* dwarf2expr.h (dwarf2_read_address): Add gdbarch argument.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
... / ...
CommitLineData
1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25#include "defs.h"
26#include "gdb_string.h"
27#include "gdb_assert.h"
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
39#include "arch-utils.h"
40#include "regcache.h"
41#include "osabi.h"
42#include "mips-tdep.h"
43#include "block.h"
44#include "reggroups.h"
45#include "opcode/mips.h"
46#include "elf/mips.h"
47#include "elf-bfd.h"
48#include "symcat.h"
49#include "sim-regno.h"
50#include "dis-asm.h"
51#include "frame-unwind.h"
52#include "frame-base.h"
53#include "trad-frame.h"
54#include "infcall.h"
55#include "floatformat.h"
56#include "remote.h"
57#include "target-descriptions.h"
58#include "dwarf2-frame.h"
59#include "user-regs.h"
60
61static const struct objfile_data *mips_pdr_data;
62
63static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
66/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67#define ST0_FR (1 << 26)
68
69/* The sizes of floating point registers. */
70
71enum
72{
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75};
76
77enum
78{
79 MIPS32_REGSIZE = 4,
80 MIPS64_REGSIZE = 8
81};
82
83static const char *mips_abi_string;
84
85static const char *mips_abi_strings[] = {
86 "auto",
87 "n32",
88 "o32",
89 "n64",
90 "o64",
91 "eabi32",
92 "eabi64",
93 NULL
94};
95
96/* The standard register names, and all the valid aliases for them. */
97struct register_alias
98{
99 const char *name;
100 int regnum;
101};
102
103/* Aliases for o32 and most other ABIs. */
104const struct register_alias mips_o32_aliases[] = {
105 { "ta0", 12 },
106 { "ta1", 13 },
107 { "ta2", 14 },
108 { "ta3", 15 }
109};
110
111/* Aliases for n32 and n64. */
112const struct register_alias mips_n32_n64_aliases[] = {
113 { "ta0", 8 },
114 { "ta1", 9 },
115 { "ta2", 10 },
116 { "ta3", 11 }
117};
118
119/* Aliases for ABI-independent registers. */
120const struct register_alias mips_register_aliases[] = {
121 /* The architecture manuals specify these ABI-independent names for
122 the GPRs. */
123#define R(n) { "r" #n, n }
124 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
125 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
126 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
127 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
128#undef R
129
130 /* k0 and k1 are sometimes called these instead (for "kernel
131 temp"). */
132 { "kt0", 26 },
133 { "kt1", 27 },
134
135 /* This is the traditional GDB name for the CP0 status register. */
136 { "sr", MIPS_PS_REGNUM },
137
138 /* This is the traditional GDB name for the CP0 BadVAddr register. */
139 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
140
141 /* This is the traditional GDB name for the FCSR. */
142 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
143};
144
145#ifndef MIPS_DEFAULT_FPU_TYPE
146#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
147#endif
148static int mips_fpu_type_auto = 1;
149static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
150
151static int mips_debug = 0;
152
153/* Properties (for struct target_desc) describing the g/G packet
154 layout. */
155#define PROPERTY_GP32 "internal: transfers-32bit-registers"
156#define PROPERTY_GP64 "internal: transfers-64bit-registers"
157
158struct target_desc *mips_tdesc_gp32;
159struct target_desc *mips_tdesc_gp64;
160
161const struct mips_regnum *
162mips_regnum (struct gdbarch *gdbarch)
163{
164 return gdbarch_tdep (gdbarch)->regnum;
165}
166
167static int
168mips_fpa0_regnum (struct gdbarch *gdbarch)
169{
170 return mips_regnum (gdbarch)->fp0 + 12;
171}
172
173#define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
174 == MIPS_ABI_EABI32 \
175 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
176
177#define MIPS_LAST_FP_ARG_REGNUM(gdbarch) (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
178
179#define MIPS_LAST_ARG_REGNUM(gdbarch) (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
180
181#define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
182
183/* MIPS16 function addresses are odd (bit 0 is set). Here are some
184 functions to test, set, or clear bit 0 of addresses. */
185
186static CORE_ADDR
187is_mips16_addr (CORE_ADDR addr)
188{
189 return ((addr) & 1);
190}
191
192static CORE_ADDR
193unmake_mips16_addr (CORE_ADDR addr)
194{
195 return ((addr) & ~(CORE_ADDR) 1);
196}
197
198/* Return the MIPS ABI associated with GDBARCH. */
199enum mips_abi
200mips_abi (struct gdbarch *gdbarch)
201{
202 return gdbarch_tdep (gdbarch)->mips_abi;
203}
204
205int
206mips_isa_regsize (struct gdbarch *gdbarch)
207{
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209
210 /* If we know how big the registers are, use that size. */
211 if (tdep->register_size_valid_p)
212 return tdep->register_size;
213
214 /* Fall back to the previous behavior. */
215 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
216 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
217}
218
219/* Return the currently configured (or set) saved register size. */
220
221unsigned int
222mips_abi_regsize (struct gdbarch *gdbarch)
223{
224 switch (mips_abi (gdbarch))
225 {
226 case MIPS_ABI_EABI32:
227 case MIPS_ABI_O32:
228 return 4;
229 case MIPS_ABI_N32:
230 case MIPS_ABI_N64:
231 case MIPS_ABI_O64:
232 case MIPS_ABI_EABI64:
233 return 8;
234 case MIPS_ABI_UNKNOWN:
235 case MIPS_ABI_LAST:
236 default:
237 internal_error (__FILE__, __LINE__, _("bad switch"));
238 }
239}
240
241/* Functions for setting and testing a bit in a minimal symbol that
242 marks it as 16-bit function. The MSB of the minimal symbol's
243 "info" field is used for this purpose.
244
245 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
246 i.e. refers to a 16-bit function, and sets a "special" bit in a
247 minimal symbol to mark it as a 16-bit function
248
249 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
250
251static void
252mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
253{
254 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
255 {
256 MSYMBOL_INFO (msym) = (char *)
257 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
258 SYMBOL_VALUE_ADDRESS (msym) |= 1;
259 }
260}
261
262static int
263msymbol_is_special (struct minimal_symbol *msym)
264{
265 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
266}
267
268/* XFER a value from the big/little/left end of the register.
269 Depending on the size of the value it might occupy the entire
270 register or just part of it. Make an allowance for this, aligning
271 things accordingly. */
272
273static void
274mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
275 int reg_num, int length,
276 enum bfd_endian endian, gdb_byte *in,
277 const gdb_byte *out, int buf_offset)
278{
279 int reg_offset = 0;
280
281 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
282 /* Need to transfer the left or right part of the register, based on
283 the targets byte order. */
284 switch (endian)
285 {
286 case BFD_ENDIAN_BIG:
287 reg_offset = register_size (gdbarch, reg_num) - length;
288 break;
289 case BFD_ENDIAN_LITTLE:
290 reg_offset = 0;
291 break;
292 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
293 reg_offset = 0;
294 break;
295 default:
296 internal_error (__FILE__, __LINE__, _("bad switch"));
297 }
298 if (mips_debug)
299 fprintf_unfiltered (gdb_stderr,
300 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
301 reg_num, reg_offset, buf_offset, length);
302 if (mips_debug && out != NULL)
303 {
304 int i;
305 fprintf_unfiltered (gdb_stdlog, "out ");
306 for (i = 0; i < length; i++)
307 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
308 }
309 if (in != NULL)
310 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
311 in + buf_offset);
312 if (out != NULL)
313 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
314 out + buf_offset);
315 if (mips_debug && in != NULL)
316 {
317 int i;
318 fprintf_unfiltered (gdb_stdlog, "in ");
319 for (i = 0; i < length; i++)
320 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
321 }
322 if (mips_debug)
323 fprintf_unfiltered (gdb_stdlog, "\n");
324}
325
326/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
327 compatiblity mode. A return value of 1 means that we have
328 physical 64-bit registers, but should treat them as 32-bit registers. */
329
330static int
331mips2_fp_compat (struct frame_info *frame)
332{
333 struct gdbarch *gdbarch = get_frame_arch (frame);
334 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
335 meaningful. */
336 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
337 return 0;
338
339#if 0
340 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
341 in all the places we deal with FP registers. PR gdb/413. */
342 /* Otherwise check the FR bit in the status register - it controls
343 the FP compatiblity mode. If it is clear we are in compatibility
344 mode. */
345 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
346 return 1;
347#endif
348
349 return 0;
350}
351
352#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
353
354static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
355
356static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
357
358static struct type *mips_float_register_type (void);
359static struct type *mips_double_register_type (void);
360
361/* The list of available "set mips " and "show mips " commands */
362
363static struct cmd_list_element *setmipscmdlist = NULL;
364static struct cmd_list_element *showmipscmdlist = NULL;
365
366/* Integer registers 0 thru 31 are handled explicitly by
367 mips_register_name(). Processor specific registers 32 and above
368 are listed in the following tables. */
369
370enum
371{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
372
373/* Generic MIPS. */
374
375static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
376 "sr", "lo", "hi", "bad", "cause", "pc",
377 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
378 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
379 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
380 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
381 "fsr", "fir", "" /*"fp" */ , "",
382 "", "", "", "", "", "", "", "",
383 "", "", "", "", "", "", "", "",
384};
385
386/* Names of IDT R3041 registers. */
387
388static const char *mips_r3041_reg_names[] = {
389 "sr", "lo", "hi", "bad", "cause", "pc",
390 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
391 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
392 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
393 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
394 "fsr", "fir", "", /*"fp" */ "",
395 "", "", "bus", "ccfg", "", "", "", "",
396 "", "", "port", "cmp", "", "", "epc", "prid",
397};
398
399/* Names of tx39 registers. */
400
401static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
402 "sr", "lo", "hi", "bad", "cause", "pc",
403 "", "", "", "", "", "", "", "",
404 "", "", "", "", "", "", "", "",
405 "", "", "", "", "", "", "", "",
406 "", "", "", "", "", "", "", "",
407 "", "", "", "",
408 "", "", "", "", "", "", "", "",
409 "", "", "config", "cache", "debug", "depc", "epc", ""
410};
411
412/* Names of IRIX registers. */
413static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
414 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
415 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
416 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
417 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
418 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
419};
420
421
422/* Return the name of the register corresponding to REGNO. */
423static const char *
424mips_register_name (struct gdbarch *gdbarch, int regno)
425{
426 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
427 /* GPR names for all ABIs other than n32/n64. */
428 static char *mips_gpr_names[] = {
429 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
430 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
431 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
432 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
433 };
434
435 /* GPR names for n32 and n64 ABIs. */
436 static char *mips_n32_n64_gpr_names[] = {
437 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
438 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
439 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
440 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
441 };
442
443 enum mips_abi abi = mips_abi (gdbarch);
444
445 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
446 but then don't make the raw register names visible. */
447 int rawnum = regno % gdbarch_num_regs (gdbarch);
448 if (regno < gdbarch_num_regs (gdbarch))
449 return "";
450
451 /* The MIPS integer registers are always mapped from 0 to 31. The
452 names of the registers (which reflects the conventions regarding
453 register use) vary depending on the ABI. */
454 if (0 <= rawnum && rawnum < 32)
455 {
456 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
457 return mips_n32_n64_gpr_names[rawnum];
458 else
459 return mips_gpr_names[rawnum];
460 }
461 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
462 return tdesc_register_name (gdbarch, rawnum);
463 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
464 {
465 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
466 return tdep->mips_processor_reg_names[rawnum - 32];
467 }
468 else
469 internal_error (__FILE__, __LINE__,
470 _("mips_register_name: bad register number %d"), rawnum);
471}
472
473/* Return the groups that a MIPS register can be categorised into. */
474
475static int
476mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
477 struct reggroup *reggroup)
478{
479 int vector_p;
480 int float_p;
481 int raw_p;
482 int rawnum = regnum % gdbarch_num_regs (gdbarch);
483 int pseudo = regnum / gdbarch_num_regs (gdbarch);
484 if (reggroup == all_reggroup)
485 return pseudo;
486 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
487 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
488 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
489 (gdbarch), as not all architectures are multi-arch. */
490 raw_p = rawnum < gdbarch_num_regs (gdbarch);
491 if (gdbarch_register_name (gdbarch, regnum) == NULL
492 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
493 return 0;
494 if (reggroup == float_reggroup)
495 return float_p && pseudo;
496 if (reggroup == vector_reggroup)
497 return vector_p && pseudo;
498 if (reggroup == general_reggroup)
499 return (!vector_p && !float_p) && pseudo;
500 /* Save the pseudo registers. Need to make certain that any code
501 extracting register values from a saved register cache also uses
502 pseudo registers. */
503 if (reggroup == save_reggroup)
504 return raw_p && pseudo;
505 /* Restore the same pseudo register. */
506 if (reggroup == restore_reggroup)
507 return raw_p && pseudo;
508 return 0;
509}
510
511/* Return the groups that a MIPS register can be categorised into.
512 This version is only used if we have a target description which
513 describes real registers (and their groups). */
514
515static int
516mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
517 struct reggroup *reggroup)
518{
519 int rawnum = regnum % gdbarch_num_regs (gdbarch);
520 int pseudo = regnum / gdbarch_num_regs (gdbarch);
521 int ret;
522
523 /* Only save, restore, and display the pseudo registers. Need to
524 make certain that any code extracting register values from a
525 saved register cache also uses pseudo registers.
526
527 Note: saving and restoring the pseudo registers is slightly
528 strange; if we have 64 bits, we should save and restore all
529 64 bits. But this is hard and has little benefit. */
530 if (!pseudo)
531 return 0;
532
533 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
534 if (ret != -1)
535 return ret;
536
537 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
538}
539
540/* Map the symbol table registers which live in the range [1 *
541 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
542 registers. Take care of alignment and size problems. */
543
544static void
545mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
546 int cookednum, gdb_byte *buf)
547{
548 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
549 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
550 && cookednum < 2 * gdbarch_num_regs (gdbarch));
551 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
552 regcache_raw_read (regcache, rawnum, buf);
553 else if (register_size (gdbarch, rawnum) >
554 register_size (gdbarch, cookednum))
555 {
556 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
557 || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
558 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
559 else
560 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
561 }
562 else
563 internal_error (__FILE__, __LINE__, _("bad register size"));
564}
565
566static void
567mips_pseudo_register_write (struct gdbarch *gdbarch,
568 struct regcache *regcache, int cookednum,
569 const gdb_byte *buf)
570{
571 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
572 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
573 && cookednum < 2 * gdbarch_num_regs (gdbarch));
574 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
575 regcache_raw_write (regcache, rawnum, buf);
576 else if (register_size (gdbarch, rawnum) >
577 register_size (gdbarch, cookednum))
578 {
579 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
580 || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
581 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
582 else
583 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
584 }
585 else
586 internal_error (__FILE__, __LINE__, _("bad register size"));
587}
588
589/* Table to translate MIPS16 register field to actual register number. */
590static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
591
592/* Heuristic_proc_start may hunt through the text section for a long
593 time across a 2400 baud serial line. Allows the user to limit this
594 search. */
595
596static unsigned int heuristic_fence_post = 0;
597
598/* Number of bytes of storage in the actual machine representation for
599 register N. NOTE: This defines the pseudo register type so need to
600 rebuild the architecture vector. */
601
602static int mips64_transfers_32bit_regs_p = 0;
603
604static void
605set_mips64_transfers_32bit_regs (char *args, int from_tty,
606 struct cmd_list_element *c)
607{
608 struct gdbarch_info info;
609 gdbarch_info_init (&info);
610 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
611 instead of relying on globals. Doing that would let generic code
612 handle the search for this specific architecture. */
613 if (!gdbarch_update_p (info))
614 {
615 mips64_transfers_32bit_regs_p = 0;
616 error (_("32-bit compatibility mode not supported"));
617 }
618}
619
620/* Convert to/from a register and the corresponding memory value. */
621
622static int
623mips_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
624{
625 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
626 && register_size (gdbarch, regnum) == 4
627 && (regnum % gdbarch_num_regs (gdbarch))
628 >= mips_regnum (gdbarch)->fp0
629 && (regnum % gdbarch_num_regs (gdbarch))
630 < mips_regnum (gdbarch)->fp0 + 32
631 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
632}
633
634static void
635mips_register_to_value (struct frame_info *frame, int regnum,
636 struct type *type, gdb_byte *to)
637{
638 get_frame_register (frame, regnum + 0, to + 4);
639 get_frame_register (frame, regnum + 1, to + 0);
640}
641
642static void
643mips_value_to_register (struct frame_info *frame, int regnum,
644 struct type *type, const gdb_byte *from)
645{
646 put_frame_register (frame, regnum + 0, from + 4);
647 put_frame_register (frame, regnum + 1, from + 0);
648}
649
650/* Return the GDB type object for the "standard" data type of data in
651 register REG. */
652
653static struct type *
654mips_register_type (struct gdbarch *gdbarch, int regnum)
655{
656 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
657 if ((regnum % gdbarch_num_regs (gdbarch)) >= mips_regnum (gdbarch)->fp0
658 && (regnum % gdbarch_num_regs (gdbarch))
659 < mips_regnum (gdbarch)->fp0 + 32)
660 {
661 /* The floating-point registers raw, or cooked, always match
662 mips_isa_regsize(), and also map 1:1, byte for byte. */
663 if (mips_isa_regsize (gdbarch) == 4)
664 return builtin_type_ieee_single;
665 else
666 return builtin_type_ieee_double;
667 }
668 else if (regnum < gdbarch_num_regs (gdbarch))
669 {
670 /* The raw or ISA registers. These are all sized according to
671 the ISA regsize. */
672 if (mips_isa_regsize (gdbarch) == 4)
673 return builtin_type_int32;
674 else
675 return builtin_type_int64;
676 }
677 else
678 {
679 /* The cooked or ABI registers. These are sized according to
680 the ABI (with a few complications). */
681 if (regnum >= (gdbarch_num_regs (gdbarch)
682 + mips_regnum (gdbarch)->fp_control_status)
683 && regnum <= gdbarch_num_regs (gdbarch) + MIPS_LAST_EMBED_REGNUM)
684 /* The pseudo/cooked view of the embedded registers is always
685 32-bit. The raw view is handled below. */
686 return builtin_type_int32;
687 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
688 /* The target, while possibly using a 64-bit register buffer,
689 is only transfering 32-bits of each integer register.
690 Reflect this in the cooked/pseudo (ABI) register value. */
691 return builtin_type_int32;
692 else if (mips_abi_regsize (gdbarch) == 4)
693 /* The ABI is restricted to 32-bit registers (the ISA could be
694 32- or 64-bit). */
695 return builtin_type_int32;
696 else
697 /* 64-bit ABI. */
698 return builtin_type_int64;
699 }
700}
701
702/* Return the GDB type for the pseudo register REGNUM, which is the
703 ABI-level view. This function is only called if there is a target
704 description which includes registers, so we know precisely the
705 types of hardware registers. */
706
707static struct type *
708mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
709{
710 const int num_regs = gdbarch_num_regs (gdbarch);
711 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
712 int rawnum = regnum % num_regs;
713 struct type *rawtype;
714
715 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
716
717 /* Absent registers are still absent. */
718 rawtype = gdbarch_register_type (gdbarch, rawnum);
719 if (TYPE_LENGTH (rawtype) == 0)
720 return rawtype;
721
722 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
723 /* Present the floating point registers however the hardware did;
724 do not try to convert between FPU layouts. */
725 return rawtype;
726
727 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
728 {
729 /* The pseudo/cooked view of embedded registers is always
730 32-bit, even if the target transfers 64-bit values for them.
731 New targets relying on XML descriptions should only transfer
732 the necessary 32 bits, but older versions of GDB expected 64,
733 so allow the target to provide 64 bits without interfering
734 with the displayed type. */
735 return builtin_type_int32;
736 }
737
738 /* Use pointer types for registers if we can. For n32 we can not,
739 since we do not have a 64-bit pointer type. */
740 if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
741 {
742 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
743 return builtin_type_void_data_ptr;
744 else if (rawnum == MIPS_EMBED_PC_REGNUM)
745 return builtin_type_void_func_ptr;
746 }
747
748 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
749 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
750 return builtin_type_int32;
751
752 /* For all other registers, pass through the hardware type. */
753 return rawtype;
754}
755
756/* Should the upper word of 64-bit addresses be zeroed? */
757enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
758
759static int
760mips_mask_address_p (struct gdbarch_tdep *tdep)
761{
762 switch (mask_address_var)
763 {
764 case AUTO_BOOLEAN_TRUE:
765 return 1;
766 case AUTO_BOOLEAN_FALSE:
767 return 0;
768 break;
769 case AUTO_BOOLEAN_AUTO:
770 return tdep->default_mask_address_p;
771 default:
772 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
773 return -1;
774 }
775}
776
777static void
778show_mask_address (struct ui_file *file, int from_tty,
779 struct cmd_list_element *c, const char *value)
780{
781 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
782
783 deprecated_show_value_hack (file, from_tty, c, value);
784 switch (mask_address_var)
785 {
786 case AUTO_BOOLEAN_TRUE:
787 printf_filtered ("The 32 bit mips address mask is enabled\n");
788 break;
789 case AUTO_BOOLEAN_FALSE:
790 printf_filtered ("The 32 bit mips address mask is disabled\n");
791 break;
792 case AUTO_BOOLEAN_AUTO:
793 printf_filtered
794 ("The 32 bit address mask is set automatically. Currently %s\n",
795 mips_mask_address_p (tdep) ? "enabled" : "disabled");
796 break;
797 default:
798 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
799 break;
800 }
801}
802
803/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
804
805int
806mips_pc_is_mips16 (CORE_ADDR memaddr)
807{
808 struct minimal_symbol *sym;
809
810 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
811 if (is_mips16_addr (memaddr))
812 return 1;
813
814 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
815 the high bit of the info field. Use this to decide if the function is
816 MIPS16 or normal MIPS. */
817 sym = lookup_minimal_symbol_by_pc (memaddr);
818 if (sym)
819 return msymbol_is_special (sym);
820 else
821 return 0;
822}
823
824/* MIPS believes that the PC has a sign extended value. Perhaps the
825 all registers should be sign extended for simplicity? */
826
827static CORE_ADDR
828mips_read_pc (struct regcache *regcache)
829{
830 ULONGEST pc;
831 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
832 regcache_cooked_read_signed (regcache, regnum, &pc);
833 return pc;
834}
835
836static CORE_ADDR
837mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
838{
839 return frame_unwind_register_signed
840 (next_frame, gdbarch_num_regs (gdbarch) + mips_regnum (gdbarch)->pc);
841}
842
843static CORE_ADDR
844mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
845{
846 return frame_unwind_register_signed
847 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
848}
849
850/* Assuming THIS_FRAME is a dummy, return the frame ID of that
851 dummy frame. The frame ID's base needs to match the TOS value
852 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
853 breakpoint. */
854
855static struct frame_id
856mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
857{
858 return frame_id_build
859 (get_frame_register_signed (this_frame,
860 gdbarch_num_regs (gdbarch)
861 + MIPS_SP_REGNUM),
862 get_frame_pc (this_frame));
863}
864
865static void
866mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
867{
868 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
869 regcache_cooked_write_unsigned (regcache, regnum, pc);
870}
871
872/* Fetch and return instruction from the specified location. If the PC
873 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
874
875static ULONGEST
876mips_fetch_instruction (CORE_ADDR addr)
877{
878 gdb_byte buf[MIPS_INSN32_SIZE];
879 int instlen;
880 int status;
881
882 if (mips_pc_is_mips16 (addr))
883 {
884 instlen = MIPS_INSN16_SIZE;
885 addr = unmake_mips16_addr (addr);
886 }
887 else
888 instlen = MIPS_INSN32_SIZE;
889 status = target_read_memory (addr, buf, instlen);
890 if (status)
891 memory_error (status, addr);
892 return extract_unsigned_integer (buf, instlen);
893}
894
895/* These the fields of 32 bit mips instructions */
896#define mips32_op(x) (x >> 26)
897#define itype_op(x) (x >> 26)
898#define itype_rs(x) ((x >> 21) & 0x1f)
899#define itype_rt(x) ((x >> 16) & 0x1f)
900#define itype_immediate(x) (x & 0xffff)
901
902#define jtype_op(x) (x >> 26)
903#define jtype_target(x) (x & 0x03ffffff)
904
905#define rtype_op(x) (x >> 26)
906#define rtype_rs(x) ((x >> 21) & 0x1f)
907#define rtype_rt(x) ((x >> 16) & 0x1f)
908#define rtype_rd(x) ((x >> 11) & 0x1f)
909#define rtype_shamt(x) ((x >> 6) & 0x1f)
910#define rtype_funct(x) (x & 0x3f)
911
912static LONGEST
913mips32_relative_offset (ULONGEST inst)
914{
915 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
916}
917
918/* Determine where to set a single step breakpoint while considering
919 branch prediction. */
920static CORE_ADDR
921mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
922{
923 unsigned long inst;
924 int op;
925 inst = mips_fetch_instruction (pc);
926 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
927 {
928 if (itype_op (inst) >> 2 == 5)
929 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
930 {
931 op = (itype_op (inst) & 0x03);
932 switch (op)
933 {
934 case 0: /* BEQL */
935 goto equal_branch;
936 case 1: /* BNEL */
937 goto neq_branch;
938 case 2: /* BLEZL */
939 goto less_branch;
940 case 3: /* BGTZL */
941 goto greater_branch;
942 default:
943 pc += 4;
944 }
945 }
946 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
947 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
948 {
949 int tf = itype_rt (inst) & 0x01;
950 int cnum = itype_rt (inst) >> 2;
951 int fcrcs =
952 get_frame_register_signed (frame,
953 mips_regnum (get_frame_arch (frame))->
954 fp_control_status);
955 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
956
957 if (((cond >> cnum) & 0x01) == tf)
958 pc += mips32_relative_offset (inst) + 4;
959 else
960 pc += 8;
961 }
962 else
963 pc += 4; /* Not a branch, next instruction is easy */
964 }
965 else
966 { /* This gets way messy */
967
968 /* Further subdivide into SPECIAL, REGIMM and other */
969 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
970 {
971 case 0: /* SPECIAL */
972 op = rtype_funct (inst);
973 switch (op)
974 {
975 case 8: /* JR */
976 case 9: /* JALR */
977 /* Set PC to that address */
978 pc = get_frame_register_signed (frame, rtype_rs (inst));
979 break;
980 case 12: /* SYSCALL */
981 {
982 struct gdbarch_tdep *tdep;
983
984 tdep = gdbarch_tdep (get_frame_arch (frame));
985 if (tdep->syscall_next_pc != NULL)
986 pc = tdep->syscall_next_pc (frame);
987 else
988 pc += 4;
989 }
990 break;
991 default:
992 pc += 4;
993 }
994
995 break; /* end SPECIAL */
996 case 1: /* REGIMM */
997 {
998 op = itype_rt (inst); /* branch condition */
999 switch (op)
1000 {
1001 case 0: /* BLTZ */
1002 case 2: /* BLTZL */
1003 case 16: /* BLTZAL */
1004 case 18: /* BLTZALL */
1005 less_branch:
1006 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1007 pc += mips32_relative_offset (inst) + 4;
1008 else
1009 pc += 8; /* after the delay slot */
1010 break;
1011 case 1: /* BGEZ */
1012 case 3: /* BGEZL */
1013 case 17: /* BGEZAL */
1014 case 19: /* BGEZALL */
1015 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1016 pc += mips32_relative_offset (inst) + 4;
1017 else
1018 pc += 8; /* after the delay slot */
1019 break;
1020 /* All of the other instructions in the REGIMM category */
1021 default:
1022 pc += 4;
1023 }
1024 }
1025 break; /* end REGIMM */
1026 case 2: /* J */
1027 case 3: /* JAL */
1028 {
1029 unsigned long reg;
1030 reg = jtype_target (inst) << 2;
1031 /* Upper four bits get never changed... */
1032 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1033 }
1034 break;
1035 /* FIXME case JALX : */
1036 {
1037 unsigned long reg;
1038 reg = jtype_target (inst) << 2;
1039 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1040 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1041 }
1042 break; /* The new PC will be alternate mode */
1043 case 4: /* BEQ, BEQL */
1044 equal_branch:
1045 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1046 get_frame_register_signed (frame, itype_rt (inst)))
1047 pc += mips32_relative_offset (inst) + 4;
1048 else
1049 pc += 8;
1050 break;
1051 case 5: /* BNE, BNEL */
1052 neq_branch:
1053 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1054 get_frame_register_signed (frame, itype_rt (inst)))
1055 pc += mips32_relative_offset (inst) + 4;
1056 else
1057 pc += 8;
1058 break;
1059 case 6: /* BLEZ, BLEZL */
1060 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1061 pc += mips32_relative_offset (inst) + 4;
1062 else
1063 pc += 8;
1064 break;
1065 case 7:
1066 default:
1067 greater_branch: /* BGTZ, BGTZL */
1068 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1069 pc += mips32_relative_offset (inst) + 4;
1070 else
1071 pc += 8;
1072 break;
1073 } /* switch */
1074 } /* else */
1075 return pc;
1076} /* mips32_next_pc */
1077
1078/* Decoding the next place to set a breakpoint is irregular for the
1079 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1080 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1081 We dont want to set a single step instruction on the extend instruction
1082 either.
1083 */
1084
1085/* Lots of mips16 instruction formats */
1086/* Predicting jumps requires itype,ritype,i8type
1087 and their extensions extItype,extritype,extI8type
1088 */
1089enum mips16_inst_fmts
1090{
1091 itype, /* 0 immediate 5,10 */
1092 ritype, /* 1 5,3,8 */
1093 rrtype, /* 2 5,3,3,5 */
1094 rritype, /* 3 5,3,3,5 */
1095 rrrtype, /* 4 5,3,3,3,2 */
1096 rriatype, /* 5 5,3,3,1,4 */
1097 shifttype, /* 6 5,3,3,3,2 */
1098 i8type, /* 7 5,3,8 */
1099 i8movtype, /* 8 5,3,3,5 */
1100 i8mov32rtype, /* 9 5,3,5,3 */
1101 i64type, /* 10 5,3,8 */
1102 ri64type, /* 11 5,3,3,5 */
1103 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1104 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1105 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1106 extRRItype, /* 15 5,5,5,5,3,3,5 */
1107 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1108 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1109 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1110 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1111 extRi64type, /* 20 5,6,5,5,3,3,5 */
1112 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1113};
1114/* I am heaping all the fields of the formats into one structure and
1115 then, only the fields which are involved in instruction extension */
1116struct upk_mips16
1117{
1118 CORE_ADDR offset;
1119 unsigned int regx; /* Function in i8 type */
1120 unsigned int regy;
1121};
1122
1123
1124/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1125 for the bits which make up the immediate extension. */
1126
1127static CORE_ADDR
1128extended_offset (unsigned int extension)
1129{
1130 CORE_ADDR value;
1131 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1132 value = value << 6;
1133 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1134 value = value << 5;
1135 value |= extension & 0x01f; /* extract 4:0 */
1136 return value;
1137}
1138
1139/* Only call this function if you know that this is an extendable
1140 instruction. It won't malfunction, but why make excess remote memory
1141 references? If the immediate operands get sign extended or something,
1142 do it after the extension is performed. */
1143/* FIXME: Every one of these cases needs to worry about sign extension
1144 when the offset is to be used in relative addressing. */
1145
1146static unsigned int
1147fetch_mips_16 (CORE_ADDR pc)
1148{
1149 gdb_byte buf[8];
1150 pc &= 0xfffffffe; /* clear the low order bit */
1151 target_read_memory (pc, buf, 2);
1152 return extract_unsigned_integer (buf, 2);
1153}
1154
1155static void
1156unpack_mips16 (CORE_ADDR pc,
1157 unsigned int extension,
1158 unsigned int inst,
1159 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1160{
1161 CORE_ADDR offset;
1162 int regx;
1163 int regy;
1164 switch (insn_format)
1165 {
1166 case itype:
1167 {
1168 CORE_ADDR value;
1169 if (extension)
1170 {
1171 value = extended_offset (extension);
1172 value = value << 11; /* rom for the original value */
1173 value |= inst & 0x7ff; /* eleven bits from instruction */
1174 }
1175 else
1176 {
1177 value = inst & 0x7ff;
1178 /* FIXME : Consider sign extension */
1179 }
1180 offset = value;
1181 regx = -1;
1182 regy = -1;
1183 }
1184 break;
1185 case ritype:
1186 case i8type:
1187 { /* A register identifier and an offset */
1188 /* Most of the fields are the same as I type but the
1189 immediate value is of a different length */
1190 CORE_ADDR value;
1191 if (extension)
1192 {
1193 value = extended_offset (extension);
1194 value = value << 8; /* from the original instruction */
1195 value |= inst & 0xff; /* eleven bits from instruction */
1196 regx = (extension >> 8) & 0x07; /* or i8 funct */
1197 if (value & 0x4000) /* test the sign bit , bit 26 */
1198 {
1199 value &= ~0x3fff; /* remove the sign bit */
1200 value = -value;
1201 }
1202 }
1203 else
1204 {
1205 value = inst & 0xff; /* 8 bits */
1206 regx = (inst >> 8) & 0x07; /* or i8 funct */
1207 /* FIXME: Do sign extension , this format needs it */
1208 if (value & 0x80) /* THIS CONFUSES ME */
1209 {
1210 value &= 0xef; /* remove the sign bit */
1211 value = -value;
1212 }
1213 }
1214 offset = value;
1215 regy = -1;
1216 break;
1217 }
1218 case jalxtype:
1219 {
1220 unsigned long value;
1221 unsigned int nexthalf;
1222 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1223 value = value << 16;
1224 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1225 value |= nexthalf;
1226 offset = value;
1227 regx = -1;
1228 regy = -1;
1229 break;
1230 }
1231 default:
1232 internal_error (__FILE__, __LINE__, _("bad switch"));
1233 }
1234 upk->offset = offset;
1235 upk->regx = regx;
1236 upk->regy = regy;
1237}
1238
1239
1240static CORE_ADDR
1241add_offset_16 (CORE_ADDR pc, int offset)
1242{
1243 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1244}
1245
1246static CORE_ADDR
1247extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
1248 unsigned int extension, unsigned int insn)
1249{
1250 int op = (insn >> 11);
1251 switch (op)
1252 {
1253 case 2: /* Branch */
1254 {
1255 CORE_ADDR offset;
1256 struct upk_mips16 upk;
1257 unpack_mips16 (pc, extension, insn, itype, &upk);
1258 offset = upk.offset;
1259 if (offset & 0x800)
1260 {
1261 offset &= 0xeff;
1262 offset = -offset;
1263 }
1264 pc += (offset << 1) + 2;
1265 break;
1266 }
1267 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1268 {
1269 struct upk_mips16 upk;
1270 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1271 pc = add_offset_16 (pc, upk.offset);
1272 if ((insn >> 10) & 0x01) /* Exchange mode */
1273 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1274 else
1275 pc |= 0x01;
1276 break;
1277 }
1278 case 4: /* beqz */
1279 {
1280 struct upk_mips16 upk;
1281 int reg;
1282 unpack_mips16 (pc, extension, insn, ritype, &upk);
1283 reg = get_frame_register_signed (frame, upk.regx);
1284 if (reg == 0)
1285 pc += (upk.offset << 1) + 2;
1286 else
1287 pc += 2;
1288 break;
1289 }
1290 case 5: /* bnez */
1291 {
1292 struct upk_mips16 upk;
1293 int reg;
1294 unpack_mips16 (pc, extension, insn, ritype, &upk);
1295 reg = get_frame_register_signed (frame, upk.regx);
1296 if (reg != 0)
1297 pc += (upk.offset << 1) + 2;
1298 else
1299 pc += 2;
1300 break;
1301 }
1302 case 12: /* I8 Formats btez btnez */
1303 {
1304 struct upk_mips16 upk;
1305 int reg;
1306 unpack_mips16 (pc, extension, insn, i8type, &upk);
1307 /* upk.regx contains the opcode */
1308 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
1309 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1310 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1311 /* pc = add_offset_16(pc,upk.offset) ; */
1312 pc += (upk.offset << 1) + 2;
1313 else
1314 pc += 2;
1315 break;
1316 }
1317 case 29: /* RR Formats JR, JALR, JALR-RA */
1318 {
1319 struct upk_mips16 upk;
1320 /* upk.fmt = rrtype; */
1321 op = insn & 0x1f;
1322 if (op == 0)
1323 {
1324 int reg;
1325 upk.regx = (insn >> 8) & 0x07;
1326 upk.regy = (insn >> 5) & 0x07;
1327 switch (upk.regy)
1328 {
1329 case 0:
1330 reg = upk.regx;
1331 break;
1332 case 1:
1333 reg = 31;
1334 break; /* Function return instruction */
1335 case 2:
1336 reg = upk.regx;
1337 break;
1338 default:
1339 reg = 31;
1340 break; /* BOGUS Guess */
1341 }
1342 pc = get_frame_register_signed (frame, reg);
1343 }
1344 else
1345 pc += 2;
1346 break;
1347 }
1348 case 30:
1349 /* This is an instruction extension. Fetch the real instruction
1350 (which follows the extension) and decode things based on
1351 that. */
1352 {
1353 pc += 2;
1354 pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
1355 break;
1356 }
1357 default:
1358 {
1359 pc += 2;
1360 break;
1361 }
1362 }
1363 return pc;
1364}
1365
1366static CORE_ADDR
1367mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
1368{
1369 unsigned int insn = fetch_mips_16 (pc);
1370 return extended_mips16_next_pc (frame, pc, 0, insn);
1371}
1372
1373/* The mips_next_pc function supports single_step when the remote
1374 target monitor or stub is not developed enough to do a single_step.
1375 It works by decoding the current instruction and predicting where a
1376 branch will go. This isnt hard because all the data is available.
1377 The MIPS32 and MIPS16 variants are quite different. */
1378static CORE_ADDR
1379mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1380{
1381 if (is_mips16_addr (pc))
1382 return mips16_next_pc (frame, pc);
1383 else
1384 return mips32_next_pc (frame, pc);
1385}
1386
1387struct mips_frame_cache
1388{
1389 CORE_ADDR base;
1390 struct trad_frame_saved_reg *saved_regs;
1391};
1392
1393/* Set a register's saved stack address in temp_saved_regs. If an
1394 address has already been set for this register, do nothing; this
1395 way we will only recognize the first save of a given register in a
1396 function prologue.
1397
1398 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1399 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1400 Strictly speaking, only the second range is used as it is only second
1401 range (the ABI instead of ISA registers) that comes into play when finding
1402 saved registers in a frame. */
1403
1404static void
1405set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
1406 int regnum, CORE_ADDR offset)
1407{
1408 if (this_cache != NULL
1409 && this_cache->saved_regs[regnum].addr == -1)
1410 {
1411 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
1412 = offset;
1413 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
1414 = offset;
1415 }
1416}
1417
1418
1419/* Fetch the immediate value from a MIPS16 instruction.
1420 If the previous instruction was an EXTEND, use it to extend
1421 the upper bits of the immediate value. This is a helper function
1422 for mips16_scan_prologue. */
1423
1424static int
1425mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1426 unsigned short inst, /* current instruction */
1427 int nbits, /* number of bits in imm field */
1428 int scale, /* scale factor to be applied to imm */
1429 int is_signed) /* is the imm field signed? */
1430{
1431 int offset;
1432
1433 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1434 {
1435 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1436 if (offset & 0x8000) /* check for negative extend */
1437 offset = 0 - (0x10000 - (offset & 0xffff));
1438 return offset | (inst & 0x1f);
1439 }
1440 else
1441 {
1442 int max_imm = 1 << nbits;
1443 int mask = max_imm - 1;
1444 int sign_bit = max_imm >> 1;
1445
1446 offset = inst & mask;
1447 if (is_signed && (offset & sign_bit))
1448 offset = 0 - (max_imm - offset);
1449 return offset * scale;
1450 }
1451}
1452
1453
1454/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1455 the associated FRAME_CACHE if not null.
1456 Return the address of the first instruction past the prologue. */
1457
1458static CORE_ADDR
1459mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1460 struct frame_info *this_frame,
1461 struct mips_frame_cache *this_cache)
1462{
1463 CORE_ADDR cur_pc;
1464 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1465 CORE_ADDR sp;
1466 long frame_offset = 0; /* Size of stack frame. */
1467 long frame_adjust = 0; /* Offset of FP from SP. */
1468 int frame_reg = MIPS_SP_REGNUM;
1469 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1470 unsigned inst = 0; /* current instruction */
1471 unsigned entry_inst = 0; /* the entry instruction */
1472 unsigned save_inst = 0; /* the save instruction */
1473 int reg, offset;
1474
1475 int extend_bytes = 0;
1476 int prev_extend_bytes;
1477 CORE_ADDR end_prologue_addr = 0;
1478 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1479
1480 /* Can be called when there's no process, and hence when there's no
1481 THIS_FRAME. */
1482 if (this_frame != NULL)
1483 sp = get_frame_register_signed (this_frame,
1484 gdbarch_num_regs (gdbarch)
1485 + MIPS_SP_REGNUM);
1486 else
1487 sp = 0;
1488
1489 if (limit_pc > start_pc + 200)
1490 limit_pc = start_pc + 200;
1491
1492 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1493 {
1494 /* Save the previous instruction. If it's an EXTEND, we'll extract
1495 the immediate offset extension from it in mips16_get_imm. */
1496 prev_inst = inst;
1497
1498 /* Fetch and decode the instruction. */
1499 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1500
1501 /* Normally we ignore extend instructions. However, if it is
1502 not followed by a valid prologue instruction, then this
1503 instruction is not part of the prologue either. We must
1504 remember in this case to adjust the end_prologue_addr back
1505 over the extend. */
1506 if ((inst & 0xf800) == 0xf000) /* extend */
1507 {
1508 extend_bytes = MIPS_INSN16_SIZE;
1509 continue;
1510 }
1511
1512 prev_extend_bytes = extend_bytes;
1513 extend_bytes = 0;
1514
1515 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1516 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1517 {
1518 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1519 if (offset < 0) /* negative stack adjustment? */
1520 frame_offset -= offset;
1521 else
1522 /* Exit loop if a positive stack adjustment is found, which
1523 usually means that the stack cleanup code in the function
1524 epilogue is reached. */
1525 break;
1526 }
1527 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1528 {
1529 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1530 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1531 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1532 }
1533 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1534 {
1535 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1536 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1537 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1538 }
1539 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1540 {
1541 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1542 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1543 }
1544 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1545 {
1546 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1547 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1548 }
1549 else if (inst == 0x673d) /* move $s1, $sp */
1550 {
1551 frame_addr = sp;
1552 frame_reg = 17;
1553 }
1554 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1555 {
1556 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1557 frame_addr = sp + offset;
1558 frame_reg = 17;
1559 frame_adjust = offset;
1560 }
1561 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1562 {
1563 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1564 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1565 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
1566 }
1567 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1568 {
1569 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1570 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1571 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
1572 }
1573 else if ((inst & 0xf81f) == 0xe809
1574 && (inst & 0x700) != 0x700) /* entry */
1575 entry_inst = inst; /* save for later processing */
1576 else if ((inst & 0xff80) == 0x6480) /* save */
1577 {
1578 save_inst = inst; /* save for later processing */
1579 if (prev_extend_bytes) /* extend */
1580 save_inst |= prev_inst << 16;
1581 }
1582 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1583 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1584 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1585 {
1586 /* This instruction is part of the prologue, but we don't
1587 need to do anything special to handle it. */
1588 }
1589 else
1590 {
1591 /* This instruction is not an instruction typically found
1592 in a prologue, so we must have reached the end of the
1593 prologue. */
1594 if (end_prologue_addr == 0)
1595 end_prologue_addr = cur_pc - prev_extend_bytes;
1596 }
1597 }
1598
1599 /* The entry instruction is typically the first instruction in a function,
1600 and it stores registers at offsets relative to the value of the old SP
1601 (before the prologue). But the value of the sp parameter to this
1602 function is the new SP (after the prologue has been executed). So we
1603 can't calculate those offsets until we've seen the entire prologue,
1604 and can calculate what the old SP must have been. */
1605 if (entry_inst != 0)
1606 {
1607 int areg_count = (entry_inst >> 8) & 7;
1608 int sreg_count = (entry_inst >> 6) & 3;
1609
1610 /* The entry instruction always subtracts 32 from the SP. */
1611 frame_offset += 32;
1612
1613 /* Now we can calculate what the SP must have been at the
1614 start of the function prologue. */
1615 sp += frame_offset;
1616
1617 /* Check if a0-a3 were saved in the caller's argument save area. */
1618 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1619 {
1620 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1621 offset += mips_abi_regsize (gdbarch);
1622 }
1623
1624 /* Check if the ra register was pushed on the stack. */
1625 offset = -4;
1626 if (entry_inst & 0x20)
1627 {
1628 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1629 offset -= mips_abi_regsize (gdbarch);
1630 }
1631
1632 /* Check if the s0 and s1 registers were pushed on the stack. */
1633 for (reg = 16; reg < sreg_count + 16; reg++)
1634 {
1635 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1636 offset -= mips_abi_regsize (gdbarch);
1637 }
1638 }
1639
1640 /* The SAVE instruction is similar to ENTRY, except that defined by the
1641 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
1642 size of the frame is specified as an immediate field of instruction
1643 and an extended variation exists which lets additional registers and
1644 frame space to be specified. The instruction always treats registers
1645 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
1646 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
1647 {
1648 static int args_table[16] = {
1649 0, 0, 0, 0, 1, 1, 1, 1,
1650 2, 2, 2, 0, 3, 3, 4, -1,
1651 };
1652 static int astatic_table[16] = {
1653 0, 1, 2, 3, 0, 1, 2, 3,
1654 0, 1, 2, 4, 0, 1, 0, -1,
1655 };
1656 int aregs = (save_inst >> 16) & 0xf;
1657 int xsregs = (save_inst >> 24) & 0x7;
1658 int args = args_table[aregs];
1659 int astatic = astatic_table[aregs];
1660 long frame_size;
1661
1662 if (args < 0)
1663 {
1664 warning (_("Invalid number of argument registers encoded in SAVE."));
1665 args = 0;
1666 }
1667 if (astatic < 0)
1668 {
1669 warning (_("Invalid number of static registers encoded in SAVE."));
1670 astatic = 0;
1671 }
1672
1673 /* For standard SAVE the frame size of 0 means 128. */
1674 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
1675 if (frame_size == 0 && (save_inst >> 16) == 0)
1676 frame_size = 16;
1677 frame_size *= 8;
1678 frame_offset += frame_size;
1679
1680 /* Now we can calculate what the SP must have been at the
1681 start of the function prologue. */
1682 sp += frame_offset;
1683
1684 /* Check if A0-A3 were saved in the caller's argument save area. */
1685 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
1686 {
1687 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1688 offset += mips_abi_regsize (gdbarch);
1689 }
1690
1691 offset = -4;
1692
1693 /* Check if the RA register was pushed on the stack. */
1694 if (save_inst & 0x40)
1695 {
1696 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1697 offset -= mips_abi_regsize (gdbarch);
1698 }
1699
1700 /* Check if the S8 register was pushed on the stack. */
1701 if (xsregs > 6)
1702 {
1703 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
1704 offset -= mips_abi_regsize (gdbarch);
1705 xsregs--;
1706 }
1707 /* Check if S2-S7 were pushed on the stack. */
1708 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
1709 {
1710 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1711 offset -= mips_abi_regsize (gdbarch);
1712 }
1713
1714 /* Check if the S1 register was pushed on the stack. */
1715 if (save_inst & 0x10)
1716 {
1717 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
1718 offset -= mips_abi_regsize (gdbarch);
1719 }
1720 /* Check if the S0 register was pushed on the stack. */
1721 if (save_inst & 0x20)
1722 {
1723 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
1724 offset -= mips_abi_regsize (gdbarch);
1725 }
1726
1727 /* Check if A0-A3 were pushed on the stack. */
1728 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
1729 {
1730 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1731 offset -= mips_abi_regsize (gdbarch);
1732 }
1733 }
1734
1735 if (this_cache != NULL)
1736 {
1737 this_cache->base =
1738 (get_frame_register_signed (this_frame,
1739 gdbarch_num_regs (gdbarch) + frame_reg)
1740 + frame_offset - frame_adjust);
1741 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1742 be able to get rid of the assignment below, evetually. But it's
1743 still needed for now. */
1744 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
1745 + mips_regnum (gdbarch)->pc]
1746 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
1747 }
1748
1749 /* If we didn't reach the end of the prologue when scanning the function
1750 instructions, then set end_prologue_addr to the address of the
1751 instruction immediately after the last one we scanned. */
1752 if (end_prologue_addr == 0)
1753 end_prologue_addr = cur_pc;
1754
1755 return end_prologue_addr;
1756}
1757
1758/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1759 Procedures that use the 32-bit instruction set are handled by the
1760 mips_insn32 unwinder. */
1761
1762static struct mips_frame_cache *
1763mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
1764{
1765 struct mips_frame_cache *cache;
1766
1767 if ((*this_cache) != NULL)
1768 return (*this_cache);
1769 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1770 (*this_cache) = cache;
1771 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1772
1773 /* Analyze the function prologue. */
1774 {
1775 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
1776 CORE_ADDR start_addr;
1777
1778 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1779 if (start_addr == 0)
1780 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
1781 /* We can't analyze the prologue if we couldn't find the begining
1782 of the function. */
1783 if (start_addr == 0)
1784 return cache;
1785
1786 mips16_scan_prologue (start_addr, pc, this_frame, *this_cache);
1787 }
1788
1789 /* gdbarch_sp_regnum contains the value and not the address. */
1790 trad_frame_set_value (cache->saved_regs,
1791 gdbarch_num_regs (get_frame_arch (this_frame))
1792 + MIPS_SP_REGNUM,
1793 cache->base);
1794
1795 return (*this_cache);
1796}
1797
1798static void
1799mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
1800 struct frame_id *this_id)
1801{
1802 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
1803 this_cache);
1804 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
1805}
1806
1807static struct value *
1808mips_insn16_frame_prev_register (struct frame_info *this_frame,
1809 void **this_cache, int regnum)
1810{
1811 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
1812 this_cache);
1813 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1814}
1815
1816static int
1817mips_insn16_frame_sniffer (const struct frame_unwind *self,
1818 struct frame_info *this_frame, void **this_cache)
1819{
1820 CORE_ADDR pc = get_frame_pc (this_frame);
1821 if (mips_pc_is_mips16 (pc))
1822 return 1;
1823 return 0;
1824}
1825
1826static const struct frame_unwind mips_insn16_frame_unwind =
1827{
1828 NORMAL_FRAME,
1829 mips_insn16_frame_this_id,
1830 mips_insn16_frame_prev_register,
1831 NULL,
1832 mips_insn16_frame_sniffer
1833};
1834
1835static CORE_ADDR
1836mips_insn16_frame_base_address (struct frame_info *this_frame,
1837 void **this_cache)
1838{
1839 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
1840 this_cache);
1841 return info->base;
1842}
1843
1844static const struct frame_base mips_insn16_frame_base =
1845{
1846 &mips_insn16_frame_unwind,
1847 mips_insn16_frame_base_address,
1848 mips_insn16_frame_base_address,
1849 mips_insn16_frame_base_address
1850};
1851
1852static const struct frame_base *
1853mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
1854{
1855 CORE_ADDR pc = get_frame_pc (this_frame);
1856 if (mips_pc_is_mips16 (pc))
1857 return &mips_insn16_frame_base;
1858 else
1859 return NULL;
1860}
1861
1862/* Mark all the registers as unset in the saved_regs array
1863 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1864
1865static void
1866reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
1867{
1868 if (this_cache == NULL || this_cache->saved_regs == NULL)
1869 return;
1870
1871 {
1872 const int num_regs = gdbarch_num_regs (gdbarch);
1873 int i;
1874
1875 for (i = 0; i < num_regs; i++)
1876 {
1877 this_cache->saved_regs[i].addr = -1;
1878 }
1879 }
1880}
1881
1882/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1883 the associated FRAME_CACHE if not null.
1884 Return the address of the first instruction past the prologue. */
1885
1886static CORE_ADDR
1887mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1888 struct frame_info *this_frame,
1889 struct mips_frame_cache *this_cache)
1890{
1891 CORE_ADDR cur_pc;
1892 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1893 CORE_ADDR sp;
1894 long frame_offset;
1895 int frame_reg = MIPS_SP_REGNUM;
1896
1897 CORE_ADDR end_prologue_addr = 0;
1898 int seen_sp_adjust = 0;
1899 int load_immediate_bytes = 0;
1900 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1901 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
1902
1903 /* Can be called when there's no process, and hence when there's no
1904 THIS_FRAME. */
1905 if (this_frame != NULL)
1906 sp = get_frame_register_signed (this_frame,
1907 gdbarch_num_regs (gdbarch)
1908 + MIPS_SP_REGNUM);
1909 else
1910 sp = 0;
1911
1912 if (limit_pc > start_pc + 200)
1913 limit_pc = start_pc + 200;
1914
1915restart:
1916
1917 frame_offset = 0;
1918 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1919 {
1920 unsigned long inst, high_word, low_word;
1921 int reg;
1922
1923 /* Fetch the instruction. */
1924 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1925
1926 /* Save some code by pre-extracting some useful fields. */
1927 high_word = (inst >> 16) & 0xffff;
1928 low_word = inst & 0xffff;
1929 reg = high_word & 0x1f;
1930
1931 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1932 || high_word == 0x23bd /* addi $sp,$sp,-i */
1933 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1934 {
1935 if (low_word & 0x8000) /* negative stack adjustment? */
1936 frame_offset += 0x10000 - low_word;
1937 else
1938 /* Exit loop if a positive stack adjustment is found, which
1939 usually means that the stack cleanup code in the function
1940 epilogue is reached. */
1941 break;
1942 seen_sp_adjust = 1;
1943 }
1944 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1945 && !regsize_is_64_bits)
1946 {
1947 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
1948 }
1949 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1950 && regsize_is_64_bits)
1951 {
1952 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1953 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
1954 }
1955 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1956 {
1957 /* Old gcc frame, r30 is virtual frame pointer. */
1958 if ((long) low_word != frame_offset)
1959 frame_addr = sp + low_word;
1960 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
1961 {
1962 unsigned alloca_adjust;
1963
1964 frame_reg = 30;
1965 frame_addr = get_frame_register_signed
1966 (this_frame, gdbarch_num_regs (gdbarch) + 30);
1967
1968 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1969 if (alloca_adjust > 0)
1970 {
1971 /* FP > SP + frame_size. This may be because of
1972 an alloca or somethings similar. Fix sp to
1973 "pre-alloca" value, and try again. */
1974 sp += alloca_adjust;
1975 /* Need to reset the status of all registers. Otherwise,
1976 we will hit a guard that prevents the new address
1977 for each register to be recomputed during the second
1978 pass. */
1979 reset_saved_regs (gdbarch, this_cache);
1980 goto restart;
1981 }
1982 }
1983 }
1984 /* move $30,$sp. With different versions of gas this will be either
1985 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1986 Accept any one of these. */
1987 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1988 {
1989 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1990 if (this_frame && frame_reg == MIPS_SP_REGNUM)
1991 {
1992 unsigned alloca_adjust;
1993
1994 frame_reg = 30;
1995 frame_addr = get_frame_register_signed
1996 (this_frame, gdbarch_num_regs (gdbarch) + 30);
1997
1998 alloca_adjust = (unsigned) (frame_addr - sp);
1999 if (alloca_adjust > 0)
2000 {
2001 /* FP > SP + frame_size. This may be because of
2002 an alloca or somethings similar. Fix sp to
2003 "pre-alloca" value, and try again. */
2004 sp = frame_addr;
2005 /* Need to reset the status of all registers. Otherwise,
2006 we will hit a guard that prevents the new address
2007 for each register to be recomputed during the second
2008 pass. */
2009 reset_saved_regs (gdbarch, this_cache);
2010 goto restart;
2011 }
2012 }
2013 }
2014 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
2015 && !regsize_is_64_bits)
2016 {
2017 set_reg_offset (gdbarch, this_cache, reg, frame_addr + low_word);
2018 }
2019 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
2020 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
2021 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
2022 || high_word == 0x3c1c /* lui $gp,n */
2023 || high_word == 0x279c /* addiu $gp,$gp,n */
2024 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
2025 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
2026 )
2027 {
2028 /* These instructions are part of the prologue, but we don't
2029 need to do anything special to handle them. */
2030 }
2031 /* The instructions below load $at or $t0 with an immediate
2032 value in preparation for a stack adjustment via
2033 subu $sp,$sp,[$at,$t0]. These instructions could also
2034 initialize a local variable, so we accept them only before
2035 a stack adjustment instruction was seen. */
2036 else if (!seen_sp_adjust
2037 && (high_word == 0x3c01 /* lui $at,n */
2038 || high_word == 0x3c08 /* lui $t0,n */
2039 || high_word == 0x3421 /* ori $at,$at,n */
2040 || high_word == 0x3508 /* ori $t0,$t0,n */
2041 || high_word == 0x3401 /* ori $at,$zero,n */
2042 || high_word == 0x3408 /* ori $t0,$zero,n */
2043 ))
2044 {
2045 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
2046 }
2047 else
2048 {
2049 /* This instruction is not an instruction typically found
2050 in a prologue, so we must have reached the end of the
2051 prologue. */
2052 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2053 loop now? Why would we need to continue scanning the function
2054 instructions? */
2055 if (end_prologue_addr == 0)
2056 end_prologue_addr = cur_pc;
2057 }
2058 }
2059
2060 if (this_cache != NULL)
2061 {
2062 this_cache->base =
2063 (get_frame_register_signed (this_frame,
2064 gdbarch_num_regs (gdbarch) + frame_reg)
2065 + frame_offset);
2066 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2067 this assignment below, eventually. But it's still needed
2068 for now. */
2069 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2070 + mips_regnum (gdbarch)->pc]
2071 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2072 + MIPS_RA_REGNUM];
2073 }
2074
2075 /* If we didn't reach the end of the prologue when scanning the function
2076 instructions, then set end_prologue_addr to the address of the
2077 instruction immediately after the last one we scanned. */
2078 /* brobecker/2004-10-10: I don't think this would ever happen, but
2079 we may as well be careful and do our best if we have a null
2080 end_prologue_addr. */
2081 if (end_prologue_addr == 0)
2082 end_prologue_addr = cur_pc;
2083
2084 /* In a frameless function, we might have incorrectly
2085 skipped some load immediate instructions. Undo the skipping
2086 if the load immediate was not followed by a stack adjustment. */
2087 if (load_immediate_bytes && !seen_sp_adjust)
2088 end_prologue_addr -= load_immediate_bytes;
2089
2090 return end_prologue_addr;
2091}
2092
2093/* Heuristic unwinder for procedures using 32-bit instructions (covers
2094 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2095 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2096 unwinder. */
2097
2098static struct mips_frame_cache *
2099mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
2100{
2101 struct mips_frame_cache *cache;
2102
2103 if ((*this_cache) != NULL)
2104 return (*this_cache);
2105
2106 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2107 (*this_cache) = cache;
2108 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2109
2110 /* Analyze the function prologue. */
2111 {
2112 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2113 CORE_ADDR start_addr;
2114
2115 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2116 if (start_addr == 0)
2117 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
2118 /* We can't analyze the prologue if we couldn't find the begining
2119 of the function. */
2120 if (start_addr == 0)
2121 return cache;
2122
2123 mips32_scan_prologue (start_addr, pc, this_frame, *this_cache);
2124 }
2125
2126 /* gdbarch_sp_regnum contains the value and not the address. */
2127 trad_frame_set_value (cache->saved_regs,
2128 gdbarch_num_regs (get_frame_arch (this_frame))
2129 + MIPS_SP_REGNUM,
2130 cache->base);
2131
2132 return (*this_cache);
2133}
2134
2135static void
2136mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
2137 struct frame_id *this_id)
2138{
2139 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
2140 this_cache);
2141 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2142}
2143
2144static struct value *
2145mips_insn32_frame_prev_register (struct frame_info *this_frame,
2146 void **this_cache, int regnum)
2147{
2148 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
2149 this_cache);
2150 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2151}
2152
2153static int
2154mips_insn32_frame_sniffer (const struct frame_unwind *self,
2155 struct frame_info *this_frame, void **this_cache)
2156{
2157 CORE_ADDR pc = get_frame_pc (this_frame);
2158 if (! mips_pc_is_mips16 (pc))
2159 return 1;
2160 return 0;
2161}
2162
2163static const struct frame_unwind mips_insn32_frame_unwind =
2164{
2165 NORMAL_FRAME,
2166 mips_insn32_frame_this_id,
2167 mips_insn32_frame_prev_register,
2168 NULL,
2169 mips_insn32_frame_sniffer
2170};
2171
2172static CORE_ADDR
2173mips_insn32_frame_base_address (struct frame_info *this_frame,
2174 void **this_cache)
2175{
2176 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
2177 this_cache);
2178 return info->base;
2179}
2180
2181static const struct frame_base mips_insn32_frame_base =
2182{
2183 &mips_insn32_frame_unwind,
2184 mips_insn32_frame_base_address,
2185 mips_insn32_frame_base_address,
2186 mips_insn32_frame_base_address
2187};
2188
2189static const struct frame_base *
2190mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
2191{
2192 CORE_ADDR pc = get_frame_pc (this_frame);
2193 if (! mips_pc_is_mips16 (pc))
2194 return &mips_insn32_frame_base;
2195 else
2196 return NULL;
2197}
2198
2199static struct trad_frame_cache *
2200mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
2201{
2202 CORE_ADDR pc;
2203 CORE_ADDR start_addr;
2204 CORE_ADDR stack_addr;
2205 struct trad_frame_cache *this_trad_cache;
2206 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2207 int num_regs = gdbarch_num_regs (gdbarch);
2208
2209 if ((*this_cache) != NULL)
2210 return (*this_cache);
2211 this_trad_cache = trad_frame_cache_zalloc (this_frame);
2212 (*this_cache) = this_trad_cache;
2213
2214 /* The return address is in the link register. */
2215 trad_frame_set_reg_realreg (this_trad_cache,
2216 gdbarch_pc_regnum (gdbarch),
2217 num_regs + MIPS_RA_REGNUM);
2218
2219 /* Frame ID, since it's a frameless / stackless function, no stack
2220 space is allocated and SP on entry is the current SP. */
2221 pc = get_frame_pc (this_frame);
2222 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2223 stack_addr = get_frame_register_signed (this_frame,
2224 num_regs + MIPS_SP_REGNUM);
2225 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
2226
2227 /* Assume that the frame's base is the same as the
2228 stack-pointer. */
2229 trad_frame_set_this_base (this_trad_cache, stack_addr);
2230
2231 return this_trad_cache;
2232}
2233
2234static void
2235mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
2236 struct frame_id *this_id)
2237{
2238 struct trad_frame_cache *this_trad_cache
2239 = mips_stub_frame_cache (this_frame, this_cache);
2240 trad_frame_get_id (this_trad_cache, this_id);
2241}
2242
2243static struct value *
2244mips_stub_frame_prev_register (struct frame_info *this_frame,
2245 void **this_cache, int regnum)
2246{
2247 struct trad_frame_cache *this_trad_cache
2248 = mips_stub_frame_cache (this_frame, this_cache);
2249 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
2250}
2251
2252static int
2253mips_stub_frame_sniffer (const struct frame_unwind *self,
2254 struct frame_info *this_frame, void **this_cache)
2255{
2256 gdb_byte dummy[4];
2257 struct obj_section *s;
2258 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2259
2260 /* Use the stub unwinder for unreadable code. */
2261 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2262 return 1;
2263
2264 if (in_plt_section (pc, NULL))
2265 return 1;
2266
2267 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2268 s = find_pc_section (pc);
2269
2270 if (s != NULL
2271 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2272 ".MIPS.stubs") == 0)
2273 return 1;
2274
2275 return 0;
2276}
2277
2278static const struct frame_unwind mips_stub_frame_unwind =
2279{
2280 NORMAL_FRAME,
2281 mips_stub_frame_this_id,
2282 mips_stub_frame_prev_register,
2283 NULL,
2284 mips_stub_frame_sniffer
2285};
2286
2287static CORE_ADDR
2288mips_stub_frame_base_address (struct frame_info *this_frame,
2289 void **this_cache)
2290{
2291 struct trad_frame_cache *this_trad_cache
2292 = mips_stub_frame_cache (this_frame, this_cache);
2293 return trad_frame_get_this_base (this_trad_cache);
2294}
2295
2296static const struct frame_base mips_stub_frame_base =
2297{
2298 &mips_stub_frame_unwind,
2299 mips_stub_frame_base_address,
2300 mips_stub_frame_base_address,
2301 mips_stub_frame_base_address
2302};
2303
2304static const struct frame_base *
2305mips_stub_frame_base_sniffer (struct frame_info *this_frame)
2306{
2307 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
2308 return &mips_stub_frame_base;
2309 else
2310 return NULL;
2311}
2312
2313/* mips_addr_bits_remove - remove useless address bits */
2314
2315static CORE_ADDR
2316mips_addr_bits_remove (CORE_ADDR addr)
2317{
2318 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2319 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2320 /* This hack is a work-around for existing boards using PMON, the
2321 simulator, and any other 64-bit targets that doesn't have true
2322 64-bit addressing. On these targets, the upper 32 bits of
2323 addresses are ignored by the hardware. Thus, the PC or SP are
2324 likely to have been sign extended to all 1s by instruction
2325 sequences that load 32-bit addresses. For example, a typical
2326 piece of code that loads an address is this:
2327
2328 lui $r2, <upper 16 bits>
2329 ori $r2, <lower 16 bits>
2330
2331 But the lui sign-extends the value such that the upper 32 bits
2332 may be all 1s. The workaround is simply to mask off these
2333 bits. In the future, gcc may be changed to support true 64-bit
2334 addressing, and this masking will have to be disabled. */
2335 return addr &= 0xffffffffUL;
2336 else
2337 return addr;
2338}
2339
2340/* Instructions used during single-stepping of atomic sequences. */
2341#define LL_OPCODE 0x30
2342#define LLD_OPCODE 0x34
2343#define SC_OPCODE 0x38
2344#define SCD_OPCODE 0x3c
2345
2346/* Checks for an atomic sequence of instructions beginning with a LL/LLD
2347 instruction and ending with a SC/SCD instruction. If such a sequence
2348 is found, attempt to step through it. A breakpoint is placed at the end of
2349 the sequence. */
2350
2351static int
2352deal_with_atomic_sequence (CORE_ADDR pc)
2353{
2354 CORE_ADDR breaks[2] = {-1, -1};
2355 CORE_ADDR loc = pc;
2356 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
2357 unsigned long insn;
2358 int insn_count;
2359 int index;
2360 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2361 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2362
2363 if (pc & 0x01)
2364 return 0;
2365
2366 insn = mips_fetch_instruction (loc);
2367 /* Assume all atomic sequences start with a ll/lld instruction. */
2368 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
2369 return 0;
2370
2371 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
2372 instructions. */
2373 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2374 {
2375 int is_branch = 0;
2376 loc += MIPS_INSN32_SIZE;
2377 insn = mips_fetch_instruction (loc);
2378
2379 /* Assume that there is at most one branch in the atomic
2380 sequence. If a branch is found, put a breakpoint in its
2381 destination address. */
2382 switch (itype_op (insn))
2383 {
2384 case 0: /* SPECIAL */
2385 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
2386 return 0; /* fallback to the standard single-step code. */
2387 break;
2388 case 1: /* REGIMM */
2389 is_branch = ((itype_rt (insn) & 0xc0) == 0); /* B{LT,GE}Z* */
2390 break;
2391 case 2: /* J */
2392 case 3: /* JAL */
2393 return 0; /* fallback to the standard single-step code. */
2394 case 4: /* BEQ */
2395 case 5: /* BNE */
2396 case 6: /* BLEZ */
2397 case 7: /* BGTZ */
2398 case 20: /* BEQL */
2399 case 21: /* BNEL */
2400 case 22: /* BLEZL */
2401 case 23: /* BGTTL */
2402 is_branch = 1;
2403 break;
2404 case 17: /* COP1 */
2405 case 18: /* COP2 */
2406 case 19: /* COP3 */
2407 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
2408 break;
2409 }
2410 if (is_branch)
2411 {
2412 branch_bp = loc + mips32_relative_offset (insn) + 4;
2413 if (last_breakpoint >= 1)
2414 return 0; /* More than one branch found, fallback to the
2415 standard single-step code. */
2416 breaks[1] = branch_bp;
2417 last_breakpoint++;
2418 }
2419
2420 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
2421 break;
2422 }
2423
2424 /* Assume that the atomic sequence ends with a sc/scd instruction. */
2425 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
2426 return 0;
2427
2428 loc += MIPS_INSN32_SIZE;
2429
2430 /* Insert a breakpoint right after the end of the atomic sequence. */
2431 breaks[0] = loc;
2432
2433 /* Check for duplicated breakpoints. Check also for a breakpoint
2434 placed (branch instruction's destination) in the atomic sequence */
2435 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
2436 last_breakpoint = 0;
2437
2438 /* Effectively inserts the breakpoints. */
2439 for (index = 0; index <= last_breakpoint; index++)
2440 insert_single_step_breakpoint (breaks[index]);
2441
2442 return 1;
2443}
2444
2445/* mips_software_single_step() is called just before we want to resume
2446 the inferior, if we want to single-step it but there is no hardware
2447 or kernel single-step support (MIPS on GNU/Linux for example). We find
2448 the target of the coming instruction and breakpoint it. */
2449
2450int
2451mips_software_single_step (struct frame_info *frame)
2452{
2453 CORE_ADDR pc, next_pc;
2454
2455 pc = get_frame_pc (frame);
2456 if (deal_with_atomic_sequence (pc))
2457 return 1;
2458
2459 next_pc = mips_next_pc (frame, pc);
2460
2461 insert_single_step_breakpoint (next_pc);
2462 return 1;
2463}
2464
2465/* Test whether the PC points to the return instruction at the
2466 end of a function. */
2467
2468static int
2469mips_about_to_return (CORE_ADDR pc)
2470{
2471 if (mips_pc_is_mips16 (pc))
2472 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2473 generates a "jr $ra"; other times it generates code to load
2474 the return address from the stack to an accessible register (such
2475 as $a3), then a "jr" using that register. This second case
2476 is almost impossible to distinguish from an indirect jump
2477 used for switch statements, so we don't even try. */
2478 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2479 else
2480 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2481}
2482
2483
2484/* This fencepost looks highly suspicious to me. Removing it also
2485 seems suspicious as it could affect remote debugging across serial
2486 lines. */
2487
2488static CORE_ADDR
2489heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
2490{
2491 CORE_ADDR start_pc;
2492 CORE_ADDR fence;
2493 int instlen;
2494 int seen_adjsp = 0;
2495
2496 pc = gdbarch_addr_bits_remove (gdbarch, pc);
2497 start_pc = pc;
2498 fence = start_pc - heuristic_fence_post;
2499 if (start_pc == 0)
2500 return 0;
2501
2502 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2503 fence = VM_MIN_ADDRESS;
2504
2505 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2506
2507 /* search back for previous return */
2508 for (start_pc -= instlen;; start_pc -= instlen)
2509 if (start_pc < fence)
2510 {
2511 /* It's not clear to me why we reach this point when
2512 stop_soon, but with this test, at least we
2513 don't print out warnings for every child forked (eg, on
2514 decstation). 22apr93 rich@cygnus.com. */
2515 if (stop_soon == NO_STOP_QUIETLY)
2516 {
2517 static int blurb_printed = 0;
2518
2519 warning (_("GDB can't find the start of the function at 0x%s."),
2520 paddr_nz (pc));
2521
2522 if (!blurb_printed)
2523 {
2524 /* This actually happens frequently in embedded
2525 development, when you first connect to a board
2526 and your stack pointer and pc are nowhere in
2527 particular. This message needs to give people
2528 in that situation enough information to
2529 determine that it's no big deal. */
2530 printf_filtered ("\n\
2531 GDB is unable to find the start of the function at 0x%s\n\
2532and thus can't determine the size of that function's stack frame.\n\
2533This means that GDB may be unable to access that stack frame, or\n\
2534the frames below it.\n\
2535 This problem is most likely caused by an invalid program counter or\n\
2536stack pointer.\n\
2537 However, if you think GDB should simply search farther back\n\
2538from 0x%s for code which looks like the beginning of a\n\
2539function, you can increase the range of the search using the `set\n\
2540heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2541 blurb_printed = 1;
2542 }
2543 }
2544
2545 return 0;
2546 }
2547 else if (mips_pc_is_mips16 (start_pc))
2548 {
2549 unsigned short inst;
2550
2551 /* On MIPS16, any one of the following is likely to be the
2552 start of a function:
2553 extend save
2554 save
2555 entry
2556 addiu sp,-n
2557 daddiu sp,-n
2558 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2559 inst = mips_fetch_instruction (start_pc);
2560 if ((inst & 0xff80) == 0x6480) /* save */
2561 {
2562 if (start_pc - instlen >= fence)
2563 {
2564 inst = mips_fetch_instruction (start_pc - instlen);
2565 if ((inst & 0xf800) == 0xf000) /* extend */
2566 start_pc -= instlen;
2567 }
2568 break;
2569 }
2570 else if (((inst & 0xf81f) == 0xe809
2571 && (inst & 0x700) != 0x700) /* entry */
2572 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2573 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2574 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2575 break;
2576 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2577 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2578 seen_adjsp = 1;
2579 else
2580 seen_adjsp = 0;
2581 }
2582 else if (mips_about_to_return (start_pc))
2583 {
2584 /* Skip return and its delay slot. */
2585 start_pc += 2 * MIPS_INSN32_SIZE;
2586 break;
2587 }
2588
2589 return start_pc;
2590}
2591
2592struct mips_objfile_private
2593{
2594 bfd_size_type size;
2595 char *contents;
2596};
2597
2598/* According to the current ABI, should the type be passed in a
2599 floating-point register (assuming that there is space)? When there
2600 is no FPU, FP are not even considered as possible candidates for
2601 FP registers and, consequently this returns false - forces FP
2602 arguments into integer registers. */
2603
2604static int
2605fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
2606 struct type *arg_type)
2607{
2608 return ((typecode == TYPE_CODE_FLT
2609 || (MIPS_EABI (gdbarch)
2610 && (typecode == TYPE_CODE_STRUCT
2611 || typecode == TYPE_CODE_UNION)
2612 && TYPE_NFIELDS (arg_type) == 1
2613 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2614 == TYPE_CODE_FLT))
2615 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
2616}
2617
2618/* On o32, argument passing in GPRs depends on the alignment of the type being
2619 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2620
2621static int
2622mips_type_needs_double_align (struct type *type)
2623{
2624 enum type_code typecode = TYPE_CODE (type);
2625
2626 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2627 return 1;
2628 else if (typecode == TYPE_CODE_STRUCT)
2629 {
2630 if (TYPE_NFIELDS (type) < 1)
2631 return 0;
2632 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2633 }
2634 else if (typecode == TYPE_CODE_UNION)
2635 {
2636 int i, n;
2637
2638 n = TYPE_NFIELDS (type);
2639 for (i = 0; i < n; i++)
2640 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2641 return 1;
2642 return 0;
2643 }
2644 return 0;
2645}
2646
2647/* Adjust the address downward (direction of stack growth) so that it
2648 is correctly aligned for a new stack frame. */
2649static CORE_ADDR
2650mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2651{
2652 return align_down (addr, 16);
2653}
2654
2655static CORE_ADDR
2656mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2657 struct regcache *regcache, CORE_ADDR bp_addr,
2658 int nargs, struct value **args, CORE_ADDR sp,
2659 int struct_return, CORE_ADDR struct_addr)
2660{
2661 int argreg;
2662 int float_argreg;
2663 int argnum;
2664 int len = 0;
2665 int stack_offset = 0;
2666 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2667 CORE_ADDR func_addr = find_function_addr (function, NULL);
2668 int regsize = mips_abi_regsize (gdbarch);
2669
2670 /* For shared libraries, "t9" needs to point at the function
2671 address. */
2672 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2673
2674 /* Set the return address register to point to the entry point of
2675 the program, where a breakpoint lies in wait. */
2676 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2677
2678 /* First ensure that the stack and structure return address (if any)
2679 are properly aligned. The stack has to be at least 64-bit
2680 aligned even on 32-bit machines, because doubles must be 64-bit
2681 aligned. For n32 and n64, stack frames need to be 128-bit
2682 aligned, so we round to this widest known alignment. */
2683
2684 sp = align_down (sp, 16);
2685 struct_addr = align_down (struct_addr, 16);
2686
2687 /* Now make space on the stack for the args. We allocate more
2688 than necessary for EABI, because the first few arguments are
2689 passed in registers, but that's OK. */
2690 for (argnum = 0; argnum < nargs; argnum++)
2691 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
2692 sp -= align_up (len, 16);
2693
2694 if (mips_debug)
2695 fprintf_unfiltered (gdb_stdlog,
2696 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2697 paddr_nz (sp), (long) align_up (len, 16));
2698
2699 /* Initialize the integer and float register pointers. */
2700 argreg = MIPS_A0_REGNUM;
2701 float_argreg = mips_fpa0_regnum (gdbarch);
2702
2703 /* The struct_return pointer occupies the first parameter-passing reg. */
2704 if (struct_return)
2705 {
2706 if (mips_debug)
2707 fprintf_unfiltered (gdb_stdlog,
2708 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2709 argreg, paddr_nz (struct_addr));
2710 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2711 }
2712
2713 /* Now load as many as possible of the first arguments into
2714 registers, and push the rest onto the stack. Loop thru args
2715 from first to last. */
2716 for (argnum = 0; argnum < nargs; argnum++)
2717 {
2718 const gdb_byte *val;
2719 gdb_byte valbuf[MAX_REGISTER_SIZE];
2720 struct value *arg = args[argnum];
2721 struct type *arg_type = check_typedef (value_type (arg));
2722 int len = TYPE_LENGTH (arg_type);
2723 enum type_code typecode = TYPE_CODE (arg_type);
2724
2725 if (mips_debug)
2726 fprintf_unfiltered (gdb_stdlog,
2727 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2728 argnum + 1, len, (int) typecode);
2729
2730 /* The EABI passes structures that do not fit in a register by
2731 reference. */
2732 if (len > regsize
2733 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2734 {
2735 store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
2736 typecode = TYPE_CODE_PTR;
2737 len = regsize;
2738 val = valbuf;
2739 if (mips_debug)
2740 fprintf_unfiltered (gdb_stdlog, " push");
2741 }
2742 else
2743 val = value_contents (arg);
2744
2745 /* 32-bit ABIs always start floating point arguments in an
2746 even-numbered floating point register. Round the FP register
2747 up before the check to see if there are any FP registers
2748 left. Non MIPS_EABI targets also pass the FP in the integer
2749 registers so also round up normal registers. */
2750 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
2751 {
2752 if ((float_argreg & 1))
2753 float_argreg++;
2754 }
2755
2756 /* Floating point arguments passed in registers have to be
2757 treated specially. On 32-bit architectures, doubles
2758 are passed in register pairs; the even register gets
2759 the low word, and the odd register gets the high word.
2760 On non-EABI processors, the first two floating point arguments are
2761 also copied to general registers, because MIPS16 functions
2762 don't use float registers for arguments. This duplication of
2763 arguments in general registers can't hurt non-MIPS16 functions
2764 because those registers are normally skipped. */
2765 /* MIPS_EABI squeezes a struct that contains a single floating
2766 point value into an FP register instead of pushing it onto the
2767 stack. */
2768 if (fp_register_arg_p (gdbarch, typecode, arg_type)
2769 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
2770 {
2771 /* EABI32 will pass doubles in consecutive registers, even on
2772 64-bit cores. At one time, we used to check the size of
2773 `float_argreg' to determine whether or not to pass doubles
2774 in consecutive registers, but this is not sufficient for
2775 making the ABI determination. */
2776 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
2777 {
2778 int low_offset = gdbarch_byte_order (gdbarch)
2779 == BFD_ENDIAN_BIG ? 4 : 0;
2780 unsigned long regval;
2781
2782 /* Write the low word of the double to the even register(s). */
2783 regval = extract_unsigned_integer (val + low_offset, 4);
2784 if (mips_debug)
2785 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2786 float_argreg, phex (regval, 4));
2787 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2788
2789 /* Write the high word of the double to the odd register(s). */
2790 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2791 if (mips_debug)
2792 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2793 float_argreg, phex (regval, 4));
2794 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2795 }
2796 else
2797 {
2798 /* This is a floating point value that fits entirely
2799 in a single register. */
2800 /* On 32 bit ABI's the float_argreg is further adjusted
2801 above to ensure that it is even register aligned. */
2802 LONGEST regval = extract_unsigned_integer (val, len);
2803 if (mips_debug)
2804 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2805 float_argreg, phex (regval, len));
2806 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2807 }
2808 }
2809 else
2810 {
2811 /* Copy the argument to general registers or the stack in
2812 register-sized pieces. Large arguments are split between
2813 registers and stack. */
2814 /* Note: structs whose size is not a multiple of regsize
2815 are treated specially: Irix cc passes
2816 them in registers where gcc sometimes puts them on the
2817 stack. For maximum compatibility, we will put them in
2818 both places. */
2819 int odd_sized_struct = (len > regsize && len % regsize != 0);
2820
2821 /* Note: Floating-point values that didn't fit into an FP
2822 register are only written to memory. */
2823 while (len > 0)
2824 {
2825 /* Remember if the argument was written to the stack. */
2826 int stack_used_p = 0;
2827 int partial_len = (len < regsize ? len : regsize);
2828
2829 if (mips_debug)
2830 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2831 partial_len);
2832
2833 /* Write this portion of the argument to the stack. */
2834 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
2835 || odd_sized_struct
2836 || fp_register_arg_p (gdbarch, typecode, arg_type))
2837 {
2838 /* Should shorter than int integer values be
2839 promoted to int before being stored? */
2840 int longword_offset = 0;
2841 CORE_ADDR addr;
2842 stack_used_p = 1;
2843 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2844 {
2845 if (regsize == 8
2846 && (typecode == TYPE_CODE_INT
2847 || typecode == TYPE_CODE_PTR
2848 || typecode == TYPE_CODE_FLT) && len <= 4)
2849 longword_offset = regsize - len;
2850 else if ((typecode == TYPE_CODE_STRUCT
2851 || typecode == TYPE_CODE_UNION)
2852 && TYPE_LENGTH (arg_type) < regsize)
2853 longword_offset = regsize - len;
2854 }
2855
2856 if (mips_debug)
2857 {
2858 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2859 paddr_nz (stack_offset));
2860 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2861 paddr_nz (longword_offset));
2862 }
2863
2864 addr = sp + stack_offset + longword_offset;
2865
2866 if (mips_debug)
2867 {
2868 int i;
2869 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2870 paddr_nz (addr));
2871 for (i = 0; i < partial_len; i++)
2872 {
2873 fprintf_unfiltered (gdb_stdlog, "%02x",
2874 val[i] & 0xff);
2875 }
2876 }
2877 write_memory (addr, val, partial_len);
2878 }
2879
2880 /* Note!!! This is NOT an else clause. Odd sized
2881 structs may go thru BOTH paths. Floating point
2882 arguments will not. */
2883 /* Write this portion of the argument to a general
2884 purpose register. */
2885 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
2886 && !fp_register_arg_p (gdbarch, typecode, arg_type))
2887 {
2888 LONGEST regval =
2889 extract_unsigned_integer (val, partial_len);
2890
2891 if (mips_debug)
2892 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2893 argreg,
2894 phex (regval, regsize));
2895 regcache_cooked_write_unsigned (regcache, argreg, regval);
2896 argreg++;
2897 }
2898
2899 len -= partial_len;
2900 val += partial_len;
2901
2902 /* Compute the the offset into the stack at which we
2903 will copy the next parameter.
2904
2905 In the new EABI (and the NABI32), the stack_offset
2906 only needs to be adjusted when it has been used. */
2907
2908 if (stack_used_p)
2909 stack_offset += align_up (partial_len, regsize);
2910 }
2911 }
2912 if (mips_debug)
2913 fprintf_unfiltered (gdb_stdlog, "\n");
2914 }
2915
2916 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2917
2918 /* Return adjusted stack pointer. */
2919 return sp;
2920}
2921
2922/* Determine the return value convention being used. */
2923
2924static enum return_value_convention
2925mips_eabi_return_value (struct gdbarch *gdbarch, struct type *func_type,
2926 struct type *type, struct regcache *regcache,
2927 gdb_byte *readbuf, const gdb_byte *writebuf)
2928{
2929 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2930 int fp_return_type = 0;
2931 int offset, regnum, xfer;
2932
2933 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2934 return RETURN_VALUE_STRUCT_CONVENTION;
2935
2936 /* Floating point type? */
2937 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
2938 {
2939 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2940 fp_return_type = 1;
2941 /* Structs with a single field of float type
2942 are returned in a floating point register. */
2943 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
2944 || TYPE_CODE (type) == TYPE_CODE_UNION)
2945 && TYPE_NFIELDS (type) == 1)
2946 {
2947 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
2948
2949 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
2950 fp_return_type = 1;
2951 }
2952 }
2953
2954 if (fp_return_type)
2955 {
2956 /* A floating-point value belongs in the least significant part
2957 of FP0/FP1. */
2958 if (mips_debug)
2959 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2960 regnum = mips_regnum (gdbarch)->fp0;
2961 }
2962 else
2963 {
2964 /* An integer value goes in V0/V1. */
2965 if (mips_debug)
2966 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
2967 regnum = MIPS_V0_REGNUM;
2968 }
2969 for (offset = 0;
2970 offset < TYPE_LENGTH (type);
2971 offset += mips_abi_regsize (gdbarch), regnum++)
2972 {
2973 xfer = mips_abi_regsize (gdbarch);
2974 if (offset + xfer > TYPE_LENGTH (type))
2975 xfer = TYPE_LENGTH (type) - offset;
2976 mips_xfer_register (gdbarch, regcache,
2977 gdbarch_num_regs (gdbarch) + regnum, xfer,
2978 gdbarch_byte_order (gdbarch), readbuf, writebuf,
2979 offset);
2980 }
2981
2982 return RETURN_VALUE_REGISTER_CONVENTION;
2983}
2984
2985
2986/* N32/N64 ABI stuff. */
2987
2988/* Search for a naturally aligned double at OFFSET inside a struct
2989 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
2990 registers. */
2991
2992static int
2993mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
2994 int offset)
2995{
2996 int i;
2997
2998 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
2999 return 0;
3000
3001 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
3002 return 0;
3003
3004 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
3005 return 0;
3006
3007 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
3008 {
3009 int pos;
3010 struct type *field_type;
3011
3012 /* We're only looking at normal fields. */
3013 if (TYPE_FIELD_STATIC (arg_type, i)
3014 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
3015 continue;
3016
3017 /* If we have gone past the offset, there is no double to pass. */
3018 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
3019 if (pos > offset)
3020 return 0;
3021
3022 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
3023
3024 /* If this field is entirely before the requested offset, go
3025 on to the next one. */
3026 if (pos + TYPE_LENGTH (field_type) <= offset)
3027 continue;
3028
3029 /* If this is our special aligned double, we can stop. */
3030 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
3031 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
3032 return 1;
3033
3034 /* This field starts at or before the requested offset, and
3035 overlaps it. If it is a structure, recurse inwards. */
3036 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
3037 }
3038
3039 return 0;
3040}
3041
3042static CORE_ADDR
3043mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3044 struct regcache *regcache, CORE_ADDR bp_addr,
3045 int nargs, struct value **args, CORE_ADDR sp,
3046 int struct_return, CORE_ADDR struct_addr)
3047{
3048 int argreg;
3049 int float_argreg;
3050 int argnum;
3051 int len = 0;
3052 int stack_offset = 0;
3053 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3054 CORE_ADDR func_addr = find_function_addr (function, NULL);
3055
3056 /* For shared libraries, "t9" needs to point at the function
3057 address. */
3058 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3059
3060 /* Set the return address register to point to the entry point of
3061 the program, where a breakpoint lies in wait. */
3062 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3063
3064 /* First ensure that the stack and structure return address (if any)
3065 are properly aligned. The stack has to be at least 64-bit
3066 aligned even on 32-bit machines, because doubles must be 64-bit
3067 aligned. For n32 and n64, stack frames need to be 128-bit
3068 aligned, so we round to this widest known alignment. */
3069
3070 sp = align_down (sp, 16);
3071 struct_addr = align_down (struct_addr, 16);
3072
3073 /* Now make space on the stack for the args. */
3074 for (argnum = 0; argnum < nargs; argnum++)
3075 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
3076 sp -= align_up (len, 16);
3077
3078 if (mips_debug)
3079 fprintf_unfiltered (gdb_stdlog,
3080 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
3081 paddr_nz (sp), (long) align_up (len, 16));
3082
3083 /* Initialize the integer and float register pointers. */
3084 argreg = MIPS_A0_REGNUM;
3085 float_argreg = mips_fpa0_regnum (gdbarch);
3086
3087 /* The struct_return pointer occupies the first parameter-passing reg. */
3088 if (struct_return)
3089 {
3090 if (mips_debug)
3091 fprintf_unfiltered (gdb_stdlog,
3092 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
3093 argreg, paddr_nz (struct_addr));
3094 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3095 }
3096
3097 /* Now load as many as possible of the first arguments into
3098 registers, and push the rest onto the stack. Loop thru args
3099 from first to last. */
3100 for (argnum = 0; argnum < nargs; argnum++)
3101 {
3102 const gdb_byte *val;
3103 struct value *arg = args[argnum];
3104 struct type *arg_type = check_typedef (value_type (arg));
3105 int len = TYPE_LENGTH (arg_type);
3106 enum type_code typecode = TYPE_CODE (arg_type);
3107
3108 if (mips_debug)
3109 fprintf_unfiltered (gdb_stdlog,
3110 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3111 argnum + 1, len, (int) typecode);
3112
3113 val = value_contents (arg);
3114
3115 /* A 128-bit long double value requires an even-odd pair of
3116 floating-point registers. */
3117 if (len == 16
3118 && fp_register_arg_p (gdbarch, typecode, arg_type)
3119 && (float_argreg & 1))
3120 {
3121 float_argreg++;
3122 argreg++;
3123 }
3124
3125 if (fp_register_arg_p (gdbarch, typecode, arg_type)
3126 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
3127 {
3128 /* This is a floating point value that fits entirely
3129 in a single register or a pair of registers. */
3130 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3131 LONGEST regval = extract_unsigned_integer (val, reglen);
3132 if (mips_debug)
3133 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3134 float_argreg, phex (regval, reglen));
3135 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
3136
3137 if (mips_debug)
3138 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3139 argreg, phex (regval, reglen));
3140 regcache_cooked_write_unsigned (regcache, argreg, regval);
3141 float_argreg++;
3142 argreg++;
3143 if (len == 16)
3144 {
3145 regval = extract_unsigned_integer (val + reglen, reglen);
3146 if (mips_debug)
3147 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3148 float_argreg, phex (regval, reglen));
3149 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
3150
3151 if (mips_debug)
3152 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3153 argreg, phex (regval, reglen));
3154 regcache_cooked_write_unsigned (regcache, argreg, regval);
3155 float_argreg++;
3156 argreg++;
3157 }
3158 }
3159 else
3160 {
3161 /* Copy the argument to general registers or the stack in
3162 register-sized pieces. Large arguments are split between
3163 registers and stack. */
3164 /* For N32/N64, structs, unions, or other composite types are
3165 treated as a sequence of doublewords, and are passed in integer
3166 or floating point registers as though they were simple scalar
3167 parameters to the extent that they fit, with any excess on the
3168 stack packed according to the normal memory layout of the
3169 object.
3170 The caller does not reserve space for the register arguments;
3171 the callee is responsible for reserving it if required. */
3172 /* Note: Floating-point values that didn't fit into an FP
3173 register are only written to memory. */
3174 while (len > 0)
3175 {
3176 /* Remember if the argument was written to the stack. */
3177 int stack_used_p = 0;
3178 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3179
3180 if (mips_debug)
3181 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3182 partial_len);
3183
3184 if (fp_register_arg_p (gdbarch, typecode, arg_type))
3185 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
3186
3187 /* Write this portion of the argument to the stack. */
3188 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
3189 {
3190 /* Should shorter than int integer values be
3191 promoted to int before being stored? */
3192 int longword_offset = 0;
3193 CORE_ADDR addr;
3194 stack_used_p = 1;
3195 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
3196 {
3197 if ((typecode == TYPE_CODE_INT
3198 || typecode == TYPE_CODE_PTR)
3199 && len <= 4)
3200 longword_offset = MIPS64_REGSIZE - len;
3201 }
3202
3203 if (mips_debug)
3204 {
3205 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3206 paddr_nz (stack_offset));
3207 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3208 paddr_nz (longword_offset));
3209 }
3210
3211 addr = sp + stack_offset + longword_offset;
3212
3213 if (mips_debug)
3214 {
3215 int i;
3216 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3217 paddr_nz (addr));
3218 for (i = 0; i < partial_len; i++)
3219 {
3220 fprintf_unfiltered (gdb_stdlog, "%02x",
3221 val[i] & 0xff);
3222 }
3223 }
3224 write_memory (addr, val, partial_len);
3225 }
3226
3227 /* Note!!! This is NOT an else clause. Odd sized
3228 structs may go thru BOTH paths. */
3229 /* Write this portion of the argument to a general
3230 purpose register. */
3231 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
3232 {
3233 LONGEST regval;
3234
3235 /* Sign extend pointers, 32-bit integers and signed
3236 16-bit and 8-bit integers; everything else is taken
3237 as is. */
3238
3239 if ((partial_len == 4
3240 && (typecode == TYPE_CODE_PTR
3241 || typecode == TYPE_CODE_INT))
3242 || (partial_len < 4
3243 && typecode == TYPE_CODE_INT
3244 && !TYPE_UNSIGNED (arg_type)))
3245 regval = extract_signed_integer (val, partial_len);
3246 else
3247 regval = extract_unsigned_integer (val, partial_len);
3248
3249 /* A non-floating-point argument being passed in a
3250 general register. If a struct or union, and if
3251 the remaining length is smaller than the register
3252 size, we have to adjust the register value on
3253 big endian targets.
3254
3255 It does not seem to be necessary to do the
3256 same for integral types. */
3257
3258 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
3259 && partial_len < MIPS64_REGSIZE
3260 && (typecode == TYPE_CODE_STRUCT
3261 || typecode == TYPE_CODE_UNION))
3262 regval <<= ((MIPS64_REGSIZE - partial_len)
3263 * TARGET_CHAR_BIT);
3264
3265 if (mips_debug)
3266 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3267 argreg,
3268 phex (regval, MIPS64_REGSIZE));
3269 regcache_cooked_write_unsigned (regcache, argreg, regval);
3270
3271 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
3272 TYPE_LENGTH (arg_type) - len))
3273 {
3274 if (mips_debug)
3275 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3276 float_argreg,
3277 phex (regval, MIPS64_REGSIZE));
3278 regcache_cooked_write_unsigned (regcache, float_argreg,
3279 regval);
3280 }
3281
3282 float_argreg++;
3283 argreg++;
3284 }
3285
3286 len -= partial_len;
3287 val += partial_len;
3288
3289 /* Compute the the offset into the stack at which we
3290 will copy the next parameter.
3291
3292 In N32 (N64?), the stack_offset only needs to be
3293 adjusted when it has been used. */
3294
3295 if (stack_used_p)
3296 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3297 }
3298 }
3299 if (mips_debug)
3300 fprintf_unfiltered (gdb_stdlog, "\n");
3301 }
3302
3303 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3304
3305 /* Return adjusted stack pointer. */
3306 return sp;
3307}
3308
3309static enum return_value_convention
3310mips_n32n64_return_value (struct gdbarch *gdbarch, struct type *func_type,
3311 struct type *type, struct regcache *regcache,
3312 gdb_byte *readbuf, const gdb_byte *writebuf)
3313{
3314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3315
3316 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
3317
3318 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
3319 if needed), as appropriate for the type. Composite results (struct,
3320 union, or array) are returned in $2/$f0 and $3/$f2 according to the
3321 following rules:
3322
3323 * A struct with only one or two floating point fields is returned in $f0
3324 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
3325 case.
3326
3327 * Any other struct or union results of at most 128 bits are returned in
3328 $2 (first 64 bits) and $3 (remainder, if necessary).
3329
3330 * Larger composite results are handled by converting the function to a
3331 procedure with an implicit first parameter, which is a pointer to an area
3332 reserved by the caller to receive the result. [The o32-bit ABI requires
3333 that all composite results be handled by conversion to implicit first
3334 parameters. The MIPS/SGI Fortran implementation has always made a
3335 specific exception to return COMPLEX results in the floating point
3336 registers.] */
3337
3338 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3339 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
3340 return RETURN_VALUE_STRUCT_CONVENTION;
3341 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3342 && TYPE_LENGTH (type) == 16
3343 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3344 {
3345 /* A 128-bit floating-point value fills both $f0 and $f2. The
3346 two registers are used in the same as memory order, so the
3347 eight bytes with the lower memory address are in $f0. */
3348 if (mips_debug)
3349 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3350 mips_xfer_register (gdbarch, regcache,
3351 gdbarch_num_regs (gdbarch)
3352 + mips_regnum (gdbarch)->fp0,
3353 8, gdbarch_byte_order (gdbarch),
3354 readbuf, writebuf, 0);
3355 mips_xfer_register (gdbarch, regcache,
3356 gdbarch_num_regs (gdbarch)
3357 + mips_regnum (gdbarch)->fp0 + 2,
3358 8, gdbarch_byte_order (gdbarch),
3359 readbuf ? readbuf + 8 : readbuf,
3360 writebuf ? writebuf + 8 : writebuf, 0);
3361 return RETURN_VALUE_REGISTER_CONVENTION;
3362 }
3363 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3364 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3365 {
3366 /* A single or double floating-point value that fits in FP0. */
3367 if (mips_debug)
3368 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3369 mips_xfer_register (gdbarch, regcache,
3370 gdbarch_num_regs (gdbarch)
3371 + mips_regnum (gdbarch)->fp0,
3372 TYPE_LENGTH (type),
3373 gdbarch_byte_order (gdbarch),
3374 readbuf, writebuf, 0);
3375 return RETURN_VALUE_REGISTER_CONVENTION;
3376 }
3377 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3378 && TYPE_NFIELDS (type) <= 2
3379 && TYPE_NFIELDS (type) >= 1
3380 && ((TYPE_NFIELDS (type) == 1
3381 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3382 == TYPE_CODE_FLT))
3383 || (TYPE_NFIELDS (type) == 2
3384 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3385 == TYPE_CODE_FLT)
3386 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
3387 == TYPE_CODE_FLT))))
3388 {
3389 /* A struct that contains one or two floats. Each value is part
3390 in the least significant part of their floating point
3391 register (or GPR, for soft float). */
3392 int regnum;
3393 int field;
3394 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
3395 ? mips_regnum (gdbarch)->fp0
3396 : MIPS_V0_REGNUM);
3397 field < TYPE_NFIELDS (type); field++, regnum += 2)
3398 {
3399 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3400 / TARGET_CHAR_BIT);
3401 if (mips_debug)
3402 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3403 offset);
3404 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
3405 {
3406 /* A 16-byte long double field goes in two consecutive
3407 registers. */
3408 mips_xfer_register (gdbarch, regcache,
3409 gdbarch_num_regs (gdbarch) + regnum,
3410 8,
3411 gdbarch_byte_order (gdbarch),
3412 readbuf, writebuf, offset);
3413 mips_xfer_register (gdbarch, regcache,
3414 gdbarch_num_regs (gdbarch) + regnum + 1,
3415 8,
3416 gdbarch_byte_order (gdbarch),
3417 readbuf, writebuf, offset + 8);
3418 }
3419 else
3420 mips_xfer_register (gdbarch, regcache,
3421 gdbarch_num_regs (gdbarch) + regnum,
3422 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3423 gdbarch_byte_order (gdbarch),
3424 readbuf, writebuf, offset);
3425 }
3426 return RETURN_VALUE_REGISTER_CONVENTION;
3427 }
3428 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3429 || TYPE_CODE (type) == TYPE_CODE_UNION)
3430 {
3431 /* A structure or union. Extract the left justified value,
3432 regardless of the byte order. I.e. DO NOT USE
3433 mips_xfer_lower. */
3434 int offset;
3435 int regnum;
3436 for (offset = 0, regnum = MIPS_V0_REGNUM;
3437 offset < TYPE_LENGTH (type);
3438 offset += register_size (gdbarch, regnum), regnum++)
3439 {
3440 int xfer = register_size (gdbarch, regnum);
3441 if (offset + xfer > TYPE_LENGTH (type))
3442 xfer = TYPE_LENGTH (type) - offset;
3443 if (mips_debug)
3444 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3445 offset, xfer, regnum);
3446 mips_xfer_register (gdbarch, regcache,
3447 gdbarch_num_regs (gdbarch) + regnum,
3448 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
3449 offset);
3450 }
3451 return RETURN_VALUE_REGISTER_CONVENTION;
3452 }
3453 else
3454 {
3455 /* A scalar extract each part but least-significant-byte
3456 justified. */
3457 int offset;
3458 int regnum;
3459 for (offset = 0, regnum = MIPS_V0_REGNUM;
3460 offset < TYPE_LENGTH (type);
3461 offset += register_size (gdbarch, regnum), regnum++)
3462 {
3463 int xfer = register_size (gdbarch, regnum);
3464 if (offset + xfer > TYPE_LENGTH (type))
3465 xfer = TYPE_LENGTH (type) - offset;
3466 if (mips_debug)
3467 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3468 offset, xfer, regnum);
3469 mips_xfer_register (gdbarch, regcache,
3470 gdbarch_num_regs (gdbarch) + regnum,
3471 xfer, gdbarch_byte_order (gdbarch),
3472 readbuf, writebuf, offset);
3473 }
3474 return RETURN_VALUE_REGISTER_CONVENTION;
3475 }
3476}
3477
3478/* O32 ABI stuff. */
3479
3480static CORE_ADDR
3481mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3482 struct regcache *regcache, CORE_ADDR bp_addr,
3483 int nargs, struct value **args, CORE_ADDR sp,
3484 int struct_return, CORE_ADDR struct_addr)
3485{
3486 int argreg;
3487 int float_argreg;
3488 int argnum;
3489 int len = 0;
3490 int stack_offset = 0;
3491 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3492 CORE_ADDR func_addr = find_function_addr (function, NULL);
3493
3494 /* For shared libraries, "t9" needs to point at the function
3495 address. */
3496 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3497
3498 /* Set the return address register to point to the entry point of
3499 the program, where a breakpoint lies in wait. */
3500 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3501
3502 /* First ensure that the stack and structure return address (if any)
3503 are properly aligned. The stack has to be at least 64-bit
3504 aligned even on 32-bit machines, because doubles must be 64-bit
3505 aligned. For n32 and n64, stack frames need to be 128-bit
3506 aligned, so we round to this widest known alignment. */
3507
3508 sp = align_down (sp, 16);
3509 struct_addr = align_down (struct_addr, 16);
3510
3511 /* Now make space on the stack for the args. */
3512 for (argnum = 0; argnum < nargs; argnum++)
3513 {
3514 struct type *arg_type = check_typedef (value_type (args[argnum]));
3515 int arglen = TYPE_LENGTH (arg_type);
3516
3517 /* Align to double-word if necessary. */
3518 if (mips_type_needs_double_align (arg_type))
3519 len = align_up (len, MIPS32_REGSIZE * 2);
3520 /* Allocate space on the stack. */
3521 len += align_up (arglen, MIPS32_REGSIZE);
3522 }
3523 sp -= align_up (len, 16);
3524
3525 if (mips_debug)
3526 fprintf_unfiltered (gdb_stdlog,
3527 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3528 paddr_nz (sp), (long) align_up (len, 16));
3529
3530 /* Initialize the integer and float register pointers. */
3531 argreg = MIPS_A0_REGNUM;
3532 float_argreg = mips_fpa0_regnum (gdbarch);
3533
3534 /* The struct_return pointer occupies the first parameter-passing reg. */
3535 if (struct_return)
3536 {
3537 if (mips_debug)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3540 argreg, paddr_nz (struct_addr));
3541 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3542 stack_offset += MIPS32_REGSIZE;
3543 }
3544
3545 /* Now load as many as possible of the first arguments into
3546 registers, and push the rest onto the stack. Loop thru args
3547 from first to last. */
3548 for (argnum = 0; argnum < nargs; argnum++)
3549 {
3550 const gdb_byte *val;
3551 struct value *arg = args[argnum];
3552 struct type *arg_type = check_typedef (value_type (arg));
3553 int len = TYPE_LENGTH (arg_type);
3554 enum type_code typecode = TYPE_CODE (arg_type);
3555
3556 if (mips_debug)
3557 fprintf_unfiltered (gdb_stdlog,
3558 "mips_o32_push_dummy_call: %d len=%d type=%d",
3559 argnum + 1, len, (int) typecode);
3560
3561 val = value_contents (arg);
3562
3563 /* 32-bit ABIs always start floating point arguments in an
3564 even-numbered floating point register. Round the FP register
3565 up before the check to see if there are any FP registers
3566 left. O32/O64 targets also pass the FP in the integer
3567 registers so also round up normal registers. */
3568 if (fp_register_arg_p (gdbarch, typecode, arg_type))
3569 {
3570 if ((float_argreg & 1))
3571 float_argreg++;
3572 }
3573
3574 /* Floating point arguments passed in registers have to be
3575 treated specially. On 32-bit architectures, doubles
3576 are passed in register pairs; the even register gets
3577 the low word, and the odd register gets the high word.
3578 On O32/O64, the first two floating point arguments are
3579 also copied to general registers, because MIPS16 functions
3580 don't use float registers for arguments. This duplication of
3581 arguments in general registers can't hurt non-MIPS16 functions
3582 because those registers are normally skipped. */
3583
3584 if (fp_register_arg_p (gdbarch, typecode, arg_type)
3585 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
3586 {
3587 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3588 {
3589 int low_offset = gdbarch_byte_order (gdbarch)
3590 == BFD_ENDIAN_BIG ? 4 : 0;
3591 unsigned long regval;
3592
3593 /* Write the low word of the double to the even register(s). */
3594 regval = extract_unsigned_integer (val + low_offset, 4);
3595 if (mips_debug)
3596 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3597 float_argreg, phex (regval, 4));
3598 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3599 if (mips_debug)
3600 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3601 argreg, phex (regval, 4));
3602 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3603
3604 /* Write the high word of the double to the odd register(s). */
3605 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3606 if (mips_debug)
3607 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3608 float_argreg, phex (regval, 4));
3609 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3610
3611 if (mips_debug)
3612 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3613 argreg, phex (regval, 4));
3614 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3615 }
3616 else
3617 {
3618 /* This is a floating point value that fits entirely
3619 in a single register. */
3620 /* On 32 bit ABI's the float_argreg is further adjusted
3621 above to ensure that it is even register aligned. */
3622 LONGEST regval = extract_unsigned_integer (val, len);
3623 if (mips_debug)
3624 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3625 float_argreg, phex (regval, len));
3626 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3627 /* Although two FP registers are reserved for each
3628 argument, only one corresponding integer register is
3629 reserved. */
3630 if (mips_debug)
3631 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3632 argreg, phex (regval, len));
3633 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3634 }
3635 /* Reserve space for the FP register. */
3636 stack_offset += align_up (len, MIPS32_REGSIZE);
3637 }
3638 else
3639 {
3640 /* Copy the argument to general registers or the stack in
3641 register-sized pieces. Large arguments are split between
3642 registers and stack. */
3643 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3644 are treated specially: Irix cc passes
3645 them in registers where gcc sometimes puts them on the
3646 stack. For maximum compatibility, we will put them in
3647 both places. */
3648 int odd_sized_struct = (len > MIPS32_REGSIZE
3649 && len % MIPS32_REGSIZE != 0);
3650 /* Structures should be aligned to eight bytes (even arg registers)
3651 on MIPS_ABI_O32, if their first member has double precision. */
3652 if (mips_type_needs_double_align (arg_type))
3653 {
3654 if ((argreg & 1))
3655 {
3656 argreg++;
3657 stack_offset += MIPS32_REGSIZE;
3658 }
3659 }
3660 while (len > 0)
3661 {
3662 /* Remember if the argument was written to the stack. */
3663 int stack_used_p = 0;
3664 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
3665
3666 if (mips_debug)
3667 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3668 partial_len);
3669
3670 /* Write this portion of the argument to the stack. */
3671 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
3672 || odd_sized_struct)
3673 {
3674 /* Should shorter than int integer values be
3675 promoted to int before being stored? */
3676 int longword_offset = 0;
3677 CORE_ADDR addr;
3678 stack_used_p = 1;
3679
3680 if (mips_debug)
3681 {
3682 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3683 paddr_nz (stack_offset));
3684 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3685 paddr_nz (longword_offset));
3686 }
3687
3688 addr = sp + stack_offset + longword_offset;
3689
3690 if (mips_debug)
3691 {
3692 int i;
3693 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3694 paddr_nz (addr));
3695 for (i = 0; i < partial_len; i++)
3696 {
3697 fprintf_unfiltered (gdb_stdlog, "%02x",
3698 val[i] & 0xff);
3699 }
3700 }
3701 write_memory (addr, val, partial_len);
3702 }
3703
3704 /* Note!!! This is NOT an else clause. Odd sized
3705 structs may go thru BOTH paths. */
3706 /* Write this portion of the argument to a general
3707 purpose register. */
3708 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
3709 {
3710 LONGEST regval = extract_signed_integer (val, partial_len);
3711 /* Value may need to be sign extended, because
3712 mips_isa_regsize() != mips_abi_regsize(). */
3713
3714 /* A non-floating-point argument being passed in a
3715 general register. If a struct or union, and if
3716 the remaining length is smaller than the register
3717 size, we have to adjust the register value on
3718 big endian targets.
3719
3720 It does not seem to be necessary to do the
3721 same for integral types.
3722
3723 Also don't do this adjustment on O64 binaries.
3724
3725 cagney/2001-07-23: gdb/179: Also, GCC, when
3726 outputting LE O32 with sizeof (struct) <
3727 mips_abi_regsize(), generates a left shift
3728 as part of storing the argument in a register
3729 (the left shift isn't generated when
3730 sizeof (struct) >= mips_abi_regsize()). Since
3731 it is quite possible that this is GCC
3732 contradicting the LE/O32 ABI, GDB has not been
3733 adjusted to accommodate this. Either someone
3734 needs to demonstrate that the LE/O32 ABI
3735 specifies such a left shift OR this new ABI gets
3736 identified as such and GDB gets tweaked
3737 accordingly. */
3738
3739 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
3740 && partial_len < MIPS32_REGSIZE
3741 && (typecode == TYPE_CODE_STRUCT
3742 || typecode == TYPE_CODE_UNION))
3743 regval <<= ((MIPS32_REGSIZE - partial_len)
3744 * TARGET_CHAR_BIT);
3745
3746 if (mips_debug)
3747 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3748 argreg,
3749 phex (regval, MIPS32_REGSIZE));
3750 regcache_cooked_write_unsigned (regcache, argreg, regval);
3751 argreg++;
3752
3753 /* Prevent subsequent floating point arguments from
3754 being passed in floating point registers. */
3755 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
3756 }
3757
3758 len -= partial_len;
3759 val += partial_len;
3760
3761 /* Compute the the offset into the stack at which we
3762 will copy the next parameter.
3763
3764 In older ABIs, the caller reserved space for
3765 registers that contained arguments. This was loosely
3766 refered to as their "home". Consequently, space is
3767 always allocated. */
3768
3769 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
3770 }
3771 }
3772 if (mips_debug)
3773 fprintf_unfiltered (gdb_stdlog, "\n");
3774 }
3775
3776 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3777
3778 /* Return adjusted stack pointer. */
3779 return sp;
3780}
3781
3782static enum return_value_convention
3783mips_o32_return_value (struct gdbarch *gdbarch, struct type *func_type,
3784 struct type *type, struct regcache *regcache,
3785 gdb_byte *readbuf, const gdb_byte *writebuf)
3786{
3787 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3788
3789 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3790 || TYPE_CODE (type) == TYPE_CODE_UNION
3791 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3792 return RETURN_VALUE_STRUCT_CONVENTION;
3793 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3794 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3795 {
3796 /* A single-precision floating-point value. It fits in the
3797 least significant part of FP0. */
3798 if (mips_debug)
3799 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3800 mips_xfer_register (gdbarch, regcache,
3801 gdbarch_num_regs (gdbarch)
3802 + mips_regnum (gdbarch)->fp0,
3803 TYPE_LENGTH (type),
3804 gdbarch_byte_order (gdbarch),
3805 readbuf, writebuf, 0);
3806 return RETURN_VALUE_REGISTER_CONVENTION;
3807 }
3808 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3809 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3810 {
3811 /* A double-precision floating-point value. The most
3812 significant part goes in FP1, and the least significant in
3813 FP0. */
3814 if (mips_debug)
3815 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3816 switch (gdbarch_byte_order (gdbarch))
3817 {
3818 case BFD_ENDIAN_LITTLE:
3819 mips_xfer_register (gdbarch, regcache,
3820 gdbarch_num_regs (gdbarch)
3821 + mips_regnum (gdbarch)->fp0 +
3822 0, 4, gdbarch_byte_order (gdbarch),
3823 readbuf, writebuf, 0);
3824 mips_xfer_register (gdbarch, regcache,
3825 gdbarch_num_regs (gdbarch)
3826 + mips_regnum (gdbarch)->fp0 + 1,
3827 4, gdbarch_byte_order (gdbarch),
3828 readbuf, writebuf, 4);
3829 break;
3830 case BFD_ENDIAN_BIG:
3831 mips_xfer_register (gdbarch, regcache,
3832 gdbarch_num_regs (gdbarch)
3833 + mips_regnum (gdbarch)->fp0 + 1,
3834 4, gdbarch_byte_order (gdbarch),
3835 readbuf, writebuf, 0);
3836 mips_xfer_register (gdbarch, regcache,
3837 gdbarch_num_regs (gdbarch)
3838 + mips_regnum (gdbarch)->fp0 + 0,
3839 4, gdbarch_byte_order (gdbarch),
3840 readbuf, writebuf, 4);
3841 break;
3842 default:
3843 internal_error (__FILE__, __LINE__, _("bad switch"));
3844 }
3845 return RETURN_VALUE_REGISTER_CONVENTION;
3846 }
3847#if 0
3848 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3849 && TYPE_NFIELDS (type) <= 2
3850 && TYPE_NFIELDS (type) >= 1
3851 && ((TYPE_NFIELDS (type) == 1
3852 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3853 == TYPE_CODE_FLT))
3854 || (TYPE_NFIELDS (type) == 2
3855 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3856 == TYPE_CODE_FLT)
3857 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3858 == TYPE_CODE_FLT)))
3859 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3860 {
3861 /* A struct that contains one or two floats. Each value is part
3862 in the least significant part of their floating point
3863 register.. */
3864 gdb_byte reg[MAX_REGISTER_SIZE];
3865 int regnum;
3866 int field;
3867 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
3868 field < TYPE_NFIELDS (type); field++, regnum += 2)
3869 {
3870 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3871 / TARGET_CHAR_BIT);
3872 if (mips_debug)
3873 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3874 offset);
3875 mips_xfer_register (gdbarch, regcache,
3876 gdbarch_num_regs (gdbarch) + regnum,
3877 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3878 gdbarch_byte_order (gdbarch),
3879 readbuf, writebuf, offset);
3880 }
3881 return RETURN_VALUE_REGISTER_CONVENTION;
3882 }
3883#endif
3884#if 0
3885 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3886 || TYPE_CODE (type) == TYPE_CODE_UNION)
3887 {
3888 /* A structure or union. Extract the left justified value,
3889 regardless of the byte order. I.e. DO NOT USE
3890 mips_xfer_lower. */
3891 int offset;
3892 int regnum;
3893 for (offset = 0, regnum = MIPS_V0_REGNUM;
3894 offset < TYPE_LENGTH (type);
3895 offset += register_size (gdbarch, regnum), regnum++)
3896 {
3897 int xfer = register_size (gdbarch, regnum);
3898 if (offset + xfer > TYPE_LENGTH (type))
3899 xfer = TYPE_LENGTH (type) - offset;
3900 if (mips_debug)
3901 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3902 offset, xfer, regnum);
3903 mips_xfer_register (gdbarch, regcache,
3904 gdbarch_num_regs (gdbarch) + regnum, xfer,
3905 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3906 }
3907 return RETURN_VALUE_REGISTER_CONVENTION;
3908 }
3909#endif
3910 else
3911 {
3912 /* A scalar extract each part but least-significant-byte
3913 justified. o32 thinks registers are 4 byte, regardless of
3914 the ISA. */
3915 int offset;
3916 int regnum;
3917 for (offset = 0, regnum = MIPS_V0_REGNUM;
3918 offset < TYPE_LENGTH (type);
3919 offset += MIPS32_REGSIZE, regnum++)
3920 {
3921 int xfer = MIPS32_REGSIZE;
3922 if (offset + xfer > TYPE_LENGTH (type))
3923 xfer = TYPE_LENGTH (type) - offset;
3924 if (mips_debug)
3925 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3926 offset, xfer, regnum);
3927 mips_xfer_register (gdbarch, regcache,
3928 gdbarch_num_regs (gdbarch) + regnum, xfer,
3929 gdbarch_byte_order (gdbarch),
3930 readbuf, writebuf, offset);
3931 }
3932 return RETURN_VALUE_REGISTER_CONVENTION;
3933 }
3934}
3935
3936/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3937 ABI. */
3938
3939static CORE_ADDR
3940mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3941 struct regcache *regcache, CORE_ADDR bp_addr,
3942 int nargs,
3943 struct value **args, CORE_ADDR sp,
3944 int struct_return, CORE_ADDR struct_addr)
3945{
3946 int argreg;
3947 int float_argreg;
3948 int argnum;
3949 int len = 0;
3950 int stack_offset = 0;
3951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3952 CORE_ADDR func_addr = find_function_addr (function, NULL);
3953
3954 /* For shared libraries, "t9" needs to point at the function
3955 address. */
3956 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3957
3958 /* Set the return address register to point to the entry point of
3959 the program, where a breakpoint lies in wait. */
3960 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3961
3962 /* First ensure that the stack and structure return address (if any)
3963 are properly aligned. The stack has to be at least 64-bit
3964 aligned even on 32-bit machines, because doubles must be 64-bit
3965 aligned. For n32 and n64, stack frames need to be 128-bit
3966 aligned, so we round to this widest known alignment. */
3967
3968 sp = align_down (sp, 16);
3969 struct_addr = align_down (struct_addr, 16);
3970
3971 /* Now make space on the stack for the args. */
3972 for (argnum = 0; argnum < nargs; argnum++)
3973 {
3974 struct type *arg_type = check_typedef (value_type (args[argnum]));
3975 int arglen = TYPE_LENGTH (arg_type);
3976
3977 /* Allocate space on the stack. */
3978 len += align_up (arglen, MIPS64_REGSIZE);
3979 }
3980 sp -= align_up (len, 16);
3981
3982 if (mips_debug)
3983 fprintf_unfiltered (gdb_stdlog,
3984 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3985 paddr_nz (sp), (long) align_up (len, 16));
3986
3987 /* Initialize the integer and float register pointers. */
3988 argreg = MIPS_A0_REGNUM;
3989 float_argreg = mips_fpa0_regnum (gdbarch);
3990
3991 /* The struct_return pointer occupies the first parameter-passing reg. */
3992 if (struct_return)
3993 {
3994 if (mips_debug)
3995 fprintf_unfiltered (gdb_stdlog,
3996 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3997 argreg, paddr_nz (struct_addr));
3998 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3999 stack_offset += MIPS64_REGSIZE;
4000 }
4001
4002 /* Now load as many as possible of the first arguments into
4003 registers, and push the rest onto the stack. Loop thru args
4004 from first to last. */
4005 for (argnum = 0; argnum < nargs; argnum++)
4006 {
4007 const gdb_byte *val;
4008 struct value *arg = args[argnum];
4009 struct type *arg_type = check_typedef (value_type (arg));
4010 int len = TYPE_LENGTH (arg_type);
4011 enum type_code typecode = TYPE_CODE (arg_type);
4012
4013 if (mips_debug)
4014 fprintf_unfiltered (gdb_stdlog,
4015 "mips_o64_push_dummy_call: %d len=%d type=%d",
4016 argnum + 1, len, (int) typecode);
4017
4018 val = value_contents (arg);
4019
4020 /* Floating point arguments passed in registers have to be
4021 treated specially. On 32-bit architectures, doubles
4022 are passed in register pairs; the even register gets
4023 the low word, and the odd register gets the high word.
4024 On O32/O64, the first two floating point arguments are
4025 also copied to general registers, because MIPS16 functions
4026 don't use float registers for arguments. This duplication of
4027 arguments in general registers can't hurt non-MIPS16 functions
4028 because those registers are normally skipped. */
4029
4030 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4031 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4032 {
4033 LONGEST regval = extract_unsigned_integer (val, len);
4034 if (mips_debug)
4035 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4036 float_argreg, phex (regval, len));
4037 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
4038 if (mips_debug)
4039 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4040 argreg, phex (regval, len));
4041 regcache_cooked_write_unsigned (regcache, argreg, regval);
4042 argreg++;
4043 /* Reserve space for the FP register. */
4044 stack_offset += align_up (len, MIPS64_REGSIZE);
4045 }
4046 else
4047 {
4048 /* Copy the argument to general registers or the stack in
4049 register-sized pieces. Large arguments are split between
4050 registers and stack. */
4051 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
4052 are treated specially: Irix cc passes them in registers
4053 where gcc sometimes puts them on the stack. For maximum
4054 compatibility, we will put them in both places. */
4055 int odd_sized_struct = (len > MIPS64_REGSIZE
4056 && len % MIPS64_REGSIZE != 0);
4057 while (len > 0)
4058 {
4059 /* Remember if the argument was written to the stack. */
4060 int stack_used_p = 0;
4061 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4062
4063 if (mips_debug)
4064 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4065 partial_len);
4066
4067 /* Write this portion of the argument to the stack. */
4068 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4069 || odd_sized_struct)
4070 {
4071 /* Should shorter than int integer values be
4072 promoted to int before being stored? */
4073 int longword_offset = 0;
4074 CORE_ADDR addr;
4075 stack_used_p = 1;
4076 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4077 {
4078 if ((typecode == TYPE_CODE_INT
4079 || typecode == TYPE_CODE_PTR
4080 || typecode == TYPE_CODE_FLT)
4081 && len <= 4)
4082 longword_offset = MIPS64_REGSIZE - len;
4083 }
4084
4085 if (mips_debug)
4086 {
4087 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
4088 paddr_nz (stack_offset));
4089 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
4090 paddr_nz (longword_offset));
4091 }
4092
4093 addr = sp + stack_offset + longword_offset;
4094
4095 if (mips_debug)
4096 {
4097 int i;
4098 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
4099 paddr_nz (addr));
4100 for (i = 0; i < partial_len; i++)
4101 {
4102 fprintf_unfiltered (gdb_stdlog, "%02x",
4103 val[i] & 0xff);
4104 }
4105 }
4106 write_memory (addr, val, partial_len);
4107 }
4108
4109 /* Note!!! This is NOT an else clause. Odd sized
4110 structs may go thru BOTH paths. */
4111 /* Write this portion of the argument to a general
4112 purpose register. */
4113 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4114 {
4115 LONGEST regval = extract_signed_integer (val, partial_len);
4116 /* Value may need to be sign extended, because
4117 mips_isa_regsize() != mips_abi_regsize(). */
4118
4119 /* A non-floating-point argument being passed in a
4120 general register. If a struct or union, and if
4121 the remaining length is smaller than the register
4122 size, we have to adjust the register value on
4123 big endian targets.
4124
4125 It does not seem to be necessary to do the
4126 same for integral types. */
4127
4128 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
4129 && partial_len < MIPS64_REGSIZE
4130 && (typecode == TYPE_CODE_STRUCT
4131 || typecode == TYPE_CODE_UNION))
4132 regval <<= ((MIPS64_REGSIZE - partial_len)
4133 * TARGET_CHAR_BIT);
4134
4135 if (mips_debug)
4136 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4137 argreg,
4138 phex (regval, MIPS64_REGSIZE));
4139 regcache_cooked_write_unsigned (regcache, argreg, regval);
4140 argreg++;
4141
4142 /* Prevent subsequent floating point arguments from
4143 being passed in floating point registers. */
4144 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
4145 }
4146
4147 len -= partial_len;
4148 val += partial_len;
4149
4150 /* Compute the the offset into the stack at which we
4151 will copy the next parameter.
4152
4153 In older ABIs, the caller reserved space for
4154 registers that contained arguments. This was loosely
4155 refered to as their "home". Consequently, space is
4156 always allocated. */
4157
4158 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
4159 }
4160 }
4161 if (mips_debug)
4162 fprintf_unfiltered (gdb_stdlog, "\n");
4163 }
4164
4165 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4166
4167 /* Return adjusted stack pointer. */
4168 return sp;
4169}
4170
4171static enum return_value_convention
4172mips_o64_return_value (struct gdbarch *gdbarch, struct type *func_type,
4173 struct type *type, struct regcache *regcache,
4174 gdb_byte *readbuf, const gdb_byte *writebuf)
4175{
4176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4177
4178 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4179 || TYPE_CODE (type) == TYPE_CODE_UNION
4180 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
4181 return RETURN_VALUE_STRUCT_CONVENTION;
4182 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
4183 {
4184 /* A floating-point value. It fits in the least significant
4185 part of FP0. */
4186 if (mips_debug)
4187 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4188 mips_xfer_register (gdbarch, regcache,
4189 gdbarch_num_regs (gdbarch)
4190 + mips_regnum (gdbarch)->fp0,
4191 TYPE_LENGTH (type),
4192 gdbarch_byte_order (gdbarch),
4193 readbuf, writebuf, 0);
4194 return RETURN_VALUE_REGISTER_CONVENTION;
4195 }
4196 else
4197 {
4198 /* A scalar extract each part but least-significant-byte
4199 justified. */
4200 int offset;
4201 int regnum;
4202 for (offset = 0, regnum = MIPS_V0_REGNUM;
4203 offset < TYPE_LENGTH (type);
4204 offset += MIPS64_REGSIZE, regnum++)
4205 {
4206 int xfer = MIPS64_REGSIZE;
4207 if (offset + xfer > TYPE_LENGTH (type))
4208 xfer = TYPE_LENGTH (type) - offset;
4209 if (mips_debug)
4210 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4211 offset, xfer, regnum);
4212 mips_xfer_register (gdbarch, regcache,
4213 gdbarch_num_regs (gdbarch) + regnum,
4214 xfer, gdbarch_byte_order (gdbarch),
4215 readbuf, writebuf, offset);
4216 }
4217 return RETURN_VALUE_REGISTER_CONVENTION;
4218 }
4219}
4220
4221/* Floating point register management.
4222
4223 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
4224 64bit operations, these early MIPS cpus treat fp register pairs
4225 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
4226 registers and offer a compatibility mode that emulates the MIPS2 fp
4227 model. When operating in MIPS2 fp compat mode, later cpu's split
4228 double precision floats into two 32-bit chunks and store them in
4229 consecutive fp regs. To display 64-bit floats stored in this
4230 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
4231 Throw in user-configurable endianness and you have a real mess.
4232
4233 The way this works is:
4234 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
4235 double-precision value will be split across two logical registers.
4236 The lower-numbered logical register will hold the low-order bits,
4237 regardless of the processor's endianness.
4238 - If we are on a 64-bit processor, and we are looking for a
4239 single-precision value, it will be in the low ordered bits
4240 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
4241 save slot in memory.
4242 - If we are in 64-bit mode, everything is straightforward.
4243
4244 Note that this code only deals with "live" registers at the top of the
4245 stack. We will attempt to deal with saved registers later, when
4246 the raw/cooked register interface is in place. (We need a general
4247 interface that can deal with dynamic saved register sizes -- fp
4248 regs could be 32 bits wide in one frame and 64 on the frame above
4249 and below). */
4250
4251static struct type *
4252mips_float_register_type (void)
4253{
4254 return builtin_type_ieee_single;
4255}
4256
4257static struct type *
4258mips_double_register_type (void)
4259{
4260 return builtin_type_ieee_double;
4261}
4262
4263/* Copy a 32-bit single-precision value from the current frame
4264 into rare_buffer. */
4265
4266static void
4267mips_read_fp_register_single (struct frame_info *frame, int regno,
4268 gdb_byte *rare_buffer)
4269{
4270 struct gdbarch *gdbarch = get_frame_arch (frame);
4271 int raw_size = register_size (gdbarch, regno);
4272 gdb_byte *raw_buffer = alloca (raw_size);
4273
4274 if (!frame_register_read (frame, regno, raw_buffer))
4275 error (_("can't read register %d (%s)"),
4276 regno, gdbarch_register_name (gdbarch, regno));
4277 if (raw_size == 8)
4278 {
4279 /* We have a 64-bit value for this register. Find the low-order
4280 32 bits. */
4281 int offset;
4282
4283 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4284 offset = 4;
4285 else
4286 offset = 0;
4287
4288 memcpy (rare_buffer, raw_buffer + offset, 4);
4289 }
4290 else
4291 {
4292 memcpy (rare_buffer, raw_buffer, 4);
4293 }
4294}
4295
4296/* Copy a 64-bit double-precision value from the current frame into
4297 rare_buffer. This may include getting half of it from the next
4298 register. */
4299
4300static void
4301mips_read_fp_register_double (struct frame_info *frame, int regno,
4302 gdb_byte *rare_buffer)
4303{
4304 struct gdbarch *gdbarch = get_frame_arch (frame);
4305 int raw_size = register_size (gdbarch, regno);
4306
4307 if (raw_size == 8 && !mips2_fp_compat (frame))
4308 {
4309 /* We have a 64-bit value for this register, and we should use
4310 all 64 bits. */
4311 if (!frame_register_read (frame, regno, rare_buffer))
4312 error (_("can't read register %d (%s)"),
4313 regno, gdbarch_register_name (gdbarch, regno));
4314 }
4315 else
4316 {
4317 int rawnum = regno % gdbarch_num_regs (gdbarch);
4318
4319 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
4320 internal_error (__FILE__, __LINE__,
4321 _("mips_read_fp_register_double: bad access to "
4322 "odd-numbered FP register"));
4323
4324 /* mips_read_fp_register_single will find the correct 32 bits from
4325 each register. */
4326 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4327 {
4328 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4329 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4330 }
4331 else
4332 {
4333 mips_read_fp_register_single (frame, regno, rare_buffer);
4334 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4335 }
4336 }
4337}
4338
4339static void
4340mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4341 int regnum)
4342{ /* do values for FP (float) regs */
4343 struct gdbarch *gdbarch = get_frame_arch (frame);
4344 gdb_byte *raw_buffer;
4345 double doub, flt1; /* doubles extracted from raw hex data */
4346 int inv1, inv2;
4347
4348 raw_buffer = alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0));
4349
4350 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
4351 fprintf_filtered (file, "%*s",
4352 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
4353 "");
4354
4355 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
4356 {
4357 /* 4-byte registers: Print hex and floating. Also print even
4358 numbered registers as doubles. */
4359 mips_read_fp_register_single (frame, regnum, raw_buffer);
4360 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4361
4362 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
4363 file);
4364
4365 fprintf_filtered (file, " flt: ");
4366 if (inv1)
4367 fprintf_filtered (file, " <invalid float> ");
4368 else
4369 fprintf_filtered (file, "%-17.9g", flt1);
4370
4371 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
4372 {
4373 mips_read_fp_register_double (frame, regnum, raw_buffer);
4374 doub = unpack_double (mips_double_register_type (), raw_buffer,
4375 &inv2);
4376
4377 fprintf_filtered (file, " dbl: ");
4378 if (inv2)
4379 fprintf_filtered (file, "<invalid double>");
4380 else
4381 fprintf_filtered (file, "%-24.17g", doub);
4382 }
4383 }
4384 else
4385 {
4386 /* Eight byte registers: print each one as hex, float and double. */
4387 mips_read_fp_register_single (frame, regnum, raw_buffer);
4388 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4389
4390 mips_read_fp_register_double (frame, regnum, raw_buffer);
4391 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4392
4393
4394 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4395 file);
4396
4397 fprintf_filtered (file, " flt: ");
4398 if (inv1)
4399 fprintf_filtered (file, "<invalid float>");
4400 else
4401 fprintf_filtered (file, "%-17.9g", flt1);
4402
4403 fprintf_filtered (file, " dbl: ");
4404 if (inv2)
4405 fprintf_filtered (file, "<invalid double>");
4406 else
4407 fprintf_filtered (file, "%-24.17g", doub);
4408 }
4409}
4410
4411static void
4412mips_print_register (struct ui_file *file, struct frame_info *frame,
4413 int regnum)
4414{
4415 struct gdbarch *gdbarch = get_frame_arch (frame);
4416 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4417 int offset;
4418
4419 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4420 {
4421 mips_print_fp_register (file, frame, regnum);
4422 return;
4423 }
4424
4425 /* Get the data in raw format. */
4426 if (!frame_register_read (frame, regnum, raw_buffer))
4427 {
4428 fprintf_filtered (file, "%s: [Invalid]",
4429 gdbarch_register_name (gdbarch, regnum));
4430 return;
4431 }
4432
4433 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
4434
4435 /* The problem with printing numeric register names (r26, etc.) is that
4436 the user can't use them on input. Probably the best solution is to
4437 fix it so that either the numeric or the funky (a2, etc.) names
4438 are accepted on input. */
4439 if (regnum < MIPS_NUMREGS)
4440 fprintf_filtered (file, "(r%d): ", regnum);
4441 else
4442 fprintf_filtered (file, ": ");
4443
4444 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4445 offset =
4446 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4447 else
4448 offset = 0;
4449
4450 print_scalar_formatted (raw_buffer + offset,
4451 register_type (gdbarch, regnum), 'x', 0,
4452 file);
4453}
4454
4455/* Replacement for generic do_registers_info.
4456 Print regs in pretty columns. */
4457
4458static int
4459print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4460 int regnum)
4461{
4462 fprintf_filtered (file, " ");
4463 mips_print_fp_register (file, frame, regnum);
4464 fprintf_filtered (file, "\n");
4465 return regnum + 1;
4466}
4467
4468
4469/* Print a row's worth of GP (int) registers, with name labels above */
4470
4471static int
4472print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4473 int start_regnum)
4474{
4475 struct gdbarch *gdbarch = get_frame_arch (frame);
4476 /* do values for GP (int) regs */
4477 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4478 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4479 int col, byte;
4480 int regnum;
4481
4482 /* For GP registers, we print a separate row of names above the vals */
4483 for (col = 0, regnum = start_regnum;
4484 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4485 + gdbarch_num_pseudo_regs (gdbarch);
4486 regnum++)
4487 {
4488 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
4489 continue; /* unused register */
4490 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4491 TYPE_CODE_FLT)
4492 break; /* end the row: reached FP register */
4493 /* Large registers are handled separately. */
4494 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
4495 {
4496 if (col > 0)
4497 break; /* End the row before this register. */
4498
4499 /* Print this register on a row by itself. */
4500 mips_print_register (file, frame, regnum);
4501 fprintf_filtered (file, "\n");
4502 return regnum + 1;
4503 }
4504 if (col == 0)
4505 fprintf_filtered (file, " ");
4506 fprintf_filtered (file,
4507 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
4508 gdbarch_register_name (gdbarch, regnum));
4509 col++;
4510 }
4511
4512 if (col == 0)
4513 return regnum;
4514
4515 /* print the R0 to R31 names */
4516 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
4517 fprintf_filtered (file, "\n R%-4d",
4518 start_regnum % gdbarch_num_regs (gdbarch));
4519 else
4520 fprintf_filtered (file, "\n ");
4521
4522 /* now print the values in hex, 4 or 8 to the row */
4523 for (col = 0, regnum = start_regnum;
4524 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4525 + gdbarch_num_pseudo_regs (gdbarch);
4526 regnum++)
4527 {
4528 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
4529 continue; /* unused register */
4530 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4531 TYPE_CODE_FLT)
4532 break; /* end row: reached FP register */
4533 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
4534 break; /* End row: large register. */
4535
4536 /* OK: get the data in raw format. */
4537 if (!frame_register_read (frame, regnum, raw_buffer))
4538 error (_("can't read register %d (%s)"),
4539 regnum, gdbarch_register_name (gdbarch, regnum));
4540 /* pad small registers */
4541 for (byte = 0;
4542 byte < (mips_abi_regsize (gdbarch)
4543 - register_size (gdbarch, regnum)); byte++)
4544 printf_filtered (" ");
4545 /* Now print the register value in hex, endian order. */
4546 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4547 for (byte =
4548 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4549 byte < register_size (gdbarch, regnum); byte++)
4550 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4551 else
4552 for (byte = register_size (gdbarch, regnum) - 1;
4553 byte >= 0; byte--)
4554 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4555 fprintf_filtered (file, " ");
4556 col++;
4557 }
4558 if (col > 0) /* ie. if we actually printed anything... */
4559 fprintf_filtered (file, "\n");
4560
4561 return regnum;
4562}
4563
4564/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4565
4566static void
4567mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4568 struct frame_info *frame, int regnum, int all)
4569{
4570 if (regnum != -1) /* do one specified register */
4571 {
4572 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
4573 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
4574 error (_("Not a valid register for the current processor type"));
4575
4576 mips_print_register (file, frame, regnum);
4577 fprintf_filtered (file, "\n");
4578 }
4579 else
4580 /* do all (or most) registers */
4581 {
4582 regnum = gdbarch_num_regs (gdbarch);
4583 while (regnum < gdbarch_num_regs (gdbarch)
4584 + gdbarch_num_pseudo_regs (gdbarch))
4585 {
4586 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4587 TYPE_CODE_FLT)
4588 {
4589 if (all) /* true for "INFO ALL-REGISTERS" command */
4590 regnum = print_fp_register_row (file, frame, regnum);
4591 else
4592 regnum += MIPS_NUMREGS; /* skip floating point regs */
4593 }
4594 else
4595 regnum = print_gp_register_row (file, frame, regnum);
4596 }
4597 }
4598}
4599
4600/* Is this a branch with a delay slot? */
4601
4602static int
4603is_delayed (unsigned long insn)
4604{
4605 int i;
4606 for (i = 0; i < NUMOPCODES; ++i)
4607 if (mips_opcodes[i].pinfo != INSN_MACRO
4608 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4609 break;
4610 return (i < NUMOPCODES
4611 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4612 | INSN_COND_BRANCH_DELAY
4613 | INSN_COND_BRANCH_LIKELY)));
4614}
4615
4616int
4617mips_single_step_through_delay (struct gdbarch *gdbarch,
4618 struct frame_info *frame)
4619{
4620 CORE_ADDR pc = get_frame_pc (frame);
4621 gdb_byte buf[MIPS_INSN32_SIZE];
4622
4623 /* There is no branch delay slot on MIPS16. */
4624 if (mips_pc_is_mips16 (pc))
4625 return 0;
4626
4627 if (!breakpoint_here_p (pc + 4))
4628 return 0;
4629
4630 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4631 /* If error reading memory, guess that it is not a delayed
4632 branch. */
4633 return 0;
4634 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4635}
4636
4637/* To skip prologues, I use this predicate. Returns either PC itself
4638 if the code at PC does not look like a function prologue; otherwise
4639 returns an address that (if we're lucky) follows the prologue. If
4640 LENIENT, then we must skip everything which is involved in setting
4641 up the frame (it's OK to skip more, just so long as we don't skip
4642 anything which might clobber the registers which are being saved.
4643 We must skip more in the case where part of the prologue is in the
4644 delay slot of a non-prologue instruction). */
4645
4646static CORE_ADDR
4647mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4648{
4649 CORE_ADDR limit_pc;
4650 CORE_ADDR func_addr;
4651
4652 /* See if we can determine the end of the prologue via the symbol table.
4653 If so, then return either PC, or the PC after the prologue, whichever
4654 is greater. */
4655 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4656 {
4657 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4658 if (post_prologue_pc != 0)
4659 return max (pc, post_prologue_pc);
4660 }
4661
4662 /* Can't determine prologue from the symbol table, need to examine
4663 instructions. */
4664
4665 /* Find an upper limit on the function prologue using the debug
4666 information. If the debug information could not be used to provide
4667 that bound, then use an arbitrary large number as the upper bound. */
4668 limit_pc = skip_prologue_using_sal (pc);
4669 if (limit_pc == 0)
4670 limit_pc = pc + 100; /* Magic. */
4671
4672 if (mips_pc_is_mips16 (pc))
4673 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4674 else
4675 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4676}
4677
4678/* Check whether the PC is in a function epilogue (32-bit version).
4679 This is a helper function for mips_in_function_epilogue_p. */
4680static int
4681mips32_in_function_epilogue_p (CORE_ADDR pc)
4682{
4683 CORE_ADDR func_addr = 0, func_end = 0;
4684
4685 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4686 {
4687 /* The MIPS epilogue is max. 12 bytes long. */
4688 CORE_ADDR addr = func_end - 12;
4689
4690 if (addr < func_addr + 4)
4691 addr = func_addr + 4;
4692 if (pc < addr)
4693 return 0;
4694
4695 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4696 {
4697 unsigned long high_word;
4698 unsigned long inst;
4699
4700 inst = mips_fetch_instruction (pc);
4701 high_word = (inst >> 16) & 0xffff;
4702
4703 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4704 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4705 && inst != 0x03e00008 /* jr $ra */
4706 && inst != 0x00000000) /* nop */
4707 return 0;
4708 }
4709
4710 return 1;
4711 }
4712
4713 return 0;
4714}
4715
4716/* Check whether the PC is in a function epilogue (16-bit version).
4717 This is a helper function for mips_in_function_epilogue_p. */
4718static int
4719mips16_in_function_epilogue_p (CORE_ADDR pc)
4720{
4721 CORE_ADDR func_addr = 0, func_end = 0;
4722
4723 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4724 {
4725 /* The MIPS epilogue is max. 12 bytes long. */
4726 CORE_ADDR addr = func_end - 12;
4727
4728 if (addr < func_addr + 4)
4729 addr = func_addr + 4;
4730 if (pc < addr)
4731 return 0;
4732
4733 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4734 {
4735 unsigned short inst;
4736
4737 inst = mips_fetch_instruction (pc);
4738
4739 if ((inst & 0xf800) == 0xf000) /* extend */
4740 continue;
4741
4742 if (inst != 0x6300 /* addiu $sp,offset */
4743 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
4744 && inst != 0xe820 /* jr $ra */
4745 && inst != 0xe8a0 /* jrc $ra */
4746 && inst != 0x6500) /* nop */
4747 return 0;
4748 }
4749
4750 return 1;
4751 }
4752
4753 return 0;
4754}
4755
4756/* The epilogue is defined here as the area at the end of a function,
4757 after an instruction which destroys the function's stack frame. */
4758static int
4759mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4760{
4761 if (mips_pc_is_mips16 (pc))
4762 return mips16_in_function_epilogue_p (pc);
4763 else
4764 return mips32_in_function_epilogue_p (pc);
4765}
4766
4767/* Root of all "set mips "/"show mips " commands. This will eventually be
4768 used for all MIPS-specific commands. */
4769
4770static void
4771show_mips_command (char *args, int from_tty)
4772{
4773 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4774}
4775
4776static void
4777set_mips_command (char *args, int from_tty)
4778{
4779 printf_unfiltered
4780 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4781 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4782}
4783
4784/* Commands to show/set the MIPS FPU type. */
4785
4786static void
4787show_mipsfpu_command (char *args, int from_tty)
4788{
4789 char *fpu;
4790
4791 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
4792 {
4793 printf_unfiltered
4794 ("The MIPS floating-point coprocessor is unknown "
4795 "because the current architecture is not MIPS.\n");
4796 return;
4797 }
4798
4799 switch (MIPS_FPU_TYPE (target_gdbarch))
4800 {
4801 case MIPS_FPU_SINGLE:
4802 fpu = "single-precision";
4803 break;
4804 case MIPS_FPU_DOUBLE:
4805 fpu = "double-precision";
4806 break;
4807 case MIPS_FPU_NONE:
4808 fpu = "absent (none)";
4809 break;
4810 default:
4811 internal_error (__FILE__, __LINE__, _("bad switch"));
4812 }
4813 if (mips_fpu_type_auto)
4814 printf_unfiltered
4815 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4816 fpu);
4817 else
4818 printf_unfiltered
4819 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4820}
4821
4822
4823static void
4824set_mipsfpu_command (char *args, int from_tty)
4825{
4826 printf_unfiltered
4827 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4828 show_mipsfpu_command (args, from_tty);
4829}
4830
4831static void
4832set_mipsfpu_single_command (char *args, int from_tty)
4833{
4834 struct gdbarch_info info;
4835 gdbarch_info_init (&info);
4836 mips_fpu_type = MIPS_FPU_SINGLE;
4837 mips_fpu_type_auto = 0;
4838 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4839 instead of relying on globals. Doing that would let generic code
4840 handle the search for this specific architecture. */
4841 if (!gdbarch_update_p (info))
4842 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4843}
4844
4845static void
4846set_mipsfpu_double_command (char *args, int from_tty)
4847{
4848 struct gdbarch_info info;
4849 gdbarch_info_init (&info);
4850 mips_fpu_type = MIPS_FPU_DOUBLE;
4851 mips_fpu_type_auto = 0;
4852 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4853 instead of relying on globals. Doing that would let generic code
4854 handle the search for this specific architecture. */
4855 if (!gdbarch_update_p (info))
4856 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4857}
4858
4859static void
4860set_mipsfpu_none_command (char *args, int from_tty)
4861{
4862 struct gdbarch_info info;
4863 gdbarch_info_init (&info);
4864 mips_fpu_type = MIPS_FPU_NONE;
4865 mips_fpu_type_auto = 0;
4866 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4867 instead of relying on globals. Doing that would let generic code
4868 handle the search for this specific architecture. */
4869 if (!gdbarch_update_p (info))
4870 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4871}
4872
4873static void
4874set_mipsfpu_auto_command (char *args, int from_tty)
4875{
4876 mips_fpu_type_auto = 1;
4877}
4878
4879/* Attempt to identify the particular processor model by reading the
4880 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4881 the relevant processor still exists (it dates back to '94) and
4882 secondly this is not the way to do this. The processor type should
4883 be set by forcing an architecture change. */
4884
4885void
4886deprecated_mips_set_processor_regs_hack (void)
4887{
4888 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4889 ULONGEST prid;
4890
4891 regcache_cooked_read_unsigned (get_current_regcache (),
4892 MIPS_PRID_REGNUM, &prid);
4893 if ((prid & ~0xf) == 0x700)
4894 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4895}
4896
4897/* Just like reinit_frame_cache, but with the right arguments to be
4898 callable as an sfunc. */
4899
4900static void
4901reinit_frame_cache_sfunc (char *args, int from_tty,
4902 struct cmd_list_element *c)
4903{
4904 reinit_frame_cache ();
4905}
4906
4907static int
4908gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4909{
4910 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4911
4912 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4913 disassembler needs to be able to locally determine the ISA, and
4914 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4915 work. */
4916 if (mips_pc_is_mips16 (memaddr))
4917 info->mach = bfd_mach_mips16;
4918
4919 /* Round down the instruction address to the appropriate boundary. */
4920 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4921
4922 /* Set the disassembler options. */
4923 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4924 {
4925 /* Set up the disassembler info, so that we get the right
4926 register names from libopcodes. */
4927 if (tdep->mips_abi == MIPS_ABI_N32)
4928 info->disassembler_options = "gpr-names=n32";
4929 else
4930 info->disassembler_options = "gpr-names=64";
4931 info->flavour = bfd_target_elf_flavour;
4932 }
4933 else
4934 /* This string is not recognized explicitly by the disassembler,
4935 but it tells the disassembler to not try to guess the ABI from
4936 the bfd elf headers, such that, if the user overrides the ABI
4937 of a program linked as NewABI, the disassembly will follow the
4938 register naming conventions specified by the user. */
4939 info->disassembler_options = "gpr-names=32";
4940
4941 /* Call the appropriate disassembler based on the target endian-ness. */
4942 if (info->endian == BFD_ENDIAN_BIG)
4943 return print_insn_big_mips (memaddr, info);
4944 else
4945 return print_insn_little_mips (memaddr, info);
4946}
4947
4948/* This function implements gdbarch_breakpoint_from_pc. It uses the program
4949 counter value to determine whether a 16- or 32-bit breakpoint should be used.
4950 It returns a pointer to a string of bytes that encode a breakpoint
4951 instruction, stores the length of the string to *lenptr, and adjusts pc (if
4952 necessary) to point to the actual memory location where the breakpoint
4953 should be inserted. */
4954
4955static const gdb_byte *
4956mips_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
4957{
4958 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4959 {
4960 if (mips_pc_is_mips16 (*pcptr))
4961 {
4962 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4963 *pcptr = unmake_mips16_addr (*pcptr);
4964 *lenptr = sizeof (mips16_big_breakpoint);
4965 return mips16_big_breakpoint;
4966 }
4967 else
4968 {
4969 /* The IDT board uses an unusual breakpoint value, and
4970 sometimes gets confused when it sees the usual MIPS
4971 breakpoint instruction. */
4972 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4973 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4974 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4975
4976 *lenptr = sizeof (big_breakpoint);
4977
4978 if (strcmp (target_shortname, "mips") == 0)
4979 return idt_big_breakpoint;
4980 else if (strcmp (target_shortname, "ddb") == 0
4981 || strcmp (target_shortname, "pmon") == 0
4982 || strcmp (target_shortname, "lsi") == 0)
4983 return pmon_big_breakpoint;
4984 else
4985 return big_breakpoint;
4986 }
4987 }
4988 else
4989 {
4990 if (mips_pc_is_mips16 (*pcptr))
4991 {
4992 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4993 *pcptr = unmake_mips16_addr (*pcptr);
4994 *lenptr = sizeof (mips16_little_breakpoint);
4995 return mips16_little_breakpoint;
4996 }
4997 else
4998 {
4999 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
5000 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
5001 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
5002
5003 *lenptr = sizeof (little_breakpoint);
5004
5005 if (strcmp (target_shortname, "mips") == 0)
5006 return idt_little_breakpoint;
5007 else if (strcmp (target_shortname, "ddb") == 0
5008 || strcmp (target_shortname, "pmon") == 0
5009 || strcmp (target_shortname, "lsi") == 0)
5010 return pmon_little_breakpoint;
5011 else
5012 return little_breakpoint;
5013 }
5014 }
5015}
5016
5017/* If PC is in a mips16 call or return stub, return the address of the target
5018 PC, which is either the callee or the caller. There are several
5019 cases which must be handled:
5020
5021 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5022 target PC is in $31 ($ra).
5023 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5024 and the target PC is in $2.
5025 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5026 before the jal instruction, this is effectively a call stub
5027 and the the target PC is in $2. Otherwise this is effectively
5028 a return stub and the target PC is in $18.
5029
5030 See the source code for the stubs in gcc/config/mips/mips16.S for
5031 gory details. */
5032
5033static CORE_ADDR
5034mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
5035{
5036 char *name;
5037 CORE_ADDR start_addr;
5038
5039 /* Find the starting address and name of the function containing the PC. */
5040 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5041 return 0;
5042
5043 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5044 target PC is in $31 ($ra). */
5045 if (strcmp (name, "__mips16_ret_sf") == 0
5046 || strcmp (name, "__mips16_ret_df") == 0)
5047 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
5048
5049 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5050 {
5051 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5052 and the target PC is in $2. */
5053 if (name[19] >= '0' && name[19] <= '9')
5054 return get_frame_register_signed (frame, 2);
5055
5056 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5057 before the jal instruction, this is effectively a call stub
5058 and the the target PC is in $2. Otherwise this is effectively
5059 a return stub and the target PC is in $18. */
5060 else if (name[19] == 's' || name[19] == 'd')
5061 {
5062 if (pc == start_addr)
5063 {
5064 /* Check if the target of the stub is a compiler-generated
5065 stub. Such a stub for a function bar might have a name
5066 like __fn_stub_bar, and might look like this:
5067 mfc1 $4,$f13
5068 mfc1 $5,$f12
5069 mfc1 $6,$f15
5070 mfc1 $7,$f14
5071 la $1,bar (becomes a lui/addiu pair)
5072 jr $1
5073 So scan down to the lui/addi and extract the target
5074 address from those two instructions. */
5075
5076 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
5077 ULONGEST inst;
5078 int i;
5079
5080 /* See if the name of the target function is __fn_stub_*. */
5081 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
5082 0)
5083 return target_pc;
5084 if (strncmp (name, "__fn_stub_", 10) != 0
5085 && strcmp (name, "etext") != 0
5086 && strcmp (name, "_etext") != 0)
5087 return target_pc;
5088
5089 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5090 The limit on the search is arbitrarily set to 20
5091 instructions. FIXME. */
5092 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
5093 {
5094 inst = mips_fetch_instruction (target_pc);
5095 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5096 pc = (inst << 16) & 0xffff0000; /* high word */
5097 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5098 return pc | (inst & 0xffff); /* low word */
5099 }
5100
5101 /* Couldn't find the lui/addui pair, so return stub address. */
5102 return target_pc;
5103 }
5104 else
5105 /* This is the 'return' part of a call stub. The return
5106 address is in $r18. */
5107 return get_frame_register_signed (frame, 18);
5108 }
5109 }
5110 return 0; /* not a stub */
5111}
5112
5113/* Convert a dbx stab register number (from `r' declaration) to a GDB
5114 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
5115
5116static int
5117mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
5118{
5119 int regnum;
5120 if (num >= 0 && num < 32)
5121 regnum = num;
5122 else if (num >= 38 && num < 70)
5123 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
5124 else if (num == 70)
5125 regnum = mips_regnum (gdbarch)->hi;
5126 else if (num == 71)
5127 regnum = mips_regnum (gdbarch)->lo;
5128 else
5129 /* This will hopefully (eventually) provoke a warning. Should
5130 we be calling complaint() here? */
5131 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
5132 return gdbarch_num_regs (gdbarch) + regnum;
5133}
5134
5135
5136/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5137 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
5138
5139static int
5140mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
5141{
5142 int regnum;
5143 if (num >= 0 && num < 32)
5144 regnum = num;
5145 else if (num >= 32 && num < 64)
5146 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
5147 else if (num == 64)
5148 regnum = mips_regnum (gdbarch)->hi;
5149 else if (num == 65)
5150 regnum = mips_regnum (gdbarch)->lo;
5151 else
5152 /* This will hopefully (eventually) provoke a warning. Should we
5153 be calling complaint() here? */
5154 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
5155 return gdbarch_num_regs (gdbarch) + regnum;
5156}
5157
5158static int
5159mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
5160{
5161 /* Only makes sense to supply raw registers. */
5162 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
5163 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5164 decide if it is valid. Should instead define a standard sim/gdb
5165 register numbering scheme. */
5166 if (gdbarch_register_name (gdbarch,
5167 gdbarch_num_regs (gdbarch) + regnum) != NULL
5168 && gdbarch_register_name (gdbarch,
5169 gdbarch_num_regs (gdbarch) + regnum)[0] != '\0')
5170 return regnum;
5171 else
5172 return LEGACY_SIM_REGNO_IGNORE;
5173}
5174
5175
5176/* Convert an integer into an address. Extracting the value signed
5177 guarantees a correctly sign extended address. */
5178
5179static CORE_ADDR
5180mips_integer_to_address (struct gdbarch *gdbarch,
5181 struct type *type, const gdb_byte *buf)
5182{
5183 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
5184}
5185
5186/* Dummy virtual frame pointer method. This is no more or less accurate
5187 than most other architectures; we just need to be explicit about it,
5188 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
5189 an assertion failure. */
5190
5191static void
5192mips_virtual_frame_pointer (struct gdbarch *gdbarch,
5193 CORE_ADDR pc, int *reg, LONGEST *offset)
5194{
5195 *reg = MIPS_SP_REGNUM;
5196 *offset = 0;
5197}
5198
5199static void
5200mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5201{
5202 enum mips_abi *abip = (enum mips_abi *) obj;
5203 const char *name = bfd_get_section_name (abfd, sect);
5204
5205 if (*abip != MIPS_ABI_UNKNOWN)
5206 return;
5207
5208 if (strncmp (name, ".mdebug.", 8) != 0)
5209 return;
5210
5211 if (strcmp (name, ".mdebug.abi32") == 0)
5212 *abip = MIPS_ABI_O32;
5213 else if (strcmp (name, ".mdebug.abiN32") == 0)
5214 *abip = MIPS_ABI_N32;
5215 else if (strcmp (name, ".mdebug.abi64") == 0)
5216 *abip = MIPS_ABI_N64;
5217 else if (strcmp (name, ".mdebug.abiO64") == 0)
5218 *abip = MIPS_ABI_O64;
5219 else if (strcmp (name, ".mdebug.eabi32") == 0)
5220 *abip = MIPS_ABI_EABI32;
5221 else if (strcmp (name, ".mdebug.eabi64") == 0)
5222 *abip = MIPS_ABI_EABI64;
5223 else
5224 warning (_("unsupported ABI %s."), name + 8);
5225}
5226
5227static void
5228mips_find_long_section (bfd *abfd, asection *sect, void *obj)
5229{
5230 int *lbp = (int *) obj;
5231 const char *name = bfd_get_section_name (abfd, sect);
5232
5233 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
5234 *lbp = 32;
5235 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
5236 *lbp = 64;
5237 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
5238 warning (_("unrecognized .gcc_compiled_longXX"));
5239}
5240
5241static enum mips_abi
5242global_mips_abi (void)
5243{
5244 int i;
5245
5246 for (i = 0; mips_abi_strings[i] != NULL; i++)
5247 if (mips_abi_strings[i] == mips_abi_string)
5248 return (enum mips_abi) i;
5249
5250 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
5251}
5252
5253static void
5254mips_register_g_packet_guesses (struct gdbarch *gdbarch)
5255{
5256 /* If the size matches the set of 32-bit or 64-bit integer registers,
5257 assume that's what we've got. */
5258 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
5259 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
5260
5261 /* If the size matches the full set of registers GDB traditionally
5262 knows about, including floating point, for either 32-bit or
5263 64-bit, assume that's what we've got. */
5264 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
5265 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
5266
5267 /* Otherwise we don't have a useful guess. */
5268}
5269
5270static struct value *
5271value_of_mips_user_reg (struct frame_info *frame, const void *baton)
5272{
5273 const int *reg_p = baton;
5274 return value_of_register (*reg_p, frame);
5275}
5276
5277static struct gdbarch *
5278mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5279{
5280 struct gdbarch *gdbarch;
5281 struct gdbarch_tdep *tdep;
5282 int elf_flags;
5283 enum mips_abi mips_abi, found_abi, wanted_abi;
5284 int i, num_regs;
5285 enum mips_fpu_type fpu_type;
5286 struct tdesc_arch_data *tdesc_data = NULL;
5287 int elf_fpu_type = 0;
5288
5289 /* Check any target description for validity. */
5290 if (tdesc_has_registers (info.target_desc))
5291 {
5292 static const char *const mips_gprs[] = {
5293 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5294 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5295 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5296 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5297 };
5298 static const char *const mips_fprs[] = {
5299 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5300 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5301 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5302 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5303 };
5304
5305 const struct tdesc_feature *feature;
5306 int valid_p;
5307
5308 feature = tdesc_find_feature (info.target_desc,
5309 "org.gnu.gdb.mips.cpu");
5310 if (feature == NULL)
5311 return NULL;
5312
5313 tdesc_data = tdesc_data_alloc ();
5314
5315 valid_p = 1;
5316 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5317 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5318 mips_gprs[i]);
5319
5320
5321 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5322 MIPS_EMBED_LO_REGNUM, "lo");
5323 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5324 MIPS_EMBED_HI_REGNUM, "hi");
5325 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5326 MIPS_EMBED_PC_REGNUM, "pc");
5327
5328 if (!valid_p)
5329 {
5330 tdesc_data_cleanup (tdesc_data);
5331 return NULL;
5332 }
5333
5334 feature = tdesc_find_feature (info.target_desc,
5335 "org.gnu.gdb.mips.cp0");
5336 if (feature == NULL)
5337 {
5338 tdesc_data_cleanup (tdesc_data);
5339 return NULL;
5340 }
5341
5342 valid_p = 1;
5343 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5344 MIPS_EMBED_BADVADDR_REGNUM,
5345 "badvaddr");
5346 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5347 MIPS_PS_REGNUM, "status");
5348 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5349 MIPS_EMBED_CAUSE_REGNUM, "cause");
5350
5351 if (!valid_p)
5352 {
5353 tdesc_data_cleanup (tdesc_data);
5354 return NULL;
5355 }
5356
5357 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5358 backend is not prepared for that, though. */
5359 feature = tdesc_find_feature (info.target_desc,
5360 "org.gnu.gdb.mips.fpu");
5361 if (feature == NULL)
5362 {
5363 tdesc_data_cleanup (tdesc_data);
5364 return NULL;
5365 }
5366
5367 valid_p = 1;
5368 for (i = 0; i < 32; i++)
5369 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5370 i + MIPS_EMBED_FP0_REGNUM,
5371 mips_fprs[i]);
5372
5373 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5374 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5375 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5376 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5377
5378 if (!valid_p)
5379 {
5380 tdesc_data_cleanup (tdesc_data);
5381 return NULL;
5382 }
5383
5384 /* It would be nice to detect an attempt to use a 64-bit ABI
5385 when only 32-bit registers are provided. */
5386 }
5387
5388 /* First of all, extract the elf_flags, if available. */
5389 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5390 elf_flags = elf_elfheader (info.abfd)->e_flags;
5391 else if (arches != NULL)
5392 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
5393 else
5394 elf_flags = 0;
5395 if (gdbarch_debug)
5396 fprintf_unfiltered (gdb_stdlog,
5397 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
5398
5399 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5400 switch ((elf_flags & EF_MIPS_ABI))
5401 {
5402 case E_MIPS_ABI_O32:
5403 found_abi = MIPS_ABI_O32;
5404 break;
5405 case E_MIPS_ABI_O64:
5406 found_abi = MIPS_ABI_O64;
5407 break;
5408 case E_MIPS_ABI_EABI32:
5409 found_abi = MIPS_ABI_EABI32;
5410 break;
5411 case E_MIPS_ABI_EABI64:
5412 found_abi = MIPS_ABI_EABI64;
5413 break;
5414 default:
5415 if ((elf_flags & EF_MIPS_ABI2))
5416 found_abi = MIPS_ABI_N32;
5417 else
5418 found_abi = MIPS_ABI_UNKNOWN;
5419 break;
5420 }
5421
5422 /* GCC creates a pseudo-section whose name describes the ABI. */
5423 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5424 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
5425
5426 /* If we have no useful BFD information, use the ABI from the last
5427 MIPS architecture (if there is one). */
5428 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5429 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5430
5431 /* Try the architecture for any hint of the correct ABI. */
5432 if (found_abi == MIPS_ABI_UNKNOWN
5433 && info.bfd_arch_info != NULL
5434 && info.bfd_arch_info->arch == bfd_arch_mips)
5435 {
5436 switch (info.bfd_arch_info->mach)
5437 {
5438 case bfd_mach_mips3900:
5439 found_abi = MIPS_ABI_EABI32;
5440 break;
5441 case bfd_mach_mips4100:
5442 case bfd_mach_mips5000:
5443 found_abi = MIPS_ABI_EABI64;
5444 break;
5445 case bfd_mach_mips8000:
5446 case bfd_mach_mips10000:
5447 /* On Irix, ELF64 executables use the N64 ABI. The
5448 pseudo-sections which describe the ABI aren't present
5449 on IRIX. (Even for executables created by gcc.) */
5450 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5451 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5452 found_abi = MIPS_ABI_N64;
5453 else
5454 found_abi = MIPS_ABI_N32;
5455 break;
5456 }
5457 }
5458
5459 /* Default 64-bit objects to N64 instead of O32. */
5460 if (found_abi == MIPS_ABI_UNKNOWN
5461 && info.abfd != NULL
5462 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5463 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5464 found_abi = MIPS_ABI_N64;
5465
5466 if (gdbarch_debug)
5467 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5468 found_abi);
5469
5470 /* What has the user specified from the command line? */
5471 wanted_abi = global_mips_abi ();
5472 if (gdbarch_debug)
5473 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5474 wanted_abi);
5475
5476 /* Now that we have found what the ABI for this binary would be,
5477 check whether the user is overriding it. */
5478 if (wanted_abi != MIPS_ABI_UNKNOWN)
5479 mips_abi = wanted_abi;
5480 else if (found_abi != MIPS_ABI_UNKNOWN)
5481 mips_abi = found_abi;
5482 else
5483 mips_abi = MIPS_ABI_O32;
5484 if (gdbarch_debug)
5485 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5486 mips_abi);
5487
5488 /* Also used when doing an architecture lookup. */
5489 if (gdbarch_debug)
5490 fprintf_unfiltered (gdb_stdlog,
5491 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5492 mips64_transfers_32bit_regs_p);
5493
5494 /* Determine the MIPS FPU type. */
5495#ifdef HAVE_ELF
5496 if (info.abfd
5497 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5498 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5499 Tag_GNU_MIPS_ABI_FP);
5500#endif /* HAVE_ELF */
5501
5502 if (!mips_fpu_type_auto)
5503 fpu_type = mips_fpu_type;
5504 else if (elf_fpu_type != 0)
5505 {
5506 switch (elf_fpu_type)
5507 {
5508 case 1:
5509 fpu_type = MIPS_FPU_DOUBLE;
5510 break;
5511 case 2:
5512 fpu_type = MIPS_FPU_SINGLE;
5513 break;
5514 case 3:
5515 default:
5516 /* Soft float or unknown. */
5517 fpu_type = MIPS_FPU_NONE;
5518 break;
5519 }
5520 }
5521 else if (info.bfd_arch_info != NULL
5522 && info.bfd_arch_info->arch == bfd_arch_mips)
5523 switch (info.bfd_arch_info->mach)
5524 {
5525 case bfd_mach_mips3900:
5526 case bfd_mach_mips4100:
5527 case bfd_mach_mips4111:
5528 case bfd_mach_mips4120:
5529 fpu_type = MIPS_FPU_NONE;
5530 break;
5531 case bfd_mach_mips4650:
5532 fpu_type = MIPS_FPU_SINGLE;
5533 break;
5534 default:
5535 fpu_type = MIPS_FPU_DOUBLE;
5536 break;
5537 }
5538 else if (arches != NULL)
5539 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5540 else
5541 fpu_type = MIPS_FPU_DOUBLE;
5542 if (gdbarch_debug)
5543 fprintf_unfiltered (gdb_stdlog,
5544 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
5545
5546 /* Check for blatant incompatibilities. */
5547
5548 /* If we have only 32-bit registers, then we can't debug a 64-bit
5549 ABI. */
5550 if (info.target_desc
5551 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5552 && mips_abi != MIPS_ABI_EABI32
5553 && mips_abi != MIPS_ABI_O32)
5554 {
5555 if (tdesc_data != NULL)
5556 tdesc_data_cleanup (tdesc_data);
5557 return NULL;
5558 }
5559
5560 /* try to find a pre-existing architecture */
5561 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5562 arches != NULL;
5563 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5564 {
5565 /* MIPS needs to be pedantic about which ABI the object is
5566 using. */
5567 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5568 continue;
5569 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5570 continue;
5571 /* Need to be pedantic about which register virtual size is
5572 used. */
5573 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5574 != mips64_transfers_32bit_regs_p)
5575 continue;
5576 /* Be pedantic about which FPU is selected. */
5577 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5578 continue;
5579
5580 if (tdesc_data != NULL)
5581 tdesc_data_cleanup (tdesc_data);
5582 return arches->gdbarch;
5583 }
5584
5585 /* Need a new architecture. Fill in a target specific vector. */
5586 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5587 gdbarch = gdbarch_alloc (&info, tdep);
5588 tdep->elf_flags = elf_flags;
5589 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5590 tdep->found_abi = found_abi;
5591 tdep->mips_abi = mips_abi;
5592 tdep->mips_fpu_type = fpu_type;
5593 tdep->register_size_valid_p = 0;
5594 tdep->register_size = 0;
5595
5596 if (info.target_desc)
5597 {
5598 /* Some useful properties can be inferred from the target. */
5599 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5600 {
5601 tdep->register_size_valid_p = 1;
5602 tdep->register_size = 4;
5603 }
5604 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5605 {
5606 tdep->register_size_valid_p = 1;
5607 tdep->register_size = 8;
5608 }
5609 }
5610
5611 /* Initially set everything according to the default ABI/ISA. */
5612 set_gdbarch_short_bit (gdbarch, 16);
5613 set_gdbarch_int_bit (gdbarch, 32);
5614 set_gdbarch_float_bit (gdbarch, 32);
5615 set_gdbarch_double_bit (gdbarch, 64);
5616 set_gdbarch_long_double_bit (gdbarch, 64);
5617 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5618 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5619 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5620
5621 set_gdbarch_elf_make_msymbol_special (gdbarch,
5622 mips_elf_make_msymbol_special);
5623
5624 /* Fill in the OS dependant register numbers and names. */
5625 {
5626 const char **reg_names;
5627 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5628 struct mips_regnum);
5629 if (tdesc_has_registers (info.target_desc))
5630 {
5631 regnum->lo = MIPS_EMBED_LO_REGNUM;
5632 regnum->hi = MIPS_EMBED_HI_REGNUM;
5633 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5634 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5635 regnum->pc = MIPS_EMBED_PC_REGNUM;
5636 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5637 regnum->fp_control_status = 70;
5638 regnum->fp_implementation_revision = 71;
5639 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5640 reg_names = NULL;
5641 }
5642 else if (info.osabi == GDB_OSABI_IRIX)
5643 {
5644 regnum->fp0 = 32;
5645 regnum->pc = 64;
5646 regnum->cause = 65;
5647 regnum->badvaddr = 66;
5648 regnum->hi = 67;
5649 regnum->lo = 68;
5650 regnum->fp_control_status = 69;
5651 regnum->fp_implementation_revision = 70;
5652 num_regs = 71;
5653 reg_names = mips_irix_reg_names;
5654 }
5655 else
5656 {
5657 regnum->lo = MIPS_EMBED_LO_REGNUM;
5658 regnum->hi = MIPS_EMBED_HI_REGNUM;
5659 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5660 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5661 regnum->pc = MIPS_EMBED_PC_REGNUM;
5662 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5663 regnum->fp_control_status = 70;
5664 regnum->fp_implementation_revision = 71;
5665 num_regs = 90;
5666 if (info.bfd_arch_info != NULL
5667 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5668 reg_names = mips_tx39_reg_names;
5669 else
5670 reg_names = mips_generic_reg_names;
5671 }
5672 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
5673 replaced by read_pc? */
5674 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5675 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5676 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5677 set_gdbarch_num_regs (gdbarch, num_regs);
5678 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5679 set_gdbarch_register_name (gdbarch, mips_register_name);
5680 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
5681 tdep->mips_processor_reg_names = reg_names;
5682 tdep->regnum = regnum;
5683 }
5684
5685 switch (mips_abi)
5686 {
5687 case MIPS_ABI_O32:
5688 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5689 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5690 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5691 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5692 tdep->default_mask_address_p = 0;
5693 set_gdbarch_long_bit (gdbarch, 32);
5694 set_gdbarch_ptr_bit (gdbarch, 32);
5695 set_gdbarch_long_long_bit (gdbarch, 64);
5696 break;
5697 case MIPS_ABI_O64:
5698 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5699 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
5700 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5701 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5702 tdep->default_mask_address_p = 0;
5703 set_gdbarch_long_bit (gdbarch, 32);
5704 set_gdbarch_ptr_bit (gdbarch, 32);
5705 set_gdbarch_long_long_bit (gdbarch, 64);
5706 break;
5707 case MIPS_ABI_EABI32:
5708 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5709 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5710 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5711 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5712 tdep->default_mask_address_p = 0;
5713 set_gdbarch_long_bit (gdbarch, 32);
5714 set_gdbarch_ptr_bit (gdbarch, 32);
5715 set_gdbarch_long_long_bit (gdbarch, 64);
5716 break;
5717 case MIPS_ABI_EABI64:
5718 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5719 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5720 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5721 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5722 tdep->default_mask_address_p = 0;
5723 set_gdbarch_long_bit (gdbarch, 64);
5724 set_gdbarch_ptr_bit (gdbarch, 64);
5725 set_gdbarch_long_long_bit (gdbarch, 64);
5726 break;
5727 case MIPS_ABI_N32:
5728 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5729 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5730 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5731 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5732 tdep->default_mask_address_p = 0;
5733 set_gdbarch_long_bit (gdbarch, 32);
5734 set_gdbarch_ptr_bit (gdbarch, 32);
5735 set_gdbarch_long_long_bit (gdbarch, 64);
5736 set_gdbarch_long_double_bit (gdbarch, 128);
5737 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
5738 break;
5739 case MIPS_ABI_N64:
5740 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5741 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5742 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5743 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5744 tdep->default_mask_address_p = 0;
5745 set_gdbarch_long_bit (gdbarch, 64);
5746 set_gdbarch_ptr_bit (gdbarch, 64);
5747 set_gdbarch_long_long_bit (gdbarch, 64);
5748 set_gdbarch_long_double_bit (gdbarch, 128);
5749 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
5750 break;
5751 default:
5752 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5753 }
5754
5755 /* GCC creates a pseudo-section whose name specifies the size of
5756 longs, since -mlong32 or -mlong64 may be used independent of
5757 other options. How those options affect pointer sizes is ABI and
5758 architecture dependent, so use them to override the default sizes
5759 set by the ABI. This table shows the relationship between ABI,
5760 -mlongXX, and size of pointers:
5761
5762 ABI -mlongXX ptr bits
5763 --- -------- --------
5764 o32 32 32
5765 o32 64 32
5766 n32 32 32
5767 n32 64 64
5768 o64 32 32
5769 o64 64 64
5770 n64 32 32
5771 n64 64 64
5772 eabi32 32 32
5773 eabi32 64 32
5774 eabi64 32 32
5775 eabi64 64 64
5776
5777 Note that for o32 and eabi32, pointers are always 32 bits
5778 regardless of any -mlongXX option. For all others, pointers and
5779 longs are the same, as set by -mlongXX or set by defaults.
5780 */
5781
5782 if (info.abfd != NULL)
5783 {
5784 int long_bit = 0;
5785
5786 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5787 if (long_bit)
5788 {
5789 set_gdbarch_long_bit (gdbarch, long_bit);
5790 switch (mips_abi)
5791 {
5792 case MIPS_ABI_O32:
5793 case MIPS_ABI_EABI32:
5794 break;
5795 case MIPS_ABI_N32:
5796 case MIPS_ABI_O64:
5797 case MIPS_ABI_N64:
5798 case MIPS_ABI_EABI64:
5799 set_gdbarch_ptr_bit (gdbarch, long_bit);
5800 break;
5801 default:
5802 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5803 }
5804 }
5805 }
5806
5807 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5808 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5809 comment:
5810
5811 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5812 flag in object files because to do so would make it impossible to
5813 link with libraries compiled without "-gp32". This is
5814 unnecessarily restrictive.
5815
5816 We could solve this problem by adding "-gp32" multilibs to gcc,
5817 but to set this flag before gcc is built with such multilibs will
5818 break too many systems.''
5819
5820 But even more unhelpfully, the default linker output target for
5821 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5822 for 64-bit programs - you need to change the ABI to change this,
5823 and not all gcc targets support that currently. Therefore using
5824 this flag to detect 32-bit mode would do the wrong thing given
5825 the current gcc - it would make GDB treat these 64-bit programs
5826 as 32-bit programs by default. */
5827
5828 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5829 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5830
5831 /* Add/remove bits from an address. The MIPS needs be careful to
5832 ensure that all 32 bit addresses are sign extended to 64 bits. */
5833 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5834
5835 /* Unwind the frame. */
5836 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5837 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
5838 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
5839
5840 /* Map debug register numbers onto internal register numbers. */
5841 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5842 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5843 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5844 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5845 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5846 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5847
5848 /* MIPS version of CALL_DUMMY */
5849
5850 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5851 replaced by a command, and all targets will default to on stack
5852 (regardless of the stack's execute status). */
5853 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5854 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5855
5856 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5857 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5858 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5859
5860 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5861 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5862
5863 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5864
5865 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
5866
5867 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5868 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5869 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5870
5871 set_gdbarch_register_type (gdbarch, mips_register_type);
5872
5873 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5874
5875 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5876
5877 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5878 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5879 need to all be folded into the target vector. Since they are
5880 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5881 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5882 is sitting on? */
5883 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5884
5885 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5886
5887 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5888
5889 /* Virtual tables. */
5890 set_gdbarch_vbit_in_delta (gdbarch, 1);
5891
5892 mips_register_g_packet_guesses (gdbarch);
5893
5894 /* Hook in OS ABI-specific overrides, if they have been registered. */
5895 info.tdep_info = (void *) tdesc_data;
5896 gdbarch_init_osabi (info, gdbarch);
5897
5898 /* Unwind the frame. */
5899 dwarf2_append_unwinders (gdbarch);
5900 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
5901 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
5902 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
5903 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
5904 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5905 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5906 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5907
5908 if (tdesc_data)
5909 {
5910 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
5911 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
5912
5913 /* Override the normal target description methods to handle our
5914 dual real and pseudo registers. */
5915 set_gdbarch_register_name (gdbarch, mips_register_name);
5916 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
5917
5918 num_regs = gdbarch_num_regs (gdbarch);
5919 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5920 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
5921 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5922 }
5923
5924 /* Add ABI-specific aliases for the registers. */
5925 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5926 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
5927 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
5928 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
5929 else
5930 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
5931 user_reg_add (gdbarch, mips_o32_aliases[i].name,
5932 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
5933
5934 /* Add some other standard aliases. */
5935 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
5936 user_reg_add (gdbarch, mips_register_aliases[i].name,
5937 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
5938
5939 return gdbarch;
5940}
5941
5942static void
5943mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5944{
5945 struct gdbarch_info info;
5946
5947 /* Force the architecture to update, and (if it's a MIPS architecture)
5948 mips_gdbarch_init will take care of the rest. */
5949 gdbarch_info_init (&info);
5950 gdbarch_update_p (info);
5951}
5952
5953/* Print out which MIPS ABI is in use. */
5954
5955static void
5956show_mips_abi (struct ui_file *file,
5957 int from_tty,
5958 struct cmd_list_element *ignored_cmd,
5959 const char *ignored_value)
5960{
5961 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
5962 fprintf_filtered
5963 (file,
5964 "The MIPS ABI is unknown because the current architecture "
5965 "is not MIPS.\n");
5966 else
5967 {
5968 enum mips_abi global_abi = global_mips_abi ();
5969 enum mips_abi actual_abi = mips_abi (target_gdbarch);
5970 const char *actual_abi_str = mips_abi_strings[actual_abi];
5971
5972 if (global_abi == MIPS_ABI_UNKNOWN)
5973 fprintf_filtered
5974 (file,
5975 "The MIPS ABI is set automatically (currently \"%s\").\n",
5976 actual_abi_str);
5977 else if (global_abi == actual_abi)
5978 fprintf_filtered
5979 (file,
5980 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5981 actual_abi_str);
5982 else
5983 {
5984 /* Probably shouldn't happen... */
5985 fprintf_filtered
5986 (file,
5987 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5988 actual_abi_str, mips_abi_strings[global_abi]);
5989 }
5990 }
5991}
5992
5993static void
5994mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
5995{
5996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5997 if (tdep != NULL)
5998 {
5999 int ef_mips_arch;
6000 int ef_mips_32bitmode;
6001 /* Determine the ISA. */
6002 switch (tdep->elf_flags & EF_MIPS_ARCH)
6003 {
6004 case E_MIPS_ARCH_1:
6005 ef_mips_arch = 1;
6006 break;
6007 case E_MIPS_ARCH_2:
6008 ef_mips_arch = 2;
6009 break;
6010 case E_MIPS_ARCH_3:
6011 ef_mips_arch = 3;
6012 break;
6013 case E_MIPS_ARCH_4:
6014 ef_mips_arch = 4;
6015 break;
6016 default:
6017 ef_mips_arch = 0;
6018 break;
6019 }
6020 /* Determine the size of a pointer. */
6021 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6022 fprintf_unfiltered (file,
6023 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6024 tdep->elf_flags);
6025 fprintf_unfiltered (file,
6026 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6027 ef_mips_32bitmode);
6028 fprintf_unfiltered (file,
6029 "mips_dump_tdep: ef_mips_arch = %d\n",
6030 ef_mips_arch);
6031 fprintf_unfiltered (file,
6032 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6033 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
6034 fprintf_unfiltered (file,
6035 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6036 mips_mask_address_p (tdep),
6037 tdep->default_mask_address_p);
6038 }
6039 fprintf_unfiltered (file,
6040 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6041 MIPS_DEFAULT_FPU_TYPE,
6042 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6043 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6044 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6045 : "???"));
6046 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
6047 MIPS_EABI (gdbarch));
6048 fprintf_unfiltered (file,
6049 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6050 MIPS_FPU_TYPE (gdbarch),
6051 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
6052 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
6053 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
6054 : "???"));
6055}
6056
6057extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6058
6059void
6060_initialize_mips_tdep (void)
6061{
6062 static struct cmd_list_element *mipsfpulist = NULL;
6063 struct cmd_list_element *c;
6064
6065 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
6066 if (MIPS_ABI_LAST + 1
6067 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6068 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
6069
6070 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6071
6072 mips_pdr_data = register_objfile_data ();
6073
6074 /* Create feature sets with the appropriate properties. The values
6075 are not important. */
6076 mips_tdesc_gp32 = allocate_target_description ();
6077 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
6078
6079 mips_tdesc_gp64 = allocate_target_description ();
6080 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
6081
6082 /* Add root prefix command for all "set mips"/"show mips" commands */
6083 add_prefix_cmd ("mips", no_class, set_mips_command,
6084 _("Various MIPS specific commands."),
6085 &setmipscmdlist, "set mips ", 0, &setlist);
6086
6087 add_prefix_cmd ("mips", no_class, show_mips_command,
6088 _("Various MIPS specific commands."),
6089 &showmipscmdlist, "show mips ", 0, &showlist);
6090
6091 /* Allow the user to override the ABI. */
6092 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
6093 &mips_abi_string, _("\
6094Set the MIPS ABI used by this program."), _("\
6095Show the MIPS ABI used by this program."), _("\
6096This option can be set to one of:\n\
6097 auto - the default ABI associated with the current binary\n\
6098 o32\n\
6099 o64\n\
6100 n32\n\
6101 n64\n\
6102 eabi32\n\
6103 eabi64"),
6104 mips_abi_update,
6105 show_mips_abi,
6106 &setmipscmdlist, &showmipscmdlist);
6107
6108 /* Let the user turn off floating point and set the fence post for
6109 heuristic_proc_start. */
6110
6111 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6112 _("Set use of MIPS floating-point coprocessor."),
6113 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6114 add_cmd ("single", class_support, set_mipsfpu_single_command,
6115 _("Select single-precision MIPS floating-point coprocessor."),
6116 &mipsfpulist);
6117 add_cmd ("double", class_support, set_mipsfpu_double_command,
6118 _("Select double-precision MIPS floating-point coprocessor."),
6119 &mipsfpulist);
6120 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6121 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6122 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6123 add_cmd ("none", class_support, set_mipsfpu_none_command,
6124 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
6125 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6126 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6127 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6128 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6129 _("Select MIPS floating-point coprocessor automatically."),
6130 &mipsfpulist);
6131 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6132 _("Show current use of MIPS floating-point coprocessor target."),
6133 &showlist);
6134
6135 /* We really would like to have both "0" and "unlimited" work, but
6136 command.c doesn't deal with that. So make it a var_zinteger
6137 because the user can always use "999999" or some such for unlimited. */
6138 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
6139 &heuristic_fence_post, _("\
6140Set the distance searched for the start of a function."), _("\
6141Show the distance searched for the start of a function."), _("\
6142If you are debugging a stripped executable, GDB needs to search through the\n\
6143program for the start of a function. This command sets the distance of the\n\
6144search. The only need to set it is when debugging a stripped executable."),
6145 reinit_frame_cache_sfunc,
6146 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
6147 &setlist, &showlist);
6148
6149 /* Allow the user to control whether the upper bits of 64-bit
6150 addresses should be zeroed. */
6151 add_setshow_auto_boolean_cmd ("mask-address", no_class,
6152 &mask_address_var, _("\
6153Set zeroing of upper 32 bits of 64-bit addresses."), _("\
6154Show zeroing of upper 32 bits of 64-bit addresses."), _("\
6155Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6156allow GDB to determine the correct value."),
6157 NULL, show_mask_address,
6158 &setmipscmdlist, &showmipscmdlist);
6159
6160 /* Allow the user to control the size of 32 bit registers within the
6161 raw remote packet. */
6162 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
6163 &mips64_transfers_32bit_regs_p, _("\
6164Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
6165 _("\
6166Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
6167 _("\
6168Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6169that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
617064 bits for others. Use \"off\" to disable compatibility mode"),
6171 set_mips64_transfers_32bit_regs,
6172 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
6173 &setlist, &showlist);
6174
6175 /* Debug this files internals. */
6176 add_setshow_zinteger_cmd ("mips", class_maintenance,
6177 &mips_debug, _("\
6178Set mips debugging."), _("\
6179Show mips debugging."), _("\
6180When non-zero, mips specific debugging is enabled."),
6181 NULL,
6182 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
6183 &setdebuglist, &showdebuglist);
6184}
This page took 0.042142 seconds and 4 git commands to generate.