| 1 | /* Target-dependent code for the NDS32 architecture, for GDB. |
| 2 | |
| 3 | Copyright (C) 2013-2017 Free Software Foundation, Inc. |
| 4 | Contributed by Andes Technology Corporation. |
| 5 | |
| 6 | This file is part of GDB. |
| 7 | |
| 8 | This program is free software; you can redistribute it and/or modify |
| 9 | it under the terms of the GNU General Public License as published by |
| 10 | the Free Software Foundation; either version 3 of the License, or |
| 11 | (at your option) any later version. |
| 12 | |
| 13 | This program is distributed in the hope that it will be useful, |
| 14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | GNU General Public License for more details. |
| 17 | |
| 18 | You should have received a copy of the GNU General Public License |
| 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| 20 | |
| 21 | #include "defs.h" |
| 22 | #include "frame.h" |
| 23 | #include "frame-unwind.h" |
| 24 | #include "frame-base.h" |
| 25 | #include "symtab.h" |
| 26 | #include "gdbtypes.h" |
| 27 | #include "gdbcore.h" |
| 28 | #include "value.h" |
| 29 | #include "reggroups.h" |
| 30 | #include "inferior.h" |
| 31 | #include "osabi.h" |
| 32 | #include "arch-utils.h" |
| 33 | #include "regcache.h" |
| 34 | #include "dis-asm.h" |
| 35 | #include "user-regs.h" |
| 36 | #include "elf-bfd.h" |
| 37 | #include "dwarf2-frame.h" |
| 38 | #include "remote.h" |
| 39 | #include "target-descriptions.h" |
| 40 | |
| 41 | #include "nds32-tdep.h" |
| 42 | #include "elf/nds32.h" |
| 43 | #include "opcode/nds32.h" |
| 44 | #include <algorithm> |
| 45 | |
| 46 | #include "features/nds32.c" |
| 47 | |
| 48 | /* Simple macros for instruction analysis. */ |
| 49 | #define CHOP_BITS(insn, n) (insn & ~__MASK (n)) |
| 50 | #define N32_LSMW_ENABLE4(insn) (((insn) >> 6) & 0xf) |
| 51 | #define N32_SMW_ADM \ |
| 52 | N32_TYPE4 (LSMW, 0, 0, 0, 1, (N32_LSMW_ADM << 2) | N32_LSMW_LSMW) |
| 53 | #define N32_LMW_BIM \ |
| 54 | N32_TYPE4 (LSMW, 0, 0, 0, 0, (N32_LSMW_BIM << 2) | N32_LSMW_LSMW) |
| 55 | #define N32_FLDI_SP \ |
| 56 | N32_TYPE2 (LDC, 0, REG_SP, 0) |
| 57 | |
| 58 | /* Use an invalid address value as 'not available' marker. */ |
| 59 | enum { REG_UNAVAIL = (CORE_ADDR) -1 }; |
| 60 | |
| 61 | /* Use an impossible value as invalid offset. */ |
| 62 | enum { INVALID_OFFSET = (CORE_ADDR) -1 }; |
| 63 | |
| 64 | /* Instruction groups for NDS32 epilogue analysis. */ |
| 65 | enum |
| 66 | { |
| 67 | /* Instructions used everywhere, not only in epilogue. */ |
| 68 | INSN_NORMAL, |
| 69 | /* Instructions used to reset sp for local vars, arguments, etc. */ |
| 70 | INSN_RESET_SP, |
| 71 | /* Instructions used to recover saved regs and to recover padding. */ |
| 72 | INSN_RECOVER, |
| 73 | /* Instructions used to return to the caller. */ |
| 74 | INSN_RETURN, |
| 75 | /* Instructions used to recover saved regs and to return to the caller. */ |
| 76 | INSN_RECOVER_RETURN, |
| 77 | }; |
| 78 | |
| 79 | static const char *const nds32_register_names[] = |
| 80 | { |
| 81 | /* 32 GPRs. */ |
| 82 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| 83 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
| 84 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
| 85 | "r24", "r25", "r26", "r27", "fp", "gp", "lp", "sp", |
| 86 | /* PC. */ |
| 87 | "pc", |
| 88 | }; |
| 89 | |
| 90 | static const char *const nds32_fdr_register_names[] = |
| 91 | { |
| 92 | "fd0", "fd1", "fd2", "fd3", "fd4", "fd5", "fd6", "fd7", |
| 93 | "fd8", "fd9", "fd10", "fd11", "fd12", "fd13", "fd14", "fd15", |
| 94 | "fd16", "fd17", "fd18", "fd19", "fd20", "fd21", "fd22", "fd23", |
| 95 | "fd24", "fd25", "fd26", "fd27", "fd28", "fd29", "fd30", "fd31" |
| 96 | }; |
| 97 | |
| 98 | static const char *const nds32_fsr_register_names[] = |
| 99 | { |
| 100 | "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", |
| 101 | "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15", |
| 102 | "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23", |
| 103 | "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" |
| 104 | }; |
| 105 | |
| 106 | /* The number of registers for four FPU configuration options. */ |
| 107 | const int num_fdr_map[] = { 4, 8, 16, 32 }; |
| 108 | const int num_fsr_map[] = { 8, 16, 32, 32 }; |
| 109 | |
| 110 | /* Aliases for registers. */ |
| 111 | static const struct |
| 112 | { |
| 113 | const char *name; |
| 114 | const char *alias; |
| 115 | } nds32_register_aliases[] = |
| 116 | { |
| 117 | {"r15", "ta"}, |
| 118 | {"r26", "p0"}, |
| 119 | {"r27", "p1"}, |
| 120 | {"fp", "r28"}, |
| 121 | {"gp", "r29"}, |
| 122 | {"lp", "r30"}, |
| 123 | {"sp", "r31"}, |
| 124 | |
| 125 | {"cr0", "cpu_ver"}, |
| 126 | {"cr1", "icm_cfg"}, |
| 127 | {"cr2", "dcm_cfg"}, |
| 128 | {"cr3", "mmu_cfg"}, |
| 129 | {"cr4", "msc_cfg"}, |
| 130 | {"cr5", "core_id"}, |
| 131 | {"cr6", "fucop_exist"}, |
| 132 | {"cr7", "msc_cfg2"}, |
| 133 | |
| 134 | {"ir0", "psw"}, |
| 135 | {"ir1", "ipsw"}, |
| 136 | {"ir2", "p_psw"}, |
| 137 | {"ir3", "ivb"}, |
| 138 | {"ir4", "eva"}, |
| 139 | {"ir5", "p_eva"}, |
| 140 | {"ir6", "itype"}, |
| 141 | {"ir7", "p_itype"}, |
| 142 | {"ir8", "merr"}, |
| 143 | {"ir9", "ipc"}, |
| 144 | {"ir10", "p_ipc"}, |
| 145 | {"ir11", "oipc"}, |
| 146 | {"ir12", "p_p0"}, |
| 147 | {"ir13", "p_p1"}, |
| 148 | {"ir14", "int_mask"}, |
| 149 | {"ir15", "int_pend"}, |
| 150 | {"ir16", "sp_usr"}, |
| 151 | {"ir17", "sp_priv"}, |
| 152 | {"ir18", "int_pri"}, |
| 153 | {"ir19", "int_ctrl"}, |
| 154 | {"ir20", "sp_usr1"}, |
| 155 | {"ir21", "sp_priv1"}, |
| 156 | {"ir22", "sp_usr2"}, |
| 157 | {"ir23", "sp_priv2"}, |
| 158 | {"ir24", "sp_usr3"}, |
| 159 | {"ir25", "sp_priv3"}, |
| 160 | {"ir26", "int_mask2"}, |
| 161 | {"ir27", "int_pend2"}, |
| 162 | {"ir28", "int_pri2"}, |
| 163 | {"ir29", "int_trigger"}, |
| 164 | |
| 165 | {"mr0", "mmu_ctl"}, |
| 166 | {"mr1", "l1_pptb"}, |
| 167 | {"mr2", "tlb_vpn"}, |
| 168 | {"mr3", "tlb_data"}, |
| 169 | {"mr4", "tlb_misc"}, |
| 170 | {"mr5", "vlpt_idx"}, |
| 171 | {"mr6", "ilmb"}, |
| 172 | {"mr7", "dlmb"}, |
| 173 | {"mr8", "cache_ctl"}, |
| 174 | {"mr9", "hsmp_saddr"}, |
| 175 | {"mr10", "hsmp_eaddr"}, |
| 176 | {"mr11", "bg_region"}, |
| 177 | |
| 178 | {"dr0", "bpc0"}, |
| 179 | {"dr1", "bpc1"}, |
| 180 | {"dr2", "bpc2"}, |
| 181 | {"dr3", "bpc3"}, |
| 182 | {"dr4", "bpc4"}, |
| 183 | {"dr5", "bpc5"}, |
| 184 | {"dr6", "bpc6"}, |
| 185 | {"dr7", "bpc7"}, |
| 186 | {"dr8", "bpa0"}, |
| 187 | {"dr9", "bpa1"}, |
| 188 | {"dr10", "bpa2"}, |
| 189 | {"dr11", "bpa3"}, |
| 190 | {"dr12", "bpa4"}, |
| 191 | {"dr13", "bpa5"}, |
| 192 | {"dr14", "bpa6"}, |
| 193 | {"dr15", "bpa7"}, |
| 194 | {"dr16", "bpam0"}, |
| 195 | {"dr17", "bpam1"}, |
| 196 | {"dr18", "bpam2"}, |
| 197 | {"dr19", "bpam3"}, |
| 198 | {"dr20", "bpam4"}, |
| 199 | {"dr21", "bpam5"}, |
| 200 | {"dr22", "bpam6"}, |
| 201 | {"dr23", "bpam7"}, |
| 202 | {"dr24", "bpv0"}, |
| 203 | {"dr25", "bpv1"}, |
| 204 | {"dr26", "bpv2"}, |
| 205 | {"dr27", "bpv3"}, |
| 206 | {"dr28", "bpv4"}, |
| 207 | {"dr29", "bpv5"}, |
| 208 | {"dr30", "bpv6"}, |
| 209 | {"dr31", "bpv7"}, |
| 210 | {"dr32", "bpcid0"}, |
| 211 | {"dr33", "bpcid1"}, |
| 212 | {"dr34", "bpcid2"}, |
| 213 | {"dr35", "bpcid3"}, |
| 214 | {"dr36", "bpcid4"}, |
| 215 | {"dr37", "bpcid5"}, |
| 216 | {"dr38", "bpcid6"}, |
| 217 | {"dr39", "bpcid7"}, |
| 218 | {"dr40", "edm_cfg"}, |
| 219 | {"dr41", "edmsw"}, |
| 220 | {"dr42", "edm_ctl"}, |
| 221 | {"dr43", "edm_dtr"}, |
| 222 | {"dr44", "bpmtc"}, |
| 223 | {"dr45", "dimbr"}, |
| 224 | {"dr46", "tecr0"}, |
| 225 | {"dr47", "tecr1"}, |
| 226 | |
| 227 | {"hspr0", "hsp_ctl"}, |
| 228 | {"hspr1", "sp_bound"}, |
| 229 | {"hspr2", "sp_bound_priv"}, |
| 230 | |
| 231 | {"pfr0", "pfmc0"}, |
| 232 | {"pfr1", "pfmc1"}, |
| 233 | {"pfr2", "pfmc2"}, |
| 234 | {"pfr3", "pfm_ctl"}, |
| 235 | {"pfr4", "pft_ctl"}, |
| 236 | |
| 237 | {"dmar0", "dma_cfg"}, |
| 238 | {"dmar1", "dma_gcsw"}, |
| 239 | {"dmar2", "dma_chnsel"}, |
| 240 | {"dmar3", "dma_act"}, |
| 241 | {"dmar4", "dma_setup"}, |
| 242 | {"dmar5", "dma_isaddr"}, |
| 243 | {"dmar6", "dma_esaddr"}, |
| 244 | {"dmar7", "dma_tcnt"}, |
| 245 | {"dmar8", "dma_status"}, |
| 246 | {"dmar9", "dma_2dset"}, |
| 247 | {"dmar10", "dma_2dsctl"}, |
| 248 | {"dmar11", "dma_rcnt"}, |
| 249 | {"dmar12", "dma_hstatus"}, |
| 250 | |
| 251 | {"racr0", "prusr_acc_ctl"}, |
| 252 | {"fucpr", "fucop_ctl"}, |
| 253 | |
| 254 | {"idr0", "sdz_ctl"}, |
| 255 | {"idr1", "misc_ctl"}, |
| 256 | {"idr2", "ecc_misc"}, |
| 257 | |
| 258 | {"secur0", "sfcr"}, |
| 259 | {"secur1", "sign"}, |
| 260 | {"secur2", "isign"}, |
| 261 | {"secur3", "p_isign"}, |
| 262 | }; |
| 263 | |
| 264 | /* Value of a register alias. BATON is the regnum of the corresponding |
| 265 | register. */ |
| 266 | |
| 267 | static struct value * |
| 268 | value_of_nds32_reg (struct frame_info *frame, const void *baton) |
| 269 | { |
| 270 | return value_of_register ((int) (intptr_t) baton, frame); |
| 271 | } |
| 272 | \f |
| 273 | /* Implement the "frame_align" gdbarch method. */ |
| 274 | |
| 275 | static CORE_ADDR |
| 276 | nds32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
| 277 | { |
| 278 | /* 8-byte aligned. */ |
| 279 | return align_down (sp, 8); |
| 280 | } |
| 281 | |
| 282 | /* The same insn machine code is used for little-endian and big-endian. */ |
| 283 | constexpr gdb_byte nds32_break_insn[] = { 0xEA, 0x00 }; |
| 284 | |
| 285 | typedef BP_MANIPULATION (nds32_break_insn) nds32_breakpoint; |
| 286 | |
| 287 | /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */ |
| 288 | |
| 289 | static int |
| 290 | nds32_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num) |
| 291 | { |
| 292 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 293 | const int FSR = 38; |
| 294 | const int FDR = FSR + 32; |
| 295 | |
| 296 | if (num >= 0 && num < 32) |
| 297 | { |
| 298 | /* General-purpose registers (R0 - R31). */ |
| 299 | return num; |
| 300 | } |
| 301 | else if (num >= FSR && num < FSR + 32) |
| 302 | { |
| 303 | /* Single precision floating-point registers (FS0 - FS31). */ |
| 304 | return num - FSR + tdep->fs0_regnum; |
| 305 | } |
| 306 | else if (num >= FDR && num < FDR + 32) |
| 307 | { |
| 308 | /* Double precision floating-point registers (FD0 - FD31). */ |
| 309 | return num - FDR + NDS32_FD0_REGNUM; |
| 310 | } |
| 311 | |
| 312 | /* No match, return a inaccessible register number. */ |
| 313 | return -1; |
| 314 | } |
| 315 | \f |
| 316 | /* NDS32 register groups. */ |
| 317 | static struct reggroup *nds32_cr_reggroup; |
| 318 | static struct reggroup *nds32_ir_reggroup; |
| 319 | static struct reggroup *nds32_mr_reggroup; |
| 320 | static struct reggroup *nds32_dr_reggroup; |
| 321 | static struct reggroup *nds32_pfr_reggroup; |
| 322 | static struct reggroup *nds32_hspr_reggroup; |
| 323 | static struct reggroup *nds32_dmar_reggroup; |
| 324 | static struct reggroup *nds32_racr_reggroup; |
| 325 | static struct reggroup *nds32_idr_reggroup; |
| 326 | static struct reggroup *nds32_secur_reggroup; |
| 327 | |
| 328 | static void |
| 329 | nds32_init_reggroups (void) |
| 330 | { |
| 331 | nds32_cr_reggroup = reggroup_new ("cr", USER_REGGROUP); |
| 332 | nds32_ir_reggroup = reggroup_new ("ir", USER_REGGROUP); |
| 333 | nds32_mr_reggroup = reggroup_new ("mr", USER_REGGROUP); |
| 334 | nds32_dr_reggroup = reggroup_new ("dr", USER_REGGROUP); |
| 335 | nds32_pfr_reggroup = reggroup_new ("pfr", USER_REGGROUP); |
| 336 | nds32_hspr_reggroup = reggroup_new ("hspr", USER_REGGROUP); |
| 337 | nds32_dmar_reggroup = reggroup_new ("dmar", USER_REGGROUP); |
| 338 | nds32_racr_reggroup = reggroup_new ("racr", USER_REGGROUP); |
| 339 | nds32_idr_reggroup = reggroup_new ("idr", USER_REGGROUP); |
| 340 | nds32_secur_reggroup = reggroup_new ("secur", USER_REGGROUP); |
| 341 | } |
| 342 | |
| 343 | static void |
| 344 | nds32_add_reggroups (struct gdbarch *gdbarch) |
| 345 | { |
| 346 | /* Add pre-defined register groups. */ |
| 347 | reggroup_add (gdbarch, general_reggroup); |
| 348 | reggroup_add (gdbarch, float_reggroup); |
| 349 | reggroup_add (gdbarch, system_reggroup); |
| 350 | reggroup_add (gdbarch, all_reggroup); |
| 351 | reggroup_add (gdbarch, save_reggroup); |
| 352 | reggroup_add (gdbarch, restore_reggroup); |
| 353 | |
| 354 | /* Add NDS32 register groups. */ |
| 355 | reggroup_add (gdbarch, nds32_cr_reggroup); |
| 356 | reggroup_add (gdbarch, nds32_ir_reggroup); |
| 357 | reggroup_add (gdbarch, nds32_mr_reggroup); |
| 358 | reggroup_add (gdbarch, nds32_dr_reggroup); |
| 359 | reggroup_add (gdbarch, nds32_pfr_reggroup); |
| 360 | reggroup_add (gdbarch, nds32_hspr_reggroup); |
| 361 | reggroup_add (gdbarch, nds32_dmar_reggroup); |
| 362 | reggroup_add (gdbarch, nds32_racr_reggroup); |
| 363 | reggroup_add (gdbarch, nds32_idr_reggroup); |
| 364 | reggroup_add (gdbarch, nds32_secur_reggroup); |
| 365 | } |
| 366 | |
| 367 | /* Implement the "register_reggroup_p" gdbarch method. */ |
| 368 | |
| 369 | static int |
| 370 | nds32_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
| 371 | struct reggroup *reggroup) |
| 372 | { |
| 373 | const char *reg_name; |
| 374 | const char *group_name; |
| 375 | int ret; |
| 376 | |
| 377 | if (reggroup == all_reggroup) |
| 378 | return 1; |
| 379 | |
| 380 | /* General reggroup contains only GPRs and PC. */ |
| 381 | if (reggroup == general_reggroup) |
| 382 | return regnum <= NDS32_PC_REGNUM; |
| 383 | |
| 384 | if (reggroup == float_reggroup || reggroup == save_reggroup |
| 385 | || reggroup == restore_reggroup) |
| 386 | { |
| 387 | ret = tdesc_register_in_reggroup_p (gdbarch, regnum, reggroup); |
| 388 | if (ret != -1) |
| 389 | return ret; |
| 390 | |
| 391 | return default_register_reggroup_p (gdbarch, regnum, reggroup); |
| 392 | } |
| 393 | |
| 394 | if (reggroup == system_reggroup) |
| 395 | return (regnum > NDS32_PC_REGNUM) |
| 396 | && !nds32_register_reggroup_p (gdbarch, regnum, float_reggroup); |
| 397 | |
| 398 | /* The NDS32 reggroup contains registers whose name is prefixed |
| 399 | by reggroup name. */ |
| 400 | reg_name = gdbarch_register_name (gdbarch, regnum); |
| 401 | group_name = reggroup_name (reggroup); |
| 402 | return !strncmp (reg_name, group_name, strlen (group_name)); |
| 403 | } |
| 404 | \f |
| 405 | /* Implement the "pseudo_register_type" tdesc_arch_data method. */ |
| 406 | |
| 407 | static struct type * |
| 408 | nds32_pseudo_register_type (struct gdbarch *gdbarch, int regnum) |
| 409 | { |
| 410 | regnum -= gdbarch_num_regs (gdbarch); |
| 411 | |
| 412 | /* Currently, only FSRs could be defined as pseudo registers. */ |
| 413 | if (regnum < gdbarch_num_pseudo_regs (gdbarch)) |
| 414 | return arch_float_type (gdbarch, -1, "builtin_type_ieee_single", |
| 415 | floatformats_ieee_single); |
| 416 | |
| 417 | warning (_("Unknown nds32 pseudo register %d."), regnum); |
| 418 | return NULL; |
| 419 | } |
| 420 | |
| 421 | /* Implement the "pseudo_register_name" tdesc_arch_data method. */ |
| 422 | |
| 423 | static const char * |
| 424 | nds32_pseudo_register_name (struct gdbarch *gdbarch, int regnum) |
| 425 | { |
| 426 | regnum -= gdbarch_num_regs (gdbarch); |
| 427 | |
| 428 | /* Currently, only FSRs could be defined as pseudo registers. */ |
| 429 | if (regnum < gdbarch_num_pseudo_regs (gdbarch)) |
| 430 | return nds32_fsr_register_names[regnum]; |
| 431 | |
| 432 | warning (_("Unknown nds32 pseudo register %d."), regnum); |
| 433 | return NULL; |
| 434 | } |
| 435 | |
| 436 | /* Implement the "pseudo_register_read" gdbarch method. */ |
| 437 | |
| 438 | static enum register_status |
| 439 | nds32_pseudo_register_read (struct gdbarch *gdbarch, |
| 440 | struct regcache *regcache, int regnum, |
| 441 | gdb_byte *buf) |
| 442 | { |
| 443 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 444 | gdb_byte reg_buf[8]; |
| 445 | int offset, fdr_regnum; |
| 446 | enum register_status status; |
| 447 | |
| 448 | /* This function is registered in nds32_gdbarch_init only after these are |
| 449 | set. */ |
| 450 | gdb_assert (tdep->fpu_freg != -1); |
| 451 | gdb_assert (tdep->use_pseudo_fsrs != 0); |
| 452 | |
| 453 | regnum -= gdbarch_num_regs (gdbarch); |
| 454 | |
| 455 | /* Currently, only FSRs could be defined as pseudo registers. */ |
| 456 | if (regnum < gdbarch_num_pseudo_regs (gdbarch)) |
| 457 | { |
| 458 | /* fs0 is always the most significant half of fd0. */ |
| 459 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
| 460 | offset = (regnum & 1) ? 4 : 0; |
| 461 | else |
| 462 | offset = (regnum & 1) ? 0 : 4; |
| 463 | |
| 464 | fdr_regnum = NDS32_FD0_REGNUM + (regnum >> 1); |
| 465 | status = regcache_raw_read (regcache, fdr_regnum, reg_buf); |
| 466 | if (status == REG_VALID) |
| 467 | memcpy (buf, reg_buf + offset, 4); |
| 468 | |
| 469 | return status; |
| 470 | } |
| 471 | |
| 472 | gdb_assert_not_reached ("invalid pseudo register number"); |
| 473 | } |
| 474 | |
| 475 | /* Implement the "pseudo_register_write" gdbarch method. */ |
| 476 | |
| 477 | static void |
| 478 | nds32_pseudo_register_write (struct gdbarch *gdbarch, |
| 479 | struct regcache *regcache, int regnum, |
| 480 | const gdb_byte *buf) |
| 481 | { |
| 482 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 483 | gdb_byte reg_buf[8]; |
| 484 | int offset, fdr_regnum; |
| 485 | |
| 486 | /* This function is registered in nds32_gdbarch_init only after these are |
| 487 | set. */ |
| 488 | gdb_assert (tdep->fpu_freg != -1); |
| 489 | gdb_assert (tdep->use_pseudo_fsrs != 0); |
| 490 | |
| 491 | regnum -= gdbarch_num_regs (gdbarch); |
| 492 | |
| 493 | /* Currently, only FSRs could be defined as pseudo registers. */ |
| 494 | if (regnum < gdbarch_num_pseudo_regs (gdbarch)) |
| 495 | { |
| 496 | /* fs0 is always the most significant half of fd0. */ |
| 497 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
| 498 | offset = (regnum & 1) ? 4 : 0; |
| 499 | else |
| 500 | offset = (regnum & 1) ? 0 : 4; |
| 501 | |
| 502 | fdr_regnum = NDS32_FD0_REGNUM + (regnum >> 1); |
| 503 | regcache_raw_read (regcache, fdr_regnum, reg_buf); |
| 504 | memcpy (reg_buf + offset, buf, 4); |
| 505 | regcache_raw_write (regcache, fdr_regnum, reg_buf); |
| 506 | return; |
| 507 | } |
| 508 | |
| 509 | gdb_assert_not_reached ("invalid pseudo register number"); |
| 510 | } |
| 511 | \f |
| 512 | /* Helper function for NDS32 ABI. Return true if FPRs can be used |
| 513 | to pass function arguments and return value. */ |
| 514 | |
| 515 | static int |
| 516 | nds32_abi_use_fpr (int elf_abi) |
| 517 | { |
| 518 | return elf_abi == E_NDS_ABI_V2FP_PLUS; |
| 519 | } |
| 520 | |
| 521 | /* Helper function for NDS32 ABI. Return true if GPRs and stack |
| 522 | can be used together to pass an argument. */ |
| 523 | |
| 524 | static int |
| 525 | nds32_abi_split (int elf_abi) |
| 526 | { |
| 527 | return elf_abi == E_NDS_ABI_AABI; |
| 528 | } |
| 529 | |
| 530 | #define NDS32_NUM_SAVED_REGS (NDS32_LP_REGNUM + 1) |
| 531 | |
| 532 | struct nds32_frame_cache |
| 533 | { |
| 534 | /* The previous frame's inner most stack address. Used as this |
| 535 | frame ID's stack_addr. */ |
| 536 | CORE_ADDR prev_sp; |
| 537 | |
| 538 | /* The frame's base, optionally used by the high-level debug info. */ |
| 539 | CORE_ADDR base; |
| 540 | |
| 541 | /* During prologue analysis, keep how far the SP and FP have been offset |
| 542 | from the start of the stack frame (as defined by the previous frame's |
| 543 | stack pointer). |
| 544 | During epilogue analysis, keep how far the SP has been offset from the |
| 545 | current stack pointer. */ |
| 546 | CORE_ADDR sp_offset; |
| 547 | CORE_ADDR fp_offset; |
| 548 | |
| 549 | /* The address of the first instruction in this function. */ |
| 550 | CORE_ADDR pc; |
| 551 | |
| 552 | /* Saved registers. */ |
| 553 | CORE_ADDR saved_regs[NDS32_NUM_SAVED_REGS]; |
| 554 | }; |
| 555 | |
| 556 | /* Allocate and initialize a frame cache. */ |
| 557 | |
| 558 | static struct nds32_frame_cache * |
| 559 | nds32_alloc_frame_cache (void) |
| 560 | { |
| 561 | struct nds32_frame_cache *cache; |
| 562 | int i; |
| 563 | |
| 564 | cache = FRAME_OBSTACK_ZALLOC (struct nds32_frame_cache); |
| 565 | |
| 566 | /* Initialize fp_offset to check if FP is set in prologue. */ |
| 567 | cache->fp_offset = INVALID_OFFSET; |
| 568 | |
| 569 | /* Saved registers. We initialize these to -1 since zero is a valid |
| 570 | offset. */ |
| 571 | for (i = 0; i < NDS32_NUM_SAVED_REGS; i++) |
| 572 | cache->saved_regs[i] = REG_UNAVAIL; |
| 573 | |
| 574 | return cache; |
| 575 | } |
| 576 | |
| 577 | /* Helper function for instructions used to push multiple words. */ |
| 578 | |
| 579 | static void |
| 580 | nds32_push_multiple_words (struct nds32_frame_cache *cache, int rb, int re, |
| 581 | int enable4) |
| 582 | { |
| 583 | CORE_ADDR sp_offset = cache->sp_offset; |
| 584 | int i; |
| 585 | |
| 586 | /* Check LP, GP, FP in enable4. */ |
| 587 | for (i = 1; i <= 3; i++) |
| 588 | { |
| 589 | if ((enable4 >> i) & 0x1) |
| 590 | { |
| 591 | sp_offset += 4; |
| 592 | cache->saved_regs[NDS32_SP_REGNUM - i] = sp_offset; |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | /* Skip case where re == rb == sp. */ |
| 597 | if ((rb < REG_FP) && (re < REG_FP)) |
| 598 | { |
| 599 | for (i = re; i >= rb; i--) |
| 600 | { |
| 601 | sp_offset += 4; |
| 602 | cache->saved_regs[i] = sp_offset; |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | /* For sp, update the offset. */ |
| 607 | cache->sp_offset = sp_offset; |
| 608 | } |
| 609 | |
| 610 | /* Analyze the instructions within the given address range. If CACHE |
| 611 | is non-NULL, fill it in. Return the first address beyond the given |
| 612 | address range. If CACHE is NULL, return the first address not |
| 613 | recognized as a prologue instruction. */ |
| 614 | |
| 615 | static CORE_ADDR |
| 616 | nds32_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, |
| 617 | CORE_ADDR limit_pc, struct nds32_frame_cache *cache) |
| 618 | { |
| 619 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 620 | int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi); |
| 621 | /* Current scanning status. */ |
| 622 | int in_prologue_bb = 0; |
| 623 | int val_ta = 0; |
| 624 | uint32_t insn, insn_len; |
| 625 | |
| 626 | for (; pc < limit_pc; pc += insn_len) |
| 627 | { |
| 628 | insn = read_memory_unsigned_integer (pc, 4, BFD_ENDIAN_BIG); |
| 629 | |
| 630 | if ((insn & 0x80000000) == 0) |
| 631 | { |
| 632 | /* 32-bit instruction */ |
| 633 | insn_len = 4; |
| 634 | |
| 635 | if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_SP, REG_SP, 0)) |
| 636 | { |
| 637 | /* addi $sp, $sp, imm15s */ |
| 638 | int imm15s = N32_IMM15S (insn); |
| 639 | |
| 640 | if (imm15s < 0) |
| 641 | { |
| 642 | if (cache != NULL) |
| 643 | cache->sp_offset += -imm15s; |
| 644 | |
| 645 | in_prologue_bb = 1; |
| 646 | continue; |
| 647 | } |
| 648 | } |
| 649 | else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_FP, REG_SP, 0)) |
| 650 | { |
| 651 | /* addi $fp, $sp, imm15s */ |
| 652 | int imm15s = N32_IMM15S (insn); |
| 653 | |
| 654 | if (imm15s > 0) |
| 655 | { |
| 656 | if (cache != NULL) |
| 657 | cache->fp_offset = cache->sp_offset - imm15s; |
| 658 | |
| 659 | in_prologue_bb = 1; |
| 660 | continue; |
| 661 | } |
| 662 | } |
| 663 | else if ((insn & ~(__MASK (19) << 6)) == N32_SMW_ADM |
| 664 | && N32_RA5 (insn) == REG_SP) |
| 665 | { |
| 666 | /* smw.adm Rb, [$sp], Re, enable4 */ |
| 667 | if (cache != NULL) |
| 668 | nds32_push_multiple_words (cache, N32_RT5 (insn), |
| 669 | N32_RB5 (insn), |
| 670 | N32_LSMW_ENABLE4 (insn)); |
| 671 | in_prologue_bb = 1; |
| 672 | continue; |
| 673 | } |
| 674 | else if (insn == N32_ALU1 (ADD, REG_SP, REG_SP, REG_TA) |
| 675 | || insn == N32_ALU1 (ADD, REG_SP, REG_TA, REG_SP)) |
| 676 | { |
| 677 | /* add $sp, $sp, $ta */ |
| 678 | /* add $sp, $ta, $sp */ |
| 679 | if (val_ta < 0) |
| 680 | { |
| 681 | if (cache != NULL) |
| 682 | cache->sp_offset += -val_ta; |
| 683 | |
| 684 | in_prologue_bb = 1; |
| 685 | continue; |
| 686 | } |
| 687 | } |
| 688 | else if (CHOP_BITS (insn, 20) == N32_TYPE1 (MOVI, REG_TA, 0)) |
| 689 | { |
| 690 | /* movi $ta, imm20s */ |
| 691 | if (cache != NULL) |
| 692 | val_ta = N32_IMM20S (insn); |
| 693 | |
| 694 | continue; |
| 695 | } |
| 696 | else if (CHOP_BITS (insn, 20) == N32_TYPE1 (SETHI, REG_TA, 0)) |
| 697 | { |
| 698 | /* sethi $ta, imm20u */ |
| 699 | if (cache != NULL) |
| 700 | val_ta = N32_IMM20U (insn) << 12; |
| 701 | |
| 702 | continue; |
| 703 | } |
| 704 | else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ORI, REG_TA, REG_TA, 0)) |
| 705 | { |
| 706 | /* ori $ta, $ta, imm15u */ |
| 707 | if (cache != NULL) |
| 708 | val_ta |= N32_IMM15U (insn); |
| 709 | |
| 710 | continue; |
| 711 | } |
| 712 | else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_TA, REG_TA, 0)) |
| 713 | { |
| 714 | /* addi $ta, $ta, imm15s */ |
| 715 | if (cache != NULL) |
| 716 | val_ta += N32_IMM15S (insn); |
| 717 | |
| 718 | continue; |
| 719 | } |
| 720 | if (insn == N32_ALU1 (ADD, REG_GP, REG_TA, REG_GP) |
| 721 | || insn == N32_ALU1 (ADD, REG_GP, REG_GP, REG_TA)) |
| 722 | { |
| 723 | /* add $gp, $ta, $gp */ |
| 724 | /* add $gp, $gp, $ta */ |
| 725 | in_prologue_bb = 1; |
| 726 | continue; |
| 727 | } |
| 728 | else if (CHOP_BITS (insn, 20) == N32_TYPE1 (MOVI, REG_GP, 0)) |
| 729 | { |
| 730 | /* movi $gp, imm20s */ |
| 731 | in_prologue_bb = 1; |
| 732 | continue; |
| 733 | } |
| 734 | else if (CHOP_BITS (insn, 20) == N32_TYPE1 (SETHI, REG_GP, 0)) |
| 735 | { |
| 736 | /* sethi $gp, imm20u */ |
| 737 | in_prologue_bb = 1; |
| 738 | continue; |
| 739 | } |
| 740 | else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ORI, REG_GP, REG_GP, 0)) |
| 741 | { |
| 742 | /* ori $gp, $gp, imm15u */ |
| 743 | in_prologue_bb = 1; |
| 744 | continue; |
| 745 | } |
| 746 | else |
| 747 | { |
| 748 | /* Jump/Branch insns never appear in prologue basic block. |
| 749 | The loop can be escaped early when these insns are met. */ |
| 750 | if (in_prologue_bb == 1) |
| 751 | { |
| 752 | int op = N32_OP6 (insn); |
| 753 | |
| 754 | if (op == N32_OP6_JI |
| 755 | || op == N32_OP6_JREG |
| 756 | || op == N32_OP6_BR1 |
| 757 | || op == N32_OP6_BR2 |
| 758 | || op == N32_OP6_BR3) |
| 759 | break; |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | if (abi_use_fpr && N32_OP6 (insn) == N32_OP6_SDC |
| 764 | && __GF (insn, 12, 3) == 0) |
| 765 | { |
| 766 | /* For FPU insns, CP (bit [13:14]) should be CP0, and only |
| 767 | normal form (bit [12] == 0) is used. */ |
| 768 | |
| 769 | /* fsdi FDt, [$sp + (imm12s << 2)] */ |
| 770 | if (N32_RA5 (insn) == REG_SP) |
| 771 | continue; |
| 772 | } |
| 773 | |
| 774 | /* The optimizer might shove anything into the prologue, if |
| 775 | we build up cache (cache != NULL) from analyzing prologue, |
| 776 | we just skip what we don't recognize and analyze further to |
| 777 | make cache as complete as possible. However, if we skip |
| 778 | prologue, we'll stop immediately on unrecognized |
| 779 | instruction. */ |
| 780 | if (cache == NULL) |
| 781 | break; |
| 782 | } |
| 783 | else |
| 784 | { |
| 785 | /* 16-bit instruction */ |
| 786 | insn_len = 2; |
| 787 | |
| 788 | insn >>= 16; |
| 789 | |
| 790 | if (CHOP_BITS (insn, 10) == N16_TYPE10 (ADDI10S, 0)) |
| 791 | { |
| 792 | /* addi10s.sp */ |
| 793 | int imm10s = N16_IMM10S (insn); |
| 794 | |
| 795 | if (imm10s < 0) |
| 796 | { |
| 797 | if (cache != NULL) |
| 798 | cache->sp_offset += -imm10s; |
| 799 | |
| 800 | in_prologue_bb = 1; |
| 801 | continue; |
| 802 | } |
| 803 | } |
| 804 | else if (__GF (insn, 7, 8) == N16_T25_PUSH25) |
| 805 | { |
| 806 | /* push25 */ |
| 807 | if (cache != NULL) |
| 808 | { |
| 809 | int imm8u = (insn & 0x1f) << 3; |
| 810 | int re = (insn >> 5) & 0x3; |
| 811 | const int reg_map[] = { 6, 8, 10, 14 }; |
| 812 | |
| 813 | /* Operation 1 -- smw.adm R6, [$sp], Re, #0xe */ |
| 814 | nds32_push_multiple_words (cache, 6, reg_map[re], 0xe); |
| 815 | |
| 816 | /* Operation 2 -- sp = sp - (imm5u << 3) */ |
| 817 | cache->sp_offset += imm8u; |
| 818 | } |
| 819 | |
| 820 | in_prologue_bb = 1; |
| 821 | continue; |
| 822 | } |
| 823 | else if (insn == N16_TYPE5 (ADD5PC, REG_GP)) |
| 824 | { |
| 825 | /* add5.pc $gp */ |
| 826 | in_prologue_bb = 1; |
| 827 | continue; |
| 828 | } |
| 829 | else if (CHOP_BITS (insn, 5) == N16_TYPE55 (MOVI55, REG_GP, 0)) |
| 830 | { |
| 831 | /* movi55 $gp, imm5s */ |
| 832 | in_prologue_bb = 1; |
| 833 | continue; |
| 834 | } |
| 835 | else |
| 836 | { |
| 837 | /* Jump/Branch insns never appear in prologue basic block. |
| 838 | The loop can be escaped early when these insns are met. */ |
| 839 | if (in_prologue_bb == 1) |
| 840 | { |
| 841 | uint32_t insn5 = CHOP_BITS (insn, 5); |
| 842 | uint32_t insn8 = CHOP_BITS (insn, 8); |
| 843 | uint32_t insn38 = CHOP_BITS (insn, 11); |
| 844 | |
| 845 | if (insn5 == N16_TYPE5 (JR5, 0) |
| 846 | || insn5 == N16_TYPE5 (JRAL5, 0) |
| 847 | || insn5 == N16_TYPE5 (RET5, 0) |
| 848 | || insn8 == N16_TYPE8 (J8, 0) |
| 849 | || insn8 == N16_TYPE8 (BEQZS8, 0) |
| 850 | || insn8 == N16_TYPE8 (BNEZS8, 0) |
| 851 | || insn38 == N16_TYPE38 (BEQZ38, 0, 0) |
| 852 | || insn38 == N16_TYPE38 (BNEZ38, 0, 0) |
| 853 | || insn38 == N16_TYPE38 (BEQS38, 0, 0) |
| 854 | || insn38 == N16_TYPE38 (BNES38, 0, 0)) |
| 855 | break; |
| 856 | } |
| 857 | } |
| 858 | |
| 859 | /* The optimizer might shove anything into the prologue, if |
| 860 | we build up cache (cache != NULL) from analyzing prologue, |
| 861 | we just skip what we don't recognize and analyze further to |
| 862 | make cache as complete as possible. However, if we skip |
| 863 | prologue, we'll stop immediately on unrecognized |
| 864 | instruction. */ |
| 865 | if (cache == NULL) |
| 866 | break; |
| 867 | } |
| 868 | } |
| 869 | |
| 870 | return pc; |
| 871 | } |
| 872 | |
| 873 | /* Implement the "skip_prologue" gdbarch method. |
| 874 | |
| 875 | Find the end of function prologue. */ |
| 876 | |
| 877 | static CORE_ADDR |
| 878 | nds32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| 879 | { |
| 880 | CORE_ADDR func_addr, limit_pc; |
| 881 | |
| 882 | /* See if we can determine the end of the prologue via the symbol table. |
| 883 | If so, then return either PC, or the PC after the prologue, whichever |
| 884 | is greater. */ |
| 885 | if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) |
| 886 | { |
| 887 | CORE_ADDR post_prologue_pc |
| 888 | = skip_prologue_using_sal (gdbarch, func_addr); |
| 889 | if (post_prologue_pc != 0) |
| 890 | return std::max (pc, post_prologue_pc); |
| 891 | } |
| 892 | |
| 893 | /* Can't determine prologue from the symbol table, need to examine |
| 894 | instructions. */ |
| 895 | |
| 896 | /* Find an upper limit on the function prologue using the debug |
| 897 | information. If the debug information could not be used to provide |
| 898 | that bound, then use an arbitrary large number as the upper bound. */ |
| 899 | limit_pc = skip_prologue_using_sal (gdbarch, pc); |
| 900 | if (limit_pc == 0) |
| 901 | limit_pc = pc + 128; /* Magic. */ |
| 902 | |
| 903 | /* Find the end of prologue. */ |
| 904 | return nds32_analyze_prologue (gdbarch, pc, limit_pc, NULL); |
| 905 | } |
| 906 | |
| 907 | /* Allocate and fill in *THIS_CACHE with information about the prologue of |
| 908 | *THIS_FRAME. Do not do this if *THIS_CACHE was already allocated. Return |
| 909 | a pointer to the current nds32_frame_cache in *THIS_CACHE. */ |
| 910 | |
| 911 | static struct nds32_frame_cache * |
| 912 | nds32_frame_cache (struct frame_info *this_frame, void **this_cache) |
| 913 | { |
| 914 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| 915 | struct nds32_frame_cache *cache; |
| 916 | CORE_ADDR current_pc; |
| 917 | ULONGEST prev_sp; |
| 918 | ULONGEST this_base; |
| 919 | int i; |
| 920 | |
| 921 | if (*this_cache) |
| 922 | return (struct nds32_frame_cache *) *this_cache; |
| 923 | |
| 924 | cache = nds32_alloc_frame_cache (); |
| 925 | *this_cache = cache; |
| 926 | |
| 927 | cache->pc = get_frame_func (this_frame); |
| 928 | current_pc = get_frame_pc (this_frame); |
| 929 | nds32_analyze_prologue (gdbarch, cache->pc, current_pc, cache); |
| 930 | |
| 931 | /* Compute the previous frame's stack pointer (which is also the |
| 932 | frame's ID's stack address), and this frame's base pointer. */ |
| 933 | if (cache->fp_offset != INVALID_OFFSET) |
| 934 | { |
| 935 | /* FP is set in prologue, so it can be used to calculate other info. */ |
| 936 | this_base = get_frame_register_unsigned (this_frame, NDS32_FP_REGNUM); |
| 937 | prev_sp = this_base + cache->fp_offset; |
| 938 | } |
| 939 | else |
| 940 | { |
| 941 | this_base = get_frame_register_unsigned (this_frame, NDS32_SP_REGNUM); |
| 942 | prev_sp = this_base + cache->sp_offset; |
| 943 | } |
| 944 | |
| 945 | cache->prev_sp = prev_sp; |
| 946 | cache->base = this_base; |
| 947 | |
| 948 | /* Adjust all the saved registers such that they contain addresses |
| 949 | instead of offsets. */ |
| 950 | for (i = 0; i < NDS32_NUM_SAVED_REGS; i++) |
| 951 | if (cache->saved_regs[i] != REG_UNAVAIL) |
| 952 | cache->saved_regs[i] = cache->prev_sp - cache->saved_regs[i]; |
| 953 | |
| 954 | return cache; |
| 955 | } |
| 956 | |
| 957 | /* Implement the "this_id" frame_unwind method. |
| 958 | |
| 959 | Our frame ID for a normal frame is the current function's starting |
| 960 | PC and the caller's SP when we were called. */ |
| 961 | |
| 962 | static void |
| 963 | nds32_frame_this_id (struct frame_info *this_frame, |
| 964 | void **this_cache, struct frame_id *this_id) |
| 965 | { |
| 966 | struct nds32_frame_cache *cache = nds32_frame_cache (this_frame, this_cache); |
| 967 | |
| 968 | /* This marks the outermost frame. */ |
| 969 | if (cache->prev_sp == 0) |
| 970 | return; |
| 971 | |
| 972 | *this_id = frame_id_build (cache->prev_sp, cache->pc); |
| 973 | } |
| 974 | |
| 975 | /* Implement the "prev_register" frame_unwind method. */ |
| 976 | |
| 977 | static struct value * |
| 978 | nds32_frame_prev_register (struct frame_info *this_frame, void **this_cache, |
| 979 | int regnum) |
| 980 | { |
| 981 | struct nds32_frame_cache *cache = nds32_frame_cache (this_frame, this_cache); |
| 982 | |
| 983 | if (regnum == NDS32_SP_REGNUM) |
| 984 | return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp); |
| 985 | |
| 986 | /* The PC of the previous frame is stored in the LP register of |
| 987 | the current frame. */ |
| 988 | if (regnum == NDS32_PC_REGNUM) |
| 989 | regnum = NDS32_LP_REGNUM; |
| 990 | |
| 991 | if (regnum < NDS32_NUM_SAVED_REGS && cache->saved_regs[regnum] != REG_UNAVAIL) |
| 992 | return frame_unwind_got_memory (this_frame, regnum, |
| 993 | cache->saved_regs[regnum]); |
| 994 | |
| 995 | return frame_unwind_got_register (this_frame, regnum, regnum); |
| 996 | } |
| 997 | |
| 998 | static const struct frame_unwind nds32_frame_unwind = |
| 999 | { |
| 1000 | NORMAL_FRAME, |
| 1001 | default_frame_unwind_stop_reason, |
| 1002 | nds32_frame_this_id, |
| 1003 | nds32_frame_prev_register, |
| 1004 | NULL, |
| 1005 | default_frame_sniffer, |
| 1006 | }; |
| 1007 | |
| 1008 | /* Return the frame base address of *THIS_FRAME. */ |
| 1009 | |
| 1010 | static CORE_ADDR |
| 1011 | nds32_frame_base_address (struct frame_info *this_frame, void **this_cache) |
| 1012 | { |
| 1013 | struct nds32_frame_cache *cache = nds32_frame_cache (this_frame, this_cache); |
| 1014 | |
| 1015 | return cache->base; |
| 1016 | } |
| 1017 | |
| 1018 | static const struct frame_base nds32_frame_base = |
| 1019 | { |
| 1020 | &nds32_frame_unwind, |
| 1021 | nds32_frame_base_address, |
| 1022 | nds32_frame_base_address, |
| 1023 | nds32_frame_base_address |
| 1024 | }; |
| 1025 | \f |
| 1026 | /* Helper function for instructions used to pop multiple words. */ |
| 1027 | |
| 1028 | static void |
| 1029 | nds32_pop_multiple_words (struct nds32_frame_cache *cache, int rb, int re, |
| 1030 | int enable4) |
| 1031 | { |
| 1032 | CORE_ADDR sp_offset = cache->sp_offset; |
| 1033 | int i; |
| 1034 | |
| 1035 | /* Skip case where re == rb == sp. */ |
| 1036 | if ((rb < REG_FP) && (re < REG_FP)) |
| 1037 | { |
| 1038 | for (i = rb; i <= re; i++) |
| 1039 | { |
| 1040 | cache->saved_regs[i] = sp_offset; |
| 1041 | sp_offset += 4; |
| 1042 | } |
| 1043 | } |
| 1044 | |
| 1045 | /* Check FP, GP, LP in enable4. */ |
| 1046 | for (i = 3; i >= 1; i--) |
| 1047 | { |
| 1048 | if ((enable4 >> i) & 0x1) |
| 1049 | { |
| 1050 | cache->saved_regs[NDS32_SP_REGNUM - i] = sp_offset; |
| 1051 | sp_offset += 4; |
| 1052 | } |
| 1053 | } |
| 1054 | |
| 1055 | /* For sp, update the offset. */ |
| 1056 | cache->sp_offset = sp_offset; |
| 1057 | } |
| 1058 | |
| 1059 | /* The instruction sequences in NDS32 epilogue are |
| 1060 | |
| 1061 | INSN_RESET_SP (optional) |
| 1062 | (If exists, this must be the first instruction in epilogue |
| 1063 | and the stack has not been destroyed.). |
| 1064 | INSN_RECOVER (optional). |
| 1065 | INSN_RETURN/INSN_RECOVER_RETURN (required). */ |
| 1066 | |
| 1067 | /* Helper function for analyzing the given 32-bit INSN. If CACHE is non-NULL, |
| 1068 | the necessary information will be recorded. */ |
| 1069 | |
| 1070 | static inline int |
| 1071 | nds32_analyze_epilogue_insn32 (int abi_use_fpr, uint32_t insn, |
| 1072 | struct nds32_frame_cache *cache) |
| 1073 | { |
| 1074 | if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_SP, REG_SP, 0) |
| 1075 | && N32_IMM15S (insn) > 0) |
| 1076 | /* addi $sp, $sp, imm15s */ |
| 1077 | return INSN_RESET_SP; |
| 1078 | else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_SP, REG_FP, 0) |
| 1079 | && N32_IMM15S (insn) < 0) |
| 1080 | /* addi $sp, $fp, imm15s */ |
| 1081 | return INSN_RESET_SP; |
| 1082 | else if ((insn & ~(__MASK (19) << 6)) == N32_LMW_BIM |
| 1083 | && N32_RA5 (insn) == REG_SP) |
| 1084 | { |
| 1085 | /* lmw.bim Rb, [$sp], Re, enable4 */ |
| 1086 | if (cache != NULL) |
| 1087 | nds32_pop_multiple_words (cache, N32_RT5 (insn), |
| 1088 | N32_RB5 (insn), N32_LSMW_ENABLE4 (insn)); |
| 1089 | |
| 1090 | return INSN_RECOVER; |
| 1091 | } |
| 1092 | else if (insn == N32_JREG (JR, 0, REG_LP, 0, 1)) |
| 1093 | /* ret $lp */ |
| 1094 | return INSN_RETURN; |
| 1095 | else if (insn == N32_ALU1 (ADD, REG_SP, REG_SP, REG_TA) |
| 1096 | || insn == N32_ALU1 (ADD, REG_SP, REG_TA, REG_SP)) |
| 1097 | /* add $sp, $sp, $ta */ |
| 1098 | /* add $sp, $ta, $sp */ |
| 1099 | return INSN_RESET_SP; |
| 1100 | else if (abi_use_fpr |
| 1101 | && (insn & ~(__MASK (5) << 20 | __MASK (13))) == N32_FLDI_SP) |
| 1102 | { |
| 1103 | if (__GF (insn, 12, 1) == 0) |
| 1104 | /* fldi FDt, [$sp + (imm12s << 2)] */ |
| 1105 | return INSN_RECOVER; |
| 1106 | else |
| 1107 | { |
| 1108 | /* fldi.bi FDt, [$sp], (imm12s << 2) */ |
| 1109 | int offset = N32_IMM12S (insn) << 2; |
| 1110 | |
| 1111 | if (offset == 8 || offset == 12) |
| 1112 | { |
| 1113 | if (cache != NULL) |
| 1114 | cache->sp_offset += offset; |
| 1115 | |
| 1116 | return INSN_RECOVER; |
| 1117 | } |
| 1118 | } |
| 1119 | } |
| 1120 | |
| 1121 | return INSN_NORMAL; |
| 1122 | } |
| 1123 | |
| 1124 | /* Helper function for analyzing the given 16-bit INSN. If CACHE is non-NULL, |
| 1125 | the necessary information will be recorded. */ |
| 1126 | |
| 1127 | static inline int |
| 1128 | nds32_analyze_epilogue_insn16 (uint32_t insn, struct nds32_frame_cache *cache) |
| 1129 | { |
| 1130 | if (insn == N16_TYPE5 (RET5, REG_LP)) |
| 1131 | /* ret5 $lp */ |
| 1132 | return INSN_RETURN; |
| 1133 | else if (CHOP_BITS (insn, 10) == N16_TYPE10 (ADDI10S, 0)) |
| 1134 | { |
| 1135 | /* addi10s.sp */ |
| 1136 | int imm10s = N16_IMM10S (insn); |
| 1137 | |
| 1138 | if (imm10s > 0) |
| 1139 | { |
| 1140 | if (cache != NULL) |
| 1141 | cache->sp_offset += imm10s; |
| 1142 | |
| 1143 | return INSN_RECOVER; |
| 1144 | } |
| 1145 | } |
| 1146 | else if (__GF (insn, 7, 8) == N16_T25_POP25) |
| 1147 | { |
| 1148 | /* pop25 */ |
| 1149 | if (cache != NULL) |
| 1150 | { |
| 1151 | int imm8u = (insn & 0x1f) << 3; |
| 1152 | int re = (insn >> 5) & 0x3; |
| 1153 | const int reg_map[] = { 6, 8, 10, 14 }; |
| 1154 | |
| 1155 | /* Operation 1 -- sp = sp + (imm5u << 3) */ |
| 1156 | cache->sp_offset += imm8u; |
| 1157 | |
| 1158 | /* Operation 2 -- lmw.bim R6, [$sp], Re, #0xe */ |
| 1159 | nds32_pop_multiple_words (cache, 6, reg_map[re], 0xe); |
| 1160 | } |
| 1161 | |
| 1162 | /* Operation 3 -- ret $lp */ |
| 1163 | return INSN_RECOVER_RETURN; |
| 1164 | } |
| 1165 | |
| 1166 | return INSN_NORMAL; |
| 1167 | } |
| 1168 | |
| 1169 | /* Analyze a reasonable amount of instructions from the given PC to find |
| 1170 | the instruction used to return to the caller. Return 1 if the 'return' |
| 1171 | instruction could be found, 0 otherwise. |
| 1172 | |
| 1173 | If CACHE is non-NULL, fill it in. */ |
| 1174 | |
| 1175 | static int |
| 1176 | nds32_analyze_epilogue (struct gdbarch *gdbarch, CORE_ADDR pc, |
| 1177 | struct nds32_frame_cache *cache) |
| 1178 | { |
| 1179 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 1180 | int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi); |
| 1181 | CORE_ADDR limit_pc; |
| 1182 | uint32_t insn, insn_len; |
| 1183 | int insn_type = INSN_NORMAL; |
| 1184 | |
| 1185 | if (abi_use_fpr) |
| 1186 | limit_pc = pc + 48; |
| 1187 | else |
| 1188 | limit_pc = pc + 16; |
| 1189 | |
| 1190 | for (; pc < limit_pc; pc += insn_len) |
| 1191 | { |
| 1192 | insn = read_memory_unsigned_integer (pc, 4, BFD_ENDIAN_BIG); |
| 1193 | |
| 1194 | if ((insn & 0x80000000) == 0) |
| 1195 | { |
| 1196 | /* 32-bit instruction */ |
| 1197 | insn_len = 4; |
| 1198 | |
| 1199 | insn_type = nds32_analyze_epilogue_insn32 (abi_use_fpr, insn, cache); |
| 1200 | if (insn_type == INSN_RETURN) |
| 1201 | return 1; |
| 1202 | else if (insn_type == INSN_RECOVER) |
| 1203 | continue; |
| 1204 | } |
| 1205 | else |
| 1206 | { |
| 1207 | /* 16-bit instruction */ |
| 1208 | insn_len = 2; |
| 1209 | |
| 1210 | insn >>= 16; |
| 1211 | insn_type = nds32_analyze_epilogue_insn16 (insn, cache); |
| 1212 | if (insn_type == INSN_RETURN || insn_type == INSN_RECOVER_RETURN) |
| 1213 | return 1; |
| 1214 | else if (insn_type == INSN_RECOVER) |
| 1215 | continue; |
| 1216 | } |
| 1217 | |
| 1218 | /* Stop the scan if this is an unexpected instruction. */ |
| 1219 | break; |
| 1220 | } |
| 1221 | |
| 1222 | return 0; |
| 1223 | } |
| 1224 | |
| 1225 | /* Implement the "stack_frame_destroyed_p" gdbarch method. */ |
| 1226 | |
| 1227 | static int |
| 1228 | nds32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR addr) |
| 1229 | { |
| 1230 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 1231 | int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi); |
| 1232 | int insn_type = INSN_NORMAL; |
| 1233 | int ret_found = 0; |
| 1234 | uint32_t insn; |
| 1235 | |
| 1236 | insn = read_memory_unsigned_integer (addr, 4, BFD_ENDIAN_BIG); |
| 1237 | |
| 1238 | if ((insn & 0x80000000) == 0) |
| 1239 | { |
| 1240 | /* 32-bit instruction */ |
| 1241 | |
| 1242 | insn_type = nds32_analyze_epilogue_insn32 (abi_use_fpr, insn, NULL); |
| 1243 | } |
| 1244 | else |
| 1245 | { |
| 1246 | /* 16-bit instruction */ |
| 1247 | |
| 1248 | insn >>= 16; |
| 1249 | insn_type = nds32_analyze_epilogue_insn16 (insn, NULL); |
| 1250 | } |
| 1251 | |
| 1252 | if (insn_type == INSN_NORMAL || insn_type == INSN_RESET_SP) |
| 1253 | return 0; |
| 1254 | |
| 1255 | /* Search the required 'return' instruction within the following reasonable |
| 1256 | instructions. */ |
| 1257 | ret_found = nds32_analyze_epilogue (gdbarch, addr, NULL); |
| 1258 | if (ret_found == 0) |
| 1259 | return 0; |
| 1260 | |
| 1261 | /* Scan backwards to make sure that the last instruction has adjusted |
| 1262 | stack. Both a 16-bit and a 32-bit instruction will be tried. This is |
| 1263 | just a heuristic, so the false positives will be acceptable. */ |
| 1264 | insn = read_memory_unsigned_integer (addr - 2, 4, BFD_ENDIAN_BIG); |
| 1265 | |
| 1266 | /* Only 16-bit instructions are possible at addr - 2. */ |
| 1267 | if ((insn & 0x80000000) != 0) |
| 1268 | { |
| 1269 | /* This may be a 16-bit instruction or part of a 32-bit instruction. */ |
| 1270 | |
| 1271 | insn_type = nds32_analyze_epilogue_insn16 (insn >> 16, NULL); |
| 1272 | if (insn_type == INSN_RECOVER) |
| 1273 | return 1; |
| 1274 | } |
| 1275 | |
| 1276 | insn = read_memory_unsigned_integer (addr - 4, 4, BFD_ENDIAN_BIG); |
| 1277 | |
| 1278 | /* If this is a 16-bit instruction at addr - 4, then there must be another |
| 1279 | 16-bit instruction at addr - 2, so only 32-bit instructions need to |
| 1280 | be analyzed here. */ |
| 1281 | if ((insn & 0x80000000) == 0) |
| 1282 | { |
| 1283 | /* This may be a 32-bit instruction or part of a 32-bit instruction. */ |
| 1284 | |
| 1285 | insn_type = nds32_analyze_epilogue_insn32 (abi_use_fpr, insn, NULL); |
| 1286 | if (insn_type == INSN_RECOVER || insn_type == INSN_RESET_SP) |
| 1287 | return 1; |
| 1288 | } |
| 1289 | |
| 1290 | return 0; |
| 1291 | } |
| 1292 | |
| 1293 | /* Implement the "sniffer" frame_unwind method. */ |
| 1294 | |
| 1295 | static int |
| 1296 | nds32_epilogue_frame_sniffer (const struct frame_unwind *self, |
| 1297 | struct frame_info *this_frame, void **this_cache) |
| 1298 | { |
| 1299 | if (frame_relative_level (this_frame) == 0) |
| 1300 | return nds32_stack_frame_destroyed_p (get_frame_arch (this_frame), |
| 1301 | get_frame_pc (this_frame)); |
| 1302 | else |
| 1303 | return 0; |
| 1304 | } |
| 1305 | |
| 1306 | /* Allocate and fill in *THIS_CACHE with information needed to unwind |
| 1307 | *THIS_FRAME within epilogue. Do not do this if *THIS_CACHE was already |
| 1308 | allocated. Return a pointer to the current nds32_frame_cache in |
| 1309 | *THIS_CACHE. */ |
| 1310 | |
| 1311 | static struct nds32_frame_cache * |
| 1312 | nds32_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache) |
| 1313 | { |
| 1314 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| 1315 | struct nds32_frame_cache *cache; |
| 1316 | CORE_ADDR current_pc, current_sp; |
| 1317 | int i; |
| 1318 | |
| 1319 | if (*this_cache) |
| 1320 | return (struct nds32_frame_cache *) *this_cache; |
| 1321 | |
| 1322 | cache = nds32_alloc_frame_cache (); |
| 1323 | *this_cache = cache; |
| 1324 | |
| 1325 | cache->pc = get_frame_func (this_frame); |
| 1326 | current_pc = get_frame_pc (this_frame); |
| 1327 | nds32_analyze_epilogue (gdbarch, current_pc, cache); |
| 1328 | |
| 1329 | current_sp = get_frame_register_unsigned (this_frame, NDS32_SP_REGNUM); |
| 1330 | cache->prev_sp = current_sp + cache->sp_offset; |
| 1331 | |
| 1332 | /* Adjust all the saved registers such that they contain addresses |
| 1333 | instead of offsets. */ |
| 1334 | for (i = 0; i < NDS32_NUM_SAVED_REGS; i++) |
| 1335 | if (cache->saved_regs[i] != REG_UNAVAIL) |
| 1336 | cache->saved_regs[i] = current_sp + cache->saved_regs[i]; |
| 1337 | |
| 1338 | return cache; |
| 1339 | } |
| 1340 | |
| 1341 | /* Implement the "this_id" frame_unwind method. */ |
| 1342 | |
| 1343 | static void |
| 1344 | nds32_epilogue_frame_this_id (struct frame_info *this_frame, |
| 1345 | void **this_cache, struct frame_id *this_id) |
| 1346 | { |
| 1347 | struct nds32_frame_cache *cache |
| 1348 | = nds32_epilogue_frame_cache (this_frame, this_cache); |
| 1349 | |
| 1350 | /* This marks the outermost frame. */ |
| 1351 | if (cache->prev_sp == 0) |
| 1352 | return; |
| 1353 | |
| 1354 | *this_id = frame_id_build (cache->prev_sp, cache->pc); |
| 1355 | } |
| 1356 | |
| 1357 | /* Implement the "prev_register" frame_unwind method. */ |
| 1358 | |
| 1359 | static struct value * |
| 1360 | nds32_epilogue_frame_prev_register (struct frame_info *this_frame, |
| 1361 | void **this_cache, int regnum) |
| 1362 | { |
| 1363 | struct nds32_frame_cache *cache |
| 1364 | = nds32_epilogue_frame_cache (this_frame, this_cache); |
| 1365 | |
| 1366 | if (regnum == NDS32_SP_REGNUM) |
| 1367 | return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp); |
| 1368 | |
| 1369 | /* The PC of the previous frame is stored in the LP register of |
| 1370 | the current frame. */ |
| 1371 | if (regnum == NDS32_PC_REGNUM) |
| 1372 | regnum = NDS32_LP_REGNUM; |
| 1373 | |
| 1374 | if (regnum < NDS32_NUM_SAVED_REGS && cache->saved_regs[regnum] != REG_UNAVAIL) |
| 1375 | return frame_unwind_got_memory (this_frame, regnum, |
| 1376 | cache->saved_regs[regnum]); |
| 1377 | |
| 1378 | return frame_unwind_got_register (this_frame, regnum, regnum); |
| 1379 | } |
| 1380 | |
| 1381 | static const struct frame_unwind nds32_epilogue_frame_unwind = |
| 1382 | { |
| 1383 | NORMAL_FRAME, |
| 1384 | default_frame_unwind_stop_reason, |
| 1385 | nds32_epilogue_frame_this_id, |
| 1386 | nds32_epilogue_frame_prev_register, |
| 1387 | NULL, |
| 1388 | nds32_epilogue_frame_sniffer |
| 1389 | }; |
| 1390 | \f |
| 1391 | /* Implement the "dummy_id" gdbarch method. */ |
| 1392 | |
| 1393 | static struct frame_id |
| 1394 | nds32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
| 1395 | { |
| 1396 | CORE_ADDR sp = get_frame_register_unsigned (this_frame, NDS32_SP_REGNUM); |
| 1397 | |
| 1398 | return frame_id_build (sp, get_frame_pc (this_frame)); |
| 1399 | } |
| 1400 | |
| 1401 | /* Implement the "unwind_pc" gdbarch method. */ |
| 1402 | |
| 1403 | static CORE_ADDR |
| 1404 | nds32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
| 1405 | { |
| 1406 | return frame_unwind_register_unsigned (next_frame, NDS32_PC_REGNUM); |
| 1407 | } |
| 1408 | |
| 1409 | /* Implement the "unwind_sp" gdbarch method. */ |
| 1410 | |
| 1411 | static CORE_ADDR |
| 1412 | nds32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) |
| 1413 | { |
| 1414 | return frame_unwind_register_unsigned (next_frame, NDS32_SP_REGNUM); |
| 1415 | } |
| 1416 | \f |
| 1417 | /* Floating type and struct type that has only one floating type member |
| 1418 | can pass value using FPU registers (when FPU ABI is used). */ |
| 1419 | |
| 1420 | static int |
| 1421 | nds32_check_calling_use_fpr (struct type *type) |
| 1422 | { |
| 1423 | struct type *t; |
| 1424 | enum type_code typecode; |
| 1425 | |
| 1426 | t = type; |
| 1427 | while (1) |
| 1428 | { |
| 1429 | t = check_typedef (t); |
| 1430 | typecode = TYPE_CODE (t); |
| 1431 | if (typecode != TYPE_CODE_STRUCT) |
| 1432 | break; |
| 1433 | else if (TYPE_NFIELDS (t) != 1) |
| 1434 | return 0; |
| 1435 | else |
| 1436 | t = TYPE_FIELD_TYPE (t, 0); |
| 1437 | } |
| 1438 | |
| 1439 | return typecode == TYPE_CODE_FLT; |
| 1440 | } |
| 1441 | |
| 1442 | /* Return the alignment (in bytes) of the given type. */ |
| 1443 | |
| 1444 | static int |
| 1445 | nds32_type_align (struct type *type) |
| 1446 | { |
| 1447 | int n; |
| 1448 | int align; |
| 1449 | int falign; |
| 1450 | |
| 1451 | type = check_typedef (type); |
| 1452 | switch (TYPE_CODE (type)) |
| 1453 | { |
| 1454 | default: |
| 1455 | /* Should never happen. */ |
| 1456 | internal_error (__FILE__, __LINE__, _("unknown type alignment")); |
| 1457 | return 4; |
| 1458 | |
| 1459 | case TYPE_CODE_PTR: |
| 1460 | case TYPE_CODE_ENUM: |
| 1461 | case TYPE_CODE_INT: |
| 1462 | case TYPE_CODE_FLT: |
| 1463 | case TYPE_CODE_SET: |
| 1464 | case TYPE_CODE_RANGE: |
| 1465 | case TYPE_CODE_REF: |
| 1466 | case TYPE_CODE_CHAR: |
| 1467 | case TYPE_CODE_BOOL: |
| 1468 | return TYPE_LENGTH (type); |
| 1469 | |
| 1470 | case TYPE_CODE_ARRAY: |
| 1471 | case TYPE_CODE_COMPLEX: |
| 1472 | return nds32_type_align (TYPE_TARGET_TYPE (type)); |
| 1473 | |
| 1474 | case TYPE_CODE_STRUCT: |
| 1475 | case TYPE_CODE_UNION: |
| 1476 | align = 1; |
| 1477 | for (n = 0; n < TYPE_NFIELDS (type); n++) |
| 1478 | { |
| 1479 | falign = nds32_type_align (TYPE_FIELD_TYPE (type, n)); |
| 1480 | if (falign > align) |
| 1481 | align = falign; |
| 1482 | } |
| 1483 | return align; |
| 1484 | } |
| 1485 | } |
| 1486 | |
| 1487 | /* Implement the "push_dummy_call" gdbarch method. */ |
| 1488 | |
| 1489 | static CORE_ADDR |
| 1490 | nds32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| 1491 | struct regcache *regcache, CORE_ADDR bp_addr, |
| 1492 | int nargs, struct value **args, CORE_ADDR sp, |
| 1493 | int struct_return, CORE_ADDR struct_addr) |
| 1494 | { |
| 1495 | const int REND = 6; /* End for register offset. */ |
| 1496 | int goff = 0; /* Current gpr offset for argument. */ |
| 1497 | int foff = 0; /* Current fpr offset for argument. */ |
| 1498 | int soff = 0; /* Current stack offset for argument. */ |
| 1499 | int i; |
| 1500 | ULONGEST regval; |
| 1501 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 1502 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 1503 | struct type *func_type = value_type (function); |
| 1504 | int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi); |
| 1505 | int abi_split = nds32_abi_split (tdep->elf_abi); |
| 1506 | |
| 1507 | /* Set the return address. For the NDS32, the return breakpoint is |
| 1508 | always at BP_ADDR. */ |
| 1509 | regcache_cooked_write_unsigned (regcache, NDS32_LP_REGNUM, bp_addr); |
| 1510 | |
| 1511 | /* If STRUCT_RETURN is true, then the struct return address (in |
| 1512 | STRUCT_ADDR) will consume the first argument-passing register. |
| 1513 | Both adjust the register count and store that value. */ |
| 1514 | if (struct_return) |
| 1515 | { |
| 1516 | regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM, struct_addr); |
| 1517 | goff++; |
| 1518 | } |
| 1519 | |
| 1520 | /* Now make sure there's space on the stack */ |
| 1521 | for (i = 0; i < nargs; i++) |
| 1522 | { |
| 1523 | struct type *type = value_type (args[i]); |
| 1524 | int align = nds32_type_align (type); |
| 1525 | |
| 1526 | /* If align is zero, it may be an empty struct. |
| 1527 | Just ignore the argument of empty struct. */ |
| 1528 | if (align == 0) |
| 1529 | continue; |
| 1530 | |
| 1531 | sp -= TYPE_LENGTH (type); |
| 1532 | sp = align_down (sp, align); |
| 1533 | } |
| 1534 | |
| 1535 | /* Stack must be 8-byte aligned. */ |
| 1536 | sp = align_down (sp, 8); |
| 1537 | |
| 1538 | soff = 0; |
| 1539 | for (i = 0; i < nargs; i++) |
| 1540 | { |
| 1541 | const gdb_byte *val; |
| 1542 | int align, len; |
| 1543 | struct type *type; |
| 1544 | int calling_use_fpr; |
| 1545 | int use_fpr = 0; |
| 1546 | |
| 1547 | type = value_type (args[i]); |
| 1548 | calling_use_fpr = nds32_check_calling_use_fpr (type); |
| 1549 | len = TYPE_LENGTH (type); |
| 1550 | align = nds32_type_align (type); |
| 1551 | val = value_contents (args[i]); |
| 1552 | |
| 1553 | /* The size of a composite type larger than 4 bytes will be rounded |
| 1554 | up to the nearest multiple of 4. */ |
| 1555 | if (len > 4) |
| 1556 | len = align_up (len, 4); |
| 1557 | |
| 1558 | /* Variadic functions are handled differently between AABI and ABI2FP+. |
| 1559 | |
| 1560 | For AABI, the caller pushes arguments in registers, callee stores |
| 1561 | unnamed arguments in stack, and then va_arg fetch arguments in stack. |
| 1562 | Therefore, we don't have to handle variadic functions specially. |
| 1563 | |
| 1564 | For ABI2FP+, the caller pushes only named arguments in registers |
| 1565 | and pushes all unnamed arguments in stack. */ |
| 1566 | |
| 1567 | if (abi_use_fpr && TYPE_VARARGS (func_type) |
| 1568 | && i >= TYPE_NFIELDS (func_type)) |
| 1569 | goto use_stack; |
| 1570 | |
| 1571 | /* Try to use FPRs to pass arguments only when |
| 1572 | 1. The program is built using toolchain with FPU support. |
| 1573 | 2. The type of this argument can use FPR to pass value. */ |
| 1574 | use_fpr = abi_use_fpr && calling_use_fpr; |
| 1575 | |
| 1576 | if (use_fpr) |
| 1577 | { |
| 1578 | if (tdep->fpu_freg == -1) |
| 1579 | goto error_no_fpr; |
| 1580 | |
| 1581 | /* Adjust alignment. */ |
| 1582 | if ((align >> 2) > 0) |
| 1583 | foff = align_up (foff, align >> 2); |
| 1584 | |
| 1585 | if (foff < REND) |
| 1586 | { |
| 1587 | switch (len) |
| 1588 | { |
| 1589 | case 4: |
| 1590 | regcache_cooked_write (regcache, |
| 1591 | tdep->fs0_regnum + foff, val); |
| 1592 | foff++; |
| 1593 | break; |
| 1594 | case 8: |
| 1595 | regcache_cooked_write (regcache, |
| 1596 | NDS32_FD0_REGNUM + (foff >> 1), val); |
| 1597 | foff += 2; |
| 1598 | break; |
| 1599 | default: |
| 1600 | /* Long double? */ |
| 1601 | internal_error (__FILE__, __LINE__, |
| 1602 | "Do not know how to handle %d-byte double.\n", |
| 1603 | len); |
| 1604 | break; |
| 1605 | } |
| 1606 | continue; |
| 1607 | } |
| 1608 | } |
| 1609 | else |
| 1610 | { |
| 1611 | /* |
| 1612 | When passing arguments using GPRs, |
| 1613 | |
| 1614 | * A composite type not larger than 4 bytes is passed in $rN. |
| 1615 | The format is as if the value is loaded with load instruction |
| 1616 | of corresponding size (e.g., LB, LH, LW). |
| 1617 | |
| 1618 | For example, |
| 1619 | |
| 1620 | r0 |
| 1621 | 31 0 |
| 1622 | LITTLE: [x x b a] |
| 1623 | BIG: [x x a b] |
| 1624 | |
| 1625 | * Otherwise, a composite type is passed in consecutive registers. |
| 1626 | The size is rounded up to the nearest multiple of 4. |
| 1627 | The successive registers hold the parts of the argument as if |
| 1628 | were loaded using lmw instructions. |
| 1629 | |
| 1630 | For example, |
| 1631 | |
| 1632 | r0 r1 |
| 1633 | 31 0 31 0 |
| 1634 | LITTLE: [d c b a] [x x x e] |
| 1635 | BIG: [a b c d] [e x x x] |
| 1636 | */ |
| 1637 | |
| 1638 | /* Adjust alignment. */ |
| 1639 | if ((align >> 2) > 0) |
| 1640 | goff = align_up (goff, align >> 2); |
| 1641 | |
| 1642 | if (len <= (REND - goff) * 4) |
| 1643 | { |
| 1644 | /* This argument can be passed wholly via GPRs. */ |
| 1645 | while (len > 0) |
| 1646 | { |
| 1647 | regval = extract_unsigned_integer (val, (len > 4) ? 4 : len, |
| 1648 | byte_order); |
| 1649 | regcache_cooked_write_unsigned (regcache, |
| 1650 | NDS32_R0_REGNUM + goff, |
| 1651 | regval); |
| 1652 | len -= 4; |
| 1653 | val += 4; |
| 1654 | goff++; |
| 1655 | } |
| 1656 | continue; |
| 1657 | } |
| 1658 | else if (abi_split) |
| 1659 | { |
| 1660 | /* Some parts of this argument can be passed via GPRs. */ |
| 1661 | while (goff < REND) |
| 1662 | { |
| 1663 | regval = extract_unsigned_integer (val, (len > 4) ? 4 : len, |
| 1664 | byte_order); |
| 1665 | regcache_cooked_write_unsigned (regcache, |
| 1666 | NDS32_R0_REGNUM + goff, |
| 1667 | regval); |
| 1668 | len -= 4; |
| 1669 | val += 4; |
| 1670 | goff++; |
| 1671 | } |
| 1672 | } |
| 1673 | } |
| 1674 | |
| 1675 | use_stack: |
| 1676 | /* |
| 1677 | When pushing (split parts of) an argument into stack, |
| 1678 | |
| 1679 | * A composite type not larger than 4 bytes is copied to different |
| 1680 | base address. |
| 1681 | In little-endian, the first byte of this argument is aligned |
| 1682 | at the low address of the next free word. |
| 1683 | In big-endian, the last byte of this argument is aligned |
| 1684 | at the high address of the next free word. |
| 1685 | |
| 1686 | For example, |
| 1687 | |
| 1688 | sp [ - ] [ c ] hi |
| 1689 | [ c ] [ b ] |
| 1690 | [ b ] [ a ] |
| 1691 | [ a ] [ - ] lo |
| 1692 | LITTLE BIG |
| 1693 | */ |
| 1694 | |
| 1695 | /* Adjust alignment. */ |
| 1696 | soff = align_up (soff, align); |
| 1697 | |
| 1698 | while (len > 0) |
| 1699 | { |
| 1700 | int rlen = (len > 4) ? 4 : len; |
| 1701 | |
| 1702 | if (byte_order == BFD_ENDIAN_BIG) |
| 1703 | write_memory (sp + soff + 4 - rlen, val, rlen); |
| 1704 | else |
| 1705 | write_memory (sp + soff, val, rlen); |
| 1706 | |
| 1707 | len -= 4; |
| 1708 | val += 4; |
| 1709 | soff += 4; |
| 1710 | } |
| 1711 | } |
| 1712 | |
| 1713 | /* Finally, update the SP register. */ |
| 1714 | regcache_cooked_write_unsigned (regcache, NDS32_SP_REGNUM, sp); |
| 1715 | |
| 1716 | return sp; |
| 1717 | |
| 1718 | error_no_fpr: |
| 1719 | /* If use_fpr, but no floating-point register exists, |
| 1720 | then it is an error. */ |
| 1721 | error (_("Fail to call. FPU registers are required.")); |
| 1722 | } |
| 1723 | \f |
| 1724 | /* Read, for architecture GDBARCH, a function return value of TYPE |
| 1725 | from REGCACHE, and copy that into VALBUF. */ |
| 1726 | |
| 1727 | static void |
| 1728 | nds32_extract_return_value (struct gdbarch *gdbarch, struct type *type, |
| 1729 | struct regcache *regcache, gdb_byte *valbuf) |
| 1730 | { |
| 1731 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 1732 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 1733 | int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi); |
| 1734 | int calling_use_fpr; |
| 1735 | int len; |
| 1736 | |
| 1737 | calling_use_fpr = nds32_check_calling_use_fpr (type); |
| 1738 | len = TYPE_LENGTH (type); |
| 1739 | |
| 1740 | if (abi_use_fpr && calling_use_fpr) |
| 1741 | { |
| 1742 | if (len == 4) |
| 1743 | regcache_cooked_read (regcache, tdep->fs0_regnum, valbuf); |
| 1744 | else if (len == 8) |
| 1745 | regcache_cooked_read (regcache, NDS32_FD0_REGNUM, valbuf); |
| 1746 | else |
| 1747 | internal_error (__FILE__, __LINE__, |
| 1748 | _("Cannot extract return value of %d bytes " |
| 1749 | "long floating-point."), len); |
| 1750 | } |
| 1751 | else |
| 1752 | { |
| 1753 | /* |
| 1754 | When returning result, |
| 1755 | |
| 1756 | * A composite type not larger than 4 bytes is returned in $r0. |
| 1757 | The format is as if the result is loaded with load instruction |
| 1758 | of corresponding size (e.g., LB, LH, LW). |
| 1759 | |
| 1760 | For example, |
| 1761 | |
| 1762 | r0 |
| 1763 | 31 0 |
| 1764 | LITTLE: [x x b a] |
| 1765 | BIG: [x x a b] |
| 1766 | |
| 1767 | * Otherwise, a composite type not larger than 8 bytes is returned |
| 1768 | in $r0 and $r1. |
| 1769 | In little-endian, the first word is loaded in $r0. |
| 1770 | In big-endian, the last word is loaded in $r1. |
| 1771 | |
| 1772 | For example, |
| 1773 | |
| 1774 | r0 r1 |
| 1775 | 31 0 31 0 |
| 1776 | LITTLE: [d c b a] [x x x e] |
| 1777 | BIG: [x x x a] [b c d e] |
| 1778 | */ |
| 1779 | |
| 1780 | ULONGEST tmp; |
| 1781 | |
| 1782 | if (len < 4) |
| 1783 | { |
| 1784 | /* By using store_unsigned_integer we avoid having to do |
| 1785 | anything special for small big-endian values. */ |
| 1786 | regcache_cooked_read_unsigned (regcache, NDS32_R0_REGNUM, &tmp); |
| 1787 | store_unsigned_integer (valbuf, len, byte_order, tmp); |
| 1788 | } |
| 1789 | else if (len == 4) |
| 1790 | { |
| 1791 | regcache_cooked_read (regcache, NDS32_R0_REGNUM, valbuf); |
| 1792 | } |
| 1793 | else if (len < 8) |
| 1794 | { |
| 1795 | int len1, len2; |
| 1796 | |
| 1797 | len1 = byte_order == BFD_ENDIAN_BIG ? len - 4 : 4; |
| 1798 | len2 = len - len1; |
| 1799 | |
| 1800 | regcache_cooked_read_unsigned (regcache, NDS32_R0_REGNUM, &tmp); |
| 1801 | store_unsigned_integer (valbuf, len1, byte_order, tmp); |
| 1802 | |
| 1803 | regcache_cooked_read_unsigned (regcache, NDS32_R0_REGNUM + 1, &tmp); |
| 1804 | store_unsigned_integer (valbuf + len1, len2, byte_order, tmp); |
| 1805 | } |
| 1806 | else |
| 1807 | { |
| 1808 | regcache_cooked_read (regcache, NDS32_R0_REGNUM, valbuf); |
| 1809 | regcache_cooked_read (regcache, NDS32_R0_REGNUM + 1, valbuf + 4); |
| 1810 | } |
| 1811 | } |
| 1812 | } |
| 1813 | |
| 1814 | /* Write, for architecture GDBARCH, a function return value of TYPE |
| 1815 | from VALBUF into REGCACHE. */ |
| 1816 | |
| 1817 | static void |
| 1818 | nds32_store_return_value (struct gdbarch *gdbarch, struct type *type, |
| 1819 | struct regcache *regcache, const gdb_byte *valbuf) |
| 1820 | { |
| 1821 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 1822 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 1823 | int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi); |
| 1824 | int calling_use_fpr; |
| 1825 | int len; |
| 1826 | |
| 1827 | calling_use_fpr = nds32_check_calling_use_fpr (type); |
| 1828 | len = TYPE_LENGTH (type); |
| 1829 | |
| 1830 | if (abi_use_fpr && calling_use_fpr) |
| 1831 | { |
| 1832 | if (len == 4) |
| 1833 | regcache_cooked_write (regcache, tdep->fs0_regnum, valbuf); |
| 1834 | else if (len == 8) |
| 1835 | regcache_cooked_write (regcache, NDS32_FD0_REGNUM, valbuf); |
| 1836 | else |
| 1837 | internal_error (__FILE__, __LINE__, |
| 1838 | _("Cannot store return value of %d bytes " |
| 1839 | "long floating-point."), len); |
| 1840 | } |
| 1841 | else |
| 1842 | { |
| 1843 | ULONGEST regval; |
| 1844 | |
| 1845 | if (len < 4) |
| 1846 | { |
| 1847 | regval = extract_unsigned_integer (valbuf, len, byte_order); |
| 1848 | regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM, regval); |
| 1849 | } |
| 1850 | else if (len == 4) |
| 1851 | { |
| 1852 | regcache_cooked_write (regcache, NDS32_R0_REGNUM, valbuf); |
| 1853 | } |
| 1854 | else if (len < 8) |
| 1855 | { |
| 1856 | int len1, len2; |
| 1857 | |
| 1858 | len1 = byte_order == BFD_ENDIAN_BIG ? len - 4 : 4; |
| 1859 | len2 = len - len1; |
| 1860 | |
| 1861 | regval = extract_unsigned_integer (valbuf, len1, byte_order); |
| 1862 | regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM, regval); |
| 1863 | |
| 1864 | regval = extract_unsigned_integer (valbuf + len1, len2, byte_order); |
| 1865 | regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM + 1, |
| 1866 | regval); |
| 1867 | } |
| 1868 | else |
| 1869 | { |
| 1870 | regcache_cooked_write (regcache, NDS32_R0_REGNUM, valbuf); |
| 1871 | regcache_cooked_write (regcache, NDS32_R0_REGNUM + 1, valbuf + 4); |
| 1872 | } |
| 1873 | } |
| 1874 | } |
| 1875 | |
| 1876 | /* Implement the "return_value" gdbarch method. |
| 1877 | |
| 1878 | Determine, for architecture GDBARCH, how a return value of TYPE |
| 1879 | should be returned. If it is supposed to be returned in registers, |
| 1880 | and READBUF is non-zero, read the appropriate value from REGCACHE, |
| 1881 | and copy it into READBUF. If WRITEBUF is non-zero, write the value |
| 1882 | from WRITEBUF into REGCACHE. */ |
| 1883 | |
| 1884 | static enum return_value_convention |
| 1885 | nds32_return_value (struct gdbarch *gdbarch, struct value *func_type, |
| 1886 | struct type *type, struct regcache *regcache, |
| 1887 | gdb_byte *readbuf, const gdb_byte *writebuf) |
| 1888 | { |
| 1889 | if (TYPE_LENGTH (type) > 8) |
| 1890 | { |
| 1891 | return RETURN_VALUE_STRUCT_CONVENTION; |
| 1892 | } |
| 1893 | else |
| 1894 | { |
| 1895 | if (readbuf != NULL) |
| 1896 | nds32_extract_return_value (gdbarch, type, regcache, readbuf); |
| 1897 | if (writebuf != NULL) |
| 1898 | nds32_store_return_value (gdbarch, type, regcache, writebuf); |
| 1899 | |
| 1900 | return RETURN_VALUE_REGISTER_CONVENTION; |
| 1901 | } |
| 1902 | } |
| 1903 | \f |
| 1904 | /* Implement the "get_longjmp_target" gdbarch method. */ |
| 1905 | |
| 1906 | static int |
| 1907 | nds32_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) |
| 1908 | { |
| 1909 | gdb_byte buf[4]; |
| 1910 | CORE_ADDR jb_addr; |
| 1911 | struct gdbarch *gdbarch = get_frame_arch (frame); |
| 1912 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 1913 | |
| 1914 | jb_addr = get_frame_register_unsigned (frame, NDS32_R0_REGNUM); |
| 1915 | |
| 1916 | if (target_read_memory (jb_addr + 11 * 4, buf, 4)) |
| 1917 | return 0; |
| 1918 | |
| 1919 | *pc = extract_unsigned_integer (buf, 4, byte_order); |
| 1920 | return 1; |
| 1921 | } |
| 1922 | \f |
| 1923 | /* Validate the given TDESC, and fixed-number some registers in it. |
| 1924 | Return 0 if the given TDESC does not contain the required feature |
| 1925 | or not contain required registers. */ |
| 1926 | |
| 1927 | static int |
| 1928 | nds32_validate_tdesc_p (const struct target_desc *tdesc, |
| 1929 | struct tdesc_arch_data *tdesc_data, |
| 1930 | int *fpu_freg, int *use_pseudo_fsrs) |
| 1931 | { |
| 1932 | const struct tdesc_feature *feature; |
| 1933 | int i, valid_p; |
| 1934 | |
| 1935 | feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nds32.core"); |
| 1936 | if (feature == NULL) |
| 1937 | return 0; |
| 1938 | |
| 1939 | valid_p = 1; |
| 1940 | /* Validate and fixed-number R0-R10. */ |
| 1941 | for (i = NDS32_R0_REGNUM; i <= NDS32_R0_REGNUM + 10; i++) |
| 1942 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, |
| 1943 | nds32_register_names[i]); |
| 1944 | |
| 1945 | /* Validate R15. */ |
| 1946 | valid_p &= tdesc_unnumbered_register (feature, |
| 1947 | nds32_register_names[NDS32_TA_REGNUM]); |
| 1948 | |
| 1949 | /* Validate and fixed-number FP, GP, LP, SP, PC. */ |
| 1950 | for (i = NDS32_FP_REGNUM; i <= NDS32_PC_REGNUM; i++) |
| 1951 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, |
| 1952 | nds32_register_names[i]); |
| 1953 | |
| 1954 | if (!valid_p) |
| 1955 | return 0; |
| 1956 | |
| 1957 | /* Fixed-number R11-R27. */ |
| 1958 | for (i = NDS32_R0_REGNUM + 11; i <= NDS32_R0_REGNUM + 27; i++) |
| 1959 | tdesc_numbered_register (feature, tdesc_data, i, nds32_register_names[i]); |
| 1960 | |
| 1961 | feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nds32.fpu"); |
| 1962 | if (feature != NULL) |
| 1963 | { |
| 1964 | int num_fdr_regs, num_fsr_regs, fs0_regnum, num_listed_fsr; |
| 1965 | int freg = -1; |
| 1966 | |
| 1967 | /* Guess FPU configuration via listed registers. */ |
| 1968 | if (tdesc_unnumbered_register (feature, "fd31")) |
| 1969 | freg = 3; |
| 1970 | else if (tdesc_unnumbered_register (feature, "fd15")) |
| 1971 | freg = 2; |
| 1972 | else if (tdesc_unnumbered_register (feature, "fd7")) |
| 1973 | freg = 1; |
| 1974 | else if (tdesc_unnumbered_register (feature, "fd3")) |
| 1975 | freg = 0; |
| 1976 | |
| 1977 | if (freg == -1) |
| 1978 | /* Required FDR is not found. */ |
| 1979 | return 0; |
| 1980 | else |
| 1981 | *fpu_freg = freg; |
| 1982 | |
| 1983 | /* Validate and fixed-number required FDRs. */ |
| 1984 | num_fdr_regs = num_fdr_map[freg]; |
| 1985 | for (i = 0; i < num_fdr_regs; i++) |
| 1986 | valid_p &= tdesc_numbered_register (feature, tdesc_data, |
| 1987 | NDS32_FD0_REGNUM + i, |
| 1988 | nds32_fdr_register_names[i]); |
| 1989 | if (!valid_p) |
| 1990 | return 0; |
| 1991 | |
| 1992 | /* Count the number of listed FSRs, and fixed-number them if present. */ |
| 1993 | num_fsr_regs = num_fsr_map[freg]; |
| 1994 | fs0_regnum = NDS32_FD0_REGNUM + num_fdr_regs; |
| 1995 | num_listed_fsr = 0; |
| 1996 | for (i = 0; i < num_fsr_regs; i++) |
| 1997 | num_listed_fsr += tdesc_numbered_register (feature, tdesc_data, |
| 1998 | fs0_regnum + i, |
| 1999 | nds32_fsr_register_names[i]); |
| 2000 | |
| 2001 | if (num_listed_fsr == 0) |
| 2002 | /* No required FSRs are listed explicitly, make them pseudo registers |
| 2003 | of FDRs. */ |
| 2004 | *use_pseudo_fsrs = 1; |
| 2005 | else if (num_listed_fsr == num_fsr_regs) |
| 2006 | /* All required FSRs are listed explicitly. */ |
| 2007 | *use_pseudo_fsrs = 0; |
| 2008 | else |
| 2009 | /* Some required FSRs are missing. */ |
| 2010 | return 0; |
| 2011 | } |
| 2012 | |
| 2013 | return 1; |
| 2014 | } |
| 2015 | |
| 2016 | /* Initialize the current architecture based on INFO. If possible, |
| 2017 | re-use an architecture from ARCHES, which is a list of |
| 2018 | architectures already created during this debugging session. |
| 2019 | |
| 2020 | Called e.g. at program startup, when reading a core file, and when |
| 2021 | reading a binary file. */ |
| 2022 | |
| 2023 | static struct gdbarch * |
| 2024 | nds32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
| 2025 | { |
| 2026 | struct gdbarch *gdbarch; |
| 2027 | struct gdbarch_tdep *tdep; |
| 2028 | struct gdbarch_list *best_arch; |
| 2029 | struct tdesc_arch_data *tdesc_data = NULL; |
| 2030 | const struct target_desc *tdesc = info.target_desc; |
| 2031 | int elf_abi = E_NDS_ABI_AABI; |
| 2032 | int fpu_freg = -1; |
| 2033 | int use_pseudo_fsrs = 0; |
| 2034 | int i, num_regs, maxregs; |
| 2035 | |
| 2036 | /* Extract the elf_flags if available. */ |
| 2037 | if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) |
| 2038 | elf_abi = elf_elfheader (info.abfd)->e_flags & EF_NDS_ABI; |
| 2039 | |
| 2040 | /* If there is already a candidate, use it. */ |
| 2041 | for (best_arch = gdbarch_list_lookup_by_info (arches, &info); |
| 2042 | best_arch != NULL; |
| 2043 | best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) |
| 2044 | { |
| 2045 | struct gdbarch_tdep *idep = gdbarch_tdep (best_arch->gdbarch); |
| 2046 | |
| 2047 | if (idep->elf_abi != elf_abi) |
| 2048 | continue; |
| 2049 | |
| 2050 | /* Found a match. */ |
| 2051 | break; |
| 2052 | } |
| 2053 | |
| 2054 | if (best_arch != NULL) |
| 2055 | return best_arch->gdbarch; |
| 2056 | |
| 2057 | if (!tdesc_has_registers (tdesc)) |
| 2058 | tdesc = tdesc_nds32; |
| 2059 | |
| 2060 | tdesc_data = tdesc_data_alloc (); |
| 2061 | |
| 2062 | if (!nds32_validate_tdesc_p (tdesc, tdesc_data, &fpu_freg, &use_pseudo_fsrs)) |
| 2063 | { |
| 2064 | tdesc_data_cleanup (tdesc_data); |
| 2065 | return NULL; |
| 2066 | } |
| 2067 | |
| 2068 | /* Allocate space for the new architecture. */ |
| 2069 | tdep = XCNEW (struct gdbarch_tdep); |
| 2070 | tdep->fpu_freg = fpu_freg; |
| 2071 | tdep->use_pseudo_fsrs = use_pseudo_fsrs; |
| 2072 | tdep->fs0_regnum = -1; |
| 2073 | tdep->elf_abi = elf_abi; |
| 2074 | |
| 2075 | gdbarch = gdbarch_alloc (&info, tdep); |
| 2076 | |
| 2077 | set_gdbarch_wchar_bit (gdbarch, 16); |
| 2078 | set_gdbarch_wchar_signed (gdbarch, 0); |
| 2079 | |
| 2080 | if (fpu_freg == -1) |
| 2081 | num_regs = NDS32_NUM_REGS; |
| 2082 | else if (use_pseudo_fsrs == 1) |
| 2083 | { |
| 2084 | set_gdbarch_pseudo_register_read (gdbarch, nds32_pseudo_register_read); |
| 2085 | set_gdbarch_pseudo_register_write (gdbarch, nds32_pseudo_register_write); |
| 2086 | set_tdesc_pseudo_register_name (gdbarch, nds32_pseudo_register_name); |
| 2087 | set_tdesc_pseudo_register_type (gdbarch, nds32_pseudo_register_type); |
| 2088 | set_gdbarch_num_pseudo_regs (gdbarch, num_fsr_map[fpu_freg]); |
| 2089 | |
| 2090 | num_regs = NDS32_NUM_REGS + num_fdr_map[fpu_freg]; |
| 2091 | } |
| 2092 | else |
| 2093 | num_regs = NDS32_NUM_REGS + num_fdr_map[fpu_freg] + num_fsr_map[fpu_freg]; |
| 2094 | |
| 2095 | set_gdbarch_num_regs (gdbarch, num_regs); |
| 2096 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); |
| 2097 | |
| 2098 | /* Cache the register number of fs0. */ |
| 2099 | if (fpu_freg != -1) |
| 2100 | tdep->fs0_regnum = user_reg_map_name_to_regnum (gdbarch, "fs0", -1); |
| 2101 | |
| 2102 | /* Add NDS32 register aliases. To avoid search in user register name space, |
| 2103 | user_reg_map_name_to_regnum is not used. */ |
| 2104 | maxregs = (gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch)); |
| 2105 | for (i = 0; i < ARRAY_SIZE (nds32_register_aliases); i++) |
| 2106 | { |
| 2107 | int regnum, j; |
| 2108 | |
| 2109 | regnum = -1; |
| 2110 | /* Search register name space. */ |
| 2111 | for (j = 0; j < maxregs; j++) |
| 2112 | { |
| 2113 | const char *regname = gdbarch_register_name (gdbarch, j); |
| 2114 | |
| 2115 | if (regname != NULL |
| 2116 | && strcmp (regname, nds32_register_aliases[i].name) == 0) |
| 2117 | { |
| 2118 | regnum = j; |
| 2119 | break; |
| 2120 | } |
| 2121 | } |
| 2122 | |
| 2123 | /* Try next alias entry if the given name can not be found in register |
| 2124 | name space. */ |
| 2125 | if (regnum == -1) |
| 2126 | continue; |
| 2127 | |
| 2128 | user_reg_add (gdbarch, nds32_register_aliases[i].alias, |
| 2129 | value_of_nds32_reg, (const void *) (intptr_t) regnum); |
| 2130 | } |
| 2131 | |
| 2132 | nds32_add_reggroups (gdbarch); |
| 2133 | |
| 2134 | /* Hook in ABI-specific overrides, if they have been registered. */ |
| 2135 | info.tdesc_data = tdesc_data; |
| 2136 | gdbarch_init_osabi (info, gdbarch); |
| 2137 | |
| 2138 | /* Override tdesc_register callbacks for system registers. */ |
| 2139 | set_gdbarch_register_reggroup_p (gdbarch, nds32_register_reggroup_p); |
| 2140 | |
| 2141 | set_gdbarch_sp_regnum (gdbarch, NDS32_SP_REGNUM); |
| 2142 | set_gdbarch_pc_regnum (gdbarch, NDS32_PC_REGNUM); |
| 2143 | set_gdbarch_unwind_sp (gdbarch, nds32_unwind_sp); |
| 2144 | set_gdbarch_unwind_pc (gdbarch, nds32_unwind_pc); |
| 2145 | set_gdbarch_stack_frame_destroyed_p (gdbarch, nds32_stack_frame_destroyed_p); |
| 2146 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nds32_dwarf2_reg_to_regnum); |
| 2147 | |
| 2148 | set_gdbarch_push_dummy_call (gdbarch, nds32_push_dummy_call); |
| 2149 | set_gdbarch_return_value (gdbarch, nds32_return_value); |
| 2150 | set_gdbarch_dummy_id (gdbarch, nds32_dummy_id); |
| 2151 | |
| 2152 | set_gdbarch_skip_prologue (gdbarch, nds32_skip_prologue); |
| 2153 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
| 2154 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, |
| 2155 | nds32_breakpoint::kind_from_pc); |
| 2156 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, |
| 2157 | nds32_breakpoint::bp_from_kind); |
| 2158 | |
| 2159 | set_gdbarch_frame_align (gdbarch, nds32_frame_align); |
| 2160 | frame_base_set_default (gdbarch, &nds32_frame_base); |
| 2161 | |
| 2162 | /* Handle longjmp. */ |
| 2163 | set_gdbarch_get_longjmp_target (gdbarch, nds32_get_longjmp_target); |
| 2164 | |
| 2165 | /* The order of appending is the order it check frame. */ |
| 2166 | dwarf2_append_unwinders (gdbarch); |
| 2167 | frame_unwind_append_unwinder (gdbarch, &nds32_epilogue_frame_unwind); |
| 2168 | frame_unwind_append_unwinder (gdbarch, &nds32_frame_unwind); |
| 2169 | |
| 2170 | return gdbarch; |
| 2171 | } |
| 2172 | |
| 2173 | void |
| 2174 | _initialize_nds32_tdep (void) |
| 2175 | { |
| 2176 | /* Initialize gdbarch. */ |
| 2177 | register_gdbarch_init (bfd_arch_nds32, nds32_gdbarch_init); |
| 2178 | |
| 2179 | initialize_tdesc_nds32 (); |
| 2180 | nds32_init_reggroups (); |
| 2181 | } |