* m68k-tdep.c (m68k_ps_type): New.
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
... / ...
CommitLineData
1/* Target-dependent code for the Motorola 68000 series.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23#include "defs.h"
24#include "dwarf2-frame.h"
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbtypes.h"
29#include "symtab.h"
30#include "gdbcore.h"
31#include "value.h"
32#include "gdb_string.h"
33#include "gdb_assert.h"
34#include "inferior.h"
35#include "regcache.h"
36#include "arch-utils.h"
37#include "osabi.h"
38#include "dis-asm.h"
39#include "target-descriptions.h"
40
41#include "m68k-tdep.h"
42\f
43
44#define P_LINKL_FP 0x480e
45#define P_LINKW_FP 0x4e56
46#define P_PEA_FP 0x4856
47#define P_MOVEAL_SP_FP 0x2c4f
48#define P_ADDAW_SP 0xdefc
49#define P_ADDAL_SP 0xdffc
50#define P_SUBQW_SP 0x514f
51#define P_SUBQL_SP 0x518f
52#define P_LEA_SP_SP 0x4fef
53#define P_LEA_PC_A5 0x4bfb0170
54#define P_FMOVEMX_SP 0xf227
55#define P_MOVEL_SP 0x2f00
56#define P_MOVEML_SP 0x48e7
57
58/* Offset from SP to first arg on stack at first instruction of a function */
59#define SP_ARG0 (1 * 4)
60
61#if !defined (BPT_VECTOR)
62#define BPT_VECTOR 0xf
63#endif
64
65static const gdb_byte *
66m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
67{
68 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
69 *lenptr = sizeof (break_insn);
70 return break_insn;
71}
72\f
73
74/* Type for %ps. */
75struct type *m68k_ps_type;
76
77/* Construct types for ISA-specific registers. */
78static void
79m68k_init_types (void)
80{
81 struct type *type;
82
83 type = init_flags_type ("builtin_type_m68k_ps", 4);
84 append_flags_type_flag (type, 0, "C");
85 append_flags_type_flag (type, 1, "V");
86 append_flags_type_flag (type, 2, "Z");
87 append_flags_type_flag (type, 3, "N");
88 append_flags_type_flag (type, 4, "X");
89 append_flags_type_flag (type, 8, "I0");
90 append_flags_type_flag (type, 9, "I1");
91 append_flags_type_flag (type, 10, "I2");
92 append_flags_type_flag (type, 12, "M");
93 append_flags_type_flag (type, 13, "S");
94 append_flags_type_flag (type, 14, "T0");
95 append_flags_type_flag (type, 15, "T1");
96 m68k_ps_type = type;
97}
98
99/* Return the GDB type object for the "standard" data type of data in
100 register N. This should be int for D0-D7, SR, FPCONTROL and
101 FPSTATUS, long double for FP0-FP7, and void pointer for all others
102 (A0-A7, PC, FPIADDR). Note, for registers which contain
103 addresses return pointer to void, not pointer to char, because we
104 don't want to attempt to print the string after printing the
105 address. */
106
107static struct type *
108m68k_register_type (struct gdbarch *gdbarch, int regnum)
109{
110 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
111
112 if (tdep->fpregs_present)
113 {
114 if (regnum >= gdbarch_fp0_regnum (current_gdbarch)
115 && regnum <= gdbarch_fp0_regnum (current_gdbarch) + 7)
116 {
117 if (tdep->flavour == m68k_coldfire_flavour)
118 return builtin_type (gdbarch)->builtin_double;
119 else
120 return builtin_type_m68881_ext;
121 }
122
123 if (regnum == M68K_FPI_REGNUM)
124 return builtin_type_void_func_ptr;
125
126 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
127 return builtin_type_int32;
128 }
129 else
130 {
131 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
132 return builtin_type_int0;
133 }
134
135 if (regnum == gdbarch_pc_regnum (current_gdbarch))
136 return builtin_type_void_func_ptr;
137
138 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
139 return builtin_type_void_data_ptr;
140
141 if (regnum == M68K_PS_REGNUM)
142 return m68k_ps_type;
143
144 return builtin_type_int32;
145}
146
147static const char *m68k_register_names[] = {
148 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
149 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
150 "ps", "pc",
151 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
152 "fpcontrol", "fpstatus", "fpiaddr"
153 };
154
155/* Function: m68k_register_name
156 Returns the name of the standard m68k register regnum. */
157
158static const char *
159m68k_register_name (int regnum)
160{
161 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
162 internal_error (__FILE__, __LINE__,
163 _("m68k_register_name: illegal register number %d"), regnum);
164 else
165 return m68k_register_names[regnum];
166}
167\f
168/* Return nonzero if a value of type TYPE stored in register REGNUM
169 needs any special handling. */
170
171static int
172m68k_convert_register_p (int regnum, struct type *type)
173{
174 if (!gdbarch_tdep (current_gdbarch)->fpregs_present)
175 return 0;
176 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7);
177}
178
179/* Read a value of type TYPE from register REGNUM in frame FRAME, and
180 return its contents in TO. */
181
182static void
183m68k_register_to_value (struct frame_info *frame, int regnum,
184 struct type *type, gdb_byte *to)
185{
186 gdb_byte from[M68K_MAX_REGISTER_SIZE];
187 struct type *fpreg_type = register_type (current_gdbarch, M68K_FP0_REGNUM);
188
189 /* We only support floating-point values. */
190 if (TYPE_CODE (type) != TYPE_CODE_FLT)
191 {
192 warning (_("Cannot convert floating-point register value "
193 "to non-floating-point type."));
194 return;
195 }
196
197 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
198 the extended floating-point format used by the FPU. */
199 get_frame_register (frame, regnum, from);
200 convert_typed_floating (from, fpreg_type, to, type);
201}
202
203/* Write the contents FROM of a value of type TYPE into register
204 REGNUM in frame FRAME. */
205
206static void
207m68k_value_to_register (struct frame_info *frame, int regnum,
208 struct type *type, const gdb_byte *from)
209{
210 gdb_byte to[M68K_MAX_REGISTER_SIZE];
211 struct type *fpreg_type = register_type (current_gdbarch, M68K_FP0_REGNUM);
212
213 /* We only support floating-point values. */
214 if (TYPE_CODE (type) != TYPE_CODE_FLT)
215 {
216 warning (_("Cannot convert non-floating-point type "
217 "to floating-point register value."));
218 return;
219 }
220
221 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
222 to the extended floating-point format used by the FPU. */
223 convert_typed_floating (from, type, to, fpreg_type);
224 put_frame_register (frame, regnum, to);
225}
226
227\f
228/* There is a fair number of calling conventions that are in somewhat
229 wide use. The 68000/08/10 don't support an FPU, not even as a
230 coprocessor. All function return values are stored in %d0/%d1.
231 Structures are returned in a static buffer, a pointer to which is
232 returned in %d0. This means that functions returning a structure
233 are not re-entrant. To avoid this problem some systems use a
234 convention where the caller passes a pointer to a buffer in %a1
235 where the return values is to be stored. This convention is the
236 default, and is implemented in the function m68k_return_value.
237
238 The 68020/030/040/060 do support an FPU, either as a coprocessor
239 (68881/2) or built-in (68040/68060). That's why System V release 4
240 (SVR4) instroduces a new calling convention specified by the SVR4
241 psABI. Integer values are returned in %d0/%d1, pointer return
242 values in %a0 and floating values in %fp0. When calling functions
243 returning a structure the caller should pass a pointer to a buffer
244 for the return value in %a0. This convention is implemented in the
245 function m68k_svr4_return_value, and by appropriately setting the
246 struct_value_regnum member of `struct gdbarch_tdep'.
247
248 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
249 for passing the structure return value buffer.
250
251 GCC can also generate code where small structures are returned in
252 %d0/%d1 instead of in memory by using -freg-struct-return. This is
253 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
254 embedded systems. This convention is implemented by setting the
255 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
256
257/* Read a function return value of TYPE from REGCACHE, and copy that
258 into VALBUF. */
259
260static void
261m68k_extract_return_value (struct type *type, struct regcache *regcache,
262 gdb_byte *valbuf)
263{
264 int len = TYPE_LENGTH (type);
265 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
266
267 if (len <= 4)
268 {
269 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
270 memcpy (valbuf, buf + (4 - len), len);
271 }
272 else if (len <= 8)
273 {
274 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
275 memcpy (valbuf, buf + (8 - len), len - 4);
276 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
277 }
278 else
279 internal_error (__FILE__, __LINE__,
280 _("Cannot extract return value of %d bytes long."), len);
281}
282
283static void
284m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
285 gdb_byte *valbuf)
286{
287 int len = TYPE_LENGTH (type);
288 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
289 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
290
291 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
292 {
293 struct type *fpreg_type = register_type
294 (current_gdbarch, M68K_FP0_REGNUM);
295 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
296 convert_typed_floating (buf, fpreg_type, valbuf, type);
297 }
298 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
299 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
300 else
301 m68k_extract_return_value (type, regcache, valbuf);
302}
303
304/* Write a function return value of TYPE from VALBUF into REGCACHE. */
305
306static void
307m68k_store_return_value (struct type *type, struct regcache *regcache,
308 const gdb_byte *valbuf)
309{
310 int len = TYPE_LENGTH (type);
311
312 if (len <= 4)
313 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
314 else if (len <= 8)
315 {
316 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
317 len - 4, valbuf);
318 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
319 }
320 else
321 internal_error (__FILE__, __LINE__,
322 _("Cannot store return value of %d bytes long."), len);
323}
324
325static void
326m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
327 const gdb_byte *valbuf)
328{
329 int len = TYPE_LENGTH (type);
330 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
331
332 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
333 {
334 struct type *fpreg_type = register_type
335 (current_gdbarch, M68K_FP0_REGNUM);
336 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
337 convert_typed_floating (valbuf, type, buf, fpreg_type);
338 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
339 }
340 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
341 {
342 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
343 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
344 }
345 else
346 m68k_store_return_value (type, regcache, valbuf);
347}
348
349/* Return non-zero if TYPE, which is assumed to be a structure or
350 union type, should be returned in registers for architecture
351 GDBARCH. */
352
353static int
354m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
355{
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357 enum type_code code = TYPE_CODE (type);
358 int len = TYPE_LENGTH (type);
359
360 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
361
362 if (tdep->struct_return == pcc_struct_return)
363 return 0;
364
365 return (len == 1 || len == 2 || len == 4 || len == 8);
366}
367
368/* Determine, for architecture GDBARCH, how a return value of TYPE
369 should be returned. If it is supposed to be returned in registers,
370 and READBUF is non-zero, read the appropriate value from REGCACHE,
371 and copy it into READBUF. If WRITEBUF is non-zero, write the value
372 from WRITEBUF into REGCACHE. */
373
374static enum return_value_convention
375m68k_return_value (struct gdbarch *gdbarch, struct type *type,
376 struct regcache *regcache, gdb_byte *readbuf,
377 const gdb_byte *writebuf)
378{
379 enum type_code code = TYPE_CODE (type);
380
381 /* GCC returns a `long double' in memory too. */
382 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
383 && !m68k_reg_struct_return_p (gdbarch, type))
384 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
385 {
386 /* The default on m68k is to return structures in static memory.
387 Consequently a function must return the address where we can
388 find the return value. */
389
390 if (readbuf)
391 {
392 ULONGEST addr;
393
394 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
395 read_memory (addr, readbuf, TYPE_LENGTH (type));
396 }
397
398 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
399 }
400
401 if (readbuf)
402 m68k_extract_return_value (type, regcache, readbuf);
403 if (writebuf)
404 m68k_store_return_value (type, regcache, writebuf);
405
406 return RETURN_VALUE_REGISTER_CONVENTION;
407}
408
409static enum return_value_convention
410m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *type,
411 struct regcache *regcache, gdb_byte *readbuf,
412 const gdb_byte *writebuf)
413{
414 enum type_code code = TYPE_CODE (type);
415
416 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
417 && !m68k_reg_struct_return_p (gdbarch, type))
418 {
419 /* The System V ABI says that:
420
421 "A function returning a structure or union also sets %a0 to
422 the value it finds in %a0. Thus when the caller receives
423 control again, the address of the returned object resides in
424 register %a0."
425
426 So the ABI guarantees that we can always find the return
427 value just after the function has returned. */
428
429 if (readbuf)
430 {
431 ULONGEST addr;
432
433 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
434 read_memory (addr, readbuf, TYPE_LENGTH (type));
435 }
436
437 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
438 }
439
440 /* This special case is for structures consisting of a single
441 `float' or `double' member. These structures are returned in
442 %fp0. For these structures, we call ourselves recursively,
443 changing TYPE into the type of the first member of the structure.
444 Since that should work for all structures that have only one
445 member, we don't bother to check the member's type here. */
446 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
447 {
448 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
449 return m68k_svr4_return_value (gdbarch, type, regcache,
450 readbuf, writebuf);
451 }
452
453 if (readbuf)
454 m68k_svr4_extract_return_value (type, regcache, readbuf);
455 if (writebuf)
456 m68k_svr4_store_return_value (type, regcache, writebuf);
457
458 return RETURN_VALUE_REGISTER_CONVENTION;
459}
460\f
461
462/* Always align the frame to a 4-byte boundary. This is required on
463 coldfire and harmless on the rest. */
464
465static CORE_ADDR
466m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
467{
468 /* Align the stack to four bytes. */
469 return sp & ~3;
470}
471
472static CORE_ADDR
473m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
474 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
475 struct value **args, CORE_ADDR sp, int struct_return,
476 CORE_ADDR struct_addr)
477{
478 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
479 gdb_byte buf[4];
480 int i;
481
482 /* Push arguments in reverse order. */
483 for (i = nargs - 1; i >= 0; i--)
484 {
485 struct type *value_type = value_enclosing_type (args[i]);
486 int len = TYPE_LENGTH (value_type);
487 int container_len = (len + 3) & ~3;
488 int offset;
489
490 /* Non-scalars bigger than 4 bytes are left aligned, others are
491 right aligned. */
492 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
493 || TYPE_CODE (value_type) == TYPE_CODE_UNION
494 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
495 && len > 4)
496 offset = 0;
497 else
498 offset = container_len - len;
499 sp -= container_len;
500 write_memory (sp + offset, value_contents_all (args[i]), len);
501 }
502
503 /* Store struct value address. */
504 if (struct_return)
505 {
506 store_unsigned_integer (buf, 4, struct_addr);
507 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
508 }
509
510 /* Store return address. */
511 sp -= 4;
512 store_unsigned_integer (buf, 4, bp_addr);
513 write_memory (sp, buf, 4);
514
515 /* Finally, update the stack pointer... */
516 store_unsigned_integer (buf, 4, sp);
517 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
518
519 /* ...and fake a frame pointer. */
520 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
521
522 /* DWARF2/GCC uses the stack address *before* the function call as a
523 frame's CFA. */
524 return sp + 8;
525}
526
527/* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
528
529static int
530m68k_dwarf_reg_to_regnum (int num)
531{
532 if (num < 8)
533 /* d0..7 */
534 return (num - 0) + M68K_D0_REGNUM;
535 else if (num < 16)
536 /* a0..7 */
537 return (num - 8) + M68K_A0_REGNUM;
538 else if (num < 24 && gdbarch_tdep (current_gdbarch)->fpregs_present)
539 /* fp0..7 */
540 return (num - 16) + M68K_FP0_REGNUM;
541 else if (num == 25)
542 /* pc */
543 return M68K_PC_REGNUM;
544 else
545 return gdbarch_num_regs (current_gdbarch)
546 + gdbarch_num_pseudo_regs (current_gdbarch);
547}
548
549\f
550struct m68k_frame_cache
551{
552 /* Base address. */
553 CORE_ADDR base;
554 CORE_ADDR sp_offset;
555 CORE_ADDR pc;
556
557 /* Saved registers. */
558 CORE_ADDR saved_regs[M68K_NUM_REGS];
559 CORE_ADDR saved_sp;
560
561 /* Stack space reserved for local variables. */
562 long locals;
563};
564
565/* Allocate and initialize a frame cache. */
566
567static struct m68k_frame_cache *
568m68k_alloc_frame_cache (void)
569{
570 struct m68k_frame_cache *cache;
571 int i;
572
573 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
574
575 /* Base address. */
576 cache->base = 0;
577 cache->sp_offset = -4;
578 cache->pc = 0;
579
580 /* Saved registers. We initialize these to -1 since zero is a valid
581 offset (that's where %fp is supposed to be stored). */
582 for (i = 0; i < M68K_NUM_REGS; i++)
583 cache->saved_regs[i] = -1;
584
585 /* Frameless until proven otherwise. */
586 cache->locals = -1;
587
588 return cache;
589}
590
591/* Check whether PC points at a code that sets up a new stack frame.
592 If so, it updates CACHE and returns the address of the first
593 instruction after the sequence that sets removes the "hidden"
594 argument from the stack or CURRENT_PC, whichever is smaller.
595 Otherwise, return PC. */
596
597static CORE_ADDR
598m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
599 struct m68k_frame_cache *cache)
600{
601 int op;
602
603 if (pc >= current_pc)
604 return current_pc;
605
606 op = read_memory_unsigned_integer (pc, 2);
607
608 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
609 {
610 cache->saved_regs[M68K_FP_REGNUM] = 0;
611 cache->sp_offset += 4;
612 if (op == P_LINKW_FP)
613 {
614 /* link.w %fp, #-N */
615 /* link.w %fp, #0; adda.l #-N, %sp */
616 cache->locals = -read_memory_integer (pc + 2, 2);
617
618 if (pc + 4 < current_pc && cache->locals == 0)
619 {
620 op = read_memory_unsigned_integer (pc + 4, 2);
621 if (op == P_ADDAL_SP)
622 {
623 cache->locals = read_memory_integer (pc + 6, 4);
624 return pc + 10;
625 }
626 }
627
628 return pc + 4;
629 }
630 else if (op == P_LINKL_FP)
631 {
632 /* link.l %fp, #-N */
633 cache->locals = -read_memory_integer (pc + 2, 4);
634 return pc + 6;
635 }
636 else
637 {
638 /* pea (%fp); movea.l %sp, %fp */
639 cache->locals = 0;
640
641 if (pc + 2 < current_pc)
642 {
643 op = read_memory_unsigned_integer (pc + 2, 2);
644
645 if (op == P_MOVEAL_SP_FP)
646 {
647 /* move.l %sp, %fp */
648 return pc + 4;
649 }
650 }
651
652 return pc + 2;
653 }
654 }
655 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
656 {
657 /* subq.[wl] #N,%sp */
658 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
659 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
660 if (pc + 2 < current_pc)
661 {
662 op = read_memory_unsigned_integer (pc + 2, 2);
663 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
664 {
665 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
666 return pc + 4;
667 }
668 }
669 return pc + 2;
670 }
671 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
672 {
673 /* adda.w #-N,%sp */
674 /* lea (-N,%sp),%sp */
675 cache->locals = -read_memory_integer (pc + 2, 2);
676 return pc + 4;
677 }
678 else if (op == P_ADDAL_SP)
679 {
680 /* adda.l #-N,%sp */
681 cache->locals = -read_memory_integer (pc + 2, 4);
682 return pc + 6;
683 }
684
685 return pc;
686}
687
688/* Check whether PC points at code that saves registers on the stack.
689 If so, it updates CACHE and returns the address of the first
690 instruction after the register saves or CURRENT_PC, whichever is
691 smaller. Otherwise, return PC. */
692
693static CORE_ADDR
694m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
695 struct m68k_frame_cache *cache)
696{
697 if (cache->locals >= 0)
698 {
699 CORE_ADDR offset;
700 int op;
701 int i, mask, regno;
702
703 offset = -4 - cache->locals;
704 while (pc < current_pc)
705 {
706 op = read_memory_unsigned_integer (pc, 2);
707 if (op == P_FMOVEMX_SP
708 && gdbarch_tdep (current_gdbarch)->fpregs_present)
709 {
710 /* fmovem.x REGS,-(%sp) */
711 op = read_memory_unsigned_integer (pc + 2, 2);
712 if ((op & 0xff00) == 0xe000)
713 {
714 mask = op & 0xff;
715 for (i = 0; i < 16; i++, mask >>= 1)
716 {
717 if (mask & 1)
718 {
719 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
720 offset -= 12;
721 }
722 }
723 pc += 4;
724 }
725 else
726 break;
727 }
728 else if ((op & 0177760) == P_MOVEL_SP)
729 {
730 /* move.l %R,-(%sp) */
731 regno = op & 017;
732 cache->saved_regs[regno] = offset;
733 offset -= 4;
734 pc += 2;
735 }
736 else if (op == P_MOVEML_SP)
737 {
738 /* movem.l REGS,-(%sp) */
739 mask = read_memory_unsigned_integer (pc + 2, 2);
740 for (i = 0; i < 16; i++, mask >>= 1)
741 {
742 if (mask & 1)
743 {
744 cache->saved_regs[15 - i] = offset;
745 offset -= 4;
746 }
747 }
748 pc += 4;
749 }
750 else
751 break;
752 }
753 }
754
755 return pc;
756}
757
758
759/* Do a full analysis of the prologue at PC and update CACHE
760 accordingly. Bail out early if CURRENT_PC is reached. Return the
761 address where the analysis stopped.
762
763 We handle all cases that can be generated by gcc.
764
765 For allocating a stack frame:
766
767 link.w %a6,#-N
768 link.l %a6,#-N
769 pea (%fp); move.l %sp,%fp
770 link.w %a6,#0; add.l #-N,%sp
771 subq.l #N,%sp
772 subq.w #N,%sp
773 subq.w #8,%sp; subq.w #N-8,%sp
774 add.w #-N,%sp
775 lea (-N,%sp),%sp
776 add.l #-N,%sp
777
778 For saving registers:
779
780 fmovem.x REGS,-(%sp)
781 move.l R1,-(%sp)
782 move.l R1,-(%sp); move.l R2,-(%sp)
783 movem.l REGS,-(%sp)
784
785 For setting up the PIC register:
786
787 lea (%pc,N),%a5
788
789 */
790
791static CORE_ADDR
792m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
793 struct m68k_frame_cache *cache)
794{
795 unsigned int op;
796
797 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
798 pc = m68k_analyze_register_saves (pc, current_pc, cache);
799 if (pc >= current_pc)
800 return current_pc;
801
802 /* Check for GOT setup. */
803 op = read_memory_unsigned_integer (pc, 4);
804 if (op == P_LEA_PC_A5)
805 {
806 /* lea (%pc,N),%a5 */
807 return pc + 6;
808 }
809
810 return pc;
811}
812
813/* Return PC of first real instruction. */
814
815static CORE_ADDR
816m68k_skip_prologue (CORE_ADDR start_pc)
817{
818 struct m68k_frame_cache cache;
819 CORE_ADDR pc;
820 int op;
821
822 cache.locals = -1;
823 pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
824 if (cache.locals < 0)
825 return start_pc;
826 return pc;
827}
828
829static CORE_ADDR
830m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
831{
832 gdb_byte buf[8];
833
834 frame_unwind_register (next_frame, gdbarch_pc_regnum (current_gdbarch), buf);
835 return extract_typed_address (buf, builtin_type_void_func_ptr);
836}
837\f
838/* Normal frames. */
839
840static struct m68k_frame_cache *
841m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
842{
843 struct m68k_frame_cache *cache;
844 gdb_byte buf[4];
845 int i;
846
847 if (*this_cache)
848 return *this_cache;
849
850 cache = m68k_alloc_frame_cache ();
851 *this_cache = cache;
852
853 /* In principle, for normal frames, %fp holds the frame pointer,
854 which holds the base address for the current stack frame.
855 However, for functions that don't need it, the frame pointer is
856 optional. For these "frameless" functions the frame pointer is
857 actually the frame pointer of the calling frame. Signal
858 trampolines are just a special case of a "frameless" function.
859 They (usually) share their frame pointer with the frame that was
860 in progress when the signal occurred. */
861
862 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
863 cache->base = extract_unsigned_integer (buf, 4);
864 if (cache->base == 0)
865 return cache;
866
867 /* For normal frames, %pc is stored at 4(%fp). */
868 cache->saved_regs[M68K_PC_REGNUM] = 4;
869
870 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
871 if (cache->pc != 0)
872 m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
873
874 if (cache->locals < 0)
875 {
876 /* We didn't find a valid frame, which means that CACHE->base
877 currently holds the frame pointer for our calling frame. If
878 we're at the start of a function, or somewhere half-way its
879 prologue, the function's frame probably hasn't been fully
880 setup yet. Try to reconstruct the base address for the stack
881 frame by looking at the stack pointer. For truly "frameless"
882 functions this might work too. */
883
884 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
885 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
886 }
887
888 /* Now that we have the base address for the stack frame we can
889 calculate the value of %sp in the calling frame. */
890 cache->saved_sp = cache->base + 8;
891
892 /* Adjust all the saved registers such that they contain addresses
893 instead of offsets. */
894 for (i = 0; i < M68K_NUM_REGS; i++)
895 if (cache->saved_regs[i] != -1)
896 cache->saved_regs[i] += cache->base;
897
898 return cache;
899}
900
901static void
902m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
903 struct frame_id *this_id)
904{
905 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
906
907 /* This marks the outermost frame. */
908 if (cache->base == 0)
909 return;
910
911 /* See the end of m68k_push_dummy_call. */
912 *this_id = frame_id_build (cache->base + 8, cache->pc);
913}
914
915static void
916m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
917 int regnum, int *optimizedp,
918 enum lval_type *lvalp, CORE_ADDR *addrp,
919 int *realnump, gdb_byte *valuep)
920{
921 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
922
923 gdb_assert (regnum >= 0);
924
925 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
926 {
927 *optimizedp = 0;
928 *lvalp = not_lval;
929 *addrp = 0;
930 *realnump = -1;
931 if (valuep)
932 {
933 /* Store the value. */
934 store_unsigned_integer (valuep, 4, cache->saved_sp);
935 }
936 return;
937 }
938
939 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
940 {
941 *optimizedp = 0;
942 *lvalp = lval_memory;
943 *addrp = cache->saved_regs[regnum];
944 *realnump = -1;
945 if (valuep)
946 {
947 /* Read the value in from memory. */
948 read_memory (*addrp, valuep,
949 register_size (current_gdbarch, regnum));
950 }
951 return;
952 }
953
954 *optimizedp = 0;
955 *lvalp = lval_register;
956 *addrp = 0;
957 *realnump = regnum;
958 if (valuep)
959 frame_unwind_register (next_frame, (*realnump), valuep);
960}
961
962static const struct frame_unwind m68k_frame_unwind =
963{
964 NORMAL_FRAME,
965 m68k_frame_this_id,
966 m68k_frame_prev_register
967};
968
969static const struct frame_unwind *
970m68k_frame_sniffer (struct frame_info *next_frame)
971{
972 return &m68k_frame_unwind;
973}
974\f
975static CORE_ADDR
976m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
977{
978 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
979
980 return cache->base;
981}
982
983static const struct frame_base m68k_frame_base =
984{
985 &m68k_frame_unwind,
986 m68k_frame_base_address,
987 m68k_frame_base_address,
988 m68k_frame_base_address
989};
990
991static struct frame_id
992m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
993{
994 gdb_byte buf[4];
995 CORE_ADDR fp;
996
997 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
998 fp = extract_unsigned_integer (buf, 4);
999
1000 /* See the end of m68k_push_dummy_call. */
1001 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1002}
1003\f
1004
1005/* Figure out where the longjmp will land. Slurp the args out of the stack.
1006 We expect the first arg to be a pointer to the jmp_buf structure from which
1007 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1008 This routine returns true on success. */
1009
1010static int
1011m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1012{
1013 gdb_byte *buf;
1014 CORE_ADDR sp, jb_addr;
1015 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
1016
1017 if (tdep->jb_pc < 0)
1018 {
1019 internal_error (__FILE__, __LINE__,
1020 _("m68k_get_longjmp_target: not implemented"));
1021 return 0;
1022 }
1023
1024 buf = alloca (gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT);
1025 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (current_gdbarch));
1026
1027 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
1028 buf,
1029 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT))
1030 return 0;
1031
1032 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (current_gdbarch)
1033 / TARGET_CHAR_BIT);
1034
1035 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1036 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT))
1037 return 0;
1038
1039 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (current_gdbarch)
1040 / TARGET_CHAR_BIT);
1041 return 1;
1042}
1043\f
1044
1045/* System V Release 4 (SVR4). */
1046
1047void
1048m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1049{
1050 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1051
1052 /* SVR4 uses a different calling convention. */
1053 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1054
1055 /* SVR4 uses %a0 instead of %a1. */
1056 tdep->struct_value_regnum = M68K_A0_REGNUM;
1057}
1058\f
1059
1060/* Function: m68k_gdbarch_init
1061 Initializer function for the m68k gdbarch vector.
1062 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1063
1064static struct gdbarch *
1065m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1066{
1067 struct gdbarch_tdep *tdep = NULL;
1068 struct gdbarch *gdbarch;
1069 struct gdbarch_list *best_arch;
1070 struct tdesc_arch_data *tdesc_data = NULL;
1071 int i;
1072 enum m68k_flavour flavour = m68k_no_flavour;
1073 int has_fp = 1;
1074 const struct floatformat **long_double_format = floatformats_m68881_ext;
1075
1076 /* Check any target description for validity. */
1077 if (tdesc_has_registers (info.target_desc))
1078 {
1079 const struct tdesc_feature *feature;
1080 int valid_p;
1081
1082 feature = tdesc_find_feature (info.target_desc,
1083 "org.gnu.gdb.m68k.core");
1084 if (feature != NULL)
1085 /* Do nothing. */
1086 ;
1087
1088 if (feature == NULL)
1089 {
1090 feature = tdesc_find_feature (info.target_desc,
1091 "org.gnu.gdb.coldfire.core");
1092 if (feature != NULL)
1093 flavour = m68k_coldfire_flavour;
1094 }
1095
1096 if (feature == NULL)
1097 {
1098 feature = tdesc_find_feature (info.target_desc,
1099 "org.gnu.gdb.fido.core");
1100 if (feature != NULL)
1101 flavour = m68k_fido_flavour;
1102 }
1103
1104 if (feature == NULL)
1105 return NULL;
1106
1107 tdesc_data = tdesc_data_alloc ();
1108
1109 valid_p = 1;
1110 for (i = 0; i <= M68K_PC_REGNUM; i++)
1111 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1112 m68k_register_names[i]);
1113
1114 if (!valid_p)
1115 {
1116 tdesc_data_cleanup (tdesc_data);
1117 return NULL;
1118 }
1119
1120 feature = tdesc_find_feature (info.target_desc,
1121 "org.gnu.gdb.coldfire.fp");
1122 if (feature != NULL)
1123 {
1124 valid_p = 1;
1125 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1126 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1127 m68k_register_names[i]);
1128 if (!valid_p)
1129 {
1130 tdesc_data_cleanup (tdesc_data);
1131 return NULL;
1132 }
1133 }
1134 else
1135 has_fp = 0;
1136 }
1137
1138 /* The mechanism for returning floating values from function
1139 and the type of long double depend on whether we're
1140 on ColdFire or standard m68k. */
1141
1142 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1143 {
1144 const bfd_arch_info_type *coldfire_arch =
1145 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1146
1147 if (coldfire_arch
1148 && ((*info.bfd_arch_info->compatible)
1149 (info.bfd_arch_info, coldfire_arch)))
1150 flavour = m68k_coldfire_flavour;
1151 }
1152
1153 /* If there is already a candidate, use it. */
1154 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1155 best_arch != NULL;
1156 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1157 {
1158 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1159 continue;
1160
1161 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1162 continue;
1163
1164 break;
1165 }
1166
1167 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1168 gdbarch = gdbarch_alloc (&info, tdep);
1169 tdep->fpregs_present = has_fp;
1170 tdep->flavour = flavour;
1171
1172 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1173 long_double_format = floatformats_ieee_double;
1174 set_gdbarch_long_double_format (gdbarch, long_double_format);
1175 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1176
1177 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1178 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1179
1180 /* Stack grows down. */
1181 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1182 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1183
1184 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1185 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1186 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1187
1188 set_gdbarch_frame_args_skip (gdbarch, 8);
1189 set_gdbarch_dwarf_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1190 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1191
1192 set_gdbarch_register_type (gdbarch, m68k_register_type);
1193 set_gdbarch_register_name (gdbarch, m68k_register_name);
1194 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1195 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1196 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1197 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1198 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1199 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1200 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1201 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1202
1203 if (has_fp)
1204 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1205
1206 /* Try to figure out if the arch uses floating registers to return
1207 floating point values from functions. */
1208 if (has_fp)
1209 {
1210 /* On ColdFire, floating point values are returned in D0. */
1211 if (flavour == m68k_coldfire_flavour)
1212 tdep->float_return = 0;
1213 else
1214 tdep->float_return = 1;
1215 }
1216 else
1217 {
1218 /* No floating registers, so can't use them for returning values. */
1219 tdep->float_return = 0;
1220 }
1221
1222 /* Function call & return */
1223 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1224 set_gdbarch_return_value (gdbarch, m68k_return_value);
1225
1226
1227 /* Disassembler. */
1228 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1229
1230#if defined JB_PC && defined JB_ELEMENT_SIZE
1231 tdep->jb_pc = JB_PC;
1232 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1233#else
1234 tdep->jb_pc = -1;
1235#endif
1236 tdep->struct_value_regnum = M68K_A1_REGNUM;
1237 tdep->struct_return = reg_struct_return;
1238
1239 /* Frame unwinder. */
1240 set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
1241 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1242
1243 /* Hook in the DWARF CFI frame unwinder. */
1244 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1245
1246 frame_base_set_default (gdbarch, &m68k_frame_base);
1247
1248 /* Hook in ABI-specific overrides, if they have been registered. */
1249 gdbarch_init_osabi (info, gdbarch);
1250
1251 /* Now we have tuned the configuration, set a few final things,
1252 based on what the OS ABI has told us. */
1253
1254 if (tdep->jb_pc >= 0)
1255 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1256
1257 frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);
1258
1259 if (tdesc_data)
1260 tdesc_use_registers (gdbarch, tdesc_data);
1261
1262 return gdbarch;
1263}
1264
1265
1266static void
1267m68k_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1268{
1269 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1270
1271 if (tdep == NULL)
1272 return;
1273}
1274
1275extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1276
1277void
1278_initialize_m68k_tdep (void)
1279{
1280 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1281
1282 /* Initialize the m68k-specific register types. */
1283 m68k_init_types ();
1284}
This page took 0.035395 seconds and 4 git commands to generate.