Move safe_strerror to common/
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
... / ...
CommitLineData
1/* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "inferior.h"
22#include "infrun.h"
23#include "target.h"
24#include "nat/linux-nat.h"
25#include "nat/linux-waitpid.h"
26#include "gdb_wait.h"
27#ifdef HAVE_TKILL_SYSCALL
28#include <unistd.h>
29#include <sys/syscall.h>
30#endif
31#include <sys/ptrace.h>
32#include "linux-nat.h"
33#include "nat/linux-ptrace.h"
34#include "nat/linux-procfs.h"
35#include "linux-fork.h"
36#include "gdbthread.h"
37#include "gdbcmd.h"
38#include "regcache.h"
39#include "regset.h"
40#include "inf-child.h"
41#include "inf-ptrace.h"
42#include "auxv.h"
43#include <sys/procfs.h> /* for elf_gregset etc. */
44#include "elf-bfd.h" /* for elfcore_write_* */
45#include "gregset.h" /* for gregset */
46#include "gdbcore.h" /* for get_exec_file */
47#include <ctype.h> /* for isdigit */
48#include <sys/stat.h> /* for struct stat */
49#include <fcntl.h> /* for O_RDONLY */
50#include "inf-loop.h"
51#include "event-loop.h"
52#include "event-top.h"
53#include <pwd.h>
54#include <sys/types.h>
55#include <dirent.h>
56#include "xml-support.h"
57#include <sys/vfs.h>
58#include "solib.h"
59#include "nat/linux-osdata.h"
60#include "linux-tdep.h"
61#include "symfile.h"
62#include "agent.h"
63#include "tracepoint.h"
64#include "buffer.h"
65#include "target-descriptions.h"
66#include "filestuff.h"
67#include "objfiles.h"
68
69#ifndef SPUFS_MAGIC
70#define SPUFS_MAGIC 0x23c9b64e
71#endif
72
73#ifdef HAVE_PERSONALITY
74# include <sys/personality.h>
75# if !HAVE_DECL_ADDR_NO_RANDOMIZE
76# define ADDR_NO_RANDOMIZE 0x0040000
77# endif
78#endif /* HAVE_PERSONALITY */
79
80/* This comment documents high-level logic of this file.
81
82Waiting for events in sync mode
83===============================
84
85When waiting for an event in a specific thread, we just use waitpid, passing
86the specific pid, and not passing WNOHANG.
87
88When waiting for an event in all threads, waitpid is not quite good. Prior to
89version 2.4, Linux can either wait for event in main thread, or in secondary
90threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
91miss an event. The solution is to use non-blocking waitpid, together with
92sigsuspend. First, we use non-blocking waitpid to get an event in the main
93process, if any. Second, we use non-blocking waitpid with the __WCLONED
94flag to check for events in cloned processes. If nothing is found, we use
95sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
96happened to a child process -- and SIGCHLD will be delivered both for events
97in main debugged process and in cloned processes. As soon as we know there's
98an event, we get back to calling nonblocking waitpid with and without
99__WCLONED.
100
101Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
102so that we don't miss a signal. If SIGCHLD arrives in between, when it's
103blocked, the signal becomes pending and sigsuspend immediately
104notices it and returns.
105
106Waiting for events in async mode
107================================
108
109In async mode, GDB should always be ready to handle both user input
110and target events, so neither blocking waitpid nor sigsuspend are
111viable options. Instead, we should asynchronously notify the GDB main
112event loop whenever there's an unprocessed event from the target. We
113detect asynchronous target events by handling SIGCHLD signals. To
114notify the event loop about target events, the self-pipe trick is used
115--- a pipe is registered as waitable event source in the event loop,
116the event loop select/poll's on the read end of this pipe (as well on
117other event sources, e.g., stdin), and the SIGCHLD handler writes a
118byte to this pipe. This is more portable than relying on
119pselect/ppoll, since on kernels that lack those syscalls, libc
120emulates them with select/poll+sigprocmask, and that is racy
121(a.k.a. plain broken).
122
123Obviously, if we fail to notify the event loop if there's a target
124event, it's bad. OTOH, if we notify the event loop when there's no
125event from the target, linux_nat_wait will detect that there's no real
126event to report, and return event of type TARGET_WAITKIND_IGNORE.
127This is mostly harmless, but it will waste time and is better avoided.
128
129The main design point is that every time GDB is outside linux-nat.c,
130we have a SIGCHLD handler installed that is called when something
131happens to the target and notifies the GDB event loop. Whenever GDB
132core decides to handle the event, and calls into linux-nat.c, we
133process things as in sync mode, except that the we never block in
134sigsuspend.
135
136While processing an event, we may end up momentarily blocked in
137waitpid calls. Those waitpid calls, while blocking, are guarantied to
138return quickly. E.g., in all-stop mode, before reporting to the core
139that an LWP hit a breakpoint, all LWPs are stopped by sending them
140SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141Note that this is different from blocking indefinitely waiting for the
142next event --- here, we're already handling an event.
143
144Use of signals
145==============
146
147We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148signal is not entirely significant; we just need for a signal to be delivered,
149so that we can intercept it. SIGSTOP's advantage is that it can not be
150blocked. A disadvantage is that it is not a real-time signal, so it can only
151be queued once; we do not keep track of other sources of SIGSTOP.
152
153Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154use them, because they have special behavior when the signal is generated -
155not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156kills the entire thread group.
157
158A delivered SIGSTOP would stop the entire thread group, not just the thread we
159tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160cancel it (by PTRACE_CONT without passing SIGSTOP).
161
162We could use a real-time signal instead. This would solve those problems; we
163could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165generates it, and there are races with trying to find a signal that is not
166blocked. */
167
168#ifndef O_LARGEFILE
169#define O_LARGEFILE 0
170#endif
171
172/* The single-threaded native GNU/Linux target_ops. We save a pointer for
173 the use of the multi-threaded target. */
174static struct target_ops *linux_ops;
175static struct target_ops linux_ops_saved;
176
177/* The method to call, if any, when a new thread is attached. */
178static void (*linux_nat_new_thread) (struct lwp_info *);
179
180/* The method to call, if any, when a new fork is attached. */
181static linux_nat_new_fork_ftype *linux_nat_new_fork;
182
183/* The method to call, if any, when a process is no longer
184 attached. */
185static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
186
187/* Hook to call prior to resuming a thread. */
188static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
189
190/* The method to call, if any, when the siginfo object needs to be
191 converted between the layout returned by ptrace, and the layout in
192 the architecture of the inferior. */
193static int (*linux_nat_siginfo_fixup) (siginfo_t *,
194 gdb_byte *,
195 int);
196
197/* The saved to_xfer_partial method, inherited from inf-ptrace.c.
198 Called by our to_xfer_partial. */
199static target_xfer_partial_ftype *super_xfer_partial;
200
201/* The saved to_close method, inherited from inf-ptrace.c.
202 Called by our to_close. */
203static void (*super_close) (struct target_ops *);
204
205static unsigned int debug_linux_nat;
206static void
207show_debug_linux_nat (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209{
210 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
211 value);
212}
213
214struct simple_pid_list
215{
216 int pid;
217 int status;
218 struct simple_pid_list *next;
219};
220struct simple_pid_list *stopped_pids;
221
222/* Async mode support. */
223
224/* The read/write ends of the pipe registered as waitable file in the
225 event loop. */
226static int linux_nat_event_pipe[2] = { -1, -1 };
227
228/* Flush the event pipe. */
229
230static void
231async_file_flush (void)
232{
233 int ret;
234 char buf;
235
236 do
237 {
238 ret = read (linux_nat_event_pipe[0], &buf, 1);
239 }
240 while (ret >= 0 || (ret == -1 && errno == EINTR));
241}
242
243/* Put something (anything, doesn't matter what, or how much) in event
244 pipe, so that the select/poll in the event-loop realizes we have
245 something to process. */
246
247static void
248async_file_mark (void)
249{
250 int ret;
251
252 /* It doesn't really matter what the pipe contains, as long we end
253 up with something in it. Might as well flush the previous
254 left-overs. */
255 async_file_flush ();
256
257 do
258 {
259 ret = write (linux_nat_event_pipe[1], "+", 1);
260 }
261 while (ret == -1 && errno == EINTR);
262
263 /* Ignore EAGAIN. If the pipe is full, the event loop will already
264 be awakened anyway. */
265}
266
267static int kill_lwp (int lwpid, int signo);
268
269static int stop_callback (struct lwp_info *lp, void *data);
270
271static void block_child_signals (sigset_t *prev_mask);
272static void restore_child_signals_mask (sigset_t *prev_mask);
273
274struct lwp_info;
275static struct lwp_info *add_lwp (ptid_t ptid);
276static void purge_lwp_list (int pid);
277static void delete_lwp (ptid_t ptid);
278static struct lwp_info *find_lwp_pid (ptid_t ptid);
279
280static int lwp_status_pending_p (struct lwp_info *lp);
281
282static int check_stopped_by_breakpoint (struct lwp_info *lp);
283static int sigtrap_is_event (int status);
284static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
285
286\f
287/* Trivial list manipulation functions to keep track of a list of
288 new stopped processes. */
289static void
290add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
291{
292 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
293
294 new_pid->pid = pid;
295 new_pid->status = status;
296 new_pid->next = *listp;
297 *listp = new_pid;
298}
299
300static int
301in_pid_list_p (struct simple_pid_list *list, int pid)
302{
303 struct simple_pid_list *p;
304
305 for (p = list; p != NULL; p = p->next)
306 if (p->pid == pid)
307 return 1;
308 return 0;
309}
310
311static int
312pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
313{
314 struct simple_pid_list **p;
315
316 for (p = listp; *p != NULL; p = &(*p)->next)
317 if ((*p)->pid == pid)
318 {
319 struct simple_pid_list *next = (*p)->next;
320
321 *statusp = (*p)->status;
322 xfree (*p);
323 *p = next;
324 return 1;
325 }
326 return 0;
327}
328
329/* Initialize ptrace warnings and check for supported ptrace
330 features given PID.
331
332 ATTACHED should be nonzero iff we attached to the inferior. */
333
334static void
335linux_init_ptrace (pid_t pid, int attached)
336{
337 linux_enable_event_reporting (pid, attached);
338 linux_ptrace_init_warnings ();
339}
340
341static void
342linux_child_post_attach (struct target_ops *self, int pid)
343{
344 linux_init_ptrace (pid, 1);
345}
346
347static void
348linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
349{
350 linux_init_ptrace (ptid_get_pid (ptid), 0);
351}
352
353/* Return the number of known LWPs in the tgid given by PID. */
354
355static int
356num_lwps (int pid)
357{
358 int count = 0;
359 struct lwp_info *lp;
360
361 for (lp = lwp_list; lp; lp = lp->next)
362 if (ptid_get_pid (lp->ptid) == pid)
363 count++;
364
365 return count;
366}
367
368/* Call delete_lwp with prototype compatible for make_cleanup. */
369
370static void
371delete_lwp_cleanup (void *lp_voidp)
372{
373 struct lwp_info *lp = lp_voidp;
374
375 delete_lwp (lp->ptid);
376}
377
378/* Target hook for follow_fork. On entry inferior_ptid must be the
379 ptid of the followed inferior. At return, inferior_ptid will be
380 unchanged. */
381
382static int
383linux_child_follow_fork (struct target_ops *ops, int follow_child,
384 int detach_fork)
385{
386 if (!follow_child)
387 {
388 struct lwp_info *child_lp = NULL;
389 int status = W_STOPCODE (0);
390 struct cleanup *old_chain;
391 int has_vforked;
392 int parent_pid, child_pid;
393
394 has_vforked = (inferior_thread ()->pending_follow.kind
395 == TARGET_WAITKIND_VFORKED);
396 parent_pid = ptid_get_lwp (inferior_ptid);
397 if (parent_pid == 0)
398 parent_pid = ptid_get_pid (inferior_ptid);
399 child_pid
400 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
401
402
403 /* We're already attached to the parent, by default. */
404 old_chain = save_inferior_ptid ();
405 inferior_ptid = ptid_build (child_pid, child_pid, 0);
406 child_lp = add_lwp (inferior_ptid);
407 child_lp->stopped = 1;
408 child_lp->last_resume_kind = resume_stop;
409
410 /* Detach new forked process? */
411 if (detach_fork)
412 {
413 make_cleanup (delete_lwp_cleanup, child_lp);
414
415 if (linux_nat_prepare_to_resume != NULL)
416 linux_nat_prepare_to_resume (child_lp);
417
418 /* When debugging an inferior in an architecture that supports
419 hardware single stepping on a kernel without commit
420 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
421 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
422 set if the parent process had them set.
423 To work around this, single step the child process
424 once before detaching to clear the flags. */
425
426 if (!gdbarch_software_single_step_p (target_thread_architecture
427 (child_lp->ptid)))
428 {
429 linux_disable_event_reporting (child_pid);
430 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
431 perror_with_name (_("Couldn't do single step"));
432 if (my_waitpid (child_pid, &status, 0) < 0)
433 perror_with_name (_("Couldn't wait vfork process"));
434 }
435
436 if (WIFSTOPPED (status))
437 {
438 int signo;
439
440 signo = WSTOPSIG (status);
441 if (signo != 0
442 && !signal_pass_state (gdb_signal_from_host (signo)))
443 signo = 0;
444 ptrace (PTRACE_DETACH, child_pid, 0, signo);
445 }
446
447 /* Resets value of inferior_ptid to parent ptid. */
448 do_cleanups (old_chain);
449 }
450 else
451 {
452 /* Let the thread_db layer learn about this new process. */
453 check_for_thread_db ();
454 }
455
456 do_cleanups (old_chain);
457
458 if (has_vforked)
459 {
460 struct lwp_info *parent_lp;
461
462 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
463 gdb_assert (linux_supports_tracefork () >= 0);
464
465 if (linux_supports_tracevforkdone ())
466 {
467 if (debug_linux_nat)
468 fprintf_unfiltered (gdb_stdlog,
469 "LCFF: waiting for VFORK_DONE on %d\n",
470 parent_pid);
471 parent_lp->stopped = 1;
472
473 /* We'll handle the VFORK_DONE event like any other
474 event, in target_wait. */
475 }
476 else
477 {
478 /* We can't insert breakpoints until the child has
479 finished with the shared memory region. We need to
480 wait until that happens. Ideal would be to just
481 call:
482 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
483 - waitpid (parent_pid, &status, __WALL);
484 However, most architectures can't handle a syscall
485 being traced on the way out if it wasn't traced on
486 the way in.
487
488 We might also think to loop, continuing the child
489 until it exits or gets a SIGTRAP. One problem is
490 that the child might call ptrace with PTRACE_TRACEME.
491
492 There's no simple and reliable way to figure out when
493 the vforked child will be done with its copy of the
494 shared memory. We could step it out of the syscall,
495 two instructions, let it go, and then single-step the
496 parent once. When we have hardware single-step, this
497 would work; with software single-step it could still
498 be made to work but we'd have to be able to insert
499 single-step breakpoints in the child, and we'd have
500 to insert -just- the single-step breakpoint in the
501 parent. Very awkward.
502
503 In the end, the best we can do is to make sure it
504 runs for a little while. Hopefully it will be out of
505 range of any breakpoints we reinsert. Usually this
506 is only the single-step breakpoint at vfork's return
507 point. */
508
509 if (debug_linux_nat)
510 fprintf_unfiltered (gdb_stdlog,
511 "LCFF: no VFORK_DONE "
512 "support, sleeping a bit\n");
513
514 usleep (10000);
515
516 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
517 and leave it pending. The next linux_nat_resume call
518 will notice a pending event, and bypasses actually
519 resuming the inferior. */
520 parent_lp->status = 0;
521 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
522 parent_lp->stopped = 1;
523
524 /* If we're in async mode, need to tell the event loop
525 there's something here to process. */
526 if (target_can_async_p ())
527 async_file_mark ();
528 }
529 }
530 }
531 else
532 {
533 struct lwp_info *child_lp;
534
535 child_lp = add_lwp (inferior_ptid);
536 child_lp->stopped = 1;
537 child_lp->last_resume_kind = resume_stop;
538
539 /* Let the thread_db layer learn about this new process. */
540 check_for_thread_db ();
541 }
542
543 return 0;
544}
545
546\f
547static int
548linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
549{
550 return !linux_supports_tracefork ();
551}
552
553static int
554linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
555{
556 return 0;
557}
558
559static int
560linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
561{
562 return !linux_supports_tracefork ();
563}
564
565static int
566linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
567{
568 return 0;
569}
570
571static int
572linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
573{
574 return !linux_supports_tracefork ();
575}
576
577static int
578linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
579{
580 return 0;
581}
582
583static int
584linux_child_set_syscall_catchpoint (struct target_ops *self,
585 int pid, int needed, int any_count,
586 int table_size, int *table)
587{
588 if (!linux_supports_tracesysgood ())
589 return 1;
590
591 /* On GNU/Linux, we ignore the arguments. It means that we only
592 enable the syscall catchpoints, but do not disable them.
593
594 Also, we do not use the `table' information because we do not
595 filter system calls here. We let GDB do the logic for us. */
596 return 0;
597}
598
599/* On GNU/Linux there are no real LWP's. The closest thing to LWP's
600 are processes sharing the same VM space. A multi-threaded process
601 is basically a group of such processes. However, such a grouping
602 is almost entirely a user-space issue; the kernel doesn't enforce
603 such a grouping at all (this might change in the future). In
604 general, we'll rely on the threads library (i.e. the GNU/Linux
605 Threads library) to provide such a grouping.
606
607 It is perfectly well possible to write a multi-threaded application
608 without the assistance of a threads library, by using the clone
609 system call directly. This module should be able to give some
610 rudimentary support for debugging such applications if developers
611 specify the CLONE_PTRACE flag in the clone system call, and are
612 using the Linux kernel 2.4 or above.
613
614 Note that there are some peculiarities in GNU/Linux that affect
615 this code:
616
617 - In general one should specify the __WCLONE flag to waitpid in
618 order to make it report events for any of the cloned processes
619 (and leave it out for the initial process). However, if a cloned
620 process has exited the exit status is only reported if the
621 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
622 we cannot use it since GDB must work on older systems too.
623
624 - When a traced, cloned process exits and is waited for by the
625 debugger, the kernel reassigns it to the original parent and
626 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
627 library doesn't notice this, which leads to the "zombie problem":
628 When debugged a multi-threaded process that spawns a lot of
629 threads will run out of processes, even if the threads exit,
630 because the "zombies" stay around. */
631
632/* List of known LWPs. */
633struct lwp_info *lwp_list;
634\f
635
636/* Original signal mask. */
637static sigset_t normal_mask;
638
639/* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
640 _initialize_linux_nat. */
641static sigset_t suspend_mask;
642
643/* Signals to block to make that sigsuspend work. */
644static sigset_t blocked_mask;
645
646/* SIGCHLD action. */
647struct sigaction sigchld_action;
648
649/* Block child signals (SIGCHLD and linux threads signals), and store
650 the previous mask in PREV_MASK. */
651
652static void
653block_child_signals (sigset_t *prev_mask)
654{
655 /* Make sure SIGCHLD is blocked. */
656 if (!sigismember (&blocked_mask, SIGCHLD))
657 sigaddset (&blocked_mask, SIGCHLD);
658
659 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
660}
661
662/* Restore child signals mask, previously returned by
663 block_child_signals. */
664
665static void
666restore_child_signals_mask (sigset_t *prev_mask)
667{
668 sigprocmask (SIG_SETMASK, prev_mask, NULL);
669}
670
671/* Mask of signals to pass directly to the inferior. */
672static sigset_t pass_mask;
673
674/* Update signals to pass to the inferior. */
675static void
676linux_nat_pass_signals (struct target_ops *self,
677 int numsigs, unsigned char *pass_signals)
678{
679 int signo;
680
681 sigemptyset (&pass_mask);
682
683 for (signo = 1; signo < NSIG; signo++)
684 {
685 int target_signo = gdb_signal_from_host (signo);
686 if (target_signo < numsigs && pass_signals[target_signo])
687 sigaddset (&pass_mask, signo);
688 }
689}
690
691\f
692
693/* Prototypes for local functions. */
694static int stop_wait_callback (struct lwp_info *lp, void *data);
695static int linux_thread_alive (ptid_t ptid);
696static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
697
698\f
699
700/* Destroy and free LP. */
701
702static void
703lwp_free (struct lwp_info *lp)
704{
705 xfree (lp->arch_private);
706 xfree (lp);
707}
708
709/* Remove all LWPs belong to PID from the lwp list. */
710
711static void
712purge_lwp_list (int pid)
713{
714 struct lwp_info *lp, *lpprev, *lpnext;
715
716 lpprev = NULL;
717
718 for (lp = lwp_list; lp; lp = lpnext)
719 {
720 lpnext = lp->next;
721
722 if (ptid_get_pid (lp->ptid) == pid)
723 {
724 if (lp == lwp_list)
725 lwp_list = lp->next;
726 else
727 lpprev->next = lp->next;
728
729 lwp_free (lp);
730 }
731 else
732 lpprev = lp;
733 }
734}
735
736/* Add the LWP specified by PTID to the list. PTID is the first LWP
737 in the process. Return a pointer to the structure describing the
738 new LWP.
739
740 This differs from add_lwp in that we don't let the arch specific
741 bits know about this new thread. Current clients of this callback
742 take the opportunity to install watchpoints in the new thread, and
743 we shouldn't do that for the first thread. If we're spawning a
744 child ("run"), the thread executes the shell wrapper first, and we
745 shouldn't touch it until it execs the program we want to debug.
746 For "attach", it'd be okay to call the callback, but it's not
747 necessary, because watchpoints can't yet have been inserted into
748 the inferior. */
749
750static struct lwp_info *
751add_initial_lwp (ptid_t ptid)
752{
753 struct lwp_info *lp;
754
755 gdb_assert (ptid_lwp_p (ptid));
756
757 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
758
759 memset (lp, 0, sizeof (struct lwp_info));
760
761 lp->last_resume_kind = resume_continue;
762 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
763
764 lp->ptid = ptid;
765 lp->core = -1;
766
767 lp->next = lwp_list;
768 lwp_list = lp;
769
770 return lp;
771}
772
773/* Add the LWP specified by PID to the list. Return a pointer to the
774 structure describing the new LWP. The LWP should already be
775 stopped. */
776
777static struct lwp_info *
778add_lwp (ptid_t ptid)
779{
780 struct lwp_info *lp;
781
782 lp = add_initial_lwp (ptid);
783
784 /* Let the arch specific bits know about this new thread. Current
785 clients of this callback take the opportunity to install
786 watchpoints in the new thread. We don't do this for the first
787 thread though. See add_initial_lwp. */
788 if (linux_nat_new_thread != NULL)
789 linux_nat_new_thread (lp);
790
791 return lp;
792}
793
794/* Remove the LWP specified by PID from the list. */
795
796static void
797delete_lwp (ptid_t ptid)
798{
799 struct lwp_info *lp, *lpprev;
800
801 lpprev = NULL;
802
803 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
804 if (ptid_equal (lp->ptid, ptid))
805 break;
806
807 if (!lp)
808 return;
809
810 if (lpprev)
811 lpprev->next = lp->next;
812 else
813 lwp_list = lp->next;
814
815 lwp_free (lp);
816}
817
818/* Return a pointer to the structure describing the LWP corresponding
819 to PID. If no corresponding LWP could be found, return NULL. */
820
821static struct lwp_info *
822find_lwp_pid (ptid_t ptid)
823{
824 struct lwp_info *lp;
825 int lwp;
826
827 if (ptid_lwp_p (ptid))
828 lwp = ptid_get_lwp (ptid);
829 else
830 lwp = ptid_get_pid (ptid);
831
832 for (lp = lwp_list; lp; lp = lp->next)
833 if (lwp == ptid_get_lwp (lp->ptid))
834 return lp;
835
836 return NULL;
837}
838
839/* Call CALLBACK with its second argument set to DATA for every LWP in
840 the list. If CALLBACK returns 1 for a particular LWP, return a
841 pointer to the structure describing that LWP immediately.
842 Otherwise return NULL. */
843
844struct lwp_info *
845iterate_over_lwps (ptid_t filter,
846 int (*callback) (struct lwp_info *, void *),
847 void *data)
848{
849 struct lwp_info *lp, *lpnext;
850
851 for (lp = lwp_list; lp; lp = lpnext)
852 {
853 lpnext = lp->next;
854
855 if (ptid_match (lp->ptid, filter))
856 {
857 if ((*callback) (lp, data))
858 return lp;
859 }
860 }
861
862 return NULL;
863}
864
865/* Update our internal state when changing from one checkpoint to
866 another indicated by NEW_PTID. We can only switch single-threaded
867 applications, so we only create one new LWP, and the previous list
868 is discarded. */
869
870void
871linux_nat_switch_fork (ptid_t new_ptid)
872{
873 struct lwp_info *lp;
874
875 purge_lwp_list (ptid_get_pid (inferior_ptid));
876
877 lp = add_lwp (new_ptid);
878 lp->stopped = 1;
879
880 /* This changes the thread's ptid while preserving the gdb thread
881 num. Also changes the inferior pid, while preserving the
882 inferior num. */
883 thread_change_ptid (inferior_ptid, new_ptid);
884
885 /* We've just told GDB core that the thread changed target id, but,
886 in fact, it really is a different thread, with different register
887 contents. */
888 registers_changed ();
889}
890
891/* Handle the exit of a single thread LP. */
892
893static void
894exit_lwp (struct lwp_info *lp)
895{
896 struct thread_info *th = find_thread_ptid (lp->ptid);
897
898 if (th)
899 {
900 if (print_thread_events)
901 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
902
903 delete_thread (lp->ptid);
904 }
905
906 delete_lwp (lp->ptid);
907}
908
909/* Wait for the LWP specified by LP, which we have just attached to.
910 Returns a wait status for that LWP, to cache. */
911
912static int
913linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
914 int *signalled)
915{
916 pid_t new_pid, pid = ptid_get_lwp (ptid);
917 int status;
918
919 if (linux_proc_pid_is_stopped (pid))
920 {
921 if (debug_linux_nat)
922 fprintf_unfiltered (gdb_stdlog,
923 "LNPAW: Attaching to a stopped process\n");
924
925 /* The process is definitely stopped. It is in a job control
926 stop, unless the kernel predates the TASK_STOPPED /
927 TASK_TRACED distinction, in which case it might be in a
928 ptrace stop. Make sure it is in a ptrace stop; from there we
929 can kill it, signal it, et cetera.
930
931 First make sure there is a pending SIGSTOP. Since we are
932 already attached, the process can not transition from stopped
933 to running without a PTRACE_CONT; so we know this signal will
934 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
935 probably already in the queue (unless this kernel is old
936 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
937 is not an RT signal, it can only be queued once. */
938 kill_lwp (pid, SIGSTOP);
939
940 /* Finally, resume the stopped process. This will deliver the SIGSTOP
941 (or a higher priority signal, just like normal PTRACE_ATTACH). */
942 ptrace (PTRACE_CONT, pid, 0, 0);
943 }
944
945 /* Make sure the initial process is stopped. The user-level threads
946 layer might want to poke around in the inferior, and that won't
947 work if things haven't stabilized yet. */
948 new_pid = my_waitpid (pid, &status, 0);
949 if (new_pid == -1 && errno == ECHILD)
950 {
951 if (first)
952 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
953
954 /* Try again with __WCLONE to check cloned processes. */
955 new_pid = my_waitpid (pid, &status, __WCLONE);
956 *cloned = 1;
957 }
958
959 gdb_assert (pid == new_pid);
960
961 if (!WIFSTOPPED (status))
962 {
963 /* The pid we tried to attach has apparently just exited. */
964 if (debug_linux_nat)
965 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
966 pid, status_to_str (status));
967 return status;
968 }
969
970 if (WSTOPSIG (status) != SIGSTOP)
971 {
972 *signalled = 1;
973 if (debug_linux_nat)
974 fprintf_unfiltered (gdb_stdlog,
975 "LNPAW: Received %s after attaching\n",
976 status_to_str (status));
977 }
978
979 return status;
980}
981
982/* Attach to the LWP specified by PID. Return 0 if successful, -1 if
983 the new LWP could not be attached, or 1 if we're already auto
984 attached to this thread, but haven't processed the
985 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
986 its existance, without considering it an error. */
987
988int
989lin_lwp_attach_lwp (ptid_t ptid)
990{
991 struct lwp_info *lp;
992 int lwpid;
993
994 gdb_assert (ptid_lwp_p (ptid));
995
996 lp = find_lwp_pid (ptid);
997 lwpid = ptid_get_lwp (ptid);
998
999 /* We assume that we're already attached to any LWP that has an id
1000 equal to the overall process id, and to any LWP that is already
1001 in our list of LWPs. If we're not seeing exit events from threads
1002 and we've had PID wraparound since we last tried to stop all threads,
1003 this assumption might be wrong; fortunately, this is very unlikely
1004 to happen. */
1005 if (lwpid != ptid_get_pid (ptid) && lp == NULL)
1006 {
1007 int status, cloned = 0, signalled = 0;
1008
1009 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1010 {
1011 if (linux_supports_tracefork ())
1012 {
1013 /* If we haven't stopped all threads when we get here,
1014 we may have seen a thread listed in thread_db's list,
1015 but not processed the PTRACE_EVENT_CLONE yet. If
1016 that's the case, ignore this new thread, and let
1017 normal event handling discover it later. */
1018 if (in_pid_list_p (stopped_pids, lwpid))
1019 {
1020 /* We've already seen this thread stop, but we
1021 haven't seen the PTRACE_EVENT_CLONE extended
1022 event yet. */
1023 return 0;
1024 }
1025 else
1026 {
1027 int new_pid;
1028 int status;
1029
1030 /* See if we've got a stop for this new child
1031 pending. If so, we're already attached. */
1032 gdb_assert (lwpid > 0);
1033 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1034 if (new_pid == -1 && errno == ECHILD)
1035 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1036 if (new_pid != -1)
1037 {
1038 if (WIFSTOPPED (status))
1039 add_to_pid_list (&stopped_pids, lwpid, status);
1040 return 1;
1041 }
1042 }
1043 }
1044
1045 /* If we fail to attach to the thread, issue a warning,
1046 but continue. One way this can happen is if thread
1047 creation is interrupted; as of Linux kernel 2.6.19, a
1048 bug may place threads in the thread list and then fail
1049 to create them. */
1050 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1051 safe_strerror (errno));
1052 return -1;
1053 }
1054
1055 if (debug_linux_nat)
1056 fprintf_unfiltered (gdb_stdlog,
1057 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1058 target_pid_to_str (ptid));
1059
1060 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1061 if (!WIFSTOPPED (status))
1062 return 1;
1063
1064 lp = add_lwp (ptid);
1065 lp->stopped = 1;
1066 lp->cloned = cloned;
1067 lp->signalled = signalled;
1068 if (WSTOPSIG (status) != SIGSTOP)
1069 {
1070 lp->resumed = 1;
1071 lp->status = status;
1072 }
1073
1074 target_post_attach (ptid_get_lwp (lp->ptid));
1075
1076 if (debug_linux_nat)
1077 {
1078 fprintf_unfiltered (gdb_stdlog,
1079 "LLAL: waitpid %s received %s\n",
1080 target_pid_to_str (ptid),
1081 status_to_str (status));
1082 }
1083 }
1084 else
1085 {
1086 /* We assume that the LWP representing the original process is
1087 already stopped. Mark it as stopped in the data structure
1088 that the GNU/linux ptrace layer uses to keep track of
1089 threads. Note that this won't have already been done since
1090 the main thread will have, we assume, been stopped by an
1091 attach from a different layer. */
1092 if (lp == NULL)
1093 lp = add_lwp (ptid);
1094 lp->stopped = 1;
1095 }
1096
1097 lp->last_resume_kind = resume_stop;
1098 return 0;
1099}
1100
1101static void
1102linux_nat_create_inferior (struct target_ops *ops,
1103 char *exec_file, char *allargs, char **env,
1104 int from_tty)
1105{
1106#ifdef HAVE_PERSONALITY
1107 int personality_orig = 0, personality_set = 0;
1108#endif /* HAVE_PERSONALITY */
1109
1110 /* The fork_child mechanism is synchronous and calls target_wait, so
1111 we have to mask the async mode. */
1112
1113#ifdef HAVE_PERSONALITY
1114 if (disable_randomization)
1115 {
1116 errno = 0;
1117 personality_orig = personality (0xffffffff);
1118 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1119 {
1120 personality_set = 1;
1121 personality (personality_orig | ADDR_NO_RANDOMIZE);
1122 }
1123 if (errno != 0 || (personality_set
1124 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1125 warning (_("Error disabling address space randomization: %s"),
1126 safe_strerror (errno));
1127 }
1128#endif /* HAVE_PERSONALITY */
1129
1130 /* Make sure we report all signals during startup. */
1131 linux_nat_pass_signals (ops, 0, NULL);
1132
1133 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1134
1135#ifdef HAVE_PERSONALITY
1136 if (personality_set)
1137 {
1138 errno = 0;
1139 personality (personality_orig);
1140 if (errno != 0)
1141 warning (_("Error restoring address space randomization: %s"),
1142 safe_strerror (errno));
1143 }
1144#endif /* HAVE_PERSONALITY */
1145}
1146
1147/* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1148 already attached. Returns true if a new LWP is found, false
1149 otherwise. */
1150
1151static int
1152attach_proc_task_lwp_callback (ptid_t ptid)
1153{
1154 struct lwp_info *lp;
1155
1156 /* Ignore LWPs we're already attached to. */
1157 lp = find_lwp_pid (ptid);
1158 if (lp == NULL)
1159 {
1160 int lwpid = ptid_get_lwp (ptid);
1161
1162 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1163 {
1164 int err = errno;
1165
1166 /* Be quiet if we simply raced with the thread exiting.
1167 EPERM is returned if the thread's task still exists, and
1168 is marked as exited or zombie, as well as other
1169 conditions, so in that case, confirm the status in
1170 /proc/PID/status. */
1171 if (err == ESRCH
1172 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1173 {
1174 if (debug_linux_nat)
1175 {
1176 fprintf_unfiltered (gdb_stdlog,
1177 "Cannot attach to lwp %d: "
1178 "thread is gone (%d: %s)\n",
1179 lwpid, err, safe_strerror (err));
1180 }
1181 }
1182 else
1183 {
1184 warning (_("Cannot attach to lwp %d: %s"),
1185 lwpid,
1186 linux_ptrace_attach_fail_reason_string (ptid,
1187 err));
1188 }
1189 }
1190 else
1191 {
1192 if (debug_linux_nat)
1193 fprintf_unfiltered (gdb_stdlog,
1194 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1195 target_pid_to_str (ptid));
1196
1197 lp = add_lwp (ptid);
1198 lp->cloned = 1;
1199
1200 /* The next time we wait for this LWP we'll see a SIGSTOP as
1201 PTRACE_ATTACH brings it to a halt. */
1202 lp->signalled = 1;
1203
1204 /* We need to wait for a stop before being able to make the
1205 next ptrace call on this LWP. */
1206 lp->must_set_ptrace_flags = 1;
1207 }
1208
1209 return 1;
1210 }
1211 return 0;
1212}
1213
1214static void
1215linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1216{
1217 struct lwp_info *lp;
1218 int status;
1219 ptid_t ptid;
1220 volatile struct gdb_exception ex;
1221
1222 /* Make sure we report all signals during attach. */
1223 linux_nat_pass_signals (ops, 0, NULL);
1224
1225 TRY_CATCH (ex, RETURN_MASK_ERROR)
1226 {
1227 linux_ops->to_attach (ops, args, from_tty);
1228 }
1229 if (ex.reason < 0)
1230 {
1231 pid_t pid = parse_pid_to_attach (args);
1232 struct buffer buffer;
1233 char *message, *buffer_s;
1234
1235 message = xstrdup (ex.message);
1236 make_cleanup (xfree, message);
1237
1238 buffer_init (&buffer);
1239 linux_ptrace_attach_fail_reason (pid, &buffer);
1240
1241 buffer_grow_str0 (&buffer, "");
1242 buffer_s = buffer_finish (&buffer);
1243 make_cleanup (xfree, buffer_s);
1244
1245 if (*buffer_s != '\0')
1246 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1247 else
1248 throw_error (ex.error, "%s", message);
1249 }
1250
1251 /* The ptrace base target adds the main thread with (pid,0,0)
1252 format. Decorate it with lwp info. */
1253 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1254 ptid_get_pid (inferior_ptid),
1255 0);
1256 thread_change_ptid (inferior_ptid, ptid);
1257
1258 /* Add the initial process as the first LWP to the list. */
1259 lp = add_initial_lwp (ptid);
1260
1261 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1262 &lp->signalled);
1263 if (!WIFSTOPPED (status))
1264 {
1265 if (WIFEXITED (status))
1266 {
1267 int exit_code = WEXITSTATUS (status);
1268
1269 target_terminal_ours ();
1270 target_mourn_inferior ();
1271 if (exit_code == 0)
1272 error (_("Unable to attach: program exited normally."));
1273 else
1274 error (_("Unable to attach: program exited with code %d."),
1275 exit_code);
1276 }
1277 else if (WIFSIGNALED (status))
1278 {
1279 enum gdb_signal signo;
1280
1281 target_terminal_ours ();
1282 target_mourn_inferior ();
1283
1284 signo = gdb_signal_from_host (WTERMSIG (status));
1285 error (_("Unable to attach: program terminated with signal "
1286 "%s, %s."),
1287 gdb_signal_to_name (signo),
1288 gdb_signal_to_string (signo));
1289 }
1290
1291 internal_error (__FILE__, __LINE__,
1292 _("unexpected status %d for PID %ld"),
1293 status, (long) ptid_get_lwp (ptid));
1294 }
1295
1296 lp->stopped = 1;
1297
1298 /* Save the wait status to report later. */
1299 lp->resumed = 1;
1300 if (debug_linux_nat)
1301 fprintf_unfiltered (gdb_stdlog,
1302 "LNA: waitpid %ld, saving status %s\n",
1303 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1304
1305 lp->status = status;
1306
1307 /* We must attach to every LWP. If /proc is mounted, use that to
1308 find them now. The inferior may be using raw clone instead of
1309 using pthreads. But even if it is using pthreads, thread_db
1310 walks structures in the inferior's address space to find the list
1311 of threads/LWPs, and those structures may well be corrupted.
1312 Note that once thread_db is loaded, we'll still use it to list
1313 threads and associate pthread info with each LWP. */
1314 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1315 attach_proc_task_lwp_callback);
1316
1317 if (target_can_async_p ())
1318 target_async (inferior_event_handler, 0);
1319}
1320
1321/* Get pending status of LP. */
1322static int
1323get_pending_status (struct lwp_info *lp, int *status)
1324{
1325 enum gdb_signal signo = GDB_SIGNAL_0;
1326
1327 /* If we paused threads momentarily, we may have stored pending
1328 events in lp->status or lp->waitstatus (see stop_wait_callback),
1329 and GDB core hasn't seen any signal for those threads.
1330 Otherwise, the last signal reported to the core is found in the
1331 thread object's stop_signal.
1332
1333 There's a corner case that isn't handled here at present. Only
1334 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1335 stop_signal make sense as a real signal to pass to the inferior.
1336 Some catchpoint related events, like
1337 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1338 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1339 those traps are debug API (ptrace in our case) related and
1340 induced; the inferior wouldn't see them if it wasn't being
1341 traced. Hence, we should never pass them to the inferior, even
1342 when set to pass state. Since this corner case isn't handled by
1343 infrun.c when proceeding with a signal, for consistency, neither
1344 do we handle it here (or elsewhere in the file we check for
1345 signal pass state). Normally SIGTRAP isn't set to pass state, so
1346 this is really a corner case. */
1347
1348 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1349 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1350 else if (lp->status)
1351 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1352 else if (non_stop && !is_executing (lp->ptid))
1353 {
1354 struct thread_info *tp = find_thread_ptid (lp->ptid);
1355
1356 signo = tp->suspend.stop_signal;
1357 }
1358 else if (!non_stop)
1359 {
1360 struct target_waitstatus last;
1361 ptid_t last_ptid;
1362
1363 get_last_target_status (&last_ptid, &last);
1364
1365 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1366 {
1367 struct thread_info *tp = find_thread_ptid (lp->ptid);
1368
1369 signo = tp->suspend.stop_signal;
1370 }
1371 }
1372
1373 *status = 0;
1374
1375 if (signo == GDB_SIGNAL_0)
1376 {
1377 if (debug_linux_nat)
1378 fprintf_unfiltered (gdb_stdlog,
1379 "GPT: lwp %s has no pending signal\n",
1380 target_pid_to_str (lp->ptid));
1381 }
1382 else if (!signal_pass_state (signo))
1383 {
1384 if (debug_linux_nat)
1385 fprintf_unfiltered (gdb_stdlog,
1386 "GPT: lwp %s had signal %s, "
1387 "but it is in no pass state\n",
1388 target_pid_to_str (lp->ptid),
1389 gdb_signal_to_string (signo));
1390 }
1391 else
1392 {
1393 *status = W_STOPCODE (gdb_signal_to_host (signo));
1394
1395 if (debug_linux_nat)
1396 fprintf_unfiltered (gdb_stdlog,
1397 "GPT: lwp %s has pending signal %s\n",
1398 target_pid_to_str (lp->ptid),
1399 gdb_signal_to_string (signo));
1400 }
1401
1402 return 0;
1403}
1404
1405static int
1406detach_callback (struct lwp_info *lp, void *data)
1407{
1408 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1409
1410 if (debug_linux_nat && lp->status)
1411 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1412 strsignal (WSTOPSIG (lp->status)),
1413 target_pid_to_str (lp->ptid));
1414
1415 /* If there is a pending SIGSTOP, get rid of it. */
1416 if (lp->signalled)
1417 {
1418 if (debug_linux_nat)
1419 fprintf_unfiltered (gdb_stdlog,
1420 "DC: Sending SIGCONT to %s\n",
1421 target_pid_to_str (lp->ptid));
1422
1423 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1424 lp->signalled = 0;
1425 }
1426
1427 /* We don't actually detach from the LWP that has an id equal to the
1428 overall process id just yet. */
1429 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1430 {
1431 int status = 0;
1432
1433 /* Pass on any pending signal for this LWP. */
1434 get_pending_status (lp, &status);
1435
1436 if (linux_nat_prepare_to_resume != NULL)
1437 linux_nat_prepare_to_resume (lp);
1438 errno = 0;
1439 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1440 WSTOPSIG (status)) < 0)
1441 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1442 safe_strerror (errno));
1443
1444 if (debug_linux_nat)
1445 fprintf_unfiltered (gdb_stdlog,
1446 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1447 target_pid_to_str (lp->ptid),
1448 strsignal (WSTOPSIG (status)));
1449
1450 delete_lwp (lp->ptid);
1451 }
1452
1453 return 0;
1454}
1455
1456static void
1457linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1458{
1459 int pid;
1460 int status;
1461 struct lwp_info *main_lwp;
1462
1463 pid = ptid_get_pid (inferior_ptid);
1464
1465 /* Don't unregister from the event loop, as there may be other
1466 inferiors running. */
1467
1468 /* Stop all threads before detaching. ptrace requires that the
1469 thread is stopped to sucessfully detach. */
1470 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1471 /* ... and wait until all of them have reported back that
1472 they're no longer running. */
1473 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1474
1475 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1476
1477 /* Only the initial process should be left right now. */
1478 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1479
1480 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1481
1482 /* Pass on any pending signal for the last LWP. */
1483 if ((args == NULL || *args == '\0')
1484 && get_pending_status (main_lwp, &status) != -1
1485 && WIFSTOPPED (status))
1486 {
1487 char *tem;
1488
1489 /* Put the signal number in ARGS so that inf_ptrace_detach will
1490 pass it along with PTRACE_DETACH. */
1491 tem = alloca (8);
1492 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1493 args = tem;
1494 if (debug_linux_nat)
1495 fprintf_unfiltered (gdb_stdlog,
1496 "LND: Sending signal %s to %s\n",
1497 args,
1498 target_pid_to_str (main_lwp->ptid));
1499 }
1500
1501 if (linux_nat_prepare_to_resume != NULL)
1502 linux_nat_prepare_to_resume (main_lwp);
1503 delete_lwp (main_lwp->ptid);
1504
1505 if (forks_exist_p ())
1506 {
1507 /* Multi-fork case. The current inferior_ptid is being detached
1508 from, but there are other viable forks to debug. Detach from
1509 the current fork, and context-switch to the first
1510 available. */
1511 linux_fork_detach (args, from_tty);
1512 }
1513 else
1514 linux_ops->to_detach (ops, args, from_tty);
1515}
1516
1517/* Resume execution of the inferior process. If STEP is nonzero,
1518 single-step it. If SIGNAL is nonzero, give it that signal. */
1519
1520static void
1521linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1522{
1523 ptid_t ptid;
1524
1525 lp->step = step;
1526
1527 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1528 We only presently need that if the LWP is stepped though (to
1529 handle the case of stepping a breakpoint instruction). */
1530 if (step)
1531 {
1532 struct regcache *regcache = get_thread_regcache (lp->ptid);
1533
1534 lp->stop_pc = regcache_read_pc (regcache);
1535 }
1536 else
1537 lp->stop_pc = 0;
1538
1539 if (linux_nat_prepare_to_resume != NULL)
1540 linux_nat_prepare_to_resume (lp);
1541 /* Convert to something the lower layer understands. */
1542 ptid = pid_to_ptid (ptid_get_lwp (lp->ptid));
1543 linux_ops->to_resume (linux_ops, ptid, step, signo);
1544 lp->stop_reason = LWP_STOPPED_BY_NO_REASON;
1545 lp->stopped = 0;
1546 registers_changed_ptid (lp->ptid);
1547}
1548
1549/* Resume LP. */
1550
1551static void
1552resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1553{
1554 if (lp->stopped)
1555 {
1556 struct inferior *inf = find_inferior_ptid (lp->ptid);
1557
1558 if (inf->vfork_child != NULL)
1559 {
1560 if (debug_linux_nat)
1561 fprintf_unfiltered (gdb_stdlog,
1562 "RC: Not resuming %s (vfork parent)\n",
1563 target_pid_to_str (lp->ptid));
1564 }
1565 else if (!lwp_status_pending_p (lp))
1566 {
1567 if (debug_linux_nat)
1568 fprintf_unfiltered (gdb_stdlog,
1569 "RC: Resuming sibling %s, %s, %s\n",
1570 target_pid_to_str (lp->ptid),
1571 (signo != GDB_SIGNAL_0
1572 ? strsignal (gdb_signal_to_host (signo))
1573 : "0"),
1574 step ? "step" : "resume");
1575
1576 linux_resume_one_lwp (lp, step, signo);
1577 }
1578 else
1579 {
1580 if (debug_linux_nat)
1581 fprintf_unfiltered (gdb_stdlog,
1582 "RC: Not resuming sibling %s (has pending)\n",
1583 target_pid_to_str (lp->ptid));
1584 }
1585 }
1586 else
1587 {
1588 if (debug_linux_nat)
1589 fprintf_unfiltered (gdb_stdlog,
1590 "RC: Not resuming sibling %s (not stopped)\n",
1591 target_pid_to_str (lp->ptid));
1592 }
1593}
1594
1595/* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1596 Resume LWP with the last stop signal, if it is in pass state. */
1597
1598static int
1599linux_nat_resume_callback (struct lwp_info *lp, void *except)
1600{
1601 enum gdb_signal signo = GDB_SIGNAL_0;
1602
1603 if (lp == except)
1604 return 0;
1605
1606 if (lp->stopped)
1607 {
1608 struct thread_info *thread;
1609
1610 thread = find_thread_ptid (lp->ptid);
1611 if (thread != NULL)
1612 {
1613 signo = thread->suspend.stop_signal;
1614 thread->suspend.stop_signal = GDB_SIGNAL_0;
1615 }
1616 }
1617
1618 resume_lwp (lp, 0, signo);
1619 return 0;
1620}
1621
1622static int
1623resume_clear_callback (struct lwp_info *lp, void *data)
1624{
1625 lp->resumed = 0;
1626 lp->last_resume_kind = resume_stop;
1627 return 0;
1628}
1629
1630static int
1631resume_set_callback (struct lwp_info *lp, void *data)
1632{
1633 lp->resumed = 1;
1634 lp->last_resume_kind = resume_continue;
1635 return 0;
1636}
1637
1638static void
1639linux_nat_resume (struct target_ops *ops,
1640 ptid_t ptid, int step, enum gdb_signal signo)
1641{
1642 struct lwp_info *lp;
1643 int resume_many;
1644
1645 if (debug_linux_nat)
1646 fprintf_unfiltered (gdb_stdlog,
1647 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1648 step ? "step" : "resume",
1649 target_pid_to_str (ptid),
1650 (signo != GDB_SIGNAL_0
1651 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1652 target_pid_to_str (inferior_ptid));
1653
1654 /* A specific PTID means `step only this process id'. */
1655 resume_many = (ptid_equal (minus_one_ptid, ptid)
1656 || ptid_is_pid (ptid));
1657
1658 /* Mark the lwps we're resuming as resumed. */
1659 iterate_over_lwps (ptid, resume_set_callback, NULL);
1660
1661 /* See if it's the current inferior that should be handled
1662 specially. */
1663 if (resume_many)
1664 lp = find_lwp_pid (inferior_ptid);
1665 else
1666 lp = find_lwp_pid (ptid);
1667 gdb_assert (lp != NULL);
1668
1669 /* Remember if we're stepping. */
1670 lp->last_resume_kind = step ? resume_step : resume_continue;
1671
1672 /* If we have a pending wait status for this thread, there is no
1673 point in resuming the process. But first make sure that
1674 linux_nat_wait won't preemptively handle the event - we
1675 should never take this short-circuit if we are going to
1676 leave LP running, since we have skipped resuming all the
1677 other threads. This bit of code needs to be synchronized
1678 with linux_nat_wait. */
1679
1680 if (lp->status && WIFSTOPPED (lp->status))
1681 {
1682 if (!lp->step
1683 && WSTOPSIG (lp->status)
1684 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1685 {
1686 if (debug_linux_nat)
1687 fprintf_unfiltered (gdb_stdlog,
1688 "LLR: Not short circuiting for ignored "
1689 "status 0x%x\n", lp->status);
1690
1691 /* FIXME: What should we do if we are supposed to continue
1692 this thread with a signal? */
1693 gdb_assert (signo == GDB_SIGNAL_0);
1694 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1695 lp->status = 0;
1696 }
1697 }
1698
1699 if (lwp_status_pending_p (lp))
1700 {
1701 /* FIXME: What should we do if we are supposed to continue
1702 this thread with a signal? */
1703 gdb_assert (signo == GDB_SIGNAL_0);
1704
1705 if (debug_linux_nat)
1706 fprintf_unfiltered (gdb_stdlog,
1707 "LLR: Short circuiting for status 0x%x\n",
1708 lp->status);
1709
1710 if (target_can_async_p ())
1711 {
1712 target_async (inferior_event_handler, 0);
1713 /* Tell the event loop we have something to process. */
1714 async_file_mark ();
1715 }
1716 return;
1717 }
1718
1719 if (resume_many)
1720 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1721
1722 linux_resume_one_lwp (lp, step, signo);
1723
1724 if (debug_linux_nat)
1725 fprintf_unfiltered (gdb_stdlog,
1726 "LLR: %s %s, %s (resume event thread)\n",
1727 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1728 target_pid_to_str (ptid),
1729 (signo != GDB_SIGNAL_0
1730 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1731
1732 if (target_can_async_p ())
1733 target_async (inferior_event_handler, 0);
1734}
1735
1736/* Send a signal to an LWP. */
1737
1738static int
1739kill_lwp (int lwpid, int signo)
1740{
1741 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1742 fails, then we are not using nptl threads and we should be using kill. */
1743
1744#ifdef HAVE_TKILL_SYSCALL
1745 {
1746 static int tkill_failed;
1747
1748 if (!tkill_failed)
1749 {
1750 int ret;
1751
1752 errno = 0;
1753 ret = syscall (__NR_tkill, lwpid, signo);
1754 if (errno != ENOSYS)
1755 return ret;
1756 tkill_failed = 1;
1757 }
1758 }
1759#endif
1760
1761 return kill (lwpid, signo);
1762}
1763
1764/* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1765 event, check if the core is interested in it: if not, ignore the
1766 event, and keep waiting; otherwise, we need to toggle the LWP's
1767 syscall entry/exit status, since the ptrace event itself doesn't
1768 indicate it, and report the trap to higher layers. */
1769
1770static int
1771linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1772{
1773 struct target_waitstatus *ourstatus = &lp->waitstatus;
1774 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1775 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1776
1777 if (stopping)
1778 {
1779 /* If we're stopping threads, there's a SIGSTOP pending, which
1780 makes it so that the LWP reports an immediate syscall return,
1781 followed by the SIGSTOP. Skip seeing that "return" using
1782 PTRACE_CONT directly, and let stop_wait_callback collect the
1783 SIGSTOP. Later when the thread is resumed, a new syscall
1784 entry event. If we didn't do this (and returned 0), we'd
1785 leave a syscall entry pending, and our caller, by using
1786 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1787 itself. Later, when the user re-resumes this LWP, we'd see
1788 another syscall entry event and we'd mistake it for a return.
1789
1790 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1791 (leaving immediately with LWP->signalled set, without issuing
1792 a PTRACE_CONT), it would still be problematic to leave this
1793 syscall enter pending, as later when the thread is resumed,
1794 it would then see the same syscall exit mentioned above,
1795 followed by the delayed SIGSTOP, while the syscall didn't
1796 actually get to execute. It seems it would be even more
1797 confusing to the user. */
1798
1799 if (debug_linux_nat)
1800 fprintf_unfiltered (gdb_stdlog,
1801 "LHST: ignoring syscall %d "
1802 "for LWP %ld (stopping threads), "
1803 "resuming with PTRACE_CONT for SIGSTOP\n",
1804 syscall_number,
1805 ptid_get_lwp (lp->ptid));
1806
1807 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1808 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1809 lp->stopped = 0;
1810 return 1;
1811 }
1812
1813 if (catch_syscall_enabled ())
1814 {
1815 /* Always update the entry/return state, even if this particular
1816 syscall isn't interesting to the core now. In async mode,
1817 the user could install a new catchpoint for this syscall
1818 between syscall enter/return, and we'll need to know to
1819 report a syscall return if that happens. */
1820 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1821 ? TARGET_WAITKIND_SYSCALL_RETURN
1822 : TARGET_WAITKIND_SYSCALL_ENTRY);
1823
1824 if (catching_syscall_number (syscall_number))
1825 {
1826 /* Alright, an event to report. */
1827 ourstatus->kind = lp->syscall_state;
1828 ourstatus->value.syscall_number = syscall_number;
1829
1830 if (debug_linux_nat)
1831 fprintf_unfiltered (gdb_stdlog,
1832 "LHST: stopping for %s of syscall %d"
1833 " for LWP %ld\n",
1834 lp->syscall_state
1835 == TARGET_WAITKIND_SYSCALL_ENTRY
1836 ? "entry" : "return",
1837 syscall_number,
1838 ptid_get_lwp (lp->ptid));
1839 return 0;
1840 }
1841
1842 if (debug_linux_nat)
1843 fprintf_unfiltered (gdb_stdlog,
1844 "LHST: ignoring %s of syscall %d "
1845 "for LWP %ld\n",
1846 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1847 ? "entry" : "return",
1848 syscall_number,
1849 ptid_get_lwp (lp->ptid));
1850 }
1851 else
1852 {
1853 /* If we had been syscall tracing, and hence used PT_SYSCALL
1854 before on this LWP, it could happen that the user removes all
1855 syscall catchpoints before we get to process this event.
1856 There are two noteworthy issues here:
1857
1858 - When stopped at a syscall entry event, resuming with
1859 PT_STEP still resumes executing the syscall and reports a
1860 syscall return.
1861
1862 - Only PT_SYSCALL catches syscall enters. If we last
1863 single-stepped this thread, then this event can't be a
1864 syscall enter. If we last single-stepped this thread, this
1865 has to be a syscall exit.
1866
1867 The points above mean that the next resume, be it PT_STEP or
1868 PT_CONTINUE, can not trigger a syscall trace event. */
1869 if (debug_linux_nat)
1870 fprintf_unfiltered (gdb_stdlog,
1871 "LHST: caught syscall event "
1872 "with no syscall catchpoints."
1873 " %d for LWP %ld, ignoring\n",
1874 syscall_number,
1875 ptid_get_lwp (lp->ptid));
1876 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1877 }
1878
1879 /* The core isn't interested in this event. For efficiency, avoid
1880 stopping all threads only to have the core resume them all again.
1881 Since we're not stopping threads, if we're still syscall tracing
1882 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1883 subsequent syscall. Simply resume using the inf-ptrace layer,
1884 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1885
1886 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1887 return 1;
1888}
1889
1890/* Handle a GNU/Linux extended wait response. If we see a clone
1891 event, we need to add the new LWP to our list (and not report the
1892 trap to higher layers). This function returns non-zero if the
1893 event should be ignored and we should wait again. If STOPPING is
1894 true, the new LWP remains stopped, otherwise it is continued. */
1895
1896static int
1897linux_handle_extended_wait (struct lwp_info *lp, int status,
1898 int stopping)
1899{
1900 int pid = ptid_get_lwp (lp->ptid);
1901 struct target_waitstatus *ourstatus = &lp->waitstatus;
1902 int event = linux_ptrace_get_extended_event (status);
1903
1904 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1905 || event == PTRACE_EVENT_CLONE)
1906 {
1907 unsigned long new_pid;
1908 int ret;
1909
1910 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1911
1912 /* If we haven't already seen the new PID stop, wait for it now. */
1913 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1914 {
1915 /* The new child has a pending SIGSTOP. We can't affect it until it
1916 hits the SIGSTOP, but we're already attached. */
1917 ret = my_waitpid (new_pid, &status,
1918 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1919 if (ret == -1)
1920 perror_with_name (_("waiting for new child"));
1921 else if (ret != new_pid)
1922 internal_error (__FILE__, __LINE__,
1923 _("wait returned unexpected PID %d"), ret);
1924 else if (!WIFSTOPPED (status))
1925 internal_error (__FILE__, __LINE__,
1926 _("wait returned unexpected status 0x%x"), status);
1927 }
1928
1929 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1930
1931 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1932 {
1933 /* The arch-specific native code may need to know about new
1934 forks even if those end up never mapped to an
1935 inferior. */
1936 if (linux_nat_new_fork != NULL)
1937 linux_nat_new_fork (lp, new_pid);
1938 }
1939
1940 if (event == PTRACE_EVENT_FORK
1941 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
1942 {
1943 /* Handle checkpointing by linux-fork.c here as a special
1944 case. We don't want the follow-fork-mode or 'catch fork'
1945 to interfere with this. */
1946
1947 /* This won't actually modify the breakpoint list, but will
1948 physically remove the breakpoints from the child. */
1949 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
1950
1951 /* Retain child fork in ptrace (stopped) state. */
1952 if (!find_fork_pid (new_pid))
1953 add_fork (new_pid);
1954
1955 /* Report as spurious, so that infrun doesn't want to follow
1956 this fork. We're actually doing an infcall in
1957 linux-fork.c. */
1958 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1959
1960 /* Report the stop to the core. */
1961 return 0;
1962 }
1963
1964 if (event == PTRACE_EVENT_FORK)
1965 ourstatus->kind = TARGET_WAITKIND_FORKED;
1966 else if (event == PTRACE_EVENT_VFORK)
1967 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1968 else
1969 {
1970 struct lwp_info *new_lp;
1971
1972 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1973
1974 if (debug_linux_nat)
1975 fprintf_unfiltered (gdb_stdlog,
1976 "LHEW: Got clone event "
1977 "from LWP %d, new child is LWP %ld\n",
1978 pid, new_pid);
1979
1980 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
1981 new_lp->cloned = 1;
1982 new_lp->stopped = 1;
1983
1984 if (WSTOPSIG (status) != SIGSTOP)
1985 {
1986 /* This can happen if someone starts sending signals to
1987 the new thread before it gets a chance to run, which
1988 have a lower number than SIGSTOP (e.g. SIGUSR1).
1989 This is an unlikely case, and harder to handle for
1990 fork / vfork than for clone, so we do not try - but
1991 we handle it for clone events here. We'll send
1992 the other signal on to the thread below. */
1993
1994 new_lp->signalled = 1;
1995 }
1996 else
1997 {
1998 struct thread_info *tp;
1999
2000 /* When we stop for an event in some other thread, and
2001 pull the thread list just as this thread has cloned,
2002 we'll have seen the new thread in the thread_db list
2003 before handling the CLONE event (glibc's
2004 pthread_create adds the new thread to the thread list
2005 before clone'ing, and has the kernel fill in the
2006 thread's tid on the clone call with
2007 CLONE_PARENT_SETTID). If that happened, and the core
2008 had requested the new thread to stop, we'll have
2009 killed it with SIGSTOP. But since SIGSTOP is not an
2010 RT signal, it can only be queued once. We need to be
2011 careful to not resume the LWP if we wanted it to
2012 stop. In that case, we'll leave the SIGSTOP pending.
2013 It will later be reported as GDB_SIGNAL_0. */
2014 tp = find_thread_ptid (new_lp->ptid);
2015 if (tp != NULL && tp->stop_requested)
2016 new_lp->last_resume_kind = resume_stop;
2017 else
2018 status = 0;
2019 }
2020
2021 if (non_stop)
2022 {
2023 /* Add the new thread to GDB's lists as soon as possible
2024 so that:
2025
2026 1) the frontend doesn't have to wait for a stop to
2027 display them, and,
2028
2029 2) we tag it with the correct running state. */
2030
2031 /* If the thread_db layer is active, let it know about
2032 this new thread, and add it to GDB's list. */
2033 if (!thread_db_attach_lwp (new_lp->ptid))
2034 {
2035 /* We're not using thread_db. Add it to GDB's
2036 list. */
2037 target_post_attach (ptid_get_lwp (new_lp->ptid));
2038 add_thread (new_lp->ptid);
2039 }
2040
2041 if (!stopping)
2042 {
2043 set_running (new_lp->ptid, 1);
2044 set_executing (new_lp->ptid, 1);
2045 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2046 resume_stop. */
2047 new_lp->last_resume_kind = resume_continue;
2048 }
2049 }
2050
2051 if (status != 0)
2052 {
2053 /* We created NEW_LP so it cannot yet contain STATUS. */
2054 gdb_assert (new_lp->status == 0);
2055
2056 /* Save the wait status to report later. */
2057 if (debug_linux_nat)
2058 fprintf_unfiltered (gdb_stdlog,
2059 "LHEW: waitpid of new LWP %ld, "
2060 "saving status %s\n",
2061 (long) ptid_get_lwp (new_lp->ptid),
2062 status_to_str (status));
2063 new_lp->status = status;
2064 }
2065
2066 /* Note the need to use the low target ops to resume, to
2067 handle resuming with PT_SYSCALL if we have syscall
2068 catchpoints. */
2069 if (!stopping)
2070 {
2071 new_lp->resumed = 1;
2072
2073 if (status == 0)
2074 {
2075 gdb_assert (new_lp->last_resume_kind == resume_continue);
2076 if (debug_linux_nat)
2077 fprintf_unfiltered (gdb_stdlog,
2078 "LHEW: resuming new LWP %ld\n",
2079 ptid_get_lwp (new_lp->ptid));
2080 linux_resume_one_lwp (new_lp, 0, GDB_SIGNAL_0);
2081 }
2082 }
2083
2084 if (debug_linux_nat)
2085 fprintf_unfiltered (gdb_stdlog,
2086 "LHEW: resuming parent LWP %d\n", pid);
2087 linux_resume_one_lwp (lp, 0, GDB_SIGNAL_0);
2088 return 1;
2089 }
2090
2091 return 0;
2092 }
2093
2094 if (event == PTRACE_EVENT_EXEC)
2095 {
2096 if (debug_linux_nat)
2097 fprintf_unfiltered (gdb_stdlog,
2098 "LHEW: Got exec event from LWP %ld\n",
2099 ptid_get_lwp (lp->ptid));
2100
2101 ourstatus->kind = TARGET_WAITKIND_EXECD;
2102 ourstatus->value.execd_pathname
2103 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2104
2105 /* The thread that execed must have been resumed, but, when a
2106 thread execs, it changes its tid to the tgid, and the old
2107 tgid thread might have not been resumed. */
2108 lp->resumed = 1;
2109 return 0;
2110 }
2111
2112 if (event == PTRACE_EVENT_VFORK_DONE)
2113 {
2114 if (current_inferior ()->waiting_for_vfork_done)
2115 {
2116 if (debug_linux_nat)
2117 fprintf_unfiltered (gdb_stdlog,
2118 "LHEW: Got expected PTRACE_EVENT_"
2119 "VFORK_DONE from LWP %ld: stopping\n",
2120 ptid_get_lwp (lp->ptid));
2121
2122 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2123 return 0;
2124 }
2125
2126 if (debug_linux_nat)
2127 fprintf_unfiltered (gdb_stdlog,
2128 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2129 "from LWP %ld: resuming\n",
2130 ptid_get_lwp (lp->ptid));
2131 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2132 return 1;
2133 }
2134
2135 internal_error (__FILE__, __LINE__,
2136 _("unknown ptrace event %d"), event);
2137}
2138
2139/* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2140 exited. */
2141
2142static int
2143wait_lwp (struct lwp_info *lp)
2144{
2145 pid_t pid;
2146 int status = 0;
2147 int thread_dead = 0;
2148 sigset_t prev_mask;
2149
2150 gdb_assert (!lp->stopped);
2151 gdb_assert (lp->status == 0);
2152
2153 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2154 block_child_signals (&prev_mask);
2155
2156 for (;;)
2157 {
2158 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2159 was right and we should just call sigsuspend. */
2160
2161 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2162 if (pid == -1 && errno == ECHILD)
2163 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2164 if (pid == -1 && errno == ECHILD)
2165 {
2166 /* The thread has previously exited. We need to delete it
2167 now because, for some vendor 2.4 kernels with NPTL
2168 support backported, there won't be an exit event unless
2169 it is the main thread. 2.6 kernels will report an exit
2170 event for each thread that exits, as expected. */
2171 thread_dead = 1;
2172 if (debug_linux_nat)
2173 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2174 target_pid_to_str (lp->ptid));
2175 }
2176 if (pid != 0)
2177 break;
2178
2179 /* Bugs 10970, 12702.
2180 Thread group leader may have exited in which case we'll lock up in
2181 waitpid if there are other threads, even if they are all zombies too.
2182 Basically, we're not supposed to use waitpid this way.
2183 __WCLONE is not applicable for the leader so we can't use that.
2184 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2185 process; it gets ESRCH both for the zombie and for running processes.
2186
2187 As a workaround, check if we're waiting for the thread group leader and
2188 if it's a zombie, and avoid calling waitpid if it is.
2189
2190 This is racy, what if the tgl becomes a zombie right after we check?
2191 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2192 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2193
2194 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2195 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2196 {
2197 thread_dead = 1;
2198 if (debug_linux_nat)
2199 fprintf_unfiltered (gdb_stdlog,
2200 "WL: Thread group leader %s vanished.\n",
2201 target_pid_to_str (lp->ptid));
2202 break;
2203 }
2204
2205 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2206 get invoked despite our caller had them intentionally blocked by
2207 block_child_signals. This is sensitive only to the loop of
2208 linux_nat_wait_1 and there if we get called my_waitpid gets called
2209 again before it gets to sigsuspend so we can safely let the handlers
2210 get executed here. */
2211
2212 if (debug_linux_nat)
2213 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2214 sigsuspend (&suspend_mask);
2215 }
2216
2217 restore_child_signals_mask (&prev_mask);
2218
2219 if (!thread_dead)
2220 {
2221 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2222
2223 if (debug_linux_nat)
2224 {
2225 fprintf_unfiltered (gdb_stdlog,
2226 "WL: waitpid %s received %s\n",
2227 target_pid_to_str (lp->ptid),
2228 status_to_str (status));
2229 }
2230
2231 /* Check if the thread has exited. */
2232 if (WIFEXITED (status) || WIFSIGNALED (status))
2233 {
2234 thread_dead = 1;
2235 if (debug_linux_nat)
2236 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2237 target_pid_to_str (lp->ptid));
2238 }
2239 }
2240
2241 if (thread_dead)
2242 {
2243 exit_lwp (lp);
2244 return 0;
2245 }
2246
2247 gdb_assert (WIFSTOPPED (status));
2248 lp->stopped = 1;
2249
2250 if (lp->must_set_ptrace_flags)
2251 {
2252 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2253
2254 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
2255 lp->must_set_ptrace_flags = 0;
2256 }
2257
2258 /* Handle GNU/Linux's syscall SIGTRAPs. */
2259 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2260 {
2261 /* No longer need the sysgood bit. The ptrace event ends up
2262 recorded in lp->waitstatus if we care for it. We can carry
2263 on handling the event like a regular SIGTRAP from here
2264 on. */
2265 status = W_STOPCODE (SIGTRAP);
2266 if (linux_handle_syscall_trap (lp, 1))
2267 return wait_lwp (lp);
2268 }
2269
2270 /* Handle GNU/Linux's extended waitstatus for trace events. */
2271 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2272 && linux_is_extended_waitstatus (status))
2273 {
2274 if (debug_linux_nat)
2275 fprintf_unfiltered (gdb_stdlog,
2276 "WL: Handling extended status 0x%06x\n",
2277 status);
2278 if (linux_handle_extended_wait (lp, status, 1))
2279 return wait_lwp (lp);
2280 }
2281
2282 return status;
2283}
2284
2285/* Send a SIGSTOP to LP. */
2286
2287static int
2288stop_callback (struct lwp_info *lp, void *data)
2289{
2290 if (!lp->stopped && !lp->signalled)
2291 {
2292 int ret;
2293
2294 if (debug_linux_nat)
2295 {
2296 fprintf_unfiltered (gdb_stdlog,
2297 "SC: kill %s **<SIGSTOP>**\n",
2298 target_pid_to_str (lp->ptid));
2299 }
2300 errno = 0;
2301 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2302 if (debug_linux_nat)
2303 {
2304 fprintf_unfiltered (gdb_stdlog,
2305 "SC: lwp kill %d %s\n",
2306 ret,
2307 errno ? safe_strerror (errno) : "ERRNO-OK");
2308 }
2309
2310 lp->signalled = 1;
2311 gdb_assert (lp->status == 0);
2312 }
2313
2314 return 0;
2315}
2316
2317/* Request a stop on LWP. */
2318
2319void
2320linux_stop_lwp (struct lwp_info *lwp)
2321{
2322 stop_callback (lwp, NULL);
2323}
2324
2325/* Return non-zero if LWP PID has a pending SIGINT. */
2326
2327static int
2328linux_nat_has_pending_sigint (int pid)
2329{
2330 sigset_t pending, blocked, ignored;
2331
2332 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2333
2334 if (sigismember (&pending, SIGINT)
2335 && !sigismember (&ignored, SIGINT))
2336 return 1;
2337
2338 return 0;
2339}
2340
2341/* Set a flag in LP indicating that we should ignore its next SIGINT. */
2342
2343static int
2344set_ignore_sigint (struct lwp_info *lp, void *data)
2345{
2346 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2347 flag to consume the next one. */
2348 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2349 && WSTOPSIG (lp->status) == SIGINT)
2350 lp->status = 0;
2351 else
2352 lp->ignore_sigint = 1;
2353
2354 return 0;
2355}
2356
2357/* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2358 This function is called after we know the LWP has stopped; if the LWP
2359 stopped before the expected SIGINT was delivered, then it will never have
2360 arrived. Also, if the signal was delivered to a shared queue and consumed
2361 by a different thread, it will never be delivered to this LWP. */
2362
2363static void
2364maybe_clear_ignore_sigint (struct lwp_info *lp)
2365{
2366 if (!lp->ignore_sigint)
2367 return;
2368
2369 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2370 {
2371 if (debug_linux_nat)
2372 fprintf_unfiltered (gdb_stdlog,
2373 "MCIS: Clearing bogus flag for %s\n",
2374 target_pid_to_str (lp->ptid));
2375 lp->ignore_sigint = 0;
2376 }
2377}
2378
2379/* Fetch the possible triggered data watchpoint info and store it in
2380 LP.
2381
2382 On some archs, like x86, that use debug registers to set
2383 watchpoints, it's possible that the way to know which watched
2384 address trapped, is to check the register that is used to select
2385 which address to watch. Problem is, between setting the watchpoint
2386 and reading back which data address trapped, the user may change
2387 the set of watchpoints, and, as a consequence, GDB changes the
2388 debug registers in the inferior. To avoid reading back a stale
2389 stopped-data-address when that happens, we cache in LP the fact
2390 that a watchpoint trapped, and the corresponding data address, as
2391 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2392 registers meanwhile, we have the cached data we can rely on. */
2393
2394static int
2395check_stopped_by_watchpoint (struct lwp_info *lp)
2396{
2397 struct cleanup *old_chain;
2398
2399 if (linux_ops->to_stopped_by_watchpoint == NULL)
2400 return 0;
2401
2402 old_chain = save_inferior_ptid ();
2403 inferior_ptid = lp->ptid;
2404
2405 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2406 {
2407 lp->stop_reason = LWP_STOPPED_BY_WATCHPOINT;
2408
2409 if (linux_ops->to_stopped_data_address != NULL)
2410 lp->stopped_data_address_p =
2411 linux_ops->to_stopped_data_address (&current_target,
2412 &lp->stopped_data_address);
2413 else
2414 lp->stopped_data_address_p = 0;
2415 }
2416
2417 do_cleanups (old_chain);
2418
2419 return lp->stop_reason == LWP_STOPPED_BY_WATCHPOINT;
2420}
2421
2422/* Called when the LWP stopped for a trap that could be explained by a
2423 watchpoint or a breakpoint. */
2424
2425static void
2426save_sigtrap (struct lwp_info *lp)
2427{
2428 gdb_assert (lp->stop_reason == LWP_STOPPED_BY_NO_REASON);
2429 gdb_assert (lp->status != 0);
2430
2431 if (check_stopped_by_watchpoint (lp))
2432 return;
2433
2434 if (linux_nat_status_is_event (lp->status))
2435 check_stopped_by_breakpoint (lp);
2436}
2437
2438/* Returns true if the LWP had stopped for a watchpoint. */
2439
2440static int
2441linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2442{
2443 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2444
2445 gdb_assert (lp != NULL);
2446
2447 return lp->stop_reason == LWP_STOPPED_BY_WATCHPOINT;
2448}
2449
2450static int
2451linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2452{
2453 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2454
2455 gdb_assert (lp != NULL);
2456
2457 *addr_p = lp->stopped_data_address;
2458
2459 return lp->stopped_data_address_p;
2460}
2461
2462/* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2463
2464static int
2465sigtrap_is_event (int status)
2466{
2467 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2468}
2469
2470/* Set alternative SIGTRAP-like events recognizer. If
2471 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2472 applied. */
2473
2474void
2475linux_nat_set_status_is_event (struct target_ops *t,
2476 int (*status_is_event) (int status))
2477{
2478 linux_nat_status_is_event = status_is_event;
2479}
2480
2481/* Wait until LP is stopped. */
2482
2483static int
2484stop_wait_callback (struct lwp_info *lp, void *data)
2485{
2486 struct inferior *inf = find_inferior_ptid (lp->ptid);
2487
2488 /* If this is a vfork parent, bail out, it is not going to report
2489 any SIGSTOP until the vfork is done with. */
2490 if (inf->vfork_child != NULL)
2491 return 0;
2492
2493 if (!lp->stopped)
2494 {
2495 int status;
2496
2497 status = wait_lwp (lp);
2498 if (status == 0)
2499 return 0;
2500
2501 if (lp->ignore_sigint && WIFSTOPPED (status)
2502 && WSTOPSIG (status) == SIGINT)
2503 {
2504 lp->ignore_sigint = 0;
2505
2506 errno = 0;
2507 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2508 lp->stopped = 0;
2509 if (debug_linux_nat)
2510 fprintf_unfiltered (gdb_stdlog,
2511 "PTRACE_CONT %s, 0, 0 (%s) "
2512 "(discarding SIGINT)\n",
2513 target_pid_to_str (lp->ptid),
2514 errno ? safe_strerror (errno) : "OK");
2515
2516 return stop_wait_callback (lp, NULL);
2517 }
2518
2519 maybe_clear_ignore_sigint (lp);
2520
2521 if (WSTOPSIG (status) != SIGSTOP)
2522 {
2523 /* The thread was stopped with a signal other than SIGSTOP. */
2524
2525 if (debug_linux_nat)
2526 fprintf_unfiltered (gdb_stdlog,
2527 "SWC: Pending event %s in %s\n",
2528 status_to_str ((int) status),
2529 target_pid_to_str (lp->ptid));
2530
2531 /* Save the sigtrap event. */
2532 lp->status = status;
2533 gdb_assert (lp->signalled);
2534 save_sigtrap (lp);
2535 }
2536 else
2537 {
2538 /* We caught the SIGSTOP that we intended to catch, so
2539 there's no SIGSTOP pending. */
2540
2541 if (debug_linux_nat)
2542 fprintf_unfiltered (gdb_stdlog,
2543 "SWC: Delayed SIGSTOP caught for %s.\n",
2544 target_pid_to_str (lp->ptid));
2545
2546 /* Reset SIGNALLED only after the stop_wait_callback call
2547 above as it does gdb_assert on SIGNALLED. */
2548 lp->signalled = 0;
2549 }
2550 }
2551
2552 return 0;
2553}
2554
2555/* Return non-zero if LP has a wait status pending. Discard the
2556 pending event and resume the LWP if the event that originally
2557 caused the stop became uninteresting. */
2558
2559static int
2560status_callback (struct lwp_info *lp, void *data)
2561{
2562 /* Only report a pending wait status if we pretend that this has
2563 indeed been resumed. */
2564 if (!lp->resumed)
2565 return 0;
2566
2567 if (lp->stop_reason == LWP_STOPPED_BY_SW_BREAKPOINT
2568 || lp->stop_reason == LWP_STOPPED_BY_HW_BREAKPOINT)
2569 {
2570 struct regcache *regcache = get_thread_regcache (lp->ptid);
2571 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2572 CORE_ADDR pc;
2573 int discard = 0;
2574
2575 gdb_assert (lp->status != 0);
2576
2577 pc = regcache_read_pc (regcache);
2578
2579 if (pc != lp->stop_pc)
2580 {
2581 if (debug_linux_nat)
2582 fprintf_unfiltered (gdb_stdlog,
2583 "SC: PC of %s changed. was=%s, now=%s\n",
2584 target_pid_to_str (lp->ptid),
2585 paddress (target_gdbarch (), lp->stop_pc),
2586 paddress (target_gdbarch (), pc));
2587 discard = 1;
2588 }
2589 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2590 {
2591 if (debug_linux_nat)
2592 fprintf_unfiltered (gdb_stdlog,
2593 "SC: previous breakpoint of %s, at %s gone\n",
2594 target_pid_to_str (lp->ptid),
2595 paddress (target_gdbarch (), lp->stop_pc));
2596
2597 discard = 1;
2598 }
2599
2600 if (discard)
2601 {
2602 if (debug_linux_nat)
2603 fprintf_unfiltered (gdb_stdlog,
2604 "SC: pending event of %s cancelled.\n",
2605 target_pid_to_str (lp->ptid));
2606
2607 lp->status = 0;
2608 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2609 return 0;
2610 }
2611 return 1;
2612 }
2613
2614 return lwp_status_pending_p (lp);
2615}
2616
2617/* Return non-zero if LP isn't stopped. */
2618
2619static int
2620running_callback (struct lwp_info *lp, void *data)
2621{
2622 return (!lp->stopped
2623 || (lwp_status_pending_p (lp) && lp->resumed));
2624}
2625
2626/* Count the LWP's that have had events. */
2627
2628static int
2629count_events_callback (struct lwp_info *lp, void *data)
2630{
2631 int *count = data;
2632
2633 gdb_assert (count != NULL);
2634
2635 /* Select only resumed LWPs that have an event pending. */
2636 if (lp->resumed && lwp_status_pending_p (lp))
2637 (*count)++;
2638
2639 return 0;
2640}
2641
2642/* Select the LWP (if any) that is currently being single-stepped. */
2643
2644static int
2645select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2646{
2647 if (lp->last_resume_kind == resume_step
2648 && lp->status != 0)
2649 return 1;
2650 else
2651 return 0;
2652}
2653
2654/* Returns true if LP has a status pending. */
2655
2656static int
2657lwp_status_pending_p (struct lwp_info *lp)
2658{
2659 /* We check for lp->waitstatus in addition to lp->status, because we
2660 can have pending process exits recorded in lp->status and
2661 W_EXITCODE(0,0) happens to be 0. */
2662 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2663}
2664
2665/* Select the Nth LWP that has had a SIGTRAP event. */
2666
2667static int
2668select_event_lwp_callback (struct lwp_info *lp, void *data)
2669{
2670 int *selector = data;
2671
2672 gdb_assert (selector != NULL);
2673
2674 /* Select only resumed LWPs that have an event pending. */
2675 if (lp->resumed && lwp_status_pending_p (lp))
2676 if ((*selector)-- == 0)
2677 return 1;
2678
2679 return 0;
2680}
2681
2682/* Called when the LWP got a signal/trap that could be explained by a
2683 software or hardware breakpoint. */
2684
2685static int
2686check_stopped_by_breakpoint (struct lwp_info *lp)
2687{
2688 /* Arrange for a breakpoint to be hit again later. We don't keep
2689 the SIGTRAP status and don't forward the SIGTRAP signal to the
2690 LWP. We will handle the current event, eventually we will resume
2691 this LWP, and this breakpoint will trap again.
2692
2693 If we do not do this, then we run the risk that the user will
2694 delete or disable the breakpoint, but the LWP will have already
2695 tripped on it. */
2696
2697 struct regcache *regcache = get_thread_regcache (lp->ptid);
2698 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2699 CORE_ADDR pc;
2700 CORE_ADDR sw_bp_pc;
2701
2702 pc = regcache_read_pc (regcache);
2703 sw_bp_pc = pc - target_decr_pc_after_break (gdbarch);
2704
2705 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2706 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2707 sw_bp_pc))
2708 {
2709 /* The LWP was either continued, or stepped a software
2710 breakpoint instruction. */
2711 if (debug_linux_nat)
2712 fprintf_unfiltered (gdb_stdlog,
2713 "CB: Push back software breakpoint for %s\n",
2714 target_pid_to_str (lp->ptid));
2715
2716 /* Back up the PC if necessary. */
2717 if (pc != sw_bp_pc)
2718 regcache_write_pc (regcache, sw_bp_pc);
2719
2720 lp->stop_pc = sw_bp_pc;
2721 lp->stop_reason = LWP_STOPPED_BY_SW_BREAKPOINT;
2722 return 1;
2723 }
2724
2725 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2726 {
2727 if (debug_linux_nat)
2728 fprintf_unfiltered (gdb_stdlog,
2729 "CB: Push back hardware breakpoint for %s\n",
2730 target_pid_to_str (lp->ptid));
2731
2732 lp->stop_pc = pc;
2733 lp->stop_reason = LWP_STOPPED_BY_HW_BREAKPOINT;
2734 return 1;
2735 }
2736
2737 return 0;
2738}
2739
2740/* Select one LWP out of those that have events pending. */
2741
2742static void
2743select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2744{
2745 int num_events = 0;
2746 int random_selector;
2747 struct lwp_info *event_lp = NULL;
2748
2749 /* Record the wait status for the original LWP. */
2750 (*orig_lp)->status = *status;
2751
2752 /* In all-stop, give preference to the LWP that is being
2753 single-stepped. There will be at most one, and it will be the
2754 LWP that the core is most interested in. If we didn't do this,
2755 then we'd have to handle pending step SIGTRAPs somehow in case
2756 the core later continues the previously-stepped thread, as
2757 otherwise we'd report the pending SIGTRAP then, and the core, not
2758 having stepped the thread, wouldn't understand what the trap was
2759 for, and therefore would report it to the user as a random
2760 signal. */
2761 if (!non_stop)
2762 {
2763 event_lp = iterate_over_lwps (filter,
2764 select_singlestep_lwp_callback, NULL);
2765 if (event_lp != NULL)
2766 {
2767 if (debug_linux_nat)
2768 fprintf_unfiltered (gdb_stdlog,
2769 "SEL: Select single-step %s\n",
2770 target_pid_to_str (event_lp->ptid));
2771 }
2772 }
2773
2774 if (event_lp == NULL)
2775 {
2776 /* Pick one at random, out of those which have had events. */
2777
2778 /* First see how many events we have. */
2779 iterate_over_lwps (filter, count_events_callback, &num_events);
2780
2781 /* Now randomly pick a LWP out of those that have had
2782 events. */
2783 random_selector = (int)
2784 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2785
2786 if (debug_linux_nat && num_events > 1)
2787 fprintf_unfiltered (gdb_stdlog,
2788 "SEL: Found %d events, selecting #%d\n",
2789 num_events, random_selector);
2790
2791 event_lp = iterate_over_lwps (filter,
2792 select_event_lwp_callback,
2793 &random_selector);
2794 }
2795
2796 if (event_lp != NULL)
2797 {
2798 /* Switch the event LWP. */
2799 *orig_lp = event_lp;
2800 *status = event_lp->status;
2801 }
2802
2803 /* Flush the wait status for the event LWP. */
2804 (*orig_lp)->status = 0;
2805}
2806
2807/* Return non-zero if LP has been resumed. */
2808
2809static int
2810resumed_callback (struct lwp_info *lp, void *data)
2811{
2812 return lp->resumed;
2813}
2814
2815/* Stop an active thread, verify it still exists, then resume it. If
2816 the thread ends up with a pending status, then it is not resumed,
2817 and *DATA (really a pointer to int), is set. */
2818
2819static int
2820stop_and_resume_callback (struct lwp_info *lp, void *data)
2821{
2822 if (!lp->stopped)
2823 {
2824 ptid_t ptid = lp->ptid;
2825
2826 stop_callback (lp, NULL);
2827 stop_wait_callback (lp, NULL);
2828
2829 /* Resume if the lwp still exists, and the core wanted it
2830 running. */
2831 lp = find_lwp_pid (ptid);
2832 if (lp != NULL)
2833 {
2834 if (lp->last_resume_kind == resume_stop
2835 && !lwp_status_pending_p (lp))
2836 {
2837 /* The core wanted the LWP to stop. Even if it stopped
2838 cleanly (with SIGSTOP), leave the event pending. */
2839 if (debug_linux_nat)
2840 fprintf_unfiltered (gdb_stdlog,
2841 "SARC: core wanted LWP %ld stopped "
2842 "(leaving SIGSTOP pending)\n",
2843 ptid_get_lwp (lp->ptid));
2844 lp->status = W_STOPCODE (SIGSTOP);
2845 }
2846
2847 if (!lwp_status_pending_p (lp))
2848 {
2849 if (debug_linux_nat)
2850 fprintf_unfiltered (gdb_stdlog,
2851 "SARC: re-resuming LWP %ld\n",
2852 ptid_get_lwp (lp->ptid));
2853 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2854 }
2855 else
2856 {
2857 if (debug_linux_nat)
2858 fprintf_unfiltered (gdb_stdlog,
2859 "SARC: not re-resuming LWP %ld "
2860 "(has pending)\n",
2861 ptid_get_lwp (lp->ptid));
2862 }
2863 }
2864 }
2865 return 0;
2866}
2867
2868/* Check if we should go on and pass this event to common code.
2869 Return the affected lwp if we are, or NULL otherwise. */
2870
2871static struct lwp_info *
2872linux_nat_filter_event (int lwpid, int status)
2873{
2874 struct lwp_info *lp;
2875 int event = linux_ptrace_get_extended_event (status);
2876
2877 lp = find_lwp_pid (pid_to_ptid (lwpid));
2878
2879 /* Check for stop events reported by a process we didn't already
2880 know about - anything not already in our LWP list.
2881
2882 If we're expecting to receive stopped processes after
2883 fork, vfork, and clone events, then we'll just add the
2884 new one to our list and go back to waiting for the event
2885 to be reported - the stopped process might be returned
2886 from waitpid before or after the event is.
2887
2888 But note the case of a non-leader thread exec'ing after the
2889 leader having exited, and gone from our lists. The non-leader
2890 thread changes its tid to the tgid. */
2891
2892 if (WIFSTOPPED (status) && lp == NULL
2893 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2894 {
2895 /* A multi-thread exec after we had seen the leader exiting. */
2896 if (debug_linux_nat)
2897 fprintf_unfiltered (gdb_stdlog,
2898 "LLW: Re-adding thread group leader LWP %d.\n",
2899 lwpid);
2900
2901 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2902 lp->stopped = 1;
2903 lp->resumed = 1;
2904 add_thread (lp->ptid);
2905 }
2906
2907 if (WIFSTOPPED (status) && !lp)
2908 {
2909 add_to_pid_list (&stopped_pids, lwpid, status);
2910 return NULL;
2911 }
2912
2913 /* Make sure we don't report an event for the exit of an LWP not in
2914 our list, i.e. not part of the current process. This can happen
2915 if we detach from a program we originally forked and then it
2916 exits. */
2917 if (!WIFSTOPPED (status) && !lp)
2918 return NULL;
2919
2920 /* This LWP is stopped now. (And if dead, this prevents it from
2921 ever being continued.) */
2922 lp->stopped = 1;
2923
2924 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2925 {
2926 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2927
2928 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
2929 lp->must_set_ptrace_flags = 0;
2930 }
2931
2932 /* Handle GNU/Linux's syscall SIGTRAPs. */
2933 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2934 {
2935 /* No longer need the sysgood bit. The ptrace event ends up
2936 recorded in lp->waitstatus if we care for it. We can carry
2937 on handling the event like a regular SIGTRAP from here
2938 on. */
2939 status = W_STOPCODE (SIGTRAP);
2940 if (linux_handle_syscall_trap (lp, 0))
2941 return NULL;
2942 }
2943
2944 /* Handle GNU/Linux's extended waitstatus for trace events. */
2945 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2946 && linux_is_extended_waitstatus (status))
2947 {
2948 if (debug_linux_nat)
2949 fprintf_unfiltered (gdb_stdlog,
2950 "LLW: Handling extended status 0x%06x\n",
2951 status);
2952 if (linux_handle_extended_wait (lp, status, 0))
2953 return NULL;
2954 }
2955
2956 /* Check if the thread has exited. */
2957 if (WIFEXITED (status) || WIFSIGNALED (status))
2958 {
2959 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
2960 {
2961 /* If this is the main thread, we must stop all threads and
2962 verify if they are still alive. This is because in the
2963 nptl thread model on Linux 2.4, there is no signal issued
2964 for exiting LWPs other than the main thread. We only get
2965 the main thread exit signal once all child threads have
2966 already exited. If we stop all the threads and use the
2967 stop_wait_callback to check if they have exited we can
2968 determine whether this signal should be ignored or
2969 whether it means the end of the debugged application,
2970 regardless of which threading model is being used. */
2971 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2972 {
2973 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
2974 stop_and_resume_callback, NULL);
2975 }
2976
2977 if (debug_linux_nat)
2978 fprintf_unfiltered (gdb_stdlog,
2979 "LLW: %s exited.\n",
2980 target_pid_to_str (lp->ptid));
2981
2982 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
2983 {
2984 /* If there is at least one more LWP, then the exit signal
2985 was not the end of the debugged application and should be
2986 ignored. */
2987 exit_lwp (lp);
2988 return NULL;
2989 }
2990 }
2991
2992 gdb_assert (lp->resumed);
2993
2994 if (debug_linux_nat)
2995 fprintf_unfiltered (gdb_stdlog,
2996 "Process %ld exited\n",
2997 ptid_get_lwp (lp->ptid));
2998
2999 /* This was the last lwp in the process. Since events are
3000 serialized to GDB core, we may not be able report this one
3001 right now, but GDB core and the other target layers will want
3002 to be notified about the exit code/signal, leave the status
3003 pending for the next time we're able to report it. */
3004
3005 /* Dead LWP's aren't expected to reported a pending sigstop. */
3006 lp->signalled = 0;
3007
3008 /* Store the pending event in the waitstatus, because
3009 W_EXITCODE(0,0) == 0. */
3010 store_waitstatus (&lp->waitstatus, status);
3011 return lp;
3012 }
3013
3014 /* Check if the current LWP has previously exited. In the nptl
3015 thread model, LWPs other than the main thread do not issue
3016 signals when they exit so we must check whenever the thread has
3017 stopped. A similar check is made in stop_wait_callback(). */
3018 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3019 {
3020 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3021
3022 if (debug_linux_nat)
3023 fprintf_unfiltered (gdb_stdlog,
3024 "LLW: %s exited.\n",
3025 target_pid_to_str (lp->ptid));
3026
3027 exit_lwp (lp);
3028
3029 /* Make sure there is at least one thread running. */
3030 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3031
3032 /* Discard the event. */
3033 return NULL;
3034 }
3035
3036 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3037 an attempt to stop an LWP. */
3038 if (lp->signalled
3039 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3040 {
3041 if (debug_linux_nat)
3042 fprintf_unfiltered (gdb_stdlog,
3043 "LLW: Delayed SIGSTOP caught for %s.\n",
3044 target_pid_to_str (lp->ptid));
3045
3046 lp->signalled = 0;
3047
3048 if (lp->last_resume_kind != resume_stop)
3049 {
3050 /* This is a delayed SIGSTOP. */
3051
3052 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3053 if (debug_linux_nat)
3054 fprintf_unfiltered (gdb_stdlog,
3055 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3056 lp->step ?
3057 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3058 target_pid_to_str (lp->ptid));
3059
3060 gdb_assert (lp->resumed);
3061
3062 /* Discard the event. */
3063 return NULL;
3064 }
3065 }
3066
3067 /* Make sure we don't report a SIGINT that we have already displayed
3068 for another thread. */
3069 if (lp->ignore_sigint
3070 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3071 {
3072 if (debug_linux_nat)
3073 fprintf_unfiltered (gdb_stdlog,
3074 "LLW: Delayed SIGINT caught for %s.\n",
3075 target_pid_to_str (lp->ptid));
3076
3077 /* This is a delayed SIGINT. */
3078 lp->ignore_sigint = 0;
3079
3080 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3081 if (debug_linux_nat)
3082 fprintf_unfiltered (gdb_stdlog,
3083 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3084 lp->step ?
3085 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3086 target_pid_to_str (lp->ptid));
3087 gdb_assert (lp->resumed);
3088
3089 /* Discard the event. */
3090 return NULL;
3091 }
3092
3093 /* Don't report signals that GDB isn't interested in, such as
3094 signals that are neither printed nor stopped upon. Stopping all
3095 threads can be a bit time-consuming so if we want decent
3096 performance with heavily multi-threaded programs, especially when
3097 they're using a high frequency timer, we'd better avoid it if we
3098 can. */
3099 if (WIFSTOPPED (status))
3100 {
3101 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3102
3103 if (!non_stop)
3104 {
3105 /* Only do the below in all-stop, as we currently use SIGSTOP
3106 to implement target_stop (see linux_nat_stop) in
3107 non-stop. */
3108 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3109 {
3110 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3111 forwarded to the entire process group, that is, all LWPs
3112 will receive it - unless they're using CLONE_THREAD to
3113 share signals. Since we only want to report it once, we
3114 mark it as ignored for all LWPs except this one. */
3115 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3116 set_ignore_sigint, NULL);
3117 lp->ignore_sigint = 0;
3118 }
3119 else
3120 maybe_clear_ignore_sigint (lp);
3121 }
3122
3123 /* When using hardware single-step, we need to report every signal.
3124 Otherwise, signals in pass_mask may be short-circuited. */
3125 if (!lp->step
3126 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3127 {
3128 linux_resume_one_lwp (lp, lp->step, signo);
3129 if (debug_linux_nat)
3130 fprintf_unfiltered (gdb_stdlog,
3131 "LLW: %s %s, %s (preempt 'handle')\n",
3132 lp->step ?
3133 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3134 target_pid_to_str (lp->ptid),
3135 (signo != GDB_SIGNAL_0
3136 ? strsignal (gdb_signal_to_host (signo))
3137 : "0"));
3138 return NULL;
3139 }
3140 }
3141
3142 /* An interesting event. */
3143 gdb_assert (lp);
3144 lp->status = status;
3145 save_sigtrap (lp);
3146 return lp;
3147}
3148
3149/* Detect zombie thread group leaders, and "exit" them. We can't reap
3150 their exits until all other threads in the group have exited. */
3151
3152static void
3153check_zombie_leaders (void)
3154{
3155 struct inferior *inf;
3156
3157 ALL_INFERIORS (inf)
3158 {
3159 struct lwp_info *leader_lp;
3160
3161 if (inf->pid == 0)
3162 continue;
3163
3164 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3165 if (leader_lp != NULL
3166 /* Check if there are other threads in the group, as we may
3167 have raced with the inferior simply exiting. */
3168 && num_lwps (inf->pid) > 1
3169 && linux_proc_pid_is_zombie (inf->pid))
3170 {
3171 if (debug_linux_nat)
3172 fprintf_unfiltered (gdb_stdlog,
3173 "CZL: Thread group leader %d zombie "
3174 "(it exited, or another thread execd).\n",
3175 inf->pid);
3176
3177 /* A leader zombie can mean one of two things:
3178
3179 - It exited, and there's an exit status pending
3180 available, or only the leader exited (not the whole
3181 program). In the latter case, we can't waitpid the
3182 leader's exit status until all other threads are gone.
3183
3184 - There are 3 or more threads in the group, and a thread
3185 other than the leader exec'd. On an exec, the Linux
3186 kernel destroys all other threads (except the execing
3187 one) in the thread group, and resets the execing thread's
3188 tid to the tgid. No exit notification is sent for the
3189 execing thread -- from the ptracer's perspective, it
3190 appears as though the execing thread just vanishes.
3191 Until we reap all other threads except the leader and the
3192 execing thread, the leader will be zombie, and the
3193 execing thread will be in `D (disc sleep)'. As soon as
3194 all other threads are reaped, the execing thread changes
3195 it's tid to the tgid, and the previous (zombie) leader
3196 vanishes, giving place to the "new" leader. We could try
3197 distinguishing the exit and exec cases, by waiting once
3198 more, and seeing if something comes out, but it doesn't
3199 sound useful. The previous leader _does_ go away, and
3200 we'll re-add the new one once we see the exec event
3201 (which is just the same as what would happen if the
3202 previous leader did exit voluntarily before some other
3203 thread execs). */
3204
3205 if (debug_linux_nat)
3206 fprintf_unfiltered (gdb_stdlog,
3207 "CZL: Thread group leader %d vanished.\n",
3208 inf->pid);
3209 exit_lwp (leader_lp);
3210 }
3211 }
3212}
3213
3214static ptid_t
3215linux_nat_wait_1 (struct target_ops *ops,
3216 ptid_t ptid, struct target_waitstatus *ourstatus,
3217 int target_options)
3218{
3219 sigset_t prev_mask;
3220 enum resume_kind last_resume_kind;
3221 struct lwp_info *lp;
3222 int status;
3223
3224 if (debug_linux_nat)
3225 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3226
3227 /* The first time we get here after starting a new inferior, we may
3228 not have added it to the LWP list yet - this is the earliest
3229 moment at which we know its PID. */
3230 if (ptid_is_pid (inferior_ptid))
3231 {
3232 /* Upgrade the main thread's ptid. */
3233 thread_change_ptid (inferior_ptid,
3234 ptid_build (ptid_get_pid (inferior_ptid),
3235 ptid_get_pid (inferior_ptid), 0));
3236
3237 lp = add_initial_lwp (inferior_ptid);
3238 lp->resumed = 1;
3239 }
3240
3241 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3242 block_child_signals (&prev_mask);
3243
3244 /* First check if there is a LWP with a wait status pending. */
3245 lp = iterate_over_lwps (ptid, status_callback, NULL);
3246 if (lp != NULL)
3247 {
3248 if (debug_linux_nat)
3249 fprintf_unfiltered (gdb_stdlog,
3250 "LLW: Using pending wait status %s for %s.\n",
3251 status_to_str (lp->status),
3252 target_pid_to_str (lp->ptid));
3253 }
3254
3255 if (!target_can_async_p ())
3256 {
3257 /* Causes SIGINT to be passed on to the attached process. */
3258 set_sigint_trap ();
3259 }
3260
3261 /* But if we don't find a pending event, we'll have to wait. Always
3262 pull all events out of the kernel. We'll randomly select an
3263 event LWP out of all that have events, to prevent starvation. */
3264
3265 while (lp == NULL)
3266 {
3267 pid_t lwpid;
3268
3269 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3270 quirks:
3271
3272 - If the thread group leader exits while other threads in the
3273 thread group still exist, waitpid(TGID, ...) hangs. That
3274 waitpid won't return an exit status until the other threads
3275 in the group are reapped.
3276
3277 - When a non-leader thread execs, that thread just vanishes
3278 without reporting an exit (so we'd hang if we waited for it
3279 explicitly in that case). The exec event is reported to
3280 the TGID pid. */
3281
3282 errno = 0;
3283 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3284 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3285 lwpid = my_waitpid (-1, &status, WNOHANG);
3286
3287 if (debug_linux_nat)
3288 fprintf_unfiltered (gdb_stdlog,
3289 "LNW: waitpid(-1, ...) returned %d, %s\n",
3290 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3291
3292 if (lwpid > 0)
3293 {
3294 if (debug_linux_nat)
3295 {
3296 fprintf_unfiltered (gdb_stdlog,
3297 "LLW: waitpid %ld received %s\n",
3298 (long) lwpid, status_to_str (status));
3299 }
3300
3301 linux_nat_filter_event (lwpid, status);
3302 /* Retry until nothing comes out of waitpid. A single
3303 SIGCHLD can indicate more than one child stopped. */
3304 continue;
3305 }
3306
3307 /* Now that we've pulled all events out of the kernel, check if
3308 there's any LWP with a status to report to the core. */
3309 lp = iterate_over_lwps (ptid, status_callback, NULL);
3310 if (lp != NULL)
3311 break;
3312
3313 /* Check for zombie thread group leaders. Those can't be reaped
3314 until all other threads in the thread group are. */
3315 check_zombie_leaders ();
3316
3317 /* If there are no resumed children left, bail. We'd be stuck
3318 forever in the sigsuspend call below otherwise. */
3319 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3320 {
3321 if (debug_linux_nat)
3322 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3323
3324 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3325
3326 if (!target_can_async_p ())
3327 clear_sigint_trap ();
3328
3329 restore_child_signals_mask (&prev_mask);
3330 return minus_one_ptid;
3331 }
3332
3333 /* No interesting event to report to the core. */
3334
3335 if (target_options & TARGET_WNOHANG)
3336 {
3337 if (debug_linux_nat)
3338 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3339
3340 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3341 restore_child_signals_mask (&prev_mask);
3342 return minus_one_ptid;
3343 }
3344
3345 /* We shouldn't end up here unless we want to try again. */
3346 gdb_assert (lp == NULL);
3347
3348 /* Block until we get an event reported with SIGCHLD. */
3349 if (debug_linux_nat)
3350 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3351 sigsuspend (&suspend_mask);
3352 }
3353
3354 if (!target_can_async_p ())
3355 clear_sigint_trap ();
3356
3357 gdb_assert (lp);
3358
3359 status = lp->status;
3360 lp->status = 0;
3361
3362 if (!non_stop)
3363 {
3364 /* Now stop all other LWP's ... */
3365 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3366
3367 /* ... and wait until all of them have reported back that
3368 they're no longer running. */
3369 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3370 }
3371
3372 /* If we're not waiting for a specific LWP, choose an event LWP from
3373 among those that have had events. Giving equal priority to all
3374 LWPs that have had events helps prevent starvation. */
3375 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3376 select_event_lwp (ptid, &lp, &status);
3377
3378 gdb_assert (lp != NULL);
3379
3380 /* Now that we've selected our final event LWP, un-adjust its PC if
3381 it was a software breakpoint. */
3382 if (lp->stop_reason == LWP_STOPPED_BY_SW_BREAKPOINT)
3383 {
3384 struct regcache *regcache = get_thread_regcache (lp->ptid);
3385 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3386 int decr_pc = target_decr_pc_after_break (gdbarch);
3387
3388 if (decr_pc != 0)
3389 {
3390 CORE_ADDR pc;
3391
3392 pc = regcache_read_pc (regcache);
3393 regcache_write_pc (regcache, pc + decr_pc);
3394 }
3395 }
3396
3397 /* We'll need this to determine whether to report a SIGSTOP as
3398 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3399 clears it. */
3400 last_resume_kind = lp->last_resume_kind;
3401
3402 if (!non_stop)
3403 {
3404 /* In all-stop, from the core's perspective, all LWPs are now
3405 stopped until a new resume action is sent over. */
3406 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3407 }
3408 else
3409 {
3410 resume_clear_callback (lp, NULL);
3411 }
3412
3413 if (linux_nat_status_is_event (status))
3414 {
3415 if (debug_linux_nat)
3416 fprintf_unfiltered (gdb_stdlog,
3417 "LLW: trap ptid is %s.\n",
3418 target_pid_to_str (lp->ptid));
3419 }
3420
3421 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3422 {
3423 *ourstatus = lp->waitstatus;
3424 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3425 }
3426 else
3427 store_waitstatus (ourstatus, status);
3428
3429 if (debug_linux_nat)
3430 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3431
3432 restore_child_signals_mask (&prev_mask);
3433
3434 if (last_resume_kind == resume_stop
3435 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3436 && WSTOPSIG (status) == SIGSTOP)
3437 {
3438 /* A thread that has been requested to stop by GDB with
3439 target_stop, and it stopped cleanly, so report as SIG0. The
3440 use of SIGSTOP is an implementation detail. */
3441 ourstatus->value.sig = GDB_SIGNAL_0;
3442 }
3443
3444 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3445 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3446 lp->core = -1;
3447 else
3448 lp->core = linux_common_core_of_thread (lp->ptid);
3449
3450 return lp->ptid;
3451}
3452
3453/* Resume LWPs that are currently stopped without any pending status
3454 to report, but are resumed from the core's perspective. */
3455
3456static int
3457resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3458{
3459 ptid_t *wait_ptid_p = data;
3460
3461 if (lp->stopped
3462 && lp->resumed
3463 && !lwp_status_pending_p (lp))
3464 {
3465 struct regcache *regcache = get_thread_regcache (lp->ptid);
3466 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3467 CORE_ADDR pc = regcache_read_pc (regcache);
3468
3469 gdb_assert (is_executing (lp->ptid));
3470
3471 /* Don't bother if there's a breakpoint at PC that we'd hit
3472 immediately, and we're not waiting for this LWP. */
3473 if (!ptid_match (lp->ptid, *wait_ptid_p))
3474 {
3475 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3476 return 0;
3477 }
3478
3479 if (debug_linux_nat)
3480 fprintf_unfiltered (gdb_stdlog,
3481 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3482 target_pid_to_str (lp->ptid),
3483 paddress (gdbarch, pc),
3484 lp->step);
3485
3486 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3487 }
3488
3489 return 0;
3490}
3491
3492static ptid_t
3493linux_nat_wait (struct target_ops *ops,
3494 ptid_t ptid, struct target_waitstatus *ourstatus,
3495 int target_options)
3496{
3497 ptid_t event_ptid;
3498
3499 if (debug_linux_nat)
3500 {
3501 char *options_string;
3502
3503 options_string = target_options_to_string (target_options);
3504 fprintf_unfiltered (gdb_stdlog,
3505 "linux_nat_wait: [%s], [%s]\n",
3506 target_pid_to_str (ptid),
3507 options_string);
3508 xfree (options_string);
3509 }
3510
3511 /* Flush the async file first. */
3512 if (target_can_async_p ())
3513 async_file_flush ();
3514
3515 /* Resume LWPs that are currently stopped without any pending status
3516 to report, but are resumed from the core's perspective. LWPs get
3517 in this state if we find them stopping at a time we're not
3518 interested in reporting the event (target_wait on a
3519 specific_process, for example, see linux_nat_wait_1), and
3520 meanwhile the event became uninteresting. Don't bother resuming
3521 LWPs we're not going to wait for if they'd stop immediately. */
3522 if (non_stop)
3523 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3524
3525 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3526
3527 /* If we requested any event, and something came out, assume there
3528 may be more. If we requested a specific lwp or process, also
3529 assume there may be more. */
3530 if (target_can_async_p ()
3531 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3532 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3533 || !ptid_equal (ptid, minus_one_ptid)))
3534 async_file_mark ();
3535
3536 /* Get ready for the next event. */
3537 if (target_can_async_p ())
3538 target_async (inferior_event_handler, 0);
3539
3540 return event_ptid;
3541}
3542
3543static int
3544kill_callback (struct lwp_info *lp, void *data)
3545{
3546 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3547
3548 errno = 0;
3549 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL);
3550 if (debug_linux_nat)
3551 {
3552 int save_errno = errno;
3553
3554 fprintf_unfiltered (gdb_stdlog,
3555 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3556 target_pid_to_str (lp->ptid),
3557 save_errno ? safe_strerror (save_errno) : "OK");
3558 }
3559
3560 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3561
3562 errno = 0;
3563 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3564 if (debug_linux_nat)
3565 {
3566 int save_errno = errno;
3567
3568 fprintf_unfiltered (gdb_stdlog,
3569 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3570 target_pid_to_str (lp->ptid),
3571 save_errno ? safe_strerror (save_errno) : "OK");
3572 }
3573
3574 return 0;
3575}
3576
3577static int
3578kill_wait_callback (struct lwp_info *lp, void *data)
3579{
3580 pid_t pid;
3581
3582 /* We must make sure that there are no pending events (delayed
3583 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3584 program doesn't interfere with any following debugging session. */
3585
3586 /* For cloned processes we must check both with __WCLONE and
3587 without, since the exit status of a cloned process isn't reported
3588 with __WCLONE. */
3589 if (lp->cloned)
3590 {
3591 do
3592 {
3593 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3594 if (pid != (pid_t) -1)
3595 {
3596 if (debug_linux_nat)
3597 fprintf_unfiltered (gdb_stdlog,
3598 "KWC: wait %s received unknown.\n",
3599 target_pid_to_str (lp->ptid));
3600 /* The Linux kernel sometimes fails to kill a thread
3601 completely after PTRACE_KILL; that goes from the stop
3602 point in do_fork out to the one in
3603 get_signal_to_deliever and waits again. So kill it
3604 again. */
3605 kill_callback (lp, NULL);
3606 }
3607 }
3608 while (pid == ptid_get_lwp (lp->ptid));
3609
3610 gdb_assert (pid == -1 && errno == ECHILD);
3611 }
3612
3613 do
3614 {
3615 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3616 if (pid != (pid_t) -1)
3617 {
3618 if (debug_linux_nat)
3619 fprintf_unfiltered (gdb_stdlog,
3620 "KWC: wait %s received unk.\n",
3621 target_pid_to_str (lp->ptid));
3622 /* See the call to kill_callback above. */
3623 kill_callback (lp, NULL);
3624 }
3625 }
3626 while (pid == ptid_get_lwp (lp->ptid));
3627
3628 gdb_assert (pid == -1 && errno == ECHILD);
3629 return 0;
3630}
3631
3632static void
3633linux_nat_kill (struct target_ops *ops)
3634{
3635 struct target_waitstatus last;
3636 ptid_t last_ptid;
3637 int status;
3638
3639 /* If we're stopped while forking and we haven't followed yet,
3640 kill the other task. We need to do this first because the
3641 parent will be sleeping if this is a vfork. */
3642
3643 get_last_target_status (&last_ptid, &last);
3644
3645 if (last.kind == TARGET_WAITKIND_FORKED
3646 || last.kind == TARGET_WAITKIND_VFORKED)
3647 {
3648 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3649 wait (&status);
3650
3651 /* Let the arch-specific native code know this process is
3652 gone. */
3653 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3654 }
3655
3656 if (forks_exist_p ())
3657 linux_fork_killall ();
3658 else
3659 {
3660 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3661
3662 /* Stop all threads before killing them, since ptrace requires
3663 that the thread is stopped to sucessfully PTRACE_KILL. */
3664 iterate_over_lwps (ptid, stop_callback, NULL);
3665 /* ... and wait until all of them have reported back that
3666 they're no longer running. */
3667 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3668
3669 /* Kill all LWP's ... */
3670 iterate_over_lwps (ptid, kill_callback, NULL);
3671
3672 /* ... and wait until we've flushed all events. */
3673 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3674 }
3675
3676 target_mourn_inferior ();
3677}
3678
3679static void
3680linux_nat_mourn_inferior (struct target_ops *ops)
3681{
3682 int pid = ptid_get_pid (inferior_ptid);
3683
3684 purge_lwp_list (pid);
3685
3686 if (! forks_exist_p ())
3687 /* Normal case, no other forks available. */
3688 linux_ops->to_mourn_inferior (ops);
3689 else
3690 /* Multi-fork case. The current inferior_ptid has exited, but
3691 there are other viable forks to debug. Delete the exiting
3692 one and context-switch to the first available. */
3693 linux_fork_mourn_inferior ();
3694
3695 /* Let the arch-specific native code know this process is gone. */
3696 linux_nat_forget_process (pid);
3697}
3698
3699/* Convert a native/host siginfo object, into/from the siginfo in the
3700 layout of the inferiors' architecture. */
3701
3702static void
3703siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3704{
3705 int done = 0;
3706
3707 if (linux_nat_siginfo_fixup != NULL)
3708 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3709
3710 /* If there was no callback, or the callback didn't do anything,
3711 then just do a straight memcpy. */
3712 if (!done)
3713 {
3714 if (direction == 1)
3715 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3716 else
3717 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3718 }
3719}
3720
3721static enum target_xfer_status
3722linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3723 const char *annex, gdb_byte *readbuf,
3724 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3725 ULONGEST *xfered_len)
3726{
3727 int pid;
3728 siginfo_t siginfo;
3729 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3730
3731 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3732 gdb_assert (readbuf || writebuf);
3733
3734 pid = ptid_get_lwp (inferior_ptid);
3735 if (pid == 0)
3736 pid = ptid_get_pid (inferior_ptid);
3737
3738 if (offset > sizeof (siginfo))
3739 return TARGET_XFER_E_IO;
3740
3741 errno = 0;
3742 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3743 if (errno != 0)
3744 return TARGET_XFER_E_IO;
3745
3746 /* When GDB is built as a 64-bit application, ptrace writes into
3747 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3748 inferior with a 64-bit GDB should look the same as debugging it
3749 with a 32-bit GDB, we need to convert it. GDB core always sees
3750 the converted layout, so any read/write will have to be done
3751 post-conversion. */
3752 siginfo_fixup (&siginfo, inf_siginfo, 0);
3753
3754 if (offset + len > sizeof (siginfo))
3755 len = sizeof (siginfo) - offset;
3756
3757 if (readbuf != NULL)
3758 memcpy (readbuf, inf_siginfo + offset, len);
3759 else
3760 {
3761 memcpy (inf_siginfo + offset, writebuf, len);
3762
3763 /* Convert back to ptrace layout before flushing it out. */
3764 siginfo_fixup (&siginfo, inf_siginfo, 1);
3765
3766 errno = 0;
3767 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3768 if (errno != 0)
3769 return TARGET_XFER_E_IO;
3770 }
3771
3772 *xfered_len = len;
3773 return TARGET_XFER_OK;
3774}
3775
3776static enum target_xfer_status
3777linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3778 const char *annex, gdb_byte *readbuf,
3779 const gdb_byte *writebuf,
3780 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3781{
3782 struct cleanup *old_chain;
3783 enum target_xfer_status xfer;
3784
3785 if (object == TARGET_OBJECT_SIGNAL_INFO)
3786 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3787 offset, len, xfered_len);
3788
3789 /* The target is connected but no live inferior is selected. Pass
3790 this request down to a lower stratum (e.g., the executable
3791 file). */
3792 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3793 return TARGET_XFER_EOF;
3794
3795 old_chain = save_inferior_ptid ();
3796
3797 if (ptid_lwp_p (inferior_ptid))
3798 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3799
3800 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3801 offset, len, xfered_len);
3802
3803 do_cleanups (old_chain);
3804 return xfer;
3805}
3806
3807static int
3808linux_thread_alive (ptid_t ptid)
3809{
3810 int err, tmp_errno;
3811
3812 gdb_assert (ptid_lwp_p (ptid));
3813
3814 /* Send signal 0 instead of anything ptrace, because ptracing a
3815 running thread errors out claiming that the thread doesn't
3816 exist. */
3817 err = kill_lwp (ptid_get_lwp (ptid), 0);
3818 tmp_errno = errno;
3819 if (debug_linux_nat)
3820 fprintf_unfiltered (gdb_stdlog,
3821 "LLTA: KILL(SIG0) %s (%s)\n",
3822 target_pid_to_str (ptid),
3823 err ? safe_strerror (tmp_errno) : "OK");
3824
3825 if (err != 0)
3826 return 0;
3827
3828 return 1;
3829}
3830
3831static int
3832linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3833{
3834 return linux_thread_alive (ptid);
3835}
3836
3837static char *
3838linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3839{
3840 static char buf[64];
3841
3842 if (ptid_lwp_p (ptid)
3843 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3844 || num_lwps (ptid_get_pid (ptid)) > 1))
3845 {
3846 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3847 return buf;
3848 }
3849
3850 return normal_pid_to_str (ptid);
3851}
3852
3853static char *
3854linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3855{
3856 int pid = ptid_get_pid (thr->ptid);
3857 long lwp = ptid_get_lwp (thr->ptid);
3858#define FORMAT "/proc/%d/task/%ld/comm"
3859 char buf[sizeof (FORMAT) + 30];
3860 FILE *comm_file;
3861 char *result = NULL;
3862
3863 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
3864 comm_file = gdb_fopen_cloexec (buf, "r");
3865 if (comm_file)
3866 {
3867 /* Not exported by the kernel, so we define it here. */
3868#define COMM_LEN 16
3869 static char line[COMM_LEN + 1];
3870
3871 if (fgets (line, sizeof (line), comm_file))
3872 {
3873 char *nl = strchr (line, '\n');
3874
3875 if (nl)
3876 *nl = '\0';
3877 if (*line != '\0')
3878 result = line;
3879 }
3880
3881 fclose (comm_file);
3882 }
3883
3884#undef COMM_LEN
3885#undef FORMAT
3886
3887 return result;
3888}
3889
3890/* Accepts an integer PID; Returns a string representing a file that
3891 can be opened to get the symbols for the child process. */
3892
3893static char *
3894linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3895{
3896 static char buf[PATH_MAX];
3897 char name[PATH_MAX];
3898
3899 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
3900 memset (buf, 0, PATH_MAX);
3901 if (readlink (name, buf, PATH_MAX - 1) <= 0)
3902 strcpy (buf, name);
3903
3904 return buf;
3905}
3906
3907/* Implement the to_xfer_partial interface for memory reads using the /proc
3908 filesystem. Because we can use a single read() call for /proc, this
3909 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3910 but it doesn't support writes. */
3911
3912static enum target_xfer_status
3913linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3914 const char *annex, gdb_byte *readbuf,
3915 const gdb_byte *writebuf,
3916 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3917{
3918 LONGEST ret;
3919 int fd;
3920 char filename[64];
3921
3922 if (object != TARGET_OBJECT_MEMORY || !readbuf)
3923 return 0;
3924
3925 /* Don't bother for one word. */
3926 if (len < 3 * sizeof (long))
3927 return TARGET_XFER_EOF;
3928
3929 /* We could keep this file open and cache it - possibly one per
3930 thread. That requires some juggling, but is even faster. */
3931 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
3932 ptid_get_pid (inferior_ptid));
3933 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
3934 if (fd == -1)
3935 return TARGET_XFER_EOF;
3936
3937 /* If pread64 is available, use it. It's faster if the kernel
3938 supports it (only one syscall), and it's 64-bit safe even on
3939 32-bit platforms (for instance, SPARC debugging a SPARC64
3940 application). */
3941#ifdef HAVE_PREAD64
3942 if (pread64 (fd, readbuf, len, offset) != len)
3943#else
3944 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
3945#endif
3946 ret = 0;
3947 else
3948 ret = len;
3949
3950 close (fd);
3951
3952 if (ret == 0)
3953 return TARGET_XFER_EOF;
3954 else
3955 {
3956 *xfered_len = ret;
3957 return TARGET_XFER_OK;
3958 }
3959}
3960
3961
3962/* Enumerate spufs IDs for process PID. */
3963static LONGEST
3964spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
3965{
3966 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3967 LONGEST pos = 0;
3968 LONGEST written = 0;
3969 char path[128];
3970 DIR *dir;
3971 struct dirent *entry;
3972
3973 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
3974 dir = opendir (path);
3975 if (!dir)
3976 return -1;
3977
3978 rewinddir (dir);
3979 while ((entry = readdir (dir)) != NULL)
3980 {
3981 struct stat st;
3982 struct statfs stfs;
3983 int fd;
3984
3985 fd = atoi (entry->d_name);
3986 if (!fd)
3987 continue;
3988
3989 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
3990 if (stat (path, &st) != 0)
3991 continue;
3992 if (!S_ISDIR (st.st_mode))
3993 continue;
3994
3995 if (statfs (path, &stfs) != 0)
3996 continue;
3997 if (stfs.f_type != SPUFS_MAGIC)
3998 continue;
3999
4000 if (pos >= offset && pos + 4 <= offset + len)
4001 {
4002 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4003 written += 4;
4004 }
4005 pos += 4;
4006 }
4007
4008 closedir (dir);
4009 return written;
4010}
4011
4012/* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4013 object type, using the /proc file system. */
4014
4015static enum target_xfer_status
4016linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4017 const char *annex, gdb_byte *readbuf,
4018 const gdb_byte *writebuf,
4019 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4020{
4021 char buf[128];
4022 int fd = 0;
4023 int ret = -1;
4024 int pid = ptid_get_pid (inferior_ptid);
4025
4026 if (!annex)
4027 {
4028 if (!readbuf)
4029 return TARGET_XFER_E_IO;
4030 else
4031 {
4032 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4033
4034 if (l < 0)
4035 return TARGET_XFER_E_IO;
4036 else if (l == 0)
4037 return TARGET_XFER_EOF;
4038 else
4039 {
4040 *xfered_len = (ULONGEST) l;
4041 return TARGET_XFER_OK;
4042 }
4043 }
4044 }
4045
4046 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4047 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4048 if (fd <= 0)
4049 return TARGET_XFER_E_IO;
4050
4051 if (offset != 0
4052 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4053 {
4054 close (fd);
4055 return TARGET_XFER_EOF;
4056 }
4057
4058 if (writebuf)
4059 ret = write (fd, writebuf, (size_t) len);
4060 else if (readbuf)
4061 ret = read (fd, readbuf, (size_t) len);
4062
4063 close (fd);
4064
4065 if (ret < 0)
4066 return TARGET_XFER_E_IO;
4067 else if (ret == 0)
4068 return TARGET_XFER_EOF;
4069 else
4070 {
4071 *xfered_len = (ULONGEST) ret;
4072 return TARGET_XFER_OK;
4073 }
4074}
4075
4076
4077/* Parse LINE as a signal set and add its set bits to SIGS. */
4078
4079static void
4080add_line_to_sigset (const char *line, sigset_t *sigs)
4081{
4082 int len = strlen (line) - 1;
4083 const char *p;
4084 int signum;
4085
4086 if (line[len] != '\n')
4087 error (_("Could not parse signal set: %s"), line);
4088
4089 p = line;
4090 signum = len * 4;
4091 while (len-- > 0)
4092 {
4093 int digit;
4094
4095 if (*p >= '0' && *p <= '9')
4096 digit = *p - '0';
4097 else if (*p >= 'a' && *p <= 'f')
4098 digit = *p - 'a' + 10;
4099 else
4100 error (_("Could not parse signal set: %s"), line);
4101
4102 signum -= 4;
4103
4104 if (digit & 1)
4105 sigaddset (sigs, signum + 1);
4106 if (digit & 2)
4107 sigaddset (sigs, signum + 2);
4108 if (digit & 4)
4109 sigaddset (sigs, signum + 3);
4110 if (digit & 8)
4111 sigaddset (sigs, signum + 4);
4112
4113 p++;
4114 }
4115}
4116
4117/* Find process PID's pending signals from /proc/pid/status and set
4118 SIGS to match. */
4119
4120void
4121linux_proc_pending_signals (int pid, sigset_t *pending,
4122 sigset_t *blocked, sigset_t *ignored)
4123{
4124 FILE *procfile;
4125 char buffer[PATH_MAX], fname[PATH_MAX];
4126 struct cleanup *cleanup;
4127
4128 sigemptyset (pending);
4129 sigemptyset (blocked);
4130 sigemptyset (ignored);
4131 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4132 procfile = gdb_fopen_cloexec (fname, "r");
4133 if (procfile == NULL)
4134 error (_("Could not open %s"), fname);
4135 cleanup = make_cleanup_fclose (procfile);
4136
4137 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4138 {
4139 /* Normal queued signals are on the SigPnd line in the status
4140 file. However, 2.6 kernels also have a "shared" pending
4141 queue for delivering signals to a thread group, so check for
4142 a ShdPnd line also.
4143
4144 Unfortunately some Red Hat kernels include the shared pending
4145 queue but not the ShdPnd status field. */
4146
4147 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4148 add_line_to_sigset (buffer + 8, pending);
4149 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4150 add_line_to_sigset (buffer + 8, pending);
4151 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4152 add_line_to_sigset (buffer + 8, blocked);
4153 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4154 add_line_to_sigset (buffer + 8, ignored);
4155 }
4156
4157 do_cleanups (cleanup);
4158}
4159
4160static enum target_xfer_status
4161linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4162 const char *annex, gdb_byte *readbuf,
4163 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4164 ULONGEST *xfered_len)
4165{
4166 gdb_assert (object == TARGET_OBJECT_OSDATA);
4167
4168 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4169 if (*xfered_len == 0)
4170 return TARGET_XFER_EOF;
4171 else
4172 return TARGET_XFER_OK;
4173}
4174
4175static enum target_xfer_status
4176linux_xfer_partial (struct target_ops *ops, enum target_object object,
4177 const char *annex, gdb_byte *readbuf,
4178 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4179 ULONGEST *xfered_len)
4180{
4181 enum target_xfer_status xfer;
4182
4183 if (object == TARGET_OBJECT_AUXV)
4184 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4185 offset, len, xfered_len);
4186
4187 if (object == TARGET_OBJECT_OSDATA)
4188 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4189 offset, len, xfered_len);
4190
4191 if (object == TARGET_OBJECT_SPU)
4192 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4193 offset, len, xfered_len);
4194
4195 /* GDB calculates all the addresses in possibly larget width of the address.
4196 Address width needs to be masked before its final use - either by
4197 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4198
4199 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4200
4201 if (object == TARGET_OBJECT_MEMORY)
4202 {
4203 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4204
4205 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4206 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4207 }
4208
4209 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4210 offset, len, xfered_len);
4211 if (xfer != TARGET_XFER_EOF)
4212 return xfer;
4213
4214 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4215 offset, len, xfered_len);
4216}
4217
4218static void
4219cleanup_target_stop (void *arg)
4220{
4221 ptid_t *ptid = (ptid_t *) arg;
4222
4223 gdb_assert (arg != NULL);
4224
4225 /* Unpause all */
4226 target_resume (*ptid, 0, GDB_SIGNAL_0);
4227}
4228
4229static VEC(static_tracepoint_marker_p) *
4230linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4231 const char *strid)
4232{
4233 char s[IPA_CMD_BUF_SIZE];
4234 struct cleanup *old_chain;
4235 int pid = ptid_get_pid (inferior_ptid);
4236 VEC(static_tracepoint_marker_p) *markers = NULL;
4237 struct static_tracepoint_marker *marker = NULL;
4238 char *p = s;
4239 ptid_t ptid = ptid_build (pid, 0, 0);
4240
4241 /* Pause all */
4242 target_stop (ptid);
4243
4244 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4245 s[sizeof ("qTfSTM")] = 0;
4246
4247 agent_run_command (pid, s, strlen (s) + 1);
4248
4249 old_chain = make_cleanup (free_current_marker, &marker);
4250 make_cleanup (cleanup_target_stop, &ptid);
4251
4252 while (*p++ == 'm')
4253 {
4254 if (marker == NULL)
4255 marker = XCNEW (struct static_tracepoint_marker);
4256
4257 do
4258 {
4259 parse_static_tracepoint_marker_definition (p, &p, marker);
4260
4261 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4262 {
4263 VEC_safe_push (static_tracepoint_marker_p,
4264 markers, marker);
4265 marker = NULL;
4266 }
4267 else
4268 {
4269 release_static_tracepoint_marker (marker);
4270 memset (marker, 0, sizeof (*marker));
4271 }
4272 }
4273 while (*p++ == ','); /* comma-separated list */
4274
4275 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4276 s[sizeof ("qTsSTM")] = 0;
4277 agent_run_command (pid, s, strlen (s) + 1);
4278 p = s;
4279 }
4280
4281 do_cleanups (old_chain);
4282
4283 return markers;
4284}
4285
4286/* Create a prototype generic GNU/Linux target. The client can override
4287 it with local methods. */
4288
4289static void
4290linux_target_install_ops (struct target_ops *t)
4291{
4292 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4293 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4294 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4295 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4296 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4297 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4298 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4299 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4300 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4301 t->to_post_attach = linux_child_post_attach;
4302 t->to_follow_fork = linux_child_follow_fork;
4303
4304 super_xfer_partial = t->to_xfer_partial;
4305 t->to_xfer_partial = linux_xfer_partial;
4306
4307 t->to_static_tracepoint_markers_by_strid
4308 = linux_child_static_tracepoint_markers_by_strid;
4309}
4310
4311struct target_ops *
4312linux_target (void)
4313{
4314 struct target_ops *t;
4315
4316 t = inf_ptrace_target ();
4317 linux_target_install_ops (t);
4318
4319 return t;
4320}
4321
4322struct target_ops *
4323linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4324{
4325 struct target_ops *t;
4326
4327 t = inf_ptrace_trad_target (register_u_offset);
4328 linux_target_install_ops (t);
4329
4330 return t;
4331}
4332
4333/* target_is_async_p implementation. */
4334
4335static int
4336linux_nat_is_async_p (struct target_ops *ops)
4337{
4338 /* NOTE: palves 2008-03-21: We're only async when the user requests
4339 it explicitly with the "set target-async" command.
4340 Someday, linux will always be async. */
4341 return target_async_permitted;
4342}
4343
4344/* target_can_async_p implementation. */
4345
4346static int
4347linux_nat_can_async_p (struct target_ops *ops)
4348{
4349 /* NOTE: palves 2008-03-21: We're only async when the user requests
4350 it explicitly with the "set target-async" command.
4351 Someday, linux will always be async. */
4352 return target_async_permitted;
4353}
4354
4355static int
4356linux_nat_supports_non_stop (struct target_ops *self)
4357{
4358 return 1;
4359}
4360
4361/* True if we want to support multi-process. To be removed when GDB
4362 supports multi-exec. */
4363
4364int linux_multi_process = 1;
4365
4366static int
4367linux_nat_supports_multi_process (struct target_ops *self)
4368{
4369 return linux_multi_process;
4370}
4371
4372static int
4373linux_nat_supports_disable_randomization (struct target_ops *self)
4374{
4375#ifdef HAVE_PERSONALITY
4376 return 1;
4377#else
4378 return 0;
4379#endif
4380}
4381
4382static int async_terminal_is_ours = 1;
4383
4384/* target_terminal_inferior implementation.
4385
4386 This is a wrapper around child_terminal_inferior to add async support. */
4387
4388static void
4389linux_nat_terminal_inferior (struct target_ops *self)
4390{
4391 if (!target_is_async_p ())
4392 {
4393 /* Async mode is disabled. */
4394 child_terminal_inferior (self);
4395 return;
4396 }
4397
4398 child_terminal_inferior (self);
4399
4400 /* Calls to target_terminal_*() are meant to be idempotent. */
4401 if (!async_terminal_is_ours)
4402 return;
4403
4404 delete_file_handler (input_fd);
4405 async_terminal_is_ours = 0;
4406 set_sigint_trap ();
4407}
4408
4409/* target_terminal_ours implementation.
4410
4411 This is a wrapper around child_terminal_ours to add async support (and
4412 implement the target_terminal_ours vs target_terminal_ours_for_output
4413 distinction). child_terminal_ours is currently no different than
4414 child_terminal_ours_for_output.
4415 We leave target_terminal_ours_for_output alone, leaving it to
4416 child_terminal_ours_for_output. */
4417
4418static void
4419linux_nat_terminal_ours (struct target_ops *self)
4420{
4421 if (!target_is_async_p ())
4422 {
4423 /* Async mode is disabled. */
4424 child_terminal_ours (self);
4425 return;
4426 }
4427
4428 /* GDB should never give the terminal to the inferior if the
4429 inferior is running in the background (run&, continue&, etc.),
4430 but claiming it sure should. */
4431 child_terminal_ours (self);
4432
4433 if (async_terminal_is_ours)
4434 return;
4435
4436 clear_sigint_trap ();
4437 add_file_handler (input_fd, stdin_event_handler, 0);
4438 async_terminal_is_ours = 1;
4439}
4440
4441static void (*async_client_callback) (enum inferior_event_type event_type,
4442 void *context);
4443static void *async_client_context;
4444
4445/* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4446 so we notice when any child changes state, and notify the
4447 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4448 above to wait for the arrival of a SIGCHLD. */
4449
4450static void
4451sigchld_handler (int signo)
4452{
4453 int old_errno = errno;
4454
4455 if (debug_linux_nat)
4456 ui_file_write_async_safe (gdb_stdlog,
4457 "sigchld\n", sizeof ("sigchld\n") - 1);
4458
4459 if (signo == SIGCHLD
4460 && linux_nat_event_pipe[0] != -1)
4461 async_file_mark (); /* Let the event loop know that there are
4462 events to handle. */
4463
4464 errno = old_errno;
4465}
4466
4467/* Callback registered with the target events file descriptor. */
4468
4469static void
4470handle_target_event (int error, gdb_client_data client_data)
4471{
4472 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4473}
4474
4475/* Create/destroy the target events pipe. Returns previous state. */
4476
4477static int
4478linux_async_pipe (int enable)
4479{
4480 int previous = (linux_nat_event_pipe[0] != -1);
4481
4482 if (previous != enable)
4483 {
4484 sigset_t prev_mask;
4485
4486 /* Block child signals while we create/destroy the pipe, as
4487 their handler writes to it. */
4488 block_child_signals (&prev_mask);
4489
4490 if (enable)
4491 {
4492 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4493 internal_error (__FILE__, __LINE__,
4494 "creating event pipe failed.");
4495
4496 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4497 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4498 }
4499 else
4500 {
4501 close (linux_nat_event_pipe[0]);
4502 close (linux_nat_event_pipe[1]);
4503 linux_nat_event_pipe[0] = -1;
4504 linux_nat_event_pipe[1] = -1;
4505 }
4506
4507 restore_child_signals_mask (&prev_mask);
4508 }
4509
4510 return previous;
4511}
4512
4513/* target_async implementation. */
4514
4515static void
4516linux_nat_async (struct target_ops *ops,
4517 void (*callback) (enum inferior_event_type event_type,
4518 void *context),
4519 void *context)
4520{
4521 if (callback != NULL)
4522 {
4523 async_client_callback = callback;
4524 async_client_context = context;
4525 if (!linux_async_pipe (1))
4526 {
4527 add_file_handler (linux_nat_event_pipe[0],
4528 handle_target_event, NULL);
4529 /* There may be pending events to handle. Tell the event loop
4530 to poll them. */
4531 async_file_mark ();
4532 }
4533 }
4534 else
4535 {
4536 async_client_callback = callback;
4537 async_client_context = context;
4538 delete_file_handler (linux_nat_event_pipe[0]);
4539 linux_async_pipe (0);
4540 }
4541 return;
4542}
4543
4544/* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4545 event came out. */
4546
4547static int
4548linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4549{
4550 if (!lwp->stopped)
4551 {
4552 if (debug_linux_nat)
4553 fprintf_unfiltered (gdb_stdlog,
4554 "LNSL: running -> suspending %s\n",
4555 target_pid_to_str (lwp->ptid));
4556
4557
4558 if (lwp->last_resume_kind == resume_stop)
4559 {
4560 if (debug_linux_nat)
4561 fprintf_unfiltered (gdb_stdlog,
4562 "linux-nat: already stopping LWP %ld at "
4563 "GDB's request\n",
4564 ptid_get_lwp (lwp->ptid));
4565 return 0;
4566 }
4567
4568 stop_callback (lwp, NULL);
4569 lwp->last_resume_kind = resume_stop;
4570 }
4571 else
4572 {
4573 /* Already known to be stopped; do nothing. */
4574
4575 if (debug_linux_nat)
4576 {
4577 if (find_thread_ptid (lwp->ptid)->stop_requested)
4578 fprintf_unfiltered (gdb_stdlog,
4579 "LNSL: already stopped/stop_requested %s\n",
4580 target_pid_to_str (lwp->ptid));
4581 else
4582 fprintf_unfiltered (gdb_stdlog,
4583 "LNSL: already stopped/no "
4584 "stop_requested yet %s\n",
4585 target_pid_to_str (lwp->ptid));
4586 }
4587 }
4588 return 0;
4589}
4590
4591static void
4592linux_nat_stop (struct target_ops *self, ptid_t ptid)
4593{
4594 if (non_stop)
4595 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4596 else
4597 linux_ops->to_stop (linux_ops, ptid);
4598}
4599
4600static void
4601linux_nat_close (struct target_ops *self)
4602{
4603 /* Unregister from the event loop. */
4604 if (linux_nat_is_async_p (self))
4605 linux_nat_async (self, NULL, NULL);
4606
4607 if (linux_ops->to_close)
4608 linux_ops->to_close (linux_ops);
4609
4610 super_close (self);
4611}
4612
4613/* When requests are passed down from the linux-nat layer to the
4614 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4615 used. The address space pointer is stored in the inferior object,
4616 but the common code that is passed such ptid can't tell whether
4617 lwpid is a "main" process id or not (it assumes so). We reverse
4618 look up the "main" process id from the lwp here. */
4619
4620static struct address_space *
4621linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4622{
4623 struct lwp_info *lwp;
4624 struct inferior *inf;
4625 int pid;
4626
4627 if (ptid_get_lwp (ptid) == 0)
4628 {
4629 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4630 tgid. */
4631 lwp = find_lwp_pid (ptid);
4632 pid = ptid_get_pid (lwp->ptid);
4633 }
4634 else
4635 {
4636 /* A (pid,lwpid,0) ptid. */
4637 pid = ptid_get_pid (ptid);
4638 }
4639
4640 inf = find_inferior_pid (pid);
4641 gdb_assert (inf != NULL);
4642 return inf->aspace;
4643}
4644
4645/* Return the cached value of the processor core for thread PTID. */
4646
4647static int
4648linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4649{
4650 struct lwp_info *info = find_lwp_pid (ptid);
4651
4652 if (info)
4653 return info->core;
4654 return -1;
4655}
4656
4657void
4658linux_nat_add_target (struct target_ops *t)
4659{
4660 /* Save the provided single-threaded target. We save this in a separate
4661 variable because another target we've inherited from (e.g. inf-ptrace)
4662 may have saved a pointer to T; we want to use it for the final
4663 process stratum target. */
4664 linux_ops_saved = *t;
4665 linux_ops = &linux_ops_saved;
4666
4667 /* Override some methods for multithreading. */
4668 t->to_create_inferior = linux_nat_create_inferior;
4669 t->to_attach = linux_nat_attach;
4670 t->to_detach = linux_nat_detach;
4671 t->to_resume = linux_nat_resume;
4672 t->to_wait = linux_nat_wait;
4673 t->to_pass_signals = linux_nat_pass_signals;
4674 t->to_xfer_partial = linux_nat_xfer_partial;
4675 t->to_kill = linux_nat_kill;
4676 t->to_mourn_inferior = linux_nat_mourn_inferior;
4677 t->to_thread_alive = linux_nat_thread_alive;
4678 t->to_pid_to_str = linux_nat_pid_to_str;
4679 t->to_thread_name = linux_nat_thread_name;
4680 t->to_has_thread_control = tc_schedlock;
4681 t->to_thread_address_space = linux_nat_thread_address_space;
4682 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4683 t->to_stopped_data_address = linux_nat_stopped_data_address;
4684
4685 t->to_can_async_p = linux_nat_can_async_p;
4686 t->to_is_async_p = linux_nat_is_async_p;
4687 t->to_supports_non_stop = linux_nat_supports_non_stop;
4688 t->to_async = linux_nat_async;
4689 t->to_terminal_inferior = linux_nat_terminal_inferior;
4690 t->to_terminal_ours = linux_nat_terminal_ours;
4691
4692 super_close = t->to_close;
4693 t->to_close = linux_nat_close;
4694
4695 /* Methods for non-stop support. */
4696 t->to_stop = linux_nat_stop;
4697
4698 t->to_supports_multi_process = linux_nat_supports_multi_process;
4699
4700 t->to_supports_disable_randomization
4701 = linux_nat_supports_disable_randomization;
4702
4703 t->to_core_of_thread = linux_nat_core_of_thread;
4704
4705 /* We don't change the stratum; this target will sit at
4706 process_stratum and thread_db will set at thread_stratum. This
4707 is a little strange, since this is a multi-threaded-capable
4708 target, but we want to be on the stack below thread_db, and we
4709 also want to be used for single-threaded processes. */
4710
4711 add_target (t);
4712}
4713
4714/* Register a method to call whenever a new thread is attached. */
4715void
4716linux_nat_set_new_thread (struct target_ops *t,
4717 void (*new_thread) (struct lwp_info *))
4718{
4719 /* Save the pointer. We only support a single registered instance
4720 of the GNU/Linux native target, so we do not need to map this to
4721 T. */
4722 linux_nat_new_thread = new_thread;
4723}
4724
4725/* See declaration in linux-nat.h. */
4726
4727void
4728linux_nat_set_new_fork (struct target_ops *t,
4729 linux_nat_new_fork_ftype *new_fork)
4730{
4731 /* Save the pointer. */
4732 linux_nat_new_fork = new_fork;
4733}
4734
4735/* See declaration in linux-nat.h. */
4736
4737void
4738linux_nat_set_forget_process (struct target_ops *t,
4739 linux_nat_forget_process_ftype *fn)
4740{
4741 /* Save the pointer. */
4742 linux_nat_forget_process_hook = fn;
4743}
4744
4745/* See declaration in linux-nat.h. */
4746
4747void
4748linux_nat_forget_process (pid_t pid)
4749{
4750 if (linux_nat_forget_process_hook != NULL)
4751 linux_nat_forget_process_hook (pid);
4752}
4753
4754/* Register a method that converts a siginfo object between the layout
4755 that ptrace returns, and the layout in the architecture of the
4756 inferior. */
4757void
4758linux_nat_set_siginfo_fixup (struct target_ops *t,
4759 int (*siginfo_fixup) (siginfo_t *,
4760 gdb_byte *,
4761 int))
4762{
4763 /* Save the pointer. */
4764 linux_nat_siginfo_fixup = siginfo_fixup;
4765}
4766
4767/* Register a method to call prior to resuming a thread. */
4768
4769void
4770linux_nat_set_prepare_to_resume (struct target_ops *t,
4771 void (*prepare_to_resume) (struct lwp_info *))
4772{
4773 /* Save the pointer. */
4774 linux_nat_prepare_to_resume = prepare_to_resume;
4775}
4776
4777/* See linux-nat.h. */
4778
4779int
4780linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4781{
4782 int pid;
4783
4784 pid = ptid_get_lwp (ptid);
4785 if (pid == 0)
4786 pid = ptid_get_pid (ptid);
4787
4788 errno = 0;
4789 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4790 if (errno != 0)
4791 {
4792 memset (siginfo, 0, sizeof (*siginfo));
4793 return 0;
4794 }
4795 return 1;
4796}
4797
4798/* Provide a prototype to silence -Wmissing-prototypes. */
4799extern initialize_file_ftype _initialize_linux_nat;
4800
4801void
4802_initialize_linux_nat (void)
4803{
4804 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4805 &debug_linux_nat, _("\
4806Set debugging of GNU/Linux lwp module."), _("\
4807Show debugging of GNU/Linux lwp module."), _("\
4808Enables printf debugging output."),
4809 NULL,
4810 show_debug_linux_nat,
4811 &setdebuglist, &showdebuglist);
4812
4813 /* Save this mask as the default. */
4814 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4815
4816 /* Install a SIGCHLD handler. */
4817 sigchld_action.sa_handler = sigchld_handler;
4818 sigemptyset (&sigchld_action.sa_mask);
4819 sigchld_action.sa_flags = SA_RESTART;
4820
4821 /* Make it the default. */
4822 sigaction (SIGCHLD, &sigchld_action, NULL);
4823
4824 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4825 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4826 sigdelset (&suspend_mask, SIGCHLD);
4827
4828 sigemptyset (&blocked_mask);
4829
4830 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to
4831 support read-only process state. */
4832 linux_ptrace_set_additional_flags (PTRACE_O_TRACESYSGOOD
4833 | PTRACE_O_TRACEVFORKDONE
4834 | PTRACE_O_TRACEVFORK
4835 | PTRACE_O_TRACEFORK
4836 | PTRACE_O_TRACEEXEC);
4837}
4838\f
4839
4840/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4841 the GNU/Linux Threads library and therefore doesn't really belong
4842 here. */
4843
4844/* Read variable NAME in the target and return its value if found.
4845 Otherwise return zero. It is assumed that the type of the variable
4846 is `int'. */
4847
4848static int
4849get_signo (const char *name)
4850{
4851 struct bound_minimal_symbol ms;
4852 int signo;
4853
4854 ms = lookup_minimal_symbol (name, NULL, NULL);
4855 if (ms.minsym == NULL)
4856 return 0;
4857
4858 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
4859 sizeof (signo)) != 0)
4860 return 0;
4861
4862 return signo;
4863}
4864
4865/* Return the set of signals used by the threads library in *SET. */
4866
4867void
4868lin_thread_get_thread_signals (sigset_t *set)
4869{
4870 struct sigaction action;
4871 int restart, cancel;
4872
4873 sigemptyset (&blocked_mask);
4874 sigemptyset (set);
4875
4876 restart = get_signo ("__pthread_sig_restart");
4877 cancel = get_signo ("__pthread_sig_cancel");
4878
4879 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4880 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4881 not provide any way for the debugger to query the signal numbers -
4882 fortunately they don't change! */
4883
4884 if (restart == 0)
4885 restart = __SIGRTMIN;
4886
4887 if (cancel == 0)
4888 cancel = __SIGRTMIN + 1;
4889
4890 sigaddset (set, restart);
4891 sigaddset (set, cancel);
4892
4893 /* The GNU/Linux Threads library makes terminating threads send a
4894 special "cancel" signal instead of SIGCHLD. Make sure we catch
4895 those (to prevent them from terminating GDB itself, which is
4896 likely to be their default action) and treat them the same way as
4897 SIGCHLD. */
4898
4899 action.sa_handler = sigchld_handler;
4900 sigemptyset (&action.sa_mask);
4901 action.sa_flags = SA_RESTART;
4902 sigaction (cancel, &action, NULL);
4903
4904 /* We block the "cancel" signal throughout this code ... */
4905 sigaddset (&blocked_mask, cancel);
4906 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4907
4908 /* ... except during a sigsuspend. */
4909 sigdelset (&suspend_mask, cancel);
4910}
This page took 0.038597 seconds and 4 git commands to generate.