* Makefile.in (i386_linux_tdep_h): Define.
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
... / ...
CommitLineData
1/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "obstack.h"
27#include "target.h"
28#include "value.h"
29#include "bfd.h"
30#include "gdb_string.h"
31#include "gdbcore.h"
32#include "symfile.h"
33#include "regcache.h"
34#include "arch-utils.h"
35
36#define D0_REGNUM 0
37#define D2_REGNUM 2
38#define D3_REGNUM 3
39#define A0_REGNUM 4
40#define A2_REGNUM 6
41#define A3_REGNUM 7
42#define MDR_REGNUM 10
43#define PSW_REGNUM 11
44#define LIR_REGNUM 12
45#define LAR_REGNUM 13
46#define MDRQ_REGNUM 14
47#define E0_REGNUM 15
48#define MCRH_REGNUM 26
49#define MCRL_REGNUM 27
50#define MCVF_REGNUM 28
51
52enum movm_register_bits {
53 movm_exother_bit = 0x01,
54 movm_exreg1_bit = 0x02,
55 movm_exreg0_bit = 0x04,
56 movm_other_bit = 0x08,
57 movm_a3_bit = 0x10,
58 movm_a2_bit = 0x20,
59 movm_d3_bit = 0x40,
60 movm_d2_bit = 0x80
61};
62
63extern void _initialize_mn10300_tdep (void);
64static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
65 CORE_ADDR pc);
66
67/* mn10300 private data */
68struct gdbarch_tdep
69{
70 int am33_mode;
71#define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
72};
73
74/* Additional info used by the frame */
75
76struct frame_extra_info
77 {
78 int status;
79 int stack_size;
80 };
81
82
83static char *
84register_name (int reg, char **regs, long sizeof_regs)
85{
86 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
87 return NULL;
88 else
89 return regs[reg];
90}
91
92static char *
93mn10300_generic_register_name (int reg)
94{
95 static char *regs[] =
96 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
97 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
98 "", "", "", "", "", "", "", "",
99 "", "", "", "", "", "", "", "fp"
100 };
101 return register_name (reg, regs, sizeof regs);
102}
103
104
105static char *
106am33_register_name (int reg)
107{
108 static char *regs[] =
109 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
110 "sp", "pc", "mdr", "psw", "lir", "lar", "",
111 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
112 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
113 };
114 return register_name (reg, regs, sizeof regs);
115}
116
117static CORE_ADDR
118mn10300_saved_pc_after_call (struct frame_info *fi)
119{
120 return read_memory_integer (read_register (SP_REGNUM), 4);
121}
122
123static void
124mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
125{
126 if (TYPE_CODE (type) == TYPE_CODE_PTR)
127 memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
128 else
129 memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
130}
131
132static CORE_ADDR
133mn10300_extract_struct_value_address (char *regbuf)
134{
135 return extract_address (regbuf + REGISTER_BYTE (4),
136 REGISTER_RAW_SIZE (4));
137}
138
139static void
140mn10300_store_return_value (struct type *type, char *valbuf)
141{
142 if (TYPE_CODE (type) == TYPE_CODE_PTR)
143 write_register_bytes (REGISTER_BYTE (4), valbuf, TYPE_LENGTH (type));
144 else
145 write_register_bytes (REGISTER_BYTE (0), valbuf, TYPE_LENGTH (type));
146}
147
148static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
149static struct frame_info *
150analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
151{
152 static struct frame_info *dummy = NULL;
153 if (dummy == NULL)
154 {
155 dummy = xmalloc (sizeof (struct frame_info));
156 dummy->saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
157 dummy->extra_info = xmalloc (sizeof (struct frame_extra_info));
158 }
159 dummy->next = NULL;
160 dummy->prev = NULL;
161 dummy->pc = pc;
162 dummy->frame = frame;
163 dummy->extra_info->status = 0;
164 dummy->extra_info->stack_size = 0;
165 memset (dummy->saved_regs, '\000', SIZEOF_FRAME_SAVED_REGS);
166 mn10300_analyze_prologue (dummy, 0);
167 return dummy;
168}
169
170/* Values for frame_info.status */
171
172#define MY_FRAME_IN_SP 0x1
173#define MY_FRAME_IN_FP 0x2
174#define NO_MORE_FRAMES 0x4
175
176
177/* Should call_function allocate stack space for a struct return? */
178static int
179mn10300_use_struct_convention (int gcc_p, struct type *type)
180{
181 return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
182}
183
184/* The breakpoint instruction must be the same size as the smallest
185 instruction in the instruction set.
186
187 The Matsushita mn10x00 processors have single byte instructions
188 so we need a single byte breakpoint. Matsushita hasn't defined
189 one, so we defined it ourselves. */
190
191const static unsigned char *
192mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
193{
194 static char breakpoint[] =
195 {0xff};
196 *bp_size = 1;
197 return breakpoint;
198}
199
200
201/* Fix fi->frame if it's bogus at this point. This is a helper
202 function for mn10300_analyze_prologue. */
203
204static void
205fix_frame_pointer (struct frame_info *fi, int stack_size)
206{
207 if (fi && fi->next == NULL)
208 {
209 if (fi->extra_info->status & MY_FRAME_IN_SP)
210 fi->frame = read_sp () - stack_size;
211 else if (fi->extra_info->status & MY_FRAME_IN_FP)
212 fi->frame = read_register (A3_REGNUM);
213 }
214}
215
216
217/* Set offsets of registers saved by movm instruction.
218 This is a helper function for mn10300_analyze_prologue. */
219
220static void
221set_movm_offsets (struct frame_info *fi, int movm_args)
222{
223 int offset = 0;
224
225 if (fi == NULL || movm_args == 0)
226 return;
227
228 if (movm_args & movm_other_bit)
229 {
230 /* The `other' bit leaves a blank area of four bytes at the
231 beginning of its block of saved registers, making it 32 bytes
232 long in total. */
233 fi->saved_regs[LAR_REGNUM] = fi->frame + offset + 4;
234 fi->saved_regs[LIR_REGNUM] = fi->frame + offset + 8;
235 fi->saved_regs[MDR_REGNUM] = fi->frame + offset + 12;
236 fi->saved_regs[A0_REGNUM + 1] = fi->frame + offset + 16;
237 fi->saved_regs[A0_REGNUM] = fi->frame + offset + 20;
238 fi->saved_regs[D0_REGNUM + 1] = fi->frame + offset + 24;
239 fi->saved_regs[D0_REGNUM] = fi->frame + offset + 28;
240 offset += 32;
241 }
242 if (movm_args & movm_a3_bit)
243 {
244 fi->saved_regs[A3_REGNUM] = fi->frame + offset;
245 offset += 4;
246 }
247 if (movm_args & movm_a2_bit)
248 {
249 fi->saved_regs[A2_REGNUM] = fi->frame + offset;
250 offset += 4;
251 }
252 if (movm_args & movm_d3_bit)
253 {
254 fi->saved_regs[D3_REGNUM] = fi->frame + offset;
255 offset += 4;
256 }
257 if (movm_args & movm_d2_bit)
258 {
259 fi->saved_regs[D2_REGNUM] = fi->frame + offset;
260 offset += 4;
261 }
262 if (AM33_MODE)
263 {
264 if (movm_args & movm_exother_bit)
265 {
266 fi->saved_regs[MCVF_REGNUM] = fi->frame + offset;
267 fi->saved_regs[MCRL_REGNUM] = fi->frame + offset + 4;
268 fi->saved_regs[MCRH_REGNUM] = fi->frame + offset + 8;
269 fi->saved_regs[MDRQ_REGNUM] = fi->frame + offset + 12;
270 fi->saved_regs[E0_REGNUM + 1] = fi->frame + offset + 16;
271 fi->saved_regs[E0_REGNUM + 0] = fi->frame + offset + 20;
272 offset += 24;
273 }
274 if (movm_args & movm_exreg1_bit)
275 {
276 fi->saved_regs[E0_REGNUM + 7] = fi->frame + offset;
277 fi->saved_regs[E0_REGNUM + 6] = fi->frame + offset + 4;
278 fi->saved_regs[E0_REGNUM + 5] = fi->frame + offset + 8;
279 fi->saved_regs[E0_REGNUM + 4] = fi->frame + offset + 12;
280 offset += 16;
281 }
282 if (movm_args & movm_exreg0_bit)
283 {
284 fi->saved_regs[E0_REGNUM + 3] = fi->frame + offset;
285 fi->saved_regs[E0_REGNUM + 2] = fi->frame + offset + 4;
286 offset += 8;
287 }
288 }
289}
290
291
292/* The main purpose of this file is dealing with prologues to extract
293 information about stack frames and saved registers.
294
295 In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
296 function is pretty readable, and has a nice explanation of how the
297 prologue is generated. The prologues generated by that code will
298 have the following form (NOTE: the current code doesn't handle all
299 this!):
300
301 + If this is an old-style varargs function, then its arguments
302 need to be flushed back to the stack:
303
304 mov d0,(4,sp)
305 mov d1,(4,sp)
306
307 + If we use any of the callee-saved registers, save them now.
308
309 movm [some callee-saved registers],(sp)
310
311 + If we have any floating-point registers to save:
312
313 - Decrement the stack pointer to reserve space for the registers.
314 If the function doesn't need a frame pointer, we may combine
315 this with the adjustment that reserves space for the frame.
316
317 add -SIZE, sp
318
319 - Save the floating-point registers. We have two possible
320 strategies:
321
322 . Save them at fixed offset from the SP:
323
324 fmov fsN,(OFFSETN,sp)
325 fmov fsM,(OFFSETM,sp)
326 ...
327
328 Note that, if OFFSETN happens to be zero, you'll get the
329 different opcode: fmov fsN,(sp)
330
331 . Or, set a0 to the start of the save area, and then use
332 post-increment addressing to save the FP registers.
333
334 mov sp, a0
335 add SIZE, a0
336 fmov fsN,(a0+)
337 fmov fsM,(a0+)
338 ...
339
340 + If the function needs a frame pointer, we set it here.
341
342 mov sp, a3
343
344 + Now we reserve space for the stack frame proper. This could be
345 merged into the `add -SIZE, sp' instruction for FP saves up
346 above, unless we needed to set the frame pointer in the previous
347 step, or the frame is so large that allocating the whole thing at
348 once would put the FP register save slots out of reach of the
349 addressing mode (128 bytes).
350
351 add -SIZE, sp
352
353 One day we might keep the stack pointer constant, that won't
354 change the code for prologues, but it will make the frame
355 pointerless case much more common. */
356
357/* Analyze the prologue to determine where registers are saved,
358 the end of the prologue, etc etc. Return the end of the prologue
359 scanned.
360
361 We store into FI (if non-null) several tidbits of information:
362
363 * stack_size -- size of this stack frame. Note that if we stop in
364 certain parts of the prologue/epilogue we may claim the size of the
365 current frame is zero. This happens when the current frame has
366 not been allocated yet or has already been deallocated.
367
368 * fsr -- Addresses of registers saved in the stack by this frame.
369
370 * status -- A (relatively) generic status indicator. It's a bitmask
371 with the following bits:
372
373 MY_FRAME_IN_SP: The base of the current frame is actually in
374 the stack pointer. This can happen for frame pointerless
375 functions, or cases where we're stopped in the prologue/epilogue
376 itself. For these cases mn10300_analyze_prologue will need up
377 update fi->frame before returning or analyzing the register
378 save instructions.
379
380 MY_FRAME_IN_FP: The base of the current frame is in the
381 frame pointer register ($a3).
382
383 NO_MORE_FRAMES: Set this if the current frame is "start" or
384 if the first instruction looks like mov <imm>,sp. This tells
385 frame chain to not bother trying to unwind past this frame. */
386
387static CORE_ADDR
388mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
389{
390 CORE_ADDR func_addr, func_end, addr, stop;
391 CORE_ADDR stack_size;
392 int imm_size;
393 unsigned char buf[4];
394 int status, movm_args = 0;
395 char *name;
396
397 /* Use the PC in the frame if it's provided to look up the
398 start of this function. */
399 pc = (fi ? fi->pc : pc);
400
401 /* Find the start of this function. */
402 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
403
404 /* Do nothing if we couldn't find the start of this function or if we're
405 stopped at the first instruction in the prologue. */
406 if (status == 0)
407 {
408 return pc;
409 }
410
411 /* If we're in start, then give up. */
412 if (strcmp (name, "start") == 0)
413 {
414 if (fi != NULL)
415 fi->extra_info->status = NO_MORE_FRAMES;
416 return pc;
417 }
418
419 /* At the start of a function our frame is in the stack pointer. */
420 if (fi)
421 fi->extra_info->status = MY_FRAME_IN_SP;
422
423 /* Get the next two bytes into buf, we need two because rets is a two
424 byte insn and the first isn't enough to uniquely identify it. */
425 status = read_memory_nobpt (pc, buf, 2);
426 if (status != 0)
427 return pc;
428
429 /* If we're physically on an "rets" instruction, then our frame has
430 already been deallocated. Note this can also be true for retf
431 and ret if they specify a size of zero.
432
433 In this case fi->frame is bogus, we need to fix it. */
434 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
435 {
436 if (fi->next == NULL)
437 fi->frame = read_sp ();
438 return fi->pc;
439 }
440
441 /* Similarly if we're stopped on the first insn of a prologue as our
442 frame hasn't been allocated yet. */
443 if (fi && fi->pc == func_addr)
444 {
445 if (fi->next == NULL)
446 fi->frame = read_sp ();
447 return fi->pc;
448 }
449
450 /* Figure out where to stop scanning. */
451 stop = fi ? fi->pc : func_end;
452
453 /* Don't walk off the end of the function. */
454 stop = stop > func_end ? func_end : stop;
455
456 /* Start scanning on the first instruction of this function. */
457 addr = func_addr;
458
459 /* Suck in two bytes. */
460 status = read_memory_nobpt (addr, buf, 2);
461 if (status != 0)
462 {
463 fix_frame_pointer (fi, 0);
464 return addr;
465 }
466
467 /* First see if this insn sets the stack pointer from a register; if
468 so, it's probably the initialization of the stack pointer in _start,
469 so mark this as the bottom-most frame. */
470 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
471 {
472 if (fi)
473 fi->extra_info->status = NO_MORE_FRAMES;
474 return addr;
475 }
476
477 /* Now look for movm [regs],sp, which saves the callee saved registers.
478
479 At this time we don't know if fi->frame is valid, so we only note
480 that we encountered a movm instruction. Later, we'll set the entries
481 in fsr.regs as needed. */
482 if (buf[0] == 0xcf)
483 {
484 /* Extract the register list for the movm instruction. */
485 status = read_memory_nobpt (addr + 1, buf, 1);
486 movm_args = *buf;
487
488 addr += 2;
489
490 /* Quit now if we're beyond the stop point. */
491 if (addr >= stop)
492 {
493 /* Fix fi->frame since it's bogus at this point. */
494 if (fi && fi->next == NULL)
495 fi->frame = read_sp ();
496
497 /* Note if/where callee saved registers were saved. */
498 set_movm_offsets (fi, movm_args);
499 return addr;
500 }
501
502 /* Get the next two bytes so the prologue scan can continue. */
503 status = read_memory_nobpt (addr, buf, 2);
504 if (status != 0)
505 {
506 /* Fix fi->frame since it's bogus at this point. */
507 if (fi && fi->next == NULL)
508 fi->frame = read_sp ();
509
510 /* Note if/where callee saved registers were saved. */
511 set_movm_offsets (fi, movm_args);
512 return addr;
513 }
514 }
515
516 /* Now see if we set up a frame pointer via "mov sp,a3" */
517 if (buf[0] == 0x3f)
518 {
519 addr += 1;
520
521 /* The frame pointer is now valid. */
522 if (fi)
523 {
524 fi->extra_info->status |= MY_FRAME_IN_FP;
525 fi->extra_info->status &= ~MY_FRAME_IN_SP;
526 }
527
528 /* Quit now if we're beyond the stop point. */
529 if (addr >= stop)
530 {
531 /* Fix fi->frame if it's bogus at this point. */
532 fix_frame_pointer (fi, 0);
533
534 /* Note if/where callee saved registers were saved. */
535 set_movm_offsets (fi, movm_args);
536 return addr;
537 }
538
539 /* Get two more bytes so scanning can continue. */
540 status = read_memory_nobpt (addr, buf, 2);
541 if (status != 0)
542 {
543 /* Fix fi->frame if it's bogus at this point. */
544 fix_frame_pointer (fi, 0);
545
546 /* Note if/where callee saved registers were saved. */
547 set_movm_offsets (fi, movm_args);
548 return addr;
549 }
550 }
551
552 /* Next we should allocate the local frame. No more prologue insns
553 are found after allocating the local frame.
554
555 Search for add imm8,sp (0xf8feXX)
556 or add imm16,sp (0xfafeXXXX)
557 or add imm32,sp (0xfcfeXXXXXXXX).
558
559 If none of the above was found, then this prologue has no
560 additional stack. */
561
562 status = read_memory_nobpt (addr, buf, 2);
563 if (status != 0)
564 {
565 /* Fix fi->frame if it's bogus at this point. */
566 fix_frame_pointer (fi, 0);
567
568 /* Note if/where callee saved registers were saved. */
569 set_movm_offsets (fi, movm_args);
570 return addr;
571 }
572
573 imm_size = 0;
574 if (buf[0] == 0xf8 && buf[1] == 0xfe)
575 imm_size = 1;
576 else if (buf[0] == 0xfa && buf[1] == 0xfe)
577 imm_size = 2;
578 else if (buf[0] == 0xfc && buf[1] == 0xfe)
579 imm_size = 4;
580
581 if (imm_size != 0)
582 {
583 /* Suck in imm_size more bytes, they'll hold the size of the
584 current frame. */
585 status = read_memory_nobpt (addr + 2, buf, imm_size);
586 if (status != 0)
587 {
588 /* Fix fi->frame if it's bogus at this point. */
589 fix_frame_pointer (fi, 0);
590
591 /* Note if/where callee saved registers were saved. */
592 set_movm_offsets (fi, movm_args);
593 return addr;
594 }
595
596 /* Note the size of the stack in the frame info structure. */
597 stack_size = extract_signed_integer (buf, imm_size);
598 if (fi)
599 fi->extra_info->stack_size = stack_size;
600
601 /* We just consumed 2 + imm_size bytes. */
602 addr += 2 + imm_size;
603
604 /* No more prologue insns follow, so begin preparation to return. */
605 /* Fix fi->frame if it's bogus at this point. */
606 fix_frame_pointer (fi, stack_size);
607
608 /* Note if/where callee saved registers were saved. */
609 set_movm_offsets (fi, movm_args);
610 return addr;
611 }
612
613 /* We never found an insn which allocates local stack space, regardless
614 this is the end of the prologue. */
615 /* Fix fi->frame if it's bogus at this point. */
616 fix_frame_pointer (fi, 0);
617
618 /* Note if/where callee saved registers were saved. */
619 set_movm_offsets (fi, movm_args);
620 return addr;
621}
622
623
624/* Function: saved_regs_size
625 Return the size in bytes of the register save area, based on the
626 saved_regs array in FI. */
627static int
628saved_regs_size (struct frame_info *fi)
629{
630 int adjust = 0;
631 int i;
632
633 /* Reserve four bytes for every register saved. */
634 for (i = 0; i < NUM_REGS; i++)
635 if (fi->saved_regs[i])
636 adjust += 4;
637
638 /* If we saved LIR, then it's most likely we used a `movm'
639 instruction with the `other' bit set, in which case the SP is
640 decremented by an extra four bytes, "to simplify calculation
641 of the transfer area", according to the processor manual. */
642 if (fi->saved_regs[LIR_REGNUM])
643 adjust += 4;
644
645 return adjust;
646}
647
648
649/* Function: frame_chain
650 Figure out and return the caller's frame pointer given current
651 frame_info struct.
652
653 We don't handle dummy frames yet but we would probably just return the
654 stack pointer that was in use at the time the function call was made? */
655
656static CORE_ADDR
657mn10300_frame_chain (struct frame_info *fi)
658{
659 struct frame_info *dummy;
660 /* Walk through the prologue to determine the stack size,
661 location of saved registers, end of the prologue, etc. */
662 if (fi->extra_info->status == 0)
663 mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
664
665 /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
666 if (fi->extra_info->status & NO_MORE_FRAMES)
667 return 0;
668
669 /* Now that we've analyzed our prologue, determine the frame
670 pointer for our caller.
671
672 If our caller has a frame pointer, then we need to
673 find the entry value of $a3 to our function.
674
675 If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
676 location pointed to by fsr.regs[A3_REGNUM].
677
678 Else it's still in $a3.
679
680 If our caller does not have a frame pointer, then his
681 frame base is fi->frame + -caller's stack size. */
682
683 /* The easiest way to get that info is to analyze our caller's frame.
684 So we set up a dummy frame and call mn10300_analyze_prologue to
685 find stuff for us. */
686 dummy = analyze_dummy_frame (FRAME_SAVED_PC (fi), fi->frame);
687
688 if (dummy->extra_info->status & MY_FRAME_IN_FP)
689 {
690 /* Our caller has a frame pointer. So find the frame in $a3 or
691 in the stack. */
692 if (fi->saved_regs[A3_REGNUM])
693 return (read_memory_integer (fi->saved_regs[A3_REGNUM], REGISTER_SIZE));
694 else
695 return read_register (A3_REGNUM);
696 }
697 else
698 {
699 int adjust = saved_regs_size (fi);
700
701 /* Our caller does not have a frame pointer. So his frame starts
702 at the base of our frame (fi->frame) + register save space
703 + <his size>. */
704 return fi->frame + adjust + -dummy->extra_info->stack_size;
705 }
706}
707
708/* Function: skip_prologue
709 Return the address of the first inst past the prologue of the function. */
710
711static CORE_ADDR
712mn10300_skip_prologue (CORE_ADDR pc)
713{
714 /* We used to check the debug symbols, but that can lose if
715 we have a null prologue. */
716 return mn10300_analyze_prologue (NULL, pc);
717}
718
719/* generic_pop_current_frame calls this function if the current
720 frame isn't a dummy frame. */
721static void
722mn10300_pop_frame_regular (struct frame_info *frame)
723{
724 int regnum;
725
726 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
727
728 /* Restore any saved registers. */
729 for (regnum = 0; regnum < NUM_REGS; regnum++)
730 if (frame->saved_regs[regnum] != 0)
731 {
732 ULONGEST value;
733
734 value = read_memory_unsigned_integer (frame->saved_regs[regnum],
735 REGISTER_RAW_SIZE (regnum));
736 write_register (regnum, value);
737 }
738
739 /* Actually cut back the stack. */
740 write_register (SP_REGNUM, FRAME_FP (frame));
741
742 /* Don't we need to set the PC?!? XXX FIXME. */
743}
744
745/* Function: pop_frame
746 This routine gets called when either the user uses the `return'
747 command, or the call dummy breakpoint gets hit. */
748static void
749mn10300_pop_frame (void)
750{
751 /* This function checks for and handles generic dummy frames, and
752 calls back to our function for ordinary frames. */
753 generic_pop_current_frame (mn10300_pop_frame_regular);
754
755 /* Throw away any cached frame information. */
756 flush_cached_frames ();
757}
758
759/* Function: push_arguments
760 Setup arguments for a call to the target. Arguments go in
761 order on the stack. */
762
763static CORE_ADDR
764mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
765 int struct_return, CORE_ADDR struct_addr)
766{
767 int argnum = 0;
768 int len = 0;
769 int stack_offset = 0;
770 int regsused = struct_return ? 1 : 0;
771
772 /* This should be a nop, but align the stack just in case something
773 went wrong. Stacks are four byte aligned on the mn10300. */
774 sp &= ~3;
775
776 /* Now make space on the stack for the args.
777
778 XXX This doesn't appear to handle pass-by-invisible reference
779 arguments. */
780 for (argnum = 0; argnum < nargs; argnum++)
781 {
782 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
783
784 while (regsused < 2 && arg_length > 0)
785 {
786 regsused++;
787 arg_length -= 4;
788 }
789 len += arg_length;
790 }
791
792 /* Allocate stack space. */
793 sp -= len;
794
795 regsused = struct_return ? 1 : 0;
796 /* Push all arguments onto the stack. */
797 for (argnum = 0; argnum < nargs; argnum++)
798 {
799 int len;
800 char *val;
801
802 /* XXX Check this. What about UNIONS? */
803 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
804 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
805 {
806 /* XXX Wrong, we want a pointer to this argument. */
807 len = TYPE_LENGTH (VALUE_TYPE (*args));
808 val = (char *) VALUE_CONTENTS (*args);
809 }
810 else
811 {
812 len = TYPE_LENGTH (VALUE_TYPE (*args));
813 val = (char *) VALUE_CONTENTS (*args);
814 }
815
816 while (regsused < 2 && len > 0)
817 {
818 write_register (regsused, extract_unsigned_integer (val, 4));
819 val += 4;
820 len -= 4;
821 regsused++;
822 }
823
824 while (len > 0)
825 {
826 write_memory (sp + stack_offset, val, 4);
827 len -= 4;
828 val += 4;
829 stack_offset += 4;
830 }
831
832 args++;
833 }
834
835 /* Make space for the flushback area. */
836 sp -= 8;
837 return sp;
838}
839
840/* Function: push_return_address (pc)
841 Set up the return address for the inferior function call.
842 Needed for targets where we don't actually execute a JSR/BSR instruction */
843
844static CORE_ADDR
845mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
846{
847 unsigned char buf[4];
848
849 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
850 write_memory (sp - 4, buf, 4);
851 return sp - 4;
852}
853
854/* Function: store_struct_return (addr,sp)
855 Store the structure value return address for an inferior function
856 call. */
857
858static void
859mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
860{
861 /* The structure return address is passed as the first argument. */
862 write_register (0, addr);
863}
864
865/* Function: frame_saved_pc
866 Find the caller of this frame. We do this by seeing if RP_REGNUM
867 is saved in the stack anywhere, otherwise we get it from the
868 registers. If the inner frame is a dummy frame, return its PC
869 instead of RP, because that's where "caller" of the dummy-frame
870 will be found. */
871
872static CORE_ADDR
873mn10300_frame_saved_pc (struct frame_info *fi)
874{
875 int adjust = saved_regs_size (fi);
876
877 return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
878}
879
880/* Function: mn10300_init_extra_frame_info
881 Setup the frame's frame pointer, pc, and frame addresses for saved
882 registers. Most of the work is done in mn10300_analyze_prologue().
883
884 Note that when we are called for the last frame (currently active frame),
885 that fi->pc and fi->frame will already be setup. However, fi->frame will
886 be valid only if this routine uses FP. For previous frames, fi-frame will
887 always be correct. mn10300_analyze_prologue will fix fi->frame if
888 it's not valid.
889
890 We can be called with the PC in the call dummy under two circumstances.
891 First, during normal backtracing, second, while figuring out the frame
892 pointer just prior to calling the target function (see run_stack_dummy). */
893
894static void
895mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
896{
897 if (fi->next)
898 fi->pc = FRAME_SAVED_PC (fi->next);
899
900 frame_saved_regs_zalloc (fi);
901 fi->extra_info = (struct frame_extra_info *)
902 frame_obstack_alloc (sizeof (struct frame_extra_info));
903
904 fi->extra_info->status = 0;
905 fi->extra_info->stack_size = 0;
906
907 mn10300_analyze_prologue (fi, 0);
908}
909
910
911/* This function's job is handled by init_extra_frame_info. */
912static void
913mn10300_frame_init_saved_regs (struct frame_info *frame)
914{
915}
916
917
918/* Function: mn10300_virtual_frame_pointer
919 Return the register that the function uses for a frame pointer,
920 plus any necessary offset to be applied to the register before
921 any frame pointer offsets. */
922
923static void
924mn10300_virtual_frame_pointer (CORE_ADDR pc,
925 int *reg,
926 LONGEST *offset)
927{
928 struct frame_info *dummy = analyze_dummy_frame (pc, 0);
929 /* Set up a dummy frame_info, Analyze the prolog and fill in the
930 extra info. */
931 /* Results will tell us which type of frame it uses. */
932 if (dummy->extra_info->status & MY_FRAME_IN_SP)
933 {
934 *reg = SP_REGNUM;
935 *offset = -(dummy->extra_info->stack_size);
936 }
937 else
938 {
939 *reg = A3_REGNUM;
940 *offset = 0;
941 }
942}
943
944static int
945mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
946{
947 return (TYPE_LENGTH (type) > 8);
948}
949
950static struct type *
951mn10300_register_virtual_type (int reg)
952{
953 return builtin_type_int;
954}
955
956static int
957mn10300_register_byte (int reg)
958{
959 return (reg * 4);
960}
961
962static int
963mn10300_register_virtual_size (int reg)
964{
965 return 4;
966}
967
968static int
969mn10300_register_raw_size (int reg)
970{
971 return 4;
972}
973
974/* If DWARF2 is a register number appearing in Dwarf2 debug info, then
975 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
976 register number. Why don't Dwarf2 and GDB use the same numbering?
977 Who knows? But since people have object files lying around with
978 the existing Dwarf2 numbering, and other people have written stubs
979 to work with the existing GDB, neither of them can change. So we
980 just have to cope. */
981static int
982mn10300_dwarf2_reg_to_regnum (int dwarf2)
983{
984 /* This table is supposed to be shaped like the REGISTER_NAMES
985 initializer in gcc/config/mn10300/mn10300.h. Registers which
986 appear in GCC's numbering, but have no counterpart in GDB's
987 world, are marked with a -1. */
988 static int dwarf2_to_gdb[] = {
989 0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
990 15, 16, 17, 18, 19, 20, 21, 22
991 };
992 int gdb;
993
994 if (dwarf2 < 0
995 || dwarf2 >= (sizeof (dwarf2_to_gdb) / sizeof (dwarf2_to_gdb[0]))
996 || dwarf2_to_gdb[dwarf2] == -1)
997 internal_error (__FILE__, __LINE__,
998 "bogus register number in debug info: %d", dwarf2);
999
1000 return dwarf2_to_gdb[dwarf2];
1001}
1002
1003static void
1004mn10300_print_register (const char *name, int regnum, int reg_width)
1005{
1006 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
1007
1008 if (reg_width)
1009 printf_filtered ("%*s: ", reg_width, name);
1010 else
1011 printf_filtered ("%s: ", name);
1012
1013 /* Get the data */
1014 if (!frame_register_read (selected_frame, regnum, raw_buffer))
1015 {
1016 printf_filtered ("[invalid]");
1017 return;
1018 }
1019 else
1020 {
1021 int byte;
1022 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1023 {
1024 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
1025 byte < REGISTER_RAW_SIZE (regnum);
1026 byte++)
1027 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1028 }
1029 else
1030 {
1031 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
1032 byte >= 0;
1033 byte--)
1034 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1035 }
1036 }
1037}
1038
1039static void
1040mn10300_do_registers_info (int regnum, int fpregs)
1041{
1042 if (regnum >= 0)
1043 {
1044 const char *name = REGISTER_NAME (regnum);
1045 if (name == NULL || name[0] == '\0')
1046 error ("Not a valid register for the current processor type");
1047 mn10300_print_register (name, regnum, 0);
1048 printf_filtered ("\n");
1049 }
1050 else
1051 {
1052 /* print registers in an array 4x8 */
1053 int r;
1054 int reg;
1055 const int nr_in_row = 4;
1056 const int reg_width = 4;
1057 for (r = 0; r < NUM_REGS; r += nr_in_row)
1058 {
1059 int c;
1060 int printing = 0;
1061 int padding = 0;
1062 for (c = r; c < r + nr_in_row; c++)
1063 {
1064 const char *name = REGISTER_NAME (c);
1065 if (name != NULL && *name != '\0')
1066 {
1067 printing = 1;
1068 while (padding > 0)
1069 {
1070 printf_filtered (" ");
1071 padding--;
1072 }
1073 mn10300_print_register (name, c, reg_width);
1074 printf_filtered (" ");
1075 }
1076 else
1077 {
1078 padding += (reg_width + 2 + 8 + 1);
1079 }
1080 }
1081 if (printing)
1082 printf_filtered ("\n");
1083 }
1084 }
1085}
1086
1087/* Dump out the mn10300 speciic architecture information. */
1088
1089static void
1090mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1091{
1092 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1093 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1094 tdep->am33_mode);
1095}
1096
1097static struct gdbarch *
1098mn10300_gdbarch_init (struct gdbarch_info info,
1099 struct gdbarch_list *arches)
1100{
1101 static LONGEST mn10300_call_dummy_words[] = { 0 };
1102 struct gdbarch *gdbarch;
1103 struct gdbarch_tdep *tdep = NULL;
1104 int am33_mode;
1105 gdbarch_register_name_ftype *register_name;
1106 int mach;
1107 int num_regs;
1108
1109 arches = gdbarch_list_lookup_by_info (arches, &info);
1110 if (arches != NULL)
1111 return arches->gdbarch;
1112 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1113 gdbarch = gdbarch_alloc (&info, tdep);
1114
1115 if (info.bfd_arch_info != NULL
1116 && info.bfd_arch_info->arch == bfd_arch_mn10300)
1117 mach = info.bfd_arch_info->mach;
1118 else
1119 mach = 0;
1120 switch (mach)
1121 {
1122 case 0:
1123 case bfd_mach_mn10300:
1124 am33_mode = 0;
1125 register_name = mn10300_generic_register_name;
1126 num_regs = 32;
1127 break;
1128 case bfd_mach_am33:
1129 am33_mode = 1;
1130 register_name = am33_register_name;
1131 num_regs = 32;
1132 break;
1133 default:
1134 internal_error (__FILE__, __LINE__,
1135 "mn10300_gdbarch_init: Unknown mn10300 variant");
1136 return NULL; /* keep GCC happy. */
1137 }
1138
1139 /* Registers. */
1140 set_gdbarch_num_regs (gdbarch, num_regs);
1141 set_gdbarch_register_name (gdbarch, register_name);
1142 set_gdbarch_register_size (gdbarch, 4);
1143 set_gdbarch_register_bytes (gdbarch,
1144 num_regs * gdbarch_register_size (gdbarch));
1145 set_gdbarch_max_register_raw_size (gdbarch, 4);
1146 set_gdbarch_register_raw_size (gdbarch, mn10300_register_raw_size);
1147 set_gdbarch_register_byte (gdbarch, mn10300_register_byte);
1148 set_gdbarch_max_register_virtual_size (gdbarch, 4);
1149 set_gdbarch_register_virtual_size (gdbarch, mn10300_register_virtual_size);
1150 set_gdbarch_register_virtual_type (gdbarch, mn10300_register_virtual_type);
1151 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1152 set_gdbarch_do_registers_info (gdbarch, mn10300_do_registers_info);
1153 set_gdbarch_sp_regnum (gdbarch, 8);
1154 set_gdbarch_pc_regnum (gdbarch, 9);
1155 set_gdbarch_fp_regnum (gdbarch, 31);
1156 set_gdbarch_virtual_frame_pointer (gdbarch, mn10300_virtual_frame_pointer);
1157
1158 /* Breakpoints. */
1159 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
1160 set_gdbarch_function_start_offset (gdbarch, 0);
1161 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1162
1163 /* Stack unwinding. */
1164 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1165 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1166 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1167 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1168 set_gdbarch_saved_pc_after_call (gdbarch, mn10300_saved_pc_after_call);
1169 set_gdbarch_init_extra_frame_info (gdbarch, mn10300_init_extra_frame_info);
1170 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
1171 set_gdbarch_frame_init_saved_regs (gdbarch, mn10300_frame_init_saved_regs);
1172 set_gdbarch_frame_chain (gdbarch, mn10300_frame_chain);
1173 set_gdbarch_frame_saved_pc (gdbarch, mn10300_frame_saved_pc);
1174 set_gdbarch_extract_return_value (gdbarch, mn10300_extract_return_value);
1175 set_gdbarch_extract_struct_value_address
1176 (gdbarch, mn10300_extract_struct_value_address);
1177 set_gdbarch_store_return_value (gdbarch, mn10300_store_return_value);
1178 set_gdbarch_store_struct_return (gdbarch, mn10300_store_struct_return);
1179 set_gdbarch_pop_frame (gdbarch, mn10300_pop_frame);
1180 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1181 set_gdbarch_frame_args_skip (gdbarch, 0);
1182 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1183 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1184 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1185 /* That's right, we're using the stack pointer as our frame pointer. */
1186 set_gdbarch_read_fp (gdbarch, generic_target_read_sp);
1187
1188 /* Calling functions in the inferior from GDB. */
1189 set_gdbarch_call_dummy_p (gdbarch, 1);
1190 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1191 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1192 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1193 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1194 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1195 set_gdbarch_call_dummy_words (gdbarch, mn10300_call_dummy_words);
1196 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1197 sizeof (mn10300_call_dummy_words));
1198 set_gdbarch_call_dummy_length (gdbarch, 0);
1199 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1200 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1201 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1202 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1203 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1204 set_gdbarch_push_arguments (gdbarch, mn10300_push_arguments);
1205 set_gdbarch_reg_struct_has_addr (gdbarch, mn10300_reg_struct_has_addr);
1206 set_gdbarch_push_return_address (gdbarch, mn10300_push_return_address);
1207 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1208 set_gdbarch_use_struct_convention (gdbarch, mn10300_use_struct_convention);
1209
1210 tdep->am33_mode = am33_mode;
1211
1212 return gdbarch;
1213}
1214
1215void
1216_initialize_mn10300_tdep (void)
1217{
1218/* printf("_initialize_mn10300_tdep\n"); */
1219
1220 tm_print_insn = print_insn_mn10300;
1221
1222 register_gdbarch_init (bfd_arch_mn10300, mn10300_gdbarch_init);
1223}
This page took 0.034155 seconds and 4 git commands to generate.