[bfd][arm] Don't assert on suspicious build attributes in input file
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
... / ...
CommitLineData
1/* MI Command Set.
2
3 Copyright (C) 2000-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "target.h"
25#include "inferior.h"
26#include "infrun.h"
27#include "top.h"
28#include "gdbthread.h"
29#include "mi-cmds.h"
30#include "mi-parse.h"
31#include "mi-getopt.h"
32#include "mi-console.h"
33#include "ui-out.h"
34#include "mi-out.h"
35#include "interps.h"
36#include "event-loop.h"
37#include "event-top.h"
38#include "gdbcore.h" /* For write_memory(). */
39#include "value.h"
40#include "regcache.h"
41#include "gdb.h"
42#include "frame.h"
43#include "mi-main.h"
44#include "mi-common.h"
45#include "language.h"
46#include "valprint.h"
47#include "inferior.h"
48#include "osdata.h"
49#include "splay-tree.h"
50#include "tracepoint.h"
51#include "ctf.h"
52#include "ada-lang.h"
53#include "linespec.h"
54#include "extension.h"
55#include "gdbcmd.h"
56#include "observer.h"
57#include "common/gdb_optional.h"
58
59#include <ctype.h>
60#include "run-time-clock.h"
61#include <chrono>
62#include "progspace-and-thread.h"
63
64enum
65 {
66 FROM_TTY = 0
67 };
68
69int mi_debug_p;
70
71/* This is used to pass the current command timestamp down to
72 continuation routines. */
73static struct mi_timestamp *current_command_ts;
74
75static int do_timings = 0;
76
77char *current_token;
78/* Few commands would like to know if options like --thread-group were
79 explicitly specified. This variable keeps the current parsed
80 command including all option, and make it possible. */
81static struct mi_parse *current_context;
82
83int running_result_record_printed = 1;
84
85/* Flag indicating that the target has proceeded since the last
86 command was issued. */
87int mi_proceeded;
88
89extern void _initialize_mi_main (void);
90static void mi_cmd_execute (struct mi_parse *parse);
91
92static void mi_execute_cli_command (const char *cmd, int args_p,
93 const char *args);
94static void mi_execute_async_cli_command (const char *cli_command,
95 char **argv, int argc);
96static int register_changed_p (int regnum, struct regcache *,
97 struct regcache *);
98static void output_register (struct frame_info *, int regnum, int format,
99 int skip_unavailable);
100
101/* Controls whether the frontend wants MI in async mode. */
102static int mi_async = 0;
103
104/* The set command writes to this variable. If the inferior is
105 executing, mi_async is *not* updated. */
106static int mi_async_1 = 0;
107
108static void
109set_mi_async_command (char *args, int from_tty,
110 struct cmd_list_element *c)
111{
112 if (have_live_inferiors ())
113 {
114 mi_async_1 = mi_async;
115 error (_("Cannot change this setting while the inferior is running."));
116 }
117
118 mi_async = mi_async_1;
119}
120
121static void
122show_mi_async_command (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c,
124 const char *value)
125{
126 fprintf_filtered (file,
127 _("Whether MI is in asynchronous mode is %s.\n"),
128 value);
129}
130
131/* A wrapper for target_can_async_p that takes the MI setting into
132 account. */
133
134int
135mi_async_p (void)
136{
137 return mi_async && target_can_async_p ();
138}
139
140/* Command implementations. FIXME: Is this libgdb? No. This is the MI
141 layer that calls libgdb. Any operation used in the below should be
142 formalized. */
143
144static void timestamp (struct mi_timestamp *tv);
145
146static void print_diff (struct ui_file *file, struct mi_timestamp *start,
147 struct mi_timestamp *end);
148
149void
150mi_cmd_gdb_exit (const char *command, char **argv, int argc)
151{
152 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
153
154 /* We have to print everything right here because we never return. */
155 if (current_token)
156 fputs_unfiltered (current_token, mi->raw_stdout);
157 fputs_unfiltered ("^exit\n", mi->raw_stdout);
158 mi_out_put (current_uiout, mi->raw_stdout);
159 gdb_flush (mi->raw_stdout);
160 /* FIXME: The function called is not yet a formal libgdb function. */
161 quit_force (NULL, FROM_TTY);
162}
163
164void
165mi_cmd_exec_next (const char *command, char **argv, int argc)
166{
167 /* FIXME: Should call a libgdb function, not a cli wrapper. */
168 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
169 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
170 else
171 mi_execute_async_cli_command ("next", argv, argc);
172}
173
174void
175mi_cmd_exec_next_instruction (const char *command, char **argv, int argc)
176{
177 /* FIXME: Should call a libgdb function, not a cli wrapper. */
178 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
179 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
180 else
181 mi_execute_async_cli_command ("nexti", argv, argc);
182}
183
184void
185mi_cmd_exec_step (const char *command, char **argv, int argc)
186{
187 /* FIXME: Should call a libgdb function, not a cli wrapper. */
188 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
189 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
190 else
191 mi_execute_async_cli_command ("step", argv, argc);
192}
193
194void
195mi_cmd_exec_step_instruction (const char *command, char **argv, int argc)
196{
197 /* FIXME: Should call a libgdb function, not a cli wrapper. */
198 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
199 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
200 else
201 mi_execute_async_cli_command ("stepi", argv, argc);
202}
203
204void
205mi_cmd_exec_finish (const char *command, char **argv, int argc)
206{
207 /* FIXME: Should call a libgdb function, not a cli wrapper. */
208 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
209 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
210 else
211 mi_execute_async_cli_command ("finish", argv, argc);
212}
213
214void
215mi_cmd_exec_return (const char *command, char **argv, int argc)
216{
217 /* This command doesn't really execute the target, it just pops the
218 specified number of frames. */
219 if (argc)
220 /* Call return_command with from_tty argument equal to 0 so as to
221 avoid being queried. */
222 return_command (*argv, 0);
223 else
224 /* Call return_command with from_tty argument equal to 0 so as to
225 avoid being queried. */
226 return_command (NULL, 0);
227
228 /* Because we have called return_command with from_tty = 0, we need
229 to print the frame here. */
230 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
231}
232
233void
234mi_cmd_exec_jump (const char *args, char **argv, int argc)
235{
236 /* FIXME: Should call a libgdb function, not a cli wrapper. */
237 mi_execute_async_cli_command ("jump", argv, argc);
238}
239
240static void
241proceed_thread (struct thread_info *thread, int pid)
242{
243 if (!is_stopped (thread->ptid))
244 return;
245
246 if (pid != 0 && ptid_get_pid (thread->ptid) != pid)
247 return;
248
249 switch_to_thread (thread->ptid);
250 clear_proceed_status (0);
251 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
252}
253
254static int
255proceed_thread_callback (struct thread_info *thread, void *arg)
256{
257 int pid = *(int *)arg;
258
259 proceed_thread (thread, pid);
260 return 0;
261}
262
263static void
264exec_continue (char **argv, int argc)
265{
266 prepare_execution_command (&current_target, mi_async_p ());
267
268 if (non_stop)
269 {
270 /* In non-stop mode, 'resume' always resumes a single thread.
271 Therefore, to resume all threads of the current inferior, or
272 all threads in all inferiors, we need to iterate over
273 threads.
274
275 See comment on infcmd.c:proceed_thread_callback for rationale. */
276 if (current_context->all || current_context->thread_group != -1)
277 {
278 scoped_restore_current_thread restore_thread;
279 int pid = 0;
280
281 if (!current_context->all)
282 {
283 struct inferior *inf
284 = find_inferior_id (current_context->thread_group);
285
286 pid = inf->pid;
287 }
288 iterate_over_threads (proceed_thread_callback, &pid);
289 }
290 else
291 {
292 continue_1 (0);
293 }
294 }
295 else
296 {
297 scoped_restore save_multi = make_scoped_restore (&sched_multi);
298
299 if (current_context->all)
300 {
301 sched_multi = 1;
302 continue_1 (0);
303 }
304 else
305 {
306 /* In all-stop mode, -exec-continue traditionally resumed
307 either all threads, or one thread, depending on the
308 'scheduler-locking' variable. Let's continue to do the
309 same. */
310 continue_1 (1);
311 }
312 }
313}
314
315static void
316exec_reverse_continue (char **argv, int argc)
317{
318 enum exec_direction_kind dir = execution_direction;
319
320 if (dir == EXEC_REVERSE)
321 error (_("Already in reverse mode."));
322
323 if (!target_can_execute_reverse)
324 error (_("Target %s does not support this command."), target_shortname);
325
326 scoped_restore save_exec_dir = make_scoped_restore (&execution_direction,
327 EXEC_REVERSE);
328 exec_continue (argv, argc);
329}
330
331void
332mi_cmd_exec_continue (const char *command, char **argv, int argc)
333{
334 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
335 exec_reverse_continue (argv + 1, argc - 1);
336 else
337 exec_continue (argv, argc);
338}
339
340static int
341interrupt_thread_callback (struct thread_info *thread, void *arg)
342{
343 int pid = *(int *)arg;
344
345 if (!is_running (thread->ptid))
346 return 0;
347
348 if (ptid_get_pid (thread->ptid) != pid)
349 return 0;
350
351 target_stop (thread->ptid);
352 return 0;
353}
354
355/* Interrupt the execution of the target. Note how we must play
356 around with the token variables, in order to display the current
357 token in the result of the interrupt command, and the previous
358 execution token when the target finally stops. See comments in
359 mi_cmd_execute. */
360
361void
362mi_cmd_exec_interrupt (const char *command, char **argv, int argc)
363{
364 /* In all-stop mode, everything stops, so we don't need to try
365 anything specific. */
366 if (!non_stop)
367 {
368 interrupt_target_1 (0);
369 return;
370 }
371
372 if (current_context->all)
373 {
374 /* This will interrupt all threads in all inferiors. */
375 interrupt_target_1 (1);
376 }
377 else if (current_context->thread_group != -1)
378 {
379 struct inferior *inf = find_inferior_id (current_context->thread_group);
380
381 iterate_over_threads (interrupt_thread_callback, &inf->pid);
382 }
383 else
384 {
385 /* Interrupt just the current thread -- either explicitly
386 specified via --thread or whatever was current before
387 MI command was sent. */
388 interrupt_target_1 (0);
389 }
390}
391
392/* Callback for iterate_over_inferiors which starts the execution
393 of the given inferior.
394
395 ARG is a pointer to an integer whose value, if non-zero, indicates
396 that the program should be stopped when reaching the main subprogram
397 (similar to what the CLI "start" command does). */
398
399static int
400run_one_inferior (struct inferior *inf, void *arg)
401{
402 int start_p = *(int *) arg;
403 const char *run_cmd = start_p ? "start" : "run";
404 struct target_ops *run_target = find_run_target ();
405 int async_p = mi_async && run_target->to_can_async_p (run_target);
406
407 if (inf->pid != 0)
408 {
409 if (inf->pid != ptid_get_pid (inferior_ptid))
410 {
411 struct thread_info *tp;
412
413 tp = any_thread_of_process (inf->pid);
414 if (!tp)
415 error (_("Inferior has no threads."));
416
417 switch_to_thread (tp->ptid);
418 }
419 }
420 else
421 {
422 set_current_inferior (inf);
423 switch_to_thread (null_ptid);
424 set_current_program_space (inf->pspace);
425 }
426 mi_execute_cli_command (run_cmd, async_p,
427 async_p ? "&" : NULL);
428 return 0;
429}
430
431void
432mi_cmd_exec_run (const char *command, char **argv, int argc)
433{
434 int start_p = 0;
435
436 /* Parse the command options. */
437 enum opt
438 {
439 START_OPT,
440 };
441 static const struct mi_opt opts[] =
442 {
443 {"-start", START_OPT, 0},
444 {NULL, 0, 0},
445 };
446
447 int oind = 0;
448 char *oarg;
449
450 while (1)
451 {
452 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
453
454 if (opt < 0)
455 break;
456 switch ((enum opt) opt)
457 {
458 case START_OPT:
459 start_p = 1;
460 break;
461 }
462 }
463
464 /* This command does not accept any argument. Make sure the user
465 did not provide any. */
466 if (oind != argc)
467 error (_("Invalid argument: %s"), argv[oind]);
468
469 if (current_context->all)
470 {
471 scoped_restore_current_pspace_and_thread restore_pspace_thread;
472
473 iterate_over_inferiors (run_one_inferior, &start_p);
474 }
475 else
476 {
477 const char *run_cmd = start_p ? "start" : "run";
478 struct target_ops *run_target = find_run_target ();
479 int async_p = mi_async && run_target->to_can_async_p (run_target);
480
481 mi_execute_cli_command (run_cmd, async_p,
482 async_p ? "&" : NULL);
483 }
484}
485
486
487static int
488find_thread_of_process (struct thread_info *ti, void *p)
489{
490 int pid = *(int *)p;
491
492 if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid))
493 return 1;
494
495 return 0;
496}
497
498void
499mi_cmd_target_detach (const char *command, char **argv, int argc)
500{
501 if (argc != 0 && argc != 1)
502 error (_("Usage: -target-detach [pid | thread-group]"));
503
504 if (argc == 1)
505 {
506 struct thread_info *tp;
507 char *end = argv[0];
508 int pid;
509
510 /* First see if we are dealing with a thread-group id. */
511 if (*argv[0] == 'i')
512 {
513 struct inferior *inf;
514 int id = strtoul (argv[0] + 1, &end, 0);
515
516 if (*end != '\0')
517 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
518
519 inf = find_inferior_id (id);
520 if (!inf)
521 error (_("Non-existent thread-group id '%d'"), id);
522
523 pid = inf->pid;
524 }
525 else
526 {
527 /* We must be dealing with a pid. */
528 pid = strtol (argv[0], &end, 10);
529
530 if (*end != '\0')
531 error (_("Invalid identifier '%s'"), argv[0]);
532 }
533
534 /* Pick any thread in the desired process. Current
535 target_detach detaches from the parent of inferior_ptid. */
536 tp = iterate_over_threads (find_thread_of_process, &pid);
537 if (!tp)
538 error (_("Thread group is empty"));
539
540 switch_to_thread (tp->ptid);
541 }
542
543 detach_command (NULL, 0);
544}
545
546void
547mi_cmd_target_flash_erase (const char *command, char **argv, int argc)
548{
549 flash_erase_command (NULL, 0);
550}
551
552void
553mi_cmd_thread_select (const char *command, char **argv, int argc)
554{
555 enum gdb_rc rc;
556 char *mi_error_message;
557 ptid_t previous_ptid = inferior_ptid;
558
559 if (argc != 1)
560 error (_("-thread-select: USAGE: threadnum."));
561
562 rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
563
564 /* If thread switch did not succeed don't notify or print. */
565 if (rc == GDB_RC_FAIL)
566 {
567 make_cleanup (xfree, mi_error_message);
568 error ("%s", mi_error_message);
569 }
570
571 print_selected_thread_frame (current_uiout,
572 USER_SELECTED_THREAD | USER_SELECTED_FRAME);
573
574 /* Notify if the thread has effectively changed. */
575 if (!ptid_equal (inferior_ptid, previous_ptid))
576 {
577 observer_notify_user_selected_context_changed (USER_SELECTED_THREAD
578 | USER_SELECTED_FRAME);
579 }
580}
581
582void
583mi_cmd_thread_list_ids (const char *command, char **argv, int argc)
584{
585 enum gdb_rc rc;
586 char *mi_error_message;
587
588 if (argc != 0)
589 error (_("-thread-list-ids: No arguments required."));
590
591 rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
592
593 if (rc == GDB_RC_FAIL)
594 {
595 make_cleanup (xfree, mi_error_message);
596 error ("%s", mi_error_message);
597 }
598}
599
600void
601mi_cmd_thread_info (const char *command, char **argv, int argc)
602{
603 if (argc != 0 && argc != 1)
604 error (_("Invalid MI command"));
605
606 print_thread_info (current_uiout, argv[0], -1);
607}
608
609struct collect_cores_data
610{
611 int pid;
612
613 VEC (int) *cores;
614};
615
616static int
617collect_cores (struct thread_info *ti, void *xdata)
618{
619 struct collect_cores_data *data = (struct collect_cores_data *) xdata;
620
621 if (ptid_get_pid (ti->ptid) == data->pid)
622 {
623 int core = target_core_of_thread (ti->ptid);
624
625 if (core != -1)
626 VEC_safe_push (int, data->cores, core);
627 }
628
629 return 0;
630}
631
632static int *
633unique (int *b, int *e)
634{
635 int *d = b;
636
637 while (++b != e)
638 if (*d != *b)
639 *++d = *b;
640 return ++d;
641}
642
643struct print_one_inferior_data
644{
645 int recurse;
646 VEC (int) *inferiors;
647};
648
649static int
650print_one_inferior (struct inferior *inferior, void *xdata)
651{
652 struct print_one_inferior_data *top_data
653 = (struct print_one_inferior_data *) xdata;
654 struct ui_out *uiout = current_uiout;
655
656 if (VEC_empty (int, top_data->inferiors)
657 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
658 VEC_length (int, top_data->inferiors), sizeof (int),
659 compare_positive_ints))
660 {
661 struct collect_cores_data data;
662 ui_out_emit_tuple tuple_emitter (uiout, NULL);
663
664 uiout->field_fmt ("id", "i%d", inferior->num);
665 uiout->field_string ("type", "process");
666 if (inferior->has_exit_code)
667 uiout->field_string ("exit-code",
668 int_string (inferior->exit_code, 8, 0, 0, 1));
669 if (inferior->pid != 0)
670 uiout->field_int ("pid", inferior->pid);
671
672 if (inferior->pspace->pspace_exec_filename != NULL)
673 {
674 uiout->field_string ("executable",
675 inferior->pspace->pspace_exec_filename);
676 }
677
678 data.cores = 0;
679 if (inferior->pid != 0)
680 {
681 data.pid = inferior->pid;
682 iterate_over_threads (collect_cores, &data);
683 }
684
685 if (!VEC_empty (int, data.cores))
686 {
687 int *b, *e;
688 ui_out_emit_list list_emitter (uiout, "cores");
689
690 qsort (VEC_address (int, data.cores),
691 VEC_length (int, data.cores), sizeof (int),
692 compare_positive_ints);
693
694 b = VEC_address (int, data.cores);
695 e = b + VEC_length (int, data.cores);
696 e = unique (b, e);
697
698 for (; b != e; ++b)
699 uiout->field_int (NULL, *b);
700 }
701
702 if (top_data->recurse)
703 print_thread_info (uiout, NULL, inferior->pid);
704 }
705
706 return 0;
707}
708
709/* Output a field named 'cores' with a list as the value. The
710 elements of the list are obtained by splitting 'cores' on
711 comma. */
712
713static void
714output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
715{
716 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
717 field_name);
718 char *cores = xstrdup (xcores);
719 char *p = cores;
720
721 make_cleanup (xfree, cores);
722
723 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
724 uiout->field_string (NULL, p);
725
726 do_cleanups (back_to);
727}
728
729static void
730free_vector_of_ints (void *xvector)
731{
732 VEC (int) **vector = (VEC (int) **) xvector;
733
734 VEC_free (int, *vector);
735}
736
737static void
738do_nothing (splay_tree_key k)
739{
740}
741
742static void
743free_vector_of_osdata_items (splay_tree_value xvalue)
744{
745 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
746
747 /* We don't free the items itself, it will be done separately. */
748 VEC_free (osdata_item_s, value);
749}
750
751static int
752splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
753{
754 int a = xa;
755 int b = xb;
756
757 return a - b;
758}
759
760static void
761free_splay_tree (void *xt)
762{
763 splay_tree t = (splay_tree) xt;
764 splay_tree_delete (t);
765}
766
767static void
768list_available_thread_groups (VEC (int) *ids, int recurse)
769{
770 struct osdata *data;
771 struct osdata_item *item;
772 int ix_items;
773 struct ui_out *uiout = current_uiout;
774 struct cleanup *cleanup;
775
776 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
777 The vector contains information about all threads for the given pid.
778 This is assigned an initial value to avoid "may be used uninitialized"
779 warning from gcc. */
780 splay_tree tree = NULL;
781
782 /* get_osdata will throw if it cannot return data. */
783 data = get_osdata ("processes");
784 cleanup = make_cleanup_osdata_free (data);
785
786 if (recurse)
787 {
788 struct osdata *threads = get_osdata ("threads");
789
790 make_cleanup_osdata_free (threads);
791 tree = splay_tree_new (splay_tree_int_comparator,
792 do_nothing,
793 free_vector_of_osdata_items);
794 make_cleanup (free_splay_tree, tree);
795
796 for (ix_items = 0;
797 VEC_iterate (osdata_item_s, threads->items,
798 ix_items, item);
799 ix_items++)
800 {
801 const char *pid = get_osdata_column (item, "pid");
802 int pid_i = strtoul (pid, NULL, 0);
803 VEC (osdata_item_s) *vec = 0;
804
805 splay_tree_node n = splay_tree_lookup (tree, pid_i);
806 if (!n)
807 {
808 VEC_safe_push (osdata_item_s, vec, item);
809 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
810 }
811 else
812 {
813 vec = (VEC (osdata_item_s) *) n->value;
814 VEC_safe_push (osdata_item_s, vec, item);
815 n->value = (splay_tree_value) vec;
816 }
817 }
818 }
819
820 make_cleanup_ui_out_list_begin_end (uiout, "groups");
821
822 for (ix_items = 0;
823 VEC_iterate (osdata_item_s, data->items,
824 ix_items, item);
825 ix_items++)
826 {
827 const char *pid = get_osdata_column (item, "pid");
828 const char *cmd = get_osdata_column (item, "command");
829 const char *user = get_osdata_column (item, "user");
830 const char *cores = get_osdata_column (item, "cores");
831
832 int pid_i = strtoul (pid, NULL, 0);
833
834 /* At present, the target will return all available processes
835 and if information about specific ones was required, we filter
836 undesired processes here. */
837 if (ids && bsearch (&pid_i, VEC_address (int, ids),
838 VEC_length (int, ids),
839 sizeof (int), compare_positive_ints) == NULL)
840 continue;
841
842
843 ui_out_emit_tuple tuple_emitter (uiout, NULL);
844
845 uiout->field_fmt ("id", "%s", pid);
846 uiout->field_string ("type", "process");
847 if (cmd)
848 uiout->field_string ("description", cmd);
849 if (user)
850 uiout->field_string ("user", user);
851 if (cores)
852 output_cores (uiout, "cores", cores);
853
854 if (recurse)
855 {
856 splay_tree_node n = splay_tree_lookup (tree, pid_i);
857 if (n)
858 {
859 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
860 struct osdata_item *child;
861 int ix_child;
862
863 make_cleanup_ui_out_list_begin_end (uiout, "threads");
864
865 for (ix_child = 0;
866 VEC_iterate (osdata_item_s, children, ix_child, child);
867 ++ix_child)
868 {
869 ui_out_emit_tuple tuple_emitter (uiout, NULL);
870 const char *tid = get_osdata_column (child, "tid");
871 const char *tcore = get_osdata_column (child, "core");
872
873 uiout->field_string ("id", tid);
874 if (tcore)
875 uiout->field_string ("core", tcore);
876 }
877 }
878 }
879 }
880
881 do_cleanups (cleanup);
882}
883
884void
885mi_cmd_list_thread_groups (const char *command, char **argv, int argc)
886{
887 struct ui_out *uiout = current_uiout;
888 struct cleanup *back_to;
889 int available = 0;
890 int recurse = 0;
891 VEC (int) *ids = 0;
892
893 enum opt
894 {
895 AVAILABLE_OPT, RECURSE_OPT
896 };
897 static const struct mi_opt opts[] =
898 {
899 {"-available", AVAILABLE_OPT, 0},
900 {"-recurse", RECURSE_OPT, 1},
901 { 0, 0, 0 }
902 };
903
904 int oind = 0;
905 char *oarg;
906
907 while (1)
908 {
909 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
910 &oind, &oarg);
911
912 if (opt < 0)
913 break;
914 switch ((enum opt) opt)
915 {
916 case AVAILABLE_OPT:
917 available = 1;
918 break;
919 case RECURSE_OPT:
920 if (strcmp (oarg, "0") == 0)
921 ;
922 else if (strcmp (oarg, "1") == 0)
923 recurse = 1;
924 else
925 error (_("only '0' and '1' are valid values "
926 "for the '--recurse' option"));
927 break;
928 }
929 }
930
931 for (; oind < argc; ++oind)
932 {
933 char *end;
934 int inf;
935
936 if (*(argv[oind]) != 'i')
937 error (_("invalid syntax of group id '%s'"), argv[oind]);
938
939 inf = strtoul (argv[oind] + 1, &end, 0);
940
941 if (*end != '\0')
942 error (_("invalid syntax of group id '%s'"), argv[oind]);
943 VEC_safe_push (int, ids, inf);
944 }
945 if (VEC_length (int, ids) > 1)
946 qsort (VEC_address (int, ids),
947 VEC_length (int, ids),
948 sizeof (int), compare_positive_ints);
949
950 back_to = make_cleanup (free_vector_of_ints, &ids);
951
952 if (available)
953 {
954 list_available_thread_groups (ids, recurse);
955 }
956 else if (VEC_length (int, ids) == 1)
957 {
958 /* Local thread groups, single id. */
959 int id = *VEC_address (int, ids);
960 struct inferior *inf = find_inferior_id (id);
961
962 if (!inf)
963 error (_("Non-existent thread group id '%d'"), id);
964
965 print_thread_info (uiout, NULL, inf->pid);
966 }
967 else
968 {
969 struct print_one_inferior_data data;
970
971 data.recurse = recurse;
972 data.inferiors = ids;
973
974 /* Local thread groups. Either no explicit ids -- and we
975 print everything, or several explicit ids. In both cases,
976 we print more than one group, and have to use 'groups'
977 as the top-level element. */
978 make_cleanup_ui_out_list_begin_end (uiout, "groups");
979 update_thread_list ();
980 iterate_over_inferiors (print_one_inferior, &data);
981 }
982
983 do_cleanups (back_to);
984}
985
986void
987mi_cmd_data_list_register_names (const char *command, char **argv, int argc)
988{
989 struct gdbarch *gdbarch;
990 struct ui_out *uiout = current_uiout;
991 int regnum, numregs;
992 int i;
993
994 /* Note that the test for a valid register must include checking the
995 gdbarch_register_name because gdbarch_num_regs may be allocated
996 for the union of the register sets within a family of related
997 processors. In this case, some entries of gdbarch_register_name
998 will change depending upon the particular processor being
999 debugged. */
1000
1001 gdbarch = get_current_arch ();
1002 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1003
1004 ui_out_emit_list list_emitter (uiout, "register-names");
1005
1006 if (argc == 0) /* No args, just do all the regs. */
1007 {
1008 for (regnum = 0;
1009 regnum < numregs;
1010 regnum++)
1011 {
1012 if (gdbarch_register_name (gdbarch, regnum) == NULL
1013 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1014 uiout->field_string (NULL, "");
1015 else
1016 uiout->field_string (NULL, gdbarch_register_name (gdbarch, regnum));
1017 }
1018 }
1019
1020 /* Else, list of register #s, just do listed regs. */
1021 for (i = 0; i < argc; i++)
1022 {
1023 regnum = atoi (argv[i]);
1024 if (regnum < 0 || regnum >= numregs)
1025 error (_("bad register number"));
1026
1027 if (gdbarch_register_name (gdbarch, regnum) == NULL
1028 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1029 uiout->field_string (NULL, "");
1030 else
1031 uiout->field_string (NULL, gdbarch_register_name (gdbarch, regnum));
1032 }
1033}
1034
1035void
1036mi_cmd_data_list_changed_registers (const char *command, char **argv, int argc)
1037{
1038 static struct regcache *this_regs = NULL;
1039 struct ui_out *uiout = current_uiout;
1040 struct regcache *prev_regs;
1041 struct gdbarch *gdbarch;
1042 int regnum, numregs, changed;
1043 int i;
1044 struct cleanup *cleanup;
1045
1046 /* The last time we visited this function, the current frame's
1047 register contents were saved in THIS_REGS. Move THIS_REGS over
1048 to PREV_REGS, and refresh THIS_REGS with the now-current register
1049 contents. */
1050
1051 prev_regs = this_regs;
1052 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
1053 cleanup = make_cleanup_regcache_xfree (prev_regs);
1054
1055 /* Note that the test for a valid register must include checking the
1056 gdbarch_register_name because gdbarch_num_regs may be allocated
1057 for the union of the register sets within a family of related
1058 processors. In this case, some entries of gdbarch_register_name
1059 will change depending upon the particular processor being
1060 debugged. */
1061
1062 gdbarch = get_regcache_arch (this_regs);
1063 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1064
1065 make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
1066
1067 if (argc == 0)
1068 {
1069 /* No args, just do all the regs. */
1070 for (regnum = 0;
1071 regnum < numregs;
1072 regnum++)
1073 {
1074 if (gdbarch_register_name (gdbarch, regnum) == NULL
1075 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1076 continue;
1077 changed = register_changed_p (regnum, prev_regs, this_regs);
1078 if (changed < 0)
1079 error (_("-data-list-changed-registers: "
1080 "Unable to read register contents."));
1081 else if (changed)
1082 uiout->field_int (NULL, regnum);
1083 }
1084 }
1085
1086 /* Else, list of register #s, just do listed regs. */
1087 for (i = 0; i < argc; i++)
1088 {
1089 regnum = atoi (argv[i]);
1090
1091 if (regnum >= 0
1092 && regnum < numregs
1093 && gdbarch_register_name (gdbarch, regnum) != NULL
1094 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1095 {
1096 changed = register_changed_p (regnum, prev_regs, this_regs);
1097 if (changed < 0)
1098 error (_("-data-list-changed-registers: "
1099 "Unable to read register contents."));
1100 else if (changed)
1101 uiout->field_int (NULL, regnum);
1102 }
1103 else
1104 error (_("bad register number"));
1105 }
1106 do_cleanups (cleanup);
1107}
1108
1109static int
1110register_changed_p (int regnum, struct regcache *prev_regs,
1111 struct regcache *this_regs)
1112{
1113 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1114 struct value *prev_value, *this_value;
1115 int ret;
1116
1117 /* First time through or after gdbarch change consider all registers
1118 as changed. */
1119 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
1120 return 1;
1121
1122 /* Get register contents and compare. */
1123 prev_value = prev_regs->cooked_read_value (regnum);
1124 this_value = this_regs->cooked_read_value (regnum);
1125 gdb_assert (prev_value != NULL);
1126 gdb_assert (this_value != NULL);
1127
1128 if (value_optimized_out (prev_value) != value_optimized_out (this_value)
1129 || value_entirely_available (prev_value)
1130 != value_entirely_available (this_value))
1131 ret = 1;
1132 if (value_optimized_out (prev_value)
1133 || !value_entirely_available (prev_value))
1134 ret = 0;
1135 else
1136 ret = memcmp (value_contents_all (prev_value),
1137 value_contents_all (this_value),
1138 register_size (gdbarch, regnum)) != 0;
1139
1140 release_value (prev_value);
1141 release_value (this_value);
1142 value_free (prev_value);
1143 value_free (this_value);
1144 return ret;
1145}
1146
1147/* Return a list of register number and value pairs. The valid
1148 arguments expected are: a letter indicating the format in which to
1149 display the registers contents. This can be one of: x
1150 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1151 (raw). After the format argument there can be a sequence of
1152 numbers, indicating which registers to fetch the content of. If
1153 the format is the only argument, a list of all the registers with
1154 their values is returned. */
1155
1156void
1157mi_cmd_data_list_register_values (const char *command, char **argv, int argc)
1158{
1159 struct ui_out *uiout = current_uiout;
1160 struct frame_info *frame;
1161 struct gdbarch *gdbarch;
1162 int regnum, numregs, format;
1163 int i;
1164 int skip_unavailable = 0;
1165 int oind = 0;
1166 enum opt
1167 {
1168 SKIP_UNAVAILABLE,
1169 };
1170 static const struct mi_opt opts[] =
1171 {
1172 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1173 { 0, 0, 0 }
1174 };
1175
1176 /* Note that the test for a valid register must include checking the
1177 gdbarch_register_name because gdbarch_num_regs may be allocated
1178 for the union of the register sets within a family of related
1179 processors. In this case, some entries of gdbarch_register_name
1180 will change depending upon the particular processor being
1181 debugged. */
1182
1183 while (1)
1184 {
1185 char *oarg;
1186 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1187 opts, &oind, &oarg);
1188
1189 if (opt < 0)
1190 break;
1191 switch ((enum opt) opt)
1192 {
1193 case SKIP_UNAVAILABLE:
1194 skip_unavailable = 1;
1195 break;
1196 }
1197 }
1198
1199 if (argc - oind < 1)
1200 error (_("-data-list-register-values: Usage: "
1201 "-data-list-register-values [--skip-unavailable] <format>"
1202 " [<regnum1>...<regnumN>]"));
1203
1204 format = (int) argv[oind][0];
1205
1206 frame = get_selected_frame (NULL);
1207 gdbarch = get_frame_arch (frame);
1208 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1209
1210 ui_out_emit_list list_emitter (uiout, "register-values");
1211
1212 if (argc - oind == 1)
1213 {
1214 /* No args, beside the format: do all the regs. */
1215 for (regnum = 0;
1216 regnum < numregs;
1217 regnum++)
1218 {
1219 if (gdbarch_register_name (gdbarch, regnum) == NULL
1220 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1221 continue;
1222
1223 output_register (frame, regnum, format, skip_unavailable);
1224 }
1225 }
1226
1227 /* Else, list of register #s, just do listed regs. */
1228 for (i = 1 + oind; i < argc; i++)
1229 {
1230 regnum = atoi (argv[i]);
1231
1232 if (regnum >= 0
1233 && regnum < numregs
1234 && gdbarch_register_name (gdbarch, regnum) != NULL
1235 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1236 output_register (frame, regnum, format, skip_unavailable);
1237 else
1238 error (_("bad register number"));
1239 }
1240}
1241
1242/* Output one register REGNUM's contents in the desired FORMAT. If
1243 SKIP_UNAVAILABLE is true, skip the register if it is
1244 unavailable. */
1245
1246static void
1247output_register (struct frame_info *frame, int regnum, int format,
1248 int skip_unavailable)
1249{
1250 struct ui_out *uiout = current_uiout;
1251 struct value *val = value_of_register (regnum, frame);
1252 struct value_print_options opts;
1253
1254 if (skip_unavailable && !value_entirely_available (val))
1255 return;
1256
1257 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1258 uiout->field_int ("number", regnum);
1259
1260 if (format == 'N')
1261 format = 0;
1262
1263 if (format == 'r')
1264 format = 'z';
1265
1266 string_file stb;
1267
1268 get_formatted_print_options (&opts, format);
1269 opts.deref_ref = 1;
1270 val_print (value_type (val),
1271 value_embedded_offset (val), 0,
1272 &stb, 0, val, &opts, current_language);
1273 uiout->field_stream ("value", stb);
1274}
1275
1276/* Write given values into registers. The registers and values are
1277 given as pairs. The corresponding MI command is
1278 -data-write-register-values <format>
1279 [<regnum1> <value1>...<regnumN> <valueN>] */
1280void
1281mi_cmd_data_write_register_values (const char *command, char **argv, int argc)
1282{
1283 struct regcache *regcache;
1284 struct gdbarch *gdbarch;
1285 int numregs, i;
1286
1287 /* Note that the test for a valid register must include checking the
1288 gdbarch_register_name because gdbarch_num_regs may be allocated
1289 for the union of the register sets within a family of related
1290 processors. In this case, some entries of gdbarch_register_name
1291 will change depending upon the particular processor being
1292 debugged. */
1293
1294 regcache = get_current_regcache ();
1295 gdbarch = get_regcache_arch (regcache);
1296 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1297
1298 if (argc == 0)
1299 error (_("-data-write-register-values: Usage: -data-write-register-"
1300 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1301
1302 if (!target_has_registers)
1303 error (_("-data-write-register-values: No registers."));
1304
1305 if (!(argc - 1))
1306 error (_("-data-write-register-values: No regs and values specified."));
1307
1308 if ((argc - 1) % 2)
1309 error (_("-data-write-register-values: "
1310 "Regs and vals are not in pairs."));
1311
1312 for (i = 1; i < argc; i = i + 2)
1313 {
1314 int regnum = atoi (argv[i]);
1315
1316 if (regnum >= 0 && regnum < numregs
1317 && gdbarch_register_name (gdbarch, regnum)
1318 && *gdbarch_register_name (gdbarch, regnum))
1319 {
1320 LONGEST value;
1321
1322 /* Get the value as a number. */
1323 value = parse_and_eval_address (argv[i + 1]);
1324
1325 /* Write it down. */
1326 regcache_cooked_write_signed (regcache, regnum, value);
1327 }
1328 else
1329 error (_("bad register number"));
1330 }
1331}
1332
1333/* Evaluate the value of the argument. The argument is an
1334 expression. If the expression contains spaces it needs to be
1335 included in double quotes. */
1336
1337void
1338mi_cmd_data_evaluate_expression (const char *command, char **argv, int argc)
1339{
1340 struct value *val;
1341 struct value_print_options opts;
1342 struct ui_out *uiout = current_uiout;
1343
1344 if (argc != 1)
1345 error (_("-data-evaluate-expression: "
1346 "Usage: -data-evaluate-expression expression"));
1347
1348 expression_up expr = parse_expression (argv[0]);
1349
1350 val = evaluate_expression (expr.get ());
1351
1352 string_file stb;
1353
1354 /* Print the result of the expression evaluation. */
1355 get_user_print_options (&opts);
1356 opts.deref_ref = 0;
1357 common_val_print (val, &stb, 0, &opts, current_language);
1358
1359 uiout->field_stream ("value", stb);
1360}
1361
1362/* This is the -data-read-memory command.
1363
1364 ADDR: start address of data to be dumped.
1365 WORD-FORMAT: a char indicating format for the ``word''. See
1366 the ``x'' command.
1367 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1368 NR_ROW: Number of rows.
1369 NR_COL: The number of colums (words per row).
1370 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1371 ASCHAR for unprintable characters.
1372
1373 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1374 displayes them. Returns:
1375
1376 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1377
1378 Returns:
1379 The number of bytes read is SIZE*ROW*COL. */
1380
1381void
1382mi_cmd_data_read_memory (const char *command, char **argv, int argc)
1383{
1384 struct gdbarch *gdbarch = get_current_arch ();
1385 struct ui_out *uiout = current_uiout;
1386 CORE_ADDR addr;
1387 long total_bytes, nr_cols, nr_rows;
1388 char word_format;
1389 struct type *word_type;
1390 long word_size;
1391 char word_asize;
1392 char aschar;
1393 int nr_bytes;
1394 long offset = 0;
1395 int oind = 0;
1396 char *oarg;
1397 enum opt
1398 {
1399 OFFSET_OPT
1400 };
1401 static const struct mi_opt opts[] =
1402 {
1403 {"o", OFFSET_OPT, 1},
1404 { 0, 0, 0 }
1405 };
1406
1407 while (1)
1408 {
1409 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1410 &oind, &oarg);
1411
1412 if (opt < 0)
1413 break;
1414 switch ((enum opt) opt)
1415 {
1416 case OFFSET_OPT:
1417 offset = atol (oarg);
1418 break;
1419 }
1420 }
1421 argv += oind;
1422 argc -= oind;
1423
1424 if (argc < 5 || argc > 6)
1425 error (_("-data-read-memory: Usage: "
1426 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1427
1428 /* Extract all the arguments. */
1429
1430 /* Start address of the memory dump. */
1431 addr = parse_and_eval_address (argv[0]) + offset;
1432 /* The format character to use when displaying a memory word. See
1433 the ``x'' command. */
1434 word_format = argv[1][0];
1435 /* The size of the memory word. */
1436 word_size = atol (argv[2]);
1437 switch (word_size)
1438 {
1439 case 1:
1440 word_type = builtin_type (gdbarch)->builtin_int8;
1441 word_asize = 'b';
1442 break;
1443 case 2:
1444 word_type = builtin_type (gdbarch)->builtin_int16;
1445 word_asize = 'h';
1446 break;
1447 case 4:
1448 word_type = builtin_type (gdbarch)->builtin_int32;
1449 word_asize = 'w';
1450 break;
1451 case 8:
1452 word_type = builtin_type (gdbarch)->builtin_int64;
1453 word_asize = 'g';
1454 break;
1455 default:
1456 word_type = builtin_type (gdbarch)->builtin_int8;
1457 word_asize = 'b';
1458 }
1459 /* The number of rows. */
1460 nr_rows = atol (argv[3]);
1461 if (nr_rows <= 0)
1462 error (_("-data-read-memory: invalid number of rows."));
1463
1464 /* Number of bytes per row. */
1465 nr_cols = atol (argv[4]);
1466 if (nr_cols <= 0)
1467 error (_("-data-read-memory: invalid number of columns."));
1468
1469 /* The un-printable character when printing ascii. */
1470 if (argc == 6)
1471 aschar = *argv[5];
1472 else
1473 aschar = 0;
1474
1475 /* Create a buffer and read it in. */
1476 total_bytes = word_size * nr_rows * nr_cols;
1477
1478 std::unique_ptr<gdb_byte[]> mbuf (new gdb_byte[total_bytes]);
1479
1480 /* Dispatch memory reads to the topmost target, not the flattened
1481 current_target. */
1482 nr_bytes = target_read (current_target.beneath,
1483 TARGET_OBJECT_MEMORY, NULL, mbuf.get (),
1484 addr, total_bytes);
1485 if (nr_bytes <= 0)
1486 error (_("Unable to read memory."));
1487
1488 /* Output the header information. */
1489 uiout->field_core_addr ("addr", gdbarch, addr);
1490 uiout->field_int ("nr-bytes", nr_bytes);
1491 uiout->field_int ("total-bytes", total_bytes);
1492 uiout->field_core_addr ("next-row", gdbarch, addr + word_size * nr_cols);
1493 uiout->field_core_addr ("prev-row", gdbarch, addr - word_size * nr_cols);
1494 uiout->field_core_addr ("next-page", gdbarch, addr + total_bytes);
1495 uiout->field_core_addr ("prev-page", gdbarch, addr - total_bytes);
1496
1497 /* Build the result as a two dimentional table. */
1498 {
1499 int row;
1500 int row_byte;
1501 struct cleanup *cleanup_list;
1502
1503 string_file stream;
1504
1505 cleanup_list = make_cleanup_ui_out_list_begin_end (uiout, "memory");
1506 for (row = 0, row_byte = 0;
1507 row < nr_rows;
1508 row++, row_byte += nr_cols * word_size)
1509 {
1510 int col;
1511 int col_byte;
1512 struct cleanup *cleanup_list_data;
1513 struct value_print_options opts;
1514
1515 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1516 uiout->field_core_addr ("addr", gdbarch, addr + row_byte);
1517 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1518 row_byte); */
1519 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
1520 get_formatted_print_options (&opts, word_format);
1521 for (col = 0, col_byte = row_byte;
1522 col < nr_cols;
1523 col++, col_byte += word_size)
1524 {
1525 if (col_byte + word_size > nr_bytes)
1526 {
1527 uiout->field_string (NULL, "N/A");
1528 }
1529 else
1530 {
1531 stream.clear ();
1532 print_scalar_formatted (&mbuf[col_byte], word_type, &opts,
1533 word_asize, &stream);
1534 uiout->field_stream (NULL, stream);
1535 }
1536 }
1537 do_cleanups (cleanup_list_data);
1538 if (aschar)
1539 {
1540 int byte;
1541
1542 stream.clear ();
1543 for (byte = row_byte;
1544 byte < row_byte + word_size * nr_cols; byte++)
1545 {
1546 if (byte >= nr_bytes)
1547 stream.putc ('X');
1548 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1549 stream.putc (aschar);
1550 else
1551 stream.putc (mbuf[byte]);
1552 }
1553 uiout->field_stream ("ascii", stream);
1554 }
1555 }
1556 do_cleanups (cleanup_list);
1557 }
1558}
1559
1560void
1561mi_cmd_data_read_memory_bytes (const char *command, char **argv, int argc)
1562{
1563 struct gdbarch *gdbarch = get_current_arch ();
1564 struct ui_out *uiout = current_uiout;
1565 struct cleanup *cleanups;
1566 CORE_ADDR addr;
1567 LONGEST length;
1568 memory_read_result_s *read_result;
1569 int ix;
1570 VEC(memory_read_result_s) *result;
1571 long offset = 0;
1572 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
1573 int oind = 0;
1574 char *oarg;
1575 enum opt
1576 {
1577 OFFSET_OPT
1578 };
1579 static const struct mi_opt opts[] =
1580 {
1581 {"o", OFFSET_OPT, 1},
1582 { 0, 0, 0 }
1583 };
1584
1585 while (1)
1586 {
1587 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1588 &oind, &oarg);
1589 if (opt < 0)
1590 break;
1591 switch ((enum opt) opt)
1592 {
1593 case OFFSET_OPT:
1594 offset = atol (oarg);
1595 break;
1596 }
1597 }
1598 argv += oind;
1599 argc -= oind;
1600
1601 if (argc != 2)
1602 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1603
1604 addr = parse_and_eval_address (argv[0]) + offset;
1605 length = atol (argv[1]);
1606
1607 result = read_memory_robust (current_target.beneath, addr, length);
1608
1609 cleanups = make_cleanup (free_memory_read_result_vector, &result);
1610
1611 if (VEC_length (memory_read_result_s, result) == 0)
1612 error (_("Unable to read memory."));
1613
1614 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1615 for (ix = 0;
1616 VEC_iterate (memory_read_result_s, result, ix, read_result);
1617 ++ix)
1618 {
1619 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1620 char *data, *p;
1621 int i;
1622 int alloc_len;
1623
1624 uiout->field_core_addr ("begin", gdbarch, read_result->begin);
1625 uiout->field_core_addr ("offset", gdbarch, read_result->begin - addr);
1626 uiout->field_core_addr ("end", gdbarch, read_result->end);
1627
1628 alloc_len = (read_result->end - read_result->begin) * 2 * unit_size + 1;
1629 data = (char *) xmalloc (alloc_len);
1630
1631 for (i = 0, p = data;
1632 i < ((read_result->end - read_result->begin) * unit_size);
1633 ++i, p += 2)
1634 {
1635 sprintf (p, "%02x", read_result->data[i]);
1636 }
1637 uiout->field_string ("contents", data);
1638 xfree (data);
1639 }
1640 do_cleanups (cleanups);
1641}
1642
1643/* Implementation of the -data-write_memory command.
1644
1645 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1646 offset from the beginning of the memory grid row where the cell to
1647 be written is.
1648 ADDR: start address of the row in the memory grid where the memory
1649 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1650 the location to write to.
1651 FORMAT: a char indicating format for the ``word''. See
1652 the ``x'' command.
1653 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1654 VALUE: value to be written into the memory address.
1655
1656 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1657
1658 Prints nothing. */
1659
1660void
1661mi_cmd_data_write_memory (const char *command, char **argv, int argc)
1662{
1663 struct gdbarch *gdbarch = get_current_arch ();
1664 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1665 CORE_ADDR addr;
1666 long word_size;
1667 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1668 enough when using a compiler other than GCC. */
1669 LONGEST value;
1670 gdb_byte *buffer;
1671 struct cleanup *old_chain;
1672 long offset = 0;
1673 int oind = 0;
1674 char *oarg;
1675 enum opt
1676 {
1677 OFFSET_OPT
1678 };
1679 static const struct mi_opt opts[] =
1680 {
1681 {"o", OFFSET_OPT, 1},
1682 { 0, 0, 0 }
1683 };
1684
1685 while (1)
1686 {
1687 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1688 &oind, &oarg);
1689
1690 if (opt < 0)
1691 break;
1692 switch ((enum opt) opt)
1693 {
1694 case OFFSET_OPT:
1695 offset = atol (oarg);
1696 break;
1697 }
1698 }
1699 argv += oind;
1700 argc -= oind;
1701
1702 if (argc != 4)
1703 error (_("-data-write-memory: Usage: "
1704 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1705
1706 /* Extract all the arguments. */
1707 /* Start address of the memory dump. */
1708 addr = parse_and_eval_address (argv[0]);
1709 /* The size of the memory word. */
1710 word_size = atol (argv[2]);
1711
1712 /* Calculate the real address of the write destination. */
1713 addr += (offset * word_size);
1714
1715 /* Get the value as a number. */
1716 value = parse_and_eval_address (argv[3]);
1717 /* Get the value into an array. */
1718 buffer = (gdb_byte *) xmalloc (word_size);
1719 old_chain = make_cleanup (xfree, buffer);
1720 store_signed_integer (buffer, word_size, byte_order, value);
1721 /* Write it down to memory. */
1722 write_memory_with_notification (addr, buffer, word_size);
1723 /* Free the buffer. */
1724 do_cleanups (old_chain);
1725}
1726
1727/* Implementation of the -data-write-memory-bytes command.
1728
1729 ADDR: start address
1730 DATA: string of bytes to write at that address
1731 COUNT: number of bytes to be filled (decimal integer). */
1732
1733void
1734mi_cmd_data_write_memory_bytes (const char *command, char **argv, int argc)
1735{
1736 CORE_ADDR addr;
1737 char *cdata;
1738 gdb_byte *data;
1739 gdb_byte *databuf;
1740 size_t len_hex, len_bytes, len_units, i, steps, remaining_units;
1741 long int count_units;
1742 struct cleanup *back_to;
1743 int unit_size;
1744
1745 if (argc != 2 && argc != 3)
1746 error (_("Usage: ADDR DATA [COUNT]."));
1747
1748 addr = parse_and_eval_address (argv[0]);
1749 cdata = argv[1];
1750 len_hex = strlen (cdata);
1751 unit_size = gdbarch_addressable_memory_unit_size (get_current_arch ());
1752
1753 if (len_hex % (unit_size * 2) != 0)
1754 error (_("Hex-encoded '%s' must represent an integral number of "
1755 "addressable memory units."),
1756 cdata);
1757
1758 len_bytes = len_hex / 2;
1759 len_units = len_bytes / unit_size;
1760
1761 if (argc == 3)
1762 count_units = strtoul (argv[2], NULL, 10);
1763 else
1764 count_units = len_units;
1765
1766 databuf = XNEWVEC (gdb_byte, len_bytes);
1767 back_to = make_cleanup (xfree, databuf);
1768
1769 for (i = 0; i < len_bytes; ++i)
1770 {
1771 int x;
1772 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1773 error (_("Invalid argument"));
1774 databuf[i] = (gdb_byte) x;
1775 }
1776
1777 if (len_units < count_units)
1778 {
1779 /* Pattern is made of less units than count:
1780 repeat pattern to fill memory. */
1781 data = (gdb_byte *) xmalloc (count_units * unit_size);
1782 make_cleanup (xfree, data);
1783
1784 /* Number of times the pattern is entirely repeated. */
1785 steps = count_units / len_units;
1786 /* Number of remaining addressable memory units. */
1787 remaining_units = count_units % len_units;
1788 for (i = 0; i < steps; i++)
1789 memcpy (data + i * len_bytes, databuf, len_bytes);
1790
1791 if (remaining_units > 0)
1792 memcpy (data + steps * len_bytes, databuf,
1793 remaining_units * unit_size);
1794 }
1795 else
1796 {
1797 /* Pattern is longer than or equal to count:
1798 just copy count addressable memory units. */
1799 data = databuf;
1800 }
1801
1802 write_memory_with_notification (addr, data, count_units);
1803
1804 do_cleanups (back_to);
1805}
1806
1807void
1808mi_cmd_enable_timings (const char *command, char **argv, int argc)
1809{
1810 if (argc == 0)
1811 do_timings = 1;
1812 else if (argc == 1)
1813 {
1814 if (strcmp (argv[0], "yes") == 0)
1815 do_timings = 1;
1816 else if (strcmp (argv[0], "no") == 0)
1817 do_timings = 0;
1818 else
1819 goto usage_error;
1820 }
1821 else
1822 goto usage_error;
1823
1824 return;
1825
1826 usage_error:
1827 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1828}
1829
1830void
1831mi_cmd_list_features (const char *command, char **argv, int argc)
1832{
1833 if (argc == 0)
1834 {
1835 struct ui_out *uiout = current_uiout;
1836
1837 ui_out_emit_list list_emitter (uiout, "features");
1838 uiout->field_string (NULL, "frozen-varobjs");
1839 uiout->field_string (NULL, "pending-breakpoints");
1840 uiout->field_string (NULL, "thread-info");
1841 uiout->field_string (NULL, "data-read-memory-bytes");
1842 uiout->field_string (NULL, "breakpoint-notifications");
1843 uiout->field_string (NULL, "ada-task-info");
1844 uiout->field_string (NULL, "language-option");
1845 uiout->field_string (NULL, "info-gdb-mi-command");
1846 uiout->field_string (NULL, "undefined-command-error-code");
1847 uiout->field_string (NULL, "exec-run-start-option");
1848
1849 if (ext_lang_initialized_p (get_ext_lang_defn (EXT_LANG_PYTHON)))
1850 uiout->field_string (NULL, "python");
1851
1852 return;
1853 }
1854
1855 error (_("-list-features should be passed no arguments"));
1856}
1857
1858void
1859mi_cmd_list_target_features (const char *command, char **argv, int argc)
1860{
1861 if (argc == 0)
1862 {
1863 struct ui_out *uiout = current_uiout;
1864
1865 ui_out_emit_list list_emitter (uiout, "features");
1866 if (mi_async_p ())
1867 uiout->field_string (NULL, "async");
1868 if (target_can_execute_reverse)
1869 uiout->field_string (NULL, "reverse");
1870 return;
1871 }
1872
1873 error (_("-list-target-features should be passed no arguments"));
1874}
1875
1876void
1877mi_cmd_add_inferior (const char *command, char **argv, int argc)
1878{
1879 struct inferior *inf;
1880
1881 if (argc != 0)
1882 error (_("-add-inferior should be passed no arguments"));
1883
1884 inf = add_inferior_with_spaces ();
1885
1886 current_uiout->field_fmt ("inferior", "i%d", inf->num);
1887}
1888
1889/* Callback used to find the first inferior other than the current
1890 one. */
1891
1892static int
1893get_other_inferior (struct inferior *inf, void *arg)
1894{
1895 if (inf == current_inferior ())
1896 return 0;
1897
1898 return 1;
1899}
1900
1901void
1902mi_cmd_remove_inferior (const char *command, char **argv, int argc)
1903{
1904 int id;
1905 struct inferior *inf;
1906
1907 if (argc != 1)
1908 error (_("-remove-inferior should be passed a single argument"));
1909
1910 if (sscanf (argv[0], "i%d", &id) != 1)
1911 error (_("the thread group id is syntactically invalid"));
1912
1913 inf = find_inferior_id (id);
1914 if (!inf)
1915 error (_("the specified thread group does not exist"));
1916
1917 if (inf->pid != 0)
1918 error (_("cannot remove an active inferior"));
1919
1920 if (inf == current_inferior ())
1921 {
1922 struct thread_info *tp = 0;
1923 struct inferior *new_inferior
1924 = iterate_over_inferiors (get_other_inferior, NULL);
1925
1926 if (new_inferior == NULL)
1927 error (_("Cannot remove last inferior"));
1928
1929 set_current_inferior (new_inferior);
1930 if (new_inferior->pid != 0)
1931 tp = any_thread_of_process (new_inferior->pid);
1932 switch_to_thread (tp ? tp->ptid : null_ptid);
1933 set_current_program_space (new_inferior->pspace);
1934 }
1935
1936 delete_inferior (inf);
1937}
1938
1939\f
1940
1941/* Execute a command within a safe environment.
1942 Return <0 for error; >=0 for ok.
1943
1944 args->action will tell mi_execute_command what action
1945 to perfrom after the given command has executed (display/suppress
1946 prompt, display error). */
1947
1948static void
1949captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1950{
1951 struct mi_interp *mi = (struct mi_interp *) command_interp ();
1952 struct cleanup *cleanup;
1953
1954 if (do_timings)
1955 current_command_ts = context->cmd_start;
1956
1957 current_token = xstrdup (context->token);
1958 cleanup = make_cleanup (free_current_contents, &current_token);
1959
1960 running_result_record_printed = 0;
1961 mi_proceeded = 0;
1962 switch (context->op)
1963 {
1964 case MI_COMMAND:
1965 /* A MI command was read from the input stream. */
1966 if (mi_debug_p)
1967 /* FIXME: gdb_???? */
1968 fprintf_unfiltered (mi->raw_stdout,
1969 " token=`%s' command=`%s' args=`%s'\n",
1970 context->token, context->command, context->args);
1971
1972 mi_cmd_execute (context);
1973
1974 /* Print the result if there were no errors.
1975
1976 Remember that on the way out of executing a command, you have
1977 to directly use the mi_interp's uiout, since the command
1978 could have reset the interpreter, in which case the current
1979 uiout will most likely crash in the mi_out_* routines. */
1980 if (!running_result_record_printed)
1981 {
1982 fputs_unfiltered (context->token, mi->raw_stdout);
1983 /* There's no particularly good reason why target-connect results
1984 in not ^done. Should kill ^connected for MI3. */
1985 fputs_unfiltered (strcmp (context->command, "target-select") == 0
1986 ? "^connected" : "^done", mi->raw_stdout);
1987 mi_out_put (uiout, mi->raw_stdout);
1988 mi_out_rewind (uiout);
1989 mi_print_timing_maybe (mi->raw_stdout);
1990 fputs_unfiltered ("\n", mi->raw_stdout);
1991 }
1992 else
1993 /* The command does not want anything to be printed. In that
1994 case, the command probably should not have written anything
1995 to uiout, but in case it has written something, discard it. */
1996 mi_out_rewind (uiout);
1997 break;
1998
1999 case CLI_COMMAND:
2000 {
2001 char *argv[2];
2002
2003 /* A CLI command was read from the input stream. */
2004 /* This "feature" will be removed as soon as we have a
2005 complete set of mi commands. */
2006 /* Echo the command on the console. */
2007 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
2008 /* Call the "console" interpreter. */
2009 argv[0] = (char *) INTERP_CONSOLE;
2010 argv[1] = context->command;
2011 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
2012
2013 /* If we changed interpreters, DON'T print out anything. */
2014 if (current_interp_named_p (INTERP_MI)
2015 || current_interp_named_p (INTERP_MI1)
2016 || current_interp_named_p (INTERP_MI2)
2017 || current_interp_named_p (INTERP_MI3))
2018 {
2019 if (!running_result_record_printed)
2020 {
2021 fputs_unfiltered (context->token, mi->raw_stdout);
2022 fputs_unfiltered ("^done", mi->raw_stdout);
2023 mi_out_put (uiout, mi->raw_stdout);
2024 mi_out_rewind (uiout);
2025 mi_print_timing_maybe (mi->raw_stdout);
2026 fputs_unfiltered ("\n", mi->raw_stdout);
2027 }
2028 else
2029 mi_out_rewind (uiout);
2030 }
2031 break;
2032 }
2033 }
2034
2035 do_cleanups (cleanup);
2036}
2037
2038/* Print a gdb exception to the MI output stream. */
2039
2040static void
2041mi_print_exception (const char *token, struct gdb_exception exception)
2042{
2043 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
2044
2045 fputs_unfiltered (token, mi->raw_stdout);
2046 fputs_unfiltered ("^error,msg=\"", mi->raw_stdout);
2047 if (exception.message == NULL)
2048 fputs_unfiltered ("unknown error", mi->raw_stdout);
2049 else
2050 fputstr_unfiltered (exception.message, '"', mi->raw_stdout);
2051 fputs_unfiltered ("\"", mi->raw_stdout);
2052
2053 switch (exception.error)
2054 {
2055 case UNDEFINED_COMMAND_ERROR:
2056 fputs_unfiltered (",code=\"undefined-command\"", mi->raw_stdout);
2057 break;
2058 }
2059
2060 fputs_unfiltered ("\n", mi->raw_stdout);
2061}
2062
2063/* Determine whether the parsed command already notifies the
2064 user_selected_context_changed observer. */
2065
2066static int
2067command_notifies_uscc_observer (struct mi_parse *command)
2068{
2069 if (command->op == CLI_COMMAND)
2070 {
2071 /* CLI commands "thread" and "inferior" already send it. */
2072 return (strncmp (command->command, "thread ", 7) == 0
2073 || strncmp (command->command, "inferior ", 9) == 0);
2074 }
2075 else /* MI_COMMAND */
2076 {
2077 if (strcmp (command->command, "interpreter-exec") == 0
2078 && command->argc > 1)
2079 {
2080 /* "thread" and "inferior" again, but through -interpreter-exec. */
2081 return (strncmp (command->argv[1], "thread ", 7) == 0
2082 || strncmp (command->argv[1], "inferior ", 9) == 0);
2083 }
2084
2085 else
2086 /* -thread-select already sends it. */
2087 return strcmp (command->command, "thread-select") == 0;
2088 }
2089}
2090
2091void
2092mi_execute_command (const char *cmd, int from_tty)
2093{
2094 char *token;
2095 std::unique_ptr<struct mi_parse> command;
2096
2097 /* This is to handle EOF (^D). We just quit gdb. */
2098 /* FIXME: we should call some API function here. */
2099 if (cmd == 0)
2100 quit_force (NULL, from_tty);
2101
2102 target_log_command (cmd);
2103
2104 TRY
2105 {
2106 command = mi_parse (cmd, &token);
2107 }
2108 CATCH (exception, RETURN_MASK_ALL)
2109 {
2110 mi_print_exception (token, exception);
2111 xfree (token);
2112 }
2113 END_CATCH
2114
2115 if (command != NULL)
2116 {
2117 ptid_t previous_ptid = inferior_ptid;
2118
2119 gdb::optional<scoped_restore_tmpl<int>> restore_suppress;
2120
2121 if (command->cmd != NULL && command->cmd->suppress_notification != NULL)
2122 restore_suppress.emplace (command->cmd->suppress_notification, 1);
2123
2124 command->token = token;
2125
2126 if (do_timings)
2127 {
2128 command->cmd_start = new mi_timestamp ();
2129 timestamp (command->cmd_start);
2130 }
2131
2132 TRY
2133 {
2134 captured_mi_execute_command (current_uiout, command.get ());
2135 }
2136 CATCH (result, RETURN_MASK_ALL)
2137 {
2138 /* Like in start_event_loop, enable input and force display
2139 of the prompt. Otherwise, any command that calls
2140 async_disable_stdin, and then throws, will leave input
2141 disabled. */
2142 async_enable_stdin ();
2143 current_ui->prompt_state = PROMPT_NEEDED;
2144
2145 /* The command execution failed and error() was called
2146 somewhere. */
2147 mi_print_exception (command->token, result);
2148 mi_out_rewind (current_uiout);
2149 }
2150 END_CATCH
2151
2152 bpstat_do_actions ();
2153
2154 if (/* The notifications are only output when the top-level
2155 interpreter (specified on the command line) is MI. */
2156 interp_ui_out (top_level_interpreter ())->is_mi_like_p ()
2157 /* Don't try report anything if there are no threads --
2158 the program is dead. */
2159 && thread_count () != 0
2160 /* If the command already reports the thread change, no need to do it
2161 again. */
2162 && !command_notifies_uscc_observer (command.get ()))
2163 {
2164 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter ();
2165 int report_change = 0;
2166
2167 if (command->thread == -1)
2168 {
2169 report_change = (!ptid_equal (previous_ptid, null_ptid)
2170 && !ptid_equal (inferior_ptid, previous_ptid)
2171 && !ptid_equal (inferior_ptid, null_ptid));
2172 }
2173 else if (!ptid_equal (inferior_ptid, null_ptid))
2174 {
2175 struct thread_info *ti = inferior_thread ();
2176
2177 report_change = (ti->global_num != command->thread);
2178 }
2179
2180 if (report_change)
2181 {
2182 observer_notify_user_selected_context_changed
2183 (USER_SELECTED_THREAD | USER_SELECTED_FRAME);
2184 }
2185 }
2186 }
2187}
2188
2189static void
2190mi_cmd_execute (struct mi_parse *parse)
2191{
2192 struct cleanup *cleanup;
2193
2194 cleanup = prepare_execute_command ();
2195
2196 if (parse->all && parse->thread_group != -1)
2197 error (_("Cannot specify --thread-group together with --all"));
2198
2199 if (parse->all && parse->thread != -1)
2200 error (_("Cannot specify --thread together with --all"));
2201
2202 if (parse->thread_group != -1 && parse->thread != -1)
2203 error (_("Cannot specify --thread together with --thread-group"));
2204
2205 if (parse->frame != -1 && parse->thread == -1)
2206 error (_("Cannot specify --frame without --thread"));
2207
2208 if (parse->thread_group != -1)
2209 {
2210 struct inferior *inf = find_inferior_id (parse->thread_group);
2211 struct thread_info *tp = 0;
2212
2213 if (!inf)
2214 error (_("Invalid thread group for the --thread-group option"));
2215
2216 set_current_inferior (inf);
2217 /* This behaviour means that if --thread-group option identifies
2218 an inferior with multiple threads, then a random one will be
2219 picked. This is not a problem -- frontend should always
2220 provide --thread if it wishes to operate on a specific
2221 thread. */
2222 if (inf->pid != 0)
2223 tp = any_live_thread_of_process (inf->pid);
2224 switch_to_thread (tp ? tp->ptid : null_ptid);
2225 set_current_program_space (inf->pspace);
2226 }
2227
2228 if (parse->thread != -1)
2229 {
2230 struct thread_info *tp = find_thread_global_id (parse->thread);
2231
2232 if (!tp)
2233 error (_("Invalid thread id: %d"), parse->thread);
2234
2235 if (is_exited (tp->ptid))
2236 error (_("Thread id: %d has terminated"), parse->thread);
2237
2238 switch_to_thread (tp->ptid);
2239 }
2240
2241 if (parse->frame != -1)
2242 {
2243 struct frame_info *fid;
2244 int frame = parse->frame;
2245
2246 fid = find_relative_frame (get_current_frame (), &frame);
2247 if (frame == 0)
2248 /* find_relative_frame was successful */
2249 select_frame (fid);
2250 else
2251 error (_("Invalid frame id: %d"), frame);
2252 }
2253
2254 if (parse->language != language_unknown)
2255 {
2256 make_cleanup_restore_current_language ();
2257 set_language (parse->language);
2258 }
2259
2260 current_context = parse;
2261
2262 if (parse->cmd->argv_func != NULL)
2263 {
2264 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2265 }
2266 else if (parse->cmd->cli.cmd != 0)
2267 {
2268 /* FIXME: DELETE THIS. */
2269 /* The operation is still implemented by a cli command. */
2270 /* Must be a synchronous one. */
2271 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2272 parse->args);
2273 }
2274 else
2275 {
2276 /* FIXME: DELETE THIS. */
2277 string_file stb;
2278
2279 stb.puts ("Undefined mi command: ");
2280 stb.putstr (parse->command, '"');
2281 stb.puts (" (missing implementation)");
2282
2283 error_stream (stb);
2284 }
2285 do_cleanups (cleanup);
2286}
2287
2288/* FIXME: This is just a hack so we can get some extra commands going.
2289 We don't want to channel things through the CLI, but call libgdb directly.
2290 Use only for synchronous commands. */
2291
2292void
2293mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2294{
2295 if (cmd != 0)
2296 {
2297 struct cleanup *old_cleanups;
2298 char *run;
2299
2300 if (args_p)
2301 run = xstrprintf ("%s %s", cmd, args);
2302 else
2303 run = xstrdup (cmd);
2304 if (mi_debug_p)
2305 /* FIXME: gdb_???? */
2306 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2307 cmd, run);
2308 old_cleanups = make_cleanup (xfree, run);
2309 execute_command (run, 0 /* from_tty */ );
2310 do_cleanups (old_cleanups);
2311 return;
2312 }
2313}
2314
2315void
2316mi_execute_async_cli_command (const char *cli_command, char **argv, int argc)
2317{
2318 struct cleanup *old_cleanups;
2319 char *run;
2320
2321 if (mi_async_p ())
2322 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2323 else
2324 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2325 old_cleanups = make_cleanup (xfree, run);
2326
2327 execute_command (run, 0 /* from_tty */ );
2328
2329 /* Do this before doing any printing. It would appear that some
2330 print code leaves garbage around in the buffer. */
2331 do_cleanups (old_cleanups);
2332}
2333
2334void
2335mi_load_progress (const char *section_name,
2336 unsigned long sent_so_far,
2337 unsigned long total_section,
2338 unsigned long total_sent,
2339 unsigned long grand_total)
2340{
2341 using namespace std::chrono;
2342 static steady_clock::time_point last_update;
2343 static char *previous_sect_name = NULL;
2344 int new_section;
2345 struct ui_out *saved_uiout;
2346 struct ui_out *uiout;
2347 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
2348
2349 /* This function is called through deprecated_show_load_progress
2350 which means uiout may not be correct. Fix it for the duration
2351 of this function. */
2352 saved_uiout = current_uiout;
2353
2354 if (current_interp_named_p (INTERP_MI)
2355 || current_interp_named_p (INTERP_MI2))
2356 current_uiout = mi_out_new (2);
2357 else if (current_interp_named_p (INTERP_MI1))
2358 current_uiout = mi_out_new (1);
2359 else if (current_interp_named_p (INTERP_MI3))
2360 current_uiout = mi_out_new (3);
2361 else
2362 return;
2363
2364 uiout = current_uiout;
2365
2366 new_section = (previous_sect_name ?
2367 strcmp (previous_sect_name, section_name) : 1);
2368 if (new_section)
2369 {
2370 xfree (previous_sect_name);
2371 previous_sect_name = xstrdup (section_name);
2372
2373 if (current_token)
2374 fputs_unfiltered (current_token, mi->raw_stdout);
2375 fputs_unfiltered ("+download", mi->raw_stdout);
2376 {
2377 ui_out_emit_tuple tuple_emitter (uiout, NULL);
2378 uiout->field_string ("section", section_name);
2379 uiout->field_int ("section-size", total_section);
2380 uiout->field_int ("total-size", grand_total);
2381 }
2382 mi_out_put (uiout, mi->raw_stdout);
2383 fputs_unfiltered ("\n", mi->raw_stdout);
2384 gdb_flush (mi->raw_stdout);
2385 }
2386
2387 steady_clock::time_point time_now = steady_clock::now ();
2388 if (time_now - last_update > milliseconds (500))
2389 {
2390 last_update = time_now;
2391 if (current_token)
2392 fputs_unfiltered (current_token, mi->raw_stdout);
2393 fputs_unfiltered ("+download", mi->raw_stdout);
2394 {
2395 ui_out_emit_tuple tuple_emitter (uiout, NULL);
2396 uiout->field_string ("section", section_name);
2397 uiout->field_int ("section-sent", sent_so_far);
2398 uiout->field_int ("section-size", total_section);
2399 uiout->field_int ("total-sent", total_sent);
2400 uiout->field_int ("total-size", grand_total);
2401 }
2402 mi_out_put (uiout, mi->raw_stdout);
2403 fputs_unfiltered ("\n", mi->raw_stdout);
2404 gdb_flush (mi->raw_stdout);
2405 }
2406
2407 xfree (uiout);
2408 current_uiout = saved_uiout;
2409}
2410
2411static void
2412timestamp (struct mi_timestamp *tv)
2413{
2414 using namespace std::chrono;
2415
2416 tv->wallclock = steady_clock::now ();
2417 run_time_clock::now (tv->utime, tv->stime);
2418}
2419
2420static void
2421print_diff_now (struct ui_file *file, struct mi_timestamp *start)
2422{
2423 struct mi_timestamp now;
2424
2425 timestamp (&now);
2426 print_diff (file, start, &now);
2427}
2428
2429void
2430mi_print_timing_maybe (struct ui_file *file)
2431{
2432 /* If the command is -enable-timing then do_timings may be true
2433 whilst current_command_ts is not initialized. */
2434 if (do_timings && current_command_ts)
2435 print_diff_now (file, current_command_ts);
2436}
2437
2438static void
2439print_diff (struct ui_file *file, struct mi_timestamp *start,
2440 struct mi_timestamp *end)
2441{
2442 using namespace std::chrono;
2443
2444 duration<double> wallclock = end->wallclock - start->wallclock;
2445 duration<double> utime = end->utime - start->utime;
2446 duration<double> stime = end->stime - start->stime;
2447
2448 fprintf_unfiltered
2449 (file,
2450 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2451 wallclock.count (), utime.count (), stime.count ());
2452}
2453
2454void
2455mi_cmd_trace_define_variable (const char *command, char **argv, int argc)
2456{
2457 LONGEST initval = 0;
2458 struct trace_state_variable *tsv;
2459 char *name = 0;
2460
2461 if (argc != 1 && argc != 2)
2462 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2463
2464 name = argv[0];
2465 if (*name++ != '$')
2466 error (_("Name of trace variable should start with '$'"));
2467
2468 validate_trace_state_variable_name (name);
2469
2470 tsv = find_trace_state_variable (name);
2471 if (!tsv)
2472 tsv = create_trace_state_variable (name);
2473
2474 if (argc == 2)
2475 initval = value_as_long (parse_and_eval (argv[1]));
2476
2477 tsv->initial_value = initval;
2478}
2479
2480void
2481mi_cmd_trace_list_variables (const char *command, char **argv, int argc)
2482{
2483 if (argc != 0)
2484 error (_("-trace-list-variables: no arguments allowed"));
2485
2486 tvariables_info_1 ();
2487}
2488
2489void
2490mi_cmd_trace_find (const char *command, char **argv, int argc)
2491{
2492 char *mode;
2493
2494 if (argc == 0)
2495 error (_("trace selection mode is required"));
2496
2497 mode = argv[0];
2498
2499 if (strcmp (mode, "none") == 0)
2500 {
2501 tfind_1 (tfind_number, -1, 0, 0, 0);
2502 return;
2503 }
2504
2505 check_trace_running (current_trace_status ());
2506
2507 if (strcmp (mode, "frame-number") == 0)
2508 {
2509 if (argc != 2)
2510 error (_("frame number is required"));
2511 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2512 }
2513 else if (strcmp (mode, "tracepoint-number") == 0)
2514 {
2515 if (argc != 2)
2516 error (_("tracepoint number is required"));
2517 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2518 }
2519 else if (strcmp (mode, "pc") == 0)
2520 {
2521 if (argc != 2)
2522 error (_("PC is required"));
2523 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2524 }
2525 else if (strcmp (mode, "pc-inside-range") == 0)
2526 {
2527 if (argc != 3)
2528 error (_("Start and end PC are required"));
2529 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2530 parse_and_eval_address (argv[2]), 0);
2531 }
2532 else if (strcmp (mode, "pc-outside-range") == 0)
2533 {
2534 if (argc != 3)
2535 error (_("Start and end PC are required"));
2536 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2537 parse_and_eval_address (argv[2]), 0);
2538 }
2539 else if (strcmp (mode, "line") == 0)
2540 {
2541 struct symtabs_and_lines sals;
2542 struct symtab_and_line sal;
2543 static CORE_ADDR start_pc, end_pc;
2544 struct cleanup *back_to;
2545
2546 if (argc != 2)
2547 error (_("Line is required"));
2548
2549 sals = decode_line_with_current_source (argv[1],
2550 DECODE_LINE_FUNFIRSTLINE);
2551 back_to = make_cleanup (xfree, sals.sals);
2552
2553 sal = sals.sals[0];
2554
2555 if (sal.symtab == 0)
2556 error (_("Could not find the specified line"));
2557
2558 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2559 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2560 else
2561 error (_("Could not find the specified line"));
2562
2563 do_cleanups (back_to);
2564 }
2565 else
2566 error (_("Invalid mode '%s'"), mode);
2567
2568 if (has_stack_frames () || get_traceframe_number () >= 0)
2569 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2570}
2571
2572void
2573mi_cmd_trace_save (const char *command, char **argv, int argc)
2574{
2575 int target_saves = 0;
2576 int generate_ctf = 0;
2577 char *filename;
2578 int oind = 0;
2579 char *oarg;
2580
2581 enum opt
2582 {
2583 TARGET_SAVE_OPT, CTF_OPT
2584 };
2585 static const struct mi_opt opts[] =
2586 {
2587 {"r", TARGET_SAVE_OPT, 0},
2588 {"ctf", CTF_OPT, 0},
2589 { 0, 0, 0 }
2590 };
2591
2592 while (1)
2593 {
2594 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2595 &oind, &oarg);
2596
2597 if (opt < 0)
2598 break;
2599 switch ((enum opt) opt)
2600 {
2601 case TARGET_SAVE_OPT:
2602 target_saves = 1;
2603 break;
2604 case CTF_OPT:
2605 generate_ctf = 1;
2606 break;
2607 }
2608 }
2609
2610 if (argc - oind != 1)
2611 error (_("Exactly one argument required "
2612 "(file in which to save trace data)"));
2613
2614 filename = argv[oind];
2615
2616 if (generate_ctf)
2617 trace_save_ctf (filename, target_saves);
2618 else
2619 trace_save_tfile (filename, target_saves);
2620}
2621
2622void
2623mi_cmd_trace_start (const char *command, char **argv, int argc)
2624{
2625 start_tracing (NULL);
2626}
2627
2628void
2629mi_cmd_trace_status (const char *command, char **argv, int argc)
2630{
2631 trace_status_mi (0);
2632}
2633
2634void
2635mi_cmd_trace_stop (const char *command, char **argv, int argc)
2636{
2637 stop_tracing (NULL);
2638 trace_status_mi (1);
2639}
2640
2641/* Implement the "-ada-task-info" command. */
2642
2643void
2644mi_cmd_ada_task_info (const char *command, char **argv, int argc)
2645{
2646 if (argc != 0 && argc != 1)
2647 error (_("Invalid MI command"));
2648
2649 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2650}
2651
2652/* Print EXPRESSION according to VALUES. */
2653
2654static void
2655print_variable_or_computed (const char *expression, enum print_values values)
2656{
2657 struct value *val;
2658 struct type *type;
2659 struct ui_out *uiout = current_uiout;
2660
2661 string_file stb;
2662
2663 expression_up expr = parse_expression (expression);
2664
2665 if (values == PRINT_SIMPLE_VALUES)
2666 val = evaluate_type (expr.get ());
2667 else
2668 val = evaluate_expression (expr.get ());
2669
2670 gdb::optional<ui_out_emit_tuple> tuple_emitter;
2671 if (values != PRINT_NO_VALUES)
2672 tuple_emitter.emplace (uiout, nullptr);
2673 uiout->field_string ("name", expression);
2674
2675 switch (values)
2676 {
2677 case PRINT_SIMPLE_VALUES:
2678 type = check_typedef (value_type (val));
2679 type_print (value_type (val), "", &stb, -1);
2680 uiout->field_stream ("type", stb);
2681 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2682 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2683 && TYPE_CODE (type) != TYPE_CODE_UNION)
2684 {
2685 struct value_print_options opts;
2686
2687 get_no_prettyformat_print_options (&opts);
2688 opts.deref_ref = 1;
2689 common_val_print (val, &stb, 0, &opts, current_language);
2690 uiout->field_stream ("value", stb);
2691 }
2692 break;
2693 case PRINT_ALL_VALUES:
2694 {
2695 struct value_print_options opts;
2696
2697 get_no_prettyformat_print_options (&opts);
2698 opts.deref_ref = 1;
2699 common_val_print (val, &stb, 0, &opts, current_language);
2700 uiout->field_stream ("value", stb);
2701 }
2702 break;
2703 }
2704}
2705
2706/* Implement the "-trace-frame-collected" command. */
2707
2708void
2709mi_cmd_trace_frame_collected (const char *command, char **argv, int argc)
2710{
2711 struct bp_location *tloc;
2712 int stepping_frame;
2713 struct collection_list *clist;
2714 struct collection_list tracepoint_list, stepping_list;
2715 struct traceframe_info *tinfo;
2716 int oind = 0;
2717 enum print_values var_print_values = PRINT_ALL_VALUES;
2718 enum print_values comp_print_values = PRINT_ALL_VALUES;
2719 int registers_format = 'x';
2720 int memory_contents = 0;
2721 struct ui_out *uiout = current_uiout;
2722 enum opt
2723 {
2724 VAR_PRINT_VALUES,
2725 COMP_PRINT_VALUES,
2726 REGISTERS_FORMAT,
2727 MEMORY_CONTENTS,
2728 };
2729 static const struct mi_opt opts[] =
2730 {
2731 {"-var-print-values", VAR_PRINT_VALUES, 1},
2732 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2733 {"-registers-format", REGISTERS_FORMAT, 1},
2734 {"-memory-contents", MEMORY_CONTENTS, 0},
2735 { 0, 0, 0 }
2736 };
2737
2738 while (1)
2739 {
2740 char *oarg;
2741 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2742 &oind, &oarg);
2743 if (opt < 0)
2744 break;
2745 switch ((enum opt) opt)
2746 {
2747 case VAR_PRINT_VALUES:
2748 var_print_values = mi_parse_print_values (oarg);
2749 break;
2750 case COMP_PRINT_VALUES:
2751 comp_print_values = mi_parse_print_values (oarg);
2752 break;
2753 case REGISTERS_FORMAT:
2754 registers_format = oarg[0];
2755 case MEMORY_CONTENTS:
2756 memory_contents = 1;
2757 break;
2758 }
2759 }
2760
2761 if (oind != argc)
2762 error (_("Usage: -trace-frame-collected "
2763 "[--var-print-values PRINT_VALUES] "
2764 "[--comp-print-values PRINT_VALUES] "
2765 "[--registers-format FORMAT]"
2766 "[--memory-contents]"));
2767
2768 /* This throws an error is not inspecting a trace frame. */
2769 tloc = get_traceframe_location (&stepping_frame);
2770
2771 /* This command only makes sense for the current frame, not the
2772 selected frame. */
2773 scoped_restore_current_thread restore_thread;
2774 select_frame (get_current_frame ());
2775
2776 encode_actions (tloc, &tracepoint_list, &stepping_list);
2777
2778 if (stepping_frame)
2779 clist = &stepping_list;
2780 else
2781 clist = &tracepoint_list;
2782
2783 tinfo = get_traceframe_info ();
2784
2785 /* Explicitly wholly collected variables. */
2786 {
2787 int i;
2788
2789 ui_out_emit_list list_emitter (uiout, "explicit-variables");
2790 const std::vector<std::string> &wholly_collected
2791 = clist->wholly_collected ();
2792 for (size_t i = 0; i < wholly_collected.size (); i++)
2793 {
2794 const std::string &str = wholly_collected[i];
2795 print_variable_or_computed (str.c_str (), var_print_values);
2796 }
2797 }
2798
2799 /* Computed expressions. */
2800 {
2801 char *p;
2802 int i;
2803
2804 ui_out_emit_list list_emitter (uiout, "computed-expressions");
2805
2806 const std::vector<std::string> &computed = clist->computed ();
2807 for (size_t i = 0; i < computed.size (); i++)
2808 {
2809 const std::string &str = computed[i];
2810 print_variable_or_computed (str.c_str (), comp_print_values);
2811 }
2812 }
2813
2814 /* Registers. Given pseudo-registers, and that some architectures
2815 (like MIPS) actually hide the raw registers, we don't go through
2816 the trace frame info, but instead consult the register cache for
2817 register availability. */
2818 {
2819 struct frame_info *frame;
2820 struct gdbarch *gdbarch;
2821 int regnum;
2822 int numregs;
2823
2824 ui_out_emit_list list_emitter (uiout, "registers");
2825
2826 frame = get_selected_frame (NULL);
2827 gdbarch = get_frame_arch (frame);
2828 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2829
2830 for (regnum = 0; regnum < numregs; regnum++)
2831 {
2832 if (gdbarch_register_name (gdbarch, regnum) == NULL
2833 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2834 continue;
2835
2836 output_register (frame, regnum, registers_format, 1);
2837 }
2838 }
2839
2840 /* Trace state variables. */
2841 {
2842 struct cleanup *list_cleanup;
2843 int tvar;
2844 char *tsvname;
2845 int i;
2846
2847 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "tvars");
2848
2849 tsvname = NULL;
2850 make_cleanup (free_current_contents, &tsvname);
2851
2852 for (i = 0; VEC_iterate (int, tinfo->tvars, i, tvar); i++)
2853 {
2854 struct trace_state_variable *tsv;
2855
2856 tsv = find_trace_state_variable_by_number (tvar);
2857
2858 ui_out_emit_tuple tuple_emitter (uiout, NULL);
2859
2860 if (tsv != NULL)
2861 {
2862 tsvname = (char *) xrealloc (tsvname, strlen (tsv->name) + 2);
2863 tsvname[0] = '$';
2864 strcpy (tsvname + 1, tsv->name);
2865 uiout->field_string ("name", tsvname);
2866
2867 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2868 &tsv->value);
2869 uiout->field_int ("current", tsv->value);
2870 }
2871 else
2872 {
2873 uiout->field_skip ("name");
2874 uiout->field_skip ("current");
2875 }
2876 }
2877
2878 do_cleanups (list_cleanup);
2879 }
2880
2881 /* Memory. */
2882 {
2883 struct cleanup *list_cleanup;
2884 VEC(mem_range_s) *available_memory = NULL;
2885 struct mem_range *r;
2886 int i;
2887
2888 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2889 make_cleanup (VEC_cleanup(mem_range_s), &available_memory);
2890
2891 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "memory");
2892
2893 for (i = 0; VEC_iterate (mem_range_s, available_memory, i, r); i++)
2894 {
2895 struct cleanup *cleanup_child;
2896 gdb_byte *data;
2897 struct gdbarch *gdbarch = target_gdbarch ();
2898
2899 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2900
2901 uiout->field_core_addr ("address", gdbarch, r->start);
2902 uiout->field_int ("length", r->length);
2903
2904 data = (gdb_byte *) xmalloc (r->length);
2905 make_cleanup (xfree, data);
2906
2907 if (memory_contents)
2908 {
2909 if (target_read_memory (r->start, data, r->length) == 0)
2910 {
2911 int m;
2912 char *data_str, *p;
2913
2914 data_str = (char *) xmalloc (r->length * 2 + 1);
2915 make_cleanup (xfree, data_str);
2916
2917 for (m = 0, p = data_str; m < r->length; ++m, p += 2)
2918 sprintf (p, "%02x", data[m]);
2919 uiout->field_string ("contents", data_str);
2920 }
2921 else
2922 uiout->field_skip ("contents");
2923 }
2924 do_cleanups (cleanup_child);
2925 }
2926
2927 do_cleanups (list_cleanup);
2928 }
2929}
2930
2931void
2932_initialize_mi_main (void)
2933{
2934 struct cmd_list_element *c;
2935
2936 add_setshow_boolean_cmd ("mi-async", class_run,
2937 &mi_async_1, _("\
2938Set whether MI asynchronous mode is enabled."), _("\
2939Show whether MI asynchronous mode is enabled."), _("\
2940Tells GDB whether MI should be in asynchronous mode."),
2941 set_mi_async_command,
2942 show_mi_async_command,
2943 &setlist,
2944 &showlist);
2945
2946 /* Alias old "target-async" to "mi-async". */
2947 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &setlist);
2948 deprecate_cmd (c, "set mi-async");
2949 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &showlist);
2950 deprecate_cmd (c, "show mi-async");
2951}
This page took 0.032727 seconds and 4 git commands to generate.