gdb/gdbserver:
[deliverable/binutils-gdb.git] / gdb / infrun.c
... / ...
CommitLineData
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "exceptions.h"
28#include "breakpoint.h"
29#include "gdb_wait.h"
30#include "gdbcore.h"
31#include "gdbcmd.h"
32#include "cli/cli-script.h"
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
36#include "symfile.h"
37#include "top.h"
38#include <signal.h>
39#include "inf-loop.h"
40#include "regcache.h"
41#include "value.h"
42#include "observer.h"
43#include "language.h"
44#include "solib.h"
45#include "main.h"
46#include "dictionary.h"
47#include "block.h"
48#include "gdb_assert.h"
49#include "mi/mi-common.h"
50#include "event-top.h"
51#include "record.h"
52#include "inline-frame.h"
53#include "jit.h"
54#include "tracepoint.h"
55#include "continuations.h"
56#include "interps.h"
57#include "skip.h"
58
59/* Prototypes for local functions */
60
61static void signals_info (char *, int);
62
63static void handle_command (char *, int);
64
65static void sig_print_info (enum target_signal);
66
67static void sig_print_header (void);
68
69static void resume_cleanups (void *);
70
71static int hook_stop_stub (void *);
72
73static int restore_selected_frame (void *);
74
75static int follow_fork (void);
76
77static void set_schedlock_func (char *args, int from_tty,
78 struct cmd_list_element *c);
79
80static int currently_stepping (struct thread_info *tp);
81
82static int currently_stepping_or_nexting_callback (struct thread_info *tp,
83 void *data);
84
85static void xdb_handle_command (char *args, int from_tty);
86
87static int prepare_to_proceed (int);
88
89static void print_exited_reason (int exitstatus);
90
91static void print_signal_exited_reason (enum target_signal siggnal);
92
93static void print_no_history_reason (void);
94
95static void print_signal_received_reason (enum target_signal siggnal);
96
97static void print_end_stepping_range_reason (void);
98
99void _initialize_infrun (void);
100
101void nullify_last_target_wait_ptid (void);
102
103static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
104
105static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
106
107static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
108
109/* When set, stop the 'step' command if we enter a function which has
110 no line number information. The normal behavior is that we step
111 over such function. */
112int step_stop_if_no_debug = 0;
113static void
114show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116{
117 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
118}
119
120/* In asynchronous mode, but simulating synchronous execution. */
121
122int sync_execution = 0;
123
124/* wait_for_inferior and normal_stop use this to notify the user
125 when the inferior stopped in a different thread than it had been
126 running in. */
127
128static ptid_t previous_inferior_ptid;
129
130/* Default behavior is to detach newly forked processes (legacy). */
131int detach_fork = 1;
132
133int debug_displaced = 0;
134static void
135show_debug_displaced (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
139}
140
141int debug_infrun = 0;
142static void
143show_debug_infrun (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
146 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
147}
148
149
150/* Support for disabling address space randomization. */
151
152int disable_randomization = 1;
153
154static void
155show_disable_randomization (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 if (target_supports_disable_randomization ())
159 fprintf_filtered (file,
160 _("Disabling randomization of debuggee's "
161 "virtual address space is %s.\n"),
162 value);
163 else
164 fputs_filtered (_("Disabling randomization of debuggee's "
165 "virtual address space is unsupported on\n"
166 "this platform.\n"), file);
167}
168
169static void
170set_disable_randomization (char *args, int from_tty,
171 struct cmd_list_element *c)
172{
173 if (!target_supports_disable_randomization ())
174 error (_("Disabling randomization of debuggee's "
175 "virtual address space is unsupported on\n"
176 "this platform."));
177}
178
179
180/* If the program uses ELF-style shared libraries, then calls to
181 functions in shared libraries go through stubs, which live in a
182 table called the PLT (Procedure Linkage Table). The first time the
183 function is called, the stub sends control to the dynamic linker,
184 which looks up the function's real address, patches the stub so
185 that future calls will go directly to the function, and then passes
186 control to the function.
187
188 If we are stepping at the source level, we don't want to see any of
189 this --- we just want to skip over the stub and the dynamic linker.
190 The simple approach is to single-step until control leaves the
191 dynamic linker.
192
193 However, on some systems (e.g., Red Hat's 5.2 distribution) the
194 dynamic linker calls functions in the shared C library, so you
195 can't tell from the PC alone whether the dynamic linker is still
196 running. In this case, we use a step-resume breakpoint to get us
197 past the dynamic linker, as if we were using "next" to step over a
198 function call.
199
200 in_solib_dynsym_resolve_code() says whether we're in the dynamic
201 linker code or not. Normally, this means we single-step. However,
202 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
203 address where we can place a step-resume breakpoint to get past the
204 linker's symbol resolution function.
205
206 in_solib_dynsym_resolve_code() can generally be implemented in a
207 pretty portable way, by comparing the PC against the address ranges
208 of the dynamic linker's sections.
209
210 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
211 it depends on internal details of the dynamic linker. It's usually
212 not too hard to figure out where to put a breakpoint, but it
213 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
214 sanity checking. If it can't figure things out, returning zero and
215 getting the (possibly confusing) stepping behavior is better than
216 signalling an error, which will obscure the change in the
217 inferior's state. */
218
219/* This function returns TRUE if pc is the address of an instruction
220 that lies within the dynamic linker (such as the event hook, or the
221 dld itself).
222
223 This function must be used only when a dynamic linker event has
224 been caught, and the inferior is being stepped out of the hook, or
225 undefined results are guaranteed. */
226
227#ifndef SOLIB_IN_DYNAMIC_LINKER
228#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
229#endif
230
231/* "Observer mode" is somewhat like a more extreme version of
232 non-stop, in which all GDB operations that might affect the
233 target's execution have been disabled. */
234
235static int non_stop_1 = 0;
236
237int observer_mode = 0;
238static int observer_mode_1 = 0;
239
240static void
241set_observer_mode (char *args, int from_tty,
242 struct cmd_list_element *c)
243{
244 extern int pagination_enabled;
245
246 if (target_has_execution)
247 {
248 observer_mode_1 = observer_mode;
249 error (_("Cannot change this setting while the inferior is running."));
250 }
251
252 observer_mode = observer_mode_1;
253
254 may_write_registers = !observer_mode;
255 may_write_memory = !observer_mode;
256 may_insert_breakpoints = !observer_mode;
257 may_insert_tracepoints = !observer_mode;
258 /* We can insert fast tracepoints in or out of observer mode,
259 but enable them if we're going into this mode. */
260 if (observer_mode)
261 may_insert_fast_tracepoints = 1;
262 may_stop = !observer_mode;
263 update_target_permissions ();
264
265 /* Going *into* observer mode we must force non-stop, then
266 going out we leave it that way. */
267 if (observer_mode)
268 {
269 target_async_permitted = 1;
270 pagination_enabled = 0;
271 non_stop = non_stop_1 = 1;
272 }
273
274 if (from_tty)
275 printf_filtered (_("Observer mode is now %s.\n"),
276 (observer_mode ? "on" : "off"));
277}
278
279static void
280show_observer_mode (struct ui_file *file, int from_tty,
281 struct cmd_list_element *c, const char *value)
282{
283 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
284}
285
286/* This updates the value of observer mode based on changes in
287 permissions. Note that we are deliberately ignoring the values of
288 may-write-registers and may-write-memory, since the user may have
289 reason to enable these during a session, for instance to turn on a
290 debugging-related global. */
291
292void
293update_observer_mode (void)
294{
295 int newval;
296
297 newval = (!may_insert_breakpoints
298 && !may_insert_tracepoints
299 && may_insert_fast_tracepoints
300 && !may_stop
301 && non_stop);
302
303 /* Let the user know if things change. */
304 if (newval != observer_mode)
305 printf_filtered (_("Observer mode is now %s.\n"),
306 (newval ? "on" : "off"));
307
308 observer_mode = observer_mode_1 = newval;
309}
310
311/* Tables of how to react to signals; the user sets them. */
312
313static unsigned char *signal_stop;
314static unsigned char *signal_print;
315static unsigned char *signal_program;
316
317/* Table of signals that the target may silently handle.
318 This is automatically determined from the flags above,
319 and simply cached here. */
320static unsigned char *signal_pass;
321
322#define SET_SIGS(nsigs,sigs,flags) \
323 do { \
324 int signum = (nsigs); \
325 while (signum-- > 0) \
326 if ((sigs)[signum]) \
327 (flags)[signum] = 1; \
328 } while (0)
329
330#define UNSET_SIGS(nsigs,sigs,flags) \
331 do { \
332 int signum = (nsigs); \
333 while (signum-- > 0) \
334 if ((sigs)[signum]) \
335 (flags)[signum] = 0; \
336 } while (0)
337
338/* Value to pass to target_resume() to cause all threads to resume. */
339
340#define RESUME_ALL minus_one_ptid
341
342/* Command list pointer for the "stop" placeholder. */
343
344static struct cmd_list_element *stop_command;
345
346/* Function inferior was in as of last step command. */
347
348static struct symbol *step_start_function;
349
350/* Nonzero if we want to give control to the user when we're notified
351 of shared library events by the dynamic linker. */
352int stop_on_solib_events;
353static void
354show_stop_on_solib_events (struct ui_file *file, int from_tty,
355 struct cmd_list_element *c, const char *value)
356{
357 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
358 value);
359}
360
361/* Nonzero means expecting a trace trap
362 and should stop the inferior and return silently when it happens. */
363
364int stop_after_trap;
365
366/* Save register contents here when executing a "finish" command or are
367 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
368 Thus this contains the return value from the called function (assuming
369 values are returned in a register). */
370
371struct regcache *stop_registers;
372
373/* Nonzero after stop if current stack frame should be printed. */
374
375static int stop_print_frame;
376
377/* This is a cached copy of the pid/waitstatus of the last event
378 returned by target_wait()/deprecated_target_wait_hook(). This
379 information is returned by get_last_target_status(). */
380static ptid_t target_last_wait_ptid;
381static struct target_waitstatus target_last_waitstatus;
382
383static void context_switch (ptid_t ptid);
384
385void init_thread_stepping_state (struct thread_info *tss);
386
387void init_infwait_state (void);
388
389static const char follow_fork_mode_child[] = "child";
390static const char follow_fork_mode_parent[] = "parent";
391
392static const char *const follow_fork_mode_kind_names[] = {
393 follow_fork_mode_child,
394 follow_fork_mode_parent,
395 NULL
396};
397
398static const char *follow_fork_mode_string = follow_fork_mode_parent;
399static void
400show_follow_fork_mode_string (struct ui_file *file, int from_tty,
401 struct cmd_list_element *c, const char *value)
402{
403 fprintf_filtered (file,
404 _("Debugger response to a program "
405 "call of fork or vfork is \"%s\".\n"),
406 value);
407}
408\f
409
410/* Tell the target to follow the fork we're stopped at. Returns true
411 if the inferior should be resumed; false, if the target for some
412 reason decided it's best not to resume. */
413
414static int
415follow_fork (void)
416{
417 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
418 int should_resume = 1;
419 struct thread_info *tp;
420
421 /* Copy user stepping state to the new inferior thread. FIXME: the
422 followed fork child thread should have a copy of most of the
423 parent thread structure's run control related fields, not just these.
424 Initialized to avoid "may be used uninitialized" warnings from gcc. */
425 struct breakpoint *step_resume_breakpoint = NULL;
426 struct breakpoint *exception_resume_breakpoint = NULL;
427 CORE_ADDR step_range_start = 0;
428 CORE_ADDR step_range_end = 0;
429 struct frame_id step_frame_id = { 0 };
430
431 if (!non_stop)
432 {
433 ptid_t wait_ptid;
434 struct target_waitstatus wait_status;
435
436 /* Get the last target status returned by target_wait(). */
437 get_last_target_status (&wait_ptid, &wait_status);
438
439 /* If not stopped at a fork event, then there's nothing else to
440 do. */
441 if (wait_status.kind != TARGET_WAITKIND_FORKED
442 && wait_status.kind != TARGET_WAITKIND_VFORKED)
443 return 1;
444
445 /* Check if we switched over from WAIT_PTID, since the event was
446 reported. */
447 if (!ptid_equal (wait_ptid, minus_one_ptid)
448 && !ptid_equal (inferior_ptid, wait_ptid))
449 {
450 /* We did. Switch back to WAIT_PTID thread, to tell the
451 target to follow it (in either direction). We'll
452 afterwards refuse to resume, and inform the user what
453 happened. */
454 switch_to_thread (wait_ptid);
455 should_resume = 0;
456 }
457 }
458
459 tp = inferior_thread ();
460
461 /* If there were any forks/vforks that were caught and are now to be
462 followed, then do so now. */
463 switch (tp->pending_follow.kind)
464 {
465 case TARGET_WAITKIND_FORKED:
466 case TARGET_WAITKIND_VFORKED:
467 {
468 ptid_t parent, child;
469
470 /* If the user did a next/step, etc, over a fork call,
471 preserve the stepping state in the fork child. */
472 if (follow_child && should_resume)
473 {
474 step_resume_breakpoint = clone_momentary_breakpoint
475 (tp->control.step_resume_breakpoint);
476 step_range_start = tp->control.step_range_start;
477 step_range_end = tp->control.step_range_end;
478 step_frame_id = tp->control.step_frame_id;
479 exception_resume_breakpoint
480 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
481
482 /* For now, delete the parent's sr breakpoint, otherwise,
483 parent/child sr breakpoints are considered duplicates,
484 and the child version will not be installed. Remove
485 this when the breakpoints module becomes aware of
486 inferiors and address spaces. */
487 delete_step_resume_breakpoint (tp);
488 tp->control.step_range_start = 0;
489 tp->control.step_range_end = 0;
490 tp->control.step_frame_id = null_frame_id;
491 delete_exception_resume_breakpoint (tp);
492 }
493
494 parent = inferior_ptid;
495 child = tp->pending_follow.value.related_pid;
496
497 /* Tell the target to do whatever is necessary to follow
498 either parent or child. */
499 if (target_follow_fork (follow_child))
500 {
501 /* Target refused to follow, or there's some other reason
502 we shouldn't resume. */
503 should_resume = 0;
504 }
505 else
506 {
507 /* This pending follow fork event is now handled, one way
508 or another. The previous selected thread may be gone
509 from the lists by now, but if it is still around, need
510 to clear the pending follow request. */
511 tp = find_thread_ptid (parent);
512 if (tp)
513 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
514
515 /* This makes sure we don't try to apply the "Switched
516 over from WAIT_PID" logic above. */
517 nullify_last_target_wait_ptid ();
518
519 /* If we followed the child, switch to it... */
520 if (follow_child)
521 {
522 switch_to_thread (child);
523
524 /* ... and preserve the stepping state, in case the
525 user was stepping over the fork call. */
526 if (should_resume)
527 {
528 tp = inferior_thread ();
529 tp->control.step_resume_breakpoint
530 = step_resume_breakpoint;
531 tp->control.step_range_start = step_range_start;
532 tp->control.step_range_end = step_range_end;
533 tp->control.step_frame_id = step_frame_id;
534 tp->control.exception_resume_breakpoint
535 = exception_resume_breakpoint;
536 }
537 else
538 {
539 /* If we get here, it was because we're trying to
540 resume from a fork catchpoint, but, the user
541 has switched threads away from the thread that
542 forked. In that case, the resume command
543 issued is most likely not applicable to the
544 child, so just warn, and refuse to resume. */
545 warning (_("Not resuming: switched threads "
546 "before following fork child.\n"));
547 }
548
549 /* Reset breakpoints in the child as appropriate. */
550 follow_inferior_reset_breakpoints ();
551 }
552 else
553 switch_to_thread (parent);
554 }
555 }
556 break;
557 case TARGET_WAITKIND_SPURIOUS:
558 /* Nothing to follow. */
559 break;
560 default:
561 internal_error (__FILE__, __LINE__,
562 "Unexpected pending_follow.kind %d\n",
563 tp->pending_follow.kind);
564 break;
565 }
566
567 return should_resume;
568}
569
570void
571follow_inferior_reset_breakpoints (void)
572{
573 struct thread_info *tp = inferior_thread ();
574
575 /* Was there a step_resume breakpoint? (There was if the user
576 did a "next" at the fork() call.) If so, explicitly reset its
577 thread number.
578
579 step_resumes are a form of bp that are made to be per-thread.
580 Since we created the step_resume bp when the parent process
581 was being debugged, and now are switching to the child process,
582 from the breakpoint package's viewpoint, that's a switch of
583 "threads". We must update the bp's notion of which thread
584 it is for, or it'll be ignored when it triggers. */
585
586 if (tp->control.step_resume_breakpoint)
587 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
588
589 if (tp->control.exception_resume_breakpoint)
590 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
591
592 /* Reinsert all breakpoints in the child. The user may have set
593 breakpoints after catching the fork, in which case those
594 were never set in the child, but only in the parent. This makes
595 sure the inserted breakpoints match the breakpoint list. */
596
597 breakpoint_re_set ();
598 insert_breakpoints ();
599}
600
601/* The child has exited or execed: resume threads of the parent the
602 user wanted to be executing. */
603
604static int
605proceed_after_vfork_done (struct thread_info *thread,
606 void *arg)
607{
608 int pid = * (int *) arg;
609
610 if (ptid_get_pid (thread->ptid) == pid
611 && is_running (thread->ptid)
612 && !is_executing (thread->ptid)
613 && !thread->stop_requested
614 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
615 {
616 if (debug_infrun)
617 fprintf_unfiltered (gdb_stdlog,
618 "infrun: resuming vfork parent thread %s\n",
619 target_pid_to_str (thread->ptid));
620
621 switch_to_thread (thread->ptid);
622 clear_proceed_status ();
623 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
624 }
625
626 return 0;
627}
628
629/* Called whenever we notice an exec or exit event, to handle
630 detaching or resuming a vfork parent. */
631
632static void
633handle_vfork_child_exec_or_exit (int exec)
634{
635 struct inferior *inf = current_inferior ();
636
637 if (inf->vfork_parent)
638 {
639 int resume_parent = -1;
640
641 /* This exec or exit marks the end of the shared memory region
642 between the parent and the child. If the user wanted to
643 detach from the parent, now is the time. */
644
645 if (inf->vfork_parent->pending_detach)
646 {
647 struct thread_info *tp;
648 struct cleanup *old_chain;
649 struct program_space *pspace;
650 struct address_space *aspace;
651
652 /* follow-fork child, detach-on-fork on. */
653
654 old_chain = make_cleanup_restore_current_thread ();
655
656 /* We're letting loose of the parent. */
657 tp = any_live_thread_of_process (inf->vfork_parent->pid);
658 switch_to_thread (tp->ptid);
659
660 /* We're about to detach from the parent, which implicitly
661 removes breakpoints from its address space. There's a
662 catch here: we want to reuse the spaces for the child,
663 but, parent/child are still sharing the pspace at this
664 point, although the exec in reality makes the kernel give
665 the child a fresh set of new pages. The problem here is
666 that the breakpoints module being unaware of this, would
667 likely chose the child process to write to the parent
668 address space. Swapping the child temporarily away from
669 the spaces has the desired effect. Yes, this is "sort
670 of" a hack. */
671
672 pspace = inf->pspace;
673 aspace = inf->aspace;
674 inf->aspace = NULL;
675 inf->pspace = NULL;
676
677 if (debug_infrun || info_verbose)
678 {
679 target_terminal_ours ();
680
681 if (exec)
682 fprintf_filtered (gdb_stdlog,
683 "Detaching vfork parent process "
684 "%d after child exec.\n",
685 inf->vfork_parent->pid);
686 else
687 fprintf_filtered (gdb_stdlog,
688 "Detaching vfork parent process "
689 "%d after child exit.\n",
690 inf->vfork_parent->pid);
691 }
692
693 target_detach (NULL, 0);
694
695 /* Put it back. */
696 inf->pspace = pspace;
697 inf->aspace = aspace;
698
699 do_cleanups (old_chain);
700 }
701 else if (exec)
702 {
703 /* We're staying attached to the parent, so, really give the
704 child a new address space. */
705 inf->pspace = add_program_space (maybe_new_address_space ());
706 inf->aspace = inf->pspace->aspace;
707 inf->removable = 1;
708 set_current_program_space (inf->pspace);
709
710 resume_parent = inf->vfork_parent->pid;
711
712 /* Break the bonds. */
713 inf->vfork_parent->vfork_child = NULL;
714 }
715 else
716 {
717 struct cleanup *old_chain;
718 struct program_space *pspace;
719
720 /* If this is a vfork child exiting, then the pspace and
721 aspaces were shared with the parent. Since we're
722 reporting the process exit, we'll be mourning all that is
723 found in the address space, and switching to null_ptid,
724 preparing to start a new inferior. But, since we don't
725 want to clobber the parent's address/program spaces, we
726 go ahead and create a new one for this exiting
727 inferior. */
728
729 /* Switch to null_ptid, so that clone_program_space doesn't want
730 to read the selected frame of a dead process. */
731 old_chain = save_inferior_ptid ();
732 inferior_ptid = null_ptid;
733
734 /* This inferior is dead, so avoid giving the breakpoints
735 module the option to write through to it (cloning a
736 program space resets breakpoints). */
737 inf->aspace = NULL;
738 inf->pspace = NULL;
739 pspace = add_program_space (maybe_new_address_space ());
740 set_current_program_space (pspace);
741 inf->removable = 1;
742 inf->symfile_flags = SYMFILE_NO_READ;
743 clone_program_space (pspace, inf->vfork_parent->pspace);
744 inf->pspace = pspace;
745 inf->aspace = pspace->aspace;
746
747 /* Put back inferior_ptid. We'll continue mourning this
748 inferior. */
749 do_cleanups (old_chain);
750
751 resume_parent = inf->vfork_parent->pid;
752 /* Break the bonds. */
753 inf->vfork_parent->vfork_child = NULL;
754 }
755
756 inf->vfork_parent = NULL;
757
758 gdb_assert (current_program_space == inf->pspace);
759
760 if (non_stop && resume_parent != -1)
761 {
762 /* If the user wanted the parent to be running, let it go
763 free now. */
764 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
765
766 if (debug_infrun)
767 fprintf_unfiltered (gdb_stdlog,
768 "infrun: resuming vfork parent process %d\n",
769 resume_parent);
770
771 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
772
773 do_cleanups (old_chain);
774 }
775 }
776}
777
778/* Enum strings for "set|show displaced-stepping". */
779
780static const char follow_exec_mode_new[] = "new";
781static const char follow_exec_mode_same[] = "same";
782static const char *const follow_exec_mode_names[] =
783{
784 follow_exec_mode_new,
785 follow_exec_mode_same,
786 NULL,
787};
788
789static const char *follow_exec_mode_string = follow_exec_mode_same;
790static void
791show_follow_exec_mode_string (struct ui_file *file, int from_tty,
792 struct cmd_list_element *c, const char *value)
793{
794 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
795}
796
797/* EXECD_PATHNAME is assumed to be non-NULL. */
798
799static void
800follow_exec (ptid_t pid, char *execd_pathname)
801{
802 struct thread_info *th = inferior_thread ();
803 struct inferior *inf = current_inferior ();
804
805 /* This is an exec event that we actually wish to pay attention to.
806 Refresh our symbol table to the newly exec'd program, remove any
807 momentary bp's, etc.
808
809 If there are breakpoints, they aren't really inserted now,
810 since the exec() transformed our inferior into a fresh set
811 of instructions.
812
813 We want to preserve symbolic breakpoints on the list, since
814 we have hopes that they can be reset after the new a.out's
815 symbol table is read.
816
817 However, any "raw" breakpoints must be removed from the list
818 (e.g., the solib bp's), since their address is probably invalid
819 now.
820
821 And, we DON'T want to call delete_breakpoints() here, since
822 that may write the bp's "shadow contents" (the instruction
823 value that was overwritten witha TRAP instruction). Since
824 we now have a new a.out, those shadow contents aren't valid. */
825
826 mark_breakpoints_out ();
827
828 update_breakpoints_after_exec ();
829
830 /* If there was one, it's gone now. We cannot truly step-to-next
831 statement through an exec(). */
832 th->control.step_resume_breakpoint = NULL;
833 th->control.exception_resume_breakpoint = NULL;
834 th->control.step_range_start = 0;
835 th->control.step_range_end = 0;
836
837 /* The target reports the exec event to the main thread, even if
838 some other thread does the exec, and even if the main thread was
839 already stopped --- if debugging in non-stop mode, it's possible
840 the user had the main thread held stopped in the previous image
841 --- release it now. This is the same behavior as step-over-exec
842 with scheduler-locking on in all-stop mode. */
843 th->stop_requested = 0;
844
845 /* What is this a.out's name? */
846 printf_unfiltered (_("%s is executing new program: %s\n"),
847 target_pid_to_str (inferior_ptid),
848 execd_pathname);
849
850 /* We've followed the inferior through an exec. Therefore, the
851 inferior has essentially been killed & reborn. */
852
853 gdb_flush (gdb_stdout);
854
855 breakpoint_init_inferior (inf_execd);
856
857 if (gdb_sysroot && *gdb_sysroot)
858 {
859 char *name = alloca (strlen (gdb_sysroot)
860 + strlen (execd_pathname)
861 + 1);
862
863 strcpy (name, gdb_sysroot);
864 strcat (name, execd_pathname);
865 execd_pathname = name;
866 }
867
868 /* Reset the shared library package. This ensures that we get a
869 shlib event when the child reaches "_start", at which point the
870 dld will have had a chance to initialize the child. */
871 /* Also, loading a symbol file below may trigger symbol lookups, and
872 we don't want those to be satisfied by the libraries of the
873 previous incarnation of this process. */
874 no_shared_libraries (NULL, 0);
875
876 if (follow_exec_mode_string == follow_exec_mode_new)
877 {
878 struct program_space *pspace;
879
880 /* The user wants to keep the old inferior and program spaces
881 around. Create a new fresh one, and switch to it. */
882
883 inf = add_inferior (current_inferior ()->pid);
884 pspace = add_program_space (maybe_new_address_space ());
885 inf->pspace = pspace;
886 inf->aspace = pspace->aspace;
887
888 exit_inferior_num_silent (current_inferior ()->num);
889
890 set_current_inferior (inf);
891 set_current_program_space (pspace);
892 }
893
894 gdb_assert (current_program_space == inf->pspace);
895
896 /* That a.out is now the one to use. */
897 exec_file_attach (execd_pathname, 0);
898
899 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
900 (Position Independent Executable) main symbol file will get applied by
901 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
902 the breakpoints with the zero displacement. */
903
904 symbol_file_add (execd_pathname,
905 (inf->symfile_flags
906 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
907 NULL, 0);
908
909 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
910 set_initial_language ();
911
912#ifdef SOLIB_CREATE_INFERIOR_HOOK
913 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
914#else
915 solib_create_inferior_hook (0);
916#endif
917
918 jit_inferior_created_hook ();
919
920 breakpoint_re_set ();
921
922 /* Reinsert all breakpoints. (Those which were symbolic have
923 been reset to the proper address in the new a.out, thanks
924 to symbol_file_command...). */
925 insert_breakpoints ();
926
927 /* The next resume of this inferior should bring it to the shlib
928 startup breakpoints. (If the user had also set bp's on
929 "main" from the old (parent) process, then they'll auto-
930 matically get reset there in the new process.). */
931}
932
933/* Non-zero if we just simulating a single-step. This is needed
934 because we cannot remove the breakpoints in the inferior process
935 until after the `wait' in `wait_for_inferior'. */
936static int singlestep_breakpoints_inserted_p = 0;
937
938/* The thread we inserted single-step breakpoints for. */
939static ptid_t singlestep_ptid;
940
941/* PC when we started this single-step. */
942static CORE_ADDR singlestep_pc;
943
944/* If another thread hit the singlestep breakpoint, we save the original
945 thread here so that we can resume single-stepping it later. */
946static ptid_t saved_singlestep_ptid;
947static int stepping_past_singlestep_breakpoint;
948
949/* If not equal to null_ptid, this means that after stepping over breakpoint
950 is finished, we need to switch to deferred_step_ptid, and step it.
951
952 The use case is when one thread has hit a breakpoint, and then the user
953 has switched to another thread and issued 'step'. We need to step over
954 breakpoint in the thread which hit the breakpoint, but then continue
955 stepping the thread user has selected. */
956static ptid_t deferred_step_ptid;
957\f
958/* Displaced stepping. */
959
960/* In non-stop debugging mode, we must take special care to manage
961 breakpoints properly; in particular, the traditional strategy for
962 stepping a thread past a breakpoint it has hit is unsuitable.
963 'Displaced stepping' is a tactic for stepping one thread past a
964 breakpoint it has hit while ensuring that other threads running
965 concurrently will hit the breakpoint as they should.
966
967 The traditional way to step a thread T off a breakpoint in a
968 multi-threaded program in all-stop mode is as follows:
969
970 a0) Initially, all threads are stopped, and breakpoints are not
971 inserted.
972 a1) We single-step T, leaving breakpoints uninserted.
973 a2) We insert breakpoints, and resume all threads.
974
975 In non-stop debugging, however, this strategy is unsuitable: we
976 don't want to have to stop all threads in the system in order to
977 continue or step T past a breakpoint. Instead, we use displaced
978 stepping:
979
980 n0) Initially, T is stopped, other threads are running, and
981 breakpoints are inserted.
982 n1) We copy the instruction "under" the breakpoint to a separate
983 location, outside the main code stream, making any adjustments
984 to the instruction, register, and memory state as directed by
985 T's architecture.
986 n2) We single-step T over the instruction at its new location.
987 n3) We adjust the resulting register and memory state as directed
988 by T's architecture. This includes resetting T's PC to point
989 back into the main instruction stream.
990 n4) We resume T.
991
992 This approach depends on the following gdbarch methods:
993
994 - gdbarch_max_insn_length and gdbarch_displaced_step_location
995 indicate where to copy the instruction, and how much space must
996 be reserved there. We use these in step n1.
997
998 - gdbarch_displaced_step_copy_insn copies a instruction to a new
999 address, and makes any necessary adjustments to the instruction,
1000 register contents, and memory. We use this in step n1.
1001
1002 - gdbarch_displaced_step_fixup adjusts registers and memory after
1003 we have successfuly single-stepped the instruction, to yield the
1004 same effect the instruction would have had if we had executed it
1005 at its original address. We use this in step n3.
1006
1007 - gdbarch_displaced_step_free_closure provides cleanup.
1008
1009 The gdbarch_displaced_step_copy_insn and
1010 gdbarch_displaced_step_fixup functions must be written so that
1011 copying an instruction with gdbarch_displaced_step_copy_insn,
1012 single-stepping across the copied instruction, and then applying
1013 gdbarch_displaced_insn_fixup should have the same effects on the
1014 thread's memory and registers as stepping the instruction in place
1015 would have. Exactly which responsibilities fall to the copy and
1016 which fall to the fixup is up to the author of those functions.
1017
1018 See the comments in gdbarch.sh for details.
1019
1020 Note that displaced stepping and software single-step cannot
1021 currently be used in combination, although with some care I think
1022 they could be made to. Software single-step works by placing
1023 breakpoints on all possible subsequent instructions; if the
1024 displaced instruction is a PC-relative jump, those breakpoints
1025 could fall in very strange places --- on pages that aren't
1026 executable, or at addresses that are not proper instruction
1027 boundaries. (We do generally let other threads run while we wait
1028 to hit the software single-step breakpoint, and they might
1029 encounter such a corrupted instruction.) One way to work around
1030 this would be to have gdbarch_displaced_step_copy_insn fully
1031 simulate the effect of PC-relative instructions (and return NULL)
1032 on architectures that use software single-stepping.
1033
1034 In non-stop mode, we can have independent and simultaneous step
1035 requests, so more than one thread may need to simultaneously step
1036 over a breakpoint. The current implementation assumes there is
1037 only one scratch space per process. In this case, we have to
1038 serialize access to the scratch space. If thread A wants to step
1039 over a breakpoint, but we are currently waiting for some other
1040 thread to complete a displaced step, we leave thread A stopped and
1041 place it in the displaced_step_request_queue. Whenever a displaced
1042 step finishes, we pick the next thread in the queue and start a new
1043 displaced step operation on it. See displaced_step_prepare and
1044 displaced_step_fixup for details. */
1045
1046struct displaced_step_request
1047{
1048 ptid_t ptid;
1049 struct displaced_step_request *next;
1050};
1051
1052/* Per-inferior displaced stepping state. */
1053struct displaced_step_inferior_state
1054{
1055 /* Pointer to next in linked list. */
1056 struct displaced_step_inferior_state *next;
1057
1058 /* The process this displaced step state refers to. */
1059 int pid;
1060
1061 /* A queue of pending displaced stepping requests. One entry per
1062 thread that needs to do a displaced step. */
1063 struct displaced_step_request *step_request_queue;
1064
1065 /* If this is not null_ptid, this is the thread carrying out a
1066 displaced single-step in process PID. This thread's state will
1067 require fixing up once it has completed its step. */
1068 ptid_t step_ptid;
1069
1070 /* The architecture the thread had when we stepped it. */
1071 struct gdbarch *step_gdbarch;
1072
1073 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1074 for post-step cleanup. */
1075 struct displaced_step_closure *step_closure;
1076
1077 /* The address of the original instruction, and the copy we
1078 made. */
1079 CORE_ADDR step_original, step_copy;
1080
1081 /* Saved contents of copy area. */
1082 gdb_byte *step_saved_copy;
1083};
1084
1085/* The list of states of processes involved in displaced stepping
1086 presently. */
1087static struct displaced_step_inferior_state *displaced_step_inferior_states;
1088
1089/* Get the displaced stepping state of process PID. */
1090
1091static struct displaced_step_inferior_state *
1092get_displaced_stepping_state (int pid)
1093{
1094 struct displaced_step_inferior_state *state;
1095
1096 for (state = displaced_step_inferior_states;
1097 state != NULL;
1098 state = state->next)
1099 if (state->pid == pid)
1100 return state;
1101
1102 return NULL;
1103}
1104
1105/* Add a new displaced stepping state for process PID to the displaced
1106 stepping state list, or return a pointer to an already existing
1107 entry, if it already exists. Never returns NULL. */
1108
1109static struct displaced_step_inferior_state *
1110add_displaced_stepping_state (int pid)
1111{
1112 struct displaced_step_inferior_state *state;
1113
1114 for (state = displaced_step_inferior_states;
1115 state != NULL;
1116 state = state->next)
1117 if (state->pid == pid)
1118 return state;
1119
1120 state = xcalloc (1, sizeof (*state));
1121 state->pid = pid;
1122 state->next = displaced_step_inferior_states;
1123 displaced_step_inferior_states = state;
1124
1125 return state;
1126}
1127
1128/* If inferior is in displaced stepping, and ADDR equals to starting address
1129 of copy area, return corresponding displaced_step_closure. Otherwise,
1130 return NULL. */
1131
1132struct displaced_step_closure*
1133get_displaced_step_closure_by_addr (CORE_ADDR addr)
1134{
1135 struct displaced_step_inferior_state *displaced
1136 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1137
1138 /* If checking the mode of displaced instruction in copy area. */
1139 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1140 && (displaced->step_copy == addr))
1141 return displaced->step_closure;
1142
1143 return NULL;
1144}
1145
1146/* Remove the displaced stepping state of process PID. */
1147
1148static void
1149remove_displaced_stepping_state (int pid)
1150{
1151 struct displaced_step_inferior_state *it, **prev_next_p;
1152
1153 gdb_assert (pid != 0);
1154
1155 it = displaced_step_inferior_states;
1156 prev_next_p = &displaced_step_inferior_states;
1157 while (it)
1158 {
1159 if (it->pid == pid)
1160 {
1161 *prev_next_p = it->next;
1162 xfree (it);
1163 return;
1164 }
1165
1166 prev_next_p = &it->next;
1167 it = *prev_next_p;
1168 }
1169}
1170
1171static void
1172infrun_inferior_exit (struct inferior *inf)
1173{
1174 remove_displaced_stepping_state (inf->pid);
1175}
1176
1177/* Enum strings for "set|show displaced-stepping". */
1178
1179static const char can_use_displaced_stepping_auto[] = "auto";
1180static const char can_use_displaced_stepping_on[] = "on";
1181static const char can_use_displaced_stepping_off[] = "off";
1182static const char *const can_use_displaced_stepping_enum[] =
1183{
1184 can_use_displaced_stepping_auto,
1185 can_use_displaced_stepping_on,
1186 can_use_displaced_stepping_off,
1187 NULL,
1188};
1189
1190/* If ON, and the architecture supports it, GDB will use displaced
1191 stepping to step over breakpoints. If OFF, or if the architecture
1192 doesn't support it, GDB will instead use the traditional
1193 hold-and-step approach. If AUTO (which is the default), GDB will
1194 decide which technique to use to step over breakpoints depending on
1195 which of all-stop or non-stop mode is active --- displaced stepping
1196 in non-stop mode; hold-and-step in all-stop mode. */
1197
1198static const char *can_use_displaced_stepping =
1199 can_use_displaced_stepping_auto;
1200
1201static void
1202show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1203 struct cmd_list_element *c,
1204 const char *value)
1205{
1206 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1207 fprintf_filtered (file,
1208 _("Debugger's willingness to use displaced stepping "
1209 "to step over breakpoints is %s (currently %s).\n"),
1210 value, non_stop ? "on" : "off");
1211 else
1212 fprintf_filtered (file,
1213 _("Debugger's willingness to use displaced stepping "
1214 "to step over breakpoints is %s.\n"), value);
1215}
1216
1217/* Return non-zero if displaced stepping can/should be used to step
1218 over breakpoints. */
1219
1220static int
1221use_displaced_stepping (struct gdbarch *gdbarch)
1222{
1223 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1224 && non_stop)
1225 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1226 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1227 && !RECORD_IS_USED);
1228}
1229
1230/* Clean out any stray displaced stepping state. */
1231static void
1232displaced_step_clear (struct displaced_step_inferior_state *displaced)
1233{
1234 /* Indicate that there is no cleanup pending. */
1235 displaced->step_ptid = null_ptid;
1236
1237 if (displaced->step_closure)
1238 {
1239 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1240 displaced->step_closure);
1241 displaced->step_closure = NULL;
1242 }
1243}
1244
1245static void
1246displaced_step_clear_cleanup (void *arg)
1247{
1248 struct displaced_step_inferior_state *state = arg;
1249
1250 displaced_step_clear (state);
1251}
1252
1253/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1254void
1255displaced_step_dump_bytes (struct ui_file *file,
1256 const gdb_byte *buf,
1257 size_t len)
1258{
1259 int i;
1260
1261 for (i = 0; i < len; i++)
1262 fprintf_unfiltered (file, "%02x ", buf[i]);
1263 fputs_unfiltered ("\n", file);
1264}
1265
1266/* Prepare to single-step, using displaced stepping.
1267
1268 Note that we cannot use displaced stepping when we have a signal to
1269 deliver. If we have a signal to deliver and an instruction to step
1270 over, then after the step, there will be no indication from the
1271 target whether the thread entered a signal handler or ignored the
1272 signal and stepped over the instruction successfully --- both cases
1273 result in a simple SIGTRAP. In the first case we mustn't do a
1274 fixup, and in the second case we must --- but we can't tell which.
1275 Comments in the code for 'random signals' in handle_inferior_event
1276 explain how we handle this case instead.
1277
1278 Returns 1 if preparing was successful -- this thread is going to be
1279 stepped now; or 0 if displaced stepping this thread got queued. */
1280static int
1281displaced_step_prepare (ptid_t ptid)
1282{
1283 struct cleanup *old_cleanups, *ignore_cleanups;
1284 struct regcache *regcache = get_thread_regcache (ptid);
1285 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1286 CORE_ADDR original, copy;
1287 ULONGEST len;
1288 struct displaced_step_closure *closure;
1289 struct displaced_step_inferior_state *displaced;
1290
1291 /* We should never reach this function if the architecture does not
1292 support displaced stepping. */
1293 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1294
1295 /* We have to displaced step one thread at a time, as we only have
1296 access to a single scratch space per inferior. */
1297
1298 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1299
1300 if (!ptid_equal (displaced->step_ptid, null_ptid))
1301 {
1302 /* Already waiting for a displaced step to finish. Defer this
1303 request and place in queue. */
1304 struct displaced_step_request *req, *new_req;
1305
1306 if (debug_displaced)
1307 fprintf_unfiltered (gdb_stdlog,
1308 "displaced: defering step of %s\n",
1309 target_pid_to_str (ptid));
1310
1311 new_req = xmalloc (sizeof (*new_req));
1312 new_req->ptid = ptid;
1313 new_req->next = NULL;
1314
1315 if (displaced->step_request_queue)
1316 {
1317 for (req = displaced->step_request_queue;
1318 req && req->next;
1319 req = req->next)
1320 ;
1321 req->next = new_req;
1322 }
1323 else
1324 displaced->step_request_queue = new_req;
1325
1326 return 0;
1327 }
1328 else
1329 {
1330 if (debug_displaced)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "displaced: stepping %s now\n",
1333 target_pid_to_str (ptid));
1334 }
1335
1336 displaced_step_clear (displaced);
1337
1338 old_cleanups = save_inferior_ptid ();
1339 inferior_ptid = ptid;
1340
1341 original = regcache_read_pc (regcache);
1342
1343 copy = gdbarch_displaced_step_location (gdbarch);
1344 len = gdbarch_max_insn_length (gdbarch);
1345
1346 /* Save the original contents of the copy area. */
1347 displaced->step_saved_copy = xmalloc (len);
1348 ignore_cleanups = make_cleanup (free_current_contents,
1349 &displaced->step_saved_copy);
1350 read_memory (copy, displaced->step_saved_copy, len);
1351 if (debug_displaced)
1352 {
1353 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1354 paddress (gdbarch, copy));
1355 displaced_step_dump_bytes (gdb_stdlog,
1356 displaced->step_saved_copy,
1357 len);
1358 };
1359
1360 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1361 original, copy, regcache);
1362
1363 /* We don't support the fully-simulated case at present. */
1364 gdb_assert (closure);
1365
1366 /* Save the information we need to fix things up if the step
1367 succeeds. */
1368 displaced->step_ptid = ptid;
1369 displaced->step_gdbarch = gdbarch;
1370 displaced->step_closure = closure;
1371 displaced->step_original = original;
1372 displaced->step_copy = copy;
1373
1374 make_cleanup (displaced_step_clear_cleanup, displaced);
1375
1376 /* Resume execution at the copy. */
1377 regcache_write_pc (regcache, copy);
1378
1379 discard_cleanups (ignore_cleanups);
1380
1381 do_cleanups (old_cleanups);
1382
1383 if (debug_displaced)
1384 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1385 paddress (gdbarch, copy));
1386
1387 return 1;
1388}
1389
1390static void
1391write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1392 const gdb_byte *myaddr, int len)
1393{
1394 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1395
1396 inferior_ptid = ptid;
1397 write_memory (memaddr, myaddr, len);
1398 do_cleanups (ptid_cleanup);
1399}
1400
1401/* Restore the contents of the copy area for thread PTID. */
1402
1403static void
1404displaced_step_restore (struct displaced_step_inferior_state *displaced,
1405 ptid_t ptid)
1406{
1407 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1408
1409 write_memory_ptid (ptid, displaced->step_copy,
1410 displaced->step_saved_copy, len);
1411 if (debug_displaced)
1412 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1413 target_pid_to_str (ptid),
1414 paddress (displaced->step_gdbarch,
1415 displaced->step_copy));
1416}
1417
1418static void
1419displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1420{
1421 struct cleanup *old_cleanups;
1422 struct displaced_step_inferior_state *displaced
1423 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1424
1425 /* Was any thread of this process doing a displaced step? */
1426 if (displaced == NULL)
1427 return;
1428
1429 /* Was this event for the pid we displaced? */
1430 if (ptid_equal (displaced->step_ptid, null_ptid)
1431 || ! ptid_equal (displaced->step_ptid, event_ptid))
1432 return;
1433
1434 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1435
1436 displaced_step_restore (displaced, displaced->step_ptid);
1437
1438 /* Did the instruction complete successfully? */
1439 if (signal == TARGET_SIGNAL_TRAP)
1440 {
1441 /* Fix up the resulting state. */
1442 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1443 displaced->step_closure,
1444 displaced->step_original,
1445 displaced->step_copy,
1446 get_thread_regcache (displaced->step_ptid));
1447 }
1448 else
1449 {
1450 /* Since the instruction didn't complete, all we can do is
1451 relocate the PC. */
1452 struct regcache *regcache = get_thread_regcache (event_ptid);
1453 CORE_ADDR pc = regcache_read_pc (regcache);
1454
1455 pc = displaced->step_original + (pc - displaced->step_copy);
1456 regcache_write_pc (regcache, pc);
1457 }
1458
1459 do_cleanups (old_cleanups);
1460
1461 displaced->step_ptid = null_ptid;
1462
1463 /* Are there any pending displaced stepping requests? If so, run
1464 one now. Leave the state object around, since we're likely to
1465 need it again soon. */
1466 while (displaced->step_request_queue)
1467 {
1468 struct displaced_step_request *head;
1469 ptid_t ptid;
1470 struct regcache *regcache;
1471 struct gdbarch *gdbarch;
1472 CORE_ADDR actual_pc;
1473 struct address_space *aspace;
1474
1475 head = displaced->step_request_queue;
1476 ptid = head->ptid;
1477 displaced->step_request_queue = head->next;
1478 xfree (head);
1479
1480 context_switch (ptid);
1481
1482 regcache = get_thread_regcache (ptid);
1483 actual_pc = regcache_read_pc (regcache);
1484 aspace = get_regcache_aspace (regcache);
1485
1486 if (breakpoint_here_p (aspace, actual_pc))
1487 {
1488 if (debug_displaced)
1489 fprintf_unfiltered (gdb_stdlog,
1490 "displaced: stepping queued %s now\n",
1491 target_pid_to_str (ptid));
1492
1493 displaced_step_prepare (ptid);
1494
1495 gdbarch = get_regcache_arch (regcache);
1496
1497 if (debug_displaced)
1498 {
1499 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1500 gdb_byte buf[4];
1501
1502 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1503 paddress (gdbarch, actual_pc));
1504 read_memory (actual_pc, buf, sizeof (buf));
1505 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1506 }
1507
1508 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1509 displaced->step_closure))
1510 target_resume (ptid, 1, TARGET_SIGNAL_0);
1511 else
1512 target_resume (ptid, 0, TARGET_SIGNAL_0);
1513
1514 /* Done, we're stepping a thread. */
1515 break;
1516 }
1517 else
1518 {
1519 int step;
1520 struct thread_info *tp = inferior_thread ();
1521
1522 /* The breakpoint we were sitting under has since been
1523 removed. */
1524 tp->control.trap_expected = 0;
1525
1526 /* Go back to what we were trying to do. */
1527 step = currently_stepping (tp);
1528
1529 if (debug_displaced)
1530 fprintf_unfiltered (gdb_stdlog,
1531 "breakpoint is gone %s: step(%d)\n",
1532 target_pid_to_str (tp->ptid), step);
1533
1534 target_resume (ptid, step, TARGET_SIGNAL_0);
1535 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1536
1537 /* This request was discarded. See if there's any other
1538 thread waiting for its turn. */
1539 }
1540 }
1541}
1542
1543/* Update global variables holding ptids to hold NEW_PTID if they were
1544 holding OLD_PTID. */
1545static void
1546infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1547{
1548 struct displaced_step_request *it;
1549 struct displaced_step_inferior_state *displaced;
1550
1551 if (ptid_equal (inferior_ptid, old_ptid))
1552 inferior_ptid = new_ptid;
1553
1554 if (ptid_equal (singlestep_ptid, old_ptid))
1555 singlestep_ptid = new_ptid;
1556
1557 if (ptid_equal (deferred_step_ptid, old_ptid))
1558 deferred_step_ptid = new_ptid;
1559
1560 for (displaced = displaced_step_inferior_states;
1561 displaced;
1562 displaced = displaced->next)
1563 {
1564 if (ptid_equal (displaced->step_ptid, old_ptid))
1565 displaced->step_ptid = new_ptid;
1566
1567 for (it = displaced->step_request_queue; it; it = it->next)
1568 if (ptid_equal (it->ptid, old_ptid))
1569 it->ptid = new_ptid;
1570 }
1571}
1572
1573\f
1574/* Resuming. */
1575
1576/* Things to clean up if we QUIT out of resume (). */
1577static void
1578resume_cleanups (void *ignore)
1579{
1580 normal_stop ();
1581}
1582
1583static const char schedlock_off[] = "off";
1584static const char schedlock_on[] = "on";
1585static const char schedlock_step[] = "step";
1586static const char *const scheduler_enums[] = {
1587 schedlock_off,
1588 schedlock_on,
1589 schedlock_step,
1590 NULL
1591};
1592static const char *scheduler_mode = schedlock_off;
1593static void
1594show_scheduler_mode (struct ui_file *file, int from_tty,
1595 struct cmd_list_element *c, const char *value)
1596{
1597 fprintf_filtered (file,
1598 _("Mode for locking scheduler "
1599 "during execution is \"%s\".\n"),
1600 value);
1601}
1602
1603static void
1604set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1605{
1606 if (!target_can_lock_scheduler)
1607 {
1608 scheduler_mode = schedlock_off;
1609 error (_("Target '%s' cannot support this command."), target_shortname);
1610 }
1611}
1612
1613/* True if execution commands resume all threads of all processes by
1614 default; otherwise, resume only threads of the current inferior
1615 process. */
1616int sched_multi = 0;
1617
1618/* Try to setup for software single stepping over the specified location.
1619 Return 1 if target_resume() should use hardware single step.
1620
1621 GDBARCH the current gdbarch.
1622 PC the location to step over. */
1623
1624static int
1625maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1626{
1627 int hw_step = 1;
1628
1629 if (execution_direction == EXEC_FORWARD
1630 && gdbarch_software_single_step_p (gdbarch)
1631 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1632 {
1633 hw_step = 0;
1634 /* Do not pull these breakpoints until after a `wait' in
1635 `wait_for_inferior'. */
1636 singlestep_breakpoints_inserted_p = 1;
1637 singlestep_ptid = inferior_ptid;
1638 singlestep_pc = pc;
1639 }
1640 return hw_step;
1641}
1642
1643/* Return a ptid representing the set of threads that we will proceed,
1644 in the perspective of the user/frontend. We may actually resume
1645 fewer threads at first, e.g., if a thread is stopped at a
1646 breakpoint that needs stepping-off, but that should not be visible
1647 to the user/frontend, and neither should the frontend/user be
1648 allowed to proceed any of the threads that happen to be stopped for
1649 internal run control handling, if a previous command wanted them
1650 resumed. */
1651
1652ptid_t
1653user_visible_resume_ptid (int step)
1654{
1655 /* By default, resume all threads of all processes. */
1656 ptid_t resume_ptid = RESUME_ALL;
1657
1658 /* Maybe resume only all threads of the current process. */
1659 if (!sched_multi && target_supports_multi_process ())
1660 {
1661 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1662 }
1663
1664 /* Maybe resume a single thread after all. */
1665 if (non_stop)
1666 {
1667 /* With non-stop mode on, threads are always handled
1668 individually. */
1669 resume_ptid = inferior_ptid;
1670 }
1671 else if ((scheduler_mode == schedlock_on)
1672 || (scheduler_mode == schedlock_step
1673 && (step || singlestep_breakpoints_inserted_p)))
1674 {
1675 /* User-settable 'scheduler' mode requires solo thread resume. */
1676 resume_ptid = inferior_ptid;
1677 }
1678
1679 return resume_ptid;
1680}
1681
1682/* Resume the inferior, but allow a QUIT. This is useful if the user
1683 wants to interrupt some lengthy single-stepping operation
1684 (for child processes, the SIGINT goes to the inferior, and so
1685 we get a SIGINT random_signal, but for remote debugging and perhaps
1686 other targets, that's not true).
1687
1688 STEP nonzero if we should step (zero to continue instead).
1689 SIG is the signal to give the inferior (zero for none). */
1690void
1691resume (int step, enum target_signal sig)
1692{
1693 int should_resume = 1;
1694 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1695 struct regcache *regcache = get_current_regcache ();
1696 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1697 struct thread_info *tp = inferior_thread ();
1698 CORE_ADDR pc = regcache_read_pc (regcache);
1699 struct address_space *aspace = get_regcache_aspace (regcache);
1700
1701 QUIT;
1702
1703 if (current_inferior ()->waiting_for_vfork_done)
1704 {
1705 /* Don't try to single-step a vfork parent that is waiting for
1706 the child to get out of the shared memory region (by exec'ing
1707 or exiting). This is particularly important on software
1708 single-step archs, as the child process would trip on the
1709 software single step breakpoint inserted for the parent
1710 process. Since the parent will not actually execute any
1711 instruction until the child is out of the shared region (such
1712 are vfork's semantics), it is safe to simply continue it.
1713 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1714 the parent, and tell it to `keep_going', which automatically
1715 re-sets it stepping. */
1716 if (debug_infrun)
1717 fprintf_unfiltered (gdb_stdlog,
1718 "infrun: resume : clear step\n");
1719 step = 0;
1720 }
1721
1722 if (debug_infrun)
1723 fprintf_unfiltered (gdb_stdlog,
1724 "infrun: resume (step=%d, signal=%d), "
1725 "trap_expected=%d, current thread [%s] at %s\n",
1726 step, sig, tp->control.trap_expected,
1727 target_pid_to_str (inferior_ptid),
1728 paddress (gdbarch, pc));
1729
1730 /* Normally, by the time we reach `resume', the breakpoints are either
1731 removed or inserted, as appropriate. The exception is if we're sitting
1732 at a permanent breakpoint; we need to step over it, but permanent
1733 breakpoints can't be removed. So we have to test for it here. */
1734 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1735 {
1736 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1737 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1738 else
1739 error (_("\
1740The program is stopped at a permanent breakpoint, but GDB does not know\n\
1741how to step past a permanent breakpoint on this architecture. Try using\n\
1742a command like `return' or `jump' to continue execution."));
1743 }
1744
1745 /* If enabled, step over breakpoints by executing a copy of the
1746 instruction at a different address.
1747
1748 We can't use displaced stepping when we have a signal to deliver;
1749 the comments for displaced_step_prepare explain why. The
1750 comments in the handle_inferior event for dealing with 'random
1751 signals' explain what we do instead.
1752
1753 We can't use displaced stepping when we are waiting for vfork_done
1754 event, displaced stepping breaks the vfork child similarly as single
1755 step software breakpoint. */
1756 if (use_displaced_stepping (gdbarch)
1757 && (tp->control.trap_expected
1758 || (step && gdbarch_software_single_step_p (gdbarch)))
1759 && sig == TARGET_SIGNAL_0
1760 && !current_inferior ()->waiting_for_vfork_done)
1761 {
1762 struct displaced_step_inferior_state *displaced;
1763
1764 if (!displaced_step_prepare (inferior_ptid))
1765 {
1766 /* Got placed in displaced stepping queue. Will be resumed
1767 later when all the currently queued displaced stepping
1768 requests finish. The thread is not executing at this point,
1769 and the call to set_executing will be made later. But we
1770 need to call set_running here, since from frontend point of view,
1771 the thread is running. */
1772 set_running (inferior_ptid, 1);
1773 discard_cleanups (old_cleanups);
1774 return;
1775 }
1776
1777 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1778 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1779 displaced->step_closure);
1780 }
1781
1782 /* Do we need to do it the hard way, w/temp breakpoints? */
1783 else if (step)
1784 step = maybe_software_singlestep (gdbarch, pc);
1785
1786 /* Currently, our software single-step implementation leads to different
1787 results than hardware single-stepping in one situation: when stepping
1788 into delivering a signal which has an associated signal handler,
1789 hardware single-step will stop at the first instruction of the handler,
1790 while software single-step will simply skip execution of the handler.
1791
1792 For now, this difference in behavior is accepted since there is no
1793 easy way to actually implement single-stepping into a signal handler
1794 without kernel support.
1795
1796 However, there is one scenario where this difference leads to follow-on
1797 problems: if we're stepping off a breakpoint by removing all breakpoints
1798 and then single-stepping. In this case, the software single-step
1799 behavior means that even if there is a *breakpoint* in the signal
1800 handler, GDB still would not stop.
1801
1802 Fortunately, we can at least fix this particular issue. We detect
1803 here the case where we are about to deliver a signal while software
1804 single-stepping with breakpoints removed. In this situation, we
1805 revert the decisions to remove all breakpoints and insert single-
1806 step breakpoints, and instead we install a step-resume breakpoint
1807 at the current address, deliver the signal without stepping, and
1808 once we arrive back at the step-resume breakpoint, actually step
1809 over the breakpoint we originally wanted to step over. */
1810 if (singlestep_breakpoints_inserted_p
1811 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1812 {
1813 /* If we have nested signals or a pending signal is delivered
1814 immediately after a handler returns, might might already have
1815 a step-resume breakpoint set on the earlier handler. We cannot
1816 set another step-resume breakpoint; just continue on until the
1817 original breakpoint is hit. */
1818 if (tp->control.step_resume_breakpoint == NULL)
1819 {
1820 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1821 tp->step_after_step_resume_breakpoint = 1;
1822 }
1823
1824 remove_single_step_breakpoints ();
1825 singlestep_breakpoints_inserted_p = 0;
1826
1827 insert_breakpoints ();
1828 tp->control.trap_expected = 0;
1829 }
1830
1831 if (should_resume)
1832 {
1833 ptid_t resume_ptid;
1834
1835 /* If STEP is set, it's a request to use hardware stepping
1836 facilities. But in that case, we should never
1837 use singlestep breakpoint. */
1838 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1839
1840 /* Decide the set of threads to ask the target to resume. Start
1841 by assuming everything will be resumed, than narrow the set
1842 by applying increasingly restricting conditions. */
1843 resume_ptid = user_visible_resume_ptid (step);
1844
1845 /* Maybe resume a single thread after all. */
1846 if (singlestep_breakpoints_inserted_p
1847 && stepping_past_singlestep_breakpoint)
1848 {
1849 /* The situation here is as follows. In thread T1 we wanted to
1850 single-step. Lacking hardware single-stepping we've
1851 set breakpoint at the PC of the next instruction -- call it
1852 P. After resuming, we've hit that breakpoint in thread T2.
1853 Now we've removed original breakpoint, inserted breakpoint
1854 at P+1, and try to step to advance T2 past breakpoint.
1855 We need to step only T2, as if T1 is allowed to freely run,
1856 it can run past P, and if other threads are allowed to run,
1857 they can hit breakpoint at P+1, and nested hits of single-step
1858 breakpoints is not something we'd want -- that's complicated
1859 to support, and has no value. */
1860 resume_ptid = inferior_ptid;
1861 }
1862 else if ((step || singlestep_breakpoints_inserted_p)
1863 && tp->control.trap_expected)
1864 {
1865 /* We're allowing a thread to run past a breakpoint it has
1866 hit, by single-stepping the thread with the breakpoint
1867 removed. In which case, we need to single-step only this
1868 thread, and keep others stopped, as they can miss this
1869 breakpoint if allowed to run.
1870
1871 The current code actually removes all breakpoints when
1872 doing this, not just the one being stepped over, so if we
1873 let other threads run, we can actually miss any
1874 breakpoint, not just the one at PC. */
1875 resume_ptid = inferior_ptid;
1876 }
1877
1878 if (gdbarch_cannot_step_breakpoint (gdbarch))
1879 {
1880 /* Most targets can step a breakpoint instruction, thus
1881 executing it normally. But if this one cannot, just
1882 continue and we will hit it anyway. */
1883 if (step && breakpoint_inserted_here_p (aspace, pc))
1884 step = 0;
1885 }
1886
1887 if (debug_displaced
1888 && use_displaced_stepping (gdbarch)
1889 && tp->control.trap_expected)
1890 {
1891 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1892 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1893 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1894 gdb_byte buf[4];
1895
1896 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1897 paddress (resume_gdbarch, actual_pc));
1898 read_memory (actual_pc, buf, sizeof (buf));
1899 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1900 }
1901
1902 /* Install inferior's terminal modes. */
1903 target_terminal_inferior ();
1904
1905 /* Avoid confusing the next resume, if the next stop/resume
1906 happens to apply to another thread. */
1907 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1908
1909 /* Advise target which signals may be handled silently. If we have
1910 removed breakpoints because we are stepping over one (which can
1911 happen only if we are not using displaced stepping), we need to
1912 receive all signals to avoid accidentally skipping a breakpoint
1913 during execution of a signal handler. */
1914 if ((step || singlestep_breakpoints_inserted_p)
1915 && tp->control.trap_expected
1916 && !use_displaced_stepping (gdbarch))
1917 target_pass_signals (0, NULL);
1918 else
1919 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1920
1921 target_resume (resume_ptid, step, sig);
1922 }
1923
1924 discard_cleanups (old_cleanups);
1925}
1926\f
1927/* Proceeding. */
1928
1929/* Clear out all variables saying what to do when inferior is continued.
1930 First do this, then set the ones you want, then call `proceed'. */
1931
1932static void
1933clear_proceed_status_thread (struct thread_info *tp)
1934{
1935 if (debug_infrun)
1936 fprintf_unfiltered (gdb_stdlog,
1937 "infrun: clear_proceed_status_thread (%s)\n",
1938 target_pid_to_str (tp->ptid));
1939
1940 tp->control.trap_expected = 0;
1941 tp->control.step_range_start = 0;
1942 tp->control.step_range_end = 0;
1943 tp->control.step_frame_id = null_frame_id;
1944 tp->control.step_stack_frame_id = null_frame_id;
1945 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1946 tp->stop_requested = 0;
1947
1948 tp->control.stop_step = 0;
1949
1950 tp->control.proceed_to_finish = 0;
1951
1952 /* Discard any remaining commands or status from previous stop. */
1953 bpstat_clear (&tp->control.stop_bpstat);
1954}
1955
1956static int
1957clear_proceed_status_callback (struct thread_info *tp, void *data)
1958{
1959 if (is_exited (tp->ptid))
1960 return 0;
1961
1962 clear_proceed_status_thread (tp);
1963 return 0;
1964}
1965
1966void
1967clear_proceed_status (void)
1968{
1969 if (!non_stop)
1970 {
1971 /* In all-stop mode, delete the per-thread status of all
1972 threads, even if inferior_ptid is null_ptid, there may be
1973 threads on the list. E.g., we may be launching a new
1974 process, while selecting the executable. */
1975 iterate_over_threads (clear_proceed_status_callback, NULL);
1976 }
1977
1978 if (!ptid_equal (inferior_ptid, null_ptid))
1979 {
1980 struct inferior *inferior;
1981
1982 if (non_stop)
1983 {
1984 /* If in non-stop mode, only delete the per-thread status of
1985 the current thread. */
1986 clear_proceed_status_thread (inferior_thread ());
1987 }
1988
1989 inferior = current_inferior ();
1990 inferior->control.stop_soon = NO_STOP_QUIETLY;
1991 }
1992
1993 stop_after_trap = 0;
1994
1995 observer_notify_about_to_proceed ();
1996
1997 if (stop_registers)
1998 {
1999 regcache_xfree (stop_registers);
2000 stop_registers = NULL;
2001 }
2002}
2003
2004/* Check the current thread against the thread that reported the most recent
2005 event. If a step-over is required return TRUE and set the current thread
2006 to the old thread. Otherwise return FALSE.
2007
2008 This should be suitable for any targets that support threads. */
2009
2010static int
2011prepare_to_proceed (int step)
2012{
2013 ptid_t wait_ptid;
2014 struct target_waitstatus wait_status;
2015 int schedlock_enabled;
2016
2017 /* With non-stop mode on, threads are always handled individually. */
2018 gdb_assert (! non_stop);
2019
2020 /* Get the last target status returned by target_wait(). */
2021 get_last_target_status (&wait_ptid, &wait_status);
2022
2023 /* Make sure we were stopped at a breakpoint. */
2024 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2025 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
2026 && wait_status.value.sig != TARGET_SIGNAL_ILL
2027 && wait_status.value.sig != TARGET_SIGNAL_SEGV
2028 && wait_status.value.sig != TARGET_SIGNAL_EMT))
2029 {
2030 return 0;
2031 }
2032
2033 schedlock_enabled = (scheduler_mode == schedlock_on
2034 || (scheduler_mode == schedlock_step
2035 && step));
2036
2037 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2038 if (schedlock_enabled)
2039 return 0;
2040
2041 /* Don't switch over if we're about to resume some other process
2042 other than WAIT_PTID's, and schedule-multiple is off. */
2043 if (!sched_multi
2044 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2045 return 0;
2046
2047 /* Switched over from WAIT_PID. */
2048 if (!ptid_equal (wait_ptid, minus_one_ptid)
2049 && !ptid_equal (inferior_ptid, wait_ptid))
2050 {
2051 struct regcache *regcache = get_thread_regcache (wait_ptid);
2052
2053 if (breakpoint_here_p (get_regcache_aspace (regcache),
2054 regcache_read_pc (regcache)))
2055 {
2056 /* If stepping, remember current thread to switch back to. */
2057 if (step)
2058 deferred_step_ptid = inferior_ptid;
2059
2060 /* Switch back to WAIT_PID thread. */
2061 switch_to_thread (wait_ptid);
2062
2063 if (debug_infrun)
2064 fprintf_unfiltered (gdb_stdlog,
2065 "infrun: prepare_to_proceed (step=%d), "
2066 "switched to [%s]\n",
2067 step, target_pid_to_str (inferior_ptid));
2068
2069 /* We return 1 to indicate that there is a breakpoint here,
2070 so we need to step over it before continuing to avoid
2071 hitting it straight away. */
2072 return 1;
2073 }
2074 }
2075
2076 return 0;
2077}
2078
2079/* Basic routine for continuing the program in various fashions.
2080
2081 ADDR is the address to resume at, or -1 for resume where stopped.
2082 SIGGNAL is the signal to give it, or 0 for none,
2083 or -1 for act according to how it stopped.
2084 STEP is nonzero if should trap after one instruction.
2085 -1 means return after that and print nothing.
2086 You should probably set various step_... variables
2087 before calling here, if you are stepping.
2088
2089 You should call clear_proceed_status before calling proceed. */
2090
2091void
2092proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
2093{
2094 struct regcache *regcache;
2095 struct gdbarch *gdbarch;
2096 struct thread_info *tp;
2097 CORE_ADDR pc;
2098 struct address_space *aspace;
2099 int oneproc = 0;
2100
2101 /* If we're stopped at a fork/vfork, follow the branch set by the
2102 "set follow-fork-mode" command; otherwise, we'll just proceed
2103 resuming the current thread. */
2104 if (!follow_fork ())
2105 {
2106 /* The target for some reason decided not to resume. */
2107 normal_stop ();
2108 if (target_can_async_p ())
2109 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2110 return;
2111 }
2112
2113 /* We'll update this if & when we switch to a new thread. */
2114 previous_inferior_ptid = inferior_ptid;
2115
2116 regcache = get_current_regcache ();
2117 gdbarch = get_regcache_arch (regcache);
2118 aspace = get_regcache_aspace (regcache);
2119 pc = regcache_read_pc (regcache);
2120
2121 if (step > 0)
2122 step_start_function = find_pc_function (pc);
2123 if (step < 0)
2124 stop_after_trap = 1;
2125
2126 if (addr == (CORE_ADDR) -1)
2127 {
2128 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2129 && execution_direction != EXEC_REVERSE)
2130 /* There is a breakpoint at the address we will resume at,
2131 step one instruction before inserting breakpoints so that
2132 we do not stop right away (and report a second hit at this
2133 breakpoint).
2134
2135 Note, we don't do this in reverse, because we won't
2136 actually be executing the breakpoint insn anyway.
2137 We'll be (un-)executing the previous instruction. */
2138
2139 oneproc = 1;
2140 else if (gdbarch_single_step_through_delay_p (gdbarch)
2141 && gdbarch_single_step_through_delay (gdbarch,
2142 get_current_frame ()))
2143 /* We stepped onto an instruction that needs to be stepped
2144 again before re-inserting the breakpoint, do so. */
2145 oneproc = 1;
2146 }
2147 else
2148 {
2149 regcache_write_pc (regcache, addr);
2150 }
2151
2152 if (debug_infrun)
2153 fprintf_unfiltered (gdb_stdlog,
2154 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2155 paddress (gdbarch, addr), siggnal, step);
2156
2157 if (non_stop)
2158 /* In non-stop, each thread is handled individually. The context
2159 must already be set to the right thread here. */
2160 ;
2161 else
2162 {
2163 /* In a multi-threaded task we may select another thread and
2164 then continue or step.
2165
2166 But if the old thread was stopped at a breakpoint, it will
2167 immediately cause another breakpoint stop without any
2168 execution (i.e. it will report a breakpoint hit incorrectly).
2169 So we must step over it first.
2170
2171 prepare_to_proceed checks the current thread against the
2172 thread that reported the most recent event. If a step-over
2173 is required it returns TRUE and sets the current thread to
2174 the old thread. */
2175 if (prepare_to_proceed (step))
2176 oneproc = 1;
2177 }
2178
2179 /* prepare_to_proceed may change the current thread. */
2180 tp = inferior_thread ();
2181
2182 if (oneproc)
2183 {
2184 tp->control.trap_expected = 1;
2185 /* If displaced stepping is enabled, we can step over the
2186 breakpoint without hitting it, so leave all breakpoints
2187 inserted. Otherwise we need to disable all breakpoints, step
2188 one instruction, and then re-add them when that step is
2189 finished. */
2190 if (!use_displaced_stepping (gdbarch))
2191 remove_breakpoints ();
2192 }
2193
2194 /* We can insert breakpoints if we're not trying to step over one,
2195 or if we are stepping over one but we're using displaced stepping
2196 to do so. */
2197 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2198 insert_breakpoints ();
2199
2200 if (!non_stop)
2201 {
2202 /* Pass the last stop signal to the thread we're resuming,
2203 irrespective of whether the current thread is the thread that
2204 got the last event or not. This was historically GDB's
2205 behaviour before keeping a stop_signal per thread. */
2206
2207 struct thread_info *last_thread;
2208 ptid_t last_ptid;
2209 struct target_waitstatus last_status;
2210
2211 get_last_target_status (&last_ptid, &last_status);
2212 if (!ptid_equal (inferior_ptid, last_ptid)
2213 && !ptid_equal (last_ptid, null_ptid)
2214 && !ptid_equal (last_ptid, minus_one_ptid))
2215 {
2216 last_thread = find_thread_ptid (last_ptid);
2217 if (last_thread)
2218 {
2219 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2220 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2221 }
2222 }
2223 }
2224
2225 if (siggnal != TARGET_SIGNAL_DEFAULT)
2226 tp->suspend.stop_signal = siggnal;
2227 /* If this signal should not be seen by program,
2228 give it zero. Used for debugging signals. */
2229 else if (!signal_program[tp->suspend.stop_signal])
2230 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2231
2232 annotate_starting ();
2233
2234 /* Make sure that output from GDB appears before output from the
2235 inferior. */
2236 gdb_flush (gdb_stdout);
2237
2238 /* Refresh prev_pc value just prior to resuming. This used to be
2239 done in stop_stepping, however, setting prev_pc there did not handle
2240 scenarios such as inferior function calls or returning from
2241 a function via the return command. In those cases, the prev_pc
2242 value was not set properly for subsequent commands. The prev_pc value
2243 is used to initialize the starting line number in the ecs. With an
2244 invalid value, the gdb next command ends up stopping at the position
2245 represented by the next line table entry past our start position.
2246 On platforms that generate one line table entry per line, this
2247 is not a problem. However, on the ia64, the compiler generates
2248 extraneous line table entries that do not increase the line number.
2249 When we issue the gdb next command on the ia64 after an inferior call
2250 or a return command, we often end up a few instructions forward, still
2251 within the original line we started.
2252
2253 An attempt was made to refresh the prev_pc at the same time the
2254 execution_control_state is initialized (for instance, just before
2255 waiting for an inferior event). But this approach did not work
2256 because of platforms that use ptrace, where the pc register cannot
2257 be read unless the inferior is stopped. At that point, we are not
2258 guaranteed the inferior is stopped and so the regcache_read_pc() call
2259 can fail. Setting the prev_pc value here ensures the value is updated
2260 correctly when the inferior is stopped. */
2261 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2262
2263 /* Fill in with reasonable starting values. */
2264 init_thread_stepping_state (tp);
2265
2266 /* Reset to normal state. */
2267 init_infwait_state ();
2268
2269 /* Resume inferior. */
2270 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2271
2272 /* Wait for it to stop (if not standalone)
2273 and in any case decode why it stopped, and act accordingly. */
2274 /* Do this only if we are not using the event loop, or if the target
2275 does not support asynchronous execution. */
2276 if (!target_can_async_p ())
2277 {
2278 wait_for_inferior ();
2279 normal_stop ();
2280 }
2281}
2282\f
2283
2284/* Start remote-debugging of a machine over a serial link. */
2285
2286void
2287start_remote (int from_tty)
2288{
2289 struct inferior *inferior;
2290
2291 inferior = current_inferior ();
2292 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2293
2294 /* Always go on waiting for the target, regardless of the mode. */
2295 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2296 indicate to wait_for_inferior that a target should timeout if
2297 nothing is returned (instead of just blocking). Because of this,
2298 targets expecting an immediate response need to, internally, set
2299 things up so that the target_wait() is forced to eventually
2300 timeout. */
2301 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2302 differentiate to its caller what the state of the target is after
2303 the initial open has been performed. Here we're assuming that
2304 the target has stopped. It should be possible to eventually have
2305 target_open() return to the caller an indication that the target
2306 is currently running and GDB state should be set to the same as
2307 for an async run. */
2308 wait_for_inferior ();
2309
2310 /* Now that the inferior has stopped, do any bookkeeping like
2311 loading shared libraries. We want to do this before normal_stop,
2312 so that the displayed frame is up to date. */
2313 post_create_inferior (&current_target, from_tty);
2314
2315 normal_stop ();
2316}
2317
2318/* Initialize static vars when a new inferior begins. */
2319
2320void
2321init_wait_for_inferior (void)
2322{
2323 /* These are meaningless until the first time through wait_for_inferior. */
2324
2325 breakpoint_init_inferior (inf_starting);
2326
2327 clear_proceed_status ();
2328
2329 stepping_past_singlestep_breakpoint = 0;
2330 deferred_step_ptid = null_ptid;
2331
2332 target_last_wait_ptid = minus_one_ptid;
2333
2334 previous_inferior_ptid = inferior_ptid;
2335 init_infwait_state ();
2336
2337 /* Discard any skipped inlined frames. */
2338 clear_inline_frame_state (minus_one_ptid);
2339}
2340
2341\f
2342/* This enum encodes possible reasons for doing a target_wait, so that
2343 wfi can call target_wait in one place. (Ultimately the call will be
2344 moved out of the infinite loop entirely.) */
2345
2346enum infwait_states
2347{
2348 infwait_normal_state,
2349 infwait_thread_hop_state,
2350 infwait_step_watch_state,
2351 infwait_nonstep_watch_state
2352};
2353
2354/* The PTID we'll do a target_wait on.*/
2355ptid_t waiton_ptid;
2356
2357/* Current inferior wait state. */
2358enum infwait_states infwait_state;
2359
2360/* Data to be passed around while handling an event. This data is
2361 discarded between events. */
2362struct execution_control_state
2363{
2364 ptid_t ptid;
2365 /* The thread that got the event, if this was a thread event; NULL
2366 otherwise. */
2367 struct thread_info *event_thread;
2368
2369 struct target_waitstatus ws;
2370 int random_signal;
2371 int stop_func_filled_in;
2372 CORE_ADDR stop_func_start;
2373 CORE_ADDR stop_func_end;
2374 const char *stop_func_name;
2375 int new_thread_event;
2376 int wait_some_more;
2377};
2378
2379static void handle_inferior_event (struct execution_control_state *ecs);
2380
2381static void handle_step_into_function (struct gdbarch *gdbarch,
2382 struct execution_control_state *ecs);
2383static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2384 struct execution_control_state *ecs);
2385static void check_exception_resume (struct execution_control_state *,
2386 struct frame_info *, struct symbol *);
2387
2388static void stop_stepping (struct execution_control_state *ecs);
2389static void prepare_to_wait (struct execution_control_state *ecs);
2390static void keep_going (struct execution_control_state *ecs);
2391
2392/* Callback for iterate over threads. If the thread is stopped, but
2393 the user/frontend doesn't know about that yet, go through
2394 normal_stop, as if the thread had just stopped now. ARG points at
2395 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2396 ptid_is_pid(PTID) is true, applies to all threads of the process
2397 pointed at by PTID. Otherwise, apply only to the thread pointed by
2398 PTID. */
2399
2400static int
2401infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2402{
2403 ptid_t ptid = * (ptid_t *) arg;
2404
2405 if ((ptid_equal (info->ptid, ptid)
2406 || ptid_equal (minus_one_ptid, ptid)
2407 || (ptid_is_pid (ptid)
2408 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2409 && is_running (info->ptid)
2410 && !is_executing (info->ptid))
2411 {
2412 struct cleanup *old_chain;
2413 struct execution_control_state ecss;
2414 struct execution_control_state *ecs = &ecss;
2415
2416 memset (ecs, 0, sizeof (*ecs));
2417
2418 old_chain = make_cleanup_restore_current_thread ();
2419
2420 switch_to_thread (info->ptid);
2421
2422 /* Go through handle_inferior_event/normal_stop, so we always
2423 have consistent output as if the stop event had been
2424 reported. */
2425 ecs->ptid = info->ptid;
2426 ecs->event_thread = find_thread_ptid (info->ptid);
2427 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2428 ecs->ws.value.sig = TARGET_SIGNAL_0;
2429
2430 handle_inferior_event (ecs);
2431
2432 if (!ecs->wait_some_more)
2433 {
2434 struct thread_info *tp;
2435
2436 normal_stop ();
2437
2438 /* Finish off the continuations. */
2439 tp = inferior_thread ();
2440 do_all_intermediate_continuations_thread (tp, 1);
2441 do_all_continuations_thread (tp, 1);
2442 }
2443
2444 do_cleanups (old_chain);
2445 }
2446
2447 return 0;
2448}
2449
2450/* This function is attached as a "thread_stop_requested" observer.
2451 Cleanup local state that assumed the PTID was to be resumed, and
2452 report the stop to the frontend. */
2453
2454static void
2455infrun_thread_stop_requested (ptid_t ptid)
2456{
2457 struct displaced_step_inferior_state *displaced;
2458
2459 /* PTID was requested to stop. Remove it from the displaced
2460 stepping queue, so we don't try to resume it automatically. */
2461
2462 for (displaced = displaced_step_inferior_states;
2463 displaced;
2464 displaced = displaced->next)
2465 {
2466 struct displaced_step_request *it, **prev_next_p;
2467
2468 it = displaced->step_request_queue;
2469 prev_next_p = &displaced->step_request_queue;
2470 while (it)
2471 {
2472 if (ptid_match (it->ptid, ptid))
2473 {
2474 *prev_next_p = it->next;
2475 it->next = NULL;
2476 xfree (it);
2477 }
2478 else
2479 {
2480 prev_next_p = &it->next;
2481 }
2482
2483 it = *prev_next_p;
2484 }
2485 }
2486
2487 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2488}
2489
2490static void
2491infrun_thread_thread_exit (struct thread_info *tp, int silent)
2492{
2493 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2494 nullify_last_target_wait_ptid ();
2495}
2496
2497/* Callback for iterate_over_threads. */
2498
2499static int
2500delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2501{
2502 if (is_exited (info->ptid))
2503 return 0;
2504
2505 delete_step_resume_breakpoint (info);
2506 delete_exception_resume_breakpoint (info);
2507 return 0;
2508}
2509
2510/* In all-stop, delete the step resume breakpoint of any thread that
2511 had one. In non-stop, delete the step resume breakpoint of the
2512 thread that just stopped. */
2513
2514static void
2515delete_step_thread_step_resume_breakpoint (void)
2516{
2517 if (!target_has_execution
2518 || ptid_equal (inferior_ptid, null_ptid))
2519 /* If the inferior has exited, we have already deleted the step
2520 resume breakpoints out of GDB's lists. */
2521 return;
2522
2523 if (non_stop)
2524 {
2525 /* If in non-stop mode, only delete the step-resume or
2526 longjmp-resume breakpoint of the thread that just stopped
2527 stepping. */
2528 struct thread_info *tp = inferior_thread ();
2529
2530 delete_step_resume_breakpoint (tp);
2531 delete_exception_resume_breakpoint (tp);
2532 }
2533 else
2534 /* In all-stop mode, delete all step-resume and longjmp-resume
2535 breakpoints of any thread that had them. */
2536 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2537}
2538
2539/* A cleanup wrapper. */
2540
2541static void
2542delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2543{
2544 delete_step_thread_step_resume_breakpoint ();
2545}
2546
2547/* Pretty print the results of target_wait, for debugging purposes. */
2548
2549static void
2550print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2551 const struct target_waitstatus *ws)
2552{
2553 char *status_string = target_waitstatus_to_string (ws);
2554 struct ui_file *tmp_stream = mem_fileopen ();
2555 char *text;
2556
2557 /* The text is split over several lines because it was getting too long.
2558 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2559 output as a unit; we want only one timestamp printed if debug_timestamp
2560 is set. */
2561
2562 fprintf_unfiltered (tmp_stream,
2563 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2564 if (PIDGET (waiton_ptid) != -1)
2565 fprintf_unfiltered (tmp_stream,
2566 " [%s]", target_pid_to_str (waiton_ptid));
2567 fprintf_unfiltered (tmp_stream, ", status) =\n");
2568 fprintf_unfiltered (tmp_stream,
2569 "infrun: %d [%s],\n",
2570 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2571 fprintf_unfiltered (tmp_stream,
2572 "infrun: %s\n",
2573 status_string);
2574
2575 text = ui_file_xstrdup (tmp_stream, NULL);
2576
2577 /* This uses %s in part to handle %'s in the text, but also to avoid
2578 a gcc error: the format attribute requires a string literal. */
2579 fprintf_unfiltered (gdb_stdlog, "%s", text);
2580
2581 xfree (status_string);
2582 xfree (text);
2583 ui_file_delete (tmp_stream);
2584}
2585
2586/* Prepare and stabilize the inferior for detaching it. E.g.,
2587 detaching while a thread is displaced stepping is a recipe for
2588 crashing it, as nothing would readjust the PC out of the scratch
2589 pad. */
2590
2591void
2592prepare_for_detach (void)
2593{
2594 struct inferior *inf = current_inferior ();
2595 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2596 struct cleanup *old_chain_1;
2597 struct displaced_step_inferior_state *displaced;
2598
2599 displaced = get_displaced_stepping_state (inf->pid);
2600
2601 /* Is any thread of this process displaced stepping? If not,
2602 there's nothing else to do. */
2603 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2604 return;
2605
2606 if (debug_infrun)
2607 fprintf_unfiltered (gdb_stdlog,
2608 "displaced-stepping in-process while detaching");
2609
2610 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2611 inf->detaching = 1;
2612
2613 while (!ptid_equal (displaced->step_ptid, null_ptid))
2614 {
2615 struct cleanup *old_chain_2;
2616 struct execution_control_state ecss;
2617 struct execution_control_state *ecs;
2618
2619 ecs = &ecss;
2620 memset (ecs, 0, sizeof (*ecs));
2621
2622 overlay_cache_invalid = 1;
2623
2624 if (deprecated_target_wait_hook)
2625 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2626 else
2627 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2628
2629 if (debug_infrun)
2630 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2631
2632 /* If an error happens while handling the event, propagate GDB's
2633 knowledge of the executing state to the frontend/user running
2634 state. */
2635 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2636 &minus_one_ptid);
2637
2638 /* In non-stop mode, each thread is handled individually.
2639 Switch early, so the global state is set correctly for this
2640 thread. */
2641 if (non_stop
2642 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2643 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2644 context_switch (ecs->ptid);
2645
2646 /* Now figure out what to do with the result of the result. */
2647 handle_inferior_event (ecs);
2648
2649 /* No error, don't finish the state yet. */
2650 discard_cleanups (old_chain_2);
2651
2652 /* Breakpoints and watchpoints are not installed on the target
2653 at this point, and signals are passed directly to the
2654 inferior, so this must mean the process is gone. */
2655 if (!ecs->wait_some_more)
2656 {
2657 discard_cleanups (old_chain_1);
2658 error (_("Program exited while detaching"));
2659 }
2660 }
2661
2662 discard_cleanups (old_chain_1);
2663}
2664
2665/* Wait for control to return from inferior to debugger.
2666
2667 If inferior gets a signal, we may decide to start it up again
2668 instead of returning. That is why there is a loop in this function.
2669 When this function actually returns it means the inferior
2670 should be left stopped and GDB should read more commands. */
2671
2672void
2673wait_for_inferior (void)
2674{
2675 struct cleanup *old_cleanups;
2676 struct execution_control_state ecss;
2677 struct execution_control_state *ecs;
2678
2679 if (debug_infrun)
2680 fprintf_unfiltered
2681 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2682
2683 old_cleanups =
2684 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2685
2686 ecs = &ecss;
2687 memset (ecs, 0, sizeof (*ecs));
2688
2689 while (1)
2690 {
2691 struct cleanup *old_chain;
2692
2693 overlay_cache_invalid = 1;
2694
2695 if (deprecated_target_wait_hook)
2696 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2697 else
2698 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2699
2700 if (debug_infrun)
2701 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2702
2703 /* If an error happens while handling the event, propagate GDB's
2704 knowledge of the executing state to the frontend/user running
2705 state. */
2706 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2707
2708 /* Now figure out what to do with the result of the result. */
2709 handle_inferior_event (ecs);
2710
2711 /* No error, don't finish the state yet. */
2712 discard_cleanups (old_chain);
2713
2714 if (!ecs->wait_some_more)
2715 break;
2716 }
2717
2718 do_cleanups (old_cleanups);
2719}
2720
2721/* Asynchronous version of wait_for_inferior. It is called by the
2722 event loop whenever a change of state is detected on the file
2723 descriptor corresponding to the target. It can be called more than
2724 once to complete a single execution command. In such cases we need
2725 to keep the state in a global variable ECSS. If it is the last time
2726 that this function is called for a single execution command, then
2727 report to the user that the inferior has stopped, and do the
2728 necessary cleanups. */
2729
2730void
2731fetch_inferior_event (void *client_data)
2732{
2733 struct execution_control_state ecss;
2734 struct execution_control_state *ecs = &ecss;
2735 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2736 struct cleanup *ts_old_chain;
2737 int was_sync = sync_execution;
2738 int cmd_done = 0;
2739
2740 memset (ecs, 0, sizeof (*ecs));
2741
2742 /* We're handling a live event, so make sure we're doing live
2743 debugging. If we're looking at traceframes while the target is
2744 running, we're going to need to get back to that mode after
2745 handling the event. */
2746 if (non_stop)
2747 {
2748 make_cleanup_restore_current_traceframe ();
2749 set_current_traceframe (-1);
2750 }
2751
2752 if (non_stop)
2753 /* In non-stop mode, the user/frontend should not notice a thread
2754 switch due to internal events. Make sure we reverse to the
2755 user selected thread and frame after handling the event and
2756 running any breakpoint commands. */
2757 make_cleanup_restore_current_thread ();
2758
2759 overlay_cache_invalid = 1;
2760
2761 make_cleanup_restore_integer (&execution_direction);
2762 execution_direction = target_execution_direction ();
2763
2764 if (deprecated_target_wait_hook)
2765 ecs->ptid =
2766 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2767 else
2768 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2769
2770 if (debug_infrun)
2771 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2772
2773 if (non_stop
2774 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2775 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2776 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2777 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2778 /* In non-stop mode, each thread is handled individually. Switch
2779 early, so the global state is set correctly for this
2780 thread. */
2781 context_switch (ecs->ptid);
2782
2783 /* If an error happens while handling the event, propagate GDB's
2784 knowledge of the executing state to the frontend/user running
2785 state. */
2786 if (!non_stop)
2787 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2788 else
2789 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2790
2791 /* Get executed before make_cleanup_restore_current_thread above to apply
2792 still for the thread which has thrown the exception. */
2793 make_bpstat_clear_actions_cleanup ();
2794
2795 /* Now figure out what to do with the result of the result. */
2796 handle_inferior_event (ecs);
2797
2798 if (!ecs->wait_some_more)
2799 {
2800 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2801
2802 delete_step_thread_step_resume_breakpoint ();
2803
2804 /* We may not find an inferior if this was a process exit. */
2805 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2806 normal_stop ();
2807
2808 if (target_has_execution
2809 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2810 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2811 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2812 && ecs->event_thread->step_multi
2813 && ecs->event_thread->control.stop_step)
2814 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2815 else
2816 {
2817 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2818 cmd_done = 1;
2819 }
2820 }
2821
2822 /* No error, don't finish the thread states yet. */
2823 discard_cleanups (ts_old_chain);
2824
2825 /* Revert thread and frame. */
2826 do_cleanups (old_chain);
2827
2828 /* If the inferior was in sync execution mode, and now isn't,
2829 restore the prompt (a synchronous execution command has finished,
2830 and we're ready for input). */
2831 if (interpreter_async && was_sync && !sync_execution)
2832 display_gdb_prompt (0);
2833
2834 if (cmd_done
2835 && !was_sync
2836 && exec_done_display_p
2837 && (ptid_equal (inferior_ptid, null_ptid)
2838 || !is_running (inferior_ptid)))
2839 printf_unfiltered (_("completed.\n"));
2840}
2841
2842/* Record the frame and location we're currently stepping through. */
2843void
2844set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2845{
2846 struct thread_info *tp = inferior_thread ();
2847
2848 tp->control.step_frame_id = get_frame_id (frame);
2849 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2850
2851 tp->current_symtab = sal.symtab;
2852 tp->current_line = sal.line;
2853}
2854
2855/* Clear context switchable stepping state. */
2856
2857void
2858init_thread_stepping_state (struct thread_info *tss)
2859{
2860 tss->stepping_over_breakpoint = 0;
2861 tss->step_after_step_resume_breakpoint = 0;
2862}
2863
2864/* Return the cached copy of the last pid/waitstatus returned by
2865 target_wait()/deprecated_target_wait_hook(). The data is actually
2866 cached by handle_inferior_event(), which gets called immediately
2867 after target_wait()/deprecated_target_wait_hook(). */
2868
2869void
2870get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2871{
2872 *ptidp = target_last_wait_ptid;
2873 *status = target_last_waitstatus;
2874}
2875
2876void
2877nullify_last_target_wait_ptid (void)
2878{
2879 target_last_wait_ptid = minus_one_ptid;
2880}
2881
2882/* Switch thread contexts. */
2883
2884static void
2885context_switch (ptid_t ptid)
2886{
2887 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2888 {
2889 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2890 target_pid_to_str (inferior_ptid));
2891 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2892 target_pid_to_str (ptid));
2893 }
2894
2895 switch_to_thread (ptid);
2896}
2897
2898static void
2899adjust_pc_after_break (struct execution_control_state *ecs)
2900{
2901 struct regcache *regcache;
2902 struct gdbarch *gdbarch;
2903 struct address_space *aspace;
2904 CORE_ADDR breakpoint_pc;
2905
2906 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2907 we aren't, just return.
2908
2909 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2910 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2911 implemented by software breakpoints should be handled through the normal
2912 breakpoint layer.
2913
2914 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2915 different signals (SIGILL or SIGEMT for instance), but it is less
2916 clear where the PC is pointing afterwards. It may not match
2917 gdbarch_decr_pc_after_break. I don't know any specific target that
2918 generates these signals at breakpoints (the code has been in GDB since at
2919 least 1992) so I can not guess how to handle them here.
2920
2921 In earlier versions of GDB, a target with
2922 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2923 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2924 target with both of these set in GDB history, and it seems unlikely to be
2925 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2926
2927 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2928 return;
2929
2930 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2931 return;
2932
2933 /* In reverse execution, when a breakpoint is hit, the instruction
2934 under it has already been de-executed. The reported PC always
2935 points at the breakpoint address, so adjusting it further would
2936 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2937 architecture:
2938
2939 B1 0x08000000 : INSN1
2940 B2 0x08000001 : INSN2
2941 0x08000002 : INSN3
2942 PC -> 0x08000003 : INSN4
2943
2944 Say you're stopped at 0x08000003 as above. Reverse continuing
2945 from that point should hit B2 as below. Reading the PC when the
2946 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2947 been de-executed already.
2948
2949 B1 0x08000000 : INSN1
2950 B2 PC -> 0x08000001 : INSN2
2951 0x08000002 : INSN3
2952 0x08000003 : INSN4
2953
2954 We can't apply the same logic as for forward execution, because
2955 we would wrongly adjust the PC to 0x08000000, since there's a
2956 breakpoint at PC - 1. We'd then report a hit on B1, although
2957 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2958 behaviour. */
2959 if (execution_direction == EXEC_REVERSE)
2960 return;
2961
2962 /* If this target does not decrement the PC after breakpoints, then
2963 we have nothing to do. */
2964 regcache = get_thread_regcache (ecs->ptid);
2965 gdbarch = get_regcache_arch (regcache);
2966 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2967 return;
2968
2969 aspace = get_regcache_aspace (regcache);
2970
2971 /* Find the location where (if we've hit a breakpoint) the
2972 breakpoint would be. */
2973 breakpoint_pc = regcache_read_pc (regcache)
2974 - gdbarch_decr_pc_after_break (gdbarch);
2975
2976 /* Check whether there actually is a software breakpoint inserted at
2977 that location.
2978
2979 If in non-stop mode, a race condition is possible where we've
2980 removed a breakpoint, but stop events for that breakpoint were
2981 already queued and arrive later. To suppress those spurious
2982 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2983 and retire them after a number of stop events are reported. */
2984 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2985 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2986 {
2987 struct cleanup *old_cleanups = NULL;
2988
2989 if (RECORD_IS_USED)
2990 old_cleanups = record_gdb_operation_disable_set ();
2991
2992 /* When using hardware single-step, a SIGTRAP is reported for both
2993 a completed single-step and a software breakpoint. Need to
2994 differentiate between the two, as the latter needs adjusting
2995 but the former does not.
2996
2997 The SIGTRAP can be due to a completed hardware single-step only if
2998 - we didn't insert software single-step breakpoints
2999 - the thread to be examined is still the current thread
3000 - this thread is currently being stepped
3001
3002 If any of these events did not occur, we must have stopped due
3003 to hitting a software breakpoint, and have to back up to the
3004 breakpoint address.
3005
3006 As a special case, we could have hardware single-stepped a
3007 software breakpoint. In this case (prev_pc == breakpoint_pc),
3008 we also need to back up to the breakpoint address. */
3009
3010 if (singlestep_breakpoints_inserted_p
3011 || !ptid_equal (ecs->ptid, inferior_ptid)
3012 || !currently_stepping (ecs->event_thread)
3013 || ecs->event_thread->prev_pc == breakpoint_pc)
3014 regcache_write_pc (regcache, breakpoint_pc);
3015
3016 if (RECORD_IS_USED)
3017 do_cleanups (old_cleanups);
3018 }
3019}
3020
3021void
3022init_infwait_state (void)
3023{
3024 waiton_ptid = pid_to_ptid (-1);
3025 infwait_state = infwait_normal_state;
3026}
3027
3028void
3029error_is_running (void)
3030{
3031 error (_("Cannot execute this command while "
3032 "the selected thread is running."));
3033}
3034
3035void
3036ensure_not_running (void)
3037{
3038 if (is_running (inferior_ptid))
3039 error_is_running ();
3040}
3041
3042static int
3043stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3044{
3045 for (frame = get_prev_frame (frame);
3046 frame != NULL;
3047 frame = get_prev_frame (frame))
3048 {
3049 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3050 return 1;
3051 if (get_frame_type (frame) != INLINE_FRAME)
3052 break;
3053 }
3054
3055 return 0;
3056}
3057
3058/* Auxiliary function that handles syscall entry/return events.
3059 It returns 1 if the inferior should keep going (and GDB
3060 should ignore the event), or 0 if the event deserves to be
3061 processed. */
3062
3063static int
3064handle_syscall_event (struct execution_control_state *ecs)
3065{
3066 struct regcache *regcache;
3067 struct gdbarch *gdbarch;
3068 int syscall_number;
3069
3070 if (!ptid_equal (ecs->ptid, inferior_ptid))
3071 context_switch (ecs->ptid);
3072
3073 regcache = get_thread_regcache (ecs->ptid);
3074 gdbarch = get_regcache_arch (regcache);
3075 syscall_number = ecs->ws.value.syscall_number;
3076 stop_pc = regcache_read_pc (regcache);
3077
3078 if (catch_syscall_enabled () > 0
3079 && catching_syscall_number (syscall_number) > 0)
3080 {
3081 if (debug_infrun)
3082 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3083 syscall_number);
3084
3085 ecs->event_thread->control.stop_bpstat
3086 = bpstat_stop_status (get_regcache_aspace (regcache),
3087 stop_pc, ecs->ptid, &ecs->ws);
3088 ecs->random_signal
3089 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3090
3091 if (!ecs->random_signal)
3092 {
3093 /* Catchpoint hit. */
3094 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3095 return 0;
3096 }
3097 }
3098
3099 /* If no catchpoint triggered for this, then keep going. */
3100 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3101 keep_going (ecs);
3102 return 1;
3103}
3104
3105/* Clear the supplied execution_control_state's stop_func_* fields. */
3106
3107static void
3108clear_stop_func (struct execution_control_state *ecs)
3109{
3110 ecs->stop_func_filled_in = 0;
3111 ecs->stop_func_start = 0;
3112 ecs->stop_func_end = 0;
3113 ecs->stop_func_name = NULL;
3114}
3115
3116/* Lazily fill in the execution_control_state's stop_func_* fields. */
3117
3118static void
3119fill_in_stop_func (struct gdbarch *gdbarch,
3120 struct execution_control_state *ecs)
3121{
3122 if (!ecs->stop_func_filled_in)
3123 {
3124 /* Don't care about return value; stop_func_start and stop_func_name
3125 will both be 0 if it doesn't work. */
3126 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3127 &ecs->stop_func_start, &ecs->stop_func_end);
3128 ecs->stop_func_start
3129 += gdbarch_deprecated_function_start_offset (gdbarch);
3130
3131 ecs->stop_func_filled_in = 1;
3132 }
3133}
3134
3135/* Given an execution control state that has been freshly filled in
3136 by an event from the inferior, figure out what it means and take
3137 appropriate action. */
3138
3139static void
3140handle_inferior_event (struct execution_control_state *ecs)
3141{
3142 struct frame_info *frame;
3143 struct gdbarch *gdbarch;
3144 int stopped_by_watchpoint;
3145 int stepped_after_stopped_by_watchpoint = 0;
3146 struct symtab_and_line stop_pc_sal;
3147 enum stop_kind stop_soon;
3148
3149 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3150 {
3151 /* We had an event in the inferior, but we are not interested in
3152 handling it at this level. The lower layers have already
3153 done what needs to be done, if anything.
3154
3155 One of the possible circumstances for this is when the
3156 inferior produces output for the console. The inferior has
3157 not stopped, and we are ignoring the event. Another possible
3158 circumstance is any event which the lower level knows will be
3159 reported multiple times without an intervening resume. */
3160 if (debug_infrun)
3161 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3162 prepare_to_wait (ecs);
3163 return;
3164 }
3165
3166 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3167 && target_can_async_p () && !sync_execution)
3168 {
3169 /* There were no unwaited-for children left in the target, but,
3170 we're not synchronously waiting for events either. Just
3171 ignore. Otherwise, if we were running a synchronous
3172 execution command, we need to cancel it and give the user
3173 back the terminal. */
3174 if (debug_infrun)
3175 fprintf_unfiltered (gdb_stdlog,
3176 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3177 prepare_to_wait (ecs);
3178 return;
3179 }
3180
3181 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3182 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3183 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3184 {
3185 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3186
3187 gdb_assert (inf);
3188 stop_soon = inf->control.stop_soon;
3189 }
3190 else
3191 stop_soon = NO_STOP_QUIETLY;
3192
3193 /* Cache the last pid/waitstatus. */
3194 target_last_wait_ptid = ecs->ptid;
3195 target_last_waitstatus = ecs->ws;
3196
3197 /* Always clear state belonging to the previous time we stopped. */
3198 stop_stack_dummy = STOP_NONE;
3199
3200 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3201 {
3202 /* No unwaited-for children left. IOW, all resumed children
3203 have exited. */
3204 if (debug_infrun)
3205 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3206
3207 stop_print_frame = 0;
3208 stop_stepping (ecs);
3209 return;
3210 }
3211
3212 /* If it's a new process, add it to the thread database. */
3213
3214 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3215 && !ptid_equal (ecs->ptid, minus_one_ptid)
3216 && !in_thread_list (ecs->ptid));
3217
3218 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3219 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3220 add_thread (ecs->ptid);
3221
3222 ecs->event_thread = find_thread_ptid (ecs->ptid);
3223
3224 /* Dependent on valid ECS->EVENT_THREAD. */
3225 adjust_pc_after_break (ecs);
3226
3227 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3228 reinit_frame_cache ();
3229
3230 breakpoint_retire_moribund ();
3231
3232 /* First, distinguish signals caused by the debugger from signals
3233 that have to do with the program's own actions. Note that
3234 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3235 on the operating system version. Here we detect when a SIGILL or
3236 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3237 something similar for SIGSEGV, since a SIGSEGV will be generated
3238 when we're trying to execute a breakpoint instruction on a
3239 non-executable stack. This happens for call dummy breakpoints
3240 for architectures like SPARC that place call dummies on the
3241 stack. */
3242 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3243 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3244 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3245 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3246 {
3247 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3248
3249 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3250 regcache_read_pc (regcache)))
3251 {
3252 if (debug_infrun)
3253 fprintf_unfiltered (gdb_stdlog,
3254 "infrun: Treating signal as SIGTRAP\n");
3255 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3256 }
3257 }
3258
3259 /* Mark the non-executing threads accordingly. In all-stop, all
3260 threads of all processes are stopped when we get any event
3261 reported. In non-stop mode, only the event thread stops. If
3262 we're handling a process exit in non-stop mode, there's nothing
3263 to do, as threads of the dead process are gone, and threads of
3264 any other process were left running. */
3265 if (!non_stop)
3266 set_executing (minus_one_ptid, 0);
3267 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3268 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3269 set_executing (ecs->ptid, 0);
3270
3271 switch (infwait_state)
3272 {
3273 case infwait_thread_hop_state:
3274 if (debug_infrun)
3275 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3276 break;
3277
3278 case infwait_normal_state:
3279 if (debug_infrun)
3280 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3281 break;
3282
3283 case infwait_step_watch_state:
3284 if (debug_infrun)
3285 fprintf_unfiltered (gdb_stdlog,
3286 "infrun: infwait_step_watch_state\n");
3287
3288 stepped_after_stopped_by_watchpoint = 1;
3289 break;
3290
3291 case infwait_nonstep_watch_state:
3292 if (debug_infrun)
3293 fprintf_unfiltered (gdb_stdlog,
3294 "infrun: infwait_nonstep_watch_state\n");
3295 insert_breakpoints ();
3296
3297 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3298 handle things like signals arriving and other things happening
3299 in combination correctly? */
3300 stepped_after_stopped_by_watchpoint = 1;
3301 break;
3302
3303 default:
3304 internal_error (__FILE__, __LINE__, _("bad switch"));
3305 }
3306
3307 infwait_state = infwait_normal_state;
3308 waiton_ptid = pid_to_ptid (-1);
3309
3310 switch (ecs->ws.kind)
3311 {
3312 case TARGET_WAITKIND_LOADED:
3313 if (debug_infrun)
3314 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3315 /* Ignore gracefully during startup of the inferior, as it might
3316 be the shell which has just loaded some objects, otherwise
3317 add the symbols for the newly loaded objects. Also ignore at
3318 the beginning of an attach or remote session; we will query
3319 the full list of libraries once the connection is
3320 established. */
3321 if (stop_soon == NO_STOP_QUIETLY)
3322 {
3323 struct regcache *regcache;
3324
3325 if (!ptid_equal (ecs->ptid, inferior_ptid))
3326 context_switch (ecs->ptid);
3327 regcache = get_thread_regcache (ecs->ptid);
3328
3329 handle_solib_event ();
3330
3331 ecs->event_thread->control.stop_bpstat
3332 = bpstat_stop_status (get_regcache_aspace (regcache),
3333 stop_pc, ecs->ptid, &ecs->ws);
3334 ecs->random_signal
3335 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3336
3337 if (!ecs->random_signal)
3338 {
3339 /* A catchpoint triggered. */
3340 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3341 goto process_event_stop_test;
3342 }
3343
3344 /* If requested, stop when the dynamic linker notifies
3345 gdb of events. This allows the user to get control
3346 and place breakpoints in initializer routines for
3347 dynamically loaded objects (among other things). */
3348 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3349 if (stop_on_solib_events)
3350 {
3351 /* Make sure we print "Stopped due to solib-event" in
3352 normal_stop. */
3353 stop_print_frame = 1;
3354
3355 stop_stepping (ecs);
3356 return;
3357 }
3358 }
3359
3360 /* If we are skipping through a shell, or through shared library
3361 loading that we aren't interested in, resume the program. If
3362 we're running the program normally, also resume. But stop if
3363 we're attaching or setting up a remote connection. */
3364 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3365 {
3366 /* Loading of shared libraries might have changed breakpoint
3367 addresses. Make sure new breakpoints are inserted. */
3368 if (stop_soon == NO_STOP_QUIETLY
3369 && !breakpoints_always_inserted_mode ())
3370 insert_breakpoints ();
3371 resume (0, TARGET_SIGNAL_0);
3372 prepare_to_wait (ecs);
3373 return;
3374 }
3375
3376 break;
3377
3378 case TARGET_WAITKIND_SPURIOUS:
3379 if (debug_infrun)
3380 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3381 resume (0, TARGET_SIGNAL_0);
3382 prepare_to_wait (ecs);
3383 return;
3384
3385 case TARGET_WAITKIND_EXITED:
3386 if (debug_infrun)
3387 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3388 inferior_ptid = ecs->ptid;
3389 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3390 set_current_program_space (current_inferior ()->pspace);
3391 handle_vfork_child_exec_or_exit (0);
3392 target_terminal_ours (); /* Must do this before mourn anyway. */
3393 print_exited_reason (ecs->ws.value.integer);
3394
3395 /* Record the exit code in the convenience variable $_exitcode, so
3396 that the user can inspect this again later. */
3397 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3398 (LONGEST) ecs->ws.value.integer);
3399
3400 /* Also record this in the inferior itself. */
3401 current_inferior ()->has_exit_code = 1;
3402 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3403
3404 gdb_flush (gdb_stdout);
3405 target_mourn_inferior ();
3406 singlestep_breakpoints_inserted_p = 0;
3407 cancel_single_step_breakpoints ();
3408 stop_print_frame = 0;
3409 stop_stepping (ecs);
3410 return;
3411
3412 case TARGET_WAITKIND_SIGNALLED:
3413 if (debug_infrun)
3414 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3415 inferior_ptid = ecs->ptid;
3416 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3417 set_current_program_space (current_inferior ()->pspace);
3418 handle_vfork_child_exec_or_exit (0);
3419 stop_print_frame = 0;
3420 target_terminal_ours (); /* Must do this before mourn anyway. */
3421
3422 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3423 reach here unless the inferior is dead. However, for years
3424 target_kill() was called here, which hints that fatal signals aren't
3425 really fatal on some systems. If that's true, then some changes
3426 may be needed. */
3427 target_mourn_inferior ();
3428
3429 print_signal_exited_reason (ecs->ws.value.sig);
3430 singlestep_breakpoints_inserted_p = 0;
3431 cancel_single_step_breakpoints ();
3432 stop_stepping (ecs);
3433 return;
3434
3435 /* The following are the only cases in which we keep going;
3436 the above cases end in a continue or goto. */
3437 case TARGET_WAITKIND_FORKED:
3438 case TARGET_WAITKIND_VFORKED:
3439 if (debug_infrun)
3440 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3441
3442 /* Check whether the inferior is displaced stepping. */
3443 {
3444 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3445 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3446 struct displaced_step_inferior_state *displaced
3447 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3448
3449 /* If checking displaced stepping is supported, and thread
3450 ecs->ptid is displaced stepping. */
3451 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3452 {
3453 struct inferior *parent_inf
3454 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3455 struct regcache *child_regcache;
3456 CORE_ADDR parent_pc;
3457
3458 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3459 indicating that the displaced stepping of syscall instruction
3460 has been done. Perform cleanup for parent process here. Note
3461 that this operation also cleans up the child process for vfork,
3462 because their pages are shared. */
3463 displaced_step_fixup (ecs->ptid, TARGET_SIGNAL_TRAP);
3464
3465 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3466 {
3467 /* Restore scratch pad for child process. */
3468 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3469 }
3470
3471 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3472 the child's PC is also within the scratchpad. Set the child's PC
3473 to the parent's PC value, which has already been fixed up.
3474 FIXME: we use the parent's aspace here, although we're touching
3475 the child, because the child hasn't been added to the inferior
3476 list yet at this point. */
3477
3478 child_regcache
3479 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3480 gdbarch,
3481 parent_inf->aspace);
3482 /* Read PC value of parent process. */
3483 parent_pc = regcache_read_pc (regcache);
3484
3485 if (debug_displaced)
3486 fprintf_unfiltered (gdb_stdlog,
3487 "displaced: write child pc from %s to %s\n",
3488 paddress (gdbarch,
3489 regcache_read_pc (child_regcache)),
3490 paddress (gdbarch, parent_pc));
3491
3492 regcache_write_pc (child_regcache, parent_pc);
3493 }
3494 }
3495
3496 if (!ptid_equal (ecs->ptid, inferior_ptid))
3497 {
3498 context_switch (ecs->ptid);
3499 reinit_frame_cache ();
3500 }
3501
3502 /* Immediately detach breakpoints from the child before there's
3503 any chance of letting the user delete breakpoints from the
3504 breakpoint lists. If we don't do this early, it's easy to
3505 leave left over traps in the child, vis: "break foo; catch
3506 fork; c; <fork>; del; c; <child calls foo>". We only follow
3507 the fork on the last `continue', and by that time the
3508 breakpoint at "foo" is long gone from the breakpoint table.
3509 If we vforked, then we don't need to unpatch here, since both
3510 parent and child are sharing the same memory pages; we'll
3511 need to unpatch at follow/detach time instead to be certain
3512 that new breakpoints added between catchpoint hit time and
3513 vfork follow are detached. */
3514 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3515 {
3516 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3517
3518 /* This won't actually modify the breakpoint list, but will
3519 physically remove the breakpoints from the child. */
3520 detach_breakpoints (child_pid);
3521 }
3522
3523 if (singlestep_breakpoints_inserted_p)
3524 {
3525 /* Pull the single step breakpoints out of the target. */
3526 remove_single_step_breakpoints ();
3527 singlestep_breakpoints_inserted_p = 0;
3528 }
3529
3530 /* In case the event is caught by a catchpoint, remember that
3531 the event is to be followed at the next resume of the thread,
3532 and not immediately. */
3533 ecs->event_thread->pending_follow = ecs->ws;
3534
3535 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3536
3537 ecs->event_thread->control.stop_bpstat
3538 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3539 stop_pc, ecs->ptid, &ecs->ws);
3540
3541 /* Note that we're interested in knowing the bpstat actually
3542 causes a stop, not just if it may explain the signal.
3543 Software watchpoints, for example, always appear in the
3544 bpstat. */
3545 ecs->random_signal
3546 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3547
3548 /* If no catchpoint triggered for this, then keep going. */
3549 if (ecs->random_signal)
3550 {
3551 ptid_t parent;
3552 ptid_t child;
3553 int should_resume;
3554 int follow_child
3555 = (follow_fork_mode_string == follow_fork_mode_child);
3556
3557 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3558
3559 should_resume = follow_fork ();
3560
3561 parent = ecs->ptid;
3562 child = ecs->ws.value.related_pid;
3563
3564 /* In non-stop mode, also resume the other branch. */
3565 if (non_stop && !detach_fork)
3566 {
3567 if (follow_child)
3568 switch_to_thread (parent);
3569 else
3570 switch_to_thread (child);
3571
3572 ecs->event_thread = inferior_thread ();
3573 ecs->ptid = inferior_ptid;
3574 keep_going (ecs);
3575 }
3576
3577 if (follow_child)
3578 switch_to_thread (child);
3579 else
3580 switch_to_thread (parent);
3581
3582 ecs->event_thread = inferior_thread ();
3583 ecs->ptid = inferior_ptid;
3584
3585 if (should_resume)
3586 keep_going (ecs);
3587 else
3588 stop_stepping (ecs);
3589 return;
3590 }
3591 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3592 goto process_event_stop_test;
3593
3594 case TARGET_WAITKIND_VFORK_DONE:
3595 /* Done with the shared memory region. Re-insert breakpoints in
3596 the parent, and keep going. */
3597
3598 if (debug_infrun)
3599 fprintf_unfiltered (gdb_stdlog,
3600 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3601
3602 if (!ptid_equal (ecs->ptid, inferior_ptid))
3603 context_switch (ecs->ptid);
3604
3605 current_inferior ()->waiting_for_vfork_done = 0;
3606 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3607 /* This also takes care of reinserting breakpoints in the
3608 previously locked inferior. */
3609 keep_going (ecs);
3610 return;
3611
3612 case TARGET_WAITKIND_EXECD:
3613 if (debug_infrun)
3614 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3615
3616 if (!ptid_equal (ecs->ptid, inferior_ptid))
3617 {
3618 context_switch (ecs->ptid);
3619 reinit_frame_cache ();
3620 }
3621
3622 singlestep_breakpoints_inserted_p = 0;
3623 cancel_single_step_breakpoints ();
3624
3625 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3626
3627 /* Do whatever is necessary to the parent branch of the vfork. */
3628 handle_vfork_child_exec_or_exit (1);
3629
3630 /* This causes the eventpoints and symbol table to be reset.
3631 Must do this now, before trying to determine whether to
3632 stop. */
3633 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3634
3635 ecs->event_thread->control.stop_bpstat
3636 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3637 stop_pc, ecs->ptid, &ecs->ws);
3638 ecs->random_signal
3639 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3640
3641 /* Note that this may be referenced from inside
3642 bpstat_stop_status above, through inferior_has_execd. */
3643 xfree (ecs->ws.value.execd_pathname);
3644 ecs->ws.value.execd_pathname = NULL;
3645
3646 /* If no catchpoint triggered for this, then keep going. */
3647 if (ecs->random_signal)
3648 {
3649 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3650 keep_going (ecs);
3651 return;
3652 }
3653 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3654 goto process_event_stop_test;
3655
3656 /* Be careful not to try to gather much state about a thread
3657 that's in a syscall. It's frequently a losing proposition. */
3658 case TARGET_WAITKIND_SYSCALL_ENTRY:
3659 if (debug_infrun)
3660 fprintf_unfiltered (gdb_stdlog,
3661 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3662 /* Getting the current syscall number. */
3663 if (handle_syscall_event (ecs) != 0)
3664 return;
3665 goto process_event_stop_test;
3666
3667 /* Before examining the threads further, step this thread to
3668 get it entirely out of the syscall. (We get notice of the
3669 event when the thread is just on the verge of exiting a
3670 syscall. Stepping one instruction seems to get it back
3671 into user code.) */
3672 case TARGET_WAITKIND_SYSCALL_RETURN:
3673 if (debug_infrun)
3674 fprintf_unfiltered (gdb_stdlog,
3675 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3676 if (handle_syscall_event (ecs) != 0)
3677 return;
3678 goto process_event_stop_test;
3679
3680 case TARGET_WAITKIND_STOPPED:
3681 if (debug_infrun)
3682 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3683 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3684 break;
3685
3686 case TARGET_WAITKIND_NO_HISTORY:
3687 if (debug_infrun)
3688 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3689 /* Reverse execution: target ran out of history info. */
3690 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3691 print_no_history_reason ();
3692 stop_stepping (ecs);
3693 return;
3694 }
3695
3696 if (ecs->new_thread_event)
3697 {
3698 if (non_stop)
3699 /* Non-stop assumes that the target handles adding new threads
3700 to the thread list. */
3701 internal_error (__FILE__, __LINE__,
3702 "targets should add new threads to the thread "
3703 "list themselves in non-stop mode.");
3704
3705 /* We may want to consider not doing a resume here in order to
3706 give the user a chance to play with the new thread. It might
3707 be good to make that a user-settable option. */
3708
3709 /* At this point, all threads are stopped (happens automatically
3710 in either the OS or the native code). Therefore we need to
3711 continue all threads in order to make progress. */
3712
3713 if (!ptid_equal (ecs->ptid, inferior_ptid))
3714 context_switch (ecs->ptid);
3715 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3716 prepare_to_wait (ecs);
3717 return;
3718 }
3719
3720 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3721 {
3722 /* Do we need to clean up the state of a thread that has
3723 completed a displaced single-step? (Doing so usually affects
3724 the PC, so do it here, before we set stop_pc.) */
3725 displaced_step_fixup (ecs->ptid,
3726 ecs->event_thread->suspend.stop_signal);
3727
3728 /* If we either finished a single-step or hit a breakpoint, but
3729 the user wanted this thread to be stopped, pretend we got a
3730 SIG0 (generic unsignaled stop). */
3731
3732 if (ecs->event_thread->stop_requested
3733 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3734 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3735 }
3736
3737 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3738
3739 if (debug_infrun)
3740 {
3741 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3742 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3743 struct cleanup *old_chain = save_inferior_ptid ();
3744
3745 inferior_ptid = ecs->ptid;
3746
3747 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3748 paddress (gdbarch, stop_pc));
3749 if (target_stopped_by_watchpoint ())
3750 {
3751 CORE_ADDR addr;
3752
3753 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3754
3755 if (target_stopped_data_address (&current_target, &addr))
3756 fprintf_unfiltered (gdb_stdlog,
3757 "infrun: stopped data address = %s\n",
3758 paddress (gdbarch, addr));
3759 else
3760 fprintf_unfiltered (gdb_stdlog,
3761 "infrun: (no data address available)\n");
3762 }
3763
3764 do_cleanups (old_chain);
3765 }
3766
3767 if (stepping_past_singlestep_breakpoint)
3768 {
3769 gdb_assert (singlestep_breakpoints_inserted_p);
3770 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3771 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3772
3773 stepping_past_singlestep_breakpoint = 0;
3774
3775 /* We've either finished single-stepping past the single-step
3776 breakpoint, or stopped for some other reason. It would be nice if
3777 we could tell, but we can't reliably. */
3778 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3779 {
3780 if (debug_infrun)
3781 fprintf_unfiltered (gdb_stdlog,
3782 "infrun: stepping_past_"
3783 "singlestep_breakpoint\n");
3784 /* Pull the single step breakpoints out of the target. */
3785 remove_single_step_breakpoints ();
3786 singlestep_breakpoints_inserted_p = 0;
3787
3788 ecs->random_signal = 0;
3789 ecs->event_thread->control.trap_expected = 0;
3790
3791 context_switch (saved_singlestep_ptid);
3792 if (deprecated_context_hook)
3793 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3794
3795 resume (1, TARGET_SIGNAL_0);
3796 prepare_to_wait (ecs);
3797 return;
3798 }
3799 }
3800
3801 if (!ptid_equal (deferred_step_ptid, null_ptid))
3802 {
3803 /* In non-stop mode, there's never a deferred_step_ptid set. */
3804 gdb_assert (!non_stop);
3805
3806 /* If we stopped for some other reason than single-stepping, ignore
3807 the fact that we were supposed to switch back. */
3808 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3809 {
3810 if (debug_infrun)
3811 fprintf_unfiltered (gdb_stdlog,
3812 "infrun: handling deferred step\n");
3813
3814 /* Pull the single step breakpoints out of the target. */
3815 if (singlestep_breakpoints_inserted_p)
3816 {
3817 remove_single_step_breakpoints ();
3818 singlestep_breakpoints_inserted_p = 0;
3819 }
3820
3821 ecs->event_thread->control.trap_expected = 0;
3822
3823 /* Note: We do not call context_switch at this point, as the
3824 context is already set up for stepping the original thread. */
3825 switch_to_thread (deferred_step_ptid);
3826 deferred_step_ptid = null_ptid;
3827 /* Suppress spurious "Switching to ..." message. */
3828 previous_inferior_ptid = inferior_ptid;
3829
3830 resume (1, TARGET_SIGNAL_0);
3831 prepare_to_wait (ecs);
3832 return;
3833 }
3834
3835 deferred_step_ptid = null_ptid;
3836 }
3837
3838 /* See if a thread hit a thread-specific breakpoint that was meant for
3839 another thread. If so, then step that thread past the breakpoint,
3840 and continue it. */
3841
3842 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3843 {
3844 int thread_hop_needed = 0;
3845 struct address_space *aspace =
3846 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3847
3848 /* Check if a regular breakpoint has been hit before checking
3849 for a potential single step breakpoint. Otherwise, GDB will
3850 not see this breakpoint hit when stepping onto breakpoints. */
3851 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3852 {
3853 ecs->random_signal = 0;
3854 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3855 thread_hop_needed = 1;
3856 }
3857 else if (singlestep_breakpoints_inserted_p)
3858 {
3859 /* We have not context switched yet, so this should be true
3860 no matter which thread hit the singlestep breakpoint. */
3861 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3862 if (debug_infrun)
3863 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3864 "trap for %s\n",
3865 target_pid_to_str (ecs->ptid));
3866
3867 ecs->random_signal = 0;
3868 /* The call to in_thread_list is necessary because PTIDs sometimes
3869 change when we go from single-threaded to multi-threaded. If
3870 the singlestep_ptid is still in the list, assume that it is
3871 really different from ecs->ptid. */
3872 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3873 && in_thread_list (singlestep_ptid))
3874 {
3875 /* If the PC of the thread we were trying to single-step
3876 has changed, discard this event (which we were going
3877 to ignore anyway), and pretend we saw that thread
3878 trap. This prevents us continuously moving the
3879 single-step breakpoint forward, one instruction at a
3880 time. If the PC has changed, then the thread we were
3881 trying to single-step has trapped or been signalled,
3882 but the event has not been reported to GDB yet.
3883
3884 There might be some cases where this loses signal
3885 information, if a signal has arrived at exactly the
3886 same time that the PC changed, but this is the best
3887 we can do with the information available. Perhaps we
3888 should arrange to report all events for all threads
3889 when they stop, or to re-poll the remote looking for
3890 this particular thread (i.e. temporarily enable
3891 schedlock). */
3892
3893 CORE_ADDR new_singlestep_pc
3894 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3895
3896 if (new_singlestep_pc != singlestep_pc)
3897 {
3898 enum target_signal stop_signal;
3899
3900 if (debug_infrun)
3901 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3902 " but expected thread advanced also\n");
3903
3904 /* The current context still belongs to
3905 singlestep_ptid. Don't swap here, since that's
3906 the context we want to use. Just fudge our
3907 state and continue. */
3908 stop_signal = ecs->event_thread->suspend.stop_signal;
3909 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3910 ecs->ptid = singlestep_ptid;
3911 ecs->event_thread = find_thread_ptid (ecs->ptid);
3912 ecs->event_thread->suspend.stop_signal = stop_signal;
3913 stop_pc = new_singlestep_pc;
3914 }
3915 else
3916 {
3917 if (debug_infrun)
3918 fprintf_unfiltered (gdb_stdlog,
3919 "infrun: unexpected thread\n");
3920
3921 thread_hop_needed = 1;
3922 stepping_past_singlestep_breakpoint = 1;
3923 saved_singlestep_ptid = singlestep_ptid;
3924 }
3925 }
3926 }
3927
3928 if (thread_hop_needed)
3929 {
3930 struct regcache *thread_regcache;
3931 int remove_status = 0;
3932
3933 if (debug_infrun)
3934 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3935
3936 /* Switch context before touching inferior memory, the
3937 previous thread may have exited. */
3938 if (!ptid_equal (inferior_ptid, ecs->ptid))
3939 context_switch (ecs->ptid);
3940
3941 /* Saw a breakpoint, but it was hit by the wrong thread.
3942 Just continue. */
3943
3944 if (singlestep_breakpoints_inserted_p)
3945 {
3946 /* Pull the single step breakpoints out of the target. */
3947 remove_single_step_breakpoints ();
3948 singlestep_breakpoints_inserted_p = 0;
3949 }
3950
3951 /* If the arch can displace step, don't remove the
3952 breakpoints. */
3953 thread_regcache = get_thread_regcache (ecs->ptid);
3954 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3955 remove_status = remove_breakpoints ();
3956
3957 /* Did we fail to remove breakpoints? If so, try
3958 to set the PC past the bp. (There's at least
3959 one situation in which we can fail to remove
3960 the bp's: On HP-UX's that use ttrace, we can't
3961 change the address space of a vforking child
3962 process until the child exits (well, okay, not
3963 then either :-) or execs. */
3964 if (remove_status != 0)
3965 error (_("Cannot step over breakpoint hit in wrong thread"));
3966 else
3967 { /* Single step */
3968 if (!non_stop)
3969 {
3970 /* Only need to require the next event from this
3971 thread in all-stop mode. */
3972 waiton_ptid = ecs->ptid;
3973 infwait_state = infwait_thread_hop_state;
3974 }
3975
3976 ecs->event_thread->stepping_over_breakpoint = 1;
3977 keep_going (ecs);
3978 return;
3979 }
3980 }
3981 else if (singlestep_breakpoints_inserted_p)
3982 {
3983 ecs->random_signal = 0;
3984 }
3985 }
3986 else
3987 ecs->random_signal = 1;
3988
3989 /* See if something interesting happened to the non-current thread. If
3990 so, then switch to that thread. */
3991 if (!ptid_equal (ecs->ptid, inferior_ptid))
3992 {
3993 if (debug_infrun)
3994 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3995
3996 context_switch (ecs->ptid);
3997
3998 if (deprecated_context_hook)
3999 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4000 }
4001
4002 /* At this point, get hold of the now-current thread's frame. */
4003 frame = get_current_frame ();
4004 gdbarch = get_frame_arch (frame);
4005
4006 if (singlestep_breakpoints_inserted_p)
4007 {
4008 /* Pull the single step breakpoints out of the target. */
4009 remove_single_step_breakpoints ();
4010 singlestep_breakpoints_inserted_p = 0;
4011 }
4012
4013 if (stepped_after_stopped_by_watchpoint)
4014 stopped_by_watchpoint = 0;
4015 else
4016 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4017
4018 /* If necessary, step over this watchpoint. We'll be back to display
4019 it in a moment. */
4020 if (stopped_by_watchpoint
4021 && (target_have_steppable_watchpoint
4022 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4023 {
4024 /* At this point, we are stopped at an instruction which has
4025 attempted to write to a piece of memory under control of
4026 a watchpoint. The instruction hasn't actually executed
4027 yet. If we were to evaluate the watchpoint expression
4028 now, we would get the old value, and therefore no change
4029 would seem to have occurred.
4030
4031 In order to make watchpoints work `right', we really need
4032 to complete the memory write, and then evaluate the
4033 watchpoint expression. We do this by single-stepping the
4034 target.
4035
4036 It may not be necessary to disable the watchpoint to stop over
4037 it. For example, the PA can (with some kernel cooperation)
4038 single step over a watchpoint without disabling the watchpoint.
4039
4040 It is far more common to need to disable a watchpoint to step
4041 the inferior over it. If we have non-steppable watchpoints,
4042 we must disable the current watchpoint; it's simplest to
4043 disable all watchpoints and breakpoints. */
4044 int hw_step = 1;
4045
4046 if (!target_have_steppable_watchpoint)
4047 {
4048 remove_breakpoints ();
4049 /* See comment in resume why we need to stop bypassing signals
4050 while breakpoints have been removed. */
4051 target_pass_signals (0, NULL);
4052 }
4053 /* Single step */
4054 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4055 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
4056 waiton_ptid = ecs->ptid;
4057 if (target_have_steppable_watchpoint)
4058 infwait_state = infwait_step_watch_state;
4059 else
4060 infwait_state = infwait_nonstep_watch_state;
4061 prepare_to_wait (ecs);
4062 return;
4063 }
4064
4065 clear_stop_func (ecs);
4066 ecs->event_thread->stepping_over_breakpoint = 0;
4067 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4068 ecs->event_thread->control.stop_step = 0;
4069 stop_print_frame = 1;
4070 ecs->random_signal = 0;
4071 stopped_by_random_signal = 0;
4072
4073 /* Hide inlined functions starting here, unless we just performed stepi or
4074 nexti. After stepi and nexti, always show the innermost frame (not any
4075 inline function call sites). */
4076 if (ecs->event_thread->control.step_range_end != 1)
4077 {
4078 struct address_space *aspace =
4079 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4080
4081 /* skip_inline_frames is expensive, so we avoid it if we can
4082 determine that the address is one where functions cannot have
4083 been inlined. This improves performance with inferiors that
4084 load a lot of shared libraries, because the solib event
4085 breakpoint is defined as the address of a function (i.e. not
4086 inline). Note that we have to check the previous PC as well
4087 as the current one to catch cases when we have just
4088 single-stepped off a breakpoint prior to reinstating it.
4089 Note that we're assuming that the code we single-step to is
4090 not inline, but that's not definitive: there's nothing
4091 preventing the event breakpoint function from containing
4092 inlined code, and the single-step ending up there. If the
4093 user had set a breakpoint on that inlined code, the missing
4094 skip_inline_frames call would break things. Fortunately
4095 that's an extremely unlikely scenario. */
4096 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4097 && !(ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4098 && ecs->event_thread->control.trap_expected
4099 && pc_at_non_inline_function (aspace,
4100 ecs->event_thread->prev_pc,
4101 &ecs->ws)))
4102 skip_inline_frames (ecs->ptid);
4103 }
4104
4105 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4106 && ecs->event_thread->control.trap_expected
4107 && gdbarch_single_step_through_delay_p (gdbarch)
4108 && currently_stepping (ecs->event_thread))
4109 {
4110 /* We're trying to step off a breakpoint. Turns out that we're
4111 also on an instruction that needs to be stepped multiple
4112 times before it's been fully executing. E.g., architectures
4113 with a delay slot. It needs to be stepped twice, once for
4114 the instruction and once for the delay slot. */
4115 int step_through_delay
4116 = gdbarch_single_step_through_delay (gdbarch, frame);
4117
4118 if (debug_infrun && step_through_delay)
4119 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4120 if (ecs->event_thread->control.step_range_end == 0
4121 && step_through_delay)
4122 {
4123 /* The user issued a continue when stopped at a breakpoint.
4124 Set up for another trap and get out of here. */
4125 ecs->event_thread->stepping_over_breakpoint = 1;
4126 keep_going (ecs);
4127 return;
4128 }
4129 else if (step_through_delay)
4130 {
4131 /* The user issued a step when stopped at a breakpoint.
4132 Maybe we should stop, maybe we should not - the delay
4133 slot *might* correspond to a line of source. In any
4134 case, don't decide that here, just set
4135 ecs->stepping_over_breakpoint, making sure we
4136 single-step again before breakpoints are re-inserted. */
4137 ecs->event_thread->stepping_over_breakpoint = 1;
4138 }
4139 }
4140
4141 /* Look at the cause of the stop, and decide what to do.
4142 The alternatives are:
4143 1) stop_stepping and return; to really stop and return to the debugger,
4144 2) keep_going and return to start up again
4145 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4146 3) set ecs->random_signal to 1, and the decision between 1 and 2
4147 will be made according to the signal handling tables. */
4148
4149 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4150 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4151 || stop_soon == STOP_QUIETLY_REMOTE)
4152 {
4153 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4154 && stop_after_trap)
4155 {
4156 if (debug_infrun)
4157 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4158 stop_print_frame = 0;
4159 stop_stepping (ecs);
4160 return;
4161 }
4162
4163 /* This is originated from start_remote(), start_inferior() and
4164 shared libraries hook functions. */
4165 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4166 {
4167 if (debug_infrun)
4168 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4169 stop_stepping (ecs);
4170 return;
4171 }
4172
4173 /* This originates from attach_command(). We need to overwrite
4174 the stop_signal here, because some kernels don't ignore a
4175 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4176 See more comments in inferior.h. On the other hand, if we
4177 get a non-SIGSTOP, report it to the user - assume the backend
4178 will handle the SIGSTOP if it should show up later.
4179
4180 Also consider that the attach is complete when we see a
4181 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4182 target extended-remote report it instead of a SIGSTOP
4183 (e.g. gdbserver). We already rely on SIGTRAP being our
4184 signal, so this is no exception.
4185
4186 Also consider that the attach is complete when we see a
4187 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4188 the target to stop all threads of the inferior, in case the
4189 low level attach operation doesn't stop them implicitly. If
4190 they weren't stopped implicitly, then the stub will report a
4191 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4192 other than GDB's request. */
4193 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4194 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4195 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4196 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
4197 {
4198 stop_stepping (ecs);
4199 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4200 return;
4201 }
4202
4203 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4204 handles this event. */
4205 ecs->event_thread->control.stop_bpstat
4206 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4207 stop_pc, ecs->ptid, &ecs->ws);
4208
4209 /* Following in case break condition called a
4210 function. */
4211 stop_print_frame = 1;
4212
4213 /* This is where we handle "moribund" watchpoints. Unlike
4214 software breakpoints traps, hardware watchpoint traps are
4215 always distinguishable from random traps. If no high-level
4216 watchpoint is associated with the reported stop data address
4217 anymore, then the bpstat does not explain the signal ---
4218 simply make sure to ignore it if `stopped_by_watchpoint' is
4219 set. */
4220
4221 if (debug_infrun
4222 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4223 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4224 && stopped_by_watchpoint)
4225 fprintf_unfiltered (gdb_stdlog,
4226 "infrun: no user watchpoint explains "
4227 "watchpoint SIGTRAP, ignoring\n");
4228
4229 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4230 at one stage in the past included checks for an inferior
4231 function call's call dummy's return breakpoint. The original
4232 comment, that went with the test, read:
4233
4234 ``End of a stack dummy. Some systems (e.g. Sony news) give
4235 another signal besides SIGTRAP, so check here as well as
4236 above.''
4237
4238 If someone ever tries to get call dummys on a
4239 non-executable stack to work (where the target would stop
4240 with something like a SIGSEGV), then those tests might need
4241 to be re-instated. Given, however, that the tests were only
4242 enabled when momentary breakpoints were not being used, I
4243 suspect that it won't be the case.
4244
4245 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4246 be necessary for call dummies on a non-executable stack on
4247 SPARC. */
4248
4249 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
4250 ecs->random_signal
4251 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4252 || stopped_by_watchpoint
4253 || ecs->event_thread->control.trap_expected
4254 || (ecs->event_thread->control.step_range_end
4255 && (ecs->event_thread->control.step_resume_breakpoint
4256 == NULL)));
4257 else
4258 {
4259 ecs->random_signal = !bpstat_explains_signal
4260 (ecs->event_thread->control.stop_bpstat);
4261 if (!ecs->random_signal)
4262 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
4263 }
4264 }
4265
4266 /* When we reach this point, we've pretty much decided
4267 that the reason for stopping must've been a random
4268 (unexpected) signal. */
4269
4270 else
4271 ecs->random_signal = 1;
4272
4273process_event_stop_test:
4274
4275 /* Re-fetch current thread's frame in case we did a
4276 "goto process_event_stop_test" above. */
4277 frame = get_current_frame ();
4278 gdbarch = get_frame_arch (frame);
4279
4280 /* For the program's own signals, act according to
4281 the signal handling tables. */
4282
4283 if (ecs->random_signal)
4284 {
4285 /* Signal not for debugging purposes. */
4286 int printed = 0;
4287 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4288
4289 if (debug_infrun)
4290 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4291 ecs->event_thread->suspend.stop_signal);
4292
4293 stopped_by_random_signal = 1;
4294
4295 if (signal_print[ecs->event_thread->suspend.stop_signal])
4296 {
4297 printed = 1;
4298 target_terminal_ours_for_output ();
4299 print_signal_received_reason
4300 (ecs->event_thread->suspend.stop_signal);
4301 }
4302 /* Always stop on signals if we're either just gaining control
4303 of the program, or the user explicitly requested this thread
4304 to remain stopped. */
4305 if (stop_soon != NO_STOP_QUIETLY
4306 || ecs->event_thread->stop_requested
4307 || (!inf->detaching
4308 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4309 {
4310 stop_stepping (ecs);
4311 return;
4312 }
4313 /* If not going to stop, give terminal back
4314 if we took it away. */
4315 else if (printed)
4316 target_terminal_inferior ();
4317
4318 /* Clear the signal if it should not be passed. */
4319 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4320 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4321
4322 if (ecs->event_thread->prev_pc == stop_pc
4323 && ecs->event_thread->control.trap_expected
4324 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4325 {
4326 /* We were just starting a new sequence, attempting to
4327 single-step off of a breakpoint and expecting a SIGTRAP.
4328 Instead this signal arrives. This signal will take us out
4329 of the stepping range so GDB needs to remember to, when
4330 the signal handler returns, resume stepping off that
4331 breakpoint. */
4332 /* To simplify things, "continue" is forced to use the same
4333 code paths as single-step - set a breakpoint at the
4334 signal return address and then, once hit, step off that
4335 breakpoint. */
4336 if (debug_infrun)
4337 fprintf_unfiltered (gdb_stdlog,
4338 "infrun: signal arrived while stepping over "
4339 "breakpoint\n");
4340
4341 insert_hp_step_resume_breakpoint_at_frame (frame);
4342 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4343 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4344 ecs->event_thread->control.trap_expected = 0;
4345 keep_going (ecs);
4346 return;
4347 }
4348
4349 if (ecs->event_thread->control.step_range_end != 0
4350 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4351 && (ecs->event_thread->control.step_range_start <= stop_pc
4352 && stop_pc < ecs->event_thread->control.step_range_end)
4353 && frame_id_eq (get_stack_frame_id (frame),
4354 ecs->event_thread->control.step_stack_frame_id)
4355 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4356 {
4357 /* The inferior is about to take a signal that will take it
4358 out of the single step range. Set a breakpoint at the
4359 current PC (which is presumably where the signal handler
4360 will eventually return) and then allow the inferior to
4361 run free.
4362
4363 Note that this is only needed for a signal delivered
4364 while in the single-step range. Nested signals aren't a
4365 problem as they eventually all return. */
4366 if (debug_infrun)
4367 fprintf_unfiltered (gdb_stdlog,
4368 "infrun: signal may take us out of "
4369 "single-step range\n");
4370
4371 insert_hp_step_resume_breakpoint_at_frame (frame);
4372 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4373 ecs->event_thread->control.trap_expected = 0;
4374 keep_going (ecs);
4375 return;
4376 }
4377
4378 /* Note: step_resume_breakpoint may be non-NULL. This occures
4379 when either there's a nested signal, or when there's a
4380 pending signal enabled just as the signal handler returns
4381 (leaving the inferior at the step-resume-breakpoint without
4382 actually executing it). Either way continue until the
4383 breakpoint is really hit. */
4384 keep_going (ecs);
4385 return;
4386 }
4387
4388 /* Handle cases caused by hitting a breakpoint. */
4389 {
4390 CORE_ADDR jmp_buf_pc;
4391 struct bpstat_what what;
4392
4393 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4394
4395 if (what.call_dummy)
4396 {
4397 stop_stack_dummy = what.call_dummy;
4398 }
4399
4400 /* If we hit an internal event that triggers symbol changes, the
4401 current frame will be invalidated within bpstat_what (e.g., if
4402 we hit an internal solib event). Re-fetch it. */
4403 frame = get_current_frame ();
4404 gdbarch = get_frame_arch (frame);
4405
4406 switch (what.main_action)
4407 {
4408 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4409 /* If we hit the breakpoint at longjmp while stepping, we
4410 install a momentary breakpoint at the target of the
4411 jmp_buf. */
4412
4413 if (debug_infrun)
4414 fprintf_unfiltered (gdb_stdlog,
4415 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4416
4417 ecs->event_thread->stepping_over_breakpoint = 1;
4418
4419 if (what.is_longjmp)
4420 {
4421 if (!gdbarch_get_longjmp_target_p (gdbarch)
4422 || !gdbarch_get_longjmp_target (gdbarch,
4423 frame, &jmp_buf_pc))
4424 {
4425 if (debug_infrun)
4426 fprintf_unfiltered (gdb_stdlog,
4427 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4428 "(!gdbarch_get_longjmp_target)\n");
4429 keep_going (ecs);
4430 return;
4431 }
4432
4433 /* We're going to replace the current step-resume breakpoint
4434 with a longjmp-resume breakpoint. */
4435 delete_step_resume_breakpoint (ecs->event_thread);
4436
4437 /* Insert a breakpoint at resume address. */
4438 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4439 }
4440 else
4441 {
4442 struct symbol *func = get_frame_function (frame);
4443
4444 if (func)
4445 check_exception_resume (ecs, frame, func);
4446 }
4447 keep_going (ecs);
4448 return;
4449
4450 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4451 if (debug_infrun)
4452 fprintf_unfiltered (gdb_stdlog,
4453 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4454
4455 if (what.is_longjmp)
4456 {
4457 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4458 != NULL);
4459 delete_step_resume_breakpoint (ecs->event_thread);
4460 }
4461 else
4462 {
4463 /* There are several cases to consider.
4464
4465 1. The initiating frame no longer exists. In this case
4466 we must stop, because the exception has gone too far.
4467
4468 2. The initiating frame exists, and is the same as the
4469 current frame. We stop, because the exception has been
4470 caught.
4471
4472 3. The initiating frame exists and is different from
4473 the current frame. This means the exception has been
4474 caught beneath the initiating frame, so keep going. */
4475 struct frame_info *init_frame
4476 = frame_find_by_id (ecs->event_thread->initiating_frame);
4477
4478 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4479 != NULL);
4480 delete_exception_resume_breakpoint (ecs->event_thread);
4481
4482 if (init_frame)
4483 {
4484 struct frame_id current_id
4485 = get_frame_id (get_current_frame ());
4486 if (frame_id_eq (current_id,
4487 ecs->event_thread->initiating_frame))
4488 {
4489 /* Case 2. Fall through. */
4490 }
4491 else
4492 {
4493 /* Case 3. */
4494 keep_going (ecs);
4495 return;
4496 }
4497 }
4498
4499 /* For Cases 1 and 2, remove the step-resume breakpoint,
4500 if it exists. */
4501 delete_step_resume_breakpoint (ecs->event_thread);
4502 }
4503
4504 ecs->event_thread->control.stop_step = 1;
4505 print_end_stepping_range_reason ();
4506 stop_stepping (ecs);
4507 return;
4508
4509 case BPSTAT_WHAT_SINGLE:
4510 if (debug_infrun)
4511 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4512 ecs->event_thread->stepping_over_breakpoint = 1;
4513 /* Still need to check other stuff, at least the case
4514 where we are stepping and step out of the right range. */
4515 break;
4516
4517 case BPSTAT_WHAT_STEP_RESUME:
4518 if (debug_infrun)
4519 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4520
4521 delete_step_resume_breakpoint (ecs->event_thread);
4522 if (ecs->event_thread->control.proceed_to_finish
4523 && execution_direction == EXEC_REVERSE)
4524 {
4525 struct thread_info *tp = ecs->event_thread;
4526
4527 /* We are finishing a function in reverse, and just hit
4528 the step-resume breakpoint at the start address of the
4529 function, and we're almost there -- just need to back
4530 up by one more single-step, which should take us back
4531 to the function call. */
4532 tp->control.step_range_start = tp->control.step_range_end = 1;
4533 keep_going (ecs);
4534 return;
4535 }
4536 fill_in_stop_func (gdbarch, ecs);
4537 if (stop_pc == ecs->stop_func_start
4538 && execution_direction == EXEC_REVERSE)
4539 {
4540 /* We are stepping over a function call in reverse, and
4541 just hit the step-resume breakpoint at the start
4542 address of the function. Go back to single-stepping,
4543 which should take us back to the function call. */
4544 ecs->event_thread->stepping_over_breakpoint = 1;
4545 keep_going (ecs);
4546 return;
4547 }
4548 break;
4549
4550 case BPSTAT_WHAT_STOP_NOISY:
4551 if (debug_infrun)
4552 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4553 stop_print_frame = 1;
4554
4555 /* We are about to nuke the step_resume_breakpointt via the
4556 cleanup chain, so no need to worry about it here. */
4557
4558 stop_stepping (ecs);
4559 return;
4560
4561 case BPSTAT_WHAT_STOP_SILENT:
4562 if (debug_infrun)
4563 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4564 stop_print_frame = 0;
4565
4566 /* We are about to nuke the step_resume_breakpoin via the
4567 cleanup chain, so no need to worry about it here. */
4568
4569 stop_stepping (ecs);
4570 return;
4571
4572 case BPSTAT_WHAT_HP_STEP_RESUME:
4573 if (debug_infrun)
4574 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4575
4576 delete_step_resume_breakpoint (ecs->event_thread);
4577 if (ecs->event_thread->step_after_step_resume_breakpoint)
4578 {
4579 /* Back when the step-resume breakpoint was inserted, we
4580 were trying to single-step off a breakpoint. Go back
4581 to doing that. */
4582 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4583 ecs->event_thread->stepping_over_breakpoint = 1;
4584 keep_going (ecs);
4585 return;
4586 }
4587 break;
4588
4589 case BPSTAT_WHAT_KEEP_CHECKING:
4590 break;
4591 }
4592 }
4593
4594 /* We come here if we hit a breakpoint but should not
4595 stop for it. Possibly we also were stepping
4596 and should stop for that. So fall through and
4597 test for stepping. But, if not stepping,
4598 do not stop. */
4599
4600 /* In all-stop mode, if we're currently stepping but have stopped in
4601 some other thread, we need to switch back to the stepped thread. */
4602 if (!non_stop)
4603 {
4604 struct thread_info *tp;
4605
4606 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4607 ecs->event_thread);
4608 if (tp)
4609 {
4610 /* However, if the current thread is blocked on some internal
4611 breakpoint, and we simply need to step over that breakpoint
4612 to get it going again, do that first. */
4613 if ((ecs->event_thread->control.trap_expected
4614 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
4615 || ecs->event_thread->stepping_over_breakpoint)
4616 {
4617 keep_going (ecs);
4618 return;
4619 }
4620
4621 /* If the stepping thread exited, then don't try to switch
4622 back and resume it, which could fail in several different
4623 ways depending on the target. Instead, just keep going.
4624
4625 We can find a stepping dead thread in the thread list in
4626 two cases:
4627
4628 - The target supports thread exit events, and when the
4629 target tries to delete the thread from the thread list,
4630 inferior_ptid pointed at the exiting thread. In such
4631 case, calling delete_thread does not really remove the
4632 thread from the list; instead, the thread is left listed,
4633 with 'exited' state.
4634
4635 - The target's debug interface does not support thread
4636 exit events, and so we have no idea whatsoever if the
4637 previously stepping thread is still alive. For that
4638 reason, we need to synchronously query the target
4639 now. */
4640 if (is_exited (tp->ptid)
4641 || !target_thread_alive (tp->ptid))
4642 {
4643 if (debug_infrun)
4644 fprintf_unfiltered (gdb_stdlog,
4645 "infrun: not switching back to "
4646 "stepped thread, it has vanished\n");
4647
4648 delete_thread (tp->ptid);
4649 keep_going (ecs);
4650 return;
4651 }
4652
4653 /* Otherwise, we no longer expect a trap in the current thread.
4654 Clear the trap_expected flag before switching back -- this is
4655 what keep_going would do as well, if we called it. */
4656 ecs->event_thread->control.trap_expected = 0;
4657
4658 if (debug_infrun)
4659 fprintf_unfiltered (gdb_stdlog,
4660 "infrun: switching back to stepped thread\n");
4661
4662 ecs->event_thread = tp;
4663 ecs->ptid = tp->ptid;
4664 context_switch (ecs->ptid);
4665 keep_going (ecs);
4666 return;
4667 }
4668 }
4669
4670 if (ecs->event_thread->control.step_resume_breakpoint)
4671 {
4672 if (debug_infrun)
4673 fprintf_unfiltered (gdb_stdlog,
4674 "infrun: step-resume breakpoint is inserted\n");
4675
4676 /* Having a step-resume breakpoint overrides anything
4677 else having to do with stepping commands until
4678 that breakpoint is reached. */
4679 keep_going (ecs);
4680 return;
4681 }
4682
4683 if (ecs->event_thread->control.step_range_end == 0)
4684 {
4685 if (debug_infrun)
4686 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4687 /* Likewise if we aren't even stepping. */
4688 keep_going (ecs);
4689 return;
4690 }
4691
4692 /* Re-fetch current thread's frame in case the code above caused
4693 the frame cache to be re-initialized, making our FRAME variable
4694 a dangling pointer. */
4695 frame = get_current_frame ();
4696 gdbarch = get_frame_arch (frame);
4697 fill_in_stop_func (gdbarch, ecs);
4698
4699 /* If stepping through a line, keep going if still within it.
4700
4701 Note that step_range_end is the address of the first instruction
4702 beyond the step range, and NOT the address of the last instruction
4703 within it!
4704
4705 Note also that during reverse execution, we may be stepping
4706 through a function epilogue and therefore must detect when
4707 the current-frame changes in the middle of a line. */
4708
4709 if (stop_pc >= ecs->event_thread->control.step_range_start
4710 && stop_pc < ecs->event_thread->control.step_range_end
4711 && (execution_direction != EXEC_REVERSE
4712 || frame_id_eq (get_frame_id (frame),
4713 ecs->event_thread->control.step_frame_id)))
4714 {
4715 if (debug_infrun)
4716 fprintf_unfiltered
4717 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4718 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4719 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4720
4721 /* When stepping backward, stop at beginning of line range
4722 (unless it's the function entry point, in which case
4723 keep going back to the call point). */
4724 if (stop_pc == ecs->event_thread->control.step_range_start
4725 && stop_pc != ecs->stop_func_start
4726 && execution_direction == EXEC_REVERSE)
4727 {
4728 ecs->event_thread->control.stop_step = 1;
4729 print_end_stepping_range_reason ();
4730 stop_stepping (ecs);
4731 }
4732 else
4733 keep_going (ecs);
4734
4735 return;
4736 }
4737
4738 /* We stepped out of the stepping range. */
4739
4740 /* If we are stepping at the source level and entered the runtime
4741 loader dynamic symbol resolution code...
4742
4743 EXEC_FORWARD: we keep on single stepping until we exit the run
4744 time loader code and reach the callee's address.
4745
4746 EXEC_REVERSE: we've already executed the callee (backward), and
4747 the runtime loader code is handled just like any other
4748 undebuggable function call. Now we need only keep stepping
4749 backward through the trampoline code, and that's handled further
4750 down, so there is nothing for us to do here. */
4751
4752 if (execution_direction != EXEC_REVERSE
4753 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4754 && in_solib_dynsym_resolve_code (stop_pc))
4755 {
4756 CORE_ADDR pc_after_resolver =
4757 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4758
4759 if (debug_infrun)
4760 fprintf_unfiltered (gdb_stdlog,
4761 "infrun: stepped into dynsym resolve code\n");
4762
4763 if (pc_after_resolver)
4764 {
4765 /* Set up a step-resume breakpoint at the address
4766 indicated by SKIP_SOLIB_RESOLVER. */
4767 struct symtab_and_line sr_sal;
4768
4769 init_sal (&sr_sal);
4770 sr_sal.pc = pc_after_resolver;
4771 sr_sal.pspace = get_frame_program_space (frame);
4772
4773 insert_step_resume_breakpoint_at_sal (gdbarch,
4774 sr_sal, null_frame_id);
4775 }
4776
4777 keep_going (ecs);
4778 return;
4779 }
4780
4781 if (ecs->event_thread->control.step_range_end != 1
4782 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4783 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4784 && get_frame_type (frame) == SIGTRAMP_FRAME)
4785 {
4786 if (debug_infrun)
4787 fprintf_unfiltered (gdb_stdlog,
4788 "infrun: stepped into signal trampoline\n");
4789 /* The inferior, while doing a "step" or "next", has ended up in
4790 a signal trampoline (either by a signal being delivered or by
4791 the signal handler returning). Just single-step until the
4792 inferior leaves the trampoline (either by calling the handler
4793 or returning). */
4794 keep_going (ecs);
4795 return;
4796 }
4797
4798 /* Check for subroutine calls. The check for the current frame
4799 equalling the step ID is not necessary - the check of the
4800 previous frame's ID is sufficient - but it is a common case and
4801 cheaper than checking the previous frame's ID.
4802
4803 NOTE: frame_id_eq will never report two invalid frame IDs as
4804 being equal, so to get into this block, both the current and
4805 previous frame must have valid frame IDs. */
4806 /* The outer_frame_id check is a heuristic to detect stepping
4807 through startup code. If we step over an instruction which
4808 sets the stack pointer from an invalid value to a valid value,
4809 we may detect that as a subroutine call from the mythical
4810 "outermost" function. This could be fixed by marking
4811 outermost frames as !stack_p,code_p,special_p. Then the
4812 initial outermost frame, before sp was valid, would
4813 have code_addr == &_start. See the comment in frame_id_eq
4814 for more. */
4815 if (!frame_id_eq (get_stack_frame_id (frame),
4816 ecs->event_thread->control.step_stack_frame_id)
4817 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4818 ecs->event_thread->control.step_stack_frame_id)
4819 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4820 outer_frame_id)
4821 || step_start_function != find_pc_function (stop_pc))))
4822 {
4823 CORE_ADDR real_stop_pc;
4824
4825 if (debug_infrun)
4826 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4827
4828 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4829 || ((ecs->event_thread->control.step_range_end == 1)
4830 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4831 ecs->stop_func_start)))
4832 {
4833 /* I presume that step_over_calls is only 0 when we're
4834 supposed to be stepping at the assembly language level
4835 ("stepi"). Just stop. */
4836 /* Also, maybe we just did a "nexti" inside a prolog, so we
4837 thought it was a subroutine call but it was not. Stop as
4838 well. FENN */
4839 /* And this works the same backward as frontward. MVS */
4840 ecs->event_thread->control.stop_step = 1;
4841 print_end_stepping_range_reason ();
4842 stop_stepping (ecs);
4843 return;
4844 }
4845
4846 /* Reverse stepping through solib trampolines. */
4847
4848 if (execution_direction == EXEC_REVERSE
4849 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4850 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4851 || (ecs->stop_func_start == 0
4852 && in_solib_dynsym_resolve_code (stop_pc))))
4853 {
4854 /* Any solib trampoline code can be handled in reverse
4855 by simply continuing to single-step. We have already
4856 executed the solib function (backwards), and a few
4857 steps will take us back through the trampoline to the
4858 caller. */
4859 keep_going (ecs);
4860 return;
4861 }
4862
4863 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4864 {
4865 /* We're doing a "next".
4866
4867 Normal (forward) execution: set a breakpoint at the
4868 callee's return address (the address at which the caller
4869 will resume).
4870
4871 Reverse (backward) execution. set the step-resume
4872 breakpoint at the start of the function that we just
4873 stepped into (backwards), and continue to there. When we
4874 get there, we'll need to single-step back to the caller. */
4875
4876 if (execution_direction == EXEC_REVERSE)
4877 {
4878 struct symtab_and_line sr_sal;
4879
4880 /* Normal function call return (static or dynamic). */
4881 init_sal (&sr_sal);
4882 sr_sal.pc = ecs->stop_func_start;
4883 sr_sal.pspace = get_frame_program_space (frame);
4884 insert_step_resume_breakpoint_at_sal (gdbarch,
4885 sr_sal, null_frame_id);
4886 }
4887 else
4888 insert_step_resume_breakpoint_at_caller (frame);
4889
4890 keep_going (ecs);
4891 return;
4892 }
4893
4894 /* If we are in a function call trampoline (a stub between the
4895 calling routine and the real function), locate the real
4896 function. That's what tells us (a) whether we want to step
4897 into it at all, and (b) what prologue we want to run to the
4898 end of, if we do step into it. */
4899 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4900 if (real_stop_pc == 0)
4901 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4902 if (real_stop_pc != 0)
4903 ecs->stop_func_start = real_stop_pc;
4904
4905 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4906 {
4907 struct symtab_and_line sr_sal;
4908
4909 init_sal (&sr_sal);
4910 sr_sal.pc = ecs->stop_func_start;
4911 sr_sal.pspace = get_frame_program_space (frame);
4912
4913 insert_step_resume_breakpoint_at_sal (gdbarch,
4914 sr_sal, null_frame_id);
4915 keep_going (ecs);
4916 return;
4917 }
4918
4919 /* If we have line number information for the function we are
4920 thinking of stepping into and the function isn't on the skip
4921 list, step into it.
4922
4923 If there are several symtabs at that PC (e.g. with include
4924 files), just want to know whether *any* of them have line
4925 numbers. find_pc_line handles this. */
4926 {
4927 struct symtab_and_line tmp_sal;
4928
4929 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4930 if (tmp_sal.line != 0
4931 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
4932 {
4933 if (execution_direction == EXEC_REVERSE)
4934 handle_step_into_function_backward (gdbarch, ecs);
4935 else
4936 handle_step_into_function (gdbarch, ecs);
4937 return;
4938 }
4939 }
4940
4941 /* If we have no line number and the step-stop-if-no-debug is
4942 set, we stop the step so that the user has a chance to switch
4943 in assembly mode. */
4944 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4945 && step_stop_if_no_debug)
4946 {
4947 ecs->event_thread->control.stop_step = 1;
4948 print_end_stepping_range_reason ();
4949 stop_stepping (ecs);
4950 return;
4951 }
4952
4953 if (execution_direction == EXEC_REVERSE)
4954 {
4955 /* Set a breakpoint at callee's start address.
4956 From there we can step once and be back in the caller. */
4957 struct symtab_and_line sr_sal;
4958
4959 init_sal (&sr_sal);
4960 sr_sal.pc = ecs->stop_func_start;
4961 sr_sal.pspace = get_frame_program_space (frame);
4962 insert_step_resume_breakpoint_at_sal (gdbarch,
4963 sr_sal, null_frame_id);
4964 }
4965 else
4966 /* Set a breakpoint at callee's return address (the address
4967 at which the caller will resume). */
4968 insert_step_resume_breakpoint_at_caller (frame);
4969
4970 keep_going (ecs);
4971 return;
4972 }
4973
4974 /* Reverse stepping through solib trampolines. */
4975
4976 if (execution_direction == EXEC_REVERSE
4977 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4978 {
4979 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4980 || (ecs->stop_func_start == 0
4981 && in_solib_dynsym_resolve_code (stop_pc)))
4982 {
4983 /* Any solib trampoline code can be handled in reverse
4984 by simply continuing to single-step. We have already
4985 executed the solib function (backwards), and a few
4986 steps will take us back through the trampoline to the
4987 caller. */
4988 keep_going (ecs);
4989 return;
4990 }
4991 else if (in_solib_dynsym_resolve_code (stop_pc))
4992 {
4993 /* Stepped backward into the solib dynsym resolver.
4994 Set a breakpoint at its start and continue, then
4995 one more step will take us out. */
4996 struct symtab_and_line sr_sal;
4997
4998 init_sal (&sr_sal);
4999 sr_sal.pc = ecs->stop_func_start;
5000 sr_sal.pspace = get_frame_program_space (frame);
5001 insert_step_resume_breakpoint_at_sal (gdbarch,
5002 sr_sal, null_frame_id);
5003 keep_going (ecs);
5004 return;
5005 }
5006 }
5007
5008 /* If we're in the return path from a shared library trampoline,
5009 we want to proceed through the trampoline when stepping. */
5010 if (gdbarch_in_solib_return_trampoline (gdbarch,
5011 stop_pc, ecs->stop_func_name)
5012 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5013 {
5014 /* Determine where this trampoline returns. */
5015 CORE_ADDR real_stop_pc;
5016
5017 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5018
5019 if (debug_infrun)
5020 fprintf_unfiltered (gdb_stdlog,
5021 "infrun: stepped into solib return tramp\n");
5022
5023 /* Only proceed through if we know where it's going. */
5024 if (real_stop_pc)
5025 {
5026 /* And put the step-breakpoint there and go until there. */
5027 struct symtab_and_line sr_sal;
5028
5029 init_sal (&sr_sal); /* initialize to zeroes */
5030 sr_sal.pc = real_stop_pc;
5031 sr_sal.section = find_pc_overlay (sr_sal.pc);
5032 sr_sal.pspace = get_frame_program_space (frame);
5033
5034 /* Do not specify what the fp should be when we stop since
5035 on some machines the prologue is where the new fp value
5036 is established. */
5037 insert_step_resume_breakpoint_at_sal (gdbarch,
5038 sr_sal, null_frame_id);
5039
5040 /* Restart without fiddling with the step ranges or
5041 other state. */
5042 keep_going (ecs);
5043 return;
5044 }
5045 }
5046
5047 stop_pc_sal = find_pc_line (stop_pc, 0);
5048
5049 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5050 the trampoline processing logic, however, there are some trampolines
5051 that have no names, so we should do trampoline handling first. */
5052 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5053 && ecs->stop_func_name == NULL
5054 && stop_pc_sal.line == 0)
5055 {
5056 if (debug_infrun)
5057 fprintf_unfiltered (gdb_stdlog,
5058 "infrun: stepped into undebuggable function\n");
5059
5060 /* The inferior just stepped into, or returned to, an
5061 undebuggable function (where there is no debugging information
5062 and no line number corresponding to the address where the
5063 inferior stopped). Since we want to skip this kind of code,
5064 we keep going until the inferior returns from this
5065 function - unless the user has asked us not to (via
5066 set step-mode) or we no longer know how to get back
5067 to the call site. */
5068 if (step_stop_if_no_debug
5069 || !frame_id_p (frame_unwind_caller_id (frame)))
5070 {
5071 /* If we have no line number and the step-stop-if-no-debug
5072 is set, we stop the step so that the user has a chance to
5073 switch in assembly mode. */
5074 ecs->event_thread->control.stop_step = 1;
5075 print_end_stepping_range_reason ();
5076 stop_stepping (ecs);
5077 return;
5078 }
5079 else
5080 {
5081 /* Set a breakpoint at callee's return address (the address
5082 at which the caller will resume). */
5083 insert_step_resume_breakpoint_at_caller (frame);
5084 keep_going (ecs);
5085 return;
5086 }
5087 }
5088
5089 if (ecs->event_thread->control.step_range_end == 1)
5090 {
5091 /* It is stepi or nexti. We always want to stop stepping after
5092 one instruction. */
5093 if (debug_infrun)
5094 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5095 ecs->event_thread->control.stop_step = 1;
5096 print_end_stepping_range_reason ();
5097 stop_stepping (ecs);
5098 return;
5099 }
5100
5101 if (stop_pc_sal.line == 0)
5102 {
5103 /* We have no line number information. That means to stop
5104 stepping (does this always happen right after one instruction,
5105 when we do "s" in a function with no line numbers,
5106 or can this happen as a result of a return or longjmp?). */
5107 if (debug_infrun)
5108 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5109 ecs->event_thread->control.stop_step = 1;
5110 print_end_stepping_range_reason ();
5111 stop_stepping (ecs);
5112 return;
5113 }
5114
5115 /* Look for "calls" to inlined functions, part one. If the inline
5116 frame machinery detected some skipped call sites, we have entered
5117 a new inline function. */
5118
5119 if (frame_id_eq (get_frame_id (get_current_frame ()),
5120 ecs->event_thread->control.step_frame_id)
5121 && inline_skipped_frames (ecs->ptid))
5122 {
5123 struct symtab_and_line call_sal;
5124
5125 if (debug_infrun)
5126 fprintf_unfiltered (gdb_stdlog,
5127 "infrun: stepped into inlined function\n");
5128
5129 find_frame_sal (get_current_frame (), &call_sal);
5130
5131 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5132 {
5133 /* For "step", we're going to stop. But if the call site
5134 for this inlined function is on the same source line as
5135 we were previously stepping, go down into the function
5136 first. Otherwise stop at the call site. */
5137
5138 if (call_sal.line == ecs->event_thread->current_line
5139 && call_sal.symtab == ecs->event_thread->current_symtab)
5140 step_into_inline_frame (ecs->ptid);
5141
5142 ecs->event_thread->control.stop_step = 1;
5143 print_end_stepping_range_reason ();
5144 stop_stepping (ecs);
5145 return;
5146 }
5147 else
5148 {
5149 /* For "next", we should stop at the call site if it is on a
5150 different source line. Otherwise continue through the
5151 inlined function. */
5152 if (call_sal.line == ecs->event_thread->current_line
5153 && call_sal.symtab == ecs->event_thread->current_symtab)
5154 keep_going (ecs);
5155 else
5156 {
5157 ecs->event_thread->control.stop_step = 1;
5158 print_end_stepping_range_reason ();
5159 stop_stepping (ecs);
5160 }
5161 return;
5162 }
5163 }
5164
5165 /* Look for "calls" to inlined functions, part two. If we are still
5166 in the same real function we were stepping through, but we have
5167 to go further up to find the exact frame ID, we are stepping
5168 through a more inlined call beyond its call site. */
5169
5170 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5171 && !frame_id_eq (get_frame_id (get_current_frame ()),
5172 ecs->event_thread->control.step_frame_id)
5173 && stepped_in_from (get_current_frame (),
5174 ecs->event_thread->control.step_frame_id))
5175 {
5176 if (debug_infrun)
5177 fprintf_unfiltered (gdb_stdlog,
5178 "infrun: stepping through inlined function\n");
5179
5180 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5181 keep_going (ecs);
5182 else
5183 {
5184 ecs->event_thread->control.stop_step = 1;
5185 print_end_stepping_range_reason ();
5186 stop_stepping (ecs);
5187 }
5188 return;
5189 }
5190
5191 if ((stop_pc == stop_pc_sal.pc)
5192 && (ecs->event_thread->current_line != stop_pc_sal.line
5193 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5194 {
5195 /* We are at the start of a different line. So stop. Note that
5196 we don't stop if we step into the middle of a different line.
5197 That is said to make things like for (;;) statements work
5198 better. */
5199 if (debug_infrun)
5200 fprintf_unfiltered (gdb_stdlog,
5201 "infrun: stepped to a different line\n");
5202 ecs->event_thread->control.stop_step = 1;
5203 print_end_stepping_range_reason ();
5204 stop_stepping (ecs);
5205 return;
5206 }
5207
5208 /* We aren't done stepping.
5209
5210 Optimize by setting the stepping range to the line.
5211 (We might not be in the original line, but if we entered a
5212 new line in mid-statement, we continue stepping. This makes
5213 things like for(;;) statements work better.) */
5214
5215 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5216 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5217 set_step_info (frame, stop_pc_sal);
5218
5219 if (debug_infrun)
5220 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5221 keep_going (ecs);
5222}
5223
5224/* Is thread TP in the middle of single-stepping? */
5225
5226static int
5227currently_stepping (struct thread_info *tp)
5228{
5229 return ((tp->control.step_range_end
5230 && tp->control.step_resume_breakpoint == NULL)
5231 || tp->control.trap_expected
5232 || bpstat_should_step ());
5233}
5234
5235/* Returns true if any thread *but* the one passed in "data" is in the
5236 middle of stepping or of handling a "next". */
5237
5238static int
5239currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5240{
5241 if (tp == data)
5242 return 0;
5243
5244 return (tp->control.step_range_end
5245 || tp->control.trap_expected);
5246}
5247
5248/* Inferior has stepped into a subroutine call with source code that
5249 we should not step over. Do step to the first line of code in
5250 it. */
5251
5252static void
5253handle_step_into_function (struct gdbarch *gdbarch,
5254 struct execution_control_state *ecs)
5255{
5256 struct symtab *s;
5257 struct symtab_and_line stop_func_sal, sr_sal;
5258
5259 fill_in_stop_func (gdbarch, ecs);
5260
5261 s = find_pc_symtab (stop_pc);
5262 if (s && s->language != language_asm)
5263 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5264 ecs->stop_func_start);
5265
5266 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5267 /* Use the step_resume_break to step until the end of the prologue,
5268 even if that involves jumps (as it seems to on the vax under
5269 4.2). */
5270 /* If the prologue ends in the middle of a source line, continue to
5271 the end of that source line (if it is still within the function).
5272 Otherwise, just go to end of prologue. */
5273 if (stop_func_sal.end
5274 && stop_func_sal.pc != ecs->stop_func_start
5275 && stop_func_sal.end < ecs->stop_func_end)
5276 ecs->stop_func_start = stop_func_sal.end;
5277
5278 /* Architectures which require breakpoint adjustment might not be able
5279 to place a breakpoint at the computed address. If so, the test
5280 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5281 ecs->stop_func_start to an address at which a breakpoint may be
5282 legitimately placed.
5283
5284 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5285 made, GDB will enter an infinite loop when stepping through
5286 optimized code consisting of VLIW instructions which contain
5287 subinstructions corresponding to different source lines. On
5288 FR-V, it's not permitted to place a breakpoint on any but the
5289 first subinstruction of a VLIW instruction. When a breakpoint is
5290 set, GDB will adjust the breakpoint address to the beginning of
5291 the VLIW instruction. Thus, we need to make the corresponding
5292 adjustment here when computing the stop address. */
5293
5294 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5295 {
5296 ecs->stop_func_start
5297 = gdbarch_adjust_breakpoint_address (gdbarch,
5298 ecs->stop_func_start);
5299 }
5300
5301 if (ecs->stop_func_start == stop_pc)
5302 {
5303 /* We are already there: stop now. */
5304 ecs->event_thread->control.stop_step = 1;
5305 print_end_stepping_range_reason ();
5306 stop_stepping (ecs);
5307 return;
5308 }
5309 else
5310 {
5311 /* Put the step-breakpoint there and go until there. */
5312 init_sal (&sr_sal); /* initialize to zeroes */
5313 sr_sal.pc = ecs->stop_func_start;
5314 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5315 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5316
5317 /* Do not specify what the fp should be when we stop since on
5318 some machines the prologue is where the new fp value is
5319 established. */
5320 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5321
5322 /* And make sure stepping stops right away then. */
5323 ecs->event_thread->control.step_range_end
5324 = ecs->event_thread->control.step_range_start;
5325 }
5326 keep_going (ecs);
5327}
5328
5329/* Inferior has stepped backward into a subroutine call with source
5330 code that we should not step over. Do step to the beginning of the
5331 last line of code in it. */
5332
5333static void
5334handle_step_into_function_backward (struct gdbarch *gdbarch,
5335 struct execution_control_state *ecs)
5336{
5337 struct symtab *s;
5338 struct symtab_and_line stop_func_sal;
5339
5340 fill_in_stop_func (gdbarch, ecs);
5341
5342 s = find_pc_symtab (stop_pc);
5343 if (s && s->language != language_asm)
5344 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5345 ecs->stop_func_start);
5346
5347 stop_func_sal = find_pc_line (stop_pc, 0);
5348
5349 /* OK, we're just going to keep stepping here. */
5350 if (stop_func_sal.pc == stop_pc)
5351 {
5352 /* We're there already. Just stop stepping now. */
5353 ecs->event_thread->control.stop_step = 1;
5354 print_end_stepping_range_reason ();
5355 stop_stepping (ecs);
5356 }
5357 else
5358 {
5359 /* Else just reset the step range and keep going.
5360 No step-resume breakpoint, they don't work for
5361 epilogues, which can have multiple entry paths. */
5362 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5363 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5364 keep_going (ecs);
5365 }
5366 return;
5367}
5368
5369/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5370 This is used to both functions and to skip over code. */
5371
5372static void
5373insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5374 struct symtab_and_line sr_sal,
5375 struct frame_id sr_id,
5376 enum bptype sr_type)
5377{
5378 /* There should never be more than one step-resume or longjmp-resume
5379 breakpoint per thread, so we should never be setting a new
5380 step_resume_breakpoint when one is already active. */
5381 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5382 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5383
5384 if (debug_infrun)
5385 fprintf_unfiltered (gdb_stdlog,
5386 "infrun: inserting step-resume breakpoint at %s\n",
5387 paddress (gdbarch, sr_sal.pc));
5388
5389 inferior_thread ()->control.step_resume_breakpoint
5390 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5391}
5392
5393void
5394insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5395 struct symtab_and_line sr_sal,
5396 struct frame_id sr_id)
5397{
5398 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5399 sr_sal, sr_id,
5400 bp_step_resume);
5401}
5402
5403/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5404 This is used to skip a potential signal handler.
5405
5406 This is called with the interrupted function's frame. The signal
5407 handler, when it returns, will resume the interrupted function at
5408 RETURN_FRAME.pc. */
5409
5410static void
5411insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5412{
5413 struct symtab_and_line sr_sal;
5414 struct gdbarch *gdbarch;
5415
5416 gdb_assert (return_frame != NULL);
5417 init_sal (&sr_sal); /* initialize to zeros */
5418
5419 gdbarch = get_frame_arch (return_frame);
5420 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5421 sr_sal.section = find_pc_overlay (sr_sal.pc);
5422 sr_sal.pspace = get_frame_program_space (return_frame);
5423
5424 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5425 get_stack_frame_id (return_frame),
5426 bp_hp_step_resume);
5427}
5428
5429/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5430 is used to skip a function after stepping into it (for "next" or if
5431 the called function has no debugging information).
5432
5433 The current function has almost always been reached by single
5434 stepping a call or return instruction. NEXT_FRAME belongs to the
5435 current function, and the breakpoint will be set at the caller's
5436 resume address.
5437
5438 This is a separate function rather than reusing
5439 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5440 get_prev_frame, which may stop prematurely (see the implementation
5441 of frame_unwind_caller_id for an example). */
5442
5443static void
5444insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5445{
5446 struct symtab_and_line sr_sal;
5447 struct gdbarch *gdbarch;
5448
5449 /* We shouldn't have gotten here if we don't know where the call site
5450 is. */
5451 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5452
5453 init_sal (&sr_sal); /* initialize to zeros */
5454
5455 gdbarch = frame_unwind_caller_arch (next_frame);
5456 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5457 frame_unwind_caller_pc (next_frame));
5458 sr_sal.section = find_pc_overlay (sr_sal.pc);
5459 sr_sal.pspace = frame_unwind_program_space (next_frame);
5460
5461 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5462 frame_unwind_caller_id (next_frame));
5463}
5464
5465/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5466 new breakpoint at the target of a jmp_buf. The handling of
5467 longjmp-resume uses the same mechanisms used for handling
5468 "step-resume" breakpoints. */
5469
5470static void
5471insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5472{
5473 /* There should never be more than one step-resume or longjmp-resume
5474 breakpoint per thread, so we should never be setting a new
5475 longjmp_resume_breakpoint when one is already active. */
5476 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5477
5478 if (debug_infrun)
5479 fprintf_unfiltered (gdb_stdlog,
5480 "infrun: inserting longjmp-resume breakpoint at %s\n",
5481 paddress (gdbarch, pc));
5482
5483 inferior_thread ()->control.step_resume_breakpoint =
5484 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5485}
5486
5487/* Insert an exception resume breakpoint. TP is the thread throwing
5488 the exception. The block B is the block of the unwinder debug hook
5489 function. FRAME is the frame corresponding to the call to this
5490 function. SYM is the symbol of the function argument holding the
5491 target PC of the exception. */
5492
5493static void
5494insert_exception_resume_breakpoint (struct thread_info *tp,
5495 struct block *b,
5496 struct frame_info *frame,
5497 struct symbol *sym)
5498{
5499 volatile struct gdb_exception e;
5500
5501 /* We want to ignore errors here. */
5502 TRY_CATCH (e, RETURN_MASK_ERROR)
5503 {
5504 struct symbol *vsym;
5505 struct value *value;
5506 CORE_ADDR handler;
5507 struct breakpoint *bp;
5508
5509 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5510 value = read_var_value (vsym, frame);
5511 /* If the value was optimized out, revert to the old behavior. */
5512 if (! value_optimized_out (value))
5513 {
5514 handler = value_as_address (value);
5515
5516 if (debug_infrun)
5517 fprintf_unfiltered (gdb_stdlog,
5518 "infrun: exception resume at %lx\n",
5519 (unsigned long) handler);
5520
5521 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5522 handler, bp_exception_resume);
5523 bp->thread = tp->num;
5524 inferior_thread ()->control.exception_resume_breakpoint = bp;
5525 }
5526 }
5527}
5528
5529/* This is called when an exception has been intercepted. Check to
5530 see whether the exception's destination is of interest, and if so,
5531 set an exception resume breakpoint there. */
5532
5533static void
5534check_exception_resume (struct execution_control_state *ecs,
5535 struct frame_info *frame, struct symbol *func)
5536{
5537 volatile struct gdb_exception e;
5538
5539 TRY_CATCH (e, RETURN_MASK_ERROR)
5540 {
5541 struct block *b;
5542 struct dict_iterator iter;
5543 struct symbol *sym;
5544 int argno = 0;
5545
5546 /* The exception breakpoint is a thread-specific breakpoint on
5547 the unwinder's debug hook, declared as:
5548
5549 void _Unwind_DebugHook (void *cfa, void *handler);
5550
5551 The CFA argument indicates the frame to which control is
5552 about to be transferred. HANDLER is the destination PC.
5553
5554 We ignore the CFA and set a temporary breakpoint at HANDLER.
5555 This is not extremely efficient but it avoids issues in gdb
5556 with computing the DWARF CFA, and it also works even in weird
5557 cases such as throwing an exception from inside a signal
5558 handler. */
5559
5560 b = SYMBOL_BLOCK_VALUE (func);
5561 ALL_BLOCK_SYMBOLS (b, iter, sym)
5562 {
5563 if (!SYMBOL_IS_ARGUMENT (sym))
5564 continue;
5565
5566 if (argno == 0)
5567 ++argno;
5568 else
5569 {
5570 insert_exception_resume_breakpoint (ecs->event_thread,
5571 b, frame, sym);
5572 break;
5573 }
5574 }
5575 }
5576}
5577
5578static void
5579stop_stepping (struct execution_control_state *ecs)
5580{
5581 if (debug_infrun)
5582 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5583
5584 /* Let callers know we don't want to wait for the inferior anymore. */
5585 ecs->wait_some_more = 0;
5586}
5587
5588/* This function handles various cases where we need to continue
5589 waiting for the inferior. */
5590/* (Used to be the keep_going: label in the old wait_for_inferior). */
5591
5592static void
5593keep_going (struct execution_control_state *ecs)
5594{
5595 /* Make sure normal_stop is called if we get a QUIT handled before
5596 reaching resume. */
5597 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5598
5599 /* Save the pc before execution, to compare with pc after stop. */
5600 ecs->event_thread->prev_pc
5601 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5602
5603 /* If we did not do break;, it means we should keep running the
5604 inferior and not return to debugger. */
5605
5606 if (ecs->event_thread->control.trap_expected
5607 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
5608 {
5609 /* We took a signal (which we are supposed to pass through to
5610 the inferior, else we'd not get here) and we haven't yet
5611 gotten our trap. Simply continue. */
5612
5613 discard_cleanups (old_cleanups);
5614 resume (currently_stepping (ecs->event_thread),
5615 ecs->event_thread->suspend.stop_signal);
5616 }
5617 else
5618 {
5619 /* Either the trap was not expected, but we are continuing
5620 anyway (the user asked that this signal be passed to the
5621 child)
5622 -- or --
5623 The signal was SIGTRAP, e.g. it was our signal, but we
5624 decided we should resume from it.
5625
5626 We're going to run this baby now!
5627
5628 Note that insert_breakpoints won't try to re-insert
5629 already inserted breakpoints. Therefore, we don't
5630 care if breakpoints were already inserted, or not. */
5631
5632 if (ecs->event_thread->stepping_over_breakpoint)
5633 {
5634 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5635
5636 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5637 /* Since we can't do a displaced step, we have to remove
5638 the breakpoint while we step it. To keep things
5639 simple, we remove them all. */
5640 remove_breakpoints ();
5641 }
5642 else
5643 {
5644 volatile struct gdb_exception e;
5645
5646 /* Stop stepping when inserting breakpoints
5647 has failed. */
5648 TRY_CATCH (e, RETURN_MASK_ERROR)
5649 {
5650 insert_breakpoints ();
5651 }
5652 if (e.reason < 0)
5653 {
5654 exception_print (gdb_stderr, e);
5655 stop_stepping (ecs);
5656 return;
5657 }
5658 }
5659
5660 ecs->event_thread->control.trap_expected
5661 = ecs->event_thread->stepping_over_breakpoint;
5662
5663 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5664 specifies that such a signal should be delivered to the
5665 target program).
5666
5667 Typically, this would occure when a user is debugging a
5668 target monitor on a simulator: the target monitor sets a
5669 breakpoint; the simulator encounters this break-point and
5670 halts the simulation handing control to GDB; GDB, noteing
5671 that the break-point isn't valid, returns control back to the
5672 simulator; the simulator then delivers the hardware
5673 equivalent of a SIGNAL_TRAP to the program being debugged. */
5674
5675 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5676 && !signal_program[ecs->event_thread->suspend.stop_signal])
5677 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
5678
5679 discard_cleanups (old_cleanups);
5680 resume (currently_stepping (ecs->event_thread),
5681 ecs->event_thread->suspend.stop_signal);
5682 }
5683
5684 prepare_to_wait (ecs);
5685}
5686
5687/* This function normally comes after a resume, before
5688 handle_inferior_event exits. It takes care of any last bits of
5689 housekeeping, and sets the all-important wait_some_more flag. */
5690
5691static void
5692prepare_to_wait (struct execution_control_state *ecs)
5693{
5694 if (debug_infrun)
5695 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5696
5697 /* This is the old end of the while loop. Let everybody know we
5698 want to wait for the inferior some more and get called again
5699 soon. */
5700 ecs->wait_some_more = 1;
5701}
5702
5703/* Several print_*_reason functions to print why the inferior has stopped.
5704 We always print something when the inferior exits, or receives a signal.
5705 The rest of the cases are dealt with later on in normal_stop and
5706 print_it_typical. Ideally there should be a call to one of these
5707 print_*_reason functions functions from handle_inferior_event each time
5708 stop_stepping is called. */
5709
5710/* Print why the inferior has stopped.
5711 We are done with a step/next/si/ni command, print why the inferior has
5712 stopped. For now print nothing. Print a message only if not in the middle
5713 of doing a "step n" operation for n > 1. */
5714
5715static void
5716print_end_stepping_range_reason (void)
5717{
5718 if ((!inferior_thread ()->step_multi
5719 || !inferior_thread ()->control.stop_step)
5720 && ui_out_is_mi_like_p (current_uiout))
5721 ui_out_field_string (current_uiout, "reason",
5722 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5723}
5724
5725/* The inferior was terminated by a signal, print why it stopped. */
5726
5727static void
5728print_signal_exited_reason (enum target_signal siggnal)
5729{
5730 struct ui_out *uiout = current_uiout;
5731
5732 annotate_signalled ();
5733 if (ui_out_is_mi_like_p (uiout))
5734 ui_out_field_string
5735 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5736 ui_out_text (uiout, "\nProgram terminated with signal ");
5737 annotate_signal_name ();
5738 ui_out_field_string (uiout, "signal-name",
5739 target_signal_to_name (siggnal));
5740 annotate_signal_name_end ();
5741 ui_out_text (uiout, ", ");
5742 annotate_signal_string ();
5743 ui_out_field_string (uiout, "signal-meaning",
5744 target_signal_to_string (siggnal));
5745 annotate_signal_string_end ();
5746 ui_out_text (uiout, ".\n");
5747 ui_out_text (uiout, "The program no longer exists.\n");
5748}
5749
5750/* The inferior program is finished, print why it stopped. */
5751
5752static void
5753print_exited_reason (int exitstatus)
5754{
5755 struct inferior *inf = current_inferior ();
5756 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5757 struct ui_out *uiout = current_uiout;
5758
5759 annotate_exited (exitstatus);
5760 if (exitstatus)
5761 {
5762 if (ui_out_is_mi_like_p (uiout))
5763 ui_out_field_string (uiout, "reason",
5764 async_reason_lookup (EXEC_ASYNC_EXITED));
5765 ui_out_text (uiout, "[Inferior ");
5766 ui_out_text (uiout, plongest (inf->num));
5767 ui_out_text (uiout, " (");
5768 ui_out_text (uiout, pidstr);
5769 ui_out_text (uiout, ") exited with code ");
5770 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5771 ui_out_text (uiout, "]\n");
5772 }
5773 else
5774 {
5775 if (ui_out_is_mi_like_p (uiout))
5776 ui_out_field_string
5777 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5778 ui_out_text (uiout, "[Inferior ");
5779 ui_out_text (uiout, plongest (inf->num));
5780 ui_out_text (uiout, " (");
5781 ui_out_text (uiout, pidstr);
5782 ui_out_text (uiout, ") exited normally]\n");
5783 }
5784 /* Support the --return-child-result option. */
5785 return_child_result_value = exitstatus;
5786}
5787
5788/* Signal received, print why the inferior has stopped. The signal table
5789 tells us to print about it. */
5790
5791static void
5792print_signal_received_reason (enum target_signal siggnal)
5793{
5794 struct ui_out *uiout = current_uiout;
5795
5796 annotate_signal ();
5797
5798 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5799 {
5800 struct thread_info *t = inferior_thread ();
5801
5802 ui_out_text (uiout, "\n[");
5803 ui_out_field_string (uiout, "thread-name",
5804 target_pid_to_str (t->ptid));
5805 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5806 ui_out_text (uiout, " stopped");
5807 }
5808 else
5809 {
5810 ui_out_text (uiout, "\nProgram received signal ");
5811 annotate_signal_name ();
5812 if (ui_out_is_mi_like_p (uiout))
5813 ui_out_field_string
5814 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5815 ui_out_field_string (uiout, "signal-name",
5816 target_signal_to_name (siggnal));
5817 annotate_signal_name_end ();
5818 ui_out_text (uiout, ", ");
5819 annotate_signal_string ();
5820 ui_out_field_string (uiout, "signal-meaning",
5821 target_signal_to_string (siggnal));
5822 annotate_signal_string_end ();
5823 }
5824 ui_out_text (uiout, ".\n");
5825}
5826
5827/* Reverse execution: target ran out of history info, print why the inferior
5828 has stopped. */
5829
5830static void
5831print_no_history_reason (void)
5832{
5833 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5834}
5835
5836/* Here to return control to GDB when the inferior stops for real.
5837 Print appropriate messages, remove breakpoints, give terminal our modes.
5838
5839 STOP_PRINT_FRAME nonzero means print the executing frame
5840 (pc, function, args, file, line number and line text).
5841 BREAKPOINTS_FAILED nonzero means stop was due to error
5842 attempting to insert breakpoints. */
5843
5844void
5845normal_stop (void)
5846{
5847 struct target_waitstatus last;
5848 ptid_t last_ptid;
5849 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5850
5851 get_last_target_status (&last_ptid, &last);
5852
5853 /* If an exception is thrown from this point on, make sure to
5854 propagate GDB's knowledge of the executing state to the
5855 frontend/user running state. A QUIT is an easy exception to see
5856 here, so do this before any filtered output. */
5857 if (!non_stop)
5858 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5859 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5860 && last.kind != TARGET_WAITKIND_EXITED
5861 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5862 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5863
5864 /* In non-stop mode, we don't want GDB to switch threads behind the
5865 user's back, to avoid races where the user is typing a command to
5866 apply to thread x, but GDB switches to thread y before the user
5867 finishes entering the command. */
5868
5869 /* As with the notification of thread events, we want to delay
5870 notifying the user that we've switched thread context until
5871 the inferior actually stops.
5872
5873 There's no point in saying anything if the inferior has exited.
5874 Note that SIGNALLED here means "exited with a signal", not
5875 "received a signal". */
5876 if (!non_stop
5877 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5878 && target_has_execution
5879 && last.kind != TARGET_WAITKIND_SIGNALLED
5880 && last.kind != TARGET_WAITKIND_EXITED
5881 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5882 {
5883 target_terminal_ours_for_output ();
5884 printf_filtered (_("[Switching to %s]\n"),
5885 target_pid_to_str (inferior_ptid));
5886 annotate_thread_changed ();
5887 previous_inferior_ptid = inferior_ptid;
5888 }
5889
5890 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5891 {
5892 gdb_assert (sync_execution || !target_can_async_p ());
5893
5894 target_terminal_ours_for_output ();
5895 printf_filtered (_("No unwaited-for children left.\n"));
5896 }
5897
5898 if (!breakpoints_always_inserted_mode () && target_has_execution)
5899 {
5900 if (remove_breakpoints ())
5901 {
5902 target_terminal_ours_for_output ();
5903 printf_filtered (_("Cannot remove breakpoints because "
5904 "program is no longer writable.\nFurther "
5905 "execution is probably impossible.\n"));
5906 }
5907 }
5908
5909 /* If an auto-display called a function and that got a signal,
5910 delete that auto-display to avoid an infinite recursion. */
5911
5912 if (stopped_by_random_signal)
5913 disable_current_display ();
5914
5915 /* Don't print a message if in the middle of doing a "step n"
5916 operation for n > 1 */
5917 if (target_has_execution
5918 && last.kind != TARGET_WAITKIND_SIGNALLED
5919 && last.kind != TARGET_WAITKIND_EXITED
5920 && inferior_thread ()->step_multi
5921 && inferior_thread ()->control.stop_step)
5922 goto done;
5923
5924 target_terminal_ours ();
5925 async_enable_stdin ();
5926
5927 /* Set the current source location. This will also happen if we
5928 display the frame below, but the current SAL will be incorrect
5929 during a user hook-stop function. */
5930 if (has_stack_frames () && !stop_stack_dummy)
5931 set_current_sal_from_frame (get_current_frame (), 1);
5932
5933 /* Let the user/frontend see the threads as stopped. */
5934 do_cleanups (old_chain);
5935
5936 /* Look up the hook_stop and run it (CLI internally handles problem
5937 of stop_command's pre-hook not existing). */
5938 if (stop_command)
5939 catch_errors (hook_stop_stub, stop_command,
5940 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5941
5942 if (!has_stack_frames ())
5943 goto done;
5944
5945 if (last.kind == TARGET_WAITKIND_SIGNALLED
5946 || last.kind == TARGET_WAITKIND_EXITED)
5947 goto done;
5948
5949 /* Select innermost stack frame - i.e., current frame is frame 0,
5950 and current location is based on that.
5951 Don't do this on return from a stack dummy routine,
5952 or if the program has exited. */
5953
5954 if (!stop_stack_dummy)
5955 {
5956 select_frame (get_current_frame ());
5957
5958 /* Print current location without a level number, if
5959 we have changed functions or hit a breakpoint.
5960 Print source line if we have one.
5961 bpstat_print() contains the logic deciding in detail
5962 what to print, based on the event(s) that just occurred. */
5963
5964 /* If --batch-silent is enabled then there's no need to print the current
5965 source location, and to try risks causing an error message about
5966 missing source files. */
5967 if (stop_print_frame && !batch_silent)
5968 {
5969 int bpstat_ret;
5970 int source_flag;
5971 int do_frame_printing = 1;
5972 struct thread_info *tp = inferior_thread ();
5973
5974 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
5975 switch (bpstat_ret)
5976 {
5977 case PRINT_UNKNOWN:
5978 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5979 (or should) carry around the function and does (or
5980 should) use that when doing a frame comparison. */
5981 if (tp->control.stop_step
5982 && frame_id_eq (tp->control.step_frame_id,
5983 get_frame_id (get_current_frame ()))
5984 && step_start_function == find_pc_function (stop_pc))
5985 source_flag = SRC_LINE; /* Finished step, just
5986 print source line. */
5987 else
5988 source_flag = SRC_AND_LOC; /* Print location and
5989 source line. */
5990 break;
5991 case PRINT_SRC_AND_LOC:
5992 source_flag = SRC_AND_LOC; /* Print location and
5993 source line. */
5994 break;
5995 case PRINT_SRC_ONLY:
5996 source_flag = SRC_LINE;
5997 break;
5998 case PRINT_NOTHING:
5999 source_flag = SRC_LINE; /* something bogus */
6000 do_frame_printing = 0;
6001 break;
6002 default:
6003 internal_error (__FILE__, __LINE__, _("Unknown value."));
6004 }
6005
6006 /* The behavior of this routine with respect to the source
6007 flag is:
6008 SRC_LINE: Print only source line
6009 LOCATION: Print only location
6010 SRC_AND_LOC: Print location and source line. */
6011 if (do_frame_printing)
6012 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6013
6014 /* Display the auto-display expressions. */
6015 do_displays ();
6016 }
6017 }
6018
6019 /* Save the function value return registers, if we care.
6020 We might be about to restore their previous contents. */
6021 if (inferior_thread ()->control.proceed_to_finish
6022 && execution_direction != EXEC_REVERSE)
6023 {
6024 /* This should not be necessary. */
6025 if (stop_registers)
6026 regcache_xfree (stop_registers);
6027
6028 /* NB: The copy goes through to the target picking up the value of
6029 all the registers. */
6030 stop_registers = regcache_dup (get_current_regcache ());
6031 }
6032
6033 if (stop_stack_dummy == STOP_STACK_DUMMY)
6034 {
6035 /* Pop the empty frame that contains the stack dummy.
6036 This also restores inferior state prior to the call
6037 (struct infcall_suspend_state). */
6038 struct frame_info *frame = get_current_frame ();
6039
6040 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6041 frame_pop (frame);
6042 /* frame_pop() calls reinit_frame_cache as the last thing it
6043 does which means there's currently no selected frame. We
6044 don't need to re-establish a selected frame if the dummy call
6045 returns normally, that will be done by
6046 restore_infcall_control_state. However, we do have to handle
6047 the case where the dummy call is returning after being
6048 stopped (e.g. the dummy call previously hit a breakpoint).
6049 We can't know which case we have so just always re-establish
6050 a selected frame here. */
6051 select_frame (get_current_frame ());
6052 }
6053
6054done:
6055 annotate_stopped ();
6056
6057 /* Suppress the stop observer if we're in the middle of:
6058
6059 - a step n (n > 1), as there still more steps to be done.
6060
6061 - a "finish" command, as the observer will be called in
6062 finish_command_continuation, so it can include the inferior
6063 function's return value.
6064
6065 - calling an inferior function, as we pretend we inferior didn't
6066 run at all. The return value of the call is handled by the
6067 expression evaluator, through call_function_by_hand. */
6068
6069 if (!target_has_execution
6070 || last.kind == TARGET_WAITKIND_SIGNALLED
6071 || last.kind == TARGET_WAITKIND_EXITED
6072 || last.kind == TARGET_WAITKIND_NO_RESUMED
6073 || (!(inferior_thread ()->step_multi
6074 && inferior_thread ()->control.stop_step)
6075 && !(inferior_thread ()->control.stop_bpstat
6076 && inferior_thread ()->control.proceed_to_finish)
6077 && !inferior_thread ()->control.in_infcall))
6078 {
6079 if (!ptid_equal (inferior_ptid, null_ptid))
6080 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6081 stop_print_frame);
6082 else
6083 observer_notify_normal_stop (NULL, stop_print_frame);
6084 }
6085
6086 if (target_has_execution)
6087 {
6088 if (last.kind != TARGET_WAITKIND_SIGNALLED
6089 && last.kind != TARGET_WAITKIND_EXITED)
6090 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6091 Delete any breakpoint that is to be deleted at the next stop. */
6092 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6093 }
6094
6095 /* Try to get rid of automatically added inferiors that are no
6096 longer needed. Keeping those around slows down things linearly.
6097 Note that this never removes the current inferior. */
6098 prune_inferiors ();
6099}
6100
6101static int
6102hook_stop_stub (void *cmd)
6103{
6104 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6105 return (0);
6106}
6107\f
6108int
6109signal_stop_state (int signo)
6110{
6111 return signal_stop[signo];
6112}
6113
6114int
6115signal_print_state (int signo)
6116{
6117 return signal_print[signo];
6118}
6119
6120int
6121signal_pass_state (int signo)
6122{
6123 return signal_program[signo];
6124}
6125
6126static void
6127signal_cache_update (int signo)
6128{
6129 if (signo == -1)
6130 {
6131 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6132 signal_cache_update (signo);
6133
6134 return;
6135 }
6136
6137 signal_pass[signo] = (signal_stop[signo] == 0
6138 && signal_print[signo] == 0
6139 && signal_program[signo] == 1);
6140}
6141
6142int
6143signal_stop_update (int signo, int state)
6144{
6145 int ret = signal_stop[signo];
6146
6147 signal_stop[signo] = state;
6148 signal_cache_update (signo);
6149 return ret;
6150}
6151
6152int
6153signal_print_update (int signo, int state)
6154{
6155 int ret = signal_print[signo];
6156
6157 signal_print[signo] = state;
6158 signal_cache_update (signo);
6159 return ret;
6160}
6161
6162int
6163signal_pass_update (int signo, int state)
6164{
6165 int ret = signal_program[signo];
6166
6167 signal_program[signo] = state;
6168 signal_cache_update (signo);
6169 return ret;
6170}
6171
6172static void
6173sig_print_header (void)
6174{
6175 printf_filtered (_("Signal Stop\tPrint\tPass "
6176 "to program\tDescription\n"));
6177}
6178
6179static void
6180sig_print_info (enum target_signal oursig)
6181{
6182 const char *name = target_signal_to_name (oursig);
6183 int name_padding = 13 - strlen (name);
6184
6185 if (name_padding <= 0)
6186 name_padding = 0;
6187
6188 printf_filtered ("%s", name);
6189 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6190 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6191 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6192 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6193 printf_filtered ("%s\n", target_signal_to_string (oursig));
6194}
6195
6196/* Specify how various signals in the inferior should be handled. */
6197
6198static void
6199handle_command (char *args, int from_tty)
6200{
6201 char **argv;
6202 int digits, wordlen;
6203 int sigfirst, signum, siglast;
6204 enum target_signal oursig;
6205 int allsigs;
6206 int nsigs;
6207 unsigned char *sigs;
6208 struct cleanup *old_chain;
6209
6210 if (args == NULL)
6211 {
6212 error_no_arg (_("signal to handle"));
6213 }
6214
6215 /* Allocate and zero an array of flags for which signals to handle. */
6216
6217 nsigs = (int) TARGET_SIGNAL_LAST;
6218 sigs = (unsigned char *) alloca (nsigs);
6219 memset (sigs, 0, nsigs);
6220
6221 /* Break the command line up into args. */
6222
6223 argv = gdb_buildargv (args);
6224 old_chain = make_cleanup_freeargv (argv);
6225
6226 /* Walk through the args, looking for signal oursigs, signal names, and
6227 actions. Signal numbers and signal names may be interspersed with
6228 actions, with the actions being performed for all signals cumulatively
6229 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6230
6231 while (*argv != NULL)
6232 {
6233 wordlen = strlen (*argv);
6234 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6235 {;
6236 }
6237 allsigs = 0;
6238 sigfirst = siglast = -1;
6239
6240 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6241 {
6242 /* Apply action to all signals except those used by the
6243 debugger. Silently skip those. */
6244 allsigs = 1;
6245 sigfirst = 0;
6246 siglast = nsigs - 1;
6247 }
6248 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6249 {
6250 SET_SIGS (nsigs, sigs, signal_stop);
6251 SET_SIGS (nsigs, sigs, signal_print);
6252 }
6253 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6254 {
6255 UNSET_SIGS (nsigs, sigs, signal_program);
6256 }
6257 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6258 {
6259 SET_SIGS (nsigs, sigs, signal_print);
6260 }
6261 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6262 {
6263 SET_SIGS (nsigs, sigs, signal_program);
6264 }
6265 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6266 {
6267 UNSET_SIGS (nsigs, sigs, signal_stop);
6268 }
6269 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6270 {
6271 SET_SIGS (nsigs, sigs, signal_program);
6272 }
6273 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6274 {
6275 UNSET_SIGS (nsigs, sigs, signal_print);
6276 UNSET_SIGS (nsigs, sigs, signal_stop);
6277 }
6278 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6279 {
6280 UNSET_SIGS (nsigs, sigs, signal_program);
6281 }
6282 else if (digits > 0)
6283 {
6284 /* It is numeric. The numeric signal refers to our own
6285 internal signal numbering from target.h, not to host/target
6286 signal number. This is a feature; users really should be
6287 using symbolic names anyway, and the common ones like
6288 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6289
6290 sigfirst = siglast = (int)
6291 target_signal_from_command (atoi (*argv));
6292 if ((*argv)[digits] == '-')
6293 {
6294 siglast = (int)
6295 target_signal_from_command (atoi ((*argv) + digits + 1));
6296 }
6297 if (sigfirst > siglast)
6298 {
6299 /* Bet he didn't figure we'd think of this case... */
6300 signum = sigfirst;
6301 sigfirst = siglast;
6302 siglast = signum;
6303 }
6304 }
6305 else
6306 {
6307 oursig = target_signal_from_name (*argv);
6308 if (oursig != TARGET_SIGNAL_UNKNOWN)
6309 {
6310 sigfirst = siglast = (int) oursig;
6311 }
6312 else
6313 {
6314 /* Not a number and not a recognized flag word => complain. */
6315 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6316 }
6317 }
6318
6319 /* If any signal numbers or symbol names were found, set flags for
6320 which signals to apply actions to. */
6321
6322 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6323 {
6324 switch ((enum target_signal) signum)
6325 {
6326 case TARGET_SIGNAL_TRAP:
6327 case TARGET_SIGNAL_INT:
6328 if (!allsigs && !sigs[signum])
6329 {
6330 if (query (_("%s is used by the debugger.\n\
6331Are you sure you want to change it? "),
6332 target_signal_to_name ((enum target_signal) signum)))
6333 {
6334 sigs[signum] = 1;
6335 }
6336 else
6337 {
6338 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6339 gdb_flush (gdb_stdout);
6340 }
6341 }
6342 break;
6343 case TARGET_SIGNAL_0:
6344 case TARGET_SIGNAL_DEFAULT:
6345 case TARGET_SIGNAL_UNKNOWN:
6346 /* Make sure that "all" doesn't print these. */
6347 break;
6348 default:
6349 sigs[signum] = 1;
6350 break;
6351 }
6352 }
6353
6354 argv++;
6355 }
6356
6357 for (signum = 0; signum < nsigs; signum++)
6358 if (sigs[signum])
6359 {
6360 signal_cache_update (-1);
6361 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
6362
6363 if (from_tty)
6364 {
6365 /* Show the results. */
6366 sig_print_header ();
6367 for (; signum < nsigs; signum++)
6368 if (sigs[signum])
6369 sig_print_info (signum);
6370 }
6371
6372 break;
6373 }
6374
6375 do_cleanups (old_chain);
6376}
6377
6378static void
6379xdb_handle_command (char *args, int from_tty)
6380{
6381 char **argv;
6382 struct cleanup *old_chain;
6383
6384 if (args == NULL)
6385 error_no_arg (_("xdb command"));
6386
6387 /* Break the command line up into args. */
6388
6389 argv = gdb_buildargv (args);
6390 old_chain = make_cleanup_freeargv (argv);
6391 if (argv[1] != (char *) NULL)
6392 {
6393 char *argBuf;
6394 int bufLen;
6395
6396 bufLen = strlen (argv[0]) + 20;
6397 argBuf = (char *) xmalloc (bufLen);
6398 if (argBuf)
6399 {
6400 int validFlag = 1;
6401 enum target_signal oursig;
6402
6403 oursig = target_signal_from_name (argv[0]);
6404 memset (argBuf, 0, bufLen);
6405 if (strcmp (argv[1], "Q") == 0)
6406 sprintf (argBuf, "%s %s", argv[0], "noprint");
6407 else
6408 {
6409 if (strcmp (argv[1], "s") == 0)
6410 {
6411 if (!signal_stop[oursig])
6412 sprintf (argBuf, "%s %s", argv[0], "stop");
6413 else
6414 sprintf (argBuf, "%s %s", argv[0], "nostop");
6415 }
6416 else if (strcmp (argv[1], "i") == 0)
6417 {
6418 if (!signal_program[oursig])
6419 sprintf (argBuf, "%s %s", argv[0], "pass");
6420 else
6421 sprintf (argBuf, "%s %s", argv[0], "nopass");
6422 }
6423 else if (strcmp (argv[1], "r") == 0)
6424 {
6425 if (!signal_print[oursig])
6426 sprintf (argBuf, "%s %s", argv[0], "print");
6427 else
6428 sprintf (argBuf, "%s %s", argv[0], "noprint");
6429 }
6430 else
6431 validFlag = 0;
6432 }
6433 if (validFlag)
6434 handle_command (argBuf, from_tty);
6435 else
6436 printf_filtered (_("Invalid signal handling flag.\n"));
6437 if (argBuf)
6438 xfree (argBuf);
6439 }
6440 }
6441 do_cleanups (old_chain);
6442}
6443
6444/* Print current contents of the tables set by the handle command.
6445 It is possible we should just be printing signals actually used
6446 by the current target (but for things to work right when switching
6447 targets, all signals should be in the signal tables). */
6448
6449static void
6450signals_info (char *signum_exp, int from_tty)
6451{
6452 enum target_signal oursig;
6453
6454 sig_print_header ();
6455
6456 if (signum_exp)
6457 {
6458 /* First see if this is a symbol name. */
6459 oursig = target_signal_from_name (signum_exp);
6460 if (oursig == TARGET_SIGNAL_UNKNOWN)
6461 {
6462 /* No, try numeric. */
6463 oursig =
6464 target_signal_from_command (parse_and_eval_long (signum_exp));
6465 }
6466 sig_print_info (oursig);
6467 return;
6468 }
6469
6470 printf_filtered ("\n");
6471 /* These ugly casts brought to you by the native VAX compiler. */
6472 for (oursig = TARGET_SIGNAL_FIRST;
6473 (int) oursig < (int) TARGET_SIGNAL_LAST;
6474 oursig = (enum target_signal) ((int) oursig + 1))
6475 {
6476 QUIT;
6477
6478 if (oursig != TARGET_SIGNAL_UNKNOWN
6479 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
6480 sig_print_info (oursig);
6481 }
6482
6483 printf_filtered (_("\nUse the \"handle\" command "
6484 "to change these tables.\n"));
6485}
6486
6487/* Check if it makes sense to read $_siginfo from the current thread
6488 at this point. If not, throw an error. */
6489
6490static void
6491validate_siginfo_access (void)
6492{
6493 /* No current inferior, no siginfo. */
6494 if (ptid_equal (inferior_ptid, null_ptid))
6495 error (_("No thread selected."));
6496
6497 /* Don't try to read from a dead thread. */
6498 if (is_exited (inferior_ptid))
6499 error (_("The current thread has terminated"));
6500
6501 /* ... or from a spinning thread. */
6502 if (is_running (inferior_ptid))
6503 error (_("Selected thread is running."));
6504}
6505
6506/* The $_siginfo convenience variable is a bit special. We don't know
6507 for sure the type of the value until we actually have a chance to
6508 fetch the data. The type can change depending on gdbarch, so it is
6509 also dependent on which thread you have selected.
6510
6511 1. making $_siginfo be an internalvar that creates a new value on
6512 access.
6513
6514 2. making the value of $_siginfo be an lval_computed value. */
6515
6516/* This function implements the lval_computed support for reading a
6517 $_siginfo value. */
6518
6519static void
6520siginfo_value_read (struct value *v)
6521{
6522 LONGEST transferred;
6523
6524 validate_siginfo_access ();
6525
6526 transferred =
6527 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6528 NULL,
6529 value_contents_all_raw (v),
6530 value_offset (v),
6531 TYPE_LENGTH (value_type (v)));
6532
6533 if (transferred != TYPE_LENGTH (value_type (v)))
6534 error (_("Unable to read siginfo"));
6535}
6536
6537/* This function implements the lval_computed support for writing a
6538 $_siginfo value. */
6539
6540static void
6541siginfo_value_write (struct value *v, struct value *fromval)
6542{
6543 LONGEST transferred;
6544
6545 validate_siginfo_access ();
6546
6547 transferred = target_write (&current_target,
6548 TARGET_OBJECT_SIGNAL_INFO,
6549 NULL,
6550 value_contents_all_raw (fromval),
6551 value_offset (v),
6552 TYPE_LENGTH (value_type (fromval)));
6553
6554 if (transferred != TYPE_LENGTH (value_type (fromval)))
6555 error (_("Unable to write siginfo"));
6556}
6557
6558static const struct lval_funcs siginfo_value_funcs =
6559 {
6560 siginfo_value_read,
6561 siginfo_value_write
6562 };
6563
6564/* Return a new value with the correct type for the siginfo object of
6565 the current thread using architecture GDBARCH. Return a void value
6566 if there's no object available. */
6567
6568static struct value *
6569siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
6570{
6571 if (target_has_stack
6572 && !ptid_equal (inferior_ptid, null_ptid)
6573 && gdbarch_get_siginfo_type_p (gdbarch))
6574 {
6575 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6576
6577 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6578 }
6579
6580 return allocate_value (builtin_type (gdbarch)->builtin_void);
6581}
6582
6583\f
6584/* infcall_suspend_state contains state about the program itself like its
6585 registers and any signal it received when it last stopped.
6586 This state must be restored regardless of how the inferior function call
6587 ends (either successfully, or after it hits a breakpoint or signal)
6588 if the program is to properly continue where it left off. */
6589
6590struct infcall_suspend_state
6591{
6592 struct thread_suspend_state thread_suspend;
6593 struct inferior_suspend_state inferior_suspend;
6594
6595 /* Other fields: */
6596 CORE_ADDR stop_pc;
6597 struct regcache *registers;
6598
6599 /* Format of SIGINFO_DATA or NULL if it is not present. */
6600 struct gdbarch *siginfo_gdbarch;
6601
6602 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6603 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6604 content would be invalid. */
6605 gdb_byte *siginfo_data;
6606};
6607
6608struct infcall_suspend_state *
6609save_infcall_suspend_state (void)
6610{
6611 struct infcall_suspend_state *inf_state;
6612 struct thread_info *tp = inferior_thread ();
6613 struct inferior *inf = current_inferior ();
6614 struct regcache *regcache = get_current_regcache ();
6615 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6616 gdb_byte *siginfo_data = NULL;
6617
6618 if (gdbarch_get_siginfo_type_p (gdbarch))
6619 {
6620 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6621 size_t len = TYPE_LENGTH (type);
6622 struct cleanup *back_to;
6623
6624 siginfo_data = xmalloc (len);
6625 back_to = make_cleanup (xfree, siginfo_data);
6626
6627 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6628 siginfo_data, 0, len) == len)
6629 discard_cleanups (back_to);
6630 else
6631 {
6632 /* Errors ignored. */
6633 do_cleanups (back_to);
6634 siginfo_data = NULL;
6635 }
6636 }
6637
6638 inf_state = XZALLOC (struct infcall_suspend_state);
6639
6640 if (siginfo_data)
6641 {
6642 inf_state->siginfo_gdbarch = gdbarch;
6643 inf_state->siginfo_data = siginfo_data;
6644 }
6645
6646 inf_state->thread_suspend = tp->suspend;
6647 inf_state->inferior_suspend = inf->suspend;
6648
6649 /* run_inferior_call will not use the signal due to its `proceed' call with
6650 TARGET_SIGNAL_0 anyway. */
6651 tp->suspend.stop_signal = TARGET_SIGNAL_0;
6652
6653 inf_state->stop_pc = stop_pc;
6654
6655 inf_state->registers = regcache_dup (regcache);
6656
6657 return inf_state;
6658}
6659
6660/* Restore inferior session state to INF_STATE. */
6661
6662void
6663restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6664{
6665 struct thread_info *tp = inferior_thread ();
6666 struct inferior *inf = current_inferior ();
6667 struct regcache *regcache = get_current_regcache ();
6668 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6669
6670 tp->suspend = inf_state->thread_suspend;
6671 inf->suspend = inf_state->inferior_suspend;
6672
6673 stop_pc = inf_state->stop_pc;
6674
6675 if (inf_state->siginfo_gdbarch == gdbarch)
6676 {
6677 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6678 size_t len = TYPE_LENGTH (type);
6679
6680 /* Errors ignored. */
6681 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6682 inf_state->siginfo_data, 0, len);
6683 }
6684
6685 /* The inferior can be gone if the user types "print exit(0)"
6686 (and perhaps other times). */
6687 if (target_has_execution)
6688 /* NB: The register write goes through to the target. */
6689 regcache_cpy (regcache, inf_state->registers);
6690
6691 discard_infcall_suspend_state (inf_state);
6692}
6693
6694static void
6695do_restore_infcall_suspend_state_cleanup (void *state)
6696{
6697 restore_infcall_suspend_state (state);
6698}
6699
6700struct cleanup *
6701make_cleanup_restore_infcall_suspend_state
6702 (struct infcall_suspend_state *inf_state)
6703{
6704 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6705}
6706
6707void
6708discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6709{
6710 regcache_xfree (inf_state->registers);
6711 xfree (inf_state->siginfo_data);
6712 xfree (inf_state);
6713}
6714
6715struct regcache *
6716get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6717{
6718 return inf_state->registers;
6719}
6720
6721/* infcall_control_state contains state regarding gdb's control of the
6722 inferior itself like stepping control. It also contains session state like
6723 the user's currently selected frame. */
6724
6725struct infcall_control_state
6726{
6727 struct thread_control_state thread_control;
6728 struct inferior_control_state inferior_control;
6729
6730 /* Other fields: */
6731 enum stop_stack_kind stop_stack_dummy;
6732 int stopped_by_random_signal;
6733 int stop_after_trap;
6734
6735 /* ID if the selected frame when the inferior function call was made. */
6736 struct frame_id selected_frame_id;
6737};
6738
6739/* Save all of the information associated with the inferior<==>gdb
6740 connection. */
6741
6742struct infcall_control_state *
6743save_infcall_control_state (void)
6744{
6745 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6746 struct thread_info *tp = inferior_thread ();
6747 struct inferior *inf = current_inferior ();
6748
6749 inf_status->thread_control = tp->control;
6750 inf_status->inferior_control = inf->control;
6751
6752 tp->control.step_resume_breakpoint = NULL;
6753 tp->control.exception_resume_breakpoint = NULL;
6754
6755 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6756 chain. If caller's caller is walking the chain, they'll be happier if we
6757 hand them back the original chain when restore_infcall_control_state is
6758 called. */
6759 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6760
6761 /* Other fields: */
6762 inf_status->stop_stack_dummy = stop_stack_dummy;
6763 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6764 inf_status->stop_after_trap = stop_after_trap;
6765
6766 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6767
6768 return inf_status;
6769}
6770
6771static int
6772restore_selected_frame (void *args)
6773{
6774 struct frame_id *fid = (struct frame_id *) args;
6775 struct frame_info *frame;
6776
6777 frame = frame_find_by_id (*fid);
6778
6779 /* If inf_status->selected_frame_id is NULL, there was no previously
6780 selected frame. */
6781 if (frame == NULL)
6782 {
6783 warning (_("Unable to restore previously selected frame."));
6784 return 0;
6785 }
6786
6787 select_frame (frame);
6788
6789 return (1);
6790}
6791
6792/* Restore inferior session state to INF_STATUS. */
6793
6794void
6795restore_infcall_control_state (struct infcall_control_state *inf_status)
6796{
6797 struct thread_info *tp = inferior_thread ();
6798 struct inferior *inf = current_inferior ();
6799
6800 if (tp->control.step_resume_breakpoint)
6801 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6802
6803 if (tp->control.exception_resume_breakpoint)
6804 tp->control.exception_resume_breakpoint->disposition
6805 = disp_del_at_next_stop;
6806
6807 /* Handle the bpstat_copy of the chain. */
6808 bpstat_clear (&tp->control.stop_bpstat);
6809
6810 tp->control = inf_status->thread_control;
6811 inf->control = inf_status->inferior_control;
6812
6813 /* Other fields: */
6814 stop_stack_dummy = inf_status->stop_stack_dummy;
6815 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6816 stop_after_trap = inf_status->stop_after_trap;
6817
6818 if (target_has_stack)
6819 {
6820 /* The point of catch_errors is that if the stack is clobbered,
6821 walking the stack might encounter a garbage pointer and
6822 error() trying to dereference it. */
6823 if (catch_errors
6824 (restore_selected_frame, &inf_status->selected_frame_id,
6825 "Unable to restore previously selected frame:\n",
6826 RETURN_MASK_ERROR) == 0)
6827 /* Error in restoring the selected frame. Select the innermost
6828 frame. */
6829 select_frame (get_current_frame ());
6830 }
6831
6832 xfree (inf_status);
6833}
6834
6835static void
6836do_restore_infcall_control_state_cleanup (void *sts)
6837{
6838 restore_infcall_control_state (sts);
6839}
6840
6841struct cleanup *
6842make_cleanup_restore_infcall_control_state
6843 (struct infcall_control_state *inf_status)
6844{
6845 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6846}
6847
6848void
6849discard_infcall_control_state (struct infcall_control_state *inf_status)
6850{
6851 if (inf_status->thread_control.step_resume_breakpoint)
6852 inf_status->thread_control.step_resume_breakpoint->disposition
6853 = disp_del_at_next_stop;
6854
6855 if (inf_status->thread_control.exception_resume_breakpoint)
6856 inf_status->thread_control.exception_resume_breakpoint->disposition
6857 = disp_del_at_next_stop;
6858
6859 /* See save_infcall_control_state for info on stop_bpstat. */
6860 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6861
6862 xfree (inf_status);
6863}
6864\f
6865int
6866ptid_match (ptid_t ptid, ptid_t filter)
6867{
6868 if (ptid_equal (filter, minus_one_ptid))
6869 return 1;
6870 if (ptid_is_pid (filter)
6871 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6872 return 1;
6873 else if (ptid_equal (ptid, filter))
6874 return 1;
6875
6876 return 0;
6877}
6878
6879/* restore_inferior_ptid() will be used by the cleanup machinery
6880 to restore the inferior_ptid value saved in a call to
6881 save_inferior_ptid(). */
6882
6883static void
6884restore_inferior_ptid (void *arg)
6885{
6886 ptid_t *saved_ptid_ptr = arg;
6887
6888 inferior_ptid = *saved_ptid_ptr;
6889 xfree (arg);
6890}
6891
6892/* Save the value of inferior_ptid so that it may be restored by a
6893 later call to do_cleanups(). Returns the struct cleanup pointer
6894 needed for later doing the cleanup. */
6895
6896struct cleanup *
6897save_inferior_ptid (void)
6898{
6899 ptid_t *saved_ptid_ptr;
6900
6901 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6902 *saved_ptid_ptr = inferior_ptid;
6903 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6904}
6905\f
6906
6907/* User interface for reverse debugging:
6908 Set exec-direction / show exec-direction commands
6909 (returns error unless target implements to_set_exec_direction method). */
6910
6911int execution_direction = EXEC_FORWARD;
6912static const char exec_forward[] = "forward";
6913static const char exec_reverse[] = "reverse";
6914static const char *exec_direction = exec_forward;
6915static const char *const exec_direction_names[] = {
6916 exec_forward,
6917 exec_reverse,
6918 NULL
6919};
6920
6921static void
6922set_exec_direction_func (char *args, int from_tty,
6923 struct cmd_list_element *cmd)
6924{
6925 if (target_can_execute_reverse)
6926 {
6927 if (!strcmp (exec_direction, exec_forward))
6928 execution_direction = EXEC_FORWARD;
6929 else if (!strcmp (exec_direction, exec_reverse))
6930 execution_direction = EXEC_REVERSE;
6931 }
6932 else
6933 {
6934 exec_direction = exec_forward;
6935 error (_("Target does not support this operation."));
6936 }
6937}
6938
6939static void
6940show_exec_direction_func (struct ui_file *out, int from_tty,
6941 struct cmd_list_element *cmd, const char *value)
6942{
6943 switch (execution_direction) {
6944 case EXEC_FORWARD:
6945 fprintf_filtered (out, _("Forward.\n"));
6946 break;
6947 case EXEC_REVERSE:
6948 fprintf_filtered (out, _("Reverse.\n"));
6949 break;
6950 default:
6951 internal_error (__FILE__, __LINE__,
6952 _("bogus execution_direction value: %d"),
6953 (int) execution_direction);
6954 }
6955}
6956
6957/* User interface for non-stop mode. */
6958
6959int non_stop = 0;
6960
6961static void
6962set_non_stop (char *args, int from_tty,
6963 struct cmd_list_element *c)
6964{
6965 if (target_has_execution)
6966 {
6967 non_stop_1 = non_stop;
6968 error (_("Cannot change this setting while the inferior is running."));
6969 }
6970
6971 non_stop = non_stop_1;
6972}
6973
6974static void
6975show_non_stop (struct ui_file *file, int from_tty,
6976 struct cmd_list_element *c, const char *value)
6977{
6978 fprintf_filtered (file,
6979 _("Controlling the inferior in non-stop mode is %s.\n"),
6980 value);
6981}
6982
6983static void
6984show_schedule_multiple (struct ui_file *file, int from_tty,
6985 struct cmd_list_element *c, const char *value)
6986{
6987 fprintf_filtered (file, _("Resuming the execution of threads "
6988 "of all processes is %s.\n"), value);
6989}
6990
6991void
6992_initialize_infrun (void)
6993{
6994 int i;
6995 int numsigs;
6996
6997 add_info ("signals", signals_info, _("\
6998What debugger does when program gets various signals.\n\
6999Specify a signal as argument to print info on that signal only."));
7000 add_info_alias ("handle", "signals", 0);
7001
7002 add_com ("handle", class_run, handle_command, _("\
7003Specify how to handle a signal.\n\
7004Args are signals and actions to apply to those signals.\n\
7005Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7006from 1-15 are allowed for compatibility with old versions of GDB.\n\
7007Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7008The special arg \"all\" is recognized to mean all signals except those\n\
7009used by the debugger, typically SIGTRAP and SIGINT.\n\
7010Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7011\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7012Stop means reenter debugger if this signal happens (implies print).\n\
7013Print means print a message if this signal happens.\n\
7014Pass means let program see this signal; otherwise program doesn't know.\n\
7015Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7016Pass and Stop may be combined."));
7017 if (xdb_commands)
7018 {
7019 add_com ("lz", class_info, signals_info, _("\
7020What debugger does when program gets various signals.\n\
7021Specify a signal as argument to print info on that signal only."));
7022 add_com ("z", class_run, xdb_handle_command, _("\
7023Specify how to handle a signal.\n\
7024Args are signals and actions to apply to those signals.\n\
7025Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7026from 1-15 are allowed for compatibility with old versions of GDB.\n\
7027Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7028The special arg \"all\" is recognized to mean all signals except those\n\
7029used by the debugger, typically SIGTRAP and SIGINT.\n\
7030Recognized actions include \"s\" (toggles between stop and nostop),\n\
7031\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7032nopass), \"Q\" (noprint)\n\
7033Stop means reenter debugger if this signal happens (implies print).\n\
7034Print means print a message if this signal happens.\n\
7035Pass means let program see this signal; otherwise program doesn't know.\n\
7036Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7037Pass and Stop may be combined."));
7038 }
7039
7040 if (!dbx_commands)
7041 stop_command = add_cmd ("stop", class_obscure,
7042 not_just_help_class_command, _("\
7043There is no `stop' command, but you can set a hook on `stop'.\n\
7044This allows you to set a list of commands to be run each time execution\n\
7045of the program stops."), &cmdlist);
7046
7047 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7048Set inferior debugging."), _("\
7049Show inferior debugging."), _("\
7050When non-zero, inferior specific debugging is enabled."),
7051 NULL,
7052 show_debug_infrun,
7053 &setdebuglist, &showdebuglist);
7054
7055 add_setshow_boolean_cmd ("displaced", class_maintenance,
7056 &debug_displaced, _("\
7057Set displaced stepping debugging."), _("\
7058Show displaced stepping debugging."), _("\
7059When non-zero, displaced stepping specific debugging is enabled."),
7060 NULL,
7061 show_debug_displaced,
7062 &setdebuglist, &showdebuglist);
7063
7064 add_setshow_boolean_cmd ("non-stop", no_class,
7065 &non_stop_1, _("\
7066Set whether gdb controls the inferior in non-stop mode."), _("\
7067Show whether gdb controls the inferior in non-stop mode."), _("\
7068When debugging a multi-threaded program and this setting is\n\
7069off (the default, also called all-stop mode), when one thread stops\n\
7070(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7071all other threads in the program while you interact with the thread of\n\
7072interest. When you continue or step a thread, you can allow the other\n\
7073threads to run, or have them remain stopped, but while you inspect any\n\
7074thread's state, all threads stop.\n\
7075\n\
7076In non-stop mode, when one thread stops, other threads can continue\n\
7077to run freely. You'll be able to step each thread independently,\n\
7078leave it stopped or free to run as needed."),
7079 set_non_stop,
7080 show_non_stop,
7081 &setlist,
7082 &showlist);
7083
7084 numsigs = (int) TARGET_SIGNAL_LAST;
7085 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7086 signal_print = (unsigned char *)
7087 xmalloc (sizeof (signal_print[0]) * numsigs);
7088 signal_program = (unsigned char *)
7089 xmalloc (sizeof (signal_program[0]) * numsigs);
7090 signal_pass = (unsigned char *)
7091 xmalloc (sizeof (signal_program[0]) * numsigs);
7092 for (i = 0; i < numsigs; i++)
7093 {
7094 signal_stop[i] = 1;
7095 signal_print[i] = 1;
7096 signal_program[i] = 1;
7097 }
7098
7099 /* Signals caused by debugger's own actions
7100 should not be given to the program afterwards. */
7101 signal_program[TARGET_SIGNAL_TRAP] = 0;
7102 signal_program[TARGET_SIGNAL_INT] = 0;
7103
7104 /* Signals that are not errors should not normally enter the debugger. */
7105 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7106 signal_print[TARGET_SIGNAL_ALRM] = 0;
7107 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7108 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7109 signal_stop[TARGET_SIGNAL_PROF] = 0;
7110 signal_print[TARGET_SIGNAL_PROF] = 0;
7111 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7112 signal_print[TARGET_SIGNAL_CHLD] = 0;
7113 signal_stop[TARGET_SIGNAL_IO] = 0;
7114 signal_print[TARGET_SIGNAL_IO] = 0;
7115 signal_stop[TARGET_SIGNAL_POLL] = 0;
7116 signal_print[TARGET_SIGNAL_POLL] = 0;
7117 signal_stop[TARGET_SIGNAL_URG] = 0;
7118 signal_print[TARGET_SIGNAL_URG] = 0;
7119 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7120 signal_print[TARGET_SIGNAL_WINCH] = 0;
7121 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7122 signal_print[TARGET_SIGNAL_PRIO] = 0;
7123
7124 /* These signals are used internally by user-level thread
7125 implementations. (See signal(5) on Solaris.) Like the above
7126 signals, a healthy program receives and handles them as part of
7127 its normal operation. */
7128 signal_stop[TARGET_SIGNAL_LWP] = 0;
7129 signal_print[TARGET_SIGNAL_LWP] = 0;
7130 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7131 signal_print[TARGET_SIGNAL_WAITING] = 0;
7132 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7133 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7134
7135 /* Update cached state. */
7136 signal_cache_update (-1);
7137
7138 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7139 &stop_on_solib_events, _("\
7140Set stopping for shared library events."), _("\
7141Show stopping for shared library events."), _("\
7142If nonzero, gdb will give control to the user when the dynamic linker\n\
7143notifies gdb of shared library events. The most common event of interest\n\
7144to the user would be loading/unloading of a new library."),
7145 NULL,
7146 show_stop_on_solib_events,
7147 &setlist, &showlist);
7148
7149 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7150 follow_fork_mode_kind_names,
7151 &follow_fork_mode_string, _("\
7152Set debugger response to a program call of fork or vfork."), _("\
7153Show debugger response to a program call of fork or vfork."), _("\
7154A fork or vfork creates a new process. follow-fork-mode can be:\n\
7155 parent - the original process is debugged after a fork\n\
7156 child - the new process is debugged after a fork\n\
7157The unfollowed process will continue to run.\n\
7158By default, the debugger will follow the parent process."),
7159 NULL,
7160 show_follow_fork_mode_string,
7161 &setlist, &showlist);
7162
7163 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7164 follow_exec_mode_names,
7165 &follow_exec_mode_string, _("\
7166Set debugger response to a program call of exec."), _("\
7167Show debugger response to a program call of exec."), _("\
7168An exec call replaces the program image of a process.\n\
7169\n\
7170follow-exec-mode can be:\n\
7171\n\
7172 new - the debugger creates a new inferior and rebinds the process\n\
7173to this new inferior. The program the process was running before\n\
7174the exec call can be restarted afterwards by restarting the original\n\
7175inferior.\n\
7176\n\
7177 same - the debugger keeps the process bound to the same inferior.\n\
7178The new executable image replaces the previous executable loaded in\n\
7179the inferior. Restarting the inferior after the exec call restarts\n\
7180the executable the process was running after the exec call.\n\
7181\n\
7182By default, the debugger will use the same inferior."),
7183 NULL,
7184 show_follow_exec_mode_string,
7185 &setlist, &showlist);
7186
7187 add_setshow_enum_cmd ("scheduler-locking", class_run,
7188 scheduler_enums, &scheduler_mode, _("\
7189Set mode for locking scheduler during execution."), _("\
7190Show mode for locking scheduler during execution."), _("\
7191off == no locking (threads may preempt at any time)\n\
7192on == full locking (no thread except the current thread may run)\n\
7193step == scheduler locked during every single-step operation.\n\
7194 In this mode, no other thread may run during a step command.\n\
7195 Other threads may run while stepping over a function call ('next')."),
7196 set_schedlock_func, /* traps on target vector */
7197 show_scheduler_mode,
7198 &setlist, &showlist);
7199
7200 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7201Set mode for resuming threads of all processes."), _("\
7202Show mode for resuming threads of all processes."), _("\
7203When on, execution commands (such as 'continue' or 'next') resume all\n\
7204threads of all processes. When off (which is the default), execution\n\
7205commands only resume the threads of the current process. The set of\n\
7206threads that are resumed is further refined by the scheduler-locking\n\
7207mode (see help set scheduler-locking)."),
7208 NULL,
7209 show_schedule_multiple,
7210 &setlist, &showlist);
7211
7212 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7213Set mode of the step operation."), _("\
7214Show mode of the step operation."), _("\
7215When set, doing a step over a function without debug line information\n\
7216will stop at the first instruction of that function. Otherwise, the\n\
7217function is skipped and the step command stops at a different source line."),
7218 NULL,
7219 show_step_stop_if_no_debug,
7220 &setlist, &showlist);
7221
7222 add_setshow_enum_cmd ("displaced-stepping", class_run,
7223 can_use_displaced_stepping_enum,
7224 &can_use_displaced_stepping, _("\
7225Set debugger's willingness to use displaced stepping."), _("\
7226Show debugger's willingness to use displaced stepping."), _("\
7227If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7228supported by the target architecture. If off, gdb will not use displaced\n\
7229stepping to step over breakpoints, even if such is supported by the target\n\
7230architecture. If auto (which is the default), gdb will use displaced stepping\n\
7231if the target architecture supports it and non-stop mode is active, but will not\n\
7232use it in all-stop mode (see help set non-stop)."),
7233 NULL,
7234 show_can_use_displaced_stepping,
7235 &setlist, &showlist);
7236
7237 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7238 &exec_direction, _("Set direction of execution.\n\
7239Options are 'forward' or 'reverse'."),
7240 _("Show direction of execution (forward/reverse)."),
7241 _("Tells gdb whether to execute forward or backward."),
7242 set_exec_direction_func, show_exec_direction_func,
7243 &setlist, &showlist);
7244
7245 /* Set/show detach-on-fork: user-settable mode. */
7246
7247 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7248Set whether gdb will detach the child of a fork."), _("\
7249Show whether gdb will detach the child of a fork."), _("\
7250Tells gdb whether to detach the child of a fork."),
7251 NULL, NULL, &setlist, &showlist);
7252
7253 /* Set/show disable address space randomization mode. */
7254
7255 add_setshow_boolean_cmd ("disable-randomization", class_support,
7256 &disable_randomization, _("\
7257Set disabling of debuggee's virtual address space randomization."), _("\
7258Show disabling of debuggee's virtual address space randomization."), _("\
7259When this mode is on (which is the default), randomization of the virtual\n\
7260address space is disabled. Standalone programs run with the randomization\n\
7261enabled by default on some platforms."),
7262 &set_disable_randomization,
7263 &show_disable_randomization,
7264 &setlist, &showlist);
7265
7266 /* ptid initializations */
7267 inferior_ptid = null_ptid;
7268 target_last_wait_ptid = minus_one_ptid;
7269
7270 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7271 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7272 observer_attach_thread_exit (infrun_thread_thread_exit);
7273 observer_attach_inferior_exit (infrun_inferior_exit);
7274
7275 /* Explicitly create without lookup, since that tries to create a
7276 value with a void typed value, and when we get here, gdbarch
7277 isn't initialized yet. At this point, we're quite sure there
7278 isn't another convenience variable of the same name. */
7279 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
7280
7281 add_setshow_boolean_cmd ("observer", no_class,
7282 &observer_mode_1, _("\
7283Set whether gdb controls the inferior in observer mode."), _("\
7284Show whether gdb controls the inferior in observer mode."), _("\
7285In observer mode, GDB can get data from the inferior, but not\n\
7286affect its execution. Registers and memory may not be changed,\n\
7287breakpoints may not be set, and the program cannot be interrupted\n\
7288or signalled."),
7289 set_observer_mode,
7290 show_observer_mode,
7291 &setlist,
7292 &showlist);
7293}
This page took 0.04611 seconds and 4 git commands to generate.