| 1 | /* Target-dependent code for Lattice Mico32 processor, for GDB. |
| 2 | Contributed by Jon Beniston <jon@beniston.com> |
| 3 | |
| 4 | Copyright (C) 2009-2020 Free Software Foundation, Inc. |
| 5 | |
| 6 | This file is part of GDB. |
| 7 | |
| 8 | This program is free software; you can redistribute it and/or modify |
| 9 | it under the terms of the GNU General Public License as published by |
| 10 | the Free Software Foundation; either version 3 of the License, or |
| 11 | (at your option) any later version. |
| 12 | |
| 13 | This program is distributed in the hope that it will be useful, |
| 14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | GNU General Public License for more details. |
| 17 | |
| 18 | You should have received a copy of the GNU General Public License |
| 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| 20 | |
| 21 | #include "defs.h" |
| 22 | #include "frame.h" |
| 23 | #include "frame-unwind.h" |
| 24 | #include "frame-base.h" |
| 25 | #include "inferior.h" |
| 26 | #include "dis-asm.h" |
| 27 | #include "symfile.h" |
| 28 | #include "remote.h" |
| 29 | #include "gdbcore.h" |
| 30 | #include "gdb/sim-lm32.h" |
| 31 | #include "gdb/callback.h" |
| 32 | #include "gdb/remote-sim.h" |
| 33 | #include "sim-regno.h" |
| 34 | #include "arch-utils.h" |
| 35 | #include "regcache.h" |
| 36 | #include "trad-frame.h" |
| 37 | #include "reggroups.h" |
| 38 | #include "opcodes/lm32-desc.h" |
| 39 | #include <algorithm> |
| 40 | |
| 41 | /* Macros to extract fields from an instruction. */ |
| 42 | #define LM32_OPCODE(insn) ((insn >> 26) & 0x3f) |
| 43 | #define LM32_REG0(insn) ((insn >> 21) & 0x1f) |
| 44 | #define LM32_REG1(insn) ((insn >> 16) & 0x1f) |
| 45 | #define LM32_REG2(insn) ((insn >> 11) & 0x1f) |
| 46 | #define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16) |
| 47 | |
| 48 | struct gdbarch_tdep |
| 49 | { |
| 50 | /* gdbarch target dependent data here. Currently unused for LM32. */ |
| 51 | }; |
| 52 | |
| 53 | struct lm32_frame_cache |
| 54 | { |
| 55 | /* The frame's base. Used when constructing a frame ID. */ |
| 56 | CORE_ADDR base; |
| 57 | CORE_ADDR pc; |
| 58 | /* Size of frame. */ |
| 59 | int size; |
| 60 | /* Table indicating the location of each and every register. */ |
| 61 | struct trad_frame_saved_reg *saved_regs; |
| 62 | }; |
| 63 | |
| 64 | /* Add the available register groups. */ |
| 65 | |
| 66 | static void |
| 67 | lm32_add_reggroups (struct gdbarch *gdbarch) |
| 68 | { |
| 69 | reggroup_add (gdbarch, general_reggroup); |
| 70 | reggroup_add (gdbarch, all_reggroup); |
| 71 | reggroup_add (gdbarch, system_reggroup); |
| 72 | } |
| 73 | |
| 74 | /* Return whether a given register is in a given group. */ |
| 75 | |
| 76 | static int |
| 77 | lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
| 78 | struct reggroup *group) |
| 79 | { |
| 80 | if (group == general_reggroup) |
| 81 | return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM)) |
| 82 | || (regnum == SIM_LM32_PC_REGNUM); |
| 83 | else if (group == system_reggroup) |
| 84 | return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM)) |
| 85 | || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM)); |
| 86 | return default_register_reggroup_p (gdbarch, regnum, group); |
| 87 | } |
| 88 | |
| 89 | /* Return a name that corresponds to the given register number. */ |
| 90 | |
| 91 | static const char * |
| 92 | lm32_register_name (struct gdbarch *gdbarch, int reg_nr) |
| 93 | { |
| 94 | static const char *register_names[] = { |
| 95 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| 96 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
| 97 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
| 98 | "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba", |
| 99 | "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP" |
| 100 | }; |
| 101 | |
| 102 | if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names))) |
| 103 | return NULL; |
| 104 | else |
| 105 | return register_names[reg_nr]; |
| 106 | } |
| 107 | |
| 108 | /* Return type of register. */ |
| 109 | |
| 110 | static struct type * |
| 111 | lm32_register_type (struct gdbarch *gdbarch, int reg_nr) |
| 112 | { |
| 113 | return builtin_type (gdbarch)->builtin_int32; |
| 114 | } |
| 115 | |
| 116 | /* Return non-zero if a register can't be written. */ |
| 117 | |
| 118 | static int |
| 119 | lm32_cannot_store_register (struct gdbarch *gdbarch, int regno) |
| 120 | { |
| 121 | return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM); |
| 122 | } |
| 123 | |
| 124 | /* Analyze a function's prologue. */ |
| 125 | |
| 126 | static CORE_ADDR |
| 127 | lm32_analyze_prologue (struct gdbarch *gdbarch, |
| 128 | CORE_ADDR pc, CORE_ADDR limit, |
| 129 | struct lm32_frame_cache *info) |
| 130 | { |
| 131 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 132 | unsigned long instruction; |
| 133 | |
| 134 | /* Keep reading though instructions, until we come across an instruction |
| 135 | that isn't likely to be part of the prologue. */ |
| 136 | info->size = 0; |
| 137 | for (; pc < limit; pc += 4) |
| 138 | { |
| 139 | |
| 140 | /* Read an instruction. */ |
| 141 | instruction = read_memory_integer (pc, 4, byte_order); |
| 142 | |
| 143 | if ((LM32_OPCODE (instruction) == OP_SW) |
| 144 | && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM)) |
| 145 | { |
| 146 | /* Any stack displaced store is likely part of the prologue. |
| 147 | Record that the register is being saved, and the offset |
| 148 | into the stack. */ |
| 149 | info->saved_regs[LM32_REG1 (instruction)].addr = |
| 150 | LM32_IMM16 (instruction); |
| 151 | } |
| 152 | else if ((LM32_OPCODE (instruction) == OP_ADDI) |
| 153 | && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM)) |
| 154 | { |
| 155 | /* An add to the SP is likely to be part of the prologue. |
| 156 | Adjust stack size by whatever the instruction adds to the sp. */ |
| 157 | info->size -= LM32_IMM16 (instruction); |
| 158 | } |
| 159 | else if ( /* add fp,fp,sp */ |
| 160 | ((LM32_OPCODE (instruction) == OP_ADD) |
| 161 | && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM) |
| 162 | && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM) |
| 163 | && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM)) |
| 164 | /* mv fp,imm */ |
| 165 | || ((LM32_OPCODE (instruction) == OP_ADDI) |
| 166 | && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM) |
| 167 | && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM))) |
| 168 | { |
| 169 | /* Likely to be in the prologue for functions that require |
| 170 | a frame pointer. */ |
| 171 | } |
| 172 | else |
| 173 | { |
| 174 | /* Any other instruction is likely not to be part of the |
| 175 | prologue. */ |
| 176 | break; |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | return pc; |
| 181 | } |
| 182 | |
| 183 | /* Return PC of first non prologue instruction, for the function at the |
| 184 | specified address. */ |
| 185 | |
| 186 | static CORE_ADDR |
| 187 | lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| 188 | { |
| 189 | CORE_ADDR func_addr, limit_pc; |
| 190 | struct lm32_frame_cache frame_info; |
| 191 | struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS]; |
| 192 | |
| 193 | /* See if we can determine the end of the prologue via the symbol table. |
| 194 | If so, then return either PC, or the PC after the prologue, whichever |
| 195 | is greater. */ |
| 196 | if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) |
| 197 | { |
| 198 | CORE_ADDR post_prologue_pc |
| 199 | = skip_prologue_using_sal (gdbarch, func_addr); |
| 200 | if (post_prologue_pc != 0) |
| 201 | return std::max (pc, post_prologue_pc); |
| 202 | } |
| 203 | |
| 204 | /* Can't determine prologue from the symbol table, need to examine |
| 205 | instructions. */ |
| 206 | |
| 207 | /* Find an upper limit on the function prologue using the debug |
| 208 | information. If the debug information could not be used to provide |
| 209 | that bound, then use an arbitrary large number as the upper bound. */ |
| 210 | limit_pc = skip_prologue_using_sal (gdbarch, pc); |
| 211 | if (limit_pc == 0) |
| 212 | limit_pc = pc + 100; /* Magic. */ |
| 213 | |
| 214 | frame_info.saved_regs = saved_regs; |
| 215 | return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info); |
| 216 | } |
| 217 | |
| 218 | /* Create a breakpoint instruction. */ |
| 219 | constexpr gdb_byte lm32_break_insn[4] = { OP_RAISE << 2, 0, 0, 2 }; |
| 220 | |
| 221 | typedef BP_MANIPULATION (lm32_break_insn) lm32_breakpoint; |
| 222 | |
| 223 | |
| 224 | /* Setup registers and stack for faking a call to a function in the |
| 225 | inferior. */ |
| 226 | |
| 227 | static CORE_ADDR |
| 228 | lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| 229 | struct regcache *regcache, CORE_ADDR bp_addr, |
| 230 | int nargs, struct value **args, CORE_ADDR sp, |
| 231 | function_call_return_method return_method, |
| 232 | CORE_ADDR struct_addr) |
| 233 | { |
| 234 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 235 | int first_arg_reg = SIM_LM32_R1_REGNUM; |
| 236 | int num_arg_regs = 8; |
| 237 | int i; |
| 238 | |
| 239 | /* Set the return address. */ |
| 240 | regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr); |
| 241 | |
| 242 | /* If we're returning a large struct, a pointer to the address to |
| 243 | store it at is passed as a first hidden parameter. */ |
| 244 | if (return_method == return_method_struct) |
| 245 | { |
| 246 | regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr); |
| 247 | first_arg_reg++; |
| 248 | num_arg_regs--; |
| 249 | sp -= 4; |
| 250 | } |
| 251 | |
| 252 | /* Setup parameters. */ |
| 253 | for (i = 0; i < nargs; i++) |
| 254 | { |
| 255 | struct value *arg = args[i]; |
| 256 | struct type *arg_type = check_typedef (value_type (arg)); |
| 257 | gdb_byte *contents; |
| 258 | ULONGEST val; |
| 259 | |
| 260 | /* Promote small integer types to int. */ |
| 261 | switch (TYPE_CODE (arg_type)) |
| 262 | { |
| 263 | case TYPE_CODE_INT: |
| 264 | case TYPE_CODE_BOOL: |
| 265 | case TYPE_CODE_CHAR: |
| 266 | case TYPE_CODE_RANGE: |
| 267 | case TYPE_CODE_ENUM: |
| 268 | if (TYPE_LENGTH (arg_type) < 4) |
| 269 | { |
| 270 | arg_type = builtin_type (gdbarch)->builtin_int32; |
| 271 | arg = value_cast (arg_type, arg); |
| 272 | } |
| 273 | break; |
| 274 | } |
| 275 | |
| 276 | /* FIXME: Handle structures. */ |
| 277 | |
| 278 | contents = (gdb_byte *) value_contents (arg); |
| 279 | val = extract_unsigned_integer (contents, TYPE_LENGTH (arg_type), |
| 280 | byte_order); |
| 281 | |
| 282 | /* First num_arg_regs parameters are passed by registers, |
| 283 | and the rest are passed on the stack. */ |
| 284 | if (i < num_arg_regs) |
| 285 | regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val); |
| 286 | else |
| 287 | { |
| 288 | write_memory_unsigned_integer (sp, TYPE_LENGTH (arg_type), byte_order, |
| 289 | val); |
| 290 | sp -= 4; |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | /* Update stack pointer. */ |
| 295 | regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp); |
| 296 | |
| 297 | /* Return adjusted stack pointer. */ |
| 298 | return sp; |
| 299 | } |
| 300 | |
| 301 | /* Extract return value after calling a function in the inferior. */ |
| 302 | |
| 303 | static void |
| 304 | lm32_extract_return_value (struct type *type, struct regcache *regcache, |
| 305 | gdb_byte *valbuf) |
| 306 | { |
| 307 | struct gdbarch *gdbarch = regcache->arch (); |
| 308 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 309 | ULONGEST l; |
| 310 | CORE_ADDR return_buffer; |
| 311 | |
| 312 | if (TYPE_CODE (type) != TYPE_CODE_STRUCT |
| 313 | && TYPE_CODE (type) != TYPE_CODE_UNION |
| 314 | && TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4) |
| 315 | { |
| 316 | /* Return value is returned in a single register. */ |
| 317 | regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l); |
| 318 | store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l); |
| 319 | } |
| 320 | else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8)) |
| 321 | { |
| 322 | /* 64-bit values are returned in a register pair. */ |
| 323 | regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l); |
| 324 | memcpy (valbuf, &l, 4); |
| 325 | regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l); |
| 326 | memcpy (valbuf + 4, &l, 4); |
| 327 | } |
| 328 | else |
| 329 | { |
| 330 | /* Aggregate types greater than a single register are returned |
| 331 | in memory. FIXME: Unless they are only 2 regs?. */ |
| 332 | regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l); |
| 333 | return_buffer = l; |
| 334 | read_memory (return_buffer, valbuf, TYPE_LENGTH (type)); |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | /* Write into appropriate registers a function return value of type |
| 339 | TYPE, given in virtual format. */ |
| 340 | static void |
| 341 | lm32_store_return_value (struct type *type, struct regcache *regcache, |
| 342 | const gdb_byte *valbuf) |
| 343 | { |
| 344 | struct gdbarch *gdbarch = regcache->arch (); |
| 345 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 346 | ULONGEST val; |
| 347 | int len = TYPE_LENGTH (type); |
| 348 | |
| 349 | if (len <= 4) |
| 350 | { |
| 351 | val = extract_unsigned_integer (valbuf, len, byte_order); |
| 352 | regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val); |
| 353 | } |
| 354 | else if (len <= 8) |
| 355 | { |
| 356 | val = extract_unsigned_integer (valbuf, 4, byte_order); |
| 357 | regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val); |
| 358 | val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order); |
| 359 | regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val); |
| 360 | } |
| 361 | else |
| 362 | error (_("lm32_store_return_value: type length too large.")); |
| 363 | } |
| 364 | |
| 365 | /* Determine whether a functions return value is in a register or memory. */ |
| 366 | static enum return_value_convention |
| 367 | lm32_return_value (struct gdbarch *gdbarch, struct value *function, |
| 368 | struct type *valtype, struct regcache *regcache, |
| 369 | gdb_byte *readbuf, const gdb_byte *writebuf) |
| 370 | { |
| 371 | enum type_code code = TYPE_CODE (valtype); |
| 372 | |
| 373 | if (code == TYPE_CODE_STRUCT |
| 374 | || code == TYPE_CODE_UNION |
| 375 | || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8) |
| 376 | return RETURN_VALUE_STRUCT_CONVENTION; |
| 377 | |
| 378 | if (readbuf) |
| 379 | lm32_extract_return_value (valtype, regcache, readbuf); |
| 380 | if (writebuf) |
| 381 | lm32_store_return_value (valtype, regcache, writebuf); |
| 382 | |
| 383 | return RETURN_VALUE_REGISTER_CONVENTION; |
| 384 | } |
| 385 | |
| 386 | /* Put here the code to store, into fi->saved_regs, the addresses of |
| 387 | the saved registers of frame described by FRAME_INFO. This |
| 388 | includes special registers such as pc and fp saved in special ways |
| 389 | in the stack frame. sp is even more special: the address we return |
| 390 | for it IS the sp for the next frame. */ |
| 391 | |
| 392 | static struct lm32_frame_cache * |
| 393 | lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache) |
| 394 | { |
| 395 | CORE_ADDR current_pc; |
| 396 | ULONGEST prev_sp; |
| 397 | ULONGEST this_base; |
| 398 | struct lm32_frame_cache *info; |
| 399 | int i; |
| 400 | |
| 401 | if ((*this_prologue_cache)) |
| 402 | return (struct lm32_frame_cache *) (*this_prologue_cache); |
| 403 | |
| 404 | info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache); |
| 405 | (*this_prologue_cache) = info; |
| 406 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| 407 | |
| 408 | info->pc = get_frame_func (this_frame); |
| 409 | current_pc = get_frame_pc (this_frame); |
| 410 | lm32_analyze_prologue (get_frame_arch (this_frame), |
| 411 | info->pc, current_pc, info); |
| 412 | |
| 413 | /* Compute the frame's base, and the previous frame's SP. */ |
| 414 | this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM); |
| 415 | prev_sp = this_base + info->size; |
| 416 | info->base = this_base; |
| 417 | |
| 418 | /* Convert callee save offsets into addresses. */ |
| 419 | for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++) |
| 420 | { |
| 421 | if (trad_frame_addr_p (info->saved_regs, i)) |
| 422 | info->saved_regs[i].addr = this_base + info->saved_regs[i].addr; |
| 423 | } |
| 424 | |
| 425 | /* The call instruction moves the caller's PC in the callee's RA register. |
| 426 | Since this is an unwind, do the reverse. Copy the location of RA register |
| 427 | into PC (the address / regnum) so that a request for PC will be |
| 428 | converted into a request for the RA register. */ |
| 429 | info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM]; |
| 430 | |
| 431 | /* The previous frame's SP needed to be computed. Save the computed |
| 432 | value. */ |
| 433 | trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp); |
| 434 | |
| 435 | return info; |
| 436 | } |
| 437 | |
| 438 | static void |
| 439 | lm32_frame_this_id (struct frame_info *this_frame, void **this_cache, |
| 440 | struct frame_id *this_id) |
| 441 | { |
| 442 | struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache); |
| 443 | |
| 444 | /* This marks the outermost frame. */ |
| 445 | if (cache->base == 0) |
| 446 | return; |
| 447 | |
| 448 | (*this_id) = frame_id_build (cache->base, cache->pc); |
| 449 | } |
| 450 | |
| 451 | static struct value * |
| 452 | lm32_frame_prev_register (struct frame_info *this_frame, |
| 453 | void **this_prologue_cache, int regnum) |
| 454 | { |
| 455 | struct lm32_frame_cache *info; |
| 456 | |
| 457 | info = lm32_frame_cache (this_frame, this_prologue_cache); |
| 458 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); |
| 459 | } |
| 460 | |
| 461 | static const struct frame_unwind lm32_frame_unwind = { |
| 462 | NORMAL_FRAME, |
| 463 | default_frame_unwind_stop_reason, |
| 464 | lm32_frame_this_id, |
| 465 | lm32_frame_prev_register, |
| 466 | NULL, |
| 467 | default_frame_sniffer |
| 468 | }; |
| 469 | |
| 470 | static CORE_ADDR |
| 471 | lm32_frame_base_address (struct frame_info *this_frame, void **this_cache) |
| 472 | { |
| 473 | struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache); |
| 474 | |
| 475 | return info->base; |
| 476 | } |
| 477 | |
| 478 | static const struct frame_base lm32_frame_base = { |
| 479 | &lm32_frame_unwind, |
| 480 | lm32_frame_base_address, |
| 481 | lm32_frame_base_address, |
| 482 | lm32_frame_base_address |
| 483 | }; |
| 484 | |
| 485 | static CORE_ADDR |
| 486 | lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
| 487 | { |
| 488 | /* Align to the size of an instruction (so that they can safely be |
| 489 | pushed onto the stack. */ |
| 490 | return sp & ~3; |
| 491 | } |
| 492 | |
| 493 | static struct gdbarch * |
| 494 | lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
| 495 | { |
| 496 | struct gdbarch *gdbarch; |
| 497 | struct gdbarch_tdep *tdep; |
| 498 | |
| 499 | /* If there is already a candidate, use it. */ |
| 500 | arches = gdbarch_list_lookup_by_info (arches, &info); |
| 501 | if (arches != NULL) |
| 502 | return arches->gdbarch; |
| 503 | |
| 504 | /* None found, create a new architecture from the information provided. */ |
| 505 | tdep = XCNEW (struct gdbarch_tdep); |
| 506 | gdbarch = gdbarch_alloc (&info, tdep); |
| 507 | |
| 508 | /* Type sizes. */ |
| 509 | set_gdbarch_short_bit (gdbarch, 16); |
| 510 | set_gdbarch_int_bit (gdbarch, 32); |
| 511 | set_gdbarch_long_bit (gdbarch, 32); |
| 512 | set_gdbarch_long_long_bit (gdbarch, 64); |
| 513 | set_gdbarch_float_bit (gdbarch, 32); |
| 514 | set_gdbarch_double_bit (gdbarch, 64); |
| 515 | set_gdbarch_long_double_bit (gdbarch, 64); |
| 516 | set_gdbarch_ptr_bit (gdbarch, 32); |
| 517 | |
| 518 | /* Register info. */ |
| 519 | set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS); |
| 520 | set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM); |
| 521 | set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM); |
| 522 | set_gdbarch_register_name (gdbarch, lm32_register_name); |
| 523 | set_gdbarch_register_type (gdbarch, lm32_register_type); |
| 524 | set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register); |
| 525 | |
| 526 | /* Frame info. */ |
| 527 | set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue); |
| 528 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
| 529 | set_gdbarch_decr_pc_after_break (gdbarch, 0); |
| 530 | set_gdbarch_frame_args_skip (gdbarch, 0); |
| 531 | |
| 532 | /* Frame unwinding. */ |
| 533 | set_gdbarch_frame_align (gdbarch, lm32_frame_align); |
| 534 | frame_base_set_default (gdbarch, &lm32_frame_base); |
| 535 | frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind); |
| 536 | |
| 537 | /* Breakpoints. */ |
| 538 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, lm32_breakpoint::kind_from_pc); |
| 539 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, lm32_breakpoint::bp_from_kind); |
| 540 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); |
| 541 | |
| 542 | /* Calling functions in the inferior. */ |
| 543 | set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call); |
| 544 | set_gdbarch_return_value (gdbarch, lm32_return_value); |
| 545 | |
| 546 | lm32_add_reggroups (gdbarch); |
| 547 | set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p); |
| 548 | |
| 549 | return gdbarch; |
| 550 | } |
| 551 | |
| 552 | void _initialize_lm32_tdep (); |
| 553 | void |
| 554 | _initialize_lm32_tdep () |
| 555 | { |
| 556 | register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init); |
| 557 | } |