding in detail
3165 what to print, based on the event(s) that just occurred. */
3166
3167 if (stop_print_frame)
3168 {
3169 int bpstat_ret;
3170 int source_flag;
3171 int do_frame_printing = 1;
3172
3173 bpstat_ret = bpstat_print (stop_bpstat);
3174 switch (bpstat_ret)
3175 {
3176 case PRINT_UNKNOWN:
3177 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3178 (or should) carry around the function and does (or
3179 should) use that when doing a frame comparison. */
3180 if (stop_step
3181 && frame_id_eq (step_frame_id,
3182 get_frame_id (get_current_frame ()))
3183 && step_start_function == find_pc_function (stop_pc))
3184 source_flag = SRC_LINE; /* finished step, just print source line */
3185 else
3186 source_flag = SRC_AND_LOC; /* print location and source line */
3187 break;
3188 case PRINT_SRC_AND_LOC:
3189 source_flag = SRC_AND_LOC; /* print location and source line */
3190 break;
3191 case PRINT_SRC_ONLY:
3192 source_flag = SRC_LINE;
3193 break;
3194 case PRINT_NOTHING:
3195 source_flag = SRC_LINE; /* something bogus */
3196 do_frame_printing = 0;
3197 break;
3198 default:
3199 internal_error (__FILE__, __LINE__, _("Unknown value."));
3200 }
3201
3202 if (ui_out_is_mi_like_p (uiout))
3203 ui_out_field_int (uiout, "thread-id",
3204 pid_to_thread_id (inferior_ptid));
3205 /* The behavior of this routine with respect to the source
3206 flag is:
3207 SRC_LINE: Print only source line
3208 LOCATION: Print only location
3209 SRC_AND_LOC: Print location and source line */
3210 if (do_frame_printing)
3211 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3212
3213 /* Display the auto-display expressions. */
3214 do_displays ();
3215 }
3216 }
3217
3218 /* Save the function value return registers, if we care.
3219 We might be about to restore their previous contents. */
3220 if (proceed_to_finish)
3221 /* NB: The copy goes through to the target picking up the value of
3222 all the registers. */
3223 regcache_cpy (stop_registers, get_current_regcache ());
3224
3225 if (stop_stack_dummy)
3226 {
3227 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3228 ends with a setting of the current frame, so we can use that
3229 next. */
3230 frame_pop (get_current_frame ());
3231 /* Set stop_pc to what it was before we called the function.
3232 Can't rely on restore_inferior_status because that only gets
3233 called if we don't stop in the called function. */
3234 stop_pc = read_pc ();
3235 select_frame (get_current_frame ());
3236 }
3237
3238done:
3239 annotate_stopped ();
3240 observer_notify_normal_stop (stop_bpstat);
3241}
3242
3243static int
3244hook_stop_stub (void *cmd)
3245{
3246 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3247 return (0);
3248}
3249\f
3250int
3251signal_stop_state (int signo)
3252{
3253 return signal_stop[signo];
3254}
3255
3256int
3257signal_print_state (int signo)
3258{
3259 return signal_print[signo];
3260}
3261
3262int
3263signal_pass_state (int signo)
3264{
3265 return signal_program[signo];
3266}
3267
3268int
3269signal_stop_update (int signo, int state)
3270{
3271 int ret = signal_stop[signo];
3272 signal_stop[signo] = state;
3273 return ret;
3274}
3275
3276int
3277signal_print_update (int signo, int state)
3278{
3279 int ret = signal_print[signo];
3280 signal_print[signo] = state;
3281 return ret;
3282}
3283
3284int
3285signal_pass_update (int signo, int state)
3286{
3287 int ret = signal_program[signo];
3288 signal_program[signo] = state;
3289 return ret;
3290}
3291
3292static void
3293sig_print_header (void)
3294{
3295 printf_filtered (_("\
3296Signal Stop\tPrint\tPass to program\tDescription\n"));
3297}
3298
3299static void
3300sig_print_info (enum target_signal oursig)
3301{
3302 char *name = target_signal_to_name (oursig);
3303 int name_padding = 13 - strlen (name);
3304
3305 if (name_padding <= 0)
3306 name_padding = 0;
3307
3308 printf_filtered ("%s", name);
3309 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3310 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3311 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3312 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3313 printf_filtered ("%s\n", target_signal_to_string (oursig));
3314}
3315
3316/* Specify how various signals in the inferior should be handled. */
3317
3318static void
3319handle_command (char *args, int from_tty)
3320{
3321 char **argv;
3322 int digits, wordlen;
3323 int sigfirst, signum, siglast;
3324 enum target_signal oursig;
3325 int allsigs;
3326 int nsigs;
3327 unsigned char *sigs;
3328 struct cleanup *old_chain;
3329
3330 if (args == NULL)
3331 {
3332 error_no_arg (_("signal to handle"));
3333 }
3334
3335 /* Allocate and zero an array of flags for which signals to handle. */
3336
3337 nsigs = (int) TARGET_SIGNAL_LAST;
3338 sigs = (unsigned char *) alloca (nsigs);
3339 memset (sigs, 0, nsigs);
3340
3341 /* Break the command line up into args. */
3342
3343 argv = buildargv (args);
3344 if (argv == NULL)
3345 {
3346 nomem (0);
3347 }
3348 old_chain = make_cleanup_freeargv (argv);
3349
3350 /* Walk through the args, looking for signal oursigs, signal names, and
3351 actions. Signal numbers and signal names may be interspersed with
3352 actions, with the actions being performed for all signals cumulatively
3353 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3354
3355 while (*argv != NULL)
3356 {
3357 wordlen = strlen (*argv);
3358 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3359 {;
3360 }
3361 allsigs = 0;
3362 sigfirst = siglast = -1;
3363
3364 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3365 {
3366 /* Apply action to all signals except those used by the
3367 debugger. Silently skip those. */
3368 allsigs = 1;
3369 sigfirst = 0;
3370 siglast = nsigs - 1;
3371 }
3372 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3373 {
3374 SET_SIGS (nsigs, sigs, signal_stop);
3375 SET_SIGS (nsigs, sigs, signal_print);
3376 }
3377 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3378 {
3379 UNSET_SIGS (nsigs, sigs, signal_program);
3380 }
3381 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3382 {
3383 SET_SIGS (nsigs, sigs, signal_print);
3384 }
3385 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3386 {
3387 SET_SIGS (nsigs, sigs, signal_program);
3388 }
3389 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3390 {
3391 UNSET_SIGS (nsigs, sigs, signal_stop);
3392 }
3393 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3394 {
3395 SET_SIGS (nsigs, sigs, signal_program);
3396 }
3397 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3398 {
3399 UNSET_SIGS (nsigs, sigs, signal_print);
3400 UNSET_SIGS (nsigs, sigs, signal_stop);
3401 }
3402 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3403 {
3404 UNSET_SIGS (nsigs, sigs, signal_program);
3405 }
3406 else if (digits > 0)
3407 {
3408 /* It is numeric. The numeric signal refers to our own
3409 internal signal numbering from target.h, not to host/target
3410 signal number. This is a feature; users really should be
3411 using symbolic names anyway, and the common ones like
3412 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3413
3414 sigfirst = siglast = (int)
3415 target_signal_from_command (atoi (*argv));
3416 if ((*argv)[digits] == '-')
3417 {
3418 siglast = (int)
3419 target_signal_from_command (atoi ((*argv) + digits + 1));
3420 }
3421 if (sigfirst > siglast)
3422 {
3423 /* Bet he didn't figure we'd think of this case... */
3424 signum = sigfirst;
3425 sigfirst = siglast;
3426 siglast = signum;
3427 }
3428 }
3429 else
3430 {
3431 oursig = target_signal_from_name (*argv);
3432 if (oursig != TARGET_SIGNAL_UNKNOWN)
3433 {
3434 sigfirst = siglast = (int) oursig;
3435 }
3436 else
3437 {
3438 /* Not a number and not a recognized flag word => complain. */
3439 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3440 }
3441 }
3442
3443 /* If any signal numbers or symbol names were found, set flags for
3444 which signals to apply actions to. */
3445
3446 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3447 {
3448 switch ((enum target_signal) signum)
3449 {
3450 case TARGET_SIGNAL_TRAP:
3451 case TARGET_SIGNAL_INT:
3452 if (!allsigs && !sigs[signum])
3453 {
3454 if (query ("%s is used by the debugger.\n\
3455Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3456 {
3457 sigs[signum] = 1;
3458 }
3459 else
3460 {
3461 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3462 gdb_flush (gdb_stdout);
3463 }
3464 }
3465 break;
3466 case TARGET_SIGNAL_0:
3467 case TARGET_SIGNAL_DEFAULT:
3468 case TARGET_SIGNAL_UNKNOWN:
3469 /* Make sure that "all" doesn't print these. */
3470 break;
3471 default:
3472 sigs[signum] = 1;
3473 break;
3474 }
3475 }
3476
3477 argv++;
3478 }
3479
3480 target_notice_signals (inferior_ptid);
3481
3482 if (from_tty)
3483 {
3484 /* Show the results. */
3485 sig_print_header ();
3486 for (signum = 0; signum < nsigs; signum++)
3487 {
3488 if (sigs[signum])
3489 {
3490 sig_print_info (signum);
3491 }
3492 }
3493 }
3494
3495 do_cleanups (old_chain);
3496}
3497
3498static void
3499xdb_handle_command (char *args, int from_tty)
3500{
3501 char **argv;
3502 struct cleanup *old_chain;
3503
3504 /* Break the command line up into args. */
3505
3506 argv = buildargv (args);
3507 if (argv == NULL)
3508 {
3509 nomem (0);
3510 }
3511 old_chain = make_cleanup_freeargv (argv);
3512 if (argv[1] != (char *) NULL)
3513 {
3514 char *argBuf;
3515 int bufLen;
3516
3517 bufLen = strlen (argv[0]) + 20;
3518 argBuf = (char *) xmalloc (bufLen);
3519 if (argBuf)
3520 {
3521 int validFlag = 1;
3522 enum target_signal oursig;
3523
3524 oursig = target_signal_from_name (argv[0]);
3525 memset (argBuf, 0, bufLen);
3526 if (strcmp (argv[1], "Q") == 0)
3527 sprintf (argBuf, "%s %s", argv[0], "noprint");
3528 else
3529 {
3530 if (strcmp (argv[1], "s") == 0)
3531 {
3532 if (!signal_stop[oursig])
3533 sprintf (argBuf, "%s %s", argv[0], "stop");
3534 else
3535 sprintf (argBuf, "%s %s", argv[0], "nostop");
3536 }
3537 else if (strcmp (argv[1], "i") == 0)
3538 {
3539 if (!signal_program[oursig])
3540 sprintf (argBuf, "%s %s", argv[0], "pass");
3541 else
3542 sprintf (argBuf, "%s %s", argv[0], "nopass");
3543 }
3544 else if (strcmp (argv[1], "r") == 0)
3545 {
3546 if (!signal_print[oursig])
3547 sprintf (argBuf, "%s %s", argv[0], "print");
3548 else
3549 sprintf (argBuf, "%s %s", argv[0], "noprint");
3550 }
3551 else
3552 validFlag = 0;
3553 }
3554 if (validFlag)
3555 handle_command (argBuf, from_tty);
3556 else
3557 printf_filtered (_("Invalid signal handling flag.\n"));
3558 if (argBuf)
3559 xfree (argBuf);
3560 }
3561 }
3562 do_cleanups (old_chain);
3563}
3564
3565/* Print current contents of the tables set by the handle command.
3566 It is possible we should just be printing signals actually used
3567 by the current target (but for things to work right when switching
3568 targets, all signals should be in the signal tables). */
3569
3570static void
3571signals_info (char *signum_exp, int from_tty)
3572{
3573 enum target_signal oursig;
3574 sig_print_header ();
3575
3576 if (signum_exp)
3577 {
3578 /* First see if this is a symbol name. */
3579 oursig = target_signal_from_name (signum_exp);
3580 if (oursig == TARGET_SIGNAL_UNKNOWN)
3581 {
3582 /* No, try numeric. */
3583 oursig =
3584 target_signal_from_command (parse_and_eval_long (signum_exp));
3585 }
3586 sig_print_info (oursig);
3587 return;
3588 }
3589
3590 printf_filtered ("\n");
3591 /* These ugly casts brought to you by the native VAX compiler. */
3592 for (oursig = TARGET_SIGNAL_FIRST;
3593 (int) oursig < (int) TARGET_SIGNAL_LAST;
3594 oursig = (enum target_signal) ((int) oursig + 1))
3595 {
3596 QUIT;
3597
3598 if (oursig != TARGET_SIGNAL_UNKNOWN
3599 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3600 sig_print_info (oursig);
3601 }
3602
3603 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3604}
3605\f
3606struct inferior_status
3607{
3608 enum target_signal stop_signal;
3609 CORE_ADDR stop_pc;
3610 bpstat stop_bpstat;
3611 int stop_step;
3612 int stop_stack_dummy;
3613 int stopped_by_random_signal;
3614 int trap_expected;
3615 CORE_ADDR step_range_start;
3616 CORE_ADDR step_range_end;
3617 struct frame_id step_frame_id;
3618 enum step_over_calls_kind step_over_calls;
3619 CORE_ADDR step_resume_break_address;
3620 int stop_after_trap;
3621 int stop_soon;
3622 struct regcache *stop_registers;
3623
3624 /* These are here because if call_function_by_hand has written some
3625 registers and then decides to call error(), we better not have changed
3626 any registers. */
3627 struct regcache *registers;
3628
3629 /* A frame unique identifier. */
3630 struct frame_id selected_frame_id;
3631
3632 int breakpoint_proceeded;
3633 int restore_stack_info;
3634 int proceed_to_finish;
3635};
3636
3637void
3638write_inferior_status_register (struct inferior_status *inf_status, int regno,
3639 LONGEST val)
3640{
3641 int size = register_size (current_gdbarch, regno);
3642 void *buf = alloca (size);
3643 store_signed_integer (buf, size, val);
3644 regcache_raw_write (inf_status->registers, regno, buf);
3645}
3646
3647/* Save all of the information associated with the inferior<==>gdb
3648 connection. INF_STATUS is a pointer to a "struct inferior_status"
3649 (defined in inferior.h). */
3650
3651struct inferior_status *
3652save_inferior_status (int restore_stack_info)
3653{
3654 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3655
3656 inf_status->stop_signal = stop_signal;
3657 inf_status->stop_pc = stop_pc;
3658 inf_status->stop_step = stop_step;
3659 inf_status->stop_stack_dummy = stop_stack_dummy;
3660 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3661 inf_status->trap_expected = trap_expected;
3662 inf_status->step_range_start = step_range_start;
3663 inf_status->step_range_end = step_range_end;
3664 inf_status->step_frame_id = step_frame_id;
3665 inf_status->step_over_calls = step_over_calls;
3666 inf_status->stop_after_trap = stop_after_trap;
3667 inf_status->stop_soon = stop_soon;
3668 /* Save original bpstat chain here; replace it with copy of chain.
3669 If caller's caller is walking the chain, they'll be happier if we
3670 hand them back the original chain when restore_inferior_status is
3671 called. */
3672 inf_status->stop_bpstat = stop_bpstat;
3673 stop_bpstat = bpstat_copy (stop_bpstat);
3674 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3675 inf_status->restore_stack_info = restore_stack_info;
3676 inf_status->proceed_to_finish = proceed_to_finish;
3677
3678 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3679
3680 inf_status->registers = regcache_dup (get_current_regcache ());
3681
3682 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3683 return inf_status;
3684}
3685
3686static int
3687restore_selected_frame (void *args)
3688{
3689 struct frame_id *fid = (struct frame_id *) args;
3690 struct frame_info *frame;
3691
3692 frame = frame_find_by_id (*fid);
3693
3694 /* If inf_status->selected_frame_id is NULL, there was no previously
3695 selected frame. */
3696 if (frame == NULL)
3697 {
3698 warning (_("Unable to restore previously selected frame."));
3699 return 0;
3700 }
3701
3702 select_frame (frame);
3703
3704 return (1);
3705}
3706
3707void
3708restore_inferior_status (struct inferior_status *inf_status)
3709{
3710 stop_signal = inf_status->stop_signal;
3711 stop_pc = inf_status->stop_pc;
3712 stop_step = inf_status->stop_step;
3713 stop_stack_dummy = inf_status->stop_stack_dummy;
3714 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3715 trap_expected = inf_status->trap_expected;
3716 step_range_start = inf_status->step_range_start;
3717 step_range_end = inf_status->step_range_end;
3718 step_frame_id = inf_status->step_frame_id;
3719 step_over_calls = inf_status->step_over_calls;
3720 stop_after_trap = inf_status->stop_after_trap;
3721 stop_soon = inf_status->stop_soon;
3722 bpstat_clear (&stop_bpstat);
3723 stop_bpstat = inf_status->stop_bpstat;
3724 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3725 proceed_to_finish = inf_status->proceed_to_finish;
3726
3727 /* FIXME: Is the restore of stop_registers always needed. */
3728 regcache_xfree (stop_registers);
3729 stop_registers = inf_status->stop_registers;
3730
3731 /* The inferior can be gone if the user types "print exit(0)"
3732 (and perhaps other times). */
3733 if (target_has_execution)
3734 /* NB: The register write goes through to the target. */
3735 regcache_cpy (get_current_regcache (), inf_status->registers);
3736 regcache_xfree (inf_status->registers);
3737
3738 /* FIXME: If we are being called after stopping in a function which
3739 is called from gdb, we should not be trying to restore the
3740 selected frame; it just prints a spurious error message (The
3741 message is useful, however, in detecting bugs in gdb (like if gdb
3742 clobbers the stack)). In fact, should we be restoring the
3743 inferior status at all in that case? . */
3744
3745 if (target_has_stack && inf_status->restore_stack_info)
3746 {
3747 /* The point of catch_errors is that if the stack is clobbered,
3748 walking the stack might encounter a garbage pointer and
3749 error() trying to dereference it. */
3750 if (catch_errors
3751 (restore_selected_frame, &inf_status->selected_frame_id,
3752 "Unable to restore previously selected frame:\n",
3753 RETURN_MASK_ERROR) == 0)
3754 /* Error in restoring the selected frame. Select the innermost
3755 frame. */
3756 select_frame (get_current_frame ());
3757
3758 }
3759
3760 xfree (inf_status);
3761}
3762
3763static void
3764do_restore_inferior_status_cleanup (void *sts)
3765{
3766 restore_inferior_status (sts);
3767}
3768
3769struct cleanup *
3770make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3771{
3772 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3773}
3774
3775void
3776discard_inferior_status (struct inferior_status *inf_status)
3777{
3778 /* See save_inferior_status for info on stop_bpstat. */
3779 bpstat_clear (&inf_status->stop_bpstat);
3780 regcache_xfree (inf_status->registers);
3781 regcache_xfree (inf_status->stop_registers);
3782 xfree (inf_status);
3783}
3784
3785int
3786inferior_has_forked (int pid, int *child_pid)
3787{
3788 struct target_waitstatus last;
3789 ptid_t last_ptid;
3790
3791 get_last_target_status (&last_ptid, &last);
3792
3793 if (last.kind != TARGET_WAITKIND_FORKED)
3794 return 0;
3795
3796 if (ptid_get_pid (last_ptid) != pid)
3797 return 0;
3798
3799 *child_pid = last.value.related_pid;
3800 return 1;
3801}
3802
3803int
3804inferior_has_vforked (int pid, int *child_pid)
3805{
3806 struct target_waitstatus last;
3807 ptid_t last_ptid;
3808
3809 get_last_target_status (&last_ptid, &last);
3810
3811 if (last.kind != TARGET_WAITKIND_VFORKED)
3812 return 0;
3813
3814 if (ptid_get_pid (last_ptid) != pid)
3815 return 0;
3816
3817 *child_pid = last.value.related_pid;
3818 return 1;
3819}
3820
3821int
3822inferior_has_execd (int pid, char **execd_pathname)
3823{
3824 struct target_waitstatus last;
3825 ptid_t last_ptid;
3826
3827 get_last_target_status (&last_ptid, &last);
3828
3829 if (last.kind != TARGET_WAITKIND_EXECD)
3830 return 0;
3831
3832 if (ptid_get_pid (last_ptid) != pid)
3833 return 0;
3834
3835 *execd_pathname = xstrdup (last.value.execd_pathname);
3836 return 1;
3837}
3838
3839/* Oft used ptids */
3840ptid_t null_ptid;
3841ptid_t minus_one_ptid;
3842
3843/* Create a ptid given the necessary PID, LWP, and TID components. */
3844
3845ptid_t
3846ptid_build (int pid, long lwp, long tid)
3847{
3848 ptid_t ptid;
3849
3850 ptid.pid = pid;
3851 ptid.lwp = lwp;
3852 ptid.tid = tid;
3853 return ptid;
3854}
3855
3856/* Create a ptid from just a pid. */
3857
3858ptid_t
3859pid_to_ptid (int pid)
3860{
3861 return ptid_build (pid, 0, 0);
3862}
3863
3864/* Fetch the pid (process id) component from a ptid. */
3865
3866int
3867ptid_get_pid (ptid_t ptid)
3868{
3869 return ptid.pid;
3870}
3871
3872/* Fetch the lwp (lightweight process) component from a ptid. */
3873
3874long
3875ptid_get_lwp (ptid_t ptid)
3876{
3877 return ptid.lwp;
3878}
3879
3880/* Fetch the tid (thread id) component from a ptid. */
3881
3882long
3883ptid_get_tid (ptid_t ptid)
3884{
3885 return ptid.tid;
3886}
3887
3888/* ptid_equal() is used to test equality of two ptids. */
3889
3890int
3891ptid_equal (ptid_t ptid1, ptid_t ptid2)
3892{
3893 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3894 && ptid1.tid == ptid2.tid);
3895}
3896
3897/* restore_inferior_ptid() will be used by the cleanup machinery
3898 to restore the inferior_ptid value saved in a call to
3899 save_inferior_ptid(). */
3900
3901static void
3902restore_inferior_ptid (void *arg)
3903{
3904 ptid_t *saved_ptid_ptr = arg;
3905 inferior_ptid = *saved_ptid_ptr;
3906 xfree (arg);
3907}
3908
3909/* Save the value of inferior_ptid so that it may be restored by a
3910 later call to do_cleanups(). Returns the struct cleanup pointer
3911 needed for later doing the cleanup. */
3912
3913struct cleanup *
3914save_inferior_ptid (void)
3915{
3916 ptid_t *saved_ptid_ptr;
3917
3918 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3919 *saved_ptid_ptr = inferior_ptid;
3920 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3921}
3922\f
3923
3924static void
3925build_infrun (void)
3926{
3927 stop_registers = regcache_xmalloc (current_gdbarch);
3928}
3929
3930void
3931_initialize_infrun (void)
3932{
3933 int i;
3934 int numsigs;
3935 struct cmd_list_element *c;
3936
3937 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3938 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3939
3940 add_info ("signals", signals_info, _("\
3941What debugger does when program gets various signals.\n\
3942Specify a signal as argument to print info on that signal only."));
3943 add_info_alias ("handle", "signals", 0);
3944
3945 add_com ("handle", class_run, handle_command, _("\
3946Specify how to handle a signal.\n\
3947Args are signals and actions to apply to those signals.\n\
3948Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3949from 1-15 are allowed for compatibility with old versions of GDB.\n\
3950Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3951The special arg \"all\" is recognized to mean all signals except those\n\
3952used by the debugger, typically SIGTRAP and SIGINT.\n\
3953Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3954\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3955Stop means reenter debugger if this signal happens (implies print).\n\
3956Print means print a message if this signal happens.\n\
3957Pass means let program see this signal; otherwise program doesn't know.\n\
3958Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3959Pass and Stop may be combined."));
3960 if (xdb_commands)
3961 {
3962 add_com ("lz", class_info, signals_info, _("\
3963What debugger does when program gets various signals.\n\
3964Specify a signal as argument to print info on that signal only."));
3965 add_com ("z", class_run, xdb_handle_command, _("\
3966Specify how to handle a signal.\n\
3967Args are signals and actions to apply to those signals.\n\
3968Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3969from 1-15 are allowed for compatibility with old versions of GDB.\n\
3970Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3971The special arg \"all\" is recognized to mean all signals except those\n\
3972used by the debugger, typically SIGTRAP and SIGINT.\n\
3973Recognized actions include \"s\" (toggles between stop and nostop), \n\
3974\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3975nopass), \"Q\" (noprint)\n\
3976Stop means reenter debugger if this signal happens (implies print).\n\
3977Print means print a message if this signal happens.\n\
3978Pass means let program see this signal; otherwise program doesn't know.\n\
3979Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3980Pass and Stop may be combined."));
3981 }
3982
3983 if (!dbx_commands)
3984 stop_command = add_cmd ("stop", class_obscure,
3985 not_just_help_class_command, _("\
3986There is no `stop' command, but you can set a hook on `stop'.\n\
3987This allows you to set a list of commands to be run each time execution\n\
3988of the program stops."), &cmdlist);
3989
3990 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3991Set inferior debugging."), _("\
3992Show inferior debugging."), _("\
3993When non-zero, inferior specific debugging is enabled."),
3994 NULL,
3995 show_debug_infrun,
3996 &setdebuglist, &showdebuglist);
3997
3998 numsigs = (int) TARGET_SIGNAL_LAST;
3999 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4000 signal_print = (unsigned char *)
4001 xmalloc (sizeof (signal_print[0]) * numsigs);
4002 signal_program = (unsigned char *)
4003 xmalloc (sizeof (signal_program[0]) * numsigs);
4004 for (i = 0; i < numsigs; i++)
4005 {
4006 signal_stop[i] = 1;
4007 signal_print[i] = 1;
4008 signal_program[i] = 1;
4009 }
4010
4011 /* Signals caused by debugger's own actions
4012 should not be given to the program afterwards. */
4013 signal_program[TARGET_SIGNAL_TRAP] = 0;
4014 signal_program[TARGET_SIGNAL_INT] = 0;
4015
4016 /* Signals that are not errors should not normally enter the debugger. */
4017 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4018 signal_print[TARGET_SIGNAL_ALRM] = 0;
4019 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4020 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4021 signal_stop[TARGET_SIGNAL_PROF] = 0;
4022 signal_print[TARGET_SIGNAL_PROF] = 0;
4023 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4024 signal_print[TARGET_SIGNAL_CHLD] = 0;
4025 signal_stop[TARGET_SIGNAL_IO] = 0;
4026 signal_print[TARGET_SIGNAL_IO] = 0;
4027 signal_stop[TARGET_SIGNAL_POLL] = 0;
4028 signal_print[TARGET_SIGNAL_POLL] = 0;
4029 signal_stop[TARGET_SIGNAL_URG] = 0;
4030 signal_print[TARGET_SIGNAL_URG] = 0;
4031 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4032 signal_print[TARGET_SIGNAL_WINCH] = 0;
4033
4034 /* These signals are used internally by user-level thread
4035 implementations. (See signal(5) on Solaris.) Like the above
4036 signals, a healthy program receives and handles them as part of
4037 its normal operation. */
4038 signal_stop[TARGET_SIGNAL_LWP] = 0;
4039 signal_print[TARGET_SIGNAL_LWP] = 0;
4040 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4041 signal_print[TARGET_SIGNAL_WAITING] = 0;
4042 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4043 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4044
4045 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4046 &stop_on_solib_events, _("\
4047Set stopping for shared library events."), _("\
4048Show stopping for shared library events."), _("\
4049If nonzero, gdb will give control to the user when the dynamic linker\n\
4050notifies gdb of shared library events. The most common event of interest\n\
4051to the user would be loading/unloading of a new library."),
4052 NULL,
4053 show_stop_on_solib_events,
4054 &setlist, &showlist);
4055
4056 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4057 follow_fork_mode_kind_names,
4058 &follow_fork_mode_string, _("\
4059Set debugger response to a program call of fork or vfork."), _("\
4060Show debugger response to a program call of fork or vfork."), _("\
4061A fork or vfork creates a new process. follow-fork-mode can be:\n\
4062 parent - the original process is debugged after a fork\n\
4063 child - the new process is debugged after a fork\n\
4064The unfollowed process will continue to run.\n\
4065By default, the debugger will follow the parent process."),
4066 NULL,
4067 show_follow_fork_mode_string,
4068 &setlist, &showlist);
4069
4070 add_setshow_enum_cmd ("scheduler-locking", class_run,
4071 scheduler_enums, &scheduler_mode, _("\
4072Set mode for locking scheduler during execution."), _("\
4073Show mode for locking scheduler during execution."), _("\
4074off == no locking (threads may preempt at any time)\n\
4075on == full locking (no thread except the current thread may run)\n\
4076step == scheduler locked during every single-step operation.\n\
4077 In this mode, no other thread may run during a step command.\n\
4078 Other threads may run while stepping over a function call ('next')."),
4079 set_schedlock_func, /* traps on target vector */
4080 show_scheduler_mode,
4081 &setlist, &showlist);
4082
4083 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4084Set mode of the step operation."), _("\
4085Show mode of the step operation."), _("\
4086When set, doing a step over a function without debug line information\n\
4087will stop at the first instruction of that function. Otherwise, the\n\
4088function is skipped and the step command stops at a different source line."),
4089 NULL,
4090 show_step_stop_if_no_debug,
4091 &setlist, &showlist);
4092
4093 /* ptid initializations */
4094 null_ptid = ptid_build (0, 0, 0);
4095 minus_one_ptid = ptid_build (-1, 0, 0);
4096 inferior_ptid = null_ptid;
4097 target_last_wait_ptid = minus_one_ptid;
4098}
This page took 0.049407 seconds and 4 git commands to generate.