Allow use of Pygments to colorize source code
[deliverable/binutils-gdb.git] / gdb / infrun.c
... / ...
CommitLineData
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "infrun.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "target-connection.h"
32#include "gdbthread.h"
33#include "annotate.h"
34#include "symfile.h"
35#include "top.h"
36#include "inf-loop.h"
37#include "regcache.h"
38#include "value.h"
39#include "observable.h"
40#include "language.h"
41#include "solib.h"
42#include "main.h"
43#include "block.h"
44#include "mi/mi-common.h"
45#include "event-top.h"
46#include "record.h"
47#include "record-full.h"
48#include "inline-frame.h"
49#include "jit.h"
50#include "tracepoint.h"
51#include "skip.h"
52#include "probe.h"
53#include "objfiles.h"
54#include "completer.h"
55#include "target-descriptions.h"
56#include "target-dcache.h"
57#include "terminal.h"
58#include "solist.h"
59#include "event-loop.h"
60#include "thread-fsm.h"
61#include "gdbsupport/enum-flags.h"
62#include "progspace-and-thread.h"
63#include "gdbsupport/gdb_optional.h"
64#include "arch-utils.h"
65#include "gdbsupport/scope-exit.h"
66#include "gdbsupport/forward-scope-exit.h"
67#include "gdb_select.h"
68#include <unordered_map>
69
70/* Prototypes for local functions */
71
72static void sig_print_info (enum gdb_signal);
73
74static void sig_print_header (void);
75
76static int follow_fork (void);
77
78static int follow_fork_inferior (int follow_child, int detach_fork);
79
80static void follow_inferior_reset_breakpoints (void);
81
82static int currently_stepping (struct thread_info *tp);
83
84static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
85
86static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
87
88static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
89
90static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
91
92static void resume (gdb_signal sig);
93
94static void wait_for_inferior (inferior *inf);
95
96/* Asynchronous signal handler registered as event loop source for
97 when we have pending events ready to be passed to the core. */
98static struct async_event_handler *infrun_async_inferior_event_token;
99
100/* Stores whether infrun_async was previously enabled or disabled.
101 Starts off as -1, indicating "never enabled/disabled". */
102static int infrun_is_async = -1;
103
104/* See infrun.h. */
105
106void
107infrun_async (int enable)
108{
109 if (infrun_is_async != enable)
110 {
111 infrun_is_async = enable;
112
113 if (debug_infrun)
114 fprintf_unfiltered (gdb_stdlog,
115 "infrun: infrun_async(%d)\n",
116 enable);
117
118 if (enable)
119 mark_async_event_handler (infrun_async_inferior_event_token);
120 else
121 clear_async_event_handler (infrun_async_inferior_event_token);
122 }
123}
124
125/* See infrun.h. */
126
127void
128mark_infrun_async_event_handler (void)
129{
130 mark_async_event_handler (infrun_async_inferior_event_token);
131}
132
133/* When set, stop the 'step' command if we enter a function which has
134 no line number information. The normal behavior is that we step
135 over such function. */
136bool step_stop_if_no_debug = false;
137static void
138show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140{
141 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
142}
143
144/* proceed and normal_stop use this to notify the user when the
145 inferior stopped in a different thread than it had been running
146 in. */
147
148static ptid_t previous_inferior_ptid;
149
150/* If set (default for legacy reasons), when following a fork, GDB
151 will detach from one of the fork branches, child or parent.
152 Exactly which branch is detached depends on 'set follow-fork-mode'
153 setting. */
154
155static bool detach_fork = true;
156
157bool debug_displaced = false;
158static void
159show_debug_displaced (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161{
162 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
163}
164
165unsigned int debug_infrun = 0;
166static void
167show_debug_infrun (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169{
170 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
171}
172
173
174/* Support for disabling address space randomization. */
175
176bool disable_randomization = true;
177
178static void
179show_disable_randomization (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181{
182 if (target_supports_disable_randomization ())
183 fprintf_filtered (file,
184 _("Disabling randomization of debuggee's "
185 "virtual address space is %s.\n"),
186 value);
187 else
188 fputs_filtered (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform.\n"), file);
191}
192
193static void
194set_disable_randomization (const char *args, int from_tty,
195 struct cmd_list_element *c)
196{
197 if (!target_supports_disable_randomization ())
198 error (_("Disabling randomization of debuggee's "
199 "virtual address space is unsupported on\n"
200 "this platform."));
201}
202
203/* User interface for non-stop mode. */
204
205bool non_stop = false;
206static bool non_stop_1 = false;
207
208static void
209set_non_stop (const char *args, int from_tty,
210 struct cmd_list_element *c)
211{
212 if (target_has_execution)
213 {
214 non_stop_1 = non_stop;
215 error (_("Cannot change this setting while the inferior is running."));
216 }
217
218 non_stop = non_stop_1;
219}
220
221static void
222show_non_stop (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224{
225 fprintf_filtered (file,
226 _("Controlling the inferior in non-stop mode is %s.\n"),
227 value);
228}
229
230/* "Observer mode" is somewhat like a more extreme version of
231 non-stop, in which all GDB operations that might affect the
232 target's execution have been disabled. */
233
234bool observer_mode = false;
235static bool observer_mode_1 = false;
236
237static void
238set_observer_mode (const char *args, int from_tty,
239 struct cmd_list_element *c)
240{
241 if (target_has_execution)
242 {
243 observer_mode_1 = observer_mode;
244 error (_("Cannot change this setting while the inferior is running."));
245 }
246
247 observer_mode = observer_mode_1;
248
249 may_write_registers = !observer_mode;
250 may_write_memory = !observer_mode;
251 may_insert_breakpoints = !observer_mode;
252 may_insert_tracepoints = !observer_mode;
253 /* We can insert fast tracepoints in or out of observer mode,
254 but enable them if we're going into this mode. */
255 if (observer_mode)
256 may_insert_fast_tracepoints = true;
257 may_stop = !observer_mode;
258 update_target_permissions ();
259
260 /* Going *into* observer mode we must force non-stop, then
261 going out we leave it that way. */
262 if (observer_mode)
263 {
264 pagination_enabled = 0;
265 non_stop = non_stop_1 = true;
266 }
267
268 if (from_tty)
269 printf_filtered (_("Observer mode is now %s.\n"),
270 (observer_mode ? "on" : "off"));
271}
272
273static void
274show_observer_mode (struct ui_file *file, int from_tty,
275 struct cmd_list_element *c, const char *value)
276{
277 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
278}
279
280/* This updates the value of observer mode based on changes in
281 permissions. Note that we are deliberately ignoring the values of
282 may-write-registers and may-write-memory, since the user may have
283 reason to enable these during a session, for instance to turn on a
284 debugging-related global. */
285
286void
287update_observer_mode (void)
288{
289 bool newval = (!may_insert_breakpoints
290 && !may_insert_tracepoints
291 && may_insert_fast_tracepoints
292 && !may_stop
293 && non_stop);
294
295 /* Let the user know if things change. */
296 if (newval != observer_mode)
297 printf_filtered (_("Observer mode is now %s.\n"),
298 (newval ? "on" : "off"));
299
300 observer_mode = observer_mode_1 = newval;
301}
302
303/* Tables of how to react to signals; the user sets them. */
304
305static unsigned char signal_stop[GDB_SIGNAL_LAST];
306static unsigned char signal_print[GDB_SIGNAL_LAST];
307static unsigned char signal_program[GDB_SIGNAL_LAST];
308
309/* Table of signals that are registered with "catch signal". A
310 non-zero entry indicates that the signal is caught by some "catch
311 signal" command. */
312static unsigned char signal_catch[GDB_SIGNAL_LAST];
313
314/* Table of signals that the target may silently handle.
315 This is automatically determined from the flags above,
316 and simply cached here. */
317static unsigned char signal_pass[GDB_SIGNAL_LAST];
318
319#define SET_SIGS(nsigs,sigs,flags) \
320 do { \
321 int signum = (nsigs); \
322 while (signum-- > 0) \
323 if ((sigs)[signum]) \
324 (flags)[signum] = 1; \
325 } while (0)
326
327#define UNSET_SIGS(nsigs,sigs,flags) \
328 do { \
329 int signum = (nsigs); \
330 while (signum-- > 0) \
331 if ((sigs)[signum]) \
332 (flags)[signum] = 0; \
333 } while (0)
334
335/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
336 this function is to avoid exporting `signal_program'. */
337
338void
339update_signals_program_target (void)
340{
341 target_program_signals (signal_program);
342}
343
344/* Value to pass to target_resume() to cause all threads to resume. */
345
346#define RESUME_ALL minus_one_ptid
347
348/* Command list pointer for the "stop" placeholder. */
349
350static struct cmd_list_element *stop_command;
351
352/* Nonzero if we want to give control to the user when we're notified
353 of shared library events by the dynamic linker. */
354int stop_on_solib_events;
355
356/* Enable or disable optional shared library event breakpoints
357 as appropriate when the above flag is changed. */
358
359static void
360set_stop_on_solib_events (const char *args,
361 int from_tty, struct cmd_list_element *c)
362{
363 update_solib_breakpoints ();
364}
365
366static void
367show_stop_on_solib_events (struct ui_file *file, int from_tty,
368 struct cmd_list_element *c, const char *value)
369{
370 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
371 value);
372}
373
374/* Nonzero after stop if current stack frame should be printed. */
375
376static int stop_print_frame;
377
378/* This is a cached copy of the target/ptid/waitstatus of the last
379 event returned by target_wait()/deprecated_target_wait_hook().
380 This information is returned by get_last_target_status(). */
381static process_stratum_target *target_last_proc_target;
382static ptid_t target_last_wait_ptid;
383static struct target_waitstatus target_last_waitstatus;
384
385void init_thread_stepping_state (struct thread_info *tss);
386
387static const char follow_fork_mode_child[] = "child";
388static const char follow_fork_mode_parent[] = "parent";
389
390static const char *const follow_fork_mode_kind_names[] = {
391 follow_fork_mode_child,
392 follow_fork_mode_parent,
393 NULL
394};
395
396static const char *follow_fork_mode_string = follow_fork_mode_parent;
397static void
398show_follow_fork_mode_string (struct ui_file *file, int from_tty,
399 struct cmd_list_element *c, const char *value)
400{
401 fprintf_filtered (file,
402 _("Debugger response to a program "
403 "call of fork or vfork is \"%s\".\n"),
404 value);
405}
406\f
407
408/* Handle changes to the inferior list based on the type of fork,
409 which process is being followed, and whether the other process
410 should be detached. On entry inferior_ptid must be the ptid of
411 the fork parent. At return inferior_ptid is the ptid of the
412 followed inferior. */
413
414static int
415follow_fork_inferior (int follow_child, int detach_fork)
416{
417 int has_vforked;
418 ptid_t parent_ptid, child_ptid;
419
420 has_vforked = (inferior_thread ()->pending_follow.kind
421 == TARGET_WAITKIND_VFORKED);
422 parent_ptid = inferior_ptid;
423 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
424
425 if (has_vforked
426 && !non_stop /* Non-stop always resumes both branches. */
427 && current_ui->prompt_state == PROMPT_BLOCKED
428 && !(follow_child || detach_fork || sched_multi))
429 {
430 /* The parent stays blocked inside the vfork syscall until the
431 child execs or exits. If we don't let the child run, then
432 the parent stays blocked. If we're telling the parent to run
433 in the foreground, the user will not be able to ctrl-c to get
434 back the terminal, effectively hanging the debug session. */
435 fprintf_filtered (gdb_stderr, _("\
436Can not resume the parent process over vfork in the foreground while\n\
437holding the child stopped. Try \"set detach-on-fork\" or \
438\"set schedule-multiple\".\n"));
439 return 1;
440 }
441
442 if (!follow_child)
443 {
444 /* Detach new forked process? */
445 if (detach_fork)
446 {
447 /* Before detaching from the child, remove all breakpoints
448 from it. If we forked, then this has already been taken
449 care of by infrun.c. If we vforked however, any
450 breakpoint inserted in the parent is visible in the
451 child, even those added while stopped in a vfork
452 catchpoint. This will remove the breakpoints from the
453 parent also, but they'll be reinserted below. */
454 if (has_vforked)
455 {
456 /* Keep breakpoints list in sync. */
457 remove_breakpoints_inf (current_inferior ());
458 }
459
460 if (print_inferior_events)
461 {
462 /* Ensure that we have a process ptid. */
463 ptid_t process_ptid = ptid_t (child_ptid.pid ());
464
465 target_terminal::ours_for_output ();
466 fprintf_filtered (gdb_stdlog,
467 _("[Detaching after %s from child %s]\n"),
468 has_vforked ? "vfork" : "fork",
469 target_pid_to_str (process_ptid).c_str ());
470 }
471 }
472 else
473 {
474 struct inferior *parent_inf, *child_inf;
475
476 /* Add process to GDB's tables. */
477 child_inf = add_inferior (child_ptid.pid ());
478
479 parent_inf = current_inferior ();
480 child_inf->attach_flag = parent_inf->attach_flag;
481 copy_terminal_info (child_inf, parent_inf);
482 child_inf->gdbarch = parent_inf->gdbarch;
483 copy_inferior_target_desc_info (child_inf, parent_inf);
484
485 scoped_restore_current_pspace_and_thread restore_pspace_thread;
486
487 set_current_inferior (child_inf);
488 switch_to_no_thread ();
489 child_inf->symfile_flags = SYMFILE_NO_READ;
490 push_target (parent_inf->process_target ());
491 add_thread_silent (child_inf->process_target (), child_ptid);
492 inferior_ptid = child_ptid;
493
494 /* If this is a vfork child, then the address-space is
495 shared with the parent. */
496 if (has_vforked)
497 {
498 child_inf->pspace = parent_inf->pspace;
499 child_inf->aspace = parent_inf->aspace;
500
501 exec_on_vfork ();
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
514 child_inf->pspace = new program_space (child_inf->aspace);
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
552 if (print_inferior_events)
553 {
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
557 target_terminal::ours_for_output ();
558 fprintf_filtered (gdb_stdlog,
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
561 has_vforked ? "vfork" : "fork",
562 child_pid.c_str ());
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
568 child_inf = add_inferior (child_ptid.pid ());
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
578 process_stratum_target *target = parent_inf->process_target ();
579
580 {
581 /* Hold a strong reference to the target while (maybe)
582 detaching the parent. Otherwise detaching could close the
583 target. */
584 auto target_ref = target_ops_ref::new_reference (target);
585
586 /* If we're vforking, we want to hold on to the parent until
587 the child exits or execs. At child exec or exit time we
588 can remove the old breakpoints from the parent and detach
589 or resume debugging it. Otherwise, detach the parent now;
590 we'll want to reuse it's program/address spaces, but we
591 can't set them to the child before removing breakpoints
592 from the parent, otherwise, the breakpoints module could
593 decide to remove breakpoints from the wrong process (since
594 they'd be assigned to the same address space). */
595
596 if (has_vforked)
597 {
598 gdb_assert (child_inf->vfork_parent == NULL);
599 gdb_assert (parent_inf->vfork_child == NULL);
600 child_inf->vfork_parent = parent_inf;
601 child_inf->pending_detach = 0;
602 parent_inf->vfork_child = child_inf;
603 parent_inf->pending_detach = detach_fork;
604 parent_inf->waiting_for_vfork_done = 0;
605 }
606 else if (detach_fork)
607 {
608 if (print_inferior_events)
609 {
610 /* Ensure that we have a process ptid. */
611 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
612
613 target_terminal::ours_for_output ();
614 fprintf_filtered (gdb_stdlog,
615 _("[Detaching after fork from "
616 "parent %s]\n"),
617 target_pid_to_str (process_ptid).c_str ());
618 }
619
620 target_detach (parent_inf, 0);
621 parent_inf = NULL;
622 }
623
624 /* Note that the detach above makes PARENT_INF dangling. */
625
626 /* Add the child thread to the appropriate lists, and switch
627 to this new thread, before cloning the program space, and
628 informing the solib layer about this new process. */
629
630 set_current_inferior (child_inf);
631 push_target (target);
632 }
633
634 add_thread_silent (target, child_ptid);
635 inferior_ptid = child_ptid;
636
637 /* If this is a vfork child, then the address-space is shared
638 with the parent. If we detached from the parent, then we can
639 reuse the parent's program/address spaces. */
640 if (has_vforked || detach_fork)
641 {
642 child_inf->pspace = parent_pspace;
643 child_inf->aspace = child_inf->pspace->aspace;
644
645 exec_on_vfork ();
646 }
647 else
648 {
649 child_inf->aspace = new_address_space ();
650 child_inf->pspace = new program_space (child_inf->aspace);
651 child_inf->removable = 1;
652 child_inf->symfile_flags = SYMFILE_NO_READ;
653 set_current_program_space (child_inf->pspace);
654 clone_program_space (child_inf->pspace, parent_pspace);
655
656 /* Let the shared library layer (e.g., solib-svr4) learn
657 about this new process, relocate the cloned exec, pull in
658 shared libraries, and install the solib event breakpoint.
659 If a "cloned-VM" event was propagated better throughout
660 the core, this wouldn't be required. */
661 solib_create_inferior_hook (0);
662 }
663 }
664
665 return target_follow_fork (follow_child, detach_fork);
666}
667
668/* Tell the target to follow the fork we're stopped at. Returns true
669 if the inferior should be resumed; false, if the target for some
670 reason decided it's best not to resume. */
671
672static int
673follow_fork (void)
674{
675 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
676 int should_resume = 1;
677 struct thread_info *tp;
678
679 /* Copy user stepping state to the new inferior thread. FIXME: the
680 followed fork child thread should have a copy of most of the
681 parent thread structure's run control related fields, not just these.
682 Initialized to avoid "may be used uninitialized" warnings from gcc. */
683 struct breakpoint *step_resume_breakpoint = NULL;
684 struct breakpoint *exception_resume_breakpoint = NULL;
685 CORE_ADDR step_range_start = 0;
686 CORE_ADDR step_range_end = 0;
687 struct frame_id step_frame_id = { 0 };
688 struct thread_fsm *thread_fsm = NULL;
689
690 if (!non_stop)
691 {
692 process_stratum_target *wait_target;
693 ptid_t wait_ptid;
694 struct target_waitstatus wait_status;
695
696 /* Get the last target status returned by target_wait(). */
697 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
698
699 /* If not stopped at a fork event, then there's nothing else to
700 do. */
701 if (wait_status.kind != TARGET_WAITKIND_FORKED
702 && wait_status.kind != TARGET_WAITKIND_VFORKED)
703 return 1;
704
705 /* Check if we switched over from WAIT_PTID, since the event was
706 reported. */
707 if (wait_ptid != minus_one_ptid
708 && (current_inferior ()->process_target () != wait_target
709 || inferior_ptid != wait_ptid))
710 {
711 /* We did. Switch back to WAIT_PTID thread, to tell the
712 target to follow it (in either direction). We'll
713 afterwards refuse to resume, and inform the user what
714 happened. */
715 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
716 switch_to_thread (wait_thread);
717 should_resume = 0;
718 }
719 }
720
721 tp = inferior_thread ();
722
723 /* If there were any forks/vforks that were caught and are now to be
724 followed, then do so now. */
725 switch (tp->pending_follow.kind)
726 {
727 case TARGET_WAITKIND_FORKED:
728 case TARGET_WAITKIND_VFORKED:
729 {
730 ptid_t parent, child;
731
732 /* If the user did a next/step, etc, over a fork call,
733 preserve the stepping state in the fork child. */
734 if (follow_child && should_resume)
735 {
736 step_resume_breakpoint = clone_momentary_breakpoint
737 (tp->control.step_resume_breakpoint);
738 step_range_start = tp->control.step_range_start;
739 step_range_end = tp->control.step_range_end;
740 step_frame_id = tp->control.step_frame_id;
741 exception_resume_breakpoint
742 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
743 thread_fsm = tp->thread_fsm;
744
745 /* For now, delete the parent's sr breakpoint, otherwise,
746 parent/child sr breakpoints are considered duplicates,
747 and the child version will not be installed. Remove
748 this when the breakpoints module becomes aware of
749 inferiors and address spaces. */
750 delete_step_resume_breakpoint (tp);
751 tp->control.step_range_start = 0;
752 tp->control.step_range_end = 0;
753 tp->control.step_frame_id = null_frame_id;
754 delete_exception_resume_breakpoint (tp);
755 tp->thread_fsm = NULL;
756 }
757
758 parent = inferior_ptid;
759 child = tp->pending_follow.value.related_pid;
760
761 process_stratum_target *parent_targ = tp->inf->process_target ();
762 /* Set up inferior(s) as specified by the caller, and tell the
763 target to do whatever is necessary to follow either parent
764 or child. */
765 if (follow_fork_inferior (follow_child, detach_fork))
766 {
767 /* Target refused to follow, or there's some other reason
768 we shouldn't resume. */
769 should_resume = 0;
770 }
771 else
772 {
773 /* This pending follow fork event is now handled, one way
774 or another. The previous selected thread may be gone
775 from the lists by now, but if it is still around, need
776 to clear the pending follow request. */
777 tp = find_thread_ptid (parent_targ, parent);
778 if (tp)
779 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
780
781 /* This makes sure we don't try to apply the "Switched
782 over from WAIT_PID" logic above. */
783 nullify_last_target_wait_ptid ();
784
785 /* If we followed the child, switch to it... */
786 if (follow_child)
787 {
788 thread_info *child_thr = find_thread_ptid (parent_targ, child);
789 switch_to_thread (child_thr);
790
791 /* ... and preserve the stepping state, in case the
792 user was stepping over the fork call. */
793 if (should_resume)
794 {
795 tp = inferior_thread ();
796 tp->control.step_resume_breakpoint
797 = step_resume_breakpoint;
798 tp->control.step_range_start = step_range_start;
799 tp->control.step_range_end = step_range_end;
800 tp->control.step_frame_id = step_frame_id;
801 tp->control.exception_resume_breakpoint
802 = exception_resume_breakpoint;
803 tp->thread_fsm = thread_fsm;
804 }
805 else
806 {
807 /* If we get here, it was because we're trying to
808 resume from a fork catchpoint, but, the user
809 has switched threads away from the thread that
810 forked. In that case, the resume command
811 issued is most likely not applicable to the
812 child, so just warn, and refuse to resume. */
813 warning (_("Not resuming: switched threads "
814 "before following fork child."));
815 }
816
817 /* Reset breakpoints in the child as appropriate. */
818 follow_inferior_reset_breakpoints ();
819 }
820 }
821 }
822 break;
823 case TARGET_WAITKIND_SPURIOUS:
824 /* Nothing to follow. */
825 break;
826 default:
827 internal_error (__FILE__, __LINE__,
828 "Unexpected pending_follow.kind %d\n",
829 tp->pending_follow.kind);
830 break;
831 }
832
833 return should_resume;
834}
835
836static void
837follow_inferior_reset_breakpoints (void)
838{
839 struct thread_info *tp = inferior_thread ();
840
841 /* Was there a step_resume breakpoint? (There was if the user
842 did a "next" at the fork() call.) If so, explicitly reset its
843 thread number. Cloned step_resume breakpoints are disabled on
844 creation, so enable it here now that it is associated with the
845 correct thread.
846
847 step_resumes are a form of bp that are made to be per-thread.
848 Since we created the step_resume bp when the parent process
849 was being debugged, and now are switching to the child process,
850 from the breakpoint package's viewpoint, that's a switch of
851 "threads". We must update the bp's notion of which thread
852 it is for, or it'll be ignored when it triggers. */
853
854 if (tp->control.step_resume_breakpoint)
855 {
856 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
857 tp->control.step_resume_breakpoint->loc->enabled = 1;
858 }
859
860 /* Treat exception_resume breakpoints like step_resume breakpoints. */
861 if (tp->control.exception_resume_breakpoint)
862 {
863 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
864 tp->control.exception_resume_breakpoint->loc->enabled = 1;
865 }
866
867 /* Reinsert all breakpoints in the child. The user may have set
868 breakpoints after catching the fork, in which case those
869 were never set in the child, but only in the parent. This makes
870 sure the inserted breakpoints match the breakpoint list. */
871
872 breakpoint_re_set ();
873 insert_breakpoints ();
874}
875
876/* The child has exited or execed: resume threads of the parent the
877 user wanted to be executing. */
878
879static int
880proceed_after_vfork_done (struct thread_info *thread,
881 void *arg)
882{
883 int pid = * (int *) arg;
884
885 if (thread->ptid.pid () == pid
886 && thread->state == THREAD_RUNNING
887 && !thread->executing
888 && !thread->stop_requested
889 && thread->suspend.stop_signal == GDB_SIGNAL_0)
890 {
891 if (debug_infrun)
892 fprintf_unfiltered (gdb_stdlog,
893 "infrun: resuming vfork parent thread %s\n",
894 target_pid_to_str (thread->ptid).c_str ());
895
896 switch_to_thread (thread);
897 clear_proceed_status (0);
898 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
899 }
900
901 return 0;
902}
903
904/* Save/restore inferior_ptid, current program space and current
905 inferior. Only use this if the current context points at an exited
906 inferior (and therefore there's no current thread to save). */
907class scoped_restore_exited_inferior
908{
909public:
910 scoped_restore_exited_inferior ()
911 : m_saved_ptid (&inferior_ptid)
912 {}
913
914private:
915 scoped_restore_tmpl<ptid_t> m_saved_ptid;
916 scoped_restore_current_program_space m_pspace;
917 scoped_restore_current_inferior m_inferior;
918};
919
920/* Called whenever we notice an exec or exit event, to handle
921 detaching or resuming a vfork parent. */
922
923static void
924handle_vfork_child_exec_or_exit (int exec)
925{
926 struct inferior *inf = current_inferior ();
927
928 if (inf->vfork_parent)
929 {
930 int resume_parent = -1;
931
932 /* This exec or exit marks the end of the shared memory region
933 between the parent and the child. Break the bonds. */
934 inferior *vfork_parent = inf->vfork_parent;
935 inf->vfork_parent->vfork_child = NULL;
936 inf->vfork_parent = NULL;
937
938 /* If the user wanted to detach from the parent, now is the
939 time. */
940 if (vfork_parent->pending_detach)
941 {
942 struct thread_info *tp;
943 struct program_space *pspace;
944 struct address_space *aspace;
945
946 /* follow-fork child, detach-on-fork on. */
947
948 vfork_parent->pending_detach = 0;
949
950 gdb::optional<scoped_restore_exited_inferior>
951 maybe_restore_inferior;
952 gdb::optional<scoped_restore_current_pspace_and_thread>
953 maybe_restore_thread;
954
955 /* If we're handling a child exit, then inferior_ptid points
956 at the inferior's pid, not to a thread. */
957 if (!exec)
958 maybe_restore_inferior.emplace ();
959 else
960 maybe_restore_thread.emplace ();
961
962 /* We're letting loose of the parent. */
963 tp = any_live_thread_of_inferior (vfork_parent);
964 switch_to_thread (tp);
965
966 /* We're about to detach from the parent, which implicitly
967 removes breakpoints from its address space. There's a
968 catch here: we want to reuse the spaces for the child,
969 but, parent/child are still sharing the pspace at this
970 point, although the exec in reality makes the kernel give
971 the child a fresh set of new pages. The problem here is
972 that the breakpoints module being unaware of this, would
973 likely chose the child process to write to the parent
974 address space. Swapping the child temporarily away from
975 the spaces has the desired effect. Yes, this is "sort
976 of" a hack. */
977
978 pspace = inf->pspace;
979 aspace = inf->aspace;
980 inf->aspace = NULL;
981 inf->pspace = NULL;
982
983 if (print_inferior_events)
984 {
985 std::string pidstr
986 = target_pid_to_str (ptid_t (vfork_parent->pid));
987
988 target_terminal::ours_for_output ();
989
990 if (exec)
991 {
992 fprintf_filtered (gdb_stdlog,
993 _("[Detaching vfork parent %s "
994 "after child exec]\n"), pidstr.c_str ());
995 }
996 else
997 {
998 fprintf_filtered (gdb_stdlog,
999 _("[Detaching vfork parent %s "
1000 "after child exit]\n"), pidstr.c_str ());
1001 }
1002 }
1003
1004 target_detach (vfork_parent, 0);
1005
1006 /* Put it back. */
1007 inf->pspace = pspace;
1008 inf->aspace = aspace;
1009 }
1010 else if (exec)
1011 {
1012 /* We're staying attached to the parent, so, really give the
1013 child a new address space. */
1014 inf->pspace = new program_space (maybe_new_address_space ());
1015 inf->aspace = inf->pspace->aspace;
1016 inf->removable = 1;
1017 set_current_program_space (inf->pspace);
1018
1019 resume_parent = vfork_parent->pid;
1020 }
1021 else
1022 {
1023 struct program_space *pspace;
1024
1025 /* If this is a vfork child exiting, then the pspace and
1026 aspaces were shared with the parent. Since we're
1027 reporting the process exit, we'll be mourning all that is
1028 found in the address space, and switching to null_ptid,
1029 preparing to start a new inferior. But, since we don't
1030 want to clobber the parent's address/program spaces, we
1031 go ahead and create a new one for this exiting
1032 inferior. */
1033
1034 /* Switch to null_ptid while running clone_program_space, so
1035 that clone_program_space doesn't want to read the
1036 selected frame of a dead process. */
1037 scoped_restore restore_ptid
1038 = make_scoped_restore (&inferior_ptid, null_ptid);
1039
1040 /* This inferior is dead, so avoid giving the breakpoints
1041 module the option to write through to it (cloning a
1042 program space resets breakpoints). */
1043 inf->aspace = NULL;
1044 inf->pspace = NULL;
1045 pspace = new program_space (maybe_new_address_space ());
1046 set_current_program_space (pspace);
1047 inf->removable = 1;
1048 inf->symfile_flags = SYMFILE_NO_READ;
1049 clone_program_space (pspace, vfork_parent->pspace);
1050 inf->pspace = pspace;
1051 inf->aspace = pspace->aspace;
1052
1053 resume_parent = vfork_parent->pid;
1054 }
1055
1056 gdb_assert (current_program_space == inf->pspace);
1057
1058 if (non_stop && resume_parent != -1)
1059 {
1060 /* If the user wanted the parent to be running, let it go
1061 free now. */
1062 scoped_restore_current_thread restore_thread;
1063
1064 if (debug_infrun)
1065 fprintf_unfiltered (gdb_stdlog,
1066 "infrun: resuming vfork parent process %d\n",
1067 resume_parent);
1068
1069 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1070 }
1071 }
1072}
1073
1074/* Enum strings for "set|show follow-exec-mode". */
1075
1076static const char follow_exec_mode_new[] = "new";
1077static const char follow_exec_mode_same[] = "same";
1078static const char *const follow_exec_mode_names[] =
1079{
1080 follow_exec_mode_new,
1081 follow_exec_mode_same,
1082 NULL,
1083};
1084
1085static const char *follow_exec_mode_string = follow_exec_mode_same;
1086static void
1087show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1088 struct cmd_list_element *c, const char *value)
1089{
1090 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1091}
1092
1093/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1094
1095static void
1096follow_exec (ptid_t ptid, const char *exec_file_target)
1097{
1098 struct inferior *inf = current_inferior ();
1099 int pid = ptid.pid ();
1100 ptid_t process_ptid;
1101
1102 /* Switch terminal for any messages produced e.g. by
1103 breakpoint_re_set. */
1104 target_terminal::ours_for_output ();
1105
1106 /* This is an exec event that we actually wish to pay attention to.
1107 Refresh our symbol table to the newly exec'd program, remove any
1108 momentary bp's, etc.
1109
1110 If there are breakpoints, they aren't really inserted now,
1111 since the exec() transformed our inferior into a fresh set
1112 of instructions.
1113
1114 We want to preserve symbolic breakpoints on the list, since
1115 we have hopes that they can be reset after the new a.out's
1116 symbol table is read.
1117
1118 However, any "raw" breakpoints must be removed from the list
1119 (e.g., the solib bp's), since their address is probably invalid
1120 now.
1121
1122 And, we DON'T want to call delete_breakpoints() here, since
1123 that may write the bp's "shadow contents" (the instruction
1124 value that was overwritten with a TRAP instruction). Since
1125 we now have a new a.out, those shadow contents aren't valid. */
1126
1127 mark_breakpoints_out ();
1128
1129 /* The target reports the exec event to the main thread, even if
1130 some other thread does the exec, and even if the main thread was
1131 stopped or already gone. We may still have non-leader threads of
1132 the process on our list. E.g., on targets that don't have thread
1133 exit events (like remote); or on native Linux in non-stop mode if
1134 there were only two threads in the inferior and the non-leader
1135 one is the one that execs (and nothing forces an update of the
1136 thread list up to here). When debugging remotely, it's best to
1137 avoid extra traffic, when possible, so avoid syncing the thread
1138 list with the target, and instead go ahead and delete all threads
1139 of the process but one that reported the event. Note this must
1140 be done before calling update_breakpoints_after_exec, as
1141 otherwise clearing the threads' resources would reference stale
1142 thread breakpoints -- it may have been one of these threads that
1143 stepped across the exec. We could just clear their stepping
1144 states, but as long as we're iterating, might as well delete
1145 them. Deleting them now rather than at the next user-visible
1146 stop provides a nicer sequence of events for user and MI
1147 notifications. */
1148 for (thread_info *th : all_threads_safe ())
1149 if (th->ptid.pid () == pid && th->ptid != ptid)
1150 delete_thread (th);
1151
1152 /* We also need to clear any left over stale state for the
1153 leader/event thread. E.g., if there was any step-resume
1154 breakpoint or similar, it's gone now. We cannot truly
1155 step-to-next statement through an exec(). */
1156 thread_info *th = inferior_thread ();
1157 th->control.step_resume_breakpoint = NULL;
1158 th->control.exception_resume_breakpoint = NULL;
1159 th->control.single_step_breakpoints = NULL;
1160 th->control.step_range_start = 0;
1161 th->control.step_range_end = 0;
1162
1163 /* The user may have had the main thread held stopped in the
1164 previous image (e.g., schedlock on, or non-stop). Release
1165 it now. */
1166 th->stop_requested = 0;
1167
1168 update_breakpoints_after_exec ();
1169
1170 /* What is this a.out's name? */
1171 process_ptid = ptid_t (pid);
1172 printf_unfiltered (_("%s is executing new program: %s\n"),
1173 target_pid_to_str (process_ptid).c_str (),
1174 exec_file_target);
1175
1176 /* We've followed the inferior through an exec. Therefore, the
1177 inferior has essentially been killed & reborn. */
1178
1179 breakpoint_init_inferior (inf_execd);
1180
1181 gdb::unique_xmalloc_ptr<char> exec_file_host
1182 = exec_file_find (exec_file_target, NULL);
1183
1184 /* If we were unable to map the executable target pathname onto a host
1185 pathname, tell the user that. Otherwise GDB's subsequent behavior
1186 is confusing. Maybe it would even be better to stop at this point
1187 so that the user can specify a file manually before continuing. */
1188 if (exec_file_host == NULL)
1189 warning (_("Could not load symbols for executable %s.\n"
1190 "Do you need \"set sysroot\"?"),
1191 exec_file_target);
1192
1193 /* Reset the shared library package. This ensures that we get a
1194 shlib event when the child reaches "_start", at which point the
1195 dld will have had a chance to initialize the child. */
1196 /* Also, loading a symbol file below may trigger symbol lookups, and
1197 we don't want those to be satisfied by the libraries of the
1198 previous incarnation of this process. */
1199 no_shared_libraries (NULL, 0);
1200
1201 if (follow_exec_mode_string == follow_exec_mode_new)
1202 {
1203 /* The user wants to keep the old inferior and program spaces
1204 around. Create a new fresh one, and switch to it. */
1205
1206 /* Do exit processing for the original inferior before setting the new
1207 inferior's pid. Having two inferiors with the same pid would confuse
1208 find_inferior_p(t)id. Transfer the terminal state and info from the
1209 old to the new inferior. */
1210 inf = add_inferior_with_spaces ();
1211 swap_terminal_info (inf, current_inferior ());
1212 exit_inferior_silent (current_inferior ());
1213
1214 inf->pid = pid;
1215 target_follow_exec (inf, exec_file_target);
1216
1217 inferior *org_inferior = current_inferior ();
1218 switch_to_inferior_no_thread (inf);
1219 push_target (org_inferior->process_target ());
1220 thread_info *thr = add_thread (inf->process_target (), ptid);
1221 switch_to_thread (thr);
1222 }
1223 else
1224 {
1225 /* The old description may no longer be fit for the new image.
1226 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1227 old description; we'll read a new one below. No need to do
1228 this on "follow-exec-mode new", as the old inferior stays
1229 around (its description is later cleared/refetched on
1230 restart). */
1231 target_clear_description ();
1232 }
1233
1234 gdb_assert (current_program_space == inf->pspace);
1235
1236 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1237 because the proper displacement for a PIE (Position Independent
1238 Executable) main symbol file will only be computed by
1239 solib_create_inferior_hook below. breakpoint_re_set would fail
1240 to insert the breakpoints with the zero displacement. */
1241 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1242
1243 /* If the target can specify a description, read it. Must do this
1244 after flipping to the new executable (because the target supplied
1245 description must be compatible with the executable's
1246 architecture, and the old executable may e.g., be 32-bit, while
1247 the new one 64-bit), and before anything involving memory or
1248 registers. */
1249 target_find_description ();
1250
1251 solib_create_inferior_hook (0);
1252
1253 jit_inferior_created_hook ();
1254
1255 breakpoint_re_set ();
1256
1257 /* Reinsert all breakpoints. (Those which were symbolic have
1258 been reset to the proper address in the new a.out, thanks
1259 to symbol_file_command...). */
1260 insert_breakpoints ();
1261
1262 /* The next resume of this inferior should bring it to the shlib
1263 startup breakpoints. (If the user had also set bp's on
1264 "main" from the old (parent) process, then they'll auto-
1265 matically get reset there in the new process.). */
1266}
1267
1268/* The queue of threads that need to do a step-over operation to get
1269 past e.g., a breakpoint. What technique is used to step over the
1270 breakpoint/watchpoint does not matter -- all threads end up in the
1271 same queue, to maintain rough temporal order of execution, in order
1272 to avoid starvation, otherwise, we could e.g., find ourselves
1273 constantly stepping the same couple threads past their breakpoints
1274 over and over, if the single-step finish fast enough. */
1275struct thread_info *step_over_queue_head;
1276
1277/* Bit flags indicating what the thread needs to step over. */
1278
1279enum step_over_what_flag
1280 {
1281 /* Step over a breakpoint. */
1282 STEP_OVER_BREAKPOINT = 1,
1283
1284 /* Step past a non-continuable watchpoint, in order to let the
1285 instruction execute so we can evaluate the watchpoint
1286 expression. */
1287 STEP_OVER_WATCHPOINT = 2
1288 };
1289DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1290
1291/* Info about an instruction that is being stepped over. */
1292
1293struct step_over_info
1294{
1295 /* If we're stepping past a breakpoint, this is the address space
1296 and address of the instruction the breakpoint is set at. We'll
1297 skip inserting all breakpoints here. Valid iff ASPACE is
1298 non-NULL. */
1299 const address_space *aspace;
1300 CORE_ADDR address;
1301
1302 /* The instruction being stepped over triggers a nonsteppable
1303 watchpoint. If true, we'll skip inserting watchpoints. */
1304 int nonsteppable_watchpoint_p;
1305
1306 /* The thread's global number. */
1307 int thread;
1308};
1309
1310/* The step-over info of the location that is being stepped over.
1311
1312 Note that with async/breakpoint always-inserted mode, a user might
1313 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1314 being stepped over. As setting a new breakpoint inserts all
1315 breakpoints, we need to make sure the breakpoint being stepped over
1316 isn't inserted then. We do that by only clearing the step-over
1317 info when the step-over is actually finished (or aborted).
1318
1319 Presently GDB can only step over one breakpoint at any given time.
1320 Given threads that can't run code in the same address space as the
1321 breakpoint's can't really miss the breakpoint, GDB could be taught
1322 to step-over at most one breakpoint per address space (so this info
1323 could move to the address space object if/when GDB is extended).
1324 The set of breakpoints being stepped over will normally be much
1325 smaller than the set of all breakpoints, so a flag in the
1326 breakpoint location structure would be wasteful. A separate list
1327 also saves complexity and run-time, as otherwise we'd have to go
1328 through all breakpoint locations clearing their flag whenever we
1329 start a new sequence. Similar considerations weigh against storing
1330 this info in the thread object. Plus, not all step overs actually
1331 have breakpoint locations -- e.g., stepping past a single-step
1332 breakpoint, or stepping to complete a non-continuable
1333 watchpoint. */
1334static struct step_over_info step_over_info;
1335
1336/* Record the address of the breakpoint/instruction we're currently
1337 stepping over.
1338 N.B. We record the aspace and address now, instead of say just the thread,
1339 because when we need the info later the thread may be running. */
1340
1341static void
1342set_step_over_info (const address_space *aspace, CORE_ADDR address,
1343 int nonsteppable_watchpoint_p,
1344 int thread)
1345{
1346 step_over_info.aspace = aspace;
1347 step_over_info.address = address;
1348 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1349 step_over_info.thread = thread;
1350}
1351
1352/* Called when we're not longer stepping over a breakpoint / an
1353 instruction, so all breakpoints are free to be (re)inserted. */
1354
1355static void
1356clear_step_over_info (void)
1357{
1358 if (debug_infrun)
1359 fprintf_unfiltered (gdb_stdlog,
1360 "infrun: clear_step_over_info\n");
1361 step_over_info.aspace = NULL;
1362 step_over_info.address = 0;
1363 step_over_info.nonsteppable_watchpoint_p = 0;
1364 step_over_info.thread = -1;
1365}
1366
1367/* See infrun.h. */
1368
1369int
1370stepping_past_instruction_at (struct address_space *aspace,
1371 CORE_ADDR address)
1372{
1373 return (step_over_info.aspace != NULL
1374 && breakpoint_address_match (aspace, address,
1375 step_over_info.aspace,
1376 step_over_info.address));
1377}
1378
1379/* See infrun.h. */
1380
1381int
1382thread_is_stepping_over_breakpoint (int thread)
1383{
1384 return (step_over_info.thread != -1
1385 && thread == step_over_info.thread);
1386}
1387
1388/* See infrun.h. */
1389
1390int
1391stepping_past_nonsteppable_watchpoint (void)
1392{
1393 return step_over_info.nonsteppable_watchpoint_p;
1394}
1395
1396/* Returns true if step-over info is valid. */
1397
1398static int
1399step_over_info_valid_p (void)
1400{
1401 return (step_over_info.aspace != NULL
1402 || stepping_past_nonsteppable_watchpoint ());
1403}
1404
1405\f
1406/* Displaced stepping. */
1407
1408/* In non-stop debugging mode, we must take special care to manage
1409 breakpoints properly; in particular, the traditional strategy for
1410 stepping a thread past a breakpoint it has hit is unsuitable.
1411 'Displaced stepping' is a tactic for stepping one thread past a
1412 breakpoint it has hit while ensuring that other threads running
1413 concurrently will hit the breakpoint as they should.
1414
1415 The traditional way to step a thread T off a breakpoint in a
1416 multi-threaded program in all-stop mode is as follows:
1417
1418 a0) Initially, all threads are stopped, and breakpoints are not
1419 inserted.
1420 a1) We single-step T, leaving breakpoints uninserted.
1421 a2) We insert breakpoints, and resume all threads.
1422
1423 In non-stop debugging, however, this strategy is unsuitable: we
1424 don't want to have to stop all threads in the system in order to
1425 continue or step T past a breakpoint. Instead, we use displaced
1426 stepping:
1427
1428 n0) Initially, T is stopped, other threads are running, and
1429 breakpoints are inserted.
1430 n1) We copy the instruction "under" the breakpoint to a separate
1431 location, outside the main code stream, making any adjustments
1432 to the instruction, register, and memory state as directed by
1433 T's architecture.
1434 n2) We single-step T over the instruction at its new location.
1435 n3) We adjust the resulting register and memory state as directed
1436 by T's architecture. This includes resetting T's PC to point
1437 back into the main instruction stream.
1438 n4) We resume T.
1439
1440 This approach depends on the following gdbarch methods:
1441
1442 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1443 indicate where to copy the instruction, and how much space must
1444 be reserved there. We use these in step n1.
1445
1446 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1447 address, and makes any necessary adjustments to the instruction,
1448 register contents, and memory. We use this in step n1.
1449
1450 - gdbarch_displaced_step_fixup adjusts registers and memory after
1451 we have successfully single-stepped the instruction, to yield the
1452 same effect the instruction would have had if we had executed it
1453 at its original address. We use this in step n3.
1454
1455 The gdbarch_displaced_step_copy_insn and
1456 gdbarch_displaced_step_fixup functions must be written so that
1457 copying an instruction with gdbarch_displaced_step_copy_insn,
1458 single-stepping across the copied instruction, and then applying
1459 gdbarch_displaced_insn_fixup should have the same effects on the
1460 thread's memory and registers as stepping the instruction in place
1461 would have. Exactly which responsibilities fall to the copy and
1462 which fall to the fixup is up to the author of those functions.
1463
1464 See the comments in gdbarch.sh for details.
1465
1466 Note that displaced stepping and software single-step cannot
1467 currently be used in combination, although with some care I think
1468 they could be made to. Software single-step works by placing
1469 breakpoints on all possible subsequent instructions; if the
1470 displaced instruction is a PC-relative jump, those breakpoints
1471 could fall in very strange places --- on pages that aren't
1472 executable, or at addresses that are not proper instruction
1473 boundaries. (We do generally let other threads run while we wait
1474 to hit the software single-step breakpoint, and they might
1475 encounter such a corrupted instruction.) One way to work around
1476 this would be to have gdbarch_displaced_step_copy_insn fully
1477 simulate the effect of PC-relative instructions (and return NULL)
1478 on architectures that use software single-stepping.
1479
1480 In non-stop mode, we can have independent and simultaneous step
1481 requests, so more than one thread may need to simultaneously step
1482 over a breakpoint. The current implementation assumes there is
1483 only one scratch space per process. In this case, we have to
1484 serialize access to the scratch space. If thread A wants to step
1485 over a breakpoint, but we are currently waiting for some other
1486 thread to complete a displaced step, we leave thread A stopped and
1487 place it in the displaced_step_request_queue. Whenever a displaced
1488 step finishes, we pick the next thread in the queue and start a new
1489 displaced step operation on it. See displaced_step_prepare and
1490 displaced_step_fixup for details. */
1491
1492/* Default destructor for displaced_step_closure. */
1493
1494displaced_step_closure::~displaced_step_closure () = default;
1495
1496/* Get the displaced stepping state of process PID. */
1497
1498static displaced_step_inferior_state *
1499get_displaced_stepping_state (inferior *inf)
1500{
1501 return &inf->displaced_step_state;
1502}
1503
1504/* Returns true if any inferior has a thread doing a displaced
1505 step. */
1506
1507static bool
1508displaced_step_in_progress_any_inferior ()
1509{
1510 for (inferior *i : all_inferiors ())
1511 {
1512 if (i->displaced_step_state.step_thread != nullptr)
1513 return true;
1514 }
1515
1516 return false;
1517}
1518
1519/* Return true if thread represented by PTID is doing a displaced
1520 step. */
1521
1522static int
1523displaced_step_in_progress_thread (thread_info *thread)
1524{
1525 gdb_assert (thread != NULL);
1526
1527 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1528}
1529
1530/* Return true if process PID has a thread doing a displaced step. */
1531
1532static int
1533displaced_step_in_progress (inferior *inf)
1534{
1535 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1536}
1537
1538/* If inferior is in displaced stepping, and ADDR equals to starting address
1539 of copy area, return corresponding displaced_step_closure. Otherwise,
1540 return NULL. */
1541
1542struct displaced_step_closure*
1543get_displaced_step_closure_by_addr (CORE_ADDR addr)
1544{
1545 displaced_step_inferior_state *displaced
1546 = get_displaced_stepping_state (current_inferior ());
1547
1548 /* If checking the mode of displaced instruction in copy area. */
1549 if (displaced->step_thread != nullptr
1550 && displaced->step_copy == addr)
1551 return displaced->step_closure;
1552
1553 return NULL;
1554}
1555
1556static void
1557infrun_inferior_exit (struct inferior *inf)
1558{
1559 inf->displaced_step_state.reset ();
1560}
1561
1562/* If ON, and the architecture supports it, GDB will use displaced
1563 stepping to step over breakpoints. If OFF, or if the architecture
1564 doesn't support it, GDB will instead use the traditional
1565 hold-and-step approach. If AUTO (which is the default), GDB will
1566 decide which technique to use to step over breakpoints depending on
1567 which of all-stop or non-stop mode is active --- displaced stepping
1568 in non-stop mode; hold-and-step in all-stop mode. */
1569
1570static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1571
1572static void
1573show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1574 struct cmd_list_element *c,
1575 const char *value)
1576{
1577 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1578 fprintf_filtered (file,
1579 _("Debugger's willingness to use displaced stepping "
1580 "to step over breakpoints is %s (currently %s).\n"),
1581 value, target_is_non_stop_p () ? "on" : "off");
1582 else
1583 fprintf_filtered (file,
1584 _("Debugger's willingness to use displaced stepping "
1585 "to step over breakpoints is %s.\n"), value);
1586}
1587
1588/* Return non-zero if displaced stepping can/should be used to step
1589 over breakpoints of thread TP. */
1590
1591static int
1592use_displaced_stepping (struct thread_info *tp)
1593{
1594 struct regcache *regcache = get_thread_regcache (tp);
1595 struct gdbarch *gdbarch = regcache->arch ();
1596 displaced_step_inferior_state *displaced_state
1597 = get_displaced_stepping_state (tp->inf);
1598
1599 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1600 && target_is_non_stop_p ())
1601 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1602 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1603 && find_record_target () == NULL
1604 && !displaced_state->failed_before);
1605}
1606
1607/* Clean out any stray displaced stepping state. */
1608static void
1609displaced_step_clear (struct displaced_step_inferior_state *displaced)
1610{
1611 /* Indicate that there is no cleanup pending. */
1612 displaced->step_thread = nullptr;
1613
1614 delete displaced->step_closure;
1615 displaced->step_closure = NULL;
1616}
1617
1618/* A cleanup that wraps displaced_step_clear. */
1619using displaced_step_clear_cleanup
1620 = FORWARD_SCOPE_EXIT (displaced_step_clear);
1621
1622/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1623void
1624displaced_step_dump_bytes (struct ui_file *file,
1625 const gdb_byte *buf,
1626 size_t len)
1627{
1628 int i;
1629
1630 for (i = 0; i < len; i++)
1631 fprintf_unfiltered (file, "%02x ", buf[i]);
1632 fputs_unfiltered ("\n", file);
1633}
1634
1635/* Prepare to single-step, using displaced stepping.
1636
1637 Note that we cannot use displaced stepping when we have a signal to
1638 deliver. If we have a signal to deliver and an instruction to step
1639 over, then after the step, there will be no indication from the
1640 target whether the thread entered a signal handler or ignored the
1641 signal and stepped over the instruction successfully --- both cases
1642 result in a simple SIGTRAP. In the first case we mustn't do a
1643 fixup, and in the second case we must --- but we can't tell which.
1644 Comments in the code for 'random signals' in handle_inferior_event
1645 explain how we handle this case instead.
1646
1647 Returns 1 if preparing was successful -- this thread is going to be
1648 stepped now; 0 if displaced stepping this thread got queued; or -1
1649 if this instruction can't be displaced stepped. */
1650
1651static int
1652displaced_step_prepare_throw (thread_info *tp)
1653{
1654 regcache *regcache = get_thread_regcache (tp);
1655 struct gdbarch *gdbarch = regcache->arch ();
1656 const address_space *aspace = regcache->aspace ();
1657 CORE_ADDR original, copy;
1658 ULONGEST len;
1659 struct displaced_step_closure *closure;
1660 int status;
1661
1662 /* We should never reach this function if the architecture does not
1663 support displaced stepping. */
1664 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1665
1666 /* Nor if the thread isn't meant to step over a breakpoint. */
1667 gdb_assert (tp->control.trap_expected);
1668
1669 /* Disable range stepping while executing in the scratch pad. We
1670 want a single-step even if executing the displaced instruction in
1671 the scratch buffer lands within the stepping range (e.g., a
1672 jump/branch). */
1673 tp->control.may_range_step = 0;
1674
1675 /* We have to displaced step one thread at a time, as we only have
1676 access to a single scratch space per inferior. */
1677
1678 displaced_step_inferior_state *displaced
1679 = get_displaced_stepping_state (tp->inf);
1680
1681 if (displaced->step_thread != nullptr)
1682 {
1683 /* Already waiting for a displaced step to finish. Defer this
1684 request and place in queue. */
1685
1686 if (debug_displaced)
1687 fprintf_unfiltered (gdb_stdlog,
1688 "displaced: deferring step of %s\n",
1689 target_pid_to_str (tp->ptid).c_str ());
1690
1691 thread_step_over_chain_enqueue (tp);
1692 return 0;
1693 }
1694 else
1695 {
1696 if (debug_displaced)
1697 fprintf_unfiltered (gdb_stdlog,
1698 "displaced: stepping %s now\n",
1699 target_pid_to_str (tp->ptid).c_str ());
1700 }
1701
1702 displaced_step_clear (displaced);
1703
1704 scoped_restore_current_thread restore_thread;
1705
1706 switch_to_thread (tp);
1707
1708 original = regcache_read_pc (regcache);
1709
1710 copy = gdbarch_displaced_step_location (gdbarch);
1711 len = gdbarch_max_insn_length (gdbarch);
1712
1713 if (breakpoint_in_range_p (aspace, copy, len))
1714 {
1715 /* There's a breakpoint set in the scratch pad location range
1716 (which is usually around the entry point). We'd either
1717 install it before resuming, which would overwrite/corrupt the
1718 scratch pad, or if it was already inserted, this displaced
1719 step would overwrite it. The latter is OK in the sense that
1720 we already assume that no thread is going to execute the code
1721 in the scratch pad range (after initial startup) anyway, but
1722 the former is unacceptable. Simply punt and fallback to
1723 stepping over this breakpoint in-line. */
1724 if (debug_displaced)
1725 {
1726 fprintf_unfiltered (gdb_stdlog,
1727 "displaced: breakpoint set in scratch pad. "
1728 "Stepping over breakpoint in-line instead.\n");
1729 }
1730
1731 return -1;
1732 }
1733
1734 /* Save the original contents of the copy area. */
1735 displaced->step_saved_copy.resize (len);
1736 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1737 if (status != 0)
1738 throw_error (MEMORY_ERROR,
1739 _("Error accessing memory address %s (%s) for "
1740 "displaced-stepping scratch space."),
1741 paddress (gdbarch, copy), safe_strerror (status));
1742 if (debug_displaced)
1743 {
1744 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1745 paddress (gdbarch, copy));
1746 displaced_step_dump_bytes (gdb_stdlog,
1747 displaced->step_saved_copy.data (),
1748 len);
1749 };
1750
1751 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1752 original, copy, regcache);
1753 if (closure == NULL)
1754 {
1755 /* The architecture doesn't know how or want to displaced step
1756 this instruction or instruction sequence. Fallback to
1757 stepping over the breakpoint in-line. */
1758 return -1;
1759 }
1760
1761 /* Save the information we need to fix things up if the step
1762 succeeds. */
1763 displaced->step_thread = tp;
1764 displaced->step_gdbarch = gdbarch;
1765 displaced->step_closure = closure;
1766 displaced->step_original = original;
1767 displaced->step_copy = copy;
1768
1769 {
1770 displaced_step_clear_cleanup cleanup (displaced);
1771
1772 /* Resume execution at the copy. */
1773 regcache_write_pc (regcache, copy);
1774
1775 cleanup.release ();
1776 }
1777
1778 if (debug_displaced)
1779 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1780 paddress (gdbarch, copy));
1781
1782 return 1;
1783}
1784
1785/* Wrapper for displaced_step_prepare_throw that disabled further
1786 attempts at displaced stepping if we get a memory error. */
1787
1788static int
1789displaced_step_prepare (thread_info *thread)
1790{
1791 int prepared = -1;
1792
1793 try
1794 {
1795 prepared = displaced_step_prepare_throw (thread);
1796 }
1797 catch (const gdb_exception_error &ex)
1798 {
1799 struct displaced_step_inferior_state *displaced_state;
1800
1801 if (ex.error != MEMORY_ERROR
1802 && ex.error != NOT_SUPPORTED_ERROR)
1803 throw;
1804
1805 if (debug_infrun)
1806 {
1807 fprintf_unfiltered (gdb_stdlog,
1808 "infrun: disabling displaced stepping: %s\n",
1809 ex.what ());
1810 }
1811
1812 /* Be verbose if "set displaced-stepping" is "on", silent if
1813 "auto". */
1814 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1815 {
1816 warning (_("disabling displaced stepping: %s"),
1817 ex.what ());
1818 }
1819
1820 /* Disable further displaced stepping attempts. */
1821 displaced_state
1822 = get_displaced_stepping_state (thread->inf);
1823 displaced_state->failed_before = 1;
1824 }
1825
1826 return prepared;
1827}
1828
1829static void
1830write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1831 const gdb_byte *myaddr, int len)
1832{
1833 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1834
1835 inferior_ptid = ptid;
1836 write_memory (memaddr, myaddr, len);
1837}
1838
1839/* Restore the contents of the copy area for thread PTID. */
1840
1841static void
1842displaced_step_restore (struct displaced_step_inferior_state *displaced,
1843 ptid_t ptid)
1844{
1845 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1846
1847 write_memory_ptid (ptid, displaced->step_copy,
1848 displaced->step_saved_copy.data (), len);
1849 if (debug_displaced)
1850 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1851 target_pid_to_str (ptid).c_str (),
1852 paddress (displaced->step_gdbarch,
1853 displaced->step_copy));
1854}
1855
1856/* If we displaced stepped an instruction successfully, adjust
1857 registers and memory to yield the same effect the instruction would
1858 have had if we had executed it at its original address, and return
1859 1. If the instruction didn't complete, relocate the PC and return
1860 -1. If the thread wasn't displaced stepping, return 0. */
1861
1862static int
1863displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1864{
1865 struct displaced_step_inferior_state *displaced
1866 = get_displaced_stepping_state (event_thread->inf);
1867 int ret;
1868
1869 /* Was this event for the thread we displaced? */
1870 if (displaced->step_thread != event_thread)
1871 return 0;
1872
1873 displaced_step_clear_cleanup cleanup (displaced);
1874
1875 displaced_step_restore (displaced, displaced->step_thread->ptid);
1876
1877 /* Fixup may need to read memory/registers. Switch to the thread
1878 that we're fixing up. Also, target_stopped_by_watchpoint checks
1879 the current thread. */
1880 switch_to_thread (event_thread);
1881
1882 /* Did the instruction complete successfully? */
1883 if (signal == GDB_SIGNAL_TRAP
1884 && !(target_stopped_by_watchpoint ()
1885 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1886 || target_have_steppable_watchpoint)))
1887 {
1888 /* Fix up the resulting state. */
1889 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1890 displaced->step_closure,
1891 displaced->step_original,
1892 displaced->step_copy,
1893 get_thread_regcache (displaced->step_thread));
1894 ret = 1;
1895 }
1896 else
1897 {
1898 /* Since the instruction didn't complete, all we can do is
1899 relocate the PC. */
1900 struct regcache *regcache = get_thread_regcache (event_thread);
1901 CORE_ADDR pc = regcache_read_pc (regcache);
1902
1903 pc = displaced->step_original + (pc - displaced->step_copy);
1904 regcache_write_pc (regcache, pc);
1905 ret = -1;
1906 }
1907
1908 return ret;
1909}
1910
1911/* Data to be passed around while handling an event. This data is
1912 discarded between events. */
1913struct execution_control_state
1914{
1915 process_stratum_target *target;
1916 ptid_t ptid;
1917 /* The thread that got the event, if this was a thread event; NULL
1918 otherwise. */
1919 struct thread_info *event_thread;
1920
1921 struct target_waitstatus ws;
1922 int stop_func_filled_in;
1923 CORE_ADDR stop_func_start;
1924 CORE_ADDR stop_func_end;
1925 const char *stop_func_name;
1926 int wait_some_more;
1927
1928 /* True if the event thread hit the single-step breakpoint of
1929 another thread. Thus the event doesn't cause a stop, the thread
1930 needs to be single-stepped past the single-step breakpoint before
1931 we can switch back to the original stepping thread. */
1932 int hit_singlestep_breakpoint;
1933};
1934
1935/* Clear ECS and set it to point at TP. */
1936
1937static void
1938reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1939{
1940 memset (ecs, 0, sizeof (*ecs));
1941 ecs->event_thread = tp;
1942 ecs->ptid = tp->ptid;
1943}
1944
1945static void keep_going_pass_signal (struct execution_control_state *ecs);
1946static void prepare_to_wait (struct execution_control_state *ecs);
1947static int keep_going_stepped_thread (struct thread_info *tp);
1948static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1949
1950/* Are there any pending step-over requests? If so, run all we can
1951 now and return true. Otherwise, return false. */
1952
1953static int
1954start_step_over (void)
1955{
1956 struct thread_info *tp, *next;
1957
1958 /* Don't start a new step-over if we already have an in-line
1959 step-over operation ongoing. */
1960 if (step_over_info_valid_p ())
1961 return 0;
1962
1963 for (tp = step_over_queue_head; tp != NULL; tp = next)
1964 {
1965 struct execution_control_state ecss;
1966 struct execution_control_state *ecs = &ecss;
1967 step_over_what step_what;
1968 int must_be_in_line;
1969
1970 gdb_assert (!tp->stop_requested);
1971
1972 next = thread_step_over_chain_next (tp);
1973
1974 /* If this inferior already has a displaced step in process,
1975 don't start a new one. */
1976 if (displaced_step_in_progress (tp->inf))
1977 continue;
1978
1979 step_what = thread_still_needs_step_over (tp);
1980 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1981 || ((step_what & STEP_OVER_BREAKPOINT)
1982 && !use_displaced_stepping (tp)));
1983
1984 /* We currently stop all threads of all processes to step-over
1985 in-line. If we need to start a new in-line step-over, let
1986 any pending displaced steps finish first. */
1987 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1988 return 0;
1989
1990 thread_step_over_chain_remove (tp);
1991
1992 if (step_over_queue_head == NULL)
1993 {
1994 if (debug_infrun)
1995 fprintf_unfiltered (gdb_stdlog,
1996 "infrun: step-over queue now empty\n");
1997 }
1998
1999 if (tp->control.trap_expected
2000 || tp->resumed
2001 || tp->executing)
2002 {
2003 internal_error (__FILE__, __LINE__,
2004 "[%s] has inconsistent state: "
2005 "trap_expected=%d, resumed=%d, executing=%d\n",
2006 target_pid_to_str (tp->ptid).c_str (),
2007 tp->control.trap_expected,
2008 tp->resumed,
2009 tp->executing);
2010 }
2011
2012 if (debug_infrun)
2013 fprintf_unfiltered (gdb_stdlog,
2014 "infrun: resuming [%s] for step-over\n",
2015 target_pid_to_str (tp->ptid).c_str ());
2016
2017 /* keep_going_pass_signal skips the step-over if the breakpoint
2018 is no longer inserted. In all-stop, we want to keep looking
2019 for a thread that needs a step-over instead of resuming TP,
2020 because we wouldn't be able to resume anything else until the
2021 target stops again. In non-stop, the resume always resumes
2022 only TP, so it's OK to let the thread resume freely. */
2023 if (!target_is_non_stop_p () && !step_what)
2024 continue;
2025
2026 switch_to_thread (tp);
2027 reset_ecs (ecs, tp);
2028 keep_going_pass_signal (ecs);
2029
2030 if (!ecs->wait_some_more)
2031 error (_("Command aborted."));
2032
2033 gdb_assert (tp->resumed);
2034
2035 /* If we started a new in-line step-over, we're done. */
2036 if (step_over_info_valid_p ())
2037 {
2038 gdb_assert (tp->control.trap_expected);
2039 return 1;
2040 }
2041
2042 if (!target_is_non_stop_p ())
2043 {
2044 /* On all-stop, shouldn't have resumed unless we needed a
2045 step over. */
2046 gdb_assert (tp->control.trap_expected
2047 || tp->step_after_step_resume_breakpoint);
2048
2049 /* With remote targets (at least), in all-stop, we can't
2050 issue any further remote commands until the program stops
2051 again. */
2052 return 1;
2053 }
2054
2055 /* Either the thread no longer needed a step-over, or a new
2056 displaced stepping sequence started. Even in the latter
2057 case, continue looking. Maybe we can also start another
2058 displaced step on a thread of other process. */
2059 }
2060
2061 return 0;
2062}
2063
2064/* Update global variables holding ptids to hold NEW_PTID if they were
2065 holding OLD_PTID. */
2066static void
2067infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2068{
2069 if (inferior_ptid == old_ptid)
2070 inferior_ptid = new_ptid;
2071}
2072
2073\f
2074
2075static const char schedlock_off[] = "off";
2076static const char schedlock_on[] = "on";
2077static const char schedlock_step[] = "step";
2078static const char schedlock_replay[] = "replay";
2079static const char *const scheduler_enums[] = {
2080 schedlock_off,
2081 schedlock_on,
2082 schedlock_step,
2083 schedlock_replay,
2084 NULL
2085};
2086static const char *scheduler_mode = schedlock_replay;
2087static void
2088show_scheduler_mode (struct ui_file *file, int from_tty,
2089 struct cmd_list_element *c, const char *value)
2090{
2091 fprintf_filtered (file,
2092 _("Mode for locking scheduler "
2093 "during execution is \"%s\".\n"),
2094 value);
2095}
2096
2097static void
2098set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2099{
2100 if (!target_can_lock_scheduler)
2101 {
2102 scheduler_mode = schedlock_off;
2103 error (_("Target '%s' cannot support this command."), target_shortname);
2104 }
2105}
2106
2107/* True if execution commands resume all threads of all processes by
2108 default; otherwise, resume only threads of the current inferior
2109 process. */
2110bool sched_multi = false;
2111
2112/* Try to setup for software single stepping over the specified location.
2113 Return 1 if target_resume() should use hardware single step.
2114
2115 GDBARCH the current gdbarch.
2116 PC the location to step over. */
2117
2118static int
2119maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2120{
2121 int hw_step = 1;
2122
2123 if (execution_direction == EXEC_FORWARD
2124 && gdbarch_software_single_step_p (gdbarch))
2125 hw_step = !insert_single_step_breakpoints (gdbarch);
2126
2127 return hw_step;
2128}
2129
2130/* See infrun.h. */
2131
2132ptid_t
2133user_visible_resume_ptid (int step)
2134{
2135 ptid_t resume_ptid;
2136
2137 if (non_stop)
2138 {
2139 /* With non-stop mode on, threads are always handled
2140 individually. */
2141 resume_ptid = inferior_ptid;
2142 }
2143 else if ((scheduler_mode == schedlock_on)
2144 || (scheduler_mode == schedlock_step && step))
2145 {
2146 /* User-settable 'scheduler' mode requires solo thread
2147 resume. */
2148 resume_ptid = inferior_ptid;
2149 }
2150 else if ((scheduler_mode == schedlock_replay)
2151 && target_record_will_replay (minus_one_ptid, execution_direction))
2152 {
2153 /* User-settable 'scheduler' mode requires solo thread resume in replay
2154 mode. */
2155 resume_ptid = inferior_ptid;
2156 }
2157 else if (!sched_multi && target_supports_multi_process ())
2158 {
2159 /* Resume all threads of the current process (and none of other
2160 processes). */
2161 resume_ptid = ptid_t (inferior_ptid.pid ());
2162 }
2163 else
2164 {
2165 /* Resume all threads of all processes. */
2166 resume_ptid = RESUME_ALL;
2167 }
2168
2169 return resume_ptid;
2170}
2171
2172/* See infrun.h. */
2173
2174process_stratum_target *
2175user_visible_resume_target (ptid_t resume_ptid)
2176{
2177 return (resume_ptid == minus_one_ptid && sched_multi
2178 ? NULL
2179 : current_inferior ()->process_target ());
2180}
2181
2182/* Return a ptid representing the set of threads that we will resume,
2183 in the perspective of the target, assuming run control handling
2184 does not require leaving some threads stopped (e.g., stepping past
2185 breakpoint). USER_STEP indicates whether we're about to start the
2186 target for a stepping command. */
2187
2188static ptid_t
2189internal_resume_ptid (int user_step)
2190{
2191 /* In non-stop, we always control threads individually. Note that
2192 the target may always work in non-stop mode even with "set
2193 non-stop off", in which case user_visible_resume_ptid could
2194 return a wildcard ptid. */
2195 if (target_is_non_stop_p ())
2196 return inferior_ptid;
2197 else
2198 return user_visible_resume_ptid (user_step);
2199}
2200
2201/* Wrapper for target_resume, that handles infrun-specific
2202 bookkeeping. */
2203
2204static void
2205do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2206{
2207 struct thread_info *tp = inferior_thread ();
2208
2209 gdb_assert (!tp->stop_requested);
2210
2211 /* Install inferior's terminal modes. */
2212 target_terminal::inferior ();
2213
2214 /* Avoid confusing the next resume, if the next stop/resume
2215 happens to apply to another thread. */
2216 tp->suspend.stop_signal = GDB_SIGNAL_0;
2217
2218 /* Advise target which signals may be handled silently.
2219
2220 If we have removed breakpoints because we are stepping over one
2221 in-line (in any thread), we need to receive all signals to avoid
2222 accidentally skipping a breakpoint during execution of a signal
2223 handler.
2224
2225 Likewise if we're displaced stepping, otherwise a trap for a
2226 breakpoint in a signal handler might be confused with the
2227 displaced step finishing. We don't make the displaced_step_fixup
2228 step distinguish the cases instead, because:
2229
2230 - a backtrace while stopped in the signal handler would show the
2231 scratch pad as frame older than the signal handler, instead of
2232 the real mainline code.
2233
2234 - when the thread is later resumed, the signal handler would
2235 return to the scratch pad area, which would no longer be
2236 valid. */
2237 if (step_over_info_valid_p ()
2238 || displaced_step_in_progress (tp->inf))
2239 target_pass_signals ({});
2240 else
2241 target_pass_signals (signal_pass);
2242
2243 target_resume (resume_ptid, step, sig);
2244
2245 target_commit_resume ();
2246
2247 if (target_can_async_p ())
2248 target_async (1);
2249}
2250
2251/* Resume the inferior. SIG is the signal to give the inferior
2252 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2253 call 'resume', which handles exceptions. */
2254
2255static void
2256resume_1 (enum gdb_signal sig)
2257{
2258 struct regcache *regcache = get_current_regcache ();
2259 struct gdbarch *gdbarch = regcache->arch ();
2260 struct thread_info *tp = inferior_thread ();
2261 CORE_ADDR pc = regcache_read_pc (regcache);
2262 const address_space *aspace = regcache->aspace ();
2263 ptid_t resume_ptid;
2264 /* This represents the user's step vs continue request. When
2265 deciding whether "set scheduler-locking step" applies, it's the
2266 user's intention that counts. */
2267 const int user_step = tp->control.stepping_command;
2268 /* This represents what we'll actually request the target to do.
2269 This can decay from a step to a continue, if e.g., we need to
2270 implement single-stepping with breakpoints (software
2271 single-step). */
2272 int step;
2273
2274 gdb_assert (!tp->stop_requested);
2275 gdb_assert (!thread_is_in_step_over_chain (tp));
2276
2277 if (tp->suspend.waitstatus_pending_p)
2278 {
2279 if (debug_infrun)
2280 {
2281 std::string statstr
2282 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2283
2284 fprintf_unfiltered (gdb_stdlog,
2285 "infrun: resume: thread %s has pending wait "
2286 "status %s (currently_stepping=%d).\n",
2287 target_pid_to_str (tp->ptid).c_str (),
2288 statstr.c_str (),
2289 currently_stepping (tp));
2290 }
2291
2292 tp->inf->process_target ()->threads_executing = true;
2293 tp->resumed = 1;
2294
2295 /* FIXME: What should we do if we are supposed to resume this
2296 thread with a signal? Maybe we should maintain a queue of
2297 pending signals to deliver. */
2298 if (sig != GDB_SIGNAL_0)
2299 {
2300 warning (_("Couldn't deliver signal %s to %s."),
2301 gdb_signal_to_name (sig),
2302 target_pid_to_str (tp->ptid).c_str ());
2303 }
2304
2305 tp->suspend.stop_signal = GDB_SIGNAL_0;
2306
2307 if (target_can_async_p ())
2308 {
2309 target_async (1);
2310 /* Tell the event loop we have an event to process. */
2311 mark_async_event_handler (infrun_async_inferior_event_token);
2312 }
2313 return;
2314 }
2315
2316 tp->stepped_breakpoint = 0;
2317
2318 /* Depends on stepped_breakpoint. */
2319 step = currently_stepping (tp);
2320
2321 if (current_inferior ()->waiting_for_vfork_done)
2322 {
2323 /* Don't try to single-step a vfork parent that is waiting for
2324 the child to get out of the shared memory region (by exec'ing
2325 or exiting). This is particularly important on software
2326 single-step archs, as the child process would trip on the
2327 software single step breakpoint inserted for the parent
2328 process. Since the parent will not actually execute any
2329 instruction until the child is out of the shared region (such
2330 are vfork's semantics), it is safe to simply continue it.
2331 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2332 the parent, and tell it to `keep_going', which automatically
2333 re-sets it stepping. */
2334 if (debug_infrun)
2335 fprintf_unfiltered (gdb_stdlog,
2336 "infrun: resume : clear step\n");
2337 step = 0;
2338 }
2339
2340 if (debug_infrun)
2341 fprintf_unfiltered (gdb_stdlog,
2342 "infrun: resume (step=%d, signal=%s), "
2343 "trap_expected=%d, current thread [%s] at %s\n",
2344 step, gdb_signal_to_symbol_string (sig),
2345 tp->control.trap_expected,
2346 target_pid_to_str (inferior_ptid).c_str (),
2347 paddress (gdbarch, pc));
2348
2349 /* Normally, by the time we reach `resume', the breakpoints are either
2350 removed or inserted, as appropriate. The exception is if we're sitting
2351 at a permanent breakpoint; we need to step over it, but permanent
2352 breakpoints can't be removed. So we have to test for it here. */
2353 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2354 {
2355 if (sig != GDB_SIGNAL_0)
2356 {
2357 /* We have a signal to pass to the inferior. The resume
2358 may, or may not take us to the signal handler. If this
2359 is a step, we'll need to stop in the signal handler, if
2360 there's one, (if the target supports stepping into
2361 handlers), or in the next mainline instruction, if
2362 there's no handler. If this is a continue, we need to be
2363 sure to run the handler with all breakpoints inserted.
2364 In all cases, set a breakpoint at the current address
2365 (where the handler returns to), and once that breakpoint
2366 is hit, resume skipping the permanent breakpoint. If
2367 that breakpoint isn't hit, then we've stepped into the
2368 signal handler (or hit some other event). We'll delete
2369 the step-resume breakpoint then. */
2370
2371 if (debug_infrun)
2372 fprintf_unfiltered (gdb_stdlog,
2373 "infrun: resume: skipping permanent breakpoint, "
2374 "deliver signal first\n");
2375
2376 clear_step_over_info ();
2377 tp->control.trap_expected = 0;
2378
2379 if (tp->control.step_resume_breakpoint == NULL)
2380 {
2381 /* Set a "high-priority" step-resume, as we don't want
2382 user breakpoints at PC to trigger (again) when this
2383 hits. */
2384 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2385 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2386
2387 tp->step_after_step_resume_breakpoint = step;
2388 }
2389
2390 insert_breakpoints ();
2391 }
2392 else
2393 {
2394 /* There's no signal to pass, we can go ahead and skip the
2395 permanent breakpoint manually. */
2396 if (debug_infrun)
2397 fprintf_unfiltered (gdb_stdlog,
2398 "infrun: resume: skipping permanent breakpoint\n");
2399 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2400 /* Update pc to reflect the new address from which we will
2401 execute instructions. */
2402 pc = regcache_read_pc (regcache);
2403
2404 if (step)
2405 {
2406 /* We've already advanced the PC, so the stepping part
2407 is done. Now we need to arrange for a trap to be
2408 reported to handle_inferior_event. Set a breakpoint
2409 at the current PC, and run to it. Don't update
2410 prev_pc, because if we end in
2411 switch_back_to_stepped_thread, we want the "expected
2412 thread advanced also" branch to be taken. IOW, we
2413 don't want this thread to step further from PC
2414 (overstep). */
2415 gdb_assert (!step_over_info_valid_p ());
2416 insert_single_step_breakpoint (gdbarch, aspace, pc);
2417 insert_breakpoints ();
2418
2419 resume_ptid = internal_resume_ptid (user_step);
2420 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2421 tp->resumed = 1;
2422 return;
2423 }
2424 }
2425 }
2426
2427 /* If we have a breakpoint to step over, make sure to do a single
2428 step only. Same if we have software watchpoints. */
2429 if (tp->control.trap_expected || bpstat_should_step ())
2430 tp->control.may_range_step = 0;
2431
2432 /* If displaced stepping is enabled, step over breakpoints by executing a
2433 copy of the instruction at a different address.
2434
2435 We can't use displaced stepping when we have a signal to deliver;
2436 the comments for displaced_step_prepare explain why. The
2437 comments in the handle_inferior event for dealing with 'random
2438 signals' explain what we do instead.
2439
2440 We can't use displaced stepping when we are waiting for vfork_done
2441 event, displaced stepping breaks the vfork child similarly as single
2442 step software breakpoint. */
2443 if (tp->control.trap_expected
2444 && use_displaced_stepping (tp)
2445 && !step_over_info_valid_p ()
2446 && sig == GDB_SIGNAL_0
2447 && !current_inferior ()->waiting_for_vfork_done)
2448 {
2449 int prepared = displaced_step_prepare (tp);
2450
2451 if (prepared == 0)
2452 {
2453 if (debug_infrun)
2454 fprintf_unfiltered (gdb_stdlog,
2455 "Got placed in step-over queue\n");
2456
2457 tp->control.trap_expected = 0;
2458 return;
2459 }
2460 else if (prepared < 0)
2461 {
2462 /* Fallback to stepping over the breakpoint in-line. */
2463
2464 if (target_is_non_stop_p ())
2465 stop_all_threads ();
2466
2467 set_step_over_info (regcache->aspace (),
2468 regcache_read_pc (regcache), 0, tp->global_num);
2469
2470 step = maybe_software_singlestep (gdbarch, pc);
2471
2472 insert_breakpoints ();
2473 }
2474 else if (prepared > 0)
2475 {
2476 struct displaced_step_inferior_state *displaced;
2477
2478 /* Update pc to reflect the new address from which we will
2479 execute instructions due to displaced stepping. */
2480 pc = regcache_read_pc (get_thread_regcache (tp));
2481
2482 displaced = get_displaced_stepping_state (tp->inf);
2483 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2484 displaced->step_closure);
2485 }
2486 }
2487
2488 /* Do we need to do it the hard way, w/temp breakpoints? */
2489 else if (step)
2490 step = maybe_software_singlestep (gdbarch, pc);
2491
2492 /* Currently, our software single-step implementation leads to different
2493 results than hardware single-stepping in one situation: when stepping
2494 into delivering a signal which has an associated signal handler,
2495 hardware single-step will stop at the first instruction of the handler,
2496 while software single-step will simply skip execution of the handler.
2497
2498 For now, this difference in behavior is accepted since there is no
2499 easy way to actually implement single-stepping into a signal handler
2500 without kernel support.
2501
2502 However, there is one scenario where this difference leads to follow-on
2503 problems: if we're stepping off a breakpoint by removing all breakpoints
2504 and then single-stepping. In this case, the software single-step
2505 behavior means that even if there is a *breakpoint* in the signal
2506 handler, GDB still would not stop.
2507
2508 Fortunately, we can at least fix this particular issue. We detect
2509 here the case where we are about to deliver a signal while software
2510 single-stepping with breakpoints removed. In this situation, we
2511 revert the decisions to remove all breakpoints and insert single-
2512 step breakpoints, and instead we install a step-resume breakpoint
2513 at the current address, deliver the signal without stepping, and
2514 once we arrive back at the step-resume breakpoint, actually step
2515 over the breakpoint we originally wanted to step over. */
2516 if (thread_has_single_step_breakpoints_set (tp)
2517 && sig != GDB_SIGNAL_0
2518 && step_over_info_valid_p ())
2519 {
2520 /* If we have nested signals or a pending signal is delivered
2521 immediately after a handler returns, might already have
2522 a step-resume breakpoint set on the earlier handler. We cannot
2523 set another step-resume breakpoint; just continue on until the
2524 original breakpoint is hit. */
2525 if (tp->control.step_resume_breakpoint == NULL)
2526 {
2527 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2528 tp->step_after_step_resume_breakpoint = 1;
2529 }
2530
2531 delete_single_step_breakpoints (tp);
2532
2533 clear_step_over_info ();
2534 tp->control.trap_expected = 0;
2535
2536 insert_breakpoints ();
2537 }
2538
2539 /* If STEP is set, it's a request to use hardware stepping
2540 facilities. But in that case, we should never
2541 use singlestep breakpoint. */
2542 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2543
2544 /* Decide the set of threads to ask the target to resume. */
2545 if (tp->control.trap_expected)
2546 {
2547 /* We're allowing a thread to run past a breakpoint it has
2548 hit, either by single-stepping the thread with the breakpoint
2549 removed, or by displaced stepping, with the breakpoint inserted.
2550 In the former case, we need to single-step only this thread,
2551 and keep others stopped, as they can miss this breakpoint if
2552 allowed to run. That's not really a problem for displaced
2553 stepping, but, we still keep other threads stopped, in case
2554 another thread is also stopped for a breakpoint waiting for
2555 its turn in the displaced stepping queue. */
2556 resume_ptid = inferior_ptid;
2557 }
2558 else
2559 resume_ptid = internal_resume_ptid (user_step);
2560
2561 if (execution_direction != EXEC_REVERSE
2562 && step && breakpoint_inserted_here_p (aspace, pc))
2563 {
2564 /* There are two cases where we currently need to step a
2565 breakpoint instruction when we have a signal to deliver:
2566
2567 - See handle_signal_stop where we handle random signals that
2568 could take out us out of the stepping range. Normally, in
2569 that case we end up continuing (instead of stepping) over the
2570 signal handler with a breakpoint at PC, but there are cases
2571 where we should _always_ single-step, even if we have a
2572 step-resume breakpoint, like when a software watchpoint is
2573 set. Assuming single-stepping and delivering a signal at the
2574 same time would takes us to the signal handler, then we could
2575 have removed the breakpoint at PC to step over it. However,
2576 some hardware step targets (like e.g., Mac OS) can't step
2577 into signal handlers, and for those, we need to leave the
2578 breakpoint at PC inserted, as otherwise if the handler
2579 recurses and executes PC again, it'll miss the breakpoint.
2580 So we leave the breakpoint inserted anyway, but we need to
2581 record that we tried to step a breakpoint instruction, so
2582 that adjust_pc_after_break doesn't end up confused.
2583
2584 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2585 in one thread after another thread that was stepping had been
2586 momentarily paused for a step-over. When we re-resume the
2587 stepping thread, it may be resumed from that address with a
2588 breakpoint that hasn't trapped yet. Seen with
2589 gdb.threads/non-stop-fair-events.exp, on targets that don't
2590 do displaced stepping. */
2591
2592 if (debug_infrun)
2593 fprintf_unfiltered (gdb_stdlog,
2594 "infrun: resume: [%s] stepped breakpoint\n",
2595 target_pid_to_str (tp->ptid).c_str ());
2596
2597 tp->stepped_breakpoint = 1;
2598
2599 /* Most targets can step a breakpoint instruction, thus
2600 executing it normally. But if this one cannot, just
2601 continue and we will hit it anyway. */
2602 if (gdbarch_cannot_step_breakpoint (gdbarch))
2603 step = 0;
2604 }
2605
2606 if (debug_displaced
2607 && tp->control.trap_expected
2608 && use_displaced_stepping (tp)
2609 && !step_over_info_valid_p ())
2610 {
2611 struct regcache *resume_regcache = get_thread_regcache (tp);
2612 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2613 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2614 gdb_byte buf[4];
2615
2616 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2617 paddress (resume_gdbarch, actual_pc));
2618 read_memory (actual_pc, buf, sizeof (buf));
2619 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2620 }
2621
2622 if (tp->control.may_range_step)
2623 {
2624 /* If we're resuming a thread with the PC out of the step
2625 range, then we're doing some nested/finer run control
2626 operation, like stepping the thread out of the dynamic
2627 linker or the displaced stepping scratch pad. We
2628 shouldn't have allowed a range step then. */
2629 gdb_assert (pc_in_thread_step_range (pc, tp));
2630 }
2631
2632 do_target_resume (resume_ptid, step, sig);
2633 tp->resumed = 1;
2634}
2635
2636/* Resume the inferior. SIG is the signal to give the inferior
2637 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2638 rolls back state on error. */
2639
2640static void
2641resume (gdb_signal sig)
2642{
2643 try
2644 {
2645 resume_1 (sig);
2646 }
2647 catch (const gdb_exception &ex)
2648 {
2649 /* If resuming is being aborted for any reason, delete any
2650 single-step breakpoint resume_1 may have created, to avoid
2651 confusing the following resumption, and to avoid leaving
2652 single-step breakpoints perturbing other threads, in case
2653 we're running in non-stop mode. */
2654 if (inferior_ptid != null_ptid)
2655 delete_single_step_breakpoints (inferior_thread ());
2656 throw;
2657 }
2658}
2659
2660\f
2661/* Proceeding. */
2662
2663/* See infrun.h. */
2664
2665/* Counter that tracks number of user visible stops. This can be used
2666 to tell whether a command has proceeded the inferior past the
2667 current location. This allows e.g., inferior function calls in
2668 breakpoint commands to not interrupt the command list. When the
2669 call finishes successfully, the inferior is standing at the same
2670 breakpoint as if nothing happened (and so we don't call
2671 normal_stop). */
2672static ULONGEST current_stop_id;
2673
2674/* See infrun.h. */
2675
2676ULONGEST
2677get_stop_id (void)
2678{
2679 return current_stop_id;
2680}
2681
2682/* Called when we report a user visible stop. */
2683
2684static void
2685new_stop_id (void)
2686{
2687 current_stop_id++;
2688}
2689
2690/* Clear out all variables saying what to do when inferior is continued.
2691 First do this, then set the ones you want, then call `proceed'. */
2692
2693static void
2694clear_proceed_status_thread (struct thread_info *tp)
2695{
2696 if (debug_infrun)
2697 fprintf_unfiltered (gdb_stdlog,
2698 "infrun: clear_proceed_status_thread (%s)\n",
2699 target_pid_to_str (tp->ptid).c_str ());
2700
2701 /* If we're starting a new sequence, then the previous finished
2702 single-step is no longer relevant. */
2703 if (tp->suspend.waitstatus_pending_p)
2704 {
2705 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2706 {
2707 if (debug_infrun)
2708 fprintf_unfiltered (gdb_stdlog,
2709 "infrun: clear_proceed_status: pending "
2710 "event of %s was a finished step. "
2711 "Discarding.\n",
2712 target_pid_to_str (tp->ptid).c_str ());
2713
2714 tp->suspend.waitstatus_pending_p = 0;
2715 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2716 }
2717 else if (debug_infrun)
2718 {
2719 std::string statstr
2720 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2721
2722 fprintf_unfiltered (gdb_stdlog,
2723 "infrun: clear_proceed_status_thread: thread %s "
2724 "has pending wait status %s "
2725 "(currently_stepping=%d).\n",
2726 target_pid_to_str (tp->ptid).c_str (),
2727 statstr.c_str (),
2728 currently_stepping (tp));
2729 }
2730 }
2731
2732 /* If this signal should not be seen by program, give it zero.
2733 Used for debugging signals. */
2734 if (!signal_pass_state (tp->suspend.stop_signal))
2735 tp->suspend.stop_signal = GDB_SIGNAL_0;
2736
2737 delete tp->thread_fsm;
2738 tp->thread_fsm = NULL;
2739
2740 tp->control.trap_expected = 0;
2741 tp->control.step_range_start = 0;
2742 tp->control.step_range_end = 0;
2743 tp->control.may_range_step = 0;
2744 tp->control.step_frame_id = null_frame_id;
2745 tp->control.step_stack_frame_id = null_frame_id;
2746 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2747 tp->control.step_start_function = NULL;
2748 tp->stop_requested = 0;
2749
2750 tp->control.stop_step = 0;
2751
2752 tp->control.proceed_to_finish = 0;
2753
2754 tp->control.stepping_command = 0;
2755
2756 /* Discard any remaining commands or status from previous stop. */
2757 bpstat_clear (&tp->control.stop_bpstat);
2758}
2759
2760void
2761clear_proceed_status (int step)
2762{
2763 /* With scheduler-locking replay, stop replaying other threads if we're
2764 not replaying the user-visible resume ptid.
2765
2766 This is a convenience feature to not require the user to explicitly
2767 stop replaying the other threads. We're assuming that the user's
2768 intent is to resume tracing the recorded process. */
2769 if (!non_stop && scheduler_mode == schedlock_replay
2770 && target_record_is_replaying (minus_one_ptid)
2771 && !target_record_will_replay (user_visible_resume_ptid (step),
2772 execution_direction))
2773 target_record_stop_replaying ();
2774
2775 if (!non_stop && inferior_ptid != null_ptid)
2776 {
2777 ptid_t resume_ptid = user_visible_resume_ptid (step);
2778 process_stratum_target *resume_target
2779 = user_visible_resume_target (resume_ptid);
2780
2781 /* In all-stop mode, delete the per-thread status of all threads
2782 we're about to resume, implicitly and explicitly. */
2783 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2784 clear_proceed_status_thread (tp);
2785 }
2786
2787 if (inferior_ptid != null_ptid)
2788 {
2789 struct inferior *inferior;
2790
2791 if (non_stop)
2792 {
2793 /* If in non-stop mode, only delete the per-thread status of
2794 the current thread. */
2795 clear_proceed_status_thread (inferior_thread ());
2796 }
2797
2798 inferior = current_inferior ();
2799 inferior->control.stop_soon = NO_STOP_QUIETLY;
2800 }
2801
2802 gdb::observers::about_to_proceed.notify ();
2803}
2804
2805/* Returns true if TP is still stopped at a breakpoint that needs
2806 stepping-over in order to make progress. If the breakpoint is gone
2807 meanwhile, we can skip the whole step-over dance. */
2808
2809static int
2810thread_still_needs_step_over_bp (struct thread_info *tp)
2811{
2812 if (tp->stepping_over_breakpoint)
2813 {
2814 struct regcache *regcache = get_thread_regcache (tp);
2815
2816 if (breakpoint_here_p (regcache->aspace (),
2817 regcache_read_pc (regcache))
2818 == ordinary_breakpoint_here)
2819 return 1;
2820
2821 tp->stepping_over_breakpoint = 0;
2822 }
2823
2824 return 0;
2825}
2826
2827/* Check whether thread TP still needs to start a step-over in order
2828 to make progress when resumed. Returns an bitwise or of enum
2829 step_over_what bits, indicating what needs to be stepped over. */
2830
2831static step_over_what
2832thread_still_needs_step_over (struct thread_info *tp)
2833{
2834 step_over_what what = 0;
2835
2836 if (thread_still_needs_step_over_bp (tp))
2837 what |= STEP_OVER_BREAKPOINT;
2838
2839 if (tp->stepping_over_watchpoint
2840 && !target_have_steppable_watchpoint)
2841 what |= STEP_OVER_WATCHPOINT;
2842
2843 return what;
2844}
2845
2846/* Returns true if scheduler locking applies. STEP indicates whether
2847 we're about to do a step/next-like command to a thread. */
2848
2849static int
2850schedlock_applies (struct thread_info *tp)
2851{
2852 return (scheduler_mode == schedlock_on
2853 || (scheduler_mode == schedlock_step
2854 && tp->control.stepping_command)
2855 || (scheduler_mode == schedlock_replay
2856 && target_record_will_replay (minus_one_ptid,
2857 execution_direction)));
2858}
2859
2860/* Calls target_commit_resume on all targets. */
2861
2862static void
2863commit_resume_all_targets ()
2864{
2865 scoped_restore_current_thread restore_thread;
2866
2867 /* Map between process_target and a representative inferior. This
2868 is to avoid committing a resume in the same target more than
2869 once. Resumptions must be idempotent, so this is an
2870 optimization. */
2871 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2872
2873 for (inferior *inf : all_non_exited_inferiors ())
2874 if (inf->has_execution ())
2875 conn_inf[inf->process_target ()] = inf;
2876
2877 for (const auto &ci : conn_inf)
2878 {
2879 inferior *inf = ci.second;
2880 switch_to_inferior_no_thread (inf);
2881 target_commit_resume ();
2882 }
2883}
2884
2885/* Check that all the targets we're about to resume are in non-stop
2886 mode. Ideally, we'd only care whether all targets support
2887 target-async, but we're not there yet. E.g., stop_all_threads
2888 doesn't know how to handle all-stop targets. Also, the remote
2889 protocol in all-stop mode is synchronous, irrespective of
2890 target-async, which means that things like a breakpoint re-set
2891 triggered by one target would try to read memory from all targets
2892 and fail. */
2893
2894static void
2895check_multi_target_resumption (process_stratum_target *resume_target)
2896{
2897 if (!non_stop && resume_target == nullptr)
2898 {
2899 scoped_restore_current_thread restore_thread;
2900
2901 /* This is used to track whether we're resuming more than one
2902 target. */
2903 process_stratum_target *first_connection = nullptr;
2904
2905 /* The first inferior we see with a target that does not work in
2906 always-non-stop mode. */
2907 inferior *first_not_non_stop = nullptr;
2908
2909 for (inferior *inf : all_non_exited_inferiors (resume_target))
2910 {
2911 switch_to_inferior_no_thread (inf);
2912
2913 if (!target_has_execution)
2914 continue;
2915
2916 process_stratum_target *proc_target
2917 = current_inferior ()->process_target();
2918
2919 if (!target_is_non_stop_p ())
2920 first_not_non_stop = inf;
2921
2922 if (first_connection == nullptr)
2923 first_connection = proc_target;
2924 else if (first_connection != proc_target
2925 && first_not_non_stop != nullptr)
2926 {
2927 switch_to_inferior_no_thread (first_not_non_stop);
2928
2929 proc_target = current_inferior ()->process_target();
2930
2931 error (_("Connection %d (%s) does not support "
2932 "multi-target resumption."),
2933 proc_target->connection_number,
2934 make_target_connection_string (proc_target).c_str ());
2935 }
2936 }
2937 }
2938}
2939
2940/* Basic routine for continuing the program in various fashions.
2941
2942 ADDR is the address to resume at, or -1 for resume where stopped.
2943 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2944 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2945
2946 You should call clear_proceed_status before calling proceed. */
2947
2948void
2949proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2950{
2951 struct regcache *regcache;
2952 struct gdbarch *gdbarch;
2953 CORE_ADDR pc;
2954 struct execution_control_state ecss;
2955 struct execution_control_state *ecs = &ecss;
2956 int started;
2957
2958 /* If we're stopped at a fork/vfork, follow the branch set by the
2959 "set follow-fork-mode" command; otherwise, we'll just proceed
2960 resuming the current thread. */
2961 if (!follow_fork ())
2962 {
2963 /* The target for some reason decided not to resume. */
2964 normal_stop ();
2965 if (target_can_async_p ())
2966 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2967 return;
2968 }
2969
2970 /* We'll update this if & when we switch to a new thread. */
2971 previous_inferior_ptid = inferior_ptid;
2972
2973 regcache = get_current_regcache ();
2974 gdbarch = regcache->arch ();
2975 const address_space *aspace = regcache->aspace ();
2976
2977 pc = regcache_read_pc (regcache);
2978 thread_info *cur_thr = inferior_thread ();
2979
2980 /* Fill in with reasonable starting values. */
2981 init_thread_stepping_state (cur_thr);
2982
2983 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2984
2985 ptid_t resume_ptid
2986 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2987 process_stratum_target *resume_target
2988 = user_visible_resume_target (resume_ptid);
2989
2990 check_multi_target_resumption (resume_target);
2991
2992 if (addr == (CORE_ADDR) -1)
2993 {
2994 if (pc == cur_thr->suspend.stop_pc
2995 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2996 && execution_direction != EXEC_REVERSE)
2997 /* There is a breakpoint at the address we will resume at,
2998 step one instruction before inserting breakpoints so that
2999 we do not stop right away (and report a second hit at this
3000 breakpoint).
3001
3002 Note, we don't do this in reverse, because we won't
3003 actually be executing the breakpoint insn anyway.
3004 We'll be (un-)executing the previous instruction. */
3005 cur_thr->stepping_over_breakpoint = 1;
3006 else if (gdbarch_single_step_through_delay_p (gdbarch)
3007 && gdbarch_single_step_through_delay (gdbarch,
3008 get_current_frame ()))
3009 /* We stepped onto an instruction that needs to be stepped
3010 again before re-inserting the breakpoint, do so. */
3011 cur_thr->stepping_over_breakpoint = 1;
3012 }
3013 else
3014 {
3015 regcache_write_pc (regcache, addr);
3016 }
3017
3018 if (siggnal != GDB_SIGNAL_DEFAULT)
3019 cur_thr->suspend.stop_signal = siggnal;
3020
3021 /* If an exception is thrown from this point on, make sure to
3022 propagate GDB's knowledge of the executing state to the
3023 frontend/user running state. */
3024 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3025
3026 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3027 threads (e.g., we might need to set threads stepping over
3028 breakpoints first), from the user/frontend's point of view, all
3029 threads in RESUME_PTID are now running. Unless we're calling an
3030 inferior function, as in that case we pretend the inferior
3031 doesn't run at all. */
3032 if (!cur_thr->control.in_infcall)
3033 set_running (resume_target, resume_ptid, 1);
3034
3035 if (debug_infrun)
3036 fprintf_unfiltered (gdb_stdlog,
3037 "infrun: proceed (addr=%s, signal=%s)\n",
3038 paddress (gdbarch, addr),
3039 gdb_signal_to_symbol_string (siggnal));
3040
3041 annotate_starting ();
3042
3043 /* Make sure that output from GDB appears before output from the
3044 inferior. */
3045 gdb_flush (gdb_stdout);
3046
3047 /* Since we've marked the inferior running, give it the terminal. A
3048 QUIT/Ctrl-C from here on is forwarded to the target (which can
3049 still detect attempts to unblock a stuck connection with repeated
3050 Ctrl-C from within target_pass_ctrlc). */
3051 target_terminal::inferior ();
3052
3053 /* In a multi-threaded task we may select another thread and
3054 then continue or step.
3055
3056 But if a thread that we're resuming had stopped at a breakpoint,
3057 it will immediately cause another breakpoint stop without any
3058 execution (i.e. it will report a breakpoint hit incorrectly). So
3059 we must step over it first.
3060
3061 Look for threads other than the current (TP) that reported a
3062 breakpoint hit and haven't been resumed yet since. */
3063
3064 /* If scheduler locking applies, we can avoid iterating over all
3065 threads. */
3066 if (!non_stop && !schedlock_applies (cur_thr))
3067 {
3068 for (thread_info *tp : all_non_exited_threads (resume_target,
3069 resume_ptid))
3070 {
3071 switch_to_thread_no_regs (tp);
3072
3073 /* Ignore the current thread here. It's handled
3074 afterwards. */
3075 if (tp == cur_thr)
3076 continue;
3077
3078 if (!thread_still_needs_step_over (tp))
3079 continue;
3080
3081 gdb_assert (!thread_is_in_step_over_chain (tp));
3082
3083 if (debug_infrun)
3084 fprintf_unfiltered (gdb_stdlog,
3085 "infrun: need to step-over [%s] first\n",
3086 target_pid_to_str (tp->ptid).c_str ());
3087
3088 thread_step_over_chain_enqueue (tp);
3089 }
3090
3091 switch_to_thread (cur_thr);
3092 }
3093
3094 /* Enqueue the current thread last, so that we move all other
3095 threads over their breakpoints first. */
3096 if (cur_thr->stepping_over_breakpoint)
3097 thread_step_over_chain_enqueue (cur_thr);
3098
3099 /* If the thread isn't started, we'll still need to set its prev_pc,
3100 so that switch_back_to_stepped_thread knows the thread hasn't
3101 advanced. Must do this before resuming any thread, as in
3102 all-stop/remote, once we resume we can't send any other packet
3103 until the target stops again. */
3104 cur_thr->prev_pc = regcache_read_pc (regcache);
3105
3106 {
3107 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3108
3109 started = start_step_over ();
3110
3111 if (step_over_info_valid_p ())
3112 {
3113 /* Either this thread started a new in-line step over, or some
3114 other thread was already doing one. In either case, don't
3115 resume anything else until the step-over is finished. */
3116 }
3117 else if (started && !target_is_non_stop_p ())
3118 {
3119 /* A new displaced stepping sequence was started. In all-stop,
3120 we can't talk to the target anymore until it next stops. */
3121 }
3122 else if (!non_stop && target_is_non_stop_p ())
3123 {
3124 /* In all-stop, but the target is always in non-stop mode.
3125 Start all other threads that are implicitly resumed too. */
3126 for (thread_info *tp : all_non_exited_threads (resume_target,
3127 resume_ptid))
3128 {
3129 switch_to_thread_no_regs (tp);
3130
3131 if (!tp->inf->has_execution ())
3132 {
3133 if (debug_infrun)
3134 fprintf_unfiltered (gdb_stdlog,
3135 "infrun: proceed: [%s] target has "
3136 "no execution\n",
3137 target_pid_to_str (tp->ptid).c_str ());
3138 continue;
3139 }
3140
3141 if (tp->resumed)
3142 {
3143 if (debug_infrun)
3144 fprintf_unfiltered (gdb_stdlog,
3145 "infrun: proceed: [%s] resumed\n",
3146 target_pid_to_str (tp->ptid).c_str ());
3147 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3148 continue;
3149 }
3150
3151 if (thread_is_in_step_over_chain (tp))
3152 {
3153 if (debug_infrun)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "infrun: proceed: [%s] needs step-over\n",
3156 target_pid_to_str (tp->ptid).c_str ());
3157 continue;
3158 }
3159
3160 if (debug_infrun)
3161 fprintf_unfiltered (gdb_stdlog,
3162 "infrun: proceed: resuming %s\n",
3163 target_pid_to_str (tp->ptid).c_str ());
3164
3165 reset_ecs (ecs, tp);
3166 switch_to_thread (tp);
3167 keep_going_pass_signal (ecs);
3168 if (!ecs->wait_some_more)
3169 error (_("Command aborted."));
3170 }
3171 }
3172 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3173 {
3174 /* The thread wasn't started, and isn't queued, run it now. */
3175 reset_ecs (ecs, cur_thr);
3176 switch_to_thread (cur_thr);
3177 keep_going_pass_signal (ecs);
3178 if (!ecs->wait_some_more)
3179 error (_("Command aborted."));
3180 }
3181 }
3182
3183 commit_resume_all_targets ();
3184
3185 finish_state.release ();
3186
3187 /* If we've switched threads above, switch back to the previously
3188 current thread. We don't want the user to see a different
3189 selected thread. */
3190 switch_to_thread (cur_thr);
3191
3192 /* Tell the event loop to wait for it to stop. If the target
3193 supports asynchronous execution, it'll do this from within
3194 target_resume. */
3195 if (!target_can_async_p ())
3196 mark_async_event_handler (infrun_async_inferior_event_token);
3197}
3198\f
3199
3200/* Start remote-debugging of a machine over a serial link. */
3201
3202void
3203start_remote (int from_tty)
3204{
3205 inferior *inf = current_inferior ();
3206 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3207
3208 /* Always go on waiting for the target, regardless of the mode. */
3209 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3210 indicate to wait_for_inferior that a target should timeout if
3211 nothing is returned (instead of just blocking). Because of this,
3212 targets expecting an immediate response need to, internally, set
3213 things up so that the target_wait() is forced to eventually
3214 timeout. */
3215 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3216 differentiate to its caller what the state of the target is after
3217 the initial open has been performed. Here we're assuming that
3218 the target has stopped. It should be possible to eventually have
3219 target_open() return to the caller an indication that the target
3220 is currently running and GDB state should be set to the same as
3221 for an async run. */
3222 wait_for_inferior (inf);
3223
3224 /* Now that the inferior has stopped, do any bookkeeping like
3225 loading shared libraries. We want to do this before normal_stop,
3226 so that the displayed frame is up to date. */
3227 post_create_inferior (current_top_target (), from_tty);
3228
3229 normal_stop ();
3230}
3231
3232/* Initialize static vars when a new inferior begins. */
3233
3234void
3235init_wait_for_inferior (void)
3236{
3237 /* These are meaningless until the first time through wait_for_inferior. */
3238
3239 breakpoint_init_inferior (inf_starting);
3240
3241 clear_proceed_status (0);
3242
3243 nullify_last_target_wait_ptid ();
3244
3245 previous_inferior_ptid = inferior_ptid;
3246}
3247
3248\f
3249
3250static void handle_inferior_event (struct execution_control_state *ecs);
3251
3252static void handle_step_into_function (struct gdbarch *gdbarch,
3253 struct execution_control_state *ecs);
3254static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3255 struct execution_control_state *ecs);
3256static void handle_signal_stop (struct execution_control_state *ecs);
3257static void check_exception_resume (struct execution_control_state *,
3258 struct frame_info *);
3259
3260static void end_stepping_range (struct execution_control_state *ecs);
3261static void stop_waiting (struct execution_control_state *ecs);
3262static void keep_going (struct execution_control_state *ecs);
3263static void process_event_stop_test (struct execution_control_state *ecs);
3264static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3265
3266/* This function is attached as a "thread_stop_requested" observer.
3267 Cleanup local state that assumed the PTID was to be resumed, and
3268 report the stop to the frontend. */
3269
3270static void
3271infrun_thread_stop_requested (ptid_t ptid)
3272{
3273 process_stratum_target *curr_target = current_inferior ()->process_target ();
3274
3275 /* PTID was requested to stop. If the thread was already stopped,
3276 but the user/frontend doesn't know about that yet (e.g., the
3277 thread had been temporarily paused for some step-over), set up
3278 for reporting the stop now. */
3279 for (thread_info *tp : all_threads (curr_target, ptid))
3280 {
3281 if (tp->state != THREAD_RUNNING)
3282 continue;
3283 if (tp->executing)
3284 continue;
3285
3286 /* Remove matching threads from the step-over queue, so
3287 start_step_over doesn't try to resume them
3288 automatically. */
3289 if (thread_is_in_step_over_chain (tp))
3290 thread_step_over_chain_remove (tp);
3291
3292 /* If the thread is stopped, but the user/frontend doesn't
3293 know about that yet, queue a pending event, as if the
3294 thread had just stopped now. Unless the thread already had
3295 a pending event. */
3296 if (!tp->suspend.waitstatus_pending_p)
3297 {
3298 tp->suspend.waitstatus_pending_p = 1;
3299 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3300 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3301 }
3302
3303 /* Clear the inline-frame state, since we're re-processing the
3304 stop. */
3305 clear_inline_frame_state (tp);
3306
3307 /* If this thread was paused because some other thread was
3308 doing an inline-step over, let that finish first. Once
3309 that happens, we'll restart all threads and consume pending
3310 stop events then. */
3311 if (step_over_info_valid_p ())
3312 continue;
3313
3314 /* Otherwise we can process the (new) pending event now. Set
3315 it so this pending event is considered by
3316 do_target_wait. */
3317 tp->resumed = 1;
3318 }
3319}
3320
3321static void
3322infrun_thread_thread_exit (struct thread_info *tp, int silent)
3323{
3324 if (target_last_proc_target == tp->inf->process_target ()
3325 && target_last_wait_ptid == tp->ptid)
3326 nullify_last_target_wait_ptid ();
3327}
3328
3329/* Delete the step resume, single-step and longjmp/exception resume
3330 breakpoints of TP. */
3331
3332static void
3333delete_thread_infrun_breakpoints (struct thread_info *tp)
3334{
3335 delete_step_resume_breakpoint (tp);
3336 delete_exception_resume_breakpoint (tp);
3337 delete_single_step_breakpoints (tp);
3338}
3339
3340/* If the target still has execution, call FUNC for each thread that
3341 just stopped. In all-stop, that's all the non-exited threads; in
3342 non-stop, that's the current thread, only. */
3343
3344typedef void (*for_each_just_stopped_thread_callback_func)
3345 (struct thread_info *tp);
3346
3347static void
3348for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3349{
3350 if (!target_has_execution || inferior_ptid == null_ptid)
3351 return;
3352
3353 if (target_is_non_stop_p ())
3354 {
3355 /* If in non-stop mode, only the current thread stopped. */
3356 func (inferior_thread ());
3357 }
3358 else
3359 {
3360 /* In all-stop mode, all threads have stopped. */
3361 for (thread_info *tp : all_non_exited_threads ())
3362 func (tp);
3363 }
3364}
3365
3366/* Delete the step resume and longjmp/exception resume breakpoints of
3367 the threads that just stopped. */
3368
3369static void
3370delete_just_stopped_threads_infrun_breakpoints (void)
3371{
3372 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3373}
3374
3375/* Delete the single-step breakpoints of the threads that just
3376 stopped. */
3377
3378static void
3379delete_just_stopped_threads_single_step_breakpoints (void)
3380{
3381 for_each_just_stopped_thread (delete_single_step_breakpoints);
3382}
3383
3384/* See infrun.h. */
3385
3386void
3387print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3388 const struct target_waitstatus *ws)
3389{
3390 std::string status_string = target_waitstatus_to_string (ws);
3391 string_file stb;
3392
3393 /* The text is split over several lines because it was getting too long.
3394 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3395 output as a unit; we want only one timestamp printed if debug_timestamp
3396 is set. */
3397
3398 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3399 waiton_ptid.pid (),
3400 waiton_ptid.lwp (),
3401 waiton_ptid.tid ());
3402 if (waiton_ptid.pid () != -1)
3403 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3404 stb.printf (", status) =\n");
3405 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3406 result_ptid.pid (),
3407 result_ptid.lwp (),
3408 result_ptid.tid (),
3409 target_pid_to_str (result_ptid).c_str ());
3410 stb.printf ("infrun: %s\n", status_string.c_str ());
3411
3412 /* This uses %s in part to handle %'s in the text, but also to avoid
3413 a gcc error: the format attribute requires a string literal. */
3414 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3415}
3416
3417/* Select a thread at random, out of those which are resumed and have
3418 had events. */
3419
3420static struct thread_info *
3421random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3422{
3423 int num_events = 0;
3424
3425 auto has_event = [&] (thread_info *tp)
3426 {
3427 return (tp->ptid.matches (waiton_ptid)
3428 && tp->resumed
3429 && tp->suspend.waitstatus_pending_p);
3430 };
3431
3432 /* First see how many events we have. Count only resumed threads
3433 that have an event pending. */
3434 for (thread_info *tp : inf->non_exited_threads ())
3435 if (has_event (tp))
3436 num_events++;
3437
3438 if (num_events == 0)
3439 return NULL;
3440
3441 /* Now randomly pick a thread out of those that have had events. */
3442 int random_selector = (int) ((num_events * (double) rand ())
3443 / (RAND_MAX + 1.0));
3444
3445 if (debug_infrun && num_events > 1)
3446 fprintf_unfiltered (gdb_stdlog,
3447 "infrun: Found %d events, selecting #%d\n",
3448 num_events, random_selector);
3449
3450 /* Select the Nth thread that has had an event. */
3451 for (thread_info *tp : inf->non_exited_threads ())
3452 if (has_event (tp))
3453 if (random_selector-- == 0)
3454 return tp;
3455
3456 gdb_assert_not_reached ("event thread not found");
3457}
3458
3459/* Wrapper for target_wait that first checks whether threads have
3460 pending statuses to report before actually asking the target for
3461 more events. INF is the inferior we're using to call target_wait
3462 on. */
3463
3464static ptid_t
3465do_target_wait_1 (inferior *inf, ptid_t ptid,
3466 target_waitstatus *status, int options)
3467{
3468 ptid_t event_ptid;
3469 struct thread_info *tp;
3470
3471 /* First check if there is a resumed thread with a wait status
3472 pending. */
3473 if (ptid == minus_one_ptid || ptid.is_pid ())
3474 {
3475 tp = random_pending_event_thread (inf, ptid);
3476 }
3477 else
3478 {
3479 if (debug_infrun)
3480 fprintf_unfiltered (gdb_stdlog,
3481 "infrun: Waiting for specific thread %s.\n",
3482 target_pid_to_str (ptid).c_str ());
3483
3484 /* We have a specific thread to check. */
3485 tp = find_thread_ptid (inf, ptid);
3486 gdb_assert (tp != NULL);
3487 if (!tp->suspend.waitstatus_pending_p)
3488 tp = NULL;
3489 }
3490
3491 if (tp != NULL
3492 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3493 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3494 {
3495 struct regcache *regcache = get_thread_regcache (tp);
3496 struct gdbarch *gdbarch = regcache->arch ();
3497 CORE_ADDR pc;
3498 int discard = 0;
3499
3500 pc = regcache_read_pc (regcache);
3501
3502 if (pc != tp->suspend.stop_pc)
3503 {
3504 if (debug_infrun)
3505 fprintf_unfiltered (gdb_stdlog,
3506 "infrun: PC of %s changed. was=%s, now=%s\n",
3507 target_pid_to_str (tp->ptid).c_str (),
3508 paddress (gdbarch, tp->suspend.stop_pc),
3509 paddress (gdbarch, pc));
3510 discard = 1;
3511 }
3512 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3513 {
3514 if (debug_infrun)
3515 fprintf_unfiltered (gdb_stdlog,
3516 "infrun: previous breakpoint of %s, at %s gone\n",
3517 target_pid_to_str (tp->ptid).c_str (),
3518 paddress (gdbarch, pc));
3519
3520 discard = 1;
3521 }
3522
3523 if (discard)
3524 {
3525 if (debug_infrun)
3526 fprintf_unfiltered (gdb_stdlog,
3527 "infrun: pending event of %s cancelled.\n",
3528 target_pid_to_str (tp->ptid).c_str ());
3529
3530 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3531 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3532 }
3533 }
3534
3535 if (tp != NULL)
3536 {
3537 if (debug_infrun)
3538 {
3539 std::string statstr
3540 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3541
3542 fprintf_unfiltered (gdb_stdlog,
3543 "infrun: Using pending wait status %s for %s.\n",
3544 statstr.c_str (),
3545 target_pid_to_str (tp->ptid).c_str ());
3546 }
3547
3548 /* Now that we've selected our final event LWP, un-adjust its PC
3549 if it was a software breakpoint (and the target doesn't
3550 always adjust the PC itself). */
3551 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3552 && !target_supports_stopped_by_sw_breakpoint ())
3553 {
3554 struct regcache *regcache;
3555 struct gdbarch *gdbarch;
3556 int decr_pc;
3557
3558 regcache = get_thread_regcache (tp);
3559 gdbarch = regcache->arch ();
3560
3561 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3562 if (decr_pc != 0)
3563 {
3564 CORE_ADDR pc;
3565
3566 pc = regcache_read_pc (regcache);
3567 regcache_write_pc (regcache, pc + decr_pc);
3568 }
3569 }
3570
3571 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3572 *status = tp->suspend.waitstatus;
3573 tp->suspend.waitstatus_pending_p = 0;
3574
3575 /* Wake up the event loop again, until all pending events are
3576 processed. */
3577 if (target_is_async_p ())
3578 mark_async_event_handler (infrun_async_inferior_event_token);
3579 return tp->ptid;
3580 }
3581
3582 /* But if we don't find one, we'll have to wait. */
3583
3584 if (deprecated_target_wait_hook)
3585 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3586 else
3587 event_ptid = target_wait (ptid, status, options);
3588
3589 return event_ptid;
3590}
3591
3592/* Returns true if INF has any resumed thread with a status
3593 pending. */
3594
3595static bool
3596threads_are_resumed_pending_p (inferior *inf)
3597{
3598 for (thread_info *tp : inf->non_exited_threads ())
3599 if (tp->resumed
3600 && tp->suspend.waitstatus_pending_p)
3601 return true;
3602
3603 return false;
3604}
3605
3606/* Wrapper for target_wait that first checks whether threads have
3607 pending statuses to report before actually asking the target for
3608 more events. Polls for events from all inferiors/targets. */
3609
3610static bool
3611do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3612{
3613 int num_inferiors = 0;
3614 int random_selector;
3615
3616 /* For fairness, we pick the first inferior/target to poll at
3617 random, and then continue polling the rest of the inferior list
3618 starting from that one in a circular fashion until the whole list
3619 is polled once. */
3620
3621 auto inferior_matches = [&wait_ptid] (inferior *inf)
3622 {
3623 return (inf->process_target () != NULL
3624 && (threads_are_executing (inf->process_target ())
3625 || threads_are_resumed_pending_p (inf))
3626 && ptid_t (inf->pid).matches (wait_ptid));
3627 };
3628
3629 /* First see how many resumed inferiors we have. */
3630 for (inferior *inf : all_inferiors ())
3631 if (inferior_matches (inf))
3632 num_inferiors++;
3633
3634 if (num_inferiors == 0)
3635 {
3636 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3637 return false;
3638 }
3639
3640 /* Now randomly pick an inferior out of those that were resumed. */
3641 random_selector = (int)
3642 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3643
3644 if (debug_infrun && num_inferiors > 1)
3645 fprintf_unfiltered (gdb_stdlog,
3646 "infrun: Found %d inferiors, starting at #%d\n",
3647 num_inferiors, random_selector);
3648
3649 /* Select the Nth inferior that was resumed. */
3650
3651 inferior *selected = nullptr;
3652
3653 for (inferior *inf : all_inferiors ())
3654 if (inferior_matches (inf))
3655 if (random_selector-- == 0)
3656 {
3657 selected = inf;
3658 break;
3659 }
3660
3661 /* Now poll for events out of each of the resumed inferior's
3662 targets, starting from the selected one. */
3663
3664 auto do_wait = [&] (inferior *inf)
3665 {
3666 switch_to_inferior_no_thread (inf);
3667
3668 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3669 ecs->target = inf->process_target ();
3670 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3671 };
3672
3673 /* Needed in all-stop+target-non-stop mode, because we end up here
3674 spuriously after the target is all stopped and we've already
3675 reported the stop to the user, polling for events. */
3676 scoped_restore_current_thread restore_thread;
3677
3678 int inf_num = selected->num;
3679 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3680 if (inferior_matches (inf))
3681 if (do_wait (inf))
3682 return true;
3683
3684 for (inferior *inf = inferior_list;
3685 inf != NULL && inf->num < inf_num;
3686 inf = inf->next)
3687 if (inferior_matches (inf))
3688 if (do_wait (inf))
3689 return true;
3690
3691 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3692 return false;
3693}
3694
3695/* Prepare and stabilize the inferior for detaching it. E.g.,
3696 detaching while a thread is displaced stepping is a recipe for
3697 crashing it, as nothing would readjust the PC out of the scratch
3698 pad. */
3699
3700void
3701prepare_for_detach (void)
3702{
3703 struct inferior *inf = current_inferior ();
3704 ptid_t pid_ptid = ptid_t (inf->pid);
3705
3706 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3707
3708 /* Is any thread of this process displaced stepping? If not,
3709 there's nothing else to do. */
3710 if (displaced->step_thread == nullptr)
3711 return;
3712
3713 if (debug_infrun)
3714 fprintf_unfiltered (gdb_stdlog,
3715 "displaced-stepping in-process while detaching");
3716
3717 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3718
3719 while (displaced->step_thread != nullptr)
3720 {
3721 struct execution_control_state ecss;
3722 struct execution_control_state *ecs;
3723
3724 ecs = &ecss;
3725 memset (ecs, 0, sizeof (*ecs));
3726
3727 overlay_cache_invalid = 1;
3728 /* Flush target cache before starting to handle each event.
3729 Target was running and cache could be stale. This is just a
3730 heuristic. Running threads may modify target memory, but we
3731 don't get any event. */
3732 target_dcache_invalidate ();
3733
3734 do_target_wait (pid_ptid, ecs, 0);
3735
3736 if (debug_infrun)
3737 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3738
3739 /* If an error happens while handling the event, propagate GDB's
3740 knowledge of the executing state to the frontend/user running
3741 state. */
3742 scoped_finish_thread_state finish_state (inf->process_target (),
3743 minus_one_ptid);
3744
3745 /* Now figure out what to do with the result of the result. */
3746 handle_inferior_event (ecs);
3747
3748 /* No error, don't finish the state yet. */
3749 finish_state.release ();
3750
3751 /* Breakpoints and watchpoints are not installed on the target
3752 at this point, and signals are passed directly to the
3753 inferior, so this must mean the process is gone. */
3754 if (!ecs->wait_some_more)
3755 {
3756 restore_detaching.release ();
3757 error (_("Program exited while detaching"));
3758 }
3759 }
3760
3761 restore_detaching.release ();
3762}
3763
3764/* Wait for control to return from inferior to debugger.
3765
3766 If inferior gets a signal, we may decide to start it up again
3767 instead of returning. That is why there is a loop in this function.
3768 When this function actually returns it means the inferior
3769 should be left stopped and GDB should read more commands. */
3770
3771static void
3772wait_for_inferior (inferior *inf)
3773{
3774 if (debug_infrun)
3775 fprintf_unfiltered
3776 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3777
3778 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3779
3780 /* If an error happens while handling the event, propagate GDB's
3781 knowledge of the executing state to the frontend/user running
3782 state. */
3783 scoped_finish_thread_state finish_state
3784 (inf->process_target (), minus_one_ptid);
3785
3786 while (1)
3787 {
3788 struct execution_control_state ecss;
3789 struct execution_control_state *ecs = &ecss;
3790
3791 memset (ecs, 0, sizeof (*ecs));
3792
3793 overlay_cache_invalid = 1;
3794
3795 /* Flush target cache before starting to handle each event.
3796 Target was running and cache could be stale. This is just a
3797 heuristic. Running threads may modify target memory, but we
3798 don't get any event. */
3799 target_dcache_invalidate ();
3800
3801 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3802 ecs->target = inf->process_target ();
3803
3804 if (debug_infrun)
3805 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3806
3807 /* Now figure out what to do with the result of the result. */
3808 handle_inferior_event (ecs);
3809
3810 if (!ecs->wait_some_more)
3811 break;
3812 }
3813
3814 /* No error, don't finish the state yet. */
3815 finish_state.release ();
3816}
3817
3818/* Cleanup that reinstalls the readline callback handler, if the
3819 target is running in the background. If while handling the target
3820 event something triggered a secondary prompt, like e.g., a
3821 pagination prompt, we'll have removed the callback handler (see
3822 gdb_readline_wrapper_line). Need to do this as we go back to the
3823 event loop, ready to process further input. Note this has no
3824 effect if the handler hasn't actually been removed, because calling
3825 rl_callback_handler_install resets the line buffer, thus losing
3826 input. */
3827
3828static void
3829reinstall_readline_callback_handler_cleanup ()
3830{
3831 struct ui *ui = current_ui;
3832
3833 if (!ui->async)
3834 {
3835 /* We're not going back to the top level event loop yet. Don't
3836 install the readline callback, as it'd prep the terminal,
3837 readline-style (raw, noecho) (e.g., --batch). We'll install
3838 it the next time the prompt is displayed, when we're ready
3839 for input. */
3840 return;
3841 }
3842
3843 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3844 gdb_rl_callback_handler_reinstall ();
3845}
3846
3847/* Clean up the FSMs of threads that are now stopped. In non-stop,
3848 that's just the event thread. In all-stop, that's all threads. */
3849
3850static void
3851clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3852{
3853 if (ecs->event_thread != NULL
3854 && ecs->event_thread->thread_fsm != NULL)
3855 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3856
3857 if (!non_stop)
3858 {
3859 for (thread_info *thr : all_non_exited_threads ())
3860 {
3861 if (thr->thread_fsm == NULL)
3862 continue;
3863 if (thr == ecs->event_thread)
3864 continue;
3865
3866 switch_to_thread (thr);
3867 thr->thread_fsm->clean_up (thr);
3868 }
3869
3870 if (ecs->event_thread != NULL)
3871 switch_to_thread (ecs->event_thread);
3872 }
3873}
3874
3875/* Helper for all_uis_check_sync_execution_done that works on the
3876 current UI. */
3877
3878static void
3879check_curr_ui_sync_execution_done (void)
3880{
3881 struct ui *ui = current_ui;
3882
3883 if (ui->prompt_state == PROMPT_NEEDED
3884 && ui->async
3885 && !gdb_in_secondary_prompt_p (ui))
3886 {
3887 target_terminal::ours ();
3888 gdb::observers::sync_execution_done.notify ();
3889 ui_register_input_event_handler (ui);
3890 }
3891}
3892
3893/* See infrun.h. */
3894
3895void
3896all_uis_check_sync_execution_done (void)
3897{
3898 SWITCH_THRU_ALL_UIS ()
3899 {
3900 check_curr_ui_sync_execution_done ();
3901 }
3902}
3903
3904/* See infrun.h. */
3905
3906void
3907all_uis_on_sync_execution_starting (void)
3908{
3909 SWITCH_THRU_ALL_UIS ()
3910 {
3911 if (current_ui->prompt_state == PROMPT_NEEDED)
3912 async_disable_stdin ();
3913 }
3914}
3915
3916/* Asynchronous version of wait_for_inferior. It is called by the
3917 event loop whenever a change of state is detected on the file
3918 descriptor corresponding to the target. It can be called more than
3919 once to complete a single execution command. In such cases we need
3920 to keep the state in a global variable ECSS. If it is the last time
3921 that this function is called for a single execution command, then
3922 report to the user that the inferior has stopped, and do the
3923 necessary cleanups. */
3924
3925void
3926fetch_inferior_event (void *client_data)
3927{
3928 struct execution_control_state ecss;
3929 struct execution_control_state *ecs = &ecss;
3930 int cmd_done = 0;
3931
3932 memset (ecs, 0, sizeof (*ecs));
3933
3934 /* Events are always processed with the main UI as current UI. This
3935 way, warnings, debug output, etc. are always consistently sent to
3936 the main console. */
3937 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3938
3939 /* End up with readline processing input, if necessary. */
3940 {
3941 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3942
3943 /* We're handling a live event, so make sure we're doing live
3944 debugging. If we're looking at traceframes while the target is
3945 running, we're going to need to get back to that mode after
3946 handling the event. */
3947 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3948 if (non_stop)
3949 {
3950 maybe_restore_traceframe.emplace ();
3951 set_current_traceframe (-1);
3952 }
3953
3954 /* The user/frontend should not notice a thread switch due to
3955 internal events. Make sure we revert to the user selected
3956 thread and frame after handling the event and running any
3957 breakpoint commands. */
3958 scoped_restore_current_thread restore_thread;
3959
3960 overlay_cache_invalid = 1;
3961 /* Flush target cache before starting to handle each event. Target
3962 was running and cache could be stale. This is just a heuristic.
3963 Running threads may modify target memory, but we don't get any
3964 event. */
3965 target_dcache_invalidate ();
3966
3967 scoped_restore save_exec_dir
3968 = make_scoped_restore (&execution_direction,
3969 target_execution_direction ());
3970
3971 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3972 return;
3973
3974 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3975
3976 /* Switch to the target that generated the event, so we can do
3977 target calls. Any inferior bound to the target will do, so we
3978 just switch to the first we find. */
3979 for (inferior *inf : all_inferiors (ecs->target))
3980 {
3981 switch_to_inferior_no_thread (inf);
3982 break;
3983 }
3984
3985 if (debug_infrun)
3986 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3987
3988 /* If an error happens while handling the event, propagate GDB's
3989 knowledge of the executing state to the frontend/user running
3990 state. */
3991 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3992 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3993
3994 /* Get executed before scoped_restore_current_thread above to apply
3995 still for the thread which has thrown the exception. */
3996 auto defer_bpstat_clear
3997 = make_scope_exit (bpstat_clear_actions);
3998 auto defer_delete_threads
3999 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4000
4001 /* Now figure out what to do with the result of the result. */
4002 handle_inferior_event (ecs);
4003
4004 if (!ecs->wait_some_more)
4005 {
4006 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4007 int should_stop = 1;
4008 struct thread_info *thr = ecs->event_thread;
4009
4010 delete_just_stopped_threads_infrun_breakpoints ();
4011
4012 if (thr != NULL)
4013 {
4014 struct thread_fsm *thread_fsm = thr->thread_fsm;
4015
4016 if (thread_fsm != NULL)
4017 should_stop = thread_fsm->should_stop (thr);
4018 }
4019
4020 if (!should_stop)
4021 {
4022 keep_going (ecs);
4023 }
4024 else
4025 {
4026 bool should_notify_stop = true;
4027 int proceeded = 0;
4028
4029 clean_up_just_stopped_threads_fsms (ecs);
4030
4031 if (thr != NULL && thr->thread_fsm != NULL)
4032 should_notify_stop = thr->thread_fsm->should_notify_stop ();
4033
4034 if (should_notify_stop)
4035 {
4036 /* We may not find an inferior if this was a process exit. */
4037 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4038 proceeded = normal_stop ();
4039 }
4040
4041 if (!proceeded)
4042 {
4043 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4044 cmd_done = 1;
4045 }
4046
4047 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4048 previously selected thread is gone. We have two
4049 choices - switch to no thread selected, or restore the
4050 previously selected thread (now exited). We chose the
4051 later, just because that's what GDB used to do. After
4052 this, "info threads" says "The current thread <Thread
4053 ID 2> has terminated." instead of "No thread
4054 selected.". */
4055 if (!non_stop
4056 && cmd_done
4057 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4058 restore_thread.dont_restore ();
4059 }
4060 }
4061
4062 defer_delete_threads.release ();
4063 defer_bpstat_clear.release ();
4064
4065 /* No error, don't finish the thread states yet. */
4066 finish_state.release ();
4067
4068 /* This scope is used to ensure that readline callbacks are
4069 reinstalled here. */
4070 }
4071
4072 /* If a UI was in sync execution mode, and now isn't, restore its
4073 prompt (a synchronous execution command has finished, and we're
4074 ready for input). */
4075 all_uis_check_sync_execution_done ();
4076
4077 if (cmd_done
4078 && exec_done_display_p
4079 && (inferior_ptid == null_ptid
4080 || inferior_thread ()->state != THREAD_RUNNING))
4081 printf_unfiltered (_("completed.\n"));
4082}
4083
4084/* Record the frame and location we're currently stepping through. */
4085void
4086set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4087{
4088 struct thread_info *tp = inferior_thread ();
4089
4090 tp->control.step_frame_id = get_frame_id (frame);
4091 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4092
4093 tp->current_symtab = sal.symtab;
4094 tp->current_line = sal.line;
4095}
4096
4097/* Clear context switchable stepping state. */
4098
4099void
4100init_thread_stepping_state (struct thread_info *tss)
4101{
4102 tss->stepped_breakpoint = 0;
4103 tss->stepping_over_breakpoint = 0;
4104 tss->stepping_over_watchpoint = 0;
4105 tss->step_after_step_resume_breakpoint = 0;
4106}
4107
4108/* See infrun.h. */
4109
4110void
4111set_last_target_status (process_stratum_target *target, ptid_t ptid,
4112 target_waitstatus status)
4113{
4114 target_last_proc_target = target;
4115 target_last_wait_ptid = ptid;
4116 target_last_waitstatus = status;
4117}
4118
4119/* See infrun.h. */
4120
4121void
4122get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4123 target_waitstatus *status)
4124{
4125 if (target != nullptr)
4126 *target = target_last_proc_target;
4127 if (ptid != nullptr)
4128 *ptid = target_last_wait_ptid;
4129 if (status != nullptr)
4130 *status = target_last_waitstatus;
4131}
4132
4133/* See infrun.h. */
4134
4135void
4136nullify_last_target_wait_ptid (void)
4137{
4138 target_last_proc_target = nullptr;
4139 target_last_wait_ptid = minus_one_ptid;
4140 target_last_waitstatus = {};
4141}
4142
4143/* Switch thread contexts. */
4144
4145static void
4146context_switch (execution_control_state *ecs)
4147{
4148 if (debug_infrun
4149 && ecs->ptid != inferior_ptid
4150 && (inferior_ptid == null_ptid
4151 || ecs->event_thread != inferior_thread ()))
4152 {
4153 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4154 target_pid_to_str (inferior_ptid).c_str ());
4155 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4156 target_pid_to_str (ecs->ptid).c_str ());
4157 }
4158
4159 switch_to_thread (ecs->event_thread);
4160}
4161
4162/* If the target can't tell whether we've hit breakpoints
4163 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4164 check whether that could have been caused by a breakpoint. If so,
4165 adjust the PC, per gdbarch_decr_pc_after_break. */
4166
4167static void
4168adjust_pc_after_break (struct thread_info *thread,
4169 struct target_waitstatus *ws)
4170{
4171 struct regcache *regcache;
4172 struct gdbarch *gdbarch;
4173 CORE_ADDR breakpoint_pc, decr_pc;
4174
4175 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4176 we aren't, just return.
4177
4178 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4179 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4180 implemented by software breakpoints should be handled through the normal
4181 breakpoint layer.
4182
4183 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4184 different signals (SIGILL or SIGEMT for instance), but it is less
4185 clear where the PC is pointing afterwards. It may not match
4186 gdbarch_decr_pc_after_break. I don't know any specific target that
4187 generates these signals at breakpoints (the code has been in GDB since at
4188 least 1992) so I can not guess how to handle them here.
4189
4190 In earlier versions of GDB, a target with
4191 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4192 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4193 target with both of these set in GDB history, and it seems unlikely to be
4194 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4195
4196 if (ws->kind != TARGET_WAITKIND_STOPPED)
4197 return;
4198
4199 if (ws->value.sig != GDB_SIGNAL_TRAP)
4200 return;
4201
4202 /* In reverse execution, when a breakpoint is hit, the instruction
4203 under it has already been de-executed. The reported PC always
4204 points at the breakpoint address, so adjusting it further would
4205 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4206 architecture:
4207
4208 B1 0x08000000 : INSN1
4209 B2 0x08000001 : INSN2
4210 0x08000002 : INSN3
4211 PC -> 0x08000003 : INSN4
4212
4213 Say you're stopped at 0x08000003 as above. Reverse continuing
4214 from that point should hit B2 as below. Reading the PC when the
4215 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4216 been de-executed already.
4217
4218 B1 0x08000000 : INSN1
4219 B2 PC -> 0x08000001 : INSN2
4220 0x08000002 : INSN3
4221 0x08000003 : INSN4
4222
4223 We can't apply the same logic as for forward execution, because
4224 we would wrongly adjust the PC to 0x08000000, since there's a
4225 breakpoint at PC - 1. We'd then report a hit on B1, although
4226 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4227 behaviour. */
4228 if (execution_direction == EXEC_REVERSE)
4229 return;
4230
4231 /* If the target can tell whether the thread hit a SW breakpoint,
4232 trust it. Targets that can tell also adjust the PC
4233 themselves. */
4234 if (target_supports_stopped_by_sw_breakpoint ())
4235 return;
4236
4237 /* Note that relying on whether a breakpoint is planted in memory to
4238 determine this can fail. E.g,. the breakpoint could have been
4239 removed since. Or the thread could have been told to step an
4240 instruction the size of a breakpoint instruction, and only
4241 _after_ was a breakpoint inserted at its address. */
4242
4243 /* If this target does not decrement the PC after breakpoints, then
4244 we have nothing to do. */
4245 regcache = get_thread_regcache (thread);
4246 gdbarch = regcache->arch ();
4247
4248 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4249 if (decr_pc == 0)
4250 return;
4251
4252 const address_space *aspace = regcache->aspace ();
4253
4254 /* Find the location where (if we've hit a breakpoint) the
4255 breakpoint would be. */
4256 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4257
4258 /* If the target can't tell whether a software breakpoint triggered,
4259 fallback to figuring it out based on breakpoints we think were
4260 inserted in the target, and on whether the thread was stepped or
4261 continued. */
4262
4263 /* Check whether there actually is a software breakpoint inserted at
4264 that location.
4265
4266 If in non-stop mode, a race condition is possible where we've
4267 removed a breakpoint, but stop events for that breakpoint were
4268 already queued and arrive later. To suppress those spurious
4269 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4270 and retire them after a number of stop events are reported. Note
4271 this is an heuristic and can thus get confused. The real fix is
4272 to get the "stopped by SW BP and needs adjustment" info out of
4273 the target/kernel (and thus never reach here; see above). */
4274 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4275 || (target_is_non_stop_p ()
4276 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4277 {
4278 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4279
4280 if (record_full_is_used ())
4281 restore_operation_disable.emplace
4282 (record_full_gdb_operation_disable_set ());
4283
4284 /* When using hardware single-step, a SIGTRAP is reported for both
4285 a completed single-step and a software breakpoint. Need to
4286 differentiate between the two, as the latter needs adjusting
4287 but the former does not.
4288
4289 The SIGTRAP can be due to a completed hardware single-step only if
4290 - we didn't insert software single-step breakpoints
4291 - this thread is currently being stepped
4292
4293 If any of these events did not occur, we must have stopped due
4294 to hitting a software breakpoint, and have to back up to the
4295 breakpoint address.
4296
4297 As a special case, we could have hardware single-stepped a
4298 software breakpoint. In this case (prev_pc == breakpoint_pc),
4299 we also need to back up to the breakpoint address. */
4300
4301 if (thread_has_single_step_breakpoints_set (thread)
4302 || !currently_stepping (thread)
4303 || (thread->stepped_breakpoint
4304 && thread->prev_pc == breakpoint_pc))
4305 regcache_write_pc (regcache, breakpoint_pc);
4306 }
4307}
4308
4309static int
4310stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4311{
4312 for (frame = get_prev_frame (frame);
4313 frame != NULL;
4314 frame = get_prev_frame (frame))
4315 {
4316 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4317 return 1;
4318 if (get_frame_type (frame) != INLINE_FRAME)
4319 break;
4320 }
4321
4322 return 0;
4323}
4324
4325/* Look for an inline frame that is marked for skip.
4326 If PREV_FRAME is TRUE start at the previous frame,
4327 otherwise start at the current frame. Stop at the
4328 first non-inline frame, or at the frame where the
4329 step started. */
4330
4331static bool
4332inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4333{
4334 struct frame_info *frame = get_current_frame ();
4335
4336 if (prev_frame)
4337 frame = get_prev_frame (frame);
4338
4339 for (; frame != NULL; frame = get_prev_frame (frame))
4340 {
4341 const char *fn = NULL;
4342 symtab_and_line sal;
4343 struct symbol *sym;
4344
4345 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4346 break;
4347 if (get_frame_type (frame) != INLINE_FRAME)
4348 break;
4349
4350 sal = find_frame_sal (frame);
4351 sym = get_frame_function (frame);
4352
4353 if (sym != NULL)
4354 fn = sym->print_name ();
4355
4356 if (sal.line != 0
4357 && function_name_is_marked_for_skip (fn, sal))
4358 return true;
4359 }
4360
4361 return false;
4362}
4363
4364/* If the event thread has the stop requested flag set, pretend it
4365 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4366 target_stop). */
4367
4368static bool
4369handle_stop_requested (struct execution_control_state *ecs)
4370{
4371 if (ecs->event_thread->stop_requested)
4372 {
4373 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4374 ecs->ws.value.sig = GDB_SIGNAL_0;
4375 handle_signal_stop (ecs);
4376 return true;
4377 }
4378 return false;
4379}
4380
4381/* Auxiliary function that handles syscall entry/return events.
4382 It returns 1 if the inferior should keep going (and GDB
4383 should ignore the event), or 0 if the event deserves to be
4384 processed. */
4385
4386static int
4387handle_syscall_event (struct execution_control_state *ecs)
4388{
4389 struct regcache *regcache;
4390 int syscall_number;
4391
4392 context_switch (ecs);
4393
4394 regcache = get_thread_regcache (ecs->event_thread);
4395 syscall_number = ecs->ws.value.syscall_number;
4396 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4397
4398 if (catch_syscall_enabled () > 0
4399 && catching_syscall_number (syscall_number) > 0)
4400 {
4401 if (debug_infrun)
4402 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4403 syscall_number);
4404
4405 ecs->event_thread->control.stop_bpstat
4406 = bpstat_stop_status (regcache->aspace (),
4407 ecs->event_thread->suspend.stop_pc,
4408 ecs->event_thread, &ecs->ws);
4409
4410 if (handle_stop_requested (ecs))
4411 return 0;
4412
4413 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4414 {
4415 /* Catchpoint hit. */
4416 return 0;
4417 }
4418 }
4419
4420 if (handle_stop_requested (ecs))
4421 return 0;
4422
4423 /* If no catchpoint triggered for this, then keep going. */
4424 keep_going (ecs);
4425 return 1;
4426}
4427
4428/* Lazily fill in the execution_control_state's stop_func_* fields. */
4429
4430static void
4431fill_in_stop_func (struct gdbarch *gdbarch,
4432 struct execution_control_state *ecs)
4433{
4434 if (!ecs->stop_func_filled_in)
4435 {
4436 const block *block;
4437
4438 /* Don't care about return value; stop_func_start and stop_func_name
4439 will both be 0 if it doesn't work. */
4440 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4441 &ecs->stop_func_name,
4442 &ecs->stop_func_start,
4443 &ecs->stop_func_end,
4444 &block);
4445
4446 /* The call to find_pc_partial_function, above, will set
4447 stop_func_start and stop_func_end to the start and end
4448 of the range containing the stop pc. If this range
4449 contains the entry pc for the block (which is always the
4450 case for contiguous blocks), advance stop_func_start past
4451 the function's start offset and entrypoint. Note that
4452 stop_func_start is NOT advanced when in a range of a
4453 non-contiguous block that does not contain the entry pc. */
4454 if (block != nullptr
4455 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4456 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4457 {
4458 ecs->stop_func_start
4459 += gdbarch_deprecated_function_start_offset (gdbarch);
4460
4461 if (gdbarch_skip_entrypoint_p (gdbarch))
4462 ecs->stop_func_start
4463 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4464 }
4465
4466 ecs->stop_func_filled_in = 1;
4467 }
4468}
4469
4470
4471/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4472
4473static enum stop_kind
4474get_inferior_stop_soon (execution_control_state *ecs)
4475{
4476 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4477
4478 gdb_assert (inf != NULL);
4479 return inf->control.stop_soon;
4480}
4481
4482/* Poll for one event out of the current target. Store the resulting
4483 waitstatus in WS, and return the event ptid. Does not block. */
4484
4485static ptid_t
4486poll_one_curr_target (struct target_waitstatus *ws)
4487{
4488 ptid_t event_ptid;
4489
4490 overlay_cache_invalid = 1;
4491
4492 /* Flush target cache before starting to handle each event.
4493 Target was running and cache could be stale. This is just a
4494 heuristic. Running threads may modify target memory, but we
4495 don't get any event. */
4496 target_dcache_invalidate ();
4497
4498 if (deprecated_target_wait_hook)
4499 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4500 else
4501 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4502
4503 if (debug_infrun)
4504 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4505
4506 return event_ptid;
4507}
4508
4509/* An event reported by wait_one. */
4510
4511struct wait_one_event
4512{
4513 /* The target the event came out of. */
4514 process_stratum_target *target;
4515
4516 /* The PTID the event was for. */
4517 ptid_t ptid;
4518
4519 /* The waitstatus. */
4520 target_waitstatus ws;
4521};
4522
4523/* Wait for one event out of any target. */
4524
4525static wait_one_event
4526wait_one ()
4527{
4528 while (1)
4529 {
4530 for (inferior *inf : all_inferiors ())
4531 {
4532 process_stratum_target *target = inf->process_target ();
4533 if (target == NULL
4534 || !target->is_async_p ()
4535 || !target->threads_executing)
4536 continue;
4537
4538 switch_to_inferior_no_thread (inf);
4539
4540 wait_one_event event;
4541 event.target = target;
4542 event.ptid = poll_one_curr_target (&event.ws);
4543
4544 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4545 {
4546 /* If nothing is resumed, remove the target from the
4547 event loop. */
4548 target_async (0);
4549 }
4550 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4551 return event;
4552 }
4553
4554 /* Block waiting for some event. */
4555
4556 fd_set readfds;
4557 int nfds = 0;
4558
4559 FD_ZERO (&readfds);
4560
4561 for (inferior *inf : all_inferiors ())
4562 {
4563 process_stratum_target *target = inf->process_target ();
4564 if (target == NULL
4565 || !target->is_async_p ()
4566 || !target->threads_executing)
4567 continue;
4568
4569 int fd = target->async_wait_fd ();
4570 FD_SET (fd, &readfds);
4571 if (nfds <= fd)
4572 nfds = fd + 1;
4573 }
4574
4575 if (nfds == 0)
4576 {
4577 /* No waitable targets left. All must be stopped. */
4578 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4579 }
4580
4581 QUIT;
4582
4583 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4584 if (numfds < 0)
4585 {
4586 if (errno == EINTR)
4587 continue;
4588 else
4589 perror_with_name ("interruptible_select");
4590 }
4591 }
4592}
4593
4594/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4595 instead of the current thread. */
4596#define THREAD_STOPPED_BY(REASON) \
4597static int \
4598thread_stopped_by_ ## REASON (ptid_t ptid) \
4599{ \
4600 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4601 inferior_ptid = ptid; \
4602 \
4603 return target_stopped_by_ ## REASON (); \
4604}
4605
4606/* Generate thread_stopped_by_watchpoint. */
4607THREAD_STOPPED_BY (watchpoint)
4608/* Generate thread_stopped_by_sw_breakpoint. */
4609THREAD_STOPPED_BY (sw_breakpoint)
4610/* Generate thread_stopped_by_hw_breakpoint. */
4611THREAD_STOPPED_BY (hw_breakpoint)
4612
4613/* Save the thread's event and stop reason to process it later. */
4614
4615static void
4616save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4617{
4618 if (debug_infrun)
4619 {
4620 std::string statstr = target_waitstatus_to_string (ws);
4621
4622 fprintf_unfiltered (gdb_stdlog,
4623 "infrun: saving status %s for %d.%ld.%ld\n",
4624 statstr.c_str (),
4625 tp->ptid.pid (),
4626 tp->ptid.lwp (),
4627 tp->ptid.tid ());
4628 }
4629
4630 /* Record for later. */
4631 tp->suspend.waitstatus = *ws;
4632 tp->suspend.waitstatus_pending_p = 1;
4633
4634 struct regcache *regcache = get_thread_regcache (tp);
4635 const address_space *aspace = regcache->aspace ();
4636
4637 if (ws->kind == TARGET_WAITKIND_STOPPED
4638 && ws->value.sig == GDB_SIGNAL_TRAP)
4639 {
4640 CORE_ADDR pc = regcache_read_pc (regcache);
4641
4642 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4643
4644 if (thread_stopped_by_watchpoint (tp->ptid))
4645 {
4646 tp->suspend.stop_reason
4647 = TARGET_STOPPED_BY_WATCHPOINT;
4648 }
4649 else if (target_supports_stopped_by_sw_breakpoint ()
4650 && thread_stopped_by_sw_breakpoint (tp->ptid))
4651 {
4652 tp->suspend.stop_reason
4653 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4654 }
4655 else if (target_supports_stopped_by_hw_breakpoint ()
4656 && thread_stopped_by_hw_breakpoint (tp->ptid))
4657 {
4658 tp->suspend.stop_reason
4659 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4660 }
4661 else if (!target_supports_stopped_by_hw_breakpoint ()
4662 && hardware_breakpoint_inserted_here_p (aspace,
4663 pc))
4664 {
4665 tp->suspend.stop_reason
4666 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4667 }
4668 else if (!target_supports_stopped_by_sw_breakpoint ()
4669 && software_breakpoint_inserted_here_p (aspace,
4670 pc))
4671 {
4672 tp->suspend.stop_reason
4673 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4674 }
4675 else if (!thread_has_single_step_breakpoints_set (tp)
4676 && currently_stepping (tp))
4677 {
4678 tp->suspend.stop_reason
4679 = TARGET_STOPPED_BY_SINGLE_STEP;
4680 }
4681 }
4682}
4683
4684/* See infrun.h. */
4685
4686void
4687stop_all_threads (void)
4688{
4689 /* We may need multiple passes to discover all threads. */
4690 int pass;
4691 int iterations = 0;
4692
4693 gdb_assert (target_is_non_stop_p ());
4694
4695 if (debug_infrun)
4696 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4697
4698 scoped_restore_current_thread restore_thread;
4699
4700 target_thread_events (1);
4701 SCOPE_EXIT { target_thread_events (0); };
4702
4703 /* Request threads to stop, and then wait for the stops. Because
4704 threads we already know about can spawn more threads while we're
4705 trying to stop them, and we only learn about new threads when we
4706 update the thread list, do this in a loop, and keep iterating
4707 until two passes find no threads that need to be stopped. */
4708 for (pass = 0; pass < 2; pass++, iterations++)
4709 {
4710 if (debug_infrun)
4711 fprintf_unfiltered (gdb_stdlog,
4712 "infrun: stop_all_threads, pass=%d, "
4713 "iterations=%d\n", pass, iterations);
4714 while (1)
4715 {
4716 int need_wait = 0;
4717
4718 update_thread_list ();
4719
4720 /* Go through all threads looking for threads that we need
4721 to tell the target to stop. */
4722 for (thread_info *t : all_non_exited_threads ())
4723 {
4724 if (t->executing)
4725 {
4726 /* If already stopping, don't request a stop again.
4727 We just haven't seen the notification yet. */
4728 if (!t->stop_requested)
4729 {
4730 if (debug_infrun)
4731 fprintf_unfiltered (gdb_stdlog,
4732 "infrun: %s executing, "
4733 "need stop\n",
4734 target_pid_to_str (t->ptid).c_str ());
4735 switch_to_thread_no_regs (t);
4736 target_stop (t->ptid);
4737 t->stop_requested = 1;
4738 }
4739 else
4740 {
4741 if (debug_infrun)
4742 fprintf_unfiltered (gdb_stdlog,
4743 "infrun: %s executing, "
4744 "already stopping\n",
4745 target_pid_to_str (t->ptid).c_str ());
4746 }
4747
4748 if (t->stop_requested)
4749 need_wait = 1;
4750 }
4751 else
4752 {
4753 if (debug_infrun)
4754 fprintf_unfiltered (gdb_stdlog,
4755 "infrun: %s not executing\n",
4756 target_pid_to_str (t->ptid).c_str ());
4757
4758 /* The thread may be not executing, but still be
4759 resumed with a pending status to process. */
4760 t->resumed = 0;
4761 }
4762 }
4763
4764 if (!need_wait)
4765 break;
4766
4767 /* If we find new threads on the second iteration, restart
4768 over. We want to see two iterations in a row with all
4769 threads stopped. */
4770 if (pass > 0)
4771 pass = -1;
4772
4773 wait_one_event event = wait_one ();
4774
4775 if (debug_infrun)
4776 {
4777 fprintf_unfiltered (gdb_stdlog,
4778 "infrun: stop_all_threads %s %s\n",
4779 target_waitstatus_to_string (&event.ws).c_str (),
4780 target_pid_to_str (event.ptid).c_str ());
4781 }
4782
4783 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED
4784 || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4785 || event.ws.kind == TARGET_WAITKIND_EXITED
4786 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4787 {
4788 /* All resumed threads exited
4789 or one thread/process exited/signalled. */
4790 }
4791 else
4792 {
4793 thread_info *t = find_thread_ptid (event.target, event.ptid);
4794 if (t == NULL)
4795 t = add_thread (event.target, event.ptid);
4796
4797 t->stop_requested = 0;
4798 t->executing = 0;
4799 t->resumed = 0;
4800 t->control.may_range_step = 0;
4801
4802 /* This may be the first time we see the inferior report
4803 a stop. */
4804 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4805 if (inf->needs_setup)
4806 {
4807 switch_to_thread_no_regs (t);
4808 setup_inferior (0);
4809 }
4810
4811 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4812 && event.ws.value.sig == GDB_SIGNAL_0)
4813 {
4814 /* We caught the event that we intended to catch, so
4815 there's no event pending. */
4816 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4817 t->suspend.waitstatus_pending_p = 0;
4818
4819 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4820 {
4821 /* Add it back to the step-over queue. */
4822 if (debug_infrun)
4823 {
4824 fprintf_unfiltered (gdb_stdlog,
4825 "infrun: displaced-step of %s "
4826 "canceled: adding back to the "
4827 "step-over queue\n",
4828 target_pid_to_str (t->ptid).c_str ());
4829 }
4830 t->control.trap_expected = 0;
4831 thread_step_over_chain_enqueue (t);
4832 }
4833 }
4834 else
4835 {
4836 enum gdb_signal sig;
4837 struct regcache *regcache;
4838
4839 if (debug_infrun)
4840 {
4841 std::string statstr = target_waitstatus_to_string (&event.ws);
4842
4843 fprintf_unfiltered (gdb_stdlog,
4844 "infrun: target_wait %s, saving "
4845 "status for %d.%ld.%ld\n",
4846 statstr.c_str (),
4847 t->ptid.pid (),
4848 t->ptid.lwp (),
4849 t->ptid.tid ());
4850 }
4851
4852 /* Record for later. */
4853 save_waitstatus (t, &event.ws);
4854
4855 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4856 ? event.ws.value.sig : GDB_SIGNAL_0);
4857
4858 if (displaced_step_fixup (t, sig) < 0)
4859 {
4860 /* Add it back to the step-over queue. */
4861 t->control.trap_expected = 0;
4862 thread_step_over_chain_enqueue (t);
4863 }
4864
4865 regcache = get_thread_regcache (t);
4866 t->suspend.stop_pc = regcache_read_pc (regcache);
4867
4868 if (debug_infrun)
4869 {
4870 fprintf_unfiltered (gdb_stdlog,
4871 "infrun: saved stop_pc=%s for %s "
4872 "(currently_stepping=%d)\n",
4873 paddress (target_gdbarch (),
4874 t->suspend.stop_pc),
4875 target_pid_to_str (t->ptid).c_str (),
4876 currently_stepping (t));
4877 }
4878 }
4879 }
4880 }
4881 }
4882
4883 if (debug_infrun)
4884 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4885}
4886
4887/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4888
4889static int
4890handle_no_resumed (struct execution_control_state *ecs)
4891{
4892 if (target_can_async_p ())
4893 {
4894 struct ui *ui;
4895 int any_sync = 0;
4896
4897 ALL_UIS (ui)
4898 {
4899 if (ui->prompt_state == PROMPT_BLOCKED)
4900 {
4901 any_sync = 1;
4902 break;
4903 }
4904 }
4905 if (!any_sync)
4906 {
4907 /* There were no unwaited-for children left in the target, but,
4908 we're not synchronously waiting for events either. Just
4909 ignore. */
4910
4911 if (debug_infrun)
4912 fprintf_unfiltered (gdb_stdlog,
4913 "infrun: TARGET_WAITKIND_NO_RESUMED "
4914 "(ignoring: bg)\n");
4915 prepare_to_wait (ecs);
4916 return 1;
4917 }
4918 }
4919
4920 /* Otherwise, if we were running a synchronous execution command, we
4921 may need to cancel it and give the user back the terminal.
4922
4923 In non-stop mode, the target can't tell whether we've already
4924 consumed previous stop events, so it can end up sending us a
4925 no-resumed event like so:
4926
4927 #0 - thread 1 is left stopped
4928
4929 #1 - thread 2 is resumed and hits breakpoint
4930 -> TARGET_WAITKIND_STOPPED
4931
4932 #2 - thread 3 is resumed and exits
4933 this is the last resumed thread, so
4934 -> TARGET_WAITKIND_NO_RESUMED
4935
4936 #3 - gdb processes stop for thread 2 and decides to re-resume
4937 it.
4938
4939 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4940 thread 2 is now resumed, so the event should be ignored.
4941
4942 IOW, if the stop for thread 2 doesn't end a foreground command,
4943 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4944 event. But it could be that the event meant that thread 2 itself
4945 (or whatever other thread was the last resumed thread) exited.
4946
4947 To address this we refresh the thread list and check whether we
4948 have resumed threads _now_. In the example above, this removes
4949 thread 3 from the thread list. If thread 2 was re-resumed, we
4950 ignore this event. If we find no thread resumed, then we cancel
4951 the synchronous command show "no unwaited-for " to the user. */
4952 update_thread_list ();
4953
4954 for (thread_info *thread : all_non_exited_threads (ecs->target))
4955 {
4956 if (thread->executing
4957 || thread->suspend.waitstatus_pending_p)
4958 {
4959 /* There were no unwaited-for children left in the target at
4960 some point, but there are now. Just ignore. */
4961 if (debug_infrun)
4962 fprintf_unfiltered (gdb_stdlog,
4963 "infrun: TARGET_WAITKIND_NO_RESUMED "
4964 "(ignoring: found resumed)\n");
4965 prepare_to_wait (ecs);
4966 return 1;
4967 }
4968 }
4969
4970 /* Note however that we may find no resumed thread because the whole
4971 process exited meanwhile (thus updating the thread list results
4972 in an empty thread list). In this case we know we'll be getting
4973 a process exit event shortly. */
4974 for (inferior *inf : all_non_exited_inferiors (ecs->target))
4975 {
4976 thread_info *thread = any_live_thread_of_inferior (inf);
4977 if (thread == NULL)
4978 {
4979 if (debug_infrun)
4980 fprintf_unfiltered (gdb_stdlog,
4981 "infrun: TARGET_WAITKIND_NO_RESUMED "
4982 "(expect process exit)\n");
4983 prepare_to_wait (ecs);
4984 return 1;
4985 }
4986 }
4987
4988 /* Go ahead and report the event. */
4989 return 0;
4990}
4991
4992/* Given an execution control state that has been freshly filled in by
4993 an event from the inferior, figure out what it means and take
4994 appropriate action.
4995
4996 The alternatives are:
4997
4998 1) stop_waiting and return; to really stop and return to the
4999 debugger.
5000
5001 2) keep_going and return; to wait for the next event (set
5002 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5003 once). */
5004
5005static void
5006handle_inferior_event (struct execution_control_state *ecs)
5007{
5008 /* Make sure that all temporary struct value objects that were
5009 created during the handling of the event get deleted at the
5010 end. */
5011 scoped_value_mark free_values;
5012
5013 enum stop_kind stop_soon;
5014
5015 if (debug_infrun)
5016 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5017 target_waitstatus_to_string (&ecs->ws).c_str ());
5018
5019 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5020 {
5021 /* We had an event in the inferior, but we are not interested in
5022 handling it at this level. The lower layers have already
5023 done what needs to be done, if anything.
5024
5025 One of the possible circumstances for this is when the
5026 inferior produces output for the console. The inferior has
5027 not stopped, and we are ignoring the event. Another possible
5028 circumstance is any event which the lower level knows will be
5029 reported multiple times without an intervening resume. */
5030 prepare_to_wait (ecs);
5031 return;
5032 }
5033
5034 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5035 {
5036 prepare_to_wait (ecs);
5037 return;
5038 }
5039
5040 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5041 && handle_no_resumed (ecs))
5042 return;
5043
5044 /* Cache the last target/ptid/waitstatus. */
5045 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5046
5047 /* Always clear state belonging to the previous time we stopped. */
5048 stop_stack_dummy = STOP_NONE;
5049
5050 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5051 {
5052 /* No unwaited-for children left. IOW, all resumed children
5053 have exited. */
5054 stop_print_frame = 0;
5055 stop_waiting (ecs);
5056 return;
5057 }
5058
5059 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5060 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5061 {
5062 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5063 /* If it's a new thread, add it to the thread database. */
5064 if (ecs->event_thread == NULL)
5065 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5066
5067 /* Disable range stepping. If the next step request could use a
5068 range, this will be end up re-enabled then. */
5069 ecs->event_thread->control.may_range_step = 0;
5070 }
5071
5072 /* Dependent on valid ECS->EVENT_THREAD. */
5073 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5074
5075 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5076 reinit_frame_cache ();
5077
5078 breakpoint_retire_moribund ();
5079
5080 /* First, distinguish signals caused by the debugger from signals
5081 that have to do with the program's own actions. Note that
5082 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5083 on the operating system version. Here we detect when a SIGILL or
5084 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5085 something similar for SIGSEGV, since a SIGSEGV will be generated
5086 when we're trying to execute a breakpoint instruction on a
5087 non-executable stack. This happens for call dummy breakpoints
5088 for architectures like SPARC that place call dummies on the
5089 stack. */
5090 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5091 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5092 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5093 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5094 {
5095 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5096
5097 if (breakpoint_inserted_here_p (regcache->aspace (),
5098 regcache_read_pc (regcache)))
5099 {
5100 if (debug_infrun)
5101 fprintf_unfiltered (gdb_stdlog,
5102 "infrun: Treating signal as SIGTRAP\n");
5103 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5104 }
5105 }
5106
5107 /* Mark the non-executing threads accordingly. In all-stop, all
5108 threads of all processes are stopped when we get any event
5109 reported. In non-stop mode, only the event thread stops. */
5110 {
5111 ptid_t mark_ptid;
5112
5113 if (!target_is_non_stop_p ())
5114 mark_ptid = minus_one_ptid;
5115 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
5116 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
5117 {
5118 /* If we're handling a process exit in non-stop mode, even
5119 though threads haven't been deleted yet, one would think
5120 that there is nothing to do, as threads of the dead process
5121 will be soon deleted, and threads of any other process were
5122 left running. However, on some targets, threads survive a
5123 process exit event. E.g., for the "checkpoint" command,
5124 when the current checkpoint/fork exits, linux-fork.c
5125 automatically switches to another fork from within
5126 target_mourn_inferior, by associating the same
5127 inferior/thread to another fork. We haven't mourned yet at
5128 this point, but we must mark any threads left in the
5129 process as not-executing so that finish_thread_state marks
5130 them stopped (in the user's perspective) if/when we present
5131 the stop to the user. */
5132 mark_ptid = ptid_t (ecs->ptid.pid ());
5133 }
5134 else
5135 mark_ptid = ecs->ptid;
5136
5137 set_executing (ecs->target, mark_ptid, 0);
5138
5139 /* Likewise the resumed flag. */
5140 set_resumed (ecs->target, mark_ptid, 0);
5141 }
5142
5143 switch (ecs->ws.kind)
5144 {
5145 case TARGET_WAITKIND_LOADED:
5146 context_switch (ecs);
5147 /* Ignore gracefully during startup of the inferior, as it might
5148 be the shell which has just loaded some objects, otherwise
5149 add the symbols for the newly loaded objects. Also ignore at
5150 the beginning of an attach or remote session; we will query
5151 the full list of libraries once the connection is
5152 established. */
5153
5154 stop_soon = get_inferior_stop_soon (ecs);
5155 if (stop_soon == NO_STOP_QUIETLY)
5156 {
5157 struct regcache *regcache;
5158
5159 regcache = get_thread_regcache (ecs->event_thread);
5160
5161 handle_solib_event ();
5162
5163 ecs->event_thread->control.stop_bpstat
5164 = bpstat_stop_status (regcache->aspace (),
5165 ecs->event_thread->suspend.stop_pc,
5166 ecs->event_thread, &ecs->ws);
5167
5168 if (handle_stop_requested (ecs))
5169 return;
5170
5171 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5172 {
5173 /* A catchpoint triggered. */
5174 process_event_stop_test (ecs);
5175 return;
5176 }
5177
5178 /* If requested, stop when the dynamic linker notifies
5179 gdb of events. This allows the user to get control
5180 and place breakpoints in initializer routines for
5181 dynamically loaded objects (among other things). */
5182 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5183 if (stop_on_solib_events)
5184 {
5185 /* Make sure we print "Stopped due to solib-event" in
5186 normal_stop. */
5187 stop_print_frame = 1;
5188
5189 stop_waiting (ecs);
5190 return;
5191 }
5192 }
5193
5194 /* If we are skipping through a shell, or through shared library
5195 loading that we aren't interested in, resume the program. If
5196 we're running the program normally, also resume. */
5197 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5198 {
5199 /* Loading of shared libraries might have changed breakpoint
5200 addresses. Make sure new breakpoints are inserted. */
5201 if (stop_soon == NO_STOP_QUIETLY)
5202 insert_breakpoints ();
5203 resume (GDB_SIGNAL_0);
5204 prepare_to_wait (ecs);
5205 return;
5206 }
5207
5208 /* But stop if we're attaching or setting up a remote
5209 connection. */
5210 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5211 || stop_soon == STOP_QUIETLY_REMOTE)
5212 {
5213 if (debug_infrun)
5214 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5215 stop_waiting (ecs);
5216 return;
5217 }
5218
5219 internal_error (__FILE__, __LINE__,
5220 _("unhandled stop_soon: %d"), (int) stop_soon);
5221
5222 case TARGET_WAITKIND_SPURIOUS:
5223 if (handle_stop_requested (ecs))
5224 return;
5225 context_switch (ecs);
5226 resume (GDB_SIGNAL_0);
5227 prepare_to_wait (ecs);
5228 return;
5229
5230 case TARGET_WAITKIND_THREAD_CREATED:
5231 if (handle_stop_requested (ecs))
5232 return;
5233 context_switch (ecs);
5234 if (!switch_back_to_stepped_thread (ecs))
5235 keep_going (ecs);
5236 return;
5237
5238 case TARGET_WAITKIND_EXITED:
5239 case TARGET_WAITKIND_SIGNALLED:
5240 inferior_ptid = ecs->ptid;
5241 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
5242 set_current_program_space (current_inferior ()->pspace);
5243 handle_vfork_child_exec_or_exit (0);
5244 target_terminal::ours (); /* Must do this before mourn anyway. */
5245
5246 /* Clearing any previous state of convenience variables. */
5247 clear_exit_convenience_vars ();
5248
5249 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5250 {
5251 /* Record the exit code in the convenience variable $_exitcode, so
5252 that the user can inspect this again later. */
5253 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5254 (LONGEST) ecs->ws.value.integer);
5255
5256 /* Also record this in the inferior itself. */
5257 current_inferior ()->has_exit_code = 1;
5258 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5259
5260 /* Support the --return-child-result option. */
5261 return_child_result_value = ecs->ws.value.integer;
5262
5263 gdb::observers::exited.notify (ecs->ws.value.integer);
5264 }
5265 else
5266 {
5267 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5268
5269 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5270 {
5271 /* Set the value of the internal variable $_exitsignal,
5272 which holds the signal uncaught by the inferior. */
5273 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5274 gdbarch_gdb_signal_to_target (gdbarch,
5275 ecs->ws.value.sig));
5276 }
5277 else
5278 {
5279 /* We don't have access to the target's method used for
5280 converting between signal numbers (GDB's internal
5281 representation <-> target's representation).
5282 Therefore, we cannot do a good job at displaying this
5283 information to the user. It's better to just warn
5284 her about it (if infrun debugging is enabled), and
5285 give up. */
5286 if (debug_infrun)
5287 fprintf_filtered (gdb_stdlog, _("\
5288Cannot fill $_exitsignal with the correct signal number.\n"));
5289 }
5290
5291 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5292 }
5293
5294 gdb_flush (gdb_stdout);
5295 target_mourn_inferior (inferior_ptid);
5296 stop_print_frame = 0;
5297 stop_waiting (ecs);
5298 return;
5299
5300 case TARGET_WAITKIND_FORKED:
5301 case TARGET_WAITKIND_VFORKED:
5302 /* Check whether the inferior is displaced stepping. */
5303 {
5304 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5305 struct gdbarch *gdbarch = regcache->arch ();
5306
5307 /* If checking displaced stepping is supported, and thread
5308 ecs->ptid is displaced stepping. */
5309 if (displaced_step_in_progress_thread (ecs->event_thread))
5310 {
5311 struct inferior *parent_inf
5312 = find_inferior_ptid (ecs->target, ecs->ptid);
5313 struct regcache *child_regcache;
5314 CORE_ADDR parent_pc;
5315
5316 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5317 indicating that the displaced stepping of syscall instruction
5318 has been done. Perform cleanup for parent process here. Note
5319 that this operation also cleans up the child process for vfork,
5320 because their pages are shared. */
5321 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5322 /* Start a new step-over in another thread if there's one
5323 that needs it. */
5324 start_step_over ();
5325
5326 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5327 {
5328 struct displaced_step_inferior_state *displaced
5329 = get_displaced_stepping_state (parent_inf);
5330
5331 /* Restore scratch pad for child process. */
5332 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5333 }
5334
5335 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5336 the child's PC is also within the scratchpad. Set the child's PC
5337 to the parent's PC value, which has already been fixed up.
5338 FIXME: we use the parent's aspace here, although we're touching
5339 the child, because the child hasn't been added to the inferior
5340 list yet at this point. */
5341
5342 child_regcache
5343 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5344 ecs->ws.value.related_pid,
5345 gdbarch,
5346 parent_inf->aspace);
5347 /* Read PC value of parent process. */
5348 parent_pc = regcache_read_pc (regcache);
5349
5350 if (debug_displaced)
5351 fprintf_unfiltered (gdb_stdlog,
5352 "displaced: write child pc from %s to %s\n",
5353 paddress (gdbarch,
5354 regcache_read_pc (child_regcache)),
5355 paddress (gdbarch, parent_pc));
5356
5357 regcache_write_pc (child_regcache, parent_pc);
5358 }
5359 }
5360
5361 context_switch (ecs);
5362
5363 /* Immediately detach breakpoints from the child before there's
5364 any chance of letting the user delete breakpoints from the
5365 breakpoint lists. If we don't do this early, it's easy to
5366 leave left over traps in the child, vis: "break foo; catch
5367 fork; c; <fork>; del; c; <child calls foo>". We only follow
5368 the fork on the last `continue', and by that time the
5369 breakpoint at "foo" is long gone from the breakpoint table.
5370 If we vforked, then we don't need to unpatch here, since both
5371 parent and child are sharing the same memory pages; we'll
5372 need to unpatch at follow/detach time instead to be certain
5373 that new breakpoints added between catchpoint hit time and
5374 vfork follow are detached. */
5375 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5376 {
5377 /* This won't actually modify the breakpoint list, but will
5378 physically remove the breakpoints from the child. */
5379 detach_breakpoints (ecs->ws.value.related_pid);
5380 }
5381
5382 delete_just_stopped_threads_single_step_breakpoints ();
5383
5384 /* In case the event is caught by a catchpoint, remember that
5385 the event is to be followed at the next resume of the thread,
5386 and not immediately. */
5387 ecs->event_thread->pending_follow = ecs->ws;
5388
5389 ecs->event_thread->suspend.stop_pc
5390 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5391
5392 ecs->event_thread->control.stop_bpstat
5393 = bpstat_stop_status (get_current_regcache ()->aspace (),
5394 ecs->event_thread->suspend.stop_pc,
5395 ecs->event_thread, &ecs->ws);
5396
5397 if (handle_stop_requested (ecs))
5398 return;
5399
5400 /* If no catchpoint triggered for this, then keep going. Note
5401 that we're interested in knowing the bpstat actually causes a
5402 stop, not just if it may explain the signal. Software
5403 watchpoints, for example, always appear in the bpstat. */
5404 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5405 {
5406 int should_resume;
5407 int follow_child
5408 = (follow_fork_mode_string == follow_fork_mode_child);
5409
5410 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5411
5412 process_stratum_target *targ
5413 = ecs->event_thread->inf->process_target ();
5414
5415 should_resume = follow_fork ();
5416
5417 /* Note that one of these may be an invalid pointer,
5418 depending on detach_fork. */
5419 thread_info *parent = ecs->event_thread;
5420 thread_info *child
5421 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5422
5423 /* At this point, the parent is marked running, and the
5424 child is marked stopped. */
5425
5426 /* If not resuming the parent, mark it stopped. */
5427 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5428 parent->set_running (false);
5429
5430 /* If resuming the child, mark it running. */
5431 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5432 child->set_running (true);
5433
5434 /* In non-stop mode, also resume the other branch. */
5435 if (!detach_fork && (non_stop
5436 || (sched_multi && target_is_non_stop_p ())))
5437 {
5438 if (follow_child)
5439 switch_to_thread (parent);
5440 else
5441 switch_to_thread (child);
5442
5443 ecs->event_thread = inferior_thread ();
5444 ecs->ptid = inferior_ptid;
5445 keep_going (ecs);
5446 }
5447
5448 if (follow_child)
5449 switch_to_thread (child);
5450 else
5451 switch_to_thread (parent);
5452
5453 ecs->event_thread = inferior_thread ();
5454 ecs->ptid = inferior_ptid;
5455
5456 if (should_resume)
5457 keep_going (ecs);
5458 else
5459 stop_waiting (ecs);
5460 return;
5461 }
5462 process_event_stop_test (ecs);
5463 return;
5464
5465 case TARGET_WAITKIND_VFORK_DONE:
5466 /* Done with the shared memory region. Re-insert breakpoints in
5467 the parent, and keep going. */
5468
5469 context_switch (ecs);
5470
5471 current_inferior ()->waiting_for_vfork_done = 0;
5472 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5473
5474 if (handle_stop_requested (ecs))
5475 return;
5476
5477 /* This also takes care of reinserting breakpoints in the
5478 previously locked inferior. */
5479 keep_going (ecs);
5480 return;
5481
5482 case TARGET_WAITKIND_EXECD:
5483
5484 /* Note we can't read registers yet (the stop_pc), because we
5485 don't yet know the inferior's post-exec architecture.
5486 'stop_pc' is explicitly read below instead. */
5487 switch_to_thread_no_regs (ecs->event_thread);
5488
5489 /* Do whatever is necessary to the parent branch of the vfork. */
5490 handle_vfork_child_exec_or_exit (1);
5491
5492 /* This causes the eventpoints and symbol table to be reset.
5493 Must do this now, before trying to determine whether to
5494 stop. */
5495 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5496
5497 /* In follow_exec we may have deleted the original thread and
5498 created a new one. Make sure that the event thread is the
5499 execd thread for that case (this is a nop otherwise). */
5500 ecs->event_thread = inferior_thread ();
5501
5502 ecs->event_thread->suspend.stop_pc
5503 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5504
5505 ecs->event_thread->control.stop_bpstat
5506 = bpstat_stop_status (get_current_regcache ()->aspace (),
5507 ecs->event_thread->suspend.stop_pc,
5508 ecs->event_thread, &ecs->ws);
5509
5510 /* Note that this may be referenced from inside
5511 bpstat_stop_status above, through inferior_has_execd. */
5512 xfree (ecs->ws.value.execd_pathname);
5513 ecs->ws.value.execd_pathname = NULL;
5514
5515 if (handle_stop_requested (ecs))
5516 return;
5517
5518 /* If no catchpoint triggered for this, then keep going. */
5519 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5520 {
5521 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5522 keep_going (ecs);
5523 return;
5524 }
5525 process_event_stop_test (ecs);
5526 return;
5527
5528 /* Be careful not to try to gather much state about a thread
5529 that's in a syscall. It's frequently a losing proposition. */
5530 case TARGET_WAITKIND_SYSCALL_ENTRY:
5531 /* Getting the current syscall number. */
5532 if (handle_syscall_event (ecs) == 0)
5533 process_event_stop_test (ecs);
5534 return;
5535
5536 /* Before examining the threads further, step this thread to
5537 get it entirely out of the syscall. (We get notice of the
5538 event when the thread is just on the verge of exiting a
5539 syscall. Stepping one instruction seems to get it back
5540 into user code.) */
5541 case TARGET_WAITKIND_SYSCALL_RETURN:
5542 if (handle_syscall_event (ecs) == 0)
5543 process_event_stop_test (ecs);
5544 return;
5545
5546 case TARGET_WAITKIND_STOPPED:
5547 handle_signal_stop (ecs);
5548 return;
5549
5550 case TARGET_WAITKIND_NO_HISTORY:
5551 /* Reverse execution: target ran out of history info. */
5552
5553 /* Switch to the stopped thread. */
5554 context_switch (ecs);
5555 if (debug_infrun)
5556 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5557
5558 delete_just_stopped_threads_single_step_breakpoints ();
5559 ecs->event_thread->suspend.stop_pc
5560 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5561
5562 if (handle_stop_requested (ecs))
5563 return;
5564
5565 gdb::observers::no_history.notify ();
5566 stop_waiting (ecs);
5567 return;
5568 }
5569}
5570
5571/* Restart threads back to what they were trying to do back when we
5572 paused them for an in-line step-over. The EVENT_THREAD thread is
5573 ignored. */
5574
5575static void
5576restart_threads (struct thread_info *event_thread)
5577{
5578 /* In case the instruction just stepped spawned a new thread. */
5579 update_thread_list ();
5580
5581 for (thread_info *tp : all_non_exited_threads ())
5582 {
5583 switch_to_thread_no_regs (tp);
5584
5585 if (tp == event_thread)
5586 {
5587 if (debug_infrun)
5588 fprintf_unfiltered (gdb_stdlog,
5589 "infrun: restart threads: "
5590 "[%s] is event thread\n",
5591 target_pid_to_str (tp->ptid).c_str ());
5592 continue;
5593 }
5594
5595 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5596 {
5597 if (debug_infrun)
5598 fprintf_unfiltered (gdb_stdlog,
5599 "infrun: restart threads: "
5600 "[%s] not meant to be running\n",
5601 target_pid_to_str (tp->ptid).c_str ());
5602 continue;
5603 }
5604
5605 if (tp->resumed)
5606 {
5607 if (debug_infrun)
5608 fprintf_unfiltered (gdb_stdlog,
5609 "infrun: restart threads: [%s] resumed\n",
5610 target_pid_to_str (tp->ptid).c_str ());
5611 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5612 continue;
5613 }
5614
5615 if (thread_is_in_step_over_chain (tp))
5616 {
5617 if (debug_infrun)
5618 fprintf_unfiltered (gdb_stdlog,
5619 "infrun: restart threads: "
5620 "[%s] needs step-over\n",
5621 target_pid_to_str (tp->ptid).c_str ());
5622 gdb_assert (!tp->resumed);
5623 continue;
5624 }
5625
5626
5627 if (tp->suspend.waitstatus_pending_p)
5628 {
5629 if (debug_infrun)
5630 fprintf_unfiltered (gdb_stdlog,
5631 "infrun: restart threads: "
5632 "[%s] has pending status\n",
5633 target_pid_to_str (tp->ptid).c_str ());
5634 tp->resumed = 1;
5635 continue;
5636 }
5637
5638 gdb_assert (!tp->stop_requested);
5639
5640 /* If some thread needs to start a step-over at this point, it
5641 should still be in the step-over queue, and thus skipped
5642 above. */
5643 if (thread_still_needs_step_over (tp))
5644 {
5645 internal_error (__FILE__, __LINE__,
5646 "thread [%s] needs a step-over, but not in "
5647 "step-over queue\n",
5648 target_pid_to_str (tp->ptid).c_str ());
5649 }
5650
5651 if (currently_stepping (tp))
5652 {
5653 if (debug_infrun)
5654 fprintf_unfiltered (gdb_stdlog,
5655 "infrun: restart threads: [%s] was stepping\n",
5656 target_pid_to_str (tp->ptid).c_str ());
5657 keep_going_stepped_thread (tp);
5658 }
5659 else
5660 {
5661 struct execution_control_state ecss;
5662 struct execution_control_state *ecs = &ecss;
5663
5664 if (debug_infrun)
5665 fprintf_unfiltered (gdb_stdlog,
5666 "infrun: restart threads: [%s] continuing\n",
5667 target_pid_to_str (tp->ptid).c_str ());
5668 reset_ecs (ecs, tp);
5669 switch_to_thread (tp);
5670 keep_going_pass_signal (ecs);
5671 }
5672 }
5673}
5674
5675/* Callback for iterate_over_threads. Find a resumed thread that has
5676 a pending waitstatus. */
5677
5678static int
5679resumed_thread_with_pending_status (struct thread_info *tp,
5680 void *arg)
5681{
5682 return (tp->resumed
5683 && tp->suspend.waitstatus_pending_p);
5684}
5685
5686/* Called when we get an event that may finish an in-line or
5687 out-of-line (displaced stepping) step-over started previously.
5688 Return true if the event is processed and we should go back to the
5689 event loop; false if the caller should continue processing the
5690 event. */
5691
5692static int
5693finish_step_over (struct execution_control_state *ecs)
5694{
5695 int had_step_over_info;
5696
5697 displaced_step_fixup (ecs->event_thread,
5698 ecs->event_thread->suspend.stop_signal);
5699
5700 had_step_over_info = step_over_info_valid_p ();
5701
5702 if (had_step_over_info)
5703 {
5704 /* If we're stepping over a breakpoint with all threads locked,
5705 then only the thread that was stepped should be reporting
5706 back an event. */
5707 gdb_assert (ecs->event_thread->control.trap_expected);
5708
5709 clear_step_over_info ();
5710 }
5711
5712 if (!target_is_non_stop_p ())
5713 return 0;
5714
5715 /* Start a new step-over in another thread if there's one that
5716 needs it. */
5717 start_step_over ();
5718
5719 /* If we were stepping over a breakpoint before, and haven't started
5720 a new in-line step-over sequence, then restart all other threads
5721 (except the event thread). We can't do this in all-stop, as then
5722 e.g., we wouldn't be able to issue any other remote packet until
5723 these other threads stop. */
5724 if (had_step_over_info && !step_over_info_valid_p ())
5725 {
5726 struct thread_info *pending;
5727
5728 /* If we only have threads with pending statuses, the restart
5729 below won't restart any thread and so nothing re-inserts the
5730 breakpoint we just stepped over. But we need it inserted
5731 when we later process the pending events, otherwise if
5732 another thread has a pending event for this breakpoint too,
5733 we'd discard its event (because the breakpoint that
5734 originally caused the event was no longer inserted). */
5735 context_switch (ecs);
5736 insert_breakpoints ();
5737
5738 restart_threads (ecs->event_thread);
5739
5740 /* If we have events pending, go through handle_inferior_event
5741 again, picking up a pending event at random. This avoids
5742 thread starvation. */
5743
5744 /* But not if we just stepped over a watchpoint in order to let
5745 the instruction execute so we can evaluate its expression.
5746 The set of watchpoints that triggered is recorded in the
5747 breakpoint objects themselves (see bp->watchpoint_triggered).
5748 If we processed another event first, that other event could
5749 clobber this info. */
5750 if (ecs->event_thread->stepping_over_watchpoint)
5751 return 0;
5752
5753 pending = iterate_over_threads (resumed_thread_with_pending_status,
5754 NULL);
5755 if (pending != NULL)
5756 {
5757 struct thread_info *tp = ecs->event_thread;
5758 struct regcache *regcache;
5759
5760 if (debug_infrun)
5761 {
5762 fprintf_unfiltered (gdb_stdlog,
5763 "infrun: found resumed threads with "
5764 "pending events, saving status\n");
5765 }
5766
5767 gdb_assert (pending != tp);
5768
5769 /* Record the event thread's event for later. */
5770 save_waitstatus (tp, &ecs->ws);
5771 /* This was cleared early, by handle_inferior_event. Set it
5772 so this pending event is considered by
5773 do_target_wait. */
5774 tp->resumed = 1;
5775
5776 gdb_assert (!tp->executing);
5777
5778 regcache = get_thread_regcache (tp);
5779 tp->suspend.stop_pc = regcache_read_pc (regcache);
5780
5781 if (debug_infrun)
5782 {
5783 fprintf_unfiltered (gdb_stdlog,
5784 "infrun: saved stop_pc=%s for %s "
5785 "(currently_stepping=%d)\n",
5786 paddress (target_gdbarch (),
5787 tp->suspend.stop_pc),
5788 target_pid_to_str (tp->ptid).c_str (),
5789 currently_stepping (tp));
5790 }
5791
5792 /* This in-line step-over finished; clear this so we won't
5793 start a new one. This is what handle_signal_stop would
5794 do, if we returned false. */
5795 tp->stepping_over_breakpoint = 0;
5796
5797 /* Wake up the event loop again. */
5798 mark_async_event_handler (infrun_async_inferior_event_token);
5799
5800 prepare_to_wait (ecs);
5801 return 1;
5802 }
5803 }
5804
5805 return 0;
5806}
5807
5808/* Come here when the program has stopped with a signal. */
5809
5810static void
5811handle_signal_stop (struct execution_control_state *ecs)
5812{
5813 struct frame_info *frame;
5814 struct gdbarch *gdbarch;
5815 int stopped_by_watchpoint;
5816 enum stop_kind stop_soon;
5817 int random_signal;
5818
5819 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5820
5821 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5822
5823 /* Do we need to clean up the state of a thread that has
5824 completed a displaced single-step? (Doing so usually affects
5825 the PC, so do it here, before we set stop_pc.) */
5826 if (finish_step_over (ecs))
5827 return;
5828
5829 /* If we either finished a single-step or hit a breakpoint, but
5830 the user wanted this thread to be stopped, pretend we got a
5831 SIG0 (generic unsignaled stop). */
5832 if (ecs->event_thread->stop_requested
5833 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5834 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5835
5836 ecs->event_thread->suspend.stop_pc
5837 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5838
5839 if (debug_infrun)
5840 {
5841 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5842 struct gdbarch *reg_gdbarch = regcache->arch ();
5843
5844 switch_to_thread (ecs->event_thread);
5845
5846 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5847 paddress (reg_gdbarch,
5848 ecs->event_thread->suspend.stop_pc));
5849 if (target_stopped_by_watchpoint ())
5850 {
5851 CORE_ADDR addr;
5852
5853 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5854
5855 if (target_stopped_data_address (current_top_target (), &addr))
5856 fprintf_unfiltered (gdb_stdlog,
5857 "infrun: stopped data address = %s\n",
5858 paddress (reg_gdbarch, addr));
5859 else
5860 fprintf_unfiltered (gdb_stdlog,
5861 "infrun: (no data address available)\n");
5862 }
5863 }
5864
5865 /* This is originated from start_remote(), start_inferior() and
5866 shared libraries hook functions. */
5867 stop_soon = get_inferior_stop_soon (ecs);
5868 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5869 {
5870 context_switch (ecs);
5871 if (debug_infrun)
5872 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5873 stop_print_frame = 1;
5874 stop_waiting (ecs);
5875 return;
5876 }
5877
5878 /* This originates from attach_command(). We need to overwrite
5879 the stop_signal here, because some kernels don't ignore a
5880 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5881 See more comments in inferior.h. On the other hand, if we
5882 get a non-SIGSTOP, report it to the user - assume the backend
5883 will handle the SIGSTOP if it should show up later.
5884
5885 Also consider that the attach is complete when we see a
5886 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5887 target extended-remote report it instead of a SIGSTOP
5888 (e.g. gdbserver). We already rely on SIGTRAP being our
5889 signal, so this is no exception.
5890
5891 Also consider that the attach is complete when we see a
5892 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5893 the target to stop all threads of the inferior, in case the
5894 low level attach operation doesn't stop them implicitly. If
5895 they weren't stopped implicitly, then the stub will report a
5896 GDB_SIGNAL_0, meaning: stopped for no particular reason
5897 other than GDB's request. */
5898 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5899 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5900 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5901 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5902 {
5903 stop_print_frame = 1;
5904 stop_waiting (ecs);
5905 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5906 return;
5907 }
5908
5909 /* See if something interesting happened to the non-current thread. If
5910 so, then switch to that thread. */
5911 if (ecs->ptid != inferior_ptid)
5912 {
5913 if (debug_infrun)
5914 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5915
5916 context_switch (ecs);
5917
5918 if (deprecated_context_hook)
5919 deprecated_context_hook (ecs->event_thread->global_num);
5920 }
5921
5922 /* At this point, get hold of the now-current thread's frame. */
5923 frame = get_current_frame ();
5924 gdbarch = get_frame_arch (frame);
5925
5926 /* Pull the single step breakpoints out of the target. */
5927 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5928 {
5929 struct regcache *regcache;
5930 CORE_ADDR pc;
5931
5932 regcache = get_thread_regcache (ecs->event_thread);
5933 const address_space *aspace = regcache->aspace ();
5934
5935 pc = regcache_read_pc (regcache);
5936
5937 /* However, before doing so, if this single-step breakpoint was
5938 actually for another thread, set this thread up for moving
5939 past it. */
5940 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5941 aspace, pc))
5942 {
5943 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5944 {
5945 if (debug_infrun)
5946 {
5947 fprintf_unfiltered (gdb_stdlog,
5948 "infrun: [%s] hit another thread's "
5949 "single-step breakpoint\n",
5950 target_pid_to_str (ecs->ptid).c_str ());
5951 }
5952 ecs->hit_singlestep_breakpoint = 1;
5953 }
5954 }
5955 else
5956 {
5957 if (debug_infrun)
5958 {
5959 fprintf_unfiltered (gdb_stdlog,
5960 "infrun: [%s] hit its "
5961 "single-step breakpoint\n",
5962 target_pid_to_str (ecs->ptid).c_str ());
5963 }
5964 }
5965 }
5966 delete_just_stopped_threads_single_step_breakpoints ();
5967
5968 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5969 && ecs->event_thread->control.trap_expected
5970 && ecs->event_thread->stepping_over_watchpoint)
5971 stopped_by_watchpoint = 0;
5972 else
5973 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5974
5975 /* If necessary, step over this watchpoint. We'll be back to display
5976 it in a moment. */
5977 if (stopped_by_watchpoint
5978 && (target_have_steppable_watchpoint
5979 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5980 {
5981 /* At this point, we are stopped at an instruction which has
5982 attempted to write to a piece of memory under control of
5983 a watchpoint. The instruction hasn't actually executed
5984 yet. If we were to evaluate the watchpoint expression
5985 now, we would get the old value, and therefore no change
5986 would seem to have occurred.
5987
5988 In order to make watchpoints work `right', we really need
5989 to complete the memory write, and then evaluate the
5990 watchpoint expression. We do this by single-stepping the
5991 target.
5992
5993 It may not be necessary to disable the watchpoint to step over
5994 it. For example, the PA can (with some kernel cooperation)
5995 single step over a watchpoint without disabling the watchpoint.
5996
5997 It is far more common to need to disable a watchpoint to step
5998 the inferior over it. If we have non-steppable watchpoints,
5999 we must disable the current watchpoint; it's simplest to
6000 disable all watchpoints.
6001
6002 Any breakpoint at PC must also be stepped over -- if there's
6003 one, it will have already triggered before the watchpoint
6004 triggered, and we either already reported it to the user, or
6005 it didn't cause a stop and we called keep_going. In either
6006 case, if there was a breakpoint at PC, we must be trying to
6007 step past it. */
6008 ecs->event_thread->stepping_over_watchpoint = 1;
6009 keep_going (ecs);
6010 return;
6011 }
6012
6013 ecs->event_thread->stepping_over_breakpoint = 0;
6014 ecs->event_thread->stepping_over_watchpoint = 0;
6015 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6016 ecs->event_thread->control.stop_step = 0;
6017 stop_print_frame = 1;
6018 stopped_by_random_signal = 0;
6019 bpstat stop_chain = NULL;
6020
6021 /* Hide inlined functions starting here, unless we just performed stepi or
6022 nexti. After stepi and nexti, always show the innermost frame (not any
6023 inline function call sites). */
6024 if (ecs->event_thread->control.step_range_end != 1)
6025 {
6026 const address_space *aspace
6027 = get_thread_regcache (ecs->event_thread)->aspace ();
6028
6029 /* skip_inline_frames is expensive, so we avoid it if we can
6030 determine that the address is one where functions cannot have
6031 been inlined. This improves performance with inferiors that
6032 load a lot of shared libraries, because the solib event
6033 breakpoint is defined as the address of a function (i.e. not
6034 inline). Note that we have to check the previous PC as well
6035 as the current one to catch cases when we have just
6036 single-stepped off a breakpoint prior to reinstating it.
6037 Note that we're assuming that the code we single-step to is
6038 not inline, but that's not definitive: there's nothing
6039 preventing the event breakpoint function from containing
6040 inlined code, and the single-step ending up there. If the
6041 user had set a breakpoint on that inlined code, the missing
6042 skip_inline_frames call would break things. Fortunately
6043 that's an extremely unlikely scenario. */
6044 if (!pc_at_non_inline_function (aspace,
6045 ecs->event_thread->suspend.stop_pc,
6046 &ecs->ws)
6047 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6048 && ecs->event_thread->control.trap_expected
6049 && pc_at_non_inline_function (aspace,
6050 ecs->event_thread->prev_pc,
6051 &ecs->ws)))
6052 {
6053 stop_chain = build_bpstat_chain (aspace,
6054 ecs->event_thread->suspend.stop_pc,
6055 &ecs->ws);
6056 skip_inline_frames (ecs->event_thread, stop_chain);
6057
6058 /* Re-fetch current thread's frame in case that invalidated
6059 the frame cache. */
6060 frame = get_current_frame ();
6061 gdbarch = get_frame_arch (frame);
6062 }
6063 }
6064
6065 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6066 && ecs->event_thread->control.trap_expected
6067 && gdbarch_single_step_through_delay_p (gdbarch)
6068 && currently_stepping (ecs->event_thread))
6069 {
6070 /* We're trying to step off a breakpoint. Turns out that we're
6071 also on an instruction that needs to be stepped multiple
6072 times before it's been fully executing. E.g., architectures
6073 with a delay slot. It needs to be stepped twice, once for
6074 the instruction and once for the delay slot. */
6075 int step_through_delay
6076 = gdbarch_single_step_through_delay (gdbarch, frame);
6077
6078 if (debug_infrun && step_through_delay)
6079 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
6080 if (ecs->event_thread->control.step_range_end == 0
6081 && step_through_delay)
6082 {
6083 /* The user issued a continue when stopped at a breakpoint.
6084 Set up for another trap and get out of here. */
6085 ecs->event_thread->stepping_over_breakpoint = 1;
6086 keep_going (ecs);
6087 return;
6088 }
6089 else if (step_through_delay)
6090 {
6091 /* The user issued a step when stopped at a breakpoint.
6092 Maybe we should stop, maybe we should not - the delay
6093 slot *might* correspond to a line of source. In any
6094 case, don't decide that here, just set
6095 ecs->stepping_over_breakpoint, making sure we
6096 single-step again before breakpoints are re-inserted. */
6097 ecs->event_thread->stepping_over_breakpoint = 1;
6098 }
6099 }
6100
6101 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6102 handles this event. */
6103 ecs->event_thread->control.stop_bpstat
6104 = bpstat_stop_status (get_current_regcache ()->aspace (),
6105 ecs->event_thread->suspend.stop_pc,
6106 ecs->event_thread, &ecs->ws, stop_chain);
6107
6108 /* Following in case break condition called a
6109 function. */
6110 stop_print_frame = 1;
6111
6112 /* This is where we handle "moribund" watchpoints. Unlike
6113 software breakpoints traps, hardware watchpoint traps are
6114 always distinguishable from random traps. If no high-level
6115 watchpoint is associated with the reported stop data address
6116 anymore, then the bpstat does not explain the signal ---
6117 simply make sure to ignore it if `stopped_by_watchpoint' is
6118 set. */
6119
6120 if (debug_infrun
6121 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6122 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6123 GDB_SIGNAL_TRAP)
6124 && stopped_by_watchpoint)
6125 fprintf_unfiltered (gdb_stdlog,
6126 "infrun: no user watchpoint explains "
6127 "watchpoint SIGTRAP, ignoring\n");
6128
6129 /* NOTE: cagney/2003-03-29: These checks for a random signal
6130 at one stage in the past included checks for an inferior
6131 function call's call dummy's return breakpoint. The original
6132 comment, that went with the test, read:
6133
6134 ``End of a stack dummy. Some systems (e.g. Sony news) give
6135 another signal besides SIGTRAP, so check here as well as
6136 above.''
6137
6138 If someone ever tries to get call dummys on a
6139 non-executable stack to work (where the target would stop
6140 with something like a SIGSEGV), then those tests might need
6141 to be re-instated. Given, however, that the tests were only
6142 enabled when momentary breakpoints were not being used, I
6143 suspect that it won't be the case.
6144
6145 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6146 be necessary for call dummies on a non-executable stack on
6147 SPARC. */
6148
6149 /* See if the breakpoints module can explain the signal. */
6150 random_signal
6151 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6152 ecs->event_thread->suspend.stop_signal);
6153
6154 /* Maybe this was a trap for a software breakpoint that has since
6155 been removed. */
6156 if (random_signal && target_stopped_by_sw_breakpoint ())
6157 {
6158 if (program_breakpoint_here_p (gdbarch,
6159 ecs->event_thread->suspend.stop_pc))
6160 {
6161 struct regcache *regcache;
6162 int decr_pc;
6163
6164 /* Re-adjust PC to what the program would see if GDB was not
6165 debugging it. */
6166 regcache = get_thread_regcache (ecs->event_thread);
6167 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6168 if (decr_pc != 0)
6169 {
6170 gdb::optional<scoped_restore_tmpl<int>>
6171 restore_operation_disable;
6172
6173 if (record_full_is_used ())
6174 restore_operation_disable.emplace
6175 (record_full_gdb_operation_disable_set ());
6176
6177 regcache_write_pc (regcache,
6178 ecs->event_thread->suspend.stop_pc + decr_pc);
6179 }
6180 }
6181 else
6182 {
6183 /* A delayed software breakpoint event. Ignore the trap. */
6184 if (debug_infrun)
6185 fprintf_unfiltered (gdb_stdlog,
6186 "infrun: delayed software breakpoint "
6187 "trap, ignoring\n");
6188 random_signal = 0;
6189 }
6190 }
6191
6192 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6193 has since been removed. */
6194 if (random_signal && target_stopped_by_hw_breakpoint ())
6195 {
6196 /* A delayed hardware breakpoint event. Ignore the trap. */
6197 if (debug_infrun)
6198 fprintf_unfiltered (gdb_stdlog,
6199 "infrun: delayed hardware breakpoint/watchpoint "
6200 "trap, ignoring\n");
6201 random_signal = 0;
6202 }
6203
6204 /* If not, perhaps stepping/nexting can. */
6205 if (random_signal)
6206 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6207 && currently_stepping (ecs->event_thread));
6208
6209 /* Perhaps the thread hit a single-step breakpoint of _another_
6210 thread. Single-step breakpoints are transparent to the
6211 breakpoints module. */
6212 if (random_signal)
6213 random_signal = !ecs->hit_singlestep_breakpoint;
6214
6215 /* No? Perhaps we got a moribund watchpoint. */
6216 if (random_signal)
6217 random_signal = !stopped_by_watchpoint;
6218
6219 /* Always stop if the user explicitly requested this thread to
6220 remain stopped. */
6221 if (ecs->event_thread->stop_requested)
6222 {
6223 random_signal = 1;
6224 if (debug_infrun)
6225 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6226 }
6227
6228 /* For the program's own signals, act according to
6229 the signal handling tables. */
6230
6231 if (random_signal)
6232 {
6233 /* Signal not for debugging purposes. */
6234 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6235 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6236
6237 if (debug_infrun)
6238 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6239 gdb_signal_to_symbol_string (stop_signal));
6240
6241 stopped_by_random_signal = 1;
6242
6243 /* Always stop on signals if we're either just gaining control
6244 of the program, or the user explicitly requested this thread
6245 to remain stopped. */
6246 if (stop_soon != NO_STOP_QUIETLY
6247 || ecs->event_thread->stop_requested
6248 || (!inf->detaching
6249 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6250 {
6251 stop_waiting (ecs);
6252 return;
6253 }
6254
6255 /* Notify observers the signal has "handle print" set. Note we
6256 returned early above if stopping; normal_stop handles the
6257 printing in that case. */
6258 if (signal_print[ecs->event_thread->suspend.stop_signal])
6259 {
6260 /* The signal table tells us to print about this signal. */
6261 target_terminal::ours_for_output ();
6262 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6263 target_terminal::inferior ();
6264 }
6265
6266 /* Clear the signal if it should not be passed. */
6267 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6268 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6269
6270 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6271 && ecs->event_thread->control.trap_expected
6272 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6273 {
6274 /* We were just starting a new sequence, attempting to
6275 single-step off of a breakpoint and expecting a SIGTRAP.
6276 Instead this signal arrives. This signal will take us out
6277 of the stepping range so GDB needs to remember to, when
6278 the signal handler returns, resume stepping off that
6279 breakpoint. */
6280 /* To simplify things, "continue" is forced to use the same
6281 code paths as single-step - set a breakpoint at the
6282 signal return address and then, once hit, step off that
6283 breakpoint. */
6284 if (debug_infrun)
6285 fprintf_unfiltered (gdb_stdlog,
6286 "infrun: signal arrived while stepping over "
6287 "breakpoint\n");
6288
6289 insert_hp_step_resume_breakpoint_at_frame (frame);
6290 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6291 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6292 ecs->event_thread->control.trap_expected = 0;
6293
6294 /* If we were nexting/stepping some other thread, switch to
6295 it, so that we don't continue it, losing control. */
6296 if (!switch_back_to_stepped_thread (ecs))
6297 keep_going (ecs);
6298 return;
6299 }
6300
6301 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6302 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6303 ecs->event_thread)
6304 || ecs->event_thread->control.step_range_end == 1)
6305 && frame_id_eq (get_stack_frame_id (frame),
6306 ecs->event_thread->control.step_stack_frame_id)
6307 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6308 {
6309 /* The inferior is about to take a signal that will take it
6310 out of the single step range. Set a breakpoint at the
6311 current PC (which is presumably where the signal handler
6312 will eventually return) and then allow the inferior to
6313 run free.
6314
6315 Note that this is only needed for a signal delivered
6316 while in the single-step range. Nested signals aren't a
6317 problem as they eventually all return. */
6318 if (debug_infrun)
6319 fprintf_unfiltered (gdb_stdlog,
6320 "infrun: signal may take us out of "
6321 "single-step range\n");
6322
6323 clear_step_over_info ();
6324 insert_hp_step_resume_breakpoint_at_frame (frame);
6325 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6326 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6327 ecs->event_thread->control.trap_expected = 0;
6328 keep_going (ecs);
6329 return;
6330 }
6331
6332 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6333 when either there's a nested signal, or when there's a
6334 pending signal enabled just as the signal handler returns
6335 (leaving the inferior at the step-resume-breakpoint without
6336 actually executing it). Either way continue until the
6337 breakpoint is really hit. */
6338
6339 if (!switch_back_to_stepped_thread (ecs))
6340 {
6341 if (debug_infrun)
6342 fprintf_unfiltered (gdb_stdlog,
6343 "infrun: random signal, keep going\n");
6344
6345 keep_going (ecs);
6346 }
6347 return;
6348 }
6349
6350 process_event_stop_test (ecs);
6351}
6352
6353/* Come here when we've got some debug event / signal we can explain
6354 (IOW, not a random signal), and test whether it should cause a
6355 stop, or whether we should resume the inferior (transparently).
6356 E.g., could be a breakpoint whose condition evaluates false; we
6357 could be still stepping within the line; etc. */
6358
6359static void
6360process_event_stop_test (struct execution_control_state *ecs)
6361{
6362 struct symtab_and_line stop_pc_sal;
6363 struct frame_info *frame;
6364 struct gdbarch *gdbarch;
6365 CORE_ADDR jmp_buf_pc;
6366 struct bpstat_what what;
6367
6368 /* Handle cases caused by hitting a breakpoint. */
6369
6370 frame = get_current_frame ();
6371 gdbarch = get_frame_arch (frame);
6372
6373 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6374
6375 if (what.call_dummy)
6376 {
6377 stop_stack_dummy = what.call_dummy;
6378 }
6379
6380 /* A few breakpoint types have callbacks associated (e.g.,
6381 bp_jit_event). Run them now. */
6382 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6383
6384 /* If we hit an internal event that triggers symbol changes, the
6385 current frame will be invalidated within bpstat_what (e.g., if we
6386 hit an internal solib event). Re-fetch it. */
6387 frame = get_current_frame ();
6388 gdbarch = get_frame_arch (frame);
6389
6390 switch (what.main_action)
6391 {
6392 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6393 /* If we hit the breakpoint at longjmp while stepping, we
6394 install a momentary breakpoint at the target of the
6395 jmp_buf. */
6396
6397 if (debug_infrun)
6398 fprintf_unfiltered (gdb_stdlog,
6399 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6400
6401 ecs->event_thread->stepping_over_breakpoint = 1;
6402
6403 if (what.is_longjmp)
6404 {
6405 struct value *arg_value;
6406
6407 /* If we set the longjmp breakpoint via a SystemTap probe,
6408 then use it to extract the arguments. The destination PC
6409 is the third argument to the probe. */
6410 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6411 if (arg_value)
6412 {
6413 jmp_buf_pc = value_as_address (arg_value);
6414 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6415 }
6416 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6417 || !gdbarch_get_longjmp_target (gdbarch,
6418 frame, &jmp_buf_pc))
6419 {
6420 if (debug_infrun)
6421 fprintf_unfiltered (gdb_stdlog,
6422 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6423 "(!gdbarch_get_longjmp_target)\n");
6424 keep_going (ecs);
6425 return;
6426 }
6427
6428 /* Insert a breakpoint at resume address. */
6429 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6430 }
6431 else
6432 check_exception_resume (ecs, frame);
6433 keep_going (ecs);
6434 return;
6435
6436 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6437 {
6438 struct frame_info *init_frame;
6439
6440 /* There are several cases to consider.
6441
6442 1. The initiating frame no longer exists. In this case we
6443 must stop, because the exception or longjmp has gone too
6444 far.
6445
6446 2. The initiating frame exists, and is the same as the
6447 current frame. We stop, because the exception or longjmp
6448 has been caught.
6449
6450 3. The initiating frame exists and is different from the
6451 current frame. This means the exception or longjmp has
6452 been caught beneath the initiating frame, so keep going.
6453
6454 4. longjmp breakpoint has been placed just to protect
6455 against stale dummy frames and user is not interested in
6456 stopping around longjmps. */
6457
6458 if (debug_infrun)
6459 fprintf_unfiltered (gdb_stdlog,
6460 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6461
6462 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6463 != NULL);
6464 delete_exception_resume_breakpoint (ecs->event_thread);
6465
6466 if (what.is_longjmp)
6467 {
6468 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6469
6470 if (!frame_id_p (ecs->event_thread->initiating_frame))
6471 {
6472 /* Case 4. */
6473 keep_going (ecs);
6474 return;
6475 }
6476 }
6477
6478 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6479
6480 if (init_frame)
6481 {
6482 struct frame_id current_id
6483 = get_frame_id (get_current_frame ());
6484 if (frame_id_eq (current_id,
6485 ecs->event_thread->initiating_frame))
6486 {
6487 /* Case 2. Fall through. */
6488 }
6489 else
6490 {
6491 /* Case 3. */
6492 keep_going (ecs);
6493 return;
6494 }
6495 }
6496
6497 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6498 exists. */
6499 delete_step_resume_breakpoint (ecs->event_thread);
6500
6501 end_stepping_range (ecs);
6502 }
6503 return;
6504
6505 case BPSTAT_WHAT_SINGLE:
6506 if (debug_infrun)
6507 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6508 ecs->event_thread->stepping_over_breakpoint = 1;
6509 /* Still need to check other stuff, at least the case where we
6510 are stepping and step out of the right range. */
6511 break;
6512
6513 case BPSTAT_WHAT_STEP_RESUME:
6514 if (debug_infrun)
6515 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6516
6517 delete_step_resume_breakpoint (ecs->event_thread);
6518 if (ecs->event_thread->control.proceed_to_finish
6519 && execution_direction == EXEC_REVERSE)
6520 {
6521 struct thread_info *tp = ecs->event_thread;
6522
6523 /* We are finishing a function in reverse, and just hit the
6524 step-resume breakpoint at the start address of the
6525 function, and we're almost there -- just need to back up
6526 by one more single-step, which should take us back to the
6527 function call. */
6528 tp->control.step_range_start = tp->control.step_range_end = 1;
6529 keep_going (ecs);
6530 return;
6531 }
6532 fill_in_stop_func (gdbarch, ecs);
6533 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6534 && execution_direction == EXEC_REVERSE)
6535 {
6536 /* We are stepping over a function call in reverse, and just
6537 hit the step-resume breakpoint at the start address of
6538 the function. Go back to single-stepping, which should
6539 take us back to the function call. */
6540 ecs->event_thread->stepping_over_breakpoint = 1;
6541 keep_going (ecs);
6542 return;
6543 }
6544 break;
6545
6546 case BPSTAT_WHAT_STOP_NOISY:
6547 if (debug_infrun)
6548 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6549 stop_print_frame = 1;
6550
6551 /* Assume the thread stopped for a breapoint. We'll still check
6552 whether a/the breakpoint is there when the thread is next
6553 resumed. */
6554 ecs->event_thread->stepping_over_breakpoint = 1;
6555
6556 stop_waiting (ecs);
6557 return;
6558
6559 case BPSTAT_WHAT_STOP_SILENT:
6560 if (debug_infrun)
6561 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6562 stop_print_frame = 0;
6563
6564 /* Assume the thread stopped for a breapoint. We'll still check
6565 whether a/the breakpoint is there when the thread is next
6566 resumed. */
6567 ecs->event_thread->stepping_over_breakpoint = 1;
6568 stop_waiting (ecs);
6569 return;
6570
6571 case BPSTAT_WHAT_HP_STEP_RESUME:
6572 if (debug_infrun)
6573 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6574
6575 delete_step_resume_breakpoint (ecs->event_thread);
6576 if (ecs->event_thread->step_after_step_resume_breakpoint)
6577 {
6578 /* Back when the step-resume breakpoint was inserted, we
6579 were trying to single-step off a breakpoint. Go back to
6580 doing that. */
6581 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6582 ecs->event_thread->stepping_over_breakpoint = 1;
6583 keep_going (ecs);
6584 return;
6585 }
6586 break;
6587
6588 case BPSTAT_WHAT_KEEP_CHECKING:
6589 break;
6590 }
6591
6592 /* If we stepped a permanent breakpoint and we had a high priority
6593 step-resume breakpoint for the address we stepped, but we didn't
6594 hit it, then we must have stepped into the signal handler. The
6595 step-resume was only necessary to catch the case of _not_
6596 stepping into the handler, so delete it, and fall through to
6597 checking whether the step finished. */
6598 if (ecs->event_thread->stepped_breakpoint)
6599 {
6600 struct breakpoint *sr_bp
6601 = ecs->event_thread->control.step_resume_breakpoint;
6602
6603 if (sr_bp != NULL
6604 && sr_bp->loc->permanent
6605 && sr_bp->type == bp_hp_step_resume
6606 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6607 {
6608 if (debug_infrun)
6609 fprintf_unfiltered (gdb_stdlog,
6610 "infrun: stepped permanent breakpoint, stopped in "
6611 "handler\n");
6612 delete_step_resume_breakpoint (ecs->event_thread);
6613 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6614 }
6615 }
6616
6617 /* We come here if we hit a breakpoint but should not stop for it.
6618 Possibly we also were stepping and should stop for that. So fall
6619 through and test for stepping. But, if not stepping, do not
6620 stop. */
6621
6622 /* In all-stop mode, if we're currently stepping but have stopped in
6623 some other thread, we need to switch back to the stepped thread. */
6624 if (switch_back_to_stepped_thread (ecs))
6625 return;
6626
6627 if (ecs->event_thread->control.step_resume_breakpoint)
6628 {
6629 if (debug_infrun)
6630 fprintf_unfiltered (gdb_stdlog,
6631 "infrun: step-resume breakpoint is inserted\n");
6632
6633 /* Having a step-resume breakpoint overrides anything
6634 else having to do with stepping commands until
6635 that breakpoint is reached. */
6636 keep_going (ecs);
6637 return;
6638 }
6639
6640 if (ecs->event_thread->control.step_range_end == 0)
6641 {
6642 if (debug_infrun)
6643 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6644 /* Likewise if we aren't even stepping. */
6645 keep_going (ecs);
6646 return;
6647 }
6648
6649 /* Re-fetch current thread's frame in case the code above caused
6650 the frame cache to be re-initialized, making our FRAME variable
6651 a dangling pointer. */
6652 frame = get_current_frame ();
6653 gdbarch = get_frame_arch (frame);
6654 fill_in_stop_func (gdbarch, ecs);
6655
6656 /* If stepping through a line, keep going if still within it.
6657
6658 Note that step_range_end is the address of the first instruction
6659 beyond the step range, and NOT the address of the last instruction
6660 within it!
6661
6662 Note also that during reverse execution, we may be stepping
6663 through a function epilogue and therefore must detect when
6664 the current-frame changes in the middle of a line. */
6665
6666 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6667 ecs->event_thread)
6668 && (execution_direction != EXEC_REVERSE
6669 || frame_id_eq (get_frame_id (frame),
6670 ecs->event_thread->control.step_frame_id)))
6671 {
6672 if (debug_infrun)
6673 fprintf_unfiltered
6674 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6675 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6676 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6677
6678 /* Tentatively re-enable range stepping; `resume' disables it if
6679 necessary (e.g., if we're stepping over a breakpoint or we
6680 have software watchpoints). */
6681 ecs->event_thread->control.may_range_step = 1;
6682
6683 /* When stepping backward, stop at beginning of line range
6684 (unless it's the function entry point, in which case
6685 keep going back to the call point). */
6686 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6687 if (stop_pc == ecs->event_thread->control.step_range_start
6688 && stop_pc != ecs->stop_func_start
6689 && execution_direction == EXEC_REVERSE)
6690 end_stepping_range (ecs);
6691 else
6692 keep_going (ecs);
6693
6694 return;
6695 }
6696
6697 /* We stepped out of the stepping range. */
6698
6699 /* If we are stepping at the source level and entered the runtime
6700 loader dynamic symbol resolution code...
6701
6702 EXEC_FORWARD: we keep on single stepping until we exit the run
6703 time loader code and reach the callee's address.
6704
6705 EXEC_REVERSE: we've already executed the callee (backward), and
6706 the runtime loader code is handled just like any other
6707 undebuggable function call. Now we need only keep stepping
6708 backward through the trampoline code, and that's handled further
6709 down, so there is nothing for us to do here. */
6710
6711 if (execution_direction != EXEC_REVERSE
6712 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6713 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6714 {
6715 CORE_ADDR pc_after_resolver =
6716 gdbarch_skip_solib_resolver (gdbarch,
6717 ecs->event_thread->suspend.stop_pc);
6718
6719 if (debug_infrun)
6720 fprintf_unfiltered (gdb_stdlog,
6721 "infrun: stepped into dynsym resolve code\n");
6722
6723 if (pc_after_resolver)
6724 {
6725 /* Set up a step-resume breakpoint at the address
6726 indicated by SKIP_SOLIB_RESOLVER. */
6727 symtab_and_line sr_sal;
6728 sr_sal.pc = pc_after_resolver;
6729 sr_sal.pspace = get_frame_program_space (frame);
6730
6731 insert_step_resume_breakpoint_at_sal (gdbarch,
6732 sr_sal, null_frame_id);
6733 }
6734
6735 keep_going (ecs);
6736 return;
6737 }
6738
6739 /* Step through an indirect branch thunk. */
6740 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6741 && gdbarch_in_indirect_branch_thunk (gdbarch,
6742 ecs->event_thread->suspend.stop_pc))
6743 {
6744 if (debug_infrun)
6745 fprintf_unfiltered (gdb_stdlog,
6746 "infrun: stepped into indirect branch thunk\n");
6747 keep_going (ecs);
6748 return;
6749 }
6750
6751 if (ecs->event_thread->control.step_range_end != 1
6752 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6753 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6754 && get_frame_type (frame) == SIGTRAMP_FRAME)
6755 {
6756 if (debug_infrun)
6757 fprintf_unfiltered (gdb_stdlog,
6758 "infrun: stepped into signal trampoline\n");
6759 /* The inferior, while doing a "step" or "next", has ended up in
6760 a signal trampoline (either by a signal being delivered or by
6761 the signal handler returning). Just single-step until the
6762 inferior leaves the trampoline (either by calling the handler
6763 or returning). */
6764 keep_going (ecs);
6765 return;
6766 }
6767
6768 /* If we're in the return path from a shared library trampoline,
6769 we want to proceed through the trampoline when stepping. */
6770 /* macro/2012-04-25: This needs to come before the subroutine
6771 call check below as on some targets return trampolines look
6772 like subroutine calls (MIPS16 return thunks). */
6773 if (gdbarch_in_solib_return_trampoline (gdbarch,
6774 ecs->event_thread->suspend.stop_pc,
6775 ecs->stop_func_name)
6776 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6777 {
6778 /* Determine where this trampoline returns. */
6779 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6780 CORE_ADDR real_stop_pc
6781 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6782
6783 if (debug_infrun)
6784 fprintf_unfiltered (gdb_stdlog,
6785 "infrun: stepped into solib return tramp\n");
6786
6787 /* Only proceed through if we know where it's going. */
6788 if (real_stop_pc)
6789 {
6790 /* And put the step-breakpoint there and go until there. */
6791 symtab_and_line sr_sal;
6792 sr_sal.pc = real_stop_pc;
6793 sr_sal.section = find_pc_overlay (sr_sal.pc);
6794 sr_sal.pspace = get_frame_program_space (frame);
6795
6796 /* Do not specify what the fp should be when we stop since
6797 on some machines the prologue is where the new fp value
6798 is established. */
6799 insert_step_resume_breakpoint_at_sal (gdbarch,
6800 sr_sal, null_frame_id);
6801
6802 /* Restart without fiddling with the step ranges or
6803 other state. */
6804 keep_going (ecs);
6805 return;
6806 }
6807 }
6808
6809 /* Check for subroutine calls. The check for the current frame
6810 equalling the step ID is not necessary - the check of the
6811 previous frame's ID is sufficient - but it is a common case and
6812 cheaper than checking the previous frame's ID.
6813
6814 NOTE: frame_id_eq will never report two invalid frame IDs as
6815 being equal, so to get into this block, both the current and
6816 previous frame must have valid frame IDs. */
6817 /* The outer_frame_id check is a heuristic to detect stepping
6818 through startup code. If we step over an instruction which
6819 sets the stack pointer from an invalid value to a valid value,
6820 we may detect that as a subroutine call from the mythical
6821 "outermost" function. This could be fixed by marking
6822 outermost frames as !stack_p,code_p,special_p. Then the
6823 initial outermost frame, before sp was valid, would
6824 have code_addr == &_start. See the comment in frame_id_eq
6825 for more. */
6826 if (!frame_id_eq (get_stack_frame_id (frame),
6827 ecs->event_thread->control.step_stack_frame_id)
6828 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6829 ecs->event_thread->control.step_stack_frame_id)
6830 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6831 outer_frame_id)
6832 || (ecs->event_thread->control.step_start_function
6833 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6834 {
6835 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6836 CORE_ADDR real_stop_pc;
6837
6838 if (debug_infrun)
6839 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6840
6841 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6842 {
6843 /* I presume that step_over_calls is only 0 when we're
6844 supposed to be stepping at the assembly language level
6845 ("stepi"). Just stop. */
6846 /* And this works the same backward as frontward. MVS */
6847 end_stepping_range (ecs);
6848 return;
6849 }
6850
6851 /* Reverse stepping through solib trampolines. */
6852
6853 if (execution_direction == EXEC_REVERSE
6854 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6855 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6856 || (ecs->stop_func_start == 0
6857 && in_solib_dynsym_resolve_code (stop_pc))))
6858 {
6859 /* Any solib trampoline code can be handled in reverse
6860 by simply continuing to single-step. We have already
6861 executed the solib function (backwards), and a few
6862 steps will take us back through the trampoline to the
6863 caller. */
6864 keep_going (ecs);
6865 return;
6866 }
6867
6868 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6869 {
6870 /* We're doing a "next".
6871
6872 Normal (forward) execution: set a breakpoint at the
6873 callee's return address (the address at which the caller
6874 will resume).
6875
6876 Reverse (backward) execution. set the step-resume
6877 breakpoint at the start of the function that we just
6878 stepped into (backwards), and continue to there. When we
6879 get there, we'll need to single-step back to the caller. */
6880
6881 if (execution_direction == EXEC_REVERSE)
6882 {
6883 /* If we're already at the start of the function, we've either
6884 just stepped backward into a single instruction function,
6885 or stepped back out of a signal handler to the first instruction
6886 of the function. Just keep going, which will single-step back
6887 to the caller. */
6888 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6889 {
6890 /* Normal function call return (static or dynamic). */
6891 symtab_and_line sr_sal;
6892 sr_sal.pc = ecs->stop_func_start;
6893 sr_sal.pspace = get_frame_program_space (frame);
6894 insert_step_resume_breakpoint_at_sal (gdbarch,
6895 sr_sal, null_frame_id);
6896 }
6897 }
6898 else
6899 insert_step_resume_breakpoint_at_caller (frame);
6900
6901 keep_going (ecs);
6902 return;
6903 }
6904
6905 /* If we are in a function call trampoline (a stub between the
6906 calling routine and the real function), locate the real
6907 function. That's what tells us (a) whether we want to step
6908 into it at all, and (b) what prologue we want to run to the
6909 end of, if we do step into it. */
6910 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6911 if (real_stop_pc == 0)
6912 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6913 if (real_stop_pc != 0)
6914 ecs->stop_func_start = real_stop_pc;
6915
6916 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6917 {
6918 symtab_and_line sr_sal;
6919 sr_sal.pc = ecs->stop_func_start;
6920 sr_sal.pspace = get_frame_program_space (frame);
6921
6922 insert_step_resume_breakpoint_at_sal (gdbarch,
6923 sr_sal, null_frame_id);
6924 keep_going (ecs);
6925 return;
6926 }
6927
6928 /* If we have line number information for the function we are
6929 thinking of stepping into and the function isn't on the skip
6930 list, step into it.
6931
6932 If there are several symtabs at that PC (e.g. with include
6933 files), just want to know whether *any* of them have line
6934 numbers. find_pc_line handles this. */
6935 {
6936 struct symtab_and_line tmp_sal;
6937
6938 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6939 if (tmp_sal.line != 0
6940 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6941 tmp_sal)
6942 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6943 {
6944 if (execution_direction == EXEC_REVERSE)
6945 handle_step_into_function_backward (gdbarch, ecs);
6946 else
6947 handle_step_into_function (gdbarch, ecs);
6948 return;
6949 }
6950 }
6951
6952 /* If we have no line number and the step-stop-if-no-debug is
6953 set, we stop the step so that the user has a chance to switch
6954 in assembly mode. */
6955 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6956 && step_stop_if_no_debug)
6957 {
6958 end_stepping_range (ecs);
6959 return;
6960 }
6961
6962 if (execution_direction == EXEC_REVERSE)
6963 {
6964 /* If we're already at the start of the function, we've either just
6965 stepped backward into a single instruction function without line
6966 number info, or stepped back out of a signal handler to the first
6967 instruction of the function without line number info. Just keep
6968 going, which will single-step back to the caller. */
6969 if (ecs->stop_func_start != stop_pc)
6970 {
6971 /* Set a breakpoint at callee's start address.
6972 From there we can step once and be back in the caller. */
6973 symtab_and_line sr_sal;
6974 sr_sal.pc = ecs->stop_func_start;
6975 sr_sal.pspace = get_frame_program_space (frame);
6976 insert_step_resume_breakpoint_at_sal (gdbarch,
6977 sr_sal, null_frame_id);
6978 }
6979 }
6980 else
6981 /* Set a breakpoint at callee's return address (the address
6982 at which the caller will resume). */
6983 insert_step_resume_breakpoint_at_caller (frame);
6984
6985 keep_going (ecs);
6986 return;
6987 }
6988
6989 /* Reverse stepping through solib trampolines. */
6990
6991 if (execution_direction == EXEC_REVERSE
6992 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6993 {
6994 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6995
6996 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6997 || (ecs->stop_func_start == 0
6998 && in_solib_dynsym_resolve_code (stop_pc)))
6999 {
7000 /* Any solib trampoline code can be handled in reverse
7001 by simply continuing to single-step. We have already
7002 executed the solib function (backwards), and a few
7003 steps will take us back through the trampoline to the
7004 caller. */
7005 keep_going (ecs);
7006 return;
7007 }
7008 else if (in_solib_dynsym_resolve_code (stop_pc))
7009 {
7010 /* Stepped backward into the solib dynsym resolver.
7011 Set a breakpoint at its start and continue, then
7012 one more step will take us out. */
7013 symtab_and_line sr_sal;
7014 sr_sal.pc = ecs->stop_func_start;
7015 sr_sal.pspace = get_frame_program_space (frame);
7016 insert_step_resume_breakpoint_at_sal (gdbarch,
7017 sr_sal, null_frame_id);
7018 keep_going (ecs);
7019 return;
7020 }
7021 }
7022
7023 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7024
7025 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7026 the trampoline processing logic, however, there are some trampolines
7027 that have no names, so we should do trampoline handling first. */
7028 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7029 && ecs->stop_func_name == NULL
7030 && stop_pc_sal.line == 0)
7031 {
7032 if (debug_infrun)
7033 fprintf_unfiltered (gdb_stdlog,
7034 "infrun: stepped into undebuggable function\n");
7035
7036 /* The inferior just stepped into, or returned to, an
7037 undebuggable function (where there is no debugging information
7038 and no line number corresponding to the address where the
7039 inferior stopped). Since we want to skip this kind of code,
7040 we keep going until the inferior returns from this
7041 function - unless the user has asked us not to (via
7042 set step-mode) or we no longer know how to get back
7043 to the call site. */
7044 if (step_stop_if_no_debug
7045 || !frame_id_p (frame_unwind_caller_id (frame)))
7046 {
7047 /* If we have no line number and the step-stop-if-no-debug
7048 is set, we stop the step so that the user has a chance to
7049 switch in assembly mode. */
7050 end_stepping_range (ecs);
7051 return;
7052 }
7053 else
7054 {
7055 /* Set a breakpoint at callee's return address (the address
7056 at which the caller will resume). */
7057 insert_step_resume_breakpoint_at_caller (frame);
7058 keep_going (ecs);
7059 return;
7060 }
7061 }
7062
7063 if (ecs->event_thread->control.step_range_end == 1)
7064 {
7065 /* It is stepi or nexti. We always want to stop stepping after
7066 one instruction. */
7067 if (debug_infrun)
7068 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
7069 end_stepping_range (ecs);
7070 return;
7071 }
7072
7073 if (stop_pc_sal.line == 0)
7074 {
7075 /* We have no line number information. That means to stop
7076 stepping (does this always happen right after one instruction,
7077 when we do "s" in a function with no line numbers,
7078 or can this happen as a result of a return or longjmp?). */
7079 if (debug_infrun)
7080 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
7081 end_stepping_range (ecs);
7082 return;
7083 }
7084
7085 /* Look for "calls" to inlined functions, part one. If the inline
7086 frame machinery detected some skipped call sites, we have entered
7087 a new inline function. */
7088
7089 if (frame_id_eq (get_frame_id (get_current_frame ()),
7090 ecs->event_thread->control.step_frame_id)
7091 && inline_skipped_frames (ecs->event_thread))
7092 {
7093 if (debug_infrun)
7094 fprintf_unfiltered (gdb_stdlog,
7095 "infrun: stepped into inlined function\n");
7096
7097 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7098
7099 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7100 {
7101 /* For "step", we're going to stop. But if the call site
7102 for this inlined function is on the same source line as
7103 we were previously stepping, go down into the function
7104 first. Otherwise stop at the call site. */
7105
7106 if (call_sal.line == ecs->event_thread->current_line
7107 && call_sal.symtab == ecs->event_thread->current_symtab)
7108 {
7109 step_into_inline_frame (ecs->event_thread);
7110 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7111 {
7112 keep_going (ecs);
7113 return;
7114 }
7115 }
7116
7117 end_stepping_range (ecs);
7118 return;
7119 }
7120 else
7121 {
7122 /* For "next", we should stop at the call site if it is on a
7123 different source line. Otherwise continue through the
7124 inlined function. */
7125 if (call_sal.line == ecs->event_thread->current_line
7126 && call_sal.symtab == ecs->event_thread->current_symtab)
7127 keep_going (ecs);
7128 else
7129 end_stepping_range (ecs);
7130 return;
7131 }
7132 }
7133
7134 /* Look for "calls" to inlined functions, part two. If we are still
7135 in the same real function we were stepping through, but we have
7136 to go further up to find the exact frame ID, we are stepping
7137 through a more inlined call beyond its call site. */
7138
7139 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7140 && !frame_id_eq (get_frame_id (get_current_frame ()),
7141 ecs->event_thread->control.step_frame_id)
7142 && stepped_in_from (get_current_frame (),
7143 ecs->event_thread->control.step_frame_id))
7144 {
7145 if (debug_infrun)
7146 fprintf_unfiltered (gdb_stdlog,
7147 "infrun: stepping through inlined function\n");
7148
7149 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7150 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7151 keep_going (ecs);
7152 else
7153 end_stepping_range (ecs);
7154 return;
7155 }
7156
7157 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7158 && (ecs->event_thread->current_line != stop_pc_sal.line
7159 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7160 {
7161 /* We are at the start of a different line. So stop. Note that
7162 we don't stop if we step into the middle of a different line.
7163 That is said to make things like for (;;) statements work
7164 better. */
7165 if (debug_infrun)
7166 fprintf_unfiltered (gdb_stdlog,
7167 "infrun: stepped to a different line\n");
7168 end_stepping_range (ecs);
7169 return;
7170 }
7171
7172 /* We aren't done stepping.
7173
7174 Optimize by setting the stepping range to the line.
7175 (We might not be in the original line, but if we entered a
7176 new line in mid-statement, we continue stepping. This makes
7177 things like for(;;) statements work better.) */
7178
7179 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7180 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7181 ecs->event_thread->control.may_range_step = 1;
7182 set_step_info (frame, stop_pc_sal);
7183
7184 if (debug_infrun)
7185 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7186 keep_going (ecs);
7187}
7188
7189/* In all-stop mode, if we're currently stepping but have stopped in
7190 some other thread, we may need to switch back to the stepped
7191 thread. Returns true we set the inferior running, false if we left
7192 it stopped (and the event needs further processing). */
7193
7194static int
7195switch_back_to_stepped_thread (struct execution_control_state *ecs)
7196{
7197 if (!target_is_non_stop_p ())
7198 {
7199 struct thread_info *stepping_thread;
7200
7201 /* If any thread is blocked on some internal breakpoint, and we
7202 simply need to step over that breakpoint to get it going
7203 again, do that first. */
7204
7205 /* However, if we see an event for the stepping thread, then we
7206 know all other threads have been moved past their breakpoints
7207 already. Let the caller check whether the step is finished,
7208 etc., before deciding to move it past a breakpoint. */
7209 if (ecs->event_thread->control.step_range_end != 0)
7210 return 0;
7211
7212 /* Check if the current thread is blocked on an incomplete
7213 step-over, interrupted by a random signal. */
7214 if (ecs->event_thread->control.trap_expected
7215 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7216 {
7217 if (debug_infrun)
7218 {
7219 fprintf_unfiltered (gdb_stdlog,
7220 "infrun: need to finish step-over of [%s]\n",
7221 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7222 }
7223 keep_going (ecs);
7224 return 1;
7225 }
7226
7227 /* Check if the current thread is blocked by a single-step
7228 breakpoint of another thread. */
7229 if (ecs->hit_singlestep_breakpoint)
7230 {
7231 if (debug_infrun)
7232 {
7233 fprintf_unfiltered (gdb_stdlog,
7234 "infrun: need to step [%s] over single-step "
7235 "breakpoint\n",
7236 target_pid_to_str (ecs->ptid).c_str ());
7237 }
7238 keep_going (ecs);
7239 return 1;
7240 }
7241
7242 /* If this thread needs yet another step-over (e.g., stepping
7243 through a delay slot), do it first before moving on to
7244 another thread. */
7245 if (thread_still_needs_step_over (ecs->event_thread))
7246 {
7247 if (debug_infrun)
7248 {
7249 fprintf_unfiltered (gdb_stdlog,
7250 "infrun: thread [%s] still needs step-over\n",
7251 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7252 }
7253 keep_going (ecs);
7254 return 1;
7255 }
7256
7257 /* If scheduler locking applies even if not stepping, there's no
7258 need to walk over threads. Above we've checked whether the
7259 current thread is stepping. If some other thread not the
7260 event thread is stepping, then it must be that scheduler
7261 locking is not in effect. */
7262 if (schedlock_applies (ecs->event_thread))
7263 return 0;
7264
7265 /* Otherwise, we no longer expect a trap in the current thread.
7266 Clear the trap_expected flag before switching back -- this is
7267 what keep_going does as well, if we call it. */
7268 ecs->event_thread->control.trap_expected = 0;
7269
7270 /* Likewise, clear the signal if it should not be passed. */
7271 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7272 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7273
7274 /* Do all pending step-overs before actually proceeding with
7275 step/next/etc. */
7276 if (start_step_over ())
7277 {
7278 prepare_to_wait (ecs);
7279 return 1;
7280 }
7281
7282 /* Look for the stepping/nexting thread. */
7283 stepping_thread = NULL;
7284
7285 for (thread_info *tp : all_non_exited_threads ())
7286 {
7287 switch_to_thread_no_regs (tp);
7288
7289 /* Ignore threads of processes the caller is not
7290 resuming. */
7291 if (!sched_multi
7292 && (tp->inf->process_target () != ecs->target
7293 || tp->inf->pid != ecs->ptid.pid ()))
7294 continue;
7295
7296 /* When stepping over a breakpoint, we lock all threads
7297 except the one that needs to move past the breakpoint.
7298 If a non-event thread has this set, the "incomplete
7299 step-over" check above should have caught it earlier. */
7300 if (tp->control.trap_expected)
7301 {
7302 internal_error (__FILE__, __LINE__,
7303 "[%s] has inconsistent state: "
7304 "trap_expected=%d\n",
7305 target_pid_to_str (tp->ptid).c_str (),
7306 tp->control.trap_expected);
7307 }
7308
7309 /* Did we find the stepping thread? */
7310 if (tp->control.step_range_end)
7311 {
7312 /* Yep. There should only one though. */
7313 gdb_assert (stepping_thread == NULL);
7314
7315 /* The event thread is handled at the top, before we
7316 enter this loop. */
7317 gdb_assert (tp != ecs->event_thread);
7318
7319 /* If some thread other than the event thread is
7320 stepping, then scheduler locking can't be in effect,
7321 otherwise we wouldn't have resumed the current event
7322 thread in the first place. */
7323 gdb_assert (!schedlock_applies (tp));
7324
7325 stepping_thread = tp;
7326 }
7327 }
7328
7329 if (stepping_thread != NULL)
7330 {
7331 if (debug_infrun)
7332 fprintf_unfiltered (gdb_stdlog,
7333 "infrun: switching back to stepped thread\n");
7334
7335 if (keep_going_stepped_thread (stepping_thread))
7336 {
7337 prepare_to_wait (ecs);
7338 return 1;
7339 }
7340 }
7341
7342 switch_to_thread (ecs->event_thread);
7343 }
7344
7345 return 0;
7346}
7347
7348/* Set a previously stepped thread back to stepping. Returns true on
7349 success, false if the resume is not possible (e.g., the thread
7350 vanished). */
7351
7352static int
7353keep_going_stepped_thread (struct thread_info *tp)
7354{
7355 struct frame_info *frame;
7356 struct execution_control_state ecss;
7357 struct execution_control_state *ecs = &ecss;
7358
7359 /* If the stepping thread exited, then don't try to switch back and
7360 resume it, which could fail in several different ways depending
7361 on the target. Instead, just keep going.
7362
7363 We can find a stepping dead thread in the thread list in two
7364 cases:
7365
7366 - The target supports thread exit events, and when the target
7367 tries to delete the thread from the thread list, inferior_ptid
7368 pointed at the exiting thread. In such case, calling
7369 delete_thread does not really remove the thread from the list;
7370 instead, the thread is left listed, with 'exited' state.
7371
7372 - The target's debug interface does not support thread exit
7373 events, and so we have no idea whatsoever if the previously
7374 stepping thread is still alive. For that reason, we need to
7375 synchronously query the target now. */
7376
7377 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7378 {
7379 if (debug_infrun)
7380 fprintf_unfiltered (gdb_stdlog,
7381 "infrun: not resuming previously "
7382 "stepped thread, it has vanished\n");
7383
7384 delete_thread (tp);
7385 return 0;
7386 }
7387
7388 if (debug_infrun)
7389 fprintf_unfiltered (gdb_stdlog,
7390 "infrun: resuming previously stepped thread\n");
7391
7392 reset_ecs (ecs, tp);
7393 switch_to_thread (tp);
7394
7395 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7396 frame = get_current_frame ();
7397
7398 /* If the PC of the thread we were trying to single-step has
7399 changed, then that thread has trapped or been signaled, but the
7400 event has not been reported to GDB yet. Re-poll the target
7401 looking for this particular thread's event (i.e. temporarily
7402 enable schedlock) by:
7403
7404 - setting a break at the current PC
7405 - resuming that particular thread, only (by setting trap
7406 expected)
7407
7408 This prevents us continuously moving the single-step breakpoint
7409 forward, one instruction at a time, overstepping. */
7410
7411 if (tp->suspend.stop_pc != tp->prev_pc)
7412 {
7413 ptid_t resume_ptid;
7414
7415 if (debug_infrun)
7416 fprintf_unfiltered (gdb_stdlog,
7417 "infrun: expected thread advanced also (%s -> %s)\n",
7418 paddress (target_gdbarch (), tp->prev_pc),
7419 paddress (target_gdbarch (), tp->suspend.stop_pc));
7420
7421 /* Clear the info of the previous step-over, as it's no longer
7422 valid (if the thread was trying to step over a breakpoint, it
7423 has already succeeded). It's what keep_going would do too,
7424 if we called it. Do this before trying to insert the sss
7425 breakpoint, otherwise if we were previously trying to step
7426 over this exact address in another thread, the breakpoint is
7427 skipped. */
7428 clear_step_over_info ();
7429 tp->control.trap_expected = 0;
7430
7431 insert_single_step_breakpoint (get_frame_arch (frame),
7432 get_frame_address_space (frame),
7433 tp->suspend.stop_pc);
7434
7435 tp->resumed = 1;
7436 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7437 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7438 }
7439 else
7440 {
7441 if (debug_infrun)
7442 fprintf_unfiltered (gdb_stdlog,
7443 "infrun: expected thread still hasn't advanced\n");
7444
7445 keep_going_pass_signal (ecs);
7446 }
7447 return 1;
7448}
7449
7450/* Is thread TP in the middle of (software or hardware)
7451 single-stepping? (Note the result of this function must never be
7452 passed directly as target_resume's STEP parameter.) */
7453
7454static int
7455currently_stepping (struct thread_info *tp)
7456{
7457 return ((tp->control.step_range_end
7458 && tp->control.step_resume_breakpoint == NULL)
7459 || tp->control.trap_expected
7460 || tp->stepped_breakpoint
7461 || bpstat_should_step ());
7462}
7463
7464/* Inferior has stepped into a subroutine call with source code that
7465 we should not step over. Do step to the first line of code in
7466 it. */
7467
7468static void
7469handle_step_into_function (struct gdbarch *gdbarch,
7470 struct execution_control_state *ecs)
7471{
7472 fill_in_stop_func (gdbarch, ecs);
7473
7474 compunit_symtab *cust
7475 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7476 if (cust != NULL && compunit_language (cust) != language_asm)
7477 ecs->stop_func_start
7478 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7479
7480 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7481 /* Use the step_resume_break to step until the end of the prologue,
7482 even if that involves jumps (as it seems to on the vax under
7483 4.2). */
7484 /* If the prologue ends in the middle of a source line, continue to
7485 the end of that source line (if it is still within the function).
7486 Otherwise, just go to end of prologue. */
7487 if (stop_func_sal.end
7488 && stop_func_sal.pc != ecs->stop_func_start
7489 && stop_func_sal.end < ecs->stop_func_end)
7490 ecs->stop_func_start = stop_func_sal.end;
7491
7492 /* Architectures which require breakpoint adjustment might not be able
7493 to place a breakpoint at the computed address. If so, the test
7494 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7495 ecs->stop_func_start to an address at which a breakpoint may be
7496 legitimately placed.
7497
7498 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7499 made, GDB will enter an infinite loop when stepping through
7500 optimized code consisting of VLIW instructions which contain
7501 subinstructions corresponding to different source lines. On
7502 FR-V, it's not permitted to place a breakpoint on any but the
7503 first subinstruction of a VLIW instruction. When a breakpoint is
7504 set, GDB will adjust the breakpoint address to the beginning of
7505 the VLIW instruction. Thus, we need to make the corresponding
7506 adjustment here when computing the stop address. */
7507
7508 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7509 {
7510 ecs->stop_func_start
7511 = gdbarch_adjust_breakpoint_address (gdbarch,
7512 ecs->stop_func_start);
7513 }
7514
7515 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7516 {
7517 /* We are already there: stop now. */
7518 end_stepping_range (ecs);
7519 return;
7520 }
7521 else
7522 {
7523 /* Put the step-breakpoint there and go until there. */
7524 symtab_and_line sr_sal;
7525 sr_sal.pc = ecs->stop_func_start;
7526 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7527 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7528
7529 /* Do not specify what the fp should be when we stop since on
7530 some machines the prologue is where the new fp value is
7531 established. */
7532 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7533
7534 /* And make sure stepping stops right away then. */
7535 ecs->event_thread->control.step_range_end
7536 = ecs->event_thread->control.step_range_start;
7537 }
7538 keep_going (ecs);
7539}
7540
7541/* Inferior has stepped backward into a subroutine call with source
7542 code that we should not step over. Do step to the beginning of the
7543 last line of code in it. */
7544
7545static void
7546handle_step_into_function_backward (struct gdbarch *gdbarch,
7547 struct execution_control_state *ecs)
7548{
7549 struct compunit_symtab *cust;
7550 struct symtab_and_line stop_func_sal;
7551
7552 fill_in_stop_func (gdbarch, ecs);
7553
7554 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7555 if (cust != NULL && compunit_language (cust) != language_asm)
7556 ecs->stop_func_start
7557 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7558
7559 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7560
7561 /* OK, we're just going to keep stepping here. */
7562 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7563 {
7564 /* We're there already. Just stop stepping now. */
7565 end_stepping_range (ecs);
7566 }
7567 else
7568 {
7569 /* Else just reset the step range and keep going.
7570 No step-resume breakpoint, they don't work for
7571 epilogues, which can have multiple entry paths. */
7572 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7573 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7574 keep_going (ecs);
7575 }
7576 return;
7577}
7578
7579/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7580 This is used to both functions and to skip over code. */
7581
7582static void
7583insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7584 struct symtab_and_line sr_sal,
7585 struct frame_id sr_id,
7586 enum bptype sr_type)
7587{
7588 /* There should never be more than one step-resume or longjmp-resume
7589 breakpoint per thread, so we should never be setting a new
7590 step_resume_breakpoint when one is already active. */
7591 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7592 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7593
7594 if (debug_infrun)
7595 fprintf_unfiltered (gdb_stdlog,
7596 "infrun: inserting step-resume breakpoint at %s\n",
7597 paddress (gdbarch, sr_sal.pc));
7598
7599 inferior_thread ()->control.step_resume_breakpoint
7600 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7601}
7602
7603void
7604insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7605 struct symtab_and_line sr_sal,
7606 struct frame_id sr_id)
7607{
7608 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7609 sr_sal, sr_id,
7610 bp_step_resume);
7611}
7612
7613/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7614 This is used to skip a potential signal handler.
7615
7616 This is called with the interrupted function's frame. The signal
7617 handler, when it returns, will resume the interrupted function at
7618 RETURN_FRAME.pc. */
7619
7620static void
7621insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7622{
7623 gdb_assert (return_frame != NULL);
7624
7625 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7626
7627 symtab_and_line sr_sal;
7628 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7629 sr_sal.section = find_pc_overlay (sr_sal.pc);
7630 sr_sal.pspace = get_frame_program_space (return_frame);
7631
7632 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7633 get_stack_frame_id (return_frame),
7634 bp_hp_step_resume);
7635}
7636
7637/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7638 is used to skip a function after stepping into it (for "next" or if
7639 the called function has no debugging information).
7640
7641 The current function has almost always been reached by single
7642 stepping a call or return instruction. NEXT_FRAME belongs to the
7643 current function, and the breakpoint will be set at the caller's
7644 resume address.
7645
7646 This is a separate function rather than reusing
7647 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7648 get_prev_frame, which may stop prematurely (see the implementation
7649 of frame_unwind_caller_id for an example). */
7650
7651static void
7652insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7653{
7654 /* We shouldn't have gotten here if we don't know where the call site
7655 is. */
7656 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7657
7658 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7659
7660 symtab_and_line sr_sal;
7661 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7662 frame_unwind_caller_pc (next_frame));
7663 sr_sal.section = find_pc_overlay (sr_sal.pc);
7664 sr_sal.pspace = frame_unwind_program_space (next_frame);
7665
7666 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7667 frame_unwind_caller_id (next_frame));
7668}
7669
7670/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7671 new breakpoint at the target of a jmp_buf. The handling of
7672 longjmp-resume uses the same mechanisms used for handling
7673 "step-resume" breakpoints. */
7674
7675static void
7676insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7677{
7678 /* There should never be more than one longjmp-resume breakpoint per
7679 thread, so we should never be setting a new
7680 longjmp_resume_breakpoint when one is already active. */
7681 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7682
7683 if (debug_infrun)
7684 fprintf_unfiltered (gdb_stdlog,
7685 "infrun: inserting longjmp-resume breakpoint at %s\n",
7686 paddress (gdbarch, pc));
7687
7688 inferior_thread ()->control.exception_resume_breakpoint =
7689 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7690}
7691
7692/* Insert an exception resume breakpoint. TP is the thread throwing
7693 the exception. The block B is the block of the unwinder debug hook
7694 function. FRAME is the frame corresponding to the call to this
7695 function. SYM is the symbol of the function argument holding the
7696 target PC of the exception. */
7697
7698static void
7699insert_exception_resume_breakpoint (struct thread_info *tp,
7700 const struct block *b,
7701 struct frame_info *frame,
7702 struct symbol *sym)
7703{
7704 try
7705 {
7706 struct block_symbol vsym;
7707 struct value *value;
7708 CORE_ADDR handler;
7709 struct breakpoint *bp;
7710
7711 vsym = lookup_symbol_search_name (sym->search_name (),
7712 b, VAR_DOMAIN);
7713 value = read_var_value (vsym.symbol, vsym.block, frame);
7714 /* If the value was optimized out, revert to the old behavior. */
7715 if (! value_optimized_out (value))
7716 {
7717 handler = value_as_address (value);
7718
7719 if (debug_infrun)
7720 fprintf_unfiltered (gdb_stdlog,
7721 "infrun: exception resume at %lx\n",
7722 (unsigned long) handler);
7723
7724 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7725 handler,
7726 bp_exception_resume).release ();
7727
7728 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7729 frame = NULL;
7730
7731 bp->thread = tp->global_num;
7732 inferior_thread ()->control.exception_resume_breakpoint = bp;
7733 }
7734 }
7735 catch (const gdb_exception_error &e)
7736 {
7737 /* We want to ignore errors here. */
7738 }
7739}
7740
7741/* A helper for check_exception_resume that sets an
7742 exception-breakpoint based on a SystemTap probe. */
7743
7744static void
7745insert_exception_resume_from_probe (struct thread_info *tp,
7746 const struct bound_probe *probe,
7747 struct frame_info *frame)
7748{
7749 struct value *arg_value;
7750 CORE_ADDR handler;
7751 struct breakpoint *bp;
7752
7753 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7754 if (!arg_value)
7755 return;
7756
7757 handler = value_as_address (arg_value);
7758
7759 if (debug_infrun)
7760 fprintf_unfiltered (gdb_stdlog,
7761 "infrun: exception resume at %s\n",
7762 paddress (get_objfile_arch (probe->objfile),
7763 handler));
7764
7765 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7766 handler, bp_exception_resume).release ();
7767 bp->thread = tp->global_num;
7768 inferior_thread ()->control.exception_resume_breakpoint = bp;
7769}
7770
7771/* This is called when an exception has been intercepted. Check to
7772 see whether the exception's destination is of interest, and if so,
7773 set an exception resume breakpoint there. */
7774
7775static void
7776check_exception_resume (struct execution_control_state *ecs,
7777 struct frame_info *frame)
7778{
7779 struct bound_probe probe;
7780 struct symbol *func;
7781
7782 /* First see if this exception unwinding breakpoint was set via a
7783 SystemTap probe point. If so, the probe has two arguments: the
7784 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7785 set a breakpoint there. */
7786 probe = find_probe_by_pc (get_frame_pc (frame));
7787 if (probe.prob)
7788 {
7789 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7790 return;
7791 }
7792
7793 func = get_frame_function (frame);
7794 if (!func)
7795 return;
7796
7797 try
7798 {
7799 const struct block *b;
7800 struct block_iterator iter;
7801 struct symbol *sym;
7802 int argno = 0;
7803
7804 /* The exception breakpoint is a thread-specific breakpoint on
7805 the unwinder's debug hook, declared as:
7806
7807 void _Unwind_DebugHook (void *cfa, void *handler);
7808
7809 The CFA argument indicates the frame to which control is
7810 about to be transferred. HANDLER is the destination PC.
7811
7812 We ignore the CFA and set a temporary breakpoint at HANDLER.
7813 This is not extremely efficient but it avoids issues in gdb
7814 with computing the DWARF CFA, and it also works even in weird
7815 cases such as throwing an exception from inside a signal
7816 handler. */
7817
7818 b = SYMBOL_BLOCK_VALUE (func);
7819 ALL_BLOCK_SYMBOLS (b, iter, sym)
7820 {
7821 if (!SYMBOL_IS_ARGUMENT (sym))
7822 continue;
7823
7824 if (argno == 0)
7825 ++argno;
7826 else
7827 {
7828 insert_exception_resume_breakpoint (ecs->event_thread,
7829 b, frame, sym);
7830 break;
7831 }
7832 }
7833 }
7834 catch (const gdb_exception_error &e)
7835 {
7836 }
7837}
7838
7839static void
7840stop_waiting (struct execution_control_state *ecs)
7841{
7842 if (debug_infrun)
7843 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7844
7845 /* Let callers know we don't want to wait for the inferior anymore. */
7846 ecs->wait_some_more = 0;
7847
7848 /* If all-stop, but the target is always in non-stop mode, stop all
7849 threads now that we're presenting the stop to the user. */
7850 if (!non_stop && target_is_non_stop_p ())
7851 stop_all_threads ();
7852}
7853
7854/* Like keep_going, but passes the signal to the inferior, even if the
7855 signal is set to nopass. */
7856
7857static void
7858keep_going_pass_signal (struct execution_control_state *ecs)
7859{
7860 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7861 gdb_assert (!ecs->event_thread->resumed);
7862
7863 /* Save the pc before execution, to compare with pc after stop. */
7864 ecs->event_thread->prev_pc
7865 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7866
7867 if (ecs->event_thread->control.trap_expected)
7868 {
7869 struct thread_info *tp = ecs->event_thread;
7870
7871 if (debug_infrun)
7872 fprintf_unfiltered (gdb_stdlog,
7873 "infrun: %s has trap_expected set, "
7874 "resuming to collect trap\n",
7875 target_pid_to_str (tp->ptid).c_str ());
7876
7877 /* We haven't yet gotten our trap, and either: intercepted a
7878 non-signal event (e.g., a fork); or took a signal which we
7879 are supposed to pass through to the inferior. Simply
7880 continue. */
7881 resume (ecs->event_thread->suspend.stop_signal);
7882 }
7883 else if (step_over_info_valid_p ())
7884 {
7885 /* Another thread is stepping over a breakpoint in-line. If
7886 this thread needs a step-over too, queue the request. In
7887 either case, this resume must be deferred for later. */
7888 struct thread_info *tp = ecs->event_thread;
7889
7890 if (ecs->hit_singlestep_breakpoint
7891 || thread_still_needs_step_over (tp))
7892 {
7893 if (debug_infrun)
7894 fprintf_unfiltered (gdb_stdlog,
7895 "infrun: step-over already in progress: "
7896 "step-over for %s deferred\n",
7897 target_pid_to_str (tp->ptid).c_str ());
7898 thread_step_over_chain_enqueue (tp);
7899 }
7900 else
7901 {
7902 if (debug_infrun)
7903 fprintf_unfiltered (gdb_stdlog,
7904 "infrun: step-over in progress: "
7905 "resume of %s deferred\n",
7906 target_pid_to_str (tp->ptid).c_str ());
7907 }
7908 }
7909 else
7910 {
7911 struct regcache *regcache = get_current_regcache ();
7912 int remove_bp;
7913 int remove_wps;
7914 step_over_what step_what;
7915
7916 /* Either the trap was not expected, but we are continuing
7917 anyway (if we got a signal, the user asked it be passed to
7918 the child)
7919 -- or --
7920 We got our expected trap, but decided we should resume from
7921 it.
7922
7923 We're going to run this baby now!
7924
7925 Note that insert_breakpoints won't try to re-insert
7926 already inserted breakpoints. Therefore, we don't
7927 care if breakpoints were already inserted, or not. */
7928
7929 /* If we need to step over a breakpoint, and we're not using
7930 displaced stepping to do so, insert all breakpoints
7931 (watchpoints, etc.) but the one we're stepping over, step one
7932 instruction, and then re-insert the breakpoint when that step
7933 is finished. */
7934
7935 step_what = thread_still_needs_step_over (ecs->event_thread);
7936
7937 remove_bp = (ecs->hit_singlestep_breakpoint
7938 || (step_what & STEP_OVER_BREAKPOINT));
7939 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7940
7941 /* We can't use displaced stepping if we need to step past a
7942 watchpoint. The instruction copied to the scratch pad would
7943 still trigger the watchpoint. */
7944 if (remove_bp
7945 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7946 {
7947 set_step_over_info (regcache->aspace (),
7948 regcache_read_pc (regcache), remove_wps,
7949 ecs->event_thread->global_num);
7950 }
7951 else if (remove_wps)
7952 set_step_over_info (NULL, 0, remove_wps, -1);
7953
7954 /* If we now need to do an in-line step-over, we need to stop
7955 all other threads. Note this must be done before
7956 insert_breakpoints below, because that removes the breakpoint
7957 we're about to step over, otherwise other threads could miss
7958 it. */
7959 if (step_over_info_valid_p () && target_is_non_stop_p ())
7960 stop_all_threads ();
7961
7962 /* Stop stepping if inserting breakpoints fails. */
7963 try
7964 {
7965 insert_breakpoints ();
7966 }
7967 catch (const gdb_exception_error &e)
7968 {
7969 exception_print (gdb_stderr, e);
7970 stop_waiting (ecs);
7971 clear_step_over_info ();
7972 return;
7973 }
7974
7975 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7976
7977 resume (ecs->event_thread->suspend.stop_signal);
7978 }
7979
7980 prepare_to_wait (ecs);
7981}
7982
7983/* Called when we should continue running the inferior, because the
7984 current event doesn't cause a user visible stop. This does the
7985 resuming part; waiting for the next event is done elsewhere. */
7986
7987static void
7988keep_going (struct execution_control_state *ecs)
7989{
7990 if (ecs->event_thread->control.trap_expected
7991 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7992 ecs->event_thread->control.trap_expected = 0;
7993
7994 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7995 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7996 keep_going_pass_signal (ecs);
7997}
7998
7999/* This function normally comes after a resume, before
8000 handle_inferior_event exits. It takes care of any last bits of
8001 housekeeping, and sets the all-important wait_some_more flag. */
8002
8003static void
8004prepare_to_wait (struct execution_control_state *ecs)
8005{
8006 if (debug_infrun)
8007 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
8008
8009 ecs->wait_some_more = 1;
8010
8011 if (!target_is_async_p ())
8012 mark_infrun_async_event_handler ();
8013}
8014
8015/* We are done with the step range of a step/next/si/ni command.
8016 Called once for each n of a "step n" operation. */
8017
8018static void
8019end_stepping_range (struct execution_control_state *ecs)
8020{
8021 ecs->event_thread->control.stop_step = 1;
8022 stop_waiting (ecs);
8023}
8024
8025/* Several print_*_reason functions to print why the inferior has stopped.
8026 We always print something when the inferior exits, or receives a signal.
8027 The rest of the cases are dealt with later on in normal_stop and
8028 print_it_typical. Ideally there should be a call to one of these
8029 print_*_reason functions functions from handle_inferior_event each time
8030 stop_waiting is called.
8031
8032 Note that we don't call these directly, instead we delegate that to
8033 the interpreters, through observers. Interpreters then call these
8034 with whatever uiout is right. */
8035
8036void
8037print_end_stepping_range_reason (struct ui_out *uiout)
8038{
8039 /* For CLI-like interpreters, print nothing. */
8040
8041 if (uiout->is_mi_like_p ())
8042 {
8043 uiout->field_string ("reason",
8044 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8045 }
8046}
8047
8048void
8049print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8050{
8051 annotate_signalled ();
8052 if (uiout->is_mi_like_p ())
8053 uiout->field_string
8054 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8055 uiout->text ("\nProgram terminated with signal ");
8056 annotate_signal_name ();
8057 uiout->field_string ("signal-name",
8058 gdb_signal_to_name (siggnal));
8059 annotate_signal_name_end ();
8060 uiout->text (", ");
8061 annotate_signal_string ();
8062 uiout->field_string ("signal-meaning",
8063 gdb_signal_to_string (siggnal));
8064 annotate_signal_string_end ();
8065 uiout->text (".\n");
8066 uiout->text ("The program no longer exists.\n");
8067}
8068
8069void
8070print_exited_reason (struct ui_out *uiout, int exitstatus)
8071{
8072 struct inferior *inf = current_inferior ();
8073 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8074
8075 annotate_exited (exitstatus);
8076 if (exitstatus)
8077 {
8078 if (uiout->is_mi_like_p ())
8079 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8080 std::string exit_code_str
8081 = string_printf ("0%o", (unsigned int) exitstatus);
8082 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8083 plongest (inf->num), pidstr.c_str (),
8084 string_field ("exit-code", exit_code_str.c_str ()));
8085 }
8086 else
8087 {
8088 if (uiout->is_mi_like_p ())
8089 uiout->field_string
8090 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8091 uiout->message ("[Inferior %s (%s) exited normally]\n",
8092 plongest (inf->num), pidstr.c_str ());
8093 }
8094}
8095
8096/* Some targets/architectures can do extra processing/display of
8097 segmentation faults. E.g., Intel MPX boundary faults.
8098 Call the architecture dependent function to handle the fault. */
8099
8100static void
8101handle_segmentation_fault (struct ui_out *uiout)
8102{
8103 struct regcache *regcache = get_current_regcache ();
8104 struct gdbarch *gdbarch = regcache->arch ();
8105
8106 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8107 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8108}
8109
8110void
8111print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8112{
8113 struct thread_info *thr = inferior_thread ();
8114
8115 annotate_signal ();
8116
8117 if (uiout->is_mi_like_p ())
8118 ;
8119 else if (show_thread_that_caused_stop ())
8120 {
8121 const char *name;
8122
8123 uiout->text ("\nThread ");
8124 uiout->field_string ("thread-id", print_thread_id (thr));
8125
8126 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8127 if (name != NULL)
8128 {
8129 uiout->text (" \"");
8130 uiout->field_string ("name", name);
8131 uiout->text ("\"");
8132 }
8133 }
8134 else
8135 uiout->text ("\nProgram");
8136
8137 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8138 uiout->text (" stopped");
8139 else
8140 {
8141 uiout->text (" received signal ");
8142 annotate_signal_name ();
8143 if (uiout->is_mi_like_p ())
8144 uiout->field_string
8145 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8146 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8147 annotate_signal_name_end ();
8148 uiout->text (", ");
8149 annotate_signal_string ();
8150 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8151
8152 if (siggnal == GDB_SIGNAL_SEGV)
8153 handle_segmentation_fault (uiout);
8154
8155 annotate_signal_string_end ();
8156 }
8157 uiout->text (".\n");
8158}
8159
8160void
8161print_no_history_reason (struct ui_out *uiout)
8162{
8163 uiout->text ("\nNo more reverse-execution history.\n");
8164}
8165
8166/* Print current location without a level number, if we have changed
8167 functions or hit a breakpoint. Print source line if we have one.
8168 bpstat_print contains the logic deciding in detail what to print,
8169 based on the event(s) that just occurred. */
8170
8171static void
8172print_stop_location (struct target_waitstatus *ws)
8173{
8174 int bpstat_ret;
8175 enum print_what source_flag;
8176 int do_frame_printing = 1;
8177 struct thread_info *tp = inferior_thread ();
8178
8179 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8180 switch (bpstat_ret)
8181 {
8182 case PRINT_UNKNOWN:
8183 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8184 should) carry around the function and does (or should) use
8185 that when doing a frame comparison. */
8186 if (tp->control.stop_step
8187 && frame_id_eq (tp->control.step_frame_id,
8188 get_frame_id (get_current_frame ()))
8189 && (tp->control.step_start_function
8190 == find_pc_function (tp->suspend.stop_pc)))
8191 {
8192 /* Finished step, just print source line. */
8193 source_flag = SRC_LINE;
8194 }
8195 else
8196 {
8197 /* Print location and source line. */
8198 source_flag = SRC_AND_LOC;
8199 }
8200 break;
8201 case PRINT_SRC_AND_LOC:
8202 /* Print location and source line. */
8203 source_flag = SRC_AND_LOC;
8204 break;
8205 case PRINT_SRC_ONLY:
8206 source_flag = SRC_LINE;
8207 break;
8208 case PRINT_NOTHING:
8209 /* Something bogus. */
8210 source_flag = SRC_LINE;
8211 do_frame_printing = 0;
8212 break;
8213 default:
8214 internal_error (__FILE__, __LINE__, _("Unknown value."));
8215 }
8216
8217 /* The behavior of this routine with respect to the source
8218 flag is:
8219 SRC_LINE: Print only source line
8220 LOCATION: Print only location
8221 SRC_AND_LOC: Print location and source line. */
8222 if (do_frame_printing)
8223 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8224}
8225
8226/* See infrun.h. */
8227
8228void
8229print_stop_event (struct ui_out *uiout, bool displays)
8230{
8231 struct target_waitstatus last;
8232 struct thread_info *tp;
8233
8234 get_last_target_status (nullptr, nullptr, &last);
8235
8236 {
8237 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8238
8239 print_stop_location (&last);
8240
8241 /* Display the auto-display expressions. */
8242 if (displays)
8243 do_displays ();
8244 }
8245
8246 tp = inferior_thread ();
8247 if (tp->thread_fsm != NULL
8248 && tp->thread_fsm->finished_p ())
8249 {
8250 struct return_value_info *rv;
8251
8252 rv = tp->thread_fsm->return_value ();
8253 if (rv != NULL)
8254 print_return_value (uiout, rv);
8255 }
8256}
8257
8258/* See infrun.h. */
8259
8260void
8261maybe_remove_breakpoints (void)
8262{
8263 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8264 {
8265 if (remove_breakpoints ())
8266 {
8267 target_terminal::ours_for_output ();
8268 printf_filtered (_("Cannot remove breakpoints because "
8269 "program is no longer writable.\nFurther "
8270 "execution is probably impossible.\n"));
8271 }
8272 }
8273}
8274
8275/* The execution context that just caused a normal stop. */
8276
8277struct stop_context
8278{
8279 stop_context ();
8280 ~stop_context ();
8281
8282 DISABLE_COPY_AND_ASSIGN (stop_context);
8283
8284 bool changed () const;
8285
8286 /* The stop ID. */
8287 ULONGEST stop_id;
8288
8289 /* The event PTID. */
8290
8291 ptid_t ptid;
8292
8293 /* If stopp for a thread event, this is the thread that caused the
8294 stop. */
8295 struct thread_info *thread;
8296
8297 /* The inferior that caused the stop. */
8298 int inf_num;
8299};
8300
8301/* Initializes a new stop context. If stopped for a thread event, this
8302 takes a strong reference to the thread. */
8303
8304stop_context::stop_context ()
8305{
8306 stop_id = get_stop_id ();
8307 ptid = inferior_ptid;
8308 inf_num = current_inferior ()->num;
8309
8310 if (inferior_ptid != null_ptid)
8311 {
8312 /* Take a strong reference so that the thread can't be deleted
8313 yet. */
8314 thread = inferior_thread ();
8315 thread->incref ();
8316 }
8317 else
8318 thread = NULL;
8319}
8320
8321/* Release a stop context previously created with save_stop_context.
8322 Releases the strong reference to the thread as well. */
8323
8324stop_context::~stop_context ()
8325{
8326 if (thread != NULL)
8327 thread->decref ();
8328}
8329
8330/* Return true if the current context no longer matches the saved stop
8331 context. */
8332
8333bool
8334stop_context::changed () const
8335{
8336 if (ptid != inferior_ptid)
8337 return true;
8338 if (inf_num != current_inferior ()->num)
8339 return true;
8340 if (thread != NULL && thread->state != THREAD_STOPPED)
8341 return true;
8342 if (get_stop_id () != stop_id)
8343 return true;
8344 return false;
8345}
8346
8347/* See infrun.h. */
8348
8349int
8350normal_stop (void)
8351{
8352 struct target_waitstatus last;
8353
8354 get_last_target_status (nullptr, nullptr, &last);
8355
8356 new_stop_id ();
8357
8358 /* If an exception is thrown from this point on, make sure to
8359 propagate GDB's knowledge of the executing state to the
8360 frontend/user running state. A QUIT is an easy exception to see
8361 here, so do this before any filtered output. */
8362
8363 ptid_t finish_ptid = null_ptid;
8364
8365 if (!non_stop)
8366 finish_ptid = minus_one_ptid;
8367 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8368 || last.kind == TARGET_WAITKIND_EXITED)
8369 {
8370 /* On some targets, we may still have live threads in the
8371 inferior when we get a process exit event. E.g., for
8372 "checkpoint", when the current checkpoint/fork exits,
8373 linux-fork.c automatically switches to another fork from
8374 within target_mourn_inferior. */
8375 if (inferior_ptid != null_ptid)
8376 finish_ptid = ptid_t (inferior_ptid.pid ());
8377 }
8378 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8379 finish_ptid = inferior_ptid;
8380
8381 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8382 if (finish_ptid != null_ptid)
8383 {
8384 maybe_finish_thread_state.emplace
8385 (user_visible_resume_target (finish_ptid), finish_ptid);
8386 }
8387
8388 /* As we're presenting a stop, and potentially removing breakpoints,
8389 update the thread list so we can tell whether there are threads
8390 running on the target. With target remote, for example, we can
8391 only learn about new threads when we explicitly update the thread
8392 list. Do this before notifying the interpreters about signal
8393 stops, end of stepping ranges, etc., so that the "new thread"
8394 output is emitted before e.g., "Program received signal FOO",
8395 instead of after. */
8396 update_thread_list ();
8397
8398 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8399 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8400
8401 /* As with the notification of thread events, we want to delay
8402 notifying the user that we've switched thread context until
8403 the inferior actually stops.
8404
8405 There's no point in saying anything if the inferior has exited.
8406 Note that SIGNALLED here means "exited with a signal", not
8407 "received a signal".
8408
8409 Also skip saying anything in non-stop mode. In that mode, as we
8410 don't want GDB to switch threads behind the user's back, to avoid
8411 races where the user is typing a command to apply to thread x,
8412 but GDB switches to thread y before the user finishes entering
8413 the command, fetch_inferior_event installs a cleanup to restore
8414 the current thread back to the thread the user had selected right
8415 after this event is handled, so we're not really switching, only
8416 informing of a stop. */
8417 if (!non_stop
8418 && previous_inferior_ptid != inferior_ptid
8419 && target_has_execution
8420 && last.kind != TARGET_WAITKIND_SIGNALLED
8421 && last.kind != TARGET_WAITKIND_EXITED
8422 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8423 {
8424 SWITCH_THRU_ALL_UIS ()
8425 {
8426 target_terminal::ours_for_output ();
8427 printf_filtered (_("[Switching to %s]\n"),
8428 target_pid_to_str (inferior_ptid).c_str ());
8429 annotate_thread_changed ();
8430 }
8431 previous_inferior_ptid = inferior_ptid;
8432 }
8433
8434 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8435 {
8436 SWITCH_THRU_ALL_UIS ()
8437 if (current_ui->prompt_state == PROMPT_BLOCKED)
8438 {
8439 target_terminal::ours_for_output ();
8440 printf_filtered (_("No unwaited-for children left.\n"));
8441 }
8442 }
8443
8444 /* Note: this depends on the update_thread_list call above. */
8445 maybe_remove_breakpoints ();
8446
8447 /* If an auto-display called a function and that got a signal,
8448 delete that auto-display to avoid an infinite recursion. */
8449
8450 if (stopped_by_random_signal)
8451 disable_current_display ();
8452
8453 SWITCH_THRU_ALL_UIS ()
8454 {
8455 async_enable_stdin ();
8456 }
8457
8458 /* Let the user/frontend see the threads as stopped. */
8459 maybe_finish_thread_state.reset ();
8460
8461 /* Select innermost stack frame - i.e., current frame is frame 0,
8462 and current location is based on that. Handle the case where the
8463 dummy call is returning after being stopped. E.g. the dummy call
8464 previously hit a breakpoint. (If the dummy call returns
8465 normally, we won't reach here.) Do this before the stop hook is
8466 run, so that it doesn't get to see the temporary dummy frame,
8467 which is not where we'll present the stop. */
8468 if (has_stack_frames ())
8469 {
8470 if (stop_stack_dummy == STOP_STACK_DUMMY)
8471 {
8472 /* Pop the empty frame that contains the stack dummy. This
8473 also restores inferior state prior to the call (struct
8474 infcall_suspend_state). */
8475 struct frame_info *frame = get_current_frame ();
8476
8477 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8478 frame_pop (frame);
8479 /* frame_pop calls reinit_frame_cache as the last thing it
8480 does which means there's now no selected frame. */
8481 }
8482
8483 select_frame (get_current_frame ());
8484
8485 /* Set the current source location. */
8486 set_current_sal_from_frame (get_current_frame ());
8487 }
8488
8489 /* Look up the hook_stop and run it (CLI internally handles problem
8490 of stop_command's pre-hook not existing). */
8491 if (stop_command != NULL)
8492 {
8493 stop_context saved_context;
8494
8495 try
8496 {
8497 execute_cmd_pre_hook (stop_command);
8498 }
8499 catch (const gdb_exception &ex)
8500 {
8501 exception_fprintf (gdb_stderr, ex,
8502 "Error while running hook_stop:\n");
8503 }
8504
8505 /* If the stop hook resumes the target, then there's no point in
8506 trying to notify about the previous stop; its context is
8507 gone. Likewise if the command switches thread or inferior --
8508 the observers would print a stop for the wrong
8509 thread/inferior. */
8510 if (saved_context.changed ())
8511 return 1;
8512 }
8513
8514 /* Notify observers about the stop. This is where the interpreters
8515 print the stop event. */
8516 if (inferior_ptid != null_ptid)
8517 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8518 stop_print_frame);
8519 else
8520 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8521
8522 annotate_stopped ();
8523
8524 if (target_has_execution)
8525 {
8526 if (last.kind != TARGET_WAITKIND_SIGNALLED
8527 && last.kind != TARGET_WAITKIND_EXITED
8528 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8529 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8530 Delete any breakpoint that is to be deleted at the next stop. */
8531 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8532 }
8533
8534 /* Try to get rid of automatically added inferiors that are no
8535 longer needed. Keeping those around slows down things linearly.
8536 Note that this never removes the current inferior. */
8537 prune_inferiors ();
8538
8539 return 0;
8540}
8541\f
8542int
8543signal_stop_state (int signo)
8544{
8545 return signal_stop[signo];
8546}
8547
8548int
8549signal_print_state (int signo)
8550{
8551 return signal_print[signo];
8552}
8553
8554int
8555signal_pass_state (int signo)
8556{
8557 return signal_program[signo];
8558}
8559
8560static void
8561signal_cache_update (int signo)
8562{
8563 if (signo == -1)
8564 {
8565 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8566 signal_cache_update (signo);
8567
8568 return;
8569 }
8570
8571 signal_pass[signo] = (signal_stop[signo] == 0
8572 && signal_print[signo] == 0
8573 && signal_program[signo] == 1
8574 && signal_catch[signo] == 0);
8575}
8576
8577int
8578signal_stop_update (int signo, int state)
8579{
8580 int ret = signal_stop[signo];
8581
8582 signal_stop[signo] = state;
8583 signal_cache_update (signo);
8584 return ret;
8585}
8586
8587int
8588signal_print_update (int signo, int state)
8589{
8590 int ret = signal_print[signo];
8591
8592 signal_print[signo] = state;
8593 signal_cache_update (signo);
8594 return ret;
8595}
8596
8597int
8598signal_pass_update (int signo, int state)
8599{
8600 int ret = signal_program[signo];
8601
8602 signal_program[signo] = state;
8603 signal_cache_update (signo);
8604 return ret;
8605}
8606
8607/* Update the global 'signal_catch' from INFO and notify the
8608 target. */
8609
8610void
8611signal_catch_update (const unsigned int *info)
8612{
8613 int i;
8614
8615 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8616 signal_catch[i] = info[i] > 0;
8617 signal_cache_update (-1);
8618 target_pass_signals (signal_pass);
8619}
8620
8621static void
8622sig_print_header (void)
8623{
8624 printf_filtered (_("Signal Stop\tPrint\tPass "
8625 "to program\tDescription\n"));
8626}
8627
8628static void
8629sig_print_info (enum gdb_signal oursig)
8630{
8631 const char *name = gdb_signal_to_name (oursig);
8632 int name_padding = 13 - strlen (name);
8633
8634 if (name_padding <= 0)
8635 name_padding = 0;
8636
8637 printf_filtered ("%s", name);
8638 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8639 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8640 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8641 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8642 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8643}
8644
8645/* Specify how various signals in the inferior should be handled. */
8646
8647static void
8648handle_command (const char *args, int from_tty)
8649{
8650 int digits, wordlen;
8651 int sigfirst, siglast;
8652 enum gdb_signal oursig;
8653 int allsigs;
8654
8655 if (args == NULL)
8656 {
8657 error_no_arg (_("signal to handle"));
8658 }
8659
8660 /* Allocate and zero an array of flags for which signals to handle. */
8661
8662 const size_t nsigs = GDB_SIGNAL_LAST;
8663 unsigned char sigs[nsigs] {};
8664
8665 /* Break the command line up into args. */
8666
8667 gdb_argv built_argv (args);
8668
8669 /* Walk through the args, looking for signal oursigs, signal names, and
8670 actions. Signal numbers and signal names may be interspersed with
8671 actions, with the actions being performed for all signals cumulatively
8672 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8673
8674 for (char *arg : built_argv)
8675 {
8676 wordlen = strlen (arg);
8677 for (digits = 0; isdigit (arg[digits]); digits++)
8678 {;
8679 }
8680 allsigs = 0;
8681 sigfirst = siglast = -1;
8682
8683 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8684 {
8685 /* Apply action to all signals except those used by the
8686 debugger. Silently skip those. */
8687 allsigs = 1;
8688 sigfirst = 0;
8689 siglast = nsigs - 1;
8690 }
8691 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8692 {
8693 SET_SIGS (nsigs, sigs, signal_stop);
8694 SET_SIGS (nsigs, sigs, signal_print);
8695 }
8696 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8697 {
8698 UNSET_SIGS (nsigs, sigs, signal_program);
8699 }
8700 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8701 {
8702 SET_SIGS (nsigs, sigs, signal_print);
8703 }
8704 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8705 {
8706 SET_SIGS (nsigs, sigs, signal_program);
8707 }
8708 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8709 {
8710 UNSET_SIGS (nsigs, sigs, signal_stop);
8711 }
8712 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8713 {
8714 SET_SIGS (nsigs, sigs, signal_program);
8715 }
8716 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8717 {
8718 UNSET_SIGS (nsigs, sigs, signal_print);
8719 UNSET_SIGS (nsigs, sigs, signal_stop);
8720 }
8721 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8722 {
8723 UNSET_SIGS (nsigs, sigs, signal_program);
8724 }
8725 else if (digits > 0)
8726 {
8727 /* It is numeric. The numeric signal refers to our own
8728 internal signal numbering from target.h, not to host/target
8729 signal number. This is a feature; users really should be
8730 using symbolic names anyway, and the common ones like
8731 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8732
8733 sigfirst = siglast = (int)
8734 gdb_signal_from_command (atoi (arg));
8735 if (arg[digits] == '-')
8736 {
8737 siglast = (int)
8738 gdb_signal_from_command (atoi (arg + digits + 1));
8739 }
8740 if (sigfirst > siglast)
8741 {
8742 /* Bet he didn't figure we'd think of this case... */
8743 std::swap (sigfirst, siglast);
8744 }
8745 }
8746 else
8747 {
8748 oursig = gdb_signal_from_name (arg);
8749 if (oursig != GDB_SIGNAL_UNKNOWN)
8750 {
8751 sigfirst = siglast = (int) oursig;
8752 }
8753 else
8754 {
8755 /* Not a number and not a recognized flag word => complain. */
8756 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8757 }
8758 }
8759
8760 /* If any signal numbers or symbol names were found, set flags for
8761 which signals to apply actions to. */
8762
8763 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8764 {
8765 switch ((enum gdb_signal) signum)
8766 {
8767 case GDB_SIGNAL_TRAP:
8768 case GDB_SIGNAL_INT:
8769 if (!allsigs && !sigs[signum])
8770 {
8771 if (query (_("%s is used by the debugger.\n\
8772Are you sure you want to change it? "),
8773 gdb_signal_to_name ((enum gdb_signal) signum)))
8774 {
8775 sigs[signum] = 1;
8776 }
8777 else
8778 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8779 }
8780 break;
8781 case GDB_SIGNAL_0:
8782 case GDB_SIGNAL_DEFAULT:
8783 case GDB_SIGNAL_UNKNOWN:
8784 /* Make sure that "all" doesn't print these. */
8785 break;
8786 default:
8787 sigs[signum] = 1;
8788 break;
8789 }
8790 }
8791 }
8792
8793 for (int signum = 0; signum < nsigs; signum++)
8794 if (sigs[signum])
8795 {
8796 signal_cache_update (-1);
8797 target_pass_signals (signal_pass);
8798 target_program_signals (signal_program);
8799
8800 if (from_tty)
8801 {
8802 /* Show the results. */
8803 sig_print_header ();
8804 for (; signum < nsigs; signum++)
8805 if (sigs[signum])
8806 sig_print_info ((enum gdb_signal) signum);
8807 }
8808
8809 break;
8810 }
8811}
8812
8813/* Complete the "handle" command. */
8814
8815static void
8816handle_completer (struct cmd_list_element *ignore,
8817 completion_tracker &tracker,
8818 const char *text, const char *word)
8819{
8820 static const char * const keywords[] =
8821 {
8822 "all",
8823 "stop",
8824 "ignore",
8825 "print",
8826 "pass",
8827 "nostop",
8828 "noignore",
8829 "noprint",
8830 "nopass",
8831 NULL,
8832 };
8833
8834 signal_completer (ignore, tracker, text, word);
8835 complete_on_enum (tracker, keywords, word, word);
8836}
8837
8838enum gdb_signal
8839gdb_signal_from_command (int num)
8840{
8841 if (num >= 1 && num <= 15)
8842 return (enum gdb_signal) num;
8843 error (_("Only signals 1-15 are valid as numeric signals.\n\
8844Use \"info signals\" for a list of symbolic signals."));
8845}
8846
8847/* Print current contents of the tables set by the handle command.
8848 It is possible we should just be printing signals actually used
8849 by the current target (but for things to work right when switching
8850 targets, all signals should be in the signal tables). */
8851
8852static void
8853info_signals_command (const char *signum_exp, int from_tty)
8854{
8855 enum gdb_signal oursig;
8856
8857 sig_print_header ();
8858
8859 if (signum_exp)
8860 {
8861 /* First see if this is a symbol name. */
8862 oursig = gdb_signal_from_name (signum_exp);
8863 if (oursig == GDB_SIGNAL_UNKNOWN)
8864 {
8865 /* No, try numeric. */
8866 oursig =
8867 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8868 }
8869 sig_print_info (oursig);
8870 return;
8871 }
8872
8873 printf_filtered ("\n");
8874 /* These ugly casts brought to you by the native VAX compiler. */
8875 for (oursig = GDB_SIGNAL_FIRST;
8876 (int) oursig < (int) GDB_SIGNAL_LAST;
8877 oursig = (enum gdb_signal) ((int) oursig + 1))
8878 {
8879 QUIT;
8880
8881 if (oursig != GDB_SIGNAL_UNKNOWN
8882 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8883 sig_print_info (oursig);
8884 }
8885
8886 printf_filtered (_("\nUse the \"handle\" command "
8887 "to change these tables.\n"));
8888}
8889
8890/* The $_siginfo convenience variable is a bit special. We don't know
8891 for sure the type of the value until we actually have a chance to
8892 fetch the data. The type can change depending on gdbarch, so it is
8893 also dependent on which thread you have selected.
8894
8895 1. making $_siginfo be an internalvar that creates a new value on
8896 access.
8897
8898 2. making the value of $_siginfo be an lval_computed value. */
8899
8900/* This function implements the lval_computed support for reading a
8901 $_siginfo value. */
8902
8903static void
8904siginfo_value_read (struct value *v)
8905{
8906 LONGEST transferred;
8907
8908 /* If we can access registers, so can we access $_siginfo. Likewise
8909 vice versa. */
8910 validate_registers_access ();
8911
8912 transferred =
8913 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8914 NULL,
8915 value_contents_all_raw (v),
8916 value_offset (v),
8917 TYPE_LENGTH (value_type (v)));
8918
8919 if (transferred != TYPE_LENGTH (value_type (v)))
8920 error (_("Unable to read siginfo"));
8921}
8922
8923/* This function implements the lval_computed support for writing a
8924 $_siginfo value. */
8925
8926static void
8927siginfo_value_write (struct value *v, struct value *fromval)
8928{
8929 LONGEST transferred;
8930
8931 /* If we can access registers, so can we access $_siginfo. Likewise
8932 vice versa. */
8933 validate_registers_access ();
8934
8935 transferred = target_write (current_top_target (),
8936 TARGET_OBJECT_SIGNAL_INFO,
8937 NULL,
8938 value_contents_all_raw (fromval),
8939 value_offset (v),
8940 TYPE_LENGTH (value_type (fromval)));
8941
8942 if (transferred != TYPE_LENGTH (value_type (fromval)))
8943 error (_("Unable to write siginfo"));
8944}
8945
8946static const struct lval_funcs siginfo_value_funcs =
8947 {
8948 siginfo_value_read,
8949 siginfo_value_write
8950 };
8951
8952/* Return a new value with the correct type for the siginfo object of
8953 the current thread using architecture GDBARCH. Return a void value
8954 if there's no object available. */
8955
8956static struct value *
8957siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8958 void *ignore)
8959{
8960 if (target_has_stack
8961 && inferior_ptid != null_ptid
8962 && gdbarch_get_siginfo_type_p (gdbarch))
8963 {
8964 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8965
8966 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8967 }
8968
8969 return allocate_value (builtin_type (gdbarch)->builtin_void);
8970}
8971
8972\f
8973/* infcall_suspend_state contains state about the program itself like its
8974 registers and any signal it received when it last stopped.
8975 This state must be restored regardless of how the inferior function call
8976 ends (either successfully, or after it hits a breakpoint or signal)
8977 if the program is to properly continue where it left off. */
8978
8979class infcall_suspend_state
8980{
8981public:
8982 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8983 once the inferior function call has finished. */
8984 infcall_suspend_state (struct gdbarch *gdbarch,
8985 const struct thread_info *tp,
8986 struct regcache *regcache)
8987 : m_thread_suspend (tp->suspend),
8988 m_registers (new readonly_detached_regcache (*regcache))
8989 {
8990 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8991
8992 if (gdbarch_get_siginfo_type_p (gdbarch))
8993 {
8994 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8995 size_t len = TYPE_LENGTH (type);
8996
8997 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8998
8999 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9000 siginfo_data.get (), 0, len) != len)
9001 {
9002 /* Errors ignored. */
9003 siginfo_data.reset (nullptr);
9004 }
9005 }
9006
9007 if (siginfo_data)
9008 {
9009 m_siginfo_gdbarch = gdbarch;
9010 m_siginfo_data = std::move (siginfo_data);
9011 }
9012 }
9013
9014 /* Return a pointer to the stored register state. */
9015
9016 readonly_detached_regcache *registers () const
9017 {
9018 return m_registers.get ();
9019 }
9020
9021 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9022
9023 void restore (struct gdbarch *gdbarch,
9024 struct thread_info *tp,
9025 struct regcache *regcache) const
9026 {
9027 tp->suspend = m_thread_suspend;
9028
9029 if (m_siginfo_gdbarch == gdbarch)
9030 {
9031 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9032
9033 /* Errors ignored. */
9034 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9035 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9036 }
9037
9038 /* The inferior can be gone if the user types "print exit(0)"
9039 (and perhaps other times). */
9040 if (target_has_execution)
9041 /* NB: The register write goes through to the target. */
9042 regcache->restore (registers ());
9043 }
9044
9045private:
9046 /* How the current thread stopped before the inferior function call was
9047 executed. */
9048 struct thread_suspend_state m_thread_suspend;
9049
9050 /* The registers before the inferior function call was executed. */
9051 std::unique_ptr<readonly_detached_regcache> m_registers;
9052
9053 /* Format of SIGINFO_DATA or NULL if it is not present. */
9054 struct gdbarch *m_siginfo_gdbarch = nullptr;
9055
9056 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9057 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9058 content would be invalid. */
9059 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9060};
9061
9062infcall_suspend_state_up
9063save_infcall_suspend_state ()
9064{
9065 struct thread_info *tp = inferior_thread ();
9066 struct regcache *regcache = get_current_regcache ();
9067 struct gdbarch *gdbarch = regcache->arch ();
9068
9069 infcall_suspend_state_up inf_state
9070 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9071
9072 /* Having saved the current state, adjust the thread state, discarding
9073 any stop signal information. The stop signal is not useful when
9074 starting an inferior function call, and run_inferior_call will not use
9075 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9076 tp->suspend.stop_signal = GDB_SIGNAL_0;
9077
9078 return inf_state;
9079}
9080
9081/* Restore inferior session state to INF_STATE. */
9082
9083void
9084restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9085{
9086 struct thread_info *tp = inferior_thread ();
9087 struct regcache *regcache = get_current_regcache ();
9088 struct gdbarch *gdbarch = regcache->arch ();
9089
9090 inf_state->restore (gdbarch, tp, regcache);
9091 discard_infcall_suspend_state (inf_state);
9092}
9093
9094void
9095discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9096{
9097 delete inf_state;
9098}
9099
9100readonly_detached_regcache *
9101get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9102{
9103 return inf_state->registers ();
9104}
9105
9106/* infcall_control_state contains state regarding gdb's control of the
9107 inferior itself like stepping control. It also contains session state like
9108 the user's currently selected frame. */
9109
9110struct infcall_control_state
9111{
9112 struct thread_control_state thread_control;
9113 struct inferior_control_state inferior_control;
9114
9115 /* Other fields: */
9116 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9117 int stopped_by_random_signal = 0;
9118
9119 /* ID if the selected frame when the inferior function call was made. */
9120 struct frame_id selected_frame_id {};
9121};
9122
9123/* Save all of the information associated with the inferior<==>gdb
9124 connection. */
9125
9126infcall_control_state_up
9127save_infcall_control_state ()
9128{
9129 infcall_control_state_up inf_status (new struct infcall_control_state);
9130 struct thread_info *tp = inferior_thread ();
9131 struct inferior *inf = current_inferior ();
9132
9133 inf_status->thread_control = tp->control;
9134 inf_status->inferior_control = inf->control;
9135
9136 tp->control.step_resume_breakpoint = NULL;
9137 tp->control.exception_resume_breakpoint = NULL;
9138
9139 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9140 chain. If caller's caller is walking the chain, they'll be happier if we
9141 hand them back the original chain when restore_infcall_control_state is
9142 called. */
9143 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9144
9145 /* Other fields: */
9146 inf_status->stop_stack_dummy = stop_stack_dummy;
9147 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9148
9149 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9150
9151 return inf_status;
9152}
9153
9154static void
9155restore_selected_frame (const frame_id &fid)
9156{
9157 frame_info *frame = frame_find_by_id (fid);
9158
9159 /* If inf_status->selected_frame_id is NULL, there was no previously
9160 selected frame. */
9161 if (frame == NULL)
9162 {
9163 warning (_("Unable to restore previously selected frame."));
9164 return;
9165 }
9166
9167 select_frame (frame);
9168}
9169
9170/* Restore inferior session state to INF_STATUS. */
9171
9172void
9173restore_infcall_control_state (struct infcall_control_state *inf_status)
9174{
9175 struct thread_info *tp = inferior_thread ();
9176 struct inferior *inf = current_inferior ();
9177
9178 if (tp->control.step_resume_breakpoint)
9179 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9180
9181 if (tp->control.exception_resume_breakpoint)
9182 tp->control.exception_resume_breakpoint->disposition
9183 = disp_del_at_next_stop;
9184
9185 /* Handle the bpstat_copy of the chain. */
9186 bpstat_clear (&tp->control.stop_bpstat);
9187
9188 tp->control = inf_status->thread_control;
9189 inf->control = inf_status->inferior_control;
9190
9191 /* Other fields: */
9192 stop_stack_dummy = inf_status->stop_stack_dummy;
9193 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9194
9195 if (target_has_stack)
9196 {
9197 /* The point of the try/catch is that if the stack is clobbered,
9198 walking the stack might encounter a garbage pointer and
9199 error() trying to dereference it. */
9200 try
9201 {
9202 restore_selected_frame (inf_status->selected_frame_id);
9203 }
9204 catch (const gdb_exception_error &ex)
9205 {
9206 exception_fprintf (gdb_stderr, ex,
9207 "Unable to restore previously selected frame:\n");
9208 /* Error in restoring the selected frame. Select the
9209 innermost frame. */
9210 select_frame (get_current_frame ());
9211 }
9212 }
9213
9214 delete inf_status;
9215}
9216
9217void
9218discard_infcall_control_state (struct infcall_control_state *inf_status)
9219{
9220 if (inf_status->thread_control.step_resume_breakpoint)
9221 inf_status->thread_control.step_resume_breakpoint->disposition
9222 = disp_del_at_next_stop;
9223
9224 if (inf_status->thread_control.exception_resume_breakpoint)
9225 inf_status->thread_control.exception_resume_breakpoint->disposition
9226 = disp_del_at_next_stop;
9227
9228 /* See save_infcall_control_state for info on stop_bpstat. */
9229 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9230
9231 delete inf_status;
9232}
9233\f
9234/* See infrun.h. */
9235
9236void
9237clear_exit_convenience_vars (void)
9238{
9239 clear_internalvar (lookup_internalvar ("_exitsignal"));
9240 clear_internalvar (lookup_internalvar ("_exitcode"));
9241}
9242\f
9243
9244/* User interface for reverse debugging:
9245 Set exec-direction / show exec-direction commands
9246 (returns error unless target implements to_set_exec_direction method). */
9247
9248enum exec_direction_kind execution_direction = EXEC_FORWARD;
9249static const char exec_forward[] = "forward";
9250static const char exec_reverse[] = "reverse";
9251static const char *exec_direction = exec_forward;
9252static const char *const exec_direction_names[] = {
9253 exec_forward,
9254 exec_reverse,
9255 NULL
9256};
9257
9258static void
9259set_exec_direction_func (const char *args, int from_tty,
9260 struct cmd_list_element *cmd)
9261{
9262 if (target_can_execute_reverse)
9263 {
9264 if (!strcmp (exec_direction, exec_forward))
9265 execution_direction = EXEC_FORWARD;
9266 else if (!strcmp (exec_direction, exec_reverse))
9267 execution_direction = EXEC_REVERSE;
9268 }
9269 else
9270 {
9271 exec_direction = exec_forward;
9272 error (_("Target does not support this operation."));
9273 }
9274}
9275
9276static void
9277show_exec_direction_func (struct ui_file *out, int from_tty,
9278 struct cmd_list_element *cmd, const char *value)
9279{
9280 switch (execution_direction) {
9281 case EXEC_FORWARD:
9282 fprintf_filtered (out, _("Forward.\n"));
9283 break;
9284 case EXEC_REVERSE:
9285 fprintf_filtered (out, _("Reverse.\n"));
9286 break;
9287 default:
9288 internal_error (__FILE__, __LINE__,
9289 _("bogus execution_direction value: %d"),
9290 (int) execution_direction);
9291 }
9292}
9293
9294static void
9295show_schedule_multiple (struct ui_file *file, int from_tty,
9296 struct cmd_list_element *c, const char *value)
9297{
9298 fprintf_filtered (file, _("Resuming the execution of threads "
9299 "of all processes is %s.\n"), value);
9300}
9301
9302/* Implementation of `siginfo' variable. */
9303
9304static const struct internalvar_funcs siginfo_funcs =
9305{
9306 siginfo_make_value,
9307 NULL,
9308 NULL
9309};
9310
9311/* Callback for infrun's target events source. This is marked when a
9312 thread has a pending status to process. */
9313
9314static void
9315infrun_async_inferior_event_handler (gdb_client_data data)
9316{
9317 inferior_event_handler (INF_REG_EVENT, NULL);
9318}
9319
9320void _initialize_infrun ();
9321void
9322_initialize_infrun ()
9323{
9324 struct cmd_list_element *c;
9325
9326 /* Register extra event sources in the event loop. */
9327 infrun_async_inferior_event_token
9328 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9329
9330 add_info ("signals", info_signals_command, _("\
9331What debugger does when program gets various signals.\n\
9332Specify a signal as argument to print info on that signal only."));
9333 add_info_alias ("handle", "signals", 0);
9334
9335 c = add_com ("handle", class_run, handle_command, _("\
9336Specify how to handle signals.\n\
9337Usage: handle SIGNAL [ACTIONS]\n\
9338Args are signals and actions to apply to those signals.\n\
9339If no actions are specified, the current settings for the specified signals\n\
9340will be displayed instead.\n\
9341\n\
9342Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9343from 1-15 are allowed for compatibility with old versions of GDB.\n\
9344Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9345The special arg \"all\" is recognized to mean all signals except those\n\
9346used by the debugger, typically SIGTRAP and SIGINT.\n\
9347\n\
9348Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9349\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9350Stop means reenter debugger if this signal happens (implies print).\n\
9351Print means print a message if this signal happens.\n\
9352Pass means let program see this signal; otherwise program doesn't know.\n\
9353Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9354Pass and Stop may be combined.\n\
9355\n\
9356Multiple signals may be specified. Signal numbers and signal names\n\
9357may be interspersed with actions, with the actions being performed for\n\
9358all signals cumulatively specified."));
9359 set_cmd_completer (c, handle_completer);
9360
9361 if (!dbx_commands)
9362 stop_command = add_cmd ("stop", class_obscure,
9363 not_just_help_class_command, _("\
9364There is no `stop' command, but you can set a hook on `stop'.\n\
9365This allows you to set a list of commands to be run each time execution\n\
9366of the program stops."), &cmdlist);
9367
9368 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9369Set inferior debugging."), _("\
9370Show inferior debugging."), _("\
9371When non-zero, inferior specific debugging is enabled."),
9372 NULL,
9373 show_debug_infrun,
9374 &setdebuglist, &showdebuglist);
9375
9376 add_setshow_boolean_cmd ("displaced", class_maintenance,
9377 &debug_displaced, _("\
9378Set displaced stepping debugging."), _("\
9379Show displaced stepping debugging."), _("\
9380When non-zero, displaced stepping specific debugging is enabled."),
9381 NULL,
9382 show_debug_displaced,
9383 &setdebuglist, &showdebuglist);
9384
9385 add_setshow_boolean_cmd ("non-stop", no_class,
9386 &non_stop_1, _("\
9387Set whether gdb controls the inferior in non-stop mode."), _("\
9388Show whether gdb controls the inferior in non-stop mode."), _("\
9389When debugging a multi-threaded program and this setting is\n\
9390off (the default, also called all-stop mode), when one thread stops\n\
9391(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9392all other threads in the program while you interact with the thread of\n\
9393interest. When you continue or step a thread, you can allow the other\n\
9394threads to run, or have them remain stopped, but while you inspect any\n\
9395thread's state, all threads stop.\n\
9396\n\
9397In non-stop mode, when one thread stops, other threads can continue\n\
9398to run freely. You'll be able to step each thread independently,\n\
9399leave it stopped or free to run as needed."),
9400 set_non_stop,
9401 show_non_stop,
9402 &setlist,
9403 &showlist);
9404
9405 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9406 {
9407 signal_stop[i] = 1;
9408 signal_print[i] = 1;
9409 signal_program[i] = 1;
9410 signal_catch[i] = 0;
9411 }
9412
9413 /* Signals caused by debugger's own actions should not be given to
9414 the program afterwards.
9415
9416 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9417 explicitly specifies that it should be delivered to the target
9418 program. Typically, that would occur when a user is debugging a
9419 target monitor on a simulator: the target monitor sets a
9420 breakpoint; the simulator encounters this breakpoint and halts
9421 the simulation handing control to GDB; GDB, noting that the stop
9422 address doesn't map to any known breakpoint, returns control back
9423 to the simulator; the simulator then delivers the hardware
9424 equivalent of a GDB_SIGNAL_TRAP to the program being
9425 debugged. */
9426 signal_program[GDB_SIGNAL_TRAP] = 0;
9427 signal_program[GDB_SIGNAL_INT] = 0;
9428
9429 /* Signals that are not errors should not normally enter the debugger. */
9430 signal_stop[GDB_SIGNAL_ALRM] = 0;
9431 signal_print[GDB_SIGNAL_ALRM] = 0;
9432 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9433 signal_print[GDB_SIGNAL_VTALRM] = 0;
9434 signal_stop[GDB_SIGNAL_PROF] = 0;
9435 signal_print[GDB_SIGNAL_PROF] = 0;
9436 signal_stop[GDB_SIGNAL_CHLD] = 0;
9437 signal_print[GDB_SIGNAL_CHLD] = 0;
9438 signal_stop[GDB_SIGNAL_IO] = 0;
9439 signal_print[GDB_SIGNAL_IO] = 0;
9440 signal_stop[GDB_SIGNAL_POLL] = 0;
9441 signal_print[GDB_SIGNAL_POLL] = 0;
9442 signal_stop[GDB_SIGNAL_URG] = 0;
9443 signal_print[GDB_SIGNAL_URG] = 0;
9444 signal_stop[GDB_SIGNAL_WINCH] = 0;
9445 signal_print[GDB_SIGNAL_WINCH] = 0;
9446 signal_stop[GDB_SIGNAL_PRIO] = 0;
9447 signal_print[GDB_SIGNAL_PRIO] = 0;
9448
9449 /* These signals are used internally by user-level thread
9450 implementations. (See signal(5) on Solaris.) Like the above
9451 signals, a healthy program receives and handles them as part of
9452 its normal operation. */
9453 signal_stop[GDB_SIGNAL_LWP] = 0;
9454 signal_print[GDB_SIGNAL_LWP] = 0;
9455 signal_stop[GDB_SIGNAL_WAITING] = 0;
9456 signal_print[GDB_SIGNAL_WAITING] = 0;
9457 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9458 signal_print[GDB_SIGNAL_CANCEL] = 0;
9459 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9460 signal_print[GDB_SIGNAL_LIBRT] = 0;
9461
9462 /* Update cached state. */
9463 signal_cache_update (-1);
9464
9465 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9466 &stop_on_solib_events, _("\
9467Set stopping for shared library events."), _("\
9468Show stopping for shared library events."), _("\
9469If nonzero, gdb will give control to the user when the dynamic linker\n\
9470notifies gdb of shared library events. The most common event of interest\n\
9471to the user would be loading/unloading of a new library."),
9472 set_stop_on_solib_events,
9473 show_stop_on_solib_events,
9474 &setlist, &showlist);
9475
9476 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9477 follow_fork_mode_kind_names,
9478 &follow_fork_mode_string, _("\
9479Set debugger response to a program call of fork or vfork."), _("\
9480Show debugger response to a program call of fork or vfork."), _("\
9481A fork or vfork creates a new process. follow-fork-mode can be:\n\
9482 parent - the original process is debugged after a fork\n\
9483 child - the new process is debugged after a fork\n\
9484The unfollowed process will continue to run.\n\
9485By default, the debugger will follow the parent process."),
9486 NULL,
9487 show_follow_fork_mode_string,
9488 &setlist, &showlist);
9489
9490 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9491 follow_exec_mode_names,
9492 &follow_exec_mode_string, _("\
9493Set debugger response to a program call of exec."), _("\
9494Show debugger response to a program call of exec."), _("\
9495An exec call replaces the program image of a process.\n\
9496\n\
9497follow-exec-mode can be:\n\
9498\n\
9499 new - the debugger creates a new inferior and rebinds the process\n\
9500to this new inferior. The program the process was running before\n\
9501the exec call can be restarted afterwards by restarting the original\n\
9502inferior.\n\
9503\n\
9504 same - the debugger keeps the process bound to the same inferior.\n\
9505The new executable image replaces the previous executable loaded in\n\
9506the inferior. Restarting the inferior after the exec call restarts\n\
9507the executable the process was running after the exec call.\n\
9508\n\
9509By default, the debugger will use the same inferior."),
9510 NULL,
9511 show_follow_exec_mode_string,
9512 &setlist, &showlist);
9513
9514 add_setshow_enum_cmd ("scheduler-locking", class_run,
9515 scheduler_enums, &scheduler_mode, _("\
9516Set mode for locking scheduler during execution."), _("\
9517Show mode for locking scheduler during execution."), _("\
9518off == no locking (threads may preempt at any time)\n\
9519on == full locking (no thread except the current thread may run)\n\
9520 This applies to both normal execution and replay mode.\n\
9521step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9522 In this mode, other threads may run during other commands.\n\
9523 This applies to both normal execution and replay mode.\n\
9524replay == scheduler locked in replay mode and unlocked during normal execution."),
9525 set_schedlock_func, /* traps on target vector */
9526 show_scheduler_mode,
9527 &setlist, &showlist);
9528
9529 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9530Set mode for resuming threads of all processes."), _("\
9531Show mode for resuming threads of all processes."), _("\
9532When on, execution commands (such as 'continue' or 'next') resume all\n\
9533threads of all processes. When off (which is the default), execution\n\
9534commands only resume the threads of the current process. The set of\n\
9535threads that are resumed is further refined by the scheduler-locking\n\
9536mode (see help set scheduler-locking)."),
9537 NULL,
9538 show_schedule_multiple,
9539 &setlist, &showlist);
9540
9541 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9542Set mode of the step operation."), _("\
9543Show mode of the step operation."), _("\
9544When set, doing a step over a function without debug line information\n\
9545will stop at the first instruction of that function. Otherwise, the\n\
9546function is skipped and the step command stops at a different source line."),
9547 NULL,
9548 show_step_stop_if_no_debug,
9549 &setlist, &showlist);
9550
9551 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9552 &can_use_displaced_stepping, _("\
9553Set debugger's willingness to use displaced stepping."), _("\
9554Show debugger's willingness to use displaced stepping."), _("\
9555If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9556supported by the target architecture. If off, gdb will not use displaced\n\
9557stepping to step over breakpoints, even if such is supported by the target\n\
9558architecture. If auto (which is the default), gdb will use displaced stepping\n\
9559if the target architecture supports it and non-stop mode is active, but will not\n\
9560use it in all-stop mode (see help set non-stop)."),
9561 NULL,
9562 show_can_use_displaced_stepping,
9563 &setlist, &showlist);
9564
9565 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9566 &exec_direction, _("Set direction of execution.\n\
9567Options are 'forward' or 'reverse'."),
9568 _("Show direction of execution (forward/reverse)."),
9569 _("Tells gdb whether to execute forward or backward."),
9570 set_exec_direction_func, show_exec_direction_func,
9571 &setlist, &showlist);
9572
9573 /* Set/show detach-on-fork: user-settable mode. */
9574
9575 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9576Set whether gdb will detach the child of a fork."), _("\
9577Show whether gdb will detach the child of a fork."), _("\
9578Tells gdb whether to detach the child of a fork."),
9579 NULL, NULL, &setlist, &showlist);
9580
9581 /* Set/show disable address space randomization mode. */
9582
9583 add_setshow_boolean_cmd ("disable-randomization", class_support,
9584 &disable_randomization, _("\
9585Set disabling of debuggee's virtual address space randomization."), _("\
9586Show disabling of debuggee's virtual address space randomization."), _("\
9587When this mode is on (which is the default), randomization of the virtual\n\
9588address space is disabled. Standalone programs run with the randomization\n\
9589enabled by default on some platforms."),
9590 &set_disable_randomization,
9591 &show_disable_randomization,
9592 &setlist, &showlist);
9593
9594 /* ptid initializations */
9595 inferior_ptid = null_ptid;
9596 target_last_wait_ptid = minus_one_ptid;
9597
9598 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9599 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9600 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9601 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9602
9603 /* Explicitly create without lookup, since that tries to create a
9604 value with a void typed value, and when we get here, gdbarch
9605 isn't initialized yet. At this point, we're quite sure there
9606 isn't another convenience variable of the same name. */
9607 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9608
9609 add_setshow_boolean_cmd ("observer", no_class,
9610 &observer_mode_1, _("\
9611Set whether gdb controls the inferior in observer mode."), _("\
9612Show whether gdb controls the inferior in observer mode."), _("\
9613In observer mode, GDB can get data from the inferior, but not\n\
9614affect its execution. Registers and memory may not be changed,\n\
9615breakpoints may not be set, and the program cannot be interrupted\n\
9616or signalled."),
9617 set_observer_mode,
9618 show_observer_mode,
9619 &setlist,
9620 &showlist);
9621}
This page took 0.063059 seconds and 4 git commands to generate.