import gdb-1999-09-28 snapshot
[deliverable/binutils-gdb.git] / gdb / irix5-nat.c
... / ...
CommitLineData
1/* Native support for the SGI Iris running IRIX version 5, for GDB.
2 Copyright 1988, 89, 90, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
4 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
5 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
6 Implemented for Irix 4.x by Garrett A. Wollman.
7 Modified for Irix 5.x by Ian Lance Taylor.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26#include "defs.h"
27#include "inferior.h"
28#include "gdbcore.h"
29#include "target.h"
30
31#include "gdb_string.h"
32#include <sys/time.h>
33#include <sys/procfs.h>
34#include <setjmp.h> /* For JB_XXX. */
35
36static void
37fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR));
38
39/* Size of elements in jmpbuf */
40
41#define JB_ELEMENT_SIZE 4
42
43/*
44 * See the comment in m68k-tdep.c regarding the utility of these functions.
45 *
46 * These definitions are from the MIPS SVR4 ABI, so they may work for
47 * any MIPS SVR4 target.
48 */
49
50void
51supply_gregset (gregsetp)
52 gregset_t *gregsetp;
53{
54 register int regi;
55 register greg_t *regp = &(*gregsetp)[0];
56 int gregoff = sizeof (greg_t) - MIPS_REGSIZE;
57 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
58 {0};
59
60 for (regi = 0; regi <= CTX_RA; regi++)
61 supply_register (regi, (char *) (regp + regi) + gregoff);
62
63 supply_register (PC_REGNUM, (char *) (regp + CTX_EPC) + gregoff);
64 supply_register (HI_REGNUM, (char *) (regp + CTX_MDHI) + gregoff);
65 supply_register (LO_REGNUM, (char *) (regp + CTX_MDLO) + gregoff);
66 supply_register (CAUSE_REGNUM, (char *) (regp + CTX_CAUSE) + gregoff);
67
68 /* Fill inaccessible registers with zero. */
69 supply_register (BADVADDR_REGNUM, zerobuf);
70}
71
72void
73fill_gregset (gregsetp, regno)
74 gregset_t *gregsetp;
75 int regno;
76{
77 int regi;
78 register greg_t *regp = &(*gregsetp)[0];
79
80 /* Under Irix6, if GDB is built with N32 ABI and is debugging an O32
81 executable, we have to sign extend the registers to 64 bits before
82 filling in the gregset structure. */
83
84 for (regi = 0; regi <= CTX_RA; regi++)
85 if ((regno == -1) || (regno == regi))
86 *(regp + regi) =
87 extract_signed_integer (&registers[REGISTER_BYTE (regi)],
88 REGISTER_RAW_SIZE (regi));
89
90 if ((regno == -1) || (regno == PC_REGNUM))
91 *(regp + CTX_EPC) =
92 extract_signed_integer (&registers[REGISTER_BYTE (PC_REGNUM)],
93 REGISTER_RAW_SIZE (PC_REGNUM));
94
95 if ((regno == -1) || (regno == CAUSE_REGNUM))
96 *(regp + CTX_CAUSE) =
97 extract_signed_integer (&registers[REGISTER_BYTE (CAUSE_REGNUM)],
98 REGISTER_RAW_SIZE (CAUSE_REGNUM));
99
100 if ((regno == -1) || (regno == HI_REGNUM))
101 *(regp + CTX_MDHI) =
102 extract_signed_integer (&registers[REGISTER_BYTE (HI_REGNUM)],
103 REGISTER_RAW_SIZE (HI_REGNUM));
104
105 if ((regno == -1) || (regno == LO_REGNUM))
106 *(regp + CTX_MDLO) =
107 extract_signed_integer (&registers[REGISTER_BYTE (LO_REGNUM)],
108 REGISTER_RAW_SIZE (LO_REGNUM));
109}
110
111/*
112 * Now we do the same thing for floating-point registers.
113 * We don't bother to condition on FP0_REGNUM since any
114 * reasonable MIPS configuration has an R3010 in it.
115 *
116 * Again, see the comments in m68k-tdep.c.
117 */
118
119void
120supply_fpregset (fpregsetp)
121 fpregset_t *fpregsetp;
122{
123 register int regi;
124 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
125 {0};
126
127 /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
128
129 for (regi = 0; regi < 32; regi++)
130 supply_register (FP0_REGNUM + regi,
131 (char *) &fpregsetp->fp_r.fp_regs[regi]);
132
133 supply_register (FCRCS_REGNUM, (char *) &fpregsetp->fp_csr);
134
135 /* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
136 supply_register (FCRIR_REGNUM, zerobuf);
137}
138
139void
140fill_fpregset (fpregsetp, regno)
141 fpregset_t *fpregsetp;
142 int regno;
143{
144 int regi;
145 char *from, *to;
146
147 /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
148
149 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
150 {
151 if ((regno == -1) || (regno == regi))
152 {
153 from = (char *) &registers[REGISTER_BYTE (regi)];
154 to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
155 memcpy (to, from, REGISTER_RAW_SIZE (regi));
156 }
157 }
158
159 if ((regno == -1) || (regno == FCRCS_REGNUM))
160 fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE (FCRCS_REGNUM)];
161}
162
163
164/* Figure out where the longjmp will land.
165 We expect the first arg to be a pointer to the jmp_buf structure from which
166 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
167 This routine returns true on success. */
168
169int
170get_longjmp_target (pc)
171 CORE_ADDR *pc;
172{
173 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
174 CORE_ADDR jb_addr;
175
176 jb_addr = read_register (A0_REGNUM);
177
178 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
179 TARGET_PTR_BIT / TARGET_CHAR_BIT))
180 return 0;
181
182 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
183
184 return 1;
185}
186
187static void
188fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
189 char *core_reg_sect;
190 unsigned core_reg_size;
191 int which; /* Unused */
192 CORE_ADDR reg_addr; /* Unused */
193{
194 if (core_reg_size == REGISTER_BYTES)
195 {
196 memcpy ((char *) registers, core_reg_sect, core_reg_size);
197 }
198 else if (MIPS_REGSIZE == 4 &&
199 core_reg_size == (2 * MIPS_REGSIZE) * NUM_REGS)
200 {
201 /* This is a core file from a N32 executable, 64 bits are saved
202 for all registers. */
203 char *srcp = core_reg_sect;
204 char *dstp = registers;
205 int regno;
206
207 for (regno = 0; regno < NUM_REGS; regno++)
208 {
209 if (regno >= FP0_REGNUM && regno < (FP0_REGNUM + 32))
210 {
211 /* FIXME, this is wrong, N32 has 64 bit FP regs, but GDB
212 currently assumes that they are 32 bit. */
213 *dstp++ = *srcp++;
214 *dstp++ = *srcp++;
215 *dstp++ = *srcp++;
216 *dstp++ = *srcp++;
217 if (REGISTER_RAW_SIZE (regno) == 4)
218 {
219 /* copying 4 bytes from eight bytes?
220 I don't see how this can be right... */
221 srcp += 4;
222 }
223 else
224 {
225 /* copy all 8 bytes (sizeof(double)) */
226 *dstp++ = *srcp++;
227 *dstp++ = *srcp++;
228 *dstp++ = *srcp++;
229 *dstp++ = *srcp++;
230 }
231 }
232 else
233 {
234 srcp += 4;
235 *dstp++ = *srcp++;
236 *dstp++ = *srcp++;
237 *dstp++ = *srcp++;
238 *dstp++ = *srcp++;
239 }
240 }
241 }
242 else
243 {
244 warning ("wrong size gregset struct in core file");
245 return;
246 }
247
248 registers_fetched ();
249}
250\f
251/* Irix 5 uses what appears to be a unique form of shared library
252 support. This is a copy of solib.c modified for Irix 5. */
253/* FIXME: Most of this code could be merged with osfsolib.c and solib.c
254 by using next_link_map_member and xfer_link_map_member in solib.c. */
255
256#include <sys/types.h>
257#include <signal.h>
258#include <sys/param.h>
259#include <fcntl.h>
260
261/* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
262 with our versions of those files included by tm-mips.h. Prevent
263 <obj.h> from including them with some appropriate defines. */
264#define __SYM_H__
265#define __SYMCONST_H__
266#include <obj.h>
267#ifdef HAVE_OBJLIST_H
268#include <objlist.h>
269#endif
270
271#ifdef NEW_OBJ_INFO_MAGIC
272#define HANDLE_NEW_OBJ_LIST
273#endif
274
275#include "symtab.h"
276#include "bfd.h"
277#include "symfile.h"
278#include "objfiles.h"
279#include "command.h"
280#include "frame.h"
281#include "gnu-regex.h"
282#include "inferior.h"
283#include "language.h"
284#include "gdbcmd.h"
285
286/* The symbol which starts off the list of shared libraries. */
287#define DEBUG_BASE "__rld_obj_head"
288
289/* Irix 6.x introduces a new variant of object lists.
290 To be able to debug O32 executables under Irix 6, we have to handle both
291 variants. */
292
293typedef enum
294{
295 OBJ_LIST_OLD, /* Pre Irix 6.x object list. */
296 OBJ_LIST_32, /* 32 Bit Elf32_Obj_Info. */
297 OBJ_LIST_64 /* 64 Bit Elf64_Obj_Info, FIXME not yet implemented. */
298}
299obj_list_variant;
300
301/* Define our own link_map structure.
302 This will help to share code with osfsolib.c and solib.c. */
303
304struct link_map
305 {
306 obj_list_variant l_variant; /* which variant of object list */
307 CORE_ADDR l_lladdr; /* addr in inferior list was read from */
308 CORE_ADDR l_next; /* address of next object list entry */
309 };
310
311/* Irix 5 shared objects are pre-linked to particular addresses
312 although the dynamic linker may have to relocate them if the
313 address ranges of the libraries used by the main program clash.
314 The offset is the difference between the address where the object
315 is mapped and the binding address of the shared library. */
316#define LM_OFFSET(so) ((so) -> offset)
317/* Loaded address of shared library. */
318#define LM_ADDR(so) ((so) -> lmstart)
319
320char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
321
322struct so_list
323 {
324 struct so_list *next; /* next structure in linked list */
325 struct link_map lm;
326 CORE_ADDR offset; /* prelink to load address offset */
327 char *so_name; /* shared object lib name */
328 CORE_ADDR lmstart; /* lower addr bound of mapped object */
329 CORE_ADDR lmend; /* upper addr bound of mapped object */
330 char symbols_loaded; /* flag: symbols read in yet? */
331 char from_tty; /* flag: print msgs? */
332 struct objfile *objfile; /* objfile for loaded lib */
333 struct section_table *sections;
334 struct section_table *sections_end;
335 struct section_table *textsection;
336 bfd *abfd;
337 };
338
339static struct so_list *so_list_head; /* List of known shared objects */
340static CORE_ADDR debug_base; /* Base of dynamic linker structures */
341static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
342
343/* Local function prototypes */
344
345static void
346sharedlibrary_command PARAMS ((char *, int));
347
348static int
349enable_break PARAMS ((void));
350
351static int
352disable_break PARAMS ((void));
353
354static void
355info_sharedlibrary_command PARAMS ((char *, int));
356
357static int
358symbol_add_stub PARAMS ((char *));
359
360static struct so_list *
361 find_solib PARAMS ((struct so_list *));
362
363static struct link_map *
364 first_link_map_member PARAMS ((void));
365
366static struct link_map *
367 next_link_map_member PARAMS ((struct so_list *));
368
369static void
370xfer_link_map_member PARAMS ((struct so_list *, struct link_map *));
371
372static CORE_ADDR
373 locate_base PARAMS ((void));
374
375static int
376solib_map_sections PARAMS ((char *));
377
378/*
379
380 LOCAL FUNCTION
381
382 solib_map_sections -- open bfd and build sections for shared lib
383
384 SYNOPSIS
385
386 static int solib_map_sections (struct so_list *so)
387
388 DESCRIPTION
389
390 Given a pointer to one of the shared objects in our list
391 of mapped objects, use the recorded name to open a bfd
392 descriptor for the object, build a section table, and then
393 relocate all the section addresses by the base address at
394 which the shared object was mapped.
395
396 FIXMES
397
398 In most (all?) cases the shared object file name recorded in the
399 dynamic linkage tables will be a fully qualified pathname. For
400 cases where it isn't, do we really mimic the systems search
401 mechanism correctly in the below code (particularly the tilde
402 expansion stuff?).
403 */
404
405static int
406solib_map_sections (arg)
407 char *arg;
408{
409 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
410 char *filename;
411 char *scratch_pathname;
412 int scratch_chan;
413 struct section_table *p;
414 struct cleanup *old_chain;
415 bfd *abfd;
416
417 filename = tilde_expand (so->so_name);
418 old_chain = make_cleanup (free, filename);
419
420 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
421 &scratch_pathname);
422 if (scratch_chan < 0)
423 {
424 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
425 O_RDONLY, 0, &scratch_pathname);
426 }
427 if (scratch_chan < 0)
428 {
429 perror_with_name (filename);
430 }
431 /* Leave scratch_pathname allocated. abfd->name will point to it. */
432
433 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
434 if (!abfd)
435 {
436 close (scratch_chan);
437 error ("Could not open `%s' as an executable file: %s",
438 scratch_pathname, bfd_errmsg (bfd_get_error ()));
439 }
440 /* Leave bfd open, core_xfer_memory and "info files" need it. */
441 so->abfd = abfd;
442 abfd->cacheable = true;
443
444 if (!bfd_check_format (abfd, bfd_object))
445 {
446 error ("\"%s\": not in executable format: %s.",
447 scratch_pathname, bfd_errmsg (bfd_get_error ()));
448 }
449 if (build_section_table (abfd, &so->sections, &so->sections_end))
450 {
451 error ("Can't find the file sections in `%s': %s",
452 bfd_get_filename (exec_bfd), bfd_errmsg (bfd_get_error ()));
453 }
454
455 for (p = so->sections; p < so->sections_end; p++)
456 {
457 /* Relocate the section binding addresses as recorded in the shared
458 object's file by the offset to get the address to which the
459 object was actually mapped. */
460 p->addr += LM_OFFSET (so);
461 p->endaddr += LM_OFFSET (so);
462 so->lmend = (CORE_ADDR) max (p->endaddr, so->lmend);
463 if (STREQ (p->the_bfd_section->name, ".text"))
464 {
465 so->textsection = p;
466 }
467 }
468
469 /* Free the file names, close the file now. */
470 do_cleanups (old_chain);
471
472 return (1);
473}
474
475/*
476
477 LOCAL FUNCTION
478
479 locate_base -- locate the base address of dynamic linker structs
480
481 SYNOPSIS
482
483 CORE_ADDR locate_base (void)
484
485 DESCRIPTION
486
487 For both the SunOS and SVR4 shared library implementations, if the
488 inferior executable has been linked dynamically, there is a single
489 address somewhere in the inferior's data space which is the key to
490 locating all of the dynamic linker's runtime structures. This
491 address is the value of the symbol defined by the macro DEBUG_BASE.
492 The job of this function is to find and return that address, or to
493 return 0 if there is no such address (the executable is statically
494 linked for example).
495
496 For SunOS, the job is almost trivial, since the dynamic linker and
497 all of it's structures are statically linked to the executable at
498 link time. Thus the symbol for the address we are looking for has
499 already been added to the minimal symbol table for the executable's
500 objfile at the time the symbol file's symbols were read, and all we
501 have to do is look it up there. Note that we explicitly do NOT want
502 to find the copies in the shared library.
503
504 The SVR4 version is much more complicated because the dynamic linker
505 and it's structures are located in the shared C library, which gets
506 run as the executable's "interpreter" by the kernel. We have to go
507 to a lot more work to discover the address of DEBUG_BASE. Because
508 of this complexity, we cache the value we find and return that value
509 on subsequent invocations. Note there is no copy in the executable
510 symbol tables.
511
512 Irix 5 is basically like SunOS.
513
514 Note that we can assume nothing about the process state at the time
515 we need to find this address. We may be stopped on the first instruc-
516 tion of the interpreter (C shared library), the first instruction of
517 the executable itself, or somewhere else entirely (if we attached
518 to the process for example).
519
520 */
521
522static CORE_ADDR
523locate_base ()
524{
525 struct minimal_symbol *msymbol;
526 CORE_ADDR address = 0;
527
528 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
529 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
530 {
531 address = SYMBOL_VALUE_ADDRESS (msymbol);
532 }
533 return (address);
534}
535
536/*
537
538 LOCAL FUNCTION
539
540 first_link_map_member -- locate first member in dynamic linker's map
541
542 SYNOPSIS
543
544 static struct link_map *first_link_map_member (void)
545
546 DESCRIPTION
547
548 Read in a copy of the first member in the inferior's dynamic
549 link map from the inferior's dynamic linker structures, and return
550 a pointer to the link map descriptor.
551 */
552
553static struct link_map *
554first_link_map_member ()
555{
556 struct obj_list *listp;
557 struct obj_list list_old;
558 struct link_map *lm;
559 static struct link_map first_lm;
560 CORE_ADDR lladdr;
561 CORE_ADDR next_lladdr;
562
563 /* We have not already read in the dynamic linking structures
564 from the inferior, lookup the address of the base structure. */
565 debug_base = locate_base ();
566 if (debug_base == 0)
567 return NULL;
568
569 /* Get address of first list entry. */
570 read_memory (debug_base, (char *) &listp, sizeof (struct obj_list *));
571
572 if (listp == NULL)
573 return NULL;
574
575 /* Get first list entry. */
576 lladdr = (CORE_ADDR) listp;
577 read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
578
579 /* The first entry in the list is the object file we are debugging,
580 so skip it. */
581 next_lladdr = (CORE_ADDR) list_old.next;
582
583#ifdef HANDLE_NEW_OBJ_LIST
584 if (list_old.data == NEW_OBJ_INFO_MAGIC)
585 {
586 Elf32_Obj_Info list_32;
587
588 read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
589 if (list_32.oi_size != sizeof (Elf32_Obj_Info))
590 return NULL;
591 next_lladdr = (CORE_ADDR) list_32.oi_next;
592 }
593#endif
594
595 if (next_lladdr == 0)
596 return NULL;
597
598 first_lm.l_lladdr = next_lladdr;
599 lm = &first_lm;
600 return lm;
601}
602
603/*
604
605 LOCAL FUNCTION
606
607 next_link_map_member -- locate next member in dynamic linker's map
608
609 SYNOPSIS
610
611 static struct link_map *next_link_map_member (so_list_ptr)
612
613 DESCRIPTION
614
615 Read in a copy of the next member in the inferior's dynamic
616 link map from the inferior's dynamic linker structures, and return
617 a pointer to the link map descriptor.
618 */
619
620static struct link_map *
621next_link_map_member (so_list_ptr)
622 struct so_list *so_list_ptr;
623{
624 struct link_map *lm = &so_list_ptr->lm;
625 CORE_ADDR next_lladdr = lm->l_next;
626 static struct link_map next_lm;
627
628 if (next_lladdr == 0)
629 {
630 /* We have hit the end of the list, so check to see if any were
631 added, but be quiet if we can't read from the target any more. */
632 int status = 0;
633
634 if (lm->l_variant == OBJ_LIST_OLD)
635 {
636 struct obj_list list_old;
637
638 status = target_read_memory (lm->l_lladdr,
639 (char *) &list_old,
640 sizeof (struct obj_list));
641 next_lladdr = (CORE_ADDR) list_old.next;
642 }
643#ifdef HANDLE_NEW_OBJ_LIST
644 else if (lm->l_variant == OBJ_LIST_32)
645 {
646 Elf32_Obj_Info list_32;
647 status = target_read_memory (lm->l_lladdr,
648 (char *) &list_32,
649 sizeof (Elf32_Obj_Info));
650 next_lladdr = (CORE_ADDR) list_32.oi_next;
651 }
652#endif
653
654 if (status != 0 || next_lladdr == 0)
655 return NULL;
656 }
657
658 next_lm.l_lladdr = next_lladdr;
659 lm = &next_lm;
660 return lm;
661}
662
663/*
664
665 LOCAL FUNCTION
666
667 xfer_link_map_member -- set local variables from dynamic linker's map
668
669 SYNOPSIS
670
671 static void xfer_link_map_member (so_list_ptr, lm)
672
673 DESCRIPTION
674
675 Read in a copy of the requested member in the inferior's dynamic
676 link map from the inferior's dynamic linker structures, and fill
677 in the necessary so_list_ptr elements.
678 */
679
680static void
681xfer_link_map_member (so_list_ptr, lm)
682 struct so_list *so_list_ptr;
683 struct link_map *lm;
684{
685 struct obj_list list_old;
686 CORE_ADDR lladdr = lm->l_lladdr;
687 struct link_map *new_lm = &so_list_ptr->lm;
688 int errcode;
689
690 read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
691
692 new_lm->l_variant = OBJ_LIST_OLD;
693 new_lm->l_lladdr = lladdr;
694 new_lm->l_next = (CORE_ADDR) list_old.next;
695
696#ifdef HANDLE_NEW_OBJ_LIST
697 if (list_old.data == NEW_OBJ_INFO_MAGIC)
698 {
699 Elf32_Obj_Info list_32;
700
701 read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
702 if (list_32.oi_size != sizeof (Elf32_Obj_Info))
703 return;
704 new_lm->l_variant = OBJ_LIST_32;
705 new_lm->l_next = (CORE_ADDR) list_32.oi_next;
706
707 target_read_string ((CORE_ADDR) list_32.oi_pathname,
708 &so_list_ptr->so_name,
709 list_32.oi_pathname_len + 1, &errcode);
710 if (errcode != 0)
711 memory_error (errcode, (CORE_ADDR) list_32.oi_pathname);
712
713 LM_ADDR (so_list_ptr) = (CORE_ADDR) list_32.oi_ehdr;
714 LM_OFFSET (so_list_ptr) =
715 (CORE_ADDR) list_32.oi_ehdr - (CORE_ADDR) list_32.oi_orig_ehdr;
716 }
717 else
718#endif
719 {
720#if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32
721 /* If we are compiling GDB under N32 ABI, the alignments in
722 the obj struct are different from the O32 ABI and we will get
723 wrong values when accessing the struct.
724 As a workaround we use fixed values which are good for
725 Irix 6.2. */
726 char buf[432];
727
728 read_memory ((CORE_ADDR) list_old.data, buf, sizeof (buf));
729
730 target_read_string (extract_address (&buf[236], 4),
731 &so_list_ptr->so_name,
732 INT_MAX, &errcode);
733 if (errcode != 0)
734 memory_error (errcode, extract_address (&buf[236], 4));
735
736 LM_ADDR (so_list_ptr) = extract_address (&buf[196], 4);
737 LM_OFFSET (so_list_ptr) =
738 extract_address (&buf[196], 4) - extract_address (&buf[248], 4);
739#else
740 struct obj obj_old;
741
742 read_memory ((CORE_ADDR) list_old.data, (char *) &obj_old,
743 sizeof (struct obj));
744
745 target_read_string ((CORE_ADDR) obj_old.o_path,
746 &so_list_ptr->so_name,
747 INT_MAX, &errcode);
748 if (errcode != 0)
749 memory_error (errcode, (CORE_ADDR) obj_old.o_path);
750
751 LM_ADDR (so_list_ptr) = (CORE_ADDR) obj_old.o_praw;
752 LM_OFFSET (so_list_ptr) =
753 (CORE_ADDR) obj_old.o_praw - obj_old.o_base_address;
754#endif
755 }
756
757 catch_errors (solib_map_sections, (char *) so_list_ptr,
758 "Error while mapping shared library sections:\n",
759 RETURN_MASK_ALL);
760}
761
762
763/*
764
765 LOCAL FUNCTION
766
767 find_solib -- step through list of shared objects
768
769 SYNOPSIS
770
771 struct so_list *find_solib (struct so_list *so_list_ptr)
772
773 DESCRIPTION
774
775 This module contains the routine which finds the names of any
776 loaded "images" in the current process. The argument in must be
777 NULL on the first call, and then the returned value must be passed
778 in on subsequent calls. This provides the capability to "step" down
779 the list of loaded objects. On the last object, a NULL value is
780 returned.
781 */
782
783static struct so_list *
784find_solib (so_list_ptr)
785 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
786{
787 struct so_list *so_list_next = NULL;
788 struct link_map *lm = NULL;
789 struct so_list *new;
790
791 if (so_list_ptr == NULL)
792 {
793 /* We are setting up for a new scan through the loaded images. */
794 if ((so_list_next = so_list_head) == NULL)
795 {
796 /* Find the first link map list member. */
797 lm = first_link_map_member ();
798 }
799 }
800 else
801 {
802 /* We have been called before, and are in the process of walking
803 the shared library list. Advance to the next shared object. */
804 lm = next_link_map_member (so_list_ptr);
805 so_list_next = so_list_ptr->next;
806 }
807 if ((so_list_next == NULL) && (lm != NULL))
808 {
809 new = (struct so_list *) xmalloc (sizeof (struct so_list));
810 memset ((char *) new, 0, sizeof (struct so_list));
811 /* Add the new node as the next node in the list, or as the root
812 node if this is the first one. */
813 if (so_list_ptr != NULL)
814 {
815 so_list_ptr->next = new;
816 }
817 else
818 {
819 so_list_head = new;
820 }
821 so_list_next = new;
822 xfer_link_map_member (new, lm);
823 }
824 return (so_list_next);
825}
826
827/* A small stub to get us past the arg-passing pinhole of catch_errors. */
828
829static int
830symbol_add_stub (arg)
831 char *arg;
832{
833 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
834 CORE_ADDR text_addr = 0;
835
836 if (so->textsection)
837 text_addr = so->textsection->addr;
838 else if (so->abfd != NULL)
839 {
840 asection *lowest_sect;
841
842 /* If we didn't find a mapped non zero sized .text section, set up
843 text_addr so that the relocation in symbol_file_add does no harm. */
844
845 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
846 if (lowest_sect == NULL)
847 bfd_map_over_sections (so->abfd, find_lowest_section,
848 (PTR) &lowest_sect);
849 if (lowest_sect)
850 text_addr = bfd_section_vma (so->abfd, lowest_sect) + LM_OFFSET (so);
851 }
852
853 so->objfile = symbol_file_add (so->so_name, so->from_tty,
854 text_addr,
855 0, 0, 0, 0, 0);
856 return (1);
857}
858
859/*
860
861 GLOBAL FUNCTION
862
863 solib_add -- add a shared library file to the symtab and section list
864
865 SYNOPSIS
866
867 void solib_add (char *arg_string, int from_tty,
868 struct target_ops *target)
869
870 DESCRIPTION
871
872 */
873
874void
875solib_add (arg_string, from_tty, target)
876 char *arg_string;
877 int from_tty;
878 struct target_ops *target;
879{
880 register struct so_list *so = NULL; /* link map state variable */
881
882 /* Last shared library that we read. */
883 struct so_list *so_last = NULL;
884
885 char *re_err;
886 int count;
887 int old;
888
889 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
890 {
891 error ("Invalid regexp: %s", re_err);
892 }
893
894 /* Add the shared library sections to the section table of the
895 specified target, if any. */
896 if (target)
897 {
898 /* Count how many new section_table entries there are. */
899 so = NULL;
900 count = 0;
901 while ((so = find_solib (so)) != NULL)
902 {
903 if (so->so_name[0])
904 {
905 count += so->sections_end - so->sections;
906 }
907 }
908
909 if (count)
910 {
911 old = target_resize_to_sections (target, count);
912
913 /* Add these section table entries to the target's table. */
914 while ((so = find_solib (so)) != NULL)
915 {
916 if (so->so_name[0])
917 {
918 count = so->sections_end - so->sections;
919 memcpy ((char *) (target->to_sections + old),
920 so->sections,
921 (sizeof (struct section_table)) * count);
922 old += count;
923 }
924 }
925 }
926 }
927
928 /* Now add the symbol files. */
929 while ((so = find_solib (so)) != NULL)
930 {
931 if (so->so_name[0] && re_exec (so->so_name))
932 {
933 so->from_tty = from_tty;
934 if (so->symbols_loaded)
935 {
936 if (from_tty)
937 {
938 printf_unfiltered ("Symbols already loaded for %s\n", so->so_name);
939 }
940 }
941 else if (catch_errors
942 (symbol_add_stub, (char *) so,
943 "Error while reading shared library symbols:\n",
944 RETURN_MASK_ALL))
945 {
946 so_last = so;
947 so->symbols_loaded = 1;
948 }
949 }
950 }
951
952 /* Getting new symbols may change our opinion about what is
953 frameless. */
954 if (so_last)
955 reinit_frame_cache ();
956}
957
958/*
959
960 LOCAL FUNCTION
961
962 info_sharedlibrary_command -- code for "info sharedlibrary"
963
964 SYNOPSIS
965
966 static void info_sharedlibrary_command ()
967
968 DESCRIPTION
969
970 Walk through the shared library list and print information
971 about each attached library.
972 */
973
974static void
975info_sharedlibrary_command (ignore, from_tty)
976 char *ignore;
977 int from_tty;
978{
979 register struct so_list *so = NULL; /* link map state variable */
980 int header_done = 0;
981
982 if (exec_bfd == NULL)
983 {
984 printf_unfiltered ("No exec file.\n");
985 return;
986 }
987 while ((so = find_solib (so)) != NULL)
988 {
989 if (so->so_name[0])
990 {
991 if (!header_done)
992 {
993 printf_unfiltered ("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
994 "Shared Object Library");
995 header_done++;
996 }
997 printf_unfiltered ("%-12s",
998 local_hex_string_custom ((unsigned long) LM_ADDR (so),
999 "08l"));
1000 printf_unfiltered ("%-12s",
1001 local_hex_string_custom ((unsigned long) so->lmend,
1002 "08l"));
1003 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
1004 printf_unfiltered ("%s\n", so->so_name);
1005 }
1006 }
1007 if (so_list_head == NULL)
1008 {
1009 printf_unfiltered ("No shared libraries loaded at this time.\n");
1010 }
1011}
1012
1013/*
1014
1015 GLOBAL FUNCTION
1016
1017 solib_address -- check to see if an address is in a shared lib
1018
1019 SYNOPSIS
1020
1021 char *solib_address (CORE_ADDR address)
1022
1023 DESCRIPTION
1024
1025 Provides a hook for other gdb routines to discover whether or
1026 not a particular address is within the mapped address space of
1027 a shared library. Any address between the base mapping address
1028 and the first address beyond the end of the last mapping, is
1029 considered to be within the shared library address space, for
1030 our purposes.
1031
1032 For example, this routine is called at one point to disable
1033 breakpoints which are in shared libraries that are not currently
1034 mapped in.
1035 */
1036
1037char *
1038solib_address (address)
1039 CORE_ADDR address;
1040{
1041 register struct so_list *so = 0; /* link map state variable */
1042
1043 while ((so = find_solib (so)) != NULL)
1044 {
1045 if (so->so_name[0])
1046 {
1047 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
1048 (address < (CORE_ADDR) so->lmend))
1049 return (so->so_name);
1050 }
1051 }
1052 return (0);
1053}
1054
1055/* Called by free_all_symtabs */
1056
1057void
1058clear_solib ()
1059{
1060 struct so_list *next;
1061 char *bfd_filename;
1062
1063 disable_breakpoints_in_shlibs (1);
1064
1065 while (so_list_head)
1066 {
1067 if (so_list_head->sections)
1068 {
1069 free ((PTR) so_list_head->sections);
1070 }
1071 if (so_list_head->abfd)
1072 {
1073 bfd_filename = bfd_get_filename (so_list_head->abfd);
1074 if (!bfd_close (so_list_head->abfd))
1075 warning ("cannot close \"%s\": %s",
1076 bfd_filename, bfd_errmsg (bfd_get_error ()));
1077 }
1078 else
1079 /* This happens for the executable on SVR4. */
1080 bfd_filename = NULL;
1081
1082 next = so_list_head->next;
1083 if (bfd_filename)
1084 free ((PTR) bfd_filename);
1085 free (so_list_head->so_name);
1086 free ((PTR) so_list_head);
1087 so_list_head = next;
1088 }
1089 debug_base = 0;
1090}
1091
1092/*
1093
1094 LOCAL FUNCTION
1095
1096 disable_break -- remove the "mapping changed" breakpoint
1097
1098 SYNOPSIS
1099
1100 static int disable_break ()
1101
1102 DESCRIPTION
1103
1104 Removes the breakpoint that gets hit when the dynamic linker
1105 completes a mapping change.
1106
1107 */
1108
1109static int
1110disable_break ()
1111{
1112 int status = 1;
1113
1114
1115 /* Note that breakpoint address and original contents are in our address
1116 space, so we just need to write the original contents back. */
1117
1118 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1119 {
1120 status = 0;
1121 }
1122
1123 /* For the SVR4 version, we always know the breakpoint address. For the
1124 SunOS version we don't know it until the above code is executed.
1125 Grumble if we are stopped anywhere besides the breakpoint address. */
1126
1127 if (stop_pc != breakpoint_addr)
1128 {
1129 warning ("stopped at unknown breakpoint while handling shared libraries");
1130 }
1131
1132 return (status);
1133}
1134
1135/*
1136
1137 LOCAL FUNCTION
1138
1139 enable_break -- arrange for dynamic linker to hit breakpoint
1140
1141 SYNOPSIS
1142
1143 int enable_break (void)
1144
1145 DESCRIPTION
1146
1147 This functions inserts a breakpoint at the entry point of the
1148 main executable, where all shared libraries are mapped in.
1149 */
1150
1151static int
1152enable_break ()
1153{
1154 if (symfile_objfile != NULL
1155 && target_insert_breakpoint (symfile_objfile->ei.entry_point,
1156 shadow_contents) == 0)
1157 {
1158 breakpoint_addr = symfile_objfile->ei.entry_point;
1159 return 1;
1160 }
1161
1162 return 0;
1163}
1164
1165/*
1166
1167 GLOBAL FUNCTION
1168
1169 solib_create_inferior_hook -- shared library startup support
1170
1171 SYNOPSIS
1172
1173 void solib_create_inferior_hook()
1174
1175 DESCRIPTION
1176
1177 When gdb starts up the inferior, it nurses it along (through the
1178 shell) until it is ready to execute it's first instruction. At this
1179 point, this function gets called via expansion of the macro
1180 SOLIB_CREATE_INFERIOR_HOOK.
1181
1182 For SunOS executables, this first instruction is typically the
1183 one at "_start", or a similar text label, regardless of whether
1184 the executable is statically or dynamically linked. The runtime
1185 startup code takes care of dynamically linking in any shared
1186 libraries, once gdb allows the inferior to continue.
1187
1188 For SVR4 executables, this first instruction is either the first
1189 instruction in the dynamic linker (for dynamically linked
1190 executables) or the instruction at "start" for statically linked
1191 executables. For dynamically linked executables, the system
1192 first exec's /lib/libc.so.N, which contains the dynamic linker,
1193 and starts it running. The dynamic linker maps in any needed
1194 shared libraries, maps in the actual user executable, and then
1195 jumps to "start" in the user executable.
1196
1197 For both SunOS shared libraries, and SVR4 shared libraries, we
1198 can arrange to cooperate with the dynamic linker to discover the
1199 names of shared libraries that are dynamically linked, and the
1200 base addresses to which they are linked.
1201
1202 This function is responsible for discovering those names and
1203 addresses, and saving sufficient information about them to allow
1204 their symbols to be read at a later time.
1205
1206 FIXME
1207
1208 Between enable_break() and disable_break(), this code does not
1209 properly handle hitting breakpoints which the user might have
1210 set in the startup code or in the dynamic linker itself. Proper
1211 handling will probably have to wait until the implementation is
1212 changed to use the "breakpoint handler function" method.
1213
1214 Also, what if child has exit()ed? Must exit loop somehow.
1215 */
1216
1217void
1218solib_create_inferior_hook ()
1219{
1220 if (!enable_break ())
1221 {
1222 warning ("shared library handler failed to enable breakpoint");
1223 return;
1224 }
1225
1226 /* Now run the target. It will eventually hit the breakpoint, at
1227 which point all of the libraries will have been mapped in and we
1228 can go groveling around in the dynamic linker structures to find
1229 out what we need to know about them. */
1230
1231 clear_proceed_status ();
1232 stop_soon_quietly = 1;
1233 stop_signal = TARGET_SIGNAL_0;
1234 do
1235 {
1236 target_resume (-1, 0, stop_signal);
1237 wait_for_inferior ();
1238 }
1239 while (stop_signal != TARGET_SIGNAL_TRAP);
1240
1241 /* We are now either at the "mapping complete" breakpoint (or somewhere
1242 else, a condition we aren't prepared to deal with anyway), so adjust
1243 the PC as necessary after a breakpoint, disable the breakpoint, and
1244 add any shared libraries that were mapped in. */
1245
1246 if (DECR_PC_AFTER_BREAK)
1247 {
1248 stop_pc -= DECR_PC_AFTER_BREAK;
1249 write_register (PC_REGNUM, stop_pc);
1250 }
1251
1252 if (!disable_break ())
1253 {
1254 warning ("shared library handler failed to disable breakpoint");
1255 }
1256
1257 /* solib_add will call reinit_frame_cache.
1258 But we are stopped in the startup code and we might not have symbols
1259 for the startup code, so heuristic_proc_start could be called
1260 and will put out an annoying warning.
1261 Delaying the resetting of stop_soon_quietly until after symbol loading
1262 suppresses the warning. */
1263 if (auto_solib_add)
1264 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1265 stop_soon_quietly = 0;
1266}
1267
1268/*
1269
1270 LOCAL FUNCTION
1271
1272 sharedlibrary_command -- handle command to explicitly add library
1273
1274 SYNOPSIS
1275
1276 static void sharedlibrary_command (char *args, int from_tty)
1277
1278 DESCRIPTION
1279
1280 */
1281
1282static void
1283sharedlibrary_command (args, from_tty)
1284 char *args;
1285 int from_tty;
1286{
1287 dont_repeat ();
1288 solib_add (args, from_tty, (struct target_ops *) 0);
1289}
1290
1291void
1292_initialize_solib ()
1293{
1294 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1295 "Load shared object library symbols for files matching REGEXP.");
1296 add_info ("sharedlibrary", info_sharedlibrary_command,
1297 "Status of loaded shared object libraries.");
1298
1299 add_show_from_set
1300 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
1301 (char *) &auto_solib_add,
1302 "Set autoloading of shared library symbols.\n\
1303If nonzero, symbols from all shared object libraries will be loaded\n\
1304automatically when the inferior begins execution or when the dynamic linker\n\
1305informs gdb that a new library has been loaded. Otherwise, symbols\n\
1306must be loaded manually, using `sharedlibrary'.",
1307 &setlist),
1308 &showlist);
1309}
1310\f
1311
1312/* Register that we are able to handle irix5 core file formats.
1313 This really is bfd_target_unknown_flavour */
1314
1315static struct core_fns irix5_core_fns =
1316{
1317 bfd_target_unknown_flavour,
1318 fetch_core_registers,
1319 NULL
1320};
1321
1322void
1323_initialize_core_irix5 ()
1324{
1325 add_core_fns (&irix5_core_fns);
1326}
This page took 0.046552 seconds and 4 git commands to generate.